
MODEL-DRIVEN COMPOSITION AND PERFORMANCE EVALUATION OF

PATTERN-BASED SYSTEMS

By

Arundhati Kogekar

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May 2007

Nashville, Tennessee

Approved:

Professor Aniruddha Gokhale

Professor Lawrence W. Dowdy

Professor Swapna Gokhale

DEDICATION

This thesis is dedicated to my parents, Radhika and Vijay Kogekar.

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Aniruddha Gokhale, for providing valuable

guidance during the course of my Master’s research. I am grateful to my thesis com-

mittee members Dr. Lawrence Dowdy and Dr. Swapna Gokhale for their insightful

comments. I would also like to express my gratitude to Dr. Douglas Schmidt for his

constructive feedback and suggestions. I appreciate all the help provided to me by

my fellow graduate students at Vanderbilt University and at the Institute of Software

Integrated Systems.

Last but not the least, I would like to acknowledge the support and encouragement

provided by my family during my Master’s studies.

iii

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter

I. INTRODUCTION . 1

II. RELATED WORK . 5

III. POSAML - A VISUAL MODELING LANGUAGE FOR SYSTEM
COMPOSITION AND EVALUATION 7

III.1. Structural View . 7
III.2. Feature View . 9
III.3. Simulation View . 10
III.4. Benchmarking View . 10

IV. STRUCTURAL MODELING USING POSAML 11

IV.1. Modeling the Reactor Pattern 13
IV.2. Modeling the Active Object Pattern 16

V. PERFORMANCE EVALUATION USING POSAML 20

V.1. Simulation Aspect of POSAML 20
V.2. Benchmarking Aspect of POSAML 25

VI. SIMULATION MODEL OF REACTOR PATTERN 28

VI.1. The Simulation Model . 29
VI.2. Statistics Collection . 31
VI.3. Use of POSAML . 31
VI.4. Simulation Results and Analysis 32

iv

VII. CONCLUSION . 39

BIBLIOGRAPHY . 41

v

LIST OF TABLES

Table Page

VI.1. Notations . 33

VI.2. Initial Set-Up . 33

vi

LIST OF FIGURES

Figure Page

I.1. Patterns in Middleware . 1

III.1. Middleware Patterns and Pattern Languages 8

IV.1. Top-Level Meta-Model of Structural View 11

IV.2. Overview of POSAML . 12

IV.3. UML Diagram of the Reactor Pattern 13

IV.4. Meta-model of the Reactor Pattern 14

IV.5. Model of the Reactor Pattern . 15

IV.6. UML Diagram of the Active Object Pattern 17

IV.7. Meta-model of the Active Object Pattern 17

IV.8. Model of a Producer-Consumer Problem Using POSAML 19

V.1. Simulation Meta-Model . 21

V.2. Simulation Model for Reactor Pattern in POSAML 22

V.3. Benchmarking Meta-Model . 26

V.4. Benchmarking Aspect . 26

VI.1. Simulation Model of Reactor in OMNeT++ 29

VI.2. Effect of Arrival Rate . 34

VI.3. Effect of Service Time . 36

VI.4. Effect of Maximum Buffer Size . 37

vii

CHAPTER I

INTRODUCTION

Real-time, performance-critical distributed systems are used in many domains,

such as telecommunications, power grid and enterprise systems among others. These

systems have diverse and stringent Quality of Service (QoS) requirements such as

scalability, fault tolerance and reliability. The design of such contemporary large-

scale systems is based on elegant patterns as well as pattern languages [6]. Such

patterns-based systems are designed and implemented by composing together differ-

ent pattern-based functional building blocks. Patterns [6] represent solutions to a

common set of problems arising in a particular context. A pattern therefore is a

body of expert knowledge on best practices, designs and strategies that has been

documented in a standardized manner and that can therefore be reused in similar

situations. In the context of large-scale distributed systems, patterns represent solu-

tions for common distributed and network programing tasks such as event handling,

memory management, service access and configuration, concurrency and synchroniza-

tion [17]. Figure I.1 [5] shows a pattern-based distributed middleware architecture

composed of building blocks representing these patterns.

Figure I.1: Patterns in Middleware

1

Visual modeling languages make it easer for system architects to intuitively de-

sign complex systems. Using domain-specific visual modeling languages for designing

a system raises the level of abstraction, which makes design reuse possible. Model-

driven techniques make the task of designing the system easier by disentangling var-

ious orthogonal design-time concerns such as system composition, configuration and

behavior, while still ensuring that the designer is aware of the effect of change within

each concern on the end system. This thesis describes the Pattern-Oriented Software

Architecture Modeling Language (POSAML), which enables the system architect to

compose and configure his/her complex system using pattern-based building blocks

within the Generic Modeling Environment (GME) [19].

Usually, the building blocks of large-scale system come equipped with a number

of customizable configurations. It is then the task of the system architect to select

the right building blocks or components, evaluate the performance of these configu-

rations and select the one that is best suited for that particular domain. While the

design of such systems is in itself a hard task, a major challenge faced by the designer

is a lack of understanding of how different system configurations affect the QoS of

the end system. In traditional systems development, the architect often has to wait

very late into the system life-cycle, for example, until runtime, to validate the system

and its configuration, which is both costly and time-consuming. Here again, model-

driven technologies provide the capability to conduct “What-If” design time analysis

of the system. Incorporating performance analysis of the system at design time itself

provides greater flexibility in changing system configurations if they are found to be

sub-optimal. If the configuration that provides the most optimum performance is

known at design time, code can be written only for that configuration. Similarly, the

sooner the design flaws are detected in the system life-cycle, the easier and cheaper

it is to correct them. This highlights the benefit of using design-time performance

2

analysis, such as simulations, to predict the system performance at design time, when

there is still time and ample opportunity to change the design without wasting addi-

tional resources. POSAML therefore provides the capability of modeling simulation

and benchmarking parameters along with the actual system model. In this manner,

performance evaluation artifacts can be auto-generated from the model. These can

then be plugged into existing libraries so that the system can be evaluated at design

time itself.

The emphasis on design-time performance analysis of distributed systems now

maps to the performance evaluation of the patterns-based building blocks using sim-

ulation mechanisms. The simulation of a pattern-based building block, however,

presents its own set of challenges. Each block interacts in different ways with other

blocks. For example, the reactor pattern has to deal with numerous simultaneous

events. The event-handling mechanism in the reactor allows concurrency by enabling

event handling in multiple threads concurrently. This necessitates the use of a power-

ful discrete event-based simulator which would be able to simulate the simultaneous

occurrence and handling of events. In addition, the simulator must be able to incor-

porate any modifications to the model easily, i.e, the simulation of the combination

of two or more building blocks should not require extensive rewriting of existing

simulation code.

Generally, when evaluating a system using simulations, the effect of each param-

eter is evaluated by running simulations multiple times. Each time, it is tedious to

rewrite the parameter file required for the simulations. For a system with multiple

input parameters and multiple metrics, manual effort expended in rewriting these files

becomes considerable. This effort can be saved if simulation artifacts are generated

from the model itself. This capability is also provided by POSAML.

Performance evaluation at run-time is also important to validate that the end

3

system, and not just the system design, does indeed meet its Quality of Service (QoS)

goals. As in the case of simulations, benchmarks are run multiple times for multiple

system configurations. It is tedious and error-prone to specify these benchmarks by

hand. Auto-generating these parameter files would therefore save considerable time

and effort. In addition, specifying benchmark characteristics at design time along

with the design gives the system designer control in the run-time evaluation of the

system. It also provides an intuitive interface where benchmark characteristics can be

associated with specific blocks of the system. This makes it easier for a developer to

understand and implement the benchmarks. The capability of modeling benchmark

characteristics and generating benchmark parameter files from the models is also

provided by POSAML.

Thesis Organization The thesis is organized in the following manner:

Chapter II of the thesis discusses related work in the area of modeling and per-

formance evaluation of large-scale systems. Chapter III provides an overview of

POSAML and its different aspects. Chapter IV describes the Structural View of

POSAML in detail. This is illustrated by describing how the Reactor and Active

Object patterns are modeled in POSAML. The use of POSAML in performance eval-

uation by simulation and benchmarking is elaborated in Chapter V. The simulation

set-up, results and analysis of the Reactor pattern using the OMNeT++ simulator

are described in Chapter VI. Chapter VII elaborates on future work and provides the

conclusion for the thesis.

4

CHAPTER II

RELATED WORK

With the growing complexity of component-based systems, composing system-

level performance and dependability attributes using component attributes and sys-

tem architecture is gaining attention. Crnkovic et al. [4] classify the quality attributes

according to the possibility of predicting the attributes of the compositions based on

the attributes of the components and the influence of other factors within the architec-

ture and the environment. However, they do not propose any methods for composing

the system-level attributes.

At the model and program transformation level, the work by Shen and Petriu [18]

investigated the use of aspect-oriented modeling techniques to address performance

concerns that are weaved into a primary UML model of functional behavior. It has

been observed that an improved separation of the performance description from the

core behavior enables various design alternatives to be considered more readily (i.e.,

after separation, a specific performance concern can be represented as a variability

measure that can be modified to examine the overall systemic effect). The perfor-

mance concerns are specified in the UML profile for Schedulability, Performance,

and Time (SPT) with underlying analysis performed by a Layered Queuing Network

(LQN) solver.

A disadvantage of the approach is that UML forces a specific modeling language.

The SPT profile also forces performance concerns to be specified in a manner than

limits the ability to be tailored to a specific performance analysis methodology. As an

alternative, domain-specific modeling supports the ability to provide a model engineer

with a notation that fits the domain of interest, which improves the level of abstraction

of the performance modeling process.

5

There have been efforts to evaluate the performance of middleware patterns ana-

lytically by various researchers [7,16]. A drawback of using analytical models is that

it is difficult to predict the behavior of a complex system based on analytical methods

alone. Harkema, et al [9] have worked on the performance evaluation of the CORBA

method invocation and threading models. However, they have not focused on the

pattern-based approach towards performance analysis of middleware. Model-driven

techniques are increasingly being used for middleware development, but converting

static pattern-based middleware models into simulation or empirical models for the

purpose of performance evaluation has not yet been a focus in the research community.

An approach for generating simulation programs from UML diagrams is explained

by Arief and Speirs in [2]. The authors describe a Java-based UML tool which can be

used to generate XML simulation artifacts from UML class and sequence diagrams.

Extensive research has been done in the area of regression benchmarking [3] by

Kalibera, et al [10]. The authors describe a tool suite for the regression benchmarking

of Mono, an open-source middleware platform. Another hand-crafted benchmarking

suite is the OpenCORBA Benchmarking initiative by Tuma, et al [20]. However,

like other handcrafted techniques, its implementation takes a lot of tedious effort.

In addition, it presents certain difficulties such as combining various performance

factors, incorporating network conditions and background load, and ensuring the

portability of results. A model-driven approach toward benchmarking middleware is

CCMPerf [14], which overcomes these limitations. Additionally, it provides the right

level of visual abstraction necessary to design and set up an experiment, as well as

auto-generating low-level, error-prone code.

6

CHAPTER III

POSAML - A VISUAL MODELING LANGUAGE

FOR SYSTEM COMPOSITION AND

EVALUATION

The Pattern Oriented Software Architecture Modeling Language (POSAML) is a

domain-specific visual modeling language which enables system architects to compose

and configure complex distributed systems. Model-based solutions based on visual

aids can help resolve the variability in complex systems such as distributed middleware

as well as provide automated QoS validation. POSAML provides QoS validation by

virtue of plugging in different model interpreters and enabling system architects to

run simulations based on their designs.

POSAML provides the following “views” or “aspects” to model the system:

III.1 Structural View

The design of complex, hierarchical systems often consists of assembling individual

but compatible building blocks. These building blocks most often are patterns-based.

A software pattern [6] codifies recurring solutions to a particular problem occurring in

different contexts, which is embodied as a reusable software building block. The sys-

tems developer chooses a block based on various factors including the context in which

the application will be deployed, the concurrency and distribution requirements of the

application, the end-to-end latency, timeliness requirements for real-time systems, or

throughput for other enterprise systems (e.g., telecommunications call processing).

Figure III.1 illustrates a family of interacting patterns forming a pattern lan-

guage [1] for middleware designed to support such applications. The middleware can

7

Figure III.1: Middleware Patterns and Pattern Languages

be customized by composing compatible patterns. For example, event demultiplex-

ing and dispatching via the Reactor or Proactor pattern can be composed with the

concurrent event handling provided by the Leader-Follower or Active Object pattern.

However, an Asynchronous Completion Token (ACT) pattern works only with asyn-

chronous event demultiplexing provided by the Proactor. Thus, a combination of

Reactor and ACT is invalid.

The Structural View of POSAML, also known as the Pattern Aspect, is where a

system modeler can compose and model the various patterns in the system. POSAML

follows a hierarchical structure. At the top-most level one can model inter-pattern

relationships and constraints. At the lower level, a designer can go “inside” each

pattern to model the participants of the pattern and the intra-pattern relationships

between them.

8

To illustrate this point, Chapter IV describes in detail how one can model com-

positions of patterns such as Reactor and Active Object in the structural view of

POSAML.

III.2 Feature View

Complex systems are equipped with numerous configuration options to customize

the system behavior of so that the system meets the QoS demands. This flexibility

further exacerbates the already incurred variability in design choices that the systems

developer is required to make. As a concrete example, the Reactor pattern can be

configured in many different ways depending on the event demultiplexing capabilities

provided by the underlying OS and the concurrency requirements of an application.

Judging the best configuration manually from a myriad of choices is very difficult.

The visual modeling capabilities of the Feature View of POSAML provide a solution

to this problem. The feature view of POSAML allows model users to use domain-

specific artifacts to model a system in contrast to using low-level platform-specific

artifacts. Once the feature modeling is done, the next step is for the tool to transform

pattern specific features into a configuration file which can be used by the end system.

Various constraints are in place to minimize the risk of choosing wrong connections

and options. Some of these constraints are checked using Object Constraint Language

(OCL) and some of them are checked at the time of generating a configuration file

corresponding to these features. The Feature View of POSAML is explained in detail

in previous work [11].

9

III.3 Simulation View

While it is important to be able to compose and configure the system at design-

time, it is equally important to validate those compositions and configurations so that

they provide the best QoS for the system. Design-time validation ensures that design

errors do not propagate further, thus saving considerable time and effort. POSAML

provides the Simulation View for design-time validation. In this view, the system

architect can model simulation parameters of interest to either the composed system

or to individual building blocks. The simulation interpreter goes through this model

and generates simulation artifacts such as simulation initialization files. These can be

plugged into existing simulation libraries to run simulations for various configurations

and compare the performance of each configuration.

III.4 Benchmarking View

POSAML also provides capabilities to design benchmarks to evaluate the final sys-

tem at run-time. The system designer can model certain benchmarking characteristics

(such as the metric to measure and the input parameters) in the Benchmarking View

of POSAML. These benchmarking characteristics can be exported using a “bench-

marking interpreter” to provide inputs to an existing benchmarking library. This

capability ensures that the system designer, who is also a domain expert, has a say

in deciding which benchmarks to run when the system has finally been implemented.

The Benchmarking Aspect and its associated interpreter are further described in Sec-

tion V.2.

10

CHAPTER IV

STRUCTURAL MODELING USING POSAML

As described earlier, large-scale systems are composed of pattern-based building

blocks. It is easier to design a system by assembling these reusable blocks. POSAML

allows a system architect to model this in its Structural View, also known as the

Pattern Aspect. In this view, the architect can compose his/her system by selecting

and connecting the appropriate building blocks.

Figure IV.1 illustrates the high-level POSAML meta-model defined in GME.

Figure IV.1: Top-Level Meta-Model of Structural View

This meta-model enables a system architect to model various individual patterns

as well as their composition in the structural view of POSAML. While the figure

shows a “Middleware Model” as being composed of patterns, POSAML can be used

for modeling any kind of hierarchical, pattern-based large-scale system. For instance,

11

the designer can model the individual Reactor, Acceptor-Connector, Bridge or Ac-

tive Object patterns, as well as a composition of the Reactor-Acceptor-Connector

patterns, or a combination of multiple active object patterns. To model individual

patterns, this high-level meta-model is connected to individual pattern meta-models

shown in Figure IV.4 and Figure IV.7.

Figure IV.2 shows an example where the designer has modeled the Reactor and

Acceptor-Connector pattern-based blocks using POSAML. In a client-server appli-

Figure IV.2: Overview of POSAML

cation, the Reactor would exemplify event handling within the server, while the

Acceptor-Connector would demonstrate the communication mechanisms between the

client and server. In addition to this high-level view, the user can click on any one

of the patterns and model its internals, as shown in Figure IV.2. This highlights the

12

fact that POSAML is well-suited to modeling hierarchical pattern-based systems. The

next two sections describe how the Reactor and Active Object patterns are modeled

in POSAML.

IV.1 Modeling the Reactor Pattern

The ability to handle and dispatch simultaneously occurring events effectively

without any additional resource overhead is an integral part of systems designed

for use in real-time, event-driven and performance-critical environments. The Reac-

tor [17] allows event-driven applications to demultiplex and dispatch service requests

that are delivered to an application from one or more clients. The Reactor pattern

inverts the flow of control in a system during event handling. Figure IV.3 illustrates

the structure of the Reactor Pattern in UML notation.

Figure IV.3: UML Diagram of the Reactor Pattern

13

Corresponding to the UML figure, Figure IV.4 illustrates the meta-model of the

Reactor building block in the domain-specific POSAML.

Figure IV.4: Meta-model of the Reactor Pattern

This meta-model enables the designer to model the following participants and

their relationships in POSAML:

1. Handle: The handle uniquely identifies event sources such as network connec-

tions or open files. Whenever an event is generated by an event source, it is

queued up on the handle for that source and marked as “ready.”

2. Reactor : The reactor is the dispatching mechanism of the Reactor pattern. In

response to an event, it dispatches the corresponding event handler for that

event.

3. Event Handler : The event handlers are the entities which actually process the

event. These are registered with the reactor and are dispatched by the reactor

when the event for which they are registered occurs.

14

4. Handle Set : The registered handles form a set called the “Handle Set.”

5. Synchronous Event Demultiplexer : This entity is actually implemented as a

function call, such as select() or WaitForMultipleObjects() (in case of

Windows-based systems). It waits for one or more indication events to occur,

and then propagates these events to the reactor.

6. Concrete Event Handlers : The concrete event handlers specialize the general-

ized Event Handler. They are responsible for processing specific types of events,

such as input data or timeouts.

A sample Reactor model corresponding to the UML diagram, modeled in the

Structural View of POSAML, is shown in Figure IV.5.

Figure IV.5: Model of the Reactor Pattern

In Figure IV.5 the designer has modeled two event handlers, corresponding to

a handle set consisting of two handles. Both the event handlers are connected to

the Reactor, which indicates that both of them are ready to handle events of the

appropriate type. The handles are connected to the synchronous event demultiplexer,

15

which indicates that both the handles are active and ready to accept events of the

corresponding type.

In order to minimize the risk of choosing incorrect and incompatible features, vari-

ous constraints are specified within the POSAML metamodel using both OCL, which

checks constraints at modeling time, and interpreters, which check constraint viola-

tions when the generative tools are used. Constraint checking within the POSAML

metamodel includes cardinality and relationship constraints. For example, a reactor

can be connected to one and only one synchronous event demultiplexer. These con-

straints ensure that the modeler does not build an incorrect model thereby ensuring

that systems conform to the semantics of the pattern languages.

IV.2 Modeling the Active Object Pattern

The Active Object pattern is used to decouple the execution of a method from its

invocation [15]. This enhances concurrency and ensures that the response time for a

client request in a client-server system is reduced. Figure IV.6 shows a UML diagram

of the Active Object pattern.

Corresponding to the UML figure, Figure IV.7 illustrates the meta-model of the

domain-specific POSAML.

The Active Object Pattern consists of the following participants:

1. Client : The client invokes a method on the Active Object.

2. Proxy : A proxy is an entity which provides interfaces that clients can invoke

on the Active Object. When a client invokes a method defined by the proxy,

the proxy forms a Method Request and inserts it into the Scheduler’s Message

Queue. A proxy executes a method in the client’s thread of control.

3. Method Request : The method request is used to pass information such as the

16

Figure IV.6: UML Diagram of the Active Object Pattern

Figure IV.7: Meta-model of the Active Object Pattern

17

parameters of the method invocation to the Scheduler. In POSAML, an Ab-

stract Method Request can be specialized by different concrete method requests

which conform to the same interface.

4. Activation Queue: An activation queue contains the pending method requests

which have been sent to the scheduler by the proxy. This is the entity which

decouples the client thread from the servant thread so that both can execute

concurrently.

5. Scheduler : A scheduler runs in its own thread. It decides which method requests

to service, based on synchronization constraints. When a method request is to

be serviced, the scheduler executes the servant that implements that method.

6. Servant : A servant actually implements the methods that are defined by the

proxy and called by the client. The scheduler dispatches the servant when that

particular method request is to be serviced. Servants therefore execute in the

scheduler’s thread of control.

7. Future: A future is a mechanism by which a client can receive return values

back from the servant. The future is basically a place where the servant can

store its results. The client can then access this future to retrieve the results.

The Active Object meta-model enables a system designer to model the partici-

pants of the Active Object Pattern and their inter-relationships. Figure IV.8 describes

how the Producer-Consumer problem using the Active Object Pattern can be modeled

in POSAML.

At the higher level, we have a combination of two producers and one consumer.

Each of these can be modeled individually as Active Object Patterns in the Structural

View of POSAML and configured in the Feature View. Future work in this regard

18

Figure IV.8: Model of a Producer-Consumer Problem Using POSAML

lies in allowing a modeler to model variants of the pattern, such as an integrated

scheduler or a distributed active object [15].

19

CHAPTER V

PERFORMANCE EVALUATION USING

POSAML

V.1 Simulation Aspect of POSAML

Modeling Simulation Parameters in POSAML The Simulation Aspect of

POSAML enables a system designer to evaluate the system design. Every pattern has

a simulation aspect associated with it. Figure V.1(a) illustrates the common simula-

tion meta-model used across patterns, while Figure V.1(b) is a snippet of the reactor

meta-model illustrating the simulation meta-model specific to the Reactor pattern.

The designer models simulation parameters for a specific pattern in the simulation

aspect. The following values can be specified for each simulation parameter, as shown

in Figure V.1(a):

• Parameter Type: This specifies whether a parameter remains constant through-

out the simulation or is varied over each simulation run.

• Parameter Value: If a parameter is constant, the parameter values is specified

which stays constant throughout the simulation.

• Minimum and Maximum Parameter Values: If a parameter is variable across

runs, then the minimum and maximum values specify the range of values that

a parameter can take across runs.

A sample POSAML simulation model for the Reactor pattern is shown in Fig-

ure V.2.

The meta-model shown in Figure V.1(a) enables a modeler to specify the following

top-level simulation options in the Simulation block in Figure V.2:

20

(a) Common Simulation Meta-Model

(b) Reactor-Specific Simulation Model

Figure V.1: Simulation Meta-Model

21

Figure V.2: Simulation Model for Reactor Pattern in POSAML

• Number of runs

• The simulation output file name

• The generated simulation parameter file name

• The simulation time limit for each run

From Figure V.1(b) and Figure V.2 we can see that the following simulation

parameters specific to the Reactor pattern can be modeled:

• Queue: This parameter specifies the queue size for a particular event handler.

By running simulations for various values of the queue size, the designer can

determine the configuration with the most optimum queue size.

• Service Rate: This parameter specifies the service rate for a particular event

handler. This parameter is important for the study of the effect of various types

of event handlers on the system.

• Active Rate: This parameter specifies the rate at which a handle becomes active.

This essentially describes the arrival pattern of events into the system.

22

Generative Capabilities of POSAML After a modeler has modeled the simu-

lation parameters, the Simulation Interpreter is run. This interpreter is specific to

the back-end simulator. Typically, the topology of the simulation is specified in a

separate file from the simulation parameters. The simulation interpreter currently

generates simulation parameterization files based on the model. A sample parame-

terization file for the OMNeT++ simulator, generated by the interpreter from the

POSAML models given in Figure V.2, is given below:

[General]

preload-ned-files=*.ned

network=reactor_block

sim-time-limit=10000s

[Parameters]

reactor_block.num_handlers=2;

reactor_block.generator[1].lambda=0.4;

reactor_block.handler[0].mu=2;

reactor_block.handler[1].mu=2;

reactor_block.handler[0].queue_size=5;

reactor_block.handler[1].queue_size=5;

[Run 0]

reactor_block.generator[0].lambda=0.4;

[Run 1]

reactor_block.generator[0].lambda=0.6;

[Run 2]

reactor_block.generator[0].lambda=0.8;

23

[Run 3]

reactor_block.generator[0].lambda=1.0;

[Run 4]

reactor_block.generator[0].lambda=1.2;

[Run 5]

reactor_block.generator[0].lambda=1.4;

[Run 6]

reactor_block.generator[0].lambda=1.6;

[Run 7]

reactor_block.generator[0].lambda=1.8;

[Run 8]

reactor_block.generator[0].lambda=2.0;

This parameterization file is generated for an OMNeT++ simulation of the reac-

tor pattern, as discussed in Chapter VI. The “simulation time limit” and the “num-

ber of runs” are generated from the Simulation block in the model shown in Fig-

ure V.2. The constant parameters modeled in Figure V.2 are generated under the

“Parameters” section of the file. In the “Runs” section, each of the variable parame-

ters are incrementally varied from min value to max value (as specified in the model)

across number of runs. The interpreter maps the Active Rate(i.e., the rate at which

a handle becomes active) to “lambda”, i.e., the rate at which a generator generates

events. Similarly, Service Rate from the model is mapped to “mu” for each event

handler in the parameterization file. The “num of handlers” are generated from the

number of event handlers modeled in the Reactor pattern in the Structural View of

POSAML, as described in Section IV.1.

24

In a simulation library, writing the topology files is generally done only once.

Different runs of the simulation are carried out by changing the simulation parame-

ters. Therefore, auto-generating the parameterization file saves relatively more human

effort than auto-generating the topology file itself. Hence the current work focuses

mainly on auto-generating the simulation parameterization file. However, future work

in this regard lies in auto-generating the entire topology of the simulation from the

POSAML models.

V.2 Benchmarking Aspect of POSAML

To enable the performance analysis of composed system, the modeling language

provides a method to model benchmarking characteristics for the system. This can

be done in the Benchmarking Aspect [13]. These characteristics can be the metrics

to measure, the workload such as the number of threads and the time required by an

event handler in the Reactor Pattern to handle a request. Figure V.3 illustrates the

Benchmarking meta-model of POSAML.

A sample model which can be constructed using this paradigm is shown in Fig-

ure V.4.

In this case the developer has modeled two patterns, the Reactor and the Acceptor-

Connector, and the benchmarking characteristics to analyze the performance of the

Reactor pattern. Therefore the latency and throughput metrics are attached to the

Reactor pattern. In addition, the developer has modeled the number of client threads

and the service time as either a uniform or an exponential distribution. These bench-

marking characteristics can be exported using a “benchmarking interpreter” to pro-

vide inputs to an existing benchmarking library.

25

Figure V.3: Benchmarking Meta-Model

Figure V.4: Benchmarking Aspect

26

Generating Benchmarking Artifacts Using the Benchmarking Model The

benchmarking aspect enables a user to model the benchmarking characteristics of

the system. Using the Benchmarking Interpreter, the developer can generate bench-

marking parameters for an existing benchmarking library. These parameters can be

the number of data exchanges, the number of client threads, the data to be sent, the

number of event handlers and the service time (in case of reactor). The benchmarking

interpreter has to traverse along all three aspects of POSAML. It gathers pattern in-

formation from the Pattern Aspect, benchmarking information such as metrics from

the Benchmarking Aspect and feature information such as type of Reactor or Accep-

tor end-points from the Feature Aspect. This interpreter stores this information in

an XML file that is used by an existing benchmarking library.

- <benchmark_inputs>

<connections>10</connections>

<data>ABCDEF</data>

<data_exchanges>200</data_exchanges>

- <reactor_inputs>

<reactor_type>wfmo</reactor_type>

<handlers>2</handlers>

<service_time>Uniform</service_time>

</reactor_inputs>

</benchmark_inputs>

Future work in this regard lies in auto-generating benchmarking code, in addition

to generating benchmarking parameters for existing benchmarking libraries.

27

CHAPTER VI

SIMULATION MODEL OF REACTOR

PATTERN

This chapter describes the simulation and analysis of the Reactor building block

found in most large-scale, distributed systems. After careful study OMNeT++

(www.omnetpp.org) was chosen as the back-end simulator because of its ease of use,

flexible and modular architecture, parametric approach and open-source code base.

OMNeT++ also has an advantage over other existing simulators in that it easily

allows for the simulation of virtually any modular, event-driven system, and not just

communication-network oriented systems.

OMNeT++ [22] follows a hierarchical architecture. At the lowest level of the

hierarchy are simple modules which encapsulate behavior. These simple modules are

represented by C++ classes. A compound module may be composed of simple as well

as other compound modules. Modules communicate with each other via message-

passing. An event is said to have occurred whenever a module sends/receives a

message. A module may have parameters whose values are specified externally in an

initialization file. These parameters can be varied in different simulation runs. In

the context of middleware, these parameters can be used to simulate and analyze the

effect of different middleware configuration options. Additional information about

OMNeT++ can be found in the OMNeT++ User Manual [21].

28

VI.1 The Simulation Model

The simulation model [12] for the Reactor pattern is based on the structure of the

Reactor as shown in Figure IV.3. The topology of the model is shown in Figure VI.1.

This topology is specified in the .NED file of OMNeT++.

Figure VI.1: Simulation Model of Reactor in OMNeT++

The simulation model consists of the following blocks:

• Event Generators : Event generators are event sources, which generate events at

a Poisson distribution rate λ. The number of event generators and their rates

of event generation are parameterized values.

29

• Synchronous Event Demultiplexer : The synchronous event demultiplexer re-

ceives the events generated by the Generators. Depending on which gener-

ator generated the event, the synchronous event demultiplexer attaches an

Event Type value to the event and subsequently propagates the event to the

Reactor.

• Reactor : Depending on the Event Type, the reactor dispatches and activates

the appropriate Event Handler by sending an event to that handler.

• Event Handlers : Each Event Handler has an exponentially distributed service

time with rate µ. Each Event Handler also has a bounded queue associated

with it with a maximum size of N. Upon receiving the dispatch event from the

Reactor, the event is immediately handled if the queue is empty and no other

event is being handled. If an event is currently being handled and the queue

is not full, the incoming event is queued. If the queue is full, then the event is

dropped. After an event has been handled, the event handler propagates it to

the data collector. The event-handling process is simulated by scheduling the

event to be propagated after a delay of Service Time seconds. The number of

event handlers as well as the service rate µ of each handler is a parameterized

value and can be changed for each simulation run.

• Data Collector : The data collector acts as an event sink. It receives events sent

by the Event Handlers. The data collector also calculates the throughput value

and loss probability for each Event type.

The generators generate events at a Poisson distribution because the generated

events represent the arrival pattern of events into the system, which is most commonly

taken to be Poisson. Similarly, the service times of Event Handlers are exponen-

tially distributed according to the most common service pattern. We have modeled

30

a bounded buffer for Event Handlers as most of the real-time, event-driven systems

do not have the memory resources required for an infinite buffer.

VI.2 Statistics Collection

The following metrics [8] are measured during the simulation process:

• Throughput(T): The throughput for each event type i is calculated by the data

collector as the number of events of that type received by the collector divided

by the simulation time at the end of the simulation run. The throughput metric

is important for real-time event processing and distributed applications, such

as on-line stock trading services.

• Queue Length (Q): The queue length for each event type is recorded each time

an event arrives for the event handler for that type. The queue length metric is

significant for resource-constrained systems, such as RFID chips, that need to

know the optimum buffer size to allocate for buffering events.

• Loss Probability (L): The loss probability for an event type i is calculated by the

data collector as the number of events sent by the event handler divided by the

total number of events arriving in the event handler. This metric is significant

for hard real-time systems where the loss of a control event would significantly

affect the performance and even correctness of the system.

VI.3 Use of POSAML

While developing the simulation model manually, it was observed that the scalabil-

ity of the model stood out as an important issue. As the number of event handlers and

event generators increases, it becomes quite difficult to construct a correct simulation

31

model by hand. Similarly, if we add a few more patterns such as Acceptor-Connector

to the simulation model, it will be extremely difficult to manage the entire model

manually. The use of model-driven generative techniques for generating simulation

models automatically are of great help in this regard . These techniques factor out

some of the common tasks in simulation (such as adding new connections upon ad-

dition of a new handler). They also guard against any errors introduced by changes

to the model.

The Simulation Aspect of POSAML has been used to achieve scalability in simula-

tions. As described in V.1, a simulation initialization file for OMNeT++ simulations

is generated from the Simulation Model of the Reactor Pattern. The input parame-

ters are specified in this file and are read at runtime by the OMNeT++ simulation

environment for each set of simulation runs. This file therefore drives the simulations

in an existing simulation library written for the Reactor Pattern.

VI.4 Simulation Results and Analysis

This section describes the results of simulating the reactor pattern in OMNeT++

by varying different parameters. The number of event generators, as well as the

number of event handlers, is set to two. Table VI.1 lists out the input parameters,

the performance metrics and their notations.

The initial values of the input parameters are shown in Table VI.2.

Effect of Arrival Rate For the first set of simulation runs, the effect of the arrival

rate λ0 on the throughput, mean queue length and probability of event loss was

measured. As noted in the sample omnetpp.ini file, λ0 was varied from 0.4 to 2.0

in steps of 0.2, while the other input parameters were kept constant at the values

given in Table VI.2. The results are shown in Figure VI.2. It can be seen that as

32

(a) Parameters

Parameter Type 0 Type 1

Arrival Rate λ0 λ1

Service Rate µ0 µ1

Maximum Buffer Length N0 N1

(b) Metrics

Metric Type 0 Type 1

Mean Queue Length Q0 Q1

Throughput T0 T1

Loss Probability L0 L1

Table VI.1: Notations

Parameter Initial Value

λ0 0.4/s
λ1 0.4/s
µ0 2.0/s
µ1 2.0/s
N0 5
N1 5

Table VI.2: Initial Set-Up

33

the arrival rate for Event Type 0 increases, the throughput for Type 0 also increases.

The throughput for Type 1 remains constant, since arrival and processing of Type 0

is independent from Type 1.

It can also be seen that as the arrival rate increases, the loss probabibility of Type

0 events increases, i.e, more Type 0 events are likely to be dropped. This can also be

correlated to the increase in the mean queue length of Type 0 events.

(a) Throughput (b) Mean Queue Length

(c) Loss Probability

Figure VI.2: Effect of Arrival Rate

34

Effect of Service Time For the second set of simulation runs, the effect of the

service rate µ0 on the throughput, mean queue length and probability of event loss

was measured. This time µ0 was varied from 0.4/s to 2.0/s in steps of 0.2, while other

input parameters were kept constant at the values given in Table VI.2. The results

are shown in Figure VI.3. It can be seen that as µ0 increases (i.e the time required

by Handler 0 to process the events decreases) the throughput for Type 0 increases.

The throughput for Type 1 remains constant, since arrival and processing of Type 0

is independent from that of Type 1.

It can also be seen that the loss probability of Type 0 events decreases as service

time decreases, since the number of queued events decrease with decrease in service

time. This can also be deduced by the decrease in Mean Queue Length as seen

in Figure VI.3(b). It can be seen from Figure VI.3(c) that the probability of loss

increases rapidly when µ0 drops below 0.8/s. This would be useful information for a

system developer who needs to know the maximum allowable service time for a given

loss probability.

It should be noted that the simulation model of the Event Handler does not take

into account how the handler actually handles the event. The simulation therefore

does not consider the effects of implementation artifacts such as the internal data

structures used. For the purposes of simulation, the handler is considered to be a

black box.

Effect of Maximum Buffer Size For the third set of simulation runs, the effect

of the maximum buffer sizes N0 and N1 on the throughput, mean queue length and

probability of event loss was measured. Other input parameters were kept constant

at the values shown in Table VI.2. N0 and N1 were both kept at 1 for the first run.

The results are illustrated in Figure VI.4. It can be seen that for a maximum buffer

size of 1, all three metrics, i.e. throughput, mean queue length and loss probability

35

(a) Throughput (b) Mean Queue Length

(c) Loss Probability

Figure VI.3: Effect of Service Time

36

were sub-optimal. In the second run, N0 and N1 were 5. The change in the results

was remarkable, especially for the loss probability, as seen in Figure VI.4(c). The

loss probability was almost zero for buffer size of 5. This indicates that the system

was able to sustain the given arrival pattern. It also serves as a useful indicator to

resource provisioners about the capacity of the system to handle higher event arrival

rates for given buffer constraints.

The throughput also increased, since considerably less number of events were

being dropped. As expected, the mean queue length also increased with increase in

maximum buffer size.

(a) Throughput (b) Mean Queue Length

(c) Loss Probability

Figure VI.4: Effect of Maximum Buffer Size

These results provide some insightful information about the design of the system.

37

For example, from Figure VI.2 it can be seen that with increase in the arrival rate

there is increase in the throughput, but the loss probability is increased as well.

Therefore for higher arrival rates the designer could provide multi-level queues in

his/her design to minimize the probability of loss. Also, by studying the effect of

a combination of parameters such as maximum buffer size and the service rate, the

designer could decide the most optimum configuration for the system.

38

CHAPTER VII

CONCLUSION

Large-scale, distributed systems present several challenges with respect to the

accidental complexities associated with provisioning (i.e., configuration and QoS val-

idation). In current practice, provisioning of such systems is performed through

low-level, non intuitive and non reusable means. The manual nature of these tech-

niques makes them error prone and tedious, and prohibits a system provisioner from

rapidly exploring various design alternatives. POSAML addresses these challenges by

providing a visual interface for designing and evaluating complex systems. POSAML

allows various provisioning scenarios to be explored in a rapid manner that is platform-

independent. The concerns that are separated among the various aspects in POSAML

provide an ability to evolve the configuration in a manner that isolates the effect to

a single design change. When a choice is made for a pattern, POSAML removes all

of the inconsistent choices among other patterns. This allows the provisioner to work

with a narrowed search space and ignore all incompatible configurations. Further-

more, model interpreters associated with POSAML assist in generating the artifacts

needed to perform QoS validation.

The simulation model of the reactor pattern represents the first step in the bottom-

up approach toward design-time analysis of pattern-based large-scale systems. Auto-

generation of simulation files from POSAML models bridges the gap between model-

driven structural design and design-time performance evaluation. Using POSAML

and associated interpreters, changes in system structure or configuration are auto-

matically reflected in the simulation files at the “click of a button”. The simulation

of the Reactor pattern also provides some insight into the event-handling behavior

of middleware and other complex systems. This experience should prove useful in

39

the simulation and analysis of other building blocks as well as that of the composed

system. Future work in this area will focus on building simulation libraries for other

patterns as well as further exploring how to simulate combinations of patterns.

POSAML is part of the CoSMIC tool suite and is available for download from

www.dre.vanderbilt.edu/cosmic.

40

BIBLIOGRAPHY

[1] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press,
New York, NY, 1977.

[2] L.B. Arief and N.A. Speirs. A UML Tool for an Automatic Generation of Simula-
tion Programs. In Proceedings of the Second International Workshop on Software
and Performance, pages 71–76, Ottawa, Canada, September 2000. ACM.

[3] L. Bulej and P. Tuma. Current Trends in Middleware Benchmarking. In Week
of Doctoral Students 2003 conference, pages 232 – 237, 2003.

[4] I. Crnkovic, M. Larsson, and O. Preiss. Book on Architecting Dependable Sys-
tems III, R. de Lemos (Eds.), chapter “Concerning predictability in dependable
component-based systems: Classification of quality attributes”, pages 257–278.
Springer-Verlag, 2005.

[5] Douglas C. Schmidt and Frank Buschmann. Patterns, Frameworks, and Mid-
dleware: Their Synergistic Relationships. In Proceedings of the 25th Interna-
tional Conference on Software Engineering (ICSE), Portland, Oregon, May 2003.
IEEE/ACM.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

[7] Swapna Gokhale, Aniruddha Gokhale, and Jeff Gray. A Model-Driven Per-
formance Analysis Framework for Distributed, Performance-Sensitive Software
Systems. In Proceedings of the NSF NGS Workshop, International Conference
on Parallel and Distributed Processing Symposium (IPDPS) 2005, Denver, CO,
April 2005.

[8] Donald Gross. Fundamentals of Queueing Theory. Wiley Series in Probability
and Statistics. Wiley-Interscience, 3 edition, 1998.

[9] Harkema, M. and Gijsen, B. M. M. and van der Mei, R. D. and Hoekstra, Y.
Middleware Performance: A Quantitative Modeling Approach. In International
Symposium on Performance Evaluation of Computer and Communication Sys-
tems (SPECTS), 2004.

[10] T. Kalibera, L. Bulej, and P. Tuma. Quality Assurance in Performance: Evalu-
ating Mono Benchmark Results. In Ralf Reussner, Johannes Mayer, Judith A.
Stafford, Sven Overhage, Steffen Becker, and Patrick J. Schroeder, editors,
QoSA/SOQUA, volume 3712 of Lecture Notes in Computer Science, pages 271–
288. Springer, 2005.

41

[11] Dimple Kaul, Arundhati Kogekar, Aniruddha Gokhale, Jeff Gray, and Swapna
Gokhale. Managing Variability in Middleware Provisioning Using Visual Model-
ing Languages. In Proceedings of the Hawaii International Conference on System
Sciences HICSS-40 (2007), Visual Interactions in Software Artifacts Minitrack,
Software Technology Track, Big Island, Hawaii, Jan 2007.

[12] Arundhati Kogekar and Aniruddha Gokhale. Performance Evaluation of the
Reactor Pattern Using the OMNeT++ Simulator. In Proceedings of the 44th
Annual Southeast Conference, Melbourne, FL, April 2006. ACM.

[13] Arundhati Kogekar, Dimple Kaul, Aniruddha Gokhale, Paul Vandal, Upsorn
Praphamontripong, Swapna Gokhale, Jing Zhang, Yuehua Lin, and Jeff Gray.
Model-driven Generative Techniques for Scalable Performabality Analysis of Dis-
tributed Systems. In Proceedings of the NSF NGS Workshop, International
Conference on Parallel and Distributed Processing Symposium (IPDPS) 2006,
Rhodes Island, Greece, April 2006. IEEE.

[14] A. S. Krishna, E. Turkay, A. Gokhale, and D. C. Schmidt. CCMPerf: A
Benchmarking Tool for CORBA Component Model. Available from: http:

//citeseer.ist.psu.edu/639589.html.

[15] R. Greg Lavender and Douglas C. Schmidt. Active Object: an Object Behavioral
Pattern for Concurrent Programming. In Proceedings of the 2nd Annual Con-
ference on the Pattern Languages of Programs, pages 1–7, Monticello, Illinois,
September 1995.

[16] S. Ramani, K. S. Trivedi, and B. Dasarathy. Performance analysis of the CORBA
event service using stochastic reward nets. In Proc. of the 19th IEEE Symposium
on Reliable Distributed Systems, pages 238–247, October 2000.

[17] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. Wiley & Sons, New York, 2000.

[18] Hui Shen and Dorina C. Petriu. Performance analysis of uml models using aspect-
oriented modeling techniques. In Proc. of Model Driven Engineering Languages
and Systems (MoDELS 2005), Springer LNCS 3713, pages 156–170, Montego
Bay, Jamaica, October 2005.

[19] Janos Sztipanovits and Gabor Karsai. Model-Integrated Computing. IEEE Com-
puter, 30(4):110–112, April 1997.

[20] P. Tuma and A. Buble. Open CORBA Benchmarking, 2001. Available from:
http://citeseer.ist.psu.edu/tuma01open.html.

[21] A. Varga. The OMNeT++ User Manual, 1997. Available from: http://www.

omnetpp.org/doc/manual/usman.html.

42

[22] Andrs Varga. The OMNeT++ Discrete Event Simulation System. In Proceedings
of the European Simulation Multiconference (ESM’2001), 2001.

43

