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CHAPTER I 

 

OPTIMAL ACQUISITION AND SORTING POLICIES FOR REMANUFACTURING 

 

1: Introduction 

In remanufacturing, used products can range in condition from slightly used with only minor 

cosmetic blemishes to significantly damaged and requiring extensive rework.  For a 

remanufacturer, one of the critical operational decisions is the establishment of a sorting policy – 

given variable condition, which used products should be remanufactured and which should be 

scrapped?  This important aspect of remanufacturing operations has received limited attention in 

the literature.  In this paper, we extend earlier work by deriving and analyzing optimal sorting 

policies in the presence of used product condition variability.  Our results, while motivated by 

the remanufacturing industry, are applicable to other manufacturing organizations that face 

variable raw material condition. 

 In this paper, the term “remanufacture” refers to restoring a used product to acceptable 

condition for resale.  Other equivalent terms common in literature and practice are “recondition” 

and “refurbish.”  Our analysis of sorting policies considers two possible dispositions of the used 

product – remanufacture or scrap – which are common in remanufacturing.  Although some 

remanufacturing environments include other potential product dispositions, such as recovery of 

components, we do not consider these options in this study. 

 We analyze production to meet both deterministic and uncertain demands.  In either case, 

remanufacturing follows a “make from stock” (Fleischmann et al. 2004) model, where used 
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products are acquired and available as needed to meet remanufacturing needs.  A common make 

from stock situation is that of an independent remanufacturer who obtains used products from 

third party brokers.  Consider, for example, the cellular phone industry (Guide et al. 2003b), in 

which used products are purchased from brokers as needed to fulfill specific demands. 

When condition is variable, some of the units acquired are likely to be too costly to 

remanufacture, and scrapping may be the appropriate disposition decision for these units.  This 

implies that the number of used products acquired should be greater than the number of 

remanufactured products required.  As the acquisition amount is increased, sorting can be made 

more stringent – only products with lower remanufacturing costs are actually remanufactured.  

Thus, the sorting policy should be driven by how many “extra” used products are acquired.  Of 

course, the cost of acquiring more used products offsets (to some extent) the remanufacturing 

cost savings enabled by increased selectivity.  The interaction of these two effects should drive 

the acquisition amount and corresponding sorting policy.  In this paper, we analyze 

acquisition/sorting policies using a total cost model that incorporates used product condition 

variability.  We show the existence of unique optimal policies which minimize average total 

costs for a remanufacturer. 

The rest of this paper is organized as follows.  In section 2, we review the relevant 

research on remanufacturing.  In section 3, we describe the impact of acquisition and sorting 

policies on average remanufacturing costs and examine policies to meet a fixed demand.  In 

section 4, we present results for the special case in which used product acquisition costs are 

linear.  In section 5, we extend these results to the case of uncertain demand.  Section 6 

summarizes the contribution of the analysis and suggests directions for future research. 
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2: Remanufacturing Literature 

While remanufacturing activities are often motivated by environmental concerns or demands 

from customers or government authorities (Thierry et al. 1995, Toktay et al. 2000, Field 2000, 

Fleischmann et al. 2001, Ginsberg 2001, Seitz and Peattie 2004, van Nunen and Zuidwijk 2004), 

the processing of returns has increasingly been viewed not simply as a cost of doing business 

(Padmanabhan and Png 1997), but as a profitable business model and source of competitive 

advantage (Dowlatshahi 2000, Klausner and Hendrickson 2000, Stock et al. 2002, Andel and 

Aichlmayr 2002).  In fact, remanufacturing is a $50 billion/year industry in the U.S. alone 

(Corbett and Kleindorfer 2001, Majumder and Groenevelt 2001).  Realizing the potential for 

profitable remanufacturing, many independent businesses have emerged to exploit specific 

remanufacturing opportunities (Wells and Seitz 2004). 

 Reverse logistics/remanufacturing has many similarities to its traditional forward 

logistics/manufacturing counterpart.  At the most basic level, both involve supply, production 

and distribution.  The major difference between the two involves the supply side (Fleischmann et 

al. 1997, Fleischmann 2001).  In a remanufacturing system, supply is largely exogenous, and the 

timing, quantity, and quality of supply are much more uncertain than in traditional production-

distribution systems.  A significant consequence of this uncertainty is the inclusion of an 

inspection stage and a corresponding system of quality-dependent routing of supply in a reverse 

logistics network (Trebilcock 2002).  With rare exceptions, traditional supply chains do not 

include such a focus on supply quality. 

 Many studies have acknowledged the problem of variable supply quality for 

remanufacturing systems (Bloemhof-Ruwaard et al. 1999, Guide and Jayaraman 2000, 

Fleischmann et al. 2000, Stanfield et al. 2004).  Guide (2000) discusses the additional complexity 
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in scheduling and planning caused by the high variability of remanufacturing processing times, 

and his survey of managers provides insights into how these issues can be addressed.  Toktay et 

al. (2000) incorporate random processing times for the returned products into their queuing 

network model of a closed-loop system.  Guide et al. (2000) highlight the operational concern 

caused by highly variable processing times, which are a function of returned product condition.  

The authors point to the need for remanufacturing firms to estimate used product condition to 

determine the appropriate disposition.  This assessment of condition is an important step in 

determining the optimal recovery action (Bloemhof-Ruwaard et al. 1999, Van Nunen and 

Zuidwijk 2004, Blackburn et al. 2004).  Several techniques for condition assessment and grading 

have been described in recent publications (Krikke et al. 1999, Rudi et al. 2000). 

Simulation has been used by some researchers to model variable used product condition 

in remanufacturing operations.  Fleischmann (2001) builds a simulation model which 

incorporates uncertainty in the quality of returned products and uses this model to evaluate 

several reverse logistics configurations.  Humphrey et al. (1998) use a simulation which 

incorporates variable repair requirements to analyze a reverse logistics network for a U.S. Army 

depot.  Guide and Srivastava (1997) incorporate stochastic processing times into their simulation 

model to evaluate various order release strategies in a naval aviation depot, and they 

acknowledge the high level of variation in work content that can be present in the 

remanufacturing setting. 

Several models have been proposed for managing the problem of variable used product 

quality.  Klausner and Hendrickson (2000) show how incentives can be used to increase the 

quality of returned goods.  They assert that an increase in returned goods quality will lead to a 

higher remanufacturing yield.  Guide and Van Wassenhove (2001) propose a model to manage 
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the quality of cellular phone returns to help reduce variation in processing times.  Guide et al. 

(2003b) expand the analysis in Guide and Van Wassenhove (2001) to include the consideration 

of optimal acquisition policies and pricing.  They point out the limited amount of research that 

has addressed areas such as used product acquisition, testing, and disposition.  Their research 

focuses on the criticality of product acquisition management in maximizing profits for a 

remanufacturer, and it highlights the need to move beyond management intuition in managing 

these processes.  Guide et al. assume that used products are acquired from third-party brokers 

who have sorted the products into condition categories, where remanufacturing cost for a given 

category is known. 

In contrast to Guide et al., we take remanufacturing cost of acquired products to be 

unknown.  This reflects many potential situations, including the case in which sorting does not 

eliminate remanufacturing cost variability and the case where third party brokers offer only 

unsorted products to the remanufacturer.  In addition, our analysis could help remanufacturers 

quantify the price they are willing to pay brokers for the service of sorting. 

Several recent papers have presented mathematical models of remanufacturing operations 

which do not incorporate variable used product condition into the analysis.  In their 2004 paper, 

Savaskan et al. mention the growing interest in research that considers the quality uncertainty in 

return flows.  They analyze three collections options and discuss the conditions under which 

different collections processes and supply chain structures are appropriate.  However, their 

model assumes homogeneous quality of returned products for each collection option and that all 

returned products are remanufactured for resale (100% yield) at a fixed unit remanufacturing 

cost.  Krikke et al. (1999) also acknowledge variability in returned product quality, but their 

MILP formulation of a reverse logistics network uses a constant unit cost of remanufacturing.  
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Jayaraman et al. (1999) and Majumder and Groenevelt (2001) also model unit remanufacturing 

cost as a constant. 

 

3: Acquisition and sorting policies for deterministic demand 

We develop a model which explicitly considers variable used product condition and use this 

model to examine how acquisition and sorting decisions affect remanufacturing costs.  In this 

analysis, we make the following assumptions, similar to Guide et al. (2003b): perfect testing, no 

capacity constraints, and no fixed costs.  In our context, perfect testing means that 

remanufacturing cost depends on condition, but is known at the time of sorting.  These 

assumptions result in a model that allows us to accurately depict the problem without trivializing 

it. 

 Our research is motivated by an independent remanufacturer who serves both the imaging 

supplies and cellular telephone markets.  In many of these markets, the supply of used items 

from third party brokers is essentially unlimited.  The acquired products have not been sorted, 

and their condition is highly variable.  When the unsorted items arrive at the remanufacturing 

facility, the firm must sort each item and assign it to one of two categories – remanufacture or 

scrap.  Scrap items are disposed of at negligible cost, and the remaining items are immediately 

processed.  The result is a remanufacturing “yield,” defined as the percentage of the used 

products acquired which are actually remanufactured.  The firm acknowledges that increasing 

selectivity in its sorting (i.e. accepting fewer products for remanufacture) will have two effects: 

1) yield will decrease, requiring the acquisition of more used products to meet a given demand, 

and 2) remanufacturing cost will decrease, since the used products sorted for remanufacture will 

be, on average, in better condition.  Decreasing sorting selectivity will have opposite effects.  
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Thus, the firm must make two related decisions given demand or demand forecast – how many 

used items to acquire and how selective to be during sorting.  In this research, we develop a 

quantitative model for determining optimal acquisition and sorting policies for a single period.  

Many remanufactured products, such as cell phones, have relatively short life cycles.  For these 

products, a single-period model is reasonable given that future demand is not guaranteed.  We 

first analyze the single-period problem with deterministic demand and then extend our analysis 

to the stochastic demand setting. 

Given that some used products might not be remanufactured, it follows that a firm facing 

a demand Q should acquire P used products, where P>=Q.  As each product is processed, it is 

sorted into one of two categories – remanufacture or scrap – such that Q products are 

remanufactured and (P-Q) are scrapped (see Figure 1). 

 

 

Figure 1: Acquiring and sorting used products 

 

Thus, this remanufacturing problem has a single decision variable, P.  To translate a 

given P into a specific sorting policy, we use the distribution of condition of the used products, 

  P  
acquire used products 

plant 

scrap 

(P-Q) 

Q

remanufactured 
products 



 

8 

where condition is defined as cost to remanufacture.  Clearly, remanufacturing cost can be 

assumed to increase as product condition worsens.  While several other representations of used 

product condition are possible – for example, time required for remanufacture – we use 

remanufacturing cost in this model.  Note that when Q remanufactured products are needed and 

P used products are acquired, the required yield, α, – that is, the fraction of used products that 

must be successfully remanufactured – is defined as follows: 

P
Q=α  

Then for any acquisition amount P, sorting policy should be set such that the expected yield from 

remanufacturing equals α.  We assume that the cumulative distribution of used product condition 

is known exactly, and denote this distribution as G(.) (the corresponding density function is 

denoted as g(.)).  Given G(.), we define the “cutoff” cost – that is, the maximum cost acceptable 

to justify remanufacturing – to be some remanufacturing cost t such that: 

( ) α=tG , or ( ) P
QtG =  

The sorting policy is defined by the value of t: products with remanufacturing cost above t are 

scrapped, and those with cost below t are remanufactured (note that both α and t are functions of 

the single decision variable P).  An important simplifying assumption of this model is that the 

actual yield (that is, the number of used products remanufactured) for a given t is deterministic.  

This allows us to gain interesting insights into this important problem in remanufacturing, and 

we discuss the implications of relaxing the deterministic yield assumption in section 6. 

 We define used product condition as being some point on a continuum, and each 

product’s condition (cost to remanufacture) is determined during the sorting process.  Figure 2 
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demonstrates the relationship between α and average remanufacturing cost and illustrates how 

the cutoff condition is determined given a desired yield of α=80%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Translating required yield into sorting policy 

 

Since sorting policy must be set such that G(t)=α, as α decreases (or, equivalently, as P increases 

for a fixed Q), a firm is able to be more selective when processing used products – higher-cost 

items are not remanufactured.  Therefore, those products that are selected for remanufacture have 

lower remanufacturing cost as α decreases. 

Given Q and G(.), we can express sorting policy t as a function of P: 

( ) ⎟
⎠
⎞⎜

⎝
⎛== −−

P
Qt GG 11 α          (1) 

Since only the Q used products with a cost of t or less will be remanufactured, we have the 

following expression for the total remanufacturing cost as a function of P: 
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( )
( )

( )∫

∫
= t

t

dxxg

dxxxg
QPR

0

0         

which simplifies to: 

( ) ( )∫=
t

dxxxgPPR
0

          (2) 

Remanufacturers also incur acquisition costs, which we define as all costs to acquire, transport, 

and sort used products.  Adding an acquisition cost function z(.) to (2) gives us the following 

expression for the total cost, defined as acquisition plus remanufacturing cost, of acquiring P and 

remanufacturing Q products: 

( ) ( ) ( )∫+=
t

dxxxgPPzPTC
0

         (3) 

Although most remanufacturing studies assume linear acquisition costs, we start by 

examining the case in which acquisition costs are nonlinear.  In these cases, we assume 

increasing marginal cost (convex increasing cost) of used products because of scarcity; Guide et 

al. (2003b) make the same assumption in their analysis.  We assume that z(.) in (3) can be any 

non-negative convex increasing acquisition cost function. 

 To prove that TC(P) is convex on [Q,∞), and therefore is minimized at a single critical 

number P*, we first prove the following proposition: 

PROPOSITION 1.  For a given production amount, average remanufacturing cost is a convex 

monotonically decreasing function of P, the number of used products acquired. 

Proof: see Appendix A. 
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Proposition 1 holds for all continuous distributions of remanufacturing cost.  Given 

Proposition 1 and the fact that (3) is simply the sum of two terms which are convex in P on 

[Q,∞), we can state the following: 

PROPOSITION 2.  TC(P) is convex in P on [Q,∞), therefore given any convex acquisition cost 

function, there is an optimal acquisition amount P* (and corresponding optimal sorting policy as 

defined by evaluating (1) at P*) which will minimize total average costs to meet a fixed demand, 

Q. 

 

4: Results for linear acquisition costs 

We now examine the special case in which the acquisition cost function is linear.    Linearity is a 

reasonable assumption in many remanufacturing environments, particularly when the market is 

large and well-defined.  Klausner and Hendrickson (2000) provide a detailed justification, 

grounded in data from a German remanufacturer, of the use of a constant unit cost of acquired 

products in their model, and linear acquisition, transportation, and handling costs are commonly 

assumed in the literature (e.g., Majumder and Groenevelt 2001, Fleischmann et al. 2001, 

Savaskan et al. 2004).   

 Given linear acquisition costs, total cost is a convex function of P on [Q,∞) as shown in 

Figure 3. 
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Figure 3: Total cost with linear acquisition costs 

 

Let u = unit acquisition cost.  Then the total cost of acquiring P used products at unit cost 

u and remanufacturing Q of those products is expressed in (4). 

( ) ( )∫+=
t

dxxxgPuPTC
0

α          (4) 

Since α=Q/P, (4) can be rewritten as a function of α: 

( )
( )

αα
α

∫
+=

t

dxxxgQ
uQTC 0          (5) 

We then have the following proposition: 

PROPOSITION 3.  When acquisition costs are linear, the average total cost per unit is separable 

from the production amount, therefore the optimal value of α does not depend on Q. 

Proof:  We can simplify (5) to the following: 
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( )

( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+=
∫
−

αα
α

αG
dxxxg

uQTC

1

0

)(
        (6) 

Dividing (6) by Q results in the following expression for average total cost per unit: 

( )

( )

αα
α

α

∫
−

+=

G
dxxxg

uUTC

1

0

)(
         (7) 

The result follows from the observation that (7) does not depend on Q. □  

 Since α fully describes the acquisition amount (Q/α) and the sorting policy ( ( )αG 1− ), 

the fact that the optimal α is independent of the magnitude of Q (e.g. if the optimal α equals 0.5 

for one value of Q, it equals 0.5 for all Q) means that a single acquisition and sorting policy is 

optimal for any production amount.  (This assumes that remanufacturing of the product is 

economically feasible – that is, the unit sales revenue and the cost of purchasing and processing 

new inputs both exceed the average total cost from (7).)  In addition to this interesting insight 

into the deterministic demand problem, Proposition 3 also allows us to easily extend our analysis 

to cases of uncertain demand.  We demonstrate this extension in Section 5. 

 

5: Acquisition and sorting policies for stochastic demand 

Ferrer and Whybark (2001) point out that some remanufacturers have limited advance 

knowledge of demand, and overproduction of remanufactured items can expose them to 

obsolescence risk.  In these cases, the classic newsvendor problem can be used to set a 

production amount which minimizes the sum of expected shortage and overage costs.  We now 
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examine the applicability of the newsvendor problem given the variable production costs in 

remanufacturing. 

 We start by presenting a basic newsvendor formulation given uncertain demand with 

distribution f(.): 

( ) ( ) dxxfQxdxxfxQQN
Q

s

Q

o cc )()()(
0

∫∫
∞

−+−=     (8) 

where overage cost, co, is defined as the cost of producing one unit (a wasted expense if the unit 

cannot be sold); shortage cost, cs, is defined as the lost margin per unit from producing fewer 

units than the actual demand (plus any penalty for disappointing customers).  The newsvendor 

solution is the production quantity Q* which minimizes N(Q).  In the context of the general 

remanufacturing problem (without the assumption of linear acquisition costs), co and cs are as 

follows: 

( )
Q
PTCco

*

= , ( ) b
Q
PTCAcs

+−=
*

 

where TC(P*) is the optimal solution to (3), b is the unit shortage penalty, and A is unit sales 

revenue. 

In the general case of nonlinear acquisition costs, TC(P*) depends on Q.  Thus, when the 

newsvendor approach is applied to the general remanufacturing problem to minimize the 

function N(Q) as given in (8), co and cs are also functions of Q, and the problem becomes more 

difficult to solve. 

However, by Proposition 3 the optimal average total cost per unit is independent of Q 

given linear acquisition costs.  In this case we can define co and cs as follows: 

( )*αUTCco
= , ( ) bUTCAcs

+−= *α  
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where UTC(α*) is the optimal solution to (7).  Given that these expressions for co and cs do not 

depend on Q, the newsvendor problem can be solved using standard techniques.  The expression 

defining the optimal newsvendor production quantity Q*, 
cc

cQ
so

sF
+

=⎟
⎠
⎞⎜

⎝
⎛ *

, can be written as 

follows in this context: 

( )
bA

bUTCAF Q
+

+−
=⎟

⎠
⎞⎜

⎝
⎛

** α   or   ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−
= −

bA
bUTCAFQ

*
1* α     (9) 

Since (7) does not depend on Q, UTC(α*) is invariant with respect to the ultimate determination 

of Q*.  Thus, remanufacturers can set acquisition and sorting policies (as defined by α) a priori 

and still use the standard newsvendor model to optimize production amounts when facing 

uncertain demands.  This implies the following 3-step procedure: 

1. find α* and UTC(α*) using (7), and define the sorting policy by evaluating (1) at α*; 

2. find Q* using (9); 

3. acquire *

*

α
Q  and remanufacture Q* products (using the sorting policy defined in step 1). 

The above procedure will result in minimum expected costs to meet an uncertain demand in a 

remanufacturing setting (see the following example). 

 

Example Problem: 

Assume used products are acquired for a unit cost of $3.00.  Condition follows a gamma 

distribution with parameters (5,2), implying an average cost to remanufacture of $10.00.  Unit 

sales revenue is $15.00 and unit shortage penalty is $4.00.  In step 1 of the above procedure, we 

can use (8), with u=3 and G(.)=gamma(5,2), to find α*.  In this example α* equals 0.71 (so the 

optimal acquisition policy is (1/0.71) multiplied by the number of remanufactured products 
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needed).  Using (1), sorting policy should be set to scrap all units with a remanufacturing cost 

greater than $11.93 (this is equivalent to sequencing the items by condition, processing the best 

α* (or 71%) of them, and scrapping the remaining 29%).  In this case, the average 

remanufacturing cost of the products that are not scrapped is $7.72, and $4.23 is spent on used 

product acquisition for every remanufactured item.  Therefore, the average total cost of products 

that are actually remanufactured, UTC(α*), is $11.95. 

Note that the optimal acquisition and sorting policy, as defined by α*, is known before 

demand is estimated.  We now have all the information required to determine optimal policies 

when faced with any uncertain demand.  For example, if expected demand f(.) is normally 

distributed with mean 1000 and standard deviation 150, then in step 2 we have 

951
415

495.11151*
=⎟

⎠
⎞

⎜
⎝
⎛

+
+−

= −FQ .  In step 3 we calculate the optimal acquisition quantity for this 

production amount to be 951/0.71 =1339.  By acquiring 1339 used products and processing them 

according to the sorting policy determined in step 1, we can expect to remanufacture the optimal 

quantity of 951 units at minimum cost. 

 

6: Conclusions and Future Research 

In this paper we have provided a detailed analysis of optimal acquisition and sorting policies for 

remanufacturers facing variable used product condition.  Our work provides a foundation for 

continued research in this area, which has been identified as having received little previous 

attention from researchers (Guide et al. 2003b).  The analysis in the previous two sections has 

shown that, given reasonable assumptions, a single optimal acquisition and sorting policy exists 

for a remanufacturer. When acquisition costs are linear, the optimal policy can be defined 
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independently of the production amount, and the optimal acquisition quantity can be calculated 

by applying a simple scalar, (1/α), to demand.  Because the optimal average total cost per unit 

does not vary by production amount, our results are easily extended to the case of uncertain 

demand.  For remanufacturers that follow a make from stock model for their products – such as 

imaging supplies and cellular phones – this paper provides algorithms to find cost-minimizing 

acquisition amounts and sorting policies. 

As noted earlier, the model presented in this paper assumes that yield (i.e. α) is 

deterministic.  We believe that this assumption preserves the essence of the problem and 

provides interesting insights into the stochastic demand model.  In reality, however, the number 

of items that meet a specified condition cutoff would itself be stochastic, and so optimal sorting 

policies under random yield would be a useful extension of this research.  In our preliminary 

work investigating random yields, we find that optimal policies for the deterministic yield case 

often provide very good approximations to the stochastic yield solution.  Specifically, as 

production quantity (Q) increases, we find that the solution to the stochastic model converges 

asymptotically to the deterministic solution (for very large production amounts, the actual yield 

will converge to the expected value assumed by the deterministic model).  The deterministic 

model also provides good approximations when overage and shortage costs due to discrepancies 

between expected and actual production amounts are nearly equal.  Thus, for products with high 

demand and/or nearly equivalent shortage and overage costs, the deterministic model presented 

in this paper provides comparable results to the more complex stochastic yield situation. 

While our results provide useful insights into this emerging area of remanufacturing 

research, some of our assumptions could be relaxed for wider applicability.  For example, 

although we impose no restrictions on scrapping, a scrapping penalty can be added to our total 
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cost function to reflect situations in which scrapping is constrained.  If penalties are assessed 

based on the percentage of acquired products which are scrapped, then the scrapping penalty is 

independent of Q.  Since these penalties are also likely to be convex (increasing penalties as 

scrapping increases), we expect that, for most cases, the total cost will remain a convex function 

of α, and the results in sections 4 and 5 would remain valid.  The single-period problem 

presented here could also be extended to the case of a remanufacturer facing multiple periods of 

uncertain demand.  The multi-period extension of this work is an intriguing future research area, 

and a multi-period model could more accurately represent remanufactured products with longer 

life cycles.  
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Appendix A 

 

To prove monotonically decreasing convexity, we show that the first derivative of the 

remanufacturing cost function is always negative and the second derivative is always positive: 

Substituting (1) into (2) gives us the following expression for remanufacturing cost as a function 

of P: 
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Recall that the derivative of an inverse function is defined as follows: 
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Applying the above definition, as well as Leibnitz’s Rule and the product rule, we have: 
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which simplifies to: 
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Factoring out 
P
Q   from (A2) gives: 
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Replacing 
Q
P  in the first term of (A3) with the equivalent expression
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Observe that (A4) is always negative.  The term in the brackets is the difference of two terms.  

The first term is equivalent to the expected value of g on ⎥⎦
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thus 
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We now derive the second derivative, 
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Note that the first term of (A5) is (2) multiplied by 
P
1 , and, applying the product rule, the 

derivative of the first term of (A5) is 
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or 
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Differentiating the second term of (A5) gives: 
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Combining (A6) and (A7) we have 
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which simplifies to: 
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which, by inspection, is always positive. □ 
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CHAPTER II 

 

THE IMPACT OF YIELD UNCERTAINTY IN REMANUFACTURING 

 

1: Introduction and Literature Review 

The inherent variation in the quality of used products presents a significant management 

challenge for remanufacturing firms.  Sorting policies help manage this variation by assigning a 

disposition to used products based on condition.  For a given sorting policy, there is some 

uncertainty regarding the percentage of used products that will actually be sorted for 

remanufacture (i.e. the remanufacturing yield).  In this research we examine the impact of this 

uncertainty on optimal acquisition and sorting policies for remanufacturers.  We present a 

newsvendor-type heuristic that allows us to incorporate this uncertainty into the determination of 

optimal acquisition and sorting policies very easily.  We also provide exact algorithms for 

uncertain yield problems, which we use to verify the accuracy of the heuristic approaches.  The 

results of our analysis indicate that approximating the uncertain remanufacturing yield parameter 

with its deterministic equivalent provides near-optimal results in many cases while avoiding the 

complexity of a stochastic yield formulation. 

Remanufacturing operations management has received considerable attention from 

researchers in recent years.  For a thorough review of the academic work in this area, we refer 

the reader to Guide et al. (2003) and Galbreth and Blackburn (2006).  While the variability of 

used product condition has been well established (Bloemhof-Ruwaard et al. 1999, Guide and 

Jayaraman 2000, Fleischmann et al. 2000, Toktay 2000, Stanfield et al. 2004), the impact of 
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condition variability on used product acquisition, sorting, and disposition decisions – areas 

identified by Guide et al. (2003) as under-treated from an academic perspective – has received 

limited attention.  The problem of variable used product condition is addressed in practice using 

sorting systems ranging from a simple category-based approach (e.g. excellent, good, poor) to a 

more robust methodology based on the unique remanufacturing requirements of individual 

products.  Researchers have also used various approaches to modeling used product condition.  

For example, Aras et al. (2004) present a continuous-time Markov chain model that differentiates 

between used product condition using two quality categories, while Galbreth and Blackburn 

(2006) present a more general model by defining used product condition along a continuum. 

In their 2006 paper, Galbreth and Blackburn show the existence of optimal acquisition 

and sorting policies in a wide range of situations.  In order to derive their results, they assume 

that remanufacturing yield is a deterministic function of sorting policy.  They suggest that future 

research examine the extent to which the assumption of deterministic yield limits their results.  In 

this paper, we explicitly consider uncertainty in the remanufacturing yield associated with a 

given sorting policy, analyzing both the dichotomous condition case and the case where used 

product condition is defined along a continuum.  We analyze the acquisition and sorting decision 

for a remanufacturer using both heuristic approaches based on deterministic estimates of yield 

and stochastic yield models. Through extensive numerical analysis, we identify a wide range of 

problems for which the stochastic yield model provides minimal cost benefits over the simpler 

deterministic yield model, lending credibility to the deterministic yield assumption in these 

environments. 

 The rest of this paper is organized as follows.  Section 2 presents cost minimization 

models given dichotomous used product condition, including formulations with and without 
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yield uncertainty.  Section 3 extends the analysis to the case in which condition is defined along 

a continuum, again providing both deterministic and stochastic yield formulations.  Section 4 

presents the results of experiments comparing the deterministic and stochastic yield models.  

Section 5 concludes the analysis with a discussion of the contribution of this paper to the 

remanufacturing research area. 

 

2. Optimal Policies for Dichotomous Used Product Condition 

We begin by examining the case of a remanufacturer that acquires a mixed lot of used products, 

the remanufacturing cost of each product being either low or high, based on its condition.  Some 

fraction α of the lot of acquired products fall into the first category and have a known, fixed cost 

to remanufacture, C1.  The remaining (1-α) products have a higher remanufacturing cost, C2.  

This is representative of many simple remanufacturable items.  For example, certain toner 

cartridges, particularly smaller ones, are simple enough that the sorting is merely driven by 

whether or not the cartridge has been remanufactured previously.  The ones that have never been 

remanufactured, called “virgin” cartridges in the industry, typically have a lower 

remanufacturing cost than the others, called “non-virgins.”  In this section, we model the 

decision of how many used items to acquire to meet a given demand in such a situation, where 

used product condition is dichotomous, and how to sort those used items. 

 

2.1 Deterministic Yield 

Assuming deterministic yield, the cost to meet a given demand Q can be defined as follows: 
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where u is the unit acquisition cost.  In this analysis, we assume that the remanufacturer always 

prefers to meet the demand rather than be short – in other words, given a unit shortage penalty s, 

we assume that the following condition holds: s>u+C2.  Note that (1) consists of two possible 

scenarios, of which the one with the lowest total cost is optimal.  The top expression in (1) 

represents acquiring exactly Q used products and remanufacturing all of them.  In the second 

expression, enough used products are acquired such that only the low cost items need to be 

remanufactured to meet the demand. 

 Defining the acquisition quantity as P, we can specify the optimal acquisition quantity, 

P*, by simplifying (1) to the following: 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧
<

=

otherwiseQ

uswhenQ
P

α

α~
*          (2) 

where 12
~ CCs −= .  As shown in (2), this problem reduces to a decision based on a very simple 

expression.  Either a remanufacturer will obtain the exact quantity it needs to meet the demand 

and remanufacture everything, or it will obtain enough that it can sort only the low cost items for 

remanufacture. 

 

2.2 Stochastic Yield 

In practice, of course, there will be uncertainty regarding the actual value of α for a given lot of 

acquired products.  We now incorporate this uncertainty into the analysis by modeling the actual 
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quantity of low cost items for a given acquisition amount as a binomially distributed random 

variable.  The binomial distribution is appropriate in situations where the process is in statistical 

control and the production of any individual item is independent of all other items (Yano and Lee 

1995, Barad and Braha 1996, Grosfeld-Nir and Gerchak 2004) – an accurate description of most 

remanufacturing environments.  In this scenario, the remanufacturer will process all low cost 

items initially, setting aside the high cost items during sorting.  If demand is fulfilled using only 

low cost items, then the high cost items are not needed and are scrapped.  If demand is not met 

using only low cost items, then high cost items are processed until demand has been fulfilled.  

We incorporate stochastic yield into our analysis in two ways – first with a newsvendor-type 

approximation, and then with an exact algorithm. 

We can adjust the deterministic yield model to account for binomially distributed yield 

using an approach similar to a newsvendor model with normally distributed demand.  Define the 

likelihood of a shortage given an acquisition quantity P as follows: 

( )PQNp |<  where N is the number of low cost items 

Therefore, the marginal unit of acquisition P satisfies the following: 

( ) usPQNp =< ~| α           (3) 

The left hand side of (3) is the expected value of acquiring one more used item: specifically, the 

probability that we have less than Q low cost items, multiplied by the probability that the next 

item acquired will be low cost, multiplied by the savings that will result from replacing a high 

cost item with a low cost one.  When this equals the cost of acquiring one more item, u, we are at 

the margin. 

Since the normal distribution approximates the binomial very well for all ( ) 101 ≥− pnp  

(Ross 2002), we can take the quantity of low cost items acquired to be the analog of normally 
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distributed demand in the standard newsvendor problem.  Define Φ(x) as the probability of 

acquiring less than Q low cost items, given that the quantity of low cost items is normally 

distributed with mean αP and standard deviation ( )αα −1P .  Now (3) can be written as; 

( )
s

uP ~α
=Φ            (4) 

The value of P for which (4) holds can be easily obtained.  Using this simple technique, we can 

incorporate yield uncertainty into our determination of a cost-minimizing policy (see Example 

1). 

In order to verify that our newsvendor approach is accurate, we present an exact 

formulation of the stochastic yield model.  Modeling yield as binomially distributed, we have the 

following cost expression: 
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We now show that (5) is “discrete convex,” i.e. first differences of the function are 

monotonically increasing in the decision variable (Barad and Braha 1996), and therefore a 

unique global minimizer exists for (5). 

PROPOSITION 1: The cost function (5) is discrete convex with a unique minimum value. 

Proof:  See Appendix A. 

Given Proposition 1, the numerical search for the minimizer of (5) is straightforward. 

We can use the deterministic solution from the previous section to gain insights into the 

minimizer of (5).  For example, consider the case in which the deterministic yield solution from 

(2) is P*=Q (i.e. us <~α ).  When yield is stochastic, we can calculate the benefits from obtaining 

one extra unit – if the extra unit is low cost, then it can be processed instead of a high cost item.  

This leads us to the following proposition: 
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PROPOSITION 2: If P*=Q assuming deterministic yield, then P*=Q when the deterministic yield 

assumption is relaxed. 

Proof:  The acquisition cost of unit Q+1 is u.  The expected benefit from acquiring unit Q+1 is 

the probability that it can be used to replace a high cost item with a low cost one multiplied by 

the savings enabled by that substitution: s~α .  Therefore, unit Q+1 should be acquired when 

su ~α< .  From (2), we know that this is never the case when P*=Q in the deterministic yield 

case. □ 

 Next, consider the case where the deterministic yield solution is P*=Q/α.  Recall that the 

decision to acquire extra items is driven by the relative values of u and s~α , i.e. what the extra 

item costs versus its expected reduction in remanufacturing costs.  Evaluating this tradeoff when 

yield is stochastic, we have the following proposition. 

PROPOSITION 3: If P*=Q/α assuming deterministic yield, then for sufficiently large Q, Q/α is the 

critical point in the stochastic yield solution: 

whenever 
2

~su α
≤ , Q/α is a lower bound on P* 

whenever 
2

~su α
> , Q/α is an upper bound on P*. 

Proof:  See Appendix B. 

Note that the bounds defined by Proposition 3 can be confirmed in the experimental results in 

Appendix C. 

 

Example 1: 

We now present an example of the determination of an optimal acquisition quantity to meet a 

given demand when condition is dichotomous.  We calculate the optimal policy three ways – 
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first, using the simple deterministic yield approximation; next, using the newsvendor-type 

approach; and finally using the exact stochastic yield model.  In this example, we use parameter 

values derived from data for an actual laser toner cartridge, obtained from a large 

remanufacturing firm in that industry (values have been disguised): 

 

Table 1: Parameter Values for Example 1 

Parameter Example Value 

u (acquisition cost) $1.33 

C1 (low cost) $20.41 

C2 (high cost) $23.19 

α (proportion that are 
low cost) 

0.5 

Q (demand) 2000 

 

 

Note that 39.1~ =sα  ( 12
~ CCs −= ).  Therefore, from (2) we know that the optimal 

acquisition quantity assuming deterministic yield is: P* = Q/α = 2Q.  Thus, the heuristic solution 

to this example can be summarized as follows: to minimize unit costs, acquire 4000 used 

cartridges and remanufacture the virgin cartridges.  If demand of 2000 is not met after processing 

all virgin cartridges, use non-virgins to make up the shortfall.  Next, we can determine that (4) 

holds when P=3893 in this case.  Therefore, the newsvendor solution is to acquire 3893 used 

cartridges and process them in the same way as above.  Finally, we verify that our newsvendor 

approach resulted in the true optimal solution by solving the stochastic yield model exactly.  We 

can see from Proposition 3 that 2Q is an upper bound on the optimal solution.  Using a simple 
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numerical search beginning at the upper bound of P=4000, we can find that (5) is minimized 

when P=3893.  Therefore, the true optimal solution was exactly specified by the newsvendor 

approach – acquire 3893 used cartridges, and if the demand of 2000 is not met after processing 

all the virgin cartridges, use non-virgins to make up the shortfall.  This exact match of the 

newsvendor and exact solutions is not surprising given the fact that ( ) 1025.9731 >>=− pnp . 

We can calculate the expected cost of each of the solutions by evaluating (5) for each 

value of P.  The expected cost to meet the demand using the exact solution (P=3893) is 

$46,147.90, while the expected cost when using the deterministic yield approach (P=4000) 

would be $46,175.10.  Note that the cost increase resulting from the use of the deterministic 

yield heuristic in this example is 0.06%. 

Appendix C contains the solutions to (5) for several classes of problems.  In that 

appendix, we report the exact optimal policy as defined by the number of used products to 

acquire, P.  For all examples, since np(1-p) is far greater than 10, the exact solution can be 

obtained either by using the newsvendor approach (solving (4)) or by minimizing (5).  We also 

report the policy suggested by the deterministic yield heuristic and the cost savings that can be 

achieved by using the true optimal policy. 

 

3. Optimal Policies for Continuous Used Product Condition 

 

3.1 Deterministic Yield 

For more complex used products, the cost to remanufacture cannot be accurately reflected by a 

simple dichotomous condition model.  In these cases, the condition of used items could fall 

anywhere along a continuum – from very low cost to very high cost.  For example, a used cell 
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phone could have any combination of a wide array of potential remanufacturing needs (antenna, 

screen, microphone, speaker, faceplate, etc.).  When product condition is defined along a 

continuum, the expected yield α is no longer exogenous.  Rather, it is a decision variable, since 

the remanufacturer can control the expected fraction of products sorted for remanufacture by 

adjusting the “cutoff” condition for remanufacturing – for example, a phone for which the screen 

and speaker are both damaged may or may not be remanufactured, depending on the cutoff 

determined by the remanufacturer.  Galbreth and Blackburn (2006) describe how the sorting 

policy can be used to control yield in this way.  Given any continuous distribution describing 

used product condition, a manager can effectively set expected yield anywhere between zero and 

one by adjusting the criteria required for a used product to be sorted for remanufacture versus 

scrap.  Figure 1, adapted from that paper, contains a graphical representation of this concept. 

 

 

 

Figure 1: How expected yield can be controlled using the sorting cutoff 
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 We now provide a summary of the formulation of Galbreth and Blackburn (2006) for the 

case of a known demand, continuous condition and deterministic yield.  Note that, assuming 

deterministic yield, there is a single decision variable, the acquisition quantity P, and α is simply 

defined as P
Q=α .  In other words, for a given acquisition amount, yield will always be 

selected such that the quantity remanufactured equals the demand.  The cumulative distribution 

of used product condition is denoted as G(.), with the corresponding density function g(.).  Given 

G(.), the cutoff cost, i.e. the maximum cost acceptable for remanufacturing to meet a target yield, 

is some remanufacturing cost t such that: 

( ) α=tG , or ( ) P
QtG =  

The sorting policy is defined by the value of t – products with remanufacturing cost 

greater than t are scrapped, while those with cost less than t are remanufactured (note that both α 

and t are functions of the single decision variable P in this case).  We can express this cutoff cost 

as a function of P: 

⎟
⎠
⎞⎜

⎝
⎛= −

P
Qt G 1  

and the average cost to remanufacture one unit, C , as: 

 
( )

α

∫
=

t

dxxxg
C 0  

Adding an acquisition cost term, we have the following expression for total acquisition and 

remanufacturing cost: 

( ) QCuPPTC +=           (6) 
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Note that, given the deterministic yield assumption, the calculation of the optimal α once *P  is 

determined is trivial, since *
*

P
Q=α , and the optimal condition cutoff to be used in sorting the 

P used products is simply ( )*1 αGt −= .  Similar to our dichotomous condition analysis, we 

assume that the remanufacturer always prefers to meet the demand rather than be short – in other 

words, given a unit shortage penalty s, we assume that the following condition holds: s>u+B, 

where B is the maximum value that g(.) can attain. 

Given any uniformly distributed g(.), we can extend the work of Galbreth and Blackburn 

(2006) by deriving a closed form expression for the optimal P.  First, note that that paper showed 

that QC is convex decreasing and has the following first derivative: 

( )

( ) ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛−= −

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

∫

∫
−

−

P
Q

G
dxxg

G
dxxxg

P
QD G

P
Q

P
Q

1

0

0
1

1

        (7) 

The other component of (6), uP, is obviously linearly increasing.  Since QC  is convex 

decreasing, its derivative D is increasing (becoming less negative) in P, so ( )D−  is decreasing in 

P.  Therefore, (6) is minimized when ( ) uD =− , since acquiring the next item after this amount 

would increase acquisition costs by u, but decrease remanufacturing costs by less than u. 

PROPOSITION 4: Given that g(.) is any uniform distribution [A,B], the cost-minimizing 

acquisition quantity P* is: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

=

AB
u

QQMAXP
2

,*          (8) 
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Proof: substituting α=Q/P into (7), we have: 

( )
( )

( )
( )

( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−= −

∫

∫
−

−

αα
α

α

GG
dxxg

G
dxxxg

D 1

0

0
1

1

        (9) 

which simplifies to: 

( ) ( )[ ]⎥⎦
⎤

⎢⎣
⎡ −+−

−+
= ABAABAD ααα

2
2

       (10) 

further simplified: 

( )
2

2 BAD −
=

α
          (11) 

To find the minimizer, we set (11) equal (-u) and solve for α∗: 

AB
u

−
=

2*α  

Since P*=Q/α∗, we now have 

AB
u

QP

−

=
2

* . 

Given our assumption that shortages are never preferred, we add the condition that P* must be at 

least equal to Q. □ 

 In (8) we provide a closed form solution to the deterministic yield, uniformly distributed 

condition problem.  Given a demand (Q), an acquisition cost (u), and the upper and lower bounds 

on used product condition (A and B), we can determine the acquisition quantity and 

corresponding target yield that will minimize costs when yield is deterministic.  Note that P* is 

decreasing in u, as expected.  It is also increasing in condition variability, i.e. the spread between 

the highest and lowest cost items (B-A).  This makes intuitive sense given that the potential 
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savings from acquiring more used items increases as the variability of those items increases (e.g., 

if all used products are in approximately the same condition, the benefit of acquiring additional 

ones is minimal). 

 

3.2 Stochastic Yield 

As in the dichotomous condition case, when condition is defined on a continuum the yield 

actually realized for a given batch might not be exactly what was expected for the sorting policy.  

Recall that, unlike with dichotomous condition, α is now a decision variable.  Since overage and 

shortage costs are relevant to the analysis when yield is stochastic, a given value of P does not 

necessarily correspond to a specific value of α.    For example, when shortage costs are high, the 

remanufacturer might react by increasing P or increasing α or increasing both.  Thus, the 

remanufacturing problem with a continuous condition distribution becomes multidimensional 

when yield uncertainty is considered.  As in the dichotomous condition case, we include the 

possibility of recourse if demand is not met after initial processing: the remanufacturer sets aside 

items that do not meet the sorting criteria, and if demand is not met using items initially sorted 

for remanufacture, then items that were set aside are processed until demand is met. 

 Before addressing the multidimensional problem, we note that if we hold α constant, a 

newsvendor-type approach identical to the one in Section 2 can be used to improve the 

deterministic solution.  The only change to the approach would be to the shortage cost parameter 

– in the continuous condition case, shortage costs are defined as the difference between the 

expected cost of the items initially sorted for scrap and the items initially sorted for 

remanufacture.  Therefore, when g(.) is uniform on [A,B], shortage cost is simply the following 

constant: 



 

39 

222
ˆ ABAttBs −

=
−

−
−

=  

We can adjust (4) to reflect the new shortage cost: 

( )
s

uP
ˆα

=Φ            (12) 

The value of P for which (12) holds can be easily determined.  Using this simple technique, we 

can obtain an improved heuristic solution without resorting to the full multidimensional 

stochastic yield model (see Example 2). 

Next, we present an exact formulation of the stochastic yield, continuous condition 

problem.  Given that α and P can be adjusted independently, this problem has the following 

form: 

( ) ( ) [ ]NQ
N
P

sQCuPPf NP
Q

N

N −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= −

−

=
∑ ααα 1ˆ,

1

0

         (13) 

The problem of maximizing (13) is a multidimensional discrete optimization problem with 

decision variables P and α.  Note that, unlike in the dichotomous condition case, 

remanufacturing costs are not constant but are functions of the decision variable α.    As in the 

previous section, the actual condition cutoff used in sorting is defined as ( )αGt 1−= .    We 

analyze the case where used product condition g(.) is any uniform distribution and obtain the 

following result. 

PROPOSITION 5: The cost function (13) is discrete convex and attains a unique minimizer. 

Proof: see Appendix D. 

Given the convexity of the function, we can find the solution to (13) using a 

neighborhood search algorithm.  The efficiency of a neighborhood search approach is 

significantly impacted by the quality of the starting point selected.  For the starting point in our 
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neighborhood search we use the solution to the deterministic yield formulation as defined by (8).  

Using this easily obtained starting point, we are able to locate the minimizer to (13) very 

efficiently, even for large problems. 

 

Example 2 

We now present an example of the determination of an optimal acquisition quantity to meet a 

given demand when condition is described by a continuous distribution.  For example, consider a 

cell phone whose remanufacturing cost, depending on the combination of remanufacturing 

needs, could be anywhere from $0 (brand new) to $24.00 (all key components are damaged).  

Parameter values representative of cell phone remanufacturing are presented in Table 2: 

 

Table 2: Parameter Values for Example 2 

Parameter Example Value 

g(x) Uniform(0,24) 

u 1 

Q 100 

 

 

Using (8), the optimal acquisition quantity assuming deterministic yield can be calculated as 

P*=346.  The corresponding target yield, α*, is therefore 100/346=0.29, and the optimal cutoff t 

is G-1(0.29)=$6.96.  Thus, the heuristic solution can be summarized as follows: to minimize 

costs, acquire 346 used phones; as each phone is processed, it will be sorted for scrap if its cost 
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to remanufacture is more than $6.96.  If the demand of 100 is not met after initial processing, 

remanufacture items initially sorted for scrap to make up the shortfall. 

 Next, we can use the newsvendor-type approach in (12) to obtain a new approximation.  

Note that this limits us to solutions with the same α as the deterministic yield model solution, 

α=0.29.  Since (12) holds when P=362, we have a new optimal acquisition quantity of 362 using 

this approach. 

Finally, we can solve the problem using the stochastic yield model presented above1.  

Using a neighborhood search, we can find that (13) is minimized when P=349 and α=0.30 

(corresponding to a cutoff of $7.20).  Therefore, the true optimal solution would be to acquire 

349 used phones as process them using a $7.20 sorting cutoff. 

We can calculate the expected cost of the solutions by evaluating (13) for each one.  The 

expected cost when using the deterministic yield heuristic solution (P=346, α=0.29) would be 

$732.35.  Using the newsvendor approach to improve this approximation (P=362, α=0.29) gives 

an expected cost of $727.94, for a savings of 0.60%.  The expected cost to meet the demand 

using the exact solution (P=349, α=0.30) is $727.62, a savings of 0.65%. 

Appendix E contains solutions to the continuous condition model, both as it is formulated 

in (13) and using each heuristic, for several classes of problems.  

 

                                                 
1 Note that, while we could use the same logic as in Proposition 3 to determine whether P* from the deterministic 
model provides an upper or lower bound on the stochastic yield solution, this conclusion would only be valid when 
the true α* equals the α* defined by the deterministic model.  Since the true α* might be higher or lower than what 
was found in the deterministic model, a general representation of the relationship between the deterministic solution 
and the true P* is not available in this case (although the deterministic solution does provide a starting point for the 
efficient determination of the true P*, as described above). 
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4. Results 

Appendices C and E allow us to compare remanufacturing policies obtained using the more 

parsimonious deterministic yield model with those obtained from the more accurate newsvendor 

and exact approaches.  In the dichotomous condition case in Appendix C, optimal policies are 

fully defined by the acquisition amount, P, since condition categories for sorting are given.  

Appendix E presents the results for continuous condition, where sorting policy is controlled by 

management via the target yield.  For these problem classes, the optimal policy is defined in 

terms of the acquisition amount, P, and the target yield, α. 

A very clear pattern can be seen in the experimental results: for either type of condition 

distribution, the approximation provided by the deterministic yield model improves as demand 

increases.  This is as expected given that the actual yield will converge to the expected value 

assumed by the deterministic model as demand increases. 

Another observation regarding the results in the appendices is the role of shortage costs in 

the performance of the deterministic yield model.  Specifically, in Appendix C, we can examine 

the deterministic yield results when the critical fraction, 2
~sα , is very close to the overage cost, 

u.  This fraction is closest to u for high α/low s~ , low α/medium s~ , and medium α/medium s~ .  

In these cases, the deterministic yield model approximates the exact solution very closely.  When 

the critical fraction is not near u, e.g. high α/high s~ , the performance of the deterministic model 

is worse.  This is not surprising given the fact that the deterministic model ignores the possibility 

of a shortage – when shortage and overage costs are widely disparate, the heuristic can be 

expected to perform worse.  Although there is no simple critical fraction for the 

multidimensional continuous condition model, we note that when an analogous value, 2
ŝα , is 
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very far from u, the performance of the deterministic estimate is worse, e.g. the high variability 

case. 

It is important to note that, while the deterministic yield heuristic performed better for 

higher demands and some ranges of shortage costs, it always found a solution with an expected 

cost well within 1% of the exact solution in our experimental analysis.  In most cases, the 

heuristic was within 0.1% of the optimal solution.  Therefore, while the assumption of 

deterministic yield is most appropriate when demands are high and the value of the critical 

fraction is near u, we find that it is in fact quite reasonable in most remanufacturing settings. 

 

5. Conclusions 

The models developed and analyzed in this paper contribute to the remanufacturing research area 

in several ways.  First, we have provided new models to address the acquisition and sorting 

aspects of remanufacturing operations, areas identified by Guide et al. (2003) as in need of 

additional research.  In addition, we have performed the model extension suggested in Galbreth 

and Blackburn (2006) to the case of stochastic yield.  We did this using both a simple 

newsvendor-derived algorithm and an exact solution to the discrete optimization problem.  Our 

newsvendor approach provides optimal solutions for any reasonably-sized problem with 

dichotomous condition, and it performs very well in the continuous condition case also.  Thus, 

we have provided a simple and accurate approach to incorporating yield uncertainty into 

acquisition and sorting decisions. 

By comparing it with exact solutions, we find that the model assuming deterministic yield 

is often reasonable, providing near-optimal solutions in a wide range of scenarios.  Specifically, 

that model performs very well when demand levels are high and shortage costs are more in line 
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with overage costs.  These findings provide justification for the use of the much simpler and 

more tractable deterministic yield models of remanufacturing.  We also note that the 

deterministic model for continuous condition serves an important role by providing the starting 

point of the solution algorithm for the stochastic yield problem. 

We see several directions for future research in the area of acquisition and sorting 

policies for remanufacturing.  One interesting extension to our model would be to include 

constraints or penalties for scrapping used products.  An advantage of remanufacturing is its 

positive impact on the environment by extending the usable life of products.  Given that 

scrapping large percentages of acquired products conflicts with this advantage, future research 

should explicitly consider the direct and indirect costs of scrapping.  Debo et al. (2005) suggest 

that a unit disposal cost might be a relevant consideration in remanufacturing research, and this 

change can be easily incorporated into most models, including the ones presented in this paper.  

In addition, analysis of the usefulness of models like this one when used product condition is 

described by more complex distributions, ideally obtained from empirical data, would also 

further the knowledge in this emerging research area. 
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Appendix A 

 

Note: this proof follows the approach used by Barad and Braha (1996). 

For any P, we have the following function for f(P+1): 

( ) ( ) [ ]NQ
N
P

sCQPuPf NP
Q

N

N −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+++=+ −+

−

=
∑ 1

1

0

1
1~)1(1 αα         (A1) 

or, simplifying the notation: 

( ) [ ] [ ]1|~)1(1 +−+++=+ ∑
<

PNpNQsCQPuPf
QN

       (A2) 

From elementary probability theory we have: 

( )( ) ( )( ) ( ) ( )PNpPNpPNp |1|11| αα −+−=+          (A3) 

Subtracting (5) from (A2) and using (A3) gives the following expression for the first difference: 

( ) [ ] ( )[ ] [ ]{ }PNpPNpNQsuPf
QN

||1~ −−−+=∆ ∑
<

α         (A4)  

which after some algebraic manipulation simplifies to: 

( ) ( )PQNpsuPf |~ <−=∆ α           (A5)  

Letting ( ) ( )PQNpP |≥=Ψ : 

( ) ( )( )PsuPf Ψ−−=∆ 1~α            (A6)  

or, equivalently: 

( ) ( )( )PssuPf Ψ+−=∆ αα ~~           (A7)  

Since ψ(P) is strictly increasing for all QP ≥ , we can say that (A7) is a monotonically 

increasing function of P.  We conclude the proof by noting that, since ( ) 0lim >=∆
∞→

uPf
P

, (A7) 

has a unique minimum. □
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Appendix B 

 

For any P, we have the following function for f(P+1): 

Assume that Q/α items are acquired.  Note that acquiring one item less reduces costs when the 

following condition holds: 
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That is, when the unit acquisition cost saved exceeds the expected increase in shortage costs. 

From elementary probability theory we have: 

( )( ) ( ) ( )( ) ( ) ( )( )1|11|1| −−+−−= PNpPNpPNp αα          (A9) 

Simplifying (A8) using (A9): 

[ ] ( ) ( )[ ] ( )[ ]{ }1|1|1~ −−−−−> ∑
<

PNpPNpNQsu
QN

α         (A10)  

which after some algebraic manipulation simplifies to: 

( )( )1|~ −<> PQNpsu α            (A11) 

Note that, when P=Q/α, the likelihood of shortage is 0.5 for sufficiently large Q.  Thus, since P is 

decreased by one in (A11), we know that ( )( ) 5.01| >−< PQNp .  Therefore, it is clear that, when 

2

~su α
≤ , (A11) will never hold, therefore decreasing P will never improve the solution.  Similarly, 

when 
2

~su α
> , (A11) will always hold, therefore decreasing P will always improve the solution. □ 
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Appendix C 

 

demand 
(Q) 

s~  α deterministic yield heuristic: 
P, cost 

exact solution: 
P, cost 

cost 
savings 

low 200, $2314.83 177, $2308.69 0.27% 

medium 143, $2237.12 139, $2236.30 0.04% low
 

high 111, $2192.24 111, $2192.24 0.00% 

low 200, $2320.47 198, $2320.26 0.01% 

medium 143, $2241.38 145, $2241.19 0.01% 

me
diu

m 

high 111, $2194.85 113, $2194.23 0.03% 

low 200, $2326.10 203, $2325.58 0.02% 

medium 143, $2245.65 147, $2243.76 0.08% 

low
 (1

00
) 

hig
h 

high 111, $2197.45 114, $2195.33 0.10% 

low 1000, $11552.50 947, $11538.90 0.12% 

medium 714, $11168.50 706, $11167.00 0.01% low
 

high 556, 10951.80 555, $10951.70 0.00% 

low 1000, $11565.10 995, $11564.80 0.00% 

medium 714, $11178.40 719, $11177.70 0.01% 

me
diu

m 

high 556, $10957.00 559, $10955.90 0.01% 

low 1000, $11577.80 1008, $11576.40 0.01% 

medium 714, $11188.40 724, $11183.20 0.05% 

me
diu

m 
(5

00
) 

hig
h 

high 556, $10962.30 562, $10958.30 0.04% 

low 4000, $46175.10 3893, $46147.90 0.06% 

medium 2857, $44647.10 2840, $44644.10 0.01% low
 

high 2222, $43791.20 2221, $43791.20 0.00% 

low 4000, $46200.30 3991, $46199.60 0.00% 

medium 2857, $44666.80 2866, $44665.30 0.00% 

me
diu

m 

high 2222, $43802.70 2320, $42799.50 0.01% 

low 4000, $46225.50 4017, $46222.60 0.01% 

medium 2857, $44686.40 2877, $44676.20 0.02% 

hig
h (

20
00

) 

hig
h 

high 2222, $43814.20 2234, $43804.10 0.02% 

Parameter values: u=1.33; C1=20.41; s~ =2.78, 4.78, 6.78; α=0.5, 0.7, 0.9 
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Appendix D 

 

In order to prove that the multidimensional function (13) is discrete convex in both decision 

variables, we analyze second differences of the function when both variables are increased 

simultaneously.  Let P increase by 1 and α increase by ε.  The change in α results in changes to 

C , since the average cost to remanufacture increases as expected yield is increased, giving the 

following expression (recall that ŝ  is a constant): 
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where ( )( )
22

ABAC −+
+=

εα . 

or, simplifying the notation: 

( ) ( ) ( ) ( )( )[ ]∑
<

+−+++=++
QN

PNpNQsQCPuPf 1|ˆ1,1 22εα     (A13) 

where pp >2 . 

Define δ as the difference in expected underage when α is increased by ε: 

( ) ( )( )[ ] ( ) ( )( )[ ]∑∑
<<

+−−+−=
QNQN

PNpNQPNpNQ 1|1| 2δ  

We can rewrite (A13) using δ as follows: 

( ) ( ) ( ) ( )( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−+++=++ ∑

<

δεα
QN

PNpNQsQCPuPf 1|ˆ1,1 2    (A14) 

Using the approach from Appendix A, we can subtract (13) from (A14) to obtain the following 

first difference expression: 

( ) ( ) ( ) δαα sPQNpsQCCuPf ˆ|ˆ, 2 −<−−+=∆       (A15) 



 

49 

To further simplify the expression, let ( ) ( )PQNpP |, ≥=Ψ α : 

( ) ( ) ( ) δααα sPsQCCuPf ˆ,ˆ, 2 −Ψ+−+=∆        (A16) 

Note that ( )CC −2  does not depend on either decision variable and is a constant for any ε: 

( )
2

ABAC −
+=

α ; ( )( )
22

ABAC −+
+=

εα ; Therefore, ( )
22

ABCC −
=−

ε . 

We now examine second differences of the function.  Incrementing the decision variables in 

(A16) gives us the following: 

( ) ( ) ( ) ( ) δεαεαεα sPsQCCuPf ˆ,1ˆ,1 2 −++Ψ++−+=++∆     (A17) 

Subtracting (A16) from (A17) and simplifying, we have: 

( ) ( ) ( )[ ] ( )εαεαεααα ++Ψ+Ψ−++Ψ=∆ ,1ˆ,,1ˆ,2 PsPPsPf     (A18) 

An inspection of (A18) confirms that it is always positive.  We conclude the proof by noting that 

( ) 0ˆ11
,1

>+=
∞→→

suALim
Pα

, so the function attains a unique minimum. □ 
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Appendix E 

 

demand condition 
variability 

deterministic solution: 

P, α,cost 

newsvendor solution: 

P, α, cost (savings) 

exact solution: 

P, α, cost (savings) 

low 141, .71, $287.18 137, .71, $286.48 (0.24%) 137, .71, $286.48 (0.24%) 
medium 265, .38, $550.67 271, .38, $550.36 (0.06%) 263, .39, $550.20 (0.09%) low

 

(1
00

) 

high 346, .29, $732.35 362, .29, $727.94 (0.60%) 349, .30, $727.62 (0.62%) 

low 707, .71, $1424.79 698, .71, $1422.60 (0.15%) 704, .70, $1422.52 (0.16%) 

medium 1322, .38, $2693.44 1330, .38, $2692.77 (0.02%) 1330, .38, $2692.77 (0.02%) 

me
diu

m 

(5
00

) 

high 1732, .29, $3549.33 1760, .29, $3541.83 (0.21%) 1760, .29, $3541.83 (0.21%) 
low 2828, .71, $5680.41 2810, .71, $5674.48 (0.10%) 2837, .70, $5673.71 (0.12%) 

medium 5292, .38, $10676.90 5292, .38, $10676.90 (0.00%) 5292, .38, $10676.90 (0.00%) 

hig
h 

(2
00

0)
 

high 6928, .29, $14019.20  6969, .29, $14011.30 (0.06%) 6969, .29, $14011.30 (0.06%) 

Parameter values: u=1; g(x)=U(0,4), U(0,14), U(0,24) 
bold indicates that newsvendor solution is exact (whenever deterministic yield model specifies the true optimal α)
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CHAPTER III 

 

MODELS FOR OFFSHORE REMANUFACTURING WITH VARIABLE USED PRODUCT 
CONDITION 

 

1: Introduction and Literature Review 

For many products, offshore production may provide a lower cost on average without a 

significant difference in quality (Venkatraman 2004).  However, offshoring remanufacturing also 

involves higher shipping and handling costs and longer lead times relative to domestic 

production.  Lead times might prevent the use of the offshore facility to meet some demands.  

Even when demand is known with sufficient time to send items offshore, the production cost 

savings must be considered along with increased shipping and handling costs to determine the 

true cost advantage of offshoring. 

In remanufacturing, the amount of processing required to restore a given used item to 

saleable condition is often variable.  If the remanufacturing requirement is very low, then the 

additional shipping and handling costs might make offshore remanufacturing an unattractive 

option.  Krikke et al. (1999) describe tradeoffs such as these when evaluating a proposed copier 

remanufacturing site in the Czech Republic.  Carter et al. (1997) provide a discussion of the 

factors leading to higher logistics costs and lead times for a firm choosing China for offshore 

production, and they note that these costs could potentially outweigh any production cost 

savings.  The consideration of such international elements in reverse logistics has been identified 

as an area in need of research (Rogers and Tibben-Lembke 2001).  The focus of this research is 

to evaluate how the offshoring decision changes in a remanufacturing environment, where the 

processing requirements of the used items are variable. 
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The variability in the condition of used products obtained for remanufacturing has been 

noted extensively in the literature.  While many studies have acknowledged the problem 

(Bloemhof-Ruwaard et al. 1999, Blumberg 1999, Stanfield et al. 2004, Franke et al. 2005), few 

have addressed its implications for remanufacturing profitability.  Fleischmann et al. (1997) 

discuss the variability of supply quality as a distinguishing characteristic of reverse vs. forward 

distribution.  In their 2004 paper, Savaskan et al. point to the growing interest in research which 

considers the quality variability in return flows.  They analyze three collections options and 

discuss the conditions under which different collections processes and supply chain structures are 

appropriate.  However, their model assumes homogeneous quality of returned products for each 

collection option and that all returned products are remanufactured for resale (100% yield).  

Krikke et al. (1999) mention the variability of returned product quality, but their MILP 

formulation of a reverse logistics network includes only a fixed unit cost of remanufacturing.  

In this paper, we assume that used products are obtained as needed, e.g. from third party 

brokers, and are inspected immediately at a central facility (Rogers and Tibben-Lembke (2001) 

find that a single central collection facility is used in nearly 70% of reverse supply chains).  

Some products are immediately scrapped (Guide and Van Wassenhove (2002) and Blackburn et 

al. (2004) discuss this type of early differentiation of used items as a valuable reverse logistics 

strategy), and the remaining items are remanufactured at one of two locations – domestic or 

offshore.  This choice of remanufacturing facility for each individual used product has been 

mentioned as a critical step in reverse logistics (Rogers and Tibben-Lembke 2001). 

We determine optimal strategies for two models of offshore remanufacturing.  First, we 

examine a two-period model in which only the second period demand is known with sufficient 

lead time to use the offshore facility and no demand is anticipated beyond the second period.   
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We use this model to analyze, in a simple setting, the tradeoffs between domestic and offshore 

remanufacturing.  Second, we extend the analysis to the multi-period case in which demand is 

stable and the use of the offshore facility is always feasible in steady state.  We identify 

situations in which offshoring all remanufacturing is always optimal when lead times allow, as 

well as cases in which a domestic facility has a role in the optimal solution, even when there is 

sufficient lead time for remanufacturing offshore.  We also identify conditions under which a 

mixed strategy of domestic and offshore remanufacturing, with the advantages of each facility 

being leveraged, will result in lower costs than either a purely domestic or purely offshore 

approach.  We show that this mixed strategy remains optimal as the product matures and fewer 

of the used items acquired are in good condition. 

 

2: A two-period model of remanufacturing 

In this section, we examine a two-period problem in which two locations, domestic and offshore, 

are available for remanufacturing used items (Figure 1).  In this model, Period 1 demand is not 

known far in advance – when the order is received, it must be met quickly.  The model is 

constructed in this way to reflect the fact that, as pointed out by Ferrer and Whybark (2001), 

some remanufacturers have limited advance knowledge of demand.  The domestic facility with 

its shorter lead times must be used to meet Period 1 demand.  Beyond this initial period, a single 

additional demand, in Period 2, is known.  Period 2 represents the end of the product life cycle, 

and after that period no more demand can be anticipated.  This reflects the situation in which 

product life cycles are short – for certain remanufactured items such as cell phones and other 

electronics, a stable, continuing demand is unlikely. 
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Figure 1: A Two-Period Remanufacturing Problem with Offshoring 

 

We make the following assumptions regarding the remanufacturing environment.  Used 

items are acquired as needed and fall into one of two categories – low-touch, indicating that the 

item can be made available for sale after a relatively small amount of remanufacturing, and high-

touch, indicating that a higher amount of remanufacturing is required before the product can be 

resold (this type of dichotomous sorting is common in practice and has been used in previous 

remanufacturing models, e.g. Aras et al. (2004)).  Items can be scrapped at the remanufacturer’s 

discretion (scrap value is assumed to be negligible, although any positive or negative scrap value 

can be captured in the model by an adjustment to unit acquisition costs).  Thus, the 

remanufacturer has the option of acquiring extra used products and meeting demand by 

remanufacturing only the low-touch items.  The proportion of used products in the low-touch 

category is denoted by α, with the remaining (1-α) being high-touch.  In this analysis, we 

assume no variability in α.  For example, if α = .18, then a batch of 100 used items will always 
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contain 18 low-touch products and 82 high-touch products.  See Chapter II of this manuscript for 

a detailed discussion of this assumption and situations for which it is reasonable.  Table 1 

contains a complete listing of the notation used in our analysis. 

 

Table 1: Notation 

Notation Description 
D Demand 
c cost to remanufacture a low-touch item at the 

domestic facility 
u unit acquisition cost of used items 
s round trip shipping cost to/from domestic 

plant 
ρ Cost reduction factor (offshore low-touch cost 

= c/ρ) (ρ>1) 
θ Shipping cost multiplier (offshore shipping 

=θs) (θ>1) 
λ Remanufacturing cost relationship (high-

touch cost = λc) (λ>1) 
α Proportion of low-touch items 

 

 

Two key parameters in our model capture the tradeoffs inherent in an offshoring decision.  

The parameter ρ represents the ratio of domestic remanufacturing costs to offshore, and it can be 

quite high (comparing some locations in China to the U.S., this parameter could exceed a value 

of 20).  This cost savings is offset to some extent by the higher shipping costs to and from the 

offshore facility, as indicated by θ. 

We acknowledge that there are many differences in the costs of using facilities in 

different parts of the world (Vidal and Goetschalckx 1997).  While it is impossible to explicitly 

include all of these in our model, our parameters allow us to capture many of them.  Specifically, 

the shipping cost parameters, s and θ, are location-specific costs that can include a variety of 
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components.  Any additional location-specific cost – for example, taxes, local tariffs, time-value 

effects, inventory costs, and capacity reservation costs – could be included in the values of these 

parameters.  

We now examine the optimal role of the domestic facility in the two-period problem.  

Recall that Period 1 demand must be met using the domestic facility.  The interesting question, 

therefore, is whether or not the domestic facility would be used again to meet some or all of 

Period 2 demand – equivalently, we can ask: is the optimal quantity of remanufactured items 

at the beginning of Period 2 ever less than D?  If so, then the optimal solution must use the 

domestic facility to meet at least some of Period 2 demand.  This question can be answered by 

identifying the lowest-cost approach to meet a single demand when lead times allow the use of 

either facility (as is the case for any Period 2 demand).  If an offshore approach has lower costs 

than any domestic approach, then no Period 2 demand will be unmet at the beginning of that 

period (there is time to use the cost-minimizing offshore facility, so it will be used).  By 

answering the question above, we can specify the conditions under which the domestic facility 

will never be used in the two-period problem except in Period 1, when it is the only feasible 

choice.   

Since, as described above, the role of the domestic facility in Period 2 can be determined 

by examining the case of a single demand, we now identify optimal solutions in that case.  

Assuming that shortages are prohibited, we know that at least D used items will be acquired.  

Furthermore, we know that at most D/α used items will be acquired, since this acquisition 

amount ensures that only low-touch items are remanufactured, and therefore there are no 

incremental savings from acquiring more.  Between these extreme points, the total domestic cost 

to acquire some amount of used items, Q, and remanufacture D of them is given by: 
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( )QDcQcsDuQ αλα −+++         (1) 

Since (1) is linear in Q, we know that one of its extreme points, D or D/α, is the optimal 

acquisition amount (the expression for offshore cost is similar and also linear in Q).  Therefore, 

the problem of meeting a single demand of D reduces to a choice between two alternatives for 

each location: 

a. Obtain D used items and remanufacture all of them 

b. Obtain D/α used items and remanufacture only the D low-touch items 

We begin by examining each alternative in the domestic case (denoted by subscript d).  The unit 

costs of each alternative are expressed below as a function of acquisition quantity:  

( ) ( ) sccuDCd +−++= λαα 1         (2) 

scuDCd ++=⎟
⎠
⎞

⎜
⎝
⎛

αα
          (3) 

Therefore the optimal pure domestic strategy is to obtain D used items whenever (2) < (3).  After 

some algebraic manipulation, we have the following: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛<

α
DCDC dd  when: 

ccu
−> λ

α
           (4) 

The above expression can be explained intuitively as follows.  When the cost to acquire one 

more low-touch item exceeds the savings from remanufacturing a low-touch item instead of a 

high-touch one, then no additional items will be acquired.  (4) can be simplified to the following 

restriction on λ: 

1+<
c

u
α

λ            (5) 
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(5) is depicted graphically in Figure 2 for various α: 

 

 

Figure 2: Optimal approaches to domestic remanufacturing 

 

From (5), we see that for high-touch remanufacturing requirements over a certain threshold, it is 

optimal for the domestic facility to incur extra acquisition costs and meet the demand using only 

low-touch items. 

We now examine the costs of using the offshore facility (subscript o).  Note that the same 

two alternatives exist as in the domestic case – acquire exactly the quantity demanded or acquire 

extra and only process the low-touch items.  Unit cost, as a function of acquisition quantity, to 

meet a demand D is as follows: 

( ) ( ) sccuDCo θ
ρ

λα
ρ

α
+

−
++=

1         (6) 
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scuDCo θ
ραα

++=⎟
⎠
⎞

⎜
⎝
⎛           (7) 

We then obtain: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛<

α
DCDC oo whenever 

ρ
λ

α
ccu −

>  

As with the domestic facility, when the cost to acquire one more low-touch item exceeds the 

savings from remanufacturing a low-touch item instead of a high-touch one, then no additional 

items will be acquired.  The above expression can be simplified to the following restriction on λ: 

1+<
c
u

α
ρλ            (8) 

which is depicted graphically in Figure 3 for various α: 

 

 

Figure 3: Optimal approaches to offshore remanufacturing 
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We can combine Figures 2 and 3 to identify the conditions under which offshore is 

always lower cost than domestic for each region of λ (Figure 4). 

 

 

Figure 4: Conditions under which offshore remanufacturing is lower cost than domestic, by 
region of λ 

 

Figure 4 defines three types of optimal policies based on λ values.  In the bottom region, 

the optimal policy at either facility is to obtain D used items and remanufacture all of them.  

Given values of α and λ that define a point in this region, we can simplify the bottom inequality 

in Figure 4 to derive a bound on offshore shipping costs (θ).  When this bound holds, offshore 

remanufacturing provides a lower total cost than domestic in this region of the figure: 

( )( )
1

111
+

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

<
s

c ααλ
ρ

θ         (9) 
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Note that (9) is an upper bound on the shipping cost penalty offshore – any value of θ above this 

level would result in domestic having lower cost.  This upper bound on θ is strictly increasing in 

λ, i.e. for larger high-touch remanufacturing requirements, this upper bound is less stringent and 

offshoring is more likely to be optimal. 

In the middle region of Figure 4, the optimal offshore policy is still to obtain D used 

items and remanufacture everything.  However, at the domestic facility, with its higher 

remanufacturing costs, it is optimal to obtain D/α used items and only remanufacture the low-

touch ones.  We can simplify the inequality for this region to the following bound on θ: 

( )
1

1111

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−⎟

⎠
⎞

⎜
⎝
⎛ −

<
s

ccu
ρ
αα

ρ
λ

α
θ        (10) 

The upper bound on θ in (10) is decreasing in λ.  Recall that, in this middle region, the offshore 

facility is processing all used items, while the domestic facility is only remanufacturing low-

touch items.  Therefore, as the remanufacturing cost of the high-touch items increases, offshore 

shipping costs must be lower for the offshore option to have lower cost. 

In the top region of Figure 4, high-touch items are so expensive to remanufacture that the 

optimal policy at either location is to obtain D/α used items and only remanufacture the low-

touch ones.  The inequality for this region can be simplified to: 

1

11
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

<
s

c
ρ

θ           (11) 

Note that (11) does not depend on λ – since no high-touch items are being remanufactured at 

either facility in these cases, their remanufacturing costs are irrelevant in this region. 
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 We can use (9)-(11) to define the region in which offshore remanufacturing results in 

lower costs than domestic (Figure 5). 

 

 

Figure 52: The shaded region is where the domestic facility will never be used after Period 1 in 
the two-period problem 

 

For parameter values in the shaded region of Figure 5, we know that the domestic facility 

will only be used in the first period of the two-period problem.  If the values of λ and θ for a 

particular remanufacturing problem fall within this region (i.e. offshore shipping costs (θ) are 

sufficiently low given the remanufacturing requirement of high-touch items (λ)), we know that 

                                                 
2 α is fixed at a value of 0.4 in this figure.  Parameters for this and all other figures in this paper are as follows: 
u=0.4, c=0.8, s=0.2, ρ=12, α=0.4.  Note that these parameters result in bounds on θ from (5) and (8) of 2.25 and 16, 
respectively. 
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the only role of the domestic facility is to meet unanticipated demand quickly.  For any demand 

that is known with sufficient lead time, the offshore facility will always be used. 

 

3: A multi-period model of remanufacturing with stable demands 

In this section, we extend our analysis to the multi-period case, in which demand for a 

remanufactured item is stable and known.  In this case, there is always sufficient lead time (after 

an initial ramp-up period) to use the offshore remanufacturing facility.  In the multi-period case, 

we consider the fact that a mixed strategy, in which some demand is met using domestic 

production in the current period and some is met by offshore production in a previous period, 

might be preferable to both the pure domestic and pure offshore strategies.  This type of strategy 

is depicted in Figure 6. 

 

  

Figure 6: A mixed approach to meeting stable, multi-period demands for remanufactured items 
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To motivate this discussion, we introduce an example based on our experience with a 

large U.S.-based remanufacturing firm.  We use this example to demonstrate how parametric 

changes can impact the optimal strategy for a remanufacturer – a detailed explanation of the 

dynamics of this decision is provided following the example.  Consider a toner cartridge 

remanufacturer that must meet a set of stable, known demands.  The firm has both domestic and 

offshore facilities available, and in steady state either facility can be used to meet any demand.  

In toner cartridge remanufacturing, the used items fall into one of two categories – virgins, which 

have not been previously remanufactured (low-touch), and non-virgins, which have already been 

remanufactured at least once and are in worse condition (high-touch).  In this example, although 

the actual values are not used, the values we assume are chosen to approximate the tradeoffs 

faced by a toner remanufacturer.  40% of the used items acquired are virgin cartridges (α=0.4).  

The used items cost $0.40 each, and it costs $0.80 per low-touch item and $4.00 per high-touch 

item to remanufacture domestically (u=0.4, c=0.8, λ=5).  Shipping costs are $0.20 per cartridge 

when the domestic facility is used and $1.60 per cartridge when the offshore facility is used 

(s=0.2, θ=8).  The offshore facility, with its much lower processing costs, can remanufacture a 

low-touch item for just $0.07 and a high-touch item for $0.33 (ρ=12).  See Table 2 for a 

summary of the parameter values used in this example. 
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Table 2: Example Parameters 

Notation Example Value 
c 0.8 
u 0.4 
s 0.2 
ρ 12 
θ 8 
λ 5 
α 0.4 

 

 

Since (5) does not hold for the parameters in Table 2, that is, ( ( )( ) 1
8.04.0

4.05 +> ), the 

optimal domestic approach is to acquire extra items and remanufacture only low-touch 

(scrapping the high-touch), for a total unit cost defined by ⎟
⎠
⎞

⎜
⎝
⎛

α
DCd .  The optimal offshore 

approach, since (8) does hold ( ( )( )
( )( ) 1

8.04.0
4.0125 +< ), is to acquire D items and remanufacture all of 

them, for a total unit cost of ( )DCo .  If the remanufacturer only considers these two pure 

strategies, he will have the following unit costs: ( ) 23.2$;00.2$ ==⎟
⎠
⎞

⎜
⎝
⎛ DCDC od α

and use the 

domestic facility, with its lower yield, to meet all demand. 

However, the remanufacturer could also consider an approach that processes the low-

touch items domestically but does not scrap the high-touch ones.  Since future demand is assured 

in the multi-period model, each of these high-touch items has potential value.  Incremental 

analysis can be used to determine if remanufacturing one of these high-touch items offshore has 

a lower cost than remanufacturing it domestically ( scsc
+<+ λθ

ρ
λ ) and a lower cost than 
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scrapping it and obtaining more low-touch items for domestic remanufacture 

( scusc
++<+

α
θ

ρ
λ ).  If these inequalities hold, offshore remanufacturing is the lowest cost 

alternative for one high-touch item.  Since all costs are linear in this model, we can further state 

that offshore remanufacturing is lowest-cost for all high-touch items when the inequalities hold, 

and it makes sense to send all high-touch items offshore (since all can eventually be sold).  

Therefore, we can say that a mixed strategy for the multi-period problem that remanufactures 

low-touch items domestically and high-touch offshore will always remanufacture all used items, 

so it will always have a yield of 100%.  This is a key characteristic of the mixed strategy – in 

the pure offshore and pure domestic cases, there are conditions under which the yield of the 

optimal policy is less than 100%, but the mixed approach will always result in 100% yield.  The 

unit cost of the mixed strategy is as follows: 

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+++= scscuDCm θ

ρ
λαα 1        (12) 

We can see that, in our example, ( ) 96.1$=DCm .  Since ( ) ⎟
⎠
⎞

⎜
⎝
⎛<

α
DCDC dm , the mixed strategy is 

optimal.  Note that if offshore processing became less attractive, the pure domestic approach 

with its lower yield could become optimal, even over the mixed strategy.  Consider the case in 

which the proportion of low-touch items increases to 50% (through, for example, the 

identification of a higher quality supplier).  With fewer high-touch items, the high-touch 

processing advantage offshore is less valuable, and an investigation of the costs indicates that 

( ) 80.1$;87.1$ =⎟
⎠
⎞

⎜
⎝
⎛=

α
DCDC dm .  Since we now have ( )DCDC md <⎟

⎠
⎞

⎜
⎝
⎛

α
, a pure domestic 

strategy that acquires extra used items and scraps the high-touch ones has a lower total cost than 

the mixed strategy that sends those high-touch items offshore. 
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Parametric changes could also cause a shift from a mixed to a pure offshore strategy.  For 

example, if θ were to drop to a value of 4 in our example (offshore shipping and handling drops 

to $0.80 per unit), then we would have ( ) ( ) 43.1$;00.2$;48.1$ ==⎟
⎠
⎞

⎜
⎝
⎛= DCDCDC odm α

, and the 

offshore costs would be low enough to justify shifting the remanufacturing of all items offshore. 

We now formalize the dynamics of the choice between the pure domestic, pure offshore, 

and mixed strategies as described in the example above.  First, we compare the mixed strategy to 

the pure offshore approach.  Recall that, for low λ (when (8) holds), the optimal pure offshore 

strategy is to obtain D used items and remanufacture all of them at a cost of Co(D).  It can be 

shown that Cm(D)<Co(D) when: 

1

11
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

>
s

c
ρ

θ           (13) 

Note that (13) doesn’t depend on λ, since the high-touch items are remanufactured offshore in 

either of the scenarios being compared.  Importantly, it also does not depend on α (see 

Proposition 1 below). 

In the other offshoring case, when λ is sufficiently high that (8) does not hold, acquiring 

D/α and remanufacturing only the low-touch items is the optimal pure offshore strategy.  In 

these cases, the mixed strategy results in lower costs when: 

( ) ( )
1

1111
+

⎟
⎠
⎞

⎜
⎝
⎛ −+−−−

>
s

ucc

α
α

ραραλ
θ        (14) 

Condition (14) is a lower bound that strictly increases in λ – since the mixed strategy is the only 

one of the two being compared in this case that remanufactures high-touch items, it is less likely 

to be optimal as the remanufacturing requirement of those items increases. 
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In summary, the mixed strategy results in lower costs that the optimal pure offshore 

strategy in the shaded region of Figure 7: 

 

 

Figure 7: the shaded region is where a mixed strategy results in lower costs than the optimal pure 
offshore strategy in the multi-period problem 

 

In Figure 7, we see that a mixed strategy is much more likely to be preferable to a pure offshore 

approach for values of λ below the threshold defined by (8) (i.e. 1+<
c
u

α
ρλ ). 

We can perform the same type of analysis as above to compare the mixed strategy to the 

pure domestic approach.  Recall that, for very low λ (when (5) holds), the optimal pure domestic 

strategy is to obtain D used items and remanufacture all of them at a cost of Cd(D).  It can be 

shown that Cm(D)<Cd(D) when: 

1

11
+

⎟⎟
⎠

⎞
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⎝

⎛
−

<
s

c
ρ

λ
θ           (15) 
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Condition (15) is an upper bound that strictly increases in λ, as expected – since the mixed 

strategy sends high-touch items to the lower-cost offshore location, it is increasingly likely to 

have lower total costs as the remanufacturing requirement for high-touch items increases.  

Therefore, the restriction on θ for a mixed strategy to be preferable to a pure domestic approach 

becomes more slack as λ increases – even as offshore shipping costs become quite high (high θ), 

the mixed approach might still make sense when high-touch remanufacturing requirements are 

high (high λ).  Note also that (15), like its analogous condition in the offshore case, (13), does 

not depend on α. 

In the other domestic case, when λ is sufficiently high that (5) does not hold, acquiring 

D/α and remanufacturing only the low-touch items is the optimal pure domestic strategy.  In 

these cases, the mixed strategy simply sends the high-touch items that would be scrapped in the 

pure domestic approach offshore, avoiding the necessity of acquiring extra units to meet demand.  

This results in lower costs when: 

1
1

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+<
s

c

s
u ρ

λ

α
θ           (16) 

Condition (16) is an upper bound that strictly decreases in λ, as expected – since the domestic 

strategy in this case does not remanufacture high-touch items, an increase in the processing cost 

of those items (λ) only hurts the mixed strategy, resulting in a more stringent bound on the 

offshore shipping costs (θ) for the mixed approach to be preferable. 

In summary, the mixed strategy results in lower costs than the optimal pure domestic 

strategy in the shaded region of Figure 8: 
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Figure 8: the shaded region is where a mixed strategy results in lower costs than the optimal pure 
domestic strategy in the multi-period problem 

 

In Figure 8, we see that the mixed strategy is preferable to the optimal pure domestic strategy 

when the offshore shipping costs (θ) are sufficiently low.  In other words, if the shipping cost of 

offshoring is not too high, then it lowers total costs to use the mixed strategy of remanufacturing 

high-touch items offshore and low-touch domestically as opposed to a pure domestic strategy. 

We can combine Figures 5, 7, and 8 to define three regions in the multi-period problem, 

(as shown in Figure 9): 

• Pure domestic is optimal (never remanufacture offshore) 

• Pure offshore is optimal (never remanufacture domestically) 

• A mixed domestic/offshore strategy is optimal 
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Figure 9: Optimal strategies for the multi-period problem 

 

Using Figure 9, we can make several observations about the multi-period problem. 

OBSERVATION 1: When 1

11
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

<
s

c
ρ

θ  (i.e., (11) holds), a pure offshore strategy is always 

optimal; otherwise, the domestic facility will always have a role in the optimal strategy. 

Observation 1 presents an interesting insight – in the decision of whether or not to pursue a 

purely offshore strategy, the values of α and λ, i.e. the proportion of low-touch items and the 

remanufacturing cost of high-touch items, are irrelevant.  If the inequality presented above holds, 

then all remanufacturing will always be offshore.  In these cases, λ and α only impact the yield 

achieved offshore – specifically, when 1+<
c
u

α
ρλ  the offshore yield will be 100%, otherwise it 
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will be α.  Conversely, if 1

11
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

>
s

c
ρ

θ , the domestic facility will always have a role in the 

optimal approach to the multi-period problem (either through a pure domestic or a mixed 

strategy).  As opposed to only being used to meet initial demand that is not known with sufficient 

lead time to go offshore, we can say that the domestic facility plays an ongoing role in the cost-

minimizing approach to meet demands over multiple periods whenever 1

11
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

>
s

c
ρ

θ .  

OBSERVATION 2: If the use of the domestic facility in the second period of the 2-period problem 

decreases costs (i.e., we are in the unshaded region of Figure 5), then it will always have an 

ongoing role in the optimal approach to the multi-period problem. 

We can see that the region of Figure 8 that includes at least some domestic remanufacturing, 

where 1

11
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

>
s

c
ρ

θ , completely encompasses the unshaded region of Figure 5.  Thus, we can 

say that, if conditions are such that the domestic facility might be used in the optimal approach to 

meet demand in the second period of the two-period problem, then that facility will always have 

a role in steady state in the multi-period problem. 

OBSERVATION 3: A mixed strategy, using both domestic and offshore facilities, is optimal when 

the offshore shipping costs, as defined by θ, are within a defined range (i.e., neither very low nor 

very high). 

Observation 3 indicates the existence of a middle ground, where offshore shipping costs are not 

so low that a pure offshore strategy becomes optimal (as in Observation 1), but are also not so 

high that a pure domestic approach is preferred.  Specifically, we can define this region using 
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two conditions.  First, we have a lower bound on θ, as given by the case where (11) does not 

hold: 

Condition 1: 1

11
+

⎟⎟
⎠

⎞
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⎝

⎛
−

>
s

c
ρ

θ  

When the above condition holds, we know that offshore shipping costs are sufficiently high, 

given other parameter values, to eliminate a pure offshore strategy from consideration.  

Secondly, we need to ensure that a pure domestic approach doesn’t result in lower costs than a 

mixed approach.  Recall that, in the pure domestic case, we have two possibilities: 

Scenario A: When 1+<
c

u
α

λ  (i.e., (8) holds), the optimal pure domestic approach to 

remanufacture all used items (100% yield).  In this case, the upper bound on θ is given by (15): 

Condition 2A: 1
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Scenario B: When 1+>
c

u
α

λ , the optimal pure domestic approach to remanufacture only low-

touch items.  In this case, the upper bound on θ is given by (16): 

Condition 2B: 1
1

+
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Condition 1 above, along with the Condition 2A or 2B as appropriate for the value of λ, defines 

the region for which the mixed strategy is optimal in the multi-period problem.  It is important to 

note that, if Condition 1 is met but the appropriate Condition 2 is not met, then a pure domestic 

approach is optimal and no offshoring is used. 
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We now consider the fact that, as a product matures, the fraction of used items in the low-

touch category could decrease.  In the toner cartridge remanufacturing industry, this is seen in 

the diminishing proportion of virgin cartridges that can be acquired as time passes from the 

initial introduction of the cartridge.  A consideration of the impact of the product life cycle on the 

condition used items leads to the following propositions: 

PROPOSITION 1: If a mixed strategy is optimal for a given set of parameters, then it will always 

remain optimal as α decreases over time. 

Proof: see Appendix A. 

Proposition 1 is especially important for remanufacturers of products, such as toner cartridges, 

for which the proportion of low-touch used items can be expected to decrease over time.  It states 

that, assuming the other problem parameters do not change, a remanufacturer whose optimal 

strategy is a mixed approach will always find it optimal to use this approach as the product 

matures.  Since α is often the parameter most likely to change over a product’s lifecycle, this 

result has significant implications for the long-term viability of a mixed domestic/offshore 

approach to meet demands for remanufactured products.  If a remanufacturer is in the “mixed” 

region of Figure 8 (realizing 100% yield), he will remain in that region (and always realize 100% 

yields) as α decreases over time. 

PROPOSITION 2: If a strategy that remanufactures only low-touch items is optimal for a given set 

of parameters, then there is some sufficiently small α for which the optimal strategy will shift to 

one with a yield of 100%. 

Proof: see Appendix B. 

Proposition 2 is fairly intuitive: as the percentage of low-touch items decreases, it becomes less 

likely that a policy that only remanufactures low-touch items is optimal.  For example, if α drops 
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to 0.01, then a low-touch only approach would require an acquisition quantity of 100 times 

demand, and 99 out of every 100 items acquired would be scrapped.  The proof of Proposition 2 

contains the exact levels of α for which this approach becomes suboptimal. 

Lastly, we examine the cost-minimizing policy in terms of the yield in which it will 

result.  As noted, the mixed strategy always results in a yield of 100%.  The yield of the optimal 

pure domestic approach is 100% when (5) holds, and the yield of the optimal pure offshore 

approach is 100% when (8) holds.  Figure 10 simplifies Figure 9 to summarize the yield of the 

optimal solution to the multi-period problem. 

 

 

Figure 10: The remanufacturing yield resulting from the optimal multi-period strategy 

 

From Figure 10, we see that for very small λ the yield of the optimal solution will always 

be 100%, because high-touch items are not much more expensive to remanufacture than low-

touch in these cases.  At the other extreme, for very large λ, the remanufacturing cost of high 
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touch items is so high that they will never be remanufactured, and yields will therefore always be 

α.  Between these extremes, the optimal strategy still provides 100% yield when 

1
1

+
⎟⎟
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⎞
⎜⎜
⎝

⎛
−

+<
s

c

s
u ρ

λ

α
θ  (i.e. (16) holds).  When θ is above this bound, offshore shipping costs are 

so high that it is suboptimal to send anything offshore, and therefore a pure domestic strategy 

with a yield of α is optimal.  Therefore, the three expressions in Figure 9, which represent 

conditions (5), (8), and (16), fully define the yield that can be expected from following the 

optimal policy for a multi-period remanufacturing problem. 

 

4. Conclusions 

This paper has extended the knowledge of the impact of used product condition variability on 

remanufacturing operations by considering its effect on the optimal use of offshore facilities.  

We have identified conditions under which offshoring will be part of the cost-minimizing 

approach to meet demands in both a two-period model (reflecting products with short life cycles) 

and a multi-period model (for items with longer life cycles).  Our results indicate that, if the 

domestic facility has the potential to decrease costs to meet the second demand of the two-period 

model, then it will always have an ongoing role in the multi-period case. 

We also present several insights specific to the multi-period problem.  First, we note that, 

in the decision to pursue a pure offshore strategy in steady state (i.e. only use a domestic facility 

during the initial ramp-up), neither the proportion of low-touch items (α) nor the 

remanufacturing cost of high-touch items (λ) is relevant.  Of course, these parameters impact the 

yield under the optimal strategy, but they do not influence the offshoring decision.  We also 

identify conditions under which a mixed strategy of remanufacturing all low-touch items 
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domestically and all high-touch items offshore is the optimal approach in the multi-period case.  

Importantly, we are able to show that, as the product matures and α declines, the mixed strategy 

will remain optimal as long as the other problem parameters are stable. 

In this paper we have examined a simplified, deterministic model of the offshore 

remanufacturing decision in order to focus and clarify the tradeoffs involved.  In so doing, we 

have assumed that demand for remanufactured product is known and constant over time, and that 

the yield is deterministic.  We see several possibilities for future research in this area. Although 

the deterministic yield assumption used in this model has been shown to be quite reasonable in 

previous research, it could be relaxed.  In the multi-period case, uncertain yield creates the 

potential for fewer low-touch items in a batch than expected.  If a mixed strategy is used and 

such a shortfall occurs, immediate demand that was to be filled by remanufacturing low-touch 

items domestically could be filled in two ways – from a safety stock of finished goods or from 

remanufacturing some high-touch items at the domestic location.  Each of these alternatives 

carries a cost, and an analysis of which approach is preferable to address yield uncertainty – 

safety stock or flexible sorting – would be an interesting study and would build on our previous 

work addressing the impact of yield uncertainty in remanufacturing.  In addition, the case of 

known but varying demands in a multi-period setting with variable condition and two 

remanufacturing facilities would be an interesting lot-sizing extension.  Finally, a simulation 

study could be used to more accurately reflect the true costs of an international supply chain, for 

example by including random customs delays and exchange rate fluctuations. 
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Appendix A 

 

We consider the effect of a decrease in α on the advantage of a mixed strategy over each of the 

four pure strategies (domestic low-touch only, domestic 100% yield, offshore low-touch only, 

and offshore 100% yield).  First, we note that the conditions for the mixed approach to have a 

lower cost than either 100% yield approach (as given by (13) and (15)) do not depend on α, and 

therefore are not impacted by a decrease in α.  It remains to be shown that, if (14) and (16) hold 

for a given α, then they hold for all smaller α.  Note that the derivative of the lower bound in 

(14) with respect to α is 3

2
α
ρ

s
u , which is always positive.  Therefore, as α decreases, this lower 

bound also decreases, and we can say that if (14) holds for a given α, it will hold for all smaller 

α.  Finally, note that the derivative of the upper bound in (16) with respect to α is ⎟
⎠
⎞

⎜
⎝
⎛−

s
u
2α

, 

which is always negative.  Therefore, as α decreases, this upper bound increases, and we can say 

that if (16) holds for a given α, it will hold for all smaller α.  In summary, when the mixed 

strategy is cost-minimizing when compared to all pure strategies, it will always remain cost-

minimizing as α decreases. □ 
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Appendix B 

 

Note that a strategy that remanufactures only low-touch items will either do so domestically (the 

upper-right of Figure 9) of offshore (the lower-right of Figure 9).  We consider each of these 

situations in turn below. 

First, consider the case where the optimal strategy is to use the domestic facility to 

remanufacture only low-touch items (the upper-right of Figure 9).  Note that, as α decreases, the 

upper bound on λ defining the region in which a 100% yield domestic approach is optimal (5) 

strictly increases.  At the same time, the upper bound on θ defining the region in which the 

mixed strategy (with 100% yield) is optimal (16) also increases, as shown in the proof of 

Proposition 1.  Since these upper bounds increase as α decreases, there is sufficiently small α 

such that one or both will hold, resulting in a 100% yield strategy being optimal.  Therefore, in 

this case, we can say that the optimal approach will always shift to a 100% yield approach if α 

drops to a level such that either (5) holds (
cc

u
−

<
λ

α ) or (16) holds (

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

<

ρ
λθ

α
1cs

u ). 

Next, consider the other case, where the optimal strategy is to use the offshore facility to 

remanufacture only low-touch items (the lower-right of Figure 9).  Note that, as α decreases, the 

upper bound on θ defining the region in which a 100% yield offshore is optimal (8) strictly 

increases.  Since this upper bound increases as α decreases, there is sufficiently small α such that 

it will hold, resulting in a 100% yield strategy being optimal.  Therefore, in this case, the optimal 

approach will always shift to a 100% yield approach if α drops to a level such that (8) holds 

(
cc

u
−

<
λ

ρα ). □ 
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