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CHAPTER I: INTRODUCTION 

 

1.1 Epilepsy−Definition and epidemiology 

Epilepsy is a neurological disease in patients with at least two unprovoked seizures that are 

more than 24 hours apart 1.  A seizure is a transient symptom due to abnormal, excessive 

and/or synchronous activity of neurons, while epilepsy is a predisposition to recurrent, 

unprovoked seizures.  A familiar example of a seizure is a ‘grand mal’ or generalized tonic-

clonic seizure (GTCS) that involves loss of consciousness, stiffening of arms and legs followed 

by their rapid jerking.  Even though not all seizures are as detrimental as GTCSs, seizures such 

as absence seizures involving brief loss of consciousness also have a negative impact on the 

quality of life.  One or more seizures induced by acute events such as fever, head injury, 

infection, stroke, brain tumor, medicine, etc. are not considered epilepsy.  In 2014 the 

International League Against Epilepsy (ILAE) added a new definition of epilepsy as “one 

unprovoked seizure and a probability of further seizures similar to the general recurrence risk (at 

least 60%) after two unprovoked seizures, occurring over the next 10 years”, for people at high 

risk of having two or more seizures such as those with trauma, stroke, or central nervous 

system (CNS) infections 1. 

Epilepsy is one of the most common neurological diseases, affecting about 50 million 

people worldwide (WHO Factsheet, 2018) and 1 in 26 individuals in the United States 2.  The 

worldwide incidence of epilepsy is 67.7 per 100,000 individuals per year, and the lifetime 

prevalence is 7.6 per 1,000 persons 3, 4.  The first line and long-term treatments for the majority 

of patients are anti-epileptic drugs (AEDs).  Over 20 AEDs currently are available 5, and 

seizures are well controlled for most patients by AEDs.  However, about one third of epilepsy 

patients are unresponsive to multiple AEDs.  These intractable patients bear greater morbidity 

and risk of mortality than individuals in the general population 6-10.  Some patients with drug 
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resistant seizures with two or more AEDs are candidates for resective epilepsy surgery or vagal 

nerve stimulation 11.  In addition the high fat and low carbohydrate ketogenic diet is also a 

treatment option for intractable patients 12. 

Epilepsy has high health care cost resulting from disease assessment, treatment, 

rehabilitation, and hospitalization for seizures 13, 14.  In addition to managing symptoms and 

comorbidities, daily activities such as driving, attention in school, academic and employment 

productivity, and social interactions can be challenging for epilepsy patients and their families.  

This adds to indirect economic costs associated with epilepsy, especially when caring for 

children and elderly patients 15, 16.  In the United States alone, epilepsy has an estimated annual 

impact of $9.6 billion 17.  Thus, treatment and management of epilepsy are major public health 

concerns.  

 

1.2 Classification of epilepsy syndromes 

Epilepsy is a spectrum disorder with a range of seizure types that vary in their severity 

and causes.  Thus, the impact of epilepsy differs for individuals, even among family members.  

This adds additional hurdles for accurate diagnosis and treatment.  Often the diagnosis is based 

on family members’ report or a self-report of the seizure semiology.  Epilepsy syndromes have 

been classified to improve the accuracy of clinical diagnosis and to facilitate clinical epilepsy 

research.  Classification of the epilepsies is based on two important aspects⎯(a) identifying the 

seizure type(s), and (b) determining their etiology.  The initial classification schemes were 

primarily based on seizure semiology and electroencephalography (EEG).  More recent 

classification schemes after 2010 have attempted to include etiology as an important aspect of 

classification based on scientific advances from many published studies and technological 

advances in clinical practice.  Understanding the epilepsy etiology remains important in both 
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clinical practice and the laboratory since epilepsy etiology often drives seizure management, 

treatment options, and future therapies.  However, determining epilepsy etiology remains 

challenging given that the brief, unpredictable, and pleomorphic seizures can occur due to either 

acquired or genetic causes.   

In 2017 the ILAE revised the epilepsy classification with an emphasis on etiology due to 

tremendous progress in epilepsy genetics and neuroimaging.  Currently epilepsy syndromes are 

grouped based on their onset as focal, generalized, or unknown 18-20.  Focal seizures originate in 

and remain localized to one hemisphere.  They can be restricted to one brain region or widely 

distributed within one hemisphere.  Focal seizures replaced the term ‘partial’ seizures.  A 

generalized seizure rapidly engages both hemispheres, as reflected in the symptoms and EEG.  

For the “unknown” seizures the onset is uncertain, but motor and/or non-motor characteristics 

may be known.  With further information, the unknown seizures can often be reclassified as 

focal or generalized.   

Each of the three types of seizures, focal, generalized, and unknown, can be further 

classified.  Focal seizures have been subclassified based on level of awareness during the focal 

seizures, with awareness used as a substitute for consciousness.  If awareness is not lost 

during any portion of the seizure, it is classified as a focal seizure without impaired awareness.  

If awareness is lost for part or all of the seizure, it is classified as a focal seizure with impaired 

awareness.  A caveat is that the patient may be aware during the seizure but may not 

remember the seizure due to transient epileptic amnesia, and thus accurate accounts of the 

seizure by observers are needed.  Focal seizures are further classified into motor onset and 

nonmotor onset.  Additionally, due to its common occurrence, “focal to bilateral tonic-clonic 

seizure” has been added as a special category, describing the spread of a seizure rather than a 

unique seizure type; it replaces the older term “secondarily GTCS”.   
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For generalized seizures, awareness is not used for further classification since the 

majority of generalized seizures have associated impaired awareness, and thus, are 

categorized as motor and nonmotor (absence) seizures.  Generalized seizures can have 

symmetrical or asymmetrical motor manifestations.  In absence seizures, there is a sudden 

cessation of motor activity (behavioral arrest) and loss of awareness.  Automatisms may be 

present, but they are less complex than those that occur with focal seizures with impaired 

awareness.  Absence seizures have an abrupt onset and offset and primarily occur in children.   

Unknown seizures can be classified further as motor, nonmotor, or unclassified.  

Unclassified indicates seizures that do not match the other categories or there is insufficient 

information to categorize them. 

Epilepsy syndromes can be classified further based on etiologies.  The current clinical 

care systems place an emphasis on determining seizure etiology if resources are available 21-25.  

The recent ILAE classification identifies structural, genetic, infectious, metabolic, immune, and 

unknown etiologies 19, recognizing that patients can be grouped into more than one etiological 

category.  Of note about 60-80% of all epilepsies are considered to have a genetic origin, and 

the genetic generalized epilepsies (GGEs) comprise most of the genetic epilepsies and one-

third of all epilepsies 26.  This thesis explores the functional consequences of human genetic 

mutations identified in the pediatric population. 

 

1.3 Genetic etiologies of epilepsy 

The genetic basis of epilepsy was well recognized since epilepsy patients are more likely 

to have family members affected by epilepsy 27.  One of the early important findings that 

suggested a genetic component of epilepsy came from twin studies.  In 1960 Dr. William 

Lennox (a renowned epileptologist, also well known for his contribution to the Lennox-Gastaut 
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syndrome) showed that monozygotic twins are more likely to share occurrence of generalized 

epilepsies and febrile seizures than expected by chance 28-30.  These results were later 

bolstered by studies that overcame confounds of environmental factors and demonstrated that 

monozygotic twins have a significantly higher coincidence of epilepsy than dizygotic twins 31-34.   

Linkage analysis studies in the early 1990s revealed an association of chromosome 

locations 21q22 35 and 20q13.2 36 linked to progressive myoclonus epilepsy and autosomal 

dominant nocturnal frontal lobe epilepsy syndromes, respectively.  These studies paved the way 

for isolating epilepsy-associated genes.  In 1995 one of the first epilepsy gene mutations 

(missense) was identified in CHRNA4⎯encoding the α4 subunit of the nicotinic acetylcholine 

receptor⎯in members of a large Australian family with autosomal dominant nocturnal frontal 

lobe epilepsy (ADNFLE) 37.  This was immediately followed by discovery of mutations in KCNQ2 

38, KCNQ3 39, SCN1A 40, GABRG2 41, 42, and GABRA1 43 in distinct families with members 

affected by generalized epilepsy syndromes.  In addition, linkage analysis pointed to direct 

efforts at interesting loci such as chromosome 5q34 containing the gene cluster GABRB244, 45, 

GABRA6 46-49, GABRA143, 50-52, and GABRG2 41, 42.  All of these genes are currently recognized 

as epilepsy genes.  However, co-segregation of mutated epilepsy genes (such as GABRA2 and 

EFHC1) was found to be limited to only a few families and was not broadly applicable to a 

significant portion of families with common epilepsy syndromes, even in studies with large 

sample size.  The linked chromosomal loci could not be confirmed by independent studies or 

unequivocally mapped to susceptibility genes 53.  Nevertheless, identification of missense 

mutations following identification of important chromosomal loci marked the beginning of the 

‘channelopathy’ era resulting in a wave of discovery of monogenic epilepsies associated with 

neuronal ion channel gene mutations.  To date thousands of mutations have been reported in 

epilepsy patients 54  that include missense (the majority), nonsense, frame shift, insertion-

deletion, promoter, splice-site, and intronic mutations (see section 15 and Table 1.1).  
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The genetic factors influencing epilepsy can be attributed primarily to inheritance of 

monogenic mutations including de novo mutations, polygenic or complex inheritance, with 

modifiers or susceptibility genes.  Here I briefly discuss these topics and elaborate on the role of 

de novo mutations due to their prominence in EEs.  

 

1. 4 Monogenic and polygenic epilepsies 

Numerous autosomal dominant mutations have been identified in several families 

affected by epilepsy.  However, the archetype familial cases with dominant mutations and 

epilepsy transmitted across generations account for a very small fraction (1-2%) of the epilepsy 

population 55.  Moreover, most familial epilepsies do not have Mendelian inheritance owing to 

incomplete penetrance, i.e. not all individuals with the mutation will have epilepsy.  Furthermore, 

mutation carriers may have different expressivity, i.e. variable expression of symptoms including 

drug responses (Figure 1.2).  Some authors consider variable expressivity a norm in human 

diseases owing to diverse genetic backgrounds 56.  The symptomatic differences (even among 

close family members) in the presence of the primary gene mutation attributed to epilepsy are 

thought to be due to variations in additional genes (genetic modifiers or susceptibility genes) or 

environmental factors 57, 58.  Indeed phenotypic differences among laboratory mice harboring the 

same genetic mutation but with different background strains support the involvement of genetic 

modifiers in variable expression of disease phenotypes 59-62.  For example, the epilepsy 

phenotype in a mouse model with the Scn2a(Q54) mutation in a congenic C57BL/6J 

background had delayed seizure onset, significantly reduced spontaneous seizures, and 

increased survival rates compared to mice with C57BL/6J × SJL/J mixed background 61, due to 

two potential modifiers 63.   
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Despite the caveats, studies of monogenic genetic generalized epilepsies have 

contributed enormously to understanding the molecular pathogenesis of epilepsy, several of 

which have been due to ion channel dysfunction.  Moreover, it is easier to generate and study 

the effects of analogous single gene mutations in animal models of epilepsy compared to 

studying polygenic or complex epilepsies.  Examples of monogenic epilepsies where mutation in 

a major gene explains the epilepsy phenotype include the generalized epilepsy syndromes: 

ADNFLE, benign familial neonatal seizures (BFNS), childhood absence epilepsy (CAE), juvenile 

absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), generalized epilepsy with febrile 

seizures plus (GEFS+), and GTCS and the focal epilepsies with LGI1 64-66, DEPDC5 67-69 (non-

ion channel genes), and GRIN2A 70 mutations.  Even though a certain gene can be repeatedly 

identified in an epilepsy syndrome, it can also lead to other epilepsies and other disorders, and 

vice versa.  More than one gene, often several genes, can independently result in the same 

epilepsy syndrome.  For example, the majority of Dravet syndrome patients have SCN1A 

mutations, although SCN1A mutations also result in hemiplegic migraine 71, GEFS+ 72, and 

other EEs 73, 74 .  In addition, mutations in GABRA1 52, GABRB3 75, GABRG2 76, SCN2A 77, 

SCN1B 78, and STXBP1 50 have also be associated with Dravet syndrome.  

On the other hand, polygenic or complex epilepsies arise from contributions of a few or 

many genes and are currently thought to account for the majority of epilepsy syndromes 79.  The 

dogma for polygenic epilepsies is that individuals have susceptibility gene variants that alone do 

not produce epilepsy, but certain numbers (additive effects) or combinations (modulatory 

effects) of susceptibility genes could result in hyperexcitable neuronal networks and lead to 

epilepsy in the given environmental conditions.  This is also the foundation for genome wide 

association studies (GWAS) that aims to find commonly occurring susceptibility chromosomal 

loci that could increase the risk of developing diseases, but which by themselves have modest 

association with disease.  Frequently, the associated chromosomal regions include more than 
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one gene.  With next-generation sequencing technologies, GWAS studies seek disease 

association with single nucleotide polymorphisms or copy number variants at much higher 

resolution than traditional linkage studies.  GWAS studies need large numbers (of the order of 

1000s) of affected and unaffected individuals to capture several common variants (population 

frequency of 5-50%) of small effect size to be sufficiently powered.  Not surprisingly, few GWAS 

studies exist in epilepsy, and the initial studies were not promising even with large sample sizes 

80, 81.  Small family based linkage studies failed to replicate the genome-wide association in 

independent families 82-88.  This is not surprising given that millions of gene variants are 

documented in healthy and affected individuals in public databases (such as NCBI’s Database 

of single nucleotide polymorphisms (dbSNP) 89, Human Gene Mutation Database (HGMD) 90, 

NHLBI Exome Variant Server, and others) that can potentially act as susceptibility genes 91.  

However, the contribution of common polymorphisms to epilepsy risk is still not clear.  

Additionally, clear examples how these common polymorphisms with small effect can interact 

with each other or the environment to result in epilepsy phenotypes are still missing.  Recent 

studies utilizing meta-analysis with larger sample sizes to be sufficiently powered had better 

outcomes.  A study in a Chinese population with 1087 focal epilepsy patients (unknown and 

symptomatic causes) and 3444 controls identified a SNP in CAMSAP1L1 on the 1q32.1 

chromosomal region with genome-wide significance 92.  A large study by the EPICURE 

consortium in 379 multiplex European families (982 relatives) with genetic generalized epilepsy 

(GGE) found 5q34 as the susceptibility locus for a spectrum of familial GGE syndromes, while 

loci 2q34 and 13q31.3 specially affected susceptibility to myoclonic seizures or absence 

seizures, respectively 53.  Another meta study by the EPICURE consortium analyzed 3020 GGE 

patients and 3954 controls of European ancestry and identified significant genome-wide 

association of 2p16.1 and 17q21.32 loci to susceptibility of GGE syndromes, while loci 2q22.3 
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and 1q43 had syndrome-related association to CAE and JME, respectively 93.  These results 

have revived enthusiasm for GWAS in epilepsy.   

A second and currently a popular approach of combing through genomic data is to look 

for rare single nucleotide variations (SNVs) (<5% population frequency), as opposed to the 

GWAS approach of identifying common variants (5-50% population frequency) with large effects 

on disease risk in large number of affected individuals.  This approach has been made possible 

by next-generation sequencing technology and can directly identify rare causal variants.  These 

rare (1-5% population frequency) or private (limited to probands and their families) mutations 

that are missed by GWAS are now well recognized as causes of several neurological and 

psychiatric diseases.  Two such genetic alternations⎯ de novo single nucleotide mutations and 

copy number variations (CNVs)⎯that contribute to epilepsy etiology are discussed below.  

 

1.4.1 De novo single nucleotide mutations  

De novo mutations are present in the carrier but absent in either parent, and arise due to 

erroneous DNA replication in germline cells (during meiosis) or somatic cells during early 

embryogenesis 94, 95.  Genetic variation via de novo mutations occurs spontaneously in somatic 

and germline cells throughout life and drives evolution.  Both healthy and affected individuals 

have de novo mutations ranging from SNVs or single nucleotide polymorphisms (SNPs) to large 

CNVs (see below) to chromosomal rearrangements.  An estimated SNV rate in humans is 1.0-

1.8 × 10–8 per nucleotide per generation, or roughly 40-90 de novo mutations in each individual, 

of which 1 or 2 mutations are in the coding regions of the genome 95-99.  Additionally, the 

majority of the germline de novo mutations are of paternal origin and increase with age of the 

father 96, 99.   

De novo mutations occur naturally in all individuals both in their somatic and germline 

cells 100, 101.  However, germline de novo mutations that are lethal or result in severe diseases 
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(for example EEs) are not passed on to the next generation and thus do not undergo 

evolutionary selection.  While the germline mutations that are tolerated (for example familial 

epilepsies) or promote survival (for example the APP(A673T) mutation that protects against 

Alzheimer’s disease) are passed on to the next generation and become inherited mutations.  

Thus, de novo mutations are considered prime candidates for genetic diseases, especially 

sporadic diseases with unaffected parents 102.  Certainly an excess of missense de novo SNVs 

in the coding genes have been identified as a significant risk factor for several diseases 

including epilepsy 103-106, autism 107-114, schizophrenia 115-121, intellectual disability 122, 123, and 

developmental disorders 124. 

De novo mutations in epilepsy were well recognized even before the advent of next 

generation sequencing (NGS) technologies 125.  Thousands of SCN1A mutations have been 

reported in 70-80% of Dravet syndrome patients 74, 126-128, more than 90% of which are de novo 

74.  However, the homogenous genetic etiology of this severe childhood epileptic 

encephalopathy is an exception to the widely heterogeneous genetic etiologies of virtually all 

other epilepsy syndromes.  The significance of de novo mutations in several epilepsy 

syndromes has been revealed only in last five years by large sequencing studies.  These 

studies also explained why familial inheritance has been found only in a very small fraction of 

epilepsy patients (1-2%), the vast majority of which lack a family history of epilepsy.  One of the 

first large scale (264 trios with affected probands and 610 control trios) exome sequencing 

studies was conducted by the Epi4K consortium in patients with two well-known epileptic 

encephalopathies, the Lennox-Gastaut syndrome and infantile spams.  In 2013 this study 

reported that the probands had an excess of de novo mutations in 4,000 genes that are most 

intolerant to functional genetic variations.  Mutations in nine genes were observed in ≥2 

probands, and these mutations in GABRB3, ALG13, CDKL 5, SCN1A, SCN2A, and STXBP1 

showed strong statistical association with the two epileptic encephalopathies.  GABRB3 
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mutations were previously reported only in the relatively milder childhood absence epilepsy 

syndrome 129, but after this and several following studies, GABRB3 has been recognized as a 

risk factor for severe epilepsy syndromes 104, 130-133.  Today de novo mutations are well-

recognized risk factors for epilepsy syndromes and many of them have been documented in 

epilepsy patients either in individual cases or in medium to large cohort studies 106.  The present 

challenge is to determine whether they lead to dysfunction that is sufficient to cause epilepsy.  

Nevertheless, these studies are anticipated to pave the way for future personalized therapies. 

                              

Figure 1.1 Common inheritance patterns seen in epilepsy.  
(A) The autosomal dominant inherence is commonly observed pattern in 

monogenic epilepsies in which either parent can have a dominant mutation (M) and an 
epilepsy phenotype that is passed on to the off-spring.  (B) Often the effect of the 
dominant mutation is not expressed in the same manner in all family members (partial 
penetrance).  Family members with the same mutation can have varying degree of 
severity and epilepsy phenotypes, that can modified by other genes (susceptibility 
genes/modifiers).  (C) The mutations on the X-chromosome gives rise to X-linked 
epilepsies in the offspring, male child is more susceptible; over 150 X-linked syndromes 
have been identified and several of them have seizures.  When the parents are 
unaffected and the offspring can acquire epilepsy either when both parent harbor 
recessive mutations (m) which by themselves does not result in epilepsy (D) or when 
the mutation arises de novo in germline cells of either parent or during early embryonic 
stages (E).  
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1.4.2 Copy number variations (CNVs) 

CNVs are larger (>1 kilobase and up to a megabase) deletion, insertion, duplication or 

rearrangements in the genome 134-137.  As opposed to point, frame shift, small deletion and 

insertion mutations of few nucleotides, CNVs are large-scale alterations in the repetitive 

genomic regions that can span many genes but are smaller than structural variations in 

chromosomes.  Unlike the familial mutations, CNVs could be inherited or appear de novo in the 

parent’s germline cells or in somatic cells early in embryonic development.   

Although, the presence of CNVs supports a polygenic etiology, and their role in complex 

diseases was speculated since their discovery, it is unclear how CNVs can lead to certain 

phenotypes.  First, the majority of CNVs occur in all chromosomes 138 and only a few reoccur at 

the same location among different patients 139, 140.  Second, apparently healthy individuals can 

have CNVs (~12/individual) 141, 142 and are considered to be a major contributor of genomic 

variability among individuals 143.  It is estimated that there are about 100 genes that when 

completely deleted result in no apparent disease symptoms 143.  Third, CNVs can confer a 

selective evolutionary advantage such as disease resistance 144, 145.  

Nonetheless, a significant role and high incidence of CNVs in epilepsy139, 146 and other 

neurological conditions including intellectual disability (high penetrance), autism, schizophrenia, 

and attention-deficit hyperactivity disorder (ADHD) is now well-recognized 147-151.  Rare and non-

recurrent (private) CNVs were identified in 5-15% of epileptic 152-155 and 4% of epileptic 

encephalopathy patients 156.  Additionally, chromosomal ‘hot spots’ for CNVs are associated 

with neurological diseases 152.  About 0.5-1 % of patients with genetic generalized epilepsies 

and focal epilepsies carry microdeletions of 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 or 

17q12 chromosomal regions, but are rare in unaffected individuals 152, 153, 157-160.  The CNV 

frequency is even higher in patients with epilepsy and comorbidities such as intellectual 
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disability 161, developmental delay, or autism spectrum disorder (ASD) 162.  Since the function of 

most CNVs is unclear, several criteria must be considered to determine if they are benign or 

pathogenic.  Certainly, CNV chromosomal location, size, and gene content seem critical; 

additionally recurrence of CNVs in patients is also an important indicator of pathogenicity.  At 

present the overall pathogenicity of microdeletions is considered greater than those of 

duplication CNVs.  Thus, CNVs could be risk factors or pathogenic for genetic generalized 

epilepsies, acting along with other genetic and environmental factors.  

In summary, most of the patients without a clear structural/metabolic cause for epilepsy 

have a genetic origin of epilepsy.  The genetic changes are inherited or appear de novo, and 

include single nucleotides, a few nucleotides, large DNA segments (CNVs), or structural 

chromosomal changes.  Single gene mutations are monogenic causes of familial epilepsies and 

epileptic encephalopathies.  Although, the majority of patients have a complex origin of epilepsy 

involving single or multiple genes; individual phenotypes depend on genetic background in 

addition to the gene mutation(s) 26, 57.  

 

1.5. Complex genetic heritability of epilepsy revealed by whole exome sequencing 

Whole exome sequencing is becoming a routine test to answer clinical and research questions, 

at least in developed countries 163, and works on the premise that human health and disease are 

influenced by mutations in the coding regions of the genome.  The human coding genes are 

estimated to be 1% of the genome and predicted to account for 85% of the disease associated 

mutations 164-166, and the exome sequencing cost of ~$1000 has made its use attainable in 

research and clinical settings.  This technique is especially useful for identifying de novo 

mutations associated with rare diseases, where the affected proband is presumed to have a 
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genetic epilepsy and the parents are unaffected by epilepsy.  With whole exome sequencing, 

mutations are identified in virtually the entire coding region of the genome.  Even then only a 

fraction of patients (~20-50%) 167-170 have genetic findings identified with whole exome 

sequencing.  Only a fraction of the identified genetic changes can be concluded to cause 

epilepsy.  For most mutations, either the gene lacks an association with epilepsy, the gene has 

unknown function, and/or the mutation is present only in a single individual.  Thus sequencing 

studies account for etiology in only ~10-30% of epilepsy patients 106.  For example the Epi4K 

consortium identified 329 de novo mutations in 264 trios, of which 9 genes in 21 patients 

showed statistical significance to implicate them as causative 104, i.e. they explained the 

epilepsy phenotypes in only 8% (21/264) of patients.  The current dogma in epilepsy is that the 

etiologies not explained by external agents such as trauma, stroke, infections, birth anoxia, etc 

have genetic origins, and thus the new classification replaced the term idiopathic with genetic.  

Thus, when genetic studies with good study design and methodology, large sample size, and 

good controls only identify genetic mutations in less than a quarter of the epilepsy patients, what 

explains the epilepsy phenotype in the rest (the majority?) of the patients with no known 

symptomatic or environmental contributions to etiology?  I provide few plausible explanations 

from a point of view of a reader of these studies, one who has not participated in acquisition or 

analysis of sequencing data first hand.  Two broad matters are discussed; the first involves the 

interpretation and the second explores expanding the search for etiology beyond the exome.   

Typically, in large scale sequencing studies, 100s or 1000s of variants are identified in 

affected individuals that are absent in controls, and only a few affected individuals have 

mutations in the same gene.  The probability of having multiple (≥2) mutations in the same gene 

in a patient cohort is calculated by taking into account the gene size, sequence specific mutation 

rate, and the number of patients enrolled.  Additionally, computational predictions (using 

Polyphen-2, SIFT, nsSNP-Analyzer, and others) of the functional impact of the mutation aids in 



 

 

15 

the initial prioritizing of 100s or 1000s of potential disease-causing variations.  However, lack of 

significant statistical association of the gene with a disease does not mean that the mutation has 

minimal disease risk.  For example, of the 329 de novo mutations identified by the Epi4K 

consortium 35 (10.6%) were possibly damaging, 86 (26.1%) probably damaging, and 36 

(10.9%) were either frameshift, insertion, deletion, splice donor site, splice acceptor site or 

nonsense mutations.  Of these only 21 (~8%) mutations in 9 genes showed statistical 

association with infantile spasms and Lennox-Gastaut syndrome epilepsy syndromes 

(calculated from Supplementary Table 2) 104.  Among them the GABRB1(F246S) mutation was 

identified in a patient with infantile spasms and had a Polyphen-2 functional prediction to be 

probably damaging (score= 0.997, where 0 = benign and 1 = probably damaging); however, 

GABRB1(F246S) was not considered to be associated with infantile spasm as only one patient 

had a mutation in GABRB1, and this gene was previously not associated with epilepsy.  Our 

functional studies however, showed that this mutation significantly altered γ aminobutyric acid 

type A (GABAA) receptor current kinetics and reduced single channel current amplitudes (see 

Chapter 2) 171.  Later another GABRB1(T287I) mutation was identified in patient with early onset 

severe epilepsy and had clinical picture similar to the patients with GABRB1(F246S) mutation 

172.  Similarly, DNM1 mutations were identified in two patients and were predicted to be probably 

damaging with Polyphen-2 but did not have the statistical significance to assign epilepsy risk.  

However, DNM1 mutations have been identified in epilepsy patients 173-176 and a mouse model 

with spontaneous DNM1 mutation has an epilepsy phenotype 177-179.  Thus, there may be many 

more genes that could be potentially pathogenic but are overlooked in sequencing studies due 

to lack of statistical significance, especially in the context of rare monogenic epilepsies.  

Another possible explanation for identifying disease causing mutations in a small 

percentage of epileptic patients in large sequencing studies could be the involvement of non-

exonic regions in the pathogenic processes.  For example, the study by the Epi4K consortium 
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sequenced 264 trios and identified 329 de novo mutations in probands affected by infantile 

spasms or Lennox-Gastaut syndrome, 37.4% (123/329) of mutations were either synonymous 

or benign (calculated from Supplementary Table 2 104).  It is possible that these patients had 

CNVs that were not detected, although at least some patients should have CNVs spanning the 

coding regions.  Thus, non-coding regions may be involved.  Whole genome sequencing will 

provide a more comprehensive role of genetic factors (in addition to exonic mutations) in the 

pathophysiology of epilepsy.  Currently, whole exome sequencing takes precedence over whole 

genome sequencing as the human protein coding genes are best characterized and our current 

understanding of the non-coding genome is limited.  However, whole genome sequencing 

studies in epilepsy are already in place and expected to increase the diagnostic rate and 

eventually replace whole exome sequencing as our understanding of the non-coding genome is 

enhanced 91, 180-182 

Additionally, current genetic studies also have full or partial sequence coverage in 3ʹ and 

5ʹ untranslated regions (UTRs) and in introns.  The significance of these regions is well 

recognized in the correct expression of genes and in human diseases 183-185.  However, the 

specific effects of mutations in the functional elements of UTRs or intronic regions are not 

always clear.  Most studies are focused on the mutations in the coding region and few mutations 

are reported in non-coding regions.  Further, the functional changes in non-coding regions are 

hard to predict compared to evaluating expression and functional changes of a mutated 

proteins.   

 

1.6 Childhood epilepsies and associated comorbidities 

Over 10.5 million children worldwide have epilepsy, accounting for about 25% of the epilepsy 

population, and epilepsy continues to be the most common long-term neurological condition for 



 

 

17 

this age group 186.  In the United States alone over 450,000 children from birth to 17 years old 

have active epilepsy 187.  Pediatric epilepsies are amongst the most catastrophic neurological 

disorders as the developing brain is susceptible to seizures, especially in the first two years of 

life 188-191.  Treating the young brain without interfering with the developmental processes 

presents unique treatment challenges in addition to managing drug resistant epilepsy in about 

20-30% children 192.  Failure to treat pediatric epilepsy, however, increases the propensity to 

have subsequent seizures 193-196.  Children with epilepsy often exhibit social and learning deficits 

197-199, are more likely to suffer from comorbidities such as attention-deficit/hyperactivity disorder 

(ADHD) 200, 201, learning difficulties 197-199, depression and anxiety 202, 203, and often are subject of 

stigma 204, 205.  Moreover individuals with epilepsy have 10 times the risk of a diagnosis of ASD 

206, 207.  In addition children with epilepsy may suffer from developmental delays, emotional and 

behavioral difficulties, and migraine headaches 208.  Thus, the impact of epilepsy extends 

beyond management of seizures.  

 

1.7 Epileptic encephalopathies  

Epileptic encephalopathies (EEs) are catastrophic childhood epilepsy syndromes with 

severe pharmacoresistant seizures, varying levels of developmental delay and regression, 

cognitive impairment, and distinctive EEG patterns.  The symptoms can worsen over time, and 

seizures and interictal epileptiform discharges in EEs are thought to contribute or worsen the 

cognitive and behavior impairment above and beyond that expected from the underlying 

pathology, especially in young children 209-211.  EEs account for a large fraction of early onset 

intractable childhood epilepsies, encompassing a variety of syndromes sometimes with 

overlapping and evolving symptoms.  It should be recognized that the encephalopathic effects 

of intractable seizures may occur in any epilepsy syndrome, even in adults, but are commonly 
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observed in young children, and that the term EE is an evolving concept.  Figure 1.2 lists EEs 

recognized by the International League Against Epilepsy (ILAE) in order of age of onset.  Even 

with the well-studied epilepsy syndromes, accurate syndromic diagnosis is challenging due to 

range of severity of symptoms that occur in a relatively broad time frame and the patient may 

not experience all symptoms of a syndrome at once or throughout the course of the disease.  

Thus children with early onset catastrophic epilepsy syndromes are at increased risk for 

diagnostic delays and inadequate medical and mental health services 212.  Most EEs have 

neurodevelopmental delays as the primary feature rather than a secondary outcome to the 

excessive epileptiform activity.  Thus, long-term care needed for seizure management and the 

associated co-morbidities poses a substantial economic burden on families and the health care 

system 14.  A significant challenge is to fulfill the unmet needs of this age group 213.  

There is limited understanding of the pathological mechanisms involved in EEs; 

however, frequent seizures and epileptiform activity due to well recognized etiologies including 

genetic, structural brain malformations, infections, neuroinflammation, metabolic defects, are 

thought to hamper normal brain development and/or cause abnormal brain development.  Until 

the last decade, etiologies beyond structural abnormalities (identified with neuroimaging) were 

rarely identified.  In the past five years, however, there has been an explosion in the 

identification of genes associated with EEs using NGS technology that could explain 20-25 % of 

all early-onset catastrophic epilepsies previously regarded to have no identifiable cause 214, 215. 

Mutated genes identified in EEs patients involve ion channels (majority), proteins involved in 

synaptic transmission and interneuron function, and neuro-inflammation.  Thus, plausible 

mechanisms include altered cellular/network excitability, synaptic reorganization, and neuronal 

proliferation/migration defects.  Although, how specifically these changes could result in age and 

syndrome specific symptoms remains an open question. 
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Figure 1.2 Age of onset of EEs.  
EEs are a diverse group of severe epilepsies that have onset from a few hours 

after birth to late childhood.  
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Table 1.1 Commonly Occurring Seizures in Epileptic Encephalopathies.  
Seizure types relevant for the descriptions and understanding of EEs are 
listed here. 

Seizure Typical manifestation 
Absence A sudden and brief (≤ 30s) interruption of awareness of the ongoing 

activity with unresponsiveness to external stimuli that appears as a 
blank stare. Appear as generalized SWDs of 3 Hz on EEG that are 
time locked with start and end of the seizure.  

  
Atypical 
absence 

A gradual and sustained (≥30s to minutes) loss of awareness of the 
ongoing activity with unresponsiveness to external stimuli that 
appears as a blank stare and often accompanied with automatisms.  
Appear as generalized SWDs of <2 Hz on EEG that are not always 
time locked with start and end of the seizure. 

  
Atonic A sudden loss or reduction of muscle tone that lasts for about 1–2 s 

and involves the head, trunk, jaw or limb muscles. Often atonic 
seizures result in falls due to loss of erect posture thus also known 
as drop seizures/attacks. 

  
Clonic Sustained (1-2 min), repetitive, and regular jerking of the body or 

body parts engaging same muscle group(s) affecting whole 
(generalized) or one side of the body (focal). Jerking movements 
are prolonged and cannot be controlled by restraining body parts.  

  
GTCS Seizure that begins with the tonic phase (sustained muscle 

contraction) and evolves to the clonic phase (repetitive jerking 
movements) lasting for 1-3 mins with loss of consciousness.  The 
individual recovers slowly after the seizure and may feel confused, 
agitated, or depressed and may loose bladder control.  A seizure 
lasting for >5 minutes is considered medical emergency. 

  
Epileptic spasm  A sudden (~1s) flexion, extension or both of primarily the proximal 

and truncal muscles that is longer than a myoclonic seizure but 
shorted than a tonic seizure. Commonly occur in clusters. Infantile 
spasms is a well known example but also occurs in older age 
group.  

  
Myoclonic A sudden, brief (less than 100 ms), and involuntary contraction 

muscles(s) or muscle groups of variable topography (axial, proximal 
limb and distal).30,35 

  
Myoclonic–
atonic 

Brief jerking of limbs or trunk muscles, followed by loss of muscle 
tone.  

  
Tonic  A sustained muscle contraction lasting a few seconds to minutes.  

Neck, trunk, arms or entire body muscles are commonly involved. 
Can be accompanied by autonomic symptoms such as respiration, 
altered heart rate or loss of bladder control.  
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Next, I provide a brief overview of a few EEs that are the focus of this thesis and relevant 

to the discussion of the EEs, infantile spasms (IS) and Lennox-Gastaut syndrome (LGS).  IS 

and LGS are described in detail in chapters II and III, respectively.  The following section also 

highlights the diversity of EE phenotypes and emphasizes the need for syndrome-specific 

mouse models.   

 

1.7.1 Neonatal EE 

Ohtahara syndrome (OS) and Early Myoclonic Encephalopathy (EME) are two EEs with 

frequent seizures in the neonatal period and early infancy, and with a distinguishing feature of 

burst suppression on EEG during seizures.  Burst suppression appears as brief high voltage 

activity alternating with background attenuation. Often seizures are intractable, and thus the 

prognosis is poor with severe to profound developmental delay.  

OS, also known as early onset epileptic encephalopathy (EOEE), is rare but one of the 

most severe EEs.  with seizure onset reported within 10 days of birth for most patients, ranging 

from hours after birth to three months of age 216-218.  The majority of patients have tonic spasms 

(muscle contractions lasting a few seconds and resembling those of West syndrome) with or 

without clustering; additionally focal seizures, myoclonic seizures, GTCS, and hemiconvulsions 

are also observed in some patients 219, 220.  A peculiar burst suppression pattern on EEG occurs 

both while awake and asleep and has the appearance of periodicity.  Etiology is heterogeneous 

with structural brain abnormality being the most prominent 219-225, with congenital metabolic 

disorders, hypoxic-ischemic encephalopathy and gene mutations also being reported 226.  

EME also has a very early seizure onset from few days after birth to three months of 

age, burst suppression on EEG, and intractable seizures with extremely poor prognosis 227-229.  



 

 

22 

Although unlike OS, the main seizure types in EME are fragmented myoclonic seizures, 

frequent focal seizures, and non-epileptic myoclonus; massive myoclonic seizures or tonic 

spasms are also observed less frequently.  A myoclonic seizure involves a sudden, brief (less 

than 100 ms), involuntary contraction of muscles(s) or groups of muscles.  Additionally, the 

burst suppression pattern on EEG is prominent in sleep.  It has been reported that the majority 

of EME patients have a metabolic etiology and fewer have structural brain malformations 230. 

There is disagreement 231-235 on whether OS and EME are the same syndromes or 

present as a continuum of syndromes with overlapping clinical presentations and etiologies.  

Both syndromes have early onset, burst suppression on EEG, pharmacoresistant seizures, and 

poor prognosis.  Overlapping genetic etiologies 233 are now being reported and future studies 

will reveal if the prominence of structural etiologies in OS and metabolic etiologies in EME hold 

true.  However, differences with respect to the major seizure types and occurrence of burst 

suppression during different vigilant states are well-documented in these two syndromes.  

Another key characteristic differentiating OS from EME is that patients with OS show age-

dependent evolution of symptoms while those with EME do not.  About 75% of OS patients 

progress to West syndrome after 3-4 months of age, and a further ~59% progress from West 

syndrome to Lennox-Gastaut syndrome after one year of age 234.  The transition of OS from one 

syndrome to another suggests overlapping pathophysiological mechanisms; additionally this 

could be regarded as a development specific response to brain insults irrespective of the 

heterogeneous etiologies 234.  EME displays no age-dependent evolution, and the symptoms 

remain stable for a long time or change to partial epilepsy or severe epilepsy with multiple 

independent spike foci.  The lack of transition between OS and EME along with the evolution of 

symptoms with age in OS and relative consistency of EME symptoms with age reflect their 

pathophysiologic differences.  
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1.7.2 Infantile EE  

Dravet syndrome, previously known as severe myoclonic epilepsy of infancy, is an EE with 

seizure onset from six months to a year.  Beyond age two most patients develop refractory 

seizures accompanied by cognitive, behavioral, and motor (ataxia) impairment 236.  Typically, 

hemiclonic seizures or GTCS appear in the first year in otherwise healthy infants, which in some 

infants are be trigged by fever, hyperthermia (such as a warm bath) or vaccination.  Beyond the 

first year, recurrent febrile and afebrile myoclonic, atypical absence, unilateral clonic, focal, and 

GTC seizures are observed.  In some children focal or multifocal seizures are dominant and 

myoclonic seizures may not appear.  EEG semiology is typically normal before seizure onset in 

the first year of life, following which generalized spike-wave and polyspike-wave discharges, 

and focal discharges are observed 237.  The head MRI is also normal at seizure onset or with 

non-specific findings for most patients 238-241 but may become abnormal with seizure progression 

242, 243.  Thus, Dravet syndrome is considered a prototypical EE with cognitive, behavioral, and 

developmental regression after seizure onset.  Furthermore, high mortality is observed in Dravet 

syndrome, especially during childhood frequently due to sudden unexpected death in epilepsy 

(SUDEP), status epilepticus, or accidental death due to injury or drowning 244, 245.   

Additionally, Dravet syndrome alone accounts for a significant fraction of EEs with a 

population frequency of as high as 1 in 15,700 in the US 246 to 1: 40,000 in other parts of the 

world 126, 247-249.  The etiology of Dravet syndrome is uniquely homogeneous and well-studied 

compared to other EE syndromes.  About 70-80% of Dravet syndrome patients have SCN1A 

mutation encoding Nav1.1 α1 subunit of the voltage-gated sodium channel, the majority of 

which are de novo missense mutations 126-128.  For the remaining ~30% of patients, other 

candidate genes including GABRA1, GABRG2, SCN2A, SCN8A, SCN9A, HCN1, STXBP1, 

PCDH19 have been reported, but some of these patients may have borderline or Dravet 
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syndrome-like phenotypes 250.  Importantly not all patients with SCN1A mutations have Dravet 

syndrome.  Over 1000 SCN1A mutations have been reported in epilepsy patients 74, 251.  

Although the severity of symptoms and response to therapies would depend on the type and 

location of the SCN1A mutation in the channel 252-254 and the genetic background 57, 255, few 

common themes of mechanism of action have emerged from numerous in vitro studies and 

mouse models.  Not surprisingly, mutations in the channel pore or those grossly altering the 

NaV1.1 channels structure (eg. nonsense, frameshift, deletion, etc mutations) produced more 

severe epilepsy phenotypes with complete loss of channel function that were similar to that of 

haploinsufficiency 256.  As NaV1.1 channels are excitatory channels, loss of function mutations 

should result in hypoexcitable rather than hyperexcitable neuronal networks.  This conundrum 

was resolved using mouse models.  Mice with loss of NaV1.1 channels resulting from truncating 

the last exon of Scn1a (encoding S3 to S6 transmembrane segments of domain IV and the 

entire C-terminal tail) revealed reduced sodium currents in inhibitory GABAergic interneurons 

but not pyramidal cells, which could result in hyperexcitable networks and epilepsy 257, 258.  Loss 

of sodium currents from cerebellar Purkinje cells could explain ataxia in this mouse model 

similar to that seen in Dravet syndrome patients with loss-of-functions sodium channel 

mutations 259.  In agreement with this hypothesis, selective deletion of NaV1.1 channels from 

whole brain interneurons but not from forebrain excitatory cells resulted in spontaneous epileptic 

seizures (more severe than global deletion of Scn1a), premature death, and ataxia 260.  In 

addition, loss of NaV1.1 channels from parvalbumin positive (PV) interneurons was sufficient to 

replicate spontaneous epileptic seizures and ataxia in these mice 260, 261.  Further, inactivation of 

one Scn1a allele in PV interneurons but not in pyramidal cells produced spontaneous 

generalized seizures and increased susceptibility to heat and flurothyl induced seizures in mice 

262.  Both pyramidal cells and GABAergic interneurons express NaV1.1 channels.  However, 

during development NaV1.1 channels are predominantly expressed at the axon initial segment 
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of neocortical PV interneurons and on soma and axon initial segment of hippocampal PV 

interneurons, while their expression is extremely low on pyramidal cells 263.  Reduced 

interneuron excitability by loss of sodium currents is also replicated in mouse models with 

human Dravet syndrome mutations 264, 265, suggesting suppression of inhibitory activity to be a 

likely epileptic mechanism resulting from SCN1A mutations. 

 

1.7.3 Childhood EE 

Epileptic encephalopathy with continuous spike-and-wave during sleep (EECSWS) is a partly 

reversible childhood EE characterized by continuous spike-and-wave discharges during sleep 

(CSWS), variable seizure types, gradual but substantial decline in cognitive, motor, and 

psychiatric functions 266-268.  The disease progression involves first the appearance of seizures 

between 2 and 12 years of age (peak 4-5 years) in most but not all patients.  Then CSWS 

appears 1-2 years after the incidence of first seizures concurrent with developmental decline.  

Lastly, remission of seizures and CSWS occurs usually between 2–7 years from the disease 

onset.  The neuropsychological evaluation also improves but not to the level of unaffected 

children.  Many patients with EECSWS have permanent and severe neuropsychological 

impairment despite the age-limited time course of epilepsy 269.  Nevertheless, the outcomes in 

this syndrome are better compared to EEs with progressively deteriorating symptoms.   

Unlike other EEs, most (~80%), but not all, EECSWS patients have seizures at disease 

onset, and thus seizures prior to appearance of CSWS are not required for diagnosis 270-272.  

The initial phase of EECSWS is free of CSWS; seizures if present at onset occur only 

occasionally, and most are nocturnal focal motor seizures or GTCSs.  Occurrence of seizures 

increases in number and type as the CSWS and cognitive impairment appears.  Some authors 

report up to 93% of affected children have multiple seizures per day 270, 271, 273-277.  Commonly 
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occurring seizures after appearance of CSWS include GTCSs, focal to bilateral tonic-clonic 

seizures (previously secondary generalized seizure), typical absence seizures, atypical absence 

seizures and atonic seizures, which may accompany falls, and focal seizures with or without 

impaired awareness (previously complex and simple partial seizures, respectively) 270, 271, 273.  

Some patients have prenatal or perinatal abnormalities or a previous diagnosis of other epilepsy 

syndromes or related disorders 270.   

The next phase of the disease appears 1-2 years after the seizure/disease onset marked 

by the characteristic CSWS on EEG, a necessary diagnostic criterion.  CSWS are epileptic 

discharges that appear on EEG as diffuse and continuous spike-and-waves in non-rapid eye 

movement (Non-REM) sleep that can be focal, multifocal or generalized.  The EEG may also 

show multi-focal spikes (associated with structural brain abnormalities) and/or bisynchronous 

generalized sharp discharges when awake or asleep.  CSWS could occupy from 25% and to 

90% of Non-REM sleep duration that significantly impacts the quality of sleep 278, 279.  The later 

stages of Non-REM sleep (deep/slow wave sleep) are considered to be important for cerebral 

restoration, recovery, memory and sleep consolidation, and particularly important for functions 

of the prefrontal cortex in humans 280-284.  This may explain the appearance of cognitive decline 

and behavioral symptoms along with CSWS in Non-REM sleep.  The sudden appearance of 

aggression, hyperactivity, impulsivity, passivity, lack of interest in the surroundings and/or 

inflexibility takes over the lives of children and their caregivers and may overshadow the 

concordant cognitive decline 285.   

In the remission phase, the seizures and CSWS begin to disappear just as they 

spontaneously appeared, simultaneously resolving behavioral issues and cognitive issues to 

variable degrees in each child.  The extent of cognitive decline depends on the etiology.  Most 

patients have structural brain abnormalities (70-85%), and other cases are presumed to have 
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genetic causes 278.  Structural abnormalities could be developmental or acquired and include, 

but are not limited to, polymicrogyria, hydrocephalus, schizencephaly, perinatal hypoxia-

ischemia, and central cerebral atrophy.  Patients with or without structural abnormalities have 

monogenic or polygenic etiologies that are inherited or appear de novo.  Recently, mutations in 

several cell adhesion genes have been identified in EECSWS patients; several of these genes 

are also associated with ASD and Rolandic epilepsy 286.  The structural and genetic etiological 

groups have similar age of seizure onset and similar time elapsed between the first focal seizure 

and appearance of CSWS; however, patients with structural etiology have earlier onset of the 

focal seizures compared with patients with genetic or unknown etiologies 278.  Additionally, 

among the patients who respond to drugs, those with genetic etiologies have better cognitive 

outcomes than those with structural etiologies.  Patients who had >75% seizure reduction or 

became seizure free with medication had significantly improved IQs and school performance 278.   

Here I have used the term EECSWS as described by the ILAE 268, but some authors 

propose that CSWS is a common condition in a group of patients with EE and that drives 

symptoms depending upon the location of CSWS in brain 266, 287.  In the original description by 

Patry et al. in 1971, CSWS were described as subclinical electrical status epilepticus in children 

that is induced by sleep and terminated upon arousal 266.  As not all patients had overt motor 

seizures associated with CSWS, they were referred to as subclinical or electrical seizures.  The 

syndrome was considered an encephalopathy because all children in that study and the 

subsequent studies had cognitive impairment (Dalla Bernardina et al., 1978; Kellermann, 1978; 

Laurette and Arfel, 1976).  Since then the term electrical status epilepticus during sleep (ESES) 

became widely used.  However, the term ESES was not considered accurate since without 

detectable motor seizures and EEG pattern alone is not considered equivalent to status 

epilepticus (as in GTCSs).  Further, ESES only emphasizes the EEG pattern but not the 
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associated neuropsychological regression.  Thus, some authors prefer to use the term ESES as 

“Encephalopathy with Status Epilepticus during Sleep”, which reflects both the clinical findings 

and the EEG characteristics (Tassinari et al., 2000, 2005, 2009).  Afterwards, the ILAE 

proposed the term CSWS as an epilepsy syndrome 209, 211.  Even today many authors use ESES 

and CSWS interchangeably.  I point out these differences since now it is well recognized that 

CSWS (can be considered as reminiscent of atypical absence seizures present in LGS) occur in 

multiple EEs including Landau–Kleffner syndrome (LKS) 273, 288, 289, atypical benign epilepsy with 

centrotemporal spikes (BECTS) 290, and acquired opercular syndrome 291-294.  These disorders 

show a clinical spectrum with common features 269, 270, 273, 276, 279, 295, 296.  Along the same lines, 

LGS can be considered a variant in the CSWS spectrum 270, 297.  In LGS, however, atypical 

status epilepticus can occur when the child is awake and may progress to sleep.  Age-related 

seizure remission does not occur, and the symptoms may worsen over time 298, 299.  Of particular 

note, LKS patients have CSWS that occur in parallel with language disturbances leading to 

aphasia.  CSWS persist several months or years, and when CSWS begins to decrease or 

disappear, there is a concordant language recovery 277, 300.  Importantly epilepsy syndromes with 

CSWS and LGS may share the same reverberating thalamo-cortical circuit that generates 

oscillations during sleep (6-14 Hz) but switches to slow (1-4 Hz) oscillations in pathological 

states 301-306.  EE syndrome-specific mouse models will help understand their pathogenic 

mechanisms and the circuits involved. 

 

1.8 GABA-mediated inhibitory neurotransmission  

γ-aminobutyric acid (GABA) is the dominant inhibitory neurotransmitter in the CNS and acts by 

binding to GABAA receptors.  Even though present in other tissues, GABA is present in high 

concentrations (mM) throughout brain and spinal cord, and occurs in about a third of the 
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synapses 307, 308.  GABAergic inhibitory interneurons are the most common cell types 

synthesizing GABA (10-30% of all neurons), although, GABA is also present in long-range 

projection neurons such as septo-hippocampal neurons 309, and in neurons with extended 

arborizations such Purkinje cells in the cerebellum 310 and nucleus reticularis thalami (nRT) 

neurons.  GABA is also co-released with other neurotransmitters 311.  Glucose is the primary 

precursor for GABA synthesis; however, GABA can also be directly synthesized from glutamate, 

the most abundant excitatory neurotransmitter, by the enzyme L-glutamic acid decarboxylase 

(GAD) 312-314.  In fact, presence of GAD enzymes is used as a marker for inhibitory neurons.  

Following synthesis, the vesicular GABA transporter (VGAT) packages GABA into presynaptic 

vesicles 315  that then dock on the presynaptic terminals.  Presynaptic vesicles fuse with the 

plasma membrane to release GABA either spontaneously at a constant low-level leak or in bulk 

after a depolarization event such an action potential to release a high concentration (~1-10 mM) 

of GABA into the synaptic cleft 316, where it diffuses rapidly due a steep concentration gradient 

and activates postsynaptic GABAA receptors.  After synaptic release, GABA is rapidly cleared 

from the synaptic cleft via GABA transporters present on glial cells and presynaptic terminals 

317.  After being transported into astrocytes, GABA is converted first to glutamate by GABA 

transaminase and then to glutamine by glutamine synthetase.  Glutamine is then exported out in 

the extracellular space.  Glutamine is taken up in the presynaptic terminal and converted back 

to glutamate and then to GABA that is packaged in synaptic vesicles for subsequent release 318. 

 

1.9 Types of GABA receptors 

GABAergic neurotransmission is mediated by two receptor types⎯GABAA and GABAB.  

GABAA receptors are the principal inhibitory receptors abundantly expressed in the CNS that 

mediate the majority of the fast synaptic inhibition (few milliseconds duration) in adult CNS.  In 
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addition, GABAA receptors mediate shunting and tonic inhibition, and thus, they are critical for 

maintaining inhibitory tone that prevents neuronal hyperexcitability.  Pharmacological block of 

GABAA receptors quickly precipitates seizures in animals 319.  Similarly, several GABAA receptor 

mutations associated with GGE syndromes have been demonstrated to reduce GABAA 

receptor-mediated inhibition 320.  GABAA receptors are important targets for several AEDs as 

GABAA receptor dysfunction is one of the central mechanisms resulting in epilepsy,  

The G-protein coupled GABAB receptors carry out the slow inhibition (seconds in 

duration) in neurons by activating outward rectifying voltage-gated potassium channels 321 or by 

inhibiting voltage-gated calcium channels 322.  Both GABAA and GABAB receptors are expressed 

pre- and post-synaptically where they reduce excitability of adult neurons.   

 

1.10 Diversity of GABAA receptor subunits  

GABAA receptors are ligand gated ion channels that assemble as psedosymmetrical 

heteropentamers composed of 2α, 2β, and 1z subunits, where z= γ, δ, ε, θ, π, or ρ subunit 323-

326.  The subunits have a specific arrangement of z-β-α-β-α in counter clockwise direction as 

seen from the synaptic cleft 326-328.  The eight subunit families (α, β, γ, δ, ε, θ, π, and ρ) further 

have 19 subunit subtypes (α1-6, β1-3, γ1-3, ρ1-3) 329, splice variants (β3v1 and β3v2, β2S and β2L, 

γ2S and γ2L), and alternatively edited mRNA transcripts (α3I and α3M) 330-334.  If GABAA 

receptors can assemble from any combination of 19 subunits (α1-6, β1-3, γ1-3, ρ1-3, δ, ε, θ, π; 

excluding splice variants and alternately edited isoforms) with a 2α:2β:1z stoichiometry it would 

result in 6x3x6x3x10=3240 types of GABAA receptors.  However, the biological diversity 

observed is much more limited 335, 336, suggesting restricted assembly.  So far only 11 GABAA 

receptor isoforms have been identified in vivo (α1-4β2γ2, α4β2/3δ, α5βxγ2, α6βxγ2, α6β2/3δ, 
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and homomeric ρ receptors) and an additional eight isoforms are suspected to exist with high 

probability (α1β3γ2, α1βxδ, α5β3γ2, αxβ1γ, αxβx, α1α6βxγ, α1α6βxδ) 337.  Even then GABAA 

receptors subunits are immensely diverse, much more than the glutamate receptors 338.  This 

structural diversity allows functional diversity and fine-tuning of fast inhibitory currents.  For 

example, the IPSCs from young mice are slow and long-lasting compared to the brief IPSCs 

from adult mice 339-341.  Further, the diversity of GABAA receptors increases with developmental 

maturation as evident by increased diversity of mRNA transcripts seen in single neurons 342-344.  

Additional functional diversity arises due to differences in GABA potency; α6 subunit-containing 

GABAA receptors expressed especially in the extrasynaptic region have the highest GABA 

potency (0.17 µM), whereas the synaptic α2β3γ2 and α3β3γ2 receptors exhibit the lowest 

potency (12-13 µM) 345.  Expression of GABAA receptor subunits is highly regulated not only in 

certain brain regions but also within different compartments of a neuron.  For example, the α6 

subunits are preferentially expressed in cerebellar granule neurons and the low GABA affinity γ 

subunits are pre-dominantly synaptic while high affinity δ subunits are exclusively extrasynaptic 

346, 347.  Also, α1 subunits are evenly distributed in synapses on the soma, dendrites, and axons 

whereas α2 subunits are primarily located at the axon initial segment (Klausberger et al., 2002; 

Nusser et al., 1996).  Hence, the enormous diversity of GABAA receptor subunits offers wide-

ranging functional flexibility.   

In addition to the dominant 2α:2β:1x stoichiometry, others are also proposed in 

heterologous expression systems.  For example, the θ and π subunits are most homologous to 

β and δ subunits, respectively, and have been reported to assemble as 2α:1β:1δ:1γ and 

2α:1β:1γ:1π receptors 348, 349.  Similarly, the ε subunit with high homology to the γ subunit has 

been shown to assemble as 2α:1β:1γ:1ε receptors 350-353.  However, such receptor combinations 

have not been demonstrated in neurons.  
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1.11 Structural domains of GABAA receptor subunits 

GABAA receptors are part of the Cys-loop family of receptors that include nicotinic acetylcholine 

(nAChR), serotonin (5-HT3), and glycine receptors 354, 355.  The Cys-loop family of receptors 

contains a characteristic disulfide bond between N-terminal cysteine residues (the Cys-loop, 

hence the name of the family) and are arranged as pentamers with a central ion conducting 

pore.  Moreover, each subunit shares a large β-sheet rich hydrophobic N-terminal domain, four 

hydrophilic α-helical transmembrane domains (M1-4), a large and flexible intracellular loop, and 

some subunits contain a very short extracellular C-terminal tail extending beyond the membrane 

in the extracellular side.  The pore is formed by the M2 domains of the five subunits and ligand 

binding occurs at the interface of two pairs of α and β subunits in the extracellular N-terminal 

domains. The intracellular loop between M3 and M4 interacts with a large number of proteins 

and is involved in receptor trafficking, anchoring, phosphorylation, among important other 

functions 356.  The crystal structure of the heteropentameric GABAA receptor is not available but 

recently the high-resolution (3 A°) crystal structure of the human β3 homopentamer was 

reported 357.  This is by far the closest structure to heteropentameric GABAA receptors 

compared to the crystal structures of Acetylcholine binding protein (AChBP) 358, Torpedo 

marmorata nAChR 354, 359, 360 two bacterial analogues: Erwinia chrysanthemi ion channel (ELIC) 

361 and GLIC 362, Caenorhabditis elegans glutamate-gated chloride channel α (GluCl) 363 that 

were used as templates for comparative structural modeling.   
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Figure 1.3 Three-dimensional structural model of GABAA receptor.   
(A) Side view of GABAA receptor based on the crystal structure of the β3 pentamer 357 

with 2α (red), 2β (blue), and 1γ (yellow) subunits.  Each subunit has an extracellular N-terminal 
domain, four α-helical transmembrane domains, and the intracellular domain (not shown). (B) 
Top view of GABAA receptor as seen from the synaptic cleft.  The five subunits assemble in a 
doughnut-like shape, the central cavity conducts Cl- ions.  For orientation purposes, each 
subunits is designated a principle (+) and a complementary (-) face.  Full GABAA activation 
occurs when two GABA molecules bind at each of the β+/ α- interfaces. 
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Figure 1.4 Structure of a single GABAA receptor subunit.  
(A) Schematic showing extracellular domain, transmembrane domains (in the lipid 

bilayer), and intracellular domain of a single GABAA receptor subunit.  The extracellular domain 
contains a highly conserved Cys loop (disulfide between two cysteine (Cys) residues). (B) Side 
view of GABAA receptor subunit.  Within each subunit the extracellular N-terminal region begins 
with an α-helix followed by 10 β-sheets.  The four α-helical transmembrane domains (M1-M4) 
remain embedded in the lipid bilayer, the M2 domains of each subunit comes together to form 
the channel pore.  The structure of the intracellular domain is not known but thought to be a 
large flexible loop that binds to several intracellular components. 
 

1.11.1 Extracellular domain 

The large extracellular domains of GABAA receptor subunits assemble to give a 

doughnut-like appearance from the extracellular side (Figure 1.3B).  Each subunit begins with 

an alpha helix that winds into two sets of β-strands that are connected by the highly conserved 

disulphide bond (Cys-loop).  The rigid β-strands are connected by relatively flexible loops.  For 

orientation purposes each subunit is designated to have a principal (+) side and a 

complementary (-) side.  Full receptor activation occurs when two GABA molecules bind at two 
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of the β(+) and α(-) interfaces.  GABA binding occurs in the pocket formed by the loops A, B, 

and C of the (+) side and the loops D, E, F, and G of the (-) side 357, 364.  The widely used 

antiepileptic benzodiazepines compounds (that are also sedative, anxiolytic, muscle relaxant) 

bind at the α(+) and γ(-) interface.  The majority of the GABAA receptors with α1, α2, α3 or α5 

and γ1-3 subunits are benzodiazepine sensitive and are synaptically located.  While the α4, α6 

or δ subunit-containing receptors are benzodiazepine insensitive and extrasynaptic.  

Additionally, the extracellular domains are critical for receptor assembly 365-368 and contain sites 

for binding of N-linked glycans that aid in surface expression 369 and function 370, 371 of GABAA 

receptors.  

 

1.11.2 Transmembrane domains 

The four helical domains (M1-4) following the extracellular domains of GABAA receptors 

remain embedded in the cell membrane (Figure 1.4).  The M1 domain is important for channel 

function and required for actions of endogenous 372 and exogenous neuromodulators including 

barbiturates 373-380 and anesthetics 381, 382.  Five M2 domains assemble to form the lining of the 

channel pore that narrows towards that intracellular side.  Thus the M2 domains determine ion 

selectivity 383, conductance, and gating 384-388.  As expected the critical pore lining M2 domains 

are highly conserved, within it the leucine residue at the 9ʹ position is highly conserved among 

the Cys-loop family members.  The 9ʹ leucine was thought to line the narrowest part of the 

channel pore thus governing the closed channel state; not surprisingly mutation at this position 

has detrimental effects on channel functions 386, 389-393.  However, according to the recent crystal 

structure of the β3 homopentamer the 9ʹ leucine residues of M2 domain 357 are rotated out of 

the pore and their side chains are between the neighboring M2 helices.  As much of the earlier 

GABAA receptor homology modeling was done using other Cys-loop channels 394, it is 
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interesting to note that the rotation at the 9ʹ leucine residues is not predicated in nAChR 

receptors during the open-to-closed M2 motion.  Thus the closed state at least in the β3 

homopentamer is primarily attributed to the unique conformation of the M2 helix 357.  The M3 

domain strongly affects receptor desensitization  395 while the outermost M4 domain is thought 

to provide stability and can be substituted with an unrelated transmembrane domain in nAChRs, 

but substitution of the M1-3 domains produces non-functional channels 396.  Additionally, the M3 

and M4 domains bind to multiple allosteric modulators such as intravenous anesthetics 397, 398. 

 

1.11.3 Intracellular and extracellular loops 

The flexible loops connecting the transmembrane domains also have crucial functions.  The 

small intracellular loop between M1 and M2 domains extends beyond the pore formed by the 

M2 domain 383, 399, 400.  Recently the M1-M2 loop along with the end of M3 domain have been 

show to control GABAA and glycine receptor desensitization 395.  The extracellular loop between 

the M2 and M3 transmembrane domain transduces GABA binding to channel gating in the 

transmembrane domains by multiple polar interactions with the Cys-loop (β6-β7 loop) 357, 374, 401.  

Importance of the M2-M3 loop mutations is further demonstrated by human mutations that 

reduce functional responses in GABA 402-404, glycine 405-407, and muscle ACh receptors 408.  This 

also demonstrates the conserved mechanisms that transduce ligand binding to channel gating 

in the Cys-loop family receptors.  In patients with severe epilepsy syndromes, the 

GABRA1(K306T) 50, GABRB3(Y302C) 104, 171, GABRB3(A305V) 409, and GABRG2(K328M) 410, 

411  mutations in the M2-M3 loop reduced GABAA receptor functions by either reducing peak 

GABA currents or altering current kinetics.  The intracellular M3-M4 loop is the largest loop 

(>100 residues) in the Cys-loop family of receptors that provides the primary domain for 

interaction with the intracellular environment.  The structure of this large intracellular loop is not 
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known; for channel crystallization purposes it is replaced with a small loop of <10 amino acid 

residues.  This change is presumed to resemble the structure of the intact channel by and large.  

Within the cell, the M3-M4 loop is critical for GABAA receptor functions.  Various protein 

interactions in the M3-M4 loop including those with scaffolding proteins (that govern receptor 

clustering, trafficking, sorting, expression, and endocytosis), protein kinases, and post-

translation modification proteins govern channel function 412. 

  

1.12 Modes of GABAA receptor-mediated inhibition: hyperpolarization, 

depolarization, shunting, and tonic inhibition  

Binding of two GABA molecules opens GABAA receptors and results in Cl- influx or efflux based 

on the local Cl- concentration gradient inside and outside the cell and the local membrane 

potential.  In adult neurons the intracellular Cl- concentration is ~11 fold lower than the outside 

and has a reversal potential of approximately -65 mV, which is close to the resting membrane 

potential (~70 mV).  Under these conditions GABAA receptor activation results in Cl- influx and 

hyperpolarizes the cell 413.  In contrast, during development immature neurons have high 

intracellular Cl- concentration [Cl-], and thus GABAA receptor activation results in Cl- efflux that 

depolarizes the cell 414.  Since the GABAergic system develops before the glutaminergic 

system, GABA sets up the initial synaptic connectivity and acts as the major excitatory 

neurotransmitter during development that facilitates activity-dependent growth and synapse 

formation 415-418.  

Developmental decline in [Cl-] is thought to drive the shift from depolarizing to 

hyperpolarizing actions of GABA.  Immature neurons have elevated intracellular [Cl-] due to high 

expression of sodium potassium chloride co-transporters (NKCCs), sodium chloride co-
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transporters (NCCCs), and sodium-independent anion exchangers (AE3).  This leads to ECl
- that 

is more positive than the resting membrane potential, thus when GABAA receptors open in 

immature neurons Cl- flows out of the cells to reach ECl
- and depolarizes the cells.  Similarly, 

GABAA receptor activation in adult neural progenitor and immature neurons depolarizes them 

due to high intracellular [Cl-] 419, 420.  Of these NKCC1 levels have been shown to be important 

for regulation of intracellular [Cl-] and generation of hippocampal sharp waves in rat pups 421.  A 

large body of work on excitatory actions of GABA has been carried out in vitro conditions that 

provide ease of recording GABA currents and good control over internal and external Cl- 

concentrations (that are challenging to measure and control precisely).  It remains to be seen 

whether these conclusions remain valid in intact brains 422, 423.  As development progresses 

increased expression of potassium chloride co-transporters (KCCs), sodium dependent anion 

exchangers (NDAE), and chloride channel 2 (Clc2) that extrude Cl- from neurons result in an ECl
- 

more negative than the membrane potential as the brain matures 424.  Thus, in mature adult 

neurons GABAA receptor activation produces Cl- influx that hyperpolarizes neurons, thereby 

increasing the action potential threshold and minimizing the depolarization produced by 

glutamate or calcium receptors.  

The Cl- influx after activation of synaptic GABAA receptors does not always result in 

membrane hyperpolarization but can still reduce (or shunt) the likelihood of action potentials or 

membrane depolarization by increasing the conductance or decreasing membrane resistance, a 

phenomenon known as shunting inhibition.  By Ohm’s law V=IR, thus as the membrane 

resistance decreases (by channel opening) the same amount of current produces a smaller 

membrane depolarization.  Additionally, since ECl
- is only slightly more positive than the resting 

membrane potential, it is uniquely suited for shunting inhibition, unlike the reversal potential for 

the excitatory channels that is typically much more positive than the resting membrane potential.  
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Thus, an excitatory input depolarizes cell membranes; however, an inhibitory input may not 

always hyperpolarize the cell membrane.  Shunting inhibition is not just the difference in the 

membrane potential generated by EPSPs and IPSPs.  Strength of shunting inhibition depends 

on the distance between the excitatory and inhibitory inputs, cell morphology, and location of 

GABAergic synapses.  GABAergic inputs on proximal dendrites are particularly effective in 

shunting more distal excitatory inputs than those located more proximal to soma (Hao, 2009).  

Further, shunting inhibition persists only as long as the GABAA receptors are open, while 

hyperpolarizing IPSCs decay more slowly as governed by receptor kinetics and cable properties 

of neurons.  Thus brief shunting inhibition has been proposed to determine the precise spike 

timing (millisecond range) of neurons that is essential for shaping network oscillations 425 and 

controls firing rate gain in neurons 426.  Moreover, shunting inhibition appears to be the main 

inhibitory mechanism in GABAergic hippocampal interneurons throughout development 427.  

Tonic inhibition is a mode of long-lasting inhibition produced at the non-synaptic 

locations by a subpopulation of GABAA receptors, with δ subunits exclusively and α4 and α6 

subunits predominantly expressed at extrasynaptic sites.  The ε, π, and θ subunits are also 

expressed non-synaptically but are not widely expressed in all brain regions.  Unlike the 

synaptic GABAA subunits, those mediating tonic inhibition are located in the vicinity 

(perisynaptic) or far (extrasynaptic) from GABAergic synapses.  Thus, they are activated by 

GABA diffusion or spillover from synapses during repeated activation of presynaptic terminals 

during which transporters are unable clear GABA from the synaptic cleft 428-430.  Additionally, 

GABA has more recently been shown to be released by astrocytes (a major class of gila) 431-434 

and neuronal dendrites 435, 436.  Further, this non-neuronal GABA has been shown to mediate 

tonic inhibition by non-synaptic GABAA receptors 434, 437-440.  Clearly much lower GABA 

concentrations (µM) 441 are available at non-synaptic sites (µM) than at synapses (mM), but they 
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are sufficient to activate high affinity non-synaptic GABAA receptors 442-444.  Additionally, δ 

subunit-containing GABAA receptors have reduced desensitization compared to those with γ 

subunits 445.  High affinity and reduced desensitization makes non-synaptic GABAA receptors 

effective for mediating tonic conductance.  For example, tonic GABAA receptors in the 

hippocampus and cerebellum have been shown to conduct more charge than the high 

frequency phasic inhibition in the same cell 436, 446, 447.  Thus, tonic inhibition is critical for 

regulating cellular and network excitability, and not surprisingly, altered tonic inhibition is 

observed in disease states.  SNPs and mutations in the δ subunit gene (GABRD) have been 

associated with GGEs 448, 449.  

 

1.13 GABAergic signaling in neurodevelopment 

Neurodevelopment is a highly orchestrated phenomenon with a plethora of coordinated 

events including actions of GABA and glutamate signaling.  The GABAA neurotransmitter 

system is a key facilitator of embryonic neurodevelopment, demonstrated by the observation 

that cortical architecture is substantially altered when the GABAA agonist muscimol or 

antagonist bicuculline are applied to newborn rat parietal cortices 450.  The GABAergic system is 

one of the first to appear during development, even prior to the glutamatergic system 451-453.  

However, maturation of the GABAergic system is more protracted than maturation of the 

glutamatergic system; mature EPSPs appear by P20-22 whereas mature adult-like IPSCs 

appear only by ~4 weeks after birth in rodents 454, 455.  GABAergic interneurons are the primary 

source of GABA⎯the primary inhibitory transmitter in the CNS.  In the developing nervous 

system prior to synapse formation, GABA acts as neurotrophic factor that negatively regulates 

neurogenesis, promotes migration and differentiation of neurons, and synaptogenesis 452, 456, 457.  

Additionally, ambient GABA is essential for maturation and integration of adult newborn neurons 
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458, as well as for control of the number of newly born adult cells by inhibiting production of new 

neuroblasts 459-461.  In the adult brain each of the GABAergic interneuron types (≥20 in the cortex 

and hippocampus) fine-tune the output of microcircuits with their unique properties 462, 463.  Even 

though GABAergic interneurons in the adult mammalian cortex comprise only about 10-25% of 

all neurons, they are critical circuit components that regulate the activity and oscillatory behavior 

of excitatory pyramidal cell assemblies. 

Murine interneurons start to appear in the ventral telencephalon on embryonic day (E) 

9.5 and E12.5 in the medial and caudal ganglionic eminences, respectively 453, 464, 465.  Around 

the same time excitatory pyramidal cells start to emerge in the ventricular zone of the dorsal 

telencephalon at E11, then radially migrate to the cortical plate and form the six layered cerebral 

cortex by E17 466-469.  Despite the earlier start, maturation of the GABAergic system is much 

more protracted.  Interneurons that begin their tangential migration from the medial and caudal 

ganglionic eminences appear in the maturing dorsal telencephalon (that will become the 

cerebral cortex) where they begin the radial migration and integration with the glutamatergic 

cells.  GABA immunoreactivity in the dorsal telencephalon, primarily in the cortical plate, sub-

plate, marginal zone, and subventricular zone, can be seen from E14-19, but the pattern of 

GABA immunoreactivity as seen in adult brains appears much later postnatally from P16-21 452, 

470.  Additionally, GABAergic interneurons and synapses undergo pruning in the postnatal 

period.  Interneuron numbers reach their maximum by P5 in mice, after which they undergo 

intrinsically determined cell death that reaches its maximum by P7.  By P15 the interneuron cell 

death halts, and the P20 animals have adult interneuron levels; only 60% of the initial 

interneuron pool that reached the cortex survives 471.  The interneuron cell death is cell 

autonomous and independent of the competition for survival factors but synaptic transmission or 

cell–cell contact may play role in interneuron survival 472. 
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Similarly, the formation of GABAergic synapses can occur in the absence of GABA 

release primarily because cell-autonomous genetic programs regulate the physiological and 

morphological maturation of GABAergic interneurons and formation of GABAergic synapses 473, 

474.  The initial foundation of GABAergic synapses is largely sensory input and activity 

independent, while their maturation is not.  GABAergic synapses can be detected in the rat 

neocortex by E16 predominantly in the marginal zone and sub-plate 475, and glutamatergic 

synapses by E17 476.  Functional GABAergic currents have been recorded only by E18 in the 

mouse neocortex.  Thus even when GABAA receptors can be detected in neuronal stem cells 

and migrating neuroblasts, the formation of functional synapses with pre- and post-synaptic 

elements occurs much later in development.  Once the synapses are formed their maturation is 

dependent on GABA release that itself depends on neuronal activity.  When GABA release is 

dampened specifically from PV+ interneurons by knocking out the GABA synthesizing enzyme 

GAD67, perisomatic innervation by PV+ interneurons and their axonal branching are reduced 

477.  On the contrary, complete blockade of GABA release from PV+ interneurons results in an 

excess of synapses and overgrowth of axons.  These results indicate that synaptic GABA 

release regulates synapse elimination, as GABA is not needed for GABAergic synapse 

formation 478.  GABAergic circuits are refined by synapse pruning, a process that begins during 

neurodevelopment and continues in late adulthood 479, 480.  

In addition to neurodevelopment, GABAA receptor activation is critical for adult 

neurogenesis involving proliferation, differentiation, migration, and appropriate synaptic 

integration of adult newborn neurons 481, 482.  Activation of GABAA receptors by ambient GABA, 

followed by depolarizing synaptic GABAergic inputs, and then embellishment of glutamatergic 

synapses in the juvenile and adult neuronal precursors is similar to the maturation pattern seen 
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during neurodevelopment 458, 483-489.  Thus, actions of GABA brought about by GABAA receptors 

are critical in shaping the developing nervous system. 

 

1.14 GABAA receptor changes during development 

Each of the 19 GABAA receptor and GABAB1/2 receptor subunits are differentially 

expressed during embryonic and postnatal development.  Prior to formation of GABAergic 

synapses, GABAA receptor activation serves autocrine and paracrine functions, following which 

GABA serves as an excitatory neurotransmitter 419, 490 in the immature nervous system, and then 

as the major inhibitory neurotransmitter in adults.  The precise changes in the expression of 

each subunit are not well known as there are region specific, age specific, and species specific 

changes in expression patterns, and thus only some of the well-documented changes in the 

rodent brain are described here.   

The α4, β1, and γ1 GABAA receptor subunits appear much earlier in rodent 

neurodevelopment and have been identified in neuronal stem cells 456, 491 and pre-migratory 

neuroblasts in the ventricular zone 492.  At this stage in rodent development, high levels of GABA 

promote proliferation of neuronal progenitors in the ventricular zone via GABAA receptor 

activation.  As the neuroblasts approach their destination in the cortical plate, expression of α2, 

α3, β3, and γ2 subunits dominate while α4 subunit levels become undetectable 493, and GABAA 

receptor activation arrests their migration in rodents 452 494-496.  During the late embryonic stages, 

expression of α3, α5, β2/3, and γ2 subunits begins and peaks during initial postnatal stages.  

From this point, expression of β2/3 and γ2 subunits remains relatively constant, and they remain 

dominant subunits in the adult rodent cortex 494.  In the late embryonic stage, GABAA receptor 

activation results in phasic depolarization as early as E18 in the rodent neocortex and 
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hippocampus 475.  In the post-natal stages the dominant α3/α5 subunit-containing GABAA 

receptors of the early postnatal stages are replaced by predominantly α1 subunit-containing 

GABAA receptors 497-500 in most brain regions except in the thalamus.  The α1 subunit from then 

becomes the dominant α subunit in most adult brain regions 494, 501-503.  This developmental 

change occurs concomitantly with replacement of slow-decaying IPSCs with adult-like fast 

decaying IPSCs 504, with increased sensitivity to zolpidem (α1 selective agonist) 505, 

benzodiazepines 504, and neurosteroids 506.  Consistently, mice lacking α1 subunits continue to 

have juvenile-like slow and long-lasting IPSCs 339-341.  Along with the α1 subunits, expression of 

α4, α6 (expressed only in the cerebellum), and δ subunits gradually increases during postnatal 

development 494.  The γ3 subunits are expressed only for about two weeks after birth 494 at a 

time when there is extensive differentiation and synaptogenesis but their role in this short post-

natal period is not known.  As ρ(1-3), ε, π, and θ subunits are not abundantly expressed 

throughout the brain, changes in their expression patterns are not well known.  Next I will 

describe the changes in expression patterns of β3 and β1 subunits as effects of mutations in 

these subunits are the focus of this thesis.  

 

1.14.1 Developmental expression of β3 subunits 

Among β subunits, expression of β3 subunits dominates in the embryonic and early 

postnatal stages in most brain regions, while expression of β2 subunits is highest in the adult 

rodent cortex.  Expression of β3 subunits begins at E12 in rodents, reaches its peak in the 

perinatal stage 494, 507 and plays a critical role in neuronal differentiation and migration.  

However, β3 subunit expression declines as the nervous system matures except in the 

hippocampus, olfactory bulb, cerebellum, and reticular thalamic nucleus (nRT), where they 

continue to be the predominant β subunit 494, 507, 508.  Additionally, β3 subunits have a 
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significantly higher GABA affinity than β1 or β2 subunits 509, 510, which may be well suited during 

the early neurodevelopmental period where low GABA concentrations exist due to maturating 

interneurons and GABAergic synapses.  Furthermore, the β3 subunit occurs in two isoforms (1 

and 2) that are developmentally regulated.  The β3 subunits are encoded by the GABRB3 gene 

located on chromosome 15q11.2-q12.  GABRB3 has nine coding exons 511 that are predicted to 

generate at least five mRNA transcripts (variants 1-5), though proteins from only variants 1 and 

2 have been confirmed in the brain tissue.  Variant 1 and 2 each encodes a full-length mature 

β3 subunit with 438 and 451 amino acids, respectively.  Distinct transcriptional start sites in 

exon 1 and exon 1A produce mRNA transcripts variant 1 and variant 2, respectively, that 

encode identical β3 subunits apart from their signal peptide sequence and initial few amino 

acids of the mature peptide 512.  Interestingly, exon 1A is abundantly expressed in the fetal brain 

but not in the adult brain, while exon 1 is highly expressed in the adult brain.  Although, in cortex 

and cerebellum, marginal expression of fetal variant 2 transcripts with exon 1A continues into 

adulthood 334, 512.  The β3 subunit isoform 4 is predicated to be 388 amino acids long 

(uniprot.org, NCBI Gene, but its presence in the CNS has not been experimentally verified.  It 

could be speculated that the two alternative signal peptides provides temporal and tissue 

specific expression.  The GABRB3(N110D, D120N), GABRB3(E180G), and GABRB3(Y302C) 

mutations described in this thesis are located in exons 4, 5 and 8, respectively.  For this study, 

we used cDNA encoding human GABRB3 variant 2 (NM_021912.4) that is abundant in fetal 

brain to express β3 subunits in heterologous HEK293T cells; in theory, β3 subunits produced 

from either variant 1 or 2 should not affect the properties of GABAA receptors, as the mature β3 

subunits do not contain the signal peptide.  

The β3 subunits continue to be highly expressed in regions involved in seizure 

generation such as cortex, thalamus, hippocampus, septum and basal forebrain; as well as in 
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the olfactory bulb, hypothalamus, epithalamus, and amygdala 494, 508, 513.  Also, the β3 subunit 

knockout mice develops seizures 514.  This indicates that β3 subunits have a critical role in 

normal brain function and that altered inhibition via β3 subunit-containing GABAA receptors 

during development or in the adult brain is sufficient to render brain circuits susceptible to 

seizures.  Moreover, the thalamocortical circuits are essential to sensory processing, and thus it 

is not surprisingly that disruption of the GABAergic system in heterozygous Gabrb3 mice elicits 

somatosensory deficits.  GABRB3 is also implicated in autism 515 in which somatosensory 

disturbances are common 516, 517. 

 

1.14.2 Developmental expression of β1 subunit 

The 449 amino acid long β1 subunit is encoded by GABRB1 518, which has 9 exons 511 

similar to GABRB3.  GABRB1 is mapped to chromosome 4p12 in a cluster of GABAA receptor 

subunit genes encoding α4, α2, and γ1 subunits.  In the rodents in situ hybridization starting on 

E14 revealed that β1 subunit mRNAs can be detected in the ventricular zone and the spinal 

cord 494, while the expression in the cortex, thalamus, and olfactory bulb begins after birth and 

undergoes significant down regulation in the early postnatal period.  Each reaches adult levels 

after the first post-natal week 519.  Hippocampal β1 subunit mRNA levels are higher than cortex 

levels, but they peak in the postnatal period (~P12) and then decline to steady levels in adults 

494, 519.  While in humans mRNA levels measured using microarray analysis with qPCR 

validation show that β1 subunit mRNAs decline after birth till 2-3 years of age and then remain 

at this level in adults 507.  However, unlike the β2 and β3 subunits, the contribution of β1 

subunits to neurodevelopment and normal brain functions is not well understood.  
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Studies from the past decade highlight an important role of β1 subunits in the estrous 

cycle 520, sleep regulation 521, schizophrenia 522, and ataxia 523.  GABRB1 polymorphisms have 

been shown to regulate alcohol dependence 524-527 and impair behavioral control predisposing 

individuals to addiction 528.  Recently, GABRB1 mutations have been identified in two children 

with epileptic encephalopathy in two different studies 104, 172.  As GABRB1 is identified in isolated 

cases, it lacks the statistical significance to be classified as an epilepsy gene.  Although, our 

work 171 clearly demonstrates that mutant β1 subunits significantly disrupt GABA-evoked 

currents, suggesting that it could contribute to the epilepsy phenotypes (discussed in depth in 

Chapter 2).  The presence of β1 subunits in circuits involved in seizure generation such as 

cortex, hippocampus, and thalamus during the early post-natal period and in adults 494, 507, 513, 519 

also make their contribution to epilepsy plausible. 

 

1.15 GABAA receptors: roles in epilepsy 

As GABAA receptors are the dominant inhibitory receptors in the CNS, it is not surprising that 

mutations altering their functions can lead to epilepsy.  Indeed, several mutations were identified 

in large families with epilepsy phenotypes (including CAE, JME, FS, GEFS+) beginning the 

early 2000s before NGS studies.  These initial reports identified epilepsy-associated mutations 

in GABRA1 43, GABRB3 129, 529, 530, GABRG2 41, 42, and GABRD 531, establishing them as human 

epilepsy genes.  Before NGS studies mutations in the remaining 15 of 19 GABAA receptor 

subunit genes were not identified in epilepsy patients, and a possible association of certain 

GABAA receptor genes with certain syndromes was pointed out.  For example the association of 

GABRB3 and GABRA1 mutations with CAE or JME, respectively 43, 129.  Now, however, the 

continually expanding list of epilepsy-associated GABAA receptor subunit mutations includes 
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GABRA2 532, GABRA3 533, GABRB1 172, and GABRB2 44, 45, which were previously not 

considered to be human epilepsy genes.  It is only a matter of time before more epilepsy-

associated GABAA mutations will emerge as additional risk factors for epilepsy.  Currently 

GABAA receptor mutations have been identified in patients with different epilepsy syndromes 

including febrile seizures (FS), generalized epilepsy with febrile seizures plus (GEFS+), 

childhood absence epilepsy (CAE), juvenile myoclonic epilepsy (JME), and epileptic 

encephalopathies (EEs).  Moreover, the contributions GABAA receptor gene mutations to 

diseases such as autism spectrum disorder and schizophrenia are also well recognized.  

 

1.16 Pathophysiology of epilepsy-associated GABAA receptor mutations  

The pathological impact of GABAA receptor mutations depends on their type (missense, 

nonsense, frameshift, insertion deletion, copy number variation (CNV)) and location (signal 

peptide, mature subunit, promoter region, intronic and 3ʹ and 5ʹ untranslated regions.).  For 

missense mutations, the functional alteration varies even when different amino acid 

substitutions are observed at the same location 534.  Numerous mutations in GABAA receptor 

genes, especially missense mutations, have been documented so far 535 (Table 1).  The 

mechanisms of actions of few mutations are described here primarily to discuss the various 

ways, sometimes unanticipated, in which they disrupt GABAA receptor functions.   

 

1.16.1 Missense mutations 

The GABRA1(A322D) mutation was harbored by all individuals affected with autosomal 

dominant form of JME in a large French-Canadian family 43.  The symptoms included myoclonic 

seizures and GTCSs, and some family members also had absence seizures.  This mutation 
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altered the non-polar amino acid alanine to an acidic polar aspartic acid residue in the M3 

transmembrane helix of the GABAA receptor α1 subunit.  When expressed in heterologous cells, 

the mutant α1(A322D) subunits misfolded and reduced incorporation of the M3 helix into the 

lipid bilayer 536.  The misfolded subunit was retained in the endoplasmic reticulum (ER), resulting 

in reduced total and surface levels 537.  This in turn led to significantly reduced GABA-evoked 

currents and GABA-sensitivity 538, 539.  In addition, when the mutant α1(A322D) subunits were 

expressed in neurons, they reduced miniature inhibitory postsynaptic current (mIPSC) 

amplitudes and altered receptor kinetics 540.  Thus, inhibition reduced by impaired subunit 

assembly and by dominant negative effects of this mutation could lead to hyperexcitable 

neuronal networks and in turn produce seizures. 

 

1.16.2 Truncation mutations 

The GABRG2(Q390X) mutation was identified in an Australian family with GEFS+ and Dravet 

syndrome 541.  It resulted in a truncated γ2 subunit that lacked the 78 C-terminal amino acids 

resulting in trapping and degradation of GABAA receptors in the ER and consequently severely 

reduced GABA-evoked currents 541, 542.  The mutant γ2(Q390X) subunits had dominant negative 

effects on GABA-evoked currents and surface expression of wild type receptors when α1, β2, 

γ2, and γ2(Q390X) subunits were co-expressed in heterologous cells and in cultured neurons 

542.  Furthermore, a Gabrg2+/Q390X knock-in mouse model had spontaneous seizures, reduced 

mIPSC amplitudes, accumulation and aggregation of γ2(Q390X) subunits in neurons, and 

reduced partnering α and β subunits trafficking of heteropentameric GABAA receptors.  

Additionally, the accumulated γ2(Q390X) subunits promoted apoptosis and neuronal death, and 

in turn enhanced age related neurodegeneration 543.  Some of these adverse outcomes of the 

mutation were reduced by overexpression of wild type γ2 subunits in Gabrg2+/Q390X mice 544. 
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1.16.3 Frameshift mutations 

The c.1329delC GABRG2 frameshift mutation was identified in four family members affected 

with GEFS+ and in one unaffected family member 545.  The mutation is a deletion of the cytosine 

(C) nucleotide at the serine 443 codon resulting in loss of the natural stop codon and 

emergence of a new stop codon in the 3ʹ UTR, predicted to produce γ2(S443delC) subunits with 

an extended C-terminus that lacks 24 wild type amino acids and has an additional 50 cryptic 

amino acids.  When the mutant γ2(S443delC) subunits were expressed in heterologous cell 

lines, they were retained in the ER and degraded, resulting in reduced total expression levels 

compared to the wild type γ2 subunits.  Whole cell GABA-evoked currents from GABAA 

receptors containing α1, β2, and γ2(S443delC) subunits were only 30% of those with wild type 

subunits and had significantly increased desensitization and Zn2+ inhibition similar to those of α1 

and β2 subunit-containing GABAA receptors.  Thus, γ2(S443delC) subunits reduced inhibition 

by haploinsufficiency through loss of wild type γ2 subunits from the cell surface.  Additionally, 

they also had dominant negative effects by increasing degradation of partnering αβ subunits 

and in turn reducing the surface expression of functional GABAA receptors. 

 

1.16.4 Deletion-insertion mutations 

The GABRA1(K353delins18X) mutation resulted from insertion of 25 nucleotides in intron 10 

near the splice acceptor site of exon 11.  Most eukaryotic mRNA contains introns that are 

spliced out to produce mature mRNA.  During splicing the 5ʹ donor site first makes a lariat at the 

branch site, then the intron is spliced out at the 3ʹ acceptor site at the end of the intron.  

Common sequence length between the branch site and the acceptor site is 20-50 nucleotides.  
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Insertion of 25 nucleotides in intron 10 increased this distance to 63 nucleotides resulting in 

retention of intron 10 in the mRNA transcript and introduction of a premature translation 

termination codon (PTC).  Although, not experimentally demonstrated, at least a fraction of the 

mutant mRNAs can likely be degraded by a cellular quality control mechanism known as 

nonsense-mediated mRNA decay (NMD) to prevent translation of truncated proteins.  As mutant 

α1(K353delins18X) subunits have been identified using antibodies, some mRNAs do undergo 

translation and produce α1(K353delins18X) subunits with a lower molecular mass compared to 

wild type α1 subunits that are predicted to have 18 amino acids translated from intron 10 and 

deletion of the fourth transmembrane domain due to a PTC.  When expressed in a heterologous 

cell line, the α1(K353delins18X) subunits were retained in the ER and not expressed on the cell 

surface.  Not surprisingly GABA-evoked currents were absent from cells expressing the 

α1(K353delins18X), β, and γ subunits.  The presence of the GABRA1(K353delins18X) mutation 

in three family members affected with GTCS 530 supports its role in epilepsy; however, one 

unaffected individual also harbored this mutation, suggesting significant effects of genetic 

background in expression of symptoms.   

 

1.16.5 Intronic mutations 

Exonic mutations are extensively studied while intronic mutations in GABAA receptor are less 

frequently reported and are difficult to study compared to point mutations.  Non-coding regions 

such as introns and 3ʹ and 5ʹ untranslated regions can influence gene function and contribute to 

epilepsy pathogenesis.  One such example is the GABRG2(IVS6+2T→G) mutation that altered 

the splice donor site sequence from GT to GG in intron 6, which was reported in an Australian 

family with CAE and FS 546.  When the mutation was expressed in HEK293T cells and in 

transgenic mice, the mRNAs with aberrant splice sites retained 53 base pairs of intron 6, had a 
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PTC in intron 7, and were partially subjected to degradation by NMD.  This resulted in 

expression of a stable truncated protein with 217 wild type and 29 novel amino acids from intron 

6 and frameshifted exon 7, but was not trafficked to the cell surface and was retained in the ER 

resulting in significantly reduced GABA-evoked currents resembling those of the αβ subunit-

containing GABAA receptors.  Thus, haploinsufficiency due to degradation of mutant mRNA and 

dominant negative effects of the mutation trapped the receptors in the ER, produced ER stress 

and reduced currents.  Reduced inhibition resulting from these events was suggested to 

produce the epilepsy phenotype 547. 

 

1.16.6 Promoter mutations 

Single nucleotide polymorphisms (SNPs) in the GABRB3 promoter regions were reported to 

significantly associate with CAE in a study by Urak and colleagues with 45 CAE patients and 75 

controls 184.  To examine the effects of the promoter mutations an in vitro reporter gene assay 

was used, which compared the ability of the promoter regions of CAE patients and controls to 

drive protein expression.  They found that the promoter region mutations of CAE patients 

significantly reduced transcriptional activity relative to that of the promoter regions of control 

individuals, resulting in reduced protein expression.  Further in silico analysis predicted that the 

CAE-associated haplotype promoter impaired binding of a neuron specific transcriptional 

activator N-Oct-3, and an in vitro assay demonstrated reduced binding to nuclear proteins 

compared to the control promoter haplotype.  Thus, the CAE-associated haplotype in principle 

could reduce β3 subunit expression and in turn reduce GABAergic inhibition during the critical 

developmental period and in adult CNS.  However, the promoter haplotype (rs4906902) 

reported by Urak and colleagues failed to associate with CAE in two other studies with large 

(250 CAE patients, 559 controls) 548 and small (48 CAE patients, >500 controls) sample sizes 
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549.  Recently, SNPs in GABRB3 had been associated with schizophrenia 550, 551.  Non-coding 

genetic changes are expected to be identified more frequently as genomic sequencing becomes 

commonplace.  Thus, the significance of non-coding sequences, which in principle can alter 

neuronal activity, is yet to be fully characterized. 

 

Table 1.1 GABAA receptor mutations identified in patients with epilepsy, and in 
patients with intellectual disability or developmental delay with or without epilepsy. 

Gene Mutation Diagnos
is Location 

GABAA receptor functions Reference 
Current 

amplitude 
Current 
kinetics 

Expression level  

GABRA1 T20I GGE N-terminus - - - Johannesen K, 
2016 

 V74I GEFS+ N-terminus - - - Johannesen K, 
2016 

 S76R DS-
like/EE N-terminus Reduced - - Johannesen K, 

2016 

 F104C JME N-terminus - - - Johannesen K, 
2016 

 R112Q DS & IS N-terminus - - - 
Carvill GL, 

2014;   Kodera 
H, 2016 

 N115D Mild DS N-terminus - - - Johannesen K, 
2016 

 L146M DS N-terminus - - - Johannesen K, 
2016 

 R214H DS/EE N-terminus Reduced - - Johannesen K, 
2016 

 D192N GGE N-terminus Reduced Faster 
deactivation 

Reduced 
surface and 

total α 

Lachance-
Touchette P, 

2011; Chen X, 
et al., 2017 

 G251S DS N-terminus Reduced - - Carvill GL, 2014 

 P206L OS, WS M1 - - - Kodera H, 2016 

 M263T WS M1 - - - Kodera H, 2016 

 M2623I WS M1 - - - Kodera H, 2016;  
Farnaes L, 2017 
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 V287L EOEE M2 - - - Kodera H, 2016 

 T289P EIEE M2 - - - Johannesen K, 
2016 

 T289A EIEE M2 - - - Johannesen K, 
2016 

 T292I IS M2 Reduced - - 
Allen S, 2013;          
Chen X, et al., 

2017 

 A295D JME M3 - - -  

 K306T 
DS, 

MAE-
like 

M2-M3 loop Reduced - - Carvill GL, 2014 

 A322D JME M3 Reduced Faster 
deactivation 

Reduced 
surface 

and total 

Cossette P, 2002; 
Gallagher MK, 2004 

 S326fs238X CAE Splice site Virtually no 
current - Reduced 

surface α1 Maljevic S, 2006 

 K353delins18X CAE M1 Reduced NA 
Reduced 
surface 

and total 

Lachance-Touchette 
P, 2011; Chen X, et 

al., 2017 

 Y438C ASD M4 - - - Heyne HO, 2018 

GABRB1 F246S IS M1 Small 
reduction 

Slow 
deactivation 

Reduced 
surface 
γ2L 

Allen S, 2013;       
Janve VS, 2016 

 T287I EE M2 - - - Lien E, 2016 

GABRB2 L17S ASD Signal 
peptide - - - Heyne HO, 2018 

 M79T EE N-terminus - - - Srivastava S, 2014; 
Hamdan FF, 2018 

 D125N DD, EE N-terminus - - - Heyne HO, 2018; 
Hamdan FF, 2018 

 Y183H ID N-terminus - - - Heyne HO, 2018 

 Y244H EE N-terminus - - - Hamdan FF, 2017 

 P252A ID M1 - - - Heyne HO, 2018 

 L277S DD, EE M2 - - - Heyne HO, 2018;  
Hamdan FF, 2017 

 V282A  M2 - - -  

 T284K EE M2 - - - Hamdan FF, 2017 

 T287P DS M2 Reduced - 
Reduced 
total and 

surface β2 
Ishii A, 2017 

 R293P DD M2-M3 loop    Hamdan FF, 2018 
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 Y301C DD M2-M3 loop - - - Heyne HO, 2018 

 L303R EOEE M2-M3 loop - - - Hamdan FF, 2018 

 L303N  M2-M3 loop - - -  

 A304V EE M2-M3 loop - - - Hamdan FF, 2018 

 V316I EE M3 - - - Hamdan FF, 2018 

GABRB3 -897T/C CAE Exon 1A 
promoter - - - Urak L, 2006 

 P11S CAE Signal 
peptide Reduced - 

Unaltered, 
hyperglyc
osylation 

Tanaka M, 2008 

 S15F CAE Signal 
peptide Reduced - 

Unaltered,   
hyperglyc
osylation 

Tanaka M, 2008 

 G32R CAE N-terminus Reduced - 
Increased 
total and 
surface 
β3, 

hyperglyc
osylation 

Tanaka M, 2008;    
Gurba KN, 2012 

 V37G GEFS+ N-terminus - - - Tanaka M, 2008 

 N110D IS N-terminus - Faster 
deactivation 

Increased 
total and 

surface β3 

Allen S, 2013;         
Janve VS, 2016 

 R111X MAE N-terminus    Moller RE, 2017 

 D120N LGS N-terminus Reduced Slow rise Unaltered Allen S, 2013;         
Janve VS, 2016 

 L127R DD N-terminus - - - Heyne HO, 2018 

 T157M GEFS+ N-terminus - - - Moller RE, 2017 

 L170R EOEE N-terminus Reduced Altered Reduced 
α,β,γ 

Zhang Y, 2015;  
Hernandez CC, 

2017 
 E180G LGS N-terminus Reduced Slow rise Unaltered Allen S, 2013;         

Janve VS, 2016 

 Y182F EE N-terminus - - - Epi4K, 2016 

 Y184H MAE N-terminus - - - Moller RE, 2017 

 R232Q DS N-terminus - - - Le SV, 2017 

 Q249K EE M1 - - - Epi4K, 2016 

 L256Q WS/EE M1 - - - Moller RE, 2017 

 T287I EOEE M2 - - - Papandreou A, 2016 

 T288N EOEE M2 Reduced Altered Reduced 
α,β,γ 

Hernandez CC, 
2017 

 I306T DD M3    Heyne HO, 2018 

 Y302C LGS M2-M3 loop Reduced Slow rise Unaltered Allen S, 2013,;        
Janve VS, 2016 
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 A305V EOEE M3-M4 loop Reduced Altered Reduced 
α,β,γ 

Zhang Y, 2015;  
Hernandez CC, 

2017 

 A305T LGS M3-M4 loop - - - Epi4K, 2016 

 S420I DD M3-M4 loop - - - Heyne HO, 2018 

 R429Q GEFS+ M3-M4 loop - - - 
Epi-

Phenome/Genome, 
2013 

 Y471C DD M4 - - - Heyne HO, 2018 

GABRG2 Q40X DS N-terminus Reduced Altered γ subunits 
absent on 

cell 
surface 

Huang X, 2012 

 P59fsX12 FS Frame shift/ 
N-terminus    Boillot M, 2015 

 R82Q CAE/FS N-terminus    Wallace RH, 2001 

 P83S GGE N-terminus   - Lachance-Touchette 
P, 2011 

 A106T EE N-terminus Reduced Altered Reduced 
surface γ Shen D, 2017 

 I107T EE N-terminus Reduced Altered Reduced 
surface γ Shen D, 2017 

 R136X FS,  
GEFS+ N-terminus Reduced Altered Reduced Johnston AJ, 2014;  

Boillot M, 2015 

 R177G FS N-terminus - - - Audenaert D, 2006 

 IVS6+2T>G CAE/FS Splice site    Tian M, 2012 

 M199V CAE, 
GEFS+ N-terminus - - - Boillot M, 2015 

 c.549-3T>G RE Splice site - - - Reinthaler EM, 
2015 

 G257R RE N-terminus - - - Reinthaler EM, 
2015 

 P282S EE M1 Reduced Altered Reduced 
surface γ Shen D, 2017 

GABRG2 P302L DS M2 Reduced Altered Slight 
reduction 
in surface 
α,β,γ 

Hernandez CC, 
2017 

 R323Q 
MAE, 

RE, ID, 
EE 

M2 Reduced Altered Reduced 
surface γ 

Carvill GL, 2013; 
Hamdan FF, 2018; 

Reinthaler EM, 
2015 

 R323W EE M2 Reduced Altered Reduced 
surface γ Shen D, 2017 

 K328M GEFS+ M2-M3  
loop Reduced Altered 

Surface γ 
virtually 
absent 

Bulac S, 2001 

 F343L EE M3 Reduced Altered Reduced 
surface γ Shen D, 2017 
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Abbreviations:  
Epilepsy syndromes: CAE - child absence epilepsy, DD – Developmental delay, DS – Dravet syndrome, 
EE – Epileptic encephalopathy, EOEE – Early onset epileptic encephalopathy, FS – Febrile seizures, 
GEFS+ – Generalized epilepsy with febrile seizures plus, GTCS – Generalized tonic-clonic seizures, ID – 
Intellectual disability, JME – Juvenile myoclonic epilepsy, LGS – Lennox-Gastaut syndrome, MAE – 
Myoclonic astatic epilepsy, RE – Rolandic epilepsy, TLE –Temporal lobe epilepsy, WS – West syndrome 
 
Mutations:  
Fs- Frameshift, X- Truncation, Del –Deletion, Delins- Deletion-insertion.  

 Q390X GEFS+/
DS 

M3-M4  
loop Reduced - 

Reduced 
total and 

surface β2 
Harkin LA, 2002 

 E402fsX3 FS/ 
TLE 

Frame shift/ 
M3-M4 loop - - - Boillot M, 2015 

 V402fs3 
FS, 

TLE, 
GTCS 

Frame shift/ 
M3-M4 loop - - - Boillot M, 2015 

 W429X DS,  
GEFS+ M3-M4 loop Reduced - 

Reduced 
total and 
surface γ 

Sun H, 2008;     
Kang JQ 2009 

 S443delC GEFS+ Frame shift/ 
M4 Reduced - 

Reduced 
total and 
surface γ 

Tian M, 2013 

 V462fsX33 FS Frame shift/ 
M4 - - - Boillot M, 2015 
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1.17 Rationale for experimental chapters  

1.17.1 Increasing interest in EE syndromes 

In the past decade, an increasing number of human diseases with complex genetic etiologies 

have been associated with de novo mutations.  This has been a boon for genetic disease 

diagnosis and classification, especially for diseases that have sporadic presentations in which 

the genetic inheritance or environmental causes do not explain the disease phenotype.  For the 

epilepsy field this had been a paradigm shift.  Prior to identification of de novo mutations, most 

studies were focused on investigating the genetic etiologies in large multiplex families.  This was 

a reasonable approach given that the mutation segregates well (but not 100%) with the affected 

individuals in a family.  There was no theoretical framework, however, that explained the clear 

majority of epilepsy patients, including those with EEs, that had no family history or obvious 

environmental influences.  In fact, the epilepsy in these patients was classified as idiopathic 

(unknown cause).  In the past decade, genetic studies on large number of patients with 

unknown cause have become feasible due to next generation sequencing (NGS).  Results from 

numerous NGS studies have shown that most patients with idiopathic epilepsies have a genetic 

origin of their epilepsy, which has resulted in a change in nomenclature for the epilepsy in these 

patients from idiopathic epilepsy to genetic generalized epilepsy.  Currently, the number of 

epilepsies with unknown cause has been substantially reduced (Thomas and Berkovic, 2014).  

These advances have renewed interest in studying etiologies of epilepsy syndromes that could 

not be systematically studied in large patient populations, such as rare but severe EEs (Figure 

1.6).  The Epi4K consortium conducted an early study that examined large samples of EE 

patients and reported GABRB3 mutations a genetic cause of IS and LGS.  The mechanisms of 

action of these mutations were unknown, and previously the GABRB3 mutations were 

associated with CAE, a relatively mild epilepsy syndrome.  It seems plausible that GABRB3 
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mutations can lead to epilepsy.  This could not be confirmed, however, in the absence of 

functional studies, and the extent of dysfunction could not be accurately predicted.  Chapters II 

and III describe the functional impact of five GABRB3 mutations reported by the Epi4K 

consortium in heterologous cells.  Using electrophysiology, flow cytometry, and structural 

modeling, we showed that these mutations produced a clear GABAA receptor functional deficit 

and thus correlated with the severe epilepsy phenotype.  Further, we show that mutation in 

GABRB1, a gene that was previously not associated with epilepsy and not reported by the 

Epi4K consortium as causative of EE, produced significant loss of receptor function, making it a 

likely candidate epilepsy gene. 

 

Figure 1.6 Several EEs were recognized as specific epilepsy syndromes during the 
mid1900s.  In the past 20 years there has been a growing interest, especially after the ILEA 
recognized and postulated the term EE, which is reflected in the steady increase in the number 
of published studies as shown in the above graph.  Search term ‘epileptic encephalopathy’ was 
used in Pubmed and results until 2017 are displayed here. 
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1.17.2 Establishing a model of LGS⎯a severe EE 

Mouse models for most EEs do not exist, except for the mouse models of IS 552, 553 and the well-

studied Dravet syndrome in which majority of patients have SCN1A mutations 263, 554.  Even 

though the genetic underpinnings of EEs (in addition to Dravet syndrome) are being discovered 

at an unprecedented rate, few mouse models of EE have been reported 555.  As EEs are 

heterogeneous syndromes both in terms of the clinical presentations and the genetic etiologies, 

models that replicate the salient features of specific EEs have been long awaited.  Chapter III 

demonstrates that the human LGS GABRB3(D120N) mutation significantly reduced GABAA 

receptor function.  Based on these results, our laboratory generated the Gabrb3+/D120N knock in 

mouse that harbors the mutation identified in a LGS patient.  In Chapter IV examines the effects 

of the GABRB3(D120N) mutation in the LGS KI mouse model.  The Gabrb3+/D120N mice display 

characteristic features of LGS: seizure onset in the first two weeks of life, characteristic seizure 

types, and sleep disturbances.  These results demonstrate that Gabrb3+/D120N mice are a good 

model of LGS.  Future studies will determine the mechanisms by which the GABRB3(D120N) 

mutation produces a LGS-like phenotype in these mice.  Some of the possible ways to examine 

the mechanisms of actions are described in Chapter V.  
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CHAPTER II: Effects of Infantile spasms (IS)-associated GABRB3(N110D) and 

GABRB1(F246S) mutations on GABAA receptor (GABAAR) function 

 

2.1 IS: the most common seizures in infancy  

IS are seizures manifested as sudden and brief (1-2 s) contractions (flexion or 

extension) of the arms, legs, head, neck, and trunk muscles, the most common being 

flexor spasms of the head and arms.  Spasms are usually longer than myoclonic 

seizures, but not as prolonged as tonic seizures, and often occur in clusters.  Some 

patients also experience a prolonged tonic contraction and/or arrest of activity following 

the spasm or in the absence of a spasm 1-4.  Most infants (~90%) experience more than 

one type of spasm 3, 5.  Spasms can be focal or generalized on an 

electroencephalogram (EEG) recording, but are almost always bilateral.  Asymmetrical 

spasms due to greater flexion or extension on one side are also observed 2, 6.  For the 

vast majority of cases, IS abruptly begin in the first year of life with a peak incidence 

between 3-10 months of age and followed by developmental regression after seizure 

onset 7-12.  The initial spasms are subtle but rapidly become worse.  The child may cry 

or become upset during the spasms and may experience a very brief loss of 

consciousness 13. 

IS were first described by Dr. William James West in 1841 in a letter describing 

infantile seizures and developmental regression of his son.  At four month of age his 

son experienced subtle forward head bobbing that increased in frequency and strength 

leading to clusters of spasms that occurred many times (50-60) per day 14.  At the time 
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the rare IS were known only to handful to experts.  Today after 176 years, IS are the 

most frequently encountered infantile seizures with significant morbidity 15, 16, and they 

remain one of the most severe epilepsies of infancy due to poor neurodevelopmental 

outcomes 17.  However, the annual incidence is relatively low, 0.25 to 0.42 per 1000 live 

births, accounting for 13-45.5% of infantile epilepsies in population-based studies 15, 18-

25, with a slight male predominance 7, 8, 10, 11, 26, 27.  

 

2.1.1 Diagnosis  

In addition to spasms, an important diagnostic consideration is hypsarrhythmia - a 

characteristic chaotic EEG pattern of high amplitude (>200 µV) slow waves with multiple 

independent spike foci 28-30.  Gibbs and Gibbs coined the term hypsarrhythmia for this 

EEG pattern in 1952 31.  Hypsarrhythmia often fluctuates from one focus to another 

before becoming generalized, although it never becomes rhythmic or develops 

signature slow waves as seen in typical absence seizures.  In most cases 

hypsarrhythmia appears as a continuous chaotic background activity during waking and 

sleep 29.  While IS patients may show other EEG abnormalities, hypsarrhythmia is 

virtually absent in other epilepsy syndromes.  However, about a third of IS patients do 

not have hypsarrhythmia, hypsarrhythmia does not persist throughout the clinical course 

of the condition 32-36, and EEG patterns evolve 37-39.  Thus, according to some authors 

hypsarrhythmia is not required for diagnosis of IS 1, whereas hypsarrhythmia is 

prerequisite for the diagnosis of West syndrome - an early onset epileptic 

encephalopathy.  A diagnosis of West syndrome is made when all three criteria are met: 
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IS, hypsarrhythmia, and cognitive decline 40-42.  Thus, EEG recording should be 

obtained as soon as a concern for IS arises and is required to confirm or rule out the 

diagnosis of IS or West syndrome.  A sufficient recording duration to capture 

wakefulness, sleep, and awakening is recommended 43, 44.  Unlike hypsarrhythmia, 

spasms appear as distinct sharp wave complexes on the EEG and EMG that may be 

followed by voltage attenuation, which are more likely to occur during sleep-wake 

transitions and wakefulness than in sleep 3, 5, 33, 45, 46.  A 24-hour video-EEG has a high 

probability to capture both hypsarrhythmia and spasms and is recommended when 

facilities are available.  Video-EEG is especially useful since hypsarrhythmia (and to a 

lesser extent spasms) shows numerous variations 32, 33, 47, 48.  In addition to the 

diagnostic value, early and aggressive treatment to control spasms and hypsarrhythmia 

has been shown to improve cognitive outcomes 25, 49-51.   

Although not required for diagnosis, obtaining a brain MRI is an established 

practice to evaluate structural etiologies.  In addition, genetic and metabolic screening 

are emerging practices and are becoming commonplace in developed countries.  

Although there is insufficient evidence that they improve immediate patient care, they 

are very likely to improve understanding of etiologies and future treatment options 52-56.  

Occasionally, IS can be misdiagnosed as colic/gastroesophageal reflux or movement 

abnormalities in spastic infants 49, but the correct diagnosis is often made 7, 13 when the 

child is re-examined due to increased spasm frequency and developmental delays such 

as loss of head and trunk control or loss of babbling/verbalizations 57.  Moreover, during 

initial examinations it can be difficult to separate IS or West syndrome from other early 
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onset epilepsy syndromes such as early myoclonic encephalopathy, myoclonic epilepsy 

in infancy, Ohtahara syndrome, Dravet syndrome, epilepsy with myoclonic atonic 

(previously astatic) seizures/Doose syndrome, and partial seizures with secondary 

spasm-like manifestations.  Synchronous video–EEG monitoring and presence of 

hypsarrhythmia can be especially useful for differential diagnosis 29, 33, 58. 

 

2.1.2 Prognosis  

Several factors are implicated to be significant for long-term prognosis of patients with 

IS and West syndrome.  Those considered most important are: underlying etiology, 

presence or lack of per-existing seizures, developmental abnormalities, and time from 

the onset of seizures (to diagnosis and) to initiation of treatment 59-65.  In most patients 

spasms that primarily emerge in first year of life persist throughout the clinical time 

course of IS, but spontaneously resolve even in the absence of treatment in ~25% of 

patients at 12 months of age and in ~75% of patients by age of 3 or 4 15, 33, 66-68.  

However, there are a few accounts of persistent and drug resistant spasms that occur 

from infancy to teenage years 15, 68-70 or spasms reemerging in adulthood 71.  Late onset 

spasms that appear after one year of age are also noted 72, 73.  Similarly, as the brain 

develops the chaotic activity of hypsarrhythmia becomes less pronounced and is rare 

after ~5 years of age 74.  Several studies indicate viral infections as a precipitating factor 

for spontaneous remission 75-77.  
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Unfortunately, cessation of spasms and hypsarrhythmia with or without 

medication may not be the end of seizures for the majority of children with IS (~70%) as 

they develop other epilepsy syndromes.  Only a small percentage (~7-30%) of IS 

patients show normal or mild developmental regression 4, 13, 15, 33, 78, 79.  Wide ranges of 

values are reported for the patients who spontaneously do or do not remit.  The values 

here are from the most commonly cited articles and do not reflect all reported values.  A 

close association exists between IS and Lennox Gastaut syndrome (LGS).  About 20-

50% of patients with IS evolve to LGS 25, 68, 80, 81, especially the drug resistant cases.  

Additionally, IS can evolve from other epilepsy syndromes.  About 70% of patients with 

early infantile epileptic encephalopathy or Ohtahara syndrome progress to IS, some of 

which progress to LGS 8, 82-84.  A propensity to progress from Ohtahara syndrome to IS 

to LGS exists, even though patients can independently acquire them.  It is not clear if 

they are etiologically related or what factors drive the progression in some patients but 

not others.  

Furthermore IS and LGS are severe and often refractory epilepsies that are 

typically accompanied by comorbid cognitive and behavioral dysfunction including the 

risk of developing comorbid autism spectrum disorders 85-87.  About 15-33% of IS 

patients with have autism, and it could be as high as 70% in patients with tuberous 

sclerosis and IS 88.  Moreover, timely help to address impairments (sometimes subtle 

but clinically significant) in memory, speech, language, and social interactions, in 

addition to controlling spasms and hypsarrhythmia, improves functioning in social 

environments.  Thus, overall most patients with IS have a poor prognosis. 
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2.2 What defines IS?  

The definition and classification of IS remains debatable and confusing.  Here I present 

the current views on the definition(s) of IS to give the readers a broader inclusion criteria 

when the term IS is used in the literature.  

The term ‘IS’ is used to describe the seizure type or the epilepsy syndrome itself 

(also referred to as ‘IS syndrome’ in which patients experience other seizure types in 

addition to spasms and/or hypsarrhythmia).  It is increasingly recognized that patients 

could present with just IS seizures or just hypsarrhythmia or a combination of both, in 

the presence or absence of developmental delays 1, 89 (Table 2.1).  For example, 

patients who present with IS seizures and psychomotor delay, but not hypsarrhythmia, 

would be considered to have the epileptic encephalopathy IS without hypsarrhythmia 

(but not West syndrome).  While, IS seizures are an obligatory feature of West 

syndrome, some authors consider West syndrome to be a subset of the IS syndrome 90.  

The confusion arises when the terms IS and West syndrome are used interchangeably 

in the literature without providing the patient phenotypes 13, 91.  To further the confusion, 

spasms (that occur primarily in infancy) may continue beyond infancy or may begin after 

infancy (at 1-2 years of age, late onset spasms) 73, 92-99, and occur in other syndromes 

(such as Rett’s syndrome 95, tuberous sclerosis 100-102, and patients with chromosomal 

abnormalities 103-108.  Thus some investigators, especially recently, use “epileptic 

spasms” rather than IS when the spasms persist beyond infancy 28, 41, 48, 71, 109, 110.  

Despite these differences, the overall treatment and management of patients is 

identical.   
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Furthermore, IS is considered to be an epileptic encephalopathy.  By definition 

epileptic encephalopathy implies that the seizures themselves contribute to cognitive 

and behavioral impairments (with a wide range of severity) beyond that expected from 

the underlying pathology (such as a structural brain damage) 41.  Thus, if a patient has 

IS seizures and/or hypsarrhythmia that spontaneously resolves during the first year of 

life and has mild to no cognitive or behavioral impairment, should this be considered an 

epileptic encephalopathy? 

Lastly, the nuances concerning of the range of IS phenotypes may not make a 

big difference when these patients are treated similarly, and it is well appreciated that 

there is a heterogeneity of phenotypes even in well-defined epilepsy syndromes.  

Although, this makes a huge difference when new animal models are developed or 

drugs are tested to prevent spasms or hypsarrhythmia by targeting specific pathways 

that may or not overlap among these IS phenotypes.  Conceptually it is important to 

know if these represent distinct syndromes or present as a continuum of disorders.  

Table 2.1 IS phenotypes 

Epileptic 
encephalopathy 

Infantile/ 
epileptic 
spasms 

Hypsarrhythmia Developmental 
regression 

Other seizure 
types at 
disease onset 

IS + +/- Mild to severe - 

IS syndrome + +/- Mild to severe + 

West syndrome + + Severe - 
     

 

The main argument in this chapter is that the GABRB3(N110D) and 

GABRB1(F246S) mutations disrupt GABAAR function in cultured HEK293T cells.  The 
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Epi4K consortium described the patients with GABRB3(N110D) and GABRB1(F246S) 

mutations to have the epileptic encephalopathy IS 111.  I have used their terminology in 

the rest of the chapter, disregarding the fact that they may meet West syndrome criteria.  

Given the ambiguity concerning the definition of IS, I state the phenotypes of patients 

with these mutations (as described in their supplementary table 13 111).  The patient with 

the GABRB3(N110D) mutation had classical spasms as the dominant seizure type 

beginning at 5 months of age and hypsarrhythmia that evolved from multifocal 

discharges, while information on developmental regression is lacking.  The patient had 

a normal MRI and development prior to seizure onset.  Myoclonic spells were the only 

other seizure type noted.  The patient with the GABRB1(F246S) mutation had spasms 

at 35 months of age along with atypical absence, atonic, myoclonic seizures.  Gross 

and fine motor delays and hypotonia observed prior to seizure onset turned into 

developmental regression after seizure onset at 35 months.  Hypsarrhythmia with 2 Hz 

spike waves was recorded at 4 years, followed by a global developmental delay, low 

tone, ataxia, cortical visual impairment, and gastrostomy tube insertion to assist food 

intake at 4.5 years of age.  MRI showed a thin corpus callosum but was otherwise 

normal.  The patient with the GABRB1(F246S) mutation with IS, hypsarrhythmia, and 

developmental regression meets the criteria for West syndrome.  Whereas the patient 

with the GABRB3(N110D) mutation had early onset classical spasms, and 

hypsarrhythmia, while his developmental trajectory is unknown. 
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2.3 Etiologies of IS 

Etiology is an important predictor of treatment outcomes for children with IS 1, 90, 112.  

Despite significant efforts directed to understand IS since the initial description in 1841, 

the etiology of IS remains uncertain in terms of the cellular, molecular, and 

electrophysiological mechanisms.  As stated earlier, IS can result from a variety of 

causes including tuberous sclerosis, Down’s syndrome, Ohtahara syndrome, prenatal 

and perinatal causes, hypoxia, chromosomal abnormalities, periventricular leukomalacia 

or hemorrhage, metabolic disorders, and trauma.  However, only some patients with 

these antecedent origins develop spasms.  Thus, instead of the true underlying 

molecular etiology and how that results in epilepsy, a diagnostic classification is 

commonly used.  Typically, when the etiology is identified in a clinical setting for 

diagnostic purposes, the molecular mechanisms underlying the epilepsy syndrome are 

not precisely known.  For example, if an IS patient is found to carry a mutation with 

known association to epilepsy, it is likely to be causative, and the diagnosis would be 

considered genetic.  However, the protein/mRNA dysfunction brought about by the 

particular gene mutation may be unknown.  According to the recent classification by the 

International League Against Epilepsy, the etiology can be classified as structural, 

genetic, infectious, metabolic, and immune, and unknown groups 113.  Thus, based on 

this broad classification scheme, etiology is known for the majority of the cases (~60%) 

in the developed world 114, 115, although the specific pathogenic mechanisms are 

unknown for most cases.  A large-scale study found that 61% of patients had a proven 
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etiology, 33% of patients had no identified etiology, and 6% were not completely 

examined 114. 

The majority of IS patients have structural abnormalities and often have poor 

developmental outcomes 68, 112, 114, 115.  A structural etiology refers to a brain abnormality 

visible on a neuroimaging scan, which in combination with the electroclinical 

assessment could be reasonably identified as the cause of the seizures.  The structural 

etiologies may be acquired by hypoxic-ischemic encephalopathy, infection, stroke, 

trauma, or genetic abnormalities 113.  For example, if a patient with tuberous sclerosis 

complex (about 25% of IS patients have tuberous sclerosis 64, 87, 100, 116-120) due to a 

genetic mutation has infantile spasms, the structural abnormalities associated with 

tuberous sclerosis likely cause the patient’s epilepsy, although both structural and 

genetic etiologies could contribute.  However, care must be taken when assigning all 

coincidental conditions as causes of IS.  For instance, histidinemia, a relatively common 

and mild metabolic disorder that occurs in some patients with IS, has not been shown to 

play a causal role in development of IS.  

In addition to structural abnormalities, the role of inborn errors of metabolism is 

well documented in IS patients.  Epilepsy is considered to have a metabolic etiology 

when it results directly from a known or presumed metabolic disorder, and when 

seizures are a core symptom of the disorder 113.  Metabolic causes usually refer to a 

well-described defect of biochemical changes throughout the body, yet the newly 

discovered metabolic defects could have unknown biochemical pathways or identified 

gene mutation(s) 121, 122.  Although, several metabolic disorders are likely to have 
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genetic origins, others may be acquired.  A few of the many well-known examples of IS 

with metabolic origins includes phenylketonuria, proprionic acidemia, nonketotic 

hyperglycinemia, methylmalonic acidemia, maple-syrup urine disease, pyridoxine-

dependent seizures, and Menkes disease 123-131.  Metabolic disorders result in epilepsy 

by disrupting neuronal energetics, building up of toxins, altering synapses, or disrupting 

morphogenesis 132-134.  Metabolic screening is important for early diagnosis that allows 

use of specific treatments to reduce or prevent intellectual impairment.   

A small percentage of IS patients have infectious or immune etiologies - two 

etiological groups in which the seizures are the primary symptom of the disorder as a 

direct outcome from a known infection or an immune disorder, respectively.  The 

infectious etiology refers to epilepsy and not to seizures due to an acute infection such 

as encephalitis or meningitis.  The human cytomegalovirus infection is the most 

common intrauterine viral infection, affecting the CNS in 95% of cases and leads to 

several epilepsy syndromes.  However, several viral, bacterial, and parasitic infections, 

especially in the perinatal period, are attributed to several central nervous system (CNS) 

defects and symptomatic epilepsies, including IS 135-139.  As the infectious or immune 

etiologies have a variable prognosis and only account for a small portion of IS patients, 

they are not discussed in depth in this thesis. 

Even today the underlying etiology of some IS patients cannot be determined, 

and they are classified under the unknown etiological group (previously cryptogenic or 

idiopathic).  This group of patients are characterized by normal neurodevelopment 

before the time of clinical presentation of spasms, and at the time of diagnosis/treatment 
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are devoid of known underlying condition(s) that could be associated with IS.  Since 

genetics has an important contribution in several epilepsy syndromes, these patients 

are referred for genetic testing in developed countries (frequently targeted sequencing, 

genomic hybridization, and/or whole exome sequencing) especially when clinical 

exams, MRI, and EEG do not reveal any etiologies 140.  An increasing number of genetic 

abnormalities are identified in IS patients who would have been otherwise classified as 

having unknown etiology, and they may account for the majority of unexplained cases.  

These IS patients are classified to have a genetic etiology (previously idiopathic also 

referred to as a presumed genetic defect), which refers to the concept that genetic 

mutation(s) or presumed genetic mutation(s) are directly responsible for seizures that 

are the core symptom of the disorder.   

Our knowledge of the various ways in which genetic changes contribute to the 

pathogenesis of IS has broadened tremendously since the late 1990s.  The genetic 

changes seen in IS patients include: de novo mutations, copy number variations (CNVs) 

141, 142, X-linked inheritance (e.g. ARX, CDKL5, X-inactivation of STK9 143) 143-150, 

mutations leading to cortical malformations (e.g. LIS1, DCX) 151, and chromosomal 

abnormalities (trisomy, translocations, microdeletions, duplications, triplications, etc) 152-

163.  Depending on the population examined, 7-25% (up to 50-60% also reported) of IS 

patients have a family history of epilepsy 15, 46, 80, 115, 164-166.  Even though a family history 

of epilepsy increases the risk (~3X) of developing IS when no known structural, 

metabolic or immune abnormalities, or infections are present (i.e. unknown etiology), 

some studies suggest that overall children with IS are less likely to have a family history 
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of epilepsy as compared to children with other epilepsy syndromes or febrile seizures 

164.  This observation is supported by recent genetic studies that revealed de novo 

mutations (mostly autosomal) in numerous patients as important genetic contributors to 

IS 52-54, 167.  These findings clarified the puzzling absence of a family history when a 

genetic component was suspected and may underlie a large portion of the unexplained 

IS cases, even when family history of epilepsy is lacking 168, 169.  GABRB1, GABRB3, 

GABRA1 are recent additions to the large and rapidly expanding list of genes in which 

de novo mutations have been found in IS patients.  Collectively, these findings point to 

multiple genetic causes of IS. 

Remarkable progress in uncovering genetic etiologies of IS, even at the levels of 

identifying ultra-rare deleterious variants 170 and coding variation among thousands of 

control subjects, is paving the way for translating these genetic findings into clinical 

practice.  To impact patient care, however, knowledge of molecular mechanisms altered 

by the causative mutations is essential to alter current treatments or develop new ones.  

We have taken one of the first steps to this end by elucidating the actions of IS-

associated GABRB3(N110D) and GABRB1(F246S) mutations identified by the Epi4K 

consortium in 2013 - one of the first large scale genetic sequencing studies that 

identified monogenic causes of IS and LGS 111 (Table 2.1).  In silico methods (such as 

PolyPhen-2 or SIFT scores) are a good proxy to determine the effects of de novo 

mutations, although empirical studies to understand their functional consequences are 

critical as their impact is not always straight forward 171 and may not reveal 

unanticipated effects as described in chapters II and III. 
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Table 2.2. De novo GABRB mutations identified in patients with IS 

Mutation Nucleotide 
change 

CCDS 
transcript 
ID 

Location in 
β1/3 subunit 

PolyPhen-2 
score Sex 

Age at 
seizure 
onset 

Initial 
seizure 
type 

GABRB3 
(N110D) 

15:26866594  
T→C 

CCDS539
20.1 

 N-terminal,  
β(-) interface 0.965 F 5 mo. IS 

GABRB1 
(F246S) 

4:47405630  
T→C 

CCDS347
4.1 TM1  0.997 M 12 mo. FDS 

        
CCDS transcript ID = consensus coding sequence identifier of the GABRB3/1 genes, 
FDS=Focal dyscognitive seizures 

 

2.4 Materials and methods 

2.4.1 Complementary DNA (cDNA) Constructs  

cDNAs encoding human GABAAR subunits α1 (NM_000806.5), β1 (NM_000812.3), β3 

(NM_021912.4, variant 2), γ2L (NM_198904.2) and EGFP (LC008490.1) were each 

cloned into the pcDNA(3.1+) vector.  Point mutations in the cDNA encoding β1 and γ2L 

subunits were introduced using the QuikChange Site-Directed Mutagenesis kit (Agilent).  

The hemagglutinin (HA) epitope tag (YPYDVPDYA) was inserted between amino acids 

4 and 5 of the mature β1 and γ2L subunit proteins.  The HA epitope tag insertion at this 

position in the γ2L subunit has minimal effects on the electrophysiological properties or 

surface levels of GABAARs.  All constructs were sequenced prior to use at the 

Vanderbilt Technologies for Advanced Genomics core facility and verified against 

published sequences.  The amino acids are numbered according to the immature 

peptide sequence. 
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2.1.2 Expression of recombinant GABAARs 

HEK293T cells (HEK 293T/17, ATCC® CRL-11268™) were cultured as monolayers at 

37°C in Dulbecco’s Modified Eagle Medium (Invitrogen) supplemented with 10% fetal 

bovine serum (Invitrogen) and 100 IU/ml each of penicillin and streptomycin 

(Invitrogen).  

For whole electrophysiology, cells were plated at a density of 4 x 105 in 60 mm 

culture dishes (Corning).  cDNA transfections were done 24 hours after plating cells, 

and they were re-plated for recording using trypsin-EDTA digestion (Invitrogen) in 35 

mm dishes 24 hours after transfection.  For the homozygous expression condition, 0.6 

µg cDNA of each α1, β1/3, and γ2L subunit and 0.1 µg of EGFP were transfected using 

X-tremeGENE9 DNA Transfection Reagent (Roche Diagnostics).  For the heterozygous 

condition 0.6 µg α1 and γ2L, 0.3 µg wt β1/3, 0.3 µg mutant β1/3, and 0.1 µg EGFP of 

cDNAs were used.  A ratio of 1.15 µl X-tremeGENE9:1 µg cDNA was used.  EGFP and 

GABAAR subunit cDNAs were co-transfected to identify transfected cells based on GFP 

fluorescence.  For single channel recordings, HEK293T cells were plated at 4 x 104 in 

35 mm culture dishes (Corning) and transfected after 24 hours with 0.3 µg cDNA of 

each α1, β1/3, and γ2L subunit and 0.05 µg cDNA of EGFP for the homozygous 

condition.  Recordings were done 48 hours after transfection.  The cDNA and 

XtremeGENE9 amounts were scaled up or down in proportion to the area of the culture 

dishes.  Our unpublished observations show that cells lacking GFP expression do not 

produce GABA-evoked currents, indicating that GFP is a good proxy for α, β, and γ 

subunit expression.  In addition when cells are transfected with wt α, β, and γ subunit-
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encoding cDNAs, they produce typical αβγ subunit-like current responses and lack, for 

example, of αβ subunit-like currents.  Although, αβ subunit-containing GABAARs could 

constitute a minor portion of all receptors and their presence cannot be ruled out, the 

majority of the receptors are likely to be αβγ subunit-containing. 

For flow cytometry experiments, cells were plated at a density of 4-6 x 105 in 60 mm 

culture dish (Corning), and transfected with 0.6 µg cDNA for each α1, β1/3, and γ2L 

subunit 24 hours after plating using Polyethyleneimine (MW 40,000 KD, 24765, 

Polysciences Inc.).  Cells were harvested using trypsin-EDTA (Invitrogen) 48 hours 

following transfection.  For mock or single subunit expression, empty pcDNA3.1 vector 

was added to make the final cDNA transfection amount to be 1.8 µg.  

 

                    

Figure 2.1 Expression of GABAAR subunits and selection marker GFP in 
HEK293T cells.   

Bright filed image of non-transfected HEK293T cells (left) and fluorescent image (right) 
of HEK293T cells 48 hours after transfecting with cDNAs encoding GABAAR subunits 
and GFP.  Cells expressing GFP were used for electrophysiological recordings.  For 
flow cytometry analysis a threshold intensity of 103 arbitrary units of GFP fluorescence 
(488 nm) was used post-hoc to accept GFP-expressing cells. 
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2.4.3 Whole cell electrophysiology 

Whole cell voltage clamp recordings were obtained at room temperature from lifted 

HEK293T cells bathed in an external solution composed of (in mM): 142 NaCl, 8 KCl, 

10 D(+)-glucose, 10 HEPES, 6 MgCl2.6H2O, and 1 CaCl2 (pH 7.4, ~326 mOsm).  

Recording electrodes with series resistance of 1-2 MΩ were pulled from TW15OF-3 thin 

walled glass capillaries (World Precision Instruments, Inc.) using a P-2000 Quartz 

Micropipette Puller (Sutter Instruments), and the tip was polished using MF-830 Micro 

Forge (Narishige).  The internal solution consisted of (in mM): 153 KCl, 10 HEPES, 5 

EGTA 2 Mg-ATP, and 1 MgCl2.6H2O (pH 7.3, ~300 mOsm).  The Cl- reversal potential 

was near 0 mV, and cells were voltage clamped at -20mV to get an inward GABA-

evoked current.  Whole-cell currents were recorded using an Axopatch 200B amplifier 

(Axon Instruments) low-pass filtered at 2 kHz using the internal 4-Pole Bessel filter of 

the amplifier, digitized at 10KHz with Digidata 1322A (Axon Instruments) and stored for 

offline analysis.  Drugs were gravity-fed to a four-barrel square glass tubing connected 

to a SF-77B Perfusion Fast-Step system (Warner Instruments Corporations).  The 10-

90 % rise times of open-tip liquid junction currents were 200-600 µs.  1 mM GABA was 

applied for 4s to study macroscopic current kinetics.  Data were analyzed offline using 

Clampfit 9.0 (Axon Instruments).  Data were expressed as mean ± standard error of the 

mean (SEM). 
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Figure 2.2 Schematic of single cell recording from lifted HEK293T cells expressing 
GABAA receptors.   
(A) Rapid (<1 ms) application of GABA and Zn on lifted HEK293T cells was carried out 
using a glass barrel with multiple channels.  GABA-evoked current were recorded by 
from an electrode inserted in a glass capillary.   (B) Typical GABA-evoked current from 
cells expressing wild-type α, β, and γ GABAA receptor subunits with a profound 
desensitization during prolonged GABA application. 

 

2.4.4 Single channel electrophysiology 

GABAAR single channel currents were recorded in the cell-attached configuration as 

described previously 172, 173.  Briefly, single-channel currents were recorded from 

HEK293T cells bathed in external solution containing (in mM): 140 NaCl, 5 KCl, 1 

MgCl2, 2 CaCl2, 10 glucose, and 10 HEPES (pH 7.4).  Glass electrodes were pulled 

from thick-walled borosilicate capillary glass (World Precision Instruments) on a P-2000 

Quartz Micropipette Puller (Sutter Instruments) and fire-polished to a resistance of 10–

20 MΩ on an MF-830 Micro Forge (Narishige) before use.  The electrode solution 

consisted of (in mM): 120 NaCl, 5 KCl, 10 MgCl2, 0.1 CaCl2, 10 glucose, and 10 

HEPES (pH 7.4).  The electrode potential was held at +80 mV.  GABAAR spontaneous 

activity was recorded in absence of GABA and blocked by adding 100 µM picrotoxin 
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and 100 µM Zn+2.  GABA-evoked currents were recorder in presence of 1 mM GABA.  

Single channel currents were amplified and low-pass filtered at 2 kHz using an 

Axopatch 200B amplifier, digitized at 20 kHz using Digidata 1322A, and saved using 

pCLAMP 9 (Axon Instruments).  Data were analyzed offline using TAC 4.2 and TACFit 

4.2 (Bruxton Corporation) 172, 173.  Data were shown as the mean ± SEM.  Statistical 

analysis was performed using GraphPad Prism (GraphPad Software 6.0).  Statistical 

significance was taken as p < 0.05, using unpaired two-tailed Student's t test or one-way 

ANOVA as appropriate.  GABA, Zn+2 and picrotoxin were obtained from Sigma. 

                           

Figure 2.3 Schematic of single channel recording from HEK293T cells expressing 
GABAA receptors.   

(A) A tight seal is made on the cell membrane of HEK293T cells expressing 
GABAA receptors such that one or few receptors are engulfed in the narrow tip of the 
glass capillary that contains saturating GABA concentration (1 mM).  (B) Typical single 
channel currents from from cells expressing wild-type α, β, and γ GABAA receptor 
subunits. Each downward deflection is a channel opening. 
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2.4.5 Flow Cytometry 

Flow cytometry protocols have been previously described in detail 174, 175.  Briefly, 

GABAARs were expressed as described above, and cells were harvested ~48 hours 

after transfection and immediately placed on ice in 4°C FACS buffer.  Cell surface 

expression levels of α1, β3, β1HA, γ2LHA subunits were determined using primary 

antibodies against human α1 subunits (N-terminal, clone BD24, Millipore; 2.5 g/ml), 

human β3 subunits (N-terminal, monoclonal, β2/3-PE, clone 62-3G1, Millipore; 2.5 

g/ml), and the HA epitope tag (clone 16B12, Covance; 2.5 g/ml) respectively.  Cells 

were washed 3 times using 4°C cold FACS buffer and fixed with 2% w/v 

paraformaldehyde.  To determine the total cellular expression levels, cells were fixed for 

15 min using BD Cytofix/CytopermTM fixation/permeabilization buffer (BD Biosciences) 

and washed 2 times using BD Perm/WashTM staining buffer (BD Biosciences) prior to 

staining.  Following washes after primary antibody treatment cells were incubated with 

anti-mouse IgG1 secondary antibody conjugated to the Alexa647 fluorophore 

(Invitrogen) before additional washing and fixation. 

Fluorescence intensity levels of cells were determined using a BD LSR II 3/5-

laser flow cytometer (BD Biosciences).  Data were analyzed offline using FlowJo 7.5.5 

(Tree Star).  For each condition, intensity levels of 50,000 cells were acquired.  The 

non-viable cells were excluded using their forward and side-scatter properties.  Net 

fluorescence intensity levels from cells expressing GABAAR subunits were calculated 

after subtracting the mean fluorescence intensities of the cells transfected with blank 

pcDNA(3.1+) vector.  The relative fluorescence intensities for each condition were 
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calculated by normalizing the average intensity values to those obtained from cells 

expressing α1, β3/β1HA, and γ2LHA subunits (WT).  One-way analysis of variance with 

Tukey's post-test was used to determine if the expression levels of different transfection 

conditions were significantly different from the WT condition.  Data were expressed as 

mean ± SEM. 

We have used β1 subunits for whole cell and single cell electrophysiology 

techniques, and β1 as well as β1HA
 subunits for flowcytometry technique as none of the 

following β1 antibodies were found to be specific when tested in our laboratory.  We 

used 1:500 of Millipore (AB9680), 1:500 of Neuromap (N95/55), and 1:300 of Novus 

(NB300-197) primary antibodies against human β1 subunits based on manufactures’ 

instructions.  Although, Millipore, (AB9680, 1:500) produced an expected sharp band 

(~55 kD) against rat β1 subunits.  

 

2.4.6 Structural Modeling and Simulation  

GABAAR subunit raw sequences in FASTA format were individually loaded into Swiss-

PdbViewer 4.10 176 for template searching against ExPDB database (ExPASy, 

http://www.expasy.org/).  Then, the structure of the C. elegans glutamate-gated chloride 

channel (GluCl; PDB: 3RHW) 177 in the closed conformation was identified as the best 

template resulting in 33% and 36% sequence identity for γ2 and α1 subunits 

respectively.  For β3 subunits, the human GABAAR-β3 (PDB: 4COF) 178 crystal structure 

was used per se with no further modification.  The initial sequence alignments between 

γ2 and α1 subunits and C. elegans GluCl subunits were generated with full-length 
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multiple alignments using ClustalW 179.  Sequence alignments were inspected manually 

to assure accuracy among structural domains solved from the template.  Because the 

long cytoplasmic regions of the γ2 and α1 subunits were absent in the solved GluCl 

structure, it was excluded from the modeling, and separate alignments were generated 

for the TM4 domains.  Then full-length multiple alignments were submitted for 

automated comparative protein modeling implemented in the program suite 

incorporated in SWISS-MODEL (http://swissmodel.expasy.org/SWISS-MODEL.html).  

Before energy minimization using GROMOS96 180, resulting structural models of human 

γ2 and α1 subunits were inspected manually, their structural alignments confirmed and 

evaluated for proper h-bonds, presence of clashes and missing atoms using Molegro 

Molecular Viewer (www.clcbio.com).  Then, pentameric GABAAR homology models 

were generated by combining α1, β3 and γ2 structural models in the stoichiometry 

2β:2α:1γ with the subunit arrangement β-α-β-α-γ.  Neighborhood structural 

conformational changes at the β3+/α1-, α1+/β3-, and γ2+/β3- interfaces of the GABAAR 

caused by a single mutated amino acid residue (de novo mutation) in the human β3 

subunit were simulated using Rosetta 3.1 181 implemented in the program suite 

incorporate in Rosetta Backrub (https://kortemmelab.ucsf.edu).  Since Rosetta 3.1 does 

not allow Cysteine substitutions, GABAARs carrying Cysteine mutations were 

exchanged by Alanine.  Then, up to twenty of the best-scoring structures were 

generated at each time by choosing parameters recommended by the application for 

one mutation at the time for each correspondent subunit interface as follow: β3(D120N), 

β3(E18G), and β3(Y302A) within the β3+/α1- interface, and β3(N110D) and β3(F246S) 

at the α1+/β3- and γ2+/β3- interfaces.  All single point mutations were incorporated the 
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β3 subunit since the full-length alignment between the β3 and β1 sequences displayed 

high similarity (91.2 %).  Root mean square deviation (RMS) was calculated between 

the initial (wild-type) structures and superimposed simulated (mutated) structures.  For 

each mutation, the RMS average over ten low energy structures was computed and 

conformational changes displayed among neighborhood structural domains.  We 

prepared the figures using Chimera 1.7 182 and Swiss-PdbViewer 4.1.0 176. 

 

2.4.7 Data analysis 

Electrophysiology data were analyzed offline using Clampfit 10.3 software (Axon 

Instruments) and were expressed as mean ± standard error of the mean (SEM).  One 

mM GABA was applied for 4 s to study macroscopic current kinetics.  Peak currents and 

10-90% rise time of currents were calculated using a built-in function in the Clampfit 

10.3 software.  The current desensitization time courses were fitted using the 

Levenberg-Marquardt least squares method with multiple component exponential 

functions of the form 𝐴!!
!!! 𝑒!!/!" + 𝐶, where n is the number of exponential 

components, A is the relative (fractional) amplitude of the component at time = 0, t is 

time, τ is the time constant, and C is a constant offset in the y direction.  Fitting the 

decay of currents evoked with 4 s GABA applications resulted in three or four 

exponential components.  The number of components were increased until additional 

components did not significantly improve the fit.  The fit was determined by an F-test on 

the residuals.  To simplify comparisons a weighted sum of desensitization time courses 

was used.  The current deactivation following removal of GABA was fitted suing mono-
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exponential equation (n = 1), % desensitization was calculated by subtracting the GABA 

current at the end of 4 s application from the peak GABA current, and then normalized 

to the peak GABA current.  To determine the % Zn2+ inhibition of GABA currents, an 

extended wash for 40 s followed 4s GABA (1 mM) application and then 10 µM Zn2+ was 

applied for 10 s, followed by co-application of 1 mM GABA and 10 µM Zn2+ for 4 s.  

Peak currents from co-application of GABA and Zn2+ were subtracted from the peak 

GABA-evoked currents and then normalized to the peak GABA-evoked current.  

Holding current was calculated as the average of baseline current before GABA 

application.  The outward Zn2+ current during the application of 10 µM Zn2+ for 10 s was 

calculated by subtracting the 6 s average baseline current before Zn2+ application from 

the average of current during the last 6 s of Zn2+ application. 

 

2.5 RESULTS 

2.5.1 De novo GABRB3 and GABRB1 mutations identified in patients with IS were 

located in conserved structural domains of GABAAR β subunits.   

When protein sequences of GABAAR α,β, and γ subunits were aligned we found that the 

β3(N110) subunit residue was conserved in α1-6 and β1-3 subunits, while the β1(F246) 

subunit residue was conserved among all α, β, and γ subunits (Figure 2.2A).  Next the 

mutations were mapped on the structural model of the GABAAR.  The β3(N110) subunit 

residue was in the N-terminal α2 helix at the β-/α+ interface, and the β1(F246) subunit 

residue was in the transmembrane domain 1 (TM1) of β1 subunit (Figure 2.2B).   
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Figure 2.4 IS-associated GABRB1/3 mutations alter conserved β1/3 subunit 
domains.   

(A) Protein sequence alignment of GABAAR α (1-6), β (1-3), and γ (1-3) show 
that gene mutations alter conserved amino acids.  Mutated amino residues are in red 
and residues conserved across α, β, and γ subunits in grey.  Secondary structures are 
represented above the alignments as a helices (black bars) or β sheets (arrows).  (B) 
Three-dimensional structural model of the GABAAR with amino acid residues altered by 
GABRB3(N110D) and GABRB1(F246S) mutations mapped on β3 subunits (shown in 
red).  The β3 subunits are in blue, α1 subunits in gray, and γ2L subunit is in yellow.   
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2.5.2 IS-associated de novo GABRB1/3 mutations had minimal effects on GABA-

evoked current amplitudes.   

Functional consequences of IS-associated mutations were determined by measuring 

whole cell GABA-evoked α1β1/3γ2L currents from lifted HEK293T cells following rapid 

application of 1 mM GABA.  Cells were transfected with equimolar quantities of α1, β1/3 

(wt or mutant), and γ2L subunit-expressing cDNAs in homozygous (hom) condition or 

with α1, 0.5β1/3 (wt), 0.5β1/3(mutant), and γ2L expressing cDNAs.  GABA-evoked peak 

current amplitudes were unaltered for cells expressing β3(N110D) subunit-containing 

receptors in hom and het conditions, whereas GABA-evoked currents were significantly 

reduced (by 25%) from cells expressing β1(F246S) subunits in hom but not in the het 

condition (Figure 2.3, Table 2.2).  This suggests that the loss of GABA-evoked currents 

is not the primary mechanism of action of IS-associated mutations.   
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Figure 2.5 De novo GABRB1/3 mutations found in IS patients produced either no 
change or small reduction of GABA-evoked currents.   

(A) Representative GABA-evoked current traces obtained following rapid 
application of 1 mM GABA for 4 s to lifted HEK293T cells voltage clamped at -20 mV.  
The current traces from GABAARs containing mutant β1/3 subunits in the homozygous 
(hom) condition are compared to their respective wild-type (wt) current traces.  (B) Bar 
graphs showing average peak current densities from cells expressing mutant β subunits 
in hom and heterozygous (het) conditions.  Values are expressed as mean ± standard 
error of the mean (see Table 2.2 for details). 

Values are expressed as mean ± standard error of the mean.  One-way analysis 
of variance with Dunnett post-test was used to determine significance.  */#Significant 
difference compared to the wt and het conditions, respectively.  *p < 0.05, **/##p < 
0.001, ***/###p < 0.0001.  ns = not significant. 
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2.5.3 Predominant actions of IS-associated de novo GABRB1/3 mutations were 

altered GABA-evoked current kinetics.   

Next we examined the impact of IS-associated mutations on important current kinetic 

properties⎯activation, desensitization, and deactivation⎯ that govern the shape and 

amplitude inhibitory post-synaptic currents (IPSCs) in neurons.  We found that both the 

GABRB3 and GABRB1 mutations altered current kinetic properties but in opposite 

directions.  The GABRB3(N110D) mutation significantly slowed current activation 

(longer 10–90% rise time) in the hom condition but not in the het condition (Figure 2.4A, 

left traces and bar graph, Table 2.2).  In contrast, currents from β1(F246S) subunit-

expressing cells had reduced rise times in the het condition but not in the hom condition 

(Figure 2.4A, right traces and bar graph). Furthermore, we calculated current 

deactivation by measuring current decay after termination of GABA application.  The 

β3(N110D) subunit-containing receptors increased the current deactivation rate 

(reduced weighted deactivation rate constant) both in the hom and het conditions 

(Figure 2.4C left traces and bar graph, Table 2.2).  Conversely, the β1(F246S) subunit-

containing receptors decreased the deactivation rate (increased weighted deactivation 

rate constant) compared to currents from wt β1 containing receptors (Figure 2.4C right 

traces and bar graph, Table 2.2).  In addition to 4s GABA application we did 10 ms rapid 

application of GABA pulses (a more accurate method to determine current rise and 

deactivation) and got similar results for current rise and deactivation (Figure 2.4E and 

F).  Current desensitization was not affected by either of the GABRB mutations in the 
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hom or het expression conditions (see Table 2.2).  Thus, the primary impact of IS-

associated GABRB mutations was altered current kinetics. 

 

 

Figure 2.6 The de novo GABRB1/3 mutations found in IS patients altered GABAAR 
current kinetic properties.   
(A and C) Representative traces showing rise times of GABA-evoked currents 
produced by 4 second (A and C, top panel) application of 1mM GABA to wild-type (wt) 
receptors or receptors containing β3(N110D) or β1(F246S) subunits. (B and D) Bar 
graphs show average rise times from the cells expressing wt GABAARs or receptors 
containing β3(N110D) or β1(F246S) subunits. (E and F) Representative current traces 
showing rise times and deactivation of current relaxation at the end of 10 millisecond 
GABA application (1 mM) to wt receptors or receptors containing the β3(N110D) or 
β1(F246S) subunits in the hom condition.  



 

 

128 

Values are expressed as mean ± standard error of the mean (see Table 2.2 for details). 
One-way analysis of variance with Dunnett post-test was used to determine 
significance. */# Significant difference compared to the wt and het conditions, 
respectively.  *p < 0.05, **/##p < 0.001, ***p < 0.0001.  ns = not significant. 

 

2.5.4 IS-associated de novo GABRB mutations did not reduce surface levels of 

α,β, or γ  subunits.   

As we observed a small reduction in the peak current amplitudes from cells expressing 

α1β1(F246S)γ2L subunits in hom condition (Figure 2.2B), we evaluated surface levels 

of GABAAR subunits using flow cytometry technique.  Additionally, surface levels for the 

α1β3(N110D)γ2L hom condition were also examined.  As none of the commercially 

available antibodies against the GABAAR β1 subunits were found to be specific when 

tested in our laboratory, we incorporated hemagglutinin (HA) epitope tag 

(YPYDVPDYA) between amino acids 4 and 5 of the mature β1 and β1(F246S) subunits.  

Moreover HA-tagged γ2L subunits were used due to better signal to noise ratio.  

As expected we found that the neither the surface levels nor the total levels of 

α1, β3, and γ2LHA were reduced in the hom condition.  However, surprisingly, the 

β3(N110D) subunit levels were significantly increased (surface levels=142.3 ± 8% and 

total levels = 170 ± 17% of wt condition), without increasing α1 or γ2LHA subunit levels 

(see Figure 2.5A and B, Table 2.2).  An unusual property of wt β3 subunits is that when 

expressed alone (in absence of α1 or γ2 subunits) they are found on the cell surface 

suggesting they form homomeric β3 receptors183, 184 (Figure 2.5. A, middle bar graph).  

These results indicate that the β3(N110D) subunits enhance the formation of surface 
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homomeric β3 receptors, although the significance of this finding is not clear as 

homomeric GABAARs have not be described in neurons. 

Furthermore, similar to a small decrease in the peak currents the β1(F246S)HA 

subunit levels were slightly but significantly reduced compared to wt β1HA levels, without 

any alteration in α1 or γ2LHA levels (see Figure 2.5C).  While the total expression levels 

of α1, β1HA, and γ2LHA were not changed (see Figure 2.5D).  Reduced surface 

β1(F246S) subunit levels without a decrease in the total levels suggest that mutant 

subunits affected the assembly and/or trafficking of heteromeric GABAARs but not the 

biogenesis of the mutant subunits.  However, the presence of HA tag could affect the 

assembly and/or trafficking, especially when 2 tagged β1HA subunits are present in the 

pentameric (β-α-β-α-γ) GABAAR.  In absence of β1 specific antibodies this issue 

remains unresolved. 
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Figure 2.7 The GABRB3(N110D) mutation did not reduce surface and total levels 
of GABAAR subunits, while and GABRB1(F246S) mutation produced small reduction of 
β1HA surface levels.   

Flow cytometry was used to determine surface (A) and total (B) levels of α1, 
β1HA/ β3, and γ2LHA subunits in HEK293T cells.  The GABRB3(N110D) mutation 
reduced surface or total levels of GABAAR subunits, while the GABRB1(F246S) 
mutation produced small but significant reduction of β1HA subunits.  (A and C left most 
panel) Representative fluorescence intensity (FI) histograms showing the surface levels 
of β1HA/ β3 subunits from cells expressing α1, mutant β1HA/ β3, γ2LHA subunits in hom 
condition (shaded), α1, wt β1HA/ β3, γ2LHA subunits (unfilled with solid black line), and 
empty vector (unfilled with dotted line). Normalized FI values of the Alexa 674 
fluorophore are presented in bar graphs, with FI for each condition normalized to the FI 
of the wild-type (wt) condition (Relative FI).  The (A and C) and total (B and D) panels 
respectively show the surface Relative FI levels of the α1, β1HA/β3, and γ2LHA subunits.  
Cells expressing only α1, β1HA/β3, or γ2LHA subunits were used as controls.  Unlike the 
β3(N110D) subunit levels, the β1(F246S)HA subunit levels were decreased by 28.8% of 
the wt β1HA levels.   

Values were expressed as mean ± standard error of the mean.  One-way 
analysis of variance with Dunnett post-test was used to determine significance.  *p < 
0.05, **p < 0.001, ***p < 0.0001 compared to the wt condition.  

 

2.5.5 IS-associated GABRB mutations impaired single channel gating properties 

of GABAARs. 

Single channel currents are a direct readout of the channel gating properties. Thus, 

microscopic single channel currents of wt and mutant α1β1/3γ2L subunit-containing 

receptors were obtained from cell attached out-side-out patched in sustained presence 

of 1 mM GABA.  In response to 1 mM GABA, wt α1β3γ2L and α1β1γ2L receptors 

opened into brief bursts and frequent prolonged (>500 milliseconds) clusters of bursts to 

a main conductance level of ~26 pS (Figs 2.6A, Tables 2.3) with channel open 

probabilities (Po) of 0.62 ± 0.05. and 0.48 ± 0.03, respectively.  Open time distributions 

were best fitted by 3 weighted exponential functions (ao1, ao2, and ao3) with 3 open time 
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constants (τo1, τo2, and τo3; Figs 2.6B and E, top left panels), suggesting channels open 

to at least 3 different states.   

The GABRB3(N110D) mutation dramatically reduced channel Po (to 17.7% of 

wt) without changing the single channel opening frequency or mean open time (Figure 

2.6, Table 2.3).  Consistent with this, the open time constants and relative area under 

the curves were unaltered.  The GABRB3(N110D) mutation decreased channel Po 

largely by reducing burst duration (to 70% of control), resulting from a  shift to briefer 

bursts.  The slow rise time and fast current deactivation of macroscopic currents from 

β3(N110D) subunit-containing receptors is accounted by reduced Po, number of 

openings per burst, and burst duration.  

In contrast, the GABRB1(F246S) mutation did not alter channel Po in spite 

decreasing the opening frequency due to a gain of function resulting in increased mean 

open time (~3.75-fold) and burst duration (~3.2-fold) from prolonged openings.  These 

changes are reflected as significant shifts in the distribution of the longest open states 

and may account for the prolonged macroscopic current deactivation.  In addition, the 

GABRB1(F246S) mutation reduced single channel conductance level to ~21pS, which 

accounted for a small reduction of whole cell GABA-evoked currents in the 

α1β1(F246S)γ2L hom condition.  Thus, GABRB3(N110D) and GABRB1(F246S) 

mutations have opposing effects on single channel properties similar to those seen with 

macroscopic current kinetics. 
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Figure 2.8 Single channel properties of GABAARs with wt and mutant β1/3 
subunits.   

Single channel currents were obtained using cell attached recordings with 1 mM 
GABA in the recording pipette.  (A and D) Representative single channel current traces 
from cells expressing wild-type (wt) or mutant GABAARs (hom condition).  (B and E) 
Mean open time (left panels) and burst duration (right panels) histograms for wt and 
mutant receptors were fitted best to 3 and 2 exponential functions, respectively.  The 
average of open and burst duration histograms (sums of multiple exponential functions) 
are marked with a square.  (C and F) Bar graphs summarize the effects of wt and LGS-
associated GABRB3 mutations on the kinetic properties of the receptors. 
GABRB3(N110D) and GABRB1(F246S) mutations had opposite effects on the single 
channel properties.  The GABRB3(N110D) mutation reduced Po and burst duration of 
GABAAR channels. While the GABRB1(F246S) mutation reduced opening frequency 
and mean open time and burst duration.  

Values represent mean ± standard error of the mean.  Statistical differences were 
determined using one-way analysis of variance with Dunnett multiple comparisons test 
(see Table 2 for details).  **p < 0.01, ***p <0.001, ****p < 0.0001. 

  



 

 

135 

Table 2.3.  Single channel properties of the de novo GABRB mutations associated 
with IS. 

 α1β3γ2L (n) α1β1γ2L (n) 

 wt β3 (6) β3(N110D) (5) wt β1(6) β1(F246S) (3) 

Channel conductance (pS) 24.79 ± 1.62 23.66 ± 0.97 25.72 ± 1.09 22.15 ± 0.75* 

Mean open time (ms) 6.60 ± 0.73 7.00 ± 0.36 4.30 ± 0.78 16.13 ± 0.14*** 

Opening frequency(S-1) 49 ± 2 48 ± 4 30 ± 3 14 ± 1** 

Open probability (Po) 0.62 ± 0.05 0.11 ±0.03**** 0.48 ±0.03 0.55 ±0.02 

Open time constants:     

τo1 (ms) 3.18 ± 0.28 3.98 ± 0.44 2.39 ± 0.14 4.49 ± 0.05*** 

τo2 (ms) 9.77 ± 0.84  8.92 ± 1.17 8.33 ±1.01 16.6 ± 0.3** 

τo3 (ms) 20.8 ± 3.4 21.6 ± 5.1 17.4 ± 5.3 47.9 ± 3.5** 

ao1 (%) 67 ± 1 66 ± 8 72 ± 6 19 ± 3*** 

ao2 (%) 28 ± 2 29 ± 8 25 ± 5 75 ± 4*** 

ao3 (%) 5 ± 2  5 ± 1 6 ± 2 6 ± 1 

Burst duration (ms) 20.13 ± 0.72 14.34 ± 1.17** 13.33 ± 2.38 42.95 ± 2.61** 

Openings/burst 3.12 ± 0.19 2.21 ± 0.16* 2.42 ± 0.11 2.49 ± 0.13 

Burst time constants:     

τ1(ms) 2.54 ± 0.20 4.85 ± 0.60* 2.42 ± 0.24 5.62 ± 1.04* 

τ1(ms) 35.4 ± 2.9 24.6 ± 3.4* 21.2 ± 3.1 52.0 ± 1.6*** 

a1 (%) 37 ± 6 55 ± 3* 54 ± 3 20 ± 3*** 

a2 (%) 63 ± 6 45 ± 3* 49 ± 2 80 ± 3*** 

     

 

Values represent mean ± S.E.M.*, **, *** and **** indicate p < 0.05, p < 0.01, p<0.001 
and p < 0.0001 (unpaired t-test) statistically different from wt, respectively. 
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2.5.6 De novo GABRB1(F246S) mutation produced spontaneously gated 

GABAARs.   

An unexpected finding from macroscopic current recordings was significantly increased 

holding currents (~5- fold) from α1β1(F246S)γ2L subunit-containing receptors in the 

hom condition (Figure 2.7A, Table 2.2).  While the holding currents for receptors 

containing β3(N110D) subunits were significantly reduced in hom and het conditions 

(Table 2.2).  As increased holding currents in general are indicators of poor cell health, 

and was also true for β1(F246S) subunit-containing receptors (our unpublished 

observations), we examined this further.  Increased holding currents could be due to 

formation of homomeric or spontaneously gated β1(F246S) subunit-containing 

receptors, although, it is important to note that the wt β3 subunits themselves assemble 

to form homopentameric GABAARs 178.  To this end we used Zinc as it has been shown 

to block spontaneous GABAAR “leak” current that appears as a positive shift in the 

baseline current from cells expressing only β1 (or β3) subunits (subunits known to form 

homomeric GABAARs) 183-185.  Surprisingly, 10 to 15% of the holding current was 

blocked by 10µM Zinc in the hom condition (Figure 2.7B, Table 2.2).  The holding 

current was blocked to a similar extent by 100µM zinc (data not shown).  Additionally, 

there is small but significant decrease in the surface levels of β1(F246S) subunits in the 

hom condition (see Figure 2.5C).  Taken together these results suggest that the 

β1(F246S) subunit results in spontaneously gated heteropentameric GABAARs (as 

previously reported 186) rather than formation of homopentameric β1 subunit-containing 

receptors.  
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We further investigated the mechanisms by which the de novo GABRB1(F246S) 

mutation increased macroscopic holding currents at a single channel level.  Analyzing 

spontaneous single channel currents in the absence of GABA revealed that the even wt 

β1 subunit-containing receptors opened spontaneously (Figure 2.7C).  However, the 

spontaneous openings of wt α1β1γ2L receptors were very brief, with isolated low 

conductance openings, and with a Po that was ~68% of that observed in presence of 1 

mM GABA.  GABAARs containing the mutant β1(F246S) subunits increased 

spontaneous Po by 4-fold without changing the single channel conductance (Figure 

2.7C). GABRB3(N110D) mutation also produced spontaneous channel openings, 

although they were rare, brief, and with smaller conductance than wt receptors (1.1 ± 

0.01pA and 0.001 ± 0.002pA, n = 3).  The spontaneous activation of GABAARs with 

mutant β3(N110D) and β1(F246S) subunits was blocked by picrotoxin (100 µM) in a 

fashion similar to that for receptors containing wt β1/3 subunits (data not shown).  Thus, 

spontaneous activation of GABAARs could be an additional pathogenic mechanism of 

action of the GABRB1(F246S) mutation.   
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Figure 2.9 Mutant β1(F246S) subunits produced spontaneously gated GABAARs 
leading to spontaneous macroscopic currents and single channel openings.   

(A) Bar graph shows significantly higher holding currents were needed to clamp 
cells expressing β1(F246S) subunit-containing GABAARs in het and hom conditions 
compared to cells with wt receptors.  (B, left panel) Representative traces showing 
outward currents following Zn+2 application from cells with β1(F246S) (hom) subunit-
containing GABAARs.  (B, right panel) Bar graph with average Zn+2-evoked currents in 
wt, het, and hom conditions.  (C, left panel) Representative single channel currents 
from cells with wt and β1(F246S) in hom condition.  (C, right panel) Bar graphs 
showing single channel amplitude and Po of wt (black bars) and spontaneously 
activated mutant (gray bars) receptors.  The β1(F246S) mutant subunits significantly 
increased the Po of low-conductance openings without altering single channel 
conductance. 

Values represent mean ± standard error of the mean.  One-way analysis of 
variance with Dunnett multiple comparisons test (A and B) or Two-way analysis of 
variance with Tukey multiple comparisons (C, right panel) test were used to determine 
statistical significance.  **p < 0.01, ***p <0.001, ****p < 0.0001. 
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2.5.7 De novo GABRB1/3 mutations rearranged conserved structural domains 

related to GABAAR function.   

The structural changes induced by the GABRB mutations were studied by creating the 

wt and mutant pentameric αβγ GABAAR simulations (see Figure 1B) using solved 

structures of both the C. elegans GluCl channel and the human GABAAR β3 subunit 

homopentamer as templates (see Materials and Methods for details).  Rearrangements 

of the secondary structure and side chain conformation were computed as the root 

mean square (RMS) between wt and mutant receptors (Figure 2.8C).  The D110 and 

F246 mutant residues are located at the β complimentary (-) interface, and thus the 

major structural changes induced by the IS-associated mutations occurred at two 

interfaces, between the principle (+) side of the γ and α subunits and the (-) side of the β 

subunit i.e. the γ+/β- and α+/β- interfaces (Figure 2.8B).  These domains are in close 

contact with the structural assembly motifs 187, 188.  Conformational changes through 

neighborhood structural domains at the γ+/β-, and α+/β- interfaces were predicted for 

both IS-associated mutations.  Perturbations in the secondary structure are presented 

as mutation associated alternative ribbon in rainbow when RMS > 0.03A°, and those in 

the side chain residues as plotted as box plots (Figure 2.9C).  In addition to local effects 

(intrasubunit) confined to structural domains of the β subunit, and global effects 

(intersubunit) propagated to the nearest α and γ subunits via rearrangements of nearby 

residues and structural domains (Figure 2.9C).  

The mutated β1(F246S) subunit had structural rearrangements largely restricted 

to the coupling zone domains and propagated to the TM domains at both the γ+/β- and 
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α+/β- interfaces (Figure 2.8C).  The mutated β3(N110D) subunit acquired structural 

changes in the loops A, B, and α-β1 at the α+ and γ+ interfaces (Figure 2.8C).  

Remarkably, only at the γ+/β- interface, the β3(N110D) subunit predicted changes that 

were extended across the α-β1 loop of the γ+ subunit, a motif previously reported to 

impair receptor gating and βγ subunit interaction 171, 189, 190.  The N110D mutation lies in 

the inner β3 sheet on the opposite side of the ligand binding channel gating coupling 

interface, thus it seems unlikely to reduce the gating of the channel.  However, GABAAR 

activation was decreased when glycine was inserted in the inner β4–β5 sheets at the 

β3(-) interface 191,  in line with this, IS-associated mutations primarily affected the kinetic 

properties of the GABAARs.  Both de novo GABRB mutations produced a wave of 

structural rearrangements that altered similar domains at the homologous γ+/β- and 

α+/β- interfaces required for receptor expression and function.   
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Figure 2.10 De novo GABRB1/3 mutations induced a wave of structural 
rearrangements in conserved structural domains important for GABAAR function. 
  (A) Extracellular view of the N-terminal domains of a pentameric αβγ subunit-
containing GABAAR structural model (as seen from the synaptic cleft) displaying LGS-
associated (in red) GABRB1/3 mutations on β3 subunits (blue ribbons) subunits, α1 and 
γ2L subunits are represented as gray and yellow ribbons, respectively.  The principal (+) 
and complementary (-) interfaces of each subunit are shown.  The bottom panel lists the 
location of the mutations in their respective interfaces.  (B) Zoomed in view of the 
β3+/α- subunit domains containing LGS-associated mutations (as seen almost parallel 
to the plasma membrane).  (C) Enlarged view of the domains that had structural 
rearrangements caused by the IS-associated GABRB3(N110D) and GABRB1(F246S) 
mutations.  The perturbations of the secondary structures that differ among the wt (in 
gray) and mutant (in rainbow) structures are indicated by solid black lines (left panels).  
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Box plots show perturbations (as root mean square deviation [RMS]) caused by the 
mutations in the side chain residues that are propagated through β sheets, loops, and 
TM helices (right panels).  RMS values for up to 10 simulations are represented as 
interleaved box and whiskers plots (25–75% percentile, median, and minimum and 
maximum).  The secondary structure containing the mutation is highlighted in red. 

 

2.6 DISCUSSION 

In this chapter I presented our analysis of the impaired function of GABAARs 

dysfunctions produced by the epilepsy-associated GABRB3(N110D) and 

GABRB1(F246S) mutations.  The contribution of GABRB3 mutations to a relatively mild 

childhood absence epilepsy syndrome was reported in the past decade 174, 192, although 

association of GABRB3 mutations with severe epileptic encephalopathies was first 

provided only recently by the Epi4K consortium 111.  Several recent sequencing studies 

also report GABRB3 mutations in their epilepsy cohorts 111, 193-200.   On the contrary 

GABRB1 mutations are just beginning to appear in the epilepsy literature, even though 

their role in Schizophrenia, major depression, bipolar disorder 201-203 and increased 

alcohol consumption was suspected 186.  The Epi4K consortium was the first to report a 

GABRB1 mutation (F246S) in an epileptic encephalopathy patient.  However, as 

GABRB1(F246S) was found in a single patient, there was not enough statistical power 

to conclude that GABRB1 mutations are causal for epileptic encephalopathies.  

Although, our functional study clearly demonstrated that the GABRB1(F246S) mutation 

disrupted GABAAR function, consistent with a contribution to the pathogenesis of 

epilepsy syndromes.  In fact another report of the GABRB1(T287I) mutation in a patient 

with epileptic encephalopathy came out at the same time that our study was published 
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204.  The patient with the GABRB1(T287I) mutation presented with clinical symptoms 

overlapping with the patient carrying the GABRB1(F246S) mutation 204.  These findings 

strongly suggested that GABRB1 mutations are causal for rare genetic epilepsies, and it 

would not be surprising to see additional epilepsy-associated GABRB1 mutations in the 

near future.   

 

2.6.1 The IS-associated de novo GABRB3 and GABRB1 mutations had minor 

effects on GABAAR current amplitudes and surface levels.   

IS is a catastrophic epilepsy syndrome and both patients with GABRB3(N110D) and 

GABRB1(F246S) mutations had severe epilepsy.  Additionally, the PolyPhen-2 scores 

indicated that both of these mutations were probably damaging (Table 2.1).  However, 

the major impact of IS-associated mutations were not loss of peak currents but they 

altered GABA-evoked current activation and deactivation times (Figure 2.4).  The 

GABRB1(F246S) mutation reduced peak current amplitudes in the hom but not in the 

het condition, while the GABRB3(N110D) mutation did not reduce peak current 

amplitudes in het or hom conditions (Figure 2.3).  As the patients were heterozygous for 

the mutations, it could be assumed that the current kinetic changes were pathogenic.  

This also highlights the value of functional studies, as the PolyPhen-2 scores were not 

sufficient to predict this outcome. 

Consistent with minimal effects on peak GABA-evoked current amplitudes, both 

mutations had marginal effects on surface levels of α, β or γ subunits.  The 
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GABRB3(N110D) mutation increased surface and total levels of GABAAR β3 but not of 

α1 or γ2LHA subunits.  This suggested that the GABRB(N110D) mutations favored the 

formation of surface β3(N110D) subunit homomers.  As the total levels of β3(N110D) 

subunits were also increased, it could be speculated that these homomers were 

retained in the endoplasmic reticulum and might have impaired the oligomerization of 

β3(N110D) subunits with α1 and γ2L subunits.  On the contrary the GABRB1(F246S) 

mutation produced a small but significant reduction of β1HA  surface levels but not those 

of α1 or γ2LHA subunits.  The total levels of α1, β1HA or γ2LHA subunits were also 

unaltered.  It is unusual that only the surface levels of β1HA subunits were reduced, as 

surface α1-γ2LHA dimers do not assemble into functional pentamers.  It can be 

speculated that the presence of two HA tags on each of the β1HA subunits could hinder 

the formation of β1HA-α1-β1HA-α1-γ2LHA subunit-containing GABAARs.  Whereas, 

previous work from our laboratory demonstrated that the single HA tag had minimal 

effects on surface levels and electrophysiological properties of β-α-β-α-γ2LHA subunit-

containing GABAA receptors compared to β-α-β-α-γ2L subunit-containing GABAARs.   

The reduced surface β1HA subunit levels could reduce the accessibility of anti-HA 

antibodies when two HA tags were present on β1 subunits rather than just one HA tag 

on the γ2L subunit.  We used β1HA subunits instead of β1 subunits since the antibodies 

against human β1 subunits were not specific (see methods).  Thus the significance of 

reduced surface levels of β1HA subunits but not of α1 or γ2LHA subunits is not clear. 
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2.6.2 The predominant effect of IS-associated de novo GABRB3 and GABRB1 

mutations were altered macroscopic GABAAR current kinetics and single channel 

properties.   

The GABRB3(N110D) and GABRB1(F246S) mutations altered macroscopic current 

kinetics in opposite directions.  The GABRB3(N110D) mutation significantly slowed 

current activation (longer 10–90% rise time) in the hom condition but not in the het 

condition (Figure 2.4A, left traces and bar graph, Table 2.2), but the GABRB1(F246S) 

mutation accelerated current activation (reduced rise times) in the het condition but not 

in the hom condition (Figure 2.4A, right traces and bar graph).  The effects on rise times 

were inconsistent in hom and het condition for both mutations, and the significance of 

these findings is not clear.  Brief application of GABA is a more precise technique for 

determining current rise and deactivation time courses. When GABA was applied for 10 

ms in the hom condition, both mutations slowed current activation (increased rise 

times), but the effect was not significant for the GABRB1(F246S) mutation.  Thus, the 

brief GABA application mimicked the effects seen with macroscopic currents. 

On the other hand current deactivation was increased by the GABRB3(N110D) 

mutation (reduced weighted deactivation rate constant) and decreased (increased 

weighted deactivation rate constant) by the GABRB1(F246S) mutation in both the hom 

and het conditions (Figure 2.4C left traces and bar graph, Table 2.2).  Both current rise 

times and deactivation rates determine the shape and peak of GABA-evoked currents.  

Thus slow rise rates and faster deactivation rates of GABA-evoked currents due to the 

GABRB3(N110D) mutation would result in brief and inhibitory post-synaptic currents 
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(IPSCs) and decreased charge transfer.  In contrast, slow current deactivation due to 

the GABRB1(F246S) mutation would prolong the IPSC duration and increase the 

charge transfer during the first IPSC, but decrease charge transfer during subsequent 

IPSCs by reducing the number of unbound GABAARs, especially during high-frequency 

neuronal firing. Counter intuitively, both faster and slower deactivation would result in 

the net loss of GABAergic inhibition, as previously reported for mutant γ2(K289M) and 

γ2(L313S/L9ʹS) subunit, respectively 205, 206. 

The slower rise and faster deactivation rates of macroscopic currents due to the 

GABRB3(N110D) mutation results from reduced single channel open probability (Po) 

due to decreased burst duration and openings per burst (Figure 2.6 A-C, Table 2.3).  

Similarly, the prolonged current deactivation due to the GABRB1(F246S) mutation could 

be  explained by significantly increased mean channel open time and burst duration.  

However, the Po is unaltered despite increased mean open time and burst duration 

likely due to reduced channel opening frequency (Figure 2.6 D-F, Table 2.3).   

 

2.6.3 Mutant β1(F246S) subunits produced spontaneously gated GABAARs  

Additional pathogenic actions of the GABRB1(F246S) mutation are that it results in 

spontaneous GABAAR opening that can be seen as drastically increased single channel 

openings in the absence of GABA and outward (positive) macroscopic currents in the 

presence of Zn.  This also results in reduced HEK293T cell health and increased 

holding currents (Figure 2.7).  Unlike the β3 subunit-containing GABAARs those with β1 
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subunits have low Po in absence of GABA (Figure 2.7C); however, the mutant 

β1(F246S) subunits increased the channel Po by 4-fold without changing single channel 

conductance.  These openings were almost completely blocked by Zn, which is also a 

blocker of homomeric β1 subunits 183-185, and the surface levels of β1(F246S) subunits 

were reduced.  Taken together these finding suggesting that rather than altering the 

composition of GABAARs, the β1(F246S) subunits resulted in spontaneously gated 

α1β1(F246S)γ2L channels.  It could be speculated that the spontaneous channel 

openings could result in persistent tonic currents in neurons and reduce the population 

of GABAARs in closed states that could respond to incoming synaptic inhibition.  

Although, the spontaneous currents in neurons have not been demonstrated, thus the 

consequence of these findings is unclear.  

 

2.6.4 IS-associated de novo GABRB1/3 mutations rearranged conserved 

structural domains related to GABAAR function.   

The GABRB3(N110D) and GABRB1(F246S) mutations located at the β- interface in the 

N-terminal domain of the β3 subunit and TM1 region of the β1 subunit, respectively, 

perturbed critical functional domains in the β subunits as well as in the neighboring α+/ 

β- and γ+/β- interfaces (Figure 2.8).  The GABRB3(N110D) mutation located in the inner 

β3 sheet and on the opposite side of the ligand binding channel gating coupling 

interface may not appear to affect gating, but previous studies also report reduced 

GABAAR activation when glycine was inserted in the inner β4–β5 sheets at the β3- 

interface 191.  The effects of GABRB1(F246S) mutation were primarily restricted to the 
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coupling zone domains and propagated to the TM domains at both the γ+/β- and α+/β- 

interfaces.  As these mutations are far from the GABA-binding site they did not have 

major effects on GABA-evoked current amplitudes but altered current kinetics.  The 

changes predicted from the GABAAR structural model containing mutant β3(N110D) 

and β1(F246S) subunits support these observations. 

 

2.6.5 How can IS-associated GABRB3 and GABRB1 mutations result in epilepsy 

syndromes? 

Both β3 and β1 subunits are widely expressed in the developing and adult brain in 

seizure generation regions such as cortex, hippocampus, and thalamic reticular nucleus 

207-209, where they mediate phasic and tonic inhibition.  The β3 subunits are abundant 

during early development, whereas expression of β1 subunits begins after birth and 

undergoes down regulation until reaching stable levels in mature neurons 208, 210.  Even 

though the role of β1 subunits during development in not well understood, the 

ubiquitous expression of β1 subunits indicates their role in neurodevelopment after birth. 

Therefore, the loss of or altered depolarizing drive of mutant GABAARs would hamper 

formation of appropriate neuronal circuits during critical periods of central nervous 

system development.  Based on our results on GABA-evoked currents, it could be 

speculated that the GABRB3(N110D) mutation could have more prominent effects on 

phasic inhibition, whereas the GABRB1(F246S) mutation that resulted in spontaneous 

channel openings could affect both phasic and tonic inhibition.   
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CHAPTER III: Effects of Lennox-Gastaut syndrome-associated GABRB3 (D120N, 

E180G, Y302C) mutations on GABAA receptor function 

 

3.1 Lennox-Gastaut syndrome (LGS): A rare but catastrophic childhood epilepsy 

The Lennox-Gastaut syndrome is a severe childhood epilepsy syndrome with multiple 

seizure types, characteristic EEG patterns, and a typical age of onset between 1-8 

years.  LGS remains to be one of the most difficult to manage epilepsies with nearly all 

patients experiencing intractable seizures, profound cognitive decline, and behavioral 

deficits, features that rarely remit 1-3.  Anti-epileptic drugs (AEDs), surgical interventions, 

and dietary modifications provide inadequate relief from frequent seizures and 

associated comorbidities.  A high seizure frequency is common, and most patients 

receive polytherapy with multiple AEDs 3-6.  Cognitive impairment progresses after onset 

of seizures in 75-90% of patients at the time of diagnosis, and within five years of onset 

serious impairment is apparent 3, 7.  Cognitive impairment is more severe in children 

with early onset of seizures or when LGS evolves from other epilepsy syndromes such 

as West syndrome/infantile spams (in ~20-50% cases) 8-13.  Though, cases with late 

onset (>8 years) have much better developmental and cognitive outcomes prior to 

seizure onset 6, 8, 14-19.  

LGS is a rare epilepsy syndrome with an annual incidence of ~2/100,000 births 8, 

20, a prevalence of 1-10% of all childhood epilepsies 21-25, and with a slight male 

predominance 17, 20, 21, 23.  The higher prevalence rates (>5%) could be skewed by 

misdiagnosing all patients with multiple seizure types and cognitive impairment to be 
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affect by LGS.  For example diagnosing patients with Doose syndrome/myoclonic–

astatic epilepsy as LGS 26 or from cases such as infantile spasms with high prevalence 

rates (~25%) that progress to LGS.  While a lower prevalence rate (<5%) could result 

from adhering to stringent diagnostic criteria.  Despite the wide range of reported 

prevalence rates, a prevalence rate of ~4-6% is generally agreed upon.  In the recent 

classification by the International League Against Epilepsy (ILAE), LGS is defined as an 

epileptic encephalopathy-epilepsy in which epileptic activity (seizures and interictal 

discharges) contributes to cognitive decline beyond that expected from the underlying 

pathology 27, 28.  With more stringent diagnostic criteria, growing awareness, and 

increasing number of studies on LGS, future studies could provide much better 

estimates of prevalence.  Even though LGS is a rare disease, patients with this 

devastating disorder require a substantial amount of clinical resources.  Further lifelong 

seizures and associated comorbidities have a tremendously negative impact on patients 

and caregivers.   

 

3.2 Discovery of LGS 

The first systematic report of what would be called the Lennox-Gastaut syndrome (LGS) 

was published by Frederic A. Gibbs, Erna L. Gibbs, and William G. Lennox in 1939 29.  

They described it as “petit mal variant” (now called atypical absence seizures) since the 

SWDs frequency was slower (<2.5 Hz) than that observed during petit mal (generalized 

absence) seizures (~3 Hz).  They also noted that (1) atypical absence seizures were 

common in post-central and occipital areas, while absence seizures were most common 
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in the frontal and the pre-central areas. (2) atypical absence seizures were insensitive to 

blood glucose and CO2 levels, unlike the absence seizures that are decreased by high 

and increased by low blood sugar levels.  However, this study was largely 

unrecognized, probably because electrographic features were primarily used to 

distinguish the two absence seizure types.  A large body of work followed this seminal 

observation.  In 1943 Lennox and colleagues demonstrated that patients with slow 

SWDs (< 2.5 Hz) were clinically distinct from the patients with typical SWDs (~3 Hz), 

and had higher likelihood of developing intractable seizure and cognitive impairment.   

Additionally, they showed that unaffected controls and epileptic patients can indeed be 

parsed based on electrographic SWD frequencies 30.  Patients with a clinical diagnosis 

of absence seizures had the highest coincidence (in 77% of patients) of observing 

typical electrographic seizures (3 Hz) during routine EEGs compared to patients with 

complex partial seizures or GTCS 30.  Later they described a working definition of 

absence seizures, noted early age of onset of absence seizures, provided clinical utility 

of EEG measures, and tested several drugs (including caffeine) on patients with atypical 

absence seizures and found that the unmarketed drug Tridione was the most effective 

31, 32.  In 1950 Lennox and Davis carried out an extensive study involving 200 patients 

with atypical and 200 with typical absence seizures 33.  In this seminal paper they 

described the clinical features that are to date considered the hallmark features of LGS.  

They also reported that patients with atypical absence seizures had greater variety of 

seizures and EEG abnormalities, lesser impact of family history, and multiple seizure 

types.  Additionally, they observed that in striking contrast to children with typical 

absence seizures, those with atypical absence seizures had diminished response to 
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Tridione and presented with learning and intellectual disabilites.  In depth findings from 

the above studies were published in "Epilepsy and Related Disorders" 34, which 

reemphasized that patients with atypical absence seizures are clinically different from 

those with typical absence seizures, and associated the clinical findings with the 

electrographic features of the patients.   

Interest in LGS was revived in 1965 when Charlotte Dravet reported findings 

from 50 children with slow SWDs in her medical doctoral thesis under the supervision of 

Henri Gastaut 35.  Later these findings were extended to a total of 100 patients 36.  They 

confirmed the EEG findings, multiple seizure phenotypes (refractory to medication), and 

cognitive deficits reported by Lennox.  In addition they extended the clinical findings and 

reported that the most common age on onset of LGS was 1-6 years, West syndrome 

could progress to LGS, the interictal EEG in patients with LGS was abnormal.  They 

also introduced the terms ‘epileptic encephalopathy with slow spike-waves’ or ‘Lennox 

Syndrome’ to describe the syndrome.  Later Lennox’s daughter proposed to expand the 

term to Lennox-Gastaut syndrome in the XIV European meeting on EEG Information 37, 

38.  The term Lennox-Gastaut syndrome was first used by Niedermeyer in 1969 39, and 

studies by Chevrie, Aicardi, Penry, and Markand furthered the field and refined the EEG 

with simultaneous video-EEG monitoring 40-44. 
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3.3 LGS: current definition 

The current clinical diagnostic criteria of LGS have changed a little over the past 67 

years the since Lennox and Davis’ description in 1950.  Even though the precise 

definition of LGS may vary, currently most authors agree that the presence of following 

triad of features is diagnostic 19, 27, 28. 

1. Multiple seizure types including tonic and atypical absence seizures as the most 

frequent seizures, drop attacks (resulting from tonic and atonic seizures), 

myoclonic seizures, generalized tonic-clonic seizures, and focal seizures.  

Seizure onset is 1-8 years (peak 3-5 years, rarely in adolescence).  However, 

LGS can evolve from West syndrome/infantile spams, which has a much earlier 

seizure onset (typically between 3 and 8 months).  Seizures are refractory to 

AED treatment for most patients. 

2. EEG abnormalities include slow SWDs (<2.5 Hz) in wakefulness and sleep, and 

fast rhythms (10-12 Hz) during sleep that may be associated with tonic seizures.  

3. Profound cognitive decline and developmental delay.  Although, patients with late 

onset (> 8 years) may have better cognitive outcomes 19, 45.  

However, patients may not display all diagnostic and clinical features, especially at the 

onset of LGS, and a definitive diagnosis may take several years.  A detailed description 

of the clinical manifestations and EEG signatures of the common seizure types in LGS 

patients are described in the next chapter. 
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3.4 Etiology of LGS 

Comprehending the etiologies of LGS is important for treatment, counseling, and 

research purposes.  Being a rare disorder, the clinical and research community has only 

started to scratch the surface of the underlying etiologies of LGS.  The causes of LGS 

are extremely heterogeneous, although the majority of the LGS patients’ etiology could 

be broadly categorized either as structural (previously symptomatic, 60-80%) or as 

genetic/presumed genetic or unknown (previously idiopathic or cryptogenic, 20-40%) 6, 

46.  Rarely patients present with infectious, metabolic, or immune etiologies 19, 47-50.  A 

structural etiology refers to the concept that structural abnormalities (such as those 

acquired from trauma, stroke, hypoxic–ischemic injury, infection, or cortical 

malformation due to a genetic mutation) markedly increases the risk of epilepsy 51.  For 

LGS patients, neuroimaging and EEG are required to ascertain whether a structural 

abnormality is the cause of the seizures.  According to the recent ILAE classification, 

the structural etiology takes precedence over genetic classification when the structural 

malformations underlie the epilepsy, although, both etiological terms could be used 51.   

Genetic etiology implies that the epilepsy results directly from a known or 

presumed genetic mutation 51.  The causative mutation could be monogenic (inherited 

or de novo) or polygenic with or without contribution of environmental factors and/or 

susceptibility genes.  In addition to missense or small deletion/insertion mutations, copy 

number variants (>1 kb DNA deletions or duplications) are emerging as important 

genetic contributors to epilepsy 52, 53.  A genetic etiology for LGS was long suspected for 

the unknown (or cryptogenic) cases, but only recently the genetic etiology has been 
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confirmed.  Factors that make establishing the genetic etiology of LGS difficult include: 

(1) rarity of the disorder, (2) sporadic occurrence with limited family history of epilepsy 

(family history of epilepsy for LGS patients is same as those for non-epileptic patients, 

4-10 %) 2, and (3) lack of next generation sequencing for patients to identify small 

genetic changes prior to the last decade .  

Even though complex inheritance was suspected for LGS, whole exome 

sequencing studies in the current decade indicate a prominent role for de novo 

mutations in LGS etiology that also explain the occurrence of sporadic cases.  There 

has been an exponential increase in the number of genes associated with LGS in the 

past five years, with epilepsy-associated genes discovered on a monthly basis.  De 

novo missense mutations in GABRB3 and ALG13 were reported as causative for LGS 

54 by the Epi4K consortium in 2013.  Since then a number of genes have been reported 

either in isolated cases or designated as causative in cohort studies.  A few in the fast 

growing list of genes include CACNA1A 54, CDKL5 54, CHD2 54, 55, DNM1 54, 56-58, FLNA 

54, FOXG1 59, GABRA1 54, GABRG2 60, GRIN1 54, GRIN2A, GRIN2B 54, HDAC3, 

HDAC4 54, HNRNPU 54, IQSEC2 54, 61, MTOR 54, NEDD4L 54, SCN1A 54, SCN2A 54, 62, 

SCN8A 54, STXBP1, and SYNGAP1.  Thus, previously classified idiopathic and 

cryptogenic LGS cases can very well be classified as genetic.  However, until genetic 

testing becomes commonplace in majority of epilepsy clinics, the causative genes for 

most LGS cases will remain unknown.   

Unknown etiology implies that the cause of epilepsy is not yet understood based 

on the clinical picture, but basic diagnosis could be made from electroclinical semiology 
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such as generalized or focal epilepsy 51.  Currently the percentage of patients with truly 

unknown diagnosis in the developed countries has been decreasing due to increasing 

access to specialized neurology clinics, EEG monitoring, neuroimaging, and genetic 

testing.  The degree to which the cause could be ascertained depends on the 

availability and accessibility to health care resources for patient evaluation.  The hope is 

that the etiology for more unknown cases would emerge as diagnostic resources and 

understanding of LGS continues to increase. 

 

3.5 GABRB3 mutations as cause of LGS 

After decades of pursuit, the genetic contribution to LGS became apparent when the 

Epi4K/EPGP consortium identified 329 de novo mutations in 264 LGS and IS patients 

by whole exome sequencing of trios (proband and their unaffected parents) 54.  These 

mutations were absent in 610 control trios.  Among the 329 genes, four mutations in 

GABRB3 were implicated as monogenic causes of LGS and IS.  Additionally, two or 

more probands had de novo mutations in eight other genes (ALG13, n=2; CDKL5, n=3; 

DNM1, n=2; HDAC4, n=2; SCN1A, n=7; SCN2A, n=2; SCN8A, n=2; and STXBP1, n=5).  

Patients also had significant excess of de novo mutations in the ~4000 genes intolerant 

to functional genetic variation and enriched in genes previously associated with autism 

and regulated by fragile X protein 54.  The promising results from this study has revived 

interest in LGS in recent times, and a number of sequencing studies in EE patients have 

followed.  Since then several novel de novo mutations have been identified and over 20 

have been reported in GABRB3 54, 57, 63-68.   
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Although, the four GABRB3 mutations were implicated to be causative in LGS, 

their impact on GABAA functions were unknown, further in silico functional prediction 

scores (Table 2.1) offer no clues to the mechanisms of actions of these mutations.  

Thus, we determined the effects of the de novo GABRB3 mutations on GABAA receptor 

function and biogenesis in vitro using the HEK 293T cell expression system.  In this 

chapter I describe the actions of three GABRB3(D120N, E180G, Y302C) mutations 

identified in LGS patients.   

 

Table 3.1. De novo GABRB3 mutations identified in patients with Lennox-Gastaut 
syndrome. 

Mutation Nucleotide 
change 

CCDS 
transcript 

ID 

Location in 
β3 subunit 

PolyPhen-2 
score Sex 

Age at 

seizure 
onset 

Initial 
seizure 

type 

GABRB3 
(D120N) 

15:26866564 
C→T 

CCDS539
20.1 

GABA binding 
pocket, loop A 1 M 10 mo. IS 

GABRB3 
(E180G) 

15:26828484 
T→C 

CCDS539
21.1 

GABA binding 
pocket, loop B  0.974 M 10 mo. LGS 

GABRB3 
(Y302C) 

15:26806254 
T→C 

CCDS100
19.1 M2-M3 loop 0.938 F 10 mo. 

FDS, 
staring 
spells 

        

CCDS transcript ID = consensus coding sequence identifier of the GABRB3 gene,  

FDS=Focal dyscognitive seizures 
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3.5 MATERIALS AND METHODS 

3.5.1 Complementary DNA (cDNA) Constructs  

cDNAs encoding human GABAAR subunits α1 (NM_000806.5), β1 (NM_000812.3), β3 

(NM_021912.4, variant 2), γ2L (NM_198904.2) and EGFP (LC008490.1) were each 

cloned into the pcDNA(3.1+) vector. Point mutations in the cDNA encoding β1 and β3 

subunits were introduced using the QuikChange Site-Directed Mutagenesis kit (Agilent).  

The hemagglutinin (HA) epitope tag (YPYDVPDYA) was inserted between amino acids 

4 and 5 of the mature γ2L subunit protein.  The HA epitope tag insertion at this position 

in the γ2L subunit has minimal effects on the electrophysiological properties or surface 

levels of GABAARs.  All constructs were sequenced prior to use at the Vanderbilt 

Technologies for Advanced Genomics core facility and verified against published 

sequences.  The amino acids are numbered according to the immature peptide 

sequence. 

 

3.5.2 Expression of recombinant GABAA Receptors 

HEK293T cells (HEK 293T/17, ATCC® CRL-11268™) were cultured as monolayers at 

37°C in Dulbecco’s Modified Eagle Medium (Invitrogen) supplemented with 10% fetal 

bovine serum (Invitrogen), 100 IU/ml each of penicillin and streptomycin (Invitrogen). 

For whole electrophysiology, cells were plated at a density of 4 x 105 in 60 mm culture 

dishes (Corning).  cDNA transfections were done 24 hours after plating cells, and they 

were re-plated for recording using trypsin-EDTA digestion (Invitrogen) in 35 mm dishes 

24 hours after transfection.  For the homozygous expression condition, 0.6 µg cDNA of 
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each α1, β3, and γ2L subunit and 0.1 µg of EGFP were transfected using X-

tremeGENE9 DNA Transfection Reagent (Roche Diagnostics).  For the heterozygous 

condition 0.6 µg α1 and γ2L, 0.3 µg wt β1/3, 0.3 µg mutant β1/3, and 0.1 µg EGFP of 

cDNAs were used.  A ratio of 1.15 µl X-tremeGENE9:1 µg cDNA was used.  EGFP and 

GABAAR subunit cDNAs were co-transfected to identify transfected cells based on GFP 

fluorescence.  For single channel recordings, HEK293T cells were plated at 4 x 104 in 

35 mm culture dishes (Corning) and transfected after 24 hours with 0.3 µg cDNA of 

each α1, β3, and γ2L subunit and 0.05 µg cDNA of EGFP for the homozygous 

condition.  Recordings were done 48 hours after transfection.  The cDNA and 

XtremeGENE9 amounts were scaled up or down in proportion to the area of the culture 

dishes.  Our unpublished observations show that cells lacking GFP expression do not 

produce GABA-evoked currents, indicating that GFP is a good proxy for α, β, and γ 

subunit expression.  In addition when cells are transfected with wt α, β, and γ subunit-

encoding cDNAs, they produce typical αβγ subunit-like current responses and lack, for 

example, of αβ subunit-like currents.  Although, αβ subunit-containing GABAA receptors 

could constitute a minor portion of all receptors and their presence cannot be ruled out, 

the majority of the receptors are likely to be αβγ subunit-containing. 

For flow cytometry experiments, cells were plated at a density of 4-6 x 105 in 60 

mm culture dish (Corning), and transfected with 0.6 µg cDNA for each α1, β3, and γ2L 

subunit 24 hours after plating using Polyethyleneimine (MW 40,000 KD, 24765, 

Polysciences Inc.).  Cells were harvested using trypsin-EDTA (Invitrogen) 48 hours 
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following transfection.  For mock or single subunit expression, empty pcDNA3.1 vector 

was added to make the final cDNA transfection amount to be 1.8 µg.  

 

3.5.3 Whole cell electrophysiology 

Whole cell voltage clamp recordings were obtained at room temperature from lifted 

HEK293T cells bathed in an external solution composed of (in mM): 142 NaCl, 8 KCl, 

10 D(+)-glucose, 10 HEPES, 6 MgCl2.6H2O, and 1 CaCl2 (pH 7.4, ~326 mOsm).  

Recording electrodes with series resistance of 1-2 MΩ were pulled from TW15OF-3 thin 

walled glass capillaries (World Precision Instruments, Inc.) using a P-2000 Quartz 

Micropipette Puller (Sutter Instruments), and the tip was polished using MF-830 Micro 

Forge (Narishige).  The internal solution consisted of (in mM): 153 KCl, 10 HEPES, 5 

EGTA 2 Mg-ATP, and 1 MgCl2.6H2O (pH 7.3, ~300 mOsm).  The Cl- reversal potential 

was near 0 mV, and cells were voltage clamped at -20mV to get an inward GABA-

evoked current.  Whole-cell currents were recorded using an Axopatch 200B amplifier 

(Axon Instruments) low-pass filtered at 2 kHz using the internal 4-Pole Bessel filter of 

the amplifier, digitized at 10KHz with Digidata 1322A (Axon Instruments) and stored for 

offline analysis.  Drugs were gravity-fed to a four-barrel square glass tubing connected 

to a SF-77B Perfusion Fast-Step system (Warner Instruments Corporations).  The 10-

90 % rise times of open-tip liquid junction currents were 200-600 µs.  1 mM GABA was 

applied for 4s to study macroscopic current kinetics.  Data were analyzed offline using 

Clampfit 9.0 (Axon Instruments).  Data were expressed as mean ± standard error of the 

mean (SEM). 
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3.5.4 Single channel electrophysiology 

GABAA receptor single channel currents were recorded in the cell-attached 

configuration as described previously 69, 70.  Briefly, single-channel currents were 

recorded from HEK293T cells bathed in external solution containing (in mM): 140 NaCl, 

5 KCl, 1 MgCl2, 2 CaCl2, 10 glucose, and 10 HEPES (pH 7.4).  Glass electrodes were 

pulled from thick-walled borosilicate capillary glass (World Precision Instruments) on a 

P-2000 Quartz Micropipette Puller (Sutter Instruments) and fire-polished to a resistance 

of 10–20 MΩ on an MF-830 Micro Forge (Narishige) before use.  The electrode solution 

consisted of (in mM): 120 NaCl, 5 KCl, 10 MgCl2, 0.1 CaCl2, 10 glucose, and 10 

HEPES (pH 7.4).  The electrode potential was held at +80 mV.  GABAA receptor 

spontaneous activity was recorded in absence of GABA and blocked by adding 100 µM 

picrotoxin and 100 µM Zn+2.  GABA-evoked currents were recorder in presence of 1 mM 

GABA.  Single channel currents were amplified and low-pass filtered at 2 kHz using an 

Axopatch 200B amplifier, digitized at 20 kHz using Digidata 1322A, and saved using 

pCLAMP 9 (Axon Instruments).  Data were analyzed offline using TAC 4.2 and TACFit 

4.2 (Bruxton Corporation) 69, 70.  Data were shown as the mean ± SEM.  Statistical 

analysis was performed using GraphPad Prism (GraphPad Software 6.0).  Statistical 

significance was taken as p < 0.05, using unpaired two-tailed Student's t test or one-way 

ANOVA as appropriate.  GABA, Zn+2 and picrotoxin were obtained from Sigma. 
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3.5.5 Flow Cytometry 

Flow cytometry protocols have been previously described in detail 71, 72.  Briefly, GABAA 

receptors were expressed as described above, and cells were harvested ~48 hours 

after transfection and immediately placed on ice in 4°C FACS buffer.  Cell surface 

expression levels of α1, β3, γ2LHA subunits were determined using primary antibodies 

against human α1 subunits (N-terminal, clone BD24, Millipore; 2.5 g/ml), human β3 

subunits (N-terminal, monoclonal, β2/3-PE, clone 62-3G1, Millipore; 2.5 g/ml), and the 

HA epitope tag (clone 16B12, Covance; 2.5 g/ml) respectively.  Cells were washed 3 

times using 4°C cold FACS buffer and fixed with 2% w/v paraformaldehyde.  To 

determine the total cellular expression levels, cells were fixed for 15 min using BD 

Cytofix/CytopermTM fixation/permeabilization buffer (BD Biosciences) and washed 2 

times using BD Perm/WashTM staining buffer (BD Biosciences) prior to staining.  

Following washes after primary antibody treatment cells were incubated with anti-mouse 

IgG1 secondary antibody conjugated to the Alexa647 fluorophore (Invitrogen) before 

additional washing and fixation. 

Fluorescence intensity levels of cells were determined using a BD LSR II 3/5-

laser flow cytometer (BD Biosciences).  Data were analyzed offline using FlowJo 7.5.5 

(Tree Star).  For each condition, intensity levels of 50,000 cells were acquired.  The 

non-viable cells were excluded using their forward and side-scatter properties.  Net 

fluorescence intensity levels from cells expressing GABAA receptor subunits were 

calculated after subtracting the mean fluorescence intensities of the cells transfected 

with blank pcDNA(3.1+) vector.  The relative fluorescence intensities for each condition 
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were calculated by normalizing the average intensity values to those obtained from cells 

expressing α1, β3 and γ2LHA subunits (WT).  One-way analysis of variance with Tukey's 

post-test was used to determine if the expression levels of different transfection 

conditions were significantly different from the WT condition.  Data were expressed as 

mean ± SEM. 

 

3.5.6 Structural Modeling and Simulation  

GABAA receptor subunit raw sequences in FASTA format were individually loaded into 

Swiss-PdbViewer 4.10 73 for template searching against ExPDB database (ExPASy, 

http://www.expasy.org/).  Then, the structure of the C. elegans glutamate-gated chloride 

channel (GluCl; PDB: 3RHW) 74 in the closed conformation was identified as the best 

template resulting in 33% and 36% sequence identity for γ2 and α1 subunits 

respectively.  For β3 subunits, the human GABAAR-β3 (PDB: 4COF) 75 crystal structure 

was used per se with no further modification.  The initial sequence alignments between 

γ2 and α1 subunits and C. elegans GluCl subunits were generated with full-length 

multiple alignments using ClustalW 76.  Sequence alignments were inspected manually 

to assure accuracy among structural domains solved from the template.  Because the 

long cytoplasmic regions of the γ2 and α1 subunits were absent in the solved GluCl 

structure, it was excluded from the modeling, and separate alignments were generated 

for the TM4 domains.  Then full-length multiple alignments were submitted for 

automated comparative protein modeling implemented in the program suite 

incorporated in SWISS-MODEL (http://swissmodel.expasy.org/SWISS-MODEL.html).  
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Before energy minimization using GROMOS96 77, resulting structural models of human 

γ2 and α1 subunits were inspected manually, their structural alignments confirmed and 

evaluated for proper h-bonds, presence of clashes and missing atoms using Molegro 

Molecular Viewer (www.clcbio.com).  Then, pentameric GABAA receptor homology 

models were generated by combining α1, β3 and γ2 structural models in the 

stoichiometry 2β:2α:1γ with the subunit arrangement β-α-β-α-γ.  Neighborhood 

structural conformational changes at the β3+α1-, α1+β3-, and γ2+β3- interfaces of the 

GABAA receptor caused by a single mutated amino acid residue (de novo mutation) in 

the human β3 subunit were simulated using Rosetta 3.1 78 implemented in the program 

suite incorporate in Rosetta Backrub (https://kortemmelab.ucsf.edu).  Since Rosetta 3.1 

does not allow Cysteine substitutions, GABAA receptors carrying Cysteine mutations 

were exchanged by Alanine.  Then, up to twenty of the best-scoring structures were 

generated at each time by choosing parameters recommended by the application for 

one mutation at the time for each correspondent subunit interface as follow: β3(D120N), 

β3(E18G), and β3(Y302A) within the β3+α1- interface, and β3(N110D) and β3(F246S) 

at the α1+β3- and γ2+β3- interfaces.  All single point mutations were incorporated the 

β3 subunit since the full-length alignment between the β3 and β1 sequences displayed 

high similarity (91.2 %).  Root mean square deviation (RMS) was calculated between 

the initial (wild-type) structures and superimposed simulated (mutated) structures.  For 

each mutation, the RMS average over ten low energy structures was computed and 

conformational changes displayed among neighborhood structural domains.  We 

prepared the figures using Chimera 1.7 79. 



 

 

180 

3.5.6 Data analysis 

Electrophysiology data were analyzed offline using Clampfit 10.3 software (Axon 

Instruments) and were expressed as mean ± standard error of the mean (SEM).  One 

mM GABA was applied for 4 s to study macroscopic current kinetics.  Peak currents and 

10-90% rise time of currents were calculated using a built-in function in the Clampfit 

10.3 software.  The current desensitization time courses were fitted using the 

Levenberg-Marquardt least squares method with multiple component exponential 

functions of the form 𝐴!!
!!! 𝑒!!/!" + 𝐶, where n is the number of exponential 

components, A is the relative (fractional) amplitude of the component at time = 0, t is 

time, τ is the time constant, and C is a constant offset in the y direction.  Fitting the 

decay of currents evoked with 4 s GABA applications resulted in three or four 

exponential components.  The number of components were increased until additional 

components did not significantly improve the fit.  The fit was determined by an F-test on 

the residuals.  To simplify comparisons a weighted sum of desensitization time courses 

was used.  The current deactivation following removal of GABA was fitted suing mono-

exponential equation (n=1), % desensitization was calculated by subtracting the GABA 

current at the end of 4 s application from the peak GABA current, and then normalized 

to the peak GABA current.  To determine the % Zn2+ inhibition of GABA currents, an 

extended wash for 40 s followed 4s GABA (1 mM) application and then 10 µM Zn2+ was 

applied for 10 s, followed by co-application of 1 mM GABA and 10 µM Zn2+ for 4 s.  

Peak currents from co-application of GABA and Zn2+ were subtracted from the peak 

GABA-evoked currents and then normalized to the peak GABA-evoked current.  

Holding current was calculated as the average of baseline current before GABA 
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application.  The outward Zn2+ current during the application of 10 µM Zn2+ for 10 s was 

calculated by subtracting the 6 s average baseline current before Zn2+ application from 

the average of current during the last 6 s of Zn2+ application. 

 

3.6 RESULTS 

3.6.1 LGS-associated de novo GABRB3 mutations were located in conserved 

structural domains of GABAA receptor β subunits.  

We found that all three LGS-associated mutations were located in conserved domains 

of β3 subunits that are critical for GABAA receptor functions.  By aligning protein 

sequences encoded by GABR genes we found that D120 and Y302 were invariant 

residues across all GABAA receptor subunits, while E180 was invariant among β 

subunits (Figure 3A).  Mutated residues are part of major structural domains (Figure 3B; 

mutated residues are shown in red) such as loop A (D120), loop B (β7 sheet, E180), 

and the M2–M3 loop (Y302), which are involved in the ligand binding channel gating-

coupling mechanisms 75, 80-84 
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Figure 3.1 LGS-associated GABRB3 mutations alter conserved β3 subunit 
domains.   
(A) Protein sequence alignment of GABAA receptor α (1-6), β (1-3), and γ (1-3) show 
that gene mutations alter conserved amino acids.  Mutated amino residues are in red 
and residues conserved across α, β, and γ subunits in grey.  Secondary structures are 
represented above the alignments as a helices (black bars) or β sheets (arrows).  (B) 
Three-dimensional structural model of the GABAA receptor was made with amino acid 
residues altered by GABRB3 mutations shown in red.  The β subunits are in blue, α 
subunits in gray, and γ subunit in yellow.   

 

3.6.2 LGS-associated de novo GABRB3 mutations reduced GABA-evoked 

currents. 

To determine the consequences of LGS-associated GABRB3 mutations on GABAA 

receptor function, we measured macroscopic GABA-evoked current amplitudes 
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recorded with the whole cell configuration following rapid application of 1 mM GABA.  In 

the homozygous (hom) condition (cells expressing α1, β3 (mutant), and γ2L subunits) 

GABA-evoked peak amplitudes were significantly reduced compared to the wild type 

(wt) condition (cells expressing α1, β3 (wt), and γ2L subunits).  The peak current 

densities from cells expressing β3(D120N), β3(E180G), and β3(Y302C) subunit-

containing GABAA receptors were reduced to ~24%, 1%, and 5% of the wt condition, 

respectively (Figure 3.3, Table 3.2).  Since the LGS patients were heterozygous (het) 

for the de novo GABRB3 mutations, we also examined the impact of these mutations in 

the in vitro het expression condition (cells expressing α1, β3 (wt), β3 (mutant), and γ2L 

subunits).  Peak current amplitudes were also significantly reduced in the het condition 

to a lesser extent than the hom condition (het β3(D120N) = 64%, het β3(E180G) = 61%, 

and het β3(Y302C) = 44% of wt current densities; see Figure 3.3, Table 3.2).  
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Figure 3.2 The de novo GABRB3 mutations found in LGS patients produced 
substantial loss of GABA-evoked currents.   
(A) Representative GABA-evoked current traces obtained following rapid application of 
1 mM GABA for 4 s to lifted HEK293T cells voltage clamped at -20 mV.  The current 
traces from GABAA receptors containing mutant β3 subunits in the homozygous (hom) 
condition are compared to their respective wild-type (wt) current traces.  (B) Bar graphs 
showing average peak current densities from cells expressing mutant β subunits in hom 
and heterozygous (het) conditions.  Values are expressed as mean ± standard error of 
the mean (see Table 2.2 for details). 

Values are expressed as mean ± standard error of the mean.  One-way analysis of 
variance with Dunnett post-test was used to determine significance.  */#Significant 
difference compared to the wt and het conditions, respectively.  *p < 0.05, **/##p < 
0.001, ***/###p < 0.0001.  ns = not significant. 
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3.6.3 LGS-associated de novo GABRB3 mutations altered GABA-evoked current 

kinetics.   

We examined macroscopic properties such activation, desensitization, and deactivation 

of GABA-evoked currents.  When these important properties are altered, they affect 

shape and amplitude of the inhibitory post-synaptic currents (IPSCs) in neurons.  All 

three β3 subunit mutations significantly slowed current activation (longer 10–90% rise 

time) in the hom condition but not in the het condition (Figure 3.4A, Table 3.2).  Current 

desensitization during GABA application was unaltered in hom and het conditions by 

β3(D120N) and β3(Y302C) mutant subunits, while the β3(E180G) subunits produced 

strong current desensitization only in the hom condition (Figure 3.4 B and C, Table 3.2).  

Further, β3(D120N) and β3(Y302C) mutant subunits increased current deactivation 

(reduced weighted deactivation rate constant) after GABA application was terminated.  

The β3(E180G) subunits resulted in an unusual positive overshoot of the currents from 

the baseline after removal of GABA.  This prevented fitting exponential functions in a 

meaningful way to determine deactivation rate constants (resulting in negative time 

constants).  In the het condition, the β3(E180G) subunits did not affect current 

deactivation.  Although, the current kinetic changes due to β3(D120N, E180G, Y302C) 

subunits were hard to interpret as the GABA-currents were profoundly reduced (76.1–

98.9% of wt) and seemed to be less relevant than the substantial loss of peak currents. 
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Figure 3.3 The de novo GABRB3 mutations alter GABA-evoked whole cell current 
kinetic properties.   
Bar graphs show average rise times (A), deactivation τ (B), and desensitization τ (C) of 
whole cell GABA-evoked currents in wt and hom conditions (see Table 2.3 for het 
results).  All three GABRB3 mutations considerably increased rise times (A) and 
reduced deactivation time constants (B), although for a large portion of cells the 
deactivation could not be meaningfully extracted for the β3(E180G) hom condition.  (C) 
Deactivation of GABA-evoked currents was seen only for the β3(E180G) hom condition. 

Values are expressed as mean ± standard error of the mean.  One-way analysis of 
variance with Dunnett post-test was used to determine significance.  */#Significant 
difference compared to the wt and het conditions, respectively.  *p < 0.05, **/##p < 
0.001, ***/###p < 0.0001.  ND= not determined. 
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Table 3.2 Effects LGS-associated GABRB3 mutations on whole cell GABA- evoked 
currents and expession levels of GABAA receptor subunits. 

 α1β3γ2L (n) 

 wt β3 
(8-16) 

β3(D120N) 
(5-8) 

β3(E180G) 
(5-21) 

β3(Y302C) 
(8-10) 

Peak GABA current density 
(pA/pF), homozygous 244 ± 21 58.3 ± 8.8*** 2.8 ± 0.7*** 12.4 ± 3.7*** 

Peak GABA current density 
(pA/pF), heterozygous - 155 ± 36* 149 ± 

17**### 108 ± 25***## 

10-90% rise time (ms), 
homozygous 2.6 ± 0.3 64.9 ± 

17.8*** 
53.3 ± 
11.7*** 107 ± 15*** 

10-90% rise time (ms), 
heterozygous - 4.4 ± 1.2### 3.1 ± 0.4### 5.9 ± 1.2### 

Desensitization τ (ms), 
homozygous 1530 ± 128 1218 ± 262 3202 ± 

452*** 2640 ± 755.4 

Desensitization τ (ms), 
heterozygous - 1559 ± 320.1 2024 ± 

285.1 1701 ± 424 

Deactivation τ (ms), 
homozygous 165  ± 24 49.9 ± 6.5** ND 42.5 ± 8.1*** 

Deactivation τ (ms), 
heterozygous - 78.6 ± 11.9* 93.2 ± 15.4 70.6 ± 9.5*** 

Holding current (pA), 
homozygous -85.8 ± 12 -35.3 ± 17.3 -466 ± 87*** -10.8 ± 4.7*** 

Holding current (pA), 
heterozygous - -31.7 ± 10.4* -209 ± 69 -25.8 ± 8.2*** 

Outward Zn2+ current (pA), 
homozygous +7.2 ± 2.3 +0.9 ± 0.6 +47.5 ± 

13.8** -0.9 ± 1.3* 

Outward Zn2+ current (pA), 
heterozygous - +3.6 ± 1.6 +15.8 ± 3.9# +3.9 ± 1.3 

% Zn2+ inhibition, 
homozygous 13.2 ± 2.1 13.6 ± 1.3 33.7 ± 8** -9.9 ± 6.0*** 
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Values represent mean ± S.E.M.*, **, and *** indicate p < 0.05, p < 0.01, and p<0.001 
statistically different from wt homozygous, and  #, ##, and ### indicate p < 0.05, p < 0.01, 
and p<0.001 statistically different between de novo GABRB mutations in homozygous 
and heterozygous conditions (one-way ANOVA with Dunnett’s multiple comparisons 
test or unpaired t-test).  ND=non-determinate.  Surface and total expression levels were 
normalized against the wt condition.   

 

3.6.4 LGS-associated de novo GABRB3 mutations did not reduce surface levels 

of α, β or γ subunits.  

To determine if the loss of GABA-evoked currents resulted from loss of surface GABAA  

receptors, we examined surface levels of α1, β3 or γ2LHA subunits using flow cytometry.  

We found that none of the LGS-associated mutations reduced total or surface levels of 

α1, β3 or γ2LHA subunits in the hom condition (Figure 3.5 A,B), suggesting that none of 

the mutations affected biogenesis or trafficking of GABAA receptors.  As we saw greater 

impact of the mutations on GABA-evoked currents in hom than the het condition, but did 

not see loss of surface receptors in hom condition we did not extend the flow cytometry 

experiments to the het condition.  Surprisingly, in the hom condition surface levels of 

% Zn2+ inhibition, 
heterozygous - 15.0 ± 1.4 12.2 ± 2.7## 10.8 ± 2.0### 

  (12/5) (12/5) (15/8) 

Surface/Total a1, 
homozygous - 0.93 ± 0.04/ 

1.00 ± 0.14 
1.01 ± 0.13/ 
1.10 ± 0.13 

1.08 ± 0.09/ 
1.30 ± 0.15 

Surface/Total b1HA/3,  
homozygous - 0.98 ± 0.05/ 

1.10 ± 0.11 
1.25 ± 0.08/ 
1.26 ± 0.17 

1.059 ± 0.06/ 
1.73 ± 0.21** 

Surface/Total g2LHA,  
homozygous - 0.98 ± 0.07/ 

0.97 ± 0.17 
1.01± 0.16/ 
1.33 ± 0.45 

1.04 ± 0.07/ 
1.15 ± 0.14 
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β3(E180G) subunits were 24.9 ± 0.08% higher (but not significantly higher) than the wt 

β3 subunit levels.  The majority of the GABAA receptor subunits are not expressed on 

the cell surface without partnering subunits, although wt β3 subunits are found on cell 

surface in absence of α and γ subunits, at levels similar to those of β3 subunits in the wt 

condition.  When β3(E180G) subunits were expressed alone, they had a 37.3% higher 

surface expression level compared to wt β3 subunits expressed alone.  These data 

suggest that the β3(E180G) subunits favor the formation of homomeric β3 receptors or 

GABAA receptors with subunit stoichiometry distinct from wt receptors.  
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Figure 3.4 The GABRB3 mutations did not reduce surface and total levels of 
GABAA receptor subunits.   
Flow cytometry was used to determine surface (A) and total (B) levels of α1, β3, and 
γ2LHA subunits in HEK293T cells.  None of the GABRB3 mutations reduced surface or 
total levels of GABAA receptor subunits.  (A) Representative fluorescence intensity (FI) 
histograms showing the surface levels of β3 subunits from cells expressing α1, mutant 
β3, γ2LHA subunits in hom condition (shaded), α1, wt β3, γ2LHA subunits (unfilled with 
solid black line), and empty vector (unfilled with dotted line).  (B) Normalized FI values 
of the Alexa 674 fluorophore are presented in bar graphs, with FI for each condition 
normalized to the FI of the wild-type (wt) condition (Relative FI).  The top two panels 
and the bottom panel respectively show the surface and total Relative FI levels of the 
α1, β3, and γ2LHA subunits.  Cells expressing only α1, β3, or γ2LHA subunits were used 
as controls.  Unlike the β3(D120N) and β(Y302C) subunits, the β3(E180G) subunit 
levels were increased by 25% of the wt β3 levels, although they were not significantly 
different.  Additionally, the β3(Y302C) total levels were significantly higher than the wt 
β3 levels by 73%. 

Values were expressed as mean ± standard error of the mean.  One-way analysis of 
variance with Dunnett post-test was used to determine significance.  *p < 0.05, **p < 
0.001, ***p < 0.0001 compared to the wt condition.  

 

3.6.5 LGS-associated GABRB3 mutations reduced GABA-activated currents by 

reducing GABA potency or efficacy. 

Results from Figure 3.3 and Figure 3.4 reveal that LGS-associated mutations reduced 

GABA-evoked current amplitudes, increased/slowed rise times, and speeded 

deactivation.  Similar changes are seen in when sub-saturating concentrations of GABA 

(<1 mM) is applied to wt GABAA receptors 85, 86.  Since the β3(D120N, E180G, and 

Y302C) mutant subunits were located in loop A and loop B (β7 sheet) of the GABA 

binding pocket and M2–M3 loop (involved in the ligand binding channel gating coupling 

mechanism), respectively (see Figure 3.2B and Figure 3.9, mutated residues are in 

red), it is possible that these mutations disrupted GABA binding and/or coupling of 

GABA binding to channel gating, resulting in reduced GABA potency and/or efficacy.  
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To determine if this could be the case, we measured current responses to a 

supersaturating concentration of 10 mM GABA.  We found that with 10 mM GABA, 

β3(D120N) subunit-containing receptors produced current amplitudes similar to those 

containing wt receptors with 1 mM GABA (Figure 3.6A, B left graph).  The current 

response increased to 83.6 ± 7.3% of wt current with 10 mM GABA compared to 23.9 ± 

3.6% of the wt current with 1 mM GABA.  This result suggested that the β3(D120N) 

subunits reduce GABA potency.  In contrast, currents from β3(E180G) and β3(Y302C) 

containing GABAA receptors produced minimal increase with 10 mM GABA (1.2 ± 0.3% 

and 5.1 ± 1.5% of wt in 10 mM GABA, respectively), suggesting a major reduction in 

GABA efficacy (Figure 3.6A B left graph).  

Furthermore, the current rise times for β3(D120N) subunit-containing receptors 

with 10 mM GABA were similar to those of wt receptors with 1 mM GABA.  While for the 

β3(E180G) and β3(Y302C) subunit-containing GABAA receptors the rise times were 

much slower even with 10 mM GABA (Figure 3.6B B right graph).  Although, the rise 

times were ~14-fold, ~3-fold, and ~3-fold faster with 10 mM GABA from cells containing 

β3(D120N), β3(E180G) and β3(Y302C) subunit-containing GABAA receptors, 

respectively, compared to wt receptors with 1 mM GABA.  These findings further 

support that β3(D120N) subunits reduced GABA potency while β3(E180G) and 

β3(Y302C) subunits reduced GABA efficacy. 
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Figure 3.5 The mutant β3 subunits reduced GABA potency or efficacy.   
To test if high concentrations of GABA can restore current form mutant receptors to wt 
levels 10 mM GABA was applied.  (A) Representative whole cell current responses 
following 1 mM GABA (light gray) and 10 mM (dark gray) application from cells 
expressing wild-type (wt) or mutant receptors in hom condition.  (B, left) Bar graph 
show average peak current responses to 10 mM GABA application as a percentage of 
wt response to 1mM GABA.  Average currents from β3(D120N), β3(E180G), and 
β3(Y302C) subunit-containing receptors with 10 mM GABA were 83.6 ± 7.3%, 16.9 ± 
2.5%, and 28.3 ± 9.6% of the wt currents, respectively, with 1mM GABA.  (B, right) Bar 
graph show the average rise times of GABA-evoked currents to 1- and 10mM GABA 
application from cells with wt or mutant subunits in hom condition.  Rise times for 
β3(D120N), β3(E180G), and β3(Y302C) subunit-containing receptors were 4.8 ± 0.5 ms, 
18.6 ± 5.5 ms, and 35.2 ± 7.4 ms, respectively.  These results indicate that the 
GABRB3(D120N) mutation reduced GABA potency while the GABRB3(E180G, Y302C) 
mutations reduced GABA efficacy.   

Values were expressed as mean ± standard error of the mean.  One-way analysis of 
variance with Dunnett post-test was used to determine significance.  **p < 0.001, ***p < 
0.0001 compared to the wt condition with 1mM GABA application.   
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3.6.6 LGS-associated mutations impaired the single channel gating properties of 

GABAA receptors. 

Single channel recordings provide a direct measurement of currents and kinetic 

behavior of the ion channels.  These microscopic current measurements may explain 

the macroscopic properties of GABA-evoked currents containing mutant subunits, such 

as reduced peak currents and altered current kinetics.  Therefore, we recorded single 

channel currents in the continuous presence of 1 mM GABA in a cell attached out-side-

out configuration.  Wt α1β3γ2L receptors opened in brief bursts and recurrent prolonged 

(>500 ms) clusters of bursts with a main conductance level of ~26 pS and an open 

channel probability (Po) of 0.62 ± 0.05 (Figure 3.7, Table 2.3).  Open time distributions 

were fitted best with three weighted exponential functions (ao1, ao2, and ao3) suggesting 

openings to at least three different open states with open time constants τo1, τo2, and τo3 

(Figure 3.7 B).    

All three GABRB3(D120N, E180G, and Y302C) mutations that reduced peak 

current amplitudes also significantly reduced single channel Po compared to wt 

receptors (Figure 3.7C, Table 3.3).  While the GABRB3(Y320C) mutation reduced 

single channel conductance (~21 pS), the GABRB3(D120N, E180G) mutations did not 

(Table 3.3).  Additionally, GABRB3(D120N, Y302C) mutations also reduced opening 

frequency without altering the single channel mean open time (Figure 3.7C, Table 3.3).  

Concordantly, the three open time distributions were minimally affected for β3(D120N) 

and β3(Y302C) subunit-containing receptors (Figure 3.7B, Table 3.3).  On the other 

hand the β3(E180G) subunit containing-receptors did not alter single channel opening 
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frequency but reduced single channel mean open time, resulting from reduced open 

time constants and a substantial increase (88 ± 5% in the relative proportion [ao1]) of 

occurrence of the shortest open state (τo1).  In addition to channels gating properties, 

the bursts were affected by the LGS-associated mutations (Figure 3.7A-C, Table 3.3).  

All three mutations increased the duration and frequency of short bursts, and decreased 

the duration and frequency of long bursts (Figure 3.7B and C, Table 3.3). 
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Figure 3.6 Single channel properties of GABAA receptors with wt and mutant β3 
subunits.   

Single channel currents were obtained using cell attached recordings with 1 mM 
GABA in the recording pipette.  (A) Representative single channel current traces from 
cells expressing wild-type (wt) or mutant GABAA receptors (hom condition).  (B) Mean 
open time (left panels) and burst duration (right panels) histograms for wt and mutant 
receptors were fitted best to 3 and 2 exponential functions, respectively.  The average 
of open and burst duration histograms (sums of multiple exponential functions) are 
marked with a square.  (C) Bar graphs summarize the effects of wt and LGS-associated 
GABRB3 mutations on the kinetic properties of the receptors.  All three mutations 
reduced Po and burst duration of GABAA receptor channels.  The GABRB3(E180G) 
mutation significantly increased brief channel openings reflected as reduced mean open 
time and increased channel opening frequency.   

Values represent mean + standard error of the mean.  Statistical differences were 
determined using one-way analysis of variance with Dunnett multiple comparisons test 
(see Table 2 for details).  **p < 0.01, ***p <0.001, ****p < 0.0001.  

 

3.6.7 The mutant β3(E180G) subunit produced spontaneously gated GABAA 

receptor channels. 

One unexpected finding from recording macroscopic currents was that the cells 

expressing α1β3(E180G)γ2L receptors required higher holding currents (5.4-fold and 

2.4-fold in hom and het conditions, respectively; Figure 3.8A, Table 3.2) to keep cells 

clamped at -20 mV compared to those expressing wt receptors.  This suggests 

spontaneous channel openings in the hom and the het condition.  Additionally, the cells 

expressing β3(E180G) were unhealthy (had significantly increased holding currents to 

keep cells at -20 mV) compared to those expressing wt β3, β3(D120N) or β3(Y302C) 

subunits.  We knew from flowcytometry experiments that in the hom condition the 

β3(E180G) subunits had higher cell surface expression levels (by 24.9 ± 0.08%), but not 

significantly different from wt (Figure 3.5B middle graph, Table 2.3), while the α1 and 
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γ2L surface levels were unaltered.  Furthermore, co-application of Zn and GABA is used 

as a proxy to determine the composition of surface GABAA receptors.  GABAA receptors 

with αβ or just β subunits have significantly higher inhibition of peak GABA currents in 

presence of Zn+2 compared those with αβγ subunits.  Similarly, peak currents from cell 

expressing α1β3(E180G)γ2L subunits in hom condition have significantly higher Zn+2 

(10 µM) inhibition of GABA currents compared to those expressing α1β3γ2L subunits 

(Table 3.3).  This further indicates that β3(E180G) subunits change the composition of 

surface GABAA receptors.  While the surface levels of α and γ subunits did not change, 

it is likely that the increased holding currents and increased Zn+2 inhibition could be due 

to formation of homomeric β3(E180G) receptors.  Zn+2 application has also been shown 

to block spontaneous GABAA receptor “leak” current leading to a positive shift in the 

baseline current from cell expressing only β3 subunits (known to form homomeric 

GABAA receptors with spontaneous single channel openings) 87-89.  With 10 µM Zn+2 

about 10% and 7% of the holding current was blocked in the hom and het conditions, 

respectively (Figure 3.8, Table 3.3).  These results suggest that β3(E180G) form Zn+2 

sensitive homomeric receptors.  

Indeed when single channel currents were recorded from cells expressing 

α1β3(E180G)γ2L receptors in the hom condition in the absence of GABA, spontaneous 

single channel openings were observed (Figure 3.8C).  Although, it should be noted that 

even cells expressing wt α1β3γ2L receptors also displayed spontaneous channel 

opening but with conductance levels of ~12.5 pS and ~21 pS (as opposed to ~26 pS 

with 1 mM GABA) with the same Po (Figure 3.8C).  The spontaneous α1β3γ2L 
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openings occurred as frequent isolated single channel openings and brief bursts, unlike 

the prolonged bursts with 1 mM GABA.  In contrast the α1β3(E180G)γ2L receptors had 

significantly higher spontaneous single channel openings, more brief bursts and 

prolonged clusters of bursts (>1 s).  These receptors also opened to two conductance 

levels that resembled the GABA-evoked openings from wt receptors.  The increased 

burst openings were a result of ~3-fold increase in Po of the low-conductance openings 

(Figure 3.8C, D).  The spontaneous openings from wt and β3(E180G) subunit-

containing receptors were inhibited by 100 µM Zn+2, consistent with the block of 

macroscopic baseline currents with Zn+2 (Figure 3.8C).   

The receptors containing β3(D120N) and β3(Y302C) subunits also displayed 

spontaneous channel openings but with smaller conductance than the wt receptors.  

The β3(D120N) subunit-containing GABAA receptors had low-conductance (1.2 ± 0.12 

pA, n = 4 and 0.08 ± 0.01 pA, n = 4) spontaneous openings with Po similar to wt 

receptors, while receptors with β3(Y302C) subunits had spontaneous openings that 

were rare, brief, and low-conductance  (1.0 ± 0.18 pA, n = 3 and 0.001 ± 0.003 pA, n = 

3).  The spontaneous openings of GABAA receptors with either β3(D120N), β3(E180G) 

or β3(Y302C) mutant subunits were blocked by picrotoxin (100 µM) in a manner similar 

to that for wt receptors.  Overall, all the de novo mutations affected spontaneous 

activation of GABAA receptors.   
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Figure 3.7 Mutant β3(E180G) subunits produced spontaneously gated GABAA 
receptors leading to spontaneous macroscopic currents and single channel openings.   
(A) Bar graph shows significantly higher holding currents were needed to clamp cells 
expressing β3(E180G) subunit-containing GABAA receptors in het and hom conditions 
compared to cells with wt receptors.  (B, left) Representative traces showing outward 
currents following Zn+2 application from cells with wt β3 and β3(E180G) (hom) subunit-
containing GABAA receptors.  (B, right) Bar graph with average Zn+2-evoked currents in 
wt, het, and hom conditions.  (C) Representative single channel currents from cells with 
wt and β3(E180G) hom condition.  (D) Bar graphs showing single channel amplitude 
and Po of wt (black bars) and spontaneously activated mutant (gray bars) receptors.  
For wt β3 subunit-containing receptors, the low- and high-conductance openings were 
2.5 pS (1.1 ± 0.07pA, n = 7) and 21 pS (1.8 ± 0.10 pA, n = 4) with Po of 0.13 ± 0.02 (n = 
7) and 0.06 ± 0.01 (n = 4), respectively.  The β3(E180G) mutant subunits significantly 
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increased the Po of low-conductance openings (0.34 ± 0.05, 1.1 ± 0.08pA, n = 10), 
without altering high-conductance openings (0.10 ± 0.03, 1.7 ± 0.03 pA, n = 4, p > 0.05).  

Values represent mean ± standard error of the mean.  One-way analysis of variance 
with Dunnett multiple comparisons test (A and B) or Two-way analysis of variance with 
Tukey multiple comparisons (D) test were used to determine statistical significance.  **p 
< 0.01, ***p <0.001, ****p < 0.0001.  
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Table 3.3 Single channel properties of GABAA receptors with the de novo GABRB3 
mutations associated with Lennox-Gastaut Syndrome. 

 α1β3γ2L (n) 

 wt β3 (6) β3(D120N) (5) β3(E180G) (3) β3(Y302C) (3) 

Channel conductance (pS) 24.79 ± 1.62 21.77 ± 2.18 22.55 ± 2.39 18.88 ± 2.47** 

Mean open time (ms) 6.60 ± 0.73 7.17 ± 0.04 2.56 ± 0.08*** 6.58 ± 0.23 

Opening frequency (S-1) 49 ± 2 21 ± 3** 64 ± 8 12 ± 1*** 

Open probability (Po) 0.62 ± 0.05 0.12 ± 0.03**** 0.23 ± 0.05*** 

0.035 ± 

0.001**** 

Open time constants:     

τo1 (ms) 3.18 ± 0.28 4.37 ±0.11* 1.90 ± 0.06* 3.75 ±0.26 

τo2 (ms) 9.77 ± 0.84 9.94 ± 0.84 4.97 ± 1.55** 9.99 ± 0.29 

τo3 (ms) 20.8 ± 3.4  21.1 ± 1.6 9.98 ± 1.92 16.4 ± 3.1 

ao1 (%) 67 ± 1 59 ± 8 88 ± 5* 63 ± 2 

ao2 (%) 28 ± 2 37 ± 8 5 ± 2* 30 ± 5 

ao3 (%) 5 ± 2 5 ± 0.3 7 ± 3 8 ± 4 

Burst duration (ms) 20.13 ± 0.72 13.11 ± 0.86*** 5.78 ± 0.38**** 10.04 ± 0.52**** 

Openings/burst 3.12 ± 0.19 1.64 ± 0.09**** 1.65 ± 0.06**** 1.40 ± 0.02**** 

Burst time constants:     

 τ1( ms) 2.54 ± 0.20 6.67 ± 0.36*** 2.28 ±0.13 4.40 ± 0.49** 

τ1( ms) 35.4 ± 2.9 23.5 ± 3.7* 10.7 ± 0.8*** 14.2 ± 0.1*** 

a1 (%) 37 ± 6 61 ± 4* 59 ± 8* 43 ± 4 

a2 (%) 63 ± 6 39 ± 4* 41 ± 8* 57 ±4 

     

 

Values represent mean ± S.E.M.*, **, *** and **** indicate p < 0.05, p < 0.01, p < 0.001, 
and p < 0.0001 statistically different from wt, respectively.  One-way ANOVA with 
Dunnett’s multiple comparisons test was used. 
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3.6.8 Mutant β3 subunits rearrange conserved structural domains critical for 

GABAA receptor function.   

The above results and PolyPhen-2 scores (Table 3.1) indicate that all three LGS-

associated mutations disrupt GABAA receptor functions.  To gain insights into the 

structural changes produced by GABRB3(D120N, E180G, and Y302C) mutations, we 

generated homology models for wt and mutant pentameric GABAA receptors with a 

stoichiometry of 2β:2α:1γ and the anti-clock wise arrangement of β-α-β-α-γ when viewed 

from the synaptic cleft.  The rearrangement of the subunits’ secondary structure and 

side chains were quantified as the root mean square (RMS) difference between the wt 

and mutant structures when superimposed (see methods for details).  

The LGS-associated mutations were located in the principal (+) side of the β3 

subunit, thus the predominant structural changes were in the (+) side of β3 subunits and 

adjacent to the complimentary (-) side of α subunits (β+/α- interface) that outline the 

important ligand binding pockets (Figure 3.8A).  Thus, perturbations in the secondary 

structures (presented as mutation-associated alternative ribbon in rainbow when RMS 

>0.03A°) and side chain residues (box-plots) were measured at the β+/α- interfaces.  

The mutant β3(D120N) and β3(E180G) subunits mainly induced structural perturbations 

in loops A, B and C of the GABA binding pocket (Figure 3.8B), which are critical for 

GABA binding, while the Y302C mutation in the M2-M3 loop disrupted the Cys loop, β1-

β2 loop, and the M2-M3 loop, which are part of the ligand binding-channel gating 

coupling zone (Figure 3.8B).  Therefore, not surprisingly the predominant effect of LGS-
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associated mutations was reduced GABA-evoked currents by decreasing responses to 

GABA.  LGS-associated mutations caused both local (intra-subunit) perturbations 

confined to structural domains of the subunit, and global (inter-subunit) changes 

propagated to the nearest subunit via rearrangements to the neighboring residues and 

structural domains (Figure 3.8B, box plots).   
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FIGURE 3.8 De novo GABRB3 mutations induced a wave of structural 
rearrangements in conserved structural domains important for GABAA receptor function.  
 (A, top) Extracellular view of the N-terminal domains of a pentameric αβγ subunit-
containing GABAA receptor structural model (as seen from the synaptic cleft) displaying 
LGS-associated (in red) GABRB3 mutations on β3 subunits (blue ribbons) subunits, α1 
and γ2L subunits are represented as gray and yellow ribbons, respectively.  The 
principal (+) and complementary (-) interfaces of each subunit are shown.  The bottom 
panel lists the location of the mutations in their respective interfaces.  (A, bottom) 
Zoomed in view of the β3+/α- subunit domains containing LGS-associated mutations 
(as seen almost parallel to the plasma membrane).  (B) Enlarged view of the domains 
that had structural rearrangements caused by the LGS-associated GABRB3(D120N, 
E180G, Y302C) mutations.  The perturbations of the secondary structures that differ 
among the wt (in gray) and mutant (in rainbow) structures are indicated by solid black 
lines (left panels).  Box plots show perturbations (as root mean square deviation [RMS]) 
caused by the mutations in the side chain residues that are propagated through β 
sheets, loops, and TM helices (right panels).  RMS values for up to 10 simulations are 
represented as interleaved box and whiskers plots (25–75% percentile, median, and 
minimum and maximum).  The secondary structure containing the mutation is 
highlighted in red. 
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3.9 DISCUSSION 

The Epi4K consortium provided the first evidence of the contribution of GABRB3 in EEs 

and several recent sequencing studies reached the same conclusion 52, 55, 61-66.  

Although, the functional consequences of GABRB3(D120N, E180G, Y302C) mutations 

reported by the Epi4K consortium were not know, and this remains true for most 

mutations identified by large-scale bioinformatics studies.  We systematically examined 

the impact of LGS-associated mutations and found that the mutations disrupt crucial 

functional domains of GABAA receptor resulting in result in severe loss of functions, 

supporting their contribution to EEs.   

 

3.9.1 The principle effects of the LGS-associated mutations are loss of GABA-

evoked currents.   

The most consequential actions of LGS-associated mutations were significant reduction 

of whole cell GABA-evoked currents in both hom and het conditions (Figure 3.3).  As 

opposed to several previously reported GABAA receptor mutations 90, loss of GABA-

evoked currents induced by LGS-associated mutations were not due to loss of surface 

GABAA receptors (Figure 3.5).  Rather the GABRB3(D120N) mutation reduced GABA 

potency while the GABRB3(E180G, Y302C) mutations dramatically reduced GABA 

efficacy (Figure 3.6).  In addition all three mutations slowed activation and accelerated 

deactivation of GABA currents (Figure 3.4).  Furthermore, the reduction of GABA-

evoked currents due to LGS-associated mutations was much higher than the small 
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decrease in currents due to previously reported GABRB( P11S, S15F and G32R) 

mutations, which are associated with the less severe absence epilepsy syndrome 71, 91.  

The loss of macroscopic currents could be explained by the substantial reduction 

of Po, openings per burst, and burst duration of single channels (Figure 3.7).  

Additionally, the GABRB3(D120N, Y302C) mutations reduced single channel opening 

frequency.  The GABRB3(E180G) mutation produced brief and frequent channel 

opening and thus did decrease the channel opening frequency.  At a neuronal level the 

mutant subunits could reduce channel openings at both synaptic and extra-synaptic 

sites, resulting in smaller IPSCs with slower rise and faster decay rates leading to 

reduced GABAergic inhibition. 

 

3.9.2 Spontaneous currents due to the GABRB3(E180G) mutation produced 

additional GABAA receptor dysfunction.   

In addition to loss of GABA-evoked currents, the GABRB3(E180G) mutation produced 

spontaneous macroscopic and single channel currents that could be blocked by Zn+2 

application.  Spontaneous currents resulted in significantly higher holding currents to 

clamp cells (Figure 3.8) and reduced overall cell health (unpublished observation).  

Furthermore, the spontaneous low amplitude channel openings were significantly higher 

in GABAA receptors with mutant β3(E180G) subunits than those containing wt β3 

subunits.  Moreover, there was a small but non-significant increase in β3(E180G) 

subunits on the cell surface, likely due to formation of β3(E180G) subunit homomers.  
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These abnormal properties of β3(E180G) subunits could add to the pathogenicity of the 

mutation beyond the loss of GABA-evoked currents.  Although the presence of 

homomeric GABAA receptors and spontaneous GABAA channel opening have not been 

demonstrated in neurons, a few speculated effects of β3(E180G) subunits could be 

increased energy spent in maintaining Cl- concentration gradients, disrupted GABA 

dependent migration and maturation of interneurons during development, and reduced 

IPSC amplitudes resulting from reduced drive for Cl- ions across neuronal membranes.  

 

3.9.3 LGS-associated mutations are predicted to disrupt the GABA binding and 

channel coupling domains.   

When the structural changes induced by the LGS-associated mutations were modeled 

using the homology models based on crystal structures of the C. elegans GluCl and the 

human GABAA receptor β3 homopentamer, we saw a structure-dysfunction correlation.  

The LGS-associated GABRB3(D120N, E180G, Y302C) mutations located in crucial 

GABA binding and channel gating domains at the β+/α- interface produced a substantial 

loss of currents (reduced to ~24, ~1, ~5% of wt currents, respectively).  In comparison 

mutations located in the signal peptide⎯GABRB3(P11S, S15F) 91 and at the γ+/β- 

interface⎯GABRB3(G32R) 71 and GABRG2(R82Q,P83S) 92 produced smaller current 

loss (reduced to ~42, ~48, ~50-62, ~34, and ~12% of wt currents, respectively).  

Similarly, the IS-associated GABRB3(N110D) and GABRB1(F246S) mutations located 

at the α+/β- and γ+/β- interfaces either do not alter GABA-evoked current amplitudes or 



 

 

209 

reduced it to ~75% of the wt currents, respectively (see Chapter II).  Further, the 

GABRA1(D219N) mutation also located at the β+/α- interface reduced currents to 30% 

of the wt currents 93.  Additionally, recent whole exome sequencing studies associated 

GABRA1(R112Q, G251S) 94, GABRB2(M79T)95 mutations located at the β+/α- interface 

with severe developmental disorders such as Dravet syndrome and intellectual 

disability.  These findings are in line with the assumption that the mutations at the β+/α- 

interface perturbing the domains crucial for ligand binding and channel coupling are 

more disruptive of GABAA receptor functions than those at the α+/β- and γ+/β- 

interfaces.  This might explain, at least in part, how different GABRB3 mutations with 

varying extent of channel dysfunction could contribute to pathological outcomes of both 

mild (childhood absence epilepsy) and severe (LGS, IS) epilepsy syndromes.  

 

3.10 How can GABRB3 mutations result in epilepsy syndromes?  

The β3 subunits are widely expressed and abundant in developing and adult 

mammalian brain where they mediate tonic and phasic GABAergic input.  During 

development, the majority of GABAA receptors contain β3 subunits, as opposed to β2 

subunits in adult brains 96-99.  Moreover the developing and adult mammalian brains 

ubiquitously express β3 subunits in regions involved with seizure 

generation/maintenance such as cortex, thalamus, hippocampus, septum and basal 

forebrain, as well as in other brain regions⎯olfactory bulb, hypothalamus, epithalamus, 

and amygdala 96, 97, 99, 100.  Thus it not hard to imagine that reduced GABAergic input 
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during the critical early stages of development (when GABA is an excitatory 

neurotransmitter 101) could lead formation of abnormal and potentially hyperexcitable 

circuits resulting in seizures.  Similarly reduced GABAergic inhibition in adult circuits 

could generate seizures.  Additionally, the β3 subunit knockout mice displays seizures, 

developmental (some display cleft palate, runted growth, and reduced life span) and 

behavioral (hyperactive, mothers neglect off springs) deficits, and most mice have 

neonatal mortality 102, suggesting a critical role of these subunits for neurodevelopment 

and adult brain functions. 

Seizure generation due to disrupted GABAA functions by mutated β3 subunits 

seems quite plausible given the widespread expression and critical neurodevelopmental 

role of β3 subunits, although, the extent of contribution of a particular mutation to the 

epilepsy phenotype is not straightforward in patients with diverse genetic backgrounds.  

For example, the GABRB3(Y302C) mutation results in both the severe LGS (onset at 17 

months and frequent seizures) and the milder focal epilepsy (onset at 7 months and 

rare seizures) 68.  Nevertheless when an identical GABRB3(Y302C) mutation is 

identified in three epilepsy patients (one reported by the Epi4K consortium 54 and two by 

Moller et al. 68), it is likely to have significant contribution to the epilepsy syndromes.  

Moreover, with more than 20 GABRB3 epilepsy-associated mutations identified so far, a 

contribution to epilepsy is very likely 54, 57, 63-68.  The findings from chapters II and III 

provide strong in vitro evidence of the contribution of LGS- and IS-associated 

GABARB3 mutations to EEs.  In the next chapter I examine the impact of the 

GABARB3(D120N) mutation in a mouse model. 
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CHAPTER IV: Mice harboring the LGS-associated GABRB3(D120N) mutation 

(Gabrb3+/D120N mice) have spontaneous seizures and EEG abnormalities 

 

In this chapter I expand the in vitro findings from Chapter III to an in vivo knock in (KI) 

mouse model harboring the GABRB3(D120N) mutation (the heterozygous (het) 

Gabrb3+/D120N KI mouse).  Our in vitro studies revealed that the GABRB3(D120N) 

mutation disrupted GABAA receptor function by perturbing the GABA blinding pocket, 

resulting in reduced macroscopic GABA-evoked currents and GABA potency, as well as 

reduced single channel Po, opening frequency, and burst duration.  Spontaneous 

seizures in the Gabrb3+/D120N mice further support the contribution of the 

GABRB3(D120N) mutation to LGS.  Here I primarily discuss the epilepsy and 

electroencephalograph (EEG) findings from Gabrb3+/D120N mice. 

 

4.1 Mouse models of epilepsy 

Epilepsy is caused by a complex interplay of different brain regions that recruit millions 

of neurons.  Mouse models are used extensively to understand the underpinnings of 

epilepsy due to their brain structures having similarities to human brain structures, their 

ease of breeding and the ability to manipulate their well-characterized genomes.  

Moreover, the similarities in disease pathogenesis in humans and mice make 

genetically engineered mice attractive disease models.  Likewise the EEG, etiology, 
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pathology, behavioral manifestations, and responses to antiepileptic drugs in mouse 

models can be compared to those observed in humans.   

Numerous mouse models of spontaneous and induced seizures have been 

developed that have expanded our understanding of epileptogenesis.  However, few 

mouse models of epileptic encephalopathies (EEs) are available.  EEs encompass a 

broad range of catastrophic childhood epilepsy syndromes with an early onset and 

pharmacoresistant seizures for most patients.  Not surprisingly patients have diverse 

seizure types, ages of onset, EEG activity, developmental outcomes, comorbidities, and 

responses to medication.  Grouping these rare, but severe, childhood epilepsies has 

helped raise awareness of these disorders and has resulted in joint cohort studies to 

examine their underlying genetic etiology 1-4.  At the same time, pre-clinical studies need 

specific animal models that recapitulate the hallmark clinical features of each EE 

syndrome to probe the underlying molecular pathogenesis and to explore potential 

treatment options.   

Etiologies of EEs include structural brain malformations, acquired brain insults, 

inborn errors of metabolism, and genetic defects.  Recent studies using next generation 

sequencing technologies suggest important contribution of spontaneous de novo 

mutations in EEs 5, 6.  De novo mutations are rare genetic variations in the parent’s 

germ line cells or a somatic mutation at very early stages of embryonic development.  

As de novo mutations are not subjected to evolutionary selection, they are generally 

more deleterious than inherited mutations 7, 8.  Following these genetic findings, 

substantial progress has been made to understand the pathophysiology of EEs and has 



 

 

222 

led to development of mouse models harboring human mutations.  Genetically modified 

KI models, in which a normal nucleotide is replaced with a mutant nucleotide that codes 

for a different amino acid residue and causes epilepsy in humans, are among the most 

useful models to study the basis for epilepsy.  It is hoped that the animal models with 

the human mutations provide close matches to human epilepsies and thus could 

recapitulate the clinical symptoms, EEG findings, and behavioral deficits seen in 

patients.  In addition they provide the means to understand the circuits and molecular 

pathways that the human mutation(s) could perturb in specific epilepsy syndromes and 

tests which drugs could be most effective during different phases of the disease.  They 

are valuable for the much-anticipated ‘precision medicine’ era of drug discovery.  Even 

though it is not possible to have a mouse model for each human epilepsy-associated 

mutation, the diversity of epilepsy syndromes demands models that can recapitulate 

specific epilepsy phenotypes.  Furthermore some investigators argue that genetic 

mouse models could also aid in development of novel therapeutics for epilepsy and 

non-epilepsy disorders, and uncover unforeseen molecular targets and pathways 9.  

Patients with EEs progressively deteriorate, with seizures thought to contribute to or 

worsen the underlying brain malfunction.  EE mouse models would help test the 

hypothesis that blocking seizures would prevent the cognitive and behavioral decline.   

 

4.1.1. Mouse models of EEs 

Here I discuss the most relevant findings from animal models of EEs in the context of 

my work concerning seizure semiology from our mouse model of LGS.  Detailed 
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descriptions of the features of LGS are described in Chapter III; in the following 

sections, I will reiterate clinical concepts pertinent to understand the seizure types and 

the EEG findings from mouse models.   

 

Lack of genetic mouse models of Lennox-Gastaut syndrome 

LGS patients present heterogeneous symptoms.  The majority of patients experience a 

triad of symptoms that include multiple seizure types (prevalent types are atypical 

absence, tonic, atonic, myoclonic and generalized tonic-clonic (GTC) seizures), 

moderate to severe cognitive dysfunction, and pharmacoresistant seizures that persist 

into adulthood.  EEG tracings show characteristic slow spike discharges (SWD) of ≤ 2.5 

Hz and generalized paroxysmal fast activity of 10-20 Hz.  Currently, mouse models 

exhibiting the triad features of LGS have not been reported, and to date there are no 

animal models carrying LGS-associated human mutations.  Although, mouse models 

with induced seizures that resemble atypical absence seizures and mice with genetic 

mutations that have multiple seizure types have contributed to our understanding of 

some molecules and circuits involved in LGS.  Two of these models are described 

below.  However, the lack of appropriate animal models has severely hampered 

understanding of the pathophysiology of LGS and development of potential treatments 

specifically for LGS.   
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4.1.2 Rodent models of atypical absence seizures 

One of the diagnostic criteria of LGS is atypical absence seizures that appear as high 

voltage, bilaterally synchronized, and irregular SWDs on EEG 10-12.  Atypical absences 

seizures are in stark contrast with typical absence seizures; these differences are 

important to note even in non-clinical settings to distinguish them in animal models.  

Although both seizure types are observed in children with LGS, atypical absence 

seizures are rare but associated with severe cognitive and developmental impairment 

and poor response to medication 13-16.  In contrast, typical absence seizures are 

associated with minimal or no cognitive impairment 17 and are well controlled in most 

patients with ethosuximide, valproic acid or lamotrigine 18-22.  Atypical absence seizures 

emerge gradually and end abruptly, and patients have fragmented consciousness with 

subtle movements or automatisms.  Typical absence seizures start and end abruptly 

with complete loss of consciousness and motor and behavioral arrest.  Another 

prominent difference is that while SWDs associated with typical absence seizures are 

brief (<15 s) 23 and have a characteristic high amplitude 3 Hz SWD pattern on EEG, 

atypical absence seizures are prolonged (15 s to several minutes) and have SWDs with 

frequency of <2.5 Hz during the ictal phase 10, 24, 25.  SWDs of atypical absence seizures 

can vary among patients.  They may attenuate with paroxysmal fast activity (10-13 Hz) 

during the ictal phase or synchronous SWDs may build up after fast activity of 

increasing amplitude 15.  Additionally, atypical absence seizures are insensitive to blood 

glucose levels while absence seizures are exacerbated by low blood glucose levels 26-

30.   
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As atypical absence seizures are only seen in rare disorders such as LGS and 

myoclonic–astatic epilepsy (Doose syndrome), they are not well studied in animal 

models.  A model of absence seizures was generated by acute administration of the 

cholesterol synthesis inhibitor AY-9944 to rats during early development (post-natal day 

(P)2-P50 every 6th day).  Administration of the drug produced recurrent SWDs of 2-15 s 

duration at relative constant rate throughout the life of the animal that were reduced by 

the clinically used anti-epileptic drugs ethosuximide, diazepam, and clonazepam 31.  

Snead and colleagues examined the AY-9944 treated rat model (P2-P33 every 6th day) 

in detail using synchronized video-EEG recordings and proposed it to be a model of 

atypical absence seizures 32 rather than typical absence seizures.  Later they introduced 

a two-hit model in which the pregnant rats were treated with methylazoxymethanol 

(MAM) followed by postnatal administration of AY-9944.  MAM is an antimitotic agent 

that results in brain dysgenesis and produces absence seizures that are refractory to 

ethosuximide, CGP 35348, and diazepam, resembling drug resistant atypical absence 

seizures 33.  The behavioral arrest and SWDs in AY-9944 treated mice did not perfectly 

align in time.  There was a gradual onset of the behavioral arrest after the SWDs began, 

while the offset could outlast the end of the SWDs.  Similarly, patients show varying 

degree of awareness during atypical absence seizures.  Furthermore, movement was 

seen in mice during SWDs as is seen in patients 34 with atypical absence seizures.  This 

is in sharp contrast to typical absence seizures with abrupt onset and offset of the 

behavioral arrest that aligns well with the start and stop of SWDs seen both in patients 
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35 and in the rodent models 36-38.  Additionally, AY-9944 treated rats had SWDs 

associated with myoclonic jerks during sleep 32, similar to those seen in LGS patients, 

while SWDs during sleep in rat models of typical absence seizures have not been 

described.  Another feature that distinguishes the AY-9944 treated rat and mouse 

models from typical absence seizures is that atypical absence seizures involve the 

hippocampus 32, 39 along with thalamocortical circuits, whereas typical absence seizures 

are limited to thalamocortical circuits 40 41.  Hippocampal involvement during atypical 

absence seizures in patients is plausible but not definitely established 42-45.  The AY-

9944 rat model also recapitulates the higher propensity of absence seizures in females 

as seen in patients 46-49.  The duration of individual SWDs during atypical absence 

seizures is longer while the frequency of the waveform is shorter than those seen in 

typical absence seizures 50, although duration of individual SWDs is not commonly 

discussed in the literature.  The AY-9944 treated rodents are also reported to have 

longer SWDs with a waveform frequency of 4-6 Hz, which is less than that observed 

mouse models of typical absence seizures (7-11 Hz) 51-56.   

In spite of the fact that the AY-9944 treated rats reproduce the atypical absence 

seizure phenotype in a consistent manner, they do not recapitulate other features of 

LGS.  First, no cognitive or behavioral disturbances, one of the primary features of EEs, 

have been reported in these mice.  Second, LGS patients often have multiple seizure 

types.  Atypical absence seizures are the predominant seizure in the AY-9944 treated 

mice, and they have myoclonic jerks in during sleep.  This differs from having multiple 

seizure types during the wake states.  Additionally, LGS patients have chaotic baseline 
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EEG activity 12, 24, 57, 58 that is not seen in the AY-9944 treated mice.  Third, LGS is 

progressively debilitating for most patients.  Apart from increased SWD duration from 

P21-P33 after AY-9944 treatment, seizure severity in terms of number of absence and 

myoclonic seizures has not been reported for adult or aged mice.  Finally, EE patients 

with a genetic contribution are likely to have a different developmental trajectory prior to 

birth and seizure onset that cannot be replicated with postnatal treatment of AY-9944. 

 

4.1.3 DNM1 associated EE 

Recently unique de novo mutations in the gene encoding dynamin 1 (DNM1) have been 

suggested to underlie LGS or IS in five patients 3 and were identified in two more 

patients with seizures and developmental disorders 59.  Dynamin 1 is a neuron specific 

large multimeric GTPase critical for activity-dependent membrane recycling, including 

fission of synaptic vesicle during endocytosis 60-63 and is important for synapse 

formation and maintenance 64.  Three mutations identified in patients that progressed 

from IS to LGS inhibited endocytosis in a dominant negative manner in HeLa and COS-

7 cells 65, suggesting dysfunctional synaptic vesicle trafficking as a putative mechanism 

for DNM1 associated EEs. 

Furthermore, in 2010 a C57BL/6J inbred mouse strain with a spontaneous novel 

mutation (fitful) in the DNM1 gene were reported to have seizures in hom and het 66.  

The hom mice had ataxia and tonic-clonic seizures (at P14-P16) leading to mortality in 

two to three weeks of birth, while the het mice developed generalized tonic-clonic 
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seizures (GTCSs) and partial seizures from two to three months of age.  A thorough 

analysis of the seizure types and background activity on EEG was not examined in the 

het mice and the fitful mice were initially suggested to be a model of genetic generalized 

(idiopathic) epilepsy 66.  At the molecular level mutant dynamin 1 protein in fitful mice 

decreased endocytosis in a dominant negative manner 66, similar to a mutation found in 

an LGS patient 65 and to the mutants generated to elucidate dynamin 1 function 62.  

Although, the fitful mutation has not been reported in humans, fitful mice are valuable 

for study of the role of Dynamin 1/synaptic vesicle trafficking in the pathogenesis of 

EEs.  Future studies are needed to carefully determine if fitful mice have EEG 

abnormalities and cognitive and behavioral deficits as in LGS patients. 

 

4.2 Concerns with rodent models 

As with all models, rodent models of human diseases are not without caveats, despite 

their widespread use.  For mouse models of pediatric epilepsies the problem is twofold.  

First, needless to say, human and rodent maturation is quite different.  The well 

documented difference in the developmental rates of rodent and human brains prevent 

exact age equivalent comparisons between these species 67.  Second, as children are 

not just miniature adults, results from models of epilepsies developed in adult mice 

would be less informative of the pathophysiology in young mice.  In essence the goal 

with models of pediatric epilepsy is to capture the insults of early life that produce 

epilepsy.  Unfortunately, difficulty in handling and performing experimental procedures 

on mice of pre-weaning age poses significant limitation to the use of these animals. 
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Next, I provide a brief history and basic principles of electroencephalography as this is 

the primary technique used in the clinic to determine the seizure types and in my work 

with Gabrb3+/D120N mice. 

 

4.3 Electroencephalography is the most common method used to document and 

diagnose seizures and epilepsy. 

In 1875 Richard Caton, a physiologist in Liverpool, was among the first to study 

spontaneous electrical activity from rabbit and monkey brains 68, 69.  Another pioneer of 

EEG was a Polish physiologist Adolf Beck who recorded electrical potentials evoked by 

peripheral sensory stimuli in multiple brain regions of different animal species.  He 

discovered that the electrical oscillations due to brain activity stopped after sensory 

stimulation, i.e. desynchronization, now a well-documented phenomenon 70.  

Investigating the brain’s electrical activity non-invasively in humans became widespread 

after the groundbreaking work of the German physiologist Hans Berger in 1929 71.  It is 

noteworthy that EEG recordings by early investigators were also technical feats as they 

recorded the microvolt changes on the mammalian skull that are 10,000 times smaller 

than the current AA batteries.  The present EEG instruments are at least 100 times 

more sensitive.  To date EEG remains one of the fundamental tools for basic and 

clinical epilepsy research.   
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The potential of EEG to study epileptiform activity in humans was demonstrated 

in 1934 by Frederic A. Gibbs in collaboration with Hallowell Davis.  They demonstrated 

the 3 Hz SWDs seen in two patients with absence epilepsy (earlier known as petit mal 

epilepsy) 10, 72.  Their subsequent study (on 12 children) suggested the association of 

absence seizures with the 3 Hz SWDs.  Today the 3 Hz SWD discharge is considered 

the hallmark of absence seizures and is used in routine clinical diagnosis.  Later Gibbs 

and William G. Lennox delineated the EEG characteristics of complex partial seizures 

and GTCSs 11.  These findings revolutionized clinical epileptology and became the 

foundation for localizing seizures and brain regions for lobectomies as a treatment for 

drug resistant seizures.  Over the last eight decades EEG has become the mainstay for 

diagnosis and management of seizure disorders.  A few examples of the current 

applications of EEG include differentiating focal from generalized seizures, identifying 

syndrome specific EEG patterns, identifying epileptogenic regions in candidates for 

epilepsy surgery, differential diagnosis of paroxysmal events, monitoring effectiveness 

of drug and surgical treatments, and monitoring convulsive and non-convulsive 

seizures.  The non-invasive nature, relative convenience and ease of acquiring patient 

data, and high temporal resolution make EEG the most useful diagnostic tool for 

epilepsy. 

 

4.3.1 Physiological basis of the EEG signal 

Human EEG recordings are most widely used to identify focal epileptic cortical regions 

and generalized epileptiform discharges.   The technique involves placement of multiple 
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electrodes on standard landmarks of the skull for spatial resolution and provides high 

temporal resolution in the millisecond time scale.  Thus EEG provides a “real time” and 

direct measurement of changing brain activities in normal and disease states.  Here I 

will discuss the most commonly used scalp EEG recordings in humans, their 

physiological basis, and how they differ from the EEG recordings obtained from mice.   

The principal source of the EEG signal is the synchronized synaptic activity of 

populations of cortical neurons.  Synaptic excitation and inhibition of neurons is 

produced by transmembrane currents.  This time varying current generates 

transmembrane potentials in neurons.  With EEG the potential difference between two 

different brain regions is measured using scalp electrodes.  The two primary sources of 

transmembrane neuronal currents are fast action potentials and slow excitatory and 

inhibitory post-synaptic potentials.  The fast action potentials occur on a low millisecond 

time scale and are generated by voltage gated sodium and potassium channels.  They 

produce a sudden change of the transmembrane potential from negative to positive 

inside neurons.  The slower synaptic potentials occur on a multiple millisecond time 

scale and are produced by several neurotransmitters acting on ion channels or G-

protein coupled receptors, the two most prominent being excitatory post synaptic 

potentials (EPSPs) and inhibitory post synaptic potentials (IPSPs).  Broadly speaking, 

an EPSP generates a transmembrane current by opening cation channels that produce 

an net inward flow of positive ions (Na+ and K+), and an IPSP generates current by 

opening anion channels that produce an inward flow of negative ions (Cl-) or outward 
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flow of positive ions (K+) through ion selective channels that span the neuronal 

membrane. 

Let us consider a scenario in which an action potential or EPSP originating at the 

cell soma results in a net positive voltage at the soma of a cortical neuron and thus a 

net negative potential (relative to the soma and the extracellular matrix) along the apical 

dendrites.  In this state of charge separation, the neuron acts as an electrical dipole, 

where the positively charged soma would be the current ‘source’ and the negatively 

charged dendrites would be the current ‘sink’.  If we put an imaginary high sensitivity 

electrode that could measure the tiniest potential differences on the skull, it would 

experience a sudden drop in voltage.  Alternatively, if an IPSC is generated at the 

soma, the soma would be negative with respect to the dendrites, which would produce a 

sudden rise in the voltage at the skull electrode.  In addition, the deflection of the scalp 

electrode would depend upon where the input arrives along the length of the neuron.  

For example, if a cortical neuron receives EPSPs on the apical dendrites, the 

extracellular matrix becomes negative relative to the dendrites, although the final 

outcomes resemble the scenario of receiving an IPSC at the soma.  Another important 

aspect to consider is that not all neurons are perpendicular to the skull as the 

invagination of the cortex produces gyri and sulci.  Thus neurons whose processes are 

parallel to the skull would produce both positive and negative deflections, and if the 

electrode were equidistant from the both the poles, it would measure a net neutral 

potential.  In reality, of course, electrodes can only measure activity from thousands of 

cortical neurons immediately underneath the skull.  In addition to the number, neurons 
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must be stacked parallel to each other (so that the dipoles add up and do not cancel 

each other out).   

 

4.3.2. EEG signals reach from the brain to the scalp electrode via volume and 

capacitive conduction. 

The charge separation generated by neuronal dipoles in the cortex is ultimately 

propagated to the scalp electrode through the neighboring tissue via volume conduction 

i.e. groups of ions of the same charge repel each other and of the opposite charges 

attract each other, and capacitive conduction i.e. charge built up across insulating tissue 

layers.  Volume conduction propagates the electrical signal within the brain and comes 

in play immediately after the synaptic activity on neurons resulting in charge separation 

within the neuron and the surrounding extracellular medium by movement of charged 

ions until they encounter an insulating material such as cell membranes, myelin, 

meningeal membranes, bone, skin, etc.  At the edges of these insulators, charged 

particles accumulated by volume conduction on one side will attract opposite charges 

on the other side.  As the closely situated meninges, skull, and skin stack in parallel 

layers, the charge built up in the brain spreads across the meninges and then to the 

next layers until it reaches the electrode by capacitive conductance.  Within these 

insulating layers, the charges are mobile and opposite charges separate on the two 

layers, similar in arrangement to parallel capacitors  Once the electrical signal reaches 

the skin surface, it encounters the poorly conducting air, thus high conducting gel (to 

allow maximum voltage signal to go through the circuit) is applied between the skin and 
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the recording electrode.  The gel makes another capacitive layer, although some 

volume conduction occurs between the gel and the electrode.  Modern day electrodes 

are connected to an amplifier and digitized, and the signal is transmitted to a computer 

where it can be seen and analyzed in real time.   

 

Each of the multiple tissue layers adds noise to the EEG signal before it reaches the 

electrode.  In addition, the EEG signal amplitude (microvolts) drops exponentially with 

distance from the source.  Thus, it needs local amplification to maximize the signal to 

noise ratio (SNR).  The common sources of electrical noise (60 Hz) include electrical 

wiring of the building, video equipment and their electrical source, lights, computer 

monitors, etc 73.  Often the remedy is to use high impedance local amplifiers so as to 

allow minimum current to pass through the amplifier, or a minimum voltage drop across 

the amplifier so that maximum voltage difference between the electrode and amplifier 

could be measured.  Another common remedy is to shield the signal in a Faraday cage, 

although for experimental EEG recording this may not be always feasible.  Furthermore, 

noise from subjects due to breathing, blinking, heartbeat, other movements cannot be 

eliminated while acquiring data and are often removed by sophisticated post processing 

analysis methods.  These movement artifacts are less interfering in the rodent EEG 

recordings with the tethered systems.  It is also noteworthy to mention that the net 

voltage contributions from neurons, glia, extracellular matrix, and properties of the brain 

tissue, and the skull (attenuate higher frequencies, ≥30 Hz) shape the EEG signal. 
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4.3.3 What does the EEG measure?  

The EEG signal is the average activity of millions of neurons underneath the electrode, 

with distortions from capacitive currents of the lipid membranes, glial cells, blood 

vessels, meninges, skull, and scalp 74.  The majority of the EEG signal originates from 

the superficial layers of cortex; contributions from deep cortical layers are substantially 

reduced, and those from sub-cortical regions are negligible.  Highly synchronized 

activity of a large number of neurons produces high amplitude signals on EEG such as 

seen in sleep and seizures, while desynchronized activity that appears as small 

amplitude signals is commonly observed in active awake states.  The ensemble of 

neuronal activity appears as oscillations of varying frequencies on EEG depending on 

the brain state and the brain region.   

 

4.4 Oscillations of the normal adult brain 

Following Hans Berger’s original description and naming of alpha 71 and beta 75 waves, 

the International Federation of Societies for Electroencephalography and Clinical 

Neurophysiology adapted the nomenclature to classify different oscillations on EEG as 

delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30-100 

Hz) 76.   

Neuronal network oscillations are considered the basic means of communication 

among different neural networks and have been implied to be involved in a plethora of 

critical functions including learning and memory 77, cognition 78, perception 79, 
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movement control 80, and sleep 81.  Abnormal oscillatory activity is seen in several 

diseases including epilepsy 82, 83, schizophrenia 96, 97, 84, autism 85-87, Alzheimer’s 

disease 88-90, Parkinson’s disease 91-93, and sleep disorders 94, 95.  To some degree, 

specific oscillations have been associated with certain cognitive functions.  This does 

not indicate that the brain is operating only in a frequency range for a certain process.  

Rather it indicates that a dominant amplitude of the EEG signal for specific frequencies 

is seen in certain brain regions during a cognitive specific process.  For example, alpha 

oscillations of 8-12 Hz are prominently seen (as spindles) in posterior brain regions 

when a person is relaxed, and the eyes are closed.  The power of alpha oscillations 

decreases when the eyes are opened and replaced by faster oscillations of smaller 

amplitude.  By and large an overall reduction of alpha power is associated with 

increased demands of attention and alertness 78.  Recent work suggests that alpha 

oscillations also occur in the activated cortex but are very different from the classical 

alpha rhythm (Klimesch, 2000 and Başar, 2004).96-98. 

In contrast, waking produces low amplitude beta oscillations (12–30 Hz) in the 

fronto-centro-temporal regions 99.  Beta oscillations are considered a measure of cortical 

arousal.  Low amplitude beta oscillations are primarily observed in the sensorimotor 

cortex (‘Rolandic’ areas) during motor tasks with movements and motor imagery; and 

high amplitude beta is seen during postural maintenance 100.  Often the amplitude of 

beta oscillations is enhanced in the pre-central regions with drowsiness.  Frontal or 

generalized high amplitude beta oscillations are prominent after intake of 

benzodiazepines or barbiturates 101, 102.  Additionally, enhanced background beta in the 
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waking states is correlated with disease states, and this “excess beta” is considered 

abnormal 103. 

Low amplitude gamma oscillations (30-100 Hz, although some authors define 

gamma oscillations from 30–>80 Hz) are typically observed in awake states 

spontaneously or during active cognitive states 104-106, as well as in sleep states 107-110.  

Gamma oscillations often arise first in response to a sensory stimulus, and the 

subsequent gamma reflects cognitive processing 111.  Gamma oscillations have been 

the prime focus of a large number of studies due to their association with cognitive 

functions 112-114, while altered gamma oscillations are implicated in a number of disease 

states 95, 115-117.  Gamma oscillations were missing from earlier studies using analog 

EEGs and became visible with digital broad-band EEG recordings.  They are easily 

detected with invasive intracranial recordings or depth recordings from the cortex and 

from brain slices 118-120.  During generalized absence seizures, a sudden and 

pronounced increase in cortical gamma coherence time-locked to the onset of the 

SWDs and a gradual reduction in gamma power and coherence prior to seizure 

termination have been observed recently using scalp EEG recordings 121.  Moreover, 

intracranial recordings reveal heightened gamma and high frequency oscillations 

(HFOs).  HFOs are generally 100-600 Hz (further sub-divided as ripple > 80–200 Hz, 

fast ripple > 200–600, and sigma ≥ 600 Hz) in the neocortical and mesiotemporal 

epileptic zone during normal appearing background before seizure onset, and thus, 

have been suggested to be possible biomarkers for epileptic tissue 122-128.  HFOs are 

typically observed with intracranial electrodes implanted in patients with medically 
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refractory focal epilepsies for localizing epileptic tissue for surgical removal.  Recent 

studies have identified HFOs from scalp EEG 129-136 and magnetoencephalography 

(MEG) recordings 137-142, expanding their applications to pediatric and generalized 

epilepsies.   

The slow delta (0.5–4 Hz) and theta (4–8 Hz) oscillations are prominent in 

drowsiness and sleep, but are rare or non-existent in normal awake EEG recordings 143-

146.  In general, slow oscillations travel much further and connect different brain regions, 

and thus are associated with more global brain events such as sleep and epilepsy.  Fast 

oscillations such as beta, gamma and HFOs, however, are restricted to local brain 

circuits 147.  Delta oscillations are increased in epileptic discharges particularly during 

SWDs 148, 149.   

Oscillations are generally studied within different frequency bands, which serve 

distinct and overlapping cognitive and sensory functions; however, cross-frequency 

coupling across different oscillations is well known.  For example theta-gamma coupling 

is observed in hippocampal place cells when rats explore their environment and are 

enhanced when they remember the spatial information correctly150, 151.  Different 

oscillatory frequency bands may carry different aspect of complex information and may 

improve information transfer and storage opportunities across different neuronal 

assemblies 152, 153.   

Below I will discuss relevant changes in oscillatory frequency and power of EEG 

signals during ictal and inter-ictal events in LGS patients.  Some seizure types produce 
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characteristic oscillatory changes in patients that are used as identifying features for 

disease classification.   

 

4.5 EEG abnormalities associated with the most common seizure types in LGS 

Atypical absence, tonic, and atonic seizures (drop attacks) are the most common 

seizure types in LGS, and myoclonic seizures and GTCSs are less common in LGS.  

Atypical absence seizures and interictal periods are seen as prominent high amplitude 

slow SWDs of <2.5 Hz on EEG.  The particular details of SWDs, however, vary widely 

among patients (such as in waveform, frequency, amplitude, duration) and even for the 

same patient during the same study session 24.  The average frequency of SWDs 

ranges from 1.5-2 Hz, but some rapid SWDs of 3 or 4 Hz are also seen.  The SWDs last 

for 1-2 s or up to few minutes.  During long events, multiple SWDs appear (continuous 

or in bursts) that are often interrupted by low amplitude activity accompanied by 

disappearance of SWDs (discontinuous).  Most commonly seen patterns are biphasic or 

triphasic sharp waves, polyspikes and slow waves.  The SWDs can be generalized, 

synchronized and symmetrical across both hemispheres; alternatively, they can be 

asymmetric with spike foci (such as temporal focus) or lateralized, which is usually 

associated with a focal neurological deficit.  The focal spikes can evolve to diffuse 

discharges and later synchronize bilaterally 24, 25, 50, 154.  The states of relaxation and 

drowsiness promote occurrence of SWDs, while stimuli such as calling the patient’s 

name, pain, or eye opening terminates or decreases the occurrence of SWDs.  

Similarly, sleep profoundly increases SWDs and could occupy ~50% (almost 
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continuous) of the time in drowsiness and sleep 155.  SWDs in sleep could be 

hypsarrhythmic or fragmented by electrodecrement (‘flattening of signal amplitude’), 

resulting in appearance of pseudo-periodic activity 24, 50.  In addition, SWDs can 

transition to polyspike-waves with an increase in amplitude and frequency 24.  

Additionally, it is important to note that the typical 3 Hz SWDs are not uncommon in 

LGS patients and can be seen during sleep, especially in patients with multiple spike 

patterns on EEG.  However, 3 Hz SWDs occur occasionally and constitute only a minor 

portion of the SWDs on EEG 156.   

Tonic seizures are the hallmark seizures of LGS and are reported in over 50-70% 

of LGS patients 15, 156, 157.  They are considered a prerequisite for LGS diagnosis; 

however, they may not be seen at the onset of LGS 158, and thus may delay the 

diagnosis.  However, tonic seizures were not a requirement in the 1989 ILAE criteria for 

LGS diagnosis and some authors still hold that view 158-160.  In a typical tonic seizure, 

the neck and trunk flex, the arms are raised in semiflexed or extended position, the legs 

extend, the facial muscles contract, and the eyes deviate upwards.  Additionally, tonic 

seizures terminating with a clonic jerk or loss of tone have been described 24.  Tonic 

seizures have notable features on EEG including desynchronization and/or paroxysmal 

fast rhythmic activity.  Commonly reported ictal patterns are: (a) desynchronization 

(flattening of EEG signal) during the entire tonic seizure 156, 161, 50, (b) rapid rhythmic 

activity of 15-25 Hz that typically has low amplitude and progressively assumes high 

amplitude 15, 24, (c) desynchronization followed by rapid rhythmic activity 156, 50, 162, (d) 

high amplitude rhythmic activity at 10-15 Hz 15, 24.  Rarely, tonic seizures may be 
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followed by automatisms.  On an electromyogram (EMG) recordings, the intensity of 

muscle contraction peaks within 1-2 s of the onset of a tonic seizure and remains 

constant throughout the seizure.  Similar to atypical absence seizures, the occurrence 

of tonic seizures is altered by the state of vigilance, with sleep enhancing their 

occurrence particularly in first few hours of non-REM sleep 163.  In sleep, tonic seizures 

may present with features as in diurnal seizures or may have diminished features such 

as autonomic symptoms (bradypnea, tachycardia), or could be subclinical with slow-

spikes or polyspikes or rhythmic SWDs of ~10 Hz on EEG.   

Atonic seizures are the third most common seizure types in LGS and are 

reported to occur in 30-66% of patients 156, 164, 165.  They involve a sudden loss of 

muscle tone resulting in falls due to loss of posture.  The loss of muscle tone is seen as 

a reduction in the amplitude of the EMG signal.  The fall could involve just the head 

(head drop) or the entire body.  Consciousness is partly or completely impaired for the 

brief period of the atonic seizure, and post ictal confusion is seen in some patients 166.  

In addition, the abrupt falls may follow a myoclonic jerk 167 producing a myoclonic-atonic 

(myoclonic-astatic; Doose syndrome) seizure.  Since the myoclonus lasts for ≤1s, it is 

likely to be missed, especially in the presence of a massive fall.  Studies that monitored 

muscle activity with EMG along with EEG have revealed co-existence of global 

myoclonic seizures with atonic seizures 168.  On EEG, pure atonic seizures as well as 

myoclonic-atonic seizures appear as brief generalized voltage attenuation (<1s) 

followed by polyspike and wave or rhythmic spike and wave (1-3 Hz) discharges or as 

mixture of fast and slow wave discharges with infrequent SWD patterns 169 170.  It is 
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important to have both EEG and EMG monitoring to identify atonic seizures, as falls 

could be due to brief tonic seizures or massive bilateral myoclonic seizures 171 24 172.  

Even though atonic seizures are less common than tonic seizures, injuries due to the 

abrupt falls during atonic seizures are a prime health concern.   

Other common co-existing seizure types in LGS patients include myoclonic 

seizures and GTCSs.  Myoclonic seizures are manifested as sudden and brief jerks of a 

muscle or group of muscles.  They are seen in ~18% of LGS patients 154.  Similar to 

tonic seizures, most myoclonic seizures are associated with electrodecrement of EEG 

activity that lasts for 1-2 s and occurs concurrently with or just following the brief jerk.  

However, some myoclonic seizures may not result in electrodecrement on EEG, while 

some traces with electrodecrement may not be associated with myoclonic seizures 50.  

However, distinctions between spams (massive myoclonic jerks), myoclonic jerks, and 

tonic seizures ending with a brief clonic jerk are not always clear, especially in the 

absence of EEG and EMG monitoring 173 159.  Parsing these sudden movements is even 

more difficult in mice.   

GTCSs are less frequent and present in a fraction of LGS patients (15-45%) 24, 25, 

154, 174, although some studies also report much higher incidence in a cohort but lower 

frequency of GTCSs in individuals 50.  GTCSs are quite variable in duration and 

progression 175-177,178
, but are generally ≥ 5 minutes long 179 and appear on EEG as high 

voltage recurrent polyspike and waves in the earlier stages of seizures followed by a 

brief low voltage fast activity (20-40 Hz).  Next in the tonic phase rhythmic alpha activity 

(10-12 Hz) is seen that progressively increases in amplitude for 8-10 s.  Thereafter, 



 

 

243 

myoclonic jerks may emerge when the frequency decreases from to 7-8 Hz to 4-5 Hz.  

This is followed by the clonic phase with slow activity of 1-2 Hz.  At the end of the 

seizure the voltage suddenly drops (EEG attenuation) followed by delta activity that 

gradually increases in amplitude and frequency.  After a variable period of time, the 

EEG eventually returns to baseline 180, 181.  As these seizures are remarkable and hard 

to miss, EEG is not necessary, per se, to monitor them, but does provide information 

about the progression and features such as lateralization, waveform frequency, and 

duration of GTCSs.   

The usefulness of EEG studies in clinical and research settings cannot be 

understated.  However, it should be noted that there is not always a one-to-one 

correlation between EEG findings and ictal clinical signs; additionally, the characteristic 

EEG patterns described above may evolve with age 182-190. 

 

4.6 Interictal EEG abnormalities in LGS patients  

In addition to ictal activity, interictal activity is considered to be strongly associated with 

cognitive decline and neurodevelopmental regression 191-193 and is supported by the 

observation that patients successfully treated with AEDs or surgery to reduce or 

eliminate interictal activity regain cognitive functions 194, 195.  In addition to the slow ictal 

EEG abnormalities, background activity for the majority of LGS patients has been 

reported to be moderately or severely slower during awake states than expected for that 

age 50, 61, 154, 166.  Similar to atypical absence seizures, awake Interictal activity may 
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show extended or almost continuous sequence of slow spike waves (1.5-2.5 Hz) and 

bursts of generalized paroxysmal fast activity 164, 196, 197.  LGS patients with brain lesions 

may show frequent focal slow wave or spike anomalies 198.  Furthermore, interictal 

activity is enhanced by sleep, especially in stage 2 and slow wave sleep and to a lesser 

extent in rapid eye movement (REM) sleep 163, 199.  A striking similarity is seen in the 

interictal discharges and tonic seizures in patients with and without brain lesions, 

especially in sleep; both appear as high-amplitude polyspikes on EEG 196, 198.  Thus 

treatments should be considered to curb interictal activity in addition to controlling 

seizures, which may significantly improve cognitive and developmental trajectories of 

LGS patients. 

 

4.7 Differences in mouse and human EEG 

Seizures in mouse models of epilepsy are commonly monitored using EEG techniques 

and are the primary focus of this chapter.  Although the basic principles of EEG remain 

the same, rodent and human EEGs differ in a number of ways.  The most obvious 

differences include much smaller mouse brain size and lissencephalic cortex (lack of 

gyri and sulci).  The commonly used human EEG electrodes are ~1 mm in diameter; in 

comparison, the distance between lambda and bregma sutures, where the head mount 

is placed, is about 4 mm 200.  Thus, the majority of EEG devices for rodents do not have 

the array of electrodes that are commonplace in the clinic, resulting in decreased spatial 

resolution.  However, recent studies have used microelectrode arrays in adult mice 201-

203, but synchronization between the electrodes due to volume conduction has also 
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been reported 204.  Microelectrode arrays currently are not widely used.  Most rodent 

EEGs involve fewer electrodes and a relatively invasive method of implanting subdural 

electrodes that are typically metal wires or micro-screws secured on the skull.  The 

advantage is fewer artifacts, with movement artifacts or electrical noise being most 

common in rodent EEGs.  Awake human EEG recordings suffer from common artifacts 

from scalp muscles, eye blinking, swallowing, saccades, and spontaneous change of 

gaze 205.  The placement of subdural metal electrodes in mice is less precise than the 

standardized International 10–20 system of scalp electrode placement in humans.  

Despite these drawbacks rodent EEG, especially with synchronous video monitoring, 

provides valuable information about ictal and interictal patterns.   

 

4.8 Gabrb3+/D120N mice as a model for LGS 

To determine whether the GABRB3(D120N) mutation identified in a LGS patient could 

result in epilepsy, we generated the het Gabrb3+/D120N knock-in (KI) mouse.  The 

Gabrb3+/D120N mouse harbors the GABRB3(D120N) mutation on one allele at a location 

equivalent to that of the human mutation and leads to production of mutant β3(D120N) 

subunits; the 2nd Gabrb3 allele produces wt β3 subunits.  To our knowledge this is the 

first mouse model harboring a gene mutation from an LGS patient.  In the following 

sections I describe the EEG findings from this mouse model, a critical step to ascertain 

spontaneous seizures and test whether this mouse model recapitulates the LGS 

syndrome.  Furthermore, GABAA receptor mutations have been recently identified in 

LGS patients, and thus this model is likely to provide new insights into the pathological 
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mechanisms of LGS.  Additionally, lack of appropriate animal models had severely 

hampered understanding the pathophysiology of LGS.  If the Gabrb3+/D120N mouse 

recapitulates LGS symptoms, this will be the first genetic model of LGS harboring a 

human mutation.  Understanding disease mechanisms at the molecular, cellular, circuit, 

and whole brain level could potentially provide a platform for testing antiepileptic drugs 

that specifically target seizures in LGS patients.  We hope that this work would 

significantly contribute to the epilepsy field. 

 

Table 4.1.  Phenotype LGS patient with GABRB3(D120N) mutation.   
Mutations 
 
 

Age at 
seizure 
onset 

Development 
 
 

Initial 
seizure 
types 

Additional 
seizure 
types 

EEG 
features 

Other 
features 

GABRB3 
(D120N) 

 

RAPGEF6   
(in 3ʹ UTR) 

 

10 M 

Mild delay 
prior to 
seizure onset, 
no regression 

Infantile 
spasms 

Atypical 
absence, 
atonic, 
myoclonic, 
GTCS 

Sharp 
spike-
wake 
complexe
s of 2 Hz 

ADHD, 
Mood 
lability 
with 
impulsive 
behavior, 
adaptive 
score <20 

       
Modified from Table 13 of Allen AS, et al., 2013 1. 

 

4.9 MATERIALS AND METHODS 

4.9.1 Generation and housing of Gabrb3+/D120N mice  

Dr. Shimian Qu from our laboratory generated the het Gabrb3+/D120N KI mouse using 

standard protocols on congenic C57BL/6N background (Primogenix, Inc) in the 

Vanderbilt Transgenic Mouse/Embryonic Stem Cell Shared Resource facility.  Briefly, a 
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G358A mutation in exon 4 of Gabrb3 was introduced by site-directed mutagenesis in 

the targeting vector to generate the D120N substitution (QuikChange II Site-Directed 

Mutagenesis Kit, Agilent Technologies).  The targeting vector containing the 

Gabrb3(D120N) and positive and negative selection markers was electroporated into 

B6N embryonic stem (ES) cells.  Targeted ES cells, identified by long range PCR and 

confirmed by restriction enzyme digestions and sequencing, were injected into the 

C57BL/6N albino blastocyst and transferred into pseudo-pregnant female mice.  Five 

chimeric mice (chimera rate was about 90%) were produced from two independent ES 

cell clones.  Chimeric mice with confirmed germ-line transmission were backcrossed 

with C57BL/6J mice and bred further to obtain Gabrb3+/D120N mice on a C57BL/6J 

background.  Breeding, care, and all experiments were conducted in accordance with 

Vanderbilt Animal Care and Use Committee (IACUC) guidelines. 

 

4.9.2 Behavioral video monitoring of young mice 

All animals were cared for and used in accordance with the policies of Vanderbilt 

University’s IACUC and to National Institutes of Health Guide for Care and Use of 

Laboratory Mice.  Gabrb3+/D120N females and C57Bl/6 males were used for breeding, as 

breeding using Gabrb3+/D120N males was not successful.  Pups were marked on the tail 

to track them, and I was blinded to the genotype during the behavioral assessment.  

Pups from post-natal day P1-6 were observed in their home cage with their parents to 

reduce separation-induced stress and rejection by their mothers.  Later P6-P11 and 

P12-18 old pups were separated from the home cage for 2-5 and 5-10 minutes, 
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respectively, and observed individually in small plastic boxes for general behaviors and 

spontaneous seizures.  Mothers immediately accepted the pups when they were 

reintroduced in the cage on all days from P6-P18, and the behavioral observations did 

not hamper their development.  As some pups from Gabrb3+/D120N female and C57Bl/6 

male parents were small in size at P21, all litters had extended weaning to ~P28 and 

were genotyped after weaning. 

 

4.9.3 EEG-EMG head mount implantation 

To record seizures, EEG-EMG head mounts (Pinnacle Technology, #8201; Figure 4.1) 

were surgically implanted on the skulls of Gabrb3+/D120N and wild type C57Bl/6 mice 

between the bregma and lambdoid sutures (Figure 4.2).  The size of our current EEG-

EMG head mount system (Pinnacle Technology, #8201) allows us to implant them on 

animals ≥60 days of age or ≥25 g in weight, and thus all animals were adults when the 

recordings were acquired.  The data presented in this thesis are from 5-6.5 month old 

mice.  For the surgery, each mouse was weighed and then anesthetized using 2-4% 

isoflurane in an induction chamber.  After the animal was unconscious, it was placed on 

a paper towel and the scalp hair was carefully cut using scissors, making sure not to cut 

the whiskers.  The mouse was then placed in a stereotactic apparatus, and its head was 

secured using ear bars.  Five mg/kg Ketofen (an anti-inflammatory and analgesic agent) 

was subcutaneously administered with a 1 ml syringe by lifting back the skin.  Eye 

ointment was applied to keep the eyes moist.  The skin over the skull was disinfected 

using an iodine solution.  A small incision was made in the skin and pulled apart to 
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expose the skull.  To improve adherence of the head mount on the skull, clear the dura 

matter, and better expose coronal and lambdoid sutures, 30% hydrogen peroxide was 

applied using a cotton swab.  The skull was immediately wiped using a clean and dry 

cotton swab.  The two EMG leads of the head mount were slightly bent downward and 

cyanoacrylate glue was applied at the bottom of the head mount.  The EMG wires were 

inserted in the nuchal muscles by gently pulling the skin at the back of the head mount.  

Immediately the headmount was placed on the skull between the bregma and lambda 

landmarks, and held in place on the skull until the glue dried.  Small holes were made 

through the head mounts by rotating and gently pushing a 23 gauge needle.  The head 

mount was then secured using 0.10” screws (#8209).  The screws provide electrical 

contact between the brain surface and the head mount.  After all four screws were 

secured dental cement was applied on the screw heads, around the edge of the head 

mount, and under and over the skin.  If the skin was not entirely covered under the 

dental cement it was carefully stitched together around the head mount.  To ensure 

electrical continuity between the head mount to the pre-amplifier, the holes of 6 pin 

head mount surface connectors were cleaned with an extra needle ensuring they were 

free of dental cement.  Mice were then removed from the stereotactic apparatus and 

allowed to recover on a heating pad.  Then 500 µl of warmed saline was administered 

intraperitoneally to rehydrate the animal.  After the mouse started moving, it was placed 

back in the housing cage.  Mice were monitored for at least three days post surgery for 

signs of pain, infection, or other distress and were injected with 5 mg/kg of Ketofen for 

pain relief.  The genotypes were blinded for data acquisition and analysis.   
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Figure 4.1: Head-mount that was used for EEG-EMG recordings.   
The head-mount allows acquisition of data from 2 EEG and 1 EMG channels at 400 Hz. 
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Figure 4.2: Surgical procedure for implanting head-mount to acquire EEG-EMG 
recordings.   
(A) Mouse was anesthetized, and the head was secured on the stereotactic apparatus 
such that the head lays flat.  (B) An incision was made to expose bregma and lambda 
sutures.  (C) The sutures were used as guides to place and secure the head-mount 
using super-glue.  (D) After the head-mount was secured with glue, holes were drilled in 
the skull using a 23 gauge needle.  (E and F) The head-mount was further secured 
using conducting screws in each of the four screw slots.  The screws provided electrical 
contact with the brain.   

 

4.9.5 Video-EEG-EMG monitoring 

After seven days of recovery, video-EEG-EMG data were collected from freely moving 

mice for 24 hours using Pinnacle’s Sirenia® Acquisition Software.  First, the head 

mounts on the mice were connected to a pre-amplifier (#8202-SE), and then the mice 
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were transferred to the recording cage.  Using the low-torque 6-pin commutator wire 

(#8204), the pre-amplifier was connected to the 3-channel (2 EEG channels and 1 EMG 

channel) data acquisition/conditioning system (#8206-SE, Model 4100) mounted on top 

of the cage.  The acquisition rate for the EEG-EMG channels was 400 Hz.  The pre-

amplifier filtered (1 Hz high pass) and amplified the signal (gain 100X), and additional 

filtering occurred at the data acquisition/conditioning system.  Synchronized video-EEG 

recordings were obtained by using an infrared camera at 15 frames/second.  The 

digitized video and EEG-EMG signals were visualized and recorded on a computer.  

See Figure 4.3. 

          

Figure 4.3 Synchronous video-EEGs.   
(A) Components of the acquisition system that was used for 24-hour video-EEG 
recordings in a cylindrical plexiglass cage with food and water.  (B) Enlarged image 
shows the pre-amplifier attached (right before the recordings) to the head-mount 
secured on the skull of the mouse.   



 

 

253 

4.9.6 Data analysis 

Video-EEG-EMG data were analyzed offline with Sirenia® Seizure software using a 

widely used approach of visual inspection.  Unlike the common sampling of only ~5 

minutes/hour, the entire 24-hour recording was analyzed.  Seizures were marked on the 

EEG-EMG recordings if they exceeded the baseline by 2X (Figure 4.4), and a 

behavioral feature was seen on the video (such as behavioral arrest, sudden pauses, 

repetitive jerking, rearing, rearing and falling, automatisms (aberrant grooming, circling), 

circadian behaviors (sleep) or other ictal behaviors) 206, 207.  The tonic seizures did not 

have strikingly increased EEG amplitude compared to the baseline, and thus, tonic 

seizures were scored positive irrespective of the change in the baseline.  Additionally, 

SWDs in Gabrb3+/D120N mice observed during moving, grooming, chewing, etc were not 

scored.  Seizure annotations were exported as a text file and number of seizures, 

seizure duration, sleep duration, light-dark effects, gender differences, etc were 

calculated in Microsoft Excel.  Power spectra from the unfiltered EEG channels were 

generated using EDF browser. 
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Figure 4.4 Video-EEG-EMG data analysis method.   
Snap shot from Sirenia® Seizure software shows the seizure identification and scoring 
scheme.  Seizures seen on both the EEG channels (top two traces) were correlated 
with the video record, and each seizure was manually scored.   

 

4.9 RESULTS 

4.9.1. Young Gabrb3+/D120N mice have spasm-like motor seizures.   

As LGS is a childhood EE that can sometimes evolve from other EEs, especially 

infantile spasms (as seen in the patient with the GABRB3(D120N) mutation, Table 4.1), 

I observed Gabrb3+/D120N mice and their wild type (wt) littermates after birth for seizures 

and other abnormalities.  The pups from Gabrb3+/D120N female x C57Bl/6 male parents 

were observed in their home cage with their parents until they were post-natal day 6 

(P6), as separating young pups from their mother even for few minutes could drop their 

body temperature, and it is stressful for the pups and mother.  From P6-P11 each pup 

was separated from the home cage for 2-5 minutes and observed for general 

appearance, skin pigmentation, ear openings, righting reflexes, and eye opening.  From 
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P12-P18 the observations were 5-10 minutes long and focused on motor spasms, 

grooming, gait, head drops, staring, activity level, and how well the mouse explored its 

new environment.  Mothers immediately accepted the pups when they were 

reintroduced in the cage on all days from P6-P18.  Apart from the minimal stress that 

the pups and the mother may have experienced, the observations otherwise appeared 

to have no impact on their overall development.  I was blinded to the genotype during 

the observations.   

Observations in the home cage from P1-P6 were not very informative as the 

pups were clustered in the nest with the mother even when the mother was displaced 

for few minutes.  No major differences were observed between wt and mutant 

Gabrb3+/D120N pups.  From P6-11 observations only revealed a slight lag in development 

of skin pigmentation and smaller size for the Gabrb3+/D120N pups compared to the wt 

pups.  Also the Gabrb3+/D120N pups had difficulty in righting when they were on their 

backs at P6 but eventually they caught up by P8.  Only 3 litters were observed from P1-

P11 as this time period did not reveal seizures or major differences in the Gabrb3+/D120N 

pups.   

In contrast, distinct infantile spasm-like seizures, rapid and brief extension 

followed by flexion of the fore limbs, hind limbs, trunk, and the tail, that stretches the 

entire body, were seen in Gabrb3+/D120N pups between P14-P17 with a significantly 

higher likelihood compared to wt pups (Figure 4.5 A, B).  A small fraction of wt pups 

were scored positive for spasm-like seizures, although, in the five litters (wt = 16 and 

Gabrb3+/D120N = 19) I observed, none of the Gabrb3+/D120N pups lacked spasm-like 



 

 

256 

seizures between P14-P18.  The spasm-like seizures occurred in clusters and were 

accompanied by behavioral arrest and staring during the events.  Typically the pups 

would sit at the edge of the cage (in between exploring or grooming) as if anticipating 

the event and would have a fixed gaze.  The spasm-like seizures were distinct from 

sudden motor/myoclonic twitches or startles seen during grooming.  Further, the 

Gabrb3+/D120N pups also displayed brief trunk extension and flexion before or after the 

spasm-like seizures, but these events were not scored.   

Additionally, when the pups were lifted by their tail, they clasped their fore and 

hind limbs at once or sequentially, this behavior was absent or rarely seen in wt pups 

(Figure 4.5 C).  .Also, the Gabrb3+/D120N pups weighed significantly less on P21 

compared to the wt pups (wt = 10.9 ± 0.3 g, n = 10; Gabrb3+/D120N = 8.4 ± 0.4 g, n = 11; 

p = 0.0001; 3 litters; Figure 4.5 D) but this difference disappeared after weaning when 

they were put on a solid diet.   
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Figure 4.5 Young Gabrb3+/D120N mice had spontaneous spasm-like seizures.   
(A) Typical spasm-like seizure in a P15 Gabrb3+/D120N mouse.  The spontaneous 
spasm-like seizure involves behavioral arrest followed by clusters of brief extension of 
fore limbs, hind limbs, trunk, and the tail, followed by their flexion.  (B) Spasm-like 
seizures appeared typically at P13 and disappeared by P18 in wt and Gabrb3+/D120N 
pups, but occurred more frequently in Gabrb3+/D120N pups.  (C) Abnormal fore and hind 
limb clenching seen in Gabrb3+/D120N pups (here both wt and mutant mice were P15).  
(D) Gabrb3+/D120N pups had reduced body weight compared to wt littermates prior to 
weaning.   
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4.9.2. Adult Gabrb3+/D120N mice had multiple types of spontaneous seizures.  

To determine whether Gabrb3+/D120N mice had spontaneous electrographic seizures, we 

performed prolonged 24-hour video-EEG-EMG recordings from chronically implanted 

Gabrb3+/D120N and wt mice.  Our recording system can only be implanted on adult mice 

(≥25 g), thus we could not determine the age of onset of these seizures.  Spontaneous 

seizures were observed in mice from 3.5 months of age.  The data presented here are 

from 5-6.5 month old mice (wt n = 4, Gabrb3+/D120N n = 7).   

Multiple types of spontaneous seizures were seen in Gabrb3+/D120N mice including 

typical absence, atypical absence, myoclonic, tonic, and generalized tonic-clonic (GTC) 

seizures (Figure 4.6).  Absence seizures and myoclonic jerks were the predominant 

seizure types in Gabrb3+/D120N mice, while tonic seizures and GTCSs were rare.  Typical 

absence and atypical absence seizures involved behavioral arrest (also seen as 

reduced EMG activity) with a staring gaze ranging from a few seconds to minutes and 

accompanied by a conspicuous SWDs on EEG (Figure 4.7A, right traces).  The 

myoclonic jerks were brief (~0.5 s) and sudden muscle contraction involving the entire 

body, seen as extension followed by flexion of the body and had a prominent sharp 

spike on EEG and EMG channels.  The majority of myoclonic jerks (94.6%) occurred 

during the light period (inactive time for mice).  GTCSs began with tonic stiffening and 

extension of the limbs, followed by rapid clonic movements of the limbs, and then 

proceeded to strong tonic-clonic activity with abrupt jumps and Straub tail; the seizures 

ended with behavioral arrest.  Although, GTCSs were seen multiple times during routine 

handling and captured on video in the housing facility, they were rarely captured during 
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the 24-hour EEG-EMG recordings.  The tonic phase had high amplitude and high 

frequency on EEG, while the clonic and tonic-clonic phases had high amplitude and 

lower frequency than the tonic phase.  This was followed by an electrodecrement of 

EEG amplitude (Figure 4.6C).  Tonic seizures were infrequent and involved a sudden 

contraction of the limbs and sometime stiffening of tail that was associated with either 

no change in EEG amplitude or with low-amplitude high frequency activity, as previously 

described 208 (Figure 4.6D) that lasted a few seconds.  Although, the number of tonic 

seizures in 24 hours described here are likely an underestimate as tonic seizures did 

not have a characteristic EEG pattern in Gabrb3+/D120N mice, they were are hard to 

establish especially when then the mice were not moving immediately prior to the 

seizure.  Moreover, the male mice had more absence seizures, (males = 544.33 ± 

128.78, females = 364.50 ± 100.93) and myoclonic jerks (males = 206.33 ± 130.32, 

females = 18 ± 10.46); although these differences were not statistically different 

amongst 4 female and 3 male Gabrb3+/D120N mice.  The tonic seizures were significantly 

more frequent in males (6.66 ± 0.45, n = 3) than in females (2 ± 0.61, n = 4).  The EEG 

data from mice ~3-4 month old (current data set had ~5-6.5 month old mice) were not 

extensively analyzed; brief observations indicated that the seizure severity increased 

with age and was certainly true for the increased occurrence of GTCSs. 

Furthermore, the Gabrb3+/D120N mice showed other abnormal behaviors such as 

increased rearings in 24 hours compared to the wt mice (wt = 260.5 ± 17.32, n = 4; 

Gabrb3+/D120N = 596.57 ± 218.13, n = 7; p > 0.5).  Some Gabrb3+/D120N mice were 

hyperactive and showed repetitive running interrupted by rearings around the edges of 
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the cage up to several hours at a time.  The Gabrb3+/D120N mice were hyper-sensitive to 

touch during routine handling. 
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Figure 4.6 EEG features of spontaneous seizures in adult Gabrb3+/D120N mice.   
(A) Bar graph showing the average number seizures in wt and Gabrb3+/D120N mice in a 
24-hour period.  Absence seizures and myoclonic jerks were the two dominant seizure 
types in Gabrb3+/D120N mice.  (B) Representative EEG traces from 4 different seizure 
types.  The arrowheads indicate the beginning and end of the seizure.  Note that 
absence seizures start with a typical SWDs pattern and transition to a more chaotic and 
slow-spike-wave like pattern.  Only a segment of the absence seizure is depicted here 
so the trace does not have an end point.  Myoclonic jerks were noted as brief (~500 µs) 
and prominent spikes in both EEG and EMG channels.  Tonic seizures did not stand out 
from the baseline, showed a slight increase in amplitude but were high frequency 
events compared to the baseline.  GTCS were striking with the largest increase in EEG 
amplitude.  The tonic phase had slightly lower amplitude but higher waveform frequency 
compared to the clonic phase, which was followed by electrodecrement. 

 

4.9.3. Atypical absence seizures were the predominant seizure type in adult 

Gabrb3+/D120N mice  

The Gabrb3+/D120N mice had over 400 absence seizures on average in 24 hours, about 

10 times of that observed in wt mice.  Thus, I examined this seizure type further.  The wt 

C57Bl/6 mice had typical brief (9.9 ± 0.1 s) and infrequent absence seizures with high 

amplitude 6-8 Hz SWDs (Figure 4.7 A, B left panels), as previously reported in other 

rodent models of absence seizures 51, 209-214 and other control background strains 215, 

216.  Whereas the Gabrb3+/D120N mice had both typical absence and atypical absence 

seizures with an average duration of 20 ± 10.2 s (Figure 4.7 A, B left panels).  The 

typical absence seizures had a characteristic spindle-like SWD pattern of 4-5 Hz.  While 

the majority of the atypical absence seizures began with typical SWDs and progressed 

to distinctive high amplitude SWDs of 2-3 Hz that were less organized and lacked the 

characteristic spindle-like appearance.  Given the large number of absence seizures in 

Gabrb3+/D120N mice, it is not surprising that they spent a significantly larger amount of 
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time in absence seizures compared to the wt mice (Figure 4.7 C, wt = 7.43 ± 1.05 s, n = 

4 mice; Gabrb3+/D120N = 150.5 ± 36.83 s, n = 7 mice).  However, the absence seizures 

with durations ≥30s accounted for ~70% of the time spent in absence seizures even 

though they comprised only ~25% of all absence seizures in Gabrb3+/D120N mice.  

Occasionally the prolonged atypical absence seizures (>30 s) with slow disorganized 

SWDs progressed to states of drowsiness and sleep.  Moreover, the behavioral arrest 

seen during atypical absence seizures was not always time-locked with the onset of 

SWDs on EEG and was occasionally associated with behaviors such as head nods, 

eyelid myoclonus or whisker twitches.  Movements and automatisms were also reported 

in patients during atypical absence seizures.  Additionally, the majority of the typical 

absence and atypical absence seizures occurred during the dark period (active period 

for mice) with a peak occurrence right after the light to dark period transition (Figure 4.7 

D).   
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Figure 4.7 Gabrb3+/D120N mice had spontaneous typical and atypical absence 
seizures.   
(A) Representative traces showing absence seizures in wt (left) and Gabrb3+/D120N 
(right) mice.  Wt mice had brief SWDs time-locked with behavioral arrest while the 
Gabrb3+/D120N mice had both brief and prolonged absence seizures.  Prolonged absence 
seizures were not always time-locked with the behavioral onset and/or had brief 
movements during the seizure.  Apart from the duration, the waveform frequencies in 
Gabrb3+/D120N mice were lower in both brief (with typical SWDs) and prolonged absence 
seizures (with typical SWDs and chaotic slow-spike-waves) (B), middle and right 
graphs) compared to the wt mice (B, left graph).  (C) Due to the prolonged duration of 
absence seizures, the Gabrb3+/D120N mice spent a large amount of time in absence 
seizures (wt = 7.43 ± 1.05 s, Gabrb3+/D120N = 150.5 ± 36.83 s), although these durations 
were not statistically different.  (D) The majority of absence seizures in Gabrb3+/D120N 
mice occurred during the dark (active) period (left graph) with a peak incidence right at 
the light-dark period transition (right graph, dark period in grey).  
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4.9.4. Adult Gabrb3+/D120N mice had seizures during sleep. 

Total sleep duration in Gabrb3+/D120N mice was similar to wt controls (wt = 12.49 ± 0.01 

hours, Gabrb3+/D120N = 10.81 ± 2.6 hours, p = 0.45).  Although, unlike the wt mice the 

Gabrb3+/D120N mice had several absence-like SWDs and polyspikes in non-rapid eye 

movement (NREM) and REM sleep (Figure 4.8).  Absence-like SWDs were prominent 

at the beginning of NREM sleep and during REM sleep, while polyspikes appeared as 

NREM sleep progressed.  Sleep disturbances and presence of SWDs and polyspikes 

are also reported in LGS patients 163 and are thought to contribute to cognitive deficits 

217, 218.  

 

Figure 4.8 Adult Gabrb3+/D120N mice have spontaneous seizures in sleep.   
Representative traces from NREM and REM sleep in wt (left) and Gabrb3+/D120N mice 
(right).  Prominent SWDs in both sleep stages were observed in all Gabrb3+/D120N mice 
and were absent in wt mice.  The SWDs resembled those seen during absence 
seizures.  

 

4.10 DISCUSSION  

The Gabrb3+/D120N mice recapitulate the salient features of LGS, namely spontaneous 

atypical absence seizures, myoclonic jerks, GTCS, and tonic seizures.  Importantly, the 
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Gabrb3+/D120N mice show early seizure onset and progression of seizure severity. 

Additionally, the mice also exhibit sleep disturbances and behavioral abnormalities, 

comorbidities seen in LGS patients (Table 4.2).  Thus, we believe that Gabrb3+/D120N 

mice present a valuable model to study the pathophysiological mechanisms of LGS and 

efficacy of AEDs used for its treatment.   

Table 4.2.  Phenotypes LGS patients and Gabrb3+/D120N mice. 

 LGS patients 
LGS patient with 
GABRB3(D120N) 
mutation 

Gabrb3+/D120N mice 

Seizure onset 
1-8 years, earlier if 
progresses from other 
epilepsies 

10 M, initial seizure  
infantile spasms 
 

Mild delay prior to 
seizure onset, 
no regression 

Seizure types 
Atypical absence, 
atonic, tonic, myoclonic, 
GTCSs 

Atypical absence, 
myoclonic, GTCSs 

Atypical absence, 
myoclonic, tonic, 
GTCSs 

EEG features 
<3 Hz SWDs, slow 
background, 10 Hz fast 
rhythm in sleep  

Bursts of 2 Hz sharp-
spike-wave complexes 

2-3 Hz slow SWDs 
often prolonged to 
minutes, high 
background EEG  

Behavioural 
abnormalities 

Cognitive impairment, 
behavioral difficulties, 
sleep disturbances 

ADHD, impulsivity, 
adaptive score <20, 
sleeping difficulties 

Hyperactive, hyper 
responsive to touch, 
seizures during sleep  

    
    

Although postnatal ages of humans and mice cannot be directly compared, the 

P13-P20 rats are roughly comparable to human infancy and early childhood, a period of 

susceptibility to infantile spasms and LGS in children 219-222.  The P21 rats are 

considered analogous to 5-10 year old humans 219, 220.  Mice have slightly earlier 

maturation compared to rats.  The P14-P17 Gabrb3+/D120N mice had spontaneous 

spasm-like seizures, extended staring, and reduced pre-weaning weight compared to wt 
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mice.  Further, when the young Gabrb3+/D120N mice were suspended by the tail, they 

showed abnormal fore and hind limb clenching, which is considered an indicator of 

neurological abnormality.  Seizure onset in LGS patients is 1-8 years or earlier when 

LGS progresses from other syndromes such as infantile spasms 24, 156, 164.  Seizure 

onset in young P14-P17 Gabrb3+/D120N mice was in the age range analogous to seizure 

onset in LGS patients.   

Atypical absence, tonic, myoclonic, and atonic seizures are the most common 

seizures in LGS patients.  For the Gabrb3+/D120N mice, the predominant seizure types 

were atypical absence and myoclonic seizures.  Tonic seizures are one of the main 

seizure types pf LGS and observed in majority of LGS patients while they are awake 

and asleep.  While tonic seizures were not the predominant seizure type in 

Gabrb3+/D120N mice, they occurred on average four times in 24 hours and showed male 

predominance.  As tonic seizures are hard to establish, especially when the mice are 

asleep and not facing the camera, they could be slightly underestimated in this study.  

Atonic seizures or drop attacks result in sudden loss of muscle tone resulting in head or 

whole body falls leading to injuries in LGS patients.  Very few atonic-like seizures were 

observed during the 24 hour video-EEG recordings in Gabrb3+/D120N mice, but they were 

not scored as the mice did not fall on their sides and atonic seizure in mice are not well 

characterized.  Additionally, most seizure types had increased incidence in male 

Gabrb3+/D120N mice, but were not significantly higher compared to female mice.  Even 

though not all seizure types seen in LGS patients were present in Gabrb3+/D120N mice, 
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they captured most of the characteristic LGS seizure types and thus should be a useful 

model of LGS.   

Typical sleep disturbances documented in LGS patients include augmentation of 

slow spike waves, generalized polyspikes, and generalized paroxysmal fast activity in 

NREM sleep and a reduction of REM sleep 24, 156, 199, 223-225.  Disruption of sleep features 

with large numbers of awakenings and altered sleep stages was also reported in LGS 

patients 163.  The Gabrb3+/D120N mice also exhibited significant sleep disturbances 

including SWDs in NREM and REM sleep, myoclonic jerks, and reduced REM sleep.  

Qualitatively, the waveform and frequency of SWDs in NREM sleep resembled those of 

atypical absence seizures (4-5 Hz) seen in Gabrb3+/D120N mice, while SWDs of REM 

sleep resembled typical absence seizures with characteristic spindle-like appearance 

with frequencies of 4-5 Hz and 7-8 Hz.   

To date very few mouse models mimicking the LGS phenotype exist.  The 

Gabrb3+/D120N mouse is the first mouse model harboring a human mutation associated 

with LGS.  A mouse model of atypical absence seizures was developed by 

administering AY-9944, a cholesterol biosynthesis inhibitor in young rats, which resulted 

in recurrent SWDs at 5-6 Hz (slower than SWDs of 7-8 Hz seen in typical absence 

seizures in rodents) that lasted several seconds.  The SWDs persisted in sleep and 

were accompanied by myoclonic jerks 32.  However, other seizure types seen in LGS 

patients were lacking, and the pathological mechanisms during the pre-natal period and 

early post-natal period preceding seizure onset at P21 cannot be achieved.  Importantly, 

absence seizures in Gabrb3+/D120N mice and the AY-9944 mice were qualitatively 
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different.  The Gabrb3+/D120N mice had both typical SWDs of 4-6 Hz and less organized 

slow-spike-waves of 2-3 Hz.  Similarly, LGS patients are reported to have both typical (3 

Hz) and less organized atypical (1-2.5 Hz) absence seizures 24.  Additionally, cognitive 

and behavioral deficits have not been reported in AY-9944 treated rats, although 

decreased hippocampal long-term potentiation has been suggested 32.  The AY-9944 

model showed a higher propensity for absence seizures in females, while the male 

Gabrb3+/D120N mice show higher propensity for absence, myoclonic, and tonic seizures.  

Male predominance was reported for LGS patients 158, 165, but it is not clear if male LGS 

patients had increased seizure severity compared to female LGS patients. 

Recently, DNM1 was associated with LGS 3, 226, and the ‘fitful’ mouse harboring a 

spontaneous novel mutation in DNM1 was initially proposed as a model of genetic 

generalized (idiopathic) epilepsy 66 and later of EE 227, 228.  Both homozygous (hom) and 

het fitful mice had spontaneous seizures.  Young hom (P14-P16) mice had ataxia and 

tonic-clonic seizures resulting in mortality during the pre-weaning period, while the hets 

developed GTCSs and partial seizures from two to three months of age 66.  The fitful 

mice exhibited ataxia and reduced dendritic arbors and branching of cerebellar Purkinje 

cells.  Ataxia and cerebellar dysfunctions were not typically observed in LGS patients 

but were reported in other EEs 229.  However, the characteristic LGS seizure types 

(atypical absence, tonic, atonic, and myoclonic seizures), cognitive and behavioral 

abnormalities, and sleep disturbances have not been reported in the fitful mice.  Future 

studies are needed to carefully assess whether the fitful mice display predominant LGS 

seizure types and associated comorbidities.   
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Lastly, hom Gabrb3-/- mice have been proposed as a model for Angelman 

syndrome, a severe neurodevelopmental disorder associated with epilepsy in the 

majority of cases 230-233.  A large proportion of Angelman syndrome cases result from 

deletion of the maternally imprinted chromosomal 15q11-13 region containing UBE3A, 

GABRB3, GABRA5, and GABRG3 231, 234-237.  In neurons, the chromosomal 15q11-13 

segment is maternally imprinted, i.e. exclusively expressed by the maternal copy while 

expression of the paternal chromosomal segment is suppressed.  As about 20% of 

patients with Angelman syndrome are non-deletion cases and those with UBE3A 

mutations have milder phenotypes with few or nonexistence seizures compared to the 

chromosomal 15q11-13 deletion cases, Olsen and colleagues suggested that GABRB3 

could be an Angelman syndrome candidate gene.  However, the current consensus is 

that Angelman syndrome results from loss of function of UBE3A, and Angelman 

syndrome cases can arise either due to the deletion or mutations of UBE3A, paternal 

uniparental disomy or genomic imprinting defects 233, 235, 238, 239, all coinciding with loss 

of function of the maternal copy of UBE3A.   

As UBE3A is the principal gene involved in the Angelman syndrome pathology, 

the hom Gabrb3-/- KO mice mimics the pathology of a minute fraction of patients with 

just the loss of GABRB3, and the het Gabr3+/- KO mice could represent an extremely 

rare genetic condition.  Nevertheless, the hom Gabrb3-/- and het Gabr3b+/- KO mice 

displayed several characteristics that have clinical correlates to human EE phenotypes 

including spontaneous seizures (absence, myoclonic jerks, and GTCS), runted pre-

weaning growth, hyperactivity, and increased severity of seizures with age.  The 
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Gabrb3-/- mice had a high neonatal mortality (~90%) within 24 hours of birth that was 

attributed to feeding difficulties resulting from cleft palate and reduced life span of 18 

weeks 240.  Cleft palate was also described in Angelman syndrome patients 241.  The 

phenotype of het KO mice was milder than that of hom KO mice. Ethosuximide is a 

commonly used AED to treat absence seizures in humans.  When administered to 

Gabrb3-/- mice, ethosuximide reduced absence and myoclonic seizures, and abolished 

slow background and interictal EEG activity.  In contrast, the AED carbamazepine and 

the GABAB receptor agonist baclofen triggered seizures and aggravated EEG 

abnormalities.  The GABAB receptor antagonist CGP 35348 suppressed atypical 

absence seizures in the AY-9944 model but was ineffective in reducing seizures or 

normalizing EEG activity in Gabrb3-/- mice 32, 242.    

As the same gene is disrupted in Gabrb3-/- and Gabr3+/D120N mice, the two mice 

are likely to share some features.  In addition to the presence of absence seizures, 

myoclonic jerks, and GTCS, both of these mice have runted growth until weaning, some 

mice are hyperactive (run in circles), both mice are hyper responsive to human touch - 

both mice jump when they are approached to be held, both mice clench paws when 

held by their tail, and the Gabrb3-/- and Gabrb3+/D120N mothers fail to nurture their 

offspring irrespective of the littermate genotype.  Additionally, GABA-evoked currents 

from cultured sensory dorsal root ganglion (DRG) cells of hom and het Gabrb3 KO mice 

were decreased by ~80% and ~25%, respectively.  Similarly, mutant β3(D120N) 

subunits significantly reduced GABA-evoked currents to ~63% and ~24% of wt currents, 

respectively, in hom and het conditions in vitro 243.  Based on these results and the 
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presence of spontaneous seizures, loss of GABAergic inhibition would be expected in 

Gabrb3+/D120N mice.  While the seizures manifested in both strains differ; Gabrb3-/- mice 

had absence, myoclonic, and GTCS seizures, whereas the predominant phenotype of 

adult Gabrb3+/D120N mice was atypical absence and myoclonic seizures with occasional 

tonic seizures and GTCS.  Since the precise numbers of seizures in hom Gabrb3-/- and 

het Gabrb3+/- KO mice are not known, seizure severity cannot be directly compared with 

Gabrb3+/D120N mice.  Still based on the phenotypes of the three mice described here, it 

appears that the order of severity could be Gabrb3-/- > Gabrb3+/D120N > Gabrb3+/- KO 

mice. 

In conclusion, the EEG findings presented here unambiguously establish the 

spontaneous seizure types in Gabrb3+/D120N mice.  Further, our data show that 

Gabrb3+/D120N mice display spontaneous seizures and other features relevant to clinical 

symptoms in LGS patients, and thus are a valuable model to study pathogenesis of 

LGS and genetic EEs.  Spontaneous seizures in Gabrb3+/D120N mice are in agreement 

with in vitro findings that mutant β3(D120N) subunits in hom and het conditions reduce 

GABA-evoked inhibitory currents in HEK293T cells 243.  The β3 subunits are expressed 

in regions that are important for generation of sezirues including cortex, thalamus, and 

the nRT.  Thus, reduced post-synaptic inhibition in these regions resulting from 

β3(D120N) subunits can generate hyperexcitable networks that in turn can produce 

generalized seizures and epilepsy.  These EEG studies lays the groundwork for future 

studies to determine the age of seizure onset of electrographic seizures, molecular, 

cellular, and circuits level changes that promote seizures, degree of loss of GABAergic 
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inhibition, efficacy of AEDs, most effective treatment window, among other important 

questions. 
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CHAPTER V: Conclusions and Future Directions 

 

5.1 Summary of experimental chapters 

Epilepsy is one of the most common neurological conditions in pediatric and adult 

populations with tremendous social and economic cost 1,2.  The pediatric population is 

at a greater risk for severe brain damage as the seizures may interfere with normal 

brain development.  This is especially true for EEs in which the ongoing seizures are 

thought to result in progressive cognitive and behavioral impairment 3–5.  In this 

dissertation, I investigated the influence of five EE-associated GABRB mutations on 

GABAA receptor functions in a heterologous cell line and a knock-in mouse model 

(Gabrb3+/D120N) that harbors one of the EE-associated mutations.   

In Chapters II and III I describe the effects of five mutations identified in a large-

scale study that investigated the genetic contributions of EE in two well defined 

syndromes- infantile spasms (IS) and Lennox-Gastaut syndrome (LGS) 6.  Four of the 

five mutations (GABRB3(N110D, D120N, E108G, Y302C)) were identified in the gene 

encoding the β3 subunit of GABAA receptors (GABRB3) that was previously associated 

with childhood absence epilepsy, a milder form of epilepsy.  While a F246S mutation in 

GABRB1 was not previously associated with epilepsy.  Our functional studies clearly 

demonstrate that all five mutations resulted in a clear loss of GABAA receptor function 

(Table 5.1).  This work was published in the Annals of Neurology 7. 
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In Chapter IV I examined the EEGs of Gabrb3+/D120N mice that harbor the LGS-

associated D120N mutation and observed that Gabrb3+/D120N mice have myoclonic jerks 

that peak at the beginning of the 2nd post-natal week and disappear after about 5 days, 

which is followed by seizure progression.  The adult Gabrb3+/D120N mice display many 

features of LGS, namely spontaneous atypical absence seizures (~400/day), myoclonic 

seizures, GTCS, and tonic seizures.  Additionally, the Gabrb3+/D120N mice have sleep 

disturbances and behavioral abnormalities, comorbidities that are common in LGS 

patients.  Thus, we believe these mice will be useful for examining the 

pathophysiological mechanisms of LGS and for testing the efficacy of AEDs.  This work 

has been submitted for peer review. 

Corroboration of in vitro findings in a mouse model, though not always possible, 

remains an important and interesting scientific endeavor.  Several findings from the in 

vitro studies of the mutant β3(D120N) subunits presented in Chapter III were also found 

in the Gabrb3+/D120N mice.  Here I briefly describe these findings that were determined 

by several members of our laboratory.   

First, mIPSC amplitudes were significantly reduced in layer V/VI pyramidal 

neurons of the somatosensory cortex of Gabrb3+/D120N mice.  The frequency of mIPSCs 

was unaltered indicating postsynaptic loss of GABAA receptor currents as the primary 

contributor of reduced inhibition, which can generate hyperexcitable networks that in 

turn lead to seizures and epilepsy.  These results are concordant with the significant 

reduction (63.5% of wt) of whole cell currents from HEK293T cells transfected in the 

heterozygous condition (α1, β3, β3(D120N) and γ2 subunits).  Second, there was no 
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significant reduction in expression of GABAA receptor α1, β3, and γ2 subunits in cortex, 

hippocampus, thalamus, and cerebellum of Gabrb3+/D120N mice, additionally indicating 

that mutant β3(D120N) subunits do not interfere with production, assembly, trafficking, 

or surface expression of GABAA receptors.  Furthermore, postsynaptic expression of 

GABAA receptors (in synaptosomes) was unaltered.  Thus, surface expression of both 

wt and mutant receptors have equal likelihoods, and loss of GABA-evoked currents 

from the mutant receptors reduced GABAergic inhibition.  

 

5.2 Scope of future directions 

Now that we have demonstrated that the Gabrb3+/D120N mice are a useful model of LGS 

pathogenesis, the next phase of research awaits exploration of interesting and 

important questions, some of which are discussed below.   

5.2.1 What is the age of seizure onset and developmental progression of 

seizures? 

In Chapter IV I presented the data from visual observations of P6-P18 pups from 

Gabrb3+/D120N mice and wt mice.  The peak incidence of spasm-like seizures in 

Gabrb3+/D120N pups was from P14-P17.  This is comparable to age of peak seizure 

onset (3-5 years) in children with LGS (range 1-8 years) 8–11.  Another suspected 

seizure type at this age was absence-like seizures; some pups were staring and 

unresponsive to loud noises for short durations.  However, absence seizures cannot be 

determined with certainty solely by visual observations in mice especially in this age 
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range; seizures can be missed due to their brief duration or a pause in movement could 

be just a resting period.  Furthermore, absence seizures can progress to other seizure 

types such as myoclonic and tonic seizures in children 12.  Thus, without EEG/ECoG 

monitoring it is hard to determine whether absence-like seizures preceded the motor 

spasm-like seizures and could not be noticed during the brief observations made in 

young mice (P6-P18) or followed the spasm-like seizures. 

The developmental progression of seizures varies in LGS.  The core seizure 

types in LGS include tonic, atonic, and atypical absence seizures (additional types are 

myoclonic seizures and GTCS).  However, these seizures and the characteristic EEG 

pattern of 1-2.5 Hz slow SWDs may not appear at disease onset.  Further, the 

developmental regression and cognitive impairment also varies.  The variability in 

clinical presentation makes the diagnosis difficult and often late when the patient has 

already progressed well into the disease.  Additionally, the seizure types that first 

appear depend on the maturation stage of the brain and whether or not LGS evolved 

from other epilepsy syndromes.  For example, about 70-80% of children with LGS have 

a preceding diagnosis of other epilepsy syndromes 13–15, about 30-40% of which evolve 

from West syndrome 16,17,18 19.  When LGS develops with no prior recognizable cause, it 

begins commonly with episodes of atonic (drop attacks) seizures and atypical absence 

seizures that are usually followed by tonic seizures (typically nocturnal) and other 

seizure types 20.  Given the wide range of seizure types and the age of seizure onset in 

LGS patients, it is hard to predict the seizure types that may follow/precede the motor 

spasms seen in P14-P17 Gabrb3+/D120N mice.  Additionally, since typically developing 
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rodent pups often have sudden abrupt movements that can be mistaken for spasm-like 

seizures, EEG analysis is required to ascertain the presence and the age of onset of 

seizures in young mice.  Hence, at least intermittent EEG monitoring is required from 

one week of age (roughly correspond to human infants) to adulthood (≥8 weeks).  

The challenge, however, is that the skull in mouse pups is paper thin and small; it 

cannot support implantation of the widely used headmounts for adult mouse EEG 

recordings.  Special flexible silicone electrodes or miniaturized EEG radio telemetry 

transponders that can mount on the skull without the need of the conducting screws 

have been in recent use for this purpose 12,21,22 but were cost prohibitive for our 

experiments (+$20K for an initial set up).  As an alternative, I custom made intra-cortical 

electrodes penetrating all layers of the cortex from thin bare silver wires soldered to thin 

gold pins and recorded the EEG signal using the human EEG acquisition system 

(Figure 1).  This basic setup is useful to record SWDs during quiet rest from pups as 

young as P13 (total of 6 pups were successfully recorded from P13-P16 but were from 

different genetic background than Gabrb3+/D120N mice).  Surprisingly, when the pups 

were reintroduced to their home cage after surgery, they were immediately accepted by 

their dam, were active and interacted with other pups in the cage, and they remarkably 

continued to nurse for up to two days even with the implanted electrodes (not monitored 

further).  Recordings were obtained only for an hour shortly after surgery as prolonged 

recordings could dehydrate pups.  This setup has two major drawbacks - electrical 

noise and poor video resolution.  Even subtle movements produce noise and thus are 

not ideal for prolonged (~4 hours) recording from pups.  Moreover, the camera cannot 
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be set up close to the pups, and the resolution of video recording is poor.  The ECoG 

and video are time stamped but are tedious to watch simultaneously.  Even with these 

drawbacks, this set-up can be used to get glimpses of seizures in young pups at 

minimal cost (~$20 of supplies for ~8-10 pups), which can be supplemented later with 

more sophisticated probes.  Based on my experience with the Gabrb3+/D120N mice, 

monitoring mice on P10, P14, P20, P30, and +P60 is likely to capture the progression of 

major seizure types.  Although these recordings will require large number of animals 

and tremendous effort analyzing the data, they will answer important questions: (1) what 

is the age of seizure onset, (2) what types of seizures occur at onset and how do they 

progress, and (3) what are baseline ECoGs prior to and following seizure onset as little 

is known about EEG patterns in LGS patients before the diagnosis of epilepsy.   

 

Figure 5.1: Synchronized video and intra-cortical recording from a wild type P15 
pup.   

(A) Image shows a custom made intra-cortical recording setup on a P15 pup.  
Thin sliver wire electrodes (penetrating all layers of the cortex) were soldered on gold 
connector pins and secured using dental cement on the skull.  The gold pins on the 
head were connected to another set of gold pins that were soldered onto cables 
connecting the amplifier.  Stable baseline recording during quite rest (B) and spike-and-
wave discharges (SWDs) (C) after intraperitoneal injection of 30 mg/Kg of the 
convulsant drug pentylenetetrazol (PTZ) that blocks GABAA receptors. 
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5.2.2 Could treatment in the early postnatal period prevent or reduce seizures in 

adult Gabrb3+/D120N mice?  

Developmental and cognitive outcomes for most LGS patients are poor once the 

disease progresses (often diagnosis comes well into the disease).  Thus, studies 

evaluating the effects of the early treatment of LGS are rare, especially when LGS does 

not progress from other epilepsy syndromes 20.  As there are no animal models of LGS, 

the effectiveness of early intervention remains an open question.  A fraction (~40%) of 

children with the severe epileptic encephalopathy, infantile spasms (IS), who received 

early treatment with existing therapies prevented progression of spasms later in life and 

had better developmental outcomes 23,24.  Similarly, mouse models of IS show that early 

treatment prior to and during early stages of seizure onset reduced seizure frequency in 

adults 25.  Although, IS and LGS have quite different ages of onset and seizure types, it 

is valuable to determine whether the promising results of early interventions prior to or 

shortly after seizure onset also hold true in Gabrb3+/D120N mice.  Since children are not 

given antiseizure medication until at least one seizure is observed, the ideal treatment 

regime for Gabrb3+/D120N pups should begin at or shortly after seizure onset.  However, 

in this pre-clinical model we can begin treatment shortly after birth that can also aid in 

determining if there is a critical treatment window.  One of the caveats here is that the 

LGS patients have pharmacoresistant seizures and are on multiple anti-epileptic drugs 

26.  Thus, one of the expected outcomes is that early treatment of Gabrb3+/D120N pups 

may not reduce seizures in pups and/or adult mice.  Nonetheless, these experiments 

are worth pursuing. 
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5.2.3 Does reducing the slow background activity rescue cognitive deficits? 

If seizures can be rescued in Gabrb3+/D120N pups, another important question can be 

asked – can early treatment reduce or eliminate cognitive decline?  Cognitive and 

psychiatric comorbidities are well documented in almost all forms of epilepsy 27,28,29.  

This is especially true for EEs, including LGS, where seizures and interictal activity are 

considered the primary drivers of cognitive decline that begins shortly after seizure 

onset 30,31,32.  Implied in this notion is that reducing or preventing seizures should rescue 

the cognitive decline.  Indeed, children with late onset LGS (>8 years) have much better 

developmental and cognitive outcomes prior to seizure onset 33,34.  Additionally, LGS 

patients that show reduction in seizure frequency after surgical interventions also show 

cognitive improvements 35,36,37,38,39–41,42, but these benefits become less prominent as 

the time interval between seizure onset and surgery increases 43,44, a trend found in 

other EEs 45–48.  Consequently, there appears to be a critical window during which the 

developing brain is both susceptible to developing seizures and to recovering from 

seizures.  Treatment during this window may offer the most benefit for reversing 

cognitive and development decline.  Cognitive abilities in adult Gabrb3+/D120N mice that 

show seizure control can be tested using commonly used methods including Barnes 

maze and novel object recognition tests. 
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5.2.4 Which brain regions should be prioritized to examine neuronal networks 

engaged in generalized seizures of Gabrb3+/D120N mice? 

The Gabrb3+/D120N mice can assist in developing significant insights into the underlying 

neural networks that are recruited and possibly altered in LGS as mouse models of this 

syndrome have not been reported.  Being a rare disorder, only a handful of human 

studies have examined the brain regions activated during resting states and seizures in 

LGS patients.  Further, these studies often have low sample size (often ≤15-20), which 

in part may be due to difficulty in recruiting children who frequently have cognitive 

disabilities, thus limiting the ability to conduct studies in MRI scanners and/or with scalp 

EEGs.  Even though LGS patients display a range of etiologies with and without 

structural brain abnormalities, remarkably patients display fairly uniform types of 

generalized seizures.  Thus, common neuronal networks are likely recruited during LGS 

seizures, while the origin of abnormal neural activity may differ depending on the 

etiology.  Although there is considerable debate about the cortical versus thalamic 

origins of generalized seizures, the following discussion explores identifying key brain 

regions involved in LGS pathology that can serve as starting points for pre-clinical 

studies in animal models and does not focus on the seizure initiating region(s) per se.  

 

Cortex: Cortical involvement in generalized seizures in LGS patients is evident 

from EEG recordings.  Studies from the 1960s and 70s showed prominent SSWs in the 

frontal and frontocentral areas, and in some patients in the occipital regions 14,49.  

Recent functional neuroimaging studies reveal that both cortical and subcortical regions 
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are active during generalized seizures in LGS patients.  Positron emission tomography 

(PET) imaging studies measure glucose uptake as an indirect marker of neuronal 

activity.  PET studies in LGS patients show focal (that correlates with the structural brain 

abnormalities) or diffuse glucose hypometabolism 50–54, glucose hypermetabolism 50,55 

or normal 56 glucose metabolism predominantly in the frontal and temporal lobes, and 

infrequently in parietal lobes 56.  Simultaneous EEG and functional magnetic  

 

Figure 5.2: Schematic showing brain regions engaged in seizures and interictal 
epileptiform discharges in LGS patients.   
Based on PET and EEG-fMRI studies, the red bubbles show regions that are activated 
during seizures including motor, somatosensory, and visual association cortices, 
thalamus, brainstem, and the cerebellum.  The grey bubbles highlight regions that show 
hypoactivity, and include prefrontal cortex, and primary motor (M1), somatosensory 
(S1), and visual (V1) association cortices. 
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resonance imaging (fMRI) in LGS patients allows visualization of brain regions active 

during seizures and interictal events by measuring changes in blood oxygen level 

dependent (BOLD) response.  Both PET 39,57,58 and EEG-fMRI 48 studies in LGS 

patients show abnormal hypoactivity to be largely confined to association cortices in the 

frontal, temporal, and parietal lobes, typically sparing the primary sensory areas 

(primary visual and motor cortices), and hyperactivity in the thalamus in the resting state 

and during seizures.  In addition, Archer and colleagues found that interictal slow-spike-

waves (1-2.5 Hz) and generalized paroxysmal fast activity (10-15 Hz) reduced BOLD 

signal in the primary cortical regions and increased signal in the thalamus, while the 

paroxysmal fast activity increased BOLD signal in the association cortices, thalamus, 

brainstem, and basal ganglia, irrespective of the presence or absence of underlying 

epileptogenic lesions 59,60.  The authors further proposed that the epileptic seizures in 

LGS patients arise from amplification of neuronal activity due to unusual co-activation of 

the two inversely related networks with opposing cognitive functions, the 

attention/executive-control and default mode networks.  These findings corroborate 

numerous previous findings that normal brain functions and generalized seizures both 

engage thalamocortical circuits 32.  Thus, cortical structure, function, and networks 

should be further explored in Gabrb3+/D120N mice to understand LGS pathogenesis and 

to potentially rescue seizures. 

Thalamus:  Some LGS patients have seizure remission or reduction after 

surgical resection of cortical lesions 37.  However, in some LGS patients epileptic 

discharges did not initiate from cortical lesions 60, and their surgical removal did not 
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reduce generalized seizures 61.  Thus, it was concluded that at least for these patients, 

lesions interact with the underlying epileptic networks and aid in generation of seizures, 

but by themselves do not trigger seizures.  In support of this, recent studies with 

simultaneous EEG-functional magnetic resonance imaging (fMRI) studies have 

identified thalamus and brainstem as two key sub-cortical regions that are activated 

during seizures in LGS patients irrespective of the underlying etiology 59,60,62,63.  

Involvement of thalamus is not surprising since the thalamocortical system has been 

shown previously to be involved in other generalized epilepsies including absence 

epilepsy and GTC seizures 39,57,58.  Reciprocal interactions between thalamus and 

cortex are critical in the generation of spike-wave discharges characteristic of 

generalized absence seizures and have been extensively studied 64–67.  However, there 

are no known genetic models that have spontaneous atypical absence seizures, 

characteristic seizures in LGS patients and the most frequent seizures in Gabrb3+/D120N 

mice.  Of particular interest is the centromedian thalamic nucleus 63 that projects to 

cortical layers I (extensively) and III of the prefrontal and motor cortices and to nRT, 

basal ganglia, and hypothalamus 68,69.  Patients with strokes in this region perform 

poorly on cognitive tests 68, and its stimulation in patients with refractory epilepsies 

including LGS has been an effective treatment strategy, especially for treating atypical 

absence seizures 70,71,72.  Interestingly, Velasco and colleagues noted that in humans, 

atypical absence seizures do not originate in the centromedian nucleus, but rather they 

propagate through it 70,73–75,76.  They suggested that atypical absence seizures originate 

in the reticular thalamocortical systems, most likely in the upper mesencephalon.  

Additionally, a recent study showed enhanced connectivity between mediodorsal and 
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ventrolateral thalamic nuclei in LGS patients 63.  The mediodorsal nucleus is a higher 

order thalamic nucleus (receives major input from cortical layers V and VI, but does not 

receive sensory information) that extensively projects to prefrontal cortex and has roles 

in working memory 68,77.  The ventrolateral thalamic nucleus projects to the motor cortex 

and receives input from pallidum, cerebellum and red nucleus.  The role of this nucleus 

in seizure propagation is unclear.  

In the context of epilepsy, the ventral posterior nucleus that receives the 

somatosensory input has been studied extensively.  However, roles of the 

centromedian, mediodorsal, and ventrolateral nuclei in seizure generation have been 

reported in a handful of studies.  These three nuclei can synchronize cortical activity 

and imaging studies of LGS patients show their relevance during seizures and interictal 

events.  Thus, the potential role of these thalamic nuclei in Gabrb3+/D120N mice can be 

further explored to gain insights about the pathways involved in seizure generation and 

propagation.   

 

Brainstem: The brainstem has been repeatedly shown in animal models and 

human studies to be necessary and sufficient for tonic seizures 78–81.  For example 

stimulation of the pons produces tonic-like seizures in animals 82.  Furthermore, tonic 

seizures were seen in a hydranencephalic patient 74, were not prevented by corpus 

callosotomy 74, and were less responsive to resection of epileptogenic cortical regions 

74. 

Tonic seizures are seen in the vast majority of LGS patients and used as a 
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diagnostic criterion.  Further, increased BOLD signal in the brainstem during tonic 

seizures was seen in LGS patients and in the majority of IS/West syndrome patients 

(some of which frequently progress to LGS), regardless of the underlying etiology, 

medications used or other confounds 83,84.  Often brainstem and thalamus were both 

activated in LGS patients, so it is not clear which of these structure influences the other.  

Whether cortical hyperexcitability activates the thalamus that in turn engages the 

brainstem or whether the brainstem controls the thalamic activation via the reticular 

thalamic nucleus (nRT) and in turn induces cortical hyperexcitability 74.  Nonetheless the 

brainstem seems to be important in LGS pathogenesis and at least cursory examination 

should be performed given that adult Gabrb3+/D120N mice rarely have tonic seizures. 

 

5.2.5 Potential ways to examine cortical, thalamic, and brainstem dysfunction in 

Gabrb3+/D120N mice. 

 
Observations from human studies can be applied in a number of ways to study of LGS 

pathophysiology in Gabrb3+/D120N mice.  Three approaches are described here. 

 

1. Cortical microstructure/organization:  Brains of Gabrb3+/D120N mice look grossly 

normal in structure.  However, fine morphological changes in cortical layers and other 

brain regions are easy to miss just by visual observation.  In a study with 27 LGS 

patients who under went resective brain surgery, only high-resolution MRI revealed 

cerebral lesions in 85.2% patients 40.  Similarly, cortical abnormalities of the order of 
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100s of micrometers have been observed in mouse models after staining with layer 

specific markers 85,86  Cortical layers can be examined first using NeuN antibodies that 

label all mature neurons 87, followed by a few of the layer specific markers including 

RELN (neuropil of layer I), CUX1 (layers II-IV), BCL11B/CTIP2 (layers V and VI), 

FOXP2 (labels layer VI), CTGF (Layer VIb) 88,89.  The cortex should be evaluated more 

carefully looking for fine morphological changes that could only be visualized using 

cortical layer specific markers, as seen the autism model.  Additionally, special attention 

should be paid to regions that have dominant expression of β3 subunits including nRT, 

hippocampus, cerebellum, and the olfactory bulb 90–93. 

 

2. Interneurons: Changes in the number and/or localization of interneurons is a 

common finding in a number of neurological diseases and is especially relevant to 

epilepsy.  Thus, the distribution and number of Interneurons should be determined.  

Among the numerous interneuronal types, a good starting point can be to determine 

changes in parvalbumin (PV), somatostatin (SOM), and 5-HT3 receptor-containing 

interneurons that have been well studied.  In the context of GABAA receptor β3 

subunits, the PV interneurons are of special interest as a recent study showed that 

knocking out β3 subunits from hippocampal CA1 pyramidal cells impaired inhibitory 

synaptic currents from PV-, but not from SOM-, containing interneurons 77.  

Furthermore, the β3 subunits are among the first to be expressed during development.  

Loss of functional GABAA receptors during early critical developmental periods could 

affect migration and integration of interneurons in cortical circuits.  If interneuron defects 

are observed in Gabrb3+/D120N mice, the mice can be crossed with reporter mice 
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expressing fluorescent proteins in specific interneuron pollutions (PV, SOM, etc) 77 to 

facilitate identification of specific interneuron populations for functional studies. 

 

3. Circuit mapping: The two dominant seizure types in adult Gabrb3+/D120N mice are 

atypical absence seizures and myoclonic seizures.  In humans, deep brain stimulation 

of the centromedian nucleus is used as a target for treatment of refractory seizures, and 

it has been reported to be especially effective for treating atypical absence seizures 

70,71.  To understand key circuits involved in these generalized seizures, a commonly 

used approach of injecting recombinant viral vectors (such as AAV) expressing 

photoexcitable proteins (such as channel rhodopsin, halorhodopsin) and fluorescent 

reporter proteins can be utilized.  One approach could be to stereotactically inject 

channelrhodopsin and GFP expressing AAV in the centromedian nucleus and use depth 

light probes for optogenetic thalamic stimulation. 

Even though, myoclonic seizures are the most common seizures in juvenile 

myoclonic epilepsy (JME), brain regions involved in myoclonic seizures are not know 94.  

A few studies concluded that there were structural and functional abnormalities in the 

frontal lobes, but this is not been a consistent finding in JME patients, especially without 

neuropsychological deficits 95,96.  Thus, at this point, EEG using multielectrode array 97,98 

that covers large portions of the cortical surface can guide us to brain regions that have 

prominent activity during myoclonic seizures in adult Gabrb3+/D120N mice.  

 

Mediodorsal and centromedian thalamic nuclei:  Since stimulation of the 

centromedian thalamic nuclei is used as a therapeutic strategy to control atypical 
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absence seizures, electrical or optogenetic stimulation of this region can be used to 

determine if such effects can be reproduced in Gabrb3+/D120N mice, and whether the 

blocking of atypical absence seizures improves cognition.  Further, unlike other thalamic 

nuclei that project to cortical layer IV, the centromedian thalamus projects widely to 

cortical layers I and III of prefrontal and motor cortices, and basal ganglia.  Thus, if 

atypical absence seizures are indeed rescued by stimulating the centromedian 

thalamus, viral injections can be performed to express channelrhodopsin and 

fluorescent proteins to trace and stimulate its postsynaptic targets, and determine if 

excitatory synaptic inputs are altered.  This in an understudied region in epilepsy and 

reveals previously unknown pathways involved with generation of atypical absence 

seizures. 

The mediodorsal nucleus is a higher order thalamic nucleus that receives cortical 

information, has roles in learning and memory, and shows enhanced activation in LGS 

patients.  Thus, it can be determined directly whether learning and memory deficits in 

Gabrb3+/D120N mice can be reduced by repetitive electrical or optogenetic stimulation of 

this region, and can be assessed using the Barnes maze test before and after 

stimulation.  If there are learning and memory improvements, synaptic and circuit 

defects in the thalamocortical circuit could be further explored by measuring the 

excitatory and inhibitory postsynaptic currents in the cortex and the mediodorsal 

nucleus.  One major hindrance for these experiments would be the difficulty to 

accurately target the small and adjacent thalamic nuclei in Gabrb3+/D120N mice. 

 

4. Brainstem:  Since the adult Gabrb3+/D120N mice rarely have tonic seizures, it is not 
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clear whether brainstem dysfunction is present in this region that express β3 subunits.  

Of particular interest is the raphe nucleus in the brainstem that contains serotonergic 

neurons.  Serotonin metabolism defects have been reported in IS/West syndrome 

patients, however, both increased and decreased levels of serotonin have been 

reported 99–101, and serotonin depletion is used to induce IS in rodent models 102.  

Thus, serotonin levels from brain homogenates can be determined in P14-P17 

Gabrb3+/D120N pups using HPLC 103.  Further, brainstem activation has been reported in 

the majority of IS/West syndrome patients (that frequently progress to LGS) 83,84,76.  

The dorsal and medial raphe nucleus projects extensively to prefrontal cortex, and 

medial prefrontal cortex in turn projects back onto GABAergic neurons of the raphe 

nucleus.  While the caudal raphe nucleus projects to other brainstem nuclei.  Thus, 

this circuit can be examined for structural and functional defects using recombinant 

viral vectors and optogenetic tools 104,105.  The raphe nucleus can be a starting point to 

determine whether the serotonergic system or other brainstem nuclei are involved in 

generation of spasm-like seizures in P14-P17 Gabrb3+/D120N pups.   

 

5. Hippocampus: Involvement of the temporal cortex has been described in a few 

studies of LGS patients, but definitive activation of the hippocampus in atypical 

absence seizures or interictal epileptiform discharges has not been reported.  This is 

likely not due to the inability to detect hippocampal activation; the detection limit of 

both structural and functional imaging studies are well above the size of the 

hippocampus as demonstrated by the ability to detect activation of sub-cortical 

structures of comparable size during seizures and ability to identify cortical regions for 
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surgical resection.  In animal studies only Snead and colleagues have reported 

involvement of the hippocampus in the AY-9944 treated rat model of atypical absence 

seizures.  As LGS patients show severe learning and memory deficits, the 

hippocampus could be engaged during atypical absence seizures.  Furthermore, the 

hippocampus highly expresses β3 subunits, and thus, IPSCs in hippocampal 

pyramidal cells and interneurons should be explored further. 

 

Next, I discuss advances and barriers in translating molecular genetic findings, as well 

some ways by which these can be overcome.  

 

5.3 Advances in epilepsy: role of genetic testing 

Establishing an epilepsy diagnosis is a complex, time consuming, and expensive 

endeavor, especially for patients with neurodevelopmental, motor, and cognitive delays.  

A full work up often includes ordering MRI, EEG, metabolic and biochemical tests, 

biopsies, and genetic tests.  Prior to modern DNA sequencing technologies, genetic 

tests in the 1960-70s could identify large genomic changes such as chromosomal 

abnormalities via karyotyping (for example Down syndrome due to trisomy of 

chromosome 21106) and in the 1990s micro chromosomal deletions, duplications, 

inversion, and translocations could be identified via fluorescence in situ hybridization 

(FISH)107.  This was followed by an era of Sanger sequencing that lasted for about 30 

years 108, which could determine single nucleotide changes but was limited to 

sequencing single or few candidate genes, and is still used to verify mutations identified 
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by sequencing studies.  Even though slow and cumbersome, Sanger sequencing 

resulted in identification of several epilepsy gene mutations.  In 1995 a mutation in 

CHRNA4 that encodes the alpha 4 subunit of the nicotinic acetylcholine receptor, was 

identified as the first epilepsy gene in a large family with autosomal dominant nocturnal 

frontal lobe epilepsy (ADNFLE) 72.  This was followed by identification of numerous 

single gene mutations in ion channel and non-ion channel encoding genes in multiplex 

families including those encoding GABAA receptor subunits in 2001 109,110.  The next 

approaches were to identify causative variants that impart susceptibility to complex 

diseases using genome wide association studies (GWAS), but these were generally 

unsuccessful in epilepsy 111,112. 

The unparalleled success in the past decade has been due to advent of next 

generation sequencing (NGS) technologies, which allows parallel sequencing of millions 

of gene fragments from the entire exome or genome as opposed to the traditional 

Sanger sequencing of single gene fragments 113.  This transformed the pace of 

discovery from a few genetic findings in isolated patients/families to a virtual explosion 

of genetic findings from hundreds of patients.  The NGS platform became viable in 

research and clinical settings as they allowed sequencing of hundreds of patient 

genomes in a timely and cost effective manner.  Sequencing the first human genome 

(~3 billion base pairs) took 10 years 114,115 and about $500 million to $1 billion 116, while 

today a single patient genome can be sequenced in 3-4 weeks for about $300 to $1000.  

Thus, using NGS technology new epilepsy (and most human disease) associated gene 

mutations are being discovered on a weekly basis and are anticipated to grow 
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exponentially.  Several hundred genes have been implicated to cause epilepsy as the 

core disease, and additionally hundreds of genes are associated with neurological 

diseases that have seizures as a symptom 117.  Equal contributors to this revolution are 

the advances in computational methods that allow interpretation of the sequencing data 

such as calling variants from the patient genomes and comparing them to genomes of 

hundreds of unaffected individuals 118.  One of the most important outcomes of these 

technological advances in epilepsy has been the discovery that de novo mutations 

account for a substantial portion of non-inherited severe epilepsies and developmental 

disorders.  Additionally, monogenic epilepsies documented prior to NGS were of rare 

occurrence (1-2% of GGEs); currently they comprise a significant proportion of GGEs. 

Today, numerous genetic tests are accessible to patients that utilize the power of 

high-throughput NGS that include gene panels, whole exome sequencing (WES), or 

whole genome sequencing (WGS) to determine if the observed epilepsy phenotype 

results from gene mutations.  Among these, gene panels are used to screen genes with 

known roles in epilepsy, previous association with epilepsy, and/or are relevant to the 

patient phenotype.  Gene panels are relatively less expensive and typically have fast (3-

4 week) turnover time with high sequencing depth.  WES and WGS are most recent 

genetic diagnostic tests that allow examination of genetic changes at the level of single 

nucleotides in all human genes and offer an unbiased approach to determine which 

gene(s) can result in the epilepsy phenotype.  WES/WGS has been successful in 

identifying epilepsy-causing mutations in patients with no prior family history, absence of 

abnormalities in imaging and biochemical tests, and in patients with multiple phenotypic 
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features that overlap with other neurological disorders.  WGS is likely to capture all 

variations in genomic and non-exomic regions of mitochondrial DNA.  However, these 

tests are more expensive than a gene panel and take about 8-12 weeks to complete.  

There has been a considerable debate regarding the utility of WGS as a stand-alone or 

first-choice diagnostic tests as the interpretation of identified variant(s) can be uncertain, 

and currently WES is cheaper and faster than WGS 119,120.  However, recently a study 

examined this concern by carrying out WGS in 105 patients from whom previous gene 

panel results resulted either in identification of causative gene(s) or did not identify any 

associated gene(s) 121.  The authors found that the diagnostic yield of WGS was 

significantly higher (41%) compared to combined yield of gene panels and WES (24%), 

and that WGS reduced the need for multiple genetic tests without increasing the testing 

cost.  Thus, they provided a systematic comparison of gene panels and WEG/WGS and 

argue towards offering WGS as stand-alone and first-choice diagnostic tests.  A number 

of recent reports favor this view as WGS offers over all time and cost-savings (reduces 

need of multiple sequential genetic tests), and a more complete view of genetic 

changes 122–124.  Furthermore, the cost and speed of NGS techniques is constantly 

improving; thus WGS is going to be mainstream genetic test in the coming years.   

 

5.4 Translating genetic findings to epilepsy treatments: paths towards precision 

medicine. 

We are not in the era of precision medicine yet, and therapies for most diseases offer 

sub-optimal control of symptoms, do not alter disease outcome and have adverse 
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effects.  However, given the tremendous success in understanding genetic contribution 

of diseases and few successful treatment outcomes, we are at the cusp of the precision 

medicine era.  Precision medicine generally means identifying treatments that meet 

needs of groups of patients based on their genetics, environment, lifestyle, etc.  It is 

thought that precision medicine would eventually move us towards personalized 

medicine i.e. treatments specifically designed towards an individual.  One of the first 

reports of epilepsy precision medicine includes repurposing quinidine, a drug used for 

the treatment of cardiac arrhythmias, for the treatment of epilepsy in patients with KCNT 

gain of function mutations identified vis WES 125–127.  In the first report the 

KCNT1(R428Q) mutation was identified in a patient with migrating partial seizures of 

infancy (MPSI), which typically has drug resistant seizures, poor developmental 

outcomes, and early mortality 126.  This identical mutation had been previously reported 

in three patients with MPSI 128.  In vitro examination showed that quinidine reversibly 

blocked mutant KCNT1 potassium channels and partially restored potassium currents to 

wild-type levels 129.  Quinidine treatment in the MPSI patient showed marked 

improvements with seizures occurring only during periods of intercurrent illness and 

improved developmental outcomes 126, while nine traditional AEDs were ineffective.  

Following this remarkable recovery, quinidine treatment has been tried on two other 

patients with drug resistant severe childhood epilepsies and gain of function KCNT1 

mutations 127.  One of the patients had the KCNT1(K629N) mutation and epilepsy of 

infancy with migrating focal seizures (EIMFS), and the second patient had the 

KCNT1(Y796H) mutation and nocturnal seizures.  Following quinidine treatment the 

patient with EIMFS showed 80% reduction in seizure frequency (8 AEDs and ketogenic 
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diet previously failed), while the patient with nocturnal seizures did not improve (12 

AEDs and ketogenic diet previously failed).  The reasons for this discrepancy are not 

clear.  More perplexingly is the fact that the in vitro results are opposite to the clinical 

results.  The KCNT1(K629N) mutation increased potassium currents more prominently 

than the KCNT1(Y796H) mutation, and concordantly quinidine only marginally restored 

currents from KCNT1(K629N) to wild type levels compared to KCNT1(Y796H) channels 

127.  While we do not know the expression levels of KCNT1 channels in both patients, 

they underwent WES and only KCNT1 mutations were identified.  The authors offer few 

reasons for the varying results including the plasma levels of quinidine and drug 

interactions, but limited data prohibit any conclusions.  These mixed results urge more 

targeted therapies for KCNT1 epilepsies and cautions against early use of quinidine; 

nonetheless, if other treatments fail, trying quinidine seems worthwhile.  Another 

successful report demonstrating utility of precision medicine in epilepsy is the use of 

memantine, a FDA-approved use-dependent NMDA receptor channel blocker, to treat a 

patient with EE and a gain-of-function GRIN2A(L812M) mutation.  Prolonged 

memantine treatment significantly reduced seizure frequency in this child 130. 

The discovery of monogenic epilepsies with highly penetrant and deleterious de 

novo mutations and few positive results has further fueled the optimism of treating 

individuals based on their genetic diagnosis.  The futuristic proposal in this view also 

includes pharmacogenetics, i.e. examining drug response based genetic findings, 

specifically how a particular variant would alter drug responses, and pharmacogenomics 

i.e. how all gene variants on a given genetic background responds to drugs.  However, 
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this would require precise understanding of mechanisms of drug action and how a 

specific genetic variation on a given genetic background would respond to it.  Next, I will 

discuss a few barriers to reaching precision medicine objectives and some ways to 

overcome them. 

 

5.5 Road blocks to precision medicine 

Precision medicine therapies require a detailed picture of genetic epilepsy 

pathogenesis.  Although, not necessary for all patients, understanding the 

contribution of mutated genes/proteins at the cellular and neuronal network levels 

holds the most promise for the targeted treatments.  Primary factors that hinder 

clinical implementation of precision medicine approaches even after a definitive 

genetic diagnosis is achieved are discussed below.  It should be also noted that with 

our current understanding of the mechanisms of epilepsy pathogenesis, precision 

medicine therapies cannot be applied to all genetic findings. 

 

5.5.1 Data interpretation bottleneck: lack of actionable knowledge despite a 

wealth of information. 

We live in times of unprecedented growth in genetic findings from patients and 

unaffected individuals.  Hundreds of epilepsy mutations have been identified by NGS 

and new mutations are being discovered each day.  Collectively this appears to be a 

flood of seemingly unrelated genetic information.  The biggest impediment in epilepsy 
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genetics is interpretation and clustering of results from numerous studies in meaningful 

ways (by gene, function, disease, etc) 130.  A clinical diagnosis that identifies a gene 

mutation often has no actionable treatment modifications.  In practice, information from 

clinical diagnosis, genetic analysis, functional validation, and results from model 

systems are determined by diverse individuals that often never communicate with 

each other or are aware of the results at each level.  For precision medicine to be 

useful in everyday clinical practice, a centralized information hub that allows easy 

access to query genetic and functional data in different ways is essential.  This massive 

and expensive bioinformatics endeavor would necessitate international multicenter 

collaborations.  Online Mendelian Inheritance in Man (OMIM, https://www.omim.org/) is 

a public database that clusters published literature on a particular gene, its function, 

associated diseases, mutations, functional studies, and much more.  This site is 

primarily designed for physicians, researchers, and experts who seek information 

pertaining to genetic disorders.  Vanderbilt University's 'My Cancer Genome' 

(https://www.mycancergenome.org/) is an excellent example of a hub that provides 

current information on cancer mutations, their therapeutic implications, and associated 

clinical trials and is user-friendly for experts and non-experts.  Such efforts are paving 

the way forward for precision medicine to be mainstream.  

 

5.5.2 Functional validation 

The rate of discovery of epilepsy genes has the pace of a cheetah, while that of 

understanding its functional impact is that of a snail.  This is because the current 
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bioinformatics software functional predications are quite reliable in determining 

whether or not the protein function will be disrupted, but not how the protein function 

will change (gain or loss of function, and to what degree, unexpected results of the 

mutations, shift in molecular interactions, etc).   This functional discovery bottleneck 

has tremendously decelerated our ability to measure the pathological impact of gene 

mutations, their contribution to disease phenotypes, and translation of these findings 

to clinical practice.   

Several factors hinder translation of genetic findings to useful therapies.  For 

example, numerous epilepsy mutations result in loss of function.  Although, not 

always true, in general loss of function or haploinsufficiency of the native protein is 

hard to correct compared to gain of function.  Developing subunit specific 

potentiators/activators is extremely difficult compared to a global blocker of gain-of-

function mutant proteins and their subtypes.  Further, non-ion channel epilepsy 

mutations are hard to incorporate in precision medicine and are not targets of traditional 

epilepsy therapies.  CDKL5, LGI1, PCDH19, STXBP1,TCF4, etc are few in the 

expanding list of non-ion channel epilepsy associated genes 130.  An example of a non-

ion channel gene targeted by precision medicine treatment includes that of Everolimus 

(inhibitor of mammalian target of rapamycin (mTOR)) in tuberous sclerosis 131 but with 

limited success; further examples may appear at a slow pace.  In addition, not all 

mutations are in protein coding genes, and effects of mutations in non-coding RNA, 

introns, intron splice sites, and 3’/5’ untranslated regions or CNVs are often hard or 

not feasible to study.  Functional studies based on WGS may provide ways to test the 
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effects of mutations in non-protein coding genes and other genomic elements that 

constitute approximately 99% of the human genome.  

 
Several approaches are currently being implemented or pursued to increase the 

pace of functional analysis of mutant proteins.  High-throughput screening of 

compounds in heterologous cell lines and neurons expressing mutant proteins is most 

promising for ion channel mutations 132–134.  However, for outcomes to be reproducible, 

at least some of the results need to be confirmed by manual patch clamp, which is 

considered a gold standard technique.  Besides, screening several hundreds of known 

drugs on multiple mutant proteins (http://www.drugbank.ca/stats) can increase the 

combination of drug-mutant protein testing by several fold, making the experimental 

screening exhaustive or in some instances unfeasible.  Computational drug design and 

virtual screening may reduce burden of exhaustive screening efforts and novel drug 

target validation 135–137.  The lack of complexity of interconnected neurons and the 

inability to test off-target side effects limit the utility of these reductive cell culture based 

assays beyond the initial screening step.  In contrast, rodent models of acquired and 

genetic epilepsies are low throughput but retain high complexity.  Of course, rodent 

models for each mutation cannot be generated and screening neurotherapeutics in 

them is several hundred-fold slower.  Also, off-target effects in animal models are often 

measured by simple metrics and behavioral readouts that may fail to discern the 

underlying deficits vs off-target effects.  Further, since rodents are meticulously inbred 

to get rid of inter-animal variation, they cannot recapitulate differences in drug 

responses due to genetic variations in the same strain.  Even with these caveats, 
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rodent models have tremendously advanced understanding the pathophysiology of 

epilepsies and still play a vital part in neurotherapeutic research.  

Newly developed drug high throughput screening tools include patient-derived 

organoids 138 and induced pluripotent stem cells (iPSCs) 139,140,141, and zebrafish models 

of genetic epilepsy 142.  These model systems retain some complexity of the nervous 

system and provide testing off-target effects and toxicity at a pace that is more 

conducive with the current pace of epilepsy genetic data generation.  Additionally, they 

can be used for precision medicine.  However, they have their own caveats but can 

complement conventional rodent models with each providing insights where the other 

has limitations.  Together, these models can deliver precision medicine therapies at a 

faster pace compared to traditional approaches.  

 

5.5.3 Complexity of epilepsy genetics: lack of genotype-phenotype correlations. 

The complexity of genetic architecture of epilepsy, though well recognized, has been 

exemplified by NGS studies.  Efforts to develop precision medicine for epilepsy have 

been limited by the complexity of the underlying genotype–phenotype correlations.  

Prior to genetic findings from NGS, it was well known that the phenotypic expression 

and severity of symptoms even for monogenic epilepsies among family members 

depends on the dominant gene mutation(s) as well as the genetic background, 

modifier genes, life style, and environmental factors.  For the nervous system this 

also depends on cell-cell interactions and network-level integration, especially during 
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development.  Now, with numerous gene mutations identified in epilepsy patients by 

NGS, especially those without a family history, highlight that (1) mutations in the 

same gene can result in a spectrum of epilepsy syndromes (or even different 

neurodevelopmental diseases), and (2) that a particular epilepsy syndrome can occur 

by mutations in different genes 143,144.   

Prior to the WES era GABRB3 mutations were identified in families with 

relatively mild epilepsy, CAE.  GABRG2 and GABRA1 mutations were associated 

with severe epilepsy syndromes, and GABRB2 mutations were not reported.  As 

GABRB2 encodes the dominant β2 subunits of GABAA receptors that are ubiquitously 

expressed in the nervous system, it was not clear whether β2 subunits could 

compensate for dysfunctions resulting from GABRB3 mutations.  However, findings 

from the Epi4K consortium clearly demonstrated that GABRB3 mutations can be 

associated with severe EE syndromes.  Now several publications report the GABRB3 

mutations in a spectrum of epilepsy syndromes including IS/West syndromes, LGS, 

DS, myoclonic-astatic epilepsy, FS, GEFS+, and other EEs 6,145–147.  Similarly, the 

phenotypic spectrum of GABRA1 148,149,150 and GABRG2 151–153 has also expanded.  

Currently, other than the influence of modifier and susceptibility genes (genetic 

background), we do not have good models that explain how different mutations in the 

same gene result in such vastly different epilepsy syndromes.  For example, in our 

laboratory we have generated Gabrb3+/P11S, Gabrb3+/N110D, and Gabrb3+/D120N mice, 

which harbor mutations identified in patients with CAE, IS, and LGS.  All three KI mice 

are on C57Bl/6 background with vastly different seizure semiologies and behavioral 
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comorbidities.  Differences in GABAA receptor dysfunctions seen in in vitro and brain 

slices do not sufficiently explain such degree of phenotypic differences, and is quite 

perplexing.  On the other hand, Dravet syndrome (DS) is an exemplar of monogenic 

epilepsies in which ~70-80% cases have a mutation in SCN1A, the majority of which 

are de novo missense mutations.  Recently, GABRA1 mutations have been reported in 

DS patients, and its genetic causes continuously expand with mutations in identified in 

GABRG2, GABRA1, SCN2A, SCN8A, SCN9A, HCN1, STXBP1, PCDH19, HCN1, 

KCNA2, and others.  This genetic complexity in epilepsy makes it difficult to predict 

responses of precision medicine treatments.   

Furthermore, we are just beginning to understand the natural variations in 

healthy individuals.  Human genetic backgrounds are extremely diverse and more than 

10 million SNPs have been identified in human genomes, some of which are 

nonsynonymous SNPs and predicted to be deleterious 138.  Thus, further research 

would reveal what regulates fitness vs disease susceptibility. 

 

5.6 CONCLUSIONS 

In conclusion, work presented in this thesis is a continuation of the efforts to understand 

the effects of genetic mutations in human epilepsies.  Specifically, my research provided 

empirical evidence that the five GABRB mutations identified in EE significantly disrupted 

GABAA receptor function, thus confirming their role in EE pathology. Further, I examined 

the impact of one these mutations, GABRB3(D120N), in a KI mouse model and found 

early seizure onset and adult seizure semiologies similar to that of LGS patients.  In the 
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absence of genetic models of LGS, this is a significant advance in the field and a 

promising starting point to examine the complex role human epilepsy mutations play in 

epileptogenesis during and after development.  We hope this, and other EE models, 

also serve as drug screening modalities for pharmacoresistant epilepsies, especially 

those that can be targeted during childhood. 
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