MECHANISMS OF ABLATION AND ION FORMATION

IN INFRARED LASER MASS SPECTROMETRY

By

Michael Robert Papantonakis

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Physics

May, 2003

Nashville, Tennessee

Approved by: Professor Richard F. Haglund, Jr., advisor Professor Richard Caprioli Dr. William Gabella Professor David Hercules Professor Thomas Kephart Copyright [©] 2003 by Michael Robert Papantonakis All Rights Reserved

ACKNOWLEDGEMENTS

My time at Vanderbilt has allowed me to come into contact with many people who have enriched my life and assisted me in my scientific development. First and foremost, I would like to thank my advisor, Dr. Richard Haglund, Jr., for his encouragement, direction and patience in helping me to see this project through to its completion. His dedication and devotion to both his family and work were truly exemplary. My committee members also were supportive in helping me focus my work and provide insight into those areas where I was lacking it. A number of professors have helped to equip me for my studies, and I would especially like to thank Dr. Amer Lahamer, who directed me to Vanderbilt. I'll remember him a committed teacher truly dedicated to developing the minds of his students both inside and outside the classroom.

I have had the opportunity to learn and work with many colleagues, including Oguz Yavas, Ken Schriver, and especially David Ermer and Michelle Baltz-Knorr. For better or worse, I will always remember working with David and Michelle to extract a modicum of performance from the Bobatron, playing cards and passing time while waiting for the FEL to tune up, and sharing in the excitement of seeing our efforts come to fruition.

Special thanks is due to the efforts of the staff of the Free-Electron Laser Center - especially Bill, John, Ed, Rick, and Dick - for their efforts in delivering beam time, and for their expertise and assistance in helping me make many repairs and modifications.

My time at Vanderbilt will be remembered primarily for the relationships formed there, the complete record of which I am unable to include here. Of special note are Rob Cutler, the Wednesday night crew, especially Eve, Scott and Heike, my housemates on Belcourt, Heather, Kimberly, Nick and the math crew, my friends from the chemistry department, and Crystal.

Finally, I want to thank my parents - although they will likely never believe me again when I present them with a timeline - who have always been supportive of me and are responsible for the whatever good qualities and character I find myself with at this stage of my life.

I was fortunate enough to receive financial support from several funding agencies and grants, including the Office of Science, United States Department of Energy, Environmental Management Sciences Program and the Office of Naval Research under the Medical FreeElectron Laser Program. Travel assistance to conferences was provided by the American Society of Mass Spectrometry, American Chemical Society, and the Vanderbilt Graduate School.

TABLE OF CONTENTS

		Page
ACK	NOWLEDGEMENTS	iii
LIST	OF TABLES	xiii
LIST	OF FIGURES	ix
Chap	oter	
I.	INTRODUCTION	1
	1.1 Motivation	1
	1.2 Significance and original results of the present work	
	1.3 Dissertation epitome	5
	Bibliography	6
II.	DESCRIPTION OF APPARATUS AND EXPERIMENTAL TECHNIQUES	7
	2.1 Light sources	7
	2.1 Light sources	/ ۵
	2.2 Mass spectrometer systems	
	2.5 Waternals and sample preparation	10
	2.4 Fourier transform inflated spectroscopy	12
	2.6 Computational determination of sodium gas-phase affinities	14
	Bibliography	15
ш	INFLUENCE OF IRRADIATION PARAMETERS ON MASS SPECTRA	
	2.1 Later dustion	10
	2.2 Experimental presedures	19
	3.2 Experimental procedures	
	3.4 Comparison of excitation wavelength on mass spectra	22
	3.5 The 'standard model' for primary ion formation in LIV-MAL DI	27
	3.6 LIV-MALDI: electronic excitation and ionization processes	29
	3.7 IR-MALDI: vibrational excitation and ionization processes	32
	3.8 Can a single model explain UV- and IR-MALDI?	
	3.9 Conclusion	
	Bibliography	

IV.	DETECTION OF POLYCARBOXYLIC ACIDS FROM SODIUM NITRATE	
	CRYSTALLITES USING INFRARED IRRADIAION	40
	4.1 Motivation	40
	4.2 Two models of ion formation. "Precharged' ions and secondary reactions	42
	4.3 Experimental results	47
	4.3.1 Ion species as a function of wavelength	47
	4.3.2 Sodium adduction as a function of structure	54
	4.3.3 The effect of structure on ion intensity	58
	4.3.4 Effect of initial solution pH on ion species	59
	4.4 Summary	64
	Bibliography	66
V.	WAVELENGTH INFLUENCE ON MASS SPECTRA IN IR-MALDI	70
	5.1 Laser ablation processes	70
	5.2 Previous studies of the wavelength dependence in IR-MALDI	73
	5.3 Energy threshold as a function of wavelength	76
	5.4 Summary	78
	Bibliography	80
VI.	SUMMARY AND CONCLUSIONS	83

LIST OF TABLES

Table		Page
2.1	Equivalence point and pK _a values for the HEDTA titration curves in Figure 2.4	12
3.1	Ultraviolet and infrared lasers and parameters used in the mass spectral comparisons	20
4.1	Identification of sodium nitrate and succinic acid peaks for both positive and negative ion spectra generated with 7.1 µm irradiation	45
4.2	Calculated sodium gas-phase binding energies for several carboxylic acids	57
4.3	Equivalence points for HEDTA, oxalic acid and glycolic acid	61
5.1	Thermal and acoustic transport times for select absorption modes	72

LIST OF FIGURES

Figu	Figure	
2.1	Titration curves for HEDTA	13
2.2	Rough schematic of the Comstock reflectron mass spectrometer	16
2.3	Schematic of the post-acceleration region	17
2.4	Schematic of the ion mirror used in the Comstock mass spectrometer	18
3.1	Mass spectra of erythromycin in 2,5-DHB at different pulse durations and laser wavelengths	21
3.2	Mass spectra of ß-cyclodextrin in 2,5-DHB at different pulse durations and laser wavelengths	23
3.3	Mass spectra of angiotensin II in 2,5-DHB at different pulse durations and laser wavelengths	25
3.4	Mass spectra of angiotensin II in DHB with infrared wavelengths	26
3.5	Ultraviolet and infrared mass spectra showing few or no low mass ions	27
4.1	Structure of polycarboxylic acids used in the tank waste simulant	46
4.2	Positive ion mass spectra of succinic acid in sodium nitrate, irradiated at 7.1 µm	47
4.3	Negative ion mass spectra of succinic acid in sodium nitrate, irradiated at 7.1 μ m	48
4.4	Infrared absorption spectra of sodium nitrate both in KBr and sample preparations	49
4.5	Mass spectra of polycarboxylic acids in sodium nitrate acquired with 7.1, 5.9, and 3.55 µm irradiation	50
4.6	AFM image and cross-section line scan of a crater formed by laser ablation using 7.1 μm light	53
4.7	Sodium adduct intensity ratios of selected carboxylic compounds as observed in positive mass spectra when irradiated with 7.1 µm light	55
4.8	Spectrum of EDTA and HEDTA ions at equimolar concentrations in sodium nitrate	59
4.9	Intensity of sodium nitrate and oxalic acid peaks as a function of pH	60

4.10	Intensity of glycolic acid and HEDTA peaks as a function of pH	.62
5.1	Inverse energy thresholds for ion signal as a function of wavelength, succinic acid	.75
5.2	Structures of succinic- d_0 and succinic- d_4	.77
5.3	Inverse energy threshold for neat and deuterated succinic acid in the 7-8 µm region	.77