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CHAPTER I 

 

INTRODUCTION 

 

Hypothesis testing is one of the main elements of scientific inquiry. While many 

traditional hypothesis tests are aimed at showing that two parameters from two 

populations are different from each other, showing that two parameters are the same has 

increasingly received attention. For example, a researcher might want to show that IQ in 

two clinical populations is the same or that the correlations between the outcomes of two 

achievement measures are the same for male and female 8th graders. Whether we want to 

test that two means, variances or covariances are practically equal, the development of 

adequate methods to do so has only gathered momentum in the past 30 years. 

 

Accept-Support and Reject-Support Testing 

Scientific progress in the social sciences as well as many other areas of science is 

measured by the quality of its theories. Quality of a theory is based on whether it can be 

falsified, how much it explains compared to other theories and how much it explains 

overall. 

Often a researcher sets one theory against another by comparing “null and 

alternative” hypotheses that are implied by each theory. The alternative hypothesis is the 

one implied by the  

researcher’s preferred theory, and data that speak against the null provide evidence in 

favor of the preferred theory. The term Reject-Support (RS) testing highlights the fact 
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that the researcher’s hypothesis will be supported when he/she is able to reject the null 

hypothesis. Research hypotheses are often expressed as hypotheses about the value of a 

parameter (or parameters), the classical example being  

 0 : and  :aH a H aθ θ= ≠  (1) 

for some parameter θ  of the distribution of interest. An equally well known but slightly 

more complicated example, which is our focus in this study, compares two parameters. 

We can ask ourselves by how much two parameters differ, i.e. how big is the difference 

between 1θ  and 2θ . The null and alternative hypotheses can then be stated as follows: 

 0 1 2:H aθ θ− =  (2) 

and  

 1 1 2:H aθ θ− ≠ . (3) 

If we set 0a = , we are testing the hypothesis whether 1θ  and 2θ  are equal.  

In many areas of application, a statistical null hypothesis that consists of a point 

value (in this case 0), such as in Equation (2), is virtually certain to be false, if only by a 

small amount. For example, in the behavioral sciences, most psychological manipulations 

have some effect. Consequently, whenever the null hypothesis consists of a point value, it 

can always be rejected if the sample size is large and therefore the degree of precision 

high enough. On the other hand, this means that a point value hypothesis can never be 

shown to be precisely true. Sometimes, however, the researcher wishes to show that a 

certain point hypothesis is effectively true, in the sense that the true parameter in the 

population is so close to some point value that the amount by which the null hypothesis is 
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false has no practical significance. In our case, he or she might want to show that two 

means are equal, i.e. the difference between them is zero. The hypothesis that the two 

means are equal is almost certainly false in the strict sense. However, it may well be true 

in the practical sense that the difference between the two means is trivial.  

This raises a key question. How can you show that the difference between two 

means is trivially small?  One early attempt at accomplishing this was Accept-Support 

(AS) testing. AS testing keeps the same null and alternative hypothesis as above 

(Equations (2) and (3)) but reverses the researcher’s intentions. Conducting the exact 

same statistical procedures, the researcher now wishes not to reject the null hypothesis. 

As mentioned before, the probability of not rejecting the null hypothesis and deciding 

that the two means are equal will decrease and go towards zero when precision increases, 

no matter how small the difference between the two means. The higher the precision of 

the test – and with that power – the more likely is the rejection of 0H  and the researcher 

who does not want to reject will be punished for the high precision gained in the 

experiment.  

Therefore, the best way to guarantee keeping a favored null hypothesis when 

employing  Accept-Support testing is to maintain low precision in your study, either by 

having small sample sizes or a lot of variation due to error, i.e. a sloppy experiment.  

In order to guard against researchers (either intentionally or inadvertently) 

affirming a null hypothesis by conducting low-power experiments, alert journal editors 

and reviewers generally adopted what might be called the power approach (e.g., 

Schuirmann, 1987). The power approach still follows accept-support testing logic, 

however, it requires the researcher to establish a minimum power of 0.8 for detecting an 
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effect that would be considered non-negligible. A value Δ  is chosen that reflects the 

minimum departure from zero which will no longer be accepted as trivial. When 

executing the test, the probability of detecting a difference that is equal to or larger than 

Δ  should be at least 80%. The Power Approach will ensure that experiments are carried 

out with satisfactory care, however, the logic of the testing process itself stays flawed. If 

we only require power to be secured at 0.8, any further precision is still acting against the 

researcher’s interests because it will increase the probability of rejection. Schuirmann 

(1987) gives an excellent discussion of the above-mentioned logical flaws. A solution to 

this dilemma is suggested by Equivalence Testing. 

 

Equivalence Reject-Support testing 

Equivalence testing, introduced some 30 years ago in the field of pharmaceutical 

research (Westlake, 1972), is a feasible alternative to accept-support testing that has 

received increasing attention in the social sciences in the past decade (Cribbie, Gruman, 

& Arpin-Cribbie, 2004; Rogers, Howard, & Vessey, 1993; Seaman & Serlin, 1998; 

Stegner, Bostrom, & Greenfield, 1996).  Equivalence testing chooses new null and 

alternative hypotheses: 

 0 1 2 0 1 2:  and :
a b

H Hθ θ θ θ− ≤ −Δ − ≥ Δ  (4) 

 

 1 1 2:H θ θ−Δ < − < Δ  (5) 

 



 5

The new null hypotheses state that there is a minimum difference of at least some 

amount Δ  between the two parameters whereas the alternative hypothesis states that the 

actual difference is smaller than Δ . We are interested in deciding whether the difference 

between the two parameters, 1 2θ θ−  lies inside the interval [ ],−Δ Δ  represented by the 

statistical alternative hypothesis, or in the null hypothesis region ( ] [ ), ,−∞ −Δ Δ ∞∪ . 

Notice that the null hypothesis in this case is composed of two parts a and b. This change 

in hypotheses allows us to test for practical equivalence using reject-support testing 

logic, which will reward high precision and has a much higher logical congruence with 

the research intention of establishing equivalence. A more detailed discussion of the test 

statistics and procedures for equivalence testing will be given in subsequent sections.  

Previous applications of equivalence testing in the social sciences have focused 

mainly on the difference between two means; an extension of this technique to the 

difference between two correlations is the topic of this study. My goal is to portray as 

completely and accurately as possible the different aspects of conducting an equivalence 

test of the difference between two correlations utilizing confidence intervals. As in 

traditional hypothesis testing, the test between null and alternative hypothesis in 

equivalence testing can be substituted by constructing a confidence interval and 

following certain decision rules. This will be described in more detail in subsequent 

sections. We chose to investigate confidence intervals because, as opposed to a 

significance test by itself that only tells whether the null hypothesis can be rejected or 

not, they provide information on the precision with which the parameter has been 

estimated. However, confidence intervals have several important properties, and there has 

been some controversy about which particular confidence interval provides the best and 
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most balanced optimization of these properties when used for equivalence testing. This 

point of investigation has already spurred discussion some 30 years ago. 

This study is divided into two main parts. First I describe properties such as 

confidence coefficient, bias, and width of three interval procedures that could be used to 

replace the classical equivalence test. Secondly, I apply the confidence interval procedure 

of my choice to correlational equivalence testing and examine its performance using 

Monte Carlo analyses.  
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CHAPTER II 

 

EQUIVALENCE TESTING WITH CONFIDENCE INTERVALS 

 

Properties and Philosophy of Equivalence Testing 

Although equivalence testing is RS testing, it features some properties that are 

new to most readers and deserve proper explanation in order to be fully understood. Since 

others have used other symbols and terminology for the interval [ ],−Δ Δ  that constitutes 

the alternative hypothesis, I would like to make some references to other publications and 

clarify in order to prevent possible confusion. The interval [ ],−Δ Δ  has been referred to 

as an equivalence interval (e.g., Cribbie et al., 2004; Schuirmann, 1987). However, I find 

this terminology confusing because the usage of the word “interval” in psychological 

methods suggests to many readers that the region has been generated by a statistical 

procedure. Therefore, in what follows, I refer to [ ],−Δ Δ  as the equivalence region.    

For both the lower and the upper bound of the equivalence region, I use the same 

symbol Δ , while others have named the bounds of the equivalence region 1δ  and 2δ  (or 

1C  and 2C ), thereby allowing for the possibility that the lower and upper end of this 

interval are not equal in absolute value, i.e. 1 2δ δ≠  (Rogers et al., 1993; Schuirmann, 

1987; Westlake, 1976). For the purpose of this study and for the sake of simplicity and 

comprehensibility, we assume that the equivalence region is symmetric about zero, i.e. 

−Δ = Δ . This does not take away much from the generality of the study, since the 

reader will soon learn that an equivalence region symmetric about zero is the most 
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common and useful option. Therefore, in this discussion, I use only one symbol Δ  for a 

value greater than zero. The lower bound for the equivalence region will be designated by 

−Δ . 

 

How to choose the Δ  

When we would like to show that two parameters are sufficiently close together, 

we need to decide what “sufficiently close” means. This is obviously a question that can 

only be answered based on the meaning the scale has in a specific area or on previous 

research. For two groups of children a difference of 3 IQ points might be close enough to 

say that the groups are equally smart. In another setting, the difference between 5 IQ 

points might be important enough that we will not declare practical equivalence. 

Originally, equivalence testing was developed for comparing two drugs or two 

formulations of the same drug in pharmaceutical research. The question of interest was 

often how fast two drugs dissolve into the blood system and when the difference between 

the two drugs was equal to or less than 20%, they were often considered to practically 

dissolve equally fast.  

In several papers (e.g. Phillips, 1990), possibly in an attempt to replicate the 

formulation of equivalence bounds from pharmaceutics, equivalence bounds were 

established using percentages of the mean, resulting in statements like “any value within 

20% of the value of mean will be sufficient for practical equivalence.” Obviously, 

generating equivalence bounds this way only has a meaning if the scale we are measuring 

on has an absolute zero, i.e. is a ratio scale. Most measurements in Psychology are made 

on pseudo interval scales with mainly arbitrary mean and variance. A statement like 
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“20% within the mean” then is only meaningful if the size of the variance/standard 

deviation is taken into account. As an example, assume that we are measuring IQ in two 

different schools, and would like to assess whether IQ is practically the same in those 

schools. IQ measures are well studied, and so we can generally assume that the 

population has a mean of 100 and a standard deviation of 15 before actually looking at 

the sample data. To state that the two populations have practically equal means if 2x  lies 

within 20% of 1x  would render a very wide equivalence region of approximately 40 

points, which on average will contain almost 82% of the general population. 

The problems outlined above might suggest using standardized effect sizes to 

establish equivalency bounds when the scale on which we are measuring the variable or 

construct of interest does not have an inherent meaning (in fact, Phillips indirectly 

constructs power curves with respect to standardized effect sizes). A number of authors 

have discussed typical values for “small,” “medium,” and “large” effect sizes (Cohen, 

1962; Sedlmeier & Gigerenzer, 1989), and the researcher might set up a Δ  according to 

these suggestions. Nevertheless one should keep in mind that it depends on the field of 

research what constitutes a small or a medium effect size or what effect size seems 

meaningful in a given study. 

The discussion of what constitutes a meaningful Δ  is complex and not the focus 

of this study and for now I would like to assume that we were able to come up with a 

number Δ  as a limit for “sufficiently close”. Once such a Δ  has been chosen, we will be 

able to say: If the parameter for our second group ( )2θ  lies within Δ  of the parameter for 

our first group ( )1θ , the parameters for the two groups will be sufficiently close to 
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consider them practically equal. This the same as saying that the two parameters can be 

considered practically equal if their difference lies within the interval [ ],−Δ Δ . 

 

α Level in Equivalence Testing 

The null hypothesis in equation (4) consists of two parts, namely 0 a
H  and 0b

H , 

that both need to be simultaneously rejected if we want to decide in favor of the 

alternative hypothesis. When the null hypothesis consists of several partial null 

hypotheses that simultaneously need to be rejected in order to reject the overall null 

hypothesis, this is called an intersection–union test. 

Calculating t–statistics, we will reject 0a
H  when  

 
( )

1 2

1 2

,
ˆ ˆ

ˆ ˆ
t

s α ν
θ θ

θ θ

−

Δ + −
≥ . (6) 

Equivalently, we will reject 0b
H  when 

 
( )

1 2

1 2

,
ˆ ˆ

ˆ ˆ
t

s α ν
θ θ

θ θ

−

Δ − −
≥ , (7) 

where ν  are the degrees of freedom.  

If we are able to reject both 0a
H  and 0b

H , we can assume that the true difference 

1 2θ θ−  lies within the interval [ ],−Δ Δ , i.e. that the two parameters 1θ  and 2θ  are 

equivalent for all practical purposes. This procedure is called the Two One-Sided Tests 

procedure (TOST) (Schuirmann, 1987). Note that each individual hypothesis test is 
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executed at the -α level. This does not result in an overall 2 -α level test, since for 

intersection–union tests the following holds:  

Theorem 1: An intersection–union test where the thi  null hypothesis 0i
H  is tested 

at the -iα level and has rejection region iR  such that the overall rejection region is 

i
i

R R= ∩  has overall -α level equal to sup i
i

α  (see, e.g. Berger & Hsu, 1996; Casella & 

Berger, 2002, page 395).  

For example, if we test each hypothesis separately at the .05 level, the test of the 

overall null hypothesis that the difference between 1θ  and 2θ  is at least Δ  is a level .05 

test. To see more clearly why the overall -α level is no greater than the greatest 

individual -α level in the equivalence testing situation, we need to realize that the true 

parameter does only have one value and can lie in only one of the two null hypothesis 

regions. Hence, when we commit a Type I error, we can only commit it at the -α level of 

the null hypothesis region the true value lies in. If we wrongly reject 0a
H  (and 1 2θ θ−  

lies in ( ],−∞ −Δ ), we cannot at the same time wrongly reject 0b
H , since 1 2θ θ−  does not 

lie in [ ),Δ ∞  and vice versa. 

 

Replacing Hypothesis Tests by Confidence Intervals 

In the general introduction I have mentioned that the simultaneous test of 0 a
H  

and 0b
H  can be replaced by a confidence interval procedure. The correspondence 

between confidence intervals and hypothesis tests is not new. It is standard in 

introductory statistics courses to note that in the traditional hypothesis testing situation, 
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when 0 :H aθ = , constructing a 95% confidence interval around the parameter estimate 

allows the following conclusions: if the confidence interval includes the null hypothesis 

value a, 0H  cannot be rejected, if it does not, it can. 

In equivalence testing, the situation is similar to traditional hypothesis testing, 

however, it is not quite the same. In order to understand the construction of the two-sided 

confidence interval that will reach the same conclusions as the two hypothesis tests from 

Equations (6) and (7), reconsider Theorem 1. The rejection region is the subset of the 

parameter space that will lead to a rejection of the overall null hypothesis. In equivalence 

testing, the null hypothesis is divided into two parts, each of which is tested at the 

-α level and the rejection region for 1 2
ˆ ˆθ θ−  will be 

 , ,,t s t sα ν α ν⎡ ⎤−Δ + Δ −⎣ ⎦ , (8) 

i.e. we reject the overall null hypothesis if 1 2
ˆ ˆθ θ−  lies inside , ,,t s t sα ν α ν⎡ ⎤−Δ + Δ −⎣ ⎦ . This 

is equivalent to saying that we will reject the overall null hypothesis if and only if the 

interval  

 ( )1 2 ,
ˆ ˆ t sα νθ θ− ±  (9) 

lies in the equivalence region [ ],−Δ Δ . The interval in equation (9) is a 1 2α−  confidence 

interval with lower bound  

 ( ) ( )1 2 ,
ˆ ˆL t sα νθ θ= − −X  (10) 

and upper bound 
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 ( ) ( )1 2 ,
ˆ ˆU t sα νθ θ= − +X , (11) 

where ( )L X  and ( )U X  are more formally defined to be the lower and upper bound, 

respectively, of an equivariant confidence interval (or, equivalently, a confidence set). 

The term equivariant emphasizes that for each ( )L X  and ( )U X , the same size α  is 

used, thus making the confidence interval symmetric about the parameter estimate when 

the sampling distribution is symmetric. For the remainder of the study, traditional 

confidence intervals are assumed to be equivariant. Note that the interval limits, ( )L X  

and ( )U X , are random variables. Therefore, ( )L X  and ( )U X  have distributions on 

their own. 

Obviously, if we were to constructed an equivariant 1 α−  confidence interval 

around the parameter estimate, it would reject e.g. 0a
H  at the / 2-α  level. Although the 

hypothesis test is conducted at the -α level, the corresponding traditional two-sided 

confidence interval is not a 1 α−  confidence interval as in the traditional case.  

This non-correspondence between -α level of the hypothesis test and size of the 

confidence interval has inspired the construction of other confidence intervals and 

procedures (Anderson & Hauck 1983; Berger & Hsu, 1996; Rocke 1984; Seaman & 

Serlin, 1998; Tryon, 2001; Westlake,1972; Westlake, 1976) which are supposed to 

replace the TOST. We will see in a later section that many equivalence testing procedures 

tend to be conservative when the standard error of the parameter is large compared to the 

equivalence region. Others (e.g. Anderson & Hauck, 1983; Rocke, 1984) have been 

shown to be too liberal when the standard error of the estimate becomes large 

(Schuirmann, 1987). The attempt to find more powerful procedures has motivated much 
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of the research efforts on equivalence testing, however, in my opinion some aspects of 

the new procedures that include utilizing confidence intervals have not received sufficient 

attention. An in-depth discussion of the advantages and caveats of utilizing confidence 

intervals in equivalence testing is yet to be found in the present literature. In order to 

justify a preference for one of the available procedures, I try to give a well-founded 

argument mainly focusing on the 1 2α−  confidence interval as well as two symmetric 

confidence intervals suggested by Westlake (1972, 1976) and Seaman and Serlin (1998), 

all of which control type I error at or below the nominal -α level when used to test the 

null hypothesis from Equation (4). 

 

Three Suggestions for Replacing the TOST with Confidence Intervals 

The following discussion of three confidence intervals that can be used to replace 

the TOST procedure is based on testing the equivalence of the difference between two 

means. Conclusions from such a discussion will then be adapted to provide an adequate 

technique for correlational equivalence testing. 

Assume that for two experimental conditions, you have found two independent 

sample means 1X  and 2X , the estimates for the means of a standard condition 1μ  and a 

new condition, 2μ , with sample standard deviations 1s  and 2s . Let’s further assume the 

sample sizes in group 1 and 2 are 1n  and 2n , respectively and that  

 
1 2

2 2
1 2 1 1 2 2

1 2 1 2

( 1) ( 1)
2X X

n n n s n ss
n n n n−

⎛ ⎞⎛ ⎞+ − + −
= ⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠

 (12) 
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is the estimate for the standard error of the difference between the means. Our parameter 

estimate 1 2
ˆ X Xθ = −  and the standard error 

1 2X Xs −  will be the same for all three intervals.  

I have already explored the possibility of replacing the TOST with a traditional 

1 2α−  confidence interval, however I would like to restate Equations (10) and (11) in 

terms of the difference between two means. The traditional equivariant 1 2α−  or 1 α−  

confidence interval is given by 

 ( ) ( ) ( )
1 21 2 , / 2,or t X XL X X s t tα ν α ν−= − −X  (13) 

and   

 ( ) ( ) ( )
1 21 2 , / 2,or t X XU X X s t tα ν α ν−= − +X . (14) 

The first to suggest an alternative to such a procedure was Westlake (1972, 1976), 

who proposed a 1 α−  confidence interval that is symmetric around zero; this interval is 

predominantly running under the title symmetric confidence interval in the literature. The 

symmetric confidence interval for the difference between two means can be constructed 

as follows:  

Since the interval is symmetric around zero, we have ( ) ( )w wL U= −X X . In order 

to find ( )wL X  and ( )wU X  with 

 ( ) ( )
1 21 2 1w X XL X X k s −= − +X  (15) 

 and 

 ( ) ( )
1 21 2 2w X XU X X k s −= − +X , (16) 
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where 1k  and 2k  are values from the t-distribution with ( )2 1n −  degrees of freedom, 1k  

and 2k  need to fulfill two conditions:  

 ( )1 2 0.95TP k T k< < =  (17) 

and  

 
( )

1 2

1 2
1 2

2

X X

n X X
k k

s −

−
+ = . (18) 

The values for 1k  and 2k  cannot be found analytically — they have to be either 

interpolated from a table or found with the help of a mathematical package. Westlake 

(1976) proves that the symmetric confidence interval will cover the true parameter at 

least ( )100 1 α− % of the time. For both the traditional 1 2α−  CI and Westlake’s 

confidence interval, we will reject the null hypothesis of non-equivalence if the 

confidence interval lies inside the equivalence region [ ],−Δ Δ . 

 An interval very similar to Westlake’s in many situations has been suggested by 

Seaman and Serlin (1998). Seaman and Serlin’s interval is much easier to construct than 

Westlake’s: 

 ( )
1 2& 1 2 ,s s X XL X X s tα ν−= − − −X  (19) 

 ( )
1 2& 1 2 ,s s X XU X X s tα ν−= − +X . (20) 

In the overall procedure suggested by Seaman and Serlin, this interval is replaced 

by the traditional 1 α−  confidence interval from Equations (13) and (14) when the 

traditional null hypothesis of no difference 0 1 2: 0H θ θ− = (see Equation (2) with 0a = ) 
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is rejected. Although Seaman and Serlin’s overall procedure does not suggest testing the 

null and alternative hypotheses from Equations (4) and 

Error! Reference source not found., I would like to discuss in the following what 

would happen if we used this interval for testing the equivalence null hypotheses. Taking 

a closer look at Seaman and Serlin’s overall procedure, we would have to realize that 

they still suggest accept-support testing. A detailed discussion of their overall procedure 

will not be included here. 

 

Evaluating a Testing Procedure 

The first question that needs to be asked when we would like to compare 

procedures for equivalence testing is “Do all procedures on average arrive at the same 

conclusion given a certain set of data?” This is the same as asking whether the procedures 

have the same power function.  

“The power function of a hypothesis test with rejection region R  is the function 

of θ  defined by ( ) ( )P Rθβ θ = ∈X  (Casella & Berger, 2002, page 383).” Further, “if C  

is a class of tests all testing the same null hypothesis about a parameter θ , then a test in 

C  with power function ( )β θ  is a uniformly most powerful (UMP) class C test if 

( ) ( )'β θ β θ≥  for every θ  in the parameter space and every ( )'β θ  that is a power 

function of a test in class C . (Casella & Berger, 2002, page 388).” 

When the null hypothesis is true, the maximum of the power function over all 

values of θ  in the null hypothesis gives us the probability of a Type I error. When the 

null hypothesis is false, the power function gives us the value for power dependent on θ . 

Usually we would like ( )β θ  to be small when the null hypothesis is true and large when 
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the alternative hypothesis is true (this corresponds to a small Type I error and large 

power). 

The maximum type I error rates across all possible parameter values for the 

traditional 1 2α−  confidence interval, Westlake’s symmetrical confidence interval, and 

Seaman and Serlin’s interval, are known to be .05. However, Type I error rates can be 

substantially less. There are two separate reasons for this reduction in type I error rate, 

depending on the procedure. The1 2α−  CI and Seaman and Serlin’s interval will have the 

same type I error rate as the TOST which will be significantly less than α  in the 

following situation: Consider equations (6) and (7).  Examination of these equations 

reminds us that for a rejection to occur, regardless of the value of 1 2
ˆ ˆθ θ− , 

1 2
ˆ ˆ,t sα ν θ θ−

 must 

be smaller than Δ .  However, 
1 2
ˆ ˆ,t sα ν θ θ−

 might in fact be larger than Δ , in which case one 

will not reject any of the null hypotheses, no matter what the observed value of 1 2
ˆ ˆθ θ−  or 

the true size of 1 2θ θ−  is. Thus, due to insufficient precision (and a large value of 
1 2
ˆ ˆθ θ

σ
−

), 

we might have nearly zero power and nearly zero α , a fact that will be reviewed in the 

discussion of the power formula (see below). This is also know as the bias of the TOST 

(e.g. Brown, Hwang, & Munk, 1997) and has been seen as a disadvantage by, e.g., 

Anderson and Hauck (1983) and Rocke (1984), which led to the development of their 

procedures. See Brown et al. (1997) for a discussion on the topic. In addition to low type 

I error rate and power caused by a lack of precision, Westlake’s procedure will be 

conservative and have an -α level close .025 when the true difference 1 2θ θ−  is close to 

zero, independently of how large an n we choose (Westlake, 1981). We can summarize 

that using the 1 2α−  confidence interval and Seaman and Serlin’s interval for testing the 
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equivalence null hypotheses will exactly mirror the decision arrived at by the TOST, 

while Westlake’s interval will not. 

 

Power of the TOST 

We can derive a general power formula for the equivalence test for the difference 

between two parameters. First, let ( ),Q θX  be a pivot, i.e., a function of the data and its 

distributional parameters such that the distribution of ( ),Q θX  may be written in a form 

that is independent of these parameters. As an example, the variable ( ) /Z X μ σ= −  has 

a standard normal distribution independent of the mean and standard deviation μ  and σ ; 

another example is the random variable ( ) /T X sμ= −  with a t-distribution with n 

degrees of freedom. Considering Equation (8), we can see that the probability of rejecting 

the null hypothesis is 

 ( )( )1 2 1 2 , ,
ˆ ˆ ,P t s t sθ θ α ν α νθ θ− ⎡ ⎤− ∈ −Δ + Δ −⎣ ⎦ , (21) 

where s is the estimated standard error for the difference between two means from 

Equation (12). This is the same as 

 
( ) ( ) ( ) ( )1 2 1 2, 1 2 , 1 2

ˆ ˆt s t s
P

s s s
α ν α ν

θ θ θ θθ θ θ θ⎛ ⎞− − −−Δ + − − Δ − − −⎜ ⎟≤ ≤
⎜ ⎟
⎝ ⎠

. (22) 

When testing for equivalence of the difference between two means, the pivot 

 
( ) ( )1 2 1 2

ˆ ˆ
Q

s

θ θ θ θ− − −
=  (23) 
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is distributed as a noncentral t random variable with 1 2 2n n+ − degrees of freedom and 

cdf TF , where 1 2 1 2
ˆ ˆ X Xθ θ− = −  and 1 2 1 2θ θ μ μ− = − . Given an estimate s for the 

standard deviation, we can approximate power by 

 ( ) ( ) ( ), 1 2 , 1 2
1 2 T T

t s t s
F F

s s
α ν α νθ θ θ θ

β θ θ
Δ − − − −Δ + − −⎛ ⎞ ⎛ ⎞

− ≈ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (24) 

Power estimates from Equation (24) will have negative values whenever 

( ), 1 2t sα ν θ θΔ − − −  is smaller than ( ), 1 2t sα ν θ θ−Δ + − − . In that case, it is sufficient to set 

the value to zero. It is especially insightful to consider why power can be zero if we look 

at the 1 2α−  confidence interval procedure. The null hypothesis will only be rejected 

when the confidence interval lies entirely inside the equivalence region, that is, when 

( )1 2 ,
ˆ ˆ t sα νθ θ−Δ < − ± < Δ . When n is small enough, ,2t sα ν  (the width of the confidence 

interval) might be larger than 2Δ  (the width of the equivalence region). Certainly, the 

confidence interval cannot lie within [ ],−Δ Δ  then. Finding a test that will maximize 

( )1 2β θ θ−  when 1 2θ θ− ≤ Δ  while keeping it smaller or equal to .05 as long as 

1 2θ θ− > Δ  has inspired most recent research efforts (e.g. Berger & Hsu, 1996). 

Power analysis has, in general, received inadequate attention in applied statistics 

literature (Cohen, 1962; Sedlmeier & Gigerenzer, 1989), and equivalence testing is no 

exception. Only a few articles on the power of equivalence tests have found their way 

into psychological journals. Phillips (1990) constructed power curves for equivalence 

testing of the difference between two means, finding encouraging results that seem to 

promise sufficient power at sample sizes as small as 30. However, his results are based 

on very wide equivalence regions, sometimes as wide as four times the size of the 
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standard deviation, which corresponds to 2Δ =  standardized effect sizes. When 

2 / 3Δ = of a standardized effect size, a much more realistic width for an equivalence 

region, power results look less impressive. However, with large N, e.g. 100N ≥ , power 

might still be sufficient to justify equivalence testing. Other power analyses have focused 

on hypotheses inherent in biomedical research (see, e.g. Feng & Liang, 2006) and do not 

seem easily transferable to research situations in the social sciences. Certainly, power for 

testing the equivalence of two means can easily be estimated using Equation (24). While 

this article is not on testing the difference between two means in particular, I do provide 

power graphs for correlational equivalence testing later. 

 

Properties of Confidence Intervals in Equivalence Testing 

When we replace the TOST with a confidence interval procedure, we need to take 

not only -α level and power into account, but also the properties of confidence intervals 

themselves. Point estimators are evaluated with respect to their bias, sufficiency, and 

efficiency, and significance tests differ with respect to their power function. Similarly, 

confidence intervals have a set of characteristics on which they need to be compared. So 

far we have seen that empirical Type I error rate is controlled satisfactorily when an 

equivariant 1 2α−  confidence interval is used for equivalence testing of the difference 

between two means (Berger & Hsu, 1996). Westlake has shown that his procedure 

controls Type I error rate at or below the nominal level as well. Again assuming that we 

used Seaman and Serlin’s interval to test the hypotheses from Equations (4) and 

Error! Reference source not found., we can see that Type I error rate will be controlled 

at or below the nominal level since its construction involves pivoting the cdf for the 
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TOST. Therefore it seems feasible and necessary to compare the procedures on other 

characteristics. I base my discussion of characteristics for confidence intervals on the 

excellent summary that is given in Casella and Berger’s Statistical Inference (2002).  

Confidence intervals have three main properties: Coverage rate (or coverage 

probability), bias and width (Casella & Berger, 2002) .  

Coverage probability is defined as follows (see Casella & Berger (2002), page 

418):  

Definition 1: “For an interval estimator ( ) ( ),L U⎡ ⎤⎣ ⎦X X  of a parameter θ , the 

coverage probability of ( ) ( ),L U⎡ ⎤⎣ ⎦X X  is the probability that the random interval 

( ) ( ),L U⎡ ⎤⎣ ⎦X X  covers the true parameter, θ . It is denoted by 

 ( ) ( )( ),P L Uθ θ ∈ ⎡ ⎤⎣ ⎦X X .” (25)  

For a given 1 α−  confidence interval, we expect that it covers the true parameter at least 

( )100 1 α− % of the time, independently of the true value of the parameter. The definition 

of the confidence coefficient provides us with an adequate short description of this 

requirement: 

Definition 2: “For an interval estimator ( ) ( ),L U⎡ ⎤⎣ ⎦X X  of a parameter θ , the 

confidence coefficient of ( ) ( ),L U⎡ ⎤⎣ ⎦X X  is the infimum of the coverage probabilities.” 

That is, for a ( )100 1 %α−  confidence interval, we expect that 

 ( ) ( )( )inf , 1P L Uθθ
θ α∈ = −⎡ ⎤⎣ ⎦X X . (26) 
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At the same time, we would consider a confidence interval optimal that covers the 

true parameter “as often as possible,” but does not cover other values “too often.” We 

write 'θ  for a value that is not equal to θ , 'θ θ≠ . Then false coverage is defined as 

(Casella & Berger, 2002, page 444): 

Definition 3: 

 ( )( ) ( ) ( ) ( )' , '   if  ,P C C L Uθ θ θ θ∈ ≠ = ⎡ ⎤⎣ ⎦X X X X  (27) 

 for a two-sided confidence interval, 

 ( )( ) ( ) ( ) )' , '   if  ,P C C Lθ θ θ θ∈ < = −∞⎡⎣X X X  (28) 

 for a one-sided confidence interval with a lower bound, and 

 ( )( ) ( ) ( )(' , '   if  ,P C C Uθ θ θ θ∈ > = −∞ ⎤⎦X X X  (29) 

 for a one-sided confidence interval with an upper bound. 

To give an example, the probability that the value ' 0.5θ =  will be covered by a 

two-sided confidence interval ( )C X  that is computed from sample values X  when 1θ =  

is the true value of the parameter will be ( )( )1 0.5P C∈ X ; if ( )C X  is unbiased, this will 

be smaller than ( )( )1 1P C∈ X . Equations (28) and (29) define a one-sided CI to have 

false coverage only when a value 'θ  closer to the respective bound is covered more often 

than θ . It is questionable whether anyone will be able to find a one-sided confidence 

interval that has false coverage greater than coverage rate of the true parameter. 

However, as we will see later on, such a definition will help making an argument with 

respect to the three confidence intervals we are comparing in the study.  
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The relationship between coverage rate and false coverage leads us to the 

definition of bias for two-sided confidence intervals: An unbiased two-sided confidence 

interval for θ  will cover no value more often than it covers θ : 

Definition 4: “A 1 α− confidence set ( )C x  is unbiased if ( )( )' 1P Cθ θ α∈ ≤ −x  

for all 'θ θ≠ .” (Casella & Berger (2002), page 446) 

Two-sided intervals for the mean given by 

 ( ) xC x x zασ= ±  (30) 

and  

 ( ) , xC x x t sα ν= ±  (31) 

are unbiased (Casella & Berger, 2002). 

The definition for bias from above can be understood easily and it can sometimes 

be relatively easy to demonstrate that a given confidence interval is biased. However, 

showing that any given confidence interval is unbiased in practice proves to be more 

complicated. At this point it would be very useful to be able to make additional 

statements of the form “when condition XY is satisfied, the present (two-sided) CI will be 

unbiased”. One possibility that seems worth exploring is to show that a confidence 

interval that misses the true parameter equally often on both sides will be unbiased. Such 

a confidence interval will be said to have coverage balance, while coverage imbalance 

occurs when a confidence interval does not miss the true parameter equally often above 

and below. 

The third property of confidence intervals, width, directly addresses the length 

( ) ( )U L−X X  of a confidence interval. A two-sided normal confidence interval for the 
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mean symmetric about the parameter estimate as in Equation (30) is the shortest length 

1 α−  confidence interval and so is its counterpart for unknown σ  (Casella & Berger, 

2002, page 443). 

 

Evaluating the Properties of the Replacement Procedures 

After reiterating classical properties of confidence intervals, I would like to 

compare our three options for replacing the TOST with confidence intervals with respect 

to these properties. While defining the properties of interest, we have seen that the 

traditional normal two-sided 1 2α−  confidence interval will perform well. It is easy to 

verify that it has a confidence coefficient of 1 2α−  and the proof shall not be repeated 

here. Similarly, Westlake has shown in his 1976 article that his procedure has a 

confidence coefficient of 1 α− . Seaman and Serlin (1998) use Monte Carlo simulations 

to demonstrate that their confidence interval has a confidence coefficient of 1 α− . Here is 

a quick outline of why this is true: Considering Equations (19) and (20), the confidence 

interval will not cover the true parameter when 1 2θ θ−  lies outside of 

 ( )
1 2
ˆ ˆ1 2 ,

ˆ ˆ s tα νθ θ
θ θ

−
± − + . (32) 

Assuming that 1 2 0θ θ− > , the probability that it lies outside the interval from Equation 

(32) will be 
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( )
( )

( ) ( )

1 2

1 2

1 2

ˆ ˆ1 2 1 2 ,

1 2 1 2
,

ˆ ˆ

1 2 1 2
,

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

.

P s t

P t
s

P t
s

α νθ θ

α ν
θ θ

α ν
θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

α

−

−

−

− > − +

⎛ ⎞− − −
⎜ ⎟= − >
⎜ ⎟
⎝ ⎠
⎛ ⎞− − −
⎜ ⎟≤ − >
⎜ ⎟
⎝ ⎠

=

 (33) 

Conversely, when 1 2 0θ θ− < , the probability will be 

 

( )
( )

( ) ( )

1 2

1 2

1 2

ˆ ˆ1 2 1 2 ,

1 2 1 2
,

ˆ ˆ

1 2 1 2

,
ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

.

P s t

P t
s

P t
s

α νθ θ

α ν
θ θ

α ν
θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

α

−

−

−

− < − − −

⎛ ⎞− − − −
⎜ ⎟= <
⎜ ⎟
⎝ ⎠
⎛ ⎞− − −
⎜ ⎟≤ <
⎜ ⎟
⎝ ⎠

=

 (34) 

Hence, 

 ( )( )
1 2

1 2

ˆ ˆ1 2 1 2 ,
ˆ ˆsup P s tα νθ θ

θ θ
θ θ θ θ α

−
−

− ∉ ± − + = . (35) 

The second property, bias, turns out to be of considerably more interest. As 

mentioned above, the normal two-sided confidence interval from Equations (30) and (31) 

will be unbiased. Hence, in the case where we are making inferences on parameter 

estimates whose pivot is distributed as a z random variable or t random variable, we can 

safely assume that the interval will not be biased.  

Turning to Westlake’s and Seaman and Serlin’s confidence intervals, which are 

symmetric about zero, we can quickly see that we might run into an issue here. It has 

been satisfactorily shown that their CIs have confidence coefficients 95%≤ . However, 
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the intervals will also always cover zero, although zero is virtually never going to be the 

true parameter value (see e.g. Kirkwood, 1981), and thus, the interval is biased – if we 

follow the definition of bias for a two-sided CI from Equation (30). It is amazing that this 

property of both procedures has not found its way into the discussion surrounding 

equivalence testing, but in fact additional and only slightly different procedures are 

suggested (e.g. Berger & Hsu, 1996). As this study goes on, I will suggest an alternative 

perspective on both Seaman and Serlin’s and Westlake’s symmetric CIs. Looked at from 

this different perspective, their intervals will no longer be biased, but in my opinion 

display their true nature more accurately. Before giving a formal discussion of width for 

all three confidence interval procedures, I would like to demonstrate their construction 

with two examples, one with large N and one with small N. This will also facilitate 

understanding why Westlake received strong criticism from several other authors 

(Kirkwood, 1981; Mantel, 1977). 

 

Examples for all Three Procedures 

Below I have constructed the Westlake CI, the confidence interval suggested by 

Seaman and Serlin, the 1 2α−  traditional CI, and the 1 α−  traditional confidence interval 

for some example data. 
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Example 1: Let’s assume that 1 53X = , 2 50X = , 1 2 300N N= = , 5Δ = , .05α = , 

, 1.64741tα ν ≈ , / 2, 1.96394tα ν ≈  and 1 2 8s s= =  which leads to 
1 2

0.653197X Xs − ≈ . Then 

 
(a) Westlake 
 

[ ]4.0761,  4.0761−  

 
(b) Seaman & Serlin 
 

[ ]4.0761,  4.0761−  [ ]( )1.7172,  4.2828→  

 
(c) 1 2α−  traditional CI 
 

[ ]1.9239,  4.0761  

 
(d) 1 α−  traditional CI 
 

[ ]1.7172,  4.2828  

When reading Seaman and Serlin’s 1998 article on equivalence testing, one might get the 

impression that they are suggesting an interval that is substantively different from 

Westlake’s. However, for a number of conditions, Westlake’s and Seaman and Serlin’s 

intervals are going to be essentially equal numerically. In this example, all four intervals 

when used for testing the null hypothesis from Equation (4) would yield the conclusion 

that there is practical equivalence. In their overall procedure, Seaman and Serlin would 

retain the 1 α−  traditional confidence interval. The 1 2α−  confidence interval lies 

entirely within the intervals proposed by both Westlake (a) and Seaman and Serlin (b) 

and its width is only 26.4% of the width of either (a) or (b). Although the 1 α−  

traditional confidence interval has the most extreme endpoint (4.2828) among all four 

procedures, its width is still only a fraction of that of (a) and (b). 

Example 2: If we choose a smaller sample size, say 1 2 10N N= = , the 

relationships are still somewhat similar. Let’s assume that 1 50X = , 2 53X = , 
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1 2 10N N= = , 5Δ = , .05α = , , 1.73406tα ν ≈ , / 2, 2.10092tα ν ≈  and 1 2 8s s= =  which 

leads to 
1 2

3.5777X Xs − ≈ . Then  

 
(a) Westlake 
 

[ ]9.264,  9.264−  

 
(b) Seaman & Serlin 
 

[ ]9.204,  9.204−  

 
(c) 1 2α−  traditional CI 
 

[ ]3.204,  9.204−  

 
(d) 1 α−  traditional CI 
 

[ ]4.516,  10.516−  

None of the procedures would allow us to conclude in favor of practical equivalency, due 

to a lack of precision. However, this example shows that Seaman and Serlin’s interval is 

somewhat narrower than Westlake’s. The 1 2α−  confidence interval lies entirely inside 

the Westlake confidence interval as well as the Seaman and Serlin interval. 

Similar illustrations opened the door for early comments on Westlake’s 

procedure. The first to critique the symmetric confidence interval was Mantel (1977) and 

Kirkwood (1981) who mentioned that Westlake’s procedure will yield meaningless 

intervals when the difference between the two sample parameters is large. Even if the 

true difference 1 2μ μ−  still lies within [ ],−Δ Δ , Westlake’s interval ignores information 

about the difference, as basically only one of the confidence limits is constructed while 

the other is simply a mirror image of the first. This argument largely applies to Seaman 

and Serlin’s interval as well, since it only differs by a small amount from Westlake’s 

procedure. 
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Westlake’s symmetric interval has been criticized for the rate at which it misses 

the true value of the parameter as well. We can observe that when we construct 

Westlake’s (and Seaman and Serlin’s) interval, it will miss the true parameter either 

always below or always above. When θ  is positive, the probability that the interval lies 

above θ  is zero: ( ) ( )( )0 , 0P L Uθ θ> < =⎡ ⎤⎣ ⎦X X , when θ  is negative, the probability that 

the interval lies below θ  will be zero: ( ) ( )( )0 , 0P L Uθ θ< > =⎡ ⎤⎣ ⎦X X . Either way, 

whenever (a) and (b) miss the true parameter, they will inevitably underestimate and 

never overestimate its absolute value. With a confidence coefficient of 5%, this means 

that up to 5% of the time, intervals (a) and (b) will suggest a range for reasonable values 

for the parameter not including the same whose absolute value will be larger than 

estimated. The traditional 1 2α−  confidence interval, however, will produce a range of 

values for the true parameter that is too large 5% of the time and too small another 5% of 

the time. Hence, 5% of the time the intervals symmetric about zero underestimate the 

absolute value of true difference, while the 1 2α−  confidence interval underestimates the 

absolute value of true difference only 5% of the time as well. 

So far we have seen that for large samples, Westlake’s and Seaman and Serlin’s 

procedures yield basically the same result. We also saw that the traditional 1 2α−  and 

1 α−  confidence intervals can be substantially narrower than the symmetric intervals and 

that both Westlake’s and Seaman and Serlin’s intervals will always underestimate the 

absolute value of the true difference. 
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Comparing the Widths of the Symmetric and the Traditional Confidence Intervals 

A complete coverage of the topic width for confidence intervals is beyond the 

scope of this study, but I would like to direct the reader’s attention to an interesting detail 

regarding the width of traditional and symmetric CIs. Seaman and Serlin (1998) seem to 

claim that the interval from Equations (19) and (20) will yield a 1 α−  confidence interval 

that will be narrower than the traditional 1 α−  confidence interval for small values of 

1 2μ μ− . I will show that even when 1 2 0μ μ− = , on average the interval from Equation 

(19) and (20) will be wider than the traditional 1 α−  CI for the most common values for 

Type I error rate α . 

Let’s assume 1 2 0μ μ− = , then its estimator 1 2X X−  will have a sampling 

distribution with mean 0 and a standard error that can be estimated with 
1 2X Xs − . The 

traditional 1 α−  CI is calculated as in Equations (13) and (14). Dividing by the standard 

error 
1 2X Xσ − , which will be the same for both intervals, we have width  

 / 2,2tw tα ν= . (36) 

Seaman and Serlin’s interval is calculated as in Equations (19) and (20), and width 

divided by standard error will be 

 
1 2

1 2
& ,2 2S S

X X

X X
w t

s α ν
−

−
= + . (37) 



 32

We would like to find the average length of both tw  and &S Sw  and show that, on average, 

( ) ( )&t S SE w E w< . ( )tE w  will be a constant for any given n and chosen -α level. The 

expected value of &S Sw  is a little more difficult to obtain: 

 ( ) ( )
1 2

1 2
& , = 2 2S S

X X

X X
E w E E t

s α ν
−

⎛ ⎞−
+⎜ ⎟

⎜ ⎟
⎝ ⎠

. (38) 

( )1 ,E t α ν−  will be a constant, and we are left with finding the expected value of the first 

term in (38). 
1 21 2 / X XX X s −−  is distributed as the absolute value of a t-random variable 

with 1 2 2n nν = + −  degrees of freedom which has expected value 0.7979≥ : 

 ( )
1 2

1 2

2
inf inf 0.7979

/X X

X X Z
E E E Z

sν ν
νχ ν→∞ →∞

−

⎛ ⎞⎛ ⎞−
⎜ ⎟= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. (39) 

Choosing 0.7979 as the lower limit, we find that 

 ( )& , 1.5958 2S SE w tα ν≥ + . (40) 

The term in Equation (40) will, for common -α levels, be larger than the expected value 

for width of the traditional 1 α−  CI from Equation (36).  

Assuming a different point of view, we can ask ourselves how often Seaman and 

Serlin’s CI will be narrower than the traditional 1 α−  CI, given that 1 2 0μ μ− = . For 

example, let’s assume that .05α = and 10ν = , then we can calculate the probability that 

Seaman and Serlin’s interval will be narrower than the traditional interval: It will be 

narrower when 
1 21 2 / X XT X X σ −= −  is smaller than the absolute value of the difference 
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between .025,10t  and .05,10t . For .05α = and 10ν = , T  will be smaller than 

2.306 1.85955 0.44645− =  about 33.5% of the time.  

On a final note, we can say that the results for Seaman and Serlin’s interval apply 

to Westlake’s interval as well since it will be wider than the former. 

 

Reconstructing the Symmetric Intervals 

We have previously observed that the symmetric intervals will always cover zero, 

independently of what the true value of the parameter is. If we conceive of these intervals 

as two-sided confidence intervals, they will be heavily biased following Definition 4. 

According to Kirkwood (1981), such bias might facilitate a misunderstanding regarding 

the parameter of interest that will have practical consequences for the average data 

analysis consumer. Equating the center of a confidence interval with the best estimate of 

a parameter, he seems to imply that for the symmetric interval, zero might be understood 

to be the best estimate of the parameter. I do not feel convinced that the best estimate of a 

parameter ought to be the center of its confidence interval. This is certainly not practical 

in situations where the parameter estimate has a bounded, strongly skewed distribution 

such as a sample population proportion p̂  e.g., where .10p =  with small n. However, 

we can assume that the difference between two sample means or similar parameter 

estimates will have symmetrical, unbounded distributions and a confidence interval 

whose center will, on average, be the true value of the parameter seems to provide more 

information than an interval that is not centered on the parameter. While contemplating 

this, I developed the idea that the information the symmetric intervals provide us with is 

information on the absolute value of the difference between two means. 
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The Symmetric Intervals as  one-sided 1 α−  CIs for 1 2μ μ−  

For demonstrative purposes, let ( )( )&S SC T X  be Seaman and Serlin’s symmetric 

confidence interval from Equations (19) and (20) on some statistic ( )T X  distributed as a 

t random variable. Let ( )( )aC T X  be a confidence interval for the absolute value of 

( )T X  such that  

 ( )( ) 0aL T =X  (41) 

and 

 ( )( ) ( )( )&a S SU T U T=X X . (42) 

Then ( )( )aC T X  has confidence coefficient 1 α−  and will cover ( )T X  as often as 

( )( )&S SC T X  covers ( )T X . I have shown above shown (1976) that  

 ( ) ( )( )
1 2

1 2 & 1 2 & 1 2inf ,  1S S S SP L X X U X X
μ μ

μ μ α
−

⎡ ⎤− ∈ − − = −⎣ ⎦ . (43) 

From that we can derive the confidence coefficient of ( )( )aC T X  

 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )( )

( ) ( )( )

1 2

1 2

1 2

1 2

1 2

1 2 & 1 2 & 1 2

& 1 2 1 2 & 1 2

& 1 2 1 2 & 1 2

1 2 & 1 2

1 2 1 2 1 2

1

inf ,  

inf

inf

inf 0

inf .

S S S S

S S S S

S S S S

S S

a a

P L X X U X X

P L X X U X X

P U X X U X X

P U X X

P L X X U X X

μ μ

μ μ

μ μ

μ μ

μ μ

α

μ μ

μ μ

μ μ

μ μ

μ μ

−

−

−

−

−

−

⎡ ⎤= − ∈ − −⎣ ⎦

= − ≤ − ≤ −

= − − ≤ − ≤ −

= ≤ − ≤ −

= − ≤ − ≤ −

 (44) 

Further, 
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( ) ( )( )

( )( )
1 2 & 1 2 & 1 2

1 2 1 2

,  

0,  .

S S S S

a

P L X X U X X

P U X X

μ μ

μ μ

⎡ ⎤− ∈ − −⎣ ⎦

⎡ ⎤= − ∈ −⎣ ⎦
 (45) 

 

It is easy to see that the same argument holds for Westlake’s confidence interval, which is 

symmetric about zero and has confidence coefficient = 1 α−  as well. 

If we adopt the view that what Westlake and Seaman and Serlin have constructed 

are one-sided confidence intervals for the absolute value of the difference between two 

means, their procedure is no longer biased, considering Definitions 3 and 4. I find this 

new perspective on the two procedures especially helpful, since the symmetry of the null 

hypotheses and the obtained intervals is retained while avoiding certain expectations that 

are routinely connected to the construction of two-sided confidence intervals (e.g. 

unbiasedness). The name symmetric interval seems to imply that the interval provides 

information with respect to two bounds for parameter estimates while technically only 

one side is determined from the data, the other side is merely a duplication of the first. 

Westlake’s and Seaman and Serlin’s intervals are symmetric about zero, but this 

symmetry is arbitrary with respect to explanatory power because the interval is going to 

be symmetric about zero independently of the data. Table 1 summarizes the properties of 

confidence intervals that have been suggested for substitution. 
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Table 1 

Summary of confidence intervals suggested for equivalence testing 
 Coverage Rate Confidence 

Coefficient 
Bias Width Relationship to TOST/other 

Westlake Between 1 α−  and 1 1 α−  Wider than Seaman 
and Serlin’s CI 

Not equivalent to TOST, too 
conservative, the same as a one-
sided CI for θ  with confidence 
coefficient 1 α−  

Seaman and Serlin Between 1 α−  and 1 1 α−  

Biased when 
conceptualized as a 
two-sided CI but 
unbiased when 
thought of as one-
sided CI for the 
absolute value 

On average wider 
than the traditional 
1 α−  CI 

Equivalent to TOST, the same 
as a one-sided CI for θ  with 
confidence coefficient 1 α−  

Traditional 1 2α−  CI 1 2α−  1 2α−  Unbiased Narrowest Equivalent to TOST 

Traditional 1 α−  CI 1 α−  1 α−  Unbiased On average 
narrower than 
Seaman and Serlin 

Not Equivalent to TOST, too 
conservative 
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CHAPTER III 

 

CORRELATIONAL EQUIVALENCE TESTING 

 

In the previous sections I have attempted to shed some light on the properties of 

several confidence interval procedures that have been proposed as replacements for the 

TOST. The second part is concerned with the application of equivalence testing utilizing 

confidence intervals to the difference between two correlations. I decided to derive a test 

and examine its performance based on the traditional confidence interval from Equations 

(10) and (11) for several reasons: (1) the traditional confidence interval is the only 

unbiased two-sided confidence interval; (2) The other two techniques are either strongly 

biased or have to be conceived as one-sided confidence intervals; (3) Further, it is the 

narrowest interval that allows testing both equivalency null hypotheses in Equation (4) 

simultaneously at the .05 Type I error rate.  

There are many possible settings in which one might want to test the difference 

between two correlations for equivalence which I try to summarize in Figure 1. I 

constructed a statistic for testing the difference between two independent correlations 

coming from normally distributed data. Furthermore, the statistic will be asymptotically 

normally distributed and not exact. 
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Figure 1. Tree diagram for confidence intervals for correlational differences, 
distinguishing between intervals for independent samples, normal populations and exact 
vs. asymptotic intervals 

 

Derivation of the Statistic and the Confidence Interval 

For simplicity, designate the larger one of the two correlations with 1ρ  and the 

smaller one with 2ρ  such that 1 2 0ρ ρ− > . Estimating 1ρ  and 2ρ  in the sample, we 

obtain 1 1ˆ rρ =  and 2 2ˆ rρ = , the familiar sample correlations. The asymptotic variance of a 

single sample correlation is: 

 
( )
( )

22
2

1

2r

r

n
σ

−
=

−
 (46) 

CI on Correlational Differences 

Independent Samples 

Normality 
Normality 
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No 
No 

Exact Asymptotic 

Yes No 
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Assuming that 1r  and 2r  are independent, the standard deviation of 1 2r r−  can be 

estimated as (see, e.g. Olkin & Finn, 1995): 

 
( )
( )

( )
( )1 2

2 22 2
1 2

1 2

1 1

2 2r r

r r
s

n n−

− −
= +

− −
 (47) 

If we wish to conduct the TOST for correlational equivalence testing, we need to 

construct test statistics corresponding to Equations (6) and (7). 0 1 2:
a

H ρ ρ− ≤ −Δ  and 

0 1 2:
b

H ρ ρ− ≥ Δ  can be tested  using the following test statistics: 

 ( )
1 2

1 2
l

r r

r r
Z

s −

Δ + −
=  (48) 

and 

 ( )
1 2

1 2
u

r r

r r
Z

s −

Δ − −
= , (49) 

where 
1 2r rs − is the standard deviation estimate from equation (47). We are 

assuming here that lZ  and uZ  will be close to normally distributed and hence the values 

resulting from (48) and (49) will be compared to a critical value from the standard normal 

table. As an example, we are going to reject both null hypotheses and accept the 

alternative hypothesis at a .05 Type I error level when both lZ  and uZ  are greater than or 

equal to 1.645 . 

To construct a traditional 1 2α−  confidence interval around the parameter 

estimate 1 2r r− , we utilize the estimate for the standard deviation from equation (47): 
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 ( )
1 21 2 r rr r z sα −− ±  (50) 

The null hypotheses will be rejected when the confidence interval in (50) lies entirely 

inside the equivalence region [ ],−Δ Δ . 

 

Why do we not use the Fisher z-transform for this test? 

When testing a single correlation, the Fisher z–transform is widely used for its 

accuracy and comparable simplicity. Restating the Fisher z-transform, we see that it is a 

non-linear transformation: 

 1 1( ) ln
2 1

xf x
x

+⎛ ⎞= ⎜ ⎟−⎝ ⎠
 (51) 

 

The standard deviation for ( )f r  can be approximated by 1 /( 3)n − , so that we can test 

a point value null hypothesis 0 :H aρ =  with the test statistic 

 ( ) ( )
1/( 3)

f r f a
Z

n
−

=
−

 (52) 

which is approximately ( )0,1N∼ . Applying this transformation to a single correlation 

yields impressive results. Further, the z-transform can be used to test whether two 

correlations are the same 0 1 2:H ρ ρ= , which is the same as testing whether the 

difference between two correlations is zero ( )0 1 2: 0H ρ ρ− = . The test statistic will be 

 ( ) ( )1 2

1 2

1 1
3 3

f r f r

n n

−

+
− −

 (53) 
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and is approximately normally distributed with mean 0 and SD 1. These two tests belong 

to the class of pattern hypotheses for correlations which test whether a set of correlations 

is equal to each other or to some point value. In general, we can test 0 1: ... mH aρ ρ= = =  

using the Fisher z-transform (e.g., Hedges & Olkin, 1983). By contrast, linear hypotheses 

are hypotheses about linear combinations of correlations. The Fisher z-transform cannot 

be used on linear hypotheses, therefore, we cannot test whether the difference between 

two correlations is equal to some point value other than zero, e.g. 0 1 2:H aρ ρ− = , where 

0a ≠ . Obviously, the two one-sided tests used in equivalence testing are of this form and 

the z-transform cannot be applied. 

 

Power Calculations 

Once the size of Δ  has been chosen, power for the correlational equivalence test 

depends on two quantities: The actual difference between the two correlations and the 

sample sizes in the two samples the correlations are calculated from. The estimate for 

1 2r rσ −  from Equation (47) solely depends on the size of 1 2ρ ρ−  as well as 1n  and 2n . 

For a given size of our parameter 1 2ρ ρ− , we can approximate power analogously to 

Equation (21) by 

 ( )1 2 1 21 2 1 2  |r r r rP z r r zα ασ σ ρ ρ− −⎡ ⎤−Δ + ≤ − ≤ Δ − −⎣ ⎦ , (54) 

which is equal to 0  when 
1 2r rzασ − ≥ Δ  and 

 
( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2r r r r

r r r r

z zα ασ ρ ρ σ ρ ρ

σ σ
− −

− −

⎡ ⎤ ⎡ ⎤Δ − − − −Δ + − −
⎢ ⎥ ⎢ ⎥Φ − Φ
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (55) 
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when 
1 2r rzασ − < Δ , where [ ]xΦ  is the cdf of the normal distribution up to the point x. 

If we choose 1 2: 0aH ρ ρ− = , Equation (55) can be reduced to 

 
1 2

2 1
r r

zασ −

⎛ ⎞Δ
Φ − −⎜ ⎟⎜ ⎟

⎝ ⎠
. (56) 

 

Formula for required N when 1 2N N=  

As in traditional hypothesis testing, we need to keep a balance between Type I 

and Type II error and for a fixed α  we might want to ascertain a minimum level of 

power by choosing a sample size large enough. Unfortunately, this is not straight forward 

for our equivalence test of the difference between two correlations. When trying to 

calculate a general formula for required N for given 1ρ  and 2ρ , notice that the function 

for power (Equation (55)) cannot simply be inverted: ( ) ( )( ) ( ) ( )1 a b a b−Φ Φ − Φ ≠ − !  

However, we can provide two less general formulas that can serve as guidelines. 

The first formula covers the situation when 1 2: 0aH ρ ρ− = . Then the simplified power 

function from Equation (56) applies which can be inverted and the formula for required N 

in this special case will be: 

 
( )( )

2
22 1

2

12 1
2 2

Power z
N

αρ −⎛ + ⎞⎛ ⎞− Φ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠= +
Δ

 (57) 

(compare to Liu & Chow, 1992).  

The second formula will allow us to find the N necessary to have estimated power 

at least minimally greater than zero for any combination of 1ρ  and 2ρ . In the discussion 



 43

above I mentioned that estimated power will be virtually zero whenever 
1 2r r zασ − ≥ Δ . 

Thus, we need to find the N necessary to make the confidence interval narrow enough 

that it will potentially “fit into” the equivalence region. Solving for 1N , we get: 

 
( )

( )

22
1

1 22 2
2

2

1
2

1

2

N

z Nα

ρ

ρ

−
≥ +

−⎛ ⎞Δ
−⎜ ⎟ −⎝ ⎠

. (58) 

Estimated power will be equal to 0 for any 1N  smaller than the term on the right. 

Equivalently, we could solve for 2N . 

In order to give potential users of correlational equivalence testing a guideline as 

to how large N needs to be to achieve desired power, I used a FindRoot routine in the 

mathematical package Mathematica to solve for required N. I varied both the values for 

the difference between the correlations, 1 2ρ ρ−  and the average size of the correlations 

( )1 2 / 2ρ ρ+ . A table for required N when desired power is equal .80 is provided. 

 

Monte Carlo Analyses 

We can construct a T statistic with known distribution as well as an exact interval 

with confidence bounds as in Equations (13) and (14) for the difference between two 

means. Such a traditional equivariant 1 2α−  CI will have confidence coefficient 1 2α−  

and be unbiased (Casella and Berger, 2002, page 446; Berger & Hsu, 1996). The test 

statistics from Equations (48) and (49) and the confidence interval from Equation (50) for 

the difference between two correlations on the other hand are only approximations. Since 

1 2ˆ ˆρ ρ−  is only asymptotically normally distributed with mean 1 2ρ ρ−  and standard 
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deviation 
1 2ρ ρσ − , the confidence interval may be biased or not have confidence 

coefficient 1 2α− . It seems advisable to assess the quality of performance of the estimate 

for the 1 2α−  confidence interval using Monte Carlo analyses. 

I will examine Type I error rate, power, coverage rate, and make an attempt at 

investigating bias. Further, I will provide tables with values for required N. The 

investigation of Type I error rate, power, and coverage rate is rather straight forward, and 

can be performed by simple counting. However, the examination of bias according to 

definition raises a problem since it would be difficult to show that the given interval does 

not cover any value more often than the true parameter. Therefore, I decided to measure 

coverage balance, the tendency of the confidence interval to miss the true parameter 

equally often above and below. 

Unbiased two-sided equivariant confidence intervals for a statistic from a normal 

distribution miss the true parameter equally often on both sides. Although the 

equivalence of unbiasedness and missing equally often on both sides has not been 

established, it still makes sense intuitively that an unbiased CI for a normally distributed 

parameter should and will miss it equally often. Since the confidence interval from 

Equation (50) is for an asymptotically normally distributed statistic, showing that it 

misses the true parameter equally often above and below seems to add validity to the 

claim that it is unbiased. The presence of such coverage balance will be of interest to the 

applied statistician in its own right, even if it is not the same as finding unbiasedness. 

Hence, I counted the number of times the confidence interval missed the true parameter 

above and below. 
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Method 

For the Monte Carlo simulations, I used the software package Mathematica 5.2, 

writing code to produce random correlations and the confidence interval, and count 

rejection rates for 100,000 replications. For each case, two sample correlations 1r  and 2r  

from the underlying population with specified 1ρ  and 2ρ  were simulated. After the 

confidence interval was constructed, the program verified whether it was contained inside 

[ ],−Δ Δ  and whether it contained the underlying true difference or was lying completely 

below or above 1 2ρ ρ− . As a result, the program would return counts for the power 

function, coverage rate, missed below, and missed above.  

The random number generator in Mathematica is a Marsaglia-Zaman subtract-

with-borrow generator (e.g. Marsaglia and Zaman, 1991) for real numbers. The random 

number seed was 9164297. 

 

Random Correlations: 

A random correlation for a sample with 1000N =  and an underlying 0.5ρ =  can 

be obtained by creating 1000 random values from a bivariate normal distribution and 

computing the sample correlation for these values. Obviously, the larger N, the more time 

this will take, since values from random variables need to be drawn and the correlation 

between all values needs to be computed. There is another way to simulate random 

sample correlations. In order to accelerate the generation of randomly distributed sample 

correlations with sample size n, we can use the fact that a p p× matrix S  of random 
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covariances for deviation scores, multiplied by n, has a p-variate Wishart distribution, 

more specifically, ( )(1/ ) , 1n W N −S I∼  (see, e.g. Browne, 1968). 

Let S  be a p p×  matrix of random covariances for samples of size n, then 

 ( )E =S Σ , (59) 

where the thij  element of Σ  is ijσ , 1,...,i p=  and 1,...,j p= . When = IΣ , the p p×  

identity matrix, S  can be written as  

 1 '
n

=S TT . (60) 

If we let T  be a lower triangular p p×  matrix, its diagonal elements are χ  random 

variables with n i−  degrees of freedom and its off-diagonal elements are standard normal 

random variables. Hence, if we would like to produce random values for correlations 

between three variables that are uncorrelated with each other and have unit variance in 

the population with 20n =  each, we would only need to produce values for three χ  

random variables (with degrees of freedom 20, 19, and 18) and three normal random 

variables. Then ( )1/ 'n TT  with  

 
1,1

2,1 2,2

3,1 3,2 3,3

0 0
0

t
t t
t t t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T  (61) 

with 1,1 20t χ∼ , 2,2 19t χ∼ , 3,3 18t χ∼ , and ( )2,1 3,1 3,2 0,1t t t N∼ ∼ ∼  would provide a matrix 

of random covariances where 20n =  and = IΣ . 
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However, if ≠ IΣ , we can still use this result and produce random covariances in 

a way similar to the one just described. Let 'CC  be a Cholesky decomposition of Σ  such 

that ' =CC Σ . Then  

 * 1 ' '
n

=S CTT C  (62) 

will be distributed as the Maximum Likelihood estimate of Σ  with ( )*E =S Σ . Random 

correlations ijρ  can be obtained from random covariance ijσ  by dividing by the 

respective standard deviations iσ  and jσ , taking the square root of the diagonal elements 

of *S . Utilizing this technique for the simulation of random correlations shortened the 

amount of time necessary for computation by a factor of five, on average. 

 

Selection of Cases 

In order to investigate empirical Type I error rate, I varied (1) Sample size (where 

1 2N N N= = ); (2) The size of the equivalence region, choosing values 0.05Δ = , 

0.1Δ = , and 0.2Δ = ; (3) The average size of the correlations ( )1 2 / 2ρ ρ+  and (4) 

Nominal Type I error rate ( 0.05 and 0.01α α= = ).Values of 0.05Δ =  and 0.1Δ =  

seem loosely justified as 0.1  has been suggested as a small effect size for the difference 

between two correlations (Cohen, 1962), 0.2Δ =  was included as well to have results for 

a larger range of values. 

As mentioned above, I conducted Monte Carlo analyses to monitor the 

performance of the power formula from Equation (55). The following parameters were 

varied: (1) Sample size (same as above); (2) The average size of the correlations 
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( )1 2 / 2ρ ρ+  and (3) The difference between the correlations 1 2ρ ρ− . The size of the 

equivalence region and nominal Type I error rate stayed fixed at 0.1Δ =  and 0.05α = , 

respectively. 

For the investigation of coverage rate and the frequency with which the traditional 

equivariant 1 2α−  confidence interval misses the true parameter below and above, I 

varied (1) Sample size (same as above); (2) The average size of the correlations 

( )1 2 / 2ρ ρ+  and (3) The difference between the correlations 1 2ρ ρ− . 

 

Results 

 

Alpha: 

Results for empirical alpha level are summarized in Tables 2 through 7. As one 

might have expected, the smaller Δ  and α , the fewer (false) rejections. Further, several 

cells contain the value zero when N is small or ( )1 2 / 2ρ ρ+  close to zero and thus 

1 2ˆ ˆ zαρ ρσ −  is larger than Δ .
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Table 2 

Empirical Type I error rates when 1 2 0.05ρ ρΔ = − =  and 0.05α = . 

1 2

2
ρ ρ+

 

Sample 
Size 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

20 0 0 0 0 0 0 0 0 0 .0018
40 0 0 0 0 0 0 0 0 0 .0049
60 0 0 0 0 0 0 0 0 0 .0143
80 0 0 0 0 0 0 0 0 0 .0297

100 0 0 0 0 0 0 0 0 0 .0440
125 0 0 0 0 0 0 0 0 0 .0542
150 0 0 0 0 0 0 0 0 0 .0580
175 0 0 0 0 0 0 0 0 .0001 .0579
200 0 0 0 0 0 0 0 0 .0004 .0592
250 0 0 0 0 0 0 0 0 .0045 .0565
300 0 0 0 0 0 0 0 0 .0165 .0564
350 0 0 0 0 0 0 0 0 .0313 .0575
400 0 0 0 0 0 0 0 0 .0404 .0568
500 0 0 0 0 0 0 0 .0010 .0498 .0557
600 0 0 0 0 0 0 0 .0124 .0502 .0554
750 0 0 0 0 0 0 .0001 .0354 .0503 .0550

1000 0 0 0 0 0 0 .0179 .0490 .0529 .0551
1250 0 0 0 0 0 .0059 .0384 .0501 .0512 .0532
1500 0 0 0 0 .0009 .0272 .0470 .0524 .0509 .0532
2000 0 0 .0010 .0171 .0324 .0446 .0498 .0493 .0509 .0541
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Table 3 

Empirical Type I error rates when 1 2 0.05ρ ρΔ = − =  and 0.01α = . 

1 2

2
ρ ρ+

 

Sample 
Size 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

20 0 0 0 0 0 0 0 0 0 .0001
40 0 0 0 0 0 0 0 0 0 .0001
60 0 0 0 0 0 0 0 0 0 .0002
80 0 0 0 0 0 0 0 0 0 .0004

100 0 0 0 0 0 0 0 0 0 .0015
125 0 0 0 0 0 0 0 0 0 .0035
150 0 0 0 0 0 0 0 0 0 .0072
175 0 0 0 0 0 0 0 0 0 .0105
200 0 0 0 0 0 0 0 0 0 .0118
250 0 0 0 0 0 0 0 0 0 .0126
300 0 0 0 0 0 0 0 0 0 .0128
350 0 0 0 0 0 0 0 0 0 .0130
400 0 0 0 0 0 0 0 0 0 .0127
500 0 0 0 0 0 0 0 0 .0007 .0126
600 0 0 0 0 0 0 0 0 .0046 .0124
750 0 0 0 0 0 0 0 0 .0090 .0122

1000 0 0 0 0 0 0 0 .0001 .0110 .0119
1250 0 0 0 0 0 0 0 .0051 .0100 .0111
1500 0 0 0 0 0 0 0 .0095 .0103 .0117
2000 0 0 0 0 0 0 .0057 .0099 .0103 .0114
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Table 4 

Empirical Type I error rates when 1 2 0.1ρ ρΔ = − =  and 0.05α = . 

 
1 2

2
ρ ρ+

 

Sample 
Size 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

20 0 0 0 0 0 0 0 0 .0023 .0834
40 0 0 0 0 0 0 0 0 .0053 .0872
60 0 0 0 0 0 0 0 .0001 .0166 .0808
80 0 0 0 0 0 0 0 .0003 .0347 .0765

100 0 0 0 0 0 0 0 .0014 .0486 .0734
125 0 0 0 0 0 0 0 .0069 .0555 .0714
150 0 0 0 0 0 0 .0001 .0188 .0570 .0699
175 0 0 0 0 0 0 .0006 .0324 .0575 .0681
200 0 0 0 0 0 0 .0032 .0415 .0574 .0671
250 0 0 0 0 0 .0001 .0204 .0494 .0580 .0647
300 0 0 0 0 0 .0049 .0365 .0525 .0562 .0635
350 0 0 0 0 .0005 .0218 .0445 .0538 .0550 .0640
400 0 0 0 0 .0092 .0338 .0490 .0523 .0545 .0627
500 0 0 .0020 .0165 .0336 .0457 .0507 .0523 .0546 .0608
600 .0162 .0186 .0252 .0344 .0439 .0477 .0503 .0520 .0536 .0590
750 .0366 .0382 .0420 .0470 .0488 .0500 .0506 .0520 .0529 .0586

1000 .0476 .0466 .0480 .0505 .0485 .0497 .0506 .0531 .0546 .0584
1250 .0497 .0492 .0491 .0502 .0494 .0512 .0515 .0515 .0526 .0560
1500 .0485 .0499 .0502 .0503 .0496 .0495 .0511 .0530 .0522 .0565
2000 .0487 .0502 .0495 .0505 .0498 .0501 .0505 .0498 .0523 .0564
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Table 5 

Empirical Type I error rates when 1 2 0.1ρ ρΔ = − =  and 0.01α = . 

 
1 2

2
ρ ρ+

 

Sample 
Size 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

20 0 0 0 0 0 0 0 0 .0001 .0258
40 0 0 0 0 0 0 0 0 .0001 .0288
60 0 0 0 0 0 0 0 0 .0002 .0262
80 0 0 0 0 0 0 0 0 .0007 .0246

100 0 0 0 0 0 0 0 0 .0019 .0221
125 0 0 0 0 0 0 0 0 .0046 .0207
150 0 0 0 0 0 0 0 0 .0090 .0203
175 0 0 0 0 0 0 0 0 .0111 .0196
200 0 0 0 0 0 0 0 .0001 .0130 .0182
250 0 0 0 0 0 0 0 .0013 .0126 .0167
300 0 0 0 0 0 0 0 .0057 .0128 .0161
350 0 0 0 0 0 0 0 .0097 .0122 .0162
400 0 0 0 0 0 0 .0005 .0102 .0122 .0161
500 0 0 0 0 0 0 .0062 .0105 .0117 .0156
600 0 0 0 0 0 .0010 .0088 .0109 .0113 .0150
750 0 0 0 0 .0006 .0078 .0101 .0107 .0110 .0142

1000 0 0 .0005 .0053 .0082 .0100 .0107 .0115 .0119 .0137
1250 .0062 .0069 .0080 .0092 .0095 .0094 .0111 .0105 .0109 .0126
1500 .0087 .0091 .0096 .0100 .0102 .0099 .0100 .0107 .0110 .0132
2000 .0095 .0101 .0099 .0105 .0104 .0106 .0105 .0102 .0110 .0126
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Table 6 

Empirical Type I error rates when 1 2 0.2ρ ρΔ = − =  and 0.05α = . 

 
1 2

2
ρ ρ+

 

Sample 
Size 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 

20 0 0 0 0 0 0 .0015 .0157 .0807 .1146
40 0 0 0 0 0 .0004 .0066 .0422 .0811 .0920
60 0 0 0 0 .0002 .0030 .0267 .0592 .0751 .0832
80 0 0 0 0 .0018 .0177 .0462 .0603 .0722 .0790

100 0 0 0 .0010 .0123 .0370 .0530 .0619 .0698 .0757
125 0 .0001 .0034 .0167 .0359 .0477 .0549 .0589 .0677 .0720
150 .0148 .0168 .0248 .0344 .0444 .0517 .0557 .0583 .0663 .0719
175 .0319 .0336 .0378 .0441 .0487 .0538 .0547 .0580 .0653 .0700
200 .0402 .0415 .0438 .0473 .0501 .0515 .0538 .0572 .0639 .0678
250 .0475 .0474 .0497 .0497 .0511 .0515 .0541 .0561 .0634 .0657
300 .0493 .0492 .0496 .0509 .0504 .0511 .0535 .0568 .0620 .0636
350 .0500 .0501 .0500 .0500 .0517 .0512 .0523 .0563 .0602 .0635
400 .0485 .0499 .0488 .0507 .0523 .0512 .0528 .0548 .0593 .0626
500 .0489 .0490 .0500 .0496 .0516 .0512 .0526 .0554 .0583 .0600
600 .0506 .0507 .0498 .0498 .0507 .0499 .0514 .0548 .0566 .0602
750 .0495 .0490 .0501 .0519 .0502 .0506 .0520 .0537 .0563 .0586

1000 .0498 .0484 .0492 .0511 .0490 .0503 .0517 .0552 .0574 .0556
1250 .0500 .0492 .0493 .0499 .0500 .0514 .0518 .0528 .0542 .0564
1500 .0483 .0497 .0495 .0499 .0495 .0499 .0517 .0535 .0540 .0549
2000 .0488 .0501 .0495 .0503 .0501 .0509 .0509 .0514 .0538 .0550
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Table 7 

Empirical Type I error rates when 1 2 0.2ρ ρΔ = − =  and 0.01α = . 

 
1 2

2
ρ ρ+

 

Sample 
Size 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 

20 0 0 0 0 0 0 .0001 .0013 .0229 .0513
40 0 0 0 0 0 0 0 .0028 .0256 .0375
60 0 0 0 0 0 0 .0002 .0073 .0240 .0299
80 0 0 0 0 0 0 .0009 .0125 .0221 .0271

100 0 0 0 0 0 .0001 .0037 .0139 .0200 .0244
125 0 0 0 0 0 .0005 .0087 .0135 .0186 .0228
150 0 0 0 0 .0001 .0034 .0112 .0136 .0189 .0213
175 0 0 0 0 .0009 .0079 .0112 .0138 .0174 .0205
200 0 0 0 .0001 .0034 .0099 .0116 .0135 .0175 .0193
250 0 0 .0011 .0054 .0091 .0109 .0119 .0127 .0165 .0176
300 .0049 .0053 .0071 .0090 .0106 .0110 .0118 .0133 .0159 .0172
350 .0088 .0088 .0093 .0095 .0100 .0106 .0113 .0133 .0148 .0169
400 .0096 .0095 .0093 .0101 .0101 .0102 .0115 .0122 .0147 .0161
500 .0094 .0098 .0101 .0097 .0106 .0103 .0109 .0120 .0135 .0160
600 .0103 .0097 .0098 .0099 .0102 .0100 .0107 .0120 .0131 .0153
750 .0100 .0094 .0099 .0101 .0091 .0105 .0106 .0116 .0131 .0145

1000 .0099 .0097 .0097 .0101 .0096 .0102 .0113 .0125 .0131 .0140
1250 .0099 .0101 .0099 .0098 .0099 .0098 .0113 .0112 .0122 .0129
1500 .0094 .0098 .0098 .0099 .0101 .0102 .0105 .0114 .0121 .0132
2000 .0094 .0101 .0099 .0104 .0105 .0107 .0108 .0108 .0119 .0132
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Type I error rate is controlled satisfactorily for almost all cases when 0.05Δ =  

(Tables 2 and 3). For larger Δ , the test becomes liberal for the difference between two 

large correlations (see, e.g. Tables 6 and 7). For example, when 0.2Δ = , 0.01α =  and 

( )1 2 / 2 0.85ρ ρ+ = , the proportion of falsely rejected non-equivalencies can be 0.0513, 

more than five times the nominal Type I error rate. Note that here, 1 0.95ρ =  and 

2 0.75ρ = , that is, one correlation is very close to one.  

 

Power 

Figures 2 through 6 are power graphs for 0.1Δ =  and .05α = and provide a 

comparison between power values calculated using the formula from Equation (55) and 

power values obtained with Monte Carlo simulations. Continued lines represent power 

calculated with Equation (55) and symbols not connected with a line represent Monte 

Carlo results. Symbols for Monte Carlo results lying on the continued lines for estimated 

power indicate good performance of Equation (55). Overall, a good fit between the 

values given by the formula and the Monte Carlo results can be found, suggesting that the 

normal approximation worked reasonably well. When N is small, minor deviations can be 

observed, especially for large correlations, as in Figures 5 and 6, for example, where 

power values generated by the formula tend to underestimate or overestimate true power 

slightly.
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Power for ρ1−ρ2 = 0.0
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Figure 2. Power graph for testing correlational equivalence when 1 2 0ρ ρ− =  and 

( )1 2 0.0,0.3,0.5 0.9ρ ρ+ = − , including data points from Monte Carlo analyses for 
comparison 
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Power for ρ1−ρ2 = 0.02
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Figure 3. Power graph for testing correlational equivalence when 1 2 0.2ρ ρ− =  and 

( )1 2 0.0,0.3,0.5 0.9ρ ρ+ = − , including data points from Monte Carlo analyses for 
comparison 
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Power for ρ1−ρ2 = 0.04
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Figure 4. Power graph for testing correlational equivalence when 1 2 0.4ρ ρ− =  and 

( )1 2 0.0,0.3,0.5 0.9ρ ρ+ = − , including data points from Monte Carlo analyses for 
comparison 
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Power for ρ1−ρ2 = 0.06
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Figure 5. Power graph for testing correlational equivalence when 1 2 0.6ρ ρ− =  and 

( )1 2 0.0,0.3,0.5 0.9ρ ρ+ = − , including data points from Monte Carlo analyses for 
comparison 
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Power for ρ1−ρ2 = 0.08
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Figure 6. Power graph for testing correlational equivalence when 1 2 0.8ρ ρ− =  and 

( )1 2 0.0,0.3,0.5 0.9ρ ρ+ = − , including data points from Monte Carlo analyses for 
comparison 
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Whether a researcher can expect good power when conducting correlational 

equivalence testing depends on sample size, but to a large extent on the size of the 

correlations tested as well. Assuming that the true difference between two correlations is 

zero, if both correlations are small, we will need large sample sizes to achieve a power of 

.80 for detecting this equivalence, a value that has often been described as a lower limit 

for satisfactory power. On the other hand, to have a good chance of discovering a true 

difference of zero between two large correlations does by far not require as large a 

sample size. 

In general, we have to realize that with sample sizes common in psychological 

research, there only is a realistic chance of (correctly!) finding a negligible difference 

between two correlations when this difference is small (0.0 – 0.04) and both correlations 

are fairly large ( )( )1 2 / 2 0.7ρ ρ+ ≥ . 

 

Required N 

Table 8 provides values for required N when the desired power is equal to .80. 

Required sample size could not be found analytically (see above), however, it was 

possible to utilize a root finding function in Mathematica. The FindRoot routine provided 

by Mathematica did not converge properly at the first attempt in several cases and it was 

necessary to try out different starting values for N. 

Required N obviously mirror results from the power calculations. With large 

correlations and small differences between the two correlations, the N necessary to 

ascertain satisfactory power can be quite reasonable and even small. However, other 
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combinations, e.g. small correlations and larger differences between them, can lead to 

astronomical numbers for required N. 
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Table 8 

Required N for testing correlational equivalence with power .80= , .10Δ = , and .05α =  

  ( )1 2 / 2ρ ρ+  

  0 .1 .2 .3 .4 .5 .55 

0 1715 1681 1581 1421 1211 966 836

.005 1731 1697 1596 1434 1222 975 844

.01 1782 1747 1643 1476 1258 1004 868

.015 1875 1838 1728 1553 1324 1056 913

.02 2021 1981 1863 1674 1427 1138 985

.025 2236 2192 2061 1852 1579 1259 1089

.03 2535 2485 2337 2100 1790 1428 1235

.035 2929 2871 2700 2426 2068 1649 1427

.04 3435 3366 3166 2845 2425 1934 1673

.045 4086 4005 3766 3384 2885 2301 1991

.05 4942 4844 4555 4094 3489 2783 2408

.055 6099 5978 5622 5052 4306 3435 2972

.06 7717 7563 7113 6392 5448 4346 3761

.065 10075 9875 9286 8346 7114 5675 4911

.07 13708 13435 12635 11355 9679 7722 6684

.075 19731 19339 18187 16345 13933 11117 9623

.08 30816 30204 28405 25529 21763 17366 15033

.085 54760 53672 50475 45367 38676 30866 26721

.09 123153 120707 113519 102032 86991 69432 60114

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2ρ ρ−  

.095 492377 482602 453868 407957 347837 277662 240426
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Table 8 continued 

Required N for testing correlational equivalence with power .80= , .10Δ = , and .05α =  

  ( )1 2 / 2ρ ρ+  

  .6 .65 .7 .75 .8 .85 .9 .95 

0 704 574 448 330 224 134 64 19

.005 711 579 452 333 227 136 65 19

.01 732 596 466 343 233 140 67 20

.015 770 627 490 361 245 147 70 21

.02 829 676 528 389 265 158 76 22

.025 918 748 584 431 293 175 84 25

.03 1040 848 662 488 332 199 96 29

.035 1202 980 765 564 384 230 111 33

.04 1410 1149 897 662 450 270 130 40

.045 1677 1367 1068 788 536 322 156 48

.05 2029 1654 1292 953 649 391 290 60

.055 2504 2041 1595 1178 802 484 236 76

.06 3169 2584 2019 1491 1017 614 301 100

.065 4139 3375 2638 1949 1330 805 397 135

.07 5633 4594 3592 2655 1814 1100 547 191

.075 8111 6616 5175 3828 2618 1591 796 286

.08 12672 10339 8089 5987 4100 2499 1260 465

.085 22529 18384 14390 10658 7308 4466 2270 864

.09 50691 41375 32400 24015 16489 10110 5183 2034

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2ρ ρ−  

.095 202773 165555 129700 96210 66159 40698 21052 8518
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To test the accuracy of these results, I reentered the results for required N from 

Table 8 into Monte Carlo code for finding power (the same code that has been used for 

testing the performance of the power formula), expecting power values around .80. For 

small to medium N, it seemed that the empirical power was somewhat lower than 

expected (the lowest being .70), suggesting that the actual required N are a little larger 

than what is given in Table 8. This might indicate that the approximation to a power 

formula from Equation (55) with a simple formula for 
1 2r rs −  is not optimal when N is 

small. 

 

Coverage Rate and Coverage Balance: 

Figures 7 through 11 and Tables 9 and 10 summarize results for coverage rate and 

coverage balance. Tables 9 and 10 contain results for the smallest sample size 

( )1 2 20N N= =  for all combinations. Only a list of representative cases, highlighted 

yellow in Table 9, is displayed in the graphs. Further, coverage rate was subtracted from 

1 to give what might be called a “miss-rate”. While information on miss rates above and 

below the true parameter are kept separate and not combined into one index in the 

figures, I computed the ratio of  miss rate below/miss rate above as an index of coverage 

balance in the tables: 

 Miss Rate BelowBalance Index = 
Miss Rate Above

. (63) 

A value close to 1 stands for a “balanced” CI, while values diverging from 1 stand for 

coverage imbalance. 
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 ( ρ 1 +ρ 2 )/2 = 0.0, ρ 1 −ρ 2   = 0
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Figure 7. Representative graphs of Monte Carlo analyses of 1 – coverage rate and 
coverage balance for correlational equivalence testing. Cells 1 through 5: 1 2 0.0ρ ρ− =  
and ( )1 2 0.0,0.2,0.4,0.6,0.8ρ ρ+ = , cell 6: 1 2 0.06ρ ρ− =  and ( )1 2 0.0ρ ρ+ =  
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(ρ1+ρ2)/2 = 0.2, ρ1−ρ2  = 0.06
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Figure 8. Representative graphs of Monte Carlo analyses of 1 – coverage rate and 
coverage balance for correlational equivalence testing. Cells 1 through 4: 1 2 0.06ρ ρ− =  
and ( )1 2 0.2,0.4,0.6,0.8ρ ρ+ = , cell 5 and 6: 1 2 0.1ρ ρ− =  and ( )1 2 0.0,0.1ρ ρ+ =  
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(ρ1+ρ2)/2 = 0.2, ρ1−ρ2  = 0.1
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Figure 9. Representative graphs of Monte Carlo analyses of 1 – coverage rate and 
coverage balance for correlational equivalence testing. Cells 1 through 6: 1 2 0.1ρ ρ− =  
and ( )1 2 0.2 0.7ρ ρ+ = −  
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(ρ1+ρ2)/2 = 0.8, ρ1−ρ2  = 0.1
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Figure 10. Representative graphs of Monte Carlo analyses of 1 – coverage rate and 
coverage balance for correlational equivalence testing. Cells 1 and 2: 1 2 0.1ρ ρ− =  and 

( )1 2 0.8,0.9ρ ρ+ = , cell 3 through 6: 1 2 0.4ρ ρ− =  and ( )1 2 0.0,0.2,0.4,0.6ρ ρ+ =  
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(ρ1+ρ2)/2 = 0.0, ρ1−ρ2  = 0.8
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Figure 11. Representative graphs of Monte Carlo analyses of 1 – coverage rate and 
coverage balance for correlational equivalence testing. Cell 1: 1 2 0.6ρ ρ− =  and 

( )1 2 / 2 0.6ρ ρ+ = , cell 2 and 3: 1 2 0.8ρ ρ− =  and ( )1 2 / 2 0.0,0.2ρ ρ+ = , cell 4: 

1 2 1.0ρ ρ− =  and ( )1 2 / 2 0.4ρ ρ+ = , cell 5 and 6: 1 2 1.2ρ ρ− =  and 

( )1 2 / 2 0.0,0.2ρ ρ+ =
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Table 9 

1 – Coverage rate (top value) and coverage balance (bottom value) for 1 2 20N N= = . Combinations of ( )1 2 / 2ρ ρ+  and  

1 2ρ ρ−  in yellow cells are also displayed in Figures 7 through 11. 
 1 2

2
ρ ρ+

 

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 0.1235 
1.0415 

 0.1188 
1.0258 

 0.1078 
1.0097 

 0.0883 
0.9892 

 0.0584 
0.9966 

 

0.02 0.1235 
1.0238 

 0.1188 
1.0166 

 0.1079 
1.0183 

 0.0884 
1.0411 

 0.0598 
1.3288 

 

0.04 0.1234 
1.0127 

 0.1186 
1.0090 

 0.1078 
1.0219 

 0.0888 
1.0960 

 0.0638 
1.7302 

 

0.06 0.1234 
0.9956 

 0.1190 
0.9995 

 0.1079 
1.0259 

 0.0895 
1.1563 

 0.0690 
2.1963 

 

0.08 0.1235 
0.9866 

 0.1192 
0.9940 

 0.1084 
1.0361 

 0.0904 
1.2057 

 0.0749 
2.6855 

 

0.1 0.1234 
0.9755 

0.1217 
0.9563 

0.1186 
0.9511 

0.1156 
0.9890 

0.1092 
1.0343 

0.1028 
1.0961 

0.0938 
1.2890 

0.0840 
1.7298 

0.0833 
3.0029 

0.1124 
11.5531 

0.2 0.1235 
0.9174 

 0.1195 
0.9420 

 0.1098 
1.0760 

 0.1014 
1.5243 

 0.1161 
5.0648 

 

0.4 0.1228 
0.8057 

 0.1207 
0.8633 

 0.1162 
1.1042 

 0.1204 
1.9012 

   

0.6 0.1223 
0.7117 

 0.1211 
0.7812 

 0.1234 
1.0891 

 0.1347 
1.8490 

   

0.8 0.1215 
0.6148 

 0.1223 
0.6956 

 0.1301 
1.0186 

     

1.0 0.1203 
0.5183 

 0.1227 
0.5996 

 0.1349 
0.8516 

     

 
 
 
 
 
 

1 2ρ ρ−  

1.2 0.1176 
0.4228 

 0.1243 
0.4975 
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Table 10 

Summary of coverage rate and coverage balance when 1 2 20N N= = .  Minuses stand for empirical coverage below the 
nominal value, pluses for coverage above the nominal value. Blue cells indicate combinations where the CI misses the true parameter 
more often by lying above it, reddish cells indicate combination where the CI misses the true parameter more often by lying below it. 

Color intensity indicates severity of coverage imbalance. 
 1 2

2
ρ ρ+

 

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 –  –    +  +   

0.02 –  –  
 

 +  +   

0.04 –  –  
 

 +  +   

0.06 –  –  
 

 +  +   

0.08 –  –  
 

 
 

 +   

0.1 – – – – 
 

+ 
 

+ + – 

0.2 –  –  
   

 –  

0.4 –  –  – 
 

–    

0.6 –  –  – 
 

−     

0.8 –  –  −  
 

    

1.0 –  –  −       

 
 
 
 
 
 

1 2ρ ρ−  

1.2 –  –        
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Construction of Table 10: The definition of a “medium or large deviation from 

nominal coverage rate” is of course somewhat arbitrary. I chose the following guidelines: 

Coverage rate shows a medium deviation from nominal coverage rate when the 

proportion of covered true parameters ranges from 0.91 to 0.925 (high coverage rate, 

symbolized by a small +) or 0.89 to 0.875 (low coverage rate, symbolized by a small –). 

Extreme deviations from nominal coverage rate are encountered when the proportion of 

covered parameters is above 0.925 (large +) or below 0.875 (large –). 

To find decision rules as to what constitutes medium and large deviations from 

missing the true parameter equally often above and below, one may consider that a ratio 

of 3 : 2 means that  60 percent of the misses the confidence interval was lying entirely 

below the true parameter and 40 percent of the misses it was lying above. A ratio of 3 : 2 

seemed reasonable to me as a lower bound for the risk of systematically under- or 

overestimating the true parameter. Hence, values for ratios from Equation (63) ranging 

from 1.5 to 3.0 and from 0.67 to 0.33 indicate medium coverage imbalance, while values 

greater than 3 or smaller than 0.33 indicate strong imbalance (see Table 10). Applying 

these guidelines, I summarized coverage rate and balance results in Table 10 to give an 

overview as to which combinations might lead to high or low coverage rate and a miss 

rate ratio far from 1 using visual cues such as color. 

Coverage rate for small sample sizes showed almost always some deviation (too 

high or too low) from the nominal level. For the 90% confidence interval, coverage rate 

could be as high as 94% (Figure 11, cell 5) or as low as 86.5% (Figure 11, cell 4). While 

no or very little coverage imbalance was found in most cases, substantial imbalance was 

observed in some; an overview of combinations that led to medium and severe imbalance 
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can be gained from Table 10 and the figures. As N increases, coverage rate and balance 

approximate their nominal values. 

 

Conclusions 

Correlational equivalence testing using the approximate 1 2α−  confidence 

interval provides satisfactory Type I error control at the .05 level for a wide range of 

correlations. When both correlations are fairly large (e.g., ( )1 2 / 2 0.8ρ ρ+ = ), however, 

the tests can be too liberal. These results are repeated at the .01α =  level, where large 

correlations again lead to overly high rejection rates. For small sample sizes, the 

empirical rejection rate was up to five times as high as the nominal -α level. This turns 

out to make correlational equivalence testing utilizing the approximate procedures 

developed above less feasible, as power rates for small or medium sample sizes tend to be 

acceptable only when both correlations are large. Testing differences between two small 

correlations will require sample sizes that are rarely found in psychological research. 

The results for coverage rate and coverage balance seem to justify the simple 

approximations utilized in this study somewhat. Except for extreme combinations with 

one correlation close to 1, empirical coverage rate does not diverge too strongly from 

nominal coverage rate and the 1 2α−  confidence interval misses the true parameter about 

equally often on both sides. Improvements on this performance might be easy to achieve 

with more accurate formulas for the standard error of 1 2r r− . 
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CHAPTER IV 

 

DISCUSSION 

 

Several procedures for testing the difference between two parameters for 

equivalence have been suggested in the past 35 years. As there has been a considerable 

amount of dispute which procedures are useful and valid, it seems necessary to 

investigate their characteristics and performance carefully to be able to choose an 

appropriate method for the research question at hand. I have attempted to compare three 

procedures that utilize confidence intervals for equivalence testing. An application of the 

traditional equivariant 1 2α−  confidence interval to correlational equivalence testing 

with a simple approximation to the standard error of 1 2ρ ρ−  was examined in Monte 

Carlo simulations. 

 

Do all Confidence Procedures perform equally well? 

Confidence intervals have been suggested as a replacement for, or at least 

addition to, significance tests for a long time and by a large number of sources (see, e.g. 

Wilkinson & The APA Task Force on Statistical Inference, 1999), as they add 

information regarding the parameter in form of a range of reasonable values. Typically, 

using a confidence interval will result in the same conclusion regarding the hypotheses at 

hand that would have been reached had a significance test been used. It seems that the 

traditional reject-support testing situation that taught introductory statistics classes poses 

a convenient coincidence: An -α level test will arrive at the same conclusion as the 
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appropriate decision rule utilizing a 1 α−  confidence interval. This correspondence need 

not always be the case! For the test of equivalence for two parameters, an equivariant 

1 2α−  confidence interval will reach the same conclusion as an -α level test (e.g. Berger 

& Hsu, 1996). Other authors have mentioned that the lack of a complete correspondence 

between the -α level of a test and the size of a confidence interval might be too confusing 

for the average consumer of statistical analyses (Westlake, 1976). However, in the 

pharmaceutical sciences, familiarization with the issue has long taken place. I believe that 

the social sciences would also be well advised to ponder this non-correspondence. There 

have been numerous efforts to keep this correspondence, but properties of new 

procedures always need to be carefully examined.  

Comparing the intervals that are available on the main properties coverage rate, 

bias, and width enables us to make better informed decisions as to which procedure is 

most helpful. Foremost of all, I find that the replacement procedure should arrive at the 

same conclusion as the original procedure. Out of the three procedures investigated, 

Westlake’s symmetric interval was not equivalent to the hypothesis tests it was supposed 

to replace. When the true parameter is close to zero, i.e. when practical equivalence is 

given, his symmetric interval will be too conservative. The two other intervals, Seaman 

and Serlin’s and the traditional 1 2α−  confidence interval when used to test Equations 

(4), will arrive at the same conclusions as the TOST. For all three intervals, satisfactory 

coverage rate has been proven or observed, however, both Westlake’s and Seaman and 

Serlin’s interval are dramatically biased by always including zero. 

The bias of a confidence interval has not received a lot of attention in the past and 

most Monte Carlo studies examining confidence interval performance report coverage 
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rates but no measure of bias. One possible reason might be that it has only recently 

become computationally feasible to investigate bias as in Definition 4 in a Monte Carlo 

study. A large number of simulations for an even larger number of cases will be 

necessary to assess the coverage rate for a representative number of values in the 

parameter space. 

Although no correspondence between bias and coverage balance has been proven, 

there might be at least two reasons why we should investigate coverage balance: (1) For 

some parameter distributions (e.g. symmetric distributions), there might be a direct 

connection between coverage imbalance and bias of a confidence interval; (2) Two-sided 

confidence intervals with good coverage balance are desirable. A confidence interval 

provides a range of “good suggestions” for the true value of the parameter. The 

conclusion we draw from a 1 α−  confidence interval is that with 100(1 )α− % 

confidence, we have covered the true parameter. In general, it might not be appropriate to 

connect any expectation of the form “the values that are in the middle of the CI are more 

likely to be the parameter than the values at either end of the CI” to the interval estimate. 

However, when an interval estimator systematically misses the true parameter on only 

one side, i.e. it over- or underestimates the true parameter, it also consistently suggests 

ranges of values that lie above (below) the true parameter more often.  

It would be very desirable to find a way of investigating bias in a form other than 

the one from the definition. One suggestion might be to see whether covering no value 

more often than the true parameter and missing the true parameter equally often on both 

sides (i.e., exhibiting coverage balance) are equivalent at least for a subset of interval 



 78

estimators. Then an investigation of bias would only involve collecting and displaying 

two values per situation. Unfortunately, such an equivalence has not been established yet.  

 

Which interval should we use? 

Differences between the three confidence intervals investigated in this study have 

been highlighted several times and are summarized in Table 1. Preference for one interval 

or the other should be guided by the research question. Often, when a choice between 

several procedures available for testing one set of hypotheses has to be made, we look for 

the uniformly most powerful test (UMP) that successfully controls Type I error rate at the 

desired level. Certainly, Westlake’s symmetric interval provides less power than when 

Seaman and Serlin’s interval or the traditional equivariant 1 2α−  confidence interval are 

used to test for equivalence and it does not seem to offer any other advantages. 

When we construct a confidence interval, we hope to gain additional information 

with respect to the parameter of interest as opposed to the information a simple 

hypothesis test can provide us with. While both the traditional 1 2α−  CI and Seaman and 

Serlin’s CI will reject the null hypotheses from Equation (4) at the same rate, the 1 2α−  

CI has a confidence coefficient of ( )100 1 2 %α−  and Seaman and Serlin’s CI has a 

confidence coefficient of ( )100 1 %α− . However, these additional %α  might be bought 

at a high cost: Their CI will always be wider than the 1 2α−  CI and in many cases it 

might be substantially wider. Example 1 above demonstrated a possible situation in 

which Seaman and Serlin’s interval was 3.79 times wider than the traditional 1 2α−  CI. 

An alternative suggestion might be to test the two null hypotheses with a 1 2α−  

confidence interval or the TOST procedure and then present the traditional 1 α−  
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confidence interval for the parameter, if an interval with ( )100 1 %α−  confidence 

coefficient is desired. I would like to note that a  correspondence between the choice of 

Type I error rate for any hypothesis test and the confidence coefficient of the interval that 

can be used to test the hypothesis is not mandatory. 

As a two-sided CI, Seaman and Serlin’s interval systematically underestimates the 

absolute value of the true parameter 1 2μ μ− , but can be perceived of as a 1 α−  one-sided 

confidence interval for the absolute value of 1 2μ μ− . In equivalence testing, we might 

ask what is more dangerous, over- or underestimating the true difference. Equivalence 

testing tries not to wrongly conclude that the two parameters are practically equal and 

hence, the only dangerous situation from a “protecting the null hypothesis” perspective is 

to underestimate the parameter. Both Seaman and Serlin’s interval and the 1 2α−  CI are 

going to underestimate the parameter equally often. 

An important reminder seems necessary here: Seaman and Serlin do not 

suggested using the procedure from Equations (19) and (20) to test the equivalence null 

hypotheses. Instead, they recommend a traditional hypothesis test followed by 

construction of a traditional 1 α−  confidence interval or their equivalence procedure 

depending on the outcome of the hypothesis test. I have not discussed their complete 

procedure in this thesis, although a thorough discussion might promise interesting 

insights. Rather, the intention here was to discuss the interval properties of the new 

confidence interval they constructed and compare it to other confidence intervals. 

Summarizing all aspects, the traditional 1 2α−  confidence interval seems to be 

the most attractive alternative for a number of reasons: It is the only unbiased two-sided 

confidence interval. The other two techniques are either strongly biased or else have to be 
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conceived as one-sided confidence intervals. Further, it is the narrowest interval that 

allows testing both equivalency null hypotheses simultaneously at the .05 Type I error 

rate. Of course one may wish to construct a one-sided interval, that is, one may only be 

interested in the size of the absolute value. However, it is important to notice that this 

interval is only gaining limited additional information above the TOST compared to the 

1 2α−  CI (e.g. Meredith & Heise, 1996). 

 

Performance of the equivalence test for the difference between two correlations 

The construction of test statistics and the 1 2α−  confidence interval for the 

difference between two correlations from independent normal random samples from 

Equations (48), (49) and (50) are only asymptotic. Since the statistics are not exact, it was 

necessary to investigate whether Type I error rate is controlled at acceptable levels and 

whether the computed values for power agree with empirical values. Empirical Type I 

error rate was found to be controlled at an acceptable level for .05α =  and .01α =  in 

most cases, although testing two large correlations could lead to a significant deviation 

from the nominal Type I error level, especially as the size of the equivalence region gets 

larger. Computed power values and nominal coverage rate seemed to agree quite well 

with empirical values for power and coverage rate, while coverage imbalance was 

substantial in some cases. I have neither considered exact formulas nor non-normal data 

or dependent samples. The formula for the pdf of a correlation is considerably complex to 

make hand computations hard if not impossible. If asymptotic formulas perform well, the 

gain in performance that can be achieved by exact formulas might not be worth the effort. 

Non-normal data on the other hand might alter the distribution of 1 2ˆ ˆρ ρ−  to a degree that 
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does not warrant the use of asymptotic formulas any longer. When testing correlations 

from dependent samples, power might increase. All these issues should be investigated in 

the future since they might make equivalence testing a much more viable technique in 

some situations while the use of asymptotic formulas might forbid itself in others. 

Bootstrap and Maximum Likelihood Estimation might offer valuable alternatives. 

 

Is Equivalence Testing for the Difference Between Two Correlations Worth Doing? 

When a researcher would like to show that the difference between two parameters 

is trivially small, equivalence testing offers an attractive alternative to previous options. 

Efforts to show practical equivalence between two parameters have included the 

conduction of accept-support testing in the past. Accept-support testing will often suffer 

from insufficient power which will lead to non-rejection of the null hypothesis (in favor 

of the researcher’s interests) not due to evidence in favor of the null but simply due to a 

lack of desirable precision. At the same time, it is possible to have “too much” power or 

precision such that an inconsiderable difference will still lead to a rejection of the null 

hypothesis. Only in few situations will accept-support testing be a satisfactory alternative 

for showing that the difference between two parameters is practically trivial. Equivalence 

testing can provide evidence for practical equivalence utilizing the reject-support testing 

logic that rewards increasing precision. Under these circumstances it seems that 

equivalence testing is indispensable for anyone investigating whether the difference 

between two parameters is practically trivial. This compelling advantage in terms of 

hypothesis testing logic applies to correlational equivalence testing as well. Yet it was 

necessary to determine whether correlational equivalence tests are feasible in practice, i.e. 
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what the cost for required precision is. Test about two correlations require relatively large 

sample sizes in order to provide sufficient power (see, e.g. Cohen, Cohen, West & Aiken, 

2002), and correlational equivalence testing is not an exception to this rule. The tests 

developed in this study performed satisfactorily in most cases, and we can make a general 

statement on the feasibility of equivalence testing for the difference between two 

correlations. Power will be sufficient at small to medium sample sizes only when the two 

correlations involved are large, but when the two correlations are close to zero, sample 

sizes of 1500 or more are required to assure power of 0.8. Researchers who hope to find 

equivalence between two correlations should keep this in mind. The consequences of 

unawareness of insufficient power can be devastating for a research program. 

Unfortunately, the asymptotic formulas developed here tend to perform suboptimally 

exactly in those situations where sufficient power would be available, namely when the 

two correlations are large. I would recommend a search for methods with better Type I 

error control and coverage rate (and possibly coverage balance) to test differences 

between two large correlations. 

 

Why Is There Coverage Imbalance In The Confidence Interval? 

The equivariant 1 2α−  confidence interval from Equation (50) does not miss the 

true parameter equally often above and below. I was interested in understanding the 

reason for such imbalance, since this might suggest ways to find better confidence 

interval estimates. The construction of the CI is based on the assumption that 1 2r r−  is 

normally distributed with mean 1 2ρ ρ−  and a standard deviation from Equation (47). 
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That a supposedly equivariant confidence interval around θ  (constructed as 

� l*zαθ σ± ) misses the true parameter more often on one side than on the other could have 

the following reasons (as well as their interaction): (1) The interval will, on average, have 

the same width across the whole parameter space, however, the distribution of the 

parameter estimate is skewed while we are assuming it is normal. The distributions of 

both confidence interval limits will be skewed as well and this will lead to the bias. (2) 

The parameter estimate is more or less normally distributed, however it is not 

independent from its standard error. In this case, the width of the CI varies together with 

the value we observed for the parameter estimate. If the size of the standard error is 

systematically larger for sample values from one side of the distribution of the parameter 

estimate, the CIs for those values will be wider and therefore contain the true parameter 

more often while CIs on the other side of the distribution will be narrower and contain the 

true parameter less often, which creates the bias. 

In general, the distribution of r is not normal and thus, the distribution of 1 2r r−  

might be normal either. Further, the value for 1 2r r−  and it’s standard deviation estimate 

from Equation (47) are not independent, in fact, in some settings, the correlation between 

1 2r r−  and 
1 2r rs −  can be quite large (e.g. when 1 0.5r =  and 2 0.5r = − ). 

 

Future Directions 

I would like to continue examining the relationship between bias from Definition 

4 and coverage balance both analytically and with Monte Carlo simulations. Further, it 

would be of interest to look at previous publications that utilize confidence intervals and 

investigate whether undetected bias or coverage imbalance of two-sided CIs led to 
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erroneous conclusions, determining how seriously the neglect of these two concepts 

affects the research process. Better estimates for the 1 2α−  confidence interval around 

the difference between two correlations might lead to improved Type I error control and 

possibly coverage rate. Maximum Likelihood estimation might provide means to create 

asymmetrical intervals with better properties. 
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