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CHAPTER I

INTRODUCTION

The methods and tools a researcher employs when searching for explanations of any

particular phenomena naturally will depend on each individual researcher’s area of exper-

tise. As an example consider when a cognitive psychologist and a cognitive neuroscientist

are separately investigating a particular (but identical) aspect of human behavior. The psy-

chologist may use their in-depth knowledge of patterns of human behavior, existing theories

of psychological processes, and psychophysical measures such as reaction times on specific

experimental tasks in order to explain the phenomena of interest. The cognitive neurosci-

entist, on the other hand, would likely use a more “bottom up” strategy, looking for specific

neural mechanisms responsible for the observed behavior. Correlational techniques such

as functional neuroimaging (e.g., FMRI and PET), lesion studies such as those employed

in neuropsychology, and electrophysiological studies in mainly non-human primates, are

commonly employed tools of the cognitive neuroscientist. Both the cognitive psychologist

and the cognitive neuroscientist are seeking to explain the same basic phenomena, namely

the processes that give rise to some aspect of human behavior. Intuitively, the data gath-

ered and the theories formed from these somewhat disparate, but still overlapping, domains

could be used both to inform and to constrain one another. However, this is not always

found in practice. It is common for psychological theories to brush aside the issue of

the precise neural implementation of the phenomena of interest, concentrating instead on

the more abstract psychological processes and their relation to the behavior. Conversely,

neuroscientific theories have tended to concentrate on the biophysical properties of neural

systems, not reaching all of the way up to the full complexities of behavior. When the

neuroscientific theories do attempt to account for behavior, a correlational rather than a

mechanistic explanation is typically offered (e.g., FRMI studies where neural activity dur-

ing a behavioral task is correlated with the observed behavior). A conceptual bridge needs
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to be constructed to facilitate intertheoretic reductions across these disciplines, resulting in

explanations that capture the observations and data from both domains using a common

language.

A telling example can be found in analyzing the neurological developmental disorder

known as autism. Autism was first described by Dr. Leo Kanner in 1943 when he reported

on 11 children with severe social and communication deficits, along with a strong interest

with unusual aspects of the inanimate environment (Kanner, 1943). Kanner described these

children as having “early infantile autism”, where autism was originally used to describe

a particular aspect of behavior in schizophrenia, namely the withdrawal of oneself from

the social aspects of life or a “escape from reality” (Bleuler, 1950). At almost the exact

same time, Hans Asperger independently made very similar discoveries in his patients, but

Asperger’s patients lacked the language difficulties found in Kanner’s patients (Asperger,

1991). The fluent use of language along with characteristic social difficulties has been

used to demarcate this disorder, known as Asperger’s syndrome, from autism. Autism and

Asperger’s are two of five disorders which comprise a set of disorders known as autism

spectrum disorders (ASD)1. Autism spectrum disorders are pervasive developmental dis-

orders with a prevalence estimated at 1 in 166 live births according the Center for Disease

Control (2004). ASD is characterized by severe social deficits, problems in both verbal and

non-verbal communications, motor skill deficiencies, disruptive stereotypic movements,

and occasionally self-injurious behavior. Genetic factors are evident in the disorder, shown

through inheritibility as well the fact that 4 out of 5 people with autism are male. There has

been steady progress in the early identification of the behavioral characteristics of the dis-

order, as well as early intervention techniques, but no consensus has been reached concern-

ing the neural basis of ASD. People with autism are impaired across a range of cognitive

tasks, including planning (Bennetto et al., 1996), theory of mind tasks (Baron-Cohen et al.,

1985), and tasks requiring spontaneous generation of novel behaviors and ideas (Turner,

1Other disorders included in ASD are Rett syndrome, Childhood Disintegrative Disorder (CDD), and
pervasive developmental disorder not otherwise specified (PDD-NOS).
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1999). Interestingly, people with autism show spared and relatively robust cognitive per-

formance across a variety of tasks. These include, but are not limited to, tasks believed

to test inhibition (Ozonoff and Strayer, 1997; Russell et al., 1999) as well as visuospatial

abilities (Shah and Frith, 1983). A particularly perplexing aspect of the cognitive profile

demonstrated by people with autism is that cognitive flexibility has been shown to be im-

paired in experimental tasks such as the Wisconsin Card Sort Test (WCST) (Berg, 1948)

showing a significant increase in perseverative performance, while cognitive control, as

measured by tests such as the classic Stroop paradigm (Stroop, 1935), remains robust and

relatively unaffected (Ozonoff and Jensen, 1999). Stroop is a classic measure of cognitive

control and the ability to inhibit a prepotent response, in which the stimuli are text of dif-

ferent color words, presented in various colored fonts. The participants are asked to either

read the word or to name the color of the font in which the text is presented. WCST is

used as a measure of cognitive flexibility. During this task participants are asked to sort

cards, which contain stimuli varying along three dimensions (e.g., color, shape, quantity)

and across four different features per dimension (e.g., for color dimension: red, blue, green,

& yellow) into four piles based only on sparse feedback —correct or incorrect—. After the

sorting strategy (e.g., sort according to the color of the stimuli) is deduced and a specific

performance criterion is met, the sorting criterion is changed making the previous rule in-

correct. The number of incorrect sorts in which the participant continues to employ the

previously correct sorting strategy are termed “perseverative errors”, and are the key mea-

sure of cognitive flexibility in WCST2. Cognitive control describes our ability to enact a

behavior in the presence of a distracting or more automatic competing response. Cognitive

flexibility can be described as our ability to fluently adjust cognitive control as task contin-

gencies change. This dichotomous performance is difficult to explain using conventional

accounts of the neural basis of cognitive control. Traditionally, deficits in cognitive con-

trol and cognitive flexibility have been attributed to problems in frontal areas of the brain,

2For a detailed account of WCST and Stroop please see the “Cognitive Flexibility and Control in ASD”
section of chapter II - Background
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namely the prefrontal cortex (PFC). Task performance on these tasks in populations with

frontal dysfunction have shown either across-the-board deficits, as seen in frontally dam-

aged patients (Stuss et al., 2000; Stuss et al., 2001), or only impaired cognitive control as

seen in people with ADHD (Ozonoff and Jensen, 1999), but not both retained cognitive

control and impaired cognitive flexibility as found in ASD. Capturing this dichotomy is a

considerable challenge for any theoretical account whose goal is explaining autistic behav-

ior. Ideally, the vast collection of behavioral observations and theories in the current ASD

literature should help constrain and inform the search for the neural underpinnings of the

disorder, and a precise characterization of the neural mechanisms implicated would also

assist in validating psychological theories.

A potentially valuable and novel approach to autism research involves leveraging the

tools of computational cognitive neuroscience to help formalize how neural mechanisms

could be responsible for the pattern of behavior found in people with autism. Compu-

tational models of cognition force the researcher to be explicit in the assumptions made,

as well as the mechanisms employed, during scientific conjecture. The formal nature of

these models allow us to form precise and testable hypothesis concerning the mechanisms

responsible for the phenomena of interest. By incorporating explicit mechanistic charac-

terizations of the underlying neurobiology, while reaching up and attempting to capture

actual behavioral patterns, computational cognitive neuroscience models provide a means

of bridging the conceptual valley between cognitive psychology and cognitive neuroscience

in the domain of ASD research. While computational modeling has not been widely em-

ployed in the study of ASD, there have been some investigators who have tried to leverage

modeling techniques in hopes of formalizing an account of the disorder (Cohen, 1994;

McClelland, 2000; O’Loughlin and Thagard, 2000; Gustafsson, 1997). These models,

however, have suffered from various shortcomings, namely either not incorporating pre-

cise neural mechanisms in their models (e.g., being too abstract) or not providing a tight

4



quantitative fit to behavioral data, instead relying on more qualitative results to justify their

hypothesis.

The Cross-Task (XT) Generalization model (Rougier et al., in press) is a model of cog-

nitive control and flexibility inspired by, and implemented using, contemporary accounts

of the role of dopamine (DA) in PFC function. XT is the first model which has been used

to, quantitatively and qualitatively, capture performance of both normal functioning and

frontally damaged individuals, on the Wisconsin Card Sort Test and Stroop. Importantly,

XT learns proper frontal representations through extended experience and interactions with

the environment. This is unique in comparison to previous models of cognitive control

where these representations existed a priori, built into the structure of the model by the de-

signer from the beginning. Using the XT framework, we investigate whether reducing the

effect of DA on frontal functioning is sufficient to capture the perplexing behavioral profile

exhibited by people with autism, capturing the impaired cognitive flexibility demonstrated

by an increase in the number of perseverative errors on the WCST, while leaving perfor-

mance on the Stroop task unaffected, signaling a lack of effect on cognitive control. Our

modeling approach differs from previous models in the explicit mechanisms being em-

ployed and investigated, the precise fit to behavioral data, and the potential to use XT to

analyze and make predictions about the possible developmental trajectory of cognitive con-

trol mechanisms in ASD. This hypothesis suggests that “executive dysfunction” symptoms

in autism may be mediated by PFC / DA interactions, and provides an example of how

computational models can serve as a lingua franca between seemingly disparate research

domains.
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CHAPTER II

BACKGROUND

Psychological Frameworks

Three main cognitive theories have been proposed for understanding behavioral symp-

toms in autism: theory of mind, weak central coherence, and executive dysfunction. These

theories are usually not considered to be competing ideas, but, instead, each theory can be

viewed as trying to capture a specific aspect of behavior in autism (Frith and Hill, 2003).

Theory of Mind

The “theory of mind” (TOM) (Baron-Cohen et al., 1985) hypothesis suggests that the

understanding of mental states and the ability to attribute these mental states to oneself, as

well as to others, is impaired in people with autism. “Mental states” are used here to refer

to things such as our “beliefs” “desires” and “intentions” The ability to interpret other’s

mental states, as well as predict their behavior from these interpretations, is believed to

be important for engaging in effective social communication. The absence of this ability

in people with ASD is hypothesized to be at the core of their social difficulties. The pro-

totypical task used to evaluate TOM is the false-belief or “Sally-Anne” task. During the

task, two dolls are presented to the child with one doll (Sally) placing a marble inside of

a basket, Sally then proceeds to leave the area. While Sally is gone, Anne moves the mar-

ble from the basket to a nearby box. When Sally returns the child is asked, “Where will

Sally look for her marble?”. Normally developing children as young as 4 years old easily

succeed at this task, realizing that Sally did not see Anne move the marble and will look

in the place where it was left. However, in a study by Baren-Cohen et al. (1985), 80% of

the children with autism, matched to be of a mental age of at least 4 years old, failed at this

task. These children reported that Sally would look for the marble in the box —where the

marble actually was— instead of where it was left by Sally. Functional MRI studies have
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putatively identified a system of brain areas which may be responsible for TOM (Vogeley

et al., 2001), but no mechanistic account is provided as to how the brain areas identified

in this study give rise to our ability to attribute “mental states” to others. TOM deficits

provide a possible explanation for a large range of the social deficits found in people with

autism, but have little to say about other aspects of the cognitive profile in ASD, such as

attentional abnormalities where children with autism can show an intense focus on parts

of play objects often at the cost of a more functional or conventional ways (Joseph, 1999),

and spared or increased abilities in some domains. The following theory provides a better

account for these observed behavioral patterns.

Weak Central Coherence

Strong coherence can be thought of as a tendency to integrate pieces of information

into a coherent whole. Weak central coherence (WCC) (Happe, 1999; Frith, 1989) can be

described as the opposite of this tendency, where the parts are not abstracted and gathered

into a coherent “gestalt”, but, instead, are left as atomic elements for processing. In Frith’s

account of WCC, it is posited that people with autism exhibit a weak central coherence,

processing the world in a “piecemeal” manner rather than integrating the parts into more

coherent wholes. It is important to note that this can be seen as a difference in processing

styles, rather than a cognitive deficit, per se. This distinction is important because it affords

WCC the ability to account for the spared, or even enhanced, abilities found in ASD, while

still providing an explanation for the differences between normally functioning individuals

and those with autism. This is a major strength of WCC. An example of this unique pro-

cessing style can be found using the embedded figures test (Witkin et al., 1971). The task

involves finding a simple image (e.g., a triangle), embedded within a much more complex

scene (e.g., a farm scene). Performance of people with autism on this task has been shown

to be superior to that of controls (Shah and Frith, 1983). The gestalt or holistic view of

the scene could actually hinder or interfere with the search for the individual item, since

this would entail abstracting information away from the specific parts by definition. Thus,
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this an example were a “piecemeal” processing style is advantageous. On the other hand,

the ability to disambiguate pronunciation of homographs (words with a single spelling but

multiple possible meanings and pronunciations such as ’bow’ and ’tear’) while reading

a sentence depends on the ability to incorporate the context of the sentence to succeed.

Studies have found that individuals with autism were less likely to pronounce the homo-

graph correctly depending on the context of the sentence when compared to performance

of control subjects (Happe, 1997). WCC’s approach accounts for behavior in autism by

suggesting a different cognitive style rather than a deficit. This fits nicely with differences

found in attentional and visuospatial tasks, and, importantly, makes predictions as to why

there are spared as well as enhanced cognitive abilities observed in people with autism.

Executive Dysfunction

The Executive Dysfunction hypothesis views autism as emerging from a deficit in ex-

ecutive control over behavior (Hughes et al., 1994; Ozonoff et al., 1991). This hypothesis

is used to account for the rigid, inflexible, and perserverative “stuck-in-set” behavior found

in autism (Hill, 2004). Executive functioning is used as an umbrella term for a variety

of deliberate and modulatory processes, such as planning, cognitive control, and cognitive

flexibility. These processes are traditionally associated with frontal neural circuits evi-

denced by deficits in tasks believing to measure executive processing in frontally damaged

patients (Stuss et al., 2000; Stuss et al., 2001). This theory is bolstered by impaired perfor-

mance on many executive function tasks such as those believed to measure planning (e.g.,

Tower of Hanoi (Hughes et al., 1994; Ozonoff and Jensen, 1999)) and cognitive flexibility

(e.g., Wisconsin Card Sort Test (Bennetto et al., 1996)). However, there are unaffected

areas of executive functioning found in people with autism as well. For instance, cogni-

tive control seems to be relatively unaffected, as measured by the classic Stroop task. This

raises into question the general Executive Dysfunction hypothesis as it has traditionally

been cast. It is possible, however, that the executive problems found in ASD are not neces-

sarily due to damage to the PFC, proper, but arise from problems with other brain structures
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that have connections with, and affect the functioning of, the frontal lobes (Robbins, 1997).

It is just these kinds of questions —whether executive problems can be explained in terms

of the dysfunction of specific neural circuits interacting with PFC— which computational

models are well suited to help us explore.

Neuroscientific Frameworks

The success of these psychological frameworks in explaining many behavioral charac-

teristics of ASD could be solidified if a formal account of the underlying biological mech-

anisms which give rise to observed behavior could be provided. Neuroscientific frame-

works thus far have had little success in providing a unified view of the neural mechanisms

responsible for behavioral symptoms in autism. Indeed, the vast amount of variance in

brain regions implicated as possible underlying neural substrates in ASD makes the task

of identifying a unified neuroscientific account somewhat daunting. Confounding the is-

sue further, data concerning observations in neural structures must rely on causal primacy.

Causal primacy here is used to refer to whether a specific difference in the neural system

is a primary cause of other abnormalities, or if it is an effect of some other neural dys-

function. For instance, many different brain areas can be affected during development by

the dysfunction of a neurotransmitter with diffuse and widespread effects on the brain such

as DA or serotonin. In this case, the multiple brain areas affected and showing impaired

functioning are secondary to the primary neurotransmitter dysfunction. It is unfortunately a

very difficult “chicken and egg” conundrum, requiring difficult and expensive longitudinal

studies to discern how different parts of the autistic brain develop over time. Caveats aside,

there are many neurobiological differences thought to exist in ASD that are worth further

exploration. In the end, all consistent underlying differences in the neurobiology need to

be accounted for as either a primary neural underpinning or as an effect of the actual neural

underpinning(s) of ASD.

The most consistent neuroimaging finding in people with ASD are abnormalities in
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the structure of the cerebellum (Akshoomoff, 2000). These findings consist of hypopla-

sia (reduced growth) and hyperplasia (increased growth) (Rodier et al., 1996) within the

cerebellar vermis. Dysfunction of the cerebellum accounts for some of the motor difficul-

ties found in people with autism, since the cerebellum is known to be important for motor

control. Researchers are also actively pursuing the possibility of cerebellar influence on

attention and attention shifting (Courchesne, 1987), which might help explain attentional

differences found in autism.

Investigations into measures of brain volume have discovered increased cerebral (white

matter) volumes in people with ASD (Filipek, 1995), which are argued to be due to a

failure in cortical pruning which occurs early in development (Eigsti and Shapiro, 1995).

It is not immediately clear what effect the overgrowth of neural connections would have on

behavior, but some theories suggest that possible effects might include the rigid and context

specific patterns of behavior seen in ASD (Cohen, 1994).

The amygdala has been of interest in autism research due to its suggested role in social

and emotional behavior, both believed to be problematic in autism. Controlled damage to

the amygdala has provided an interesting animal model of autism (Bachevalier, 1994). In

this animal model, selective ablation of the amygdala was performed in rhesus monkey

subjects. The lesioned monkeys displayed repetitive motor behaviors, as well as “autistic-

like” social behaviors such as active social avoidance and lack of eye contact.

Inspired partially by links to executive function deficits in ASD and partly by neu-

roanatomical findings, the PFC is an area of key interest for many ASD researchers. Anatom-

ically, researchers have identified the possibility of “narrow mini-columns” in the PFC (Casanova

et al., 2003) and have noted that the parietal, temporal, and occipital lobes show overall

brain volume enlargements, while the frontal lobes show no such increase. The lack of an

increase means that the frontal lobes may be considered smaller in volume when compared

with the relative scaling of the rest of the brain (Piven et al., 1996). Considering the many
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executive functioning problems observed in ASD, the PFC stands out as, at a minimum, a

likely indirect player in some of the unusual behavior displayed in autism.

Using techniques such as urinalysis and PET studies, differential amounts of serotonin

and DA have been identified in people with autism (Martineau et al., 1992; Posey and

McDougle, 2000; Chugani, 2004) compared to controls. Neurotransmitters are of particular

interest in the search for the brain basis of autistic behavior since, due to their diffuse global

nature, there is potential for both DA and serotonin to affect multiple brain regions. This

fact is particularly compelling given the heterogeneity found in both the functional and

anatomical properties discovered thus far in the neural systems of people with ASD.

Psychological and neuroscientific theories have the potential to constrain and inform

each other, unifying research concerning the neural basis of autism. However, it is unclear

at this point, given the multiplicity of brain areas implicated in ASD, how best to integrate

the cognitive neuroscience and cognitive psychology of autism.

Computational Approaches

The formal and explicit nature of the tools of computational cognitive modeling pro-

vide a novel method for approaching this problem. In order for computational models to

be useful in this endeavor, they must be constrained by both bottom-up (neurobiological

mechanisms) and by top-down (observed behavior) considerations. It is not at all clear that

the current computational models attempting to provide explanations for the behavior of

people with autism have accomplished these goals. A brief review of existing computa-

tional modeling efforts focusing on the anomalous behaviors found in autism is presented

in this section. Every model reviewed here is concerned with the same basic phenomena

either implicitly or explicitly, namely, the observation that people with autism show stim-

ulus overselectivity and poor generalization. Stimulus overselectivity is the tendency of

people with autism to selectively respond to a limited number of cues in a multiple cue

context (Cushing et al., 1983). Poor generalization in autism is displayed as a difficulty
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when trying to use similar skills in different situations (e.g., with different people, places,

etc).

The problem with overfitting

Cohen was the first person to publish a neural network model attempting to explain

patterns of behavior in people with ASD (Cohen, 1994). Cohen’s model rests on the notion

that neural networks, when allowed to have too many units or nodes in the hidden layer,

are likely to fall prey to “overfitting” the training data. When training a neural network,

one wishes to capture the true functional form (or at least the best possible approximation)

of the task, as implicitly characterized by the training data. By capturing the form of the

function, the model is able to generalize to inputs that it has not been exposed to in the

past. When “overfitting” occurs, instead of capturing the true underlying functional form,

the model memorizes the specific training data items. This results in precisely correct

performance when the network experiences the training data again, but poor performance

on novel inputs. In other words, overfitting results in poor generalization.

Citing studies noting that many areas of the brain, with a particular focus on the amyg-

dala and hippocampus, have found an overall increase in the number of neurons in people

with autism as compared to controls, Cohen argues that an analog between overfitting in

neural networks and poor generalization and stimulus specificity, as seen in people with

ASD, can be made. Cohen conjectures that since the amygdala is implicated in emotional

and social processing, too many neurons could result in a kind of “overfitting” of socially

relevant stimuli, resulting in unrelated and unimportant features of a social situation being

taken into account when learning appropriate social behavior. The unrelated information

will usually only hinder the ability to act appropriately in the extremely subtle and complex

acts of social interactions, explaining the overall poor social abilities and lack of ability to

generalize to new situations found in people with ASD. A model is provided which demon-

strates that, as the number of hidden layer units increase, the ability of the network to gen-

eralize to new inputs deteriorates. Furthermore, it is argued that the savant-like abilities
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found in some people with autism can be explained as an overall increase in the number

neurons which are employed in the task. For instance, Cohen suggests that if a person with

autism has an extraordinary ability in a specific modality then, according to his theory, we

should find an increased amount of neurons in the network facilitating the learning of that

modality (e.g., visual) and not in areas used for other modalities (e.g., haptic or auditory).

Cohen’s hypothesis of too many neurons resulting in a type of behavioral “overfitting”

has some intuitive appeal, especially when analyzing how neural networks perform as a

function of the number of processing units. However, the model does not possess any solid

fits to any specific quantitative behavioral data. Instead it relies on a more abstract verbally

justified account of how poor generalization and stimulus overselectivity arises in people

with ASD. Also, links to underlying neurobiological systems are of an almost anecdotal

nature, casually noting that some postmortem studies have found an increased number of

neurons in some areas of the brain in people with autism.

Inadequate cortical feature maps

Gustafsson’s modeling of inadequate cortical feature maps in autism follows in the

footsteps of Cohen’s attempt to explain good discrimination skills (stimulus overselectiv-

ity) and poor generalization skills found in people with ASD (Gustafsson, 1997). In this

endeavor, Gustafsson argues that overly narrow neural columns in people with autism are

at the core of this pattern of behavior. Cortex is believed to be organized in a columnar

manner within which neurons posses similar receptive field properties. In simpler terms,

neurons within a column in cortex tend to respond to the same aspects of a stimulus, re-

sulting in a type of “cortical feature map”. If these neural columns are overly narrow, then

as Gustafsson writes, “feature detection will only be possible if the set of features very

closely corresponds to that which the neural column has become identified with, i.e., there

must not be much variability in features”, and he follows, “an individual with such an inad-

equate feature map must insist on precision or “sameness”. This desire for “sameness” is a

common behavioral feature found in people with ASD. The thrust of the inadequate feature
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map hypothesis is that narrower neural columns in cortex will have narrower receptive field

properties (responsive to a smaller than normal range of stimuli) and therefore exhibit good

discrimination but poor generalization.

The artificial neural network discussed in Gustafsson’s 1997 article is based on net-

works developed by Kohonen (Kohonen, 1984), which include excitatory and inhibitory

lateral feedback connections in a neighborhood like structure. This means that units within

a certain distance of each other will contain mutually excitatory connections, while outside

of this of this distance the connections to other units will be inhibitory (von der Malsburg,

1973). This relationship results in a topological structure developing in the models, with

columnar like groupings of units which respond in a similar manner to stimulus features.

An important property of these networks is that the Kohonen map learns its fundamental

properties through extensive exposure to stimuli. No set structure for stimulus representa-

tion is assumed to exist a priori. This property allows for the possibility that inadequate

feature maps will arise somewhat naturally during development, simply by manipulating a

single parameter in the model. Gustafsson proceeds to provide a mathematical proof, based

on previous findings (Kohonen, 1984), that as you increase the overall lateral inhibition, the

columns in the Kohonen maps become narrower and respond to a smaller set of stimulus

features. In other words, they develop smaller receptive fields.

Unlike the previous models, Gustafsson’s model makes strong contact with underlying

biological mechanisms. However, considering the high comorbidity of seizures in the dis-

order it is unclear whether excessive lateral inhibition is justified (Casanova et al., 2003).

It is difficult to analyze the performance of the model, as no actual model simulation re-

sults were presented. Therefore, the same critique of Cohen’s work holds for Gustafsson’s

model: there is no evidence that the model will be able to provide a tight quantifiable fit to

actual behavioral data.
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Weak Central Coherence as constraint satisfaction

O’Loughlin and Thagard provide a computational modeling account of Frith’s theory

of weak central coherence (Frith, 1989) by simulating coherence using a constraint satis-

faction network (O’Loughlin and Thagard, 2000). A constraint satisfaction problem can be

roughly described as follows: Given a set of possible states of the world, of which some

states may be less likely to coincide simultaneously with others (e.g., it is not likely to

be outside while it is raining, and not get wet), what set of states maximally satisfy all

possible constraints? A constraint satisfaction network embodies a constraint satisfaction

problem where the different aspects of possible states of the world are specified as nodes in

the networks, and the constraints between these states are embodied in the weights or the

values of the connections between these nodes. For an exclusivity constraint between two

different states (representing the concept that the two states are not likely to occur together,

e.g., eating and being asleep at the same time), a negative weight value is used, and for a

co-occurence constraint (representing when the two states are likely to occur together, e.g.,

being thirsty and drinking water) a positive weight value is used. “Normal” coherence is

taken to be the network functioning in the standard manner, maximally choosing the states

which satisfy the most constraints. WCC is simulated as pushing the network to settle in a

sub-optimal set of states, which will not maximally satisfy the constraints.

To make this more clear, it is helpful to consider the simulation provided by O’Loughlin

and Thagard using the Sally-Anne task (Baron-Cohen et al., 1985). To simulate this task,

the nodes of the network are coded to represent possible states in the task such as “Sally puts

marble in basket” and “Anne transfers marble to box while Sally is away”, with positive

connections (positive constraint) between the states, and negative connections (negative

constraints) between nodes such as “Sally look in basket” and ”Sally look in box”. The

different states and constraints between them represent a kind of “knowledge network” of

the Sally-Anne task. If the constraints are set up properly, the network will settle on the

correct hypothesis, that “Sally will look in the basket”.
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In order to simulate WCC as seen in children with autism, the negative constraints

(connections) were increased, making the inhibitory connections stronger than the excita-

tory connections. This manipulation results in the network settling prematurely, and most

likely in a state that did not satisfy all of the constraints in the network. In the simulation of

the Sally-Anne task, the solution resulting in the incorrect choice of “Sally look in box” is

essentially shorter than the correct, but unfortunately more causally complex, choice “Sally

look in basket”. This allows the increased inhibition to result in the network guessing in-

correctly, “Sally will look in the box”, since when the network has finished the settling

process, it will satisfy the most constraints in the constraint satisfaction network.

The modeling approach used is extremely abstract in nature, with all the knowledge of

how the problem is to be solved pre-specified within the structure of the network (i.e., the

nodes and the constraints between them). It is unclear whether the mechanism employed

to simulate performance of people with autism on the Sally-Anne task, namely increased

inhibition in the network, can be biologically supported, considering, once again, the high

comorbidity of seizures in the disorder (Casanova et al., 2003) as well as lack of any other

justification from the authors. While the model is used to capture qualitative behavioral

performance on the Sally-Anne task (as well as an example of a homograph task using the

same approach), it is unclear how the model would fair at capturing quantitative behavioral

data on these tasks.

Hyperspecificity

McClelland takes a slightly different approach to the same issues of poor generalization

and stimulus overselectivity (or hyperspecificity) addressed by the models previously men-

tioned (McClelland, 2000). Instead of providing a model, or even a description of a model,

McClelland provides a general description of properties of neural networks which could

give rise to hyperspecificity at the cost of the ability to generalize. Conjunctive codes in

neural networks are representations that consist of components that, instead of responding

to individual features of input (e.g., either “red” or “square”), only respond to conjunctions
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of the input features (e.g., “red square”). As the number of conjunctions required to acti-

vate a processing unit increases, the more specific the representation becomes (e.g., only

responding to small green circles with radial lines, etc). Conjunctive representations are

useful when the stimulus is actually a conjunction of features (e.g., a chair is a conjunc-

tion of many smaller components such as the seat, legs, back, etc), however, this coding

scheme can hinder generalization, since each unit only responds to a specific conjunction

of features. McClelland indroduces the possibility that children with autism posses overly

conjunctive representations of the environment, then this could account for hyperspecificity

found in people with ASD. McClelland provides an anecdotal story of a child with autism

who refuses to use the restroom at a friends house because it is unfamiliar. In other words,

it is not the specific bathroom with which he is familiar. If we think of the bathroom which

the child with autism uses at his home, it may posses items such as green walls, a toilet, tile

on the floor, etc, none of which are present in the friends home, with the likely exception of

the toilet. Perhaps, McClelland argues, the child represents the toilet with an overly con-

junctive representation that includes other contextual items such as the color of the walls,

the tile on the floor, etc.

The largest problem with McClelland’s modeling theory of hyperspecificity in autism

is that no computational model —not even a precise description of a model—, is provided.

Leaving the theory at a purely verbal description, with no possibility of accounting for

quantitative data. Also, there is no mention of what neurobiological differences in peo-

ple with autism might give rise the overly conjunctive code argued to provide a possible

account of hyperspecificity in ASD.

Most of the existing models of autism reviewed above are fairly abstract in nature,

making little contact with specific neurobiological considerations (Cohen, 1994; McClel-

land, 2000; O’Loughlin and Thagard, 2000). Even those models of autism which have

incorporated biology in their framework have thus far only matched qualitative patterns of

behavior in people with ASD, not attempting to account for any quantitative behavioral
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data (Gustafsson, 1997). Models more tightly coupled with observed functional properties

of neurobiological systems and constrained by actual behavioral data will be able to more

precisely inform theories of ASD.

Cognitive Flexibility and Control in ASD

Computational models might be able to provide a means of building a conceptual bridge

unifying the psychological and neuroscientific findings in ASD. However, it would be over-

ambitious (and a bit naive) to attempt to include all neurobiological differences or to at-

tempt to account for every behavioral finding. Instead the approach taken here is to provide

a possible explanation for a specific and informative, but circumscribed and well defined,

area of behavior observed in people with autism. The goal is to eventually, incrementally,

expand the theory instantiated in the computational model to account for an increasing

range of behavioral phenomena. In this initial study, we have focused on autistic perfor-

mance on tests intended to assess cognitive flexibility and cognitive control.

Cognitive control is our ability to enact a specific behavior, even in the presence of

a more automatic or competing response. For example, cognitive control underlies our

ability to resist scratching a mosquito bite, even though this is sometimes an effortful to

avoid doing so. In people with autism, cognitive control is believed to be robust. It is

relatively unaffected when measured using tasks such as the Stroop task. PFC is believed

to be important in our ability to enact control over our behavior. Functional brain imaging

studies show activation in dorsolateral regions of PFC when an automatic response needs

to be inhibited (MacDonald et al., 2000). Also, patient populations with frontal damage are

impaired on tasks measuring cognitive control such as Stroop (Stuss et al., 2001).

The Stroop (Stroop, 1935) task is a classic measure of cognitive control and the ability

to inhibit a prepotent response. In the classic version of Stroop, the stimuli are textual

displays of different color words, presented in various colored fonts. (See Figure 2.) The

participants are asked to either “read the word” or to “name the color” of the font in which

the text is presented. People are faster overall at reading the word as opposed to naming
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the color of the word. This suggests that word reading is a more “automatic” response to

word stimuli. Furthermore, when comparing congruent (e.g., the word “red” in red font)

versus the incongruent (the word “red” written in green font) conditions, people only show

an interference effect when naming the color and not when reading the word. In other

words, there is an increase in reaction time for color naming, but not for word reading,

when comparing incongruent to congruent cases.

Cognitive flexibility can be viewed as the ability to fluently adapt our control of be-

havior as the task contingencies change. This ability is impaired in people with autism as

measured by tasks such as the Wisconsin Card Sort Test, (WCST), showing a significant

increase in the number of perseverative errors committed compared to normally develop-

ing individuals and people with other developmental disorders (Ozonoff and Jensen, 1999).

PFC is also believed to be important to our ability to flexibly adjust our control over be-

havior. For example, the role of PFC in flexible responding is demonstrated by an increase

in the number of perseverative errors committed during the WCST by patients with frontal

damage (Stuss et al., 2000).

The Wisconsin Card Sort Test (WCST) (Berg, 1948) is a psychological test used to

measure ones ability to implicitly learn a rule, maintain and apply this rule, and to flexibly

adapt your behavior when the task contingencies change. Subjects are told to sort cards

portraying stimuli varying along three dimensions (e.g., color, shape, and quantity) and

across four features per dimension (e.g., for the color dimension: red, green, blue, and yel-

low) into piles, one at a time, according to a sorting rule. (See Figure 1.) For example, a

sorting rule could be “sort according to the color of the card”, requiring the participant to

create four piles of cards, with a unique color represented by each pile. No explicit sort-

ing rule is ever communicated to the subject however. Instead, the subject tries different

strategies and uses performance feedback — “Correct” or “Incorrect” — provided on ev-

ery trial, to find the proper sorting rule is acquired. This same sorting rule must then be

maintained and applied for 10 consecutive correct sorts, after which and without informing
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Figure 1: WCST example stimuli varying feature values across three dimensions: Color,
Quantity, and Shape

Figure 2: Stroop example stimuli

the subject, the rule changes making the previous strategy incorrect and forcing the subject

to choose a new rule based on sorting feedback. This requires the subject to fluently adapt

their behavior as the rules change, a task which normally functioning individuals are quick

to succeed. People with impaired cognitive flexibility, including people with autism, will

show an increase in the overall number of perseverative errors. Perseverative errors are er-

rors due to continuing to sort based on the previously correct stimulus dimension. The test

will continue until either the subject achieves 6 correct categories (10 consecutive correct

sorts each), or all 127 cards are exhausted in the deck.

The cognitive profile observed in people with ASD —impaired cognitive flexibility

coupled with intact cognitive control— is difficult to relate to an underlying substrate,

considering the importance of PFC function in both control and flexibility. How then can

we resolve this apparent conflict? One possible answer is that people with autism do not
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have a frontal deficit. Instead, they may be suffering from a problem with some other neural

system that interacts with or affects PFC.

As researchers began to build computational models of PFC’s role in cognitive control

and cognitive flexibility, two separate functions of PFC were found to be necessary in order

to account for observed behavior. The first, believed to be important of cognitive control, is

the ability of PFC to actively and robustly maintain abstract goal-like dimensional represen-

tations such as “pay attention to the stimulus color” across the firing patterns of its cells.

These actively maintained representations are not only biologically justified (Goldman-

Rakic, 1987; Miller and Cohen, 2001), but also serve a necessary functional role in the up-

modulation of appropriate posterior pathways, enabling a type of “top-down” control and

biasing of our behavior. Persistent activity across cells in PFC enable the firing of cells in

the appropriate posterior pathways, which correspond the controlled behavior. As an effect

of upmodulating the pathway corresponding to controlled behavior, PFC also indirectly

inhibits competing more automatic behaviors. If the need to flexibly adapt our behavior

should arise (cognitive flexibility), we need a mechanism capable of intelligently updating

the actively maintained PFC representations with a pattern of activity that is better suited for

the task at hand. This updating mechanism can be conceptualized functionally as a “gating”

mechanism for PFC representations. The gate is able to shut, allowing the current control

representation (e.g., “pay attention to the stimulus color”) to be actively maintained in PFC

and remain unaffected by competing representations (e.g., “pay attention to the stimulus

shape”). If the need arises to change our behavior, the gate can be opened by this gating

mechanism, allowing a different and more-task appropriate representation to be loaded into

PFC. The concept of a gate is a useful metaphor when conceptualizing the necessary mech-

anisms the PFC must embody for cognitive control and flexible adaptation of this control,

but we must ask the question of how this gate intelligently opens and closes. First attempts

at explaining the intelligent opening and closing of the gate on PFC representations left

much to be desired, positing a homunculi-like “central executive” component which could
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inform PFC when to open and shut the “gate”. Unfortunately, no explanation was provided

as to how the “central executive” component knew how to intelligently control the gate.

To address this problem, researchers have recently looked toward the midbrain DA system

as a possible candidate of a neural implementation of the intelligent gating mechanism for

representations in PFC.

Dopamine & Temporal Difference Learning

Hidden within the firing rates of midbrain DA neurons lie clues to how the intelligent

updating of PFC might be implemented in the neural hardware of the brain. Analyzing the

response profile of DA neurons in the basal ganglia of monkeys Schultz et al. (1997) have

demonstrated that DA cells appear to encode a prediction error in the amount of future re-

ward given to the monkey. In other words, these cells seem to encode a change in expected

future reward. Figure 3 shows results from a population of midbrain DA cells during one

of Schultz’s experiments. The top panel represents the situation in which the monkey is not

expecting reward, but then receives reward (e.g., a sip of juice). Notice that the DA cells

fire upon receiving the reward (signified by ‘R’ on the graph), encoding a positive change

in what the monkey was expecting. In the bottom left hand panel, the monkey has now

been conditioned to associate a flash of light with the delivery of the juice, after a short

delay. In other words the monkey now knows that the flash of light predicts future reward.

When the flash of light is seen (represented as ‘CS’, for conditioned stimulus, in the graph),

the DA cells fire. This can be explained as the monkey not expecting future reward when

the light comes on, signaling that juice is expected to be coming soon: a positive change

in expected future reward. However, when the reward is delivered (‘R’) the cells to do not

fire, since the monkey was already expecting reward. When the juice is delivered there is

no change in expected future reward in this case, and, therefore, no increase in the rate of

DA firing. In the panel located at the bottom right, the DA cells again fire for the flash of

light (‘CS’, conditioned stimulus) , but this time the experimenters withhold the juice at the
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time when the monkey is expecting the juice to be delivered. The monkey is expecting re-

ward, but no reward is delivered. Thus, at the time that juice is expected, there is a negative

going change in expected future reward. Notice that the firing rates of the DA cells around

the expected delivery time of reward (‘R’) actually dip below their baseline firing rate and,

indeed, appear to encode this negative change in expected future reward.

This is very interesting because change in expected future reward is also the key variable

in a very powerful reinforcement learning algorithm known as Temporal Difference (TD)

learning. In TD learning, the change in expected future reward, the same value the DA cells

appear to be encoding, is know as the TD Error. Across two consecutive time steps the TD

Error is given by:
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the change in expected future reward, or TD Error, and
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is a constant discounting factor,

where
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. Adjusting
�

changes the amount by which temporally distant rewards

are discounted as compared to rewards that can be attained in the temporally near future.

Linking machine learning and neurobiology, this connection has led researchers to for-

malize the role of midbrain DA neurons in the brain’s learning mechanisms (Barto, 1994;

Montague et al., 1996), equating the firing rate of the DA cells with the amount of change

in expected future reward, or TD Error. Neurally plausible implementations of TD learning

have been implemented and have been used to model the learning of motor sequences in

the striatum (Montague et al., 1996), driven by the reward-prediction DA signal.

Computational Models of PFC

Our current work builds on an existing body of computational modeling work having

strong ties to biology which includes a formal account of DA’s affect on PFC functioning.
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Figure 3: Firing rates of midbrain dopamine neurons of the basal ganglia during classical
conditioning (Adapted from (Shultz et al., 1997))

The effect DA is formalized by equating the firing rate of midbrain DA neurons to the key

variable, the TD Error, of the powerful TD learning algorithm. Using this analogy between

biology and machine learning, researchers have been able to provide models of how motor

systems can learn sequences of overt actions leading to reward. One of the primary insights

of these models of PFC functioning is that the DA based TD learning mechanism might be

used to learn, from experience, when to open and when to close the gate on PFC. After

all, if TD can be used to learn sequences of overt actions, it might be possible to use this

same error signal to learn covert actions, such as when to open and when to shut the gate

on PFC representations. By building computational models of PFC function, researchers

have shown that this account is plausible (Braver and Cohen, 2000; O’Reilly et al., 2002).

A layer of processing units representing the PFC is included in these models, and this layer

is used to actively maintain abstract task dimensions across the firing patterns of the units.

For instance, the PFC layer can encode, and actively maintain, a representation such as
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“pay attention to the stimulus color”. This maintained pattern of activity can then provide

a “top-down” bias or upmodulation of pathways in posterior brain areas associated with

the processing of stimulus color (Cohen et al., 1990). (See figure 4.) The extra biasing

provided by the PFC bootstrap weaker, less automatic, behaviors (naming the color as op-

posed to reading the word) when appropriate. This activation based modulation is thought

to be key to our ability to provide cognitive control over behavior. The DA based adaptive

gating mechanism can be used within this context as a way to signal to PFC to strengthen

the maintenance of the representation currently encoded (close the gate) when a positive

TD Error occurs signifying a positive change in our expected future reward. In other words,

when the system is doing better than expected, close the gate on PFC representations so we

are more likely to keep doing the same thing. Conversely, when the network starts perform-

ing worse than expected (possibly due to task contingencies changing), this will result in a

negative TD Error signaling that system is not performing as well as expected, indicating

that the system should adapt its behavior to perform more optimally. The negative TD er-

ror can be used as a gating signal on the PFC representations, signally the gate to open and

allowing a new representation to replace the old allowing the network to flexibly adjust its

control over behavior.

Along with providing a neural mechanism that can learn to appropriately and adap-

tively gate PFC representations, these models have also been successful in tying frontal

disturbances, such as those found in schizophrenia, to deficits in cognitive control (Cohen

and Servan-Schrieber, 1992) and cognitive flexibility (Braver and Cohen, 1999; O’Reilly

et al., 2002). A recent elaboration of this model, XT (Rougier et al., in press), is the first

neuroscientific model able to provide quantitative fits to a hallmark task of cognitive con-

trol, the Stroop task, and a widely used measure of cognitive flexibility, WCST, in both

neurologically intact and frontally damaged people.
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Figure 4: A still image of an animation of a simple computational model of the role of PFC
in the Stroop task (Cohen et al., 1990) (See Appendix B)

The Cross-Task Generalization Model (XT)

XT is a model of cognitive flexibility and cognitive control built using the biologically

grounded Leabra framework for computational cognitive neuroscience modeling (O’Reilly

and Munakata, 2000). Leabra incorporates many useful neural network tools including a

biophysical point neuron activation function, bidirectional excitation, an efficient imple-

mentation of lateral inhibition, as well as both Hebbian and error driven learning rules.

The general design of the XT network is shown in Figure 5. The input of XT consists of

a layer of units that use a localist code to specify stimuli being presented to the system

in the current task. We can think of the rows of the input layer as representing different

dimensions (e.g., color, shape, size) and the columns indexing features across each dimen-

sion. (See Figure 6.) The response layer is analogous in structure to the input layer, with
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a winner-take-all mechanism used to simulate lateral inhibition between the units, facili-

tating a competition for a single output response corresponding to a single stimulus fea-

ture. There is one additional unit—a “No Response” unit—included in the response layer,

which provides the network with an alternative to the stimuli present in the input layer. The

PFC layer provides top-down cognitive control using abstract rule-like representations in

the same spirit of the models mentioned earlier, with one important difference. In previous

models, the PFC representations were hand-coded by the modeler, with the question of how

these representations develop brushed aside. In contrast, the rule-like PFC representations

in XT are learned through extensive experience with the stimuli. This extended amount of

initial experience provides a reasonable account for the protracted period of development

exhibited by PFC, continuing into adolescence. Thus, the XT model shows how control can

emerge through experience, supported by biologically based self-organizing mechanisms.

The Dimension Cue layer is used to inform the network concerning what stimulus di-

mension (e.g., color) is currently relevant. For example, the Dimension Cue layer is used

in the Stroop task to inform the network when it should name the ink color rather than read

the word, or vice versa. Each unit in the Dimension Cue corresponds to a dimension in the

stimulus (input) layer. If no Dimension Cue unit is activated, the network is uninformed as

to what dimension is currently relevant, and must rely on a random search method in order

to discover relevant stimulus dimensions. This uninformed search strategy is used during

the modeling of WCST performance.

The Task layer is vital in the training of the XT network, with each unit representing

a different task for the network to perform. Rougier et al. (in press), show that a large

breadth of experience is necessary for useful rule-like representations to develop in PFC

necessitating the exposure of the network to multiple tasks during initial training. For our

simulations, the Task layer is held constant after training, always requiring the network to

perform the “Naming Feature” task. “Naming Feature” requires the network to name one
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feature from the input stimuli, using feedback to adjust the dimensional representation in

PFC in order to name the correct feature.

The flexible adaptation of cognitive control is implemented using a DA-based adaptive

gating (AG) mechanism, depicted in XT by the AG unit (See Figure 5.) The AG mecha-

nism computes the expected future reward based on the TD learning algorithm, with reward

delivered based on the network’s performance. When the model performs better than ex-

pected (positive TD Error,
��������� �

) the PFC representations are strengthened using an

intrinsic maintenance current to stabilize PFC. XT leverages the intrinsic bistability of PFC

neurons along with recurrent excitatory recurrent connections to support the active main-

tenance of PFC representations (Durstewitz et al., 2000; Fellous et al., 1998). When the

model performs worse than expected (negative TD Error,
������� # �

), the PFC represen-

tations are destabilized allowing a new, possibly more appropriate PFC representation to

be maintained. In the model, the
�������

value directly modulates excitatory ionic mainte-

nance currents ( ��� below). Large maintenance currents drive the membrane potential of

simulated neurons in the PFC up, pushing them towards their maximal firing rate. These

currents are not allowed to become negative, being clipped at zero instead. The mainte-

nance currents, ��� , of simulated neurons in PFC are computed by:

��� ����� ��� �����	��
 ��������

���
(2)

��� ������� � ��� �����"� �
������������� (3)

����� 	 � �����	� � ������� 	 	 �! �"� � �#�%$&� �#�('  $&�
) �*� '��,+.-./ �� � �10

Therefore, a positive
�������

will result in an increase in active maintenance of PFC rep-

resentations, while a negative
�������

will destabilize PFC. The value
�

represents a threshold

value for the ionic currents. If the TD error,
�������

, exceeds this amount (
�
� 243

in all

simulations), then the maintenance currents, �5� , are effectively reset.
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Using this mechanism and a unified computational framework, XT has been success-

ful in providing strong quantitative fits to human performance on tasks measuring both

cognitive control and flexibility.

Figure 5: XT Model Architecture
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Figure 6: Stimulus Input Layer: Caricature of input to the XT model, with rows portraying
stimulus dimension (color, shape, size, etc) and columns indexing feature values across
dimensions (small, medium, large, etc.)
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CHAPTER III

METHODS

PFC is believed to play a crucial role in the cognitive control and cognitive flexibility of

our behavior. For cognitive control, PFC provides an important role in online maintenance

of contextually relevant information used to appropriately bias more posterior brain areas

to respond in a situationally appropriate manner. Cognitive flexibility is enacted via DA’s

modulatory gating effect on PFC. Coupled together, the PFC / DA system appears to be

vital to our ability to fluently adapt actively maintained control representations to deal with

changes in task contingencies. The distinct pattern of reduced cognitive flexibility but rel-

atively retained cognitive control found in people with autism is very different than many

patterns of executive dysfunction exhibited in other disorders. This suggests that mod-

els of the performance deficits seen in autism may need to focus on neural mechanisms

that are distinct from those that are central to models of the executive control problems

exhibited in other disorders. For instance, in Schizophrenia, control is shown to be im-

paired in tasks such as Stroop. Some accounts have attributed this deficit to an inability

to actively maintain the proper contextual information in PFC, resulting in a lack of the

critical top-down influence used to overcome more prepotent processing pathways (Cohen

and Servan-Schrieber, 1992; McGrath et al., 1997). In frontally damaged patients, both

control and flexibility are impaired as compared to controls (Stuss et al., 2000; Stuss et al.,

2001), while in Attention Deficit Hyperactivity Disorder (ADHD) a deficit is found only in

inhibitory control with no significant deficits in cognitive flexibility (Ozonoff and Jensen,

1999). Accounting for the unusual cognitive profile in autism may involve a frontal deficit

per se, rather impaired cognitive flexibility and intact cognitive control in autism could be

the result of a dysfunctional DA based adaptive gating mechanism.

There is clear evidence of abnormalities in the DA system in people with autism. Stud-

ies have shown different levels of DA activity using PET brain imaging (Fernell et al.,
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1997), and increased HVA (a dopamine metabolite) has been found in urinalysis stud-

ies (Martineau et al., 1992). Moderate clinical benefits from the administration of DA

antagonists such as Haloperidol and Risperidone have also been found (Posey and Mc-

Dougle, 2000). Motivated by these findings, we will explore whether reducing the effect

of the DA signal in frontal models of cognitive control and cognitive flexibility is sufficient

to capture the cognitive profile found in people with ASD. Using the XT framework, we

test this hypothesis by reducing the effect of the DA signal in the model by scaling the TD

Error,
�������

, by a constant factor � , where � � � for normally functioning individuals and

� # � when attempting to capture the performance of people with autism1. The TD Error
�������

now becomes:

��������� �
� 	������ � ������� �!� � ��� �������

(4)

� # ��� �

Qualitatively, this can be viewed as scaling the overall effect of the phasic DA signal on

frontal functioning. If the efficacy of the DA signal is reduced, the active maintenance of

information in PFC should be relatively unaffected, leaving the PFC functionally intact and

able to properly influence subsequent processing according to the currently maintained goal

representation. However, the ability of PFC to gate in new information would be reduced,

resulting in incorrect information being actively maintained and a decrease in the overall

flexibility of the system.

Two computational models have been used to explore our DA hypothesis. Both the

full XT model of PFC function and a simplified and scaled-down version of this model

have been employed. Multiple models were used in order to demonstrate that the general

underlying, biologically based mechanisms of PFC / DA interaction (outlined below) are

driving observed effects — that critical simulation results are not artifacts of idiosyncratic

1The scaling of ���
	�� by 
 is the only parameter modified from the original XT model to capture autistic
performance.
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implementation details of a particular model. However it will be argued that the more

complex version of these models (the full XT model) will provide additional benefits which

the simplified model will be unable to provide as this research endeavor is continued.

Simple XT Model

A less complex version of the original XT model was developed using the same func-

tional mechanisms of the full XT model, but with a greatly simplified network struc-

ture (See Figure 7.) In the simplified model, all of the neural representations make use

of localist codes, and every connection weight between the network’s layers was hand-

coded and static. There is no need for a period of initial training (simulating development)

in the simple model due to the model’s synaptic weights being pre-specified and unable to

adapt. It is worth noting that many of the hidden layers used in the full XT model have

been removed in the simpler version. Since the simple model relies on purely localist rep-

resentations, the advantages provided by the distributed hidden layer representations in the

full XT model are of little use.

The major difference between the simplified version of XT and the full version is that

all of the representations in the simple model being pre-specified by the modeler. In con-

trast, the original XT model learns the necessary PFC representations (and representations

at other hidden layers) through repeated exposure to, and experience with, the stimuli. This

provides the added benefit of allowing for the modeling of how these representations de-

velop over time and under varying conditions, such as under the condition of an impaired

DA system. This ability to learn PFC representations will provide a key reason to prefer

the full XT model to the simplified one.

Basic Mechanisms

In order to simulate performance of both WCST and Stroop tasks both the simple ver-

sion and the full version of XT require certain biologically grounded mechanisms. Each
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Figure 7: Simplified XT Model

of the mechanisms described below were previously described in the Background chapter,

but are briefly mentioned here for convenience.

PFC Layer - both models required a PFC layer to provide appropriate top down biasing

of processing. The ability to bias processing persistently over time is accomplished by

building into the PFC layer an ionic maintenance current, which permits the representations

to be actively and robustly maintained in the face of competing inputs.

Adaptive Gating Mechanism - A DA based, adaptive gating mechanism (AG), which

either strengthens or weakens the ionic maintenance currents in PFC based on network per-

formance, is included in both models. Using the temporal difference learning paradigm,

the AG computes changes in expected reward (the TD Error,
�������

), and strengthens PFC’s

intrinsic maintenance currents when the network is performing better than expected. Con-

versely when the network is performing substantially worse than expected, the AG will

clear the ionic currents allowing a new, and hopefully more appropriate PFC representation
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to be actively maintained. Initially, before the network receives any reward, a random trial-

and-error search strategy is employed by the network. During the random search rapidly

decaying negative only bias weights are used in order to provide an inhibition of return

mechanism for recent task representations. This results in the network performing a ran-

dom sampling with delayed replacement search strategy until reward is received.

Dimension Cue Layer - The Dimension Cue provides the model with information as to

what stimulus dimension (e.g., color) is currently relevant.

Scaling of TD Error - In order to capture performance of people with autism, the DA

signal analog,
�������

, was scaled by a constant factor of � in both models. The values of �

for the simple and full versions of the XT model were held constant in all simulations of

autistic performance at 0.56 and 0.53 respectively. Values for � were chosen using a linear

grid search method in order to maximize fits of model performance to actual quantitative

behavioral data. To capture the behavior of normally functioning individuals, � was set to

1.00 for both the simple and full version of the XT model in all simulations.

These basic neural mechanisms are not the only ones employed in these models (for a

more complete description, see Appendix A), but they do entail the most important mech-

anisms for the purpose of our investigation of cognitive control and cognitive flexibility in

ASD.

Modeling WCST

WCST (Berg, 1948) is a psychological test used to measure ones ability to implicitly

learn a rule, maintain and apply this rule, and to flexibly adapt your behavior when the

task contingencies change2. In order to analyze behavior on WCST we need to establish a

collection of relevant error measures. The measures of performance which will be used for

this task are:

2For a detailed account of WCST please see the “Cognitive Flexibility and Control in ASD” section of
chapter II - Background
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Figure 8: XT WCST example stimulus input

1. Categories completed : Number of 10 consecutive correct sorts in a row, maximum

of 6 (i.e., maximum of 5 rule switches)

2. Total Errors : Number of mistakes made by the subject when attempting to sort the

WCST cards

3. % Total Errors : Total Errors divided by the number of trials the subject requires to

meet criterion (or 127 if the 6 total categories are not achieved)

4. Perseverative Errors : Errors in which the previously correct sorting rule is used

5. % Perseverative Errors : Perseverative Errors divided by the number of trials the

subject requires to meet criterion (or 127 if the 6 total categories are not achieved)

The network was presented with stimuli at the input or “stimulus array” layer by activat-

ing individual units, one for a single feature across each of three dimensions (See Figure 8.)

This input represented the current card to be sorted. The task of the network was to name

the currently relevant feature (e.g., the feature “red” if color is the currently relevant sorting

dimension). No information is provided via the Dimension Cue layer concerning which di-

mension should be used as the currently correct sorting rule, leaving the network to use a

more-or-less random search strategy until the correct rule is discovered. The network only

receives sparse feedback — “reward” or “no reward” — receiving reward on trials when
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correct performance is achieved, and no reward when an incorrect guess is made. Left to

the random search strategy, the network’s performance would tend towards chance, leading

to grossly deficient performance on WCST. XT is able to leverage the DA based AG mech-

anism coupled with the active maintenance and top-down influencing properties of the PFC

layer in order to successfully perform the task. The AG mechanism strengthens the PFC’s

intrinsic ionic maintenance currents when the network is performing well, allowing PFC

to actively maintain currently relevant information (e.g., pay attention to the color dimen-

sion), biasing the processing pathways which are part of the currently maintained stimulus

dimension so as to give them a competitive advantage over rival pathways. The actively

maintained PFC representations form a “memory” of the rule. When the rule switches (e.g.,

after 10 consecutive correct sorts), the actively maintained representation becomes invalid.

If the network allows the invalid representation to influence subsequent processing, a large

amount of perseverative errors will result. The AG prevents this by providing a gating sig-

nal to PFC when reward is expected but not delivered, allowing a new representation to be

acquired by PFC.

All of the performance measures mentioned above were recorded during simulations

of WCST for both the normally functioning DA model and the models with reduced DA

efficacy, used to simulate performance of people with autism.

Modeling Stroop

Cohen and Servan-Schreiber (1990) provide a computational account of the Stroop

task, positing that the greater overall strength of the word reading pathway is due to greater

experience with word reading, making this pathway stronger and more automatic compared

to the color naming pathway. In their model, a PFC-like mechanism provides top-down

biasing on the respective pathways based on the current goal (e.g., “read the word” or

“name the color”). The control provided from PFC is necessary to overcome the prepotent

word reading pathway during the incongruent trials when the network is required to name

the color. This results in an increase in reaction time in the color naming incongruent

37



condition, but not in the word reading incongruent condition. This is attributed to the

greater overall competition created when the network needs to overcome the stronger word

reading pathway3.

In order to simulate this imbalance of processing strengths in our model, we manipu-

lated the frequency with which one dimension was experienced as relevant during initial-

ization training of the full XT model, making the dimension relevant only 25% as often as

the other dimensions. This frequently irrelevant dimension corresponds to the font color

in the classic Stroop task. In the simple model the processing imbalance was simply hand

coded via weaker connection weights for the pathway corresponding to the color nam-

ing pathway. (This hand-coding strategy was used in early Stroop models of Cohen and

Servan-Schreiber (1992).) The competition between the color naming and word reading

pathways is simulated by co-activating features in this weaker dimension, corresponding

to the color naming pathway, and a strong dimension, representing the word reading path-

way. The PFC layer provides the crucial top-down biasing mechanism, consistent with the

model of Cohen & Servan-Schreiber, to help resolve the competition appropriately based

on the goal of the task. The settling time of the network resulting from this competition is

used as an analog to reaction time, and is scaled using a single free parameter allowing us

to directly compare model results to human data4. The settling time of is the time needed

by the network to resolve the competition between the pathways and produce a coherent

output response. The single free parameter is computed by taking a single data point, the

average settling time of the congruent “word reading” condition, and calculating the scalar

value required to map the settling time to actual reaction time data. This scalar is the “sin-

gle free parameter” and was subsequently used to scale all other data points to reaction time

(milliseconds).

3For a detailed account of Stroop please see the “Cognitive Flexibility and Control in ASD” section of
chapter II - Background

4Due to an overly large baseline settling time difference between “word reading” and “color naming”
conditions using the simplified XT model, this analysis was only possible for the full version of the XT
model.
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Network Training

To facilitate comparisons between WCST and Stroop performance, 100 networks were

trained using the full XT model framework, employing the training procedure used by

Rougier et al. (in press). The training continued for 100 epochs, where one epoch consits

of 2000 training trials, or until a stringent performance criteria was met during validation

test trials. The performance criterion required a maximum of 25 errors to be committed out

of a possible 250 during a test phase which occurred after every other training block. The

simple XT model required zero training since all of the representations were hand coded

and the weight were pre-specified and non-plastic (not adjustable). Following training,

each network was tested under conditions of DA modulation, � � � to simulate normal

function and � # � to simulate the performance of individuals with autism, on the WCST

and Stroop tasks. Separate networks where treated as individual subjects when using the

full XT framework for the purpose of data analysis (n = 100 for the control group and n

= 100 for the autism group). The simple XT framework did not require separate networks

since strengths of the connection weights are not allowed to adapt their values. Instead,

one network was used in all simulations of control group performance (n=100) and autistic

performance (n=100).
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CHAPTER IV

RESULTS

Simple Model Stroop Results

The simple XT model’s performance on the the Stroop task is able to qualitatively, but

not quantitatively, fit human performance. (See Figure 9.) The model of intact DA function

shows the classic pattern of Stroop reaction time results. The pre-potent word reading di-

mension shows uniform reaction times across both congruent and conflict conditions, while

the weaker color naming dimension shows a slowing in reaction times when the stimuli are

incongruent. Autistic performance, obtained by scaling the strength of the DA signal in the

model, showed the same pattern of results with no significant increase in the overall Stroop

effect (F(1,198) = 1.88; �
�"� 2 ���

) consistent with past findings (Ozonoff and Jensen, 1999).

However, a good quantitative fit to human data was not possible with this simple model.

This fit is a result of the large baseline difference in the reaction time measure for color

naming and word reading. With such a large difference, it was not possible to provide the

simple single free parameter fit to actual reaction time data that is described in the meth-

ods section using the full XT model structure. It is possible, however, to provide a better

quantitative fit if we were to attempt a scaling of the simple model results using a more

complex data fitting routine. It should be pointed out that even without a tight quantita-

tive fit, the model still captured an extremely important portion of the pattern of results for

the Stroop task, namely the selective slowing in reaction times for the incongruent color

naming condition.

It is apparent from the above results that the reduction in DA efficacy had little if any

effect on cognitive control as measured by the simulated Stroop task. The ability of the

PFC to actively maintain abstract stimulus dimensions continued to be able to effectively

influence processing, bootstrapping the weaker “color-naming” pathway when appropriate,
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Figure 9: Simple XT model: Stroop results

allowing this pathway to compete with the stronger and more automatic “word-reading”

pathway.

Simple Model WCST Results

Simulations using the simplified version of XT were able to capture the pattern of

WCST behavior, exhibited by autistic subjects and healthy controls, with one notable ex-

ception. (See Table 1.) The “number of categories completed” measure of performance,

was at the ceiling level of 6 categories, which is much better than performance exhibited

by many people with ASD. The model’s performance on this measure will be discussed

further in the section titled “XT Model WCST Results”. The total number of errors and the

percentage of total errors were both significantly increased in the DA modulated model of

autistic performance, consistent with results from previous studies. Importantly, the num-

ber of perseverative errors measure were also higher and statistically reliable, matching
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Table 1: WCST Simple Model Results

WCST Measure Normal Autism F(1,198) ���
Total Errors 25.94 41.78 182.29 .001
% Total Errors 30.48% 39.85% 181.15 .001
Total Perseverative Errors 14.85 27.99 548.26 .001
% Perseverative Errors 17.17% 26.89% 574.19 .001
Categories 6.00 5.98 2.02 .16

findings from a number of previous studies (Prior and Hoffman, 1990; Ozonoff and Jensen,

1999; Minshew et al., 2002; Bennetto et al., 1996). (See Figure 10.) Reducing the effect of

the DA signal has a marked effect on the total number and types of errors while performing

the WCST task, which is in stark contrast to the results in simulations of the Stroop task.

Modulating the DA signal appears to have direct implications for cognitive flexibility in

our model.

XT Model Stroop Results

The full XT model’s performance on the Stroop task is able to both qualitatively and

quantitatively match human performance. (See Figure 11.) The model of intact DA func-

tion again shows the classic pattern of Stroop reaction time results. Autistic performance

showed the same pattern of results with no significant increase in the overall Stroop effect

(F(1,198) = 0.62; �
�"� 2����

) consistent with past findings (Ozonoff and Jensen, 1999). The

lack of effect when reducing the phasic DA signal reproduces the results from the “Sim-

ple XT” model, showing again that the manipulation was of little functional consequence

for the cognitive control needed to successfully perform of the Stroop task. The additional

flexibility of the full model allowed us to vary the training of the model to fit healthy human

reaction time data, where the simple model was more limited. The constrained structure

of the simple model made it difficult to find connection weight values that afforded good
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Figure 10: WCST Perseverative Error Results: Previous study from (Minshew et al., 2002)

quantitative reaction time fits. This flexibility will prove to be one of the key aspects dis-

cussed when comparing the usefulness of the simple model compared to the original XT

model.

XT Model WCST Results

Results from WCST simulations show that the full XT model is able to produce rea-

sonable results on all relevant measures of performance, with the same exception as the

“simple” model, in the total number of categories completed. (see Table 2.) This measure

was, again, at or near the ceiling of 6 possible categories. A significantly higher number

of errors as well as a higher percentage of total errors were committed by the DA mod-

ulated model compared to the control network. The important measure of perseverative

errors also showed a reliable increase in number and percentage, consistent with the afore-

mentioned empirical results and recreating the performance exhibited by the simple model.

(See Figure 10.) The modulation of DA’s efficacy had a strong effect on the network’s
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Figure 11: Full XT model: Stroop reaction time results, human data from (Dunbar and
Macleod, 1984)

ability to flexibly adapt its behavior as the task contingencies of WCST changed. It is not

readily apparent what is causing the model to demonstrate relatively no sensitivity to the

DA modulation for the total number of categories measure of performance. A study by

Ozonoff (1995) found the mean number of total categories achieved for normally function-

ing individuals to be 4.9 with a standard deviation of 1.7, and 3.0 with a standard deviation

of 2.1 for people with autism. The model’s mean performance of 5.74 when simulating

the behavior of normally developing individuals and 5.58 for autistic performance demon-

strates that the model is performing this aspect of the WCST too well. However, both the

simple and full versions of XT show the same pattern of results, likely pointing to a similar

mechanism underlying the problem in each model.
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Table 2: WCST Full Model Results

WCST Measure Normal Autism F(1,198) ���
Total Errors 34.66 44.95 15.33 .001
% Total Errors 35.80% 41.76% 13.23 .001
Total Perseverative Errors 13.84 21.40 86.13 .001
% Perseverative Errors 15.07% 20.38% 63.47 .001
Categories 5.74 5.58 1.16 .282

DA Sensitivity

In the previous results, the level of scaling of the effect of DA ( � ) was chosen so as to

provide the best possible quantitative match to actual human performance on the specific

cognitive tasks. A simple linear grid search was conducted at intervals of 0.01 to find a

value that provided good fits to both Stroop and WCST data : � ��� 2 3 � . In an effort to

understand how sensitive these models were to the precise value of � used, we looked at

how the network performance changes as a function of different scaled values of the DA

signal. The effect of various values of � was very similar for both the simple and full ver-

sions of the XT model1, so, for convenience, the discussion has been collapsed across both

model results. Values of � ranged between 0.51 and 1.00 for this analysis. Values of 0.50

or less were not used since this would guarantee that the thresholding mechanism would

never be triggered, resulting in an effective disabling of the rapid PFC gating mechanism

(See equations (2) & (3) ). Also, values closer to 0.50 were sampled more heavily com-

pared to values closer to 1.00 due to the apparent increased sensitivity to values within the

lower range. The distribution of � sampling values were as follows: (0.51, 0.53, 0.55, 0.56,

0.575, 0.60, 0.70, 0.75, 0.80, 0.90, and 1.00).

Manipulating the DA signal by scaling � across a range of values showed a general

1One notable difference was that the simple model fails to perform the WCST task when 
 �������	�
�
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lack of sensitivity to the DA signal during simulations of the Stroop task. (See Figures 12

& 13.) These results are in accordance with the observation that active maintenance and

PFC-based biasing are unaffected by reductions in the DA signal. Also, the Stroop task

requires very little cognitive flexibility, and should therefore not be overly sensitive to the

model analog of the phasic DA signal, with its role as a gating signal.

Manipulating the DA signal during the simulations of WCST revealed a sharp sensitiv-

ity to the scaling of the DA signal. (See Figures 14, 15, & 16.) Both versions of the XT

model show an increase in the total number of errors and the number of perseverative errors

as a function of the DA scale, as predicted. The number of categories completed was at or

near ceiling for all tested values of � for both the full XT model, and for � � � 243 3
using

the simple XT model. In the simple model, values of � � � 24353 result in a basic failure of

the network to accomplish the task, with only a single category achieved on average. With

��� � 2 � � , model performance is equivalent to no scaling of the DA signal: � ���52 � � . A

similar pattern is found in the full XT model, with values of ��� � 2 353 showing little if any

change in performance as � increases.

Performance on WCST with various values of DA efficacy shows a definite effect on

cognitive flexibility. There is a significant increase in the number of perseverative errors

as the DA signal is weakened. It is interesting to note that there is a restricted range of

graded degradation in performance for both the full and simplified version of the XT model.

The simplified version shows graded levels of sensitivity to changes in the strength of

the DA signal within the interval:
� 2 3 �53 � � � � 2 � � . Similarly, the full version of XT

shows a similar restricted range of smooth changes in effect of scaling the DA signal when
� 2 3�� � ��� � 2 3 �53 . Outside the respective ranges which show a graded change of sensitivity

to scaling the DA signal, the patterns flattens out, showing little to no change in effect of

different values of � .
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Figure 12: DA Sensitivity: Stroop Task (Simple XT Model)
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Figure 13: DA Sensitivity: Stroop Task (Full XT Model)
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Figure 14: DA Sensitivity : WCST Total Errors
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Figure 15: DA Sensitivity : WCST Perseverative Errors
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CHAPTER V

DISCUSSION & FUTURE WORK

By using a formal characterization of the effect of DA on PFC we have shown that a

single manipulation —reducing the efficacy of the DA signal— is sufficient to capture the

performance of people with autism on basic tests of cognitive flexibility (WCST), and cog-

nitive control (Stroop). In WCST, our models of autistic performance commit significantly

more errors and, importantly, more perseverative errors when compared to simulated per-

formance of normally functioning controls. This pattern of errors indicates that by scaling

the DA signal, the ability of the model to flexibly adapt its behavior as task contingencies

change is greatly reduced. In the simulations of Stroop performance, on the other hand,

there is no significant change in performance when comparing the models with a reduced

DA signal to those with no DA deficit. This indicates that there is no reduction in the

amount of cognitive control, as measured by the classic Stroop paradigm, in simulated

performance of people with autism. The Stroop model results indicate that reducing the

phasic DA signal’s effect on PFC functioning does not appear to affect the ability of PFC

to actively maintain representations which can be used to influence subsequent processing

in more posterior pathways. However, the WCST results point to a strong effect on the gat-

ing mechanism of PFC, resulting in a reduced ability to switch contexts in an appropriate

manner. This results in the last correct representation being actively maintained in PFC and

influencing subsequent processing according to this now outdated rule, resulting in incor-

rect perseverative responses during WCST. Performance during Stroop is not affected by

the deficient gating mechanism, since the task does not require any rapid gating of new in-

formation in order to succeed. The task always requires the subject to either “pay attention

to color” or “pay attention to the word”, and never requires a rapid switch between the two

goals.

Two different models were employed in this investigation. Both models contained a
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PFC layer which was able to encode abstract stimulus dimensions (such as color) in order

to appropriately influence processing. This PFC layer was modulated by an adaptive gat-

ing mechanism, which was formalized in terms of a contemporary reinforcement learning

account of phasic DA’s effect on PFC functioning. The main differences between the two

models were that the “simple XT” model used a purely localist code across all layers, and

all connections in the model were pre-specified and non-plastic, prohibiting the model from

learning new stimulus mappings from inputs to outputs. By using both of these models, we

are able to argue that the important mechanisms for capturing performance of people with

autism lies in the mechanisms underlying the effect of DA on frontal functioning, and not

some other hidden aspect of the model. Going forward with our research, however, it will

make sense to use the “full XT” framework and not the “Simple XT” version. This original

version of the XT framework was able to provide tighter quantitative fits to actual human

data, and more importantly, there are large possible advantages to be gained from this ver-

sion’s ability to learn the PFC representations through a protracted development period.

The utility of modeling this developmental process is described in more depth below.

A sensitivity analysis of different scalings of the efficacy of DA found that the models,

while sensitive to this scaling, showed an intriguing pattern of sensitivity. Both models

demonstrated a restricted range of gradual sensitivity, with little change in the amount of

sensitivity outside of this range. There are many possible reasons why this is behavior is

observed in the models, one possible candidate involves the mechanisms used to simulate

the adaptive gating mechanism. Another reason could be the model is predicting actual

patterns of human behavior. This later claim is a testable prediction of the model, which

will need to investigated further with well designed behavioral experiments.

A major contribution of the presented research is how our model ties a difference in

DA function to frontal lobe dysfunction in people with autism. This provides a previously

unelaborated bridge to the Executive Dysfunction Theory (traditionally linked directly to
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frontal dysfunction), DA differences found in autism, and observed behavior in people with

autism (Hughes et al., 1994).

Our initial results using computational cognitive neuroscience models to investigate

cognitive deficits found in people with ASD are encouraging, but there are many ques-

tions and many avenues for future research left to explore. Remaining questions such as

if the formal account of DA function, and reduction of the effect of this function, will ex-

pand to easily and elegantly capture other patterns of behavior found in people with ASD.

Deficits have been found in tasks involving planning (Bennetto et al., 1996), the ability to

attribute mental states to others (TOM) (Baron-Cohen et al., 1985), and generating novel

responses (Turner, 1999) to name only some of the areas. Along with tasks in which perfor-

mance by people with autism is deficient, there are many tasks which people with autism

excel at as well. It is important for any account, including ours, to be able to account

for these spared abilities, as well (Happe, 1999). By expanding our framework to demon-

strate that spared or possibly even improved performance is achieved on tasks such as the

Embedded Figures Task, we strengthen the possibility that we are capturing a true causal

relationship rather than merely a coincidence.

An extremely interesting, albeit casual, observation lies in a number of similarities

found between autism and Parkinson’s disease (PD). Vilensky et al (1981) noted similar-

ities between the gaits of people with autism and individuals with PD. Both have trouble

initiating motor movements as well as in tasks which involve learning sequences of motor

movements. The most intriguing similarity for present discussion is that people with PD

show poor cognitive flexibility on tasks such as WCST (Nieoullon, 2002), but are unaf-

fected on tests of cognitive control such as Stroop (Henik et al., 1993). This is of inter-

est since this is the same cognitive profile on these tasks as found in people with autism.

Parkinson’s is believed to be a function of the degeneration of DA producing areas in the

basal ganglia, make this a compelling link to investigate further.

One of the largest weaknesses of our model is, at the same time, the most exciting
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avenue for future research. Autism is a developmental disorder, but in the present inves-

tigation we do not manipulate the effect of DA until after the networks are fully trained.

By taking this approach we cannot make any predictions as to how the system will develop

over time. This is invaluable information when trying to understand the mechanisms under-

lying a complex developmental disorder such as autism. For instance, a small change early

in development could have unintuitive and magnified results by the end of the developmen-

tal process. XT has the exciting and unique feature that the receptive field properties of the

PFC neurons are being determined through a learning process. For example, in Stroop it

is important for the PFC to represent the abstract notion of “color” in order to properly in-

fluence processing. This encoding of “color” is learned through experience with a range of

tasks for which success is helped by paying attention to color. Using the learning properties

of XT we will be able to analyze how manipulating the effect of DA early in development

affects the nature of PFC representations, as well as how these changes affect behavioral

performance. By examining differences throughout development, it may be possible to pro-

vide an account explaining why executive dysfunction is only found later in development

in people with ASD, as well as providing a means of predicting how different intervention

techniques could affect subsequent development.

Using computational models inspired and constrained by our existing knowledge of bi-

ology is a relatively untapped resource in the exploration of the neurological underpinnings

of autism. The tools provided by computational cognitive neuroscience have the potential

of building conceptual bridges between the domains of cognitive psychology and cognitive

neuroscience, requiring behavior to be explained in terms of biologically justified mecha-

nisms. Our initial results using these tools are encouraging and show a promising future

direction for research on autism spectrum disorders.
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APPENDIX A

LEABRA MODEL EQUATIONS

Leabra (O’Reilly, 1996) is a biologically based computational modeling framework

which has been used to explain the neural basis of cognition in a wide range of different

domains. Leabra incorporates many biologically inspired mechanisms including a bio-

physical neural activation function, lateral excitatory connections, inhibitory competition,

as well as both a Hebbian learning and an error-driven mechanism for synaptic plasticity.

In the following sections, the model equations used to implement these features will be

briefly described. Please see (O’Reilly, 1996) for a more in depth analysis of the mecha-

nisms described below (adapted from Rougier et al., in press) .

Activation Function

Leabra uses a point neuron activation function based on biophysical properties of actual

neurons, with the spatial extent of the neurons shrunk down to single point for computa-

tional efficiency. The point neuron activation function possess many of the same properties

as the traditional connectionist sigmoidal activation function (such as its saturating non-

linearities), but is also grounded in the biophysical properties of actual neurons.

The point neuron activation function can be broken into three different components: the

ionic conductances ( ��� ����� ), the membrane potential (
� � ), and the actual firing-rate output

from the point neuron ( ���� ��� � ). The first component, the ionic conductances ��� ����� , are

updated at each time step (t) and incorporated in every neuron-like unit. There are three

conductance channels which comprise ��� ����� . The first is considered to be the excitatory

influence on the neuron, ��� ����� , and is computed as the standard weighted sum of sending

unit activations (firing-rates):

	 � � �
� �������
�
 

���
 � 
 � 
 � (5)
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The inhibitory component, �


�����

, is computed via a K-Winner-Take-All mechanism de-

scribed in the next section. The third component of the conductance channels is ��� ����� , a

constant leak current. Each simulated neuron maintains its own values for these conduc-

tances, encoding the current state of ionic channels in the cell’s membrane.

These conductance channels are used at every time step to update the membrane poten-

tial of the simulated cell:

� � ����� ��� �
� � � �������� � ��� � � � � ����� � (6)

Where � � ����� is simply the proportion of conductance channels of type c that are open,�� � is the maximum conductance of channels of a given type.
� � is the reversal potential for

type c channels, and
�

is a time constant.

The activation function of �1 � � � � is computed by:

� � ����� � �
� � � 	
�� 
���������������� � (7)

where
� � ���

is a thresholding function returning 0 if
�"#'�

, and returning x if
� � �

.

The value of
�

affects the gain of the functional relationship between the cell’s membrane

potential and its firing rate, and
�

shifts the effective threshold of firing.

The current activation function, � � ����� , has a very sharp threshold which is both bio-

logically unrealistic and can cause problems for the gradient-based learning mechanisms.

Therefore, � � ����� is convolved with gaussian noise to help smooth and soften the function,

giving us the final activation equation:

� �� ��� �����! �  
�

"$#&% �('*),++.- + � � ��/ � � �10�/
(8)

where � �� � � � is the noise-convolved activation function for
� � � � � ����� � � �.�

.
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Inhibition and Competition

Leabra uses a K-Winners-Take-All (KWTA) function to simulate fast inhibitory com-

petition between units within a layer of neurons. While biologically implausible in its

implementation in Leabra, it provides a good approximation of actual inhibitory dynamics

found in neural systems. KWTA is computed as a uniform amount of inhibition across all

units in a given layer. This inhibition is computed in a manner to ensure that only approx-

imately K units have sufficient excitation in order to reach their firing threshold. All units

in this layer will have their inhibitory conductance set by:

�


� � �� � 	 ����� � �� � � �� � 	 � (9)

where
� #��$#'�

is a parameter whose function is to ensure that the amount of ionic

inhibition is set to fall between the upper bound of � �� and the lower bound of � �� � 	 . These

boundary inhibition values are computed in a manner that keep all units (
�52 2��

) above their

firing threshold, with the
� � � unit right at its firing threshold.

Weight Update Equations (Learning)

The efficacy of synaptic connections is modeled by real-valued connection weights.

These weights may be adapted with experience. Weight updates in Leabra consist of an

additive combination of two different learning rules: a gradient descent and a Hebbian

learning rule. The learning rules are combined in the following manner to arrive at the

overall weight update equation:

� � 
 � ��� � �	� ��
�
 � �
� ��
�
 �


� �
� � � ����� ��
�
 � � ��� 
������ �



� ���

(10)

where
�

is the learning rate and
��� ��
�
 is a mixing constant (between 0 and 1). For both

learning rules the network settles in two different phases, a minus phase where the actual
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output of the network is produced, and a plus (outcome) phase where the expected or target

output is clamped to the appropriate value.

The error driven component of the learning rule,
� � � � , essentially computes the first

derivative of the error function as in the ubiquitous backpropagation of error algorithm, but

using biologically plausible bidirectional activation flow in order to compute this derivative,

as opposed to the seemingly biologically implausible backward propagation of an error

signal along the axon of a neuron. The difference between the pre- and post-synaptic

activation (input activation values and output activation values) across the minus and plus

phases provide the learning gradient:

� ��� � �


� � � � �
 � �� ����� � �
 � �� � (11)

which is then soft-weight bounded to ensure that the weights stay in the range of 0 - 1:

� �

���� � �



� � � � ����� �.� � � � �



� �
� � � ��� � � � � � 0 (12)

A normalized version of Hebbian learning is computed as follows:

��� ��
�
 �


� � � �
 � �� � � �
 � �� � 
 � � � �� � � �
 � �



� �

(13)

The combination of these two weight update equations results in weight changes that

mirror long-term potentiation (LTP) and long-term depression (LTD) effects observed in

biological synapses.

Temporal Difference Learning and Adaptive Gating of PFC

The adaptive gating mechanism is reified as an adaptive critic unit (AG in Figure 5)

which updates its activation based on the temporal differences (TD) algorithm. The AG

computes change in expected future rewards, which can then be used to update intrinsic
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ionic maintenance currents in the PFC (PFC) layer, simulating an intelligent gating mech-

anism. The idea is as follows: when the network performs better than expected, the AG

unit will compute a positive “delta”, or positive going change in expected future reward.

This delta can be used as a modulatory signal on the ionic maintenance currents in PFC,

strengthening these currents and stabilizing the current PFC representations. Conversely,

when the network is performing worse than expected, the AG unit will compute as nega-

tive delta, or negative going change in expected future reward. This negative delta can be

used as a modulatory signal to weaken the maintenance currents, destabilizing the repre-

sentations PFC is currently maintaining, which are not leading to reward. The maintenance

currents are computed as follows:

��� ��� �"� � � � �	� 
 ��������

� �
� (14)

��� ������� � ��� ��� �"� �
�&������� � � (15)

The AG unit uses the TD Error,
�������

, in order to modify and improve its predictions of

expected future rewards as follows:

�
���
�


� � ������� � 


(16)

This represents modifying weights projecting from the PFC layer to the AG layer in

proportion to the TD Error and the firing rate of the responsible simulated PFC neuron,
� 


.

The result is an increase in the activation value of the AG unit, representing the prediction

of expected future reward, for PFC representations actively maintained when the network

performs better than expected. Conversely, the expectation of future reward encoded by the

AG unit will be lessened when driven by PFC units actively maintaining representations

which lead to worse than predicted network performance.

Two additional mechanisms are included. The first will reset the maintenance currents

if the magnitude of the delta signal is larger than the reset threshold
�
� , where

�
�
� � 2 3

for
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our simulations. The second mechanism is a fault tolerance device, which will ensure that

the maintenance currents do not get cleared on purely random errors. This is accomplished

by only delivering a reward of 0 to the AG unit when the network commits at least two

errors in a row.
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APPENDIX B

NAV: NODE ACTIVITY VISUALIZER

Introduction

NAV (Kriete et al, in press) is a visualization tool intended to help facilitate presenta-

tions of the extremely rich and complex dynamics exhibited by computational models of

human cognition. The complexity of computational models of cognition is not frivolous.

Rather, it is often the case that this richness is crucial for capturing the nuances of human

performance. Computational models are, in fact, often used because the dynamics of com-

plex systems often resist more analytical approaches. This complex dynamical behavior

can, unfortunately, also hinder the ability to develop a deep understanding of the cognitive

model. Simulation packages provide a wide range of tools to help the modeler monitor

performance as it unfolds over time. However, these tools are developed with the expert

in mind, with rich and vast amounts of data concerning various aspects of the model’s

performance displayed. Rarely are these tools of use when attempting to convey, to the

non-expert, the dynamics of cognitive models. Instead, cartoons of network performance

are sometimes used when presenting to the modeling novices. These caricatures of network

performance, while convenient, have a few drawbacks. For instance, these cartoons can be

time consuming and tedious to prepare. More importantly, they can hide actual model be-

havior from the audience and rely instead on the interpretation of the presenter to convey

the model’s behavior. NAV addresses these issues by giving the researcher an easy-to-use

tool to build custom animations of actual model behavior, which can then be transformed

into an easily embedded standard movie file (e.g., MPEG) for presentation purposes. NAV

was designed be general in nature, not having any preference from one particular simula-

tion package to any other. This generality allows NAV to be used to illustrate any model

that both possesses a graphical structure and relies on numerical values associated with

graph nodes (e.g., node activation levels) in order to function. For example, NAV supports
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a wide range of types of models including spreading activation networks and computational

neuroscience models.

Features

NAV employs an intuitive “drawing program”-like interface, allowing for the creation

and placement of graphical objects such as nodes, layers (groups of nodes), and arrows

or “links” that can be conceptualized as connections between nodes or layers. These ob-

jects, alone, are simple graphical items, without intrinsic function. The user can associate

the nodes with entries in an actual simulation data file (generated outside of NAV in the

user’s simulation package of choice). Once the association between graphical objects and

model data has been accomplished, NAV provides a wide range of graphical display op-

tions which can be used to control how the graphical properties of the nodes will change

over time —governed by each nodes associated activity from the uploaded simulation data

file. NAV can be used to generate animations of actual activation dynamics of model per-

formance, which can then be exported to a standard movie file format (e.g., MPEG) for

easy embedding in presentation slides.

An important feature of NAV is the ability to generate time-varying graphical objects

besides a simple set of connected nodes, allowing for multiple views on the cognitive

model (Wejchert and Tesauro, 1990). The user has the option of adding textual labels and

graphical “sprites” (images) to help further explain features of the model as they develop

over time. As an example, a computational model of face recognition may have inputs

which are some encoding of the features of different faces. This input by itself, would be

unintelligible to a novice, as well as hard to grasp with a simple verbal description. In-

stead, NAV provides a way to associate and display an actual image of the face which is

being encoded across the inputs of the network. By showing actual images of the faces, a

non-expert will likely gain a better understanding of the information processing dynamics

of this system.

The arrows or “links” within NAV are used to represent weighted connections between
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nodes and layers of nodes. In many computational models, such as connectionist archi-

tectures, these weights will adjust and change their values as the model develops. NAV

supports the animation of weight changes over time in much the same manner that it sup-

ports the display of node activation dynamics. Connection weight dynamics can be visu-

alized within NAV by associating a file of connection weight values (produced from the

users simulation package of choice), and then associating the appropriate graphical “link”

in NAV with the corresponding value from the data file, via an easy-to-use point-and-click

interface. Currently, arrow thickness and color may track dynamic changes in weight val-

ues.

NAV’s main design goals include ensuring that NAV is easy to learn and use, as well

as affording a certain amount of flexibility to the user by not relying on any particular

modeling framework or simulation software for effective use. NAV was developed within

C++ using the Qt user interface tools (Blanchette and Summerfield, 2004). The open source

NAV software runs under Windows, Mac OS X, Linux, and Unix.

User Evaluations

In order to assess the facility with which users learned and manipulated the NAV inter-

face, two user evaluation studies were conducted. The first addressed the overall ease-of-

use and ease of learning of NAV, and was conducted using participants who were novices

in the area of computational modeling. The second study was used to gain insights into the

future development of NAV, as well as its current value as a software tool for visualizing

the activation dynamics of computational cognitive models. In this study, five expert users

were asked to give feedback after using NAV in a tutorial setting.

Novice Study

In the novice study, ten participants who lacked any background in computational mod-

eling of cognitive processes, were asked to complete a tutorial and a small task using the

NAV application. Of this group of ten, 6 were female and 4 were male with a mean age of
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Figure 17: The main NAV window displaying an animation of a component of the spread-
ing activation based memory network of an ACT-R model.

25.7 years (SD = 3.0). All were graduate students at Vanderbilt University. Self-rating their

own computer proficiency and cognitive modeling experience on a five point Likert scale

(ranging 1 - Novice to 5 - Expert), the participants considered themselves to possess mod-

erately strong computer skills (mean = 3.40, SD = 0.42), while being very weak modelers

(mean = 1.20, SD = 0.42).

After navigating a tutorial and exercise which required a small animation to be gener-

ated, the participants where asked to rate the application on 19 questions concerning ease-

of-learning, ease-of-use, and the general experience of using NAV. The questions asked

addressed the following nine areas of interest:

1. Overall Reaction to the system (3 ratings)

2. Creation of Objects (2 ratings)

3. Movement of Objects (2 ratings)
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Figure 18: Novice user evaluation results, broken down by topic area. Each rating is on
a five point Likert scale, ranging from “Difficult” (1) to “Easy” (5). Error bars display
standard errors of the mean.

4. Modifying the Properties of Objects (2 ratings)

5. Associating Activation Data with Nodes (2 ratings)

6. File Management (2 ratings)

7. Building a Movie (2 ratings)

8. Scrolling Through Movie Frames (2 ratings)

9. Learning to Use the Application (2 ratings)

Each rating, was again, on a five point Likert scale ranging from 1 - Difficult to 5 - Easy.

The results across all participants were extremely similar for all questions concerning both

ease-of-use and ease-of-learning. For simplicity, we collapsed the results across both of

these groups in our analysis. The mean results are show in Figure 18. Note that NAV was

rated very highly in all categories for ease-of-use and ease-of-learning.

Expert Study

In an effort to gather information and guidance for future development directions of

NAV, five participants possessing substantial experience with cognitive models were asked
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to provide feedback after completing the same NAV tutorial and animation construction

task that the novices completed. Each participant was a graduate student at Vanderbilt

University and, at minimum, were required to have completed a course on computational

cognitive modeling or computational neuroscience. After completing the tutorial and task,

each participant was given a questionnaire containing eight fairly general questions. The

responses provided indicate the NAV met its design goals of being easy-to-use and easy-

to-learn, but the experts also had suggested some opportunities for improvement.

All five experts rated the application overall very easy-to-use and easy-to-learn, and also

found the tool useful for visualizing and presenting the activation dynamics of cognitive

models. When asked to volunteer some of the specific benefits of NAV, three of the five

experts pointed to the ability to add dynamic text and images to the animation as a way of

bootstrapping the understanding of a model in a constrained time period. The experts also

pointed out ways in which NAV is different compared to the visualization tools available in

simulation packages with which they were familiar. Two experts asserted that other tools

tend to be more cumbersome than NAV, and three called attention to the inflexibility of

other tools, pointing to the fact that they did not provide expressive enough features to

display the information in the ways which they desired.

The experts made a number of suggestions for future versions, which they felt would

help the usefulness of NAV. Two experts suggested including the ability to generate dy-

namic graphs and plots of the activation in addition to the visualization options available

— a feature currently available in some simulation software. Two of the experts requested

greater support for “undoing” interface actions, as well as the construction of “templates”

which could be used a starting point for common model animations. Other suggestions

concentrated on increasing the amount of on-line help and documentation available, as

well as saving the application upon closing.

All five experts did indicate that they would use the current version of NAV in order

to produce animations for presentations. Two of the five experts also indicated that other
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simulation packages were needed for a deeper understanding of model dynamics. This fits

into the design goals of NAV, as NAV was intended to help convey useful information of

model dynamics to non-experts through animations, while the simulation tools are geared

more towards the modeling expert.

Conclusion

NAV is an open source software package designed to provide an easy and intuitive way

to build presentation quality animations of actual model dynamics of computational models

of cognitive phenomena. User studies indicate that NAV is indeed easy-to-use and easy-to-

learn, and it provides a novel tool for illustrating these dynamics not available in features of

current simulation packages. NAV has been used to embed animations of model dynamics

in professional presentations.

The current release of NAV, including executables, source code, and documentation,

can be downloaded from the NAV web site:

http://www.vuse.vanderbilt.edu/ noelledc/resources/NAV/
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