
ORGANIZATION AND PRIORITIZATION OF SENSORY INFORMATION USING AN

EGO-CENTERED, LOCALLY-CONNECTED NETWORK

By

KATHERINE ACHIM FLEMING

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

May, 2009

Nashville, Tennessee

Approved:

Professor Alan Peters II

Professor Bobby Bodenheimer

Professor Kazuhiko Kawamura

Professor Mitch Wilkes

Professor Bill Smart

Dr. Kimberly A. Hambuchen

ACKNOWLEDGEMENTS

This work would not have been possible without the financial support provided by a

NASA Graduate Student Research Fellowship (GSRP).

I would like to begin by thanking my advisor, Dr. Alan Peters, for his insight,

support, and guidance. Thank you for your encouragement and faith in my abilities

during my time at Vanderbilt.

I am also deeply grateful to the other members of my dissertation committee.

Many thanks to Dr. Bobby Bodenheimer for taking the time to guide me through

this process; your help has made me a much better researcher and presenter. Thanks

you to Dr. Kazuhiko Kawamura and Dr. Mitch Wilkes for all of your advice and

insights during this process. Thank you also to my outside committee members,

Dr. Bill Smart and Dr. Kim Hambuchen; your input and guidance have been much

appreciated.

A huge thanks to Flo Wahidi, who keeps the CIS running smoothly. I do not even

want to imagine this experience without her. Thanks also to my fellow students—

past and present—in the CIS; your camaraderie and moral support has been much

appreciated.

I would like to thank my family as well as all of my friends for their endless

love and support. This would not have been possible without your encouragements.

Finally, a million thanks to Paul: j’ai fini moi aussi!

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . iv

LIST OF TABLES . vii

I. INTRODUCTION . 1

Why Pay Attention? . 3
Contribution of this Work . 5
Overview . 7

II. BACKGROUND AND RELATED WORK 8

Sensory Ego-Sphere . 8
Attention . 12
Habituation . 25

III. SYSTEM DESCRIPTION . 32

Attention System Overview . 32
SES Implementation . 34
Local and Global Activity . 35
Habituation . 47

IV. EXPERIMENTS AND RESULTS 54

Parameter Selection . 54
FOA Experiments . 60
Size Experiment . 66
Task-Switching Experiments . 68
Habituation Experiments . 78

V. CONCLUSIONS AND FUTURE WORK 99

Conclusions . 99
Future Work . 104

REFERENCES . 106

iii

LIST OF FIGURES

1. A robot within its SES [1]. 9

2. Tessellation of an Icosahedron into a Geodesic Dome [2]. 9

3. Projection of an object onto the SES [1]. 11

4. Diagram of the attention system 32

5. ISAC in its Sensory Ego-Sphere . 34

6. Local and global activity in the system 36

7. Variables defined at each node . 37

8. Node Posting Procedure . 39

9. Node Communication. 40

10. Direct and Indirect Activation Spread. 41

11. FOA selector module . 43

12. Focus of Attention Selection and Task-Switching Procedure 46

13. Effects of Habituation Stages on Change in Activation 50

14. Frames from parameter selection simulation. 56

iv

15. Performance measured by correct FOA criterion for varying param-
eter values . 58

16. Performance measured by correct task criterion for varying parame-
ter values . 59

17. Performance results measured by FOA and task for maxThresh = 0.3 59

18. Percentage of correct FOA with respect to the number of distractors 62

19. Examples of real data and corresponding simulated data 63

20. System performance comparison of real-world and simulated data . 64

21. Average performance results for increasing number of distractors . 65

22. Average performance results for increasing number of distractors . 66

23. Variations in Target Size . 67

24. Percentage of correct FOA with respect to target size 68

25. Corresponding frames of the real (left) and simulated (right) dataset 73

26. Frames from each simulated dataset. 75

27. System performance result trends for multiple tasks. 77

28. Dataset frame with distractor node selected as FOA. 78

29. HabituationPeriod values for distractor node using the lastFOA mod-
ification method. 80

v

30. HabituationPeriod values for distractor node using the time between
postings modification method. 82

31. Frames where FOA was on a distractor node under no habituation
and habituation using last FOA and time difference methods. . . . 83

32. HabituationPeriod values for distractor nodes for the constant mo-
tion experiment. 87

33. HabituationPeriod values for distractor nodes for the fixed interval
experiment. 89

34. HabituationPeriod values for distractor nodes for the random interval
experiment. 91

35. Frames with distracting motion for increasing interval experiment . 92

36. HabituationPeriod values for distractor nodes for the increasing in-
terval experiment. 93

37. Frames with distracting motion for decreasing interval experiment . 94

38. HabituationPeriod values for distractor nodes for the increasing in-
terval experiment. 96

39. Selected frames of the dataset . 98

vi

LIST OF TABLES

1. Attributes and likelihood of guiding attention [3] 17

2. Information stored in each SES tag (at each node and for each sen-
sory modality) . 37

3. Optimal Parameter Values . 60

4. Performance results for FOA experiments 61

5. Target Sizes . 67

6. Test conditions for task experiment 70

7. Task Experiment Results . 70

8. System performance results of real-world and simulated datasets. . 73

9. Simulated datasets . 76

10. System performance with an increasing number of tasks. 76

11. Datasets for periodic distractor experiments 85

12. Constant motion experiment results 86

13. Fixed interval motion experiment results 86

vii

14. Random interval motion experiment results 88

15. Increasing interval motion experiment results 90

16. Decreasing interval motion experiment results 94

17. Demonstration Experiment Results 97

viii

CHAPTER I

INTRODUCTION

This dissertation describes a multimodal attention system for a sensor-guided robot.

The robot has a number of different sensors that continually send it information about

the environment and itself. To perform a task successfully, the robot must organize

that information, pay attention to that which is important, and ignore the rest –

unless something unexpected and potentially beneficial or dangerous occurs. Then

the robot must shift its attention to the new stimulus, assess its importance, and

respond accordingly. The ability to “pay attention” to sensory stimuli of multiple

types (sight, sound, touch, smell, taste, etc.) and to respond appropriately is shared

by humans and other mammals [4]. Some of the underlying neural mechanisms are

well understood in terms of their common attributes if not their higher-level inter-

actions. In particular, most animal attentional mechanisms incorporate sensitization

– a priming for anticipation of an event, and habituation – the ability to ignore a

benign or useless stimulus [5]. Attentional systems for robots are being studied and

developed, but mostly these deal with a single sensory mode and few exhibit sensiti-

zation and habituation. The attentional system described here can process multiple

sensory modalities, and exhibits both the characteristic responses.

The system is implemented on an egocentric, conformal network of nodes called

a Sensory Ego-Sphere (SES) [1]. The SES is centered on the robot’s base frame of

reference. The collection of nodes partitions space into polygonal solid angular regions

that emanate from the base frame. Each node continually receives, from parallel

concurrent sensory processing modules (SPMs), all sensory data derived from one

such region. Along with this sensory data, the SPM sends an estimate of its angular

position and the time at which the data was received. Adjacent nodes receive from

adjacent regions. Also associated with each node is a list of activation values that

1

represent the salience of the data with respect to the robot’s current task. A node

interacts with its neighbors to adjust both its current activation values and the change

in activation with respect to its previous values. The aggregate of these two variables

over all the nodes directs a global focus of attention (FOA) across the SES and,

therefore, the robot’s locale. Because the robot’s sensors collect a large amount of

data, most of which is irrelevant to the task, the good selection of a single location to

which to attend conserves the robot’s resources. Thus, in general the robot directs its

task-oriented resources to the region of space that contains the node with the focus

of attention. If that focus is entirely task-driven, however, important changes in the

environment could be missed. If one or more sensors detect something new or detect

a significant change in stimulus, a change in the focus of attention may be called

for, at least momentarily. By making each node a simple computational object that

acts independently of the others, the net-like interconnectivity of the SES enables the

nodes’ local interactions to produce a global shift in attention. This makes use of the

two activation states, absolute and differential, and a prioritized list of tasks.

Within this system, the attentional aspects of a task are defined in terms of the

sensory modalities that comprise them. Task priority is predetermined. The system

is preemptive so that unexpected changes in stimuli can be attended to, even if their

attributes do not match those of the currently active task. If perchance the new

stimuli match a task of higher priority than the current one, the higher-priority task

is initiated until the situation resolves, at which point the original task resumes.

Although task preemption is an important functionality of the system it has the

drawback that attention shifts can occur to locations of neither importance to the

task nor to the safety of the robot or environs. Overall performance decreases when

the stimulus causing a FOA shift does not elicit a higher-priority task. Such stimuli

are considered to be distractors. Habituation mechanisms mitigate the decline in

2

performance by enabling the system to ignore irrelevant stimuli that reoccur. Shifts

to such distractor locations become less frequent.

In theory, the system is designed for a robot that operates in a dynamic environ-

ment in real-time. The parallel implementation of sensory processors and of the nodes

as computational objects could make this possible (as could dramatic increases in the

speed of serial computation). The effective connectivity of the nodes, the methods of

node communication, and the sensory processors are suitable for use in a distributed

system. At this point in time, however, such an actual or quasi-distributed imple-

mentation of the SES has not been implemented. Apart from the real-time collection

of sensory data, the computations for this work were performed off line on serial ma-

chines to provide a proof of concept. Although the SES can be used on stationary as

well as mobile robots, motion transforms (available in [1]) must be applied when the

robot is moving around the locale.

Why Pay Attention?

The field of robotics has demonstrated success in industrial automation, where robots

operate in predictable environments. Industrial robots usually have a limited number

of well-defined tasks to perform, limited sensory inputs (if any at all), and controllers

that, designed for preprogrammed point-to-point motion, have no extra computa-

tional resources for the analysis of sensory information. Industrial robots are sel-

dom mobile and generally not used in situations where interaction with people is

possible. Nevertheless they have been enormously successful for the automation of

manufacturing [6]. With a few notable exceptions—like the iRobot c©Roomba c©[7], a

vacuum cleaning robot—robots are not deployed in unpredictable, dynamic environ-

ments where people are in close proximity. Consequently, much current research is

on the design and implementation of reactive, multi-functional robots that can be so

used. Such robots require an increase in their versatility – robots should be capable

3

of completing a variety of tasks as opposed to one explicitly-defined task – as well

as adaptability – robots should have the ability to handle unexpected events and

safety concerns while completing tasks. As these capabilities are achieved, robots are

likely to be used for applications such as office delivery, warehouse operations (mov-

ing crates, restocking), search and rescue, and increasingly complex space exploration

missions.

Over the past few decades, the steady increase in power and simultaneous decrease

in cost of computation [8] has made the realtime extraction of useful information from

sensory signals much more feasible. Couple that with recent decreases in the cost of

sensors (most notably cameras [9]) and the reality of intelligent robots is more likely

than ever. The challenge is for the robot determine with reasonable accuracy which

of the information it receives from the torrent of sensory data is significant. It is

necessary to exclude spurious data but that requires either knowing which data are

spurious or knowing which are necessary. In animals, attention appears to serve

the purpose of stabilizing or tracking an aggregate of sensory information once it is

identified as useful so that the information may be acted upon purposefully. Of course,

it could also be that attention is the result of the filtering of spurious information (that

which remains when all else is excluded) [4].

The system briefly described above, and analyzed in this dissertation, incorporates

both ideas. A task description specifies cues; i.e., relevant sensory information that is

to be found and attended to. The spatially-distributed computational nodes operate

in parallel on data supplied by directional sensors. Each node computes for each

sensory modality an activation value that is a measure of similarity between the cue

and the data in its region. The node computes a total activation from those of the

individual modalities. The node with the greatest activation emerges as a candidate

for the focus of attention. The parallel processing at once finds the cue and suppresses

spurious information. The resultant node points to the region that is a candidate

4

for FOA but not necessarily the FOA. A system that doggedly tracks the maximum

activation will often miss new data that might indicate an event more important than

the current task. But, then again, it might not. Thus the system incorporates both

sensitization and habituation. The result is a single Focus of Attention that allocates

computational resources toward task-significant locations in space, that switches to

explore significant new events, but does not persist in such switching if the event is

irrelevant.

While numerous techniques for machine vision and attention have been researched,

lacking is a comprehensive model that leverages their interrelationships not only to

provide a coherent and efficient computational implementation but also to foster

affordances that emerge from their structured combination.

An attentional network on the SES was previously developed by Hambuchen [10].

Attention was directed to sensory events bound in space and time. Events were

extracted from data gathered from a robot’s sensors and were registered to the SES.

Salience was assigned not only to events related to the task, but also to locations

corresponding to multiple co-occurring events. Salience calculations were based on

the occurrence of an event, the relevance of the event to the task, and whether the

event is habitual. Repetitive events occurring within a fixed interval set a priori were

habituated over time.

Contribution of this Work

The attention system for robots described in this dissertation is multimodal over

an arbitrary, dynamic set of sensor modalities. That is, the system is designed to

work simultaneously with any number of different sensory modalities and is fully

independent of sensor type or abstracted sensory information, providing that the

information is spatially distributed. The number and types of sensors defined in

the system can vary. Although implemented on a pre-existing short-term memory

5

structure, the SES [1], which has been used as an attentional network in the past by

[10], the system described here extends this work in several novel ways.

A FOA emerges from the aggregated behavior of a spatially distributed set of

locally-connected, simple, reactive processing nodes that are cued by a global de-

scriptor that lists sensory characteristics relevant to the task at hand. This simulta-

neously suppresses information of little importance. This system retains the original

sensory data, processes it all, and registers it to the SES, as opposed to registering

only abstracted sensory events extracted from the original data.

The system is designed to simulate each node having independent processing power

and only communicating with its immediate neighbors; this was done to facilitate

a parallel implementation in the future. For this purpose, distributed schemes of

spreading sensory data as well as their task-related activation were developed based

on the serial implementation presented in [10]. A distributed scheme for spreading

habituation effects was also developed.

The FOA selects a direction in space based on both the absolute salience to the

task of the sensory stimuli in that direction, and on the first-order temporal dynamics

of the stream of incoming sensory data. That is, the FOA is sensitized toward task-

relevant data and toward abrupt changes in the sensory background. The dynamics

of the response of the individual nodes to the local sensory data stream cause the

FOA to habituate to task-irrelevant and benign, repetitive stimuli. In the previous

implementation of [10], FOA selection was based on the number of events at a location,

the task-relevance of the events, and their time of registration onto the SES.

In [10], all repetitive stimuli was habituated on a fixed interval length determined

a priori, regardless of task-relevance. In this system, only task-irrelevant stimuli are

habituated. Habituation is applied to any stimuli that attracted the FOA yet does not

match a higher-priority task, regardless of its presentation interval length, whether

periodic or constant. Habituation to a specific stimulus decays over time so that the

6

FOA can shift back to it if the stimulus suddenly appears or disappears later. This

set of behaviors provides a robot with the ability to attend to a task without repeated

distraction while preserving the ability to attend to novel stimuli. Such abilities are

essential for autonomous behavior in loosely-structured environments and enable the

failsafe response to danger.

Overview

The remainder of this dissertation is organized as follows. Chapter II includes an

overview of the Sensory Ego-Sphere. A review of the literature on previous works in

attention and habituation, as well as its relation to the system described in this dis-

sertation is also found in this chapter. Chapter III first presents the overall attention

system, followed by a more detailed description of its local and global activity levels.

A description of the habituation mechanisms implemented in the system concludes

this chapter. Chapter IV presents all experiments performed in this work as well as

a discussion of the results. Finally, chapter V contains conclusions and recommenda-

tions for future directions of study.

7

CHAPTER II

BACKGROUND AND RELATED WORK

The attentional network described here is implemented on a Sensory Ego-Sphere,

incorporates ideas from studies of attention in humans and other animals, and exhibits

both sensitization and habituation. Hence these three topics are discussed below.

Sensory Ego-Sphere

The Sensory Ego-Sphere (SES) can be thought of as a mediating interface between

sensors and cognition. It is an egocentric short-term memory, and it structures, stores,

and coordinates multimodal sensory information for further processing. It was de-

signed to mimic some of the functions performed by the mammalian hippocampus,

such as the integration of multiple streams of sensory data and integration of sensory

and motor information [11]. It can provide an egocentric mapping of the environ-

ment as well as information about position (of self) with respect to objects in the

environment. [1]

The SES is a virtual tessellated sphere centered at the robot’s base frame, and its

orientation remains fixed with respect to the world (figure 1). As a robot moves, its

heading changes on the SES, and data can be moved from node to node based on the

robot’s movements. The SES thus simplifies the organization, storage, and retrieval

of egocentric information. [1]

The tessellation used in the SES is geodesic and partitions space into a set of

hexagonal or pentagonal cones that emanate from the frame. A geodesic dome is

composed of twelve pentagons and a variable number of hexagons that depend on the

frequency (or tessellation) of the dome. The frequency is determined by the number

of vertices that connect the center of one pentagon to the center of another pentagon,

8

Figure 1: A robot within its SES [1].

all pentagons being distributed on the dome evenly, as shown in figure 3. The number

of vertices (V) can be determined from the frequency (N) using equation 1.

V = 10N2 + 2 (1)

Figure 2: Tessellation of an Icosahedron into a Geodesic Dome [2].

Figure 2 illustrates the creation of a geodesic dome. First, an icosahedron is

9

created; this dome has a frequency of 1 and is made up of 12 pentagons. A new

vertex is added at the midpoint of each edge, increasing the frequency of the dome

to two. Each new vertex is connected to the two vertices on the original edge as

well as to the four new vertices nearest it, resulting in a total of six neighbors for

each new vertex. The original pentagon centers are connected to five neighbors while

the new hexagon centers are connected to six neighbors. Subdivision continues until

the polyhedron has the desired frequency. Once all vertices have been added to the

polyhedron structure, the polyhedron is reshaped so that all vertices are equidistant

from the center, creating the geodesic dome. [1]

Each vertex in the tessellation corresponds to a node where sensory and motor

data related to the region can be stored. Nodes at the center of a hexagonal region

have six neighbors while nodes inside a pentagonal region have 5. A tessellation

frequency of N = 14 is used in this work, which partitions space into 1963 regions

such that the angle between nodes is on the order of 4.5◦−5◦. For example, an object

that has been visually identified in the environment is projected onto the sphere at

azimuth and elevation angles that correspond to its location with respect to the SES

frame. A label that identifies the object and other relevant information is then stored.

The vertex on the sphere closest to an object’s projection becomes the registration

node, as illustrated in figure 3.

The geodesic dome structure was chosen to represent the SES because it is “the

optimal solution to the problem of how to cover a sphere with the least number of

partially overlapping circles of the same radius” [12].

Sparse and/or simple sensory modalities such as sound or IR motion detection can

be combined accurately using an SES and attention can be cued by such combina-

tions [1]. More specifically, sensory information having the same source (for example,

the sound of the voice and the image of the face of a person sensed simultaneously

from the same direction in space) can be recognized as such through spatio-temporal

10

Figure 3: Projection of an object onto the SES [1].

coincidence of stimuli, and can increase the salience of a particular location on the

SES. Various sensory information emanating from the same location in space but

distributed over time can also be accumulated to form a focus of attention on the

sphere [10]. The SES also possesses sensitization (increasing the salience of an unex-

pected event) and habituation (decreasing the salience of events that have periodic

occurrences) capabilities with respect to attention [10].

Since the SES also serves as a short-term memory, it can keep track of objects

in the robot’s environment. This can be used to provide a display of the robot’s

locale-specific knowledge that can be of use to supervisors or remote operators of the

robot as well as persons who interact with the robot [13, 14]. The SES has also been

used on at least one mobile platform to perform spatial localization of the robot and

navigation in 2D [15].

An object’s spatial distribution on the SES over time can also be tracked [16].

The accumulated information can then be used to identify the most likely locations

for a specific object type to appear, which can be used as a starting point for a visual

search.

The SES is not limited to the storage of sparse sensory information; it can also

11

store images with higher resolution than the SES itself. Spatially-overlapping imagery

can be stored in the SES database and a spherical composite of its visual contents

can be generated and updated [2]. This composite image is both a map of the locale

and a representation of the local contents of the underlying full-resolution imagery.

Visual attention methods have been used to indicate areas in the environment where

the robot may need to apply its cognitive resources [2]. It also enables fast alignment

of overlapping images without warping or position optimization, since an attentional

point (AP) on the composite typically corresponds to one on each of the collocated

regions in the images [17]. Such alignment speeds analysis of the multiple images of

the area.

Attention

Attention is the process of selecting one object to concentrate on while ignoring the

others. Attention is important because humans and robots alike do not have the

computational capabilities to process all available information instantaneously. It

guides the exploration of the locale toward relevant locations—locations that contain

useful knowledge pertaining to the current task. It is essential to filter out irrelevant

information so that the computational resources can be assigned solely to the attended

object for further analysis, representation, or behavioral control [18]. While attention

filters out information not relevant to the task at hand, it can shift its location in

response to a changing or unexpected situation, or to focus on another aspect of the

task at hand. The attention system must balance task completion against potentially

dangerous events: unexpected sensory information must be attended to avoid unsafe

situations (sensitization), and this information can be ignored at future times if it

is deemed safe or becomes repetitive (habituation). Attention is then a function

of multimodal sensory information in space and time; it is driven by the data and

modulated by the task, and can be interrupted based on low-level reflexes of safety.

12

Attention has been a widely-studied topic in psychology and cognitive neuro-

science, dating as far back as 1890 [19], and is still being investigated today. Re-

cently, studies using neuroimaging techniques such as PET [20] and fMRI [21] have

identified areas of the brain modulated by attention: regions in the frontal, occipital,

parietal, and primary visual cortices as well as the superior colliculus, to name a

few. Because the attention literature is so extensive, the following review centers on

attentional models developed for robotic applications. For more information on the

human attention system, see [4].

Attention can be divided into two separate mechanisms, bottom-up and top-down;

these mechanisms have different methods of calculating the “salience” of a location.

The bottom-up mechanism defines salience as conspicuousness: the more a location’s

features—color, shape, orientation, movement, etc.—locally stand out from those of

its neighborhood, the more it is salient. An example of this is how a yellow banana

stands out in a bowl filled with red fruits. For the top-down mechanism, salience is

determined by the task at hand: the banana in a bowl of red fruits would not be

salient if we are specifically searching for a red strawberry.

In addition to the bottom-up and top-down classification of attention models,

attention systems can be categorized in a number of ways: some models deal solely

with visual attention while others incorporate different sensory modalities; certain

models concentrate on a single sensor and others are multimodal. Finally, some

models are designed to generate results on static images while others operate in

dynamic applications. I have attempted to make these distinctions in the following

discussion without a full categorization of each attention system.

Feature-Integration Theory

An influential contribution to attention research is Treisman and Gelade’s feature-

integration theory of attention [22], which states that separable features such as color,

13

orientation, and brightness, are automatically registered in parallel. However, atten-

tion is necessary to bind all of these features observed at one location together into an

object—attention is directed at locations where features come together—, and this

binding process is serial. Several computational models of visual attention have been

developed based of this theory [23, 24, 25]; these models create an independent map

for each type of feature used and combine these into an overall “saliency map” [26],

where each location in the map contains a value reflecting the visual conspicuousness

of the corresponding location. The saliency map is then used to direct the focus of

attention by selecting the location with the highest value. Color, orientation, and

luminance are the most frequently-used low-level features in the models discussed

below.

Itti et al. [23] have developed a popular model of visual attention. This bottom-

up model is made up of parallel feature maps—6 maps for intensity contrasts, 12

for color discrimination, and 24 maps for orientation discrimination, all computed

at different resolutions. Each feature’s salience is computed using a center-surround

mechanism similar to the process taking place in human visual receptive fields, where

a certain stimulus must be “on” in the center of the receptive field and “off” in the

surround, or vice-versa. This process is implemented through the difference between

a high-resolution pixel location and its lower-resolution surround, to identify locations

which stand out from their local neighborhood. The feature maps are then combined

first into conspicuity maps for intensity, color, and orientation respectively; these three

maps are then combined linearly into a single saliency map from which the maximally

salient location can be obtained; this location becomes the focus of attention. An

inhibition of return mechanism is also implemented in the event that the most salient

location is not the correct location; this location would be inhibited for a fixed time

period so that other locations can be attended. A top-down component for the

inclusion of task-relevance information was later added to this model; this component

14

biases the system for those features present in the target [27]. This algorithm was

also combined with an object recognition model to identify attended objects [28].

Another feature map-based visual attention model is Cave’s FeatureGate model

[24]. In addition to having a corresponding value in whatever feature maps are defined

in the system, each location in the visual scene has an attentional gate to regulate

the flow of information from that location’s value to the output based on the features

of the location and those of its neighbors. This is a hierarchical model where each

location competes to be the focus of attention; the winner of each neighborhood goes

on to the next level until a single location remains. This model has both a bottom-

up and a top-down subsystem: the bottom-up process computes salience values and

identifies the most conspicuous locations independently of the task while the top-

down process will open the gates of those locations similar to the target and close

the gates of those with features unlike the target. The salience from the bottom-up

process and discrimination values from the top-down process are then combined into

a single activation map and the top activations in that map are passed to the next

level, where the process is repeated. Inhibition of return is also incorporated in this

model by reducing the activation of the winning location for a period of time if that

location is not the target and repeating the process a few times so that other winners

are chosen. This model has been implemented on a humanoid robot and the results

were shown to be consistent with the human attention system [29].

Guided Search [25] is another model of visual attention and its results are closely

related to human data acquired during visual searches. Its structure resembles Fea-

tureGate: color and orientation feature-maps are used as well as bottom-up and

top-down components, which combine to form a single activation map whose peaks

represent areas of the scene that are of potential interest. The top location can then

have access to higher-level computational resources such as an object recognition

module. As in the other models above, inhibition of return is also incorporated into

15

the Guided Search model. Revisions to this model have been made [30, 31, 32] for a

more accurate human vision system model. Among the changes were the addition of

a size feature map and the incorporation of eye movements.

Among the many attention models that include a saliency map, there is a wide

variety of features used to generate the map and different techniques exist to extract

relevant information from that map. Breazeal and Scassellati’s model [33] is based

on Wolfe’s work and uses face, motion, color, and habituation feature maps that are

modulated by motivations and behaviors in a top-down fashion.

Ude et al. [34, 35] use motion and disparity in addition to the color, orientation,

and intensity feature streams. The distributed implementation processes each stream

in parallel along with an additional stream, based on the FeatureGate model, to

integrate top-down influences .

Maki et al [36] integrate image flow, depth (stereo disparity), and motion while

Frintrop et al. [37] use intensity and orientation features from depth and reflectance

images obtained from a 3D laser scan to create saliency maps.

Heidemann [38] creates a saliency map from local color symmetries—obtained

from image gradient calculations—to identify focus points (FPs) which correspond to

the center of interesting regions in the visual stream. This algorithm was shown to

be stable under object rotation, illumination changes, and noise; results were more

distinct and meaningful than those generated from algorithms that detect corners

and edges [39].

The system by Ma and Zhang [40] uses a contrast-based saliency map to represent

color-contrast as well as texture and shape approximation data. A fuzzy growing

technique is then used to identify salient points and areas in the saliency map. Lee

et al. [41] make use of aspect-ratio, symmetry, and shape features in their system;

an Interactive Spiking Neural Network (ISNN) integrates bottom-up and top-down

information to identify human faces in the image.

16

The dynamic visual attention model developed by Backer and Mertsching [42] uses

features like color-contrast, edge symmetry and eccentricity, and depth from stereo

images in the saliency-map computation and identifies discrete regions of sustained

interest with a neural network that performs spatiotemporal integration and local

inhibition. Symbolic object files are generated for each discrete region; these files

make up the world model and are updated continually. A second stage is used to select

a single focus of attention based on task, which is then sent to higher-level processes

such as object recognition. Lòpez et al. [43] also developed a dynamic visual attention

model that can be used with moving cameras. This model incorporates the shape

and motion of the objects to direct attention and uses an attention reinforcement

mechanism to maintain focus on objects of interest. Observer commands are used

during the process to further guide the deployment of attention.

Although it is not certain which stimuli features guide the deployment of attention,

Wolfe and Horowitz [3] have compiled a list of potential attention-guiding features,

arranged in categories from unquestionable features to highly unlikely ones. Their

list of features is reproduced in table 1.

Table 1: Attributes and likelihood of guiding attention [3]

17

Heidemann’s choice of color symmetry was prompted by studies indicating that

“symmetry catches the eye”[44], while the special characteristic of depth in conjunc-

tive searches was reported by Nakayama and Silverman [45]. Targets that differ from

distractors in only one dimension (color or orientation, for example) can be identified

in the same amount of time independently of the number of distractors present—

indicating a parallel search; if the target differs in more than one dimension however,

a serial search must be performed and the search time is dependent on the number of

distractors [22]. Nakayama and Silverman have found that depth is an exception to

this rule: if depth is one of the dimensions in the search, another dimension can be

searched in parallel. This and the fact that robots need to attend to objects or people

in their proximity could indicate that depth is a useful feature for guiding attention.

Biased Competition Hypothesis

The biased competition (BC) hypothesis of Desimone and Duncan [18] builds on an-

other influential idea taken from the psychology literature. This hypothesis states

that the competition that objects engage in for resources is biased in favor of task- or

behavior-relevant objects; this is done by enhancing the response of relevant features

while decreasing the response of neighboring distractors. (The SES is capable of this

behavior; see section II.) Attention can be viewed as having two separate modes

of operation: spatial attention, which performs in-depth visual analysis on a single

location while all other locations are ignored (like a spotlight), and object attention,

the process of searching a visual scene for the features of a particular target. There-

fore, the top-down competition bias can be applied to either a spatial location or an

object’s features.

Deco [46] has developed a computational model based on the BC hypothesis in

which the spatial and object attention modes are integrated to perform both visual

searches and object recognition tasks. Begum et al. [47] have developed a probabilistic

18

model of visual attention, also based on the BC hypothesis, for use on a humanoid

robot. A bottom-up competitive component and a top-down modulating component

are modeled by probabilistic distributions, which are approximated by a particle filter.

The psychological findings that objects located in the fovea generate a higher response

than those in the periphery because of varying spatial sensitivity is also modeled:

there is a higher transition probability for locations near the focus of attention than

for those in the periphery. Dynamically constructed Gaussian Adaptive Resonance

Theory (DC-GART) is used to model both working memory and long-term memory;

the features and categories of attended stimuli are learned, and the system is biased

in favor of new stimuli.

Like Begum et al., Jagersand [48] uses a probabilistic saliency map but this map

contains a measure of the amount of information located at a particular location

and at a particular scale. This information theoretic approach allows attention to be

deployed on relevant data using adequately-sized operators. This saves time and effort

as the author observed that, in images of man-made objects, relevant information is

found only in a small number of scales. Approaches that consider scale usually test

a large variety of different scales without any measure of the amount of information

they contain.

Tsotsos’ Selective Tuning model [49, 50] is a pyramidal network that incorporates

spatial inhibition and task-irrelevance inhibition at each level. The input stimulates

each level of the pyramid until the top is reached. A winner-take-all process is then

activated at the top level; this is repeated at each lower layer by selecting the strongest

location in the winning location’s receptive field and inhibiting the non-contributing,

spatially-adjacent locations. Experiments were performed with images; it is men-

tioned that the framework is not limited to this type of input but it appears to be

limited to a single input as opposed to the conjunction of more than one type of input

[51]. Another network-based implementation is the Selective Attention Identification

19

Model (SAIM), where the focus of attention (FOA) is selected through a constraint

satisfaction process [52].

The attention model developed by Aziz et al. [53] is structured as a list of re-

gions obtained from first segmenting the vision input. Feature values for color con-

trast, eccentricity, orientation, and symmetry are associated with each region; and

the maximum value of each feature gets its turn to selects the FOA. For example, the

maximum color contrast value becomes the FOA at t = 1; this feature type is then

inhibited and the maximum eccentricity value determines the FOA at t = 2, and so

on.

Multimodal Attention

Of particular interest to our work are dynamic models that include multimodal sen-

sory information to guide attention. The term “multimodal” can be applied to a

variety of components of an attention system; a person can guide a robot’s atten-

tion toward an object with multiple actions—gestures and speech (joint attention)

[54]—and separate sensory modalities can be used for the robot’s scene processing

and the user’s commands to the robot. We are most interested in systems that use

some functional combination of sensory modalities to identify salient regions in the

locale based on conspicuousness and task—since a task frequently has objectives that

depend on a specific combination of sensory modalities and their relative importance.

Some multimodal attention systems are application-specific and consider a single

task: Wilhelm et al. [55] use vision and sonar information to track faces; both Déniz

et al. [56]—who combine vision and sound feature maps to shift the FOA—and Lang

et al. [57]—who use camera, microphone, and laser range finder information to anchor

the face, legs, and speech of a person and deploy attention—track people who may

possibly interact with the robot. These systems have had successful results but are

20

not general enough for the variety of tasks that a humanoid robot could be presented

with.

The multimodal system of Frintrop et al. [37] combines depth and reflectance

images from 3D laser scans while Ouerhani and Hugli [58] incorporate a depth feature

map obtained from a range finder to the intensity, color, and intensity gradients

features of Milanese’s static model of visual attention [59]. Mean curvature and

depth gradient, also acquired from the range finder, may also be considered in a

future implementation.

The framework of Koene et al. [60] integrates audio and visual feature maps along

with a top-down gating mechanism—both inhibitory and excitatory—derived from

FeatureGate into a module that shifts the gaze of a humanoid robot. In the attention

system of Haasch et al. [54], the importance of certain objects is communicated to

a robot through a user’s multimodal actions—such as gestures and speech—, and

this process guides attention deployment. The verbal commands are stored with

the object’s visual characteristics obtained from the camera image; however, no other

sensory modalities of the object itself—such as whether the object makes a noise—are

used.

Crespo et al. [61] developed AMADIS, a general architecture composed of task-

related “attentors”, each building over time a probabilistic map of the location of the

object it is dedicated to find. These maps are then integrated to create the overall

attentional space. Complexity is increased by defining different types of attentors:

primary attentors receive sensory inputs only; secondary attentors can receive sen-

sory inputs as well as outputs from primary attentors; and instinctive and reactive

attentors are used to detect emergency situations where sudden changes are required.

Although this general system is said to be multimodal, the only demonstration made

in that regard was of a separate sensory modality (sound) being used to change the

21

task, and therefore the attentor module that guides attention. Attentors involving

the combination of various sensory inputs were not presented.

Goncalves [62] integrates visual and haptic information to guide the focus of atten-

tion. Attention values are weighted and summed across feature maps; these weights

depend on the task and the author is investigating a Q-learning strategy to learn

them.

Research has also been done in the area of on-line task-specific feature learning

for attentional systems: Rajeandran and Huber [63] developed a system that uses

reinforcement learning to learn what features should be attended—from a list of

identified features—to perform the current task1 and Baluja and Pomerleau [64] use

a neural network to learn which features to use for a particular task over time and to

compute expectation values for future features. Feature-learning is not a part of this

work; we assume that a task description in terms of multimodal sensory features is

known a priori.

Attention mechanisms have been used in applications such as content-based im-

age retrieval [65, 66], social attention [67, 68, 69], object recognition [70], and scene

segmentation [36].

The large variety and volume of attention models and algorithms suggests that a

standardized evaluation method is needed. Shic and Scassellati [71] propose quantita-

tive methods for performance evaluation of computational models of visual attention

in terms of similarity to human performance. Williams and Draper [72] disagree with

this notion and believe that attention systems should be directly compared to es-

tablish performance baselines. Moreover, human performance can only be compared

to models that solely use vision; this would not be relevant to the many attention

systems—including the one proposed in this work—that rely on multimodal sensory

information.

1The number of features associated with a particular task is currently limited to 2, and only
vision information is used, although it is mentioned that other sensory modes could be used.

22

The SES-Based Attention System

In the SES-based attention system described in this work, parallel independent sen-

sory processing modules (SPMs) provide the multimodal sensory inputs and features

used to direct attention; these features are modulated by the task and are not limited

to vision sensors. In a related SES-based attention system previously implemented by

Hambuchen [10], vision, sound, IR, and tactile sensors were used as SPM inputs and

SPMs included color segmentation modules, motion detectors, and sound localizers.

SPM outputs have been low-density—only recognized objects were registered to the

SES and the raw sensory information was lost. The attention system implementation

described in this dissertation (chapter III) retains the original raw data, processes it,

and registers it to SES.

Previously, SPMs have assigned salience to their outputs at the time of SES reg-

istration; salience was determined by incidence, task-relevance, and habituation, and

was decayed to 0 over a period of time [10]. Because of resolution differences between

sensors as well as the tessellation of the SES, the salience of an event was spread

to neighboring nodes according to sensor error and accuracy. The attention network

then scanned the SES for areas of high salience; the attentional winner was sent to an

event binding process to group together events that occurred at the same time and

originated from the same source.

In the current implementation, the salience of different regions in the robot’s lo-

cale is modulated in a distributed fashion based on local neighborhood interactions.2

SPMs register sensory events and their preliminary activation/salience onto the SES

at a particular node; this node then initiates the spread of information to its im-

mediate neighbors based on sensor resolution and uncertainty. Salience is based on

task-relevance and is summed across sensory modalities at each node location. A

focus of attention (FOA) selector module determines the most salient location as a

2Such a design enables parallel implementation.

23

function of both the absolute salience and the time-change in salience. This differ-

ential function enables the system to exhibit habituation and sensitization, and is

unique to this system.

Few parallel or distributed attention schemes were found in the literature. Ouer-

hani and Hugli [73] have implemented a real-time parallel version of the saliency-based

visual attention model on a compact architecture called ProtoEye. Sela and Levine’s

real-time system [74] is implemented on a network of parallel processors and mainly

consists of computing the fovea and periphery regions concurrently. However, both

implementations involve vision only and do not distribute the computations in the

locally-connected manner that we investigate.

The system developed by Sha’ashua and Ullman [75] is more relevant: they use a

locally-connected network to iteratively grow a map of globally-salient and spatially-

distributed structures (specifically long, smooth curves). Their work incorporates

a measure of structural salience determined by the relative placement of features.

For example, their system detects line segments arranged in a circular shape amid

randomly oriented line segment distractors. This contrasts to local salience that is a

function the difference between a single element and its neighbors with respect to a

single feature.

Although several models make provisions for top-down control [23, 29, 25], very

few implementations actually include top-down mechanisms. Our implementation

combines both top-down and bottom-up control to enable dynamic, multimodal at-

tention. Although some of the systems presented above did have multimodal capabil-

ities, few were general in both the number and type of sensors used and the number of

tasks that could be performed. The attention system presented here does not depend

on the number and type of sensors used.

If a robot is to operate in close proximity to people and/or in an unpredictable

environment, safety is of prime importance. The robot must quickly detect unsafe

24

situations and react to them. An exclusive focus of attention would tend to subvert

such reactions. That is the robot must be interruptible by safety routines to avoid

potentially dangerous situations if possible. Schlosser and Kroschel [76] propose ded-

icated mechanisms to separate from a robot’s attention system to detect potentially

dangerous situations such as objects falling down, objects moving rapidly, and hu-

mans present in the vicinity of the robot. Such a dedicated mechanism must be

designed to interact with an attention system or override it.

It is possible, however, to incorporate safety within the attention system itself.

Consider an attention system that (1) is sensitized to characteristic features (e.g.

a rapid motion, a loud sound, light of a particular color), (2) sensitized to unex-

pected changes (the onset or terminus of features) and that, (3) concurrently com-

putes saliences at a set of spatially distributed localities both at and away from the

FOA. Such a system can react to distal events and shift the FOA there so that the

robot’s computational resources can be deployed to evaluate the new stimuli. Such

an attentional system is a safety mechanism intrinsically.

The problem with a purely sensitized system is that the FOA may shift incessantly

to features that are simple distractors, of no importance to the robot’s task and of

no danger to the robot, its peers, or the environment. Habituation counters that

tendency by temporarily suppressing the salience of distractors. Unlike any of the

other proposed attention systems for robots, ours incorporates habituation.

Habituation

Habituation is a process that modulates the shifting of the focus of attention. It is,

essentially, the ability of an agent to learn the irrelevance or repetitiveness of a specific

stimulus over time and is characterized—it its simplest case—by a decreased (neuronal

or local) response with each repeated presentation of the stimulus [77]. In terms of

our robotic attention system, the activation of a location that has been habituated

25

will be smaller than a location with novel, non-habituated data. Habituation effects

have been observed in many animals with nervous systems and humans [78, 79, 80].

Although habituation in its simplest form is easy to define, there have been many

observed variations. Several characteristics have been observed in studies [81] and are

documented in [77] and [82]; some are non-associative —modulating a signal without

any dependence on other signals or the overall context—and others are associative

—where the expected signals are learned with respect to the current situation. In the

latter case, the context can modulate the response either by inhibiting it directly (as

in the non-associative case) or through the creation of expectations which are then

compared to the actual environment. Below is a list of habituation characteristics

and mechanisms (adapted from [77, 81, 82], and [83]).

• Short-term Habituation: sensory or motor neurons have a de-

creasing response when they are repeatedly activated.

• Spontaneous Recovery: habituation effects disappear when a stim-

ulus has not been observed for some time.

• Rate Sensitivity: the recovery rate is faster when the stimuli occur

repeatedly on a short time interval than when that interval is longer.

• Savings: when series of stimuli presentations are repeatedly followed

by spontaneous recovery, the habituation rate increases within each

series.

• “Subzero” Habituation: When stimuli is presented after habit-

uation has reached its maximum value, the time until spontaneous

recovery occurs is delayed.

• Dimension Change: Habituation effects disappear when a dimen-

sion of a stimulus changes—for example, the pitch or volume of an

auditory signal.

26

• Frequency and Intensity Effects: Habituation rate increases when

the stimulation frequency increases and the rate decreases when the

stimulation intensity increases.

• Stimulus Generalization: Habituation to a specific stimulus leads

to habituation to similar stimuli.

• Dishabituation: Habituation effects disappear when a novel stimu-

lus is shown (at another location). Similarly, habituation effects also

disappear when the context (the situation) changes.

• Habituation of Dishabituation: The dishabituation rate decreases

when the stimulus that causes dishabituation is repeatedly presented.

A few computational models of habituation have been proposed. One oft cited

model is Stanley’s [84], which is described by a first-order differential equation (2),

where y is the habituation over time, y0 is the original value, τ is the rate of habitu-

ation, α is the recovery rate, and S(t) is the stimulus.

τ
dy(t)

dt
= α(y0 − y(t)) − S(t) (2)

This model was used in or inspired many systems [85, 86] and was the basis of

another model by Wang and Arbib [87]. They modified Stanley’s model to include

long-term habituation effects. Theirs is a coupled system of two equations, (3) and

(4).

τ
dy(t)

dt
= αz(y0 − y(t)) − βy(t)S(t) (3)

dz(t)

dt
= γz(t)(z(t) − 1)S(t) (4)

27

The first equation is similar to equation (2) with the addition of an input mod-

ulated by activity and a new gain, β. The second equation modulates the recovery

rate with respect to the number of stimuli observed. The value of z is large after a

small number of stimuli, which makes the recovery period fast; z becomes smaller as

the number of stimuli increases, thereby increasing the recovery period. This causes

the habituation to have longer-lasting effects.

The associative properties of habituation led Solokov [88] to develop a comparator

theory of habituation, where stimuli are compared to an internal representation of

the stimuli to determine habituation levels. A simple comparator model that exhibits

rate sensitivity as well as a habituation rate increase with a stimulation frequency

increase is presented in [83].

Balkenius [77] suggests that habituation must be a more general process since

the internal representations are not always merely templates but sometimes involve

complex cognitive processing based on the current context. His attention model

incorporates habituation of irrelevant stimulus based on the context.

Novelty detection is important for robots, especially mobile ones. Habituation

can be thought of as a type of novelty filter, essentially gating the activation of

previously-observed stimuli with respect to new stimuli. Several applications therefore

use habituation to detect novel features in the environment [89, 86, 90]. Others use

habituation as an attention subsystem to create FOA shifts [33, 91, 77, 92], to classify

spatio-temporal patterns [93], or even to improve navigation [94].

Many of the applications listed above implement habituation with a neural net-

work [95] framework. Marsland et al. [86] use a Kohonen self-organizing map to

implement a novelty filter that learns a model of the environment. Each neuron in

the map is connected to a single output neuron with a habituable synapse that is

28

governed by the model given in equation 2: stimuli that match the learned model re-

ceive a weaker synapse value than novel stimuli. Crook and Hayes [89] use a Hopfield

network [96] to learn features; novel patterns have a higher energy than familiar ones.

Chang [94] added a component to a neural network algorithm to habituate to con-

stant sensory data (such as a wall) to remove oscillations in the robot’s movements

when navigating narrow hallways. Sirois [91] uses a biologically-plausible neural net-

work habituation model called HAB to replicate infant habituation functions on a

robotic platform. Hebbian learning was used to orient the robot—through motor

control—toward the most activated stimulus. Stiles and Ghosh [93] use a Habituated

Multi-Layered Perceptron (HMLP) neural network to learn sonar patterns with ex-

tents in both space and time. It was shown that this system performed better than a

Time Delay Neural Network (TDNN) because of its ability to encode long-term data.

All of the implementations described above must first be trained before they can be

used. Several habituation systems have been implemented using techniques other than

neural networks. For example, Breazeal and Scassellati [33] implement habituation for

the robot Kismet as a feature map which initially increases the activation of the FOA

and then decreases it (or habituates) until a new FOA is selected. Peters and Sowmya

[90] have developed a “Surprise Function” for their people-tracking visual robotic

system WRAITH. This function habituates to repetitive events by keeping a memory

of the past brightness values of each pixels; a moving average is then calculated from

these values and compared to the current pixel brightness. This absolute difference

represents the surprise value, or the amount that the current pixel differs from its

expected value, and is used to direct attention to new or (unexpectedly) changing

areas of the scene. This system is said to habituate to repetitive motion, although no

results are presented.

The habituation mechanism developed by Déniz et al. [92] uses auxiliary signals—

in addition to Stanley’s model—so that periodic signals can be habituated. This is

29

the only system we have found so far that incorporates habituation to periodic events

(and presents experiments and results). The auxiliary signals are obtained from the

spectrogram of the input stimuli. The first-level auxiliary signal is a thresholded norm

of a particular frequency’s variance over time and can identify prolonged stimuli as

well as stimuli changing with a fixed frequency. A second-level auxiliary signal is also

calculated by identifying fixed-frequency changes in the first-level auxiliary signal,

which indicate an input stimuli with repeated frequency modulations, such as a siren.

This system was tested on audio signals and separately on image sequences, although

other sensory modalities could be used.

Previous work by Hambuchen [10] on the SES attention network incorporated

a method for the habituation of periodically repeating events. Sensory processing

modules (SPMs) process information to detect occurring events; this processed in-

formation is then sent to a pre-filter that determines the salience of this particular

event. The pre-filter then sends the event and associated salience to the SES to be

registered. Salience is a combination of values representing incidence (salience that

signals that an event has occurred at a particular location), task-relevance (increased

salience for event that are related to the current task), and habituation (decreased

salience for events that occur repeatedly at a particular location over a period of time

determined by the developer).

The habituation value of a specific event v at a given time t is shown in equation

(5).

H(v, t) = e−βHSt (5)

βH is the habituation rate whose best value was experimentally determined to be

1, St is the time step for the event and is incremented for each occurrence of the event

within the specified time period. This value is reset to 0 if the event does not reoccur

during the time period. It is mentioned that a habitual event that does not reoccur

30

should receive more salience as this may require attention; however, it is not clear

that the location’s salience is increased beyond its original non-habituated incidence

and task-relevance values. Although co-occurring sensory events can be habituated,

habituation is applied per event detected by a single SPM, and not to the overall

event detected by multiple SPMs.

In her future work section, Hambuchen mentioned that the habituation value

should only modulate the incidence and not the task-relevance portion of the salience

so that habitual events related to the task can be attended. Moreover, habituation

should not be applied to an event upon its first few occurrences; instead, the event

should repeat a specified number of times before habituation is applied. She also

suggests that the salience of co-occurring events should be increased instead of de-

creased, so that situations such as a robot continuously running into a wall—which

would be detected by more than one sensory mode—can be attended and remedied.

In summary, the systems presented above do not combine multiple sensory modal-

ities to guide habituation. The systems perform habituation at the sensor level; how-

ever, when multiple modalities are combined, it may be necessary to habituate at

a higher level, where task-relevance influences the process. This is explored in our

work. Only two of the systems mentioned above can detect periodic events; this is an

important part of our system, as is the ability to determine what time interval makes

a particular event habitual. Habituation is intrinsic to our attention system. It is not

a novelty detector, but instead suppresses the activation of nodes by repetitive and

irrelevant stimuli so that the sensitivity of the FOA to those events is diminished and

the robot can avoid unnecessary FOA shifts. Notably, our system exhibits some of

the characteristics of habituation enumerated above.

31

CHAPTER III

SYSTEM DESCRIPTION

This chapter describes the logical and computational structure of our attention sys-

tem. A general overview of the system is given first, followed by more detailed discus-

sions of its local and global processing streams. Lastly, the habituation component is

discussed.

Attention System Overview

The software module at the heart of the attention system is the Sensory Ego-Sphere

(SES), an egocentric memory structure for sensory information (cf. Chapter II). The

attention system comprises several interacting modules that could serve as inputs to

higher-level processing modules, as shown in figure 4. The modules inside the large

square represent the implemented system.

Figure 4: Diagram of the attention system

Specifically, the attention system involves the following modules: The first is the

SES itself, which is made up of nodes with (potentially) individual computing power

and communication capabilities with their neighbor nodes. There are also various

32

sensory processing modules—abbreviated as SPMs—that write data to nodes on the

SES. The FOA selector module—abbreviated FOA—does so as a function of the

information posted on the SES by the SPMs. Then there is a task module that

contains a list of the features required by the active task. These features are given in

terms of the sensors/SPMs used in the system.3 The task module is implemented as

a stack so that higher-priority tasks can interrupt the current task when necessary.

Figure 4 shows the information flow: An event occurs in the robot’s locale and is

detected by those sensors that are sensitive to the stimuli. The sensors send these raw

data to various SPMs for abstraction. Sensor types are determined by the purpose

of the robot, its environment, the tasks it is to perform, and the dangers it may

encounter. Examples include vision, motion, face detection, and sound localization.

The SPMs are parameterized for the current task. They calculate an activation value

based on their inputs and the task parameters and post the value to the appropriate

SES node(s) along with a time stamp and the acquired data itself. Based on the

resolution of the SPM, the registration node (the node that has received data directly

from the SPM) may spread the data and activation to adjacent nodes. The FOA

selector then uses the overall activation values of each SES node to determine the

most salient node. In the absence of any large changes of activation elsewhere on

the network, this node becomes the focus of attention. The node’s data are then

compared to a list of higher-priority tasks; if they matches one of these tasks, this

task is pushed onto a task stack and becomes active. Although not implemented in

this system, the FOA information could be passed on to other modules for higher-level

processing such as object recognition.

Since habituation is intrinsic to the system’s nodes, there is no global habituation

module shown in the system diagram. Habituation variables are defined for each

sensor type at each node since sensors can have different resolutions and update

3For example, if the SPMs are a color segmentation module, a motion detector, and a face
detector, the task’s features would be defined as the color of the target, whether it moves or not,
and whether or not we can expect a face to be associated with it.

33

rates. These variables can be modified by the FOA selector to bias the behavior

toward sensitization or habituation; they can also be reset by the task module upon

a task change. This is described in more detail in the habituation section below.

SES Implementation

The sensory data gathered in this work was obtained using the robot ISAC’s sensors.

ISAC is a humanoid robot developed at Vanderbilt University, and is equipped with

pan-tilt units fitted with color cameras. Color, motion, and face recognition SPMs

use 320x240 pixel images grabbed from the cameras as their raw sensory input. They

post processed data and activation to the SES. The SES is centered around ISAC’s

cameras and the position of the pan/tilt units is used to determine the registration

node.

Figure 5: ISAC in its Sensory Ego-Sphere

Figure 5 illustrates ISAC within its SES as well as the conversions between pan/tilt

34

angles and azimuth/elevation angles that must be performed to post data to the

appropriate node.

As can be observed from this figure, θ ranges from 0◦ at the North pole to 180◦ at

the south pole. φ ranges from 0◦ at the front center of the SES to 360◦ at the same

point, moving in a counter clockwise direction around the vertical axis.

The SES used in this work has a tessellation of 14, which yields 1962 nodes where

information can be stored. The nodes are spaced between 4 and 6 degrees apart,

depending on their location on the sphere.

Although the SES is currently a serial implementation, we would like to explore the

possibilities of implementing it in parallel, such that each node is a simple processor

that communicates only with its immediate neighbors. For this purpose, hexagonally-

connected networks such as the SES have some advantages over rectangular ones.

Every node in the interior of a hex-net has 6 equidistant neighbors. Let l represent

that distance. In a rectangular net each node has either 4 neighbors at a distance

l (in a 4-connected topology) or 4 at l and 4 at
√

2l in a 8-connected topology. If

the network is to be implemented in hardware, the signal latency between nodes is

proportional to the distance between them. Having equidistant neighbors therefore

simplifies the timing of the devices. A hex-net is symmetric with respect to n × 60◦

rotation, whereas both types of rectangular net are symmetric with respect to n×90◦

rotation. The relative advantages of hexagonal connectivity over rectangular for the

purpose of parallel computation have been known for some time. (See, for example,

[97] or [98].)

Local and Global Activity

There are two levels of activity in this attention system: the local interactions on

a global scale resulting from the interconnection of the nodes on the SES make up

the bottom level, and the global interactions of the FOA selector module to direct

35

attention constitute the top level. Figure 6 gives an overview of the local and global

calculations taking place in the system. As can be seen from this figure, the FOA

selector, task list, and task stack all operate globally over the entire system. At the

local level, SPMs post data to individual nodes and nodes pass information on to

their immediate neighbors through a process called spreading activation procedure.

The nodes asynchronously receive information from the SPMs when that information

is made available and update their activation values. On the other hand, the FOA

module selects a new focus of attention after a predetermined time interval.

Figure 6: Local and global activity in the system

The following two sections contain more in-depth details about the system’s mod-

ules based on local and global activity levels.

Local Activity

Several calculations take place at the node level each time new information is posted

on the SES. To facilitate these calculations, there are various variables defined at each

node of the SES. Figure 7 lists them.

Each SPM has its own set of variables defined at each node. First, there are

two record structures: a currentTag and a previousTag. When new sensory informa-

tion arrives at the node—whether this posting comes from a SPM or a neighboring

36

Figure 7: Variables defined at each node

node—the information is stored in the record structure. Table 2 lists the record’s

components, which consist of the data’s location, the activation calculated by the

SPM, a timestamp of the data as well as the raw data itself. Note that the actual

location of the data itself is not lost: although the SES partitions the locale into

distinct regions centered around a node, the data’s location is retained and used in

calculations such as spreading activation and habituation.

Table 2: Information stored in each SES tag (at each node and for each sensory
modality)

Name Description

location pan/tilt location of the data w.r.t. the robot

timestamp time at which the data was recorded by the SPM

activation (act) measure of how closely the data matches the cur-
rent task, calculate by the SPM

change in activation
(∆act)

measure of change at the node based on the cur-
rent and previous data

absolute activation activation measure not dependent on the current
task

data data received and (potentially) pre-processed by
the SPM

Additionally, each SPM also has its own habituationPeriod and recoveryPeriod

37

variables defined at each node. These variables dictate the duration of the habituation

effects and will be explained in further detail in the habituation section of this chapter.

The non-SPM related variables include a location variable that holds information

about the location of the node on the SES, expressed in azimuth and elevation coordi-

nates.4 The currentActivation and totalActChange variables hold values representing

the sum of the task-based activation and absolute change in activation associated with

all data posted at the node by the SPMs; these values are used by the FOA selector

module to determine the new focus of attention. Lastly, the lastFOA variable is used

to keep track of the last 2 timestamps of the node’s selection as focus of attention.

These are also used in the habituation procedure.

As mentioned previously, the SES implementation used in this work contains nodes

with a 2-cell memory for each SPM. Each node holds the current record of information

as well as one previous record of information. When new information arrives at the

node from a SPM, the information in the node’s currentTag for that SPM must be

moved to the corresponding previousTag before the new information can be posted.5

Activation is then spread to the node’s neighbors based on the SPM’s resolution; this

procedure is detailed later in the section.

The next step consists of adjusting the activation of the new information to in-

corporate habituation. Although SPMs do calculate an activation value for the in-

formation that they post to a node, it is necessary to adjust this value to generate

the desired habituation effects. The information stored in the current and previous

tags, along with the habituation variable defined for each node, are used for these

calculations. Habituation is only incorporated if the new information is identical6 to

the previously-posted information found in the previousTag. The habituation effect

4See the section on the SES in chapter II.
5The last and before-last postings are kept in memory regardless of posting time. When a

new event occurs, the information stored in the currentTag is moved to the previousTag and what
was in the previousTag is discarded. For example, if SPM k posts information at node n, then
currentTag {n, k} → previousTag {n, k} and newInfo {n, k} → currentTag {n, k}.

6Consecutive postings on the SES at a particular node can theoretically be “identical” . In
practice however, there exists a certain amount of sensor noise ε which renders absolutely identical

38

is based on the node’s habituation variable for the corresponding SPM as well as

the time difference between the current and previous posts. The exact procedure is

detailed in the habituation section below.

Once habituation has been applied to the activation value, the activation and

change in activation for that SPM’s tag are updated. Upon a change in these values

for any SPM, the total activation and total change in activation for the node are

recalculated and made available to the FOA selector module.

Pseudo-code for all calculations taking place at the node level is shown in figure

8 below.

Upon posting at node n from SPM k:
currentTag {n, k} → previousTag {n, k}
newInfo {n, k} → currentTag {n, k}
SpreadActivation(n, k) // function detailed below

if currentTag {n, k} .data == previousTag {n, k} .data then

CalculateHabituatedActivation(n, k) // function detailed in

habituation section

Update total activation

Update total change in activation
end

Figure 8: Node Posting Procedure

Spreading activation procedure

Sensory data gets posted by a SPM to a single node on the SES. However, it is a

possibility that the resolution of the data and the resolution of the SES do not match.

Specifically, low-resolution sensors such as microphones have localization errors larger

than the SES resolution itself. If that is the case, the registration node may not be

the true node that should be associated with such data; there could be a neighboring

postings improbable. What is then meant by “identical” or “the same” throughout this work is in
fact “identical within an error margin ε.”

39

node whose location is closer to the actual data. Therefore, it is important for the

activation caused by such sensors and registered by their corresponding SPMs to be

spread to neighboring nodes until the sensor’s resolution is reached. This is necessary

so that activation computed by these SPMs can correctly combine with other SPM

activation to guide the FOA to the appropriate node.

A spreading activation procedure for the SES was developed in [10]. In that

procedure, decayed activation was spread to all nodes within the area of the posting

SPM’s resolution serially. We have adapted this procedure here to implement a

distributed spread in which each node passes on activation to a receiving neighbor

node based on the direction in which it received its activation. A distributed scheme

will be useful in the future if the SES takes on a parallel implementation with each

node having its own computing power.

We are currently using a simple scheme to spread the activation from the registra-

tion node to the neighboring nodes. To make use of the SES’s interconnections, the

activation at a registration node is decayed and spread to the node’s direct neighbors.

These first-level neighbors then spread a further-decayed activation value outward in

the same direction as its own received activation. An example is shown in figure 9

where activation is spread from the blue node to the green node.

Figure 9: Node Communication.

40

A consistent neighbor numbering scheme is used in this figure and in our work.

From the green node’s point of view, activation has been received from neighbor

number 2; the green node then spreads the activation to its neighbor number 5, or

the red node in the figure, which will be receiving from its 2nd neighbor. As the

activation is spread farther away from the originating node, each new level has an

increasing number of neighbors: a node has 6 direct first-level neighbors (as indicated

by the light blue nodes on figure 9), at the second level there are 12 neighbors (the

magenta nodes on figure 9), and so on. Because of this node expansion, certain nodes

will spread activation to two different neighbors. One is a direct neighbor and can be

linked back to the originating node through one of its first-level neighbors, as shown

by the green line of communication in figure 10.

Figure 10: Direct and Indirect Activation Spread.

The other type is an indirect neighbor and branches off the direct line of commu-

nication, as shown by the red line. Each indirect neighbor will only spread activation

to one neighbor following the scheme presented in figure 9. Direct neighbors outside

of the first-level will spread activation to two neighbors: one direct neighbor following

the scheme of figure 9 and an indirect neighbor determined by the direct neighbor

selection. The activation spread is repeated until the decayed activation reaches a

value less than one. The rate of decay is dependent on the sensor type that made the

41

original posting: high-resolution sensors have a fast decay rate and, therefore, limited

to no spread. Low resolution sensors have a greater localization error and must be

spread to more nodes to adequately cover the area from which the data could have

originated.

The equation for calculating the exponentially decaying activation Actd is shown

in equation (6) and takes into account the distance between the current node to which

activation is being spread and the original registration node (Dist), as well as the

sensor inaccuracy or resolution. The value of α is calculated for each sensor so that

only 1% of the activation remains at the limit of the sensor’s resolution range, as

shown in equation (7).7 This is the termination condition for the spread procedure.

Actd = Act0 e−αDist (6)

α =
−ln(0.01)

Resolution
(7)

When activation is spread to a node, the original data is also spread. This is

done so that modified activation values can be calculated based on the habituation

constants at the node.

Global Activity

A diagram of the FOA selector module in terms of its software components is shown in

figure 11. The activation table is a repository of information about the total activation

(across all sensory modes) and change in activation at each node on the SES. It is

updated each time the information at a node changes. The FOA selector polls this

table to find the node location with the maximum activation as well as the location

7Since the activation is exponentially decaying, it will never reach 0. Therefore, 1% of the original
activation is picked as the termination condition and the α constant for that sensor is computed
with that in mind

42

with the biggest change in activation: these values are then used to determine whether

the current focus of attention is maintained or whether it is shifted to a new location.

Once a new FOA location is selected, it is sent to the priority-ordered task list module

for comparison. If the location’s features matches those of a higher-priority task, that

task will then be sent to the task stack module to become the current task. If the

location matches neither the current task nor any higher-priority tasks, it will be

habituated by the system. Details on this procedure are found below.

Figure 11: FOA selector module

The FOA selector module makes the decision either to remain focused on the

current location or to shift the attention focus to a new location; this decision is made

at each clock cycle. Two criteria guide the FOA selection: maximum activation and

maximum change in activation. The maximum activation (maxAct) gives the location

of the most salient location on the SES based on the current task; the maximum

change in activation (maxChange) gives the location that has undergone the largest

absolute change in activation, and represents a potential need for a task switch. Both

43

the maximum activation and the maximum change in activation are obtained from

the activation table.

Depending on the actual values of the maxAct and maxChange variables, the

FOA could either shift to a new node or maintain its current position. Additionally,

a higher-priority task could either be pushed on the task stack to become the current

task or be removed from the stack, making the initial task active again. It is also a

possibility that the current task will remain unchanged.

Along with the maxAct and maxChange variables, three thresholds are involved

in this selection process; they are actChangeThresh, criticalThresh, and maxThresh

and are used primarily to facilitate the task-switching behavior of the system. Their

definitions are as follows:

• criticalThresh: threshold below which the maximally activated node (maxAct)

must be to deem the situation “resolved” and pop the critical task off the task

stack and return to the initial task.

• actChangeThresh: threshold above which the maximum activation change

node (maxChange) must be to send the node’s data to the priority-ordered

task list module for comparison. This indicates a potential task change. If

maxChange is below this threshold, then the node’s data is not compared to

higher priority tasks since there is not change indicating new data in the locale.

• maxThresh: this threshold is also used to determine whether a node’s data

is sent to the priority-ordered task list module. When a FOA is selected by

the maxChange criteria, that node’s current activation is compared to the

maxThresh threshold; if the value is above this threshold, the shift is attributed

to the current task and not to a potentially new task since the node’s features

strongly match the current task’s description (so data is not compared to critical

tasks and the current task remains active).

44

The FOA selection procedure is as follows:

1. Determine whether a task must be popped from the task stack:

(a) If the current task is a task that has been loaded from the

priority-ordered task list and not the initial task, compare maxAct

to criticalThresh. If the maximally activated node is below

this threshold—meaning that no location on the SES closely

match the higher-priority task—we can assume that the situ-

ation matching the higher-priority task has resolved and that it

is now safe to go back to the initial task.

2. Determine what the new FOA is:

(a) Compare maxChange to actChangeThresh. If the node with

the maximum change in activation is higher than this threshold,

then the FOA shifts to this node (or stays at this node if it was

there already).

(b) If maxChange was below the actChangeThresh threshold, FOA

shifts to the maxAct node (or remains there if it was there al-

ready).

3. Determine what task the FOA shift is attributed to:

(a) If maxChange was greater than actChangeThresh, compare the

maxChange node’s total activation to maxThresh. If it is above

threshold, we attribute the FOA shift to the current task and

the node’s data are not sent to the priority-ordered task list for

comparison. If it is below threshold, we attribute the FOA shift

to a potentially higher-priority task—because the node did not

closely match the current task—and the node’s data are sent to

the priority-ordered task list module for comparison.

45

(b) If maxChange was less than actChangeThresh, the shift is at-

tributed to the current task and the node’s data are not sent to

the priority-ordered task list module.

This procedure is expressed in pseudocode below.

// Check if higher-priority situation has resolved

if higherPriorityTask == active && maxActNodeact < criticalThresh

then

// Situation has resolved

Remove higher − priority task and return to initial task
end

else if higherPriorityTask == active && maxActNodeact ≥
criticalThresh then

// Situation has not resolved

Keep higher − priority task active
end

// Select New FOA

if maxChangeNode∆act
> actChangeThresh then

// Maximum change in activation node is the new FOA

NewFOA = maxChangeNode

// Determine whether we need to compare to higher-priority

tasks

if maxChangeNode.act < maxThresh then
match = CompareNodeToHigherPriorityTasks()
if match then

Put higher priority task on stack and make active

end

else if !match then
Keep the current task active

end

end

end

else

// Maximum activation node is the new FOA

NewFOA = maxActNode
end

Figure 12: Focus of Attention Selection and Task-Switching Procedure

If the new FOA is attributed to a potentially higher-priority task, the node’s data

46

is sent to the priority-ordered task list module. There, it is compared to a list of tasks

that have a higher-priority than the current task. If the node matches one of these

tasks, the task is pushed onto the task stack and its features are then compared to

incoming data at the SPM level to determine activation levels on the SES. However, if

the node does not match any of these higher-priority tasks, the FOA shift is deemed

a false alarm and the node is considered a distractor node and is habituated. To

detect situations matching tasks with higher priority that the selected initial task at

the beginning of an experiment, all tasks having a priority higher than the initial task

are pushed onto the task stack (in order of priority so that the highest priority task is

active first). If information in the locale matches these higher-priority tasks, they will

remain active; if, however, no information matches these tasks, they will be removed

from the stack and the initially selected task will become active. This is done to

prevent the system from failing to detect high-priority situations that existed before

initialization and that may not be detected by the change in activation variables

(since they may not be changing).

When a node is selected as FOA, the time is saved in the node’s lastFOA variable.

This will be used by the habituation procedure described in the next section.

Habituation

There is no dedicated habituation module; instead, habituation is incorporated through-

out the overall system. Habituation operates at the local level—at each node—and

at the global level—through the FOA selector.

Habituation at a node depends on several factors. First of all, only data reoccur-

ring at a node is habituated. If a node receives data that is different than what it

previously received, then there is no habituation. This is done because we wish to

habituate to the actual stimuli itself, and we want to be able to detect changes in

the locale since these could indicate an important or dangerous situation that needs

47

attending to. Secondly, the amount of habituation at a node depends on the time

that has elapsed between the new posting and the previous posting; habituation can

range from total habituation to no habituation at all. Lastly, whether or not a node

has been selected as FOA in the past affects habituation. If a node has never been

selected as FOA, it is deemed not important enough to become a distractor even at its

full value and, therefore, it is not habituated. This is done to save computing time. If

however, a node has been the focus of attention in the past, its stimuli may be strong

enough to shift the FOA onto it once again, and it must be habituated. The specific

way in which these factors influence the habituation procedure is detailed below.

When new sensory information is posted to a node, the current and previous tags

are compared to determine whether they correspond to the same stimuli. Habitu-

ation comes into play when these two sensory events are the same. Habituation is

calculated using two variables defined for each SPM at each SES node (shown in

figure 7). These variables modulate the activation change at the local level. The

habituationPeriod variable (abbreviated thab) sets the period of time that a node is

habituated by keeping its change in activation low (in that sensory modality). The

recoveryPeriod variable (abbreviated trec) sets the length of the time period during

which the node’s change in activation returns to its full value.8 These variables are

used to define three stages of operation. The change in activation (∆act) variable of

each currentTag is modified based on the stage in which the posting occurred. The

stages and variable modifications incurred are explained below. Selecting the correct

stage involves computing the timestamp difference (abbreviated TSD) between the

data in currentTag and previousTag. The modulation of the change in activation vari-

able is the most important part of the procedure since it is this variable that could

repeatedly attract the FOA although the location may not match the task. We are

8In our implementation, the habituationPeriod variable and the recoveryPeriod variable always
have equal length and are initialized to a value smaller than the time between two consecutive data
postings.

48

not as concerned with the modulation of the activation variable, since it is dependent

on the current task.

• Habituation Stage: The time period where the node is completely habituated.

This occurs when the timestamp difference between the current posting and the

previous posting is less than the habituationPeriod variable (TSD ≤ thab).

– Change in Activation is modified: ∆actk = 0

• Recovery Stage: The time period where the habituation effects begin decay-

ing and, therefore, the node’s change in activation begins returning to its full

value. This occurs when the timestamp difference between current and previ-

ous postings is greater than the habituationPeriod but less than the sum of the

habituationPeriod and recoveryPeriod (thab < TSD ≤ thab + trec).

– Change in Activation is modified:

∆actk = |Actk(tcurrent) − Actk(tprevious)| ∗ Decay

where Decay = (TSD−thab)
trec

• Normal Stage: The time period where the node is completely free of habitua-

tion effects. This occurs when the timestamp difference between current and

previous postings is greater than the sum of the habituationPeriod and recov-

eryPeriod (TSD > thab + trec).

– Change in Activation variable is not modified

The decay modulating ∆actk in the recovery stage is linear. If data comes in at the

beginning of this stage, ∆actk will be close to fully habituated; if data comes in near

the end of this period, ∆actk will be close to its original value. Figure 13 illustrates

the habituation effects on the change in activation variable through all three stages.

Note that this procedure is only performed when a node has already been selected

as FOA in the past. This is so that time is not wasted on nodes that are not activated

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Habituation Stages

C
h

a
n

g
e

 i
n

 A
c
ti
v
a

io
n

NormalRecoveryHabituation

Figure 13: Effects of Habituation Stages on Change in Activation

strongly enough to ever become the focus of attention. Once a node becomes the FOA,

a timestamp is recorded in the node’s lastFOA variable, shown in figure 7—the last

two timestamps are kept at the node much like currentTag and previousTag. These

timestamps are used to indicate that a node has been FOA in the past and should

be habituated if need be.

While the above procedure operates at the local level, the values of the habitu-

ationPeriod and recoveryPeriod variables can be modified at the global level by the

FOA selector. These values are initialized to be very small values (smaller than the

time between two consecutive postings so that there is no habituation at first). Based

on certain situations occurring in the system, the FOA selector can modify these vari-

ables or reset them to their initial values to derive the appropriate behavior. These

situations are summarized below.

50

• Habituation variables for all nodes are reset when there is a task change in the

system:

– A higher-priority task is pushed onto the task stack for more than one

update cycle.

– A higher-priority task is popped from the task stack and the initial task

becomes active again.

• Habituation variables are modified for FOA node when:

– A higher-priority task was pushed onto the task stack for one update cycle

only due to the FOA selection

– A FOA is selected because maxChange was greater than actChangeThresh—

indicating a potential task switch—but the data did not match any higher-

priority tasks

As explained above, habituation variables are reset for all nodes on the SES when

a task change occurs. When a FOA is selected by the maxChange criterion but it

does not matching any higher-priority tasks or it causes a task to be pushed onto the

stack and immediately popped off, that node’s habituation variables are modified so

that it will be habituated in the future. The habituation variables are modified as

follows:

• If the node has been FOA at least once prior to now (not counting its current

selection as FOA)

– habituationPeriod (and recoveryPeriod) is set to the time difference be-

tween now and the previous FOA time.

• If the node has never been selected as FOA prior to now

51

– habituationPeriod (and recoveryPeriod) are incremented by a predefined

time period, addT ime, chosen to correspond to the time between consec-

utive data postings.9

Once a node’s habituation variables for a specific SPM are modified, the vari-

ables’ values are then spread to the node’s neighbors (based on the sensor resolution)

according to the spreading activation procedure detailed in the previous section. Al-

though the activation is decayed as it is spread, the habituation constants are passed

unchanged.10

Habituation variables are modified in one final manner. Since our goal is to

detect changes in the environment, we would like to be able to detect a change in

the periodicity of a distractor. This means noticing changes in the length of time

between distractor sightings. An increasing period between consecutive distractor

sightings can already be detected with the system as described above: the second

distractor sighting will fall outside of the habituation period and will receive either a

percentage of its activation if it falls within the recovery period or full activation if if

falls within the normal operation period—the period having increased to more than

double what it was before. However, a period that is decreasing will not be detected

since the second distractor sighting will always fall within the habituation period and

will be fully habituated. Because of this, the habituation variables are decayed as the

time since a node was last FOA increases. The variables will therefore return to their

initial values over time and a change in the period between consecutive distractor

sightings will be detected as soon as the habituation variable’s value becomes less

than the period between distractor sightings.

9addT ime is equal to 0.05 seconds in our implementation, which corresponds to the minimum
time between consecutive postings of the highest rate signal.

10Habituation constants are spread because the uncertainty that determines the spreading acti-
vation network is such that a situation could arise where a SPM posts information to the SES at a
neighboring node m of the original registration node n. In that case, we want to be able to apply
the habituation calculated at node n to node m.

52

Characteristics of Habituation

Four of the characteristics of habituation identified in chapter II are addressed in this

system. The first is short-term habituation, defined simply by a decrease in response

with repeated presentation of a stimulus. This is accomplished by modulating the

activation change variable ∆actk in the habituation and recovery stages. When a

distractor is repeatedly presented on a regular interval, the activation given to the

node is decreased and the node will not be attended by the FOA.

The second characteristic of habituation is spontaneous recovery, which states that

the effects of habituation disappear when a stimulus is not seen for a period of time.

This is addressed by the normal stage of habituation which allows ∆actk to take on

its full value once a distractor occurs after a time period greater than the habituation

and recovery periods combined.

Another characteristic addressed by the system, subzero effects, delays the time

until spontaneous recovery when a stimulus occurs after habituation is at its maximum

value. This is implemented by restarting the habituation period each time a distractor

is observed at a node; the more times it is observed, the longer it will take until ∆actk

returns to its full value.

Lastly, the system implements dishabituation, defined by a disappearance of habit-

uation upon a new stimulus presentation or context change. This occurs when there

is a task switch in the system, either because a target matching a higher-priority task

shifts the FOA or is removed from the locale. In these cases, the habituationPeriod

variables are reset across the SES, thereby removing all habituation effects.

53

CHAPTER IV

EXPERIMENTS AND RESULTS

Parameter Selection

An experiment was performed to identify the best parameter values to use in the

algorithm. The three parameters are thresholds used in the procedure that identifies

the new focus of attention, as described below. Each parameter can take on a value

between 0 and 1.

• criticalThresh: threshold below which the maximally activated node must be

to deem the situation “resolved” and remove the higher-priority task from the

task stack.

• actChangeThresh: if the node with the highest actChange value is above the

actChangeThresh threshold, then there is the potential for a task change and

the node’s data is sent to the higher-priority task list module. If the highest

actChange on the SES is below this threshold, then the node’s data is not

compared to higher-priority tasks.

• maxThresh: when a FOA is selected because of its large actChange value,

its currentAct value is compared to the maxThresh threshold; if the value is

above this threshold, the shift is attributed to the current task and not to a

potentially new task (so data is not sent to the higher-priority task list module

for comparison and the current task remains active).

Because these parameters deal with potential task-switching situations, a real-world

dataset was created that includes task-switches. The dataset was designed to be

neither a trivial case nor the most difficult situation that could be encountered, but

rather something in the middle. In the situation, there are three targets consisting of

54

blue, red, and green squares. The blue square is the current task, which has a priority

level of 3. The green square has priority level 2 and the red square has priority level 1

(the highest priority). At the start of the situation, the blue square is visible and the

system should attend to it. A few seconds later, the green target enters the locale and

the system shifts its current task to this target since it has higher priority. Similarly,

the red target enters the locale and the system shifts to the red task since it now has

the highest priority. The red and green targets exit the locale one at a time and the

task returns to the blue target.

Figure 14 shows selected frames from the dataset as well as which task is/should

be currently active. When only the blue target is present in the locale, the system

should select the blue target as the current task and should attend to it. Once the

green target enters the locale (figure 14b), the task should shift since the green target

has a higher priority than the blue target. Similarly, once the red target enters the

locale, the task should shift to attend to it since it has the highest priority in the

situation (figure 14d). However, as shown in figure 14c, the system does not detect

the red target in this frame and incorrectly attends to the green target instead. This

is corrected in the next frame. Once the red target leaves the locale and the green

and blue targets remain, the task should shift to attend to the green target (figure

14e). Similarly, once the green target leaves the locale leaving only the blue target,

the task shifts to attend to the blue target (figure 14f).

To test all possible parameter combinations, each parameter must be varied from

0 to 1 in 0.1 increments. A previous experiment narrowed this range to 0-0.6 for

maxThresh, 0-0.4 for actChangeThresh, and 0-0.7 for criticalThresh, for a total of

280 unique parameter combinations. Therefore, 280 trials were performed, each with

a different parameter combination. For each trial, the position of the FOA in each

frame was recorded as well as the currently active task. This was then compared to

the true node location of the highest priority target to get a measure of the system’s

55

(a) frame 15: Blue target (b) frame 66: Blue and green targets

(c) frame 80: Target incorrectly selected (d) frame 124: Red target correctly selected

(e) frame 201: Red target has left locale (f) frame 238: Green target has left locale

Figure 14: Frames from parameter selection simulation.

56

performance. Two different criteria were used: the FOA criterion evaluates the sys-

tem by the percentage of correct FOA and the task criterion evaluates the system

by the percentage of correct current tasks. A “correct” FOA is considered to be any

node that overlaps on the target, and there can be more than one correct FOA per

frame. The “correct” task is the task corresponding to the highest priority target

visible in the locale. There is always a single correct task per frame. Statistics on

“incorrect” FOA were also calculated to show the percentage of time that the FOA is

on an incorrect target versus the background. The results are shown in figures 15 and

16. Because of the three-dimensional nature of the data, each contour graph shows

the performance of the system—measured by the FOA criterion in figure 15 and by

the task criterion in figure 16—at all values of the maxThresh and criticalThresh pa-

rameters for a given actChangeThresh. Orange areas correspond to a performance

of 80% or more and red areas to 90% or more. Therefore, the redder an area of the

graph is, the better the performance is for that parameter set.

As can be seen from the graphs, the parameter maxThresh (on the y-axis) has

little to no effect on the performance of the system. This parameter was there-

fore fixed at a mean value of 0.30. The criticalThresh parameter was then plotted

against the actChangeThresh parameter and the performance results measured by

both criteria are shown in figure 17. The best performance as measured by correct

FOA—approximately 95%—is found at parameters values of 0.5 for criticalThresh

and between 0.7 and 0.8 for actChangeThresh, as shown in figure 17a. The best task

performance (100%) is found at parameter values of criticalThresh between 0.4 and

0.5 and actChangeThresh between 0 to 0.4 (figure 17b).

Although correct task switching is an important component of this system, se-

lecting the correct FOA in the most frames is even more important, especially since

the task performance is still excellent when the parameter values for optimal FOA

selection are chosen. Also note that the actChangeThresh range was extended from

57

(a) actChangeThresh = 0.0 (b) actChangeThresh = 0.1

(c) actChangeThresh = 0.2 (d) actChangeThresh = 0.3

(e) actChangeThresh = 0.4

Figure 15: Performance measured by correct FOA criterion for varying parameter
values

58

(a) actChangeThresh = 0.0 (b) actChangeThresh = 0.1

(c) actChangeThresh = 0.2 (d) actChangeThresh = 0.3

(e) actChangeThresh = 0.4

Figure 16: Performance measured by correct task criterion for varying parameter
values

(a) % correct FOA (b) % correct Task

Figure 17: Performance results measured by FOA and task for maxThresh = 0.3

59

0.4 to 0.9 when it was observed that best results were recorded on the edges of the

tested range.

Since the result space is convex, a gradient ascent method [99] was then used

to refine our estimate of the optimal parameter combination. The optimization al-

gorithm was initialized with the best estimated parameter values, measured by the

FOA criterion, from figure 17a: maxThresh = 0.3, actChangeThresh = 0.70, and crit-

icalThresh = 0.40. After 10 iterations, the optimal parameters were found and are

listed in table 3. It should also be noted that many parameter combinations in the

neighborhood of the optimal parameter yielded high performance results. Therefore,

system performance is not greatly affected by changes in parameter values on the

order of ±0.1.

Table 3: Optimal Parameter Values

Parameter Name Value
maxThresh 0.423

actChangeThresh 0.855
criticalThresh 0.461

FOA Experiments

Real Data

Experiments were performed to determine the effects of increasing the number of

distractors in the locale on system performance. The target was chosen to be a

green, moving square and the distractors were identical but stationary green squares.

(The distractors differed from the target in only one sensory modality: motion.) The

distractors ranged in number from 0 to 8 and were arranged around the locale. The

target was moved among these distractors without overlapping on top. Ten datasets

60

for each number of distractors were recorded. Each trial had a length of 200 frames,

which corresponds to 10 seconds of video at 20 frames-per-second (fps).

Each dataset was run through the system. The FOA nodes recorded for each

frame were computed to calculate the performance of the system. The percentage

of correct FOA was the criterion used to rate system performance. A “good” or

“correct” FOA node is defined as any node overlapping over the target area. The

average performance of the system for varying numbers of distractors is shown in

table 4, where FOA on distractor represents the percentage of frames in which the

FOA was on a distractor. The averages were also plotted with standard error bars in

figure 18.

Table 4: Performance results for FOA experiments

Number of distractors Correct FOA averages (%)
0 100
1 95.2
2 95.25
3 95.2
4 95.4
5 95.3
6 95.35
7 95.25
8 95.6

The performance of the system was high: the average percentage of correct FOAs

never fell lower than 95% and the system attended to distractors a maximum of 14

frames out of 200.

Judging from this experiment, the performance of the system seems unaffected

by an increase in distractors. Increasing the number of distractors, varying their

placements, and allowing the target to sometimes overlap the distractors could yield

stronger conclusions about the effects of distractor number on performance. We

chose to perform additional trials using simulated data to explore larger distractor

placement variations as well as a larger increase in the number of distractors. Before

simulated data can be used, however, a benchmark simulation must be created to

61

Figure 18: Percentage of correct FOA with respect to the number of distractors

verify that the result trends of both the simulated data and the real world data

are similar. Once this is shown, data can be simulated and multiple trials can be

performed.

Benchmark Simulation

The real data used in the previous experiment was simulated so that the results of

the real world dataset and simulated dataset could be compared. If the results have

similar trends, it can be deduced that the system is behaving in the same way when

operating on the simulated data and on the real data, and that simulated data can

reliably be used to examine the effects of an increasing number of distractors on

system performance.

To create the simulated data, 100 image frames of the locale without targets or

distractors were recorded. The average background as well as variation from frame

to frame were calculated. For each trial, the target and distractors’ base color were

sampled from a normal distribution centered around the mean target color and with

standard deviation calculated from the real world data. The movement of the target

was modeled to be similar to the real target’s movement. Noise sampled from a

62

normal distribution was added to the base motion so that target movement differed

slightly from trial to trial, as was the case in the real datasets. Noise was also added

to each target and distractors’ pixels in each frame.

Figure 19 shows the real world data and the simulated data side by side.

(a) Real Data (6 distractors) (b) Simulated Data (6 distrac-
tors)

(c) Real Data (7 distractors) (d) Simulated Data (7 distrac-
tors)

(e) Real Data (8 distractors) (f) Simulated Data (8 distrac-
tors)

Figure 19: Examples of real data and corresponding simulated data

Ten trials for each number of distractors ranging from 0 to 8 were performed and

the performance results were averaged at each number of distractors. The results of

the experiment are plotted with the real data experiment results in figure 20.

Overall, the simulated data results are better than the real data results. The fact

63

Figure 20: System performance comparison of real-world and simulated data

that target motion was better controlled in simulation accounts for this difference; the

target was stationary more frequently in the real datasets and was, therefore, more

frequently indistinguishable from the distractors. Visually, the trend lines are very

similar, suggesting that the system behaves in the same way regardless of whether real

or simulated data is used. The slopes were 0.038 and -0.067 for the real and simulated

data respectively. An analysis of covariance was performed to determine whether the

two data sets came from different distributions. The analysis results indicated that

the data sets were not significantly different (p > 0.13). Therefore, we conclude that

it is acceptable to use both real and simulated data to test the performance of the

system.

FOA Experiment with Simulated Data

In this experiment, datasets were created with the number of distractors present in

the locale varying between 0 and 10. Twenty trials for each situation were simulated

and run; each trial having 211 image frames. The distractor locations were randomly

generated from a uniform distribution spanning the image and were allowed to overlap.

64

For each trial, the target and distractors’ base color were sampled from a normal

distribution centered around the mean color derived from the real world data. Noise,

sampled from a normal distribution centered around the frame-to-frame noise mean

derived from the real data, was then added to these base colors in each frame and

at each pixel independently.Target movement remained constant in each trial. Once

the images and corresponding motion data were created, they were run through the

system and the number of correct FOA was recorded.

Figure 21 shows the results averaged for each number of distractors. The standard

error of the mean for each point is also shown. As can be seen, the performance of

the system is at least 96% for all of distractor quantities.

Figure 21: Average performance results for increasing number of distractors

A linear regression model was fitted to the data, as shown in figure 22, and the

slope was calculated to be 0.018, which means that the trend line is nearly flat. This

shows that the performance of the system is not affected by an increasing number of

distractors that closely match the target. The system does not have much trouble

identifying a target even though it may differ from distractors in only one sensory

modality.

65

Figure 22: Average performance results for increasing number of distractors

Size Experiment

An experiment was performed to determine the effects of target size on system per-

formance. A simulation was run where the target size decreased in each trial; the

number of frames with a “correct” FOA was recorded in each trial. A correct FOA

contains at least a portion of the target within the chosen node’s area, as indicated

on the image. Each dataset contained 185 frames. The target is a green moving

square, and its size was originally 7 inches per side in the FOA experiments described

in the previous section. The target size was decreased in 1-inch increments until it

reached 4 inches per side, followed by 0.5-inch increments until the sides measured 1

inch. Table 5 lists the different target sizes used in each dataset and figure 23 shows

an image of each target size. Obviously the target’s apparent size fluctuates with its

distance from the camera; therefore, the sizes are better represented by pixel area, as

listed in the table. The percentage of the image as well as the percentage of the node

occupied by the target are also listed. (Image sizes are 240 by 320 pixels which give

an area of 76800 pixels. Average node sizes are 24 by 31 pixels; the area is 744 pixels.)

The most important measurement for determining performance is not so much target

size with respect to image size as it is the target size with respect to node size since

this will determine the amount of activation present at the node.

66

Table 5: Target Sizes

inches pixels (approx.) % of image % of avg. node

1x1 5x5 0.03 3.36

1.5x1.5 8x8 0.08 8.6

2x2 11x11 0.16 16.26

2.5x2.5 15x15 0.29 30.24

3x3 17x17 0.38 38.84

3.5x3.5 19x19 0.47 48.52

4x4 21x21 0.57 59.27

5x5 28x28 1.02 105.3

6x6 33x33 1.42 146.4

7x7 38x38 1.88 194.1

(a) 1in target (b) 1.5in target (c) 2in target (d) 2.5in target

(e) 3in target (f) 3.5in target (g) 4in target (h) 5in target

(i) 6in target (j) 7in target

Figure 23: Variations in Target Size

67

The performance of the system was examined by plotting the number of correct

FOA with respect to the target size in terms of the percentage of the node it covers,

for a given SES tessellation, as shown in figure 24. The SES tessellation used in this

experiment—and throughout this dissertation—was 14.

Figure 24: Percentage of correct FOA with respect to target size

As can be observed from figure 24, the data can be fitted nicely to a sigmoid func-

tion. In this case, a target size of 40% of the average node yields 50% performance

results. When the target size is increased to approximately 50% of the node size,

performance results become satisfactory (approximately 80% correct FOA). There-

fore, we conclude that to have reliable system performance, the target size should be

approximately at least 50% of the average SES node size for the given tessellation.

Alternately, if the average target size is known in a locale, the SES tessellation should

be chosen to yield nodes that are no larger than twice the average target size. To

refine this size threshold, however, more trials would have to be performed with target

sizes variations of a smaller step size. This could be done in simulation.

Task-Switching Experiments

An experiment was performed to observe the task-switching behavior of the system.

A simple 2-task situation was created to first examine system performance under all

68

possible task and priority combinations. A more-intensive situation involving multiple

targets and tasks was then developed to push the boundaries of the system.

Simple Task Experiment

The system’s task-switching behavior is dependent upon a few factors. It is affected

by the real world data being fed into the system, the priority-level assigned to each

defined task, and the initial task chosen before the start of the experiment and loaded

onto the task stack. If multiple tasks are allowed to have the same priority, system

performance could potentially also be affected by the order in which the tasks are

listed.

This experiment was designed to investigate all of these conditions. Four real-

world situations were created involving a red square target and a green square target;

sensor data was collected from each situation. The different factor in each situation

was the motion of the target(s). In the first data set, both the red and green targets

are stationary; similarly, both targets are moving in the fourth data set. The second

and third sets alternate with one moving target and the other stationary.

For each of the data sets above, we have four possible task priority combinations

that could be active in the system: the first two combinations are the red task having

higher priority than the green task and the green task having higher priority than

the red task. Both tasks could have the same priority; if so, either the red one or the

green one will be listed first. This constitutes the last two combinations. Furthermore,

there is always an initial task chosen prior to the start of the simulation. For each of

the four task priority combinations, the initial task could either be the red or green

task, yielding a total of 8 different test conditions for each of the four original data

set. Table 6 summarizes these possible testing conditions. As can be seen, there are

a total of 32 different test conditions.

69

Table 6: Test conditions for task experiment

The results of this experiment are shown in table 7. Each data set contained 191

frames. For each set of test conditions, the system performance is measured by both

the FOA criteria in the first result row of each dataset and the task criteria in the

second result row of each dataset. Results are given in percentage of frames spent of

either the green or the red target or task (abbreviated R for red and G for green),

depending on which task had higher priority, for ease of comparison.

Table 7: Task Experiment Results

70

This data allows us to examine the system’s behavior under a variety of states.

The first observation made from table 7 is that the order in which equal priority tasks

are listed in the priority-ordered task list does not affect performance. This is shown

by noting that the two sub columns (initial task Red and initial task Green) of the

Equal Priority (Red listed first) column are identical to the two sub columns of the

Equal Priority (Green Listed First) column.

What does play a role, however, is the initial task selection. It was observed that

when both tasks have equal priority, the initial task dictates which of the two tasks

will be active for the entirety of the experiment. If both targets are stationary, it also

dictates which of the targets the FOA will be on. If one or both targets is moving,

however, and the moving target is not selected as the initial task, the FOA will be

distracted away from the target indicated by the initial task approximately 20% of

the time.

When one task is given higher priority than the other, the initial task selection does

not affect system performance at all. This is because we always push all tasks having

a higher priority than the initially selected task onto the task stack at the beginning

of an experiment to detect situations where information matching a higher-priority

task could be active (and static) in the locale. It was also observed that the active

task in the system is the higher-priority in 100% of the frames, regardless of any

motion occurring in the scene. Although the task remains fixed, the FOA does shift

to the lower-priority target when that target is moving. Distracting FOA shifts occur

approximately 20% of the time when either task is given highest priority.

Benchmark Experiment with Simulated Dataset

The above experiment was designed to examine the system’s general task-switching

behavior. We would also like to determine whether increasing the number of tasks

(and, therefore, targets) has any impact on system performance.

71

We chose to use simulated data for this particular experiment to allow us to create

datasets with more tasks entering and leaving the locale as well as greater control

over target motion than would have been possible with real-world data. A benchmark

simulation was performed for the number of distractors experiment, and it was found

that the FOA selection behaved similarly with either real world or simulated data.

However, the conditions under which the system was tested did not include multiple

tasks or any task-switching behaviors. Therefore, we must first determine whether the

task-switching behavior is consistent under both real and simulated data. Once this

is shown, experiments involving task-switching can then be performed with simulated

datasets.

To compare system behavior for real and simulated data, a dataset was created

to closely correspond to the second real world dataset used in the above simple task

experiment. This dataset involves a red stationary target and a green moving target.

The average background as well as variation from frame to frame were calculated to

keep the same amount of noise in the simulated data than was present in the real

world data. These statistics were used to generate the simulated background. Each

target’s mean color, standard deviation, location, and size were also recorded and

used to create the simulated dataset. For each frame, the color value of each target

pixel was sampled from a Gaussian distribution centered at the target’s mean color

and with standard deviation calculated from the real world data. The movement of

the target was derived from the real dataset by finding the location of the target’s

centroid in each frame. Figure 25 displays corresponding frames from the real and

simulated datasets for illustrative purposes.

To compare system behavior under real and simulated data, the simulated data

was run through the 8 same test conditions detailed in table 7 for that dataset. These

tests exhaustively represent all possible combinations of starting conditions for two

72

(a) Frame 104: Real Data (b) Frame 104: Simulated Data

Figure 25: Corresponding frames of the real (left) and simulated (right) dataset

targets. The results of this experiment are shown in table 8. For ease of comparison,

the results obtained with real data are reproduced in this table as well.

Table 8: System performance results of real-world and simulated datasets.

As can be observed from table 8, the system performance is very similar for the

real world and simulated datasets. The only difference is a 5% increase in performance

for the simulated set when the system should be focused on the red target. This can

be attributed to the slight differences between the real and simulated datasets, and is

not enough evidence to discredit the use of simulated data to observe system behavior.

Therefore, the following task experiments will be performed using simulated data.

73

Task Experiment with Simulated Dataset

This experiment was performed to discover the effects of system performance when

there are an increasing number of possible tasks. A simulation was created in which

targets representing different tasks enter and leave the locale. The targets were cho-

sen to be squares of different colors and separate datasets were created for target

totals ranging between 2 and 6. The mean color for each target was calculated from

sequences of real images as described in the previous section. In each simulated im-

age, the color of each target pixel was sampled from a Gaussian distribution centered

at the mean target color and with a standard deviation derived from the real world

images.

Datasets were created where targets would enter the locale from above one at a

time; the targets would then exit in the order that they came in. The number of

frames that a target should be selected as FOA in each simulation was kept constant

across all targets for ease of comparison. To determine whether the order in which

targets enter the locale affects task and FOA selection, the priorities of each target

present in the simulation was alternated. That is to say that each target was chosen

as having the highest priority in its own trial. The order of entry of the targets into

the locale was kept constant for each simulation. What was varied was the priority of

each target. Table 9 summarizes the datasets used in this experiment and figure 26

contains frames from each dataset showing the targets used. Note that target order

does not refer to the priority of each task matching the targets but instead it refers to

the order in which the targets enter (and exit) the locale. Also, note that the number

of targets and the number of tasks are the same in this experiment, and are used

interchangeably since each target has a matching task.

The percentage of frames that a task should be active—and also that a target

should be selected as FOA—were recorded. These statistics were recorded in table

74

(a) Dataset 1 (2 targets) (b) Dataset 2 (3 targets)

(c) Dataset 3 (4 targets) (d) Dataset 4 (5 targets)

(e) Dataset 5 (6 targets)

Figure 26: Frames from each simulated dataset.

75

Table 9: Simulated datasets

Dataset Targets Target Order

1 2 Red, Green

2 3 Red, Green, Blue

3 4 Red, Green, Blue, Lime

4 5 Red, Green, Blue, Lime, Pink

5 6 Red, Green, Blue, Lime, Pink,
Sky Blue

10. In this table, the columns represent the total number of tasks (and targets) in

each dataset. The rows represent which of the tasks was given the highest priority.

Some of the table’s cells are left blank since we only have as many trials as there

were targets in each dataset (there is no data for task 3 having the highest priority

for the dataset with only 2 tasks). Each row and each column was then averaged.

The column averages give information on the effect of increasing the number of total

possible tasks while the row averages give information on the effect of the order in

which the highest priority task enters the locale.

Table 10: System performance with an increasing number of tasks.

76

The row averages and column averages were also plotted for both the correct task

criterion and the correct FOA criterion. A linear regression was applied to the data,

as can be seen in figure 27.

(a) Increasing number of tasks

(b) Varying entry order of the highest-priority task

Figure 27: System performance result trends for multiple tasks.

As can be observed from the graphs, there is no noticeable trend measured by

either method indicating that the order in which a higher priority task enters the locale

would negatively affect system performance (slopes were 0.05 and 0.23, respectively).

Moreover, the number of tasks active in a locale does not affect system performance

when measured by the correct task criterion (slope was 0.21). There is, however, a

77

downward trend when performance is measured by the correct FOA criterion: the

slope of this regression was calculated to be -1.62. This leads us to believe that the

number of tasks active in a locale does negatively affect system performance. This is

an intuitive results since the more targets matching different tasks are present in the

locale, the more likely the FOA is to focus on one of them. This is especially true if

the targets matching lower priority tasks are all moving: this motion will attract the

FOA and temporarily shift it away from the highest priority task.

Habituation Experiments

To examine the effects of habituation, a simple simulated dataset was created. This

dataset is very similar to the second real world dataset used in the simple task exper-

iment described previously, and involves a red stationary square and a green moving

square. The green target moves to the left or right for one frame every 5 frames (on

frame numbers ending in 1 and in 6). The task was to attend to the red target, but

the movement of the green distractor attracts the FOA onto itself. A distractor node

was identified and monitored in each frame so that the habituation variable values

can be observed. Figure 28 shows a frame from the dataset with the distractor node

selected as FOA. Note that the distractor node is not centered on the green square

because the motion only appears on the edges.

Figure 28: Dataset frame with distractor node selected as FOA.

There were a total of 990 frames in this dataset, and the distractor node was

78

selected as FOA 5 times. (Another distractor node was selected in 5 frames as well,

for a total of 10 frames (5.1% of frames with distractor motion) in which the FOA was

on the distractor target.) This is a tremendous improvement in comparison to 198

frames (100% of frames with distractor motion) on the distractor when habituation

is not used in the system.

The habituation values for the distractor node are plotted in figure 29. The node’s

HabituationPeriod variable (abbreviated thab) is first initialized to 0.01 seconds, which

is a value less than the posting rate of the fastest SPM. The distractor node then

becomes the FOA at frame 6, as indicated on the graph. Once this occurs, thab is

modified: since the node has not been FOA in the past, a predefined time amount

corresponding to the time between two consecutive postings (0.05 seconds) is added,

for a total of 0.06 seconds. The distractor node is then selected as FOA again at

frame 11. The time difference between frame 11 and frame 6 is then used to modify

thab; this difference is 0.25 seconds. This value prevents the FOA from shifting to the

distractor node in frames 21, 26, etc., when the green distractor moves. As described

in chapter III, thab is decayed back to its initial value over time so that the system can

detect changes in a distractor’s periodicity. The decay begins after a period of time

equal to one habituation period plus a recovery period calculated with the current

thab and trec values. Because of this decay, the distractor node becomes FOA again

at frame 21. The difference between frame 51 and frame 11 (the previous FOA node)

is then used to calculate thab, yielding a value of 1.77 seconds. The distractor node

is selected as FOA again at frames 236 and 811 once thab undergoes other decays.

Note that the time between FOA selection is increasing. The distractor node is not

selected again as FOA.

Habituation causes the distractor to shift the FOA less. Additionally, the time

period between the node being chosen as FOA is increasing. This is because of the

use of the last time the node was FOA in the habituation variable calculations as

79

(a) With decay

(b) Without decay

Figure 29: HabituationPeriod values for distractor node using the lastFOA modifica-
tion method.

80

well as the decay of the variable. This is fine for applications where changes in the

periodicity of the distractors is not important; in fact, if a distractor never needs to

be attended again, the habituation variable decay can be omitted. The performance

results would then look like those of figure 29b.

Some applications may necessitate the ability to attend to the changing periodicity

of a distractor. Although the system as described above is capable of doing so, it will

take a progressively longer time period to come back and attend to the distractor

as the time between FOA increases, thereby increasing the time it takes for the

habituationPeriod to decay back to its initial value. In this case, it may be necessary

to modify the habituation algorithm so that the time difference between consecutive

identical postings is used to set the value of thab and trec instead of the time since the

node was last the FOA.

The simulated dataset was run through the system modified as described above

and the results are plotted in figure 30a. Distractor nodes caused a total of 57 FOA

shifts from the red target (28.8% of frames with distractor motion). Although the

time between postings method yields more frames with a distractor FOA than the

last FOA method, the performance is still much better than without any habituation

yet it allows some monitoring of the locale on a regular interval. It can be seen as

a middle ground between complete habituation of a distractor and no habituation

at all. If, however, the habituation variables are not allowed to decay back to their

original value, as was shown for the last FOA method in figure 29b, the distractor is

completely habituated and the FOA selector does not select it again after the initial

selection at frame 11 as shown in figure 30b, and the performance is equivalent to the

last FOA method without decay.

Figure 31 shows the number of FOAs when the last FOA method and the time

difference method of applying habituation are used as well as when no habituation is

used.

81

(a) With decay

(b) Without decay

Figure 30: HabituationPeriod values for distractor node using the time between post-
ings modification method.

82

(a) Without habituation

(b) Last FOA method

(c) Time difference method

Figure 31: Frames where FOA was on a distractor node under no habituation and
habituation using last FOA and time difference methods.

83

The last FOA method and the time between posting method will be used in the

experiment to detect a periodic distractor with both constant and changing periodicity

described in a later section of this chapter.

Periodic Distractor Experiments

It has been shown in previous experiments that system performance is not signif-

icantly changed when simulated data is used instead of real data. In this set of

experiments, we wish to observe the effects that a periodic distractor has on system

performance. We chose to simulate the data for these experiments to have greater

control over the distractor presentation intervals, either by keeping it fixed or by ran-

domly varying it. The same method of simulated data generation as was used in the

previous experiments was used here.

Each dataset consists of 990 image frames (about 50 seconds) containing a red

target and a green (moving) distractor. Several methods of distractor presentations

are used here. In the first dataset, the green distractor is moved in place constantly

while in the second dataset, the distractor is moved on a regular interval. This

interval is set at 10 frames, which corresponds to 0.5 seconds. To determine whether

a regular interval is necessary for good system performance, another dataset is created

in which the distractor is moved on a randomly generated interval sampled from a

uniform distribution. The time period between motion ranges between 0.5 and 1

second (10 to 20 frames). Such a non-fixed interval is more like the “fixed” interval

that could be achieved with real world data.

The last two datasets were created to determine whether the system can detect

changes in the periodicity of the distractor. Dataset 4 begins with a distractor moving

on a 0.5 second interval. After 6 sightings, the interval increases to 1 second. Dataset

5 is similar to dataset 4, except that the interval begins at 1 second and decreases to

84

0.5 seconds. In both cases, the time it takes for the system to notice the change will

be calculated. Table 11 summarizes each dataset.

Table 11: Datasets for periodic distractor experiments

Dataset Name Description

1 Constant motion Movement in place in every frame

2 Fixed interval Periodic motion on regular interval every 0.5 sec-
onds (10 frames)

3 Random interval Periodic motion on randomly changing interval
between 0.5 and 1 second (10 to 20 frames)

4 Increasing interval Periodic motion on regular interval starting at
every 0.5 sec (10 frames) for 10 presentations,
then interval is repeatedly doubled and held for
10 presentations.

5 Decreasing interval Periodic motion on regular interval starting at
every 2 seconds (40 frames) for 10 presentations,
then interval is repeatedly halved and main-
tained for 10 presentations.

Results from these experiments are shown and discussed below. Note that the

percentages reflect the number of frames in which the distractor was selected as FOA

with respect to the number of frames where the distractor was moving. In the constant

motion experiment, the distractor was moving in all 990 frames, but in the case of

periodic distractor experiments, this number is significantly less.

Constant Motion Experiment

In this experiment, the distractor was constantly moving in place, triggering FOA

shifts to distractor nodes. Table 12 shows results with no habituation and habituation

applied with both the time difference and last FOA methods.

The FOA shifted to the distractor in 37.6% of the frames when no habituation

was used in the system. Both habituation methods do improve system performance

compared to having no habituation at all in the system. In this case however, the

time difference method—shown in figure 32b for both distractors nodes—performs

85

Table 12: Constant motion experiment results

Method Number (percentages)
of frames on distractor

No Habituation 372 (37.6%)

Habituation (last FOA method) 12 (1.2%)

Habituation (time difference method) 81 (8.2%)

worse than the last FOA method. This is because motion occurs in every frame and

the time between postings is so small that it decays back to its original value quickly,

triggering another FOA shift onto the distractor. The FOA is on the distractor 8.2%

of the time, which is still much better than the system operating without habituation.

The last FOA method—shown in figure 32a—does a great job of habituating to the

constantly moving distractor: the FOA shifted to the distractor in only 1.2% of the

frames.

Fixed Interval Experiment

This experiment was performed to observe the habituation effects on a distractor

occurring on a fixed interval. Since motion occurred regularly every 10 frames, the

FOA could shift to the distractor node in 99 frames. When there was no habituation

present in the system, the FOA shifted to the distractor each time it moved (100% of

the frames with distractor motion); this was greatly improved with the time difference

and last FOA methods of applying habituation, as shown in table 13.

Table 13: Fixed interval motion experiment results

Method Number (percentages)
of frames on distractor

No Habituation 99 (100%)

Habituation (last FOA method) 8 (8%)

Habituation (time difference method) 30 (30%)

Performance improvements are greater over time since the habituation period is

modified mostly in the beginning of the set: for the last FOA method, the first two

86

(a) Last FOA method

(b) Time difference method

Figure 32: HabituationPeriod values for distractor nodes for the constant motion
experiment.

87

occurrences serve to habituate node B and the second occurrences habituate node A,

as shown in figure 33a.11 Subsequently, FOA shifts only occur at frames 100 and 470

and frames 120 and 440 for node B and node A respectively.

When the time difference method of applying habituation is used, the first two

occurrences serve to habituate nodes B and A using the time between postings. Subse-

quent FOA shifts occur regularly at each node, as shown in figure 33b. As mentioned

previously, if the time difference method is used, FOA shifts will occur on a shorter

interval as the habituation variables decay to their initial values. For the last FOA

method however, FOA shifts will occur farther and farther apart as the time between

the node is chosen as FOA increases. Therefore, the last FOA method may be a

better fit when distractors occur repeatedly on a fixed interval unless the application

necessitates that distractor locations be attended regularly, albeit not as often as they

would be attended under no habituation.

Random Interval Experiment

In this experiment, the interval between distractor motion randomly varied between

10 and 20 frames. Motion occurred in 64 frames, and each frame was selected as FOA

when the system operated without habituation, as shown in table 14.

Table 14: Random interval motion experiment results

Method Number (percentages)
of frames on distractor

No Habituation 64 (100%)

Habituation (last FOA method) 8 (12.5%)

Habituation (time difference method) 16 (25%)

There were no decrease in system performance observed between this experiment

11Since nodes A and B are not adjacent (there is one two between them), their habituation
variables are not spread to each other and the locations are habituated separated. If they were
adjacent, however, the first two occurrences would habituation both locations and there would not
be a FOA shift in frames 30 and 40.

88

(a) Last FOA method

(b) Time difference method

Figure 33: HabituationPeriod values for distractor nodes for the fixed interval exper-
iment.

89

and the fixed interval experiment under the last FOA habituation method (figure 34a).

The last FOA method performed exactly the same and habituation applied using the

time difference method (figure 34b) performed even better because the longer period

between distractor sightings caused longer habituation periods and decays. This

experiment shows that the interval of distractor presentation does not have to be

exactly the same to enjoy the performance benefits of the habituation subsystem.

Increasing Interval Experiment

In this experiment, we want to observe the amount of time it takes for the system to

notice a change in the interval between distractors, since such a change could mean

that there has been a significant change at the node and it may be necessary to at-

tend to it. In the dataset for this experiment, the interval of presentation began at

0.5 seconds (10 frames), then doubled to 1 second (20 frames) after 10 presentations.

Once the distractor was moved 10 times on the 1 second interval, the interval was

doubled again to 2 seconds (40 frames). Similarly, after 10 presentations the inter-

val was doubled to 4 seconds (80 frames) for 3 presentations until 990 frames were

recorded. Figure 35 shows the nodes in which the distractor moved. Motion occurred

in a total of 33 frames. The resulting number of shifts to the distractor for the system

with and without habituation are shown in table 15.

Table 15: Increasing interval motion experiment results

Method Number (percentages)
of frames on distractor

No Habituation 33 (100%)

Habituation (last FOA method) 8 (24.2%)

Habituation (time difference method) 14 (42.4%)

Figure 36 show the FOA shifts to the distractor nodes under both the last FOA

and time difference methods. Changes in the periodicity of the distractor occurred

at frames 120, 340, and 780, where changes from 0.5 to 1 second (10 to 20 frames),

90

(a) Last FOA method

(b) Time difference method

Figure 34: HabituationPeriod values for distractor nodes for the random interval
experiment.

91

Figure 35: Frames with distracting motion for increasing interval experiment

1 to 2 seconds (20 to 40 frames), and 2 to 4 seconds (40 to 80 frames) took place.

These are indicated by the black vertical lines of figure 36. As can be seen, the time

difference method is better suited for detecting this type of change. The last FOA

method detected the first interval change at frame 120, but this may be due to chance;

the habituationPeriod variable’s decay happened to coincide with the change. It took

240 frames (12 seconds) to detect the 2nd interval change, and the FOA never shifted

to the distractor after the interval change to 80 frames before the end of the dataset

was reached.

The time difference method yielded better results, as shown in figure 36b. All

three interval changes were detected as they occurred (within 0 frames). This is

because the maximum value that the habituationPeriod can have when the interval is

changed corresponds to half of the interval, which would put the new posting in the

normal stage of operation and the data would not be habituated. (It would take more

than 0 frames to detect an interval change smaller than twice the interval length since

the distractor presentation would occur during the recovery stage.) The habituation

period can also be observed to become progressively longer as the interval becomes

larger.

92

(a) Last FOA method

(b) Time difference method

Figure 36: HabituationPeriod values for distractor nodes for the increasing interval
experiment.

93

Decreasing Interval Experiment

This experiment is similar to the previous one except that the interval between dis-

tractors decreases. The dataset begins with a distractor occurring every 2 seconds

(40 frames). Once the distractor has occurred 10 times, the interval is halved to 1

second (20 frames) for another 10 times. Similarly, the interval is then halved to 0.5

seconds (10 frames) for the remainder of the dataset. Figure 37 shows the nodes in

which the distractor moved. Motion occurred in a total of 59 frames. This dataset

was run through the attention system to observe how quickly it could detect a change

in the distractor’s periodicity. The number of FOA shifts to the distractor for the

system with and without habituation are shown in table 16.

Figure 37: Frames with distracting motion for decreasing interval experiment

Table 16: Decreasing interval motion experiment results

Method Number (percentages)
of frames on distractor

No Habituation 59 (100%)

Habituation (last FOA method) 6 (10.2%)

Habituation (time difference method) 16 (27.1%)

Figure 38 show the FOA shifts to the distractor nodes under both the last FOA

and time difference methods. Changes in the periodicity of the distractor occurred

at frames 420 and 620, where changes from 2 seconds to 1 second and 1 second to

94

0.5 seconds took place. These are indicated by the black vertical lines of figure 38.

As can be seen, the time difference method is better suited for detecting this type of

change. The last FOA method does not detect either of the interval changes before

the end of the dataset is reached.

The time difference method yielded better results—shown in figure 38b—although

not as good as in the increasing interval experiment. Both interval changes were

detected: in this case, the first was detected in 180 frames (9 seconds) and the second

in 120 frames (6 seconds). The habituation period can also be observed to become

progressively shorter as the interval length decreases.

Depending on when the habituation period is modified and how long it takes for it

to decay, an interval change from 2 seconds to 1 second could take up to 360 frames (or

18 seconds at a frame rate of 20fps). This worst case would be the situation where

the habituation period has just been reset to 2s immediately prior to the interval

change: habituationPeriod would then stay at 2s for 4 seconds (the length of the

habituation period plus the recovery period). It would then begin to decay by 10%

each time another posting occurs (every 1 second since the interval change has already

take place), until the time where it reaches a value approximately half of the current

interval length. Similarly for the second interval change, habituation would remain

at 1 second for 2 seconds, then decay by 10% every 0.5 seconds (the new interval)

until it reaches a value less than half the interval length. This would take a total of

180 frames (or 9 seconds).

The general worst-case time formula for halving an interval can then be expressed

as in equation 8. The previous interval is multiplied by two to represent the sum of the

habituation and recovery periods. The new interval is multiplied by 14 since it was

observed that it takes 14 decays of 10% to reach a value less than half the previous

interval length so that a FOA shift can be triggered. This value is multiplied by

95

(a) Last FOA method

(b) Time difference method

Figure 38: HabituationPeriod values for distractor nodes for the increasing interval
experiment.

96

the new interval since the habituation variables are decayed each time a new posting

occurs, and these are occurring on the new interval.

worstCaseT ime = previousInterval ∗ 2 + (14 ∗ newInterval) (8)

Demonstration Experiment

This last experiment was performed to demonstrate the overall behavior of the system.

A dataset containing 300 frames was recorded. Three tasks having different priorities

were active in the locale. The system should attend to the target matching the

highest-priority task. A person then walked into the locale, moved the highest-priority

target, then walked away. The system should shift its focus of attention to follow

the person’s movements, then return to the now moving highest-priority target and

attend to it. Figure 39 illustrates frames of the dataset at different points in time.

The highest priority target is the green one in the center of the image.

The results of the test are shown in table 17. The system focused on the highest-

priority (green) target in 87% of the frames. As the person walked through the locale,

the FOA shifted from the green target to the person. Once the person had left the

locale, the FOA returned to the green target.

Table 17: Demonstration Experiment Results

Object Percentages of FOA on
object

Highest-Priority Target (87%)

Person (13%)

97

(a) Three stationary targets (b) Person walks in the locale

(c) Person moves target (d) Person walks out of the lo-
cale

(e) Two stationary targets and
one moving target

Figure 39: Selected frames of the dataset

98

CHAPTER V

CONCLUSIONS AND FUTURE WORK

Conclusions

This dissertation develops a general multimodal sensory interface for guiding a robot’s

focus of attention (FOA). The system is implemented on a conformal network of

locally-connected nodes—the Sensory Ego-Sphere (SES)—and a single FOA is se-

lected on the SES at each time step based on the system’s currently defined task.

The attention system is preemptive in that it can detect and attend to changes oc-

curring in the robot’s locale regardless of the current task. Tasks are ranked in order

of priority, and a high-priority task can interrupt a lower-priority task when stimuli

matching this new task is detected. Habituation mechanisms are also incorporated

into the system to improve performance under the presence of distractors.

Distributed methods for spreading salience-based activation through the local in-

terconnectivity of the nodes are developed. These methods were developed so that

a distributed implementation of the SES can be explored in the future. This future

implementation would be composed of nodes with independent computing power that

can process sensory data in parallel and communicate with their immediate neighbors

to set their activation values. Although this functionality is not currently implemented

in hardware, the methods of node communication were developed so that they can

used on such a distributed system and were explored in simulation in this dissertation.

The system is made up of multiple independent sensory processing modules (SPMs)

that post information to the SES at the node closest to the origin of the sensory data.

(cf. Chapter III) Any number and type of SPM can be used. These SPMs also

assign an activation value to the data during the posting procedure; this activation

is calculated based on the current system task, described in terms of the sensory

99

modalities present in the particular system implementation. Another value repre-

senting the change in activation is also calculated at each node; this value is used

to detect changes in the locale that may match a higher-priority task. Once such a

location is identified, the matching higher-priority task becomes the current task and

the system attends to the new location. Once the situation resolves and no locations

match the higher-priority task, the original task is restored and the system resumes

attending to locations that match the original task. Although some changes detected

in the system will match higher-priority tasks, others will not and the system should

not be distracted by such locations. Habituation mechanisms were incorporated in

the system to prevent the FOA from shifting to these distractor locations repeatedly.

Chapter IV describes the experiments that were carried out to validate this at-

tention system. The performance of the system was examined under a variety of

conditions. Some experiments were performed with simulated data once it had been

shown that the system behaved similarly under real data and simulated data. Care

was taken to create simulated datasets that exhibited the same features and noise

characteristics observed in real data.

The first experiment identified the best parameter values to use for a few thresh-

olds used by the system to detect a change in the locale that must be attended or

a situation matching a high-priority task that has resolved. Once these parameters

were identified, an experiment was performed to observe the effects of increasing the

number of distractors (chosen to appear similar to the target) in the locale. It was

found that system performance is not affected by an increasing number of distractors.

Another experiment was performed to observe the effects of the target’s size on

system performance. The original target used was approximately seven inches squared

(40x40 pixels). The system was tested with targets varying in actual size from seven

inches squared down to a one inch square. A target size of 20x20 pixels or larger was

found to yield acceptable results. Since processing is performed at each node, the size

100

of the target with respect to the node size is a more significant measurement. Since a

target must be approximately 20x20 pixels to be used with the SES tessellation used

in this work, the target is approximately half of the node’s area. Therefore, one can

determine the appropriate SES tessellation for a specific application if the expected

target size is known: the SES tessellation should yield nodes no larger than twice the

size of the target.

The next experiment was carried out to examine the task-switching behavior of the

system, which is dependent on factors such as the initial task chosen at the beginning

of the trial, the priority of each task defined in the system as well as its associated

sensory data, and whether multiple tasks are allowed to have the same priority. All

combinations of these factors were tested with a situation involving a red target and

a green target. System performance was measured in terms of percentage of correct

FOAs and percentage of correct task selections. It was determined that the order in

which equal priority tasks are listed in the priority-ordered task list does not affect

performance. The initial task selection, however, does affect system performance

under the equal priority condition: whichever task is chosen as the initial task will

remain active for the entirety of the experiment. Initial task selection does not affect

performance when the tasks are given different priorities; the task with the highest

priority will be selected for the entirety of the experiment. When a distractor is

moving in the locale, however, the focus of attention is distracted away from the

higher-priority target approximately 20% of the time.

Once the general task-switching behavior of the system had been observed, another

experiment was performed to determine whether or not increasing the number of

possible tasks affected the system performance. The system was tested with the

total number of tasks defined in the system ranging from 2 and 6; each task having

a matching target in the locale. The targets entered and exited the locale in the

same order, and the targets’ priorities were alternated in each trial. It was found

101

that although the entry order of the highest-priority task does not affect system

performance, the number of tasks/targets in the locale does slightly affect it. Enabling

the habituation mechanism does not significantly improve results because the stimuli

that causes FOA shifts moves across a large portion of the image (as opposed to over

a smaller set of nodes), the motion is not constant or repeated on an interval, and,

most importantly, the habituation variables are reset after each task switch, which

occurs each time a target enters or exists the locale.

The remainder of the experiments were performed to observe system behavior

when habituation mechanisms are enabled in the system. A simple experiment was

designed with one target and one periodically moving distractor. Two schemes or

applying habituation were investigated: one that used the time between consecutive

selections of a node as the FOA to modify habituation variables (last FOA method)

and one that used the time between consecutive identical postings to modify the

variables (time difference method). Both methods yielded significant improvements

over having no habituation mechanism at all. The last FOA method generated the

least FOA shifts to distractor nodes, and the time between shifts became progressively

longer (which caused the results to improve over time). The time difference method

results were better than having no habituation at all in the system, but did not

generate as great an improvement as the last FOA method did. The time difference

method would be suitable for applications where a distractor must be monitored on

a regular interval, yet not as much as would be the case without any habituation.

This applies to the situation where habituation variables are allowed to decay back

to their initial values over time. If these variables do not decay, the two methods are

nearly identical and the distractor is only attended once or twice at the beginning of

the experiment.

To examine the effects of the periodicity of the distractor on system performance,

several datasets were created: one with a constantly moving distractor, another with

102

a distractor moving on a fixed interval, and yet another with a distractor moving

on a randomly changing interval. System performance was measured in terms of

the number of FOA shifts to distractor nodes. While both methods of applying

habituation yielded better results than having no habituation mechanism, the last

FOA method outperformed the time difference method in all cases.

The last two datasets were of a distractor moving on an interval that doubles

in size, and another of a distractor that moves on an interval that becomes half its

size after some time spent on a fixed interval. Performance of the system here was

measured in terms of the time it takes for the system to detect this change. In the

case of the increasing interval, although both methods detect the change, the time

difference method detects it much faster (at the instant of occurrence). In the case

of the decreasing interval, only the time difference method was able to detect the

change; the last FOA method did not detect it before the end of the dataset was

reached. The maximum time (worst case) needed to detect the change was calculated

for the time difference method and found to be dependent on the previous and current

time between postings as well as the time since the habituation variables were last

set prior to the interval change. An equation was derived to calculate the worst case

time using these values. Therefore, if a distractor must only be monitored once in a

while, and the time between these FOA shifts can increase with time, the last FOA

method should be used. If, however, it is critical for an application to be able to

detect changes in the periodicity of a distractor, or to regularly monitor changes in

the environment, the time difference method of applying habituation would be more

suitable.

A final demonstration dataset was created to observe the overall capabilities of the

system. Three targets matching tasks with different priority levels were active in the

locale. A person then walks across the locale, pausing to set the target in motion. The

system focused on the highest-priority target until the person was detected; the FOA

103

then shifted to the person and followed the person’s movements across the locale.

Once the person was out of view, the FOA shifted back to the highest-priority target

which was then moving. The FOA remained on this target for the remainder of the

experiment.

This system was developed with a robot operating in a dynamic environment in

mind. This type of robot would need to perform a variety of tasks as well as detect

and react to unexpected events while ignoring spurious ones. The developed system

is not dependent on the type of sensory modalities used, or on the number of sensory

processing modules. Raw data from the environment can be obtained, processed (on

a low-level), labeled, and organized by the system and attention can be directed either

to the most salient location in the locale or to the location with the most change.

Habituation inhibits the change signal so that a distracting location is not repeatedly

visited.

Future Work

As stated previously, this system is the first step between raw data and cognitive

processing. An evident extension would be to send the information at the node cho-

sen by the FOA selector to higher-level processing modules with more intelligence

for further processing and identification. The habituation variables at the FOA node

could be modified again based on this second level of processing. If objects can be

recognized, the interconnectivity of nodes as well as a labeling scheme previously re-

searched could be leveraged to deploy both attention and habituation more cohesively

to distinct objects as opposed to indiscriminately deploying it to all adjacent nodes.

This may refine results and improve habituation performance by only attending to

an object once if that object extends across multiple nodes, not all of these being

adjacent.

All experiments were performed with a stationary robot. This system is also

104

applicable to an SES in motion, but the node positions would need to be shifted with

the motion, as described in the appendix of [1].

We would like to leverage the SES’s locally-connected structure to explore a par-

allel implementation of the SES. In our implementation, local processing and interac-

tions modulate a global focus-of-attention selector. If each node were given indepen-

dent computing power, the ability to aggregate and associate sensory information, as

well as the ability to directly communicate with neighboring nodes, the distributed

approach could provide faster sensory processing for better real-time behavior.

Depending on the application that the system is used for, different schemes of

modifying habituation could be developed. Since we have identified two different

methods of applying habituation, the method could be tied to the task. There are

perhaps some tasks where stimuli must only be attended once or twice, and the

last FOA method could be used in these cases. If, however, a task is sensitive to

the periodicity of the stimuli or the stimuli must be monitored regularly, the time

difference method of applying habituation could be used when such a task is currently

active. It may also be advantageous not to reset all habituation variables after all

task changes, especially since these variables decay back to their initial values over

time.

105

REFERENCES

[1] R. A. Peters II, K. A. Hambuchen, and R. Bodenheimer, “The sensory ego-
sphere: A mediating interface between sensors and cognition,” Autonomous
Robots, vol. 26, pp. 1–29, January 2009.

[2] K. Achim, “Image mapping and visual attention on a sensory ego-sphere,” Mas-
ter’s thesis, Vanderbilt University, August 2005.

[3] J. Wolfe and T. Horowitz, “What attributes guide the deployment of visual
attention and how do they do it?,” Nature Reviews Neuroscience, vol. 5, pp. 495–
501, June 2004.

[4] M. I. Posner and S. E. Petersen, “The attention system of the human brain,”
Annual Review of Neuroscience, vol. 12, pp. 25–42, March 1990.

[5] G. R. J. Christoffersen, “Habituation: Events in the history of its characteriza-
tion and linkage to synaptic depression. a new proposed kinetic criterion for its
identification,” Progress in Neurobiology, vol. 53, pp. 45–66, September 1997.

[6] E. L. Hall, Handbook of Industrial Automation. CRC Press, 2000.

[7] iRobot, “Roomba.” http://store.irobot.com/.

[8] G. E. Moore, “Cramming more components onto integrated circuits,” Electron-
ics, vol. 38, pp. 56–59, April 1965.

[9] B. Hendy, “Pixels per dollar based on australian dollar recommended retail price
of kodak digital cameras.” Australian PMA DIMA, 1998.

[10] K. Hambuchen, Multi-modal attention and event binding in humanoid robots
using a sensory ego-sphere. PhD thesis, Vanderbilt University, May 2004.

[11] D. Marr, “Simple memory: a theory for archicortex,” Philosophical Transactions
of the Royal Society of London, B, vol. 262, pp. 23–81, 1971.

[12] I. Stewart, “Circularly covering clatharin,” Nature, vol. 351, p. 103, 1991.

[13] K. Hambuchen, W. Bluethmann, S. Goza, R. Ambrose, K. Rabe, and M. Allan,
“Supervising remote humanoids across intermediate time delay,” in Proceedings
of the 2006 IEEE-RAS International Conference on Humanoid Robots, December
2006.

[14] C. Johnson, A. Koku, K. Kawamura, and R. P. II, “Enhancing a human-robot
interface using sensory egosphere,” in Proceedings of the 2002 IEEE International
Conference on Robotics and Automation, May 2002.

106

[15] K. Kawamura, A. B. Koku, D. M. Wilkes, R. A. Peters II, and A. Sekmen, “To-
ward egocentric navigation,” International journal of robotics and automation,
vol. 17, pp. 135–145, October 2002.

[16] A. L. Edsinger, Robot Manipulation in Human Environments. PhD thesis, Mas-
sachusetts Institute of Technology (MIT), 2007.

[17] K. A. Fleming, R. A. Peters II, and R. E. Bodenheimer, “Image mapping and
visual attention on a sensory ego-sphere,” in Conference on Intelligent Robotics
and Systems (IROS), October 2006, unpublished.

[18] R. Desimone and J. Duncan, “Neural mechanisms of selective visual attention,”
Annual Review of Neuroscience, vol. 18, pp. 193–222, 1995.

[19] W. James, Principles of Psychology. 1890. available online at:
http://psychclassics.yorku.ca/James/Principles/index.htm.

[20] M. Posner and M. Raichle, Images of Mind, vol. 96. Scientific American Books,
1994.

[21] J. Brefczynski and E. DeYoe, “A physiological correlate of the spotlight of visual
attention.,” Nature Neuroscience, vol. 2, pp. 370–374, 1999.

[22] A. Treisman and G. Gelade, “A feature-integration theory of attention,” Cogni-
tive Psychology, vol. 12, pp. 87–136, 1980.

[23] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention
for rapid scene analysis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, pp. 1254–1259, Nov 1998.

[24] K. Cave, “The featuregate model of visual selection,” Psychological Research,
vol. 62, no. 2, pp. 182–194, 1999.

[25] J. Wolfe, K. Cave, and S. Franzel, “Guided search: An alternative to the fea-
ture integration model for visual search,” Journal of Experimental Psychology:
Human Perception and Performance, vol. 15, no. 3, pp. 419–433, 1989.

[26] C. Koch and S. Ullman, “Shifts in selective visual attention: towards the under-
lying neural circuitry,” Human Neurobiology, vol. 4, pp. 219–227, 1985.

[27] V. Navalpakkam and L. Itti, “Modeling the influence of task on attention,” Vision
Research, vol. 45, pp. 205–231, Jan 2005.

[28] D. Walther, L. Itti, M. Riesenhuber, T. Poggio, and C. Koch, “Attentional selec-
tion for object recognition - a gentle way,” in Lecture Notes in Computer Science,
vol. 2525, pp. 472–479, Nov 2002.

[29] J. A. Driscoll, R. A. Peters II, and K. R. Cave, “A visual attention network for
a humanoid robot,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1998.

107

[30] J. Wolfe, “Guided search 2.0: A revised model of visual search,” Psychonomic
Bulletin & Review, vol. 1, no. 2, pp. 202–238, 1994.

[31] J. Wolfe and G. Gancarz, “Guided search 3.0 basic and clinical applications of
vision science.” Dordrecht, Netherlands: Kluwer Academic. 189-192, 1996.

[32] J. Wolfe, “Guided search 4.0: A guided search model that does not require
memory for rejected distractors [abstract],” Journal of Vision, vol. 1, no. 3,
p. 349a, 2001.

[33] C. Breazeal and B. Scassellati, “A context-dependent attention system for a
social robot,” in IJCAI ’99: Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, pp. 1146–1153, August 1999.

[34] A. Ude, V. W. adn L. Li-Heng, and G. Cheng, “Distributed visual attention
on a humanoid robot,” in IEEE-RAS Intl’ Conference on Humanoid Robots,
pp. 381–386, December 2006.

[35] A. Ude, J. Moren, and G. Cheng, Humanoid Robots: Human-like Machines,
ch. Visual Attention and Distributed Processing of Visual Information for the
Control of Humanoid Robots, pp. 423–436. I-Tech Education and Publishing,
2007.

[36] A. Maki, P. Nordlund, and J.-O. Eklundh, “Attentional scene segmentation: inte-
grating depth and motion,” Computer Vision and Image Understanding, vol. 78,
no. 3, pp. 351–373, 2000.

[37] S. Frintrop, E. Rome, A. Nchter, and H. Surmann, “A bimodal laser-based at-
tention system,” Computer Vision and Image Understanding, vol. 100, no. 1-2,
pp. 124–151, 2005.

[38] G. Heidemann, “Focus-of-attention from local color symmetries,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 26, pp. 817– 830, July
2004.

[39] C. Harris and M. Stephens, “A combined corner and edge detector,” in Proceed-
ings of the 4th Alvey Vision Conference, pp. 147–151, 1988.

[40] Y.-F. Ma and H.-J. Zhang, “Contrast-based image attention analysis by using
fuzzy growing,” in MULTIMEDIA ’03: Proceedings of the eleventh ACM inter-
national conference on Multimedia, pp. 374–381, November 2003.

[41] K. Lee, H. Buxton, and J. Feng, “Cue-guided search: a computational model
of selective attention,” IEEE Transactions on Neural Networks, vol. 16, no. 4,
pp. 910– 924, 2005.

[42] G. Backer and B. Mertsching, “Two selection stages provide efficient object-
based attentional control for dynamic vision,” in Proceedings of the International
Workshop on Attention and Performance in Computer Vision, p. 916, 2003.

108

[43] M. T. Lpez, A. Fernndez-Caballero, M. A. Fernndez, J. Mira, and A. E. Del-
gado, “Dynamic visual attention model in image sequences,” Image and Vision
Computing, vol. 25, p. 597613, 2007.

[44] P. Locher and C. Nodine, Eye Movements: From Physiology to Cognition,
ch. Symmetry catches the eye, pp. 353–361. B.V. (North Holland): Elsevier
Science, 1987.

[45] K. Nakayama and G. H. Silverman, “Serial and parallel processing of visual
feature conjunctions,” Nature, vol. 320, pp. 264–265, 1986.

[46] G. Deco, “Biased competition mechanisms for visual attention in a multimod-
ular neurodynamical system,” in Emergent Neural Computational Architectures
Based on Neuroscience : Towards Neuroscience-Inspired Computing, Lecture
Notes in Computer Science, pp. 114–126, Springer Berlin / Heidelberg, 2001.

[47] M. Begum, G. Mann, and R. Gosine, “A biologically inspired bayesian model
of visual attention for humanoid robots,” in IEEE-RAS Intl’ Conference on Hu-
manoid Robots, pp. 587–592, December 2006.

[48] M. Jagersand, “Saliency maps and attention selection in scale and spatial coordi-
nates: an information theoretic appreach,” in Proceedings of the 5th International
Conference in Computer Vision, pp. 195–202, June 1995.

[49] J. K. Tsotsos, S. M. Culhane, W. Y. K. Wai, Y. Lai, N. Davis, and F. Nuflo,
“Modeling visual attention via selective tuning,” Artificial Intelligence, vol. 78,
no. 1-2, pp. 507–545, 1995.

[50] A. L. Rothenstein and J. K. Tsotsos, “Attention links sensing to recognition,”
Image and Vision Computing, vol. 26, no. 1, pp. 114–126, 2008.

[51] S. Culhane and J. Tsotsos, “A prototype for data-driven visual attention,” in
Proceedings og the International Conference on Pattern Recognition, pp. 36 – 40,
1992.

[52] D. Heinke and G. W. Humphreys, “Saim: A model of visual attention and
neglect,” in ICANN ’97: Proceedings of the 7th International Conference on
Artificial Neural Networks, pp. 913–918, Springer-Verlag, 1997.

[53] M. Aziz, B. Mertsching, M. Salah, E.-N. Shafik, and R. Stemmer, “Evaluation
of visual attention models for robots,” in IEEE International Conference on
Computer Vision Systems, pp. 20–25, Jan. 2006.

[54] A. Haasch, N. Hofemann, J. Fritsch, and G. Sagerer, “A multi-modal object
attention system for a mobile robot,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2712– 2717, August 2005.

[55] T. Wilhelm, H. J. Bhme, and H. M. Gross, “A multi-modal system for tracking
and analyzing faces on a mobile robot,” Robotics and Autonomous Systems,
vol. 48, no. 1, pp. 31–40, 2004.

109

[56] O. Dniz, M. Castrillon, J. Lorenzo, M. Hernndez, and J. Mndez, “Multimodal
attention system for an interactive robot,” Pattern Recognition and Image Anal-
ysis, vol. 2652, pp. 212–220, 2003.

[57] S. Lang, M. Kleinehagenbrock, S. Hohenner, J. Fritsch, G. A. Fink, and
G. Sagerer, “Providing the basis for human-robot-interaction: a multi-modal
attention system for a mobile robot,” in Proceedings of the 5th International
Conference on Multimodal Interfaces, pp. 28 – 35, 2003.

[58] N. Ouerhani and H. Hugli, “Computing visual attention from scene depth,”
in Proceedings of the International Conference on Pattern Recognition, vol. 1,
pp. 375–378, September 2000.

[59] R. Milanese, Detecting Salient Regions in an Image: from Biological Evidence to
Computer Implementation. PhD thesis, University of Geneva, December 1993.

[60] A. Koene, J. Morn, V. Trifa, and G. Cheng, “Gaze shift reflex in a humanoid
active vision system,” in Proceedings of the 5th International Conference on Com-
puter Vision Systems (ICVS), 2007.

[61] J. L. Crespo, A. Faia, and R. J. Duro, “An implementation of a general pur-
pose attentional mechanism for artificial organisms,” in Nature Inspired Problem-
Solving Methods in Knowledge Engineering, Lecture Notes in Computer Science,
pp. 99–108, Springer Berlin / Heidelberg, 2007.

[62] L. Goncalves, “Towards a learning model for feature integration in attention
control,” in International Conference on Multisensor Fusion and Integration for
Intelligent Systems, pp. 311– 316, 2001.

[63] S. Rajendran and M. Huber, “Learning task-specific sensing, control and memory
policies,” International Journal on Artificial Intelligence Tools, vol. 14, no. 1-2,
pp. 303–327, 2005.

[64] S. Baluja and D. Pomerleau, “Dynamic relevance: Vision-based focus of attention
using artificial neural networks,” in Artificial Intelligence 87, pp. 381–395, 1997.

[65] F. W. M. Stentiford, “An attention based similarity measure with application to
content-based information retrieval,” in Proceedings of the Storage and Retrieval
for Media Databases conference, SPIE Electronic Imaging, vol. 5021, January
2003.

[66] A. Bamidele, F. W. M. Stentiford, F. W. M. Stentiford, and J. Morphett,
“An attention-based approach to content-based image retrieval,” BT Technol-
ogy Journal, vol. 22, no. 3, pp. 151–160, 2004.

[67] C. Breazeal, A. Edsinger, P. Fitzpatrick, and B. Scassellati, “Active vision for
sociable robots,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 31,
pp. 443–453, September 2001.

110

[68] T. Rogers, A. Sekmen, and J. Peng, “Attention mechanisms for social engage-
ments of robots with multiple people,” in Intl’ Symposium on Robot and Human
Interaction communication (ROMAN), pp. 605–610, September 2006.

[69] M. Doniec, S. Ganghua, and B. Scassellati, “Active learning of joint attention,”
in IEEE-RAS Intl’ Conference on Humanoid Robots, pp. 34–39, December 2006.

[70] T. Wada and T.Matsuyama, “Multiobject behavior recognition by event driven
selective attention method,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 22, no. 8, pp. 873 – 887, 2000.

[71] F. Shic and B. Scassellati, “A behavioral analysis of computational models of
visual attention,” International Journal of Computer Vision, vol. 72, pp. 159–
177, June 2006.

[72] T. Williams and B. Draper, “An evaluation of motion in artificial selective atten-
tion,” in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 3, pp. 85–92, 2005.

[73] N. Ouerhani and H. Hgli, “Real-time visual attention on a massively parallel
simd architecture,” Real-Time Imaging, vol. 9, no. 3, pp. 189–196, 2003.

[74] G. Sela and M. D. Levine, “Real-time attention for robotic vision,” Real-Time
Imaging, vol. 3, no. 3, pp. 173–194, 1997.

[75] A. Sha’ashua and S. Ullman, “Structural saliency: The detection of globally
salient structures using a locally connected network,” in International Conference
on Computer Vision, pp. 321–327, December 1988.

[76] M. Schlosser and K. Kroschel, “Dedicated mechanisms for the attention system in
humanoid robots,” in IEEE-RAS Intl’ Conference on Humanoid Robots, pp. 52–
63, November 2004.

[77] C. Balkenius, “Attention, habituation and conditioning: toward a computational
model,” Cognitive Science Quarterly, vol. 1, no. 2, pp. 171–214, 2000.

[78] H. Pinsker, I. Kupfermann, V. Castellucci, and E. Kandel, “Habituation
and dishabituation of the gm-withdrawal reflex in aplysia,” Science, vol. 167,
no. 3926, pp. 1740 – 1742, 1970.

[79] R. L. Fantz, “Visual experience in infants: Decreased attention to familiar pat-
terns relative to novel ones,” Science, vol. 146, no. 3644, pp. 668 – 670, 1964.

[80] S. Sirois and D. Mareschal, “An interacting systems model of infant habituation,”
Journal of Cognitive Neuroscience, vol. 16, no. 8, pp. 1352–1362, 2004.

[81] R. Thompson and W. Spencer, “Habituation: A model phenomenon for the study
of neuronal substrates of behavior,” Psychology Review, vol. 73, pp. 16–43, 1966.

111

[82] A. S. Bristol, A. L. Purcell, and T. J. Carew, The Handbook of Brain Theory
and Neural Networks, ch. Habituation, pp. 504–507. MIT Press, 2nd ed., 2003.

[83] J. Staddon, “Interval timing: memory, not a clock,” Trends in Cognitive Science,
vol. 9, pp. 312–314, July 2005.

[84] J. C. Stanley, “Computer simulation of a model of habituation,” Nature, vol. 261,
pp. 146–148, May 1976.

[85] Q. Meng and M. Lee, Biomimetic Neural Learning for Intelligent Robots, ch. Nov-
elty and Habituation: The Driving Forces in Early Stage Learning for Develop-
mental Robotics, pp. 315–332. Springer Berlin / Heidelberg, 2005.

[86] S. Marsland, U. Nehmzow, and J. Shapiro, “Detecting novel features of an envi-
ronment using habituation,” in From Animals to Animats, Sixth Intl Conference
on Simulation of Adaptive Behaviour, (Paris, France), pp. 189–198, 2000.

[87] D. Wang and M. A. Arbib, “Modeling the dishabituation hierarchy: The role
of the primordial hippocampus,” Biological Cybernetics, vol. 67, pp. 535–544,
October 1992.

[88] E. Solokov, The Central Nervous System and Behavior, ch. Neuronal models and
the orienting reflex, pp. 187–276. 1960.

[89] P. Crook and G. Hayes, “A robot implementation of a biologically inspired
method for novelty detection,” in Proceedings of Towards Intelligent Mobile
Robots, (Manchester), April 2001.

[90] M. Peters and A. Sowmya, “Integrated techniques for self-organisation, sampling,
habituation, and motion tracking in visual robotics applications,” in Proceedings
of IAPR Workshop on Machine Vision Applications, 1998.

[91] S. Sirois, “Hebbian motor control in a robot-embedded model of habituation,” in
IEEE-INNS-ENNS International Joint Conference on Neural Networks, vol. 5,
pp. 2772– 2777, August 2005.

[92] O. Dniz, J. Lorenzo, and M. Hernndez, “A simple habituation mechanism for
perceptual user interfaces,” Revista Iberoamericana de Inteligencia Artificial,
vol. VIII, no. 23, pp. 7–16, 2004.

[93] B. Stiles and J. Ghosh, “A habituation based neural network for spatio-temporal
classification.,” in Proceedings of the IEEE Workshop in Neural Networks for
Signal Processing, pp. 135–144, September 1995.

[94] C. Chang, “Improving hallway navigation in mobile robots with sensor habitua-
tion,” in IEEE-INNS-ENNS International Joint Conference on Neural Networks,
vol. 5, p. 5143, July 2000.

[95] C. Bishop, Neural Networks for Pattern Recognition. Oxford University Press,
1995.

112

[96] J. J. Hopfield, “Neural networks and physical systems with emergent collective
computational properties,” Proceedings of the National Academy of Sciences,
vol. 79, pp. 2554–2558, 1982.

[97] M. J. E. Golay, “Hexagonal parallel pattern transformations,” IEEE Transac-
tions on Computers, vol. C-18, pp. 733–740, Aug 1969.

[98] E. Deutsch, “On parallel operations on hexagonal arrays,” Transactions on Com-
puters, vol. C-19, pp. 982–983, October 1970.

[99] J. A. Snyman, Practical mathematical optimization: an introduction to basic
optimization theory and classical and new gradient-based algorithms. Springer,
2005.

113

