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CHAPTER I 

 

INTRODUCTION 

 

1.1 Background Information 

 

1.1.1 Congestion: The Problem 

Congestion on highways and roads is one of the most distressing problems the American 

public is facing. Congestion has grown everywhere in areas of all sizes, occurs for longer hours 

of the day and delays more travelers and goods than ever before. This trend is well illustrated by 

Figure 1.1. 

 

 

Figure 1.1: Peak-Period Congestion (Travel Time Index) Trends by U.S. Population Group

Source: Schrank, D. and Lomax, T., 2003 Annual Urban Mobility Report, Texas Transportation Institute. 

Note: The Travel Time Index is a measure of the total amount of congestion and is defined as the ratio of the 
weekday peak-period travel time to the travel time under ideal conditions. A Travel Time Index value of 1.3 
indicates 30 percent longer travel time curing peak-period than under ideal conditions. Population groups are: Very 
Large (greater than three million); Large (one to three million); Medium (500 thousand to one million); Small (less 
than 500 thousand). 

 

As is clear from Figure 1.1 congestion is increasing and is also expected to further 

increase in the future. Further information verifying the congestion expansion is evident from the 

changes in key indicators of the national roads and highways as depicted in Table 1.1.  
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Table 1.1: Changes in Indices Related to Surface Transportation in the US

Index Percent Change from 1992 to 2002 

US Population 12.9 

Licensed Drivers 10.4 

State Registered Motor Vehicles 21.1 

Highway Motor Fuel Usage 26.2 

Vehicle Miles of Travel 27.5 

Sources: Highway Statistics 2002 (Office of Highway Policy Information, FHWA, US DOT.) and Highway 
Statistics 1992 (Office of Highway Policy Information, FHWA, US DOT.)  

 

This congestion results in wasteful fuel consumption, contributes to increased 

atmospheric pollution (associated with the burning of fossil fuels), causes thousands of 

unproductive hours affecting the nation’s economy, disrupts transportation schedules and causes 

distress to drivers and passengers leading to accidents and other mishaps. According to the 2004 

Urban Mobility Report conducted by the Texas Transportation Institute, congestion in the US 

caused: 

› a total delay of 3.5 billion hours, 

› total fuel wastage of 5.7 billion gallons, and 

› wastage of 63.2 billion dollars (base year: 2002). 

As a matter of fact, in most metropolitan cities congestion is so bad and prolonged over multiple 

hours during both morning and evening periods, making the idea of a single “rush hour” 

obsolete. For the year 2002, 67 percent of the peak travel was congested with 58 percent of the 

total road system experiencing congestion spread over 7.1 hours a day, according to the 2004 

Urban Mobility Report. 

 

1.1.2 The Solution 

Strategies to counter congestion can be simply classified as follows: 

› Increasing the capacity of the existing transportation infrastructure, and 

› Operating the existing infrastructure more efficiently. 
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Over the years, experience in the transportation world has shown the latter being a more 

economically viable and “intelligent” option for congestion mitigation and for the past twenty 

five years there has not been more than 1% increase in the total road and street mileage in the US 

(Source: Highway Statistics 2002). The strategies falling under the second category are 

collectively termed as ITS (Intelligent Transportation Systems). ITS can be defined as those 

techniques which using the help of electronics and telecommunications, ensures smooth, safe, 

fast and economic transportation of people and goods.  

One of the strategies under the ITS umbrella is ‘Traffic Incident Management’ which is 

defined as the systematic, planned, and coordinated use of human, institutional, mechanical, and 

technical resources to reduce the duration and impact of incidents, and improve the safety of 

motorists, crash victims, and incident responders. These resources are also used to increase the 

operating efficiency, safety, and mobility of the highway by systematically reducing the time to 

detect and verify an incident occurrence; implementing the appropriate response; and safely 

clearing the incident, while managing the affected flow until full capacity is restored (Source: 

Traffic Incident Management Handbook, FHWA). 

Traffic incident management is still a nascent technique with lots of research 

possibilities. This study focuses on building an understanding of traffic incidents and their 

corresponding durations. Towards this end, this thesis involves developing models to explain the 

characteristics of incidents affecting their durations. This research also investigates the effect of 

incident durations in causing secondary incidents. (Secondary incidents are those occurring 

partly or entirely as a result of an earlier incident; the primary incident causing the secondary 

incident either directly or indirectly.) 

 

1.2 Motivation 

Traffic congestion is the result of many different interacting factors, all of which can be 

summed up into two categories:  

› Traffic volumes exceeding the physical capacity of the road system 

› Traffic-influencing events like crashes and bad weather 

The level of congestion on a roadway is determined by the interaction of physical capacity with 

events taking place at a given time. Nationally, a composite estimate of how much each of these 

sources contributes to total congestion is depicted in Figure 1.2. 
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Figure 1.2: Sources of Congestion: National Summary

Source: Congestion Mitigation: 21st Century Operations Using 21st Century Technologies, Office of Operations, 

FHWA, US DOT. 

 

Figure 1.2 illustrates a sizeable impact on traffic congestion due to highway incidents. As 

a result, several state Departments of Transportation (DOTs) have adopted traffic incident 

management as one of their prime operations seeking to reduce incident durations and incident-

induced traffic congestion. These efforts have proved very beneficial in terms of the returns on 

the invested capital. According to the 2004 Urban Mobility Report, operational treatments have 

saved 335 million hours of delay amounting to six billion dollars saved on congestion costs. 

With the incident management programs proving to be a very beneficial operation, there 

is a growing need to evaluate these programs. Statistical analysis of highway incident durations 

has become relevant to understand the impacts of traffic incidents on traffic congestion. 

Understanding the characteristics of incidents affecting incident duration can be very helpful in 

planning efficient incident management policies and strategies. In addition, primary incident 
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duration is the prime-most factor in the study of secondary incident occurrence rates. Secondary 

incidents, factors which contribute to their occurrence, their effect on regional traffic are areas 

which require extensive research. Considering the statistic that 15 to 20 percent of all incidents in 

the US are secondary in nature, the study of secondary incidents demand much more attention 

than what currently exists. 

Therefore, the chief motivation for this study is to develop a framework predicting incident 

durations depending on incident characteristics and probability of a secondary incident occurring 

given the primary incident duration. 

 

1.3 Objectives and Overview of the Methodology 

Within the context of the events and needs presented earlier, this study seeks to carry out the 

following goals: 

› Propose a model to predict incident durations. The model takes into consideration the 

factors affecting the incident duration and uses regression techniques to develop a 

framework for predicting incident durations. 

› Propose a model to predict secondary incident occurrences. This model is also based 

on a regression approach considering primary incident duration as the main factor. 

 

1.4 Organization of the Research 

The remainder of the thesis is organized as follows. Chapter 2 provides an introduction to 

traffic incident management programs followed by a comprehensive literature review on incident 

duration studies and secondary incident studies. In Chapter 3, a brief description about the 

research site and data acquired for this study is presented. Chapter 4 elaborates the research 

methodology adopted and also elucidates the data preparation required for the analysis. The 

incident duration model and the secondary incident causation model are presented in the 

subsequent two chapters. Finally the thesis is summarized with the findings, conclusions and 

directions for further research. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

The most important lesson to be learned from the numerous congestion related studies 

conducted in the US is that the congestion problem cannot be solved by building more and more 

highways. Where increasing roadway capacity as a measure to reduce traffic congestion fails due 

to enormous quantities of resources required such as land, money, fuel and labor; other 

alternatives like land use changes, roadway operations improvement, transit, travel demand 

management, incident management, weather information management and work zone 

management have been suggested as feasible and effective. Among these options traffic incident 

management is perhaps the most promising short-term measure to alleviate congestion problems 

on freeways and urban arterials. Traffic incident management measures on freeways have 

received considerable attention from motorists and traffic management officials alike. The 

widespread success of such programs has led to more and more cities adopting traffic incident 

management as a viable step towards improving the city’s transportation reliability and safety. 

 

2.1 Traffic Incident Management 

 

2.1.1 Introduction  

Traffic incident management is a collective and coordinated effort by different agencies 

to respond to highway traffic disruptions, yielding significant benefits through reduced vehicle 

delays and enhanced safety to motorists through reducing incident frequency and improving 

response and clearance times. The major disciplines constituting an efficient traffic incident 

management program are state and local departments of transportation (DOTs), law enforcement 

agencies, fire companies, rescue agencies, tow operators, traveler information providers like the 

media, HAZMAT cleanup services, and other agencies supporting these major players. 

 Since an effective incident management program involves coordinating the operations of 

many of these agencies to respond to incidents, traffic incident management poses a significant 

institutional and management challenge. Many cities now have traffic management centers 
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helping to integrate the communication systems of these disparate agencies and thereby 

achieving a synergic effort towards rapid and efficient incident management.  

 

2.1.2 Traffic Management Centers 

Traffic management centers (TMCs) can be considered as the core of a transportation 

management system, where information about the transportation network is collected, processed, 

and disseminated. The TMCs link various elements of the transportation system such as variable 

message signs, closed circuit video equipments, roadside count stations, and other elements 

enabling decision makers to identify and react to an incident in a timely manner based on real-

time data. 

In addition to being the focal point of a traffic incident management program, most of the 

TMCs also function as a repository of archived traffic data. Data relating to traffic incidents, 

specifically the incident type, temporal and spatial characteristics, weather-related data and other 

related miscellaneous information, are stored at the TMC. The main purpose of archiving such 

traffic data is to measure the performance of the TMC over long periods of time. Analysis of 

these data can indicate areas where improvements or changes are required. These data are also 

used by researchers in studying incident characteristics and trends.  

Incident data obtained from the Nashville TMC are used to study incident duration 

properties, factors affecting incident clearance times and probability of an incident causing a 

secondary incident. Incident duration studies and secondary incident studies based on archived 

incident data are popular research areas due to their nascency and extensive research potential. 

Though the site-specific nature of these studies because of the data-dependency can be viewed as 

a shortcoming, they can provide very valuable insights into overall improvement of the 

corresponding city’s incident management program.  

In the following sections the framework and salient features of incident duration and 

secondary crash occurrence studies are presented. Essential characteristics of the study and an 

outline of the approaches adopted by various researchers are discussed, while highlighting their 

prominent advantages and limitations. The importance of mathematical modeling in such studies 

is also presented along with the advantages and disadvantages of the different modeling 

applications.  
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2.2 Incident Duration Studies 

 

2.2.1 Introduction 

One of the chief objectives of a traffic incident management program is to reduce the 

impact of an incident on regional travel and travelers. The most obvious way to achieve this is to 

clear the incident scene as quickly as possible. The duration of an incident can be defined as the 

time elapsed between the start of the incident and when normal travel conditions are restored. 

The timeline of a typical incident management process and the different constituents of incident 

duration are illustrated in Figure 2.1. 
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› incident response travel time (time required by the incident response team to 
reach the incident site after being informed about the incident),  

› incident clearance time (time required to clear the incident site) and  

› incident recovery time (time required for the system to reach normalcy after 

incident clearance).  

The clearance process (involving the safe and timely removal of any stalled vehicles, wreckage, 

and debris from the roadway or shoulders and restoring the roadway for unimpeded flow of 

traffic) is usually the most time consuming step in the incident management program, and hence 

reducing incident clearance times has the greatest benefit on improving overall incident 

management time. Typically the whole incident clearance process takes at least twice the 

duration of other steps in incident management process. Reducing clearance times has the 

greatest potential effect (benefit) for improving overall incident management durations. (Source: 

Incident Management: “Successful Practices – A Cross Cutting Study”, Intelligent 

Transportation Systems, US DOT). Documenting incident clearance times and understanding 

their properties will allow for better incident clearance strategies in the future. Towards this end, 

this research focuses on investigating incident clearance time properties and factors affecting 

them.  

 

2.2.2 Incident Duration Models 

Research work based on predictive techniques applied to incident duration was conducted 

as early as 1987. Though a lot of research has been done on this topic, there is little agreement 

between studies due to the site-specific nature of the data adopted for such studies. Almost each 

of these studies uses different data, different predictive variables and different statistical 

modeling techniques. 

One of the earliest studies was conducted by Golob et al. in 1987 to analyze freeway 

accidents involving trucks. Using statistical tests like chi-squared test and Kolmogorov-Smirnov 

test, they were able to model the total duration of an incident according to a lognormal 

distribution. The main advantage of using a statistical distribution to represent incident durations 

is the straightforward manner of calculating the probability of an incident lasting for a particular 

duration of time. The proportion of incidents lasting less than a particular duration of time can 

also be calculated with the help of the cumulative distribution function of the incident duration. 
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Two properties of incident duration values, specifically positive values and having larger 

proportions of short-duration incidents, makes statistical distributions like lognormal, log-logistic 

and Weibull suitable for representing them. In fact, research studies by Giuliano in 1989, Garib 

et al. in 1997, and Sullivan in 1997 have supported the use of a lognormal distribution to 

describe freeway incident duration. Jones et al. used the log-logistic distribution in 1991 to a 

specific data set from the Seattle area. Nam and Mannering in 2000 found that the Weibull 

distribution could also be used to describe some incident data. 

Predictive models based on regression have also been developed over the past. These 

models can be used to examine the influence of incident characteristics on the duration. In 1997, 

Garib et al. developed a model based on linear regression. Based on the analysis consisting of 

205 incidents over a two-month period from Oakland, California, the authors developed a 

multiple linear regression model with six statistically significant variables: number of lanes 

affected (X1), number of vehicles involved (X2), binary variable for truck involvement (X3), 

binary variable for time of day (X4), natural logarithm of the police response time (X5), and a 

binary variable for weather conditions (X6). The log-based regression model is given by: 

 

Log (Duration) = 0.87 + 0.027 X1 X2 + 0.2 X3 – 0.17 X4 + 0.68 X5 – 0.24 X6 

 

Khattak et al. (1995) argues that most incident duration prediction models have no 

operational value since they require knowledge about all incident variables whereas in the field, 

accident information is acquired sequentially and this progression should be reflected in the 

model. In their paper, the authors identified different stages of an incident based on the 

information available and developed truncated regression models for each of those stages. As 

more and more pieces of information about the incident become available the model adds on 

more variables to predict the incident duration depending on the information available at that 

stage. This study was based on a small sample of incidents and was intended to demonstrate a 

new methodology. This model has neither been validated since then nor applied to any future 

study on forecasting incident duration. 

The primary drawback of linear regression models is the bulkiness of the predictive 

equation due to the categorical nature of independent variables resulting in a lot of dummy 
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variables. Another disadvantage of using linear models is in assuming a ‘simplifying’ linear 

relationship between the dependent variable and the predictor variables.   

Models based on conditional probabilities have also been developed over the past decade. 

These are models predicting incident duration probabilities given that the incident has already 

lasted a given time span. Jones et al. proposed a model based on conditional probabilities in 

1991. Nam and Mannering followed up on the concept by applying hazard-based models (using 

conditional probabilities to find the likelihood that an incident will end in the next short time 

period given its continuing duration) to develop incident duration models (Nam and Mannering, 

2000). 

In this research a new model based on logistic regression technique is developed. To date, 

there has been no published study of the use of logistic regression for predicting incident 

duration. The fundamental approach involved in such models and advantages of such a method 

over linear regression models are discussed in detail in Chapter 5. 

 

2.3 Secondary Incident Studies 

 

2.3.1 Introduction 

A secondary incident is an incident occurring because of the congestion or distraction 

from a prior incident. National averages in the US reveal almost 15 to 20 percent of all incidents 

being secondary incidents (Source: Traffic Incident Management, Office of Operations, FHWA). 

Secondary crashes often can be more serious than the original crash, especially if they occur at 

the boundary between free-flowing, highway speed traffic and stopped traffic. 

Incident duration is a very important factor determining the likelihood of a primary 

incident giving rise to a secondary incident. The quicker the original incident is cleared, the 

lesser is the time motorists and response personnel are exposed to traffic hazards, and the 

possibility of secondary collision is greatly reduced.  

 

2.3.2 Identifying a Secondary Incident 

Identifying a secondary incident and the corresponding primary crash is the most 

important and difficult step in a secondary incident study. Most of the incident databases or crash 

reports rarely include information about any incidents giving rise to secondary incidents. 
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Parameters linking a primary incident and a secondary incident were first suggested by Raub 

(1997) based on a space-time surface. He argued that an incident has to occur within the ‘time of 

effect’ of an earlier incident to be considered secondary (‘Time of effect’ of an incident is the 

time for which the effects of that incident can be felt on the regional traffic flow which was 

calculated as 15 minutes more than the incident clearance time). The secondary incident should 

also lie within one mile (upstream) of the primary incident (Raub, 1997).  

These set of assumed spatial and temporal criteria were updated in subsequent studies 

depending on on-site observations of secondary incidents. In order to account for secondary 

incidents caused on opposite direction of travel due to rubbernecking (or the gawking-effect) the 

spatial criteria was extended to downstream too in the opposite direction of travel for that route. 

For example, CHART (Coordinated Highways Action Response Team, Maryland ITS program) 

evaluation used the criteria that secondary incidents are those lying within 2 miles upstream and 

2 hours of the primary incident in the same direction and within 0.5 miles downstream and 0.5 

hours of the primary incident for the opposite direction  

 

2.3.3 Secondary Incident Models 

The earliest of secondary incident models was developed by Raub (1997). This was 

simply a secondary accident (a vehicular crash) rate model predicting the number of secondary 

accidents per incident. The research concluded more than 15 percent of all crashes were by an 

earlier event. Moore et al. (2004) developed a secondary accident rate model based on a different 

criterion for identifying secondary accidents than Raub (1997). The authors argued that only 

those incidents giving rise to a queue can cause a secondary accident. This may not be correct 

always as secondary accidents can be caused due to other factors of the primary incident (like 

debris left on the road). The authors also exclude chain reaction accidents (accidents occurring 

within few seconds of a primary incident and in immediate reaction) from secondary accidents. 

The space-time criteria that the authors followed were that the secondary accident had to be 

within 2 miles and 2 hours of the primary incident in either direction. The authors also argued 

that an accident occurring after an incident in the same direction, but downstream cannot be a 

secondary incident. This seems to a logical claim because the probability of a secondary accident 

happening beyond the primary incident site in the same direction is very small. Based on these 
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assumptions Moore et al. concluded that for every incident there are 0.7 to 1.3 percent secondary 

accidents, much less than what Raub (1997) had predicted. 

In a different approach to secondary crash modeling, Karlaftis et al. studied different 

primary incident characteristics likely to influence the occurrence of secondary crashes based on 

logistic regression. The authors employed logistic regression techniques to fit incident data from 

the Indiana’s Hoosier Helper freeway service patrol system to determine the effects of several 

primary incident descriptors (clearance time, season, weekday/weekend, type of vehicle 

involved, lateral location etc.) on the probability of secondary crash occurrence. Based on the 

analysis the authors concluded that for every minute increase in clearance time the likelihood of 

a secondary crash increases by 2.8 percent.  

 In all the above discussed models, the subject of research was secondary 

accidents/crashes. But congestion and traffic delay on highways can be caused not only by 

secondary crashes but also due to other secondary incidents like engine stalls, traffic stops, 

overheating, running out of fuel and any other incident that might be a result of another incident. 

(Source: Traffic Incident Management, Office of Operations, FHWA). Even though the severity 

of an incident involving crashes is greater than other incident cases, from a traffic operations 

standpoint all secondary incidents are problematic. Hence in this research all secondary incidents 

are considered in the analysis and model development. Towards this end, a secondary incident 

causation model based on logistic regression is developed to investigate the influence of primary 

incident characteristics on causing secondary incidents and not just secondary crashes. 
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CHAPTER III 

 

RESEARCH SITE AND DATA COLLECTION 

 

The database used in this research was obtained from the Nashville Transportation 

Management Center (TMC) which houses the Tennessee Department of Transportation’s 

intelligent transportation system for the Nashville area, the TDOT SmartWay. Mainly concerned 

with traffic incident management, the TDOT SmartWay combines roadway traffic sensors, video 

surveillance cameras and dynamic message signs to detect, verify and respond to incidents in an 

efficient manner and manage traffic conditions around the incident site in a safe and secure 

manner. TDOT’s freeway service patrol, known as HELP, is also located in the TMC, and the 

HELP dispatches work in the TMC control room. Furthermore, the TDOT SmartWay 

coordinates with law enforcement agencies, fire companies, rescue agencies, tow operators, 

traveler information providers like the media, and other agencies for expeditious restoration of 

the incident scene.  

 

3.1 Study Site 

This research is based on the freeways in the city of Nashville which have been 

monitored by the Nashville TMC as a part of the above-mentioned TDOT SmartWay project. 

The highways covered under this project include all or segments of I-40, I-440, I-65, I-24, 

Ellington Parkway, parts of Briley Parkway and parts of Vietnam Veterans Parkway with the 

help of 56 traffic cameras and 150 roadway traffic sensors. Figure 3.1 shows the spatial extent of 

this project, the freeways monitored and also the location of the cameras and the Dynamic 

Message Signs.   

In this study the data collected from July 2, 2003 to May 26, 2004 are used amounting to 

a total of three thousand, eight hundred and six recorded incidents.  
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Figure 3.1: Study Site 
Source: Tennessee Dept. of Transportation (TDOT) 

 

3.2 Incident Data 

The incident data is a part of the archived database at the TMC and is comprised of the 

incident description, spatial, temporal and environmental characteristics, and also descriptive 

information about the services rendered at the incident site. A detailed description of all the 

records in the incident data is included in the Appendix A. Following is a generic description of 

the records pertinent to this study: 
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› Incident Description: This consists of general characteristic features of an incident like the 

cause of the incident, the number of vehicles involved, truck involvement and whether or not 

that incident is a secondary incident. 

› Spatial Characteristics: The approximate location of the incident is documented by recording 

the travel route, direction and the nearest mile-marker. 

› Temporal Characteristics: The time at which the incident was notified to the TMC, the time 

the various services was rendered, the time at which the incident site was cleared and brought 

back to normalcy sums up all the temporal characteristics of the incident at hand. 

› Environmental Characteristics: This consists of the prevailing weather conditions at the time 

of the incident. 

› Services Rendered: The information regarding the incident detection, various services at the 

site catering to the incident clearance are also documented. 
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 CHAPTER IV 

 

RESEARCH METHODOLOGY AND DATA PREPARATION 

 

In this chapter the logistic regression methodology for developing the incident duration 

model and the secondary incident causation model are introduced. The advantages of choosing 

logistic regression over a linear regression model are also discussed in detail. 

The first section of this chapter deals with the fundamentals behind logistic regression 

models. A narrative follows explaining how the raw data from the TMC database is prepared for 

final analysis. Finally the variables that are considered for developing the model are discussed in 

detail. 

 

4.1 Logistic Regression 

Logistic regression is used when the dependent (response) variable is categorical in 

nature and the independent (input) variables are continuous, categorical, or both. The logistic 

regression approach may be further classified as follows depending on the nature response 

variable: 

› Binary Logistic Regression: where the response variable is dichotomous (i.e., taking 

only two values, usually representing the occurrence or non-occurrence of some 

outcome event and usually coded as 0 or 1) 

› Ordinal Logistic Regression: where the response variable is polytomous and ordered 

(i.e., coded as three or more ordered categorical levels; for example, the response may 

be like least, lesser than average, average, more than average and most) 

› Nominal Logistic Regression: where the response variable is polytomous and un-

ordered (i.e., coded as three or more un-ordered categorical levels; for example, a 

response like cloudy, sunny, rainy, snowing etc.) 

Logistic regression is thus in contrast with ordinary linear regression where the response variable 

is continuous in nature and unlike ordinary linear regression, logistic regression does not assume 

that the relationship between the independent variables and the dependent variable is a linear 

one, nor does this technique assume that the dependent variable or the error terms are distributed 

normally (Source: Hosmer, David W. and Lemeshow, Stanley., “Applied Logistic Regression”). 
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 The general form of logistic regression models used in this study will be discussed in 

detail in the Chapter 5 and Chapter 6. Essentially these models involve regression constants 

associated with each of the response variables (which relates to the probability of that response 

happening) and regression coefficients associated with each predictor variable (which relates to 

the effect each of those predictor variables have on changing the probabilities of the various 

responses happening). 

  

4.2 Why Choose Logistic Regression over Linear Regression? 

For both the models (Incident Duration model and Secondary Incident Causation model) 

in hand, most of the independent variables analyzed are categorical in nature. Statistical 

modeling using linear regression would involve a lot of dummy variables making the model 

bulky and cumbersome for further usage. Also, the response variable can easily be coded into a 

categorical variable. In the case of the Incident Duration model the response variable can be 

coded as a polytomous response: shortest, shorter than medium, medium, longer than medium, 

longest. The response variable for the Secondary Incident Causation model is merely a 

dichotomous one: yes (caused a secondary incident) or no (did not cause a secondary incident). 

The relationship between the response and the predictor variable need not be restricted to a linear 

one which would have been the case if a linear regression model were to be used. Also 

encouraging the use of logistic regression is the generation of “odds ratio” for each predictor 

variable, with which the effect of the predictor variable on the response variable can be 

understood in a concise and correct manner. The odds ratio for a predictor is defined as the 

relative amount by which the odds of an outcome increase (odds ratio greater than 1.0) or 

decrease (odds ratio less than 1.0) for each unit change in the predictor variable (for a covariate 

variable case). In the case where the predictor variable is a factor ‘unit change’ refers to a 

comparison of a certain level to the reference level. The "odds" of an event is defined as the 

probability of the outcome event occurring divided by the probability of the event not occurring. 

(Source: MINITAB® Reference Guide) 
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4.3 Data Preparation 

Before actual analysis, the incident data from the TMC had to be inspected for errors, false 

entries, duplicate records, irreconcilable records and missing fields within records to ensure 

adequate data quality. This was done mainly by the help of applications written in JavaTM or by 

the built-in functions within MS-Access®.  

 

Note: Based on these inspections about 12.1% (459 out of 3806) of the available recorded 

incidents in the database was found not fit for the analysis. Hence all the subsequent analysis and 

discussion is based on the incident population containing 3347 incidents. 

 

Following is an account describing the preparation and further usage of various fields 

required for the analysis.  

 

› Incident-ID: Incident-ID serves as an index for each incident in the database. This is an 

automatically generated field in the database and uniquely represents each record. This is 

therefore used to identify each record within the database for comparisons (to eliminate 

duplicities) and corrections in the associated fields. 

› Start-Time and Date: This denotes the time and date on which the incident was reported and 

recorded into the database. This field is used as to denote the starting time of the incident for 

the lack of a better estimate, and is further used to calculate the incident clearance time and 

also to classify whether the incident happened during peak time or not and also whether on a 

weekday or weekend. 

› Clearance-Time: The incident clearance time is calculated as a difference between the start 

and clear time of that incident. Corrections are made to the start-time/clear-time whenever a 

negative clearance time results from the calculations.  

› Cause-Type: This classifies the incidents based on what caused the incident. Information 

regarding the number of vehicles involved, and whether the incident occurred in a 

construction zone or not is obtained from this field. 

› Number of Vehicles Involved: The number of vehicles involved in the incident is stored in 

this field.  
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› Route: The name and direction of the route for each incident occurrence is inferred from this 

field. Duplicities in the name of the route are corrected using built-in applications within MS-

Access®.  

› Mile-Marker: The spatial location of the incident is determined using this field. Errors and 

empty entries in this field are rectified using other descriptive spatial information 

documented for each incident recorded. The mile-marker field is used in subsequent analyses 

for determining whether a particular incident resulted in any secondary incident or not. The 

location of an incident as to whether situated in an area covered well by the traffic cameras or 

not is also judged using the mile-marker information. 

› Detected-By: This field stores the information according to whom the incident was reported. 

Corrections are made to do away with errors and missing entries to restrict the entries to ITS 

Operator, HELP Operator, Metro Services and Other Callers.  

› Weather: This field is used to find out whether the incident happened during rainy conditions 

or not.  

› Camera-Coverage: This field denotes the extent of camera coverage (the linear density of 

camera placements) at the vicinity of the incident. This information is determined using the 

mile-marker information and the information on camera locations. With reference to the Fig: 

3.1, the routes can be grouped into three classes of varying camera coverage by mere visual 

inspection. Accordingly the classes are as follows: 

» Scarce: if the cameras are placed much less frequently than one per mile 

 all of Briley Parkway except between mile-markers 14.0 and 19.0 (14.0 

and 19.0 excluded);  

 all of Ellington Parkway;  

 I-24: mile-markers greater than 54.0 (54.0 excluded);  

 all of I-40 except between mile-markers 206.0 and 213.5,  

 all of I-440;  

 I-65: mile-markers equal to and lesser than 82.0 

» Good: if the cameras are placed such that there is approximately an average of 

one per mile 

 Briley Parkway between mile-markers 14.0 and 19.0 (14.0 and 19.0 

included);  
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 I-24: mile-markers between 52.0 and 54.0 (54.0 excluded) and between 

40.0 and 45.0 (45.0 excluded);   

 I-40: mile-markers equal to and between 206.0 and 211.0 and equal to and 

between 213.0 and 213.5;  

 I-65: mile-markers equal to and between 90.0 and 98.0 

» Very Good: if the cameras are placed much frequently than one per mile 

 I-24: mile-markers equal to and between 47.0 and 52.0;  

 I-40: mile-markers equal to and between 211.0 and 213.5;  

 I-65: mile-markers equal to and between 84.0 and 90.0 

› Truck-ID: The involvement of a truck in an incident is indicated using this field. 

› Roadwork: This field stores the information indicating roadwork near the location of the 

incident. 

 

4.4 Variables Considered for Model Building 

 The different characteristics of an incident were investigated for their effect on incident 

duration and on the probability of that incident causing a secondary incident. Table 4.1 illustrates 

various factors that were used in the analysis and model development. 
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Table 4.1: Variables Used in Developing the Models 
 

Variable Description 

Clearance Time 
Time difference between start time and the clearance time of an incident 

and is a surrogate for incident duration. 

Incident Duration 

Depending on the clearance time, incident duration becomes one of the 

following five values; shortest, shorter than medium, medium, longer 

than medium, longest. (Explained in detail in Chapter 5). 

Weekday/Weekend 
Denotes whether an incident happened on a weekday or a weekend. 

Values: Weekday, Weekend 

Peak/Non-Peak 

Denotes whether an incident occurred during a peak time (Morning Peak: 

between 7:30 AM and 9:30 AM, Afternoon Peak: between 3:00 PM and 

6:00 PM) or a non-peak time. 

Values: Morning Peak, Afternoon Peak, Non Peak 

Detected-By 
Denotes the personnel who reported the particular incident. 

Values: ITS Operator, HELP, Metro, Other Caller 

Number of Vehicles 

Involved 

Denotes the number of motor vehicles involved in the incident in case the 

incident involved a motor vehicle. 

Roadwork 
Denotes the presence of roadwork in the incident site 

Values: Yes, No 

Truck 
Denotes truck involvement in the incident 

Values: Yes, No 

Weather Condition 
Denotes the weather condition at the time of the incident 

Values: Clear, Cloudy, Rain, Fog, Snow 

Rain 
Denotes presence of rain 

Values: Yes, No 

Camera-Coverage 
Denotes the extent of camera coverage at the incident site 

Values: Scarce, Good, Very Good 

Secondary Causing 
Denotes whether an incident caused a secondary incident or not 

Values: Yes, No 
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CHAPTER V 

 

INCIDENT DURATION MODEL 

 

This model investigates the effect of various factors influencing the clearance time of an 

incident using an ordinal logistic regression approach. Ordinal logistic regression is used when 

the response variable is in a categorical form that has three or more possible levels with a natural 

ordering (such as strongly disagree, disagree, neutral, agree, and strongly agree). In the case of 

the incident duration model the categories involved in the response variable are shortest, shorter 

than medium, medium, longer than medium, longest.  

 

5.1 Introduction 

The general form of an ordinal logistic regression model with K distinct categories is as 

follows: 
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where: 

 

K is the number of distinct categories 

k is the category number, taking values 1, 2,…., K-1 

P(y ≤ k) is the probability that the response falls into category k or below 

θk is the constant associated with the kth response category 

x’ is the vector of predictor variables 

β is the vector of coefficients associated with the predictor variables 
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The regression constants and coefficients are calculated using a logit link function by 

linking the probabilities to a linear combination of the predictor variables as shown below: 
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The coefficients are then estimated by a method equivalent to the maximum likelihood 

estimation procedure. Once the coefficients are evaluated, the cumulative probabilities and 

individual response probabilities can be calculated as follows: 

 

› Cumulative probability of the first response category: P(y ≤ 1) = βθ
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and so on … 

 

› For the last response category, Cumulative probability: P(y ≤ K) = 1.0 

 

From above, 

› Probability of first response category:  

P(y = 1) = βθ
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› Probability of second response category:  

P(y = 2) = βθ
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      and so on … 
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The probabilities calculated using equations 5.3 and 5.4 depend on the predictor variable 

pattern ‘x’. Therefore probabilities of responses due to different predictor variable scenarios can 

be calculated by simply varying the predictor vector. This in turn helps to find out individual 

effects of different predictor variables as explained later in this chapter.  

 

5.2 Use of Statistical Software for Computation 

Most of the commercially available statistical softwares are capable of estimating these 

regression constants and coefficients. All statistical computations for this research work were 

done using MINITAB®.  

 

5.3 Response Variable Coding 

To be used in the ordinal logistic regression model, the response variable (incident 

duration) for a particular incident is coded as follows, depending on the pentile range of the 

incident clearance time distribution within which the clearance time of that incident falls: 

› Shortest – first pentile range  

› Shorter than Medium – second pentile range  

› Medium – third pentile range 

› Longer than Medium – fourth pentile range 

› Longest – fifth pentile range 

The above step is accomplished by first fitting the clearance time values to a standard statistical 

distribution. As a first step the histogram of the incident clearance time is constructed and 

different distributions are fitted using MINITAB®. The best fitting distribution is found out by 

computing the Anderson-Darling test value and the corresponding p-value. The distribution 

which gives the lowest value for the Anderson-Darling test is chosen.  
Note: The Anderson-Darling (A-D) test is a goodness-of-fit test used to inspect if a sample of data comes 

from a specific distribution. This test is a modification of the commonly used Kolmogorov-Smirnov (K-S) test and 

gives more weight to the tails of the distribution than does the K-S test (Source: NIST/SEMATECH e-Handbook of 

Statistical Methods). This is particularly important and suitable because in the case of incident duration values there 

is a large proportion of low values and negligible proportion of high values. 

A three parameter log-logistic distribution is chosen based on the analysis using 

MINITAB®. The associated p-value is found to be almost equal to zero confirming that this is a 

good fit. The procedure is illustrated by the following figures. 
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Figure 5.1: Histogram of Clearance Time with a Distribution Fit 
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Figure 5.2: Probability Distribution Fit for Clearance Time 
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Figure 5.3: Cumulative Distribution Fit for Clearance Time 
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The above analysis shows that incident clearance time follows a three parameter log-

logistic distribution with the following parameters: 

› Location Parameter: 2.913  

› Scale Parameter: 0.9198 

› Threshold Parameter: 0.9630 

 

The pentile values for the clearance time distribution can then be calculated as follows, where F 

denotes the Cumulative Distribution Function (CDF): 

› First Pentile Value = F-1(0.2) = 6.1 min 

› Second Pentile Value = F-1(0.4) = 13.6 min 

› Third Pentile Value = F-1(0.6) = 27.7 min 

› Fourth Pentile Value = F-1(0.8) = 66.9 min 

 

As the clearance time is computed to the nearest minute, the incident duration coding for the 

regression analysis is defined as follows: 

› Shortest – Clearance time less than 6 minutes (6 minutes included) 

› Shorter than Medium – Clearance time greater than 6 minutes but less than or equal 

to 13 minutes 

› Medium – Clearance time greater than 13 minutes but less than or equal to 27 

minutes 

› Longer than Medium – Clearance time greater than 27 minutes but less than or equal 

to 66 minutes 

› Longest – Clearance time greater than 66 minutes 

 

The following tables summarize the descriptive statistics of clearance time:  

 

Table 5.1: Descriptive Statistics of Clearance Time 

Variable Mean Std. Dev Minimum Median Maximum 

Clearance Time 77.0 215.8 1.0 19.0 3449.0 
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Table 5.2: Descriptive Statistics of Clearance Time within each Incident Duration Class 

Variable Incident Duration Mean Std. Dev Minimum Median Maximum

Clearance Time Shortest 3.7 1.6 1.0 4.0 6.0 

 Shorter 9.9 2.0 7.0 10.0 13.0 

 Medium 19.4 3.9 14.0 19.0 27.0 

 Longer 41.8 10.8 28.0 40.0 66.0 

 Longest* 338.9 414.9 67.0 211.0 3449.0**

 
* Note: The range of values in the clearance time class-‘Longest’ equal to 3382 minutes is an indication that the data 
contains a lot of outliers at the higher end.  
 

** Note: This value is probably a recording error. 
 

5.4 Predictor Variables 

The predictor variables used in the analysis are as follows: 

› Weekday/Weekend 

› Peak/Non-Peak 

› Detected-By 

› Number of Vehicles Involved  

› Roadwork-Presence 

› Truck-Presence 

› Weather-Condition 

› Camera-Coverage 

 

The reader is directed to Table 4.1 for descriptions of the above variables. 

 

As a preliminary measure of the influence of these predictor variables on the response, 

incident clearance time medians factored by each predictor variable are compared to the median 

incident clearance time of the total population. Those variables which show considerable 

influence indicated by the percentage change in the median clearance times are then selected as 

independent variables in the regression analysis.  
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Median is used as the central tendency for comparison due to a lot of outliers present in 

the dataset causing the mean value to be a biased estimate for the central tendency. Median 

which is the 50th percentile or the mid-value is hence a more appropriate estimate for a central 

estimate. The median value for the incident clearance time dataset is nineteen minutes and the 

mean value is seventy seven minutes. This mean value corresponds to the 82nd percentile value 

of the incident clearance time (which can be calculated using the incident clearance distribution 

parameters). This is a clear indication that the incident clearance time dataset contains a lot of 

high extreme values. 

The following tables (Table 5.3 – Table 5.10) show the corresponding values and 

percentage changes in incident clearance time medians caused by each factor. 

 

Table 5.3: Shifts in Incident Clearance Time Median due to ‘Weekday/Weekend’ 

‘Weekday/Weekend’ – Median (Min)  

Population Median (Min) 

 Weekday Weekend 

19.0 17.0 26.0 

Percentage Change (%) -10.5 36.8 

 

 

Table 5.4: Shifts in Incident Clearance Time Median due to ‘Peak/Non-Peak’ 

‘Peak/Non-Peak’ – Median (Min)  

Population Median (Min) 

 Non Peak Morning Peak Evening Peak 

19.0 22.0 20.0 13.0 

Percentage Change (%) 15.8 5.3 -31.6 
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Table 5.5: Shifts in Incident Clearance Time Median due to ‘Detected-By’ 

‘Detected-By’ – Median (Min)  

Population Median (Min) 

 ITS OPERATOR HELP METRO OTHER CALLER 

19.0 20.0 14.0 17.0 62.0 

Percentage Change (%) 5.3 -26.3 -10.5 226.3 

 

 

Table 5.6: Shifts in Incident Clearance Time Median due to ‘Number of Vehicles Involved’ 

‘Number of Vehicles Involved’ – Median (Min)  

Population Median (Min) 

 One Two Three Zero 

19.0 13.0 16.0 29.0 100.0 

Percentage Change (%) -31.6 -15.8 52.6 426.3 

 
 

Table 5.7: Shifts in Incident Clearance Time Median due to ‘Roadwork-Presence’ 

‘Roadwork-Presence’ – Median (Min)  

Population Median (Min) 

 No Yes 

19.0 15.0 167.0 

Percentage Change (%) -21.1 778.9 
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Table 5.8: Shifts in Incident Clearance Time Median due to ‘Truck-Presence’ 

‘Truck-Presence’ – Median (Min)  

Population Median (Min) 

 No Yes 

19.0 19.0 21.0 

Percentage Change (%) 0 10.5 

 

 

Table 5.9: Shifts in Incident Clearance Time Median due to ‘Weather-Condition’ 

‘Weather-Condition’ – Median (Min)  

Population Median (Min) 

 CLEAR CLOUDY RAIN FOG SNOW 

19.0 18.0 20.0 19.0 38.0 25.0 

Percentage Change (%) -5.3 5.3 0 100 31.6 

 

 

Table 5.10: Shifts in Incident Clearance Time Median due to ‘Camera-Coverage’ 

‘Camera-Coverage’ – Median (Min)  

Population Median (Min) 

 
Scarce Camera-

Coverage 

Good Camera-

Coverage 

Very Good 

Camera-Coverage

19.0 25.0 19.0 15.0 

Percentage Change (%) 31.6 0 -21.1 

 
 

As evident from the percentage change values from the above tables (Table 5.3 – Table 

5.10) all of the predictor variables have at least one factor which impacts the clearance time. 

Hence all of the above predictor variables are included as independent variables for analysis into 

the logistic regression model. 
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5.5 Results of the Logistic Regression 

The results of the logistic regression are summarized in the Table 5.11 which consists of 

the regression constants and the regression coefficients of the predictor variables.  

The regression constants corresponding to the different response categories (θ1, θ2, θ3, θ4) 

are calculated by assuming default factor levels for all the predictor variables. Hence MINITAB® 

does not calculate any separate coefficients corresponding to these default factors. For the other 

predictor variable factors the regression coefficient calculated denote the change in the logit link 

functions of each response categories (Equation 5.2). A positive regression coefficient indicates 

reduction in the incident clearance time due to the corresponding factor, whereas a positive 

regression coefficient indicates an increment in the incident clearance time. 

The odds-ratios corresponding to each predictor variable factors is computed as the 

inverse natural logarithm of their regression coefficients. Odds-ratios and their implications are 

further discussed in Section 5.7.  

MINITAB® also computes the associated p-values for the regression constants and 

coefficients. A 5% confidence level is assumed throughout this research for ascertaining the 

significance of the various predictor variable factors. Hence for a particular predictor variable 

factor to be significant the corresponding p-value has to be less than 0.005.  
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Table 5.11: Logistic Regression Results 

Predictor Variable Predictor Variable Factors Regression-Coefficient(β) p-Value 
Odds-

Ratio 

Const(1) --  θ1 -1.157 0.000 n/a 

Const(2) --  θ2 -0.038 0.716 n/a 

Const(3) --  θ3 1.023 0.000 n/a 

Const(4) --  θ4

 

2.496 0.000 n/a 

 
Default Factor: Weekday n/a n/a n/a 

Weekday/Weekend 
Weekend -0.306 0.001 0.740 

Default Factor: Non-Peak n/a n/a n/a 

Morning Peak 0.010 0.915 1.010 Peak/Non-Peak 

Afternoon Peak 0.338 0.000 1.400 

Default Factor: ITS Operator n/a n/a n/a 

HELP 0.206 0.023 1.230 

METRO -0.138 0.081 0.870 
Detected-By 

Other Caller -0.191 0.172 0.830 

Default Factor: One n/a n/a n/a 

Two -0.224 0.006 0.800 

Three -1.127 0.000 0.320 

Number of Vehicles 

Involved 

Zero -0.310 0.024 0.730 

Default Factor: No n/a n/a n/a 
Roadwork-Presence 

Yes -2.754 0.000 0.060 

Default Factor: No n/a n/a n/a 
Truck-Presence 

Yes -0.692 0.000 0.500 

Default Factor: Clear n/a n/a n/a 

Cloudy -0.063 0.455 0.940 

Rain -0.157 0.087 0.850 

Fog -0.926 0.002 0.400 

Weather-Condition 

Snow -0.087 0.828 0.920 

Default Factor: Scarce 

Camera-Coverage 
n/a n/a n/a 

Good 

Camera-Coverage 
0.113 0.177 1.120 

Camera-Coverage 

Very Good Camera-Coverage 4.480 0.000 1.760 

 

 34



5.6 Discussion 

Based on the regression constants and coefficients obtained by the regression analysis, 

the probabilities of different responses (incident duration class) can be calculated for any 

predictor variable scenario. For any particular predictor variable situation the response 

probabilities can be calculated as explained earlier in section 5.1 by using the corresponding 

regression constant (θ, depending on the response probability sought) and appropriate regression 

coefficients (β, depending on the predictor variable situation).  

The effect of each predictor variable in impacting the probabilities of the responses can 

be studied by changing the regression coefficients of that variable only and keeping all other 

coefficients the same. After presenting a base predictor vector corresponding to normal 

conditions, the procedure for comparing response probabilities of different predictor variable 

scenarios are explained in the following section. 

 

5.6.1 Response Probabilities based on Base Predictor Vector 

The base predictor vector is defined as a predictor set corresponding to normal 

circumstances or base conditions. For use in the case at hand the base predictor vector is 

constituted by assuming the following predictor variable values: 

 

› Weekday/Weekend – Weekday 

› Peak/Non-Peak - Non Peak 

› Detected-By - ITS Operator 

› Number of Vehicles Involved  - One 

› Roadwork-Presence - No 

› Truck-Presence - No 

› Weather-Condition - Clear 

› Camera-Coverage - Scarce Camera-Coverage 

 

Based on this set of base predictor conditions the response probabilities can be calculated as 

follows (as explained earlier in section 5.1): 
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Probability of Incident Duration being ‘Shortest’:  
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Similarly, 

Probability of Incident Duration being ‘Medium’: = 0.25 

Probability of Incident Duration being ‘Longer than Medium’: = 0.19 

Probability of Incident Duration being ‘Longest’: = 0.08 

 

Examining the above probability values leads to the conclusion that for incidents 

characterized by the ‘defined’ base conditions the clearance time has the highest probability to 

lie in the incident-duration class ‘Shorter than Medium’. Almost 75% (0.239 + 0.251 + 0.245 ≈ 

75%) of the incidents happening under the  base conditions fall under the incident duration 

categories ‘Shortest’, ‘Shorter than Medium’ or ‘Medium’, which in other words means having 

less than 27 minutes (Refer section 5.3) of clearance time. 

In the following sections, the impact of each predictor variable is examined by 

calculating the response probabilities using the corresponding regression coefficients and then 

comparing them to the base response probabilities. 

 

5.6.2 Weekday/Weekend 

The regression coefficient associated with ‘Weekend’ is negative (Refer Table 5.11) 

which means that under this condition (i.e. for incidents happening on weekends) the response 

probabilities computed will predict larger proportions of incidents having longer clearance times 

when compared to incidents happening under normal conditions. There is sufficient evidence 

from the data corroborating this behavior as indicated by the fact that this coefficient is 

significant at 5% confidence level.  
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This behavior may be due to the fact that during weekdays there is more urgency for an 

incident to be cleared and normal conditions restored than on a weekend. Also the frequency and 

number of freeway service patrols may be lower on a weekend than on a weekday. 

Following are the steps for calculating the response probabilities when the predictor 

variable ‘Weekday/Weekend’ takes the value ‘Weekend’ and all other predictor variables 

remaining the same. Similar calculations apply for computing response probabilities for other 

predictor variable scenarios. 

Regression coefficient associated with the predictor variable factor ‘Weekend’ = -0.306 

This implies that the change in the logit link function corresponding to each response 

category is equal to -0.306. 

 

Probability of Incident Duration being ‘Shortest’ during a Weekend:  
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Probability of Incident Duration being ‘Shorter than Medium’:  
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Similarly, 

Probability of Incident Duration being ‘Medium’: = 0.26 

Probability of Incident Duration being ‘Longer than Medium’: = 0.23 

Probability of Incident Duration being ‘Longest’: = 0.10 
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Figure 5.4: Response Probabilities for Incidents During ‘Weekend’ Compared to Base Response 
Probabilities 

 
5.6.3 Peak/Non-Peak 

The coefficients associated with both ‘Morning Peak’ and ‘Afternoon Peak’ are positive 

(Refer Table 5.11) indicating that during peak period the proportion of shorter incidents are more 

than longer ones compared to non-peak times. As evident from the corresponding p-values, only 

the coefficient associated with ‘Afternoon Peak’ is statistically significant at 5% confidence 

level. Hence, no comment can be made about the effect on incident durations during morning 

peak hours other than the fact that the data does not support the claim that duration of incidents 

during the ‘Morning Peak’ are different from those during non-peak hours.  

This behavior can be explained from the fact that there is more urgency to clear the 

incident during peak hours than in non-peak hours. Another interesting observation is that the 

coefficient associated with afternoon peaks is much greater than that of morning peaks, 

indicating that incidents during afternoon peaks are cleared much faster than incidents happening 

during morning peaks.  
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0.35 Base Conditions Response Probabilities
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Figure 5.5: Response Probabilities for Incidents During ‘Afternoon Peak’ Compared to Base 
Response Probabilities 

 

5.6.4 Detected-By 

The coefficient associated with ‘HELP’ is positive, whereas those associated with 

‘METRO’ and ‘Other Caller’ are negative. This implies that those incidents reported by ‘HELP’ 

have higher proportions of shorter durations (are cleared faster) than those incidents reported by 

an ‘ITS Operator” (the base case). The opposite applies to those incidents reported by ‘METRO’ 

or by ‘Other Callers’. In this case the coefficients associated with ‘METRO’ and ‘Other Callers’ 

are not significant at 5% confidence level which indicates that the data does not support the 

aforementioned behavior. 

 This behavior is only logical because one of the prime services that assist in incidence 

clearance is the ‘HELP’- Tennessee’s freeway service patrol (FSP), and hence those incidents 

detected and reported by ‘HELP’ will obviously be shorter in durations than those incidents 

reported by any other agency; where the incident is notified by some other agency other than 
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HELP, the incident duration will also include the time to notify the FSP and the time for the FSP 

to reach the incident site. 
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Figure 5.6: Response Probabilities for HELP Reported Incidents Compared to Base Response 
Probabilities 

 

5.6.5 Number of Vehicles Involved 

The coefficients associated with ‘Two’ and ‘Three’ are negative and are both significant 

at 5% confidence level. This implies that incidents involving more than one vehicle are probable 

to take more time to get cleared, which is expected. Another worthy observation is that the 

magnitude of the coefficient associated with ‘Three’ is greater in magnitude than that of ‘Two’, 

implying that a three vehicle incident is prone to be more time consuming to clear than a two 

vehicle incident which again is as expected.  

 The factor class ‘Zero’ denotes those incidents which do not involve a vehicle; like 

‘Debris on the road’, ‘Spillage’ etc. This factor class also has a negative coefficient which is 

statistically significant at 5% confidence level. The magnitude of the coefficient of this factor 
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class is greater than that of the factor class ‘Two’ indicating that the incidents belonging to this 

class generally takes more time to clear than an incident involving one or two vehicles.  This is 

probably due to the reason that incidents involving spillage, debris requires services of agencies 

like HAZMAT, roadway cleaning which can increase the clearance times as these services are 

typically dispatch-on-order services rather than continuous patrolling services like the FSPs. 

 

Base Conditions Response Probabilities
Two Vehicle Incidents - Response Probabilities

 

Figure 5.7: Response Probabilities for ‘Number of Vehicles Involved’ Compared to Base Response 
Probabilities 

 

5.6.6 Roadwork Presence 

The coefficient for the factor class denoting roadwork is negative, indicating that when an 

incident happens near a roadwork site the odds are that such incidents will tend to be longer than 

another incident which happens away from a roadwork site. The p-value also suggests that the 

coefficient is significant at a 5% confidence level.  
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 This behavior can be explained by the congested nature of a roadwork site, which can 

hamper the speedy access of response services and hence lead to longer clearance times. 
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Figure 5.8: Response Probabilities for Incidents at Roadwork Sites Compared to Base Response 
Probabilities 

 

5.6.7 Truck Presence 

 The coefficient for the factor class denoting truck involvement in an incident is negative, 

indicating that an incident involving a truck takes more time to be cleared than otherwise. The p-

value also suggests that the coefficient is significant at a 5% confidence level. 

 This is as expected because the severity of an incident involving a truck is typically 

worse than an incident involving no trucks. The personnel and equipments needed to clear such 

an incident involving trucks is also typically more than when no trucks are involved. 
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Figure 5.9: Response Probabilities for Incidents Involving Trucks Compared to Base Response 
Probabilities 

 

5.6.8 Weather Condition 

 All coefficients for factor classes other than ‘Clear’ (which is the base condition) are 

negative showing that incidents tend to take longer to clear in case of adverse weather. Although 

the p-value associated with each of the levels shows that the coefficients are not significant 

enough to support this claim. Hence the conclusion is that the data does not provide enough 

proof to state that adverse weather prolongs an incident any more than an incident that happened 

during normal weather. 

  

5.6.9 Camera-Coverage 

 The coefficients associated with both ‘Good Camera-Coverage’ and ‘Very Good Camera-

Coverage’ camera-coverage are positive demonstrating that better camera coverage does 

decrease the proportion of longer incidents. Also remarkable is the fact that the coefficient of 

‘Very Good Camera-Coverage’ coverage is greater than that for ‘Good Camera-Coverage’, 
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denoting that the better the coverage the greater the odds of incidents being shorter in duration. 

For the factor class ‘Good Camera-Coverage’ the coefficient is not significant at 5% confidence 

level and hence the data does not seem to support such a claim.  

 

 

Figure 5.10: Response Probabilities for ‘Camera-Coverage’ compared to Base Response 
Probabilities 

 

5.7 Comparing the Effects of the Various Predictors 

The relative effects of the various predictors on the response probabilities can be assessed 

by comparing the odds ratio corresponding to the factors of those predictors. The more the odds 

ratio deviates from unity, the greater is the impact of that factor of that predictor variable in 

affecting the response probabilities. Odds ratio less than one indicates greater proportions of 
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factor.  

Base Conditions Response Probabilities 0.35 
Good Camera-Coverage Area – Response Probabilities

0.32 
Very Good Camera-Coverage Area - Response Probabilities

0.3 
0.27

0.26 
0.25 0.26 

0.24 0.250.25 0.24

0.22

Pr
ob

ab
ili

tie
s 

0.2 0.19
0.17

0.15 0.14

0.1 
0.08 

0.07 
0.05 

0.05 

0 
Shortest Longest Shorter than Medium Medium Longer than Medium

Incident Duration

 44



For example, the odds ratio corresponding to the predictor variable factor ‘weekend’ is 

0.74 means that proportion of incidents having longer clearance times during weekends is higher 

than proportion of incidents having longer clearance times during weekdays. In other words the 

probability of an incident having higher clearance times is more on weekends than on weekdays. 

In the case of the predictor variable factor ‘Afternoon Peak’, the odds ratio is 1.40 indicating that 

proportion of incidents having longer clearance times during an afternoon peak hour is lesser 

than proportion of incidents having longer clearance times during any other time of the day. In 

other words the probability of an incident having higher clearance times is less during afternoon 

peak hours compared to any other time of the day.  

Based on the odds ratio values from the Table 5.11 the following inferences can be made: 

 

› Odds ratios corresponding to predictor variable factors ‘Morning Peak’, ‘Afternoon 

Peak’, ‘HELP’, ‘Good Camera-Coverage’, and ‘Very Good Camera-Coverage’ are 

greater than unity indicating that under these conditions incidents are cleared much faster 

than when other conditions prevail. 

› Odds ratio corresponding to ‘Very Good Camera-Coverage’ is the highest which 

indicates that this condition has the highest effect on reducing incident clearance times. 

› Prominent among the incident conditions which increase clearance times are three 

vehicle involved incidents, incidents involving trucks, incidents which happen at 

roadwork sites, and incidents happening during foggy conditions.  

› The odds ratio associated with ‘Roadwork-Presence’ is remarkably lower than all other 

values. Though roadwork presence at an incident site can increase the clearance time, this 

value is probably due to some recording errors in the database. 

 

5.8 Validity of the Model 

This section deals with the statistical significance of the model, given the data.  In the 

following sub-sections issues like multicollinearity of the predictor variables and goodness-of-fit 

statistics for the model are discussed.  
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5.8.1 Multicollinearity of Predictor Variables 

  The following is the correlation table for the predictor variables used in the model. The 

variables with nominal categorical levels are excluded because application of the correlation 

coefficient is inappropriate when the data is clearly nominal categorical with more than two 

levels.  (Stockburger, W David., Introductory Statistics: Concepts, Models and Applications).  

 Table 5.12 demonstrates that none of the variables have significant correlation with any 

other variable and hence the model can be safely assumed to be devoid of any issues related to 

multicollinearity of predictor variables. 

 

Table 5.12: Correlation Table for the Prediction Variables 

  Weekday/Weekend Roadwork-Presence Truck-Presence 

Weekday/Weekend 1.00   

Roadwork-Presence 0.088 1  

Truck-Presence -0.046 -0.158 1

 

 

5.8.2 Goodness-of-fit Test and Measures of Association 

 The goodness-of-fit test based on Deviance residuals was computed with the help of 

MINITAB®. The associated p-value of this test is 0.371, which means that at a confidence level 

of 5%, there is insufficient data to conclude that the model does not fit the data adequately. 

MINITAB® also calculates 69.7 percent predictive-ability of the model. With these two measures 

the model can be assumed to be a satisfactory fit for the given data. 
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CHAPTER VI 

 

SECONDARY INCIDENT CAUSATION MODEL 

 

In this chapter a secondary incident causation model based on binary logistic regression 

is developed, for estimating the probability that an incident induces a secondary incident. The 

concepts involved in binary logistic regression are discussed in the first section. The following 

sections present the steps involved in developing the model and the analysis involved. The 

chapter is concluded by presenting the results and inferences. 

 

6.1 Introduction 

Binary logistic regression as the name suggests, is used when the response variable is 

dichotomous in nature. For the secondary incident causation model, the response variable is 

simply a yes/no (causing/not causing a secondary incident). The general form of a binary logistic 

regression model is as follows: 

   

)(

)(

1
)( xg
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=                                                        (6.1) 

 

where: 

 P (event) denotes the probability of the event happening, 

g(x) is the logit link function (which is a linear combination of the predictor variables) 

 

ββ ')( 0 xxg +=                                                          (6.2) 

 

β0 is the regression constant, 

β is the regression coefficients associated with the predictor variables, 

x denotes the vector of predictor variables. 

 

The regression constant and coefficients are obtained from MINITAB® which uses an 

equivalent maximum likelihood method. The probability of the event occurrence can then be 
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computed using the equation 6.1. Also the relative effects of the individual predictor variables 

can be inferred from the regression coefficients associated with them.  

 

6.2 Response Variable 

 

6.2.1 Description 

 The response variable for this model is coded as a yes/no, indicating whether or not an 

incident has caused a secondary incident. Though the database from Nashville Transportation 

Management Center (TMC) has a field indicating whether or not a particular incident is 

secondary, there is no indication towards the primary incident which has caused a particular 

secondary incident. Also the percentage of incidents registered as secondary incidents (2.1%) are 

too low compared to average national levels observed (15% - 20%), which is a strong indication 

that only very few secondary incidents are actually recorded. Hence in this research, secondary 

incidents and secondary-causing incidents are identified by examining the database using a 

search algorithm coded using the programming language JAVATM.  

 

6.2.2 Secondary Incident Identification 

As discussed in Chapter 2, identifying a secondary incident and finding the primary 

incident which can be linked to this secondary incident is accomplished by space-time based 

search on the incident database. The two parameters associated with the primary incident to be 

defined for this search are the ‘time of effect’ and ‘spatial influence’. Time of effect of an 

incident is the time for which the effects of that incident can be felt on the regional traffic flow. 

Similarly ‘spatial influence’ of an incident refers to the incident neighborhood where the effect 

of that incident is felt. This influence is denoted by the upstream linear distance in the same 

direction (due to queues and shock-waves) or the downstream linear distance in the opposite 

direction (due to rubbernecking) along the route of the primary incident. Both these parameters 

are based on available literature and regional experiences. In this research the time of influence 

of an incident for both upstream and downstream travel is considered to be the same and is 

assumed to be the total incident clearance time, subject to a minimum of two hours. No 

distinction is made for upstream and downstream travel because the influence of an incident on 

the regional travel is bound to remain until the incident is cleared. On the contrary, the spatial 
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influence of an incident is felt for a longer distance in the upstream side on the same direction of 

route than in the downstream side on the opposite direction of the same route. This is because, in 

the former case (upstream side on the same direction of route) the secondary incident is caused 

due to the formation of queues and shock waves which can extent for longer distances (as long as 

two to three miles) than the phenomenon of rubbernecking which is the cause of secondary 

incidents in the downstream side on the opposite direction of the same route. For rubbernecking 

to happen the drivers on the opposite direction of travel have to see the incident site and hence 

will only happen from short distances, like within half a mile. The probability of a secondary 

incident happening downstream of an incident on the same direction or upstream of the incident 

on the opposite direction is much less and hence is not considered in this research. However the 

spatial influence limits are relaxed by 0.2 miles to accommodate any recording errors on the 

mile-marker field because any location on a freeway can be referenced by the mile-marker ahead 

or behind that incident. Based on these assumptions, a pair of incidents is termed as ‘secondary-

causing’ and ‘secondary’ if they concur to one of the following criteria: 

i. Both the incidents take place along the same route and direction of travel and the 

second incident occurs within 2 miles upstream of the first and no later than 2 hours 

after the first incident. 

ii. Both the incidents take place along the same route but in opposite directions of 

travel and the second incident occur within 0.5 miles downstream of the first and no 

later than 2 hours after the first incident. 

Note: In a case where the first incident clearance time is more than 2 hours, the time interval 

within which a secondary incident may occur is the clearance time itself instead of 2 hours as 

stated in the above criteria. 

Based on the above search criteria, the database is found to consist of 15.2% (508 out of 

3347) secondary incidents and 11.2 (375 out of 3347) secondary-causing incidents. Also 

interesting to note is that almost 21% of these secondary-causing incidents cause multiple 

secondary incidents.  
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Figure 6.1: Pie-Chart Illustrating Percentages of Secondary Incidents 
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Figure 6.2: Pie-Chart Illustrating Percentages of Secondary-Causing Incidents 
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6.3 Predictor Variables 

This model attempts to estimate the probability of an incident causing a secondary 

incident based on the incident characteristics. Several incident descriptors like clearance time, 

weekday/weekend, time of the day, type of vehicle involved, etc. could be studied to determine 

the effects on the probability of secondary crash occurrences. Among this the most important 

factor is the incident clearance time which denotes the exposure time of the incident (total time 

for which the regional traffic is exposed to the incident). As established in Chapter 5, incident 

descriptors such as weekday/weekend, time of the day and type of vehicle involved have a 

substantial effect on incident clearance time. Hence including clearance time and the other 

incident descriptors as predictor variables in the same model would lead to deceptive results. 

Therefore the only predictor variable used in this model is incident clearance time.  

 In contrast to the incident duration model, incident clearance time is modeled as a 

continuous variable. As a preliminary step, the relationship between the secondary incident 

causation probability and incident clearance time is investigated by comparing the median 

incident durations of those incidents which caused a secondary incident with those which did not 

cause a secondary incident. The results of the same are presented in the table below: 

   

Table 6.1: Median and Mean Clearance Times for Secondary Incident Causing Incidents 

 Median Incident  

Clearance Time 

(minutes) 

Mean Incident  

Clearance Time 

(minutes) 

All Incidents 19.0 77.0 

Secondary Incident Causing Incidents 23.0 155.9 

Multiple Secondary Incident Causing Incidents 36.5 247.6 
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6.4 Results of the Logistic Regression 

The results of the binary logistic regression are summarized as follows: 

 

Table 6.2: Binary Logistic Regression Results for the Secondary Incident Causation Model Using 
the Continuous Incident Duration Variable 

Predictor Regression-Coefficient (β) P-Value Odds-Ratio 

Const --  (β0) -2.183 0.00  

Incident Duration 0.0012 0.00 ~1.00 

 

 

The regression coefficient associated with incident duration is 0.0012 and is significant at 

5% confidence level as shown by the computed p-value. Though the coefficient being greater 

than zero demonstrates a positive dependence of secondary causation probability on incident 

duration, the relationship is very weak as shown by the computed odds-ratio. The odd-ratio of 

1.00 implies that given the data, there is no appreciable change in secondary incident causation 

probabilities as incident duration varies. 

 As this result is not expected from a logical stand point, a further analysis was conducted 

using a categorical incident duration variable coded as: shortest, shorter than medium, medium, 

longer than medium and longest. The reader is directed to section 5.3 for further details on how 

the categorical coding is carried out. The results based on this variable are presented as follows: 

  

Table 6.3: Binary Logistic Regression Results for the Secondary Incident Causation Model Using 
the Continuous Incident Duration Variable 

Predictor Incident 

Duration Level 

Regression-

Coefficient (β) 

p-Value Odds-

Ratio 

Const --  (β0)  -2.098 0.000  

 

Shortest -0.052 0.767 0.950 

Shorter -0.129 0.466 0.880 

Longer -0.125 0.477 0.880 

Incident Duration 

Reference Level: 

Medium 

Longest 0.414 0.012 1.510 
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As shown in the above table the regression coefficient associated with the incident 

duration class ‘longest’ (which are incidents with duration greater than 66.9 minutes) is the only 

one significant at a 5% confidence level. Also the associated odds-ratio suggests that those 

incidents belonging to the incident-duration class ‘longest’ has almost 50% more chance of 

causing a secondary incident than an incident belonging to the incident duration class ‘medium’. 

 

6.5 Final Comment 

A secondary incident causation model based on binary logistic regression was presented 

in this chapter. Two cases where the incident duration is modeled as a continuous variable and as 

a categorical variable were explored. In the case where a continuous incident duration variable is 

used, the model predicts that incident duration does not have a significant effect on changing 

secondary incident causation probabilities. On the other hand, when incident duration is modeled 

as a categorical variable, the regression model predicts that those incidents belonging to the 

incident duration class ‘longest’ (duration greater than 66.9 minutes) have almost 50% more 

chance of causing a secondary incident than an incident belonging to the incident duration class 

‘medium’. Hence the data suggests that the secondary incident causation probabilities are 

affected by incident duration only if the incident belongs to the level ‘longest’ among the 

incident duration classes. 
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CHAPTER VII 

 

CONCLUSIONS 

 

7.1 Overview 

 

 This study has examined two main incident characteristics, namely incident duration and 

secondary incident probability. Archived incident data from the Nashville Traffic Management 

Center was used to develop statistical models to study these characteristics.  

Based on the review of existing literature, this study recognizes the need for developing 

new models relaxing certain restrictive assumptions imposed in many previous studies. In this 

research the relationship between incident characteristics and its duration and probability to 

cause a secondary incident is not assumed to be linear. The possible non-linear relationship is 

accounted for by employing logistic regression rather than linear regression to develop the 

models.  

Most of the existing literature on secondary incidents deals with just secondary crashes 

(or secondary accidents) and their corresponding occurrence probabilities.  But from a traffic 

operations standpoint all secondary incidents are of concern. Hence in this research the 

secondary incident causation model developed investigates the influence of primary incident 

characteristics on causing secondary incidents and not just secondary crashes. Several incident 

features like descriptive, spatial, temporal and environmental were investigated for plausible 

relationships with the duration of the incident and secondary incident causation probability. 

Mathematical computations required for model building were carried out using the statistical 

software MINITABTM.  

These two new models provide a framework to make reasonable judgments about both an 

incident’s duration and its probability to cause a secondary incident. The models predict these 

two properties by using the incident characteristics which are available to a user at the time of 

incident detection. This information can be of help for improved freeway incident management 

and decision making.  
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7.1.1 Incident Duration Model 

The incident duration model investigates the relationship between freeway incident 

clearance times and the following incident characteristics: 

› Weekday/Weekend 

› Peak/Non-Peak 

› Detected-By 

› Number of Vehicles Involved  

› Roadwork-Presence 

› Truck-Presence 

› Weather-Condition 

› Camera-Coverage 

 

The response variable (i.e., incident clearance time) was coded into five different duration 

classes and the influence of the aforementioned characteristics in causing an incident to fall into 

each of these five duration classes was estimated based on the logistic regression model. The 

extent of influence of the different incident characteristics were established by examining the 

odds-ratios corresponding to each of these incident characteristics. This model revealed the 

importance of several incident management utilities (i.e., closed circuit televisions, freeway 

service patrols) and the effect of many incident characteristics in affecting freeway incident 

clearance times. 

 

7.1.2 Secondary Incident Causation Model 

 In the secondary incident causation model, the probability of an incident causing a 

secondary incident is investigated. This study recognizes incident exposure time (time for which 

the regional environment is exposed to the incident or the incident site) as the most important 

factor influencing secondary incident occurrences. Incident clearance time (used as a surrogate 

for incident duration) is the sole explanatory variable used in this model. All other incident 

characteristics are shown (in the incident duration model) to considerably influence incident 

clearance time and are hence excluded from this model (because including both incident 
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clearance time and other incident characteristics as predictor variables can lead to unreliable 

results). 

 Two scenarios, where the incident clearance time was modeled as a continuous variable 

and as a categorical variable, were explored. The model did not predict any significant influence 

on secondary incident causation probability when incident clearance time is modeled as a 

continuous variable. On the contrary when incident clearance time is modeled as a categorical 

variable, the regression model predicted incidents with clearance time greater than 66.9 minutes 

have almost 50% more chance of causing a secondary incident than an incident with medium 

clearance time. Thus the model revealed a substantial influence of incident clearance time on 

secondary incident causation probabilities for very high values of incident clearance times. 

 

7.2 Findings and Conclusions 

 

 Based on the analyses and modeling results, some of the salient findings and conclusions 

are presented below: 

› Incidents during weekdays and peak hours (especially afternoon peak hours) are 

shown to have smaller clearance times compared to incidents happening during 

weekends and non-peak hours respectively. Although this is perceivably because of 

the urgency in clearing incident sites during weekdays and peak hours, this finding 

shows the higher efficacy of the several incident clearance services during these prime 

hours. 

› Incidents happening at sites well monitored by closed circuit cameras are shown to 

have smaller clearance times than the incidents at other sites. There is a possibility that 

some minor incidents (with lower clearance time) happening in areas which are 

scarcely monitored by closed circuit cameras are cleared without being recorded in the 

TMC database. But the number of such unrecorded incidents is less in number 

compared to the total number of incidents. Hence this is assumed not to bias the claim 

that good camera coverage aids in quick incident clearance and incident site recovery.  

› The odds-ratio value corresponding to the predictor variable factor ‘Very Good 

Camera-Coverage’ is significantly larger than the odds-ratio value of the predictor 

variable factor ‘Good Camera-Coverage’. This supports the claim that good camera 
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coverage aids in quick incident clearance. This finding although perhaps not surprising 

is very pronounced and encourages installing closed circuit cameras in areas 

experiencing very high incident clearance times. 

› The study reveals that freeway service patrols (FSPs) play a very significant role in 

reducing incident clearance times. Those incidents which are detected by FSPs are 

cleared faster than those incidents which are detected by other means. 

› Incidents involving a greater number of vehicles were shown to have higher clearance 

times. This can justify having improved incident clearance services (like more FSPs) 

so that multiple types of services can attend such incidents, especially if the frequency 

of such incidents involving two or more vehicles are high (based on the available 

historical data). 

› Roadwork presence at an incident site is shown to delay incident clearance services. 

This finding indicates that strategies like work zone management can have significant 

impacts on speedy incident clearance procedures.  

› The study-indicated very strong relationship between roadwork presence at an incident 

site and incident clearance times can in part be also due to some database recording 

errors. Some of the recorded roadwork-involving incidents may not be incidents in the 

strict sense but just roadwork schedules or construction works which were 

misinterpreted as incidents. This is evident from the fact that there are several 

incidents (almost 25 in number) of clearance time greater than 1000 minutes which are 

recorded as roadwork-involving incidents. A large share of these can be just 

‘scheduled roadworks’ and not incidents as such. 

› The strong influence of truck involvement in causing higher clearance times indicates 

that advanced clearance strategies have to be adopted (like heavy duty clearance 

vehicles, cranes) and in a quicker manner in case of incidents involving trucks. 

› Incidents having very high clearance times (e.g., an hour or more) are shown to exhibit 

high probabilities of secondary incident causation than incidents with median 

clearance times.  
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7.3 Recommendations and Directions for Future Research 

 

 This study has presented a useful framework for analyzing the influence of incident 

characteristics on incident clearance times and secondary incident causation probabilities. The 

models developed are totally based on the data collected from the Nashville TMC and hence are 

bound to have spatial and temporal limitations. They are unlikely to predict incident properties 

accurately for any city other than Nashville due to the differences in traffic behaviors (both on 

the user side and the service side). But the relationships discovered could be representative of 

those existing in other cities. 

 Further validation of these models with subsequent available data is very important to 

ensure acceptable predictions during future usage. Further analyses should be conducted to 

investigate the influence of traffic characteristics such as volume, speed, vehicular characteristics 

(% trucks). These models could be expanded to include predictor variables like different seasons, 

roadway geometry and highway infrastructure (e.g., bridges, median barriers). Comparative 

studies involving different locations investigating incident clearance times and secondary 

incident causation probabilities based on this modeling framework can be helpful in 

understanding site dependency of such studies. Another exciting research possibility is to 

investigate the causation of secondary incidents due to rubbernecking (especially the incidents 

happening on the opposite direction of travel) by modifying the secondary incident causation 

model presented here. These are some research directives which can be pursued to expand this 

modeling framework.  
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APPENDIX A 

 

Table A-1:  TMC Incident Database Records 

Field Name Description % Records Filled 

1. IncidentIDNumber Incident Identification Number 100 

2. IncidentDescription Short Description of the Incident 22.7 

3. Operators Name of the Operator on duty 98.7 

4. StartDate Start date of incident 100 

5. StartTime Start time of incident 100 

6. ClearDate Travel lane clear date 100 

7. ClearTime Travel lane clear time ~100 

8. NormalDate Queue clear date 69.9 

9. NormalTime Queue clear time 61.9 

10. ShldrDate Shoulder clear date 12.8 

11. ShldrTime Shoulder clear time 13.3 

12. HelpTime Help arrival date 59.2 

13. HelpDate Help arrival time 59.1 

14. LawEnforceTime Law enforcement arrival date 38.2 

15. LawEnforceDate Law enforcement arrival time 38.0 

16. FireTime Fire arrival date 14.9 

17. FireDate Fire arrival time 14.8 

18. EMSTime EMS arrival date 12.3 

19. EMSDate EMS arrival time 12.3 

20. TowTime Tow truck arrival date 11.2 

21. TowDate Tow truck arrival time 11.1 

22. MaintTime Maintenance arrival date 2.65 
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Table A-1, continued 

23. MaintDate Maintenance arrival time 2.65 

24. NotificationTime The time Metro, Fire, Media, etc. were notified. 11.9 

25. RecvBy Incident reported by 97.7 

26. ConfirmBy Incident confirmed by 97.1 

27. Route Route and direction ~100 

28. City Town or city ~100 

29. LocationArticle At, before, or Past the Location 77.0 

30. Location Nearest exit/cross street ~100 

31. Milemarker Closest mile marker ~100 

32. TotalLanes Total number of lanes on route/direction ~100 

33. ClosedLanes Number of lanes closed ~100 

34. LanesClosed Description of lanes that are blocked 83.9 

35. LtShldrClosed Left shoulder blocked time 12.2 

36. LtShldrOpen Left shoulder open time 10.8 

37. 1LaneClosed Lane 1 blocked time 36.8 

38. 1LaneOpen Lane 1 open time 35.8 

39. 2LaneClosed Lane 2 blocked time 25.6 

40. 2LaneOpen Lane 2 open time 24.9 

41. 3LaneClosed Lane 3 blocked time 35.4 

42. 3LaneOpen Lane 3 open time 34.5 

43. 4LaneClosed Lane 4 blocked time 11.8 

44. 4LaneOpen Lane 4 open time 11.3 

45. 5LaneClosed Lane 5 blocked time Not used at all 

46. 5LaneOpen Lane 5 open time Not used at all 
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Table A-1, continued 

47. RtShldrClosed Right shoulder blocked time 16.1 

48. RtShldrOpen Right shoulder open time 12.1 

49. RampClosed Ramp blocked time Not used at all 

50. RampOpen Ramp open time Not used at all 

51. TotalDMS Number of DMSs used ~100 

52. CauseType Cause of closure 100 

53. VehicleNumber Number of vehicles involved 100 

54. TruckID Truck involved indicator N/A 

55. Hazmat Hazmat called? N/A 

56. SuperNotified Supervisor notified? N/A 

57. ConstZone Construction zone? N/A 

58. WeatherCond Weather conditions 98.6 

59. SecondaryIncident Was this a secondary incident? N/A 

60. HAR Was HAR used?  N/A 
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