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CHAPTER I 

 

INTRODUCTION 

 

Object recognition learning algorithms that are easily trained, accurate, and capable of 

relating decisions to the feature vector are difficult to create.  Fuzzy membership rules provide a 

possible solution.  Object recognition and learning algorithms are huge areas of robotics research 

with many different methods in use by various researchers.  Object recognition is identifying 

objects using stored data representations of the objects [16].  Some object recognition algorithms 

rely on complete three-dimensional information about objects to identify them.  Others require 

less information about the object but use complex detection systems.  For these object 

recognition methods, it is difficult to establish a learning algorithm.  Learning algorithms are 

adaptive systems that use data arrays to establish and adjust what is characteristic about objects 

[17].  For learning systems, it is not reasonable to assume that there exist three-dimensional 

models of every object in the robot's environment, especially with objects that do not have 

exactly the same shape (e.g., trees).  A common result of using complex recognition methods is 

the loss of meaning (for humans) in the subsequent processing of the data.  When programs 

incorrectly identify objects, the reason why is often lost in the data analysis.  This loss prevents 

researchers from helping to understand what the robot sees and improving the recognition 

process.  If the researchers can understand what the robot sees, they are better able to develop a 

system that has limited image understanding.  Fuzzy models in object recognition are one of the 

better methods for achieving such a learning system. 

The development of a system that uses fuzzy rules to deduce general objects is the 

method we have chosen to examine.  Our desire is to develop a system that is quickly and easily 

trained, a system that can relate the decision of objects through the feature vector (vector of 

measured characteristics about the object), and a system that is relatively simple in its calculation 

of results.  The system should be robust which is why its complexity lies in the amount of 

features in the vector rather than the computation method itself.  This reason is also why the 

system should be quickly and easily trained so the robot can be transported to different 

environments and can quickly learn the objects of the new environment.  The ability for an 

algorithm to relay the decision it makes in a understandable fashion will aid in the selection of 
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future features that may be added.  The ease of adding features to the feature vector makes the 

system very flexible.  The Psychology Department's research can be used to show these 

characteristics.  They are studying the motion of subjects demonstrating set tasks for different 

types of audiences.  
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CHAPTER II 

 

BACKGROUND 

 

 A major component of the feature vector is the color histogram.  The fuzzy sets used to 

analyze the images are very important.  Both need background information to be explained to 

make clear the future information. 

 

Color 

All the images and videos are taken from a camcorder that stores each frame as a RGB 

(red green blue) color image.  Each image consists of its height, width, and three bands for each 

of the primary colors.  For each coordinate in the image, three numbers exist.  The first number 

represents the intensity of red, the second represents green, and the third represents blue. The 

RGB color model is an additive model, which means by adding the primary colors in various 

amounts (intensities) all other colors of the spectrum can be created.  When the primary colors 

are added together at maximum intensity, the color created is white as shown in Figure 1.  

 

 

Figure 1: Additive RGB color model [9] 

 

The images are then converted to the HSV (hue saturation value) color space for use also.  

Hue is the color.  The range of the colors is normalized from 0 to 1 in the latter chapters.  As you 

cycle through the hue values starting at red, it continues through yellow, green, cyan, blue, 

magenta, and back to red.  The saturation is considered to be the vibrancy of the color.  It 

represents the purity of a color like the "redness" of red.  The less saturation in a color the more 
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pale it looks (washed out).  The value is the brightness of the color.  Figure 2 is a pictorial 

representation of the HSV color space. 

 

 
Figure 2: HSV Color Space [10] 

 

Assuming the RGB values are all ranged from 0 to 1, the conversion to HSV is done in the 

following manner: 
Let MAX equal the maximum of the (R, G, B) values, and MIN equal the minimum of those 

values. The formula can then be written as: 

 

 

 

Note also that the formulas given here reflect some other properties of HSV: 

• If MAX = MIN (i.e. S = 0), then H is undefined. This is apparent, considering the diagrams of 

HSV space above. If S = 0 then the color lies along the central line of grays, so naturally it has no 

hue, and the angular coordinate is meaningless.  
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• If MAX = 0 (i.e. if V = 0), then S is undefined. This is best illustrated in the conical diagram 

above. If V = 0, then the color is pure black, so naturally it has neither hue, nor saturation. Thus 

the conical diagram collapses to a single point and both the angle and radius coordinates are 

meaningless at that point.[10]  

After the formulas, the hue values range from 0 to 360 and the saturation and value values range 

from 0 to 1.  The hue values are normalized from 0 to 1 in Matlab's rgb2hsv function. 

 

Fuzzy information 

 Fuzzy information is an imprecise set of descriptions or instructions.  The fuzziness of 

information varies given the description [12,18].  "The object is close" is less precise than "The 

object is that is about 5 feet away."  Fuzzy sets are developed to establish a set of values that 

meet a certain property to varying amounts.  A fuzzy set (F) of  "the object is about 20 feet 

away" would contain a set of distances that are "about 20 feet".  Membership functions (mF) map 

the fuzzy set to an interval of 0 to 1.  Figure 3 shows an example of a fuzzy membership plot.  

The membership function contains a value (grade of membership) for each distance in the fuzzy 

set.  If the numbers 18,19,20,21,and 22 were in the fuzzy set for "about 20 feet", their grade 

would be in the range of 0 to 1.  The closer to 1 the grade is, the more the distance is "about 20 

feet".  The grades of membership that are given come from data and people.  Membership 

functions that are measured from data have some calculation using the data to obtain the grade. 

Others use people's opinions to determine the "closeness" of a value to the given fuzzy 

information. 

 

 
Figure 3: Fuzzy membership plot example [15] 
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The standard fuzzy operations for membership functions are as follows [12]: 

)(m )(m  B A  )( BA xxEquality =⇔==     (1) 

)(m )(m  B A    )( BA xxtContainmen ≤⇔⊂⊂    (2) 

)(m - 1  )(m    (~) AA
xxComplement =      (3) 

)}(m),(min{m  )(m    )( BA xxxonIntersecti BA =∩ ∩    (4) 

)}(m),(max{m  )(m    )( BA xxxUnion BA =∪ ∪     (5) 

These are used to combine membership functions with each other.  For this system's rule 

processing, it uses classification trees to determine the minterms for its rule.  Since the rule 

processing was done in this manner, it was decided that using probability axioms and Bayes' 

intersection rule was necessary for the best results (discussed later).  The operations used are 

[11,13,14]: 

)()()()( BAPBPAPBAP ∩−+=∪  union   (6) 

)(1)( EPEP −=     complement  (7) 

)()()( BPAPBAP ⋅=∩    Bayes' intersection (8) 

 There has been much research done in color segmentation [2,3,4,7,8].  The use of fuzzy 

rules in image analysis seems to be most simular with the use of seed points.  The seed points 

are points used to be a basis for pixels in the image color analysis.  For the research done by 

Chamorro-Martinez et al., the seed points also provide an approximate edge to the object in the 

image [1].  The color features are fuzzified and the position of the seeds are stored.  The 

algorithm uses a cost function that is determined by the distance of one seed point to the next 

consecutive seed point.  By using the fuzzy data as a membership function, paths that go through 

a different region than what the seed point represents have high costs.  By minimizing the cost, 

the program can segment the pictures.   
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CHAPTER III 

 

LEARNING FUZZY MEMBERSHIP FUNCTIONS 

 

 In this chapter, the processing of information to provide data sets and method of 

extracting fuzzy rule sets are discussed.  The process for this object recognition algorithm 

consists of training the system on certain objects, processing these objects to determine rule 

trees, extracting the rules and studying the effectiveness of the rules.  This area focuses on 

training and analyzing the rules.  All programming is done in MATLAB which uses ".m" files. 

 

Feature Extraction 

 During the training step, sections of images are selected and given a label (class) 

according to what the object is. This is accomplished using the script file 

trainingthevideo.m.  The file creates a structure array called Imemory and allows the user 

to provide the objects to be trained. In the addtoImemory function, the name of the picture/ 

frame of video, upper left coordinate of the selection rectangle, the width of the rectangle, the 

height of the rectangle, and the class of the selected object are added to the Imemory structure, as 

shown in Figure 4. These areas are processed to extract the features of each object.  The function 

used is called getfeaturesfromImemory.  This function takes the name of the picture and 

selected coordinates and extracts the features of these areas.  The feature vector structure was 

originally 433 characteristics.  As testing continued, some of the features were removed because 

of processing costs. 
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Figure 4: Acquiring a selection region 

 

The first 250 of the 433 features are a histogram (or equivalently a probability density 

function, pdf) of color measurements for each training object.  The image was converted from its 

original RGB format to HSV.  The hue is broken into 10 bins, [0.00  0.05  0.14  0.22  0.28  0.45  

0.54  0.75  0.81  0.92  1.00].  Bin 1 (orange with a bit of red) is 0.00 to 0.05, bin 2 (yellow) is 

0.05 to 0.14, bin 3 (yellow-green) is 0.14 to 0.22, bin 4 (green) is 0.22 to 0.28, bin 5 (blue-green) 

is 0.28 to 0.45, bin 6 (blue) is 0.45 to 0.54, bin 7 (blue-violet) is 0.54 to 0.75, bin 8 (purple) is 

0.75 to 0.81, bin 9 (red-violet) is 0.81 to 0.92, and bin 10 (red) is 0.92 to 1.00.  The saturations 

and values are evenly distributed in to 5 bins each ranging from 0.00 to 1.00.  The bin values are 

[0.00  0.20  0.40  0.60  0.80  1.00].  Each color is represented by one bin for each of the three 

bands.   All possibilities of one bin selected from every band equals 250 different color features.  

The program looks at each color feature and finds the number of pixels that are defined in that 

feature.  After doing this for all the color features, there are 250 numbers, each representing the 

number of pixels of a certain color that is in the selection region.  The total number of pixels in 

the selection region divides these 250 numbers. 

The next feature is a standard texture measurement.  This feature measures the 

“roughness” of the area.  The texture is measured from the grayscale of the image.  The 

grayscale image is then filtered with a simple 3 by 3 Laplacian edge detector. Since there are 

possible negative values, the absolute value is taken of the normalized value (divided by 256 
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because of the 256 gray levels).  The sum normalized across the entire selection region (divided 

by the number of pixels in the selection region) is the texture measure.  The next feature is a 

texture measurement based on the Canny edge detector.  This feature was not used in any 

experiments discussed in this work. 

A motion feature was added to replace the Canny texture feature for some experiments.  

The motion feature used video feed to determine the amount of movement in an object.  This 

feature also uses the 256 level grayscale image.  The motion was calculated by taking the 

absolute value of the difference of consecutive frames in the selection region.  The difference 

matrix now contains numbers from 0 to 256.  The matrix is normalized from 0 to 1 and is 

summed to give the motion feature measure. 

The next feature was a phase symmetry feature.  This feature measures how symmetrical 

the graylevels in the region are.  This feature was not used in any experiments discussed in this 

work.     

The final 180 were line features.  This feature measures how much of the selection area 

contains lines at varying degrees.  By using the radon function in MATLAB over the selection 

region, each degree for 180 degrees for each pixel is calculated.  The maximum value for each 

row is taken and normalized over the selection region.  These features were removed eventually, 

but some experiments were preformed using this feature.  All the features are shown in Figure 5. 

 

 
Figure 5: Feature Vector 

 

  9 



Creating the Classification Tree 

 After all of the samples from the training objects are taken, the program now has a 

matrix of features for each sample and an array of class labels.  The matrix rows and the label 

array’s index correspond to each other (as shown below). 

 

FV =   L =  
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  feature matrix (a x 433)   class vector (a x 1) 

a = the total number of training samples for all objects 

Note: Each coordinate, nsf, contains the measure of feature number (f) in the sample number (s). 

 

Both of these are used by the MATLAB provided treefit function to create a classification 

tree.  Using these arrays, the function returns a structure array containing all of the information 

about the created tree.  For the classification process, you need four main items: sample set, 

splitting criteria, stopping criteria and pruning.  These are all parameters that can be set in 

treefit, but we use the default settings.  All the samples together are the parent node.  The 

most discriminatory feature is used to split the parent node into two child nodes.  The process is 

continued to create several more child nodes using the splitting function (Gini’s index of 

diversity was used as the splitting criterion). 

 The splitting criterions are a measure of impurities [9].  Impurities are the amount of 

indecisiveness in a probability function.  Lets say event t has 2 possibilities, higher or lower than 

threshold, in Node q are possible.  If there were no impurity, the pt/q (probability of t given q) 

would either be 1 or 0.  For most situations, there exists an impurity.  The maximum impurity 

would be pt/q would be 0.5.  This indicates the maximum amount of indecisiveness.  The 

probability that event t is higher or lower than the threshold given Node q are equally likely.  

This is a negative condition when considering using Node q to divide samples of object 1 and 

object 2.  The Gini improvement measure uses the Gini impurity function to find the optimal 
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(causes the least amount of impurity) Node j (parent node) to split a collection of samples.  The 

Gini diversity index is: 

Diversity index = 1 – p∑ i/j
2 = 2p1/j(1 – p1/j).     (10) 

This finds the impurity for Node j. 

Then, the impurity of the two new groups of samples (child nodes) created from Node j is 

calculated using the Gini diversity index.  The weighted averages of impurities for the child 

nodes are calculated. 
Weighted avg. of impurity = [(p1)(diversity index1)] + [(p2)(diversity index2)]  (11) 

The impurity is considered weighted because the amount of the parent node in child 1 (p1) and 

the amount of parent node in child 2 (p2) are taken into account.  The final step is to compare the 

impurity of the parent node with the impurities of the child nodes to receive the improvement 

measure. 
Improvement measure = impurity(parent node) – weighted impurity(child nodes) (12) 

Matlab finds all nodes that contain more samples than splitmin (discussed later) and are impure 

(having more than one class of samples in the node).  On these nodes, the feature that gives the 

best improvement measure is chosen and the samples are split. 

 The stopping criteria that treefit uses is a coefficient called splitmin.  This number, with 

default value of 10, determines the minimum number of samples that must be present in a node 

to able to be split again.  This limits the size of the classification tree. 

 The pruning of a classification tree cuts branches to the most optimal with the least size 

difference in the tree.  The branches are the splits that occur in the nodes when a tree is created.  

The branches lead to other nodes that can be split or to nodes that cannot be split (leaves).  The 

treeprune function begins by finding all of the branches that split into two leaves (twigs) and 

calculates the cost of the leaves.  Cost is a measure of misclassification.  Unless the matrix is 

pre-defined, the cost of each misclassification in each node is 1.  It also calculates the cost of the 

entire tree.  It systematically combines twigs that decrease the overall cost of the tree.  The 

function works to minimize 
Cost + alpha*treesize        (13) 
alpha = max (0 , nodecosts – sumbranchcost) / max(eps, numnodes) 
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cost =  if no previous cost is entered 

⎥
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M
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   cost (n x n) 

n = the number of classes 

nodecosts = the array of costs for each node 

sumbranchcost = the sum of all the costs for the branches 

numnodes = number of nodes 
Note: the max functions in the numerator and denominator are used to ensure the alpha is never negative or 

undefined. 

treesize = the number of branches and nodes. 

The function continues to prune until all optimal improvement measures (taken from the 

minimized alpha) are less than the error costs of the prune. 

 

 
Figure 6:  Sample classification tree 
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Rule Extraction 

 The method used for our system actually creates fifteen classification trees.  The original 

data is used to create a tree.  The analyzetreeseq.m file creates the loop to process the 

fifteen trees.  Once the rules (discussed later) are extracted from the original tree, the most 

significant discriminating feature is removed and a new tree is formed.  In Figure 6, the feature at 

the top of the tree, feature 99, would be set to zero for all vectors and the modified vectors would 

then be used to produce a new tree.  This is repeated fifteen times.  The reasoning behind this is 

that objects have more than one discriminating feature.  A single tree relies strongly on one set of 

features, which may differentiate most of an object from the rest of the sample set.  The “lesser” 

trees help to strengthen other discriminatory features that may be present in an object that the 

main tree does not use.  In effect, the “lesser” trees ensure greater use of the other features 

available, making the algorithm more robust. 

 The trees have rules that are extracted using the script file analyzetree.m.  Using the 

structure array returned from treefit, the percentage of each class in each leaf node is extracted.  

After taking the maximum percentage and its class of all the leaf nodes, they are sorted from 

largest to smallest.  The sorted leaf nodes can tell what are the final features that determine the 

last splits in the tree.  When the trees are created, the end splits lead to one leaf and another 

impure group or two leaves.  If the leaf is in the first column, then the leaf is decided to have less 

than the threshold amount of the deciding feature.  Each feature is used as a fuzzy membership 

function.  An array is created to hold whether a leaf node has less or more than the threshold 

amount with a –1 or 1.  In Figure 6, the bottommost set of leaves contains two classifications; 

PeachBlock and Hand.  The deciding feature for this particular split is feature 5.  As the program 

moves up the tree, -1 would be assigned for PeachBlock because it is less than the threshold at 

feature 5 and 1 for Hand.  All of the decision features are multiplied by a –1 or 1 and saved for 

each leaf starting from the leaf with the highest percentage.  These decision feature arrays start 

with the last decision and end at the first.  The result is an array of feature numbers that are either 

positive or negative listed from least significant to most.  This resulting array is called a minterm 

(a collection of grades of membership) for that specific case of a class.  Several minterms added 

together make a rule.  Each tree creates a number of minterms each for one of the object classes.  

The minterms for the same class are added together to create a rule. 

An example of part of the rule for Hand in Figure 6: 
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))(X)X()(X)X(( ))(X)(X)X((  Rule Hand 08141399141399 ∩∩∩∪∩∩=  (14) 

Above is an example of a possible rule taken from a set of trees.  Each term is considered a 

minterm.  Each variable is referring to a feature.  The "< threshold" next to the feature number in 

Figure 6 notes the manner in which the classification tree makes the decision.  The program 

changes the minterm to be interpreted in as a fuzzy set.  The equation 14 above would read: not a 

lot of feature 99 AND a lot of feature 13 AND a lot of feature 14 OR not a lot of feature 99 AND 

a lot of feature 13 AND not a lot of feature 14 AND a lot of feature 8 and so on.  As discussed 

earlier, the matrix of feature numbers would represent the example as follows: 

 

Table 1: Minterm storage example 

 Features     

Minterm 1 14 13 -99 0 0 

Minterm 2 8 -14 13 -99 0 

 

The minterms (rows) would continue till all the Hand classes for this tree are taken.  The number 

of features that can be held for each minterm (columns) is set at 40 currently but this limitation is 

arbitrary and can easily be increased.  Notice that the features closest to the leaf nodes are in the 

early columns of the matrix, this is due to the direction taken through the tree to collect the 

features.  The complete rule for this tree will encompass all of the Hand leaf nodes in the 

classification tree. 

 

Rule Analysis 

 After extracting the rules, a method was developed to observe the effectiveness of the 

rules amongst the other training vectors.  The reason was to study the minterms to determine if 

there were any methods to decrease incorrect classifications.  After processing the classification 

trees, extracting a matrix of minterms (as described above) and an array of numbers that 

corresponds to the minterm matrix indicating the class that a specific minterm is describing, the 

minterms are compared to each other to determine how object specific each one is. 
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Figure 7: Initial menu for minterm analysis 

 

 The overall setup of the program is to allow the comparison of minterms between classes.  

The main window of this observation program is shown in Figure 7.  By studying the 

discrimination graphs, specific minterms, individually selected or via a specified threshold, can 

be observed if desired.  The program allows for these minterms to be observed with their 

properties (colors, descriptive terms) and applied to images to give visual perspective on the 

minterm's discriminatory properties (discussed later).  To make studying different training sets 

more robust, the program allows for minterms of one dataset to be compared to training data of 

another dataset. 

 Once the desired class (chosen class) is identified, the program takes the minterm set of 

that class and compares it with each of the feature vectors of other classes (comparison classes).  

The result is a matrix whose columns correspond to the chosen class' minterms and the rows 

correspond to the comparison classes.  Each coordinate in this matrix contains the summed 

values of the comparison class' feature vectors for that minterm. 

Visual representation of previous paragraphs using classification tree example: 
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If the chosen class is Hand, Hand's minterms are extracted from the entire matrix (MTsample) 

using the class array. 
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n = the number of minterms defining the rule for the class Hand 

 Objects have the contribution from multiple features to establish their characteristics, just 

as the rules created suggest.  The operations used for standard fuzzy membership functions 

would negate the many features from each minterm.  For this reason, Bayesian rules are used.  

For example, 

 

If fuzzy operations are used, 

))(X)X()(X)X(( ))(X)(X)X((  Rule Hand 08141399141399 ∩∩∩∪∩∩=  (14) 

⇓  

)}}(X),X-(1),(X),X-(1max{, )}(X),(X),X-min{max{(1  Rule Hand 08141399141399=  (15) 
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This simply results in the finding the maximum feature value for each minterm and then finding 

the minimum of the two maximums.  The result would only contain the value of one feature 

rather than be compiled of all the features.  This method partially negates the reason for using 

classification trees. 

 

If the probability axioms and Bayes' intersection rule given independence are used, 

))(X)X()(X)X(( ))(X)(X)X((  Rule Hand 08141399141399 ∩∩∩∪∩∩=  (14) 

⇓   

))(XX-)(1)(XX-(1))(X)(XX-(1  Rule Hand 08141399141399 +=  (16) 

All the features of minterms that have value are represented.  The union rule is [14]: 

)()()()( BAPBPAPBAP ∩−+=∪   (6) 

When the union rule is implemented, the final term ( )( BAP ∩− ) is not used.  This part was 

ignored for ease of implementation.  The reason this can be removed is it can be argued that the 

final term will become incredibly small upon calculation.  Removing this term has not caused a 

noticeable decrease in the quality of results as compared to leaving it in. 

 Depending on whether the user chose to compare the chosen class to one comparison 

class or the chosen class to all comparison classes, the program collects the feature vectors of the 

chosen class and one or more comparison classes.  The features values are extracted according to 

the minterms for processing.  A value for each minterm is calculated for all the feature vectors.  

As the minterm calls for different features, these features are normalized from 0 to 1 with all the 

values of that feature in the class.   Depending on whether the feature number in the minterm is 

positive or negative, the value of the feature is interpreted as either normalized ni,j or 1 – 

normalized ni,j.  Once all the values are collected for each feature in the minterm, the values are 

multiplied together.  At this point, the value of a minterm for all the samples of one class has 

been collected.  The program continues to do this for every minterm in the chosen class minterm 

matrix.  The values are summed and saved for each class in a matrix called sumvectdata. 

 Lets assume there are 4 feature vectors of BlueBlock (feature vectors 7, 10, 25, 103) that 

are extracted from the complete feature matrix (FV).  Lets also assume that the first 2 minterms 

of class Hand are the only minterms. 
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          First 2 minterms for class Hand 

 

The measure of each minterm is calculated for each feature vector (MThand applied to FVblue). 

 

S =  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−
−−−

)1)()(1)(()1)()((
)1)()(1)(()1)()((
)1)()(1)(()1)()((

)1)()(1)(()1)()((

99,10313,10314,1038,10399,10313,10314,103

99,2513,2514,258,2599,2513,2514,25

99,1013,1014,108,1099,1013,1014,10

99,713,714,78,799,713,714,7

nnnnnnn
nnnnnnn
nnnnnnn
nnnnnnn

 

S =  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2,1031,103

2,251,25

2,101,10

2,71,7

valval
valval
valval
valval

 

Now val7,1 means the value of feature vector 7 for minterm 1.  To calculate the summed value of 

the BlueBlock class for Hand minterm 1 the first column of the score matrix (S) is summed. 

 

Ssum = [ ])()( 2,1032,252,102,71,1031,251,101,7 valvalvalvalvalvalvalval ++++++  

 

  18 



If there were only 2 Hand minterms and these 4 samples for BlueBlock, this 1x2 row vector 

(Ssum) would represent the BlueBlock feature vectors analyzed with Hand minterms of 

sumvectdata. 

Sumvectdata =  
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                sumvectdata (r x s) 

 

 

r = the comparison class and the chosen class (if only one comparison class is chosen), or all of 

the classes (if comparison with all classes is chosen) 

s = the number of minterms for the chosen class 

For example, v23 is the summed values of the third minterm for all the samples of class 2 

 

Now using these values, the program can evaluate how well each minterm applies to its class.  

Sumvectdata is divided into one row vector and a matrix.  The row vector is the values of the 

chosen class with for minterms (sumvectcorrect).  The matrix has the values of the incorrect 

classes, which are summed down each column to create a new row vector (vectwrong).  The 

elements of vectcorrect are divided by the corresponding elements of vectwrong to show the 

properties of each minterm. 

This process is shown below. 

 

  19 



 vectwrong =  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1

3534333231

11514131211

.

.
.

.....

r

s

v

vvvvv

vvvvvv

                matrix of incorrect class values (r –1 x s) 

 

 sumvectcorrect = [ ] .....2524232221 vvvvv

            array of correct class values (1 x s) 

 

Note: Assuming class 2 is the chosen class 

After summing down the columns for vectwrong, sumvectwrong is produced. 
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The results of sumvectcorrect / sumvectwrong (discrimratio) are plotted revealing the more 

powerful discriminating features, which appear as the higher peaks. 

 There are three sets of data that are being used in the following examples and plots.  The 

first two sets are taken from an outdoor setting.  The classes for both data sets are Tree, Grass, 

AL (Artificial Landmark), and Pathway.  One main difference of the two sets is in the feature 

vectors.  Both contain vectors that are 433 long.  The first set (Dataset 1) uses the 180 line 

features while the second set (Dataset 2) does not have these features.  Instead of changing the 

number of the column indices in the vector for the unused features, these indices are set to zero.  

Both contain the 250 color features and the standard texture measure.  Both sets also do not have 
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the Canny texture measure and the phase symmetry measure.  Another main difference is the size 

of the sample set, Dataset 2 contains 2079 samples for all of its classes while Dataset 1 only 

contains 191 samples for all of the classes.  The numbers of samples for each class are given in 

Table 2. 

 

Table 2: Sample quantities for Dataset 1 and Dataset 2 
 # of samples in Dataset 1 # of samples in Dataset 2 

TreeTrunk 66 115 

Grass 61 1048 

Pathway 47 899 

Artificial Landmark 17 17 

Total Samples 191 2079 

 

The third set (Dataset 3) of data is taken from a video of a joint project with the psychology 

department.  The classes in this set are BlueBlock, GreenBlock, PeachBlock, Hand, and 

RedStrip.  This data set also contains 250 color features and the standard texture measure.  This 

data set contains the motion feature but does not have the 180 line features. Dataset 3 has 250 

samples for its classes (50 samples for each class).  Lets examine what is shown for datasets and 

what can be deduced from the plots. 
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Figure 8:  Comparison plot for TreeTrunk using Dataset 1 

 

The minterm labels on the x-axis correspond to the rows in the chosen class' extracted matrix.  

These minterm labels are used to find the actual minterm content when analyzing minterms.  The 

y-axis is the ratio of minterm strength for the correct class over the minterm strength for the sum 

of the incorrect classes.  The minterms that are the most discriminating have higher peaks.  A 

problem with the way these plots are calculated is its dependency on the number of samples in its 

class.  The method used does not adjust for class 1 having more samples than class 2.  The values 

on the y-axis do not give a measure that can be equated to minterm comparisons of different 

classes.  Nevertheless, the calculation is still useful for determining the most discriminatory 

minterms.  Figure 9 shows the secondary menu after a class comparison is evaluated.   

 

  22 



 
Figure 9: Secondary Menu after Class comparison 

 

For example lets look at minterm label 68 in Figure 8 since it has a large spike.  Figure 10 shows 

the information for this minterm, which we summarize as: 

 

 
Figure 10: TreeTrunk minterm label 68 from Dataset 1 
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Table 3: TreeTrunk minterm 68 from Dataset 1 
Feature 94 
hsv color parameters hue=0.25 saturation=0.7 value=0.7 
Little of this feature 
 

Feature 251 
Texture measure based on Laplacian 
Little of this feature 
 

Feature 244 
hsv color parameters hue=0.96 saturation=0.7 value=0.7 
Little of this feature 
 

Feature 254 
straight line measure at angle of -89 degrees 
A lot of this feature 
 

Feature 54 
hsv color parameters hue=0.18 saturation=0.1 value=0.7 
Little of this feature 

 

By selecting "Examine a Minterm", the minterm description image and description text appear 

after indicating the minterm label.  We have observed that the algorithm has tendencies to 

evaluate a class by what features it does not have versus the stronger features it does have.  The 

reason for this may be that the feature vectors are mostly zero throughout making it much more 

likely to choose features that do not exist rather than the few features that do exist.  Due to this 

fact and the preferred method of description for objects, special notice is shown for features that 

are stronger (used in the classification tree) and are significant due to the large measures taken 

from the feature. 
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Figure 11: Comparison plot from Dataset 2 

 

 In the case for the Artifical Landmark, there are 3 very prominent peaks in Figure 11.  

The artificial landmark is a 3-color cylinder (neon pink, neon orange, neon green) created for 

object recognition.  Obviously, its main purpose is to stand out from its surroundings.  The y-axis 

values are very small.  This reinforces the previous explanation about the number of samples in 

the set distorting the outcome of the y-axis in the plots.  The artificial landmarks have only 17 

samples out of 2079.  The program still does well determining the landmarks.  Even though the 

minterms determine the artifical landmarks well, the description of the minterm is not easily 

understood.  The description a human would give would be likely to focus on the three bright 

colors in the landmarks.  This is not the case in our algorithm as shown below in Figure 12.    
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Figure 12: AL minterm label 48 from Dataset 2 

 

Table 4: AL minterm 48 from Dataset 2 

Feature 35 
hsv color parameters hue=0.095 saturation=0.3 value=0.9 
A lot of this feature 
 

Feature 53 
hsv color parameters hue=0.18 saturation=0.1 value=0.5 
Little of this feature 
 

Feature 46 
hsv color parameters hue=0.095 saturation=0.9 value=0.1 
Little of this feature 
 

Feature 58 
hsv color parameters hue=0.18 saturation=0.3 value=0.5 
A lot of this feature 

 

Features 35 and 46 have the same hue value.  This value indicates orange for the color.  Feature 

35 is a faded orange that is very bright (strongly resembles peach).  Feature 58 is a vibrant 

orange that has very little brightness (strongly resembles black). Features 53 and 58 have the 

same hue as well.  Their color is yellow-green. Feature 53 is faded to the point that it is difficult 

to detect any color and has some brightness (strongly resembles gray).  Feature 58 is faded and 

has some brightness (strongly resembles brownish-green).  This minterm is looking for a lot of 

the peach and brownish-green and little of the gray and black.  The representation does not quite 

meet the expectations of the description in human terms.  Though this is just one of the spiking 
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minterms, all of the highest 3 have similar representations.  These representations give a good 

grasp of the reasons for the program's decisions and may lead to selection of stronger additional 

features. 

 
Figure 13:  Comparison plot of Dataset 3 

 

Due to the nature of the experiments performed with the Psychology Department (C.F. Chapter 

V), the motion feature was added to aid in segmenting the hand.  Figure 13 shows a comparison 

of the Hand minterms to the other classes, and Figure 14 examines minterm label 20. 
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Figure 14: Hand minterm label 20 from Dataset 3 
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Table 5: Hand minterm label 20 from Dataset 3 

Feature 19 
hsv color parameters hue=0.025 saturation=0.7 value=0.7 
Little of this feature 
 

Feature 8 
hsv color parameters hue=0.025 saturation=0.3 value=0.5 
Little of this feature 
 

Feature 252 
Motion detection measure 
A lot of this feature 
 

Feature 13 
hsv color parameters hue=0.025 saturation=0.5 value=0.5 
Little of this feature 
 

Feature 239 
hsv color parameters hue=0.96 saturation=0.5 value=0.7 
Little of this feature 
 

Feature 251 
Texture measure based on Laplacian 
A lot of this feature 
 

Feature 65 
hsv color parameters hue=0.18 saturation=0.5 value=0.9 
Little of this feature 

 

This minterm describes a bunch of colors that should not be included with the hand.  Features 19, 

8, and 13 are all orange-red with varying saturations and mid-range values (resembles orangish-

brown, brown, and light brown).  Feature 239 is red with mid-range saturation and high value 

(resembles reddish-violet).  Feature 65 is a yellow-green with mid-range saturation and very high 

value (resembles a bright yellow).  Little of the colors are expected in this minterm.  The 

minterm also contains a lot of feature 251 and 252.  Feature 251 is the Laplacian texture 

measure.  Feature 252 is the new motion feature.  The additional motion feature was significant 

for the hand detection, allowing the motion patterns of people to be tracked for study. 

 The features that were removed were because of computation costs and/or lack of 

significance in the classification of objects.  For a majority of the samples, color features are the 

strongest.  In the case for TreeTrunk between Dataset 1 and Dataset 2, Dataset 1 consistently has 
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the line measure feature in its minterms and does a better job of classifying tree trunks in images 

(shown later).  For outdoor datasets, the line feature appears to be a useful feature. 
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CHAPTER IV 

 

APPLYING THE MEMBERSHIP FUNCTIONS TO IMAGES 

 

 This chapter's purpose is to discuss applying the rules to a new image, and displaying the 

results of the image processed with the rules. 

 After the training vectors have been entered and the rules have been extracted, the next 

step is to apply these rules to images.  First, the image is loaded using the function imread in 

the Matlab Signal Processing Toolkit.  Now the features of the image need to be extracted. 

 

Extracting Image Features 

 The process of extracting a feature set from a new image is the same method used to 

gather the training sample's features.  The main difference is the moving window used to define 

areas in the image from which the features are extracted.  Currently, the window is 15 by 15 

pixels and it increments by 10 pixels in the row and column directions.  These values are 

arbitrary and can be changed easily, but a decrease in window increment (increase in resolution) 

increases the processing time.  The window increments are constrained not to exceed the image 

when the window reaches the borders of the image.  The features of each window are extracted 

and put into a matrix form.  This matrix is similar to the feature matrix in the training data except 

the number of rows is now the number of windows in the new image.  This process is shown 

below. 
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WinF =  
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r = rows in the image 

c = columns in the image 

n = number of 15x15 windows in image. 

 

Applying the Rules to the Image 

For each tree formed, we obtain one rule (in a sum of minterms form) for each object class.  

Thus, if the total number of trees formed is given by Ntrees, then there will be Ntrees rules for each 

object class.  For a given object class, Ci, each rule is applied to the window feature matrix, 

resulting in Ntrees result matrices for class Ci.  A result matrix gives the degree of membership 

estimated for each region by the applied rule.  What remains to be done to combine the Ntrees 

results for the given class into a single result.  Viewing the individual results as fuzzy sets, we 

may combine them using the union of the Ntrees results using either Equation (5) or (6).  

However, this approach yielded poor results. 

 We use another approach to combining the results in to switch to another paradigm of 

interpretation.  If we take each result vector and divide it by the total sum of all values in the 

result vector, the new normalized vector now has a sum of values equal to 1.  Thus, the vector 

can be viewed as a probability density function (pdf) describing the distribution of the objects of 

class Ci as estimated by the associated rule, Ri, j=1,…,Ntrees.  This pdf is denoted by  

)),(( RCyxf i∈  where R = R1,….,RNtrees     (17) 

Then using a probabilistic assumption of equally likely rules. 

P(Rj) = 
treesN
1  j = 1,2,…,Ntrees      (18) 

The pdfs may be combined as 

)),(( iCyxf ∈ = ∑
=

Ntrees

k 1
)),(( ki RCyxf ∈ P(Rk)     (19) 
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This method of combining the rule outputs yielded good results.  The fuzzy membership 

functions seem to give a more robust evaluation of the data when gathering features.  The 

Bayesian methods give a more robust expression of the features after they are combined.  So by 

adding the probability density function of fuzzy membership rules across the entire image, the 

strength of both fuzzy rules and Bayesian probability rules can be observed. 

These values are represented visually as a saliency map by applying a grayscale colormap 

to display the results.  Using the function reshape, Matlab can manipulate this array of summed 

values back into the relative positions of each window in the image.    The image has brighter 

spots for areas in the image that values are higher compared to the other values of the set.  The 

minterms for a class worked well if the values (brightness) of the object contrast highly with the 

values (brightness) of objects that are not of the class.  The resolution decrease observed in the 

output images is due to the reduction of each increment of the window down to one pixel 

representation.   

Lets observe the differences between Dataset 1 and Dataset 2.  Please note that the 

following steps were done numerous times with different images.  The examples are representing 

the general discoveries of analysis. 

 

 
Figure 15:  Original Image 
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Figure 16:  Pathway detection from Dataset 1 

 

 
Figure 17:  Pathway detection from Dataset 2 

 

 
Figure 18:  Grass detection from Dataset 1 
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Figure 19:  Grass detection from Dataset 2 

 

 
Figure 20:  TreeTrunk detection from Dataset 1 

 

 
Figure 21: TreeTrunk detection from Dataset 2 

 

The original image was created with a 360 degree panoramic mirror and unfolded as shown in 

Figure 15.  This is the reason for the black areas at the top of the image.  The main observation to 

note is the significant increase in rule strength due to increase in the number of training vectors, 
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especially for the grass (Figure 18 and 19) and pathway (Figure 16 and 17).  Due to the manner 

in which the images are created, the stronger the contrast between the pixels means the better the 

rule was at detecting the object.  Remember that Dataset 1 contains only 191 vectors and Dataset 

2 contains 2079.  The improvement in the pathway and grass detection is apparent.  The main 

reason behind the improvement is the vast increase in samples.  The TreeTrunk detection did not 

noticeably improve even though the number of samples increased (Figure 20 and 21).  These 

observations lead to more analysis to try and determine the reason.  The option may be chosen to 

select a pixel and display the percentages of how much each minterm devoted to the total value.  

In the areas that were correctly decided as TreeTrunk, the pixels were selected to determine if 

any more information could be extracted about the minterms.  Below is the bright pixel from 

Dataset 1 at row 5 column 8 from Figure 20: 

 

 
Figure 22: Minterm percentage contribution to pixel (5,8) 
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The numbers on the y-axis represent the percentage each minterm contributed to the selected 

pixel and the x-axis is the minterm labels in Figure 22.  The reasoning behind creating the pixel 

selection was to allow for the minterms above certain thresholds to be saved and used to 

reanalyze the image determine if the results would improve.  For Figure 23, a threshold of 

greater than or equal to 2% was set to determine whether these minterms would provide a better 

detection. 

 

 
Figure 23: TreeTrunk detection with minterms above 2% contribution at pixel (5,8) 

 

When compared to the original detection of TreeTrunk from Dataset 1, the use of the most 

contributing minterms did not improve.  The overall certainty (contrast) in the image decreased 

and some of the areas where these minterms were not as strong, that were actually TreeTrunks, 

were lost as well.   The minterms seem to work best as a complete rule.  The minterms contribute 

to the overall certainty of the detection.  The difference between the detection of Trees for 

Dataset 1 and Dataset 2 are very small.  Dataset 1 had only 66 samples while Dataset 2 had 115.  

The only thing Dataset 1 had was the line measure feature.  It may be deduced that either the line 

measure feature caused Dataset 1 to equally detect with Dataset 2 or the increase in the number 

of samples from Dataset 1 to Dataset 2 was not enough to be significant in detection. 

 The next step is to allow the detection of multiple objects in one picture.  Now the 

program must be able to decide whether a pixel is of a certain class or of no class at all.  Now the 

program is taking the window feature matrix and extracting the rules for all the classes. The 

resulting matrix (ImSc) has n (number of windows in image) rows by y (number of classes) 

columns. 
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  ImSc =  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

M

L

6,45,44,43,42,41,4

6,35,34,33,32,31,3

6,25,24,23,22,21,2

6,15,14,13,12,11,1

scscscscscsc
scscscscscsc
scscscscscsc
scscscscscsc

                        score matrix ( n x y) 

n = number of windows in image 

y = number of classes 

 

Each index in score matrix is the value of that windows score with the class' minterms.  These 

scores are normalized from 0 to 1 along classes (columns).  The scores are then compared to 

each other in the same row.  The window is decided to be a certain class if it has the largest score 

in the rows and it is greater than 0.15 (a threshold chosen empirically by observing graphs of the 

scores).  This value can be increased to ensure only the higher scores to be recognized as 

different classes.  The sample image in Figure 24 was taken from the psychology department 

experiments.  The goal is to study the motion of humans when given different descriptions of the 

audience.  It is necessary to be able to track the hand for this experiment.   
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Figure 24:  Sample Image 

 

 
Figure 25: Redstrip score plot for Sample Image 

  39 



 
Figure 26: RedRing score plot for Sample Image 

 

 
Figure 27: YellowRing score plot for Sample Image 
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Figure 28: BlueRing score plot for Sample Image 

 

 
Figure 29: Hand score plot for Sample Image 
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Figure 30: Segmentation Image for Sample Image 

 

The result of the sample image (Figure 30) shows the segmentation (yellow = BlueRing, green = 

RedRing, blue = YellowRing, purple = Hand, and red = RedStrip).  The plots of the BlueRing 

(Figure 28) and YellowRing (Figure 27) definitely show that the group of peaking values 

represents the object in the video.  The RedRing plot (Figure 26) has two groups of peaking 

values for the object and the red tape.  The Hand plot (Figure 29) indicates detection in the image 

though there is no hand in view.  The face of the person is represented as Hand, which is logical 

since the face has about the same color as the hand.  The plot of the RedStrip (Figure 25) 

indicates detection as well.  As shown in the result, the strip on the hat is correctly identified. 
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CHAPTER V 

 

APPLICATIONS AND RESULTS 

 

 This chapter discusses the use of the fuzzy membership recognition algorithm to discern 

the objects and movements in instructional task videos. 

 

Objective of Experiment 

 The experiment is to use the fuzzy membership recognition algorithm to discern objects 

in videos from the psychology department.  One of the objects is the person's hand.  As stated 

before, the ultimate goal is to study the differences the in motion of a person when demonstrating 

a task for different entities (humans or robots).  The main objective is to segment movies created 

by their department and be able to track the hand as well as the head angle.  Each participant was 

to wear a hat with a red stripe at the center of the hat.  This was to aid in discerning the direction 

the participant was looking.  By tracking these two movements, they are able to store data on 

where the subject was looking and hand motion patterns.  They speculated that the hand motion 

of the subject when told they were performing for a robot would be slower and more rigid.  The 

information will also reveal the effectiveness of the fuzzy rules deduction and demonstrate the 

speed of training to new environments. 

 The immediate goal is to show that the recognition algorithm is effective in segmenting 

the objects in videos created for study by the psychology department.  It can track the 

movements of the hand and the angle of the head, and the system is easily trained and 

implemented with a relatively small number of samples.   

 

Experiment Setup 

 The participants are told to show either a human or a robot how to move some objects on 

a table to complete a task.  The three tasks shown here are the card arrangement, towers of 

Hanoi, and tower building tasks.  Each of the tasks has objects of different colors. 
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Figure 31:  Card arrangement task initial setup 

 

 
Figure 32:  Card arrangement task completed 
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The card arrangement task shown in Figures 31 and 32 is to take the cards arranged by color and 

shift them to be arranged by the number of white squares on them.  The only limitations are that 

the person may only use one hand and the cards are not allowed to pass over each other. 

 

 
Figure 33: Towers of Hanoi task initial setup 
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Figure 34: Towers of Hanoi task completed 

 

The Tower of Hanoi task shown in Figures 33 and 34 is to move the stack of colored rings from 

the spindle on the most right side of the image to the left.  A ring can only be moved to an empty 

spindle or on top of a larger ring.  Again, the task is to be completed with one hand. 
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Figure 35: Tower building task initial setup 
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Figure 36: Tower building task completed 

 

The tower building task is to take the blocks in Figure 35 and construct them to the structure in 

Figure 36.  The participant is to attempt to build the tower with one hand but may use both if 

necessary. 

Two new script files were created to easily train and process the videos by consolidating 

the current functions.  A small algorithm is used to plot an estimated line for the center of the 

head, an estimated line for the direction of the gaze, and a marker to determine the hand position.  

The first two use the image segmentation of the red strip on the head.  The strip is separated from 

the rest of the image by only considering the region where the head of the participant is.  The 

center of the strip is considered the center of the head.  A line is plotted going straight down from 

the center.  The estimation of gaze uses what the algorithm determines is the red strip at the head 

region, and puts a best fit line to the points to determine the line of the gaze.  The line of the gaze 

is plotted along with a verticals centerline, thus an angle of gaze from the center can be 
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estimated.  The hand marking finds the range of hue values that flesh tones fall in for the image 

and multiplies them by the amount of motion detected in the same image.  So the coordinates 

match, the flesh-tone/ motion product image is down sampled to match the segmented image 

coordinates.  The hand position is simply the max value in the down sampled flesh-tone/motion 

image. 

The processed videos segmented very well.  Each video was created using a training 

vector of only 50 samples for each object.  The collection of the 250 samples takes about 30-45 

minutes to collect for each task.  A huge feature space (252 dimensional) needs many samples to 

create solid clusters.  Although the numbers of samples are only 250, the recognition of the 

videos is reasonably accurate.  Table 6 shows the object classes for each task. 

 

Table 6: Class names for the three separate tasks 
Towers of Hanoi task Card arrangement task Tower building task 

BlueRing BluePaper GreenBlock 

YellowRing GreenPaper PeachBlock 

RedRing PinkPaper BlueBlock 

RedStrip RedStrip RedStrip 

Hand Hand Hand 

 

 

Results 

The results had some noise but this is probably due to the limited number of samples.  

The videos themselves segmented very well considering the small number of samples.  The two 

main areas of noise are from "inconsistent flashes" and the skin tone items in the image (i.e., 

PinkPaper).  The inconsistent flashes are areas that are not the object it is identified to be but due 

to minor feature characteristics of the image scoring high enough to be considered an object.  

Remember the object is decided from its score on the rules.  Since the score is normalized from 0 

to 1 across all the windows of the frame, some noise (i.e., lighting differences) causes a 

fluctuation in the scores of all the windows giving incorrect results.  Also, the color features are 

not fine enough to separate the colors of the skin and pink.  Integrating more samples into the 

training matrix can reduce the noise from the inconsistent flashes.  Increasing the number of bins 

in the color feature space will separate very close colors in the hue space to different bins.  The 
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noise reduction would probably be at least half as noisy if the samples doubled.  The small 

number of samples allows for decent detection, the pixels that were correctly detected can be 

saved and used as additional training vectors.  This allows for the training vector samples to 

increase dramatically with each frame results.  This change can allow for quick analysis on the 

effectiveness of the fuzzy rule.  If the object detection does not improve with samples, the most 

likely action is to adjust the feature vector itself. 

In all of the videos, the hand marking and gaze estimation worked rather well.  By storing 

these numbers, the hand motions can be analyzed to reveal possible motions of the hand.  By 

taking these vectors of positions in the hand, it is possible to extract changes in the direction of 

the hand and/or pauses.  Using these to segment one motion of the hand from another, the frames 

where the changes occur can be displayed and analyzed.  Figure 37 is an example of motion 

display for Figure 33. 

 

 
Figure 37: Motion image of Figure 33 
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The collected hand positions give the following plots.  Figure 38 is the median-filtered x-

axis (column) position of the hand plotted vs frame number. As the numbers increase, the farther 

to the right side of the image is the hand location.  Figure 39 is a derivative of the median-filtered 

x-axis hand motion used to aid in extracting the pauses in the x directions.  Figure 40 is the 

median-filtered y-axis (row) position of the hand.  As the numbers increase the closer to the 

bottom of the image is the hand location.  Figure 41 is the derivative of the median-filtered y-

axis hand motion used to aid in extracting the pauses in the y directions. 

 

 
Figure 38: X-axis hand position 

 

 
Figure 39: Derivative of x-axis hand position 
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Figure 40: Y-axis hand position 

 

 
Figure 41: Derivative of y-axis hand position 

 

Figures 42 through 56 are the frames estimated to be the transition points from one 

motion to the next for the Tower 2 video: 
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Figure 42: End - Reach to RedRing, Begin - Place 

 

 
Figure 43: End – Place RedRing, Begin - Reach 
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Figure 44: End – Reach YellowRing, Begin - Place 

 

 
Figure 45: End – Place YellowRing, Begin – Reach  
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Figure 46: End – Reach RedRing, Begin – Place 

 

 
Figure 47: End – Place Redring, Begin –  Reach 
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Figure 48: End – Reach BlueRing, Begin - Place 

 

 
Figure 49: End – Place BlueRing, Begin - Reach 
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Figure 50: End – Reach RedRing, Begin - Place 

 

 
Figure 51: End – Place RedRing, Begin - Reach 
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Figure 52: End – Reach YellowRing, Begin – Place  

 

 
Figure 53: End – Place YellowRing, Begin - Reach 
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Figure 54: End -  Reach RedRing, Begin – Place 

 

 
Figure 55: End – Place RedRing, Begin – Move to rest 
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Figure 56: End – Move to Rest 
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CHAPTER VI 

 

CONCLUSION 

 

 The use of fuzzy membership functions for object recognition is one of the better ways to 

develop a learning object recognition system.  This system takes advantage of the classification 

trees, which allows it to relate to objects through the feature vectors in a manner that is easy to 

understand.  The simple training process allows for many different features to be added.  These 

features are can be used in many interesting manners, due to the way they are stored.  The 

motion image can be used to find when motion below the hand is at a maximum to determine if 

the hand is moving a object.  Just as the hand's position can be stored, other objects (i.e., a red 

strip) can be used to track other significant motions in the image. 

 The processing of the videos takes a long time.  The goal of the system is to run in real-

time eventually.  This slowness may be due to MATLAB not being the optimal system to run the 

image processing.  The code will be ported to C++ to determine how much faster it can be 

processed. 

 The low resolution does not allow for the detection of small hand movements.  Increasing 

the resolution increases the process time quite a bit.  This problem may also be improved if the 

port to C++ will be a significant decrease in processing time. 

The object recognition of images can be used to add to the training vector by taking the 

window samples that are correctly identified.  Using this method, the number of samples will 

increase dramatically.  As the number of training vectors grows larger, storage will become an 

issue.  Since the vectors are mostly zero, they can be stored as a sparse vector to solve the 

problem immediately.  In the long run, it will be necessary to create a general model for objects 

to conserve space. 

Morphology could be used to reduce noise in recognition.  This process would help 

reduce the random noise spots that occur in the recognition process. 

Combining the training sets could allow for subject identification for the same tasks.  The 

subjects that are asked to do the same tasks may have different enough skin tones to be 

identified.  It is likely that the color histogram would need to be able to represent a high number 

of colors in the skin tone. 
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The ability for a robot to create descriptions of a feature vector and motions may lead to 

instruction.  These instructions can be used to teach other robots how to do certain tasks.  Their 

feature vectors will identify objects. The human's hand can be tracked to observe the behavior.  

The robot can track its own hand and mimic the behavior observed from the human.  In terms of 

navigation, a robot can observe the features of a pathway and use a simple cost/reward system to 

learn about objects in its environment. 

 There are many different paths to explore with this system.  A possible 

application is to be used as the perception module in a working memory system.  
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 APPENDIX 
 
 
addtoImemory.m 
 
function Imemory = addtoImemory(Imemory, picturename, classlabel, picnum) 
 
nextvec = length(Imemory) + 1; 
X = aviread([picturename],picnum); 
x = X.cdata; 
figure(1), image(x) 
[xcrop, xrect] = imcrop; 
xrect = round(xrect); 
Imemory(nextvec).picture = picturename; 
Imemory(nextvec).picturenum = picnum; 
Imemory(nextvec).upperleftrow = xrect(2) ; 
Imemory(nextvec).upperleftcol = xrect(1); 
Imemory(nextvec).width = xrect(3); 
Imemory(nextvec).height = xrect(4); 
Imemory(nextvec).class = classlabel; 
 
set(rectangle('Position',[ Imemory(nextvec).upperleftcol Imemory(nextvec).upperleftrow 
Imemory(nextvec).width Imemory(nextvec).height]), 'Edgecolor', [0 1 0]) 
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addtoVideostruct.m 
 
function Videostruct = addtoVideostruct(Videostruct, picturename) 
 
nextvec = length(Videostruct)+1; 
Videostruct(nextvec).picturename = picturename; 
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analyzetree.m 
 
t = treefit(FV, Landmarks); 
 
classtotals = t.classcount(1,:);        % total numbers of training vectors for each class 
leaves = find( t.children(:,1) == 0);   % list of leaf nodes 
 
leafpercentages = t.classcount(leaves,:) ./ (ones(size(leaves))*classtotals); %percentage of each 
class in each leaf node 
 
[maxpercentage, maxpercentageclass]= max( leafpercentages' ); 
 
% Find max percentage class for each leaf node and sort from largest to 
% smallest 
[maxpercentage, sortorder] = sort(maxpercentage); 
maxpercentage = fliplr(maxpercentage); 
sortorder = fliplr(sortorder); 
maxpercentageclass = maxpercentageclass(sortorder); 
leaves = leaves(sortorder); 
 
decisionvars = t.var(t.parent(leaves));  % feature number of each parent node of the leaf nodes 
for i=1:length(leaves) 
    if leaves(i) == t.children(t.parent(leaves(i)), 1) 
       lotorlittle(i) = -1; 
    else 
       lotorlittle(i) = 1; 
    end    
end 
 
%[leaves maxpercentage' decisionvars lotorlittle'] 
 
ruledepth = 40; 
rulebase = []; 
for i=1:length(leaves) 
    temprule = zeros(1, ruledepth); 
    leaf = leaves(i); 
    temprule(1) = decisionvars(i)*lotorlittle(i); 
    currparent = t.parent(leaf); 
    ruleindex = 1; 
    while currparent ~= 1 
        currnode = currparent; 
        currparent = t.parent(currnode); 
        children = t.children(currparent) == currnode; 
        ruleindex = ruleindex + 1; 
        if children(1) == 1 
            temprule(ruleindex) = -1*t.var(currparent); 
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        else 
            temprule(ruleindex) = t.var(currparent); 
        end 
    end 
    rulebase = [rulebase ; temprule]; 
end 
 
[leaves maxpercentage' rulebase] 
t.classname(t.class(leaves)) 
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analyzetreeseq.m 
 
FV(:,253) = 0; 
 
leavestotal = []; 
maxpercentagetotal = []; 
rulebasetotal = []; 
classnamestotal = [ ]; 
classtotal = []; 
loopnumbertotal = []; 
 
for loopcount = 1:15 
 
analyzetree 
 
[numberofrules, coltemp]=size(rulebase); 
 
leavestotal = [leavestotal ; leaves]; 
maxpercentagetotal = [maxpercentagetotal ; maxpercentage']; 
rulebasetotal = [rulebasetotal ; rulebase]; 
classnamestotal = [classnamestotal ; t.classname(t.class(leaves)) ]; 
classtotal = [classtotal ; t.class(leaves) ]; 
loopnumbertotal = [loopnumbertotal ; loopcount*ones(numberofrules,1)]; 
 
FV(:, t.var(1) ) = 0; 
 
end 
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applyimagerule2.m 
 
function [Decisionmat2, mask2] = applyimagerule2(features, rulevec, nrows, ncols) 
 
[numrules, coltmp]= size(rulevec); 
mask2 = zeros(size( features(:,1) )); 
[a b]=size(features); 
Decisionmat2 = []; 
Rule=[]; 
for rule = 1:numrules 
   mask = ones(size( features(:,1) )); 
   i=1; 
   while (rulevec(rule,i) ~= 0) %while loop processes one minterm at a time 
      temp = features(:, abs(rulevec(rule,i)) ); 
      if sum(temp) ~= 0 
        if rulevec(rule,i) > 0 
          tempmask = temp/max(temp); 
           
        else 
          tempmask = max(temp)/max(temp) - temp/max(temp); 
           
          %tempmask = ones(size(temp)); 
        end     
        mask = mask .* tempmask; 
      end   
       
      % Decisionmat2 = [Decisionmat2 mask]; 
      % Now mask contains one minterm's results 
      i = i+1; 
   end 
   Decisionmat2 = [Decisionmat2 mask]; 
   mask2 = mask2 + mask; 
end 
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applyrules2.m 
 
classmasks=[]; 
classmasksnorm=[]; 
maxoverall=zeros(max(size(features)),1); 
CLASSoverall=zeros(max(size(features)),1); 
for incre=1:length(t.classname) 
    classnum=incre; 
Numterms = loopnumbertotal(length(loopnumbertotal));   
 
III = find(classtotal == classnum); 
classrules = rulebasetotal(III, :); 
loopclass = loopnumbertotal(III); 
 
%mask = ones(numrows*numcols, 1); 
[featrows, featcols] = size(features); 
mask = zeros(featrows, 1); 
Decisionmatim=[]; 
Rulematrixim=[]; 
for lcount = 1:Numterms 
  % get rules from tree number lcount   
  I = find(loopclass == lcount); 
  looprules = classrules(I,:); 
  
  [Decisionmat2, mask2] = applyimagerule2(features, looprules, 1, 1); 
  Rulematrixim=[Rulematrixim; looprules]; 
  mask2 = mask2 / sum(mask2); 
  Decisionmatim=[Decisionmatim Decisionmat2]; 
  mask = mask + mask2; 
end 
classmasks=[classmasks mask]; 
classmasksnorm=[classmasksnorm mask./max(mask)]; 
classmasksnorm2 = mask./max(mask) > 0.15; 
classmasksnorm2 = mask./max(mask) .* classmasksnorm2; 
CLASSoverall= classnum .* (classmasksnorm2 > maxoverall) + CLASSoverall .* 
(classmasksnorm2 <= maxoverall); 
maxoverall=classmasksnorm2 .* (classmasksnorm2 > maxoverall) + maxoverall .* 
(classmasksnorm2 <= maxoverall); 
end 
 
% remaxoverall = reshape(maxoverall,numrows,numcols); 
% reclassoverall = reshape(classoverall,numrows,numcols); 
 
 
cmap = [ 
    0 0 0 
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    1 0 0  
    0 1 0  
    0 0 1 
    1 1 0 
    1 0 1 
    0 1 1 
    0.5 0.5 0.5 
    1 1 1]; 
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getclassesfromImemory.m 
 
function Landmarks = getclassesfromImemory(Imemory) 
 
for i=1:length(Imemory) 
    Landmarks(i) = {Imemory(i).class};  
end 
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getfeaturesfromImemory.m 
 
function FV = getfeaturesfromImemory(Imemory) 
 
FV = []; 
 
for i=1:length(Imemory) 
     
    Im = Imemory(i);  
    Irect = [Im.upperleftcol Im.upperleftrow Im.width Im.height]; 
    picnum = Im.picturenum; 
    M = aviread([Im.picture],picnum); 
    x = M.cdata; 
    M = aviread([Im.picture],picnum-1); 
    xim1 = M.cdata; 
    features = getregionfeaturesfromImemory(x, Irect ,xim1); 
    FV = [FV ; features]; 
    i 
end 
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getregionfeaturesfromImemory.m 
 
function features = getregionfeaturesfromImemory(x,rect,xim1) 
 
 
rect = round(rect); 
xsec = x( rect(2):(rect(2)+rect(4)) , rect(1):(rect(1)+rect(3)) , : ); 
xim1sec = xim1( rect(2):(rect(2)+rect(4)) , rect(1):(rect(1)+rect(3)) , : ); 
y = rgb2hsv(xsec); 
yh = y(:,:,1); 
ys = y(:,:,2); 
yv = y(:,:,3); 
 
yg = rgb2gray(x); 
ygsec = rgb2gray(xsec); 
 
Nfilt = 15; 
Ndec = 10; 
 
havg = ones(Nfilt, Nfilt)/(Nfilt^2); 
 
[nrows, ncols] = size(yh); 
 
hues = [0 .05 .14 .22 .28 .45 .54 .75 .81 .92 1]; 
sats = 0:(1/5):1; 
vals = 0:(1/5):1; 
 
features = []; 
for h = 1:length(hues)-1 
   for s = 1:length(sats)-1 
      for v = 1:length(vals)-1 
         if  (h==1)  
             tmph = (hues(h)<=yh)&(yh<=hues(h+1)); 
         else 
             tmph = (hues(h)<yh)&(yh<=hues(h+1)); 
         end     
         if  (s==1)  
             tmps = (sats(s)<=ys)&(ys<=sats(s+1)); 
         else 
             tmps = (sats(s)<ys)&(ys<=sats(s+1)); 
         end     
         if  (v==1)               
             tmpv = (vals(v)<=yv)&(yv<=vals(v+1)); 
         else 
             tmpv = (vals(v)<yv)&(yv<=vals(v+1)); 
         end     
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         colorseg = tmph .* tmps .* tmpv; 
         numcolors = sum(colorseg(:)); 
         features = [features numcolors/(nrows*ncols)]; 
                                     
      end 
   end 
end  
 
hlap = [-1 -1 -1 
    -1 8 -1 
    -1 -1 -1]/8;whos 
texture1 =  abs(filter2(hlap, ygsec)/256); 
texture1 = sum(texture1(:))/(nrows*ncols); 
features = [features texture1]; 
 
 
motsec = abs(double(rgb2gray(xsec)) - double(rgb2gray(xim1sec))); 
% motsec2 = filter2(havg, abs(filter2(hlap, motsec)/256)); 
motsec2 = sum(motsec(:)/(nrows*ncols)); 
features = [features motsec2]; 
 
%texture2 = edge(yg, 'canny'); 
%texture2 = texture2( rect(2):(rect(2)+rect(4)) , rect(1):(rect(1)+rect(3)) ); 
%texture2 = sum(texture2(:))/(nrows*ncols); 
% texture2 = 0; 
% features = [features texture2]; 
 
%disp('Adding phase symmetry feature'); 
%Phase Symmetry Feature - not using - just give zero 
%[phaseSym orientation] = phasesym(yg); 
%phaseSym = phaseSym( rect(2):(rect(2)+rect(4)) , rect(1):(rect(1)+rect(3)) ); 
features = [features 0]; 
 
%disp('Adding line feature'); 
%features2 = []; 
%eg = edge(yg, 'canny'); 
%xwin= eg( rect(2):(rect(2)+rect(4)) , rect(1):(rect(1)+rect(3)) ); 
%[xwinr,xp]=radon( xwin ,0:179); 
%line = max(xwinr)/(nrows*ncols); 
%features2 = line; 
features2 = zeros(1, 180); 
features = [features features2]; 
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processthevideo.m 
 
% You must choose the set of rules you want the video to be processed by 
disp('Chose the set of rules to be used in processing'); 
theselectedrules = uigetfile('*.mat') 
load ([theselectedrules]) 
 
disp('Chose the object to be followed for angle analysis'); 
clnum=menu('Object for angle analysis',t.classname); 
 
% The video to be processed 
disp('What is the video to be processed (name.avi):'); 
videoname = uigetfile('*.avi') 
MaxFrame = input('What is the section of frames in the video ([begin# end#]): '); 
 
% The name of the video to be created 
processedvideoname = input('What is the name of the new video (name.avi): ','s'); 
 
Videostruct = struct('picturename',{'nil'},'features',0); 
if MaxFrame(1) <= 1 
    MaxFrame(1)=2; 
end 
for place=2:MaxFrame(2)-MaxFrame(1)+2 %2 till number of frames in video 
    sfilename=videoname; 
    Videostruct = addtoVideostruct(Videostruct, sfilename); 
    Videostruct(place).picturenum=MaxFrame(1)+place-2; 
    place 
end 
 
for place=2:length(Videostruct) 
    Iobj = Videostruct(place); 
    X = aviread([Iobj.picturename],Iobj.picturenum); 
    xi = X.cdata; 
    x = xi; 
     
    X = aviread([Iobj.picturename],(Iobj.picturenum)-1); 
    xim1 = X.cdata; 
    psychimagefeatures4 
    Iobj.features=sparse(features); 
    Videostruct(place)=Iobj; 
    place 
    clear features x xi xim1 yq yhq ysq ys yh yvq yg texture2 texture1 features2 colorfilt y yv 
ctmp tmp havg colsamp rowsamp hues hlap vals stats 
end 
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Videostruct = Videostruct(2:length(Videostruct)); 
processvideo2 
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processvideo2.m 
 
rowhand = []; 
colhand = []; 
loadnum=0; 
lastframe=0; 
cmap = [ 
    0 0 0 
    1 0 0  
    0 1 0  
    0 0 1 
    1 1 0 
    1 0 1 
    0 1 1 
    0.5 0.5 0.5 
    1 1 1]; 
 
% load ([theselectedrules]) 
% ovid=avifile('originalvid','compression','None'); 
% mvid=avifile('motionvid','colormap',gray(256),'compression','None'); 
% hvid=avifile('handtrackingvid','colormap',gray(256),'compression','None'); 
rvid=avifile([processedvideoname],'colormap',cmap(1:length(t.classname)+1,:),'compression','no
ne') 
% fig1=figure(1) 
% fig2=figure(2) 
% fig3=figure(3) 
fig4=figure(4); 
% set(fig1,'DoubleBuffer','on') 
% set(fig2,'DoubleBuffer','on') 
% set(fig3,'DoubleBuffer','on') 
set(fig4,'DoubleBuffer','on') 
rowshand = []; 
colshand = []; 
frames = []; 
gazeangle = []; 
handobjmot = []; 
for i=1:(MaxFrame(2) - MaxFrame(1)) + 1 % one minus the total number of frames in video 
 
%     if i >= lastframe 
%         loadnum=loadnum+1; 
%         vidnstr=sprintf('%0.3d',loadnum); 
%         load (['videostruct' vidnstr]); 
 
features=Videostruct(i).features; 
     
i     
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frames = [frames Videostruct(i).picturenum];     
 
X = aviread([Videostruct(i).picturename],Videostruct(i).picturenum); 
xi = X.cdata; 
 
X = aviread([Videostruct(i).picturename],(Videostruct(i).picturenum)-1); 
xim1 = X.cdata; 
 
yi = rgb2hsv(xi); 
 
% figure(1), image(xi) 
% set(fig1,'Erasemode','xor') 
% ovid=addframe(ovid,uint8(xi)); 
 
% mot = abs(double(rgb2gray(xi)) - double(rgb2gray(xim1))); 
% fig2, imagesc(uint8(mot)), colormap(gray(256)) 
% set(fig2,'Erasemode','xor') 
% gframe2=getframe(fig2); 
% mvid=addframe(mvid,gframe2); 
 
% mask = (yi(:,:,1)>0.03) & (yi(:,:,1) < 0.09); 
% skin = yi(:,:,2).*yi(:,:,3).*mask; 
% hand = skin .* mot; 
%  
% fig3, imagesc(uint8(hand)), colormap(gray(256)) 
%  
% havg2 = ones(15,15)/(15^2); 
% % handblur = filter2(havg, hand); 
% handblur=filter2(havg2, abs(filter2((ones(3,3)/9), mot)/256)); 
% handmax = max(max(handblur)); 
% [II,JJ]= find( handblur == handmax ); 
%  
% hold on 
% plot(JJ,II,'rx') 
% hold off 
%  
% set(fig3,'Erasemode','xor') 
% gframe3=getframe(fig3); 
% mvid=addframe(hvid,gframe3); 
 
[nrows ncols]=size(xi(:,:,1)); 
Nfilt = 15; 
Ndec = 10; 
rad = (Nfilt+1)/2; 
rowsamp = rad:Ndec:(nrows - rad); 
colsamp = rad:Ndec:(ncols - rad); 
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numrows = length(rowsamp); 
numcols = length(colsamp); 
 
mot = abs(double(rgb2gray(xi)) - double(rgb2gray(xim1))); 
% fig2, imagesc(uint8(mot)), colormap(gray(256)) 
% set(fig2,'Erasemode','xor') 
% gframe2=getframe(fig2); 
% mvid=addframe(mvid,gframe2); 
 
mask = (yi(:,:,1)>0.03) & (yi(:,:,1) < 0.09); 
skin = yi(:,:,2).*yi(:,:,3).*mask; 
hand = skin .* mot; 
%  
% fig3, imagesc(uint8(hand)), colormap(gray(256)) 
%  
havg2 = ones(15,15)/(15^2); 
% handblur = filter2(havg, hand); 
handblur=filter2(havg2, abs(filter2((ones(3,3)/9), hand)/256)); 
handblur=handblur(rowsamp,colsamp); 
handmax = max(max(handblur)); 
[II,JJ]= find( handblur == handmax ); 
II=II(1); 
JJ=JJ(1); 
rowshand=[rowshand II]; 
colshand=[colshand JJ]; 
 
 
motionimg = reshape(features(:,252),numrows,numcols); 
distbelowhand = 4; 
heightbox = 4; 
halfwidthbox = 3;  
if ((II + distbelowhand + heightbox) <= numrows) & ((JJ - halfwidthbox) >= 1) & ((JJ + 
halfwidthbox) <=numcols) 
    handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):(II + distbelowhand + 
heightbox),(JJ - halfwidthbox):(JJ + halfwidthbox))))]; 
else 
    if (JJ - halfwidthbox) < 1 
        if ((II + distbelowhand + heightbox) > numrows) 
            if (II + distbelowhand) > numrows 
                handobjmot = [handobjmot sum(sum(motionimg((numrows:numrows),1:(JJ + 
halfwidthbox))))]; 
            else 
                handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):numrows,1:(JJ 
+ halfwidthbox))))]; 
            end 
        else 
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            handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):(II + 
distbelowhand + heightbox),1:(JJ + halfwidthbox))))]; 
        end 
    elseif (JJ + halfwidthbox) > numcols 
        if ((II + distbelowhand + heightbox) > numrows) 
            if (II + distbelowhand) > numrows 
                handobjmot = [handobjmot sum(sum(motionimg((numrows:numrows),(JJ - 
halfwidthbox):numcols)))]; 
            else 
                handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):numrows,(JJ - 
halfwidthbox):numcols)))]; 
            end 
        else 
            handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):(II + 
distbelowhand + heightbox),(JJ - halfwidthbox):numcols)))]; 
        end 
    else 
        if ((II + distbelowhand + heightbox) > numrows) 
            if (II + distbelowhand) > numrows 
                handobjmot = [handobjmot sum(sum(motionimg((numrows:numrows),(JJ - 
halfwidthbox):(JJ + halfwidthbox))))]; 
            else 
                handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):numrows,(JJ - 
halfwidthbox):(JJ + halfwidthbox))))]; 
            end 
        end 
    end 
end 
 
 
 
applyrules2 
reshapepic=reshape(CLASSoverall, numrows, numcols); 
[ycoor,xcoor]=find(reshapepic==clnum); 
xcoor=xcoor(find(ycoor < 19)); 
ycoor=ycoor(find(ycoor < 19)); 
p=polyfit(ycoor,xcoor,1); 
xp=[1:numcols]; 
linep=p(1)*xp + p(2); 
linep=linep(find(xp > 10 & xp < numrows)); 
xp=xp(find(xp > 10 & xp < numrows)); 
 
 
centerpixel=[round(sum(xcoor)/(length(xcoor))) round(sum(ycoor)/(length(ycoor)))]; 
xp2 = [1:numrows]; 
midhatline = 0*xp2 + centerpixel(1); 
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vecstrip =[xp(length(xp))-centerpixel(2) ; linep(length(linep))-centerpixel(1) ;]; 
vecmidhat = [xp2(length(xp2))-centerpixel(2) ;midhatline(length(midhatline))-centerpixel(1)]; 
vechand = [ II-centerpixel(2) ; JJ-centerpixel(1)]; 
angletostrip = acos((vecstrip' * vecmidhat)/(sqrt(sum(vecstrip.^2)) * sqrt(sum(vecmidhat.^2)))); 
angletohand = acos((vechand' * vecmidhat)/(sqrt(sum(vechand.^2)) * sqrt(sum(vecmidhat.^2)))); 
angletostrip = angletostrip*180/pi; 
angletohand = angletohand*180/pi; 
gazeangle = [gazeangle angletostrip]; 
 
 
fig4, imagesc(uint8(reshapepic)), colormap(cmap(1:classnum+1,:)) 
hold on 
plot(linep,xp,'w') 
plot(centerpixel(1),centerpixel(2),'wo') 
plot([JJ; centerpixel(1)] , [II; centerpixel(2)], 'w') 
plot(midhatline,xp2,'w') 
plot(JJ,II,'wx') 
hold off 
% fig4,title(['Hand position  x:',num2str(JJ),'  y:',num2str(II),'  Angle to Hand: 
',num2str(angletohand),'  Angle to Strip: ', num2str(angletostrip)]); 
drawnow 
gframe=getframe(fig4); 
rvid=addframe(rvid,gframe); 
 
% if i > 5 
%    rowhand = [rowhand II]; 
%    colhand = [colhand JJ]; 
% end    
% if i == 2 
%     pause 
% end 
% pause( 0.05 ) 
 
end 
% ovid=close(ovid); 
% mvid=close(mvid); 
% hvid=close(hvid); 
dlmwrite('Frames.xls',frames,'\n') 
dlmwrite('Angle_of_Gaze.xls',gazeangle,'\n') 
dlmwrite('Y-axis_Hand_Values.xls',rowshand,'\n') 
dlmwrite('X-axis_Hand_Values.xls',colshand,'\n') 
dlmwrite('HandObjectMotion.xls',full(handobjmot),'\n') 
dlmwrite('RowHands.xls',rowshand,'\n') 
dlmwrite('ColHands.xls',colshand,'\n') 
save HandObjectMotion handobjmot 
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save RowHands rowshand 
save ColHands colshand 
rvid=close(rvid); 
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psychimagefeatures4.m 
 
y = rgb2hsv(x); 
yh = y(:,:,1); 
ys = y(:,:,2); 
yv = y(:,:,3); 
 
yg = rgb2gray(x); 
 
[nrows, ncols] = size(yh); 
 
hues = [0 .05 .14 .22 .28 .45 .54 .75 .81 .92 1]; 
sats = 0:(1/5):1; 
vals = 0:(1/5):1; 
 
Nfilt = 15; 
Ndec = 10; 
 
havg = ones(Nfilt, Nfilt)/(Nfilt^2); 
 
features = []; 
 
rad = (Nfilt+1)/2; 
 
rowsamp = rad:Ndec:(nrows - rad); 
colsamp = rad:Ndec:(ncols - rad); 
numrows = length(rowsamp); 
numcols = length(colsamp); 
 
 
disp('Adding color features'); 
 
yhq = zeros(size(yh)); 
for i=2:10 
  yhq = yhq + ((yh > hues(i))&(yh <= hues(i+1)))*i; 
end 
yhq = yhq + ((yh >= hues(1))&(yh <= hues(2)))*1; 
 
ysq = zeros(size(yh)); 
for i=2:5 
  ysq = ysq + ((ys > sats(i))&(ys <= sats(i+1)))*i; 
end 
ysq = ysq + ((ys >= sats(1))&(ys <= sats(2)))*1; 
 
yvq = zeros(size(yh)); 
for i=2:5 
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  yvq = yvq + ((yv > vals(i))&(yv <= vals(i+1)))*i; 
end 
yvq = yvq + ((yv >= vals(1))&(yv <= vals(2)))*1; 
 
yq = (yhq-1)*25 + (ysq-1)*5 + (yvq-1); 
 
         rowindx = 0; 
         colorfilt = []; 
         for jcol = colsamp 
             for irow = rowsamp 
                tmp = yq( (irow-((Nfilt-1)/2)):(irow+((Nfilt-1)/2)) , (jcol-((Nfilt-1)/2)):(jcol+((Nfilt-
1)/2)) ); 
                ctmp = hist(tmp(:), 0:249); 
                colorfilt = [colorfilt ; ctmp]; 
             end 
         end              
 
          
 
features = colorfilt/(Nfilt^2); 
 
[reducedrows, reducedcols] = size(colorfilt);  
 
disp('Adding texture feature'); 
%Laplacian Texture Feature 
hlap = [-1 -1 -1 
    -1 8 -1 
    -1 -1 -1]/8; 
texture1 = filter2(havg, abs(filter2(hlap, yg)/256)); 
texture1 = texture1(rowsamp, colsamp ); 
features = [features texture1(:)]; 
 
disp('Adding motion detection feature'); 
%Canny Edge Feature 
mot = abs(double(rgb2gray(xi)) - double(rgb2gray(xim1))); 
% mot2 = filter2(havg, abs(filter2(hlap, mot)/256)); 
mot2h=[]; 
for jcol = colsamp 
    for irow = rowsamp 
        mot2 = mot((irow-((Nfilt-1)/2)):(irow+((Nfilt-1)/2)) , (jcol-((Nfilt-1)/2)):(jcol+((Nfilt-
1)/2))); 
        mot2 = sum(mot2(:)/(length(mot2(:)))); 
        % texture2 = zeros(size(texture1)); 
        mot2h=[mot2h; mot2]; 
    end 
end 
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features = [features mot2h]; 
 
% disp('Adding canny edge feature'); 
% %Canny Edge Feature 
% %texture2 = filter2(havg, edge(yg, 'canny')); 
% %texture2 = texture2(rowsamp, colsamp); 
% texture2 = zeros(size(texture1)); 
% features = [features texture2(:)]; 
 
disp('Adding phase symmetry feature'); 
%Phase Symmetry Feature - removed - just add zeros here 
features = [features zeros(numrows*numcols,1)]; 
 
%disp('Adding line feature'); 
%features2 = []; 
%eg = edge(yg, 'canny'); 
%for j = colsamp 
%    for i = rowsamp 
%        xwin = eg((i-rad+1):(i-rad+Nfilt),(j-rad+1):(j-rad+Nfilt)); 
%        [xwinr,xp]=radon( xwin ,0:179); 
%        line = max(xwinr)/(Nfilt^2); 
%        features2 = [features2 
%                    line]; 
%    end 
%end 
 
features2 = zeros(numrows*numcols, 180); 
features = [features features2]; 
 
[numrows,numcols]=size(texture1); 
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trainingthevideo.m 
 
 
Imemory = 
struct('picture',0,'picturenum',0,'upperleftrow',0,'upperleftcol',0,'width',0,'height',0,'class',0,'featur
es',0); 
newname = input('What is the new rule matrix name (name.mat): ','s'); 
 
disp('What is the video to be used for gathering training data:'); 
videoname = uigetfile('*.avi') 
 
 
MaxFrame = input('What is the maximum number of frames in the video (number): '); 
NUMobject = input('What is the number of objects (number): '); 
 
for NUMob = 1:NUMobject 
    classlabel=input('What is the name of the object (i.e BluePaper, Hand): ','s'); 
    samptemp=input('How many samples for the object (50 or so): '); 
    numimage = round(2:MaxFrame/samptemp:MaxFrame); 
    for ntemp=1:samptemp 
        Imemory = addtoImemory(Imemory, videoname, classlabel, numimage(ntemp)); 
    end 
    close all 
end 
Imemory=Imemory(2:length(Imemory)); 
FV = getfeaturesfromImemory(Imemory); 
Landmarks = getclassesfromImemory(Imemory); 
analyzetreeseq 
save (newname) 
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processtrain.m 
 
load newfeaturesImemory8 
choice=0; 
choice2=0; 
choice3=0; 
choice4=0; 
choice5=0; 
savedminterms=[]; 
Isimageloaded=0; 
Ismintermsaved=0; 
scrsz = get(0,'ScreenSize'); 
while choice ~= 1 
    choice=menu('Menu','Quit Program','Compare one set of class rules with one set of class 
training data','Compare one set of class rules with all class training data','Load Image','Analyze 
image with rules','Analyze image with saved minterms','Clear saved minterms','Load different 
Imemory','Close figures and Clear Command Window'); 
    if choice==2 
        while(choice2 ~= 1) 
            choice2=0; 
            sumvectdata=[]; 
            classnum=menu('Rules for which class',t.classname); 
            classvecs=menu('Feature vectors of which class',t.classname); 
            mintermmat 
            % figure, imagesc(Decisionmat) 
            % title(['Image of ',char(t.classname(classnum)),' rules vs ', char(t.classname(classvecs)),' 
feature vectors']) 
            % xlabel('Minterm labels') 
            % ylabel('Feature vectors') 
            % figure, plot(sum(Decisionmat)) 
            % title(['Sum of Decisionmat for ',char(t.classname(classnum)),' rules vs ', 
char(t.classname(classvecs)),' feature vectors']) 
            % xlabel('Minterm labels') 
            figure('Position',[10 50 scrsz(3)*.985 scrsz(4)*2/6]), plot(mean(Decisionmat)) 
            title(['Average of Decisionmat for ',char(t.classname(classnum)),' minterms vs ', 
char(t.classname(classvecs)),' feature vectors']) 
            xlabel('Minterm labels') 
            % figure, plot(max(Decisionmat)) 
            % title(['Max of Decisionmat for ',char(t.classname(classnum)),' rules vs ', 
char(t.classname(classvecs)),' feature vectors']) 
            % xlabel('Minterm labels') 
            % figure, plot(median(Decisionmat)) 
            % title(['Median of Decisionmat for ',char(t.classname(classnum)),' rules vs ', 
char(t.classname(classvecs)),' feature vectors']) 
            % xlabel('Minterm labels') 
            while choice2 ~= 1 & choice2 ~= 2 
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                choice2=menu('Options', 'Previous Menu' , 'Compare another set of rules', 'Examine a 
minterm','Save Minterm','Clear saved minterms');   
                if choice2 == 3 
                    mintermdisplay(Rulematrix); 
                elseif choice2 == 4 
                    savedminterms=savemintermsauto(Rulematrix,-1,savedminterms) 
                    Ismintermsaved=1; 
                elseif choice2 == 5 
                    savedminterms=[] 
                    Ismintermsaved=0; 
                end 
            end 
        end 
    elseif choice == 3 
        while choice3 ~= 1 
            choice3=0; 
            % Chooses the landmark 
            classnum=menu('Rules for which class',t.classname); 
            sumvectdata=[]; 
            % Loop extracts all of the Landmarks to compare with chosen Landmark 
            for X1=1:length(t.classname) 
                classvecs=X1; 
                mintermmat 
                % figure, imagesc(Decisionmat) 
                % title(['Image of ',char(t.classname(classnum)),' rules vs ', 
char(t.classname(classvecs)),' feature vectors']) 
                % xlabel('Minterm labels') 
                % ylabel('Feature vectors') 
                % figure, plot(sum(Decisionmat)) 
                % title(['Sum of Decisionmat for ',char(t.classname(classnum)),' rules vs ', 
char(t.classname(classvecs)),' feature vectors']) 
                % xlabel('Minterm labels') 
                % figure, plot(mean(Decisionmat)) 
                % title(['Average of Decisionmat for ',char(t.classname(classnum)),' rules vs ', 
char(t.classname(classvecs)),' feature vectors']) 
                % xlabel('Minterm labels') 
                % functifigure, plot(max(Decisionmat)) 
                % title(['Max of Decisionmat for ',char(t.classname(classnum)),' rules vs ', 
char(t.classname(classvecs)),' feature vectors']) 
                % xlabel('Minterm labels') 
                % figure, plot(median(Decisionmat)) 
                % title(['Median of Decisionmat for ',char(t.classname(classnum)),' rules vs ', 
char(t.classname(classvecs)),' feature vectors']) 
                % xlabel('Minterm labels') 
            end 
            discrimratio=discriminateratio(sumvectdata,classnum,length(t.classname)); 
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            figure, plot(discrimratio) 
            title(['Discriminate Ratio Plot of ',char(t.classname(classnum)),' minterms vs all other 
classes feature vectors']) 
            xlabel('Minterm labels')            
            while choice3 ~= 1 & choice3 ~= 2 
                choice3=menu('Options', 'Previous Menu' , 'Compare another class rules to all class 
vectors', 'Examine a minterm','Save Minterm','Clear saved minterms'); 
                if choice3 == 3 
                    mintermdisplay(Rulematrix) 
                elseif choice3 == 4 
                    savedminterms=savemintermsauto(Rulematrix,discrimratio,savedminterms) 
                    Ismintermsaved=1; 
                elseif choice3 == 5 
                    savedminterms=[] 
                    Ismintermsaved=0; 
                end 
            end 
        end 
    elseif choice == 4 
        choice5 = menu('Image Options', 'Feature extracted', 'New image'); 
        if choice5 == 1; 
            load (uigetfile('*.mat')) 
            figure('Position',[10 50 scrsz(3)*.985 scrsz(4)*2/6]), image(x), title(sfilename) 
        elseif choice5 == 2 
            sfilename = uigetfile('*.bmp'); 
            x = imread(sfilename); 
            %unfold, x = y; 
            [xnrows, xncols, xnplanes] = size(x); 
            %x = imresize(x, 256/xnrows); 
            figure('Position',[10 50 scrsz(3)*.985 scrsz(4)*2/6]), image(x), title(sfilename) 
            imagefeatures3  %main output is features, a matrix of features vectors stored as rows 
        end 
        Isimageloaded=1; 
    elseif choice == 5 & Isimageloaded == 1 
        process 
        while choice4 ~= 1 
            choice4 = menu('Options','Exit','Analyze pixel minterms and percentage','Save 
Minterms','Analyze Minterms'); 
            if choice4 == 2 
                
[foundarray,foundarrayperc]=getpixelminterms(mask,Decisionmatim,Rulematrixim,numrows,nu
mcols); 
            elseif choice4 == 3 
                savedminterms=savemintermsauto(Rulematrixim,foundarrayperc,savedminterms); 
                Ismintermsaved=1; 
            elseif choice4 == 4 
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                mintermdisplay(Rulematrixim) 
            end 
        end 
    elseif choice == 6 & Isimageloaded == 1 & Ismintermsaved == 1 
        process 
    elseif choice == 7 
        savedminterms=[] 
        Ismintermsaved=0; 
    elseif choice == 8 
        load (uigetfile('*.mat')) 
    elseif choice == 9 
        clc 
        close all 
        if Isimageloaded == 1 
            figure('Position',[10 50 scrsz(3)*.985 scrsz(4)*2/6]), image(x), title(sfilename) 
        end 
    else 
        if Isimageloaded == 0  
            disp('You must load an image first'); 
        end 
        if Ismintermsaved == 0 & choice == 6 
            disp('You must save minterms before applying them'); 
        end 
    end 
    choice3=0; 
    choice2=0; 
    choice4=0; 
    choice5=0; 
end 
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mintermmat.m 
 
 
% Finds the row positions of the Landmark number (classvecs) 
Iclass = find(strcmp(t.classname(classvecs) , Landmarks)); 
 
 
% Extracts the features of the Landmark number 
featuresT=FV(Iclass,:); 
 
% Numterms = the number of trees that were analyzed to make the rules 
Numterms = loopnumbertotal(length(loopnumbertotal));   
 
% Extracts the row positions of the chosen Landmark 
III = find(classtotal == classnum); 
 
% Extracts the minterms for all of the chosen Landmark 
classrules = rulebasetotal(III, :); 
 
% Extracts the tree number that each minterm was created 
loopclass = loopnumbertotal(III); 
 
%mask = ones(numrows*numcols, 1); 
% Initialize variables 
[featrows, featcols] = size(featuresT); 
mask = zeros(featrows, 1); 
Decisionmat=[]; 
Rulematrix=[]; 
 
% Get rules from tree number lcount 
for lcount = 1:Numterms 
     
  I = find(loopclass == lcount); 
  looprules = classrules(I,:); 
  
  [Decisionmat2, mask2] = applyimagerule2(featuresT, looprules, 1, 1); 
  Rulematrix=[Rulematrix; looprules]; 
  mask2 = mask2 / sum(mask2); 
  Decisionmat = [Decisionmat  Decisionmat2]; 
  mask = mask + mask2; 
end 
sumvectdata=[sumvectdata; sum(Decisionmat)]; 
%figure(2), imagesc( reshape(mask, numrows, numcols) ), colormap(gray(256)) 
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mintermdisplay.m 
 
function mintermdisplay(Rulematrix) 
 
mindisplay=input('What is the Minterm label:  '); 
minindex=find(Rulematrix(mindisplay,:) ~= 0); 
Rulematrix(mindisplay,minindex) 
figure 
for(NN=1:length(Rulematrix(mindisplay,minindex))) 
    [DESC,COLORHSV] = describefeature(abs(Rulematrix(mindisplay,NN))); 
    if Rulematrix(mindisplay,NN) > 0 
        if abs(Rulematrix(mindisplay,NN))>250 
            
subplot(1,length(Rulematrix(mindisplay,minindex)),NN),image(255),colormap(gray(256)) 
        else 
            ImA(1,1,:)=hsv2rgb(COLORHSV); 
            subplot(1,length(Rulematrix(mindisplay,minindex)),NN), image(ImA) 
        end 
        subplot(1,length(Rulematrix(mindisplay,minindex)),NN), title(['Feature 
',num2str(abs(Rulematrix(mindisplay,NN)))])  
        subplot(1,length(Rulematrix(mindisplay,minindex)),NN), ylabel(DESC) 
        subplot(1,length(Rulematrix(mindisplay,minindex)),NN), xlabel('A lot of this feature') 
        disp(['Feature ',num2str(abs(Rulematrix(mindisplay,NN)))]) 
        disp(DESC) 
        disp('A lot of this feature') 
    else 
        if abs(Rulematrix(mindisplay,NN))>250 
            
subplot(1,length(Rulematrix(mindisplay,minindex)),NN),image(255),colormap(gray(256)) 
        else 
            ImA(1,1,:)=hsv2rgb(COLORHSV); 
            subplot(1,length(Rulematrix(mindisplay,minindex)),NN), image(ImA) 
        end 
        subplot(1,length(Rulematrix(mindisplay,minindex)),NN), title(['Feature 
',num2str(abs(Rulematrix(mindisplay,NN)))]) 
        subplot(1,length(Rulematrix(mindisplay,minindex)),NN), ylabel(DESC) 
        subplot(1,length(Rulematrix(mindisplay,minindex)),NN), xlabel('Little of this feature') 
        disp(['Feature ',num2str(abs(Rulematrix(mindisplay,NN)))]) 
        disp(DESC) 
        disp('Little of this feature') 
    end 
end 
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applymin2.m 
 
 
% classnum = 4; 
 
% Numterms = the number of trees that were analyzed to make the rules 
% Numterms = loopnumbertotal(length(loopnumbertotal));   
%  
% III = find(classtotal == classnum); 
% classrules = rulebasetotal(III, :); 
% loopclass = loopnumbertotal(III); 
%  
% %mask = ones(numrows*numcols, 1); 
% [featrows, featcols] = size(features); 
%mask = zeros(featrows, 1); 
 
%for lcount = 1:Numterms 
  % get rules from tree number lcount   
%  I = find(loopclass == lcount); 
%  looprules = classrules(I,:); 
    looprules=savedminterms;  
     
    [Decisionmat2, mask2] = applyimagerule2(features, looprules, 1, 1); 
     
    mask2 = mask2 / sum(mask2); 
    mask = mask2; 
    %end 
     
    figure('Position',[10 50 scrsz(3)*.985 scrsz(4)*2/6]), imagesc( reshape(mask, numrows, 
numcols) ), colormap(gray(256)) 
    title('Image of Saved Minterms applied to selected image ') 
% figure, imagesc( reshape(histeq(mask2), numrows, numcols) ), colormap(gray(256)) 
% title('Histogram equilized Image of Saved Minterms applied to selected image ') 
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discriminateratio.m 
 
function discrimratio=discriminateratio(sumvectdata,classnum,lengthclassname) 
 
sumvectcorrect=sumvectdata(classnum,:); 
sumvectwrong=sum([ sumvectdata(1:classnum-1,:); 
sumvectdata(classnum+1:lengthclassname,:)]); 
discrimratio=sumvectcorrect./sumvectwrong; 
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describefeature.m 
 
 
function [description,colorhsv] = describefeature(featnum) 
 
hues = 0:(1/12):1; 
sats = 0:(1/4):1; 
vals = 0:(1/4):1; 
 
hues = [0 .05 .14 .22 .28 .45 .54 .75 .81 .92 1]; 
sats = 0:(1/5):1; 
vals = 0:(1/5):1; 
 
colorhist = []; 
for h = 1:length(hues)-1 
   for s = 1:length(sats)-1 
      for v = 1:length(vals)-1 
         colorhist = [colorhist 
            mean([hues(h) hues(h+1)]) mean([sats(s) sats(s+1)]) mean([vals(v) vals(v+1)]) ];          
      end 
   end 
end    
 
if (featnum <= 250) 
    colorhsv = colorhist(featnum, :); 
    description = sprintf('hsv color parameters hue=%g saturation=%g value=%g',colorhsv(1), 
colorhsv(2), colorhsv(3) ); 
end 
 
if featnum == 251 
    description = 'Texture measure based on Laplacian'; 
    colorhsv=[0 0 0]; 
end 
 
if featnum == 252  
    description = 'Motion detection measure'; 
    colorhsv=[0 0 0]; 
end 
 
if featnum == 253 
    description = 'Symmetry measure'; 
    colorhsv=[0 0 0]; 
end 
 
if featnum > 253 
    angle = featnum - 253 - 90; 
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    description = sprintf('straight line measure at angle of %g degrees',angle); 
    colorhsv=[0 0 0]; 
end 
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getpixelminterms.m 
 
function 
[foundarray,foundarrayperc]=getpixelminterms(mask,Decisionmatim,Rulematrixim,numrows,nu
mcols) 
 
[lookcol lookrow] = ginput(1); 
searchpix = zeros(numrows,numcols); 
searchpix(round(lookrow),round(lookcol)) = 1; 
searchpixarray=reshape(searchpix, numrows*numcols,1); 
searchindex=find(searchpixarray == 1); 
foundarray=Decisionmatim(searchindex,:); 
foundarrayperc=foundarray/sum(foundarray)*100; 
figure,plot(foundarrayperc) 
title('Percentage of the pixel intensity each minterm contributed') 
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imagefeatures3.m 
 
y = rgb2hsv(x); 
yh = y(:,:,1); 
ys = y(:,:,2); 
yv = y(:,:,3); 
 
yg = rgb2gray(x); 
 
[nrows, ncols] = size(yh); 
 
hues = [0 .05 .14 .22 .28 .45 .54 .75 .81 .92 1]; 
sats = 0:(1/5):1; 
vals = 0:(1/5):1; 
 
Nfilt = 15; 
Ndec = 10; 
 
havg = ones(Nfilt, Nfilt)/(Nfilt^2); 
 
features = []; 
 
rad = (Nfilt+1)/2; 
 
rowsamp = rad:Ndec:(nrows - rad); 
colsamp = rad:Ndec:(ncols - rad); 
numrows = length(rowsamp); 
numcols = length(colsamp); 
 
 
disp('Adding color features'); 
 
yhq = zeros(size(yh)); 
for i=2:10 
  yhq = yhq + ((yh > hues(i))&(yh <= hues(i+1)))*i; 
end 
yhq = yhq + ((yh >= hues(1))&(yh <= hues(2)))*1; 
 
ysq = zeros(size(yh)); 
for i=2:5 
  ysq = ysq + ((ys > sats(i))&(ys <= sats(i+1)))*i; 
end 
ysq = ysq + ((ys >= sats(1))&(ys <= sats(2)))*1; 
 
yvq = zeros(size(yh)); 
for i=2:5 
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  yvq = yvq + ((yv > vals(i))&(yv <= vals(i+1)))*i; 
end 
yvq = yvq + ((yv >= vals(1))&(yv <= vals(2)))*1; 
 
yq = (yhq-1)*25 + (ysq-1)*5 + (yvq-1); 
 
         rowindx = 0; 
         colorfilt = []; 
         for jcol = colsamp 
             for irow = rowsamp 
                tmp = yq( (irow-((Nfilt-1)/2)):(irow+((Nfilt-1)/2)) , (jcol-((Nfilt-1)/2)):(jcol+((Nfilt-
1)/2)) ); 
                ctmp = hist(tmp(:), 0:249); 
                colorfilt = [colorfilt ; ctmp]; 
             end 
         end              
 
          
 
features = colorfilt/(Nfilt^2); 
 
[reducedrows, reducedcols] = size(colorfilt);  
 
disp('Adding texture feature'); 
%Laplacian Texture Feature 
hlap = [-1 -1 -1 
    -1 8 -1 
    -1 -1 -1]/8; 
texture1 = filter2(havg, abs(filter2(hlap, yg)/256)); 
texture1 = texture1(rowsamp, colsamp ); 
features = [features texture1(:)]; 
 
disp('Adding canny edge feature'); 
%Canny Edge Feature 
texture2 = filter2(havg, edge(yg, 'canny')); 
texture2 = texture2(rowsamp, colsamp); 
features = [features texture2(:)]; 
 
disp('Adding phase symmetry feature'); 
%Phase Symmetry Feature - removed - just add zeros here 
features = [features zeros(numrows*numcols,1)]; 
 
disp('Adding line feature'); 
% features2 = []; 
% eg = edge(yg, 'canny'); 
% for j = colsamp 
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%     for i = rowsamp 
%         xwin = eg((i-rad+1):(i-rad+Nfilt),(j-rad+1):(j-rad+Nfilt)); 
%         [xwinr,xp]=radon( xwin ,0:179); 
%         line = max(xwinr)/(Nfilt^2); 
%         features2 = [features2 
%                     line]; 
%     end 
% end 
% features = [features features2]; 
%  
% [numrows,numcols]=size(texture1); 
    
features(:, 254:433) = 0; 
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savemintermsauto.m 
 
function savedminterms=savemintermsauto(Rulematrix,discrimratio,savedminterms) 
 
if discrimratio == -1 
    choice=menu('Minterm options','Enter minterms manually'); 
else 
    choice=menu('Minterm options','Enter minterms manually','Create a threshold from plot','Save 
the top (number) minterms'); 
end 
if choice == 2 
    disp('If you want a min and max, enter in two numbers (in min max order) in array form'); 
    disp('Otherwise the number will collect all of the minterms above entered value'); 
    decidethresh=input('What is the deciding threshhold?  '); 
    if length(decidethresh) == 1 
        index=find(discrimratio >= decidethresh); 
        savedminterms=[savedminterms; Rulematrix(index,:)]; 
    else 
        index=find(discrimratio >= decidethresh(1) & discrimratio <= decidethresh(2)) 
        savedminterms=[savedminterms; Rulematrix(index,:)]; 
    end 
elseif choice == 1 
    index=input(' What are the minterms to be saved (in form of array if more than 1)'  ); 
    savedminterms=[savedminterms; Rulematrix(index,:)]; 
elseif choice == 3 
    topnum=input(' How many of the top minterms do you want to use  '  ); 
    [Y,I] = sort(discrimratio); 
    I=fliplr(I); 
    savedminterms=[savedminterms; Rulematrix(I(1:topnum),:)]; 
end 
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savemintermsman.m 
 
function savedminterms=savemintermsman(Rulematrix,savedminterms) 
 
index=input(' What are the minterms to be saved (in form of array if more than 1)'  ); 
savedminterms=[savedminterms; Rulematrix(index,:)]; 
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