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CHAPTER I 
 

INTRODUCTION 
 

Like other fields of science, most of fundamental economic theories characterize an ideal 

frictionless economy abstracted from the complexity of the real world. Although they help us 

understand the quintessence of the economics, one must not simply ignore the important 

consequences of various frictions in the classical economic models. Search and informational 

frictions are among the ones that attracts a number of economists. 

The alleviation of search frictions is among the crucial roles for money as a medium of 

exchange. In Chapter II, we investigate how the introduction of money would improve the 

technology choice problem in a search-theoretic model. Chapter III illustrates a new asset 

pricing approach in an economy with heterogeneous prior beliefs, where the stock prices may 

deviate from the expected fundamental values, and speculators can make profits from stock price 

manipulations provided the presence of informational frictions. An empirical wavelet analysis of 

stock market comovements in Chapter IV reveals some features of the informational spillovers 

from NASDAQ and S&P500 to some Eastern Asian markets. 

 

1.1 Search Frictions and Technology Choice in a 

Monetary Economy 
It is well known that the existence of search frictions in trade gives birth to fiat money. The 

path-breaking work by Kiyotaki and Wright (1989, 1991, and 1993) vividly illustrates this 

process within a random-matching framework. By alleviating the "double coincidence of wants" 

problem in a barter economy, the introduction of money as a medium of exchange greatly 

facilitates the trade and hence foster faster economic development. 
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Although there is a growing literature on the role of money in search equilibrium, few of 

them emphasize another associated but distinct problem: the effect of search frictions on 

technology choice and the role of money in this aspect. The separation of the beneficiaries and 

cost bearers of the goods, a direct impact from specialization, would distort the producers' 

technology choice in the presence of severe search frictions, especially in a decentralized trading 

environment. When the expected waiting period between trades is too long, the time cost for 

rejecting low-quality goods and waiting for a better one will be unaffordable. When the 

acceptability is independent on the quality of the goods, producers are likely to choose the 

low-cost technology, even when it is socially suboptimal. 

Attribute to the introduction of money into the economy, search frictions in trading are 

considerably mitigated, which reduces the time costs for being selective about the quality of 

goods. As demonstrated in Chapter II, if the search frictions are low enough to grant the 

premium goods higher acceptability than the low-quality ones, producers are more likely to 

choose the high technology. As a consequence, it is easier to restore first-best technology 

choices in a monetary economy than in a pure barter economy. The result is robust in both the 

simplified case with instantaneous production and the more realistic non-instantaneous 

production scenario. 

 

1.2  Asset Pricing with Informational Frictions 
Even in a more developed economy, the presence of informational frictions may still have 

an important impact on individual behavior and equilibrium outcomes. In Chapter III, we 

introduce a heterogeneous agents framework to study how the market price of an asset may 

deviate from their fundamental values as long as one or two decades, and how the informational 

frictions may lead to profitable speculative manipulations via signal distortions. 

Note that the general equilibrium framework proposed in Chapter III is among the first few 

efforts in exploring approaches toward the computation of markets prices in an economy with 

heterogeneous prior beliefs, where the asset pricing formulas based on representative agent 
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framework only suggest asset valuations to each investor. Owing to the assumed heterogeneity, 

the expected market prices are likely to differ from the expected asset values, and the 

discrepancies must be priced when the agents are active in stock transactions and/or portfolio 

adjustments. Hence, the market price contains a non-fundament component, which explains the 

deviation from the corresponding expected fundamental values. 

On the basis of our proposed heterogeneous agents framework, speculators may bid up the 

stock prices in a market with informational frictions, pretending that they receive better signals 

than what they really have. Subsequent investors would be misinformed and raise the stock 

prices accordingly. Signal distortions emerging from some market traits, such as the price 

fluctuation limits, can reduce the cost of speculative biddings and thus make this kind of price 

manipulation profitable. As a result, we can justify some speculations within our proposed 

framework. 

 

1.3 Wavelet Analysis of Stock Market Comovements 
Due to informational frictions, the previous performances in one stock market could be 

regarded as important signals to investors in another stock market. This kind of information 

spillover is crucial for the understanding of financial contagion. In Chapter IV, we investigate 

the pattern of stock market comovements across time scales empirically with the help of wavelet 

analysis. 

While it is difficult to control all the linear and/or non-linear impacts from fundamental 

factors, wavelet analysis provides an alternative approach. After employing wavelet filters to 

decompose the time series of stock indices over time scales, we can disentangle high frequency 

components from the low frequency ones. Based on the belief that long-run effects from 

fundamental factors are mostly captured by low frequency components, we can have a better 

idea about how the non-fundamental factors would influence stock market comovements in the 

short run. 
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The study on stock markets in US, Japan, Hong Kong, Taiwan, and Mainland China 

provides interesting empirical patterns of comovements among them across the time scales. First, 

we find the level of comovements varies across the time scales, while short-run wavelet 

correlation coefficients are significantly positive among open and/or semi-open markets. This 

suggests that there exist some short-run comovements mostly generated by non-fundamental 

factors. 

Secondly, the markets sharing similar fundamental factors comove more substantially in 

the long run, implying that fundamentals (in a broad sense) are still the central piece of stock 

prices. 

Thirdly, market openness matters. Open and semi-open markets in Japan, Hong Kong and 

Taiwan are quite sensitive to the US markets at the monthly to quarterly level, while the 

essentially closed Chinese mainland markets are literally uncorrelated with most of the other 

markets. Moreover, the level of short-run comovements seems increasing in the degree of 

market openness. 

Finally, our results are robust in the sense that the comovement patterns computed based 

on measures of non-linear interdependence, such as Kendall's tau and Spearman's rho, are 

qualitatively similar to those suggested by the linear dependence measure (i.e. correlation 

coefficient). 
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CHAPTER II 
 

MONEY, TECHNOLOGY CHOICE AND 
PATTERN OF EXCHANGE IN 

SEARCH EQUILIBRIUM1 
 

“When the division of labour has been once thoroughly established, it is but a very 
small part of a man's wants which the produce of his own labour can supply. He supplies the 
far greater part of them by exchanging that surplus part of the produce of his own labour, 
which is over and above his own consumption, for such parts of the produce of other men's 
labour as he has occasion for.” (Adam Smith, The Wealth of Nations, Book I, Chapter IV, 
paragraph 1) 

 

2.1 Introduction 
In this paper, we develop a search-theoretic framework to study how money in a 

decentralized trading environment may affect technology choice and decentralized exchange 

patterns in the presence of trade frictions. Since the seminal work of Kiyotaki and Wright 

(1989,1991,1993), there has been a growing literature on money in search equilibrium, 

emphasizing that the use of a medium of exchange minimizes the time/resource costs associated 

with searching for exchange opportunities, hence alleviating the "double coincidence of wants" 

problem with barter.2 While the study of the role of money in facilitating trade has generated 

considerable insights towards understanding the origin and use of money, its roles in promoting 

higher production technology remain largely unexplored. 

                                                 
1 This Chapter is based on the joint work with Ping Wang and Haibin Wu.  
2 The literature of barter versus money with a formal model of exchange is pioneered by Jones (1976). In the prototypical search 
model of money following Kiyotaki and Wright, exchange is characterized by one-for-one swaps of goods and money, implying 
fixed prices, under which the optimal inflation issue can be studied using the arguments by Li (1995). Extensions of the 
Kiyotaki-Wright model with divisible goods but indivisible money to include pricing include Trejos and Wright (1995) and Shi 
(1995). More recent attempts to characterize pricing behavior and the distribution of cash permit divisible goods and money. For 
a brief survey, the reader is referred to Rupert, Schindler and Wright (2001, footnote 1) and papers cited therein. 



Different from the canonical Walrasian monetary growth models, the search-theoretic

framework allows us to provide a deep structure to help understand more clearly how

money affects technology choice in decentralized trade.3 Under this setup, we can inquire

(i) whether the presence of trade frictions grants the high technology disadvantageous and

(ii) whether money encourages adoption of the high technology. In particular, our paper

models explicitly the production process of quality-differentiated goods in a way that

enables low-quality goods to be produced and traded in equilibrium even under perfect

observability of goods quality. Money, by improving decentralized trades, can mitigate

the high technology’s cost-disadvantage and hence encourage the implementation of a

more advanced technology. Our paper therefore provides a plausible channel through

which money can generate a real effect via technology choice.

More specifically, we consider a continuous-time search and random-matching model

with three groups of agents: producers, goods traders and money traders. For tractability,

both goods and money are indivisible, and each non-producing agent has only one unit of

space to store either goods or money. There are two clusters of goods: high quality and

low quality, with each cluster consisting of a continuum of varieties. While high quality

goods yield greater consumption values, they incur a production time delay and a greater

production resource cost. At any point in time, each producer must choose between the

two technologies and can only produce one unit of the good of a particular type. Upon

a successful production, a producer becomes a goods trader with a commodity of a

particular quality. The quality of goods is public information to all traders. Each buyer

consumes only a subset of varieties, exclusive of those self-produced, and forms a best

response to accepting goods of different quality within the desired subset.

The way through which money influences technology choice can be illustrated intu-

itively. Since the deepening of specialization entails some time for a consumer to buy

the output from a producer, we have to consider the inventory costs incurred. If the use

of money can save consumers’ transactions time to search for desired commodities, the

time costs of inventories can be reduced. This makes the high technology’s disadvantage

3Our paper is thus in sharp contrast with the ad hoc setup of money-in-the-production-function. Also
note that in the canonical Walrasian frameworks, it is difficult to illustrate how search frictions would
affect the acceptability of goods with different quailities. In contrast, the search-theoretic framework
performs well in this regard.
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in manufacturing and time delay costs less significant, thus creating an intensive margin

in favor of the high technology. Since only producers take into account the underlying

inventory costs, this transactions time effect becomes more important when production

takes longer time. In conducting the welfare analysis, we employ the autarky technol-

ogy choice as the benchmark. Note that in the absence of search frictions, producers’

first-best technology choice is the same as their autarky counterparts, which may thus

be referred to as autarky efficiency.4 It is in this regard that the good produced by the

high technology is never the worse good in terms of consumer’s valuation. The presence

of search frictions distorts the producer’s technology choice and by comparing this with

the first-best outcome in a frictionless economy, we can then investigate whether the

introduction of money can restore the efficient technology choice outcome.

A principal contribution of our paper to the existing literature on money and product

quality is that low quality goods may be produced and traded in equilibrium without

relying on incomplete information. In particular, we establish the possible coexistence

of two locally stable pure and one locally unstable mixed strategy equilibria with active

trade, depending on the society’s initial endowment of money. By examining equilib-

rium and welfare outcomes, we obtain the following properties. First, when production

is instantaneous, the mixed strategy equilibrium, if it coexists with the pure strategy

high-technology equilibrium, is Pareto-dominated, and features a positive relationship

between the fraction of high technology producers and the society’s endowment of money.

Moreover, autarky efficiency is both sufficient and necessary for the high technology equi-

librium to Pareto dominate the low technology one. Second, when production takes time,

the high technology equilibrium has higher level of social welfare than the low one if, in

addition to autarky efficiency, the high technology’s delay cost is not too large and the

social endowment of money is sufficiently high. The introduction of money affects pro-

ducers’ technology choice, by mitigating the high technology’s disadvantage in production

time delay. Finally, by deriving the optimal quantity of money under each equilibrium,

we identify an important source of social inefficiency caused by search frictions that can

lead to an under-investment in the advanced technology in decentralized equilibrium.

4The reader should be warned that the term “autarky efficiency” is referred to technology choice
rather than the pattern of exchange.
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Literature Review

In the money search literature, there are papers considering two types of traded

goods, including Williamson and Wright (1994), Kim (1996), Berentsen and Rocheteau

(2004), and Trejos (1997, 1999). However, in these models, the low quality good is

always undesirable under perfect observability, as it is costless to produce and generates

no consumption value, compared to a high quality good yielding a strictly positive net

utility gain. In order for both goods to be traded, private information about the goods

quality is therefore assumed. In contrast, our paper shows the possibility of producing low

quality goods in equilibrium even under perfect observability of goods quality by modelling

more explicitly the process of production of the two quality-differentiated goods, thus

complementing previous studies by proposing an alternative and plausible underlying

driving force that permits low-quality goods to be produced and traded in equilibrium.

There is a small but growing literature studying money and technology choice in

search equilibrium. The first branch of this literature considers endogenous choice of the

horizontal scopes of production specialization in the absence of quality differentiation. In

Shi (1997), agents can produce desired goods at a higher cost than those for trade. Money

enhances decentralized trade and thus creates a gain from specialization. A similar effect

is considered by Reed (1998) where there is a trade-off between devoting time to trade

and to maintaining production skills. Recently, Camera, Reed and Waller (2003) allow

agents to choose whether to be a “jack of all trade” or a “master of one” in which money

again advances individuals’ specialization in a decentralized trading environment. In

Laing, Li and Wang (2003), a multiple-matching framework is developed where trade

frictions manifest themselves in limited consumption variety and via a positive feedback

between shopping and work effort decisions, money creation may have a positive effect

on productive activity.

The second branch, to which our paper belongs, analyzes the endogenous choice be-

tween vertically differentiated production technologies under a given scope of specializa-

tion. The only previous study to our knowledge is by Kim and Yao (2001) who introduce

money into a search model with divisible and heterogeneous goods. In their paper,

production is instantaneous, the focus is exclusively on the mixed strategy equilibrium,

whereas the proportions of high and low technology producers are exogenously given. In
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contrast, our paper considers the more general case of non-instantaneous production to

allow for different production time under different technologies and examines both mixed

and pure strategy equilibria, by maintaining the simplifying assumption of indivisible

goods. Moreover, we allow money traders to determine whether they would accept either

type or both types of goods and, as a consequence, the proportion of producers using

high/low technology is endogenous. Furthermore, we study the welfare implications under

various equilibria and with different initial social endowment of money.

2.2 The Basic Model

The basic structure extends that of Kiyotaki and Wright (1993). Time is continuous.

There are a continuum of infinitely-lived agents whose population is normalized to one.

Based on their activities, agents are divided into three different categories at any point in

time: producers, goods traders and money traders. Both goods and money are indivisible.

Each non-producing agent has only one unit of space that may be used to store either a

unit of commodity or a unit of money.

There are two groups of goods: high quality (type-H) and low quality (type-L). Each

group consists of a continuum of varieties whose characteristic location can be indexed

on a unit circumference. At any point in time, each producer can produce only one unit

of the good of a particular type. Upon producing a commodity, a producer becomes a

goods trader instantaneously. Thus, producers can be classified as type-H or type-L, as

are goods traders. The type of agents (and hence the quality of goods) is assumed to be

public information to all traders.

Money is storable but cannot be consumed or produced. At the beginning of time,

there are M ∈ (0, 1) units of money in the economy, so we have a measure of M money

traders due to the unit-storage-space assumption. Thus, letting N0, NH , NL, and Nm,

respectively, be the measures of producers, type-H goods traders, type-L goods traders,

and money traders,5 population identity implies:

Nm +NH +NL +N0 = 1 (2.1)

5Due to the assumption of unit storage space and the indivisibility of money, Nm =M .
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The proportion of type-H goods traders to all goods traders, denoted h, and the fraction

of money traders to all traders, denoted µ, can thus be expressed as:

h =
NH

NH +NL
(2.2)

µ =
Nm

Nm +NH +NL
=

M

1−N0
. (2.3)

Traders match with each other according to a Poisson process characterized by the

arrival rate parameter, β. Because that the probability for a particular pair of traders

to rematch is zero in our continuum economy and that no authority exists to enforce

the repayment of credits or IOU’s, sellers must accept money in the absence of double

coincidence of wants. Throughout the main text of the paper, we follow Trejos (1997)

and Kim and Yao (2001) to focus exclusively on pure monetary equilibrium, that is,

barter exchanges are not allowed in the basic framework. A discussion of the pure barter

economy is relegated to Appendix.

2.2.1 Production Technology

There are two types of technologies. The high technology can produce a unit of the high

quality good at a (utility) cost of ε, while the low technology incurs a lower manufacturing

cost of δε (with 0 < δ < 1) to produce one unit of the low quality good.

The two technologies also differ in the arrival rates of the respective outputs. Specif-

ically, the product arrival of the low technology follows a Poisson process with arrival

rate of α, while that of the high technology has an arrival rate of ηα (with 0 < η < 1).

2.2.2 Preferences

Following the convention of the money-search literature, we assume that no agent would

consume the good he or she produces. Moreover, each agent gains positive utility only

by consuming a subset of the varieties of each type (called a consumable set), whose

measure is denoted by x. Thus, x can be regarded as a taste specialization index.

10



Type-H Type-L
Utility from consumption U θU

Production cost ε δε
Output arrival rate ηα α
(0 < θ, δ, η < 1)

Table 2.1: Key Parameters of Technologies and Preferences

Despite their taste heterogeneity, all agents have identical utility functional forms.

While the consumption of the first unit of a high quality good within the consumable set

yields a utility U > 0, any additional unit at a given point in time would not generate

any extra value. Similarly, the consumption of the first unit of a low quality good within

the consumable set gives a utility of θU (with 0 < θ < 1). The key technology and

preference parameters are summarized in Table 2.1.

To ensure non-trivial technological choice, we impose:

Assumption 1: U > θU > ε > δε.

That is, both types of products deliver positive net values to the economy. The assump-

tion of θU > ε guarantees the existence of mixed strategy equilibrium, as we will show

later.

2.2.3 Value Functions

Denote the probability with which a money trader will accept type-i goods as πi (i =

H,L), and Πi as the average probability of acceptability in the economy (which is taken

as parametrically given by all individual traders). Denote the discount rate by r. Further

denote Vi as the asset value of a type-i agent, where i = 0, H, L,m represents producers,

type-H goods traders, type-L goods traders, and money traders, respectively.

We are now well equipped to set up the Bellman equations, displayed for simplicity

by assuming steady states (as in the conventional money and search literature):

rV0 = max{α(VL − V0 − δε), ηα(VH − V0 − ε)} (2.4)

rVi = βµxΠi(Vm − Vi), i = H,L (2.5)

11



rVm = β(1−µ)x
∙
hmax

πH
{πH(U + V0 − Vm)}+ (1− h)max

πL
{πL(θU + V0 − Vm)}

¸
. (2.6)

Equation (2.4) states that the flow value of a producer is the maximum incremental value,

over the two technologies, from the producer state to the goods trader state net of the

corresponding production cost, upon a successful arrival of the product (measured by α

and ηα, respectively).

Recall that with a flow probability β, a type-i goods trader can meet another trader

who will be a money trader with probability µ. The chance for this money trader to like

the goods trader’s product is x, which will be accepted with probability Πi. Thus, as

indicated by (2.5), the flow value of a type-i goods trader is the incremental value from

exchanging the product for money, which is the differential, Vm − Vi, multiplied by the

flow probability, βµxΠi.

Similarly, the flow probability for a money trader to meet a type-H goods trader

whose commodity is within the consumable set is β(1− µ)xh and that to meet a type-L

goods trader is β(1− µ)x(1− h). The flow value of meeting a type-i goods trader is the

flow utility (U and θU , for i = H,L, respectively) plus the incremental value from the

money trader state to the producer state (V0 − Vm). A money trader may stay put (by

not accepting the good, i.e., πi = 0) or accept the trade with probability πi > 0 (which

is the best response by the money trader, possibly less than one). Thus, this flow value

must be multiplied by the corresponding acceptance probability, as displayed in (2.6).

It is convenient to define by ∆i (i = H,L) the producer’s effective discount factors

over the expected span of the production process and by ρi (i = H,L) the goods trader’s

effective discount factors for the expected waiting period for sales.

∆H ≡
ηα

ηα+ r
; ∆L ≡

α

α+ r
(2.7)

ρH ≡
βµxΠH

βµxΠH + r
; ρL ≡

βµxΠL

βµxΠL + r
. (2.8)

Given the Poisson process, 1
ηα
is the average waiting time for production and r

ηα
is

the discount rate over the expected span of the production process , thus yielding the

producer’s effective discount factors, ∆H . Similar explanations apply to ∆L, ρH and ρL.

12



Accordingly, we can rewrite the value functions (2.4) and (2.5) in a cleaner manner,

rV0 = max{∆L(VL − δε),∆H(VH − ε)} (2.9)

Vi = ρiVm, i = H,L. (2.10)

2.3 Equilibria with Instantaneous Production

We begin by considering a special case with instantaneous production (α → ∞), which
enables a complete analytic analysis of the steady-state monetary equilibrium. With

instantaneous production, we have N0 = 0, and , from (2.3), µ = M . Moreover, (2.7)

implies ∆H = ∆L = 1 and hence (2.9) can be rewritten as:

V0 = max{(VL − δε), (VH − ε)}. (2.11)

2.3.1 Money Trader’s Best Response

To solve the equilibrium under instantaneous production, first consider the money traders.

A money trader’s best responses πH and πL are determined according to the following:

πH

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= 0, if U + V0 − Vm < 0

∈ (0, 1), if U + V0 − Vm = 0

= 1, if U + V0 − Vm > 0

(2.12)

πL

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= 0, if θU + V0 − Vm < 0

∈ (0, 1), if θU + V0 − Vm = 0

= 1, if θU + V0 − Vm > 0

. (2.13)

Thus, in the case of U + V0 − Vm = 0 or θU + V0 − Vm = 0, the corresponding best

response (πH or πL) constitutes a mixed strategy.

In equilibrium, the individual’s best response agrees with the average behavior in the

economy, that is,

πi = Πi, (2.14)
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for i = H,L.

2.3.2 Existence

We focus on the case of nondegenerate equilibrium in which all agents in the economy

participate in trade actively. Thus, a producer must have positive payoff,

max{(VL − δε), (VH − ε)} > 0 (2.15)

Moreover, a money trader must buy at least one type of the commodities. This is valid

under the following active equilibrium condition:

max{U + V0 − Vm, θU + V0 − Vm} > 0 (2.16)

The strict inequality is required in order to ensure the validity of condition (2.15).

Since θ < 1, this condition requires U + V0 − Vm > 0, and thus πH = 1, which means

the money trader will fully accept the type-H goods. Based on the three different best

responses towards the acceptability of the type-L goods, we can have three equilibria:

(A) πAL = 0; (B) π
B
L ∈ (0, 1); and (C) πCL = 1. We use superscript A, B, and C to denote

each equilibrium whenever it is necessary. Also, we can define the effective discount

factor for the purchasing period (when always accepting a good) as:

ρm ≡
β(1− µ)x

β(1− µ)x+ r
. (2.17)

It is not difficult to solve the asset values (V0, VH , VL, Vm) from the linear equation

system (2.6), (2.10) and (2.11), and the solutions are summarized in Table 2.2. We can

interpret the solutions intuitively with the effective discount factors defined in (2.8) and

(2.17). In equilibrium A, for example, the producer bears the manufacturing cost instan-

taneously but should wait for both the selling and purchasing periods, so his utility in

one production cycle is ρHρmU−ε. Since the effective discount factor for one production
cycle is ρHρm, the summation of infinite geometric series yields the solution in the first

14



Equilibrium A Equilibrium B Equilibrium C

V0
ρAHρ

A
mU − ε

1− ρAHρ
A
m

ρBHθU − ε

1− ρBH
, or

ρBLθU − δε

1− ρBL

ρCLρ
C
mθU − δε

1− ρCLρ
C
m

VH
ρAHρ

A
m(U − ε)

1− ρAHρ
A
m

ρBH(θU − ε)

1− ρBH
V C
L

VL 0
ρBL (θU − δε)

1− ρBL

ρCLρ
C
m(θU − δε)

1− ρCHρ
C
m

Vm
ρAm(U − ε)

1− ρAHρ
A
m

θU − ε

1− ρBH
, or

θU − δε

1− ρBL

ρCm(θU − δε)

1− ρCLρ
C
m

ΠL 0 πBL 1
h 1 hB 0
M Sa SB SC

Table 2.2: Solutions for the Instantaneous production Case

cell in Table 2.2, where other cells can be derived in an analogous fashion.6

Utilizing these asset values, we next turn to deriving the best responses of the agents

and checking the corresponding conditions on the parameters. Define Q ≡ (βx+r)rε

β2x2(U−ε) and

impose:

Assumption 2: Qmax

½
δU − δε

θU − δε
, 1

¾
<
1

4
.

Assumption 3:
1

θU − ε
+

θ

1− θ
<

βx

r
.

We first examine the two pure strategy equilibria (A and C). In equilibrium A, no

producer would choose the low technology since it yields negative flow value to producers

(h = 1). We can show from (2.8) and (2.10) that VL = 0. From (2.13), we know that

πL = 0, if θU + V0 − Vm < 0, or, θU < ρAMU − (1− ρAM)V0, as VM = ρAM(U + V0) when

the high technology is chosen. We now define:

M1 ≡ max{1−
(βx+ r)(θU − ε)

βx(U − ε)
, 0} (2.18)

and M2 ≤ 0.5 such that
M2(1−M2) =

(βx+ r)rε

β2x2(U − ε)
, (2.19)

6Note that ρAH , ρ
B
H , and ρ

C
L have the same functional form with respect to µ and exogenous parameters,

so do ρAm and ρCm. However, the argument µ may differ.
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which has real roots under Assumption 2. We can then establish:

Lemma 1: (Equilibrium A) Equilibrium A exists if SA ≡ (0,M1) ∩ (M2, 1 −M2) =

(M2,min(1 −M2,M1)) 6= ∅ and M ∈ SA, where M ∈ (0,M1) iff θU < ρAMU − (1 −
ρAM)V

A
0 .

Proof. All proofs are in Appendix.

Note that by accepting the type-L goods, a money trader can enjoy the utility of θU .

By rejecting the trade and waiting for type-H goods in the next trade, the money trader

will have the discounted utility, ρAMU , at the cost of delayed production, (1−ρAM)V0. Hence
when M ∈ (0,M1), or equivalently, θU < ρAMU − (1− ρAM)V0, it is a money trader’s best

response to reject a trade with a type-L producer. Intuitively, in an economy swamped

by too much money, money traders would buy any type of goods as soon as possible since

they cannot afford the long waiting period for the second chance. This is particularly

important when the difference in the quality is not large enough to make the waiting

worthwhile. This effect is due primarily to the presence of search frictions in which too

much money can crowd out the advanced technology. Thus, it may be referred to as the

nonselectivity effect.

The requirement that M ∈ (M2, 1 − M2) is to ensure positive producer payoffs.

If the amount of initial money endowment is either too small or too large, then the

probability of successful trades is too low. This transactions cost effect caused by search

frictions implies that no producers would find profitable to use the high technology given

the high manufacturing cost. Thus, if the economy has insufficient amount of money

initially, the introduction of money can serve to mitigate the transactions cost effect and

hence encourage producers to adopt the advanced technology. It may be noted that the

transactions cost effect is also present in Shi (1997), where an insufficient endowment of

money may discourage agents from trading in a decentralized market and instead make

them stay in autarky. By mitigating search frictions, money enlarges the extent of the

market, encouraging horizontal production specialization in Shi (1997) while enhancing

vertical production quality in ours.

The solution of equilibrium C is quite similar to that of equilibrium A. Observe that

when πL = ΠL = 1, equation (2.5) results in V C
H = V C

L , as well as ρ
C
H = ρCL . The
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producer would definitely choose the low technology to minimize his cost, which means

h = 0. After solving for the values, we find that since U > θU > V C
m − V C

0 , for any

M ∈ (0, 1), equilibrium C exists as long as V C
0 > 0. Define M3 ≤ 1/2 such that

M3(1−M3) =
(U − ε) δQ

θU − δε
, (2.20)

which has real roots under Assumption 2. Then we have:

Lemma 2: (Equilibrium C) Equilibrium C exists if M ∈ SC ≡ (M3, 1−M3). Moreover,

SC ⊇ SA if 0 < δ ≤ θ < 1.

Equilibrium B is a bit more complicated. The money trader’s mixed strategy implies

θU + V B
0 − V B

m = 0. Based on the fact that the producers are indifferent between the

two technologies, we can solve the money trader’s acceptability of low quality goods,

πBL = ΠB
L ≡ 1−

(1− δ)ε

ρH(θU − δε)
, (2.21)

and the equilibrium proportion of type-H goods in the market,

hB ≡ (βµx+ r)(θU − ε)

β(1− µ)x(1− θ)U
. (2.22)

It is easily seen that πBL is increasing in µ and thus M . Moreover, hB is increasing in µ

and thus M , which implies as the amount of money increases in the economy, there are

more people holding type-H goods. Define,

M4 ≡
rε

βx(θU − ε)
, (2.23)

we obtain:

Lemma 3: (Equilibrium B) Equilibrium B exists if SB ≡ (M4,M1) 6= ∅ and M ∈ SB.

Moreover, SB ⊆ SA.

Under Assumptions 2 and 3, Sj 6= ∅ (j = A,B,C) and with the aid of Lemmas 1-3

and Proposition A1 in Appendix, we can establish:
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Proposition 1: (Existence, Stability and Characterization) Under Assumptions 1-3,

a steady-state monetary equilibrium exists, which possesses the following properties, de-

pending on the society’s initial endowment of money M :

(i) πL = 0 with M ∈ SA (equilibrium A);

(ii) πL ∈ (0, 1) with M ∈ SB (equilibrium B);

(iii) πL = 1 with M ∈ SC (equilibrium C).

Moreover, multiple equilibria may arise. Among the three equilibria, equilibrium A and C

are locally stable, while equilibrium B is locally unstable. Furthermore, by mitigating the

transactions cost effect, the introduction of money encourages investment in the advanced

technology and the emergence of equilibrium A. By contrast, only type-L technology will

be chosen in a pure barter economy with instantaneous production.

As to the existence, Assumptions 2 and 3 ensure the nonemptiness of SC and SB,

respectively, whereas both assumptions together guarantee that SA is nonempty. From

Lemma 3, when M ∈ SB, the mixed strategy equilibrium B always co-exists with the

pure strategy equilibrium A (as SB ⊆ SA). Moreover, when 0 < δ ≤ θ < 1, both pure

strategy equilibria co-exist if M ∈ SA (as SA ⊆ SC) while all three types of equilibria

co-exist if M ∈ SB.

The possibility for low quality goods to be produced and traded contributes to the

existing literature on money and product quality in which only high quality goods arise

in equilibrium unless information is asymmetric between buyers and sellers. The co-

existence of these various types of equilibria with active trade is also new to the literature.

Notably, for some given sets of social endowment of money, the equilibrium outcome

is indeterminate where the underlying equilibrium selection mechanism is due entirely

to self-fulfilling prophecies. For example, should a producer expect that traders are

less selective in good quality (animal spirits), he or she would be more inclined toward

employing the low technology. As a result, there will be more traders with low quality

goods and the probability for money holders to locate a high quality good becomes lower.

This implies that money holders would tend to be more generous toward accepting a low

quality good, so the expectations are self-fulfilled.
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The two pure strategy equilibria are both locally stable, since small disturbances

in the acceptability of the type-L goods cannot affect the producer’s choice. However,

equilibrium B is locally unstable. To see this we can simply disturb ΠL. If the agents

believe ΠL to be a bit larger (smaller), VL would be higher (lower). Thus the producer

will prefer the low (high) technology, thereby leading to equilibrium C (A). This is

consistent with the finding in Wright (1999) where mixed strategy equilibria are always

unstable in an evolutionary sense in the search-theoretic model of money with indivisible

goods and indivisible money.

Equilibrium B in our model can be compared with the mixed strategy equilibrium in

Kim and Yao (2001): When both types of products co-exist, the share of type-H goods

(h) and the level of social welfare are increasing in the quantity of money supply (M).

2.3.3 Welfare Implications

Note that in the absence of search frictions, the producers would make the same tech-

nology choice (first-best) as their autarky counterparts, while the existence of search

frictions can distort the producer’s choices. Hence we employ the first best choice as the

benchmark of our welfare analysis, and investigate whether the introduction of money

can reinstall the autarky efficiency.

Due to the assumption of instantaneous production, only the goods and money traders

are considered in the commonly used equally weighted steady-state social welfare func-

tion. Observe thatM ∈ [0,M1] is equivalent to V A
m > V B

m , which implies V
A
H > V B

H > V B
L ,

and V A
0 > V B

0 , pointwise with respect to M . Since S
B ⊆ SA, for any value of M ∈ SB,

there is always an equilibrium with πL = 0 (equilibrium A) that Pareto dominates

the mixed strategy equilibrium. Since this equilibrium is locally unstable and Pareto-

dominated in its existence region (see the following subsection), we put more effort on

comparing the two pure strategy equilibria, A and C.

By examining these two equilibria, we find that both goods traders and money traders

prefer (pointwise with respect to M) the technology with autarky efficiency, i.e., that

with the higher net-of-cost utility. The Pareto ranking in this case is straightforward

because the producers are of measure zero. In general, it may be useful to compare the
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Equilibrium A Equilibrium C

Monetary βxM(1−M)(U − ε) βxM(1−M)(θU − δε)
Autarky (U − ε) (θU − δε)

Table 2.3: Flow Values of Welfare in the Instantaneous Production Case

steady-state social welfare instead of Pareto rankings:

Z = N0V0 +NLVL +NHVH +NmVm. (2.24)

We assume that a social planner can set the initial amount of money M to maximize Z.

Hence we compare the maximal welfare in equilibria A and C.

The flow values of social welfare for both equilibria are shown in Table 2.3.7 The

optimal quantity of money can be easily solved as min{1/2,M1} for equilibrium A and

1/2 for equilibrium C.8 If M1 > 1/2 (which holds when θ is sufficiently small), the

welfare comparison between EquilibriumA andC is again equivalent to autarky efficiency.

Otherwise, the social planner would choose the high technology only when it provides

sufficiently more net utility than the low technology, that is,

U − ε

θU − δε
≥ 1/4

M1(1−M1)
> 1.

From (2.18), M1 is decreasing in θ and independent of δ. Therefore, when the quality

difference is sufficiently small, the social planner could still support the production of

type-L goods, even when the type-H goods provides more net utility. On the contrary,

the production cost differential (captured by δ) does not play any role, which is a result

of the take-it-or-leave-it offer to buyers whose only concern is the quality of the goods.

Under instantaneous production, the social planner can do no better than the autarky

efficiency outcome, with a frictional exchange process being introduced. This conclusion

would no longer be true if goods production also takes time (see Section 2.4 below).

7We use flow values here just because the stock values of social welfare for autarky economy are
infinite, and hence incomparable, due to instantaneous production.

8Rigorously speaking, since the admissible set is not closed, the optimal quantity of money does not
exist if M1 < 1/2. For illustrative purposes, however, we will refer to the welfare maximizer over the
closure of the admissible set as the optimal quantity of money.
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Proposition 2: (Welfare and Optimal Quantity of Money) Equilibrium B is always

Pareto dominated by equilibrium A either pointwise with respect to M or in the sense

of equally weighted social welfare maximization. The comparison between equilibrium A

and C possesses the following properties:

(i) under pointwise Pareto criterion, it is equivalent to the case of autarky efficiency;

(ii) under social welfare maximization,

a. it is equivalent to autarky efficiency if M1 > 1/2,

b. the social planner is less likely to adopt the high technology than autarky effi-

ciency if M1 ≤ 1/2;

(iii) the socially optimal quantity of money is min{1/2,M1} for equilibrium A and 1/2

for equilibrium C.

Recall the nonselectivity effect that too much money may discourage the adoption

of the high technology. By accounting for this, the social planner must set the optimal

quantity of money for equilibrium A at a lower level than for equilibrium C. Also due

to the presence of the nonselectivity effect, the optimal quantity of money in our paper

may be lower than that obtained by Kiyotaki and Wright (1993) under an exogenously

given production technology (which is 1/2).

2.4 Non-instantaneous Production

When production is not instantaneous, i.e., when α is finite, there are a nontrivial steady-

state mass of producers. Thus, µ > M and this creates great algebraic complexity.

Nonetheless, this exercise allows us to gain additional insights into how the introduction

of money could improve technological development.
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2.4.1 Steady-State Monetary Equilibrium

Based on the active equilibrium condition (2.16) we once more obtain: πH = 1, which

means money trader will fully accept the type-H goods in equilibrium. Based on the

three different best responses to accepting type-L goods, we again have three equilibria:

(AA): πAAL = 0 ; (BB): πBBL ∈ (0, 1); and (CC): πCCL = 1, where the labelings AA, BB,

and CC correspond to A, B, and C, in the instantaneous production case.

To solve the population distribution in the steady state, we equate the outflows and

inflows from and to the population of goods and money traders to yield:

ΛηαN0 = βµxΠHNH (2.25)

(1− Λ)αN0 = βµxΠLNL (2.26)

βµx(ΠLNL +ΠHNH) = β(1− µ)x[hΠH + (1− h)ΠL]Nm (2.27)

where Λ is the proportion of producers employing the high technology. From equation

(2.25) and (2.26), and using πH = ΠH = 1, we can derive:

Λ =
h

h+ η(1− h)ΠL
(2.28)

Observe that Λ is strictly increasing in h, satisfying: limh→0
Λ
h
= 1

η
, and limh→1

Λ
h
= 1.

Now µ is no longer equal toM . Since the expressions in terms ofM are complex, our

strategy is to establish the existence of various types of equilibria based on the values

of µ. Once this is done, we can derive the corresponding values of M by utilizing the

following monotone increasing relationship between M and µ, which can be obtained by

combining equations (2.25) and (2.27) to yield, Ληα(1− M
µ
) = βµxh(M

µ
−M), or,

M =
µηα (Λ/h)

βxµ(1− µ) + ηα (Λ/h)
(2.29)

The expression could be simplified with the aid of the limiting properties under equi-

librium AA or CC. As a result, the population distribution will be determined by only

three endogenous variables, h, µ, and ΠL, since from (2.1), (3.8), (2.3), (2.28) and (2.29),
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all population masses can be expressed in terms of h, µ and M .9

As before, we can solve the system using the discount rates ∆H and ∆L (see Table

2.4), where the equilibrium acceptability of type-L goods in equilibrium BB is:10

πBBL (µ) =
1

βµx

βµxη(α+ r)θU − {(βµx+ r)ηα+ r[(βµx+ r)(η − δ)− δηα]} ε
[(βµx+ r) + η (α− βµx)]θU + [(βµx+ r)(η − δ)− δηα]ε

, (2.30)

and the related proportion of type-H goods in the market becomes:

hBB (µ) =
r(θU −∆Hε)

(1− ρH∆H)β(1− µ)x(1− θ)U
. (2.31)

Although hBB is increasing in µ, the relationship between πBBL and µ is no longer

monotone.11

The values in equilibria AA and CC listed in Table 2.4 can be explained intuitively.

Note that the effective discount factors indicate the time costs over the respective waiting

periods (production, selling, and buying). Take V AA
0 as an example. As the producers

must wait for all the three waiting periods, the utility should be discounted by all the

three factors, ∆H , ρH , and ρm. Meanwhile, the production cost is generated at the end of

the production period, so only ∆H is attached to it. This provides the producer’s value

in one cycle, ∆Hρ
AA
H ρAAm U − ∆Hε. The value is then obtained by simply dividing the

one-cycle value by one minus the discount factor for a cycle, ∆Hρ
AA
H ρAAm .

Repeating the same steps as in the previous section, one can derive parameter regions

for µ (instead of M) to support each type of equilibrium. As shown in the Appendix, we

have: SAA = (0, µ1) ∩ (M2, 1−M2) , where µ1 solves:

(1− θ)U =
(βµx+ r)r(U −∆Hε)

β2x2µ(1− µ)(1−∆H) + rβx+ r2
; (2.32)

9Actually we express all the values in terms of µ. In contrast to the instantaneous production case,
µ is now endogenously determined. It seems that it is no longer suitable to use µ to charaterize the
existence conditions. However, equation (2.29) enables us to relate µ with the exogenous variable M in
each equilibrium. All the conditions in terms of µ can be transformed into expressions inM accordingly.
10Like Table 2, we have ρAAH , ρBBH , and ρCCL with the same functional form. ρAAm and ρCCm also have

same functional form. The argument µ may differ.
11The reader can easily check that the solution of πBBL reduces to πBL with α→∞ and η → 1.
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Equilibrium AA Equilibrium BB Equilibrium CC

V0 ∆H
ρAAH ρAAm U − ε

1− ρAAH ρAAm ∆H

∆H
ρBBH θU − ε

1− ρBBH ∆H

, or ∆L
ρBBL θU − δε

1− ρBBL ∆L

∆L
ρCCL ρCCm θU − δε

1− ρCCL ρCCm ∆L

VH
ρAAH ρAAm (U −∆Hε)

1− ρAAH ρAAm ∆H

ρBBH (θU −∆Hε)

1− ρBBH ∆H
V CC
L

VL 0
ρBBL (θU −∆Lδε)

1− ρBBL ∆L

ρCCL ρCCm (θU −∆Lδε)

1− ρCCL ρCCm

Vm
ρAAm (U −∆Hε)

1− ρAAH ρAAm ∆H

θU −∆Hε

1− ρBBH ∆H

, or
θU −∆Lδε

1− ρBBL ∆L

ρCCm (θU −∆Lδε)

1− ρCCL ρCCm ∆L

ΠL 0 πBBL 1
h 1 hBB 0
µ SAA SBB SCC

Table 2.4: Solutions for the Non-instantaneous Production Case

SBB = (M4, µ1), and, S
CC = SC . Analogous to Lemma 1, µ ∈ (0, µ1) iff θU < ρAAM U −

(1− ρAAM )V AA
0 . Based on the proofs in Appendix, we can establish the existence regions

of these equilibria:

Proposition 3: (Existence) Under Assumptions 1-3, a steady-state monetary equilib-

rium exists. Depending on the society’s initial endowment of money M , it possesses the

following properties:

(i) πL = 0 with µ ∈ SAA (equilibrium AA);

(ii) πL ∈ (0, 1) with µ ∈ SBB (equilibrium BB);

(iii) πL = 1 with µ ∈ SCC (equilibrium CC);

where multiple equilibria may arise.

2.4.2 Welfare Implications

Due to its complexity, we will not conduct welfare analysis based on the endowment of

money (M). Rather, we restrict our attention to the case where the fraction of money

traders (µ) is identical in different types of equilibria. With this modification, we still

have equilibrium AA Pareto dominates equilibriumBB. However the welfare comparison

between equilibria AA and CC is a bit more sophisticated now. Let us derive the social
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Equilibrium AA Equilibrium CC

Monetary
ηαb(U − ε)

r(b+ ηα)

αb(θU − δε)

r(b+ α)

Autarky
(ηα+ r)U − ηαε

r

(α+ r)θU − αδε

r
b ≡ βxµ(1− µ)

Table 2.5: Present Values of Welfare in the Non-Instantaneous Production Case

welfare for the respective equilibria as follows:

ZAA =
ηαb

b+ ηα

µ
U − ε

r

¶
(2.33)

ZCC =
αb

b+ α

µ
θU − δε

r

¶
. (2.34)

where b ≡ βxµ(1− µ).

Obviously the optimal fraction of money traders satisfies µ = 0.5 in each case, pro-

vided that µ1 ≥ 0.5, from which the optimal quantity of money can be derived using

equation (2.29). For pointwise comparison of social welfare between different types of

equilibria with respect to µ, we still have the net utility terms, U−ε versus θU−δε as in
the instantaneous production case. However, the slow production process makes the high

technology less attractive than the low technology as the multiplier on the right-hand side

of (2.33) is less than that of (2.34) if η < 1. When the net utility gain from undertaking

the high technology is positive and sufficiently large to overcome the disadvantage from a

non-instantaneous production process, the welfare under equilibrium AA is greater than

that under equilibrium CC.

Meanwhile, the autarkic values in the respective equilibria are

WAA =
U −∆Hε

1−∆H
=
(ηα+ r)U − ηαε

r
(2.35)

WCC =
θU −∆Lδε

1−∆L
=
(α+ r)θU − αδε

r
. (2.36)

Again, the comparison between the two values depends crucially on the net utility gain

versus the loss in a non-instantaneous production process. Formally, we define q ≡ θU−δε
U−ε
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and calculate two critical values for η,

ηZ(θ, δ) = q − qα(1− q)

α+ b− αq
and ηW (θ, δ) = q − r(1− θ)U

α(U − ε)
,

such that ZAA > ZCC iff η > ηZ, and that W
AA > WCC iff η > ηW . Note that when

q ≥ 1, type-L technology is always chosen in both monetary and autarky economies,

since it provides same net utility but requires less production time.12 In the case where

q < 1, we can show that ηZ > ηW . As a result, the introduction of money can completely

restore the first-best technology choice only when µ1 > 1/2 and η > ηZ.

Nonetheless, the introduction of money does improve the efficiency of technology

choices if βx2

βx2+r
< θ < βx(1−µ)

βx(1−µ)+r , µ < µ1 and η > ηZ (see Proposition A2 in Appendix

and the proof therein). Under βx2

βx2+r
< θ, only can the type-L technology be chosen

in a pure barter economy, as the utility gain from consuming the high-tech good is not

sufficient to overcome the time delay cost. While the equalities, θ < βx(1−µ)
βx(1−µ)+r and µ < µ1,

ensure that the type-H technology can be adopted in a monetary economy, the condition

η > ηZ guarantees that adopting the high type technology results in higher welfare

than adopting the low one. In this case, search frictions grant too much disadvantage for

producers to adopt the high technology under barter; the introduction of money can fully

mitigate such disadvantage to encourage the employment of the advanced technology in

equilibrium. Summarizing,

Proposition 4: (Money and Technology Choice) When η > ηZ, technology choice in

a monetary economy is autarky efficient. By further assuming βx2

βx2+r
< θ < βx(1−µ)

βx(1−µ)+r

and µ < µ1, the introduction of money improves the efficiency of technology choice by

encouraging the adoption of the high technology that cannot be chosen in the pure barter

economy.

As long as the type-H goods provide more utility and the nonselectivity effect is

sufficiently small (µ1 ≥ 0.5), autarky efficiency is a sufficient (but not necessary) condi-
tion for equilibrium AA to dominate CC in social welfare sense. As a consequence, the

monetary economy can improve technological development.

12It is also true in the pure barter economy.
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Proposition 5: (Welfare under Non-instantaneous Production) While equilibrium AA

always Pareto dominates equilibrium BB, it leads to higher welfare than equilibrium CC

if η > ηZ, and µ1 ≥ 0.5. The optimal quantity of money is min{[2 + βx
2ηα
]−1,M(µ1)} for

equilibrium AA with M = µηα
βxµ(1−µ)+ηα and [2 +

βx
2α
]−1 for equilibrium CC.

Notice that the results of social welfare comparison are essentially driven by the values

of goods and money traders. Provided that the two technologies provide the same values

to producers in autarky, the sellers and buyers in the monetary exchange economy would

prefer the high one (pointwise with respect to µ), since

1−∆H

1− ρAAH ρAAm ∆H
>

1−∆L

1− ρCCL ρCCm ∆L
.

However, in terms of Pareto criteria, we must also examine the welfare of producers,

whose relative gain from employing the high technology can be written as:

V AA
0 − V CC

0 = (
1−∆H

1− ρAAH ρAAm ∆H
WAA − 1−∆L

1− ρCCL ρCCm ∆L
WCC)− (1− θ)U

=

∙
1− ρCCL ρCCm ∆L

1− ρAAH ρAAm ∆H

U −∆Hε

θU −∆Lδε
− 1
¸

θU −∆Lδε

1− ρCCL ρCCm ∆L
− (1− θ)U .

The term in the square bracket is similar to the value comparison for goods and

money traders, but the last term may upset such a comparison if θ is sufficiently lower

than one. This last term can be viewed as the difference in inventory costs per unit of

goods, which is driven by the time-consuming trading period in the monetary economy

with search frictions. Thus, even when the high technology provides a higher autarkic

value, the producers may still prefer the low technology when frictional exchanges are

taken into account.

Another interesting finding is that the producer’s gains from employing the high

technology relevant for decentralized equilibrium (V AA
0 − V CC

0 ) need not be maximized

at the welfare-optimizing quantity of money. In particular, we can identify a time-saving

effect from 1
1−ρCCL ρCCm ∆L

, which is increasing in µ(1 − µ). In fact, it is the only effect

in the case of instantaneous production, since ∆H = ∆L = 1. When production takes

time, there also exists a mitigation effect, which is decreasing in µ(1 − µ) as long as it
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takes more time to produce the type-H goods (∆H < ∆L).13 Intuitively, a longer waiting

period to trade would mitigate the disadvantage of the high technology in production

time to a greater extent.

When the expected trading period approaches to its minimum (µ tends to 0.5), the

mitigation effect may be strong enough to dominate the time-saving effects under some

parameter values. Figure 2.2 illustrates a numerical example, in which the sign of pro-

ducers’ gain depends on the quantity of money and the mitigation effect dominates the

time saving effect near the optimal quantity of money. The resultant social inefficiency

from the presence of a strong mitigation effect leads to a negative gain from employing

the high technology and hence an under-investment in that technology. Summarizing,

Proposition 6: (Under-investment in the High Technology under Non-instantaneous

Production)With a sufficiently short expected trading period and an endowment of money

near its optimal level, producers tend to under-invest in the high technology in decentral-

ized equilibrium.

2.5 Conclusion

An interesting message our model has delivered is that the use of money affects producers’

technology choices in favor of the high technology in the instantaneous production model

and that such an effect is reinforced if production takes time. Moreover, we identify a

social inefficiency caused by search frictions leading to under-investment in the advanced

technology in decentralized equilibrium. Furthermore, in the case of mixed strategy

equilibrium, the share of high-technology output is increasing in the quantity of money.

The implication of our model could go beyond the technology choice issue. Should we

regard the high technology as a production plan of high volume, and the low technology

as one with low volume, it becomes a binary output quantity model, where the utilities,

manufacturing costs and production times are all increasing in the scale of production.

This may shed light on the possibility of multiple equilibria in the multiple consumption

units or divisible goods setup. For instance, in a simple case with constant return and cost

13This effect is via the term, 1−ρ
CC
L ρCCm ∆L

1−ρAAH ρAAm ∆H
= ∆L
∆H

+ 1
1−ρAAH ρAAm ∆H

(1− ∆L
∆H
).
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to scale, the highest possible volume of output is best in the sense of social welfare. The

optimal volume of output will be determined by the relevant set of parameters (similar

to SA), which depends on the quantity of money in the economy.

Due to the decentralized exchange mechanism, we have multiple equilibria while the

one with coexistence of both technologies is unstable and Pareto-dominated. One may

wonder whether this finding is robust under an alternative, directed-search framework

(with a high- and a low-quality submarket). Our preliminary results suggest that we

may have a unique stable equilibrium with coexistence of both technologies under proper

conditions. Moreover, when production is instantaneous, an increase in the quantity

of money tends to encourage high-quality goods production, but does not affect the

thickness of each market.

As one of the central features of the model, perfect observability is assumed through-

out. To another extreme, if buyers cannot detect the quality of the commodities trade

at all, then VH always equals VL and producers will always choose the cost-saving tech-

nology without investing in the high technology. In the case of partial observability,

we expect similar results as in Trejos (1997). In particular, if the high technology has

adequate relative efficiency over the low, then the buyers would prefer type-H goods

whenever they are able to identify its quality. It is therefore straightforward to conclude

that the presence of private information will not eliminate the positive role of money in

production efficiency as long as partial observability is preserved.
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Figure 2.1:  Steady-State Flow Chart 
 

 
 
 

Figure 2.2:  Producers’ Net Gains from Investing in High Technology 
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Appendix

A. Technology Choice in a Pure Barter Economy

In this appendix, we investigate the technology choice issue in the scenario of a pure

barter economy. On the basis of the notation we employ in Section II, we can set up the

related values functions:

rV0 = max{α(VL − V0 − δε), ηα(VH − V0 − ε)}, (A1)

rVH = βx2[hΠHH max
πHH

{πHH(U+V0−VH)}+(1−h)ΠLH max
πHL

{πHL(θU+V0−VH)}], (A2)

rVL = βx2[hΠHLmax
πLH

{πLH(U +V0−VL)}+(1−h)ΠLLmax
πLL

{πLL(θU +V0−VL)}], (A3)

where πi,j indicates the probability for i-type goods trader to accept j-type commodities.

The equilibrium population equations are

ΛηαN0 = βx2[hΠHHπ
∗
HH + (1− h)ΠLHπ

∗
HL]NH , (A4)

(1− Λ)αN0 = βx2[hΠHLπ
∗
LH + (1− h)ΠLLπ

∗
LL]NL. (A5)

The active equilibrium condition similar to condition (2.16) yields

ΠHH = π∗HH = ΠLH = π∗LH = 1. (A6)

As a result, we can rewrite equation (A2) and (A3) as

rVH = βx2[h(U + V0 − VH) + (1− h)π∗HL(θU + V0 − VH)], (A7)

rVL = βx2[hΠHL(U + V0 − VL) + (1− h)ΠLLπ
∗
LL(θU + V0 − VL)], (A8)

and solve Λ as a function of h

Λ =
h[h+ (1− h)π∗HL]

h[h+ (1− h)π∗HL] + (1− h)η[hΠHL + (1− h)ΠLLπ∗LL]
. (A9)
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Equilibrium Ab Equilibrium Bb Equilibrium Cb

V0 max{∆H(VH − ε),∆L(VL − δε)} ∆H
θU − ε

1−∆H
∆L

ρbθU − δε

1− ρb∆L

VH
hβx2(U −∆Hε)

hβx2(1−∆H) + r

θU −∆Hε

1−∆H

ρb(θU −∆Lδε)

1− ρb∆L

VL
(1− h)βx2(θU −∆Lδε)

(1− h)βx2(1−∆L) + r

α+ r

r
η(θU − ε) + δε

ρb(θU −∆Lδε)

1− ρb∆L

π∗HL 0 πb 1
π∗LL 1 1 1
h hs or 1 hb 0

Table 2.6: Solutions for Pure Barter Economy with Non-Instantaneous Production

Instantaneous Production

In the instantaneous production case, V0 = max{(VL − δε), (VH − ε)}. Observe that
θU + V0 − VH ≥ θU − ε > 0 under Assumption 1. Therefore ΠHL = π∗HL = 1. Similarly

θU +V0−VL ≥ θU − δε > 0, and ΠLL = π∗LL = 1. From (A7) and (A8), we can find that

VL = VH , which means only the low technology would be chosen, since VL− δε > VH − ε.

The results can be summarized as follows:

Proposition A1 (Pure Barter with Instantaneous Production) Under instantaneous

production with pure barter exchange and Assumption 1, only the type-L technology will

be chosen even when it provides less net utilities than the type-H technology.

Note that, as described in Proposition 2, the social planner will choose the technolo-

gies providing more utilities in the monetary economy under Assumption 1-3 and the

condition M1 > 1/2, it is obvious that the introduction of money does improve the

efficiency in technology choice.

Non-Instantaneous Production

When we have non-instantaneous production, it is a bit more complicated. If VH ≤ VL,

the producers will choose only the low technology, which requires less production cost

and shorter production time. From equation (A7) and (A8) as well as h = 0, we can find

that

VH =
βx2π∗HL(θU + V0)

r + βx2π∗HL

and VL =
βx2ΠLLπ

∗
LL(θU + V0)

r + βx2ΠLLπ∗LL

Hence π∗HL ≤ ΠLLπ
∗
LL. Meanwhile, we must have θU + V0 − VH ≥ θU + V0 − VL, which
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implies that π∗HL ≥ π∗LL ≥ ΠLLπ
∗
LL. Since π

∗
HL = π∗LL = 0 leads to VL = 0 and V0 < 0,

the only possible case is π∗HL = π∗LL = 1, where VH = VL, and the producers only choose

the low technology (h = 0).

If VH > VL, we have θU + V0 − VH < θU + V0 − VL, and thus π∗HL ≤ π∗LL. Note that

we cannot have both mixed strategies at the same time. Therefore, we have only four

cases to discuss: (1) π∗HL = π∗LL = 1; (2) 0 < π∗HL < π∗LL = 1; (3) 0 = π∗HL ≤ π∗LL < 1;

and (4) 0 = π∗HL < π∗LL = 1.

Case 1: π∗HL = π∗LL = 1. It implies VH = VL, and the producers only choose the low

technology (h = 0). The solutions are provided as equilibrium Cb in Table 2.6 with

ρb =
βx2

βx2 + r
. (A10)

In this case, we need θU + V0 − VL > 0, which always holds under Assumption 1.

Meanwhile, V0 > 0 requires
δε

θU
<

βx2

βx2 + r
.

Case 2: 0 < π∗HL < π∗LL = 1. The immediate implication is

θU + V0 − VH = 0. (A11)

Based on equation (A11), we can rewrite the value functions as

VH =
βx2h(1− θ)U

r
, (A12)

V0 =
βx2h(1− θ)U

r
− θU , (A13)

VL =
βx2[hΠHL + (1− h)] + rΠHL

βx2[hΠHL + (1− h)] + r
VH . (A14)

Observe from (A13) that V0 > 0 implies h > 0 and consequently rV0 = ηα(VH−V0−ε) =
ηα(θU − ε) in the case of positive production time. We can combine it with equation
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(A13) to obtain the proportion of type-H goods

hb =
(ηα+ r)θU − ηαε

βx2(1− θ)U
. (A15)

If h = hb < 1, we can substitute (A15) into the expressions of VH and V0

VH =
(ηα+ r)θU − ηαε

r
=

θU −∆Hε

1−∆H
(A16)

and

V0 =
ηα(θU − ε)

r
= ∆H

θU − ε

1−∆H
. (A17)

In order to make the producers indifferent between the two technologies, we need

VL − V0 − δε = η(VH − V0 − ε). (A18)

With the help of equations (A11), (A14) (A16), and (A17) we can convert equation (A18)

into
1−ΠHL

βx2[hbΠHL + (1− hb)] + r
=
(1− η)θU − (δ − η)ε

(ηα+ r)θU − ηαε
.

and compute the solution for the cross-type acceptability, denoted as πb. Note that πb < 1

as long as θU > δε. Actually this equilibrium is unstable if we disturb the acceptability

ΠHL slightly away from its equilibrium level. Note that ΠHL ≥ 0 only when

(1− θ)U

(βx2 + r)(1− θ)U − (ηα+ r)θU + ηαε
≥ (1− η)θU − (δ − η)ε

(ηα+ r)θU − ηαε
(A19)

(1− θ)U

(1− η)θU − (δ − η)ε
≥ (βx

2 + r)(1− θ)U

(ηα+ r)θU − ηαε
− 1

The other subcase with hb = 1 requires some particular cost-utility ratio to satisfy

equation (A15). Moreover, we need ΠHL < πb to discourage the producers from choosing

the low technology. As a consequence, this equilibrium does not hold generically.

Case 3: 0 = π∗HL ≤ π∗LL < 1. Now we have VL = 0 and VH =
βx2(U−∆Hε)
βx2(1−∆H)+r

. Hence the

producers will only choose the high technology. Note that we need θU + V0 < VH , which
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requires θU < ρbU − (1− ρb)V0, or

∆H < 1− r(θU − ε)

βx2(1− θ)U − rε
, or ηα <

βx2(1− θ)U − rθU

θU − ε
. (A20)

Similar to the discussion following Lemma 1, one must guarantee that it is not too

costly to wait for the next trade, instead of producing right now. Observe that, given

Assumption 1 and θ < ρb, we have ρbU > ε, which implies V0 > 0.

Case 4: 0 = π∗HL < π∗LL = 1. It demands VL < θU + V0 < VH . While the cross-type

acceptability is zero, we have separating equilibrium with

VH =
hβx2(U −∆Hε)

hβx2(1−∆H) + r
,

VL =
(1− h)βx2(θU −∆Lδε)

(1− h)βx2(1−∆L) + r
,

and

V0 = max{∆H(VH − ε),∆L(VL − δε)}

The condition VL < θU + V0 < VH requires θU +∆H(VH − ε) < VH , or

h > h0 ≡
r(θU −∆Hε)

βx2(1−∆H)(1− θ)U
.

Note that h0 < 1 iff the conditions given in Case 3 are satisfied.

Moreover, we need V0 > 0, which implies

h > h1 ≡
εr

βx2(U − ε)

when the type-H technology is chosen, or

h < h2 ≡ 1−
δεr

βx2(θU − δε)

when the producers employ the low technology. So one of the necessary condition for the
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coexistence of both technologies is

h2 ≥ max{h0, h1}. (A21)

Note that h2 ≥ h1 implies

δε

θU
≤ βx2U − (βx2 + r)ε

(βx2 + r)U − (βx2 + 2r)ε ,

where the right-hand side is less than βx2

βx2+r
. As a result, being a subset of the existence

region for high-technology only equilibrium, the existence region for coexistence in Case

4 is also a subset of the existence region in Case 1.

Since an increase in h leads to bigger VH and smaller VL, the function f(h) = ∆H(VH−
ε)−∆L(VL − δε) is strictly increasing in h. Moreover, it is easy to find that, under the

necessary condition (A21), f(h2) > 0 and f(h1) < 0. Consequently, there exists a unique

hs ∈ (h1, h2), such that f(hs) = 0. This solution is only valid when

hs ≥ h0. (A22)

As a result, there are two possible equilibria conditional on the parameters. The

separating equilibrium exists only when conditions (A20), (A21) and (A22) are all sat-

isfied, while the producers would choose high technology when we have both (A20)

and εr ≤ βx2(U − ε), or ε
U

< βx2

βx2+r
. Obviously, the existence region of the high-

technology only equilibrium is a subset of that of the low-technology only equilibrium

when 0 < δ ≤ θ < 1, which resembles Lemma 2.

Proposition A2 (Pure Barter with Non-instantaneous Production) Under instantaneous

production with pure barter exchange and Assumption 1, there exist multiple equilibria

where the admissible sets of equilibria vary with different primitives of the economy.

Equilibrium Cb (low technology only) exists as long as δε
θU

< βx2

βx2+r
. The mixed-strategy

equilibrium and the separating equilibrium are unstable. Parameters satisfying θ < βx2

βx2+r

and inequality (A20) feature the adoption of the high technology.

In case 1, the number of producers and goods holder satisfies αN0 = βx2NL. Hence
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N0 =
βx2

α+βx2
, and NL =

α
α+βx2

. As a result, social welfare becomes

WC
b = α

βx2(θU − δε)

r(α+ βx2)
.

Similarly, social welfare in the case of high-technology only equilibrium is

WA
b = ηα

βx2(U − ε)

r(ηα+ βx2)
.

When both equilibria coexist, we must have

η > ηA ≡
qβx2

α+ βx2 − αq
,

where q = θU−δε
U−ε , as previously defined.

B. Proofs

In this appendix, we provide detailed mathematical derivations of some fundamental

relationships and propositions presented in the main text.

Proof of Lemma 1:

In equilibrium A, we need πL = 0, and hence θU + V0 − Vm < 0. Using the solutions

provided in Table 2, we can obtain

θU +
ρAHρ

A
mU − ε

1− ρAHρ
A
m

− ρAm(U − ε)

1− ρAHρ
A
m

< 0

or

θU − ε+
ρAHρ

A
m(U − ε)

1− ρAHρ
A
m

− ρAm(U − ε)

1− ρAHρ
A
m

< 0.

Therefore,
θU − ε

U − ε
<

ρAm(1− ρAH)

1− ρAHρ
A
m

Employing the definition of (2.8) and (2.17), we can multiply (βµx + r)[β(1 − µ)x + r]

to both the numerator and the denominator. Now we have

θU − ε

U − ε
<

β(1− µ)x

βx+ r
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or

M < M1 ≡ 1−
(βx+ r)(θU − ε)

βx(U − ε)
(B1)

where we use the equilibrium result that µ =M .

In addition, we also need the producer’s value to be positive, i.e.

ρAHρ
A
mU − ε

1− ρAHρ
A
m

> 0.

Hence
ε

U
> ρAHρ

A
m =

β2x2µ(1− µ)

β2x2µ(1− µ) + (βx+ r)r

or

µ(1− µ) > Q ≡ (βx+ r)rε

β2x2(U − ε)
. (B2)

Observe that the quadratic equation given by the equality in (B2) has two real roots

within the interval (0, 1), if Assumption 2 holds. To differentiate the two roots, we define

the smaller root to beM2. As a result, condition (B2) can be written asM2 < M < 1−M2

in equilibrium.

In conclusion, the existence region for equilibrium A is given by M < M1 and M2 <

M < 1−M2.

Proof of Lemma 2:

The derivation of the existence region is analogous to that of condition (B2). We only

have to replace U and ε with θU and δε respectively. In addition, if 0 < δ ≤ θ < 1 and

Assumption 1 holds,

(βx+ r)rε

β2x2(U − ε)
=

(βx+ r)rδε

β2x2(δU − δε)
≥ (βx+ r)rδε

β2x2(θU − δε)
.

As a result, SA ⊆ SC.

Derivation of hB and πB:

Since θU + V B
0 − V B

m = 0, we can rewrite the money holder’s value (2.6) as

rVm = β(1− µ)xh(1− θ)U .
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Based on the solution listed in Table 2, we have

hB =
r

β(1− µ)x(1− θ)U

θU − ε

1− ρBH
=
(βµx+ r)(θU − ε)

β(1− µ)x(1− θ)U

While the producers are indifference between the two technologies, the two solutions

of V B
0 listed in Table 2 should be the same, i.e.

ρBHθU − ε

1− ρBH
=

ρBLθU − δε

1− ρBL
=

ρBL (θU − δε)

1− ρBL
− δε.

Note that
ρBL

1− ρBL
=

βµxΠL

r
=

ρBH
1− ρBH

ΠL.

Therefore
ρBHθU − ε

1− ρBH
=

ρBH(θU − δε)

1− ρBH
ΠL − δε

πB = ΠL =
ρBHθU − ε+ (1− ρBH)δε

ρBH(θU − δε)
= 1− (1− δ)ε

ρBH(U − δε)

Proof of Lemma 3:

The conditions for existence come from the requirement of V0 > 0, and hB, πB ∈ (0, 1),
where hB and πB are given by equation (2.22) and (2.21), respectively. Assumption 1

implies that hB > 0, while the condition hB < 1 is equivalent to µ = M < M1. The

latter comes from the fact that

(βxM1 + r)(θU − ε) =

∙
βx− (βx+ r)(θU − ε)

U − ε
+ r

¸
(θU − ε)

= (βx+ r)
(1− θ)U

U − ε
(θU − ε)

= βx(1−M1)(1− θ)U

and that hB is increasing in µ.

Meanwhile, V0 > 0 iff

ρBH =
βµx

βµx+ r
>

ε

θU
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or

µ > M4 ≡
rε

βx(θU − ε)
. (B3)

Observe that condition (B3), along with Assumption 1, implies that

πB > 1− (1− δ)θU

θU − δε
=

δ(θU − ε)

θU − δε
> 0,

while Assumption 1 also implies that πB < 1.

Now consider the relationship between SB and SA. We know that SB is non-empty,

iff M4 < M1.Observe that, with Q ≡ (βx+r)rε

β2x2(U−ε) , we have

M4(1−M1) =
rε

βx(θU − ε)

(βx+ r)(θU − ε)

βx(U − ε)
= Q. (B4)

HenceM1(1−M1) > M4(1−M1) = Q, andM4(1−M4) > M4(1−M1) = Q. By Lemma

1, M1 ∈ SA, and M4 ∈ SA. Consequently, SB = (M4,M1) ⊆ SA.

Proof of Proposition 1:

Since the stability is proved in the body text, only remaining work is to show that

all the existence regions are non-empty under Assumption 1-3. Given Assumption 2, we

know that 1
2
∈ (M2, 1 −M2), and 1

2
∈ SC . Now we need to establish M2 < M1. One

sufficient condition is that Q < M1(1−M1), which boils down to

(U − ε)rε < (θU − ε)[βx(1− θ)U − r(θU − ε)],

or
1

θU − ε
+

θ

1− θ
<

βx

r
.

Note that Q < M1(1−M1) and equation (B4) implyM4 < M1. As a result, Assumption

1-3 guarantee that SB 6= ∅.
Derivation of the social welfare in the instantaneous production case:
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In equilibrium A, the social welfare

ZA = MV A
m + (1−M)V A

H =M
ρAm(U − ε)

1− ρAHρ
A
m

+ (1−M)
ρAHρ

A
m(U − ε)

1− ρAHρ
A
m

=
U − ε

1− ρAHρ
A
m

ρAm[ρ
A
H + (1− ρAH)M ] =

U − ε

(βx+ r)r
β(1− µ)x(βµx+ rM)

=
βxM(1−M)(U − ε)

r
,

where the last equality employs the equilibrium result that µ =M . Analogously, we can

derive

ZB =
βxM(1−M)(θU − δε)

r
.

Proof of Proposition 2:

For each M ∈ SB, M < M1 and ρAH = ρBH . We have

V A
m

V B
m

=
ρAm(1− ρBH)

1− ρAHρ
A
m

U − ε

θU − ε
=

β(1− µ)xr

(βx+ r)r

U − ε

θU − ε
> 1

and hence V A
H = ρAHV

A
m > ρBHV

B
m = V B

H . While the producers are indifferent between the

two technologies, V B
H − ε = V B

L − δε. Consequently V B
H > V B

L . So the goods trader’s

value in equilibrium A is always higher than that in equilibrium B. To the producers,

we also have V A
0 = V A

H − ε > V B
H − ε = V B

0 . With the knowledge that S
B ⊆ SA, we

can conclude that equilibrium A Pareto dominates equilibrium B either for same M or

at the optimal quantity of money. The other parts are straightforward.

Derivation of hBB and πBB:

Since θU + V B
0 − V B

m = 0, we can rewrite the money holder’s value (2.6) as

rVm = β(1− µ)xh(1− θ)U .

Based on the solution listed in Table 4, we have

hBB =
r

β(1− µ)x(1− θ)U

θU −∆Hε

1− ρBBH ∆H

While the producers are indifference between the two technologies, two solutions for

41



V BB
0 listed in Table 4 should be the same. Since θU + V BB

0 − V BB
m = 0, we can also

equate two solutions for money holder’s value

θU −∆Hε

1− ρBBH ∆H
=

θU −∆Lδε

1− ρBBL ∆L

Therefore

ρBBL ∆L = ρBBH ∆H +
∆Hε−∆Lδε

θU −∆Hε
(1− ρBBH ∆H)

ρBBH
1− ρBBH

ΠL =
ρBBL ∆L

∆L − ρBBL ∆L
=

(θU −∆Hε)ρ
BB
H ∆H − (∆Hε−∆Lδε)(1− ρBBH ∆H)

(θU −∆Hε)(∆L − ρBBH ∆H) + (∆Hε−∆Lδε)(1− ρBBH ∆H)

πBB = ΠL =
r

βµx

(θU −∆Hε)ρ
BB
H ∆H − (1− ρBBH ∆H)(∆H −∆Lδ)ε

(θU −∆Hε)(∆L − ρBBH ∆H) + (1− ρBBH ∆H)(∆H −∆Lδ)ε

=
r

βµx

ρBBH ∆HθU − (∆H −∆L|delta+ ρBBH ∆H∆Lδ)ε

(∆L − |rhoBBH ∆H)θU + (∆H −∆Lδ + ρBBH ∆H∆Lδ −∆H∆L)ε

After substituting the expressions of the effective discount factors, we can obtain the

result given in the main text. Note that when ∆H = ∆L = 1,

πBB =
r

βµx

ρBBH θU − (1− δ + ρBBH δ)ε

(1− ρBBH )θU − (1− ρBBH )δε

=
r

βµx

(θU − δε)ρBBH − (1− δ)ε

(θU − δε)(1− ρBBH )

=
(θU − ε)ρBBH − (1− δ)ε

(θU − δε)ρBBH
= πB

Proof of Proposition 3:

By comparing the solution for producer’s values (V0) in Table 2 and 4, we can find

that the condition for V0 > 0 would not change in the non-instantaneous production case.

However, in Equilibrium AA, the condition θU + V0 − Vm < 0 leads to

θU +∆H
ρAAH ρAAm U − ε

1− ρAAH ρAAm ∆H
− ρAAm (U −∆Hε)

1− ρAAH ρAAm ∆H
< 0

or
(1− ρAAm )(U −∆Hε)

1− ρAAH ρAAm ∆H

< (1− θ)U
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Note that the left-hand side is strictly increasing in µ, since

1− ρAAH ρAAm ∆H

1− ρAAm
= 1 +

ρAAm − ρAAH ρAAm ∆H

1− ρAAm
= 1 +

ρAAm (1− ρAAH ∆H)

1− ρAAm

= 1 +
ρAAm (1−∆H)

1− ρAAm
+

ρAAm (1− ρAAH )∆H

1− ρAAm

= 1 +
β(1− µ)x

r
(1−∆H) +

β(1− µ)x

βµx+ r
∆H .

Denote µ1 = µ1(∆H) as the solution for

(1− θ)U =
(1− ρAAm )(U −∆Hε)

1− ρAAH ρAAm ∆H
=

(βµx+ r)r(U −∆Hε)

β2x2µ(1− µ)(1−∆H) + rβx+ r2
. (B5)

Hence we need µ < µ1 to guarantee θU +V0−Vm < 0. By Assumption 1, θU > ε. Hence

µ1 < 1. When ∆H = 1,

1− θU − ε

U − ε
=
(1− θ)U

U − ε
=

βµx+ r

βx+ r
= 1− β(1− µ)x

βx+ r
.

Hence µ1(1) =M1. Moreover,

(1− ρAAm )(U −∆Hε)

1− ρAAH ρAAm ∆H
− (1− ρAAm )ε

ρAAH ρAAm

= (1− ρAAm )
ρAAH ρAAm (U −∆Hε)− (1− ρAAH ρAAm ∆H)ε

(1− ρAAH ρAAm ∆H)ρAAH ρAAm

= (1− ρAAm )
ρAAm ρAAH U − ε

(1− ρAAH ρAAm ∆H)ρAAH ρAAm
≥ 0

as long as V AA
0 > 0. It means the right-hand side of (B5) is just a constant plus a term

that is increasing in ∆H . Recall that this term is also strictly increasing in µ. Therefore

the implicit function µ1(∆H) given by (B5) is decreasing in ∆H , and µ1(∆H) ≥ µ1(1) =

M1 in non-instantaneous production case, where ∆H < 1.

As a consequence, Assumptions 1-3 are sufficient for all the existence regions to be

nonempty in the case of non-instantaneous production.

Derivation of the social welfare in the non-instantaneous production case:

Consider equilibrium AA with h = 1 first. From equation (2.25)-(2.29), along with
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the population identity Nm + NH +NL + N0 = 1 and Nm = M in equilibrium, we can

solve

N0 =
µ−M

µ
and NH =

M(1− µ)

µ
.

Based on the equation (2.9), (2.10) and the solutions listed in Table 4, we have

ZAA =
µ−M

µ
V AA
0 +

M(1− µ)

µ
V AA
H +MV AA

m

=
µ−M

µ
∆H(ρ

AA
H V AA

m − ε) +
M(1− µ)

µ
ρAAH V AA

m +MV AA
m

= V AA
m

∙
µ−M

µ
∆Hρ

AA
H +

M(1− µ)

µ

βµx

βµx+ r
+M

¸
− µ−M

µ
∆Hε

=
ρAAm (U −∆Hε)

1− ρAAH ρAAm ∆H

∙
µ−M

µ
∆Hρ

AA
H +M

βx+ r

βµx+ r

¸
− µ−M

µ
∆Hε

=
µ−M

µ

ρAAm (U −∆Hε)

1− ρAAH ρAAm ∆H

∙
∆Hρ

AA
H +

Mµ

µ−M

βx+ r

βµx+ r

¸
− µ−M

µ
∆Hε

Recall that, when h = 1, M =
µηα

βxµ(1− µ) + ηα
, and hence,

µ−M

µ
=

βxµ(1− µ)

βxµ(1− µ) + ηα
and

Mµ

µ−M
=

ηα

βx(1− µ)

As a consequence,

µ

µ−M
ZAA =

ρAAm (U −∆Hε)

1− ρAAH ρAAm ∆H

∙
∆Hρ

AA
H +

ηα

βx(1− µ)

βx+ r

βµx+ r

¸
−∆Hε

=
(U −∆Hε)ηα [βµxβx(1− µ) + (ηα+ r)(βx+ r)]

β2x2µ(1− µ)r + (ηα+ r)(rβx+ r2)
−∆Hε

=
(U −∆Hε)ηα

r
−∆Hε

=
ηαU −∆Hε(ηα+ r)

r

=
ηα(U − ε)

r

and

ZAA =
µ−M

µ

ηα(U − ε)

r
=

βxµ(1− µ)

βxµ(1− µ) + ηα

ηα(U − ε)

r
.

We can compute ZBB analogously.
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Derivation of the social welfare in barter economy:

Recall that in the low-technology only equilibrium, the number of producers and

goods holder satisfies αN0 = βx2NL, which implies N0 =
βx2

α+βx2
, and NL =

α
α+βx2

. Hence

the social welfare becomes

WC
b =

βx2

α+ βx2
∆L

ρbθU − δε

1− ρb∆L
+

α

α+ βx2
ρb(θU −∆Lδε)

1− ρb∆L

=
βx2∆L(ρbθU − δε) + αρb(θU −∆Lδε)

(α+ βx2)(1− ρb∆L)

=
(βx2∆L + α)ρbθU − (βx2 + αρb)∆Lδε

(α+ βx2)(1− ρb∆L)

= α
(βx2 + α+ r)ρbθU − (βx2 + αρb)δε

(α+ βx2)(α+ r − αρb)

= α
(βx2 + αρb)(θU − δε)

(α+ βx2)(α+ r − αρb)
= α

βx2(θU − δε)

r(α+ βx2)

Analogously, the social welfare in the high-technology only equilibrium

WA
b = ηα

βx2(U − ε)

r(ηα+ βx2)
.

Proof of ηZ > ηb > ηW given βxµ(1− µ) > βx2, and q < 1:

It is easy to show that ηZ > ηb iff βxµ(1− µ) > βx2.

Comparing ηb and ηW ,

ηb − ηW =
βx2q

βx2 + α− αq
− q +

r(1− θ)U

α(U − ε)

= − α(1− q)q

βx2 + α− αq
+

r(1− θ)U

α(U − ε)

Given q < 1, we know ηb > ηW iff

k(q) = −α(1− q)q + x(b+ α− αq)

= αq2 − αq(1 + x) + x(b+ α) > 0,

where we employ the short-hand notation x ≡ r(1−θ)U
α(U−ε) > 0. Observe that k(1) > 0,

k(0) > 0. To have at least a real root between 0 and 1, we need 0 < 1+x
2

< 1, and a

45



positive discriminant. However, when 0 < x < 1, the discriminant

D = α2(1 + x)2 − 4α(b+ α)

= α[α(1 + x)2 − 4(b+ α)] < 0.

As a consequence, ηb > ηW , for all 0 < q < 1.
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CHAPTER III 
 

NON-FUNDAMENTAL ASSET PRICING UNDER 
HETEROGENEOUS PRIOR BELIEFS 

 
“The actual price at which any commodity is commonly sold is called its market price. 

It may either be above, or below, or exactly the same with its natural price.” (Adam Smith, 
The Wealth of Nations, Book I, Chapter VII, paragraph 7) 

 

3.1 Introduction 
Since the seminal paper of Lucas (1978), present value approach has been widely used by 

financial analysts to calculate the fundamental values of stocks. Recently, observing the 

discrepancies between stock prices and their underlying present values, economists provide 

several revised asset pricing approaches, such as the presence of bubbles, stochastic discounting, 

or unconventional behavior suggested by psychological evidence.1 While most of them try to 

compute the values of assets that are bought and held forever, the representative agent 

framework they employed guarantees that the market prices are the same as the valuations.2 

In an economy with heterogeneous agents, the above mentioned approaches fail to 

determine market prices directly since they are essentially asset valuation methods for each 

investor. Stemming from the ideas initiated by Harrison and Kreps (1978) and Morris (1996), 

                                                 
1 Campbell (2000), Barberis and Thaler (2003) list some of the empirical puzzles and provide nice surveys about the explanations 
on the basis of stochastic discount factors, arbitrage constraint, nonstandard behavior suggested by psychological evidence. The 
surveys and discussions about bubbles can be found in Blanchard and Fischer (1989, Chapter 5) and Brunnermeier (2001 Section 
2.3). 
2 We use the term "bubble" in a narrow sense, since the existence of bubbles in most bubble literatures, such as Blanchard and 
Fischer (1985, Chapter 5), Diba and Grossman (1988), Santos and Woodford (1997), requires an explosive Ponzi process and an 
infinite horizon. Since it has is no direct (or explicit) link with market trading opportunities so far, we may consider it as a part of 
the asset values. Note that it is difficult to justify negative bubbles in these models. In contrast, the deviation from fundamental 
values in our model can be positive and negative, does not require any explosive process and can exist even in a finite horizon. 



this paper is among the first few that propose a dynamic general equilibrium framework

to compute the market prices under heterogeneous prior beliefs and even endogenize

profitable speculative manipulations. We show that investors submit a trading price

according to a non-fundamental asset pricing formula, instead of the expected funda-

mental values. Intuitively, since the stocks are sold at the expected market prices instead

of investors’ expected asset value, there should be an additional term accounting for

the reselling opportunity or portfolio adjustment requirement in a market with active

traders.3

One may ask: “why investors have to actively adjust their portfolios?” We know that

rational expectations are usually conditional on available information. When new signals

arrive, investors updated their beliefs about some important stock pricing inputs such as

the firm’s productivity, the sector’s prospect, Greenspan’s opinion about the economy,

etc. The optimal portfolio has to change accordingly. While portfolio adjustment is

impossible in a representative agent model, since stock prices will jump to the level with

no trading opportunity due to identical valuations of the asset for both buyers and sellers,

it is much easier to justify transactions among heterogeneous agents.

Moreover, due to the law of iterated expectations (LIE), the expected capital gain is

zero under the representative agent framework.4 In contrast, in an economy with hetero-

geneous agents, where marginal agents determine the asset prices, the characteristic of

marginal agents is likely to change over time, making LIE inapplicable. As demonstrated

in this paper, during the learning period (when the true state has yet been revealed), the

anticipation of forthcoming signals now results in a generically non-trivial expected capi-

tal gain from active portfolio adjustments. Based on the discussion in Harrison and Kreps

link with market trading opportunities so far, we may consider it as a part of the asset values. Note that
it is difficult to justify negative bubbles in these models. In contrast, the deviation from fundamental
values in our model can be positive and negative, does not require any explosive process and can exist
even in a finite horizon.

3For example, mutual fund managers have to review and adjust their portfolio more than once in
every fiscal year, in an effort to catch up or outperform the competitors to attract potential investors.
Long-term investors, such as Warren Buffet, can buy the stock and then leave the market. However,
stock prices recorded in the stock exchange only reflect the prices of the assets under adjustment.

4The expected capital gain can be non-zero in the presence of some additional explosive process
(bubbles). However, the growth rate of expected bubble term must be the exactly same as the gross
return for risk-free assets, which is hard to be justified in reality. Hence we don’t take any explosive
processes into account.
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(1978), we regard this component as non-fundamental since the trading opportunities are

crucial to its presence.

As one of the main results of this paper, investors would not buy the stocks at their

expected present values (EPVs). Instead, the new asset pricing formula proposed in this

paper contains the above-mentioned non-fundamental component. Moreover, the stock

prices may persistently deviate from their dividend-based fundamental values for years

or even decades, as illustrated in several empirical findings.5

Another key feature of the proposed framework in this paper is the endogenization

of profitable speculative manipulations. The Bayesian learning structure embedded in

our model, along with the assumption of asymmetric information and inference of private

signals from previous stock performance, explains the presence of positive short-run serial

correlation in the stock market returns,6 as well as the existence of the “feedback loops”

described in Shiller (2000).7 As one step ahead, we demonstrate that speculators can

make use of the “feedback loops” to profit from manipulating stock prices at least in a

stock market with price fluctuation limits. Intuitively, speculators can bid up the stock

prices to hit the upper bounds, pretending that they receive better signals than what

they really have. Subsequent investors would be misinformed and raise the stock prices

accordingly. The boundedness of stock prices can lead to severe signal distortions, and

thus make this kind of price manipulation profitable.

There are interesting policy implications related to the above finding. Being a measure

employed by more than 16 stock markets, including Tokyo Stock Exchange, to prevent

violent price fluctuations due to speculative trading, daily fluctuation limits turns out to

encourage speculations in the long run. Our result provides a new theoretical support

for empirical findings, such as Kim and Rhee (1997), about the ineffectiveness of price

limits.

5Campbell, Lo and Mackinlay (1997, Figure 7.2) estimate the expected dividend components in CRSP
based on a vector autoregressive (VAR) model and demonstrate a sustained negative deviation in the
period of 1910-1927 and two positive ones in 1958-1975 and 1985-1994. Similar observation can be
obtained in Shiller (2000, Figure 9.1), which shows that the latest sustained positive deviation from the
ex post dividend present value is still in the ascendant at least in 2000.

6Campbell, Lo and Mackinlay (1997, Chapter 2) find the autocorrelations for the first lag of stock
returns to be positive and statistically significant in CRSP data, while Cutler, Poterba and Summers
(1991) provide similar evidence in 12 other countries.

7The feedback loop means that a rise in stock prices is more likely to be followed by another rise.
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Other interesting findings include the non-monotone relationship between the mag-

nitude of the portfolio adjustment component and the quality of signaling noises, and

the consequences of signaling distortions due to boundedness of stock prices or higher

dimensions of signaling noises. Apart from those, there can be more possible extensions

in future studies to make current framework closer to reality.

In terms of methodology, this paper provides the first effort to introduce overlapping

generations framework into the study on asset pricing with heterogeneous agents, and

features the intriguing depiction of price changes during the learning process.8 Specifi-

cally, our proposed model setup can explain not only why the asset prices may deviate

from their fundamental values during the learning period, but also how the prices would

converge to their fundamental values when the beliefs approaches the truth. As a result,

we no loner rely on exogenous booms and busts of bubbles to explain the relationship

between asset prices and their fundamental values.

Despite of several possible dimensions of heterogeneity in investors’ traits, this paper

focuses on heterogeneous prior beliefs just to illustrate how the heterogeneity among

investors can affect the asset prices. As a matter of fact, recent empirical evidence

provided by Anderson, Ghycels and Juergens (2005) suggests that heterogeneous beliefs

among financial analyst matter in asset pricing. While the financial analysts are likely

to have similar information set in a competitive market, we regard heterogeneous prior

beliefs as a good proxy for heterogeneity among investors. Nonetheless, we believe that

our framework is friendly to other heterogeneities, and delegate them to future studies.

Literature Review

Harrison and Kreps (1978) and Morris (1996) point out analogous rationale of our

paper by suggesting that the opportunity to resell the stock to more optimistic investors

would lead to a positive deviation from the fundamental values, based on the assumption

that the group of most optimistic agents have sufficient financial resources to buy all the

available stocks. This paper demonstrates that both positive and negative deviations are

possible under a more general wealth distribution where each agent has limited financial

8Note that the overlapping generations framework is more closer to reality than it seems. Regarding
the living periods of agents as the life cycle of a fixed portfolio, we can mimic real-life economy by
revising the assumptions on wealth distribution and information structure.
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resources.

As compared with other studies on asset pricing under heterogeneous beliefs, this pa-

per differs from the works by Varian (1985), Abel (1989), Detemple and Murthy (1994)

in terms of aggregation method, which we regard as the crux of the matter in heteroge-

neous agent models. Following the basic microeconomic approach, we compute the total

amount demanded/supplied for each price and then clear the market. This method is

similar to Miller (1977), where the beliefs of marginal agents determine the stock prices.

As a result, our model behaves differently from those employing average beliefs or average

prices of all agents.

As a matter of fact, the market microstructure literatures provide another framework

to study the impact from heterogeneous agents and lead to similar results as ours.9

For instance, Du (2003) demonstrates that stock prices may over- or under-react when

investors have heterogeneous beliefs. Allen and Gale (1992) illustrate how the speculators

make profit by manipulating stock prices, while Aggarwal and Wu (2003) extend the

model and study the empirical evidence from the US cases identified by SEC. However,

the demand and supply schemes for each type of traders are exogenously given in the

market microstructure framework. In contrast, our general equilibrium settings make it

possible to derive the demand scheme based on investors’ optimization behavior.10

Our model setup also benefits greatly from the latest development about the impact

of learning on asset pricing. Bulkley and Tonks (1989) suggest that dividend announce-

ments have an additional indirect effect to stock pricing via adjusting the estimation of

dividend growth. Timmermann (1996) illustrates this idea by simulating an estimation-

based asset pricing model. Pastor and Veronesi (2004) argue that the uncertainty about

dividend growth rate, due to its convexity in dividend growth in the asset pricing for-

mula, would lead to a higher expected present value of a firm than that based on expected

dividend growth. Although these papers also study the information content in the an-

nouncement of earnings or dividends, they still rest on the conventional representative

agent framework, thus fail to investigate speculative manipulations due to the ignorance

9A comprehensive review of market microstructure models can be found in O’Hara (1995).
10Although supply is inelastic in the current two-period overlapping generations framework, we can

easily make it elastic in the extended multi-period settings.
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of expected capital gains.

Bayesian learning structure and signal distortions introduced in this paper are inspired

by the social learning literatures discussed in Brunnermeier (2001) and Chamley (2003b),

most of which assume exogenous payoff schemes.11 In contrast, this paper provides a

general equilibrium framework to determine price process endogenously.

3.2 The Model

Consider a prototypical two-period overlapping generations model with two assets. One

is a risk-free asset with infinite supply and a constant gross return of R with R > 1.

The investors can also buy common stocks issued by the one and only listed company.12

Shortselling is forbidden on both markets.

At time 0, the firm is listed in the stock market by an initial public offer (IPO) to

generation 0 after the circulation of its prospectus about the its pre-IPO performance.

The IPO price per share is P0 = 1, while the number of outstanding shares, S, depends

on the volume of applications. For simplicity, the shares are assumed to be perfectly

divisible. After the issuance, the number of shares is fixed but the price, Pt, can change

over time.

Each generation, indexed by the date of entrance to the stock market, constitutes a

continuum of agents with a Lebesgue measure of one. Each agent, assumed to be risk

neutral, is initially endowed with one unit of capital. For tractability, borrowing is not

allowed in the economy.13 As we will see later, it is already difficult to find analytic

solutions in this simple economy. Nonetheless, there are full of interesting results even

11Chamley (2003b) reviews several frameworks where investors can infer private signals from other
agents’ behaviors. For instance, in the information cascades modeled by Banerjee (1992) and Bikhchan-
dani, Hirshleifer, and Welch (1992), individual learning would be outvoiced by the observation of the
history. Avery and Zemsky (1998) show that unbounded price adjustment could lead efficient learn-
ing and thus prevent herd behavior, while the introducing another dimension of signaling noises may
deter the learning process. Chamley (2003a) investigates speculative manipulation in foreign exchange
markets, while Abreu and Brunnermeier (2003) study the endogenous timing to break a bubble.
12We can regard the firm as a portfolio of many stocks. It is not difficult to allow for more than one

listed firms, but the loss in tractability outweighs the marginal gain.
13It is not difficult to extend the model to allow for borrowing. Note that the collateral requirements

would set some boundary for the amount to borrow. In this sense, we expect that the results would not
change qualitatively.
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within such a stylized setting.

At period t > 0 (from time t to t+1), the young agents (generation t) enter the stock

market and bid for the common stocks sold by the old agents (generation t− 1). If the
bidding price is lower than the market price, an agent would invest all the money in the

risk-free asset.14 At period t + 1, they sell all the assets and enjoy their retirement on

the beach. The stock exchange only generates one price each period after collecting all

the orders. For tractability purpose, consumption is assumed to be valued only in the

second period of their life,15 which simplifies our model by imposing forced savings on

the young investors and inelastic supply of stocks.

3.2.1 States and Signals

The information structure follows the social learning literatures concerning binary states

and Gaussian signals.16 Before the IPO, the nature chooses, once for all, the quality of

the listed firm, i ∈ {H,L}, which is unknown to any agents. The firm’s realized profit
per share st announced in period t is randomly drawn from a Gaussian distribution with

mean θi, variance σ2 and a probability density function (pdf) of φ(·; θi, σ2).17,18 To ensure
the results to be nontrivial, we assume that the expected dividends satisfy

θL < R− 1 < θH . (3.1)

The dividend payout ratio is set as 100 percent, i.e. all the profits generated in that

period are paid to the current shareholders as dividend before the market opens. We

assume the earnings and dividends at period t are known only to current shareholders

14Since we have a continuum of agents, those who are indifferent between investing in the two assets
are of measure zero. Hence there is no need to take mixed strategies into accout.
15Actually this would be the optimal decision for agents with a linear utility function and a subjective

discounting rate lower than the risk-free rate.
16Following the social learning literatures, the model focus on signal extraction, since the signals are

exogenous.
17In fact, st is the corporate earnings in period t− 1. Current index indicates that it is essencially a

signal in period t, which simplifies the notations.
18The noises can follow any other distributions. Gaussian distribution is chosen due to its simplicity

in calculation and easier comparison with other social learning models. Admittedly, this assumption
violates limited liability for investments in stock market, but we may consider the negative dividends as
seasoned equity offer. Nonetheless, the results of this paper would still hold for other distibutions, such
as truncated Gaussian distribution.
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Figure 3-1: Sequence of Events

(generation t − 1) and potential stock buyers (generation t). While the true quality of

the firm is unknown, the realized profit per share also serves as a signal.

3.2.2 The Sequence of Events

As we described above, agents in generation t are born at time t with endowment of

one unit of capital as well as heterogeneous prior beliefs. At period 0, the firm issue the

stocks to young agents in generation 0. The sequence of events within period t > 0, can

be summarized as follows:

(i) The firm announces its profit per share st to the young generation (generation t),

and pay the same amount as dividends to the shareholders (generation t− 1);

(ii) After doing their research on the history of stock price performance and current

signal of the company’s performance st, the young generation update their beliefs

about the company’s quality, and then bid for the stocks;

(iii) After receiving the dividends, the shareholders of the old generation submit market

price orders of their holding stocks;

(iv) The market generates a price Pt for the stock according to the bidding mechanism

described below, where the losers, whose bidding price is lower than the market

price, invest in the risk-free assets;

(v) The old generation (generation t− 1) retire and consume.
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3.2.3 Evolution of Beliefs

Agents are endowed with prior beliefs, µ−1, about the probability of the good state

when they are born.19 The prior beliefs are heterogeneous for agents within the same

generation, but its distribution, characterized by a cumulative density function (cdf) of

F−1(·), is same for each generation, and is assumed to be common knowledge. Later, we
refer to this distribution as birth distribution of prior beliefs.

Similar to all the models of herding behavior, we assume that the agents can observe

the history of prices and the number of shares, ht = {S, P0, P1, . . . , Pt−1}, but the firm’s
past earnings are not recorded.20 Hence, the young agents have to make an inference

from ht to obtain the estimated signals Ωt = {ŝ0, ŝ1, . . . , ŝt−1}. We set Ω0 = ∅ for
notational purposes. In contrast, the firm announces its latest performance, st, to the

young investors of generation t. Knowing ht and st, the young agents update their beliefs

to a distribution with a cdf of F (·;Ωt, st).21

On the basis of Bayesian inference in Chamley (2003b, section 2.1), a t-generation

agent with a prior belief of µ−1 would update their beliefs to µt such that

µ̂τ
1− µ̂τ

= m(ŝτ )
µ̂τ−1

1− µ̂τ−1
, τ = 0, 1, . . . , t− 1 (3.2)

µt
1− µt

= m(st)
µ̂t−1

1− µ̂t−1
, (3.3)

where

m(st) =
φ(st; θH , σ

2)

φ(st; θL, σ2)
.

19The endowment of prior beliefs is exogenous in this model. We can regard it as different interpre-
tation about the future of the firm and the industry from the information contained in the prospectus
due to heterogeneous knowledge endowment within each generation.
20Although this assumption is somewhat unrealistic as that the history of a listing firm’s earnings

is observable, it greatly simplifies the model and provides an easier comparison with the conventional
EPV approach. In fact, whithout signals distortion, we do have perfect learning, so the observability
of earnings does not affect the results about sustained deviations from fundamentals. In the cases with
signal distortions, the demonstration of profitability in speculative manipulation can easily apply for
other type of signals, such as earnings manipulation by the listed firm. We could have relaxed this
assumption but it would complicate the paper by introducing another economy.
21In the case of perfect learning, we have Ωt = Ωt−1 ∪ {st}. However, it does not hold when we have

signal distortions and the inferred signals no longer equal to the true ones.
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Since the signals are normally distributed, we can rewrite the updating multiplier as

mt = m(st) = exp

∙
(θH − θL)(2st − θH − θL)

2σ2

¸
. (3.4)

Observe that the current beliefs would also be heterogeneous within each generation due

to the heterogeneity in their prior beliefs. Moreover, although each generation has the

same distribution of prior beliefs, the current beliefs could differ a lot among different

generations due to different history they can observe.

In order to derive the cdf of the posterior beliefs, we define the cumulative updating

multiplier

M̂t = m(st)
t−1Y
τ=0

m(ŝτ ).

Hence, the agents with a posterior belief of µt have a prior belief

µ−1 =
µt

M̂t + (1− M̂t)µt
,

and the cdf of posterior beliefs satisfies

F (µt;Ωt, st) = F−1

Ã
µt

M̂t + (1− M̂t)µt

!
, (3.5)

as long as we can infer ŝτ from hτ+1, for τ = 1, 2, · · · , t− 1. In the following subsection,
we describe one of the bidding mechanisms enabling us to do so.

3.2.4 Bidding Mechanism in the Stock Market

The stock market collects the orders from buyers and sellers in each period, and then

generates only one price for each trading date.22 After comparing the expected payoffs

from risk-free asset and the stocks, young investors would like to hand in limit price order

in accordance with their beliefs. If all agents are truthful, agents with higher beliefs will

bid for a higher price. On the other hand, the sellers must submit a market price order

22This simplification makes the model more tractable. Actually this assumption, as well as the bidding
mechanism we describe here, is in line with the applications in some of over-the-counter (OTC) markets.
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because they have to sell all the stocks to enjoy their fruits in retirement.23

The market collects all the orders and determines the market price Pt such that the

number of shares from bidding orders above Pt equals S. With µ∗t indicating the cutoff

belief for the marginal agents, the number of winning buyers is 1− F (µ∗t ;Ωt, st). Recall

that each agent has one unit of capital and the total market value of the company is

SPt at time t. Hence we obtain the market price as a function of cutoff beliefs. It also

depends on all the inferred and observed signals.

Pt =
1− F (µ∗t ;Ωt, st)

S
, (3.6)

where

S = SP0 = 1− F (µ∗0;Ω0, s0). (3.7)

The winning buyers have to purchase the stock at a price of Pt, while the other young

investors would invest in the risk-free asset. Theoretically, we can solve µ∗t as a function

of Pt from (3.6)

µ∗t = ϕ(Pt;Ωt, st) = F−1(1− SPt;Ωt, st) (3.8)

3.3 Bayesian Learning Equilibrium Pricing Process

3.3.1 General Results

For the marginal agent at time t, the expected gross rate of return on equity yt equates

the yield from risk-free assets,

yt =
Et[st+1 + Pt+1|µ∗t ]

Pt
=

µ∗t θH + (1− µ∗t )θL +Et[Pt+1|µ∗t ,Ωt+1]

Pt
= R. (3.9)

Note that the number of shares per agent, S/[1 − F (µ∗t ;Ωt, st)], cancels out from the

numerator and denominator. The expectations are taken on both the states of nature θ

and the subsequent signals st. In the light of equation (3.6) and the approach to generate

23Since this market is essentially a limit-order market, there is no bid-ask spread due to the absence
of market makers.
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F (·;Ωt, st), we can multiply both sides by SPt, and rewrite equation (3.9) as

R[1− F (µ∗t ;Ωt, st)] = S[µ∗t θH + (1− µ∗t )θL] + 1−E[F (µ∗t+1;Ωt+1, st+1)|µ∗t ,Ωt+1] (3.10)

The left-hand side is the opportunity cost of the capitals invested in the stock market

in period t, while the right-hand side is the expected return from the dividends and the

expected market value of the stocks in period t+ 1.

Equation (3.8) and (3.10) characterize theBayesian learning equilibrium price (BLEP).24

Meanwhile, based on the present value approach, we can define

Vi =
θi

R− 1 , i = H,L,

and rewrite equation (3.9) as

Pt = [µ
∗
tVH + (1− µ∗t )VL] +

Et[Pt+1|µ∗t ,Ωt+1]− Pt

R− 1 . (3.11)

Comparing BLEP with the expected present value

V E
t = µ∗tVH + (1− µ∗t )VL, (3.12)

we find that only when Pt = Et[Pt+1|µ∗t ,Ωt], i.e. when the expected capital gain is zero,

the price is exactly the expectation of the probable present values for the marginal stock

investors. However we can show below that the expected capital gain is actually non-zero

almost all the time.25

Note that, in a representative agent model, Et[µt+1|µt,Ωt+1] = µt due to the law of it-

erated expectations (LIE).While the EPV formula is linear in µt, we haveEt[Pt+1|µ∗t ,Ωt+1] =

Pt, which means the expected capital gain is zero. However, in an economy with hetero-

geneous beliefs, the prior beliefs of the marginal agents (who determine the stock prices)

would change over time, as illustrated in Lemma 1.

24Hereafter, we call these two equations as BLEP equations.
25The term “almost all the time” means that it is of measure zero for the expected capital gain to be

zero. The following terms with “almost ...” have similar meanings.
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Lemma 1: (ex post effects) If the signal is in favor of the good (bad) state in period

t+ 1, i.e. st+1 is larger (smaller) than the mid point between θH and θL, then:

(i) there is a positive (negative) capital gain and more (less) stock investors;

(ii) the prior beliefs of marginal agents vary over time in almost all the cases;

(iii) cutoff beliefs are higher (lower) than before.

Mathematically, results (i) and (ii) means that an encouraging (a discouraging) signal

implies
mt+1µ

∗
t

1 + (mt+1 − 1)µ∗t
> (<)µ∗t+1 > (<)µ

∗
t , (3.13)

where mt+1 = m(st+1) is the updating multiplier defined in equation (3.4).

Proof : All the proofs are relegated to Appendix B.

Since the LIE only applies to the same agent or agents with the same prior beliefs,

the argument in a representative agent model is no longer valid. Observe that, if EPV

were the solution of the BLEP equations, we could substitute equation (3.5) and (3.6)

into the asset pricing formula to obtain

1− F−1

Ã
µ∗t

M̂t + (1− M̂t)µ∗t

!
− µ∗tSVH − (1− µ∗t )SVL = 0.

and derive a solution µ∗t = µ∗(M̂t;S) as a result.26 Although the general form of F−1

makes rigorous proof difficult, it is much easier to show that the necessary condition for

EPV to be the solution of BLEP equations, Et[µ
∗
t+1|µ∗t ,Ωt+1] = Et[µ

∗(mt+1M̂t)|M̂t] = µ∗t

does not hold if F−1 takes some specific functional forms, including the one we assume

in the following subsection.

Proposition 1: (Deviation from EPV) In an economy with heterogeneous prior

beliefs, stock prices set by the marginal agents differ from its EPV (conditional on the

cutoff beliefs) by a nontrivial expected capital gain component almost all the time until

the announcement of true quality.

26Note that the left-hand side is decreasing in µ∗t , and increasing in M̂t, µ∗(M̂t;S) is an increasing
fuction in M̂t.
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Note that the additional expected capital gain term is a non-fundamental component

since its existence relies heavily on reselling the stock.27 Since speculators care much more

about expected capital gains rather than dividends, the presence of expected capital gain

component in the asset pricing formula makes our social learning framework a good

platform to analyze speculators’ behaviors.

3.3.2 Uniform Likelihood Ratio Distribution of Prior Beliefs

Assume that the likelihood ratio of prior belief, µ−1/(1 − µ−1), follows a uniform dis-

tribution on [0, b−1].28 As a consequence, the likelihood of the belief of generation t,

µt/(1− µt), is also uniformly distributed on the support of [0, bt]. We call this family of

distribution as uniform likelihood ratio distribution (ULR distribution). It enables us to

employ only one parameter to characterize F (·;Ωt, st)

F (µt;Ωt, st) =
µt

bt(1− µt)
. (3.14)

The corresponding probability density function (pdf) is given by

f(µt;Ωt, st) =
1

bt(1− µt)
2
, (3.15)

and the upper bound of belief, or maximal belief, is

µmaxt =
bt

1 + bt
(3.16)

With the help of equation (3.2) and (3.4), we know that bt can be written as a function

27We don’t call it bubble (in a narrow sense), since there is no explosive associated with this type of
deviation from fundamental.
28We chose this family of distribution just to simplify the subsequent computation since it is closed un-

der belief updating. Theoretically, other families of single-parameter distributions can also be employed.
However, we believe that the qualitative results would not change.
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of estimated signals {ŝτ}t−1τ=0 and the latest signal st:

bt = b−1m(st)
t−1Y
τ=0

m(ŝτ) (3.17)

= b−1 exp

"
θH − θL
2σ2

[2st + 2
t−1X
τ=0

ŝt − (t+ 1)θH − (t+ 1)θL]
#

Note that we have one-to-one mapping between two sequences {Ωt ∪ {st}} and {bt}, and
one can easily infer the previous signals from the knowledge about the sequence {bt}.
Under the ULR distribution, we can rewrite equation (3.6) as

SPt = 1−
µ∗t

bt(1− µ∗t )
,

or

µ∗t =
bt(1− SPt)

1 + bt(1− SPt)
, (3.18)

with

lim
bt→0

µ∗t = 0; lim
bt→∞

µ∗t = 1.

Employing equation (3.18) and the no-arbitrage condition

RPt = [µ
∗
t θH + (1− µ∗t )θL] + µ∗tE[Pt+1|bt, θH ] + (1− µ∗t )E[Pt+1|bt, θL].

we can obtain the BLEP process, Pt = P (bt), from

RP (bt){1 + bt[1− SP (bt)]}− bt[1− SP (bt)]θH − θL (3.19)

=

Z +∞

−∞
P (bt+1,L)φ(st+1; θL, σ

2)dst+1 + bt[1− SP (bt)]

Z +∞

−∞
P (bt+1,H)φ(st+1; θH , σ

2)dst+1.

where the number of issued shares, S, is given by

R[1 + b0(1− S)]− b0(1− S)θH − θL

=

Z +∞

−∞
P (b1,L)φ(s1; θL, σ

2)ds1 + b0(1− S)

Z +∞

−∞
P (b1,H)φ(s1; θH , σ

2)ds1.
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Observe that the BLEP process characterized in equation (3.19) satisfies that

lim
bt→0

P (bt) = VL; lim
bt→∞

P (bt) = VH .

when SVH < 1.29 It means that, in the absence of uncertainty, equation (3.19) is identical

with the present value approach.

3.3.3 Numerical Solution

The analytic solution for equation (3.19) is difficult to obtain. However, the numerical

solution can be computed based on the brute-force (or iteration) method using EPV

prices as the initial values on the right-hand side of equation 3.19. The explanation

is quite intuitive. Suppose that the investors expect that firm’s true quality would be

revealed after k periods, when the stock price should equal to its EPV. If the sequence

of price functions converges as k approaches to infinity, the limit function would be the

solution for the case that the true quality is never revealed. When k is finite, the price

function changes as k changes.

To compute the EPV pricing in a market with heterogeneous prior beliefs, we set

initially the stock price at the expected present value for the marginal investors. The

no-arbitrage condition is no longer effective for calculating this initial function since we

have demonstrated that the EPV approach fails to be arbitrage-free.

While the IPO price P0 = 1, we can calculate µ∗0 from (3.12) and the EPV assumption

P0 = V E
0 ,

µ∗0 =
1− VL
VH − VL

. (3.20)

As a result, we can use equations (3.7), and (3.14) to infer b0 from the volume of the

issued stock

b0 =
1− VL

(VH − 1)(1− S)
(3.21)

29This is likely to be the case in reality, where the market value of all stocks is always smaller than
capitals available.
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For the subsequent periods, we can equate the prices in (3.6) and (3.12) to obtain

1− F (µ∗t ;Ωt, st)

S
= µ∗tVH + (1− µ∗t )VL (3.22)

and then derive the relationship between bt and µ∗t with the help of equation (3.14).

Substituting µ∗t as a function of bt into equation (3.6) yields

SPt =
1

2
[1 + SVH +

1

bt
−
r
(1− 1

bt
− SVH)2 +

4

bt
(1− SVL)] (3.23)

µ∗t = 1−
2

(bt + 1− SVHbt) +
p
(bt + 1− SVHbt)2 + 4btS(VH − VL)

(3.24)

for t = 1, 2, . . .. We show in Appendix A that both Pt and µ∗t are increasing in bt.

With the above initial pricing function, we calculate the numerical results with pa-

rameter values of R = 1.01, VH = 1.8, VL = 0.6, b0 = 1, S = 0.5, σ = (θH − θL)/q and

q = 1. Note that the return of the risk-free assets is close to quarterly or semiannual

risk-free return in the States, we can interpret each period as 3 or 6 months. This is

also in line with the quarterly or semiannual reporting requirements for listing firms.

In this example, the signals are quite rough since the probability of misleading signals

is just 0.4085 if we employ the middle point of θH and θL as the critical point. The

iteration method provides a reasonable convergence rate for the pricing function. For

instance, after 30 iterations, the supnorm distance between adjacent pricing functions is

only 1.3001× 10−5, while stock prices range from 0.6 to 1.8.

Figures 3.2 and 3.3 illustrate the relationship between EPV and BLEP. We can find

that the EPV approach would underprice the stock as much as 5.15% of the BLEP when

the firm is widely believed to be good and overprices it as much as 2.14% when the most

investors are pessimistic. The ratios are quite substantial compared with the risk-free

rate.

Based on this result, we can have some idea about the dynamics of stock prices. Note

that bt will change over time since it is based on the realization of the random signal st.

When the firm is of a good (bad) quality, its stock prices would be more likely to stay

higher (lower) than its EPV until the truth is revealed. In this case, we can observe a
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sustained deviation from the stock’s EPV, as illustrated in the example in figure 3.4. This

result agrees with the phenomena of sustained high prices during the bubble period and

seemingly endless low prices in a bearish market. Intuitively, if the marginal investors

believe that the quality of the firm is good (bad), the signal in the subsequent period is

more likely be encouraging (discouraging). Hence he would expect a capital gain (loss),

which explains the sustained deviation.

Observe that the deviation from EPV is biggest when there is a widespread rumor in

the market rather than the announcement of the truth. The reason lies in the fact that

when buying at a price quite close to, for instance, VH , the surprisingly adverse news

could lead to a larger expected loss even when the probability is small, since the price

drops would be quite drastic, which is similar to the black sheep effect in other learning

literature, such as Chamley (2003b, page 73). Proposition 2 summarizes the findings so

far.

Proposition 2: (Sustained Deviation from EPV) There exist sustained deviations

from EPV in finite periods. Widespread rumors in the market give rise to larger devia-

tions.

3.3.4 Signaling Noises

A noteworthy remark is that the quality of signal would greatly change results quanti-

tatively, although not qualitatively. Recall that the standard deviation of noise is set as

σ = (θH−θL)/q, which means the two true states are q standard deviations apart. Hence
we have a signal with better quality if q is large. When the signals are rather accurate

with q = 4, investors are less confused by the signals, and thus stock prices are not far

from the corresponding EPVs. Actually, when q approaches to infinity, the agents know

the true type each period, and there is no deviation from the EPVs. When the signals

are less informative with q = 1/4, the investors cannot have a good anticipation about

the subsequent signals, the expected capital gain component is also small. Extremely,

when q tends to zero, the variance of the signal σ2 approaches to infinity, and the signal

is of no use any more. In this case Et[Pt+1|µ∗t ,Ωt+1] = Pt, and the BLEP converges to

the EPV. figure 3.5 demonstrate how the price deviation changes with the quality of the
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signals.

In addition, the quality of signaling noises would also affect the convergence rate

toward the truth. figure 3.6 demonstrates the square root of mean squared errors (RMSE)

of the maximal beliefs based on a simulation with 1000 replications. It takes only 5 period

for RMSE to fall below 10−4 when q = 4, 15 periods when q = 2, and 58 periods when

q = 1. In the cases of q = 1/2 and 1/4, the RMSE is still as high as 0.0770 and 0.2656

respectively after 100 periods. If we take a period as 3 or 6 months, the convergence rate

for q < 1 is fairly slow (about 20 years).

3.3.5 Speculative Manipulation

Equation (3.23) essentially provides a pricing function Pt = P (bt). We have shown

that this function is strictly increasing. This provides us an opportunity to study the

possibility of speculative manipulation. The t-generation agents with a belief just below

the cutoff may consider submitting a higher bidding price in an attempt to pretend that

the signal is better than it actually is. Through Bayesian learning, the next generation

would like to offer a higher price. In short, these investors can sell the stocks at a higher

price in the subsequent period, but they have to bid up their purchasing price to disguise

the quality of the firm. This is similar to the feedback loop, an important effect in creating

speculative bubbles suggested by Shiller (2000). Previous explanations of this effect rely

either on adaptive expectation or some psychological factors, such as overconfidence,

which need to relax individual rationality. However, it can be easily justified in this

social learning framework.

Suppose the agents manage to create an illusion that the highest belief is bt+ δ. The

expected yield becomes

ySPt =
µ∗t θH + (1− µ∗t )θL

P (bt + δ)
+

Et{P [(bt + δ)m(st+1)]|µ∗t ,Ωt}
P (bt + δ)

. (3.25)

The first term captures the dilution effect, where the expected rate of return from divi-

dends is diluted by the higher purchasing price. The second term represents the capital

gain effect. The dilution effect is obviously negative, but the capital gain effect is gener-

ally ambiguous depending on the property of the price function. We have feedback loops,
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because an increase in current prices would make the subsequent generation adjust their

beliefs upward and thus raise the prices in the next period. However, whether it is prof-

itable to manipulate the stock prices in this manner depends crucially on the gains from

a higher stock price in the next period net of the costs from bidding up current price.

figure 3.7 shows that, the dilution effect is unsurprisingly negative, but rather small

in magnitude; moreover, under the current settings, the capital gain effect turns out to

be negative as well, which means the costs of speculative manipulations are bigger than

its gains. Thus, while we do identify feedback loops, it is not strong enough to grant the

speculative manipulations profitable. The results are summarized in Proposition 3.

Proposition 3: (Speculative Manipulation) In the benchmark setting, feedback loops

cannot lead to profitable speculative manipulations.

With negative profits, one cannot justify the existence of speculative manipulations.

An possible explanation is that investors can have signals as good in quality as the

preceding ones, hence they are less likely to be fooled. Another reason is that the changes

in the beliefs by bidding up the prices is small relative to the costs. If we change the

assumption about the signaling noises, speculative manipulations could be profitable.

Section 4 provides an example in this direction.

An immediate implication from Proposition 3 is that stock prices would perfectly

reveal previous signals since no one would manipulate the stock prices. Due to the one-to-

one mapping from maximal beliefs to stock prices, we can infer the history of beliefs from

the records of stock prices, and hence figure out all the previous signals. Actually, with

continuous and unbounded actions and only one dimension of signals, previous signals

would be perfectly inferred, as pointed out by Avery and Zemsky (1998). Nonetheless,

we still find sustained stock price deviations from EPV, which is more remarkable given

perfect learning.

In fact, the deviation from EPV stems from the treatment of corporate earnings as

signals, instead of truth. The conceived data generation process changes with the beliefs,

while other works, such as the experiments on estimation-based asset pricing model by

Timmermann (1996), rested on the ex ante belief that the conceived data generation

process is stationary, although it changes with time ex post.
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There are at least two ways to make learning imperfect and lead to signal distortions:

one is to limit the fluctuation in the stock prices, and another is to increase the dimension

of signals. We will show that, in at least one situation, speculative manipulations are

profitable, which leads to endogenous noises within the system.

3.4 Signal Distortions

3.4.1 Stock Markets with Fluctuation Limits

In several emerging markets, fluctuation limits are introduced to avoid drastic changes

in stock prices.30 In the baseline model, stock prices completely reveal the signals. In

contrast, we only have partial revelation when stock price hits the limit. The boundedness

in prices turns out to be important to make the speculative manipulations profitable.

For simplicity and illustrative purposes, only limit-ups are considered here.31 With

limit-ups, stock exchange generates the prices according to the formula

Pt = min{
1− F (µ∗t ;Ωt, st)

S
, λPt−1}, (3.26)

where λ is one plus the fluctuation limits for price rises. When the stock price hits the

upper limit λPt−1, each investor can only invest a proportion αt of his capital endowment,

where

αt =
SλPt−1

1− F (µ∗t ;Ωt, st)
.

The remaining 1 − αt would be invested in the risk-free asset. Assume that αt is not

30The fluctuation limit is also called as daily price limit or daily trading limit, which stipulates that
the stock prices can only fluctuate daily within a band computed based on the previous closing prices.
It is more widely employed in futures markets as well as in many stock markets, including those in
Japan, Korea, Mainland China, Taiwan, Malaysia, Thailand, Mexico, Austria, Belgium, France, Greece,
Italy, Netherlands, Spain, Switzerland, Turkey. Most of them are listed in Roll (1989). As one of the
largest stock markets in the world, Tokyo Stock Exchange imposes daily price limits in an effort to
prevent “excessively violent price fluctuations due to an imbalance in the buy/sell equilibrium or due to
speculative trading.”
31Limit-ups are referred to the limits for price rises, and limit-downs means the limit for price drops.

In a stock market with limit-downs, at least some stock holders fail to sell all of their stocks, and have to
sell the remaining in the subsequent trading day. Hence it requires a multi-period (at least three-period)
overlapping generation framework, which makes the model more complicated without much contribution.
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recorded, which is in line with the practice of the emerging stock markets mentioned

above. When the stock price is exactly at the limit-up level, we can compute the threshold

value of the cutoff beliefs as

µupt = F−1(1− SλPt−1;Ωt, st).

For simplicity, we again assume that the likelihood ratio is uniformly distributed.

Then we have

SPt = min{1−
µ∗t

bt(1− µ∗t )
, SλPt−1},

where the price function in this case depends not only on bt but also on Pt−1. We know

that better current signal leads to a higher stock price. Hence, as long as λPt−1 < VH ,

there exist a threshold value of current signal supt such that the price his the limit-up

level if and only if st ≥ supt . As a result, when st < supt , Pt and µ∗t satisfies

µ∗t =
bt(1− SPt)

1 + bt(1− SPt)

and
µ∗t θH + (1− µ∗t )θL +Et[Pt+1|µ∗t , bt]

Pt
= R;

when st ≥ supt , we have

Pt = λPt−1

and
µ∗t θH + (1− µ∗t )θL +Et[Pt+1|µ∗t , b̃t]

λPt−1
= R.

Observe that we use b̃t instead of bt in the second case, since the limit-up price results in

signal distortion. When stock price hits the upper bound, subsequent generation fails to

observe the true signal. All they can infer is the probabilities for stock prices to hit the

upper limit when firm is of good or bad quality. Therefore the updating multiplier turns

out to be

m̃(supt ) =
1− Φ(supt ; θH , σ

2)

1− Φ(supt ; θL, σ
2)
,

where Φ is the Gaussian cdf.
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From the model, we can find that stock prices hitting fluctuation limits would distort

the revelation of private signals. More specifically, since m(supt ) < m̃(supt ) for Gaussian

distribution,32 the perceived signal has an upward bias when the true signal is close to

supt . In the case when the true signal is lower but sufficiently close to s
up
t , some investors

can pretend that they have received supt instead of the true signal in an effort to make

use of the upward bias, which makes speculative manipulations more profitable than the

baseline model.

figure 3.8 illustrates the region of profitable speculative manipulations when current

signal is slightly below the level to make the price hit the fluctuation limit. Since the

difference between the would-be price without speculative manipulations and the upper

limit is small, the manipulation cost is low. However, the gains from the manipulations

would be quite substantial when the previous price is low as a result of the large magnitude

of the upward bias. Numerically, we do find the region, as shown in figure 3.8, for the

speculative manipulations to be profitable. We summarize the result in Proposition 4.

Proposition 4: (Active Speculative Manipulation) With fluctuation limits, there

exist cases in which the speculative manipulations are profitable.

Note that these emerging markets initially introduce the fluctuation limits for the

purpose of reducing the possibility of speculations. While achieving this purpose within

a trading day, it could may turn out to encourage speculative manipulations over a longer

period of time.

3.4.2 Financial Frenzies

We next introduce animal spirits in such a way that a proportion (1−Nt) of young agents

at period t, would always invest in the stock markets regardless of the signals received

(the remaining agents of proportion Nt behave the same as before). The proportion Nt

has the value of n with probability π, and equals 1 otherwise. The distribution of frenzied

agents is assumed independent of the prior beliefs. While the realization of Nt is private

information, its distribution is public knowledge. Note that we now have two-dimensional

32It is based on the fact that the hazard rate, φ(x)
1−Φ(x) , is increasing for Gaussian distribution.
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signaling noises, but have only a single dimensional action reflected by stock price. The

additional noises lead to signal distortion.33

For simplicity, we employ the uniform likelihood ratio distribution again. With finan-

cial frenzies, the measure of normal agents becomes

F (µt;Ωt, st, Nt) =
Ntµt

bt(1− µt)
.

Stock exchange now generates the stock price given by

SPt = 1−
Ntµ

∗
t

bt(1− µ∗t )
, (3.27)

and the no-arbitrage condition becomes

µ∗t θH + (1− µ∗t )θL +Et[Pt+1|µ∗t , b̃t]
Pt

= R. (3.28)

Note that the subsequent agents can only figure out that the value of the updating

multiplier is m(st)/Nt. Since they do not know the value of Nt, they must consider both

cases, and infer two possible signals snt and s1t , where

m(snt ;Nt) =
nm(st)

Nt
, m(s1t ;Nt) =

m(st)

Nt

As a consequence, the perceived updating multiplier changes to

m̃(snt , s
1
t ) =

πφ(snt ; θH , σ
2) + (1− π)φ(s1t ; θH , σ

2)

πφ(snt ; θL, σ
2) + (1− π)φ(s1t ; θL, σ

2)
.

Note that the difference between perceived updating multiplier, m̃(snt , s
1
t ), and the

one based on true signals, m(st), leads to signal distortions in the learning process. The

reason lies in the fact that the mapping from two-dimensional signaling noises to the one-

dimensional stock prices fails to be one-to-one. figure 3.9 shows that the signal distortions

33We can also introduce financial distress analogously. For example, we can assume that a fraction
of agents would always stay away from the stock market whatever signal he receives. However, it is a
bit more complicated since we have to adjust the total shares available to rational agents, while in the
financial distress model, nt only appears in the cumulative ditribution function.
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caused by financial frenzies slow down the convergence. Similar to the baseline model,

we can obtain the BLEP process from equation (3.27) and (3.28) by substituting out µ∗t .

However, in this case, the signal distortions are not large enough to make the speculative

manipulations profitable. Proposition 5 summarizes the results.

Proposition 5: (Slower Convergence) The introduction of financial frenzies results

in signal distortions, which slow down the rate of convergence toward the truth.

In reality, we could possibly have ten or more dimensions of signaling noises, which

would make the convergence rate even lower, and lengthen the period of sustained de-

viations from EPV. This may help explain why the stocks would deviate from their

fundamental values as long as two decades.

3.5 Conclusion

In this paper we establish an overlapping generations model with Bayesian learning about

the listed firm’s quality, and find that the arbitrage-free prices can have sustained devia-

tion from the related EPVs. In a bullish market, the stocks are priced higher than that

implied by the present value of subsequent dividend flows. During the recession, we can

find sustained existence of underpriced stocks.

Since we find that speculative manipulations can be profitable at least in the case

with fluctuation limits, the subsequent agents would take this endogenous noises into

account. In the our model, it would not change much in the region of signals leading to

upper limits, however, it would be interesting and important in other cases.

Moreover, there could be other types of signal distortions making speculative ma-

nipulations profitable. Possible candidates include changing the binary animal spirit

model into a continuous one. However, it takes much longer to compute double integrals

numerically.

We can also change the informational structure in the baseline model. For example,

the introduction of partial access to the signals would slow down the convergence rate

of cutoff beliefs toward the truth. A three-period overlapping generations settings would

greatly enrich the analysis of stock market behaviors. In contrast to the passive selling
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from the old investors in current model, we would have more elastic supply since the mid-

aged investors can choose whether to hold or sell. The idea is close to the occupational

choice model proposed by Banerjee and Newman (1993). We expect that the increase in

the dimension of strategy space provides more room for speculative manipulations. Some

of the preliminary works are shown in Appendix B.

The consideration of more than one firms or stock markets is another interesting

extension for this paper. If there is some correlation among the realized signals of the

firms, investors would update their beliefs of one firm based on the stock price perfor-

mance of other firms. As a consequence, there will be substantial comovements among

different stocks or stock markets, which is in line with the observation of the stock market

performance and help us understand the mechanism of financial contagions.

Providing the first asset pricing formula including a non-trivial expected capital gain

component, our framework is more suitable for future studies on the impacts from taxes

on capital gain. It seems that this kind of taxes would discourage positive deviations

from fundamentals in a booming market, but enhance the negative devations in a bear-

ish market. However the impact from a progressive capital gain taxes demands more

thorough studies.

More generally, we can employ the social learning framework to revisit the adap-

tive expectation literature. In fact, adaptive expectation can be regarded as one of the

short-memory learning processes. By doing so, we can find more applications for social

learnings.
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Appendix

A. Possible Extensions of the Model
In the above model, the complete access to the signals discourages the possibility

of speculative manipulations. Hence, one of the interesting extensions would be the

imposition of partial access to the signals. We expect the convergence rate to be much

slower, and the speculative manipulations to be more likely.

Another concern of the main model is the forced selling for the old generation. If we

extend the model to a three-period overlapping generations framework, it would be more

close to reality.

A1. Partial Access to the Signals

The major difference from the baseline model is that the young agents has a probabil-

ity πt to observe the signals, while the uninformed agents would have a belief µNt = µ̂t−1.

As a result, the number of winning buyers is πt[1 − F (µS∗t ;Ωt−1, st)] + (1 − πt)[1 −
F (µN∗t ;Ωt−1)], where µN∗t and µS∗t stand for the beliefs of marginal agents in each group

respectively. Recall that each agent has one unit of capital and the total market value of

the company is SPt at time t. Hence we obtain the market price as a function of cutoff

belief. It also depends on the FN
t and FS

t .

Pt(µ
∗
t ;σt+1) =

πt[1− F (µS∗t ;Ωt−1, st)] + (1− πt)[1− F (µN∗t ;Ωt−1)]

S
, (A1)

where

S = SP0 = π0[1− F (µS∗0 ; s0)] + (1− π0)[1− F (µN∗0 ;Ω0)] (A2)

Now we have no-arbitrage condition for each type of agents

yt =
µS∗t θH + (1− µS∗t )θL +Et[Pt+1|µS∗t ,Ωt−1, st]

Pt
= R, (A3)

and

yt =
µN∗t θH + (1− µN∗t )θL +Et[Pt+1|µN∗t ,Ωt−1]

Pt
= R. (A4)
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If we assume the likelihood ratio to be uniformly distributed, then

SPt = SP (bt; bt−1) = πt

∙
1− µS∗t

bt(1− µS∗t )

¸
+ (1− πt)

∙
1− µN∗t

bt−1(1− µN∗t )

¸
(A5)

We can obtain the relationship between the two cutoff beliefs

(µS∗t − µN∗t )(θH − θL)

= µN∗t Et[P (bt+1; bt)|bt−1, θH ] + (1− µN∗t )Et[P (bt+1; bt)|bt−1, θL] (A6)

−µS∗t Et[P (bt+1; bt)|bt, θH ]− (1− µS∗t )Et[P (bt+1; bt)|bt, θL]

Theoretically, we can solve the µS∗t and µN∗t from (A5) and (3.29) and then put them

back to either (A3) or (A4) to solve the BLEP process. However it is even more difficult

to solve this model.

A2. Three-Period Overlapping Generations Framework

Assume that each agent will live for three period, young, adult and old. While they

are born with an endowment of one unit of capital and only consume at the end of the

third period, they invest when young, modify their investment portfolio when adult, and

sell all assets when old.

At period 0, the listed firm issues new shares to the young and adult investors, hence

S = SP0 = [1− F (µ∗0,0;Ω0)] +R[1− F (µ∗−1,0;Ω0)]

= (1 +R)

∙
1−

µ∗0,0
b0(1− µ∗0,0)

¸

where the two cutoff beliefs, µS∗0,0 and µS∗−1,0, are equal, since the expected price in the

next period are the same. We also impose the assumption of uniform distribution for the

likelihood ratio. Here the first subscript stands for the birth date of the agent, while the

second one indicates the current period.

A good way to obtain the stock market clearing condition is to imagine that the adults

sell all the shares and then make their portfolio decision again. Now the market value of

the stocks is given by the young and adult agents’ stock investment. To the adult agents,
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if the number of investors increases, i.e. 1 −
µ∗t−1,t

bt(1− µ∗t−1,t)
> 1 −

µ∗t−1,t−1
bt−1(1− µ∗t−1,t−1)

, the

previous stock holders would invest all the capital gains and the dividends in stocks,

while the previous depositors (risk-free asset holders) would also invest their deposits.

This implies

SPt = 1−
µ∗t,t

bt(1− µ∗t,t)
+

Pt + st
Pt−1

∙
1−

µ∗t−1,t−1
bt−1(1− µ∗t−1,t−1)

¸
+R

∙
µ∗t−1,t−1

bt−1(1− µ∗t−1,t−1)
−

µ∗t−1,t
bt(1− µ∗t−1,t)

¸
.

Otherwise, we have only a portion of previous stock holders investing in the stock market

again, which means

SPt = 1−
µ∗t,t

bt(1− µ∗t,t)
+

Pt + st
Pt−1

∙
1−

µ∗t−1,t
bt(1− µ∗t−1,t)

¸
Obviously, the model is much more complicated.

B. Proofs and Derivations

Proof of Lemma 1: When there is an encouraging (discouraging) signal, every one would

be more (less) optimistic than before. First, there would be more (less) demand if the

stock price were the same. As a result, the stock prices would be higher (lower) and there

is a positive (negative) capital gain. Due to the assumption on capital endowment, higher

(lower) stock price implies more (less) stock investors. Note that the previous marginal

agents are indifferent between buying stocks and investing in the risk-free asset. Since the

stock price would be higher (lower) after the arrival of new signal, the rate of return from

stock investment would be smaller (larger). Therefore, agents with the same posterior

beliefs as the previous marginal guys would invest in the risk-free asset (buy stock), and

the new cutoff beliefs would be higher (lower) than before. Mathematically, the first

result implies 1 − F (µ∗t+1;Ωt+1, st+1) > (<)1 − F (µ∗t ;Ωt, st), and the second one means

µ∗t+1 > (<)µ
∗
t . Due to the belief updating mechanism describe in equation (3.2), we have

F (µ∗t ;Ωt, st) = F
³

mt+1µ∗t
1+(mt+1−1)µ∗t

;Ωt+1, st+1
´
, since the t-generation agent with a posterior

belief of µ∗t would have the same prior belief as the t+1-generation agent with a posterior
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belief of mt+1µ∗t
1+(mt+1−1)µ∗t

. With the above knowledge, we can derive inequality (3.13) easily.

Q.E.D.

The brute-force (iteration) method to solve the BLEP process:

Consider the mapping T from bounded continuous function to itself satisfying

(TP k)(bt) =
[µ∗t θH + (1− µ∗t )θL] + µ∗tE[P

k(bt+1)|bt, θH ] + (1− µ∗t )E[P
k(bt+1)|bt, θL]

R

where

µ∗t =
bt[1− S(TP k)(bt)]

1 + bt[1− S(TP k)(bt)]
.

We choose p0 as the EPV price function (3.23), and compute pk recursively. While

the convergence rate for the sequence {pk} is quite fast, the numerical solution for the
BLEP is easy to obtain.

The derivation of equation (3.23):

From equations (3.22) and (3.14), we have

1− µ∗t
bt(1−µ∗t )

= S[µ∗tVH + (1− µ∗t )VL]

For computational convenience, we can define

a∗t =
µ∗t
1−µ∗t

and get

1− a∗t
bt
= S[a

∗
tVH
1+a∗t

+ VL
1+a∗t

]

or

0 = S[a∗tVH + VL]− (1− a∗t
bt
)(1 + a∗t )

= (a∗t )
2

bt
− (1− 1

bt
− SVH)a

∗
t + SVL − 1

Note that S < 1, and VL < 1, the quadratic equation has two real roots with different
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signs. While only the positive root is meaningful here, we have

a∗t =
1

2
(bt − 1− SVHbt) +

1

2

p
(bt − 1− SVHbt)2 + 4bt(1− SVL)

Putting it into (3.6) yields

SPt = 1− a∗t
bt
= 1

2

h
1 + SVH +

1
bt
−
q
(1− 1

bt
− SVH)2 +

4
bt
(1− SVL)

i
= 1

2

h
1 + SVH +

1
bt
−
q
(1 + 1

bt
− SVH)2 +

4S
bt
(VH − VL)

i
with

lim
bt→∞

SPt = min{1, SVH}.

We can rewrite the expression as

SPt =
2btSVH+2SVL

bt+btSVH+1+
√
(1+bt−btSVH)2+4btS(VH−VL)

,

and thus obtain

lim
bt→0

SPt = SVL.

Defining

xt =
1
bt
,

we have
d(SPt)
dxt

= 1− 2(x−1+SVH)+4(1−SVL)
2
√
(1−x−SVH)2+4x(1−SVL)

< 0

because

(1− x− SVH)
2 + 4x(1− SVL)− [(x− 1 + SVH) + 2(1− SVL)]

2

= 4x(1− SVL)− 4(x− 1 + SVH)(1− SVL)− 4(1− SVL)
2

= 4x(1− SVL)(SVL − SVH) < 0.

Hence Pt is strictly increasing in bt. When bt tends to infinity, SPt goes to min{1, SVH};
when bt tends to zero, SPt goes to SVL.
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In addition, we can compute the belief of a marginal investor

µ∗t = a∗t
1+a∗t

= 1− 1
1+a∗t

= 1− 2

(bt+1−SVHbt)+
√
(bt−1−SVHbt)2+4bt(1−SVL)

= 1− 2

(bt+1−SVHbt)+
√
(bt+1−SVHbt)2+4btS(VH−VL)

= 1−
√
(bt+1−SVHbt)2+4btS(VH−VL)−(bt+1−SVHbt)

2btS(VH−VL)

with

lim
bt→0

µ∗t = 0; lim
bt→∞

µ∗t =

⎧⎨⎩ 1 if SVH < 1

1−SVL
S(VH−VL) if SVH ≥ 1

and µ∗t strictly increasing in bt.

A numerical example

Let

PL
t+1 =

Z +∞

−∞
P (bt+1,L)φ(st+1; θL, σ

2)dst+1, PH
t+1 =

Z +∞

−∞
P (bt+1,H)φ(st+1; θH , σ

2)dst+1

we have

RP (bt){1 + bt[1− SP (bt)]}− bt[1− SP (bt)]θH − θL

= PL
t+1 + bt[1− SP (bt)]P

H
t+1.

Then

RbtSP
2
t − Pt(R+Rbt + btSθH + btSP

H
t+1) + θL + PL

t+1 + btP
H
t+1 + btθH = 0

When Pt = 0, the left hand side is positive. When Pt = 1/S, the left hand side is

Rbt − (R+Rbt + btθHS + btP
H
t+1S) + SθL + SPL

t+1 + btSP
H
t+1 + btSθH

= −R+ SθL + SPL
t+1 < −R+ θL + 1 < 0

since S < 1, SPL
t+1 < 1, and θL < R − 1. Hence there is one root in (0, 1/S) with
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another in (1/S,∞). Obviously only the smaller one is reasonable, since the other leads
to SPt > 1.

To figure out the number of shares, S, just set P (b0) = 1, which results in

R{1 + b0[1− S]}− b0[1− S]θH − θL

= PL
1 + b0[1− S]PH

1 .

S = 1− R− θL − PL
1

b0(θH + PH
1 −R)

.

89



 90

Bibliography 

[1] Abel, Andrew B. (1989) "Asset Pricing under Heterogeneous Beliefs: Implication for the 

Equity Premium," mimeo, University of Pennsylvania 

[2] Abreu, Dilip and Markus Brunnermeier (2003) "Bubbles and Crashes," Econometrica, 71, 

173-204 

[3] Aggarwal, Rajesh K., and Guojun Wu (2003) "Stock Market Manipulation - Theory and 

Evidence," AFA 2004 San Diego Meetings. http://ssrn.com/abstract=474582 

[4] Allen, Franklin, and Douglas Gale (1992) "Stock-Price Manipulation," Review of Financial 

Studies, 5, 503-529. 

[5] Allen, Franklin, Stephen E. Morris and Hyun Song Shin (2003) "Beauty Contests, Bubbles 

and Iterated Expectations in Asset Markets," Cowles Foundation Discussion Paper No. 

1406; AFA 2004 San Diego Meetings. http://ssrn.com/abstract=386083 

[6] Anderson, Evan W., Eric Ghycels and Jennifer L. Juergens (2005) "Do Heterogeneous 

Beliefs Matter for Asset Pricing?" Review of Financial Studies, forthcoming 

[7] Avery, Christopher and Peter Zemsky (1998) "Multidimensional Uncertainty and Herd 

Behavior in Financial Markets," American Economic Review, 88, 724-748 

[8] Barberis, Nicholas and Richard Thaler (2003) "A Survey of Behavior Finance, " Handbook 

of the Economics of Finance, edited by George M. Constantinides, Milton Harris, René M. 

Stulz, Published by North-Holland 

[9] Banerjee, Abhijit (1992) "A Simple Model of Herd Behavior," Quarterly Journal of 

Economics, 107, 797-817 

[10] Banerjee, Abhijit and Andrew Newman (1993) "Occupational Choice and the Process of 

Development," Journal of Political Economy, 101, 274-298 

[11]Bikhchandani, Sushil, David Hirshleifer, and Ivo Welch (1992) "A Theory of Fads, Fashion, 

Custom, and Cultural Change as Information Cascades," Journal of Political Economy, 100, 

992-1026 



 91

[12] Blanchard, Oliver J. and Stanley Fischer (1989) Lectures on Macroeconomics, MIT Press 

[13] Brunnermeier, Markus (2001) Asset Pricing under Asymmetric Information - Bubbles, 

Crashes, Technical Analysis, and Herding, Oxford University Press 

[14] Bulkley, George and Ian Tonks (1989) "Are UK stock prices excessively volatile? Trading 

Rules and Variance Bounds Tests," Economic Journal, 99, 1083-98 

[15] Campbell, John (2000) "Asset Pricing at the Millennium," Journal of Finance, 55, 

1515-1567 

[16] Campbell, John, Andrew Lo and Craig Mackinlay (1997) The Econometrics of Financial 

Markets, Princeton University Press 

[17] Chamley, Christophe (2003a) "Dynamic Speculative Attacks," American Economic Review, 

93, 603-621 

[18]                  (2003b) Rational Herds, Cambridge University Press 

[19] Cutler, David, James Poterba and Lawrence Summers (1991) "Speculative Dynamics," 

Review of Economic Studies, 58, 529-546 

[20] Detemple, Jerome and Shashidhar Murthy (1994) "Intertemporal Asset Pricing with 

Heterogeneous Beliefs," Journal of Economic Theory, 62, 294-320 

[21] Diba, Behzad T., and Herschel I. Grossman (1988) "The Theory of Rational Bubbles in 

Stock Prices," The Economic Journal, 98, 746-54 

[22] Du, Julan (2002) "Heterogeneity in Investor Confidence and Asset Market Under-and 

Overreaction," http://ssrn.com/abstract=302684 

[23] Guidolin, Massimo and Allan Timmermann (2003) "Option Prices under Bayesian 

Learning: Implied Volatility Dynamics and Predictive Densities," Journal of Economic 

Dynamics and Control, 27, 717-769 

[24] Harrison, Michael J., and David M. Kreps (1978) "Speculative Investor Behavior in a Stock 

Market with Heterogeneous Expectations," Quarterly Journal of Economics, 92, 323-336 

[25] Kim, Kenneth A., and S. Ghon Rhee (1997) "Price Limit Performance: Evidence from the 

Tokyo Stock Exchange," Journal of Finance, 52, 885-901 



 92

[26] Lucas, Robert (1978) "Asset Prices in an Exchange Economy", Econometrica, 46, 

1429-1445 

[27] Miller, Edward M. (1977) "Risk, Uncertainty, and Divergence of Opinion," Journal of 

Finance, 32, 1151-1168 

[28] Morris, Stephen (1996) "Speculative Investor Behavior and Learning," Quarterly Journal 

of Economics, 111, 1111-1133 

[29] O'Hara, Maureen (1995) Market Microstructure Theory, Blackwell Publishers, Cambridge, 

MA 

[30] Pastor, Lubos and Pietro Veronesi (2004) "Was There a Nasdaq Bubble in the Late 1990's?" 

NBER working paper 10581 

[31] Santos, Manuel S. and Michael Woodford (1997) "Rational Asset Pricing Bubbles," 

Econometrica, 65, 19-58 

[32] Shiller, Robert (1981) "Do Stock Prices Move too much to be Justified by Subsequent 

Changes in Dividends?" American Economic Review, 71, 421-436 

[33]              (2000) Irrational Exuberance, Princeton University Press 

[34] Timmermann, Allan (1996) "Excess Volatility and Predictability of Stock Prices in 

Autoregressive Dividend Models with Learning" Review of Economic Studies, 63, 523-557 

[35] Varian, Hal R. (1985) "Divergence of opinion in complete markets: A note," Journal of 

Finance, 40, 309-318 



 93

CHAPTER IV 
 

A WAVELET ANALYSIS ON PATTERNS OF 
STOCK MARKET COMOVEMENTS 

 

4.1 Introduction 
The excess comovement between international stock markets is among the intriguing 

puzzles in finance. Based on the seminal work of Lucas (1978), stock prices are believed to be 

determined by fundamental factors. However the empirical evidence suggests the existence of 

non-fundamental factors in stock pricing. 

Among all the fundamental factors, the discounted present value of the dividend flow may 

be the most important one. Shiller (1989) constructs the fundamental value of a stock 

accordingly and discovers that the (detrended) US and UK stock indices exhibit excess 

comovement, by comparing their covariance with that of the fundamental values. A bigger set of 

fundamental factors, including interest rates, exchange rates, inflation, GNP or industrial 

production, etc., is adopted later. Among them, Pindyck and Rotemberg (1993) find excess 

comovements in the OLS residuals for firms with unrelated earnings, even after controlling the 

expectations of GNP growth and inflation. King, Sentana and Wadhwani (1994) employ a 

GARCH-based multifactor model on stock markets in 16 developed economies. Only a small 

proportion of the stock market comovements can be accounted for macroeconomic indicators. 

Ideally, we can isolate the non-fundamental factors by controlling other fundamental 

factors, such as tax rates of dividend income and capital gains, the creation of new investment 

tools, etc. However, the increase in the number of those factors would undermine statistical 

significance of the results. Moreover, some of the effects may be non-linear and will consume 

more data to control it correctly. In contrast to the direct study mentioned above, we propose an 

indirect approach based on wavelet analysis. 



Wavelet filters enables us to decompose the original data across time scales, such

as bi-daily, weekly, monthly, quarterly, semiannual, annual, etc., with a nice energy

preservation property such that the sum of the variances of component series equals

to that of the original data. The stock price changes due to transitory shocks will

be contained in the high-frequency components (i.e. bi-daily or weekly), while those

caused by perminant shocks are captured in the low-frequency components (i.e. quarterly,

semiannual or annual). As a result, we can employ wavelet analysis to study the pattern

of the comovements across the scales, and obtain some idea about what kind of shocks

are the main driving forces of stock market comovements.

This paper is among the first few papers that employ wavelet analysis to investi-

gate both the existence and the patterns of excess comovements across time scales. The

basic idea comes from the observation that the fundamental changes usually have more

sustained effects while the transitory shocks would decay much faster. The major compo-

nents of non-fundamental factors, such as signaling noises and expectation errors usually

disappear after the related true information is revealed publicly.1 For instance, after the

firms announce their earning, or the Fed decides the primary interest rate, the related

rumors would have no effect on stock prices any more.

The recent development in wavelet analysis, a useful tool in signal process, helps

us to disentangle transitory shocks (high frequency components) from sustained effects

(low frequency ingredients).2 By making use of econometric knowledge in both time and

frequency domain, wavelet analysis enables us to decompose a time series over different

time scales. The component time series at each time scale level captures the changes in a

specific frequency range, based on the spectral features of wavelet filters. Meanwhile, we

can still use time series techniques to each component series. Percival and Walden (2000)

provide a good introduction to wavelet analysis, while Gençay, Selçuk and Whitcher

1Before the announcement of true information, we may have some signals about it, and the signaling
error would lead to excessive price fluctuation. In addition, investors would observe signal related actions
(or stock price changes) to update their beliefs. We regard the inefficiency in discovering the signals as
expectation errors.

2In this paper, the sustained (long term) effect focuses on a period longer than a quarter, since most of
macroeconomic indicators and corporate earnings are announced quarterly. The transitory (short-run)
shocks capture the fluctuation in a period less than one month, because the most frequent announcement
is made monthly.
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(2002) and Ramsey (2000) exhibit some of its applications in finance and economics.

Basically, we focus on the correlation coefficients at each scale level, but the results from

measures of nonlinear interdependence, such as Kendall’s tau and Spearman’s rho, are

qualitatively similar.

Empirical results on the US and Eastern Asian markets show that the correlation

coefficients do vary across time scales, and short-run comovements are all significantly

positive except for the closed markets in Mainland China, which are literally inert to

foreign stock markets at most time scales. Long-term correlation is more remarkable

than short-run ones in domestic markets with similar sectoral structure, while monthly

and quarterly changes in Japanese, Hong Kong and Taiwan markets are more sensitive

to the US counterparts than other scale levels. The degree of comovements is increasing

in the openness of the markets.

Another appealing objective is the comovements of Chinese B-share markets with

other markets in Greater China, because they are not officially open to Chinese mainland

investors until 2001 while other Greater Chinese investors can buy B shares all the times.

Hence, it provides a good sample to demonstrate our observation on the relationship

between the level of comovements and the market openness.

Other empirical studies short-run comovements (daily or intraday) support our find-

ings. Becker, Finnerty and Gupta (1990) find that the intraday returns in S&P500 can

affect the performance of Nikkei index in the following trading period, but the other direc-

tion is much weaker and less significant. Controlling a bunch of information variables in

their GARCH model, Karolyi and Stulz (1996) demonstrate that neither macroeconomic

announcements nor interest shocks can be accounted for comovements between US and

Japanese stock returns, while previous market performance has significant explanatory

power to stock comovements. Among the few papers introducing wavelet analysis to the

studies on stock market comovements, Lee (2001) employ wavelet regression to show the

spillover from developed stock markets in US, Japan, German to the emerging markets

in Turkey and Egypt in the short run (less than a week).

This paper contributes to the related literature by illustrating the whole pattern of

stock market comovements over time scales, which generates a more vivid picture about

the interaction among the international stock markets. As to the technical comparison
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with Lee (2001), we focus on wavelet correlations and some measures of nonlinear inter-

dependence, while Lee (2001) employs wavelet OLS regression. In addition, we employ

MODWT filters rather than DWT ones, because the former is shown to insensitive to

circular shifts.3

The paper is organized as follows. Section 4.2 introduces the MODWT method, and

while the empirical results is presented in Section 4.3. Section 4.4 concludes. The sources

and manipulations of the data can be found in Appendix.

4.2 DiscreteWavelet Transform as a FilteringMethod

A general introduction of continuous and discrete wavelet analysis can be found in Per-

cival and Walden (2000). In this paper, we employ the maximal overlap discrete wavelet

transform (MODWT) as a filtering method. Hence a brief introduction of MODWT is

provided in this section. Compared with other detrending methods, MODWT filter has

additional features, such as scale-by-scale energy-preserving decomposition and better

interpretation in the language of spectral analysis.

4.2.1 MODWT Filters

Moving average and differencing are among the commonly used detrending or filtering

methods. The first order differencing is identical to the filtering by {−1, 1}, while the
filter for the second order differencing is {1,−2, 1}. In general, all the differencing filters
with a length of L, {hl}L−1l=0 , satisfy

L−1X
l=0

hl = 0. (4.1)

3Another approach similar to wavelet analysis is the band spectrum regression proposed by Engle
(1974). While the band spectrum regression is based on Fourier transform, we use the whole data set to
compute each element in the filtered data. In contrast, wavelet analysis has better localization property
since we only need the data in a small neighborhood to calculate each wavelet (or scaling) coefficient.
This property enables us to associate the changes in the filtered data with the original one. Moreover,
wavelet filtering method only requires local stationarity, while Fourier transform demands a global one.
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Similarly, the general (weighted) moving average filter with a length of L, {gl}Ll=1, satisfy

L−1X
l=0

gl = 1. (4.2)

Accordingly, a MODWT wavelet filter is a general differencing filter satisfying the

half-energy condition
L−1X
l=0

h2l =
1

2
, (4.3)

and the orthogonality condition for even shifts

L−1X
l=0

hlhl+2n =
∞X

l=−∞
hlhl+2n = 0, for any non-zero integer n. (4.4)

The corresponding MODWT scaling filter is generated from the wavelet filter by

gl = (−1)l+1hL−1−l. (4.5)

Percival and Walden (2000) demonstrated that this scaling filter is essentially a general

moving average filter satisfying the half-energy condition

L−1X
l=0

g2l =
1

2
, (4.6)

and the orthogonality condition for even shifts

L−1X
l=0

glgl+2n =
∞X

l=−∞
glgl+2n = 0, for any non-zero integer n. (4.7)

4.2.2 Pyramid Algorithm

With MODWT filters, we can generate MODWT wavelet and scaling coefficients at scale

1, {W1,t}N−1t=0 and {V1,t}N−1t=0 , from the original series, {Xt}̇
N−1
t=0

W1,t =
L−1X
l=0

hlXt−lmodN , for t = 0, . . . , N − 1, (4.8)
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V1,t =
LX
l=1

glXt−lmodN , for t = 0, . . . , N − 1. (4.9)

Note that MODWT employs circular convolution. The notation amodN means that,

when the integer a ∈ [kN, kN + N − 1], amodN equals a − kN , for any integer k.

Obviously, MODWT coefficients generated by both beginning and ending components

could be spurious. Hence, we will adjust the boundary-affected coefficients later.

Analogously, we can decompose the scaling coefficients to obtain MODWT coefficients

at higher scales,

Wj,t =
L−1X
l=0

hlVj−1,t−2j−1lmodN , for t = 0, . . . , N − 1, (4.10)

Vj,t =
L−1X
l=0

glVj−1,t−2j−1lmodN , for t = 0, . . . , N − 1. (4.11)

Consequently, we will have all the MODWT coefficients, {W1, . . . ,WJ ,VJ}4, up to scale
J . We can easily reconstruct the original series from the MODWT coefficients by pyramid

algorithm again, but from high scale to low scale

Vj−1,t =
L−1X
l=0

hlWj,t+2j−1lmodN +
L−1X
l=0

glVj,t+2j−1lmodN , for t = 0, . . . , N − 1, (4.12)

while {Xt}̇
N−1
t=0 is regarded as {V0,t}N−1t=0 .

In addition, we can focus on one specific scale level and synthesize MODWT detail at

scale j, Dj, from the MODWT coefficients {0, . . . ,0,Wj,0, . . . , 0}, or MODWT smooth
at scale J , SJ , from {0, . . . , 0,VJ}. Since MODWT filtering is a linear operator, it is
easy to have the so-called multiresolution analysis (MRA)

X =
JX

j=1

Dj + SJ . (4.13)

4The bold or calligraphic variables indicate the vectors of related series.
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4.2.3 Features of MODWT

Energy-Preserving Multi-Scale Decomposition

The half-energy condition and orthogonality condition for even shifts provide additional

features of MODWT over the general moving average and differencing method. The

above multi-scale decomposition via pyramid algorithm has a beneficial energy-preserving

property

kXk2 =
JX

j=1

kWjk2 + kVJk2, (4.14)

or
kXk2
N
− X̄2 =

1

N

JX
j=1

kWjk2 + (
kVJk2
N

− X̄2).

Note that wavelet coefficients are mean zero, while the mean of scaling coefficients is the

same as that of the original series. Therefore, equation (4.14) indicates that the variance

of the original series is just the sum of wavelet variances for MODWTwavelet and scaling

coefficients at different scales.

Spectral Interpretation

In the language of spectral analysis, the MODWT wavelet filter {hl}L−1l=0 belongs to high

pass filter focused on frequencies in the interval of [−2−1,−2−2] and [2−2, 2−1], while the
scaling filter {gl}L−1l=0 is a low pass filter for frequencies between −2−2 and 2−2. With τ j =
2j−1 denoting the scale at jth level, we know that the τ j scale wavelet coefficients (Wj)

captures most energy with frequencies in the interval of [−2−j,−2−j−1] and [2−j, 2−j−1].
As a result, we can find the approximate relationship between wavelet variance and

spectral density SX(f) of the original series

var{Wj} ≈ 2
Z 2−j

2−j−1
SX(f)df (4.15)

The use of approximation is due to the existence of leakage for MODWT filters. In

application, there is no high (low) pass only discrete filter. Leakage is inevitable, more

or less.
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MODWT vs DWT

MODWT can be regarded as a modified version of discrete wavelet transform (DWT).

The DWT filters have unit energy, instead of half energy in the MODWT case. Hence

the DWT filter is simply
√
2 times the MODWT filters. To preserve the energy of the

original series, we choose every other of the MODWT wavelet and scaling coefficients at

each step of the pyramid algorithm. This approach is called downsampling by two.

In DWT analysis, the energy of details is the same as that of wavelet coefficients at

the same scale level,

kDjk2 = kWjk2, for j = 1, . . . , J . (4.16)

The cost is that the DWT analysis might be sensitive to circular shifts due to the down-

sampling approach. The discarded components by the downsampling approach could

contain different information from the remainder. An illustrative example is provided by

Percival and Walden (2000, page 161 and 181). Moreover, as we will see later, MODWT

provides a larger sample size in the wavelet variance, covariance, and correlation analysis.

As a consequence, this paper focuses on MODWT.

4.2.4 Practical Considerations

Boundary-Affected Coefficients

Recall that the MODWT coefficients are generated by circular convolution. The coeffi-

cients computed from both beginning and ending data are likely to be spurious. Percival

and Walden (2000) show that, if the length of filter is L, there are (2j − 1)(L − 1) co-
efficients affected for τ j-scale wavelet and scaling coefficients, while (2j − 1)(L − 1) − 1
beginning and (2j − 1)(L− 1) ending components in τ j-scale details and smooths would

be affected.

There is a noteworthy remark. After deleting boundary-affected coefficients, the

energy-preserving equation (4.14) does not hold any more. However, the simulations of

white noise and random walk series shows that the summation of wavelet variance and

the variance of scaling coefficients still accounts for about 90-110% of the variance in the

original series.
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Choice of MODWT filters

There are two considerations about the filter choice: the type and the length. Percival

and Walden (2000, page 196) demonstrated the artifacts in some of the DWT filters,

but the problem is much mitigated in MODWT case. Daubechies least asymmetric

(LA) MODWT filters, which are also called as symlets, are among the popular choices,

because LA filters provide most accurate synchronization between wavelet coefficients

and the original series.

The choice of filter’s length is based on the trade-off between leakage and the number

of boundary affected coefficients. If the length (L) is larger, the filters are much closer

to the ideal high (low) pass only filters. However, the number of boundary affected

coefficients will increase, reducing the size of unaffected coefficients. In this paper, we

choose LA(8) filters.

4.2.5 Wavelet Variance, Covariance, and Correlation

Theoretically, the wavelet variance, ν2j,X , is just the variance of wavelet coefficients at

scale τ j, as we have shown in equation (4.14). However, we know that the boundary-

affected coefficients could generate spurious results. Hence the estimator of a τ j-scale

wavelet variance is the variance estimator, ν̂2j,X(τ j), for the boundary-unaffected coef-

ficients conditional on mean zero.5 Assuming the true series of wavelet coefficients at

scale τ j is a Gaussian stationary process with mean zero and a spectral density func-

tion (SDF) Sj, Percival and Walden (2000) provided the asymptotic distribution for the

wavelet variance estimator

ν̂2j,X(τ j)
asy∼N(ν2j,X ,

2Aj

Mj
), (4.17)

where Mj = N − (2j − 1)(L− 1) is the number of unaffected coefficients, and

Aj =

Z 1/2

−1/2
S2j (f)df <∞.

5It is the so called biased variance estimator. Since the true mean of the series is known to be zero,
we can save one degree of freedom.
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In application, Aj is estimated by the sum of squared autocovariance sequence (ACVS).

We can construct confidence interval accordingly. Recognizing that the confidence in-

terval based on asymptotic normal distribution may contain negative values, Percival

and Walden (2000) also provided an asymptotic χ2 distribution, but it seems difficult to

find the best choice of equivalent degrees of freedom. Serroukh et al (2000) relaxed the

Gaussian condition and proposed another estimator of wavelet variance, along with a cor-

responding asymptotic normal distribution, by employing multitaper spectrum analysis

with Slepian tapers.

As for a nonstationary series with its dth order difference strictly stationary (or d-

stationary for shorthand notation), Serroukh et al (2000) demonstrated that as long as

the length of the Daubechies filter (L) is larger than 2d, the series of MODWT wavelet

coefficients is also strictly stationary at each scale level. If the d-stationarity only holds

locally, we can only this result at the corresponding time periods.

Analogously, Whitcher et al (1999, 2000) constructed wavelet covariance

γj,XY = cov{W
(X)
j ,W

(Y)
j }

and wavelet correlation ρj,XY based on the wavelet coefficients. They demonstrated scale-

by-scale covariance decomposition similar to equation (4.14) for two stationary time series

X and Y

cov{X,Y} = cov{V(X)
J ,V

(Y)
J }+

JX
j=1

γj,XY . (4.18)

The correlation is simply

ρj,XY =
γj,XY

νj,Xνj,Y
. (4.19)

The estimators are just the covariance and correlation of the boundary-unaffected wavelet

coefficients. If the both wavelet coefficients are Gaussian stationary process with square

integrable autospectra, Whitcher et al (2000) showed the

γ̂j,XY

asy∼N(γj,XY ,
Vj
Mj
) (4.20)
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and

ρ̂j,XY
asy∼N(ρj,XY,

Rj

Mj
) (4.21)

where

Vj =
Z 1/2

−1/2
Sj,X(f)Sj,Y(f)df +

Z 1/2

−1/2
S2j,XY(f)df .

We skip the tedious expression of Rj, which can be found in Whitcher et al (1999). More-

over, the confidence In application, Whitcher et al (2000) developed a cleaner asymptotic

distribution for tanh−1(ρ̂j,XY) via Fisher’s z transformation

tanh−1(ρ̂j,XY)
asy∼N(tanh−1(ρj,XY),

1

M̃j − 3
), (4.22)

where M̃j = d2−jN−(L−2)(1−2−j)e is a proxy for the number of independent samples,
and the operator de takes the integer part of the real number inside.
However, since M̃j is the number of DWT coefficients and that of MODWT is close

to 2jM̃j, the confidence interval based on (4.22) is quite conservative for high scale levels.

In this paper, we also compute more aggressive confidence interbals based on the number

of MODWT Mj = N − (2j − 1)(L − 1), and report the results. The true confidence
interval should lie between the two approaches. As a part of our future research, we will

investigate which one is closer to the truth by simulations.

4.2.6 Investigation of Nonlinear Dependence

While correlation coefficients can only detect linear dependence, it may not reveal the

entire dependence structure. As a result, we also calculate Kendall’s tau and Spearman’s

rho, two of the popular measure for nonlinear dependence.

According to Nelsen (1999), Kendall’s tau for the pared random variable (X,Y ) with

a realization of {(xi, yi)}ni=1 is defined as

τX,Y = Pr[(X1 −X2)(Y1 − Y2) > 0]− Pr[(X1 −X2)(Y1 − Y2) < 0] (4.23)
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while the estimator is

τ̂X,Y =
2

n(n− 1){#[(xi − xj)(yi − yj) > 0]−#[(xi − xj)(yi − yj) < 0]}. (4.24)

Spearman’s rho is

ρX,Y = 3{Pr[(X1 −X2)(Y1 − Y3) > 0]− Pr[(X1 −X2)(Y1 − Y3) < 0]}. (4.25)

While the number of computations is (n − 2)/3 times that of τ̂ , it is burdensome to
calculate the estimator similar to equation (4.24). Nelsen (1999) shows that Spearman’s

rho is essentially the ”grade” correlation coefficient

ρX,Y =
E[F (X)G(Y )]− E[F (X)]E[G(Y )]p

var[F (X)] var[G(Y )]
, (4.26)

where F (·) andG(·) are the cumulative density functions (CDF) forX and Y respectively.

Hence we can estimate ρX,Y with empirical CDFs. The results, which are qualitatively

similar to those based on correlation coefficients, are listed in Table 4.3 at the end of this

chapter.6

4.2.7 Performance in Heuristic Examples

Since MODWT analysis is still a new tool, we simulate some examples to explore its

empirical performance. First, we construct a series with a single transitory shock and

another one with a single sustained shock. The lengths are both 4096, while the shocks

happen at 2049. The lengths are close to the size of our data set, and the impact from

deleting boundary affected coefficients is mitigated as well. We employ the LA(8) filter

to obtain wavelet coefficients up to scale τ 6. In the transitory shock case,W1 accounts

for 50.34% of the variance, while V6 captures only 2.44% of it. By contrast, V6 of

sustained shock series captures 94.02% variance of the original series. Actually it is the

simplest regime switching series, which is non-stationary. Hence, V6 of sustained shock

6The nonlinear interdependence measures do not general similar results as correlation coefficients in
all cases. Counter-examples can be found in Nelsen (1999).
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series is also nonstationary. In this regard, we focus on the composition of the variances

among wavelet coefficients only. The results are listed in Table 4.1. Although leakage is

inevitable, it decays at a fast rate (about half to the adjacent scale).

Another pair of examples is Gaussian white noise and random walk. We generate both

series from the same set of random data drawn from the standard normal distribution. We

simulate twice to have a better idea about the truth, and also figure out the energy in the

corresponding spectral density given by equation (4.15). Note that the spectral density

function (SDF) for Gaussian white noise with variance one is Swn(f) = 1, and SDF for

the random walk we generate is Srw(f) = (1/4) sin−2(πf), where f ∈ [−1/2, 1/2]. The
results are given in Table 4.1. Actually, it is difficult, if not impossible, to differentiate

white noise series from the series with single transitory shock, or random walk series from

the sustained shock series. We can interpret the phenomenon by the similar properties

of the shocks. Moreover, MODWT coefficients seem to seize as much energy as their

counterparts in spectrum analysis, except for theW1 in the random walk case. It means

that the leakage of the LA(8) filter is negligible.

We also check the variance composition for the stock indices we have. The empirical

results suggest that the levels of (log) indices behave almost the same as the sustained

stock series or the random walk series, while the daily returns (i.e. the first difference of

the log indices) perform like transitory shock series. It suggests that the (log) indices are

close to the series with unit root.

By investigating a correlated bivariate stationary Gaussian series and a correspond-

ing Gaussian random walk series with a correlation coefficient of 0.5,7 we find that the

performance of wavelet correlation estimator is quite reasonable. The true correlation

coefficient lies within all of the 95% confidence intervals, while the wavelet correlations

are alike for stationary Gaussian series and Gaussian random walk series generated by

the same set of random data. In fact, we repeat it three times, and the wavelet corre-

lation estimator at the first scale level ranges from 0.4573 to 0.5469, while all the 95%

confidence intervals are contained in [0.3140, 0.6579]. The confidence intervals become

7The correlated series are generated from two standard normal series, say X and Y . Let A = X+rY ,

and B = X − rY . We have var(A) = var(B) = 1 + r2, and cov(A,B) = 1− r2. Hence ρA,B =
1− r2

1 + r2
.

Given the level of the correlation coefficient, we can find the value of r to construct two correlated series.
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Series W1 W2 W3 W4 W5 W6

Transitory Shocks
Single Transitory Shock 50.42% 25.30% 12.74% 6.46% 3.32% 1.76%
White Noise (Median) 51.01% 25.72% 12.70% 6.26% 3.23% 1.56%

10 percentile 49.02% 24.85% 12.37% 5.70% 2.73% 1.38%
90 percentile 51.70% 26.22% 13.52% 6.81% 3.34% 2.07%

Spectral Approximation 50.79% 25.40% 12.70% 6.35% 3.17% 1.59%
Sustained Shocks

Single Sustained Shock 2.30% 3.23% 6.01% 11.97% 24.51% 51.98%
Random Walk (Median) 2.61% 3.63% 6.75% 12.80% 25.90% 49.50%

10 percentile 2.10% 3.06% 5.52% 10.95% 23.70% 44.72%
90 percentile 2.87% 4.04% 7.50% 14.62% 26.95% 53.86%

Spectral Approximation 2.45% 3.47% 6.41% 12.58% 25.05% 50.03%

Table 4.1: Energy Composition for Simulated Series

larger at higher scale level, and the estimator’s performance is getting worse accordingly.

4.3 Empirical Results

We focus on the stock markets in US, Japan, Hong Kong, Taiwan, and Mainland China.

The physical trades are active among these economies. These economies also have some

similarity in sectoral structures, in cultures as well as in psychological features. On the

other hand, these markets have different degree of global integration, which is believed to

be important in comovements of international stock markets. Japanese and Hong Kong

markets are open and highly integrated with other advanced markets, while Taiwan stock

market can be regarded as semi-open due to its qualified foreign institutional investors

(QFII) regulation, which sets an upper limits for the total amount of investments andthe

proportion of shares in a specific firm. The stock markets in Mainland China are virtually

closed to foreigners.

We investigate two types of stock market comovements. Firstly, we focus on the stock

markets with the same economy, in an effort to find Long-term comovements driven by

fundamentals. Secondly, we consider to what extent the price changes in the US markets

would affect the Eastern Asian markets in the subsequent trading periods.

106



Series W1 W2 W3 W4 W5 W6

Level of Indices
NASDAQ 2.32% 3.59% 6.66% 9.75% 20.89% 56.79%
S&P500 3.14% 4.80% 8.78% 13.47% 28.82% 40.99%

Nikkei (Japan) 3.05% 4.14% 7.30% 12.64% 24.21% 48.66%
Hang Seng (Hong Kong) 2.05% 2.80% 5.52% 10.01% 22.08% 57.53%

TWII (Taiwan) 1.96% 2.84% 6.72% 10.83% 25.32% 52.33%
SSEC (Shanghai) 2.20% 3.16% 6.80% 16.09% 27.74% 44.01%
SZSC1 (Shenzhen) 1.91% 2.72% 5.78% 13.43% 24.91% 51.25%
Daily Returns
NASDAQ 48.95% 26.82% 14.36% 5.61% 2.54% 1.70%
S&P500 49.42% 26.85% 14.27% 5.51% 2.87% 1.07%

Nikkei (Japan) 51.87% 26.45% 12.38% 5.41% 2.55% 1.34%
Hang Seng (Hong Kong) 50.98% 24.02% 13.83% 5.81% 3.50% 1.86%

TWII (Taiwan) 48.74% 23.20% 15.74% 6.72% 3.74% 1.86%
SSEC (Shanghai) 48.21% 24.93% 12.90% 8.70% 3.71% 1.54%
SZSC1 (Shenzhen) 48.36% 24.49% 12.97% 8.40% 3.77% 2.02%

Table 4.2: Energy Composition of Stock Indices

Observe that the trading time of Eastern Asian markets are close to each other, while

none of them share the same trading time with the US markets. The news form the US

markets arrives to the Eastern Asian markets almost the same time. Hence the above

Eastern Asian economies provide a good set of samples for the comovement study on

international markets.

The sources and manipulations of data are explained in Appendix. Actually, we have

to delete some data to match the trading days. Moreover, we use the US indices in the

preceding days to study the contagion from US markets to other markets.8

4.3.1 Stock Markets in the Same Economy

Before we go internationally, we will study the domestic markets first. In order to have

some idea about the domestic market comovements in general, we study two advanced

stock markets in the US, and two closed emerging markets in Mainland China.

The first finding is that the wavelet correlation coefficients do vary over time scales.

We can easily find two non-overlapping 95% confidence intervals. This feature is shared

8One of the next scheduled tasks is to check the feedbacks from other markets to US markets.
Empirical studies by other economists suggest that the feedback would be quite weak.
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by all the wavelet correlation analysis we have conducted on the above stock markets.

While it is difficult to obtain similar results, the employment of wavelet analysis does

provide special information from the time series.

Secondly, the wavelet correlation for domestic markets seems to increase over the

length of time scales. In the case of US markets from February 5, 1971 to July 31,

2003 (Figure 4.1a), the wavelet correlations are 0.7537 and 0.7913 at the first two scale

levels, while that of the 8th level record as high as 0.9015. Note that the kth scale

level focuses mainly on changes over 2k days in the LA(8) case. The 8th level wavelet

coefficients approximately capture the changes of annual returns, since the number of

trading days lies between 230 and 250 in most stock markets. Hence the comovements

of NASDAQ and S&P500 are stronger in the long run than in the short run. It could

be attributed to the announcement of macroeconomic indicators and/or the learning

about sectoral performance from quarterly-reported corporate earnings. We find similar

results for Shanghai and Shenzhen stock markets (June 1, 1992 to July 31, 2003) in

Mainland China, where the wavelet correlations are above 0.9 for the 6th (quarterly) and

7th (semiannual) scale levels, and below 0.83 otherwise (Figure 4.2a, 4.2b).

In contrast, the long-term correlations are significantly lower than their short-run

counterparts for NASDAQ and S&P500 from 1992 to 2003 (Figure 4.1b). It makes sense

if we consider the sectoral structure of the two markets. In 1990’s, more and more IT and

internet companies are listed in NASDAQ, making its share of companies in traditional

sectors much lower than that of S&P500. The different levels of exposure to sectoral

shocks offset some of the synchronization driven by the macroeconomic environment.

Observe that the corporate earnings are reported quarterly, which is in line with the dive

of wavelet correlation at the 6th level.

In both cases of domestic comovements, short-run correlations are still above 0.6,

which supports common empirical results in the study of excess comovements over the

fundamentals-driven prices. The driving forces may include the infection of expectation

errors and the common signaling noises. Some of the short-term comovements are driven

by the arrival of common signals. Moreover, since many investors (institutional and

individual) invest in both domestic markets, the learning process of signals is the same

for them before they make decision on either market, so is the expectation error generated
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from the learning. Psychological factors could be nested in the learning process. So far

we fail to disentangle the learning errors from the signaling noises. However, the study

on international stock market comovements sheds some light on this issue.

4.3.2 International Comovements

As mentioned above, we investigate the impact from US market performance to Eastern

Asian markets. Now the signaling noises are under reasonable control thanks to the

non-overlapping trading time and similar sectoral structures in Japan and Great China

markets.

With no surprise, the correlation increases in the degree of global integration, with the

Chinese mainland markets uncorrelated with most of the other markets. A market with

higher degree of global integration implies larger proportions of multi-national investors,

and hence more sensitive to US markets due to our within-group infection conjecture.

However, the cross-scale behaviors of wavelet correlations suggest more complexity.

As shown in Figure 4.3 and 4.4, Hong Kong and Japanese markets are more sensitive

to US market changes at the fifth (approximately 1.5 month) and sixth (quarterly) scale

than either the seventh (semiannual) scale or the first few ones. For Taiwan market, the

third (8 days, or 1.6 week) and fourth (16 days) scales provide the highest correlation

(Figure 4.5). The drop of correlation coefficients at seventh (semiannual) scale excludes

the fundamental factors as the only driving forces of comovements at shorter time scales.

However, we also find low correlation at first few scale levels. The reason may lie in

the review and decision mechanism within multi-national institutional investors. The

execution group may focus more on local events, while the decision-making committee

would review the signals more globally on a monthly or quarterly basis.

The interaction among Japanese, Hong Kong and Taiwan markets, illustrated in

Figure 4.8, are of the same sizes as the sensitivity of Taiwan market to US markets.

All the correlations are below 0.4 except for two cases. The seventh-scale (semiannual)

correlation between Japanese and Taiwanmarkets is 0.5195, while Hong Kong and Taiwan

markets comove with a correlation of 0.5432 at the sixth level (quarterly).

Chinese Mainland markets are quite closed, so their interactions with other markets
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are modest. With most wavelet correlations very small (between -0.2 to 0.2), we fail to

reject the hypothesis of zero correlation at 95% level in most cases (Figure 4.6, 4.7,.4.9,

4.10, 4.11). However, there do exist two exceptions. One is the seventh-level (semian-

nual) correlations between Mainland markets and Taiwan market at 0.2636 and 0.3188,

respectively (Figure 4.11). The other is the comovement at the seventh level (semian-

nually, again) between Chinese Mainland markets and Japanese Nikkei Index at 0.2027

and 0.2267 respectively (Figure 4.9). Actually, in the subsequent subsection, we show

that neither case is robust under the conservative approach.

Owing to the closedness of Chinese mainlandmarkets, there is no institutional investor

across the Taiwan Strait. Hence, it could only be driven by fundamental factors, such as

similar structure of their exports to US. This finding sheds some lights on the explanation

for the other anomalies within the Eastern Asian markets.

Compared with institutional investors, individual investors trading in two markets

are much less influential. We can look at the results between Chinese Mainland markets

and Hang Seng Index. Actually, Shenzhen is a city adjacent to Hong Kong, and there

are several individual investors trading on both markets. However, the stock market

there is only more sensitive than Shanghai market at the first level (less than 2 days),

with a correlation at 0.0921 against 0.0335. The difference is marginally significant since

the corresponding 95% confidence intervals overlap each other, but none contains both

estimated values.

4.3.3 Robustness under the Conservative Approach

We also compute the confidence intervals proposed by Whitcher et al (2000), and find

that most of our findings are still robust. By comparing the results, we find 120 corre-

lations coefficients, out of 162, are significant from zero under both approaches. For the

remaining, only 9 cases in the first four scale levels, while the infected correlation coeffi-

cients are all below 0.08. In contrast, their counterparts in the fifth, sixth and seventh

scale level account for 9, 14, and 10 cases respetively, with highest infected correlation

coefficients at 0.1984, 0.3060, and 0.4539. In addition, we find 31 infected case associ-

ated with Chinese Mainland markets. According to the conservative approach, Chinese
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Mainland market has only one significant interaction with the others, which is between

Shenzhen and Hong Kong at the first level. This is in line with the closedness of these

markets.

4.4 Conclusion

In this paper, we investigate wavelet correlations of domestic and international stock mar-

kets, as well as two measures of nonlinear dependence. Not surprisingly, fundamentals

(factors with sustained effects) play an important role in the domestic market comove-

ments given similar sectoral structure for the listing companies. On the other hand, we

do find significant short-run comovements, which are not incorporated in the prevail-

ing asset pricing models. Monthly and quarterly comovements among open markets are

relatively more significant. This implies that the investors with monthly or quarterly

adjustment of their portfolios are more sensitive to the preceding performance in the US

markets. Our results suggest that the degree of stock market comovements is increasing

in the openness of the markets.9

One concern in out study is the nonstationarity in daily returns. Although the LA(8)

filter guarantees the wavelet coefficients are all mean zero, it fails to remove the het-

eroscedasticity in the data. Possible approaches to deal with this issue include investi-

gating some subperiods or some proxies of daily correlation.

Tail dependence is another interesting feature for stock market comovements. It

focuses on the level of contagion when one of the markets experiences a sharp drop

or a big jump. We expect that the tail dependence would also differ across the time

scales. This exercise, along with further investigation of confidence intervals for wavelet

correlations and other measure of dependence, is among our future research.

9As mentioned above, the study on the comovements between Chinese B-share markets with other
Greater Chinese counterparts would shed more light on the relationship between market openness and
the level of comovements. So far the results are too preliminary to report, but it would be completed
soon.
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Appendix
The Source of the Data

Basically the stock indices are collected from Yahoo! Finance. The symbols of the

indices we use in this paper are listed in Table 4.3.

The earlier NASDAQ and S&P500 indices are collected from www.economagic.com,

and the stock indices for Taiwan, Shanghai, and Shenzhen stock exchanges in the early

1990’s are obtained from their websites: www.tse.com.tw, www.sse.com.cn and www.sse.org.cn,

respectively.

Manipulations of the Data

There are 8202 stock index data for NASDAQ and S&P500 from February 5, 1971 to

July 31, 2003, and 2698 for Chinese Mainland markets (Shanghai and Shenzhen) from

June 1, 1992 to July 31, 2003. These data are used to obtain Figure 1a and 2a.

Since we have different holidays in there markets, we have to delete the unmatched

trading dates. After this operation, we have 2330 data for all the stock indices. The

remaining figures are computed based on these adjusted data. Of course it will distort

the result to some extent. Nonetheless we can find that the deletion of the unmatched

dates does not change much of the results by comparing Figure 2a and 2b.

As per Percival and Walden (2000), we also remove the boundary affected wavelet

coefficients. The numbers of the removed ones are 7, 21, 49, 105, 217, 441, 889, and

1785, respectively from the first to eighth scale level. To obtain more than 1000 data

in each wavelet coefficient series, we generate the wavelet coefficients up to the seventh

level, except for Figure 1a, where we have 8202 data points.

In this paper we use the level data to obtain the results, which is unlike the usual

treatment for unit root series. Discussion is provided in the subsequent subsection.

Level or Differenced Data

There is an issue about the choice of level data or the differenced data (daily returns).

We usually difference the series with unit root before further study. However, it is

not necessary for wavelet analysis, since the wavelet filters do the job by its general

differencing operations.
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Location of Stock Exchange Stock Index Yahoo Symbol
New York, US NASDAQ ^IXIC
New York, US S&P500 ^SPC, or ^GSPC
Tokyo, Japan Nikkei 225 Index ^N225
Hong Kong Hang Seng Index ^HSI
Taipei, Taiwan Taiwan Weighted Index ^TWII

Shanghai, P. R. China SSE Composite Index ^SSEC
Shenzhen, P. R. China SZSE Composite Subindex ^SZSC1

Table 4.3: List of Symbols in Yahoo! Finance

With some algebraic manipulation, equation (4.10) and (4.11) can be rewritten as

Wj,t = (
L−1X
l=0

hlB
2j−1l)Vj−1,t = [

L−2X
l=0

ηlB
2j−1l](1−B2j−1)Vj−1,t, (A1)

Vj,t = (
L−1X
l=0

glB
2j−1l)Vj−1,t = [

L−2X
l=0

ηl(−B2j−1)l](1 +B2j−1)Vj−1,t, (A2)

for t = 0, . . . , N − 1, and j = 1, 2, . . . , J , where B is the lag operator, and

ηl =
lX

k=0

hk. (A3)

Note that the weights in (A1) have a sum of zero, the wavelet filter at jth level (gen-

erally) differences the first-order difference of lower level scaling coefficients with a scale

of 2j−1. Analogously, the scaling coefficients are the general moving average of the sum

of ”adjacent”10 lower level scaling coefficients. Observe that the differencing scale is the

same as the moving average scale in the lower level scaling coefficients, so the wavelet

coefficients are stationary for the unit root series. Hence, there is no need to difference

the series before wavelet analysis. The only consideration for the choice between level

and differenced data is just the economic interpretation of the corresponding wavelet

coefficients.

10The ”adjacent” scaling coefficients means that the set of covered data are just near each other, but
there is no common data between them. In fact, this pair of scaling coefficients is adjacent in the DWT
scenario.
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In the LA(8) case, η3 (-0.2491) and η4 (0.3193) are bigger in size than others. Hence,

we approximate the wavelet coefficients:

W1,t ≈ (0.3193B − 0.2419)B3(1−B)Xt,

W2,t ≈ (0.412 7B + 0.474 2B2 + 0.180 4B3 + 0.1190)

×(0.5651B − 0.4918)B9(1−B2).

Observe that W1,t is roughly proportional to the negative of the changes in daily return,

andW2,t is approximately the moving average of changes in two-day return. If we use the

differenced data, the wavelet coefficients are simply the first difference of their counterpart

from level data. Now the interpretation is less straightforward.

Nonetheless, the correlations would be the same for both cases, if the related pair

wavelet coefficients form a serially uncorrelated bivariate sequence with covariance sta-

tionarity and mean 0. The justification comes from the fact that

cov(xt − xt−1, yt − yt−1) = Extyt −Ext−1yt − Extyt−1 +Ext−1yt−1 = 2 cov(xt, yt).

and analogous results for the variances. Hence we should find identical correlation coef-

ficients for the two cases. Note that it is only a sufficient condition.

In our study, the wavelet correlations are essentially unchanged in 91 out of 162 cases

as per our 10% change criterion. For the remaining 70 cases, 40 are associated with

correlation coefficients insignificant from zero, 20 from low correlation (<0.25) cases,

mostly associated with the two Chinese Mainland markets. It seems that Japanese and

Taiwan markets are more vulnerable because all the 10 significant cases are related with

at least one of them. The immediate implication is that the corresponding wavelet

coefficients are serially correlated to some extent.
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Table 4.4: Wavelet Correlation and other Measures of  
Interdependence for the Target Stock Markets 

 
NASDAQ and S&P500 
(02/05/1971-07/31/2003) 

 W1 W2 W3 W4 W5 W6 W7 W8 

Correlation  0.7537 0.7913 0.8167 0.8361 0.8554 0.8525 0.8788 0.9015 
Lower bound 0.7402 0.7796 0.8063 0.8267 0.8469 0.8439 0.8717 0.8956 
Upper bound 0.7666 0.8025 0.8267 0.8451 0.8634 0.8606 0.8856 0.9071 

Kendall’s tau 0.6009 0.6283 0.6589 0.6713 0.6858 0.6843 0.7218 0.7257 
Spearman’s rho 0.7874 0.8168 0.8432 0.8520 0.8614 0.8569 0.8909 0.8874 

 
 

NASDAQ and S&P500  
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.8271 0.8268 0.8337 0.8299 0.7964 0.7229 0.7378 
Lower bound 0.8138 0.8135 0.8207 0.8165 0.7802 0.7007 0.7133 
Upper bound 0.8395 0.8393 0.8458 0.8424 0.8115 0.7438 0.7605 

Kendall’s tau 0.6251 0.6387 0.6469 0.6291 0.6385 0.5629 0.5558 
Spearman’s rho 0.8041 0.8192 0.8288 0.8100 0.8084 0.7355 0.7526 

Note: For the wavelet correlations we provide the lower and upper bounds of the 95% 
confidence interval. 



 118

Table 4.4 (continued) 
 

Chinese Mainland Markets 
(Shanghai SSEC and Shenzhen SZSC1) 

(06/01/1992-07/31/2003)  
 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.6660  0.7119  0.7517 0.8103  0.7984 0.9013 0.9440 
Lower bound 0.6352  0.6845 0.7275 0.7911  0.7782 0.8907 0.9379 
Upper bound 0.6947  0.7372 0.7740 0.8279  0.8170 0.9108 0.9495 

Kendall’s tau 0.5721  0.5627 0.6128 0.6543  0.6898 0.6808 0.8156 
Spearman’s rho 0.7108  0.7123 0.7687 0.8200  0.8574 0.8529 0.9527 

 
 

Chinese Mainland Markets 
(Shanghai SSEC and Shenzhen SZSC1) 

 (06/01/1992-07/31/2003, unmatched dates deleted) 
 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.7033  0.6799 0.7608 0.7989  0.8216 0.9076 0.9345 
Lower bound 0.6821  0.6573 0.7429 0.7833  0.8072 0.8993 0.9276 
Upper bound 0.7233  0.7012 0.7775 0.8134  0.8349 0.9152 0.9407 

Kendall’s tau 0.5830  0.5638 0.6234 0.6693  0.6784 0.7245 0.7977 
Spearman’s rho 0.7258  0.7109 0.7847 0.8284  0.8471 0.8907 0.9429 
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Table 4.4 (continued) 
 

NASDAQ and Japan Nikkei 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 
 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.2734  0.3750 0.4222 0.3843  0.4321 0.4625 0.2604 
Lower bound 0.2353  0.3394 0.3878 0.3483  0.3968 0.4263 0.2116  
Upper bound 0.3106  0.4095 0.4553 0.4191  0.4661 0.4972 0.3079 

Kendall’s tau 0.1712  0.2417 0.2738 0.2522  0.3021 0.2950 0.1835 
Spearman’s rho 0.2509  0.3522 0.3985 0.3691  0.4349 0.4283 0.2723 

 
 

S&P500 and Japan Nikkei 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.3059  0.3809 0.4552 0.4496  0.4705 0.4380 0.2791 
Lower bound 0.2685  0.3455 0.4221 0.4158  0.4366 0.4008 0.2308 
Upper bound 0.3423  0.4153 0.4872 0.4821  0.5030 0.4737 0.3261 

Kendall’s tau 0.1727  0.2446 0.3183 0.3244  0.3264 0.2900 0.1997 
Spearman’s rho 0.2528  0.3562 0.4575 0.4635  0.4753 0.4156 0.2861 
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Table 4.4 (continued) 
 

NASDAQ and Hong Kong HSI 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.3255  0.3961 0.4678 0.4072  0.5839 0.5293 0.4539 
Lower bound 0.2886  0.3611  0.4351 0.3719  0.5551 0.4961 0.4119  
Upper bound 0.3614  0.4299 0.4992 0.4413  0.6113  0.5610 0.4940 

Kendall’s tau 0.2002  0.2665 0.3345 0.3077  0.4190 0.3829 0.3354 
Spearman’s rho 0.2923  0.3866 0.4844 0.4421  0.5928 0.5348 0.4954 

 
 

S&P500 and Hong Kong HSI 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.3947  0.4549 0.5015 0.4824  0.5945 0.6009 0.5997 
Lower bound 0.3598  0.4219 0.4702 0.4499  0.5662 0.5712 0.5656 
Upper bound 0.4285  0.4866 0.5316 0.5137  0.6214 0.6289 0.6318 

Kendall’s tau 0.2488  0.3132 0.3666 0.3522  0.4344 0.4622 0.4588 
Spearman’s rho 0.3589  0.4495 0.5241 0.5015  0.6128 0.6443 0.6305 
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Table 4.4 (continued) 
 

NASDAQ and Taiwan TWII 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 
 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.1273  0.3211  0.3732 0.3902  0.1984 0.3060 0.0233 
Lower bound 0.0871  0.2840 0.3374 0.3544  0.1571 0.2645 -0.0284 
Upper bound 0.1671  0.3572 0.4080 0.4249  0.2390 0.3463 0.0748 

Kendall’s tau 0.0790  0.2095 0.2418 0.2027  0.0958 0.2222 0.0005 
Spearman’s rho 0.1162  0.3047 0.3515 0.2951  0.1403 0.3295 0.0034 

 
 

S&P500 and Taiwan TWII 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.1721  0.2824 0.3348 0.3749  0.2882 0.2821 0.1732 
Lower bound 0.1323  0.2444 0.2979 0.3386  0.2486 0.2401 0.1227 
Upper bound 0.2113  0.3195 0.3708 0.4100  0.3268 0.3231 0.2229 

Kendall’s tau 0.1095  0.1796 0.2134 0.2023  0.1751 0.2113 0.1072 
Spearman’s rho 0.1614  0.2606 0.3121 0.2959  0.2585 0.3151 0.1671 
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Table 4.4 (continued) 
 

NASDAQ and Shanghai SSEC 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 
 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.0477  -0.0059 0.0334 -0.0032  0.0048 0.1277 -0.1436 
Lower bound 0.0071  -0.0467 -0.0076 -0.0447  -0.0378 0.0831 -0.1938 
Upper bound 0.0882  0.0349 0.0744 0.0384  0.0474 0.1718 -0.0926 

Kendall’s tau 0.0423  -0.0176 0.0323 -0.0135  -0.0093 0.0956 -0.0888 
Spearman’s rho 0.0649  -0.0290 0.0513 -0.0199  -0.0166 0.1407 -0.1334 

 
 

S&P500 and Shanghai SSEC 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.0456  -0.0219 -0.0073 -0.0386  0.0056 0.0907 -0.0738 
Lower bound 0.0049  -0.0626 -0.0483 -0.0801  -0.0371 0.0458 -0.1250 
Upper bound 0.0861  0.0189 0.0337 0.0029  0.0482 0.1353 -0.0223 

Kendall’s tau 0.0448  -0.0159 -0.0114 -0.0536  -0.0244 0.0672 -0.0628 
Spearman’s rho 0.0685  -0.0248 -0.0169 -0.0843  -0.0421 0.1021 -0.0962 
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Table 4.4 (continued) 
 

NASDAQ and Shenzhen SZSC1 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.0561  0.0166 0.0528 -0.0127  0.0451 0.1401 -0.1930 
Lower bound 0.0155  -0.0242 0.0117  -0.0543  0.0024 0.0956 -0.2423 
Upper bound 0.0966  0.0573 0.0936 0.0288  0.0876 0.1840 -0.1428 

Kendall’s tau 0.0394  0.0048 0.0351 -0.0206  0.0277 0.1100 -0.1360 
Spearman’s rho 0.0598  0.0070 0.0532 -0.0325  0.0422 0.1625 -0.2054 

 
S&P500 and Shenzhen SZSC1 

(06/01/1992-07/31/2003, unmatched dates deleted) 
 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.0498  -0.0182 -0.0304 -0.0513  0.0543 0.0658 -0.1798 
Lower bound 0.0091  -0.0589 -0.0713 -0.0927  0.0117  0.0208 -0.2293 
Upper bound 0.0903  0.0226 0.0107 -0.0098  0.0967 0.1106 -0.1293 

Kendall’s tau 0.0371  -0.0126 -0.0283 -0.0535  0.0161 0.0605 -0.1394 
Spearman’s rho 0.0565  -0.0196 -0.0431 -0.0824  0.0214 0.0942 -0.2093 
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Table 4.4 (continued) 

Japan Nikkei and Hong Kong HSI 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.3690  0.3843 0.3528 0.3011  0.3651 0.2534 0.3354 
Lower bound 0.3334  0.3489 0.3163 0.2629  0.3275 0.2107 0.2888 
Upper bound 0.4036  0.4185 0.3882 0.3385  0.4014 0.2951 0.3805 

Kendall’s tau 0.2294  0.2650 0.2481 0.2054  0.2467 0.1736 0.2334 
Spearman’s rho 0.3319  0.3836 0.3594 0.3004  0.3630 0.2557 0.3450 

Japan Nikkei and Taiwan TWII 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.1503  0.2531 0.2800 0.3396  0.2987 0.1854 0.5195 
Lower bound 0.1103  0.2145 0.2417 0.3023  0.2593 0.1414 0.4807 
Upper bound 0.1898  0.2909 0.3174 0.3759  0.3370 0.2286 0.5562 

Kendall’s tau 0.1016  0.1623 0.1552 0.1982  0.1917 0.1501 0.3893 
Spearman’s rho 0.1494  0.2378 0.2295 0.2917  0.2851 0.2234 0.5659 

Hong Kong HSI and Taiwan Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.2432  0.2660 0.3496 0.3759  0.3666 0.5432 0.3366 
Lower bound 0.2046  0.2277 0.3130 0.3396  0.3291 0.5106 0.2900 
Upper bound 0.2811  0.3035 0.3851 0.4110  0.4030 0.5743 0.3816 

Kendall’s tau 0.1362  0.1768 0.2068 0.2513  0.2422 0.3436 0.1932 
Spearman’s rho 0.1997  0.2592 0.3034 0.3667  0.3491 0.4872 0.2876 
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Table 4.4 (continued) 
 

Japan Nikkei and Shanghai SSEC 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.0320  0.0138 0.0784 0.0172  0.0881 0.0954 0.2027 
Lower bound -0.0087 -0.0270 0.0375 -0.0244  0.0456 0.0506 0.1527 
Upper bound 0.0726  0.0545 0.1191  0.0587  0.1302 0.1399 0.2517 

Kendall’s tau 0.0046  0.0107 0.0472 0.0006  0.0459 0.1076 0.1565 
Spearman’s rho 0.0067  0.0158 0.0708 0.0011  0.0695 0.1561 0.2316 

 
 

Japan Nikkei and Shenzhen SZSC1 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.0402  0.0373 0.0556 -0.0142  0.1325 0.1855 0.2267 
Lower bound -0.0005 -0.0035 0.0146 -0.0557  0.0904 0.1416 0.1771 
Upper bound 0.0807  0.0780 0.0964 0.0274  0.1742 0.2287 0.2751 

Kendall’s tau 0.0179  0.0310 0.0380 -0.0091  0.0431 0.1329 0.1933 
Spearman’s rho 0.0265  0.0475 0.0576 -0.0127  0.0640 0.2004 0.2889 

 



 126

Table 4.4 (continued) 
 

Hong Kong HSI and Shanghai SSEC 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 
 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.0335  0.0340 0.0322 -0.0832  0.0664 0.1798 -0.0054 
Lower bound -0.0071 -0.0068 -0.0088 -0.1243  0.0238 0.1358 -0.0571 
Upper bound 0.0741  0.0747 0.0732 -0.0417  0.1088 0.2231 0.0462 

Kendall’s tau 0.0419  0.0329 0.0487 -0.0406  0.0261 0.1198 -0.0260 
Spearman’s rho 0.0628  0.0501 0.0724 -0.0606  0.0365 0.1803 -0.0364 

 
 

Hong Kong HSI and Shenzhen SZSC1 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.0921  0.0369 0.0648 -0.0148  0.0903 0.1024 -0.0886 
Lower bound 0.0516  -0.0039 0.0239 -0.0563  0.0478 0.0575 -0.1396 
Upper bound 0.1323  0.0776 0.1056 0.0267  0.1324 0.1468 -0.0371 

Kendall’s tau 0.0468  0.0362 0.0393 -0.0068  0.0535 0.0714 -0.0673 
Spearman’s rho 0.0703  0.0548 0.0591 -0.0096  0.0833 0.1005 -0.0933 
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Table 4.4 (continued) 
 

Taiwan TWII and Shanghai SSEC 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 
 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.0295  -0.0097 -0.0417 0.0262  0.0639 0.0670 0.2636 
Lower bound -0.0111 -0.0505 -0.0826 -0.0154  0.0214 0.0220 0.2149 
Upper bound 0.0701  0.0311  -0.0007 0.0677  0.1063 0.1118 0.3110  

Kendall’s tau 0.0244  0.0010 -0.0230 0.0200  0.0969 0.0470 0.1789 
Spearman’s rho 0.0364  0.0011  -0.0349 0.0309  0.1456 0.0698 0.2862 

 
 

Taiwan TWII and Shenzhen Markets SZSC1 
(06/01/1992-07/31/2003, unmatched dates deleted) 

 W1 W2 W3 W4 W5 W6 W7 

Correlation  0.0458  0.0396 -0.0063 0.0322  0.1425 0.0967 0.3182 
Lower bound 0.0052  -0.0012 -0.0474 -0.0094  0.1005 0.0518 0.2710 
Upper bound 0.0864  0.0802 0.0347 0.0736  0.1840 0.1411 0.3638 

Kendall’s tau 0.0283  0.0302 -0.0135 0.0140  0.0980 0.0685 0.2198 
Spearman’s rho 0.0423  0.0457 -0.0210 0.0209  0.1471 0.1016 0.3397 
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Figure 4.1a: Wavelet Correlation for NASDAQ and S&P500 
(02/05/1971-07/31/2003) 
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Figure 4.1b: Wavelet Correlation for NASDAQ and S&P500  
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.2a: Wavelet Correlation for Chinese Mainland Markets 
(06/01/1992-07/31/2003) 
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Figure 4.2b: Wavelet Correlation for Chinese Mainland Markets 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.3a: Wavelet Correlation for NASDAQ and Nikkei 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.3b: Wavelet Correlation for S&P500 and Nikkei 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.4a: Wavelet Correlation for NASDAQ and Hang Seng 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.4b: Wavelet Correlation for S&P500 and Hang Seng 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.5a: Wavelet Correlation for NASDAQ and Taiwan Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.5b: Wavelet Correlation for S&P500 and Taiwan Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.6a: Wavelet Correlation for NASDAQ and Shanghai Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.6b: Wavelet Correlation for S&P500 and Shanghai Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.7a: Wavelet Correlation for NASDAQ and Shenzhen Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.7b: Wavelet Correlation for S&P500 and Shenzhen Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.8a: Wavelet Correlation for Nikkei and Hang Seng 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.8b: Wavelet Correlation for Nikkei and Taiwan Market 

(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.8c: Wavelet Correlation for Hong Kong and Taiwan Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.9a: Wavelet Correlation for Nikkei and Shanghai Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.9b: Wavelet Correlation for Nikkei and Shenzhen Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.10a: Wavelet Correlation for Hang Seng and Shanghai Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.10b: Wavelet Correlation for Hang Seng and Shenzhen Market 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.11a: Wavelet Correlation for Taiwan and Shanghai Markets 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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Figure 4.11b: Wavelet Correlation for Taiwan and Shenzhen Markets 
(06/01/1992-07/31/2003, unmatched dates deleted) 
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