
ELECTRICAL ENGINEERING

OBJECT RECOGNITION USING FUZZY MEMBERSHIP FUNCTION RULES

JONATHAN EDWARD HUNTER

Thesis under the direction of Professor Mitch Wilkes

Object recognition and learning algorithms are huge areas of robotics research

with many different methods in use by various researchers. A common result of using

complex recognition methods is the loss of meaning (for humans) in the subsequent

processing of the data. When programs incorrectly identify objects, the reason why is

often lost in the data analysis. If the researchers can understand what the robot sees, they

are better able to develop a system that has limited image understanding. Fuzzy models

in object recognition are one of the better methods for achieving such a learning system.

 Our desire is to develop a system that is quickly and easily trained, a system that

can relate the decision of objects through the feature vector (vector of measured

characteristics about the object), and a system that is relatively simple in its calculation of

results.

 The research was applied in conjunction with an experiment done by the

Psychology Department. This system was applied to recorded videos of tasks done by

their subjects. The system proves to be quite effective in object recognition and provides

many options for more advanced data processing.

Approved___Date_____________

OBJECT RECOGNITION USING FUZZY MEMBERSHIP FUNCTION RULES

By

Jonathan Edward Hunter

Thesis

Submitted to the Faculty of the

 Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2005

Nashville, Tennessee

Approved:

Professor Mitch Wilkes

Professer Alan Peters II

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... iv

LIST OF TABLES...v

LIST OF FIGURES ... vi

Chapter

I. INTRODUCTION ...1

II. BACKGROUND ...3

Color ..3

Fuzzy Information..5

III. LEARNING FUZZY MEMBERSHIP FUNCTIONS...7

Feature Extraction..7

Creating the Classification Tree...10

Rule Extraction ..13

Rule Analysis ...14

IV. APPLYING THE MEMBERSHIP FUNCTIONS TO IMAGES..................................30

Extracting Image Features ...30

Applying the Rules to the Image ...32

V. APPLICATIONS AND RESULTS ...43

Objective of Experiment ..43

Experiment Setup...43

Results..49

VI. CONCLUSION..61

APPENDIX..63

 addtoImemory.m..63

addtoVideostruct.m..64

analyzetree.m ...65

analyzetreeseq.m..67

applyimagerule2.m...68

applyrules2.m...69

 ii

getclassesfromImemory.m...71

getfeaturesfromImemory.m ...72

getregionfeaturesfromImemory.m ...73

processthevideo.m..75

processvideo2.m...77

psychimagefeatures4.m..83

trainingthevideo.m ...86

processtrain.m ..87

mintermmat.m..91

mintermdisplay.m ..92

applymin2.m ..93

discriminateratio.m ..94

describefeature.m...95

getpixelminterms.m ...97

imagefeatures3.m...98

savemintermsauto.m ..101

savemintermsman.m ..102

BIBLIOGRAPHY..103

 iii

ACKNOWLEDGEMENTS

 First, I want to thank God for the blessings. I would like to thank the Vanderbilt

University Electrical Engineering Department for the financial support. I would like to thank Dr.

Mitch Wilkes for his ample patience and guidance throughout my graduate career. I would like

to thank Dr. Cordelia Brown for her guidance, supportive words, helpful planning, useful advice

and friendship throughout my time at Vanderbilt. I also thank Dr. Alan Peters for his guidance

through this thesis. I want to thank my parents (James and Carol Hunter) and brothers (Jaime

and Jason Hunter) for their love and support throughout my life. I also want to thank my college

friends both in and outside CIS for being there when I needed them.

 iv

LIST OF TABLES

Table Page

1. Minterm storage example ..14

2. Sample quantities for Dataset 1 and Dataset 2...21

3. TreeTrunk minterm 68 from Dataset 1 ..24

4. AL minterm 48 from Dataset 2..26

5. Hand minterm label 20 from Dataset 3..29

6. Class names for each task ..49

 v

LIST OF FIGURES

Figure Page

1. Additive RGB color model..3

2. HSV color space ..4

3. Fuzzy membership plot example...5

4. Acquiring a selection region ..8

5. Feature Vector..9

6. Sample classification tree ..12

7. Initial menu for minterm analysis ..15

8. Comparison plot for TreeTrunk using Dataset 1 ...22

9. Secondary Menu after Class comparison...23

10. TreeTrunk minterm label 68 from Dataset 1 ...23

11. Comparison plot from Dataset 2 ..25

12. AL minterm label 48 from Dataset 2 ...26

13. Comparison plot of Dataset 3 ..27

14. Hand minterm label 20 from Dataset 3..28

15. Original Image ...33

16. Pathway detection from Dataset 1 ...34

17. Pathway detection from Dataset 2 ...34

18. Grass detection from Dataset 1 ..34

19. Grass detection from Dataset 2 ..35

20. TreeTrunk detection from Dataset 1 ..35

21. TreeTrunk detection from Dataset 2 ..35

22. Minterm percentage contribution to pixel (5,8)...36

23. TreeTrunk detection with minterms above 2% contribution at pixel (5,8)....................37

24. Sample Image...39

25. Redstrip score plot for Sample Image..39

26. RedRing score plot for Sample Image ...40

27. YellowRing score plot for Sample Image..40

28. BlueRing score plot for Sample Image..41

 vi

29. Hand score plot for Sample Image...41

30. Segmentation Image for Sample Image...42

31. Card arrangement task initial setup..44

32. Card arrangement task completed..44

33. Towers of Hanoi task initial setup ...45

34. Towers of Hanoi task completed ...46

35. Tower building task initial setup..47

36. Tower building task completed..48

37. Motion image of Figure 30 ..50

38. X-axis hand position ..51

39. Derivative of x-axis hand position...51

40. Y-axis hand position ..52

41. Derivative of y-axis hand position...52

42. End - Reach to RedRing, Begin - Place...53

43. End – Place RedRing, Begin - Reach ..53

44. End – Reach YellowRing, Begin - Place ...54

45. End – Place YellowRing, Begin – Reach ...54

46. End – Reach RedRing, Begin – Place..55

47. End – Place Redring, Begin – Reach ..55

48. End – Reach BlueRing, Begin - Place ...56

49. End – Place BlueRing, Begin - Reach ...56

50. End – Reach RedRing, Begin - Place ..57

51. End – Place RedRing, Begin - Reach ..57

52. End – Reach YellowRing, Begin – Place ..58

53. End – Place YellowRing, Begin - Reach ...58

54. End - Reach RedRing, Begin – Place ..59

55. End – Place RedRing, Begin – Move to rest ...59

56. End – Move to Rest..60

 vii

CHAPTER I

INTRODUCTION

Object recognition learning algorithms that are easily trained, accurate, and capable of

relating decisions to the feature vector are difficult to create. Fuzzy membership rules provide a

possible solution. Object recognition and learning algorithms are huge areas of robotics research

with many different methods in use by various researchers. Object recognition is identifying

objects using stored data representations of the objects [16]. Some object recognition algorithms

rely on complete three-dimensional information about objects to identify them. Others require

less information about the object but use complex detection systems. For these object

recognition methods, it is difficult to establish a learning algorithm. Learning algorithms are

adaptive systems that use data arrays to establish and adjust what is characteristic about objects

[17]. For learning systems, it is not reasonable to assume that there exist three-dimensional

models of every object in the robot's environment, especially with objects that do not have

exactly the same shape (e.g., trees). A common result of using complex recognition methods is

the loss of meaning (for humans) in the subsequent processing of the data. When programs

incorrectly identify objects, the reason why is often lost in the data analysis. This loss prevents

researchers from helping to understand what the robot sees and improving the recognition

process. If the researchers can understand what the robot sees, they are better able to develop a

system that has limited image understanding. Fuzzy models in object recognition are one of the

better methods for achieving such a learning system.

The development of a system that uses fuzzy rules to deduce general objects is the

method we have chosen to examine. Our desire is to develop a system that is quickly and easily

trained, a system that can relate the decision of objects through the feature vector (vector of

measured characteristics about the object), and a system that is relatively simple in its calculation

of results. The system should be robust which is why its complexity lies in the amount of

features in the vector rather than the computation method itself. This reason is also why the

system should be quickly and easily trained so the robot can be transported to different

environments and can quickly learn the objects of the new environment. The ability for an

algorithm to relay the decision it makes in a understandable fashion will aid in the selection of

 1

future features that may be added. The ease of adding features to the feature vector makes the

system very flexible. The Psychology Department's research can be used to show these

characteristics. They are studying the motion of subjects demonstrating set tasks for different

types of audiences.

 2

CHAPTER II

BACKGROUND

 A major component of the feature vector is the color histogram. The fuzzy sets used to

analyze the images are very important. Both need background information to be explained to

make clear the future information.

Color

All the images and videos are taken from a camcorder that stores each frame as a RGB

(red green blue) color image. Each image consists of its height, width, and three bands for each

of the primary colors. For each coordinate in the image, three numbers exist. The first number

represents the intensity of red, the second represents green, and the third represents blue. The

RGB color model is an additive model, which means by adding the primary colors in various

amounts (intensities) all other colors of the spectrum can be created. When the primary colors

are added together at maximum intensity, the color created is white as shown in Figure 1.

Figure 1: Additive RGB color model [9]

The images are then converted to the HSV (hue saturation value) color space for use also.

Hue is the color. The range of the colors is normalized from 0 to 1 in the latter chapters. As you

cycle through the hue values starting at red, it continues through yellow, green, cyan, blue,

magenta, and back to red. The saturation is considered to be the vibrancy of the color. It

represents the purity of a color like the "redness" of red. The less saturation in a color the more

 3

pale it looks (washed out). The value is the brightness of the color. Figure 2 is a pictorial

representation of the HSV color space.

Figure 2: HSV Color Space [10]

Assuming the RGB values are all ranged from 0 to 1, the conversion to HSV is done in the

following manner:
Let MAX equal the maximum of the (R, G, B) values, and MIN equal the minimum of those

values. The formula can then be written as:

Note also that the formulas given here reflect some other properties of HSV:

• If MAX = MIN (i.e. S = 0), then H is undefined. This is apparent, considering the diagrams of

HSV space above. If S = 0 then the color lies along the central line of grays, so naturally it has no

hue, and the angular coordinate is meaningless.

 4

• If MAX = 0 (i.e. if V = 0), then S is undefined. This is best illustrated in the conical diagram

above. If V = 0, then the color is pure black, so naturally it has neither hue, nor saturation. Thus

the conical diagram collapses to a single point and both the angle and radius coordinates are

meaningless at that point.[10]

After the formulas, the hue values range from 0 to 360 and the saturation and value values range

from 0 to 1. The hue values are normalized from 0 to 1 in Matlab's rgb2hsv function.

Fuzzy information

 Fuzzy information is an imprecise set of descriptions or instructions. The fuzziness of

information varies given the description [12,18]. "The object is close" is less precise than "The

object is that is about 5 feet away." Fuzzy sets are developed to establish a set of values that

meet a certain property to varying amounts. A fuzzy set (F) of "the object is about 20 feet

away" would contain a set of distances that are "about 20 feet". Membership functions (mF) map

the fuzzy set to an interval of 0 to 1. Figure 3 shows an example of a fuzzy membership plot.

The membership function contains a value (grade of membership) for each distance in the fuzzy

set. If the numbers 18,19,20,21,and 22 were in the fuzzy set for "about 20 feet", their grade

would be in the range of 0 to 1. The closer to 1 the grade is, the more the distance is "about 20

feet". The grades of membership that are given come from data and people. Membership

functions that are measured from data have some calculation using the data to obtain the grade.

Others use people's opinions to determine the "closeness" of a value to the given fuzzy

information.

Figure 3: Fuzzy membership plot example [15]

 5

The standard fuzzy operations for membership functions are as follows [12]:

)(m)(m B A)(BA xxEquality =⇔== (1)

)(m)(m B A)(BA xxtContainmen ≤⇔⊂⊂ (2)

)(m - 1)(m (~) AA
xxComplement = (3)

)}(m),(min{m)(m)(BA xxxonIntersecti BA =∩ ∩ (4)

)}(m),(max{m)(m)(BA xxxUnion BA =∪ ∪ (5)

These are used to combine membership functions with each other. For this system's rule

processing, it uses classification trees to determine the minterms for its rule. Since the rule

processing was done in this manner, it was decided that using probability axioms and Bayes'

intersection rule was necessary for the best results (discussed later). The operations used are

[11,13,14]:

)()()()(BAPBPAPBAP ∩−+=∪ union (6)

)(1)(EPEP −= complement (7)

)()()(BPAPBAP ⋅=∩ Bayes' intersection (8)

 There has been much research done in color segmentation [2,3,4,7,8]. The use of fuzzy

rules in image analysis seems to be most simular with the use of seed points. The seed points

are points used to be a basis for pixels in the image color analysis. For the research done by

Chamorro-Martinez et al., the seed points also provide an approximate edge to the object in the

image [1]. The color features are fuzzified and the position of the seeds are stored. The

algorithm uses a cost function that is determined by the distance of one seed point to the next

consecutive seed point. By using the fuzzy data as a membership function, paths that go through

a different region than what the seed point represents have high costs. By minimizing the cost,

the program can segment the pictures.

 6

CHAPTER III

LEARNING FUZZY MEMBERSHIP FUNCTIONS

 In this chapter, the processing of information to provide data sets and method of

extracting fuzzy rule sets are discussed. The process for this object recognition algorithm

consists of training the system on certain objects, processing these objects to determine rule

trees, extracting the rules and studying the effectiveness of the rules. This area focuses on

training and analyzing the rules. All programming is done in MATLAB which uses ".m" files.

Feature Extraction

 During the training step, sections of images are selected and given a label (class)

according to what the object is. This is accomplished using the script file

trainingthevideo.m. The file creates a structure array called Imemory and allows the user

to provide the objects to be trained. In the addtoImemory function, the name of the picture/

frame of video, upper left coordinate of the selection rectangle, the width of the rectangle, the

height of the rectangle, and the class of the selected object are added to the Imemory structure, as

shown in Figure 4. These areas are processed to extract the features of each object. The function

used is called getfeaturesfromImemory. This function takes the name of the picture and

selected coordinates and extracts the features of these areas. The feature vector structure was

originally 433 characteristics. As testing continued, some of the features were removed because

of processing costs.

 7

Figure 4: Acquiring a selection region

The first 250 of the 433 features are a histogram (or equivalently a probability density

function, pdf) of color measurements for each training object. The image was converted from its

original RGB format to HSV. The hue is broken into 10 bins, [0.00 0.05 0.14 0.22 0.28 0.45

0.54 0.75 0.81 0.92 1.00]. Bin 1 (orange with a bit of red) is 0.00 to 0.05, bin 2 (yellow) is

0.05 to 0.14, bin 3 (yellow-green) is 0.14 to 0.22, bin 4 (green) is 0.22 to 0.28, bin 5 (blue-green)

is 0.28 to 0.45, bin 6 (blue) is 0.45 to 0.54, bin 7 (blue-violet) is 0.54 to 0.75, bin 8 (purple) is

0.75 to 0.81, bin 9 (red-violet) is 0.81 to 0.92, and bin 10 (red) is 0.92 to 1.00. The saturations

and values are evenly distributed in to 5 bins each ranging from 0.00 to 1.00. The bin values are

[0.00 0.20 0.40 0.60 0.80 1.00]. Each color is represented by one bin for each of the three

bands. All possibilities of one bin selected from every band equals 250 different color features.

The program looks at each color feature and finds the number of pixels that are defined in that

feature. After doing this for all the color features, there are 250 numbers, each representing the

number of pixels of a certain color that is in the selection region. The total number of pixels in

the selection region divides these 250 numbers.

The next feature is a standard texture measurement. This feature measures the

“roughness” of the area. The texture is measured from the grayscale of the image. The

grayscale image is then filtered with a simple 3 by 3 Laplacian edge detector. Since there are

possible negative values, the absolute value is taken of the normalized value (divided by 256

 8

because of the 256 gray levels). The sum normalized across the entire selection region (divided

by the number of pixels in the selection region) is the texture measure. The next feature is a

texture measurement based on the Canny edge detector. This feature was not used in any

experiments discussed in this work.

A motion feature was added to replace the Canny texture feature for some experiments.

The motion feature used video feed to determine the amount of movement in an object. This

feature also uses the 256 level grayscale image. The motion was calculated by taking the

absolute value of the difference of consecutive frames in the selection region. The difference

matrix now contains numbers from 0 to 256. The matrix is normalized from 0 to 1 and is

summed to give the motion feature measure.

The next feature was a phase symmetry feature. This feature measures how symmetrical

the graylevels in the region are. This feature was not used in any experiments discussed in this

work.

The final 180 were line features. This feature measures how much of the selection area

contains lines at varying degrees. By using the radon function in MATLAB over the selection

region, each degree for 180 degrees for each pixel is calculated. The maximum value for each

row is taken and normalized over the selection region. These features were removed eventually,

but some experiments were preformed using this feature. All the features are shown in Figure 5.

Figure 5: Feature Vector

 9

Creating the Classification Tree

 After all of the samples from the training objects are taken, the program now has a

matrix of features for each sample and an array of class labels. The matrix rows and the label

array’s index correspond to each other (as shown below).

FV = L =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

.

.

.

.....

6,45,44,43,42,41,4

6,35,34,33,32,31,3

6,25,24,23,22,21,2

6,15,14,13,12,11,1

nnnnnn
nnnnnn
nnnnnn
nnnnnn

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

.

.

.
4

3

2

1

class
class
class
class

 feature matrix (a x 433) class vector (a x 1)

a = the total number of training samples for all objects

Note: Each coordinate, nsf, contains the measure of feature number (f) in the sample number (s).

Both of these are used by the MATLAB provided treefit function to create a classification

tree. Using these arrays, the function returns a structure array containing all of the information

about the created tree. For the classification process, you need four main items: sample set,

splitting criteria, stopping criteria and pruning. These are all parameters that can be set in

treefit, but we use the default settings. All the samples together are the parent node. The

most discriminatory feature is used to split the parent node into two child nodes. The process is

continued to create several more child nodes using the splitting function (Gini’s index of

diversity was used as the splitting criterion).

 The splitting criterions are a measure of impurities [9]. Impurities are the amount of

indecisiveness in a probability function. Lets say event t has 2 possibilities, higher or lower than

threshold, in Node q are possible. If there were no impurity, the pt/q (probability of t given q)

would either be 1 or 0. For most situations, there exists an impurity. The maximum impurity

would be pt/q would be 0.5. This indicates the maximum amount of indecisiveness. The

probability that event t is higher or lower than the threshold given Node q are equally likely.

This is a negative condition when considering using Node q to divide samples of object 1 and

object 2. The Gini improvement measure uses the Gini impurity function to find the optimal

 10

(causes the least amount of impurity) Node j (parent node) to split a collection of samples. The

Gini diversity index is:

Diversity index = 1 – p∑ i/j
2 = 2p1/j(1 – p1/j). (10)

This finds the impurity for Node j.

Then, the impurity of the two new groups of samples (child nodes) created from Node j is

calculated using the Gini diversity index. The weighted averages of impurities for the child

nodes are calculated.
Weighted avg. of impurity = [(p1)(diversity index1)] + [(p2)(diversity index2)] (11)

The impurity is considered weighted because the amount of the parent node in child 1 (p1) and

the amount of parent node in child 2 (p2) are taken into account. The final step is to compare the

impurity of the parent node with the impurities of the child nodes to receive the improvement

measure.
Improvement measure = impurity(parent node) – weighted impurity(child nodes) (12)

Matlab finds all nodes that contain more samples than splitmin (discussed later) and are impure

(having more than one class of samples in the node). On these nodes, the feature that gives the

best improvement measure is chosen and the samples are split.

 The stopping criteria that treefit uses is a coefficient called splitmin. This number, with

default value of 10, determines the minimum number of samples that must be present in a node

to able to be split again. This limits the size of the classification tree.

 The pruning of a classification tree cuts branches to the most optimal with the least size

difference in the tree. The branches are the splits that occur in the nodes when a tree is created.

The branches lead to other nodes that can be split or to nodes that cannot be split (leaves). The

treeprune function begins by finding all of the branches that split into two leaves (twigs) and

calculates the cost of the leaves. Cost is a measure of misclassification. Unless the matrix is

pre-defined, the cost of each misclassification in each node is 1. It also calculates the cost of the

entire tree. It systematically combines twigs that decrease the overall cost of the tree. The

function works to minimize
Cost + alpha*treesize (13)
alpha = max (0 , nodecosts – sumbranchcost) / max(eps, numnodes)

 11

cost = if no previous cost is entered

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

M

L

0111
1011
1101
1110

 cost (n x n)

n = the number of classes

nodecosts = the array of costs for each node

sumbranchcost = the sum of all the costs for the branches

numnodes = number of nodes
Note: the max functions in the numerator and denominator are used to ensure the alpha is never negative or

undefined.

treesize = the number of branches and nodes.

The function continues to prune until all optimal improvement measures (taken from the

minimized alpha) are less than the error costs of the prune.

Figure 6: Sample classification tree

 12

Rule Extraction

 The method used for our system actually creates fifteen classification trees. The original

data is used to create a tree. The analyzetreeseq.m file creates the loop to process the

fifteen trees. Once the rules (discussed later) are extracted from the original tree, the most

significant discriminating feature is removed and a new tree is formed. In Figure 6, the feature at

the top of the tree, feature 99, would be set to zero for all vectors and the modified vectors would

then be used to produce a new tree. This is repeated fifteen times. The reasoning behind this is

that objects have more than one discriminating feature. A single tree relies strongly on one set of

features, which may differentiate most of an object from the rest of the sample set. The “lesser”

trees help to strengthen other discriminatory features that may be present in an object that the

main tree does not use. In effect, the “lesser” trees ensure greater use of the other features

available, making the algorithm more robust.

 The trees have rules that are extracted using the script file analyzetree.m. Using the

structure array returned from treefit, the percentage of each class in each leaf node is extracted.

After taking the maximum percentage and its class of all the leaf nodes, they are sorted from

largest to smallest. The sorted leaf nodes can tell what are the final features that determine the

last splits in the tree. When the trees are created, the end splits lead to one leaf and another

impure group or two leaves. If the leaf is in the first column, then the leaf is decided to have less

than the threshold amount of the deciding feature. Each feature is used as a fuzzy membership

function. An array is created to hold whether a leaf node has less or more than the threshold

amount with a –1 or 1. In Figure 6, the bottommost set of leaves contains two classifications;

PeachBlock and Hand. The deciding feature for this particular split is feature 5. As the program

moves up the tree, -1 would be assigned for PeachBlock because it is less than the threshold at

feature 5 and 1 for Hand. All of the decision features are multiplied by a –1 or 1 and saved for

each leaf starting from the leaf with the highest percentage. These decision feature arrays start

with the last decision and end at the first. The result is an array of feature numbers that are either

positive or negative listed from least significant to most. This resulting array is called a minterm

(a collection of grades of membership) for that specific case of a class. Several minterms added

together make a rule. Each tree creates a number of minterms each for one of the object classes.

The minterms for the same class are added together to create a rule.

An example of part of the rule for Hand in Figure 6:

 13

))(X)X()(X)X(())(X)(X)X((Rule Hand 08141399141399 ∩∩∩∪∩∩= (14)

Above is an example of a possible rule taken from a set of trees. Each term is considered a

minterm. Each variable is referring to a feature. The "< threshold" next to the feature number in

Figure 6 notes the manner in which the classification tree makes the decision. The program

changes the minterm to be interpreted in as a fuzzy set. The equation 14 above would read: not a

lot of feature 99 AND a lot of feature 13 AND a lot of feature 14 OR not a lot of feature 99 AND

a lot of feature 13 AND not a lot of feature 14 AND a lot of feature 8 and so on. As discussed

earlier, the matrix of feature numbers would represent the example as follows:

Table 1: Minterm storage example

 Features

Minterm 1 14 13 -99 0 0

Minterm 2 8 -14 13 -99 0

The minterms (rows) would continue till all the Hand classes for this tree are taken. The number

of features that can be held for each minterm (columns) is set at 40 currently but this limitation is

arbitrary and can easily be increased. Notice that the features closest to the leaf nodes are in the

early columns of the matrix, this is due to the direction taken through the tree to collect the

features. The complete rule for this tree will encompass all of the Hand leaf nodes in the

classification tree.

Rule Analysis

 After extracting the rules, a method was developed to observe the effectiveness of the

rules amongst the other training vectors. The reason was to study the minterms to determine if

there were any methods to decrease incorrect classifications. After processing the classification

trees, extracting a matrix of minterms (as described above) and an array of numbers that

corresponds to the minterm matrix indicating the class that a specific minterm is describing, the

minterms are compared to each other to determine how object specific each one is.

 14

Figure 7: Initial menu for minterm analysis

 The overall setup of the program is to allow the comparison of minterms between classes.

The main window of this observation program is shown in Figure 7. By studying the

discrimination graphs, specific minterms, individually selected or via a specified threshold, can

be observed if desired. The program allows for these minterms to be observed with their

properties (colors, descriptive terms) and applied to images to give visual perspective on the

minterm's discriminatory properties (discussed later). To make studying different training sets

more robust, the program allows for minterms of one dataset to be compared to training data of

another dataset.

 Once the desired class (chosen class) is identified, the program takes the minterm set of

that class and compares it with each of the feature vectors of other classes (comparison classes).

The result is a matrix whose columns correspond to the chosen class' minterms and the rows

correspond to the comparison classes. Each coordinate in this matrix contains the summed

values of the comparison class' feature vectors for that minterm.

Visual representation of previous paragraphs using classification tree example:

 15

MTsample = L

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−

−

.

.

.
009913148
009913148
000991314

......0000099

sample =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

.

.

.
Re dStrip

Hand
Hand

GreenBlock

 entire minterm matrix (m x 40) class of minterm(m x 1)

m = the number of minterms gathered from all the trees of all the classes

If the chosen class is Hand, Hand's minterms are extracted from the entire matrix (MTsample)

using the class array.

MThand = L

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

.

.

.

.
009913148

.....000991314

hand =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

.

.

.

.
Hand
Hand

 Hand minterms (n x 40) array of minterm's classes (n x 1)

n = the number of minterms defining the rule for the class Hand

 Objects have the contribution from multiple features to establish their characteristics, just

as the rules created suggest. The operations used for standard fuzzy membership functions

would negate the many features from each minterm. For this reason, Bayesian rules are used.

For example,

If fuzzy operations are used,

))(X)X()(X)X(())(X)(X)X((Rule Hand 08141399141399 ∩∩∩∪∩∩= (14)

⇓

)}}(X),X-(1),(X),X-(1max{,)}(X),(X),X-min{max{(1 Rule Hand 08141399141399= (15)

 16

This simply results in the finding the maximum feature value for each minterm and then finding

the minimum of the two maximums. The result would only contain the value of one feature

rather than be compiled of all the features. This method partially negates the reason for using

classification trees.

If the probability axioms and Bayes' intersection rule given independence are used,

))(X)X()(X)X(())(X)(X)X((Rule Hand 08141399141399 ∩∩∩∪∩∩= (14)

⇓

))(XX-)(1)(XX-(1))(X)(XX-(1 Rule Hand 08141399141399 += (16)

All the features of minterms that have value are represented. The union rule is [14]:

)()()()(BAPBPAPBAP ∩−+=∪ (6)

When the union rule is implemented, the final term ()(BAP ∩−) is not used. This part was

ignored for ease of implementation. The reason this can be removed is it can be argued that the

final term will become incredibly small upon calculation. Removing this term has not caused a

noticeable decrease in the quality of results as compared to leaving it in.

 Depending on whether the user chose to compare the chosen class to one comparison

class or the chosen class to all comparison classes, the program collects the feature vectors of the

chosen class and one or more comparison classes. The features values are extracted according to

the minterms for processing. A value for each minterm is calculated for all the feature vectors.

As the minterm calls for different features, these features are normalized from 0 to 1 with all the

values of that feature in the class. Depending on whether the feature number in the minterm is

positive or negative, the value of the feature is interpreted as either normalized ni,j or 1 –

normalized ni,j. Once all the values are collected for each feature in the minterm, the values are

multiplied together. At this point, the value of a minterm for all the samples of one class has

been collected. The program continues to do this for every minterm in the chosen class minterm

matrix. The values are summed and saved for each class in a matrix called sumvectdata.

 Lets assume there are 4 feature vectors of BlueBlock (feature vectors 7, 10, 25, 103) that

are extracted from the complete feature matrix (FV). Lets also assume that the first 2 minterms

of class Hand are the only minterms.

 17

 FVblue =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

L

L

L

L

6,1035,1034,1033,1032,1031,103

6,255,254,253,252,251,25

6,105,104,103,102,101,10

6,75,74,73,72,71,7

nnnnnn
nnnnnn
nnnnnn
nnnnnn

 Feature vectors of the class BlueBlock (4 x 433)

Note: The feature vectors of a class are normalized by feature (column wise) from 0 to 1 by

dividing by the maximum value of the feature before being calculated.

 MThand = ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
09913148
00991314

 First 2 minterms for class Hand

The measure of each minterm is calculated for each feature vector (MThand applied to FVblue).

S =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−
−−−

)1)()(1)(()1)()((
)1)()(1)(()1)()((
)1)()(1)(()1)()((

)1)()(1)(()1)()((

99,10313,10314,1038,10399,10313,10314,103

99,2513,2514,258,2599,2513,2514,25

99,1013,1014,108,1099,1013,1014,10

99,713,714,78,799,713,714,7

nnnnnnn
nnnnnnn
nnnnnnn
nnnnnnn

S =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2,1031,103

2,251,25

2,101,10

2,71,7

valval
valval
valval
valval

Now val7,1 means the value of feature vector 7 for minterm 1. To calculate the summed value of

the BlueBlock class for Hand minterm 1 the first column of the score matrix (S) is summed.

Ssum = [])()(2,1032,252,102,71,1031,251,101,7 valvalvalvalvalvalvalval ++++++

 18

If there were only 2 Hand minterms and these 4 samples for BlueBlock, this 1x2 row vector

(Ssum) would represent the BlueBlock feature vectors analyzed with Hand minterms of

sumvectdata.

Sumvectdata =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1

3534333231

2524232221

11514131211

.

.
.

.....

r

s

v

vvvvv
vvvvv

vvvvvv

 sumvectdata (r x s)

r = the comparison class and the chosen class (if only one comparison class is chosen), or all of

the classes (if comparison with all classes is chosen)

s = the number of minterms for the chosen class

For example, v23 is the summed values of the third minterm for all the samples of class 2

Now using these values, the program can evaluate how well each minterm applies to its class.

Sumvectdata is divided into one row vector and a matrix. The row vector is the values of the

chosen class with for minterms (sumvectcorrect). The matrix has the values of the incorrect

classes, which are summed down each column to create a new row vector (vectwrong). The

elements of vectcorrect are divided by the corresponding elements of vectwrong to show the

properties of each minterm.

This process is shown below.

 19

 vectwrong =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1

3534333231

11514131211

.

.
.

.....

r

s

v

vvvvv

vvvvvv

 matrix of incorrect class values (r –1 x s)

 sumvectcorrect = []2524232221 vvvvv

 array of correct class values (1 x s)

Note: Assuming class 2 is the chosen class

After summing down the columns for vectwrong, sumvectwrong is produced.

[].....453515443414433313423212413111 LLLLL vvvvvvvvvvvvvvv ++++++++++

 sumvectwrong(1 x s)

⎥
⎦

⎤
⎢
⎣

⎡
++++++++++

.....
443414

25

443414

24

433313

23

423212

22

413111

21

LLLLL vvv
v

vvv
v

vvv
v

vvv
v

vvv
v

 sumvectcorrect / sumvectwrong (1 x s)

The results of sumvectcorrect / sumvectwrong (discrimratio) are plotted revealing the more

powerful discriminating features, which appear as the higher peaks.

 There are three sets of data that are being used in the following examples and plots. The

first two sets are taken from an outdoor setting. The classes for both data sets are Tree, Grass,

AL (Artificial Landmark), and Pathway. One main difference of the two sets is in the feature

vectors. Both contain vectors that are 433 long. The first set (Dataset 1) uses the 180 line

features while the second set (Dataset 2) does not have these features. Instead of changing the

number of the column indices in the vector for the unused features, these indices are set to zero.

Both contain the 250 color features and the standard texture measure. Both sets also do not have

 20

the Canny texture measure and the phase symmetry measure. Another main difference is the size

of the sample set, Dataset 2 contains 2079 samples for all of its classes while Dataset 1 only

contains 191 samples for all of the classes. The numbers of samples for each class are given in

Table 2.

Table 2: Sample quantities for Dataset 1 and Dataset 2
 # of samples in Dataset 1 # of samples in Dataset 2

TreeTrunk 66 115

Grass 61 1048

Pathway 47 899

Artificial Landmark 17 17

Total Samples 191 2079

The third set (Dataset 3) of data is taken from a video of a joint project with the psychology

department. The classes in this set are BlueBlock, GreenBlock, PeachBlock, Hand, and

RedStrip. This data set also contains 250 color features and the standard texture measure. This

data set contains the motion feature but does not have the 180 line features. Dataset 3 has 250

samples for its classes (50 samples for each class). Lets examine what is shown for datasets and

what can be deduced from the plots.

 21

Figure 8: Comparison plot for TreeTrunk using Dataset 1

The minterm labels on the x-axis correspond to the rows in the chosen class' extracted matrix.

These minterm labels are used to find the actual minterm content when analyzing minterms. The

y-axis is the ratio of minterm strength for the correct class over the minterm strength for the sum

of the incorrect classes. The minterms that are the most discriminating have higher peaks. A

problem with the way these plots are calculated is its dependency on the number of samples in its

class. The method used does not adjust for class 1 having more samples than class 2. The values

on the y-axis do not give a measure that can be equated to minterm comparisons of different

classes. Nevertheless, the calculation is still useful for determining the most discriminatory

minterms. Figure 9 shows the secondary menu after a class comparison is evaluated.

 22

Figure 9: Secondary Menu after Class comparison

For example lets look at minterm label 68 in Figure 8 since it has a large spike. Figure 10 shows

the information for this minterm, which we summarize as:

Figure 10: TreeTrunk minterm label 68 from Dataset 1

 23

Table 3: TreeTrunk minterm 68 from Dataset 1
Feature 94
hsv color parameters hue=0.25 saturation=0.7 value=0.7
Little of this feature

Feature 251
Texture measure based on Laplacian
Little of this feature

Feature 244
hsv color parameters hue=0.96 saturation=0.7 value=0.7
Little of this feature

Feature 254
straight line measure at angle of -89 degrees
A lot of this feature

Feature 54
hsv color parameters hue=0.18 saturation=0.1 value=0.7
Little of this feature

By selecting "Examine a Minterm", the minterm description image and description text appear

after indicating the minterm label. We have observed that the algorithm has tendencies to

evaluate a class by what features it does not have versus the stronger features it does have. The

reason for this may be that the feature vectors are mostly zero throughout making it much more

likely to choose features that do not exist rather than the few features that do exist. Due to this

fact and the preferred method of description for objects, special notice is shown for features that

are stronger (used in the classification tree) and are significant due to the large measures taken

from the feature.

 24

Figure 11: Comparison plot from Dataset 2

 In the case for the Artifical Landmark, there are 3 very prominent peaks in Figure 11.

The artificial landmark is a 3-color cylinder (neon pink, neon orange, neon green) created for

object recognition. Obviously, its main purpose is to stand out from its surroundings. The y-axis

values are very small. This reinforces the previous explanation about the number of samples in

the set distorting the outcome of the y-axis in the plots. The artificial landmarks have only 17

samples out of 2079. The program still does well determining the landmarks. Even though the

minterms determine the artifical landmarks well, the description of the minterm is not easily

understood. The description a human would give would be likely to focus on the three bright

colors in the landmarks. This is not the case in our algorithm as shown below in Figure 12.

 25

Figure 12: AL minterm label 48 from Dataset 2

Table 4: AL minterm 48 from Dataset 2

Feature 35
hsv color parameters hue=0.095 saturation=0.3 value=0.9
A lot of this feature

Feature 53
hsv color parameters hue=0.18 saturation=0.1 value=0.5
Little of this feature

Feature 46
hsv color parameters hue=0.095 saturation=0.9 value=0.1
Little of this feature

Feature 58
hsv color parameters hue=0.18 saturation=0.3 value=0.5
A lot of this feature

Features 35 and 46 have the same hue value. This value indicates orange for the color. Feature

35 is a faded orange that is very bright (strongly resembles peach). Feature 58 is a vibrant

orange that has very little brightness (strongly resembles black). Features 53 and 58 have the

same hue as well. Their color is yellow-green. Feature 53 is faded to the point that it is difficult

to detect any color and has some brightness (strongly resembles gray). Feature 58 is faded and

has some brightness (strongly resembles brownish-green). This minterm is looking for a lot of

the peach and brownish-green and little of the gray and black. The representation does not quite

meet the expectations of the description in human terms. Though this is just one of the spiking

 26

minterms, all of the highest 3 have similar representations. These representations give a good

grasp of the reasons for the program's decisions and may lead to selection of stronger additional

features.

Figure 13: Comparison plot of Dataset 3

Due to the nature of the experiments performed with the Psychology Department (C.F. Chapter

V), the motion feature was added to aid in segmenting the hand. Figure 13 shows a comparison

of the Hand minterms to the other classes, and Figure 14 examines minterm label 20.

 27

Figure 14: Hand minterm label 20 from Dataset 3

 28

Table 5: Hand minterm label 20 from Dataset 3

Feature 19
hsv color parameters hue=0.025 saturation=0.7 value=0.7
Little of this feature

Feature 8
hsv color parameters hue=0.025 saturation=0.3 value=0.5
Little of this feature

Feature 252
Motion detection measure
A lot of this feature

Feature 13
hsv color parameters hue=0.025 saturation=0.5 value=0.5
Little of this feature

Feature 239
hsv color parameters hue=0.96 saturation=0.5 value=0.7
Little of this feature

Feature 251
Texture measure based on Laplacian
A lot of this feature

Feature 65
hsv color parameters hue=0.18 saturation=0.5 value=0.9
Little of this feature

This minterm describes a bunch of colors that should not be included with the hand. Features 19,

8, and 13 are all orange-red with varying saturations and mid-range values (resembles orangish-

brown, brown, and light brown). Feature 239 is red with mid-range saturation and high value

(resembles reddish-violet). Feature 65 is a yellow-green with mid-range saturation and very high

value (resembles a bright yellow). Little of the colors are expected in this minterm. The

minterm also contains a lot of feature 251 and 252. Feature 251 is the Laplacian texture

measure. Feature 252 is the new motion feature. The additional motion feature was significant

for the hand detection, allowing the motion patterns of people to be tracked for study.

 The features that were removed were because of computation costs and/or lack of

significance in the classification of objects. For a majority of the samples, color features are the

strongest. In the case for TreeTrunk between Dataset 1 and Dataset 2, Dataset 1 consistently has

 29

the line measure feature in its minterms and does a better job of classifying tree trunks in images

(shown later). For outdoor datasets, the line feature appears to be a useful feature.

 30

CHAPTER IV

APPLYING THE MEMBERSHIP FUNCTIONS TO IMAGES

 This chapter's purpose is to discuss applying the rules to a new image, and displaying the

results of the image processed with the rules.

 After the training vectors have been entered and the rules have been extracted, the next

step is to apply these rules to images. First, the image is loaded using the function imread in

the Matlab Signal Processing Toolkit. Now the features of the image need to be extracted.

Extracting Image Features

 The process of extracting a feature set from a new image is the same method used to

gather the training sample's features. The main difference is the moving window used to define

areas in the image from which the features are extracted. Currently, the window is 15 by 15

pixels and it increments by 10 pixels in the row and column directions. These values are

arbitrary and can be changed easily, but a decrease in window increment (increase in resolution)

increases the processing time. The window increments are constrained not to exceed the image

when the window reaches the borders of the image. The features of each window are extracted

and put into a matrix form. This matrix is similar to the feature matrix in the training data except

the number of rows is now the number of windows in the new image. This process is shown

below.

I =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

M

L

6,45,44,43,42,41,4

6,35,34,33,32,31,3

6,25,24,23,22,21,2

6,15,14,13,12,11,1

imimimimimim
imimimimimim
imimimimimim
imimimimimim

image (r x c)

⇓

 31

WinF =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

M

L

6,45,44,43,42,41,4

6,35,34,33,32,31,3

6,25,24,23,22,21,2

6,15,14,13,12,11,1

wfwfwfwfwfwf
wfwfwfwfwfwf
wfwfwfwfwfwf
wfwfwfwfwfwf

window feature matrix (n x 433)

r = rows in the image

c = columns in the image

n = number of 15x15 windows in image.

Applying the Rules to the Image

For each tree formed, we obtain one rule (in a sum of minterms form) for each object class.

Thus, if the total number of trees formed is given by Ntrees, then there will be Ntrees rules for each

object class. For a given object class, Ci, each rule is applied to the window feature matrix,

resulting in Ntrees result matrices for class Ci. A result matrix gives the degree of membership

estimated for each region by the applied rule. What remains to be done to combine the Ntrees

results for the given class into a single result. Viewing the individual results as fuzzy sets, we

may combine them using the union of the Ntrees results using either Equation (5) or (6).

However, this approach yielded poor results.

 We use another approach to combining the results in to switch to another paradigm of

interpretation. If we take each result vector and divide it by the total sum of all values in the

result vector, the new normalized vector now has a sum of values equal to 1. Thus, the vector

can be viewed as a probability density function (pdf) describing the distribution of the objects of

class Ci as estimated by the associated rule, Ri, j=1,…,Ntrees. This pdf is denoted by

)),((RCyxf i∈ where R = R1,….,RNtrees (17)

Then using a probabilistic assumption of equally likely rules.

P(Rj) =
treesN
1 j = 1,2,…,Ntrees (18)

The pdfs may be combined as

)),((iCyxf ∈ = ∑
=

Ntrees

k 1
)),((ki RCyxf ∈ P(Rk) (19)

 32

This method of combining the rule outputs yielded good results. The fuzzy membership

functions seem to give a more robust evaluation of the data when gathering features. The

Bayesian methods give a more robust expression of the features after they are combined. So by

adding the probability density function of fuzzy membership rules across the entire image, the

strength of both fuzzy rules and Bayesian probability rules can be observed.

These values are represented visually as a saliency map by applying a grayscale colormap

to display the results. Using the function reshape, Matlab can manipulate this array of summed

values back into the relative positions of each window in the image. The image has brighter

spots for areas in the image that values are higher compared to the other values of the set. The

minterms for a class worked well if the values (brightness) of the object contrast highly with the

values (brightness) of objects that are not of the class. The resolution decrease observed in the

output images is due to the reduction of each increment of the window down to one pixel

representation.

Lets observe the differences between Dataset 1 and Dataset 2. Please note that the

following steps were done numerous times with different images. The examples are representing

the general discoveries of analysis.

Figure 15: Original Image

 33

Figure 16: Pathway detection from Dataset 1

Figure 17: Pathway detection from Dataset 2

Figure 18: Grass detection from Dataset 1

 34

Figure 19: Grass detection from Dataset 2

Figure 20: TreeTrunk detection from Dataset 1

Figure 21: TreeTrunk detection from Dataset 2

The original image was created with a 360 degree panoramic mirror and unfolded as shown in

Figure 15. This is the reason for the black areas at the top of the image. The main observation to

note is the significant increase in rule strength due to increase in the number of training vectors,

 35

especially for the grass (Figure 18 and 19) and pathway (Figure 16 and 17). Due to the manner

in which the images are created, the stronger the contrast between the pixels means the better the

rule was at detecting the object. Remember that Dataset 1 contains only 191 vectors and Dataset

2 contains 2079. The improvement in the pathway and grass detection is apparent. The main

reason behind the improvement is the vast increase in samples. The TreeTrunk detection did not

noticeably improve even though the number of samples increased (Figure 20 and 21). These

observations lead to more analysis to try and determine the reason. The option may be chosen to

select a pixel and display the percentages of how much each minterm devoted to the total value.

In the areas that were correctly decided as TreeTrunk, the pixels were selected to determine if

any more information could be extracted about the minterms. Below is the bright pixel from

Dataset 1 at row 5 column 8 from Figure 20:

Figure 22: Minterm percentage contribution to pixel (5,8)

 36

The numbers on the y-axis represent the percentage each minterm contributed to the selected

pixel and the x-axis is the minterm labels in Figure 22. The reasoning behind creating the pixel

selection was to allow for the minterms above certain thresholds to be saved and used to

reanalyze the image determine if the results would improve. For Figure 23, a threshold of

greater than or equal to 2% was set to determine whether these minterms would provide a better

detection.

Figure 23: TreeTrunk detection with minterms above 2% contribution at pixel (5,8)

When compared to the original detection of TreeTrunk from Dataset 1, the use of the most

contributing minterms did not improve. The overall certainty (contrast) in the image decreased

and some of the areas where these minterms were not as strong, that were actually TreeTrunks,

were lost as well. The minterms seem to work best as a complete rule. The minterms contribute

to the overall certainty of the detection. The difference between the detection of Trees for

Dataset 1 and Dataset 2 are very small. Dataset 1 had only 66 samples while Dataset 2 had 115.

The only thing Dataset 1 had was the line measure feature. It may be deduced that either the line

measure feature caused Dataset 1 to equally detect with Dataset 2 or the increase in the number

of samples from Dataset 1 to Dataset 2 was not enough to be significant in detection.

 The next step is to allow the detection of multiple objects in one picture. Now the

program must be able to decide whether a pixel is of a certain class or of no class at all. Now the

program is taking the window feature matrix and extracting the rules for all the classes. The

resulting matrix (ImSc) has n (number of windows in image) rows by y (number of classes)

columns.

 37

 ImSc =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

M

L

6,45,44,43,42,41,4

6,35,34,33,32,31,3

6,25,24,23,22,21,2

6,15,14,13,12,11,1

scscscscscsc
scscscscscsc
scscscscscsc
scscscscscsc

 score matrix (n x y)

n = number of windows in image

y = number of classes

Each index in score matrix is the value of that windows score with the class' minterms. These

scores are normalized from 0 to 1 along classes (columns). The scores are then compared to

each other in the same row. The window is decided to be a certain class if it has the largest score

in the rows and it is greater than 0.15 (a threshold chosen empirically by observing graphs of the

scores). This value can be increased to ensure only the higher scores to be recognized as

different classes. The sample image in Figure 24 was taken from the psychology department

experiments. The goal is to study the motion of humans when given different descriptions of the

audience. It is necessary to be able to track the hand for this experiment.

 38

Figure 24: Sample Image

Figure 25: Redstrip score plot for Sample Image

 39

Figure 26: RedRing score plot for Sample Image

Figure 27: YellowRing score plot for Sample Image

 40

Figure 28: BlueRing score plot for Sample Image

Figure 29: Hand score plot for Sample Image

 41

Figure 30: Segmentation Image for Sample Image

The result of the sample image (Figure 30) shows the segmentation (yellow = BlueRing, green =

RedRing, blue = YellowRing, purple = Hand, and red = RedStrip). The plots of the BlueRing

(Figure 28) and YellowRing (Figure 27) definitely show that the group of peaking values

represents the object in the video. The RedRing plot (Figure 26) has two groups of peaking

values for the object and the red tape. The Hand plot (Figure 29) indicates detection in the image

though there is no hand in view. The face of the person is represented as Hand, which is logical

since the face has about the same color as the hand. The plot of the RedStrip (Figure 25)

indicates detection as well. As shown in the result, the strip on the hat is correctly identified.

 42

CHAPTER V

APPLICATIONS AND RESULTS

 This chapter discusses the use of the fuzzy membership recognition algorithm to discern

the objects and movements in instructional task videos.

Objective of Experiment

 The experiment is to use the fuzzy membership recognition algorithm to discern objects

in videos from the psychology department. One of the objects is the person's hand. As stated

before, the ultimate goal is to study the differences the in motion of a person when demonstrating

a task for different entities (humans or robots). The main objective is to segment movies created

by their department and be able to track the hand as well as the head angle. Each participant was

to wear a hat with a red stripe at the center of the hat. This was to aid in discerning the direction

the participant was looking. By tracking these two movements, they are able to store data on

where the subject was looking and hand motion patterns. They speculated that the hand motion

of the subject when told they were performing for a robot would be slower and more rigid. The

information will also reveal the effectiveness of the fuzzy rules deduction and demonstrate the

speed of training to new environments.

 The immediate goal is to show that the recognition algorithm is effective in segmenting

the objects in videos created for study by the psychology department. It can track the

movements of the hand and the angle of the head, and the system is easily trained and

implemented with a relatively small number of samples.

Experiment Setup

 The participants are told to show either a human or a robot how to move some objects on

a table to complete a task. The three tasks shown here are the card arrangement, towers of

Hanoi, and tower building tasks. Each of the tasks has objects of different colors.

 43

Figure 31: Card arrangement task initial setup

Figure 32: Card arrangement task completed

 44

The card arrangement task shown in Figures 31 and 32 is to take the cards arranged by color and

shift them to be arranged by the number of white squares on them. The only limitations are that

the person may only use one hand and the cards are not allowed to pass over each other.

Figure 33: Towers of Hanoi task initial setup

 45

Figure 34: Towers of Hanoi task completed

The Tower of Hanoi task shown in Figures 33 and 34 is to move the stack of colored rings from

the spindle on the most right side of the image to the left. A ring can only be moved to an empty

spindle or on top of a larger ring. Again, the task is to be completed with one hand.

 46

Figure 35: Tower building task initial setup

 47

Figure 36: Tower building task completed

The tower building task is to take the blocks in Figure 35 and construct them to the structure in

Figure 36. The participant is to attempt to build the tower with one hand but may use both if

necessary.

Two new script files were created to easily train and process the videos by consolidating

the current functions. A small algorithm is used to plot an estimated line for the center of the

head, an estimated line for the direction of the gaze, and a marker to determine the hand position.

The first two use the image segmentation of the red strip on the head. The strip is separated from

the rest of the image by only considering the region where the head of the participant is. The

center of the strip is considered the center of the head. A line is plotted going straight down from

the center. The estimation of gaze uses what the algorithm determines is the red strip at the head

region, and puts a best fit line to the points to determine the line of the gaze. The line of the gaze

is plotted along with a verticals centerline, thus an angle of gaze from the center can be

 48

estimated. The hand marking finds the range of hue values that flesh tones fall in for the image

and multiplies them by the amount of motion detected in the same image. So the coordinates

match, the flesh-tone/ motion product image is down sampled to match the segmented image

coordinates. The hand position is simply the max value in the down sampled flesh-tone/motion

image.

The processed videos segmented very well. Each video was created using a training

vector of only 50 samples for each object. The collection of the 250 samples takes about 30-45

minutes to collect for each task. A huge feature space (252 dimensional) needs many samples to

create solid clusters. Although the numbers of samples are only 250, the recognition of the

videos is reasonably accurate. Table 6 shows the object classes for each task.

Table 6: Class names for the three separate tasks
Towers of Hanoi task Card arrangement task Tower building task

BlueRing BluePaper GreenBlock

YellowRing GreenPaper PeachBlock

RedRing PinkPaper BlueBlock

RedStrip RedStrip RedStrip

Hand Hand Hand

Results

The results had some noise but this is probably due to the limited number of samples.

The videos themselves segmented very well considering the small number of samples. The two

main areas of noise are from "inconsistent flashes" and the skin tone items in the image (i.e.,

PinkPaper). The inconsistent flashes are areas that are not the object it is identified to be but due

to minor feature characteristics of the image scoring high enough to be considered an object.

Remember the object is decided from its score on the rules. Since the score is normalized from 0

to 1 across all the windows of the frame, some noise (i.e., lighting differences) causes a

fluctuation in the scores of all the windows giving incorrect results. Also, the color features are

not fine enough to separate the colors of the skin and pink. Integrating more samples into the

training matrix can reduce the noise from the inconsistent flashes. Increasing the number of bins

in the color feature space will separate very close colors in the hue space to different bins. The

 49

noise reduction would probably be at least half as noisy if the samples doubled. The small

number of samples allows for decent detection, the pixels that were correctly detected can be

saved and used as additional training vectors. This allows for the training vector samples to

increase dramatically with each frame results. This change can allow for quick analysis on the

effectiveness of the fuzzy rule. If the object detection does not improve with samples, the most

likely action is to adjust the feature vector itself.

In all of the videos, the hand marking and gaze estimation worked rather well. By storing

these numbers, the hand motions can be analyzed to reveal possible motions of the hand. By

taking these vectors of positions in the hand, it is possible to extract changes in the direction of

the hand and/or pauses. Using these to segment one motion of the hand from another, the frames

where the changes occur can be displayed and analyzed. Figure 37 is an example of motion

display for Figure 33.

Figure 37: Motion image of Figure 33

 50

The collected hand positions give the following plots. Figure 38 is the median-filtered x-

axis (column) position of the hand plotted vs frame number. As the numbers increase, the farther

to the right side of the image is the hand location. Figure 39 is a derivative of the median-filtered

x-axis hand motion used to aid in extracting the pauses in the x directions. Figure 40 is the

median-filtered y-axis (row) position of the hand. As the numbers increase the closer to the

bottom of the image is the hand location. Figure 41 is the derivative of the median-filtered y-

axis hand motion used to aid in extracting the pauses in the y directions.

Figure 38: X-axis hand position

Figure 39: Derivative of x-axis hand position

 51

Figure 40: Y-axis hand position

Figure 41: Derivative of y-axis hand position

Figures 42 through 56 are the frames estimated to be the transition points from one

motion to the next for the Tower 2 video:

 52

Figure 42: End - Reach to RedRing, Begin - Place

Figure 43: End – Place RedRing, Begin - Reach

 53

Figure 44: End – Reach YellowRing, Begin - Place

Figure 45: End – Place YellowRing, Begin – Reach

 54

Figure 46: End – Reach RedRing, Begin – Place

Figure 47: End – Place Redring, Begin – Reach

 55

Figure 48: End – Reach BlueRing, Begin - Place

Figure 49: End – Place BlueRing, Begin - Reach

 56

Figure 50: End – Reach RedRing, Begin - Place

Figure 51: End – Place RedRing, Begin - Reach

 57

Figure 52: End – Reach YellowRing, Begin – Place

Figure 53: End – Place YellowRing, Begin - Reach

 58

Figure 54: End - Reach RedRing, Begin – Place

Figure 55: End – Place RedRing, Begin – Move to rest

 59

Figure 56: End – Move to Rest

 60

CHAPTER VI

CONCLUSION

 The use of fuzzy membership functions for object recognition is one of the better ways to

develop a learning object recognition system. This system takes advantage of the classification

trees, which allows it to relate to objects through the feature vectors in a manner that is easy to

understand. The simple training process allows for many different features to be added. These

features are can be used in many interesting manners, due to the way they are stored. The

motion image can be used to find when motion below the hand is at a maximum to determine if

the hand is moving a object. Just as the hand's position can be stored, other objects (i.e., a red

strip) can be used to track other significant motions in the image.

 The processing of the videos takes a long time. The goal of the system is to run in real-

time eventually. This slowness may be due to MATLAB not being the optimal system to run the

image processing. The code will be ported to C++ to determine how much faster it can be

processed.

 The low resolution does not allow for the detection of small hand movements. Increasing

the resolution increases the process time quite a bit. This problem may also be improved if the

port to C++ will be a significant decrease in processing time.

The object recognition of images can be used to add to the training vector by taking the

window samples that are correctly identified. Using this method, the number of samples will

increase dramatically. As the number of training vectors grows larger, storage will become an

issue. Since the vectors are mostly zero, they can be stored as a sparse vector to solve the

problem immediately. In the long run, it will be necessary to create a general model for objects

to conserve space.

Morphology could be used to reduce noise in recognition. This process would help

reduce the random noise spots that occur in the recognition process.

Combining the training sets could allow for subject identification for the same tasks. The

subjects that are asked to do the same tasks may have different enough skin tones to be

identified. It is likely that the color histogram would need to be able to represent a high number

of colors in the skin tone.

 61

The ability for a robot to create descriptions of a feature vector and motions may lead to

instruction. These instructions can be used to teach other robots how to do certain tasks. Their

feature vectors will identify objects. The human's hand can be tracked to observe the behavior.

The robot can track its own hand and mimic the behavior observed from the human. In terms of

navigation, a robot can observe the features of a pathway and use a simple cost/reward system to

learn about objects in its environment.

 There are many different paths to explore with this system. A possible

application is to be used as the perception module in a working memory system.

 62

 APPENDIX

addtoImemory.m

function Imemory = addtoImemory(Imemory, picturename, classlabel, picnum)

nextvec = length(Imemory) + 1;
X = aviread([picturename],picnum);
x = X.cdata;
figure(1), image(x)
[xcrop, xrect] = imcrop;
xrect = round(xrect);
Imemory(nextvec).picture = picturename;
Imemory(nextvec).picturenum = picnum;
Imemory(nextvec).upperleftrow = xrect(2) ;
Imemory(nextvec).upperleftcol = xrect(1);
Imemory(nextvec).width = xrect(3);
Imemory(nextvec).height = xrect(4);
Imemory(nextvec).class = classlabel;

set(rectangle('Position',[Imemory(nextvec).upperleftcol Imemory(nextvec).upperleftrow
Imemory(nextvec).width Imemory(nextvec).height]), 'Edgecolor', [0 1 0])

 63

addtoVideostruct.m

function Videostruct = addtoVideostruct(Videostruct, picturename)

nextvec = length(Videostruct)+1;
Videostruct(nextvec).picturename = picturename;

 64

analyzetree.m

t = treefit(FV, Landmarks);

classtotals = t.classcount(1,:); % total numbers of training vectors for each class
leaves = find(t.children(:,1) == 0); % list of leaf nodes

leafpercentages = t.classcount(leaves,:) ./ (ones(size(leaves))*classtotals); %percentage of each
class in each leaf node

[maxpercentage, maxpercentageclass]= max(leafpercentages');

% Find max percentage class for each leaf node and sort from largest to
% smallest
[maxpercentage, sortorder] = sort(maxpercentage);
maxpercentage = fliplr(maxpercentage);
sortorder = fliplr(sortorder);
maxpercentageclass = maxpercentageclass(sortorder);
leaves = leaves(sortorder);

decisionvars = t.var(t.parent(leaves)); % feature number of each parent node of the leaf nodes
for i=1:length(leaves)
 if leaves(i) == t.children(t.parent(leaves(i)), 1)
 lotorlittle(i) = -1;
 else
 lotorlittle(i) = 1;
 end
end

%[leaves maxpercentage' decisionvars lotorlittle']

ruledepth = 40;
rulebase = [];
for i=1:length(leaves)
 temprule = zeros(1, ruledepth);
 leaf = leaves(i);
 temprule(1) = decisionvars(i)*lotorlittle(i);
 currparent = t.parent(leaf);
 ruleindex = 1;
 while currparent ~= 1
 currnode = currparent;
 currparent = t.parent(currnode);
 children = t.children(currparent) == currnode;
 ruleindex = ruleindex + 1;
 if children(1) == 1
 temprule(ruleindex) = -1*t.var(currparent);

 65

 else
 temprule(ruleindex) = t.var(currparent);
 end
 end
 rulebase = [rulebase ; temprule];
end

[leaves maxpercentage' rulebase]
t.classname(t.class(leaves))

 66

analyzetreeseq.m

FV(:,253) = 0;

leavestotal = [];
maxpercentagetotal = [];
rulebasetotal = [];
classnamestotal = [];
classtotal = [];
loopnumbertotal = [];

for loopcount = 1:15

analyzetree

[numberofrules, coltemp]=size(rulebase);

leavestotal = [leavestotal ; leaves];
maxpercentagetotal = [maxpercentagetotal ; maxpercentage'];
rulebasetotal = [rulebasetotal ; rulebase];
classnamestotal = [classnamestotal ; t.classname(t.class(leaves))];
classtotal = [classtotal ; t.class(leaves)];
loopnumbertotal = [loopnumbertotal ; loopcount*ones(numberofrules,1)];

FV(:, t.var(1)) = 0;

end

 67

applyimagerule2.m

function [Decisionmat2, mask2] = applyimagerule2(features, rulevec, nrows, ncols)

[numrules, coltmp]= size(rulevec);
mask2 = zeros(size(features(:,1)));
[a b]=size(features);
Decisionmat2 = [];
Rule=[];
for rule = 1:numrules
 mask = ones(size(features(:,1)));
 i=1;
 while (rulevec(rule,i) ~= 0) %while loop processes one minterm at a time
 temp = features(:, abs(rulevec(rule,i)));
 if sum(temp) ~= 0
 if rulevec(rule,i) > 0
 tempmask = temp/max(temp);

 else
 tempmask = max(temp)/max(temp) - temp/max(temp);

 %tempmask = ones(size(temp));
 end
 mask = mask .* tempmask;
 end

 % Decisionmat2 = [Decisionmat2 mask];
 % Now mask contains one minterm's results
 i = i+1;
 end
 Decisionmat2 = [Decisionmat2 mask];
 mask2 = mask2 + mask;
end

 68

applyrules2.m

classmasks=[];
classmasksnorm=[];
maxoverall=zeros(max(size(features)),1);
CLASSoverall=zeros(max(size(features)),1);
for incre=1:length(t.classname)
 classnum=incre;
Numterms = loopnumbertotal(length(loopnumbertotal));

III = find(classtotal == classnum);
classrules = rulebasetotal(III, :);
loopclass = loopnumbertotal(III);

%mask = ones(numrows*numcols, 1);
[featrows, featcols] = size(features);
mask = zeros(featrows, 1);
Decisionmatim=[];
Rulematrixim=[];
for lcount = 1:Numterms
 % get rules from tree number lcount
 I = find(loopclass == lcount);
 looprules = classrules(I,:);

 [Decisionmat2, mask2] = applyimagerule2(features, looprules, 1, 1);
 Rulematrixim=[Rulematrixim; looprules];
 mask2 = mask2 / sum(mask2);
 Decisionmatim=[Decisionmatim Decisionmat2];
 mask = mask + mask2;
end
classmasks=[classmasks mask];
classmasksnorm=[classmasksnorm mask./max(mask)];
classmasksnorm2 = mask./max(mask) > 0.15;
classmasksnorm2 = mask./max(mask) .* classmasksnorm2;
CLASSoverall= classnum .* (classmasksnorm2 > maxoverall) + CLASSoverall .*
(classmasksnorm2 <= maxoverall);
maxoverall=classmasksnorm2 .* (classmasksnorm2 > maxoverall) + maxoverall .*
(classmasksnorm2 <= maxoverall);
end

% remaxoverall = reshape(maxoverall,numrows,numcols);
% reclassoverall = reshape(classoverall,numrows,numcols);

cmap = [
 0 0 0

 69

 1 0 0
 0 1 0
 0 0 1
 1 1 0
 1 0 1
 0 1 1
 0.5 0.5 0.5
 1 1 1];

 70

getclassesfromImemory.m

function Landmarks = getclassesfromImemory(Imemory)

for i=1:length(Imemory)
 Landmarks(i) = {Imemory(i).class};
end

 71

getfeaturesfromImemory.m

function FV = getfeaturesfromImemory(Imemory)

FV = [];

for i=1:length(Imemory)

 Im = Imemory(i);
 Irect = [Im.upperleftcol Im.upperleftrow Im.width Im.height];
 picnum = Im.picturenum;
 M = aviread([Im.picture],picnum);
 x = M.cdata;
 M = aviread([Im.picture],picnum-1);
 xim1 = M.cdata;
 features = getregionfeaturesfromImemory(x, Irect ,xim1);
 FV = [FV ; features];
 i
end

 72

getregionfeaturesfromImemory.m

function features = getregionfeaturesfromImemory(x,rect,xim1)

rect = round(rect);
xsec = x(rect(2):(rect(2)+rect(4)) , rect(1):(rect(1)+rect(3)) , :);
xim1sec = xim1(rect(2):(rect(2)+rect(4)) , rect(1):(rect(1)+rect(3)) , :);
y = rgb2hsv(xsec);
yh = y(:,:,1);
ys = y(:,:,2);
yv = y(:,:,3);

yg = rgb2gray(x);
ygsec = rgb2gray(xsec);

Nfilt = 15;
Ndec = 10;

havg = ones(Nfilt, Nfilt)/(Nfilt^2);

[nrows, ncols] = size(yh);

hues = [0 .05 .14 .22 .28 .45 .54 .75 .81 .92 1];
sats = 0:(1/5):1;
vals = 0:(1/5):1;

features = [];
for h = 1:length(hues)-1
 for s = 1:length(sats)-1
 for v = 1:length(vals)-1
 if (h==1)
 tmph = (hues(h)<=yh)&(yh<=hues(h+1));
 else
 tmph = (hues(h)<yh)&(yh<=hues(h+1));
 end
 if (s==1)
 tmps = (sats(s)<=ys)&(ys<=sats(s+1));
 else
 tmps = (sats(s)<ys)&(ys<=sats(s+1));
 end
 if (v==1)
 tmpv = (vals(v)<=yv)&(yv<=vals(v+1));
 else
 tmpv = (vals(v)<yv)&(yv<=vals(v+1));
 end

 73

 colorseg = tmph .* tmps .* tmpv;
 numcolors = sum(colorseg(:));
 features = [features numcolors/(nrows*ncols)];

 end
 end
end

hlap = [-1 -1 -1
 -1 8 -1
 -1 -1 -1]/8;whos
texture1 = abs(filter2(hlap, ygsec)/256);
texture1 = sum(texture1(:))/(nrows*ncols);
features = [features texture1];

motsec = abs(double(rgb2gray(xsec)) - double(rgb2gray(xim1sec)));
% motsec2 = filter2(havg, abs(filter2(hlap, motsec)/256));
motsec2 = sum(motsec(:)/(nrows*ncols));
features = [features motsec2];

%texture2 = edge(yg, 'canny');
%texture2 = texture2(rect(2):(rect(2)+rect(4)) , rect(1):(rect(1)+rect(3)));
%texture2 = sum(texture2(:))/(nrows*ncols);
% texture2 = 0;
% features = [features texture2];

%disp('Adding phase symmetry feature');
%Phase Symmetry Feature - not using - just give zero
%[phaseSym orientation] = phasesym(yg);
%phaseSym = phaseSym(rect(2):(rect(2)+rect(4)) , rect(1):(rect(1)+rect(3)));
features = [features 0];

%disp('Adding line feature');
%features2 = [];
%eg = edge(yg, 'canny');
%xwin= eg(rect(2):(rect(2)+rect(4)) , rect(1):(rect(1)+rect(3)));
%[xwinr,xp]=radon(xwin ,0:179);
%line = max(xwinr)/(nrows*ncols);
%features2 = line;
features2 = zeros(1, 180);
features = [features features2];

 74

processthevideo.m

% You must choose the set of rules you want the video to be processed by
disp('Chose the set of rules to be used in processing');
theselectedrules = uigetfile('*.mat')
load ([theselectedrules])

disp('Chose the object to be followed for angle analysis');
clnum=menu('Object for angle analysis',t.classname);

% The video to be processed
disp('What is the video to be processed (name.avi):');
videoname = uigetfile('*.avi')
MaxFrame = input('What is the section of frames in the video ([begin# end#]): ');

% The name of the video to be created
processedvideoname = input('What is the name of the new video (name.avi): ','s');

Videostruct = struct('picturename',{'nil'},'features',0);
if MaxFrame(1) <= 1
 MaxFrame(1)=2;
end
for place=2:MaxFrame(2)-MaxFrame(1)+2 %2 till number of frames in video
 sfilename=videoname;
 Videostruct = addtoVideostruct(Videostruct, sfilename);
 Videostruct(place).picturenum=MaxFrame(1)+place-2;
 place
end

for place=2:length(Videostruct)
 Iobj = Videostruct(place);
 X = aviread([Iobj.picturename],Iobj.picturenum);
 xi = X.cdata;
 x = xi;

 X = aviread([Iobj.picturename],(Iobj.picturenum)-1);
 xim1 = X.cdata;
 psychimagefeatures4
 Iobj.features=sparse(features);
 Videostruct(place)=Iobj;
 place
 clear features x xi xim1 yq yhq ysq ys yh yvq yg texture2 texture1 features2 colorfilt y yv
ctmp tmp havg colsamp rowsamp hues hlap vals stats
end

 75

Videostruct = Videostruct(2:length(Videostruct));
processvideo2

 76

processvideo2.m

rowhand = [];
colhand = [];
loadnum=0;
lastframe=0;
cmap = [
 0 0 0
 1 0 0
 0 1 0
 0 0 1
 1 1 0
 1 0 1
 0 1 1
 0.5 0.5 0.5
 1 1 1];

% load ([theselectedrules])
% ovid=avifile('originalvid','compression','None');
% mvid=avifile('motionvid','colormap',gray(256),'compression','None');
% hvid=avifile('handtrackingvid','colormap',gray(256),'compression','None');
rvid=avifile([processedvideoname],'colormap',cmap(1:length(t.classname)+1,:),'compression','no
ne')
% fig1=figure(1)
% fig2=figure(2)
% fig3=figure(3)
fig4=figure(4);
% set(fig1,'DoubleBuffer','on')
% set(fig2,'DoubleBuffer','on')
% set(fig3,'DoubleBuffer','on')
set(fig4,'DoubleBuffer','on')
rowshand = [];
colshand = [];
frames = [];
gazeangle = [];
handobjmot = [];
for i=1:(MaxFrame(2) - MaxFrame(1)) + 1 % one minus the total number of frames in video

% if i >= lastframe
% loadnum=loadnum+1;
% vidnstr=sprintf('%0.3d',loadnum);
% load (['videostruct' vidnstr]);

features=Videostruct(i).features;

i

 77

frames = [frames Videostruct(i).picturenum];

X = aviread([Videostruct(i).picturename],Videostruct(i).picturenum);
xi = X.cdata;

X = aviread([Videostruct(i).picturename],(Videostruct(i).picturenum)-1);
xim1 = X.cdata;

yi = rgb2hsv(xi);

% figure(1), image(xi)
% set(fig1,'Erasemode','xor')
% ovid=addframe(ovid,uint8(xi));

% mot = abs(double(rgb2gray(xi)) - double(rgb2gray(xim1)));
% fig2, imagesc(uint8(mot)), colormap(gray(256))
% set(fig2,'Erasemode','xor')
% gframe2=getframe(fig2);
% mvid=addframe(mvid,gframe2);

% mask = (yi(:,:,1)>0.03) & (yi(:,:,1) < 0.09);
% skin = yi(:,:,2).*yi(:,:,3).*mask;
% hand = skin .* mot;
%
% fig3, imagesc(uint8(hand)), colormap(gray(256))
%
% havg2 = ones(15,15)/(15^2);
% % handblur = filter2(havg, hand);
% handblur=filter2(havg2, abs(filter2((ones(3,3)/9), mot)/256));
% handmax = max(max(handblur));
% [II,JJ]= find(handblur == handmax);
%
% hold on
% plot(JJ,II,'rx')
% hold off
%
% set(fig3,'Erasemode','xor')
% gframe3=getframe(fig3);
% mvid=addframe(hvid,gframe3);

[nrows ncols]=size(xi(:,:,1));
Nfilt = 15;
Ndec = 10;
rad = (Nfilt+1)/2;
rowsamp = rad:Ndec:(nrows - rad);
colsamp = rad:Ndec:(ncols - rad);

 78

numrows = length(rowsamp);
numcols = length(colsamp);

mot = abs(double(rgb2gray(xi)) - double(rgb2gray(xim1)));
% fig2, imagesc(uint8(mot)), colormap(gray(256))
% set(fig2,'Erasemode','xor')
% gframe2=getframe(fig2);
% mvid=addframe(mvid,gframe2);

mask = (yi(:,:,1)>0.03) & (yi(:,:,1) < 0.09);
skin = yi(:,:,2).*yi(:,:,3).*mask;
hand = skin .* mot;
%
% fig3, imagesc(uint8(hand)), colormap(gray(256))
%
havg2 = ones(15,15)/(15^2);
% handblur = filter2(havg, hand);
handblur=filter2(havg2, abs(filter2((ones(3,3)/9), hand)/256));
handblur=handblur(rowsamp,colsamp);
handmax = max(max(handblur));
[II,JJ]= find(handblur == handmax);
II=II(1);
JJ=JJ(1);
rowshand=[rowshand II];
colshand=[colshand JJ];

motionimg = reshape(features(:,252),numrows,numcols);
distbelowhand = 4;
heightbox = 4;
halfwidthbox = 3;
if ((II + distbelowhand + heightbox) <= numrows) & ((JJ - halfwidthbox) >= 1) & ((JJ +
halfwidthbox) <=numcols)
 handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):(II + distbelowhand +
heightbox),(JJ - halfwidthbox):(JJ + halfwidthbox))))];
else
 if (JJ - halfwidthbox) < 1
 if ((II + distbelowhand + heightbox) > numrows)
 if (II + distbelowhand) > numrows
 handobjmot = [handobjmot sum(sum(motionimg((numrows:numrows),1:(JJ +
halfwidthbox))))];
 else
 handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):numrows,1:(JJ
+ halfwidthbox))))];
 end
 else

 79

 handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):(II +
distbelowhand + heightbox),1:(JJ + halfwidthbox))))];
 end
 elseif (JJ + halfwidthbox) > numcols
 if ((II + distbelowhand + heightbox) > numrows)
 if (II + distbelowhand) > numrows
 handobjmot = [handobjmot sum(sum(motionimg((numrows:numrows),(JJ -
halfwidthbox):numcols)))];
 else
 handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):numrows,(JJ -
halfwidthbox):numcols)))];
 end
 else
 handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):(II +
distbelowhand + heightbox),(JJ - halfwidthbox):numcols)))];
 end
 else
 if ((II + distbelowhand + heightbox) > numrows)
 if (II + distbelowhand) > numrows
 handobjmot = [handobjmot sum(sum(motionimg((numrows:numrows),(JJ -
halfwidthbox):(JJ + halfwidthbox))))];
 else
 handobjmot = [handobjmot sum(sum(motionimg((II + distbelowhand):numrows,(JJ -
halfwidthbox):(JJ + halfwidthbox))))];
 end
 end
 end
end

applyrules2
reshapepic=reshape(CLASSoverall, numrows, numcols);
[ycoor,xcoor]=find(reshapepic==clnum);
xcoor=xcoor(find(ycoor < 19));
ycoor=ycoor(find(ycoor < 19));
p=polyfit(ycoor,xcoor,1);
xp=[1:numcols];
linep=p(1)*xp + p(2);
linep=linep(find(xp > 10 & xp < numrows));
xp=xp(find(xp > 10 & xp < numrows));

centerpixel=[round(sum(xcoor)/(length(xcoor))) round(sum(ycoor)/(length(ycoor)))];
xp2 = [1:numrows];
midhatline = 0*xp2 + centerpixel(1);

 80

vecstrip =[xp(length(xp))-centerpixel(2) ; linep(length(linep))-centerpixel(1) ;];
vecmidhat = [xp2(length(xp2))-centerpixel(2) ;midhatline(length(midhatline))-centerpixel(1)];
vechand = [II-centerpixel(2) ; JJ-centerpixel(1)];
angletostrip = acos((vecstrip' * vecmidhat)/(sqrt(sum(vecstrip.^2)) * sqrt(sum(vecmidhat.^2))));
angletohand = acos((vechand' * vecmidhat)/(sqrt(sum(vechand.^2)) * sqrt(sum(vecmidhat.^2))));
angletostrip = angletostrip*180/pi;
angletohand = angletohand*180/pi;
gazeangle = [gazeangle angletostrip];

fig4, imagesc(uint8(reshapepic)), colormap(cmap(1:classnum+1,:))
hold on
plot(linep,xp,'w')
plot(centerpixel(1),centerpixel(2),'wo')
plot([JJ; centerpixel(1)] , [II; centerpixel(2)], 'w')
plot(midhatline,xp2,'w')
plot(JJ,II,'wx')
hold off
% fig4,title(['Hand position x:',num2str(JJ),' y:',num2str(II),' Angle to Hand:
',num2str(angletohand),' Angle to Strip: ', num2str(angletostrip)]);
drawnow
gframe=getframe(fig4);
rvid=addframe(rvid,gframe);

% if i > 5
% rowhand = [rowhand II];
% colhand = [colhand JJ];
% end
% if i == 2
% pause
% end
% pause(0.05)

end
% ovid=close(ovid);
% mvid=close(mvid);
% hvid=close(hvid);
dlmwrite('Frames.xls',frames,'\n')
dlmwrite('Angle_of_Gaze.xls',gazeangle,'\n')
dlmwrite('Y-axis_Hand_Values.xls',rowshand,'\n')
dlmwrite('X-axis_Hand_Values.xls',colshand,'\n')
dlmwrite('HandObjectMotion.xls',full(handobjmot),'\n')
dlmwrite('RowHands.xls',rowshand,'\n')
dlmwrite('ColHands.xls',colshand,'\n')
save HandObjectMotion handobjmot

 81

save RowHands rowshand
save ColHands colshand
rvid=close(rvid);

 82

psychimagefeatures4.m

y = rgb2hsv(x);
yh = y(:,:,1);
ys = y(:,:,2);
yv = y(:,:,3);

yg = rgb2gray(x);

[nrows, ncols] = size(yh);

hues = [0 .05 .14 .22 .28 .45 .54 .75 .81 .92 1];
sats = 0:(1/5):1;
vals = 0:(1/5):1;

Nfilt = 15;
Ndec = 10;

havg = ones(Nfilt, Nfilt)/(Nfilt^2);

features = [];

rad = (Nfilt+1)/2;

rowsamp = rad:Ndec:(nrows - rad);
colsamp = rad:Ndec:(ncols - rad);
numrows = length(rowsamp);
numcols = length(colsamp);

disp('Adding color features');

yhq = zeros(size(yh));
for i=2:10
 yhq = yhq + ((yh > hues(i))&(yh <= hues(i+1)))*i;
end
yhq = yhq + ((yh >= hues(1))&(yh <= hues(2)))*1;

ysq = zeros(size(yh));
for i=2:5
 ysq = ysq + ((ys > sats(i))&(ys <= sats(i+1)))*i;
end
ysq = ysq + ((ys >= sats(1))&(ys <= sats(2)))*1;

yvq = zeros(size(yh));
for i=2:5

 83

 yvq = yvq + ((yv > vals(i))&(yv <= vals(i+1)))*i;
end
yvq = yvq + ((yv >= vals(1))&(yv <= vals(2)))*1;

yq = (yhq-1)*25 + (ysq-1)*5 + (yvq-1);

 rowindx = 0;
 colorfilt = [];
 for jcol = colsamp
 for irow = rowsamp
 tmp = yq((irow-((Nfilt-1)/2)):(irow+((Nfilt-1)/2)) , (jcol-((Nfilt-1)/2)):(jcol+((Nfilt-
1)/2)));
 ctmp = hist(tmp(:), 0:249);
 colorfilt = [colorfilt ; ctmp];
 end
 end

features = colorfilt/(Nfilt^2);

[reducedrows, reducedcols] = size(colorfilt);

disp('Adding texture feature');
%Laplacian Texture Feature
hlap = [-1 -1 -1
 -1 8 -1
 -1 -1 -1]/8;
texture1 = filter2(havg, abs(filter2(hlap, yg)/256));
texture1 = texture1(rowsamp, colsamp);
features = [features texture1(:)];

disp('Adding motion detection feature');
%Canny Edge Feature
mot = abs(double(rgb2gray(xi)) - double(rgb2gray(xim1)));
% mot2 = filter2(havg, abs(filter2(hlap, mot)/256));
mot2h=[];
for jcol = colsamp
 for irow = rowsamp
 mot2 = mot((irow-((Nfilt-1)/2)):(irow+((Nfilt-1)/2)) , (jcol-((Nfilt-1)/2)):(jcol+((Nfilt-
1)/2)));
 mot2 = sum(mot2(:)/(length(mot2(:))));
 % texture2 = zeros(size(texture1));
 mot2h=[mot2h; mot2];
 end
end

 84

features = [features mot2h];

% disp('Adding canny edge feature');
% %Canny Edge Feature
% %texture2 = filter2(havg, edge(yg, 'canny'));
% %texture2 = texture2(rowsamp, colsamp);
% texture2 = zeros(size(texture1));
% features = [features texture2(:)];

disp('Adding phase symmetry feature');
%Phase Symmetry Feature - removed - just add zeros here
features = [features zeros(numrows*numcols,1)];

%disp('Adding line feature');
%features2 = [];
%eg = edge(yg, 'canny');
%for j = colsamp
% for i = rowsamp
% xwin = eg((i-rad+1):(i-rad+Nfilt),(j-rad+1):(j-rad+Nfilt));
% [xwinr,xp]=radon(xwin ,0:179);
% line = max(xwinr)/(Nfilt^2);
% features2 = [features2
% line];
% end
%end

features2 = zeros(numrows*numcols, 180);
features = [features features2];

[numrows,numcols]=size(texture1);

 85

trainingthevideo.m

Imemory =
struct('picture',0,'picturenum',0,'upperleftrow',0,'upperleftcol',0,'width',0,'height',0,'class',0,'featur
es',0);
newname = input('What is the new rule matrix name (name.mat): ','s');

disp('What is the video to be used for gathering training data:');
videoname = uigetfile('*.avi')

MaxFrame = input('What is the maximum number of frames in the video (number): ');
NUMobject = input('What is the number of objects (number): ');

for NUMob = 1:NUMobject
 classlabel=input('What is the name of the object (i.e BluePaper, Hand): ','s');
 samptemp=input('How many samples for the object (50 or so): ');
 numimage = round(2:MaxFrame/samptemp:MaxFrame);
 for ntemp=1:samptemp
 Imemory = addtoImemory(Imemory, videoname, classlabel, numimage(ntemp));
 end
 close all
end
Imemory=Imemory(2:length(Imemory));
FV = getfeaturesfromImemory(Imemory);
Landmarks = getclassesfromImemory(Imemory);
analyzetreeseq
save (newname)

 86

processtrain.m

load newfeaturesImemory8
choice=0;
choice2=0;
choice3=0;
choice4=0;
choice5=0;
savedminterms=[];
Isimageloaded=0;
Ismintermsaved=0;
scrsz = get(0,'ScreenSize');
while choice ~= 1
 choice=menu('Menu','Quit Program','Compare one set of class rules with one set of class
training data','Compare one set of class rules with all class training data','Load Image','Analyze
image with rules','Analyze image with saved minterms','Clear saved minterms','Load different
Imemory','Close figures and Clear Command Window');
 if choice==2
 while(choice2 ~= 1)
 choice2=0;
 sumvectdata=[];
 classnum=menu('Rules for which class',t.classname);
 classvecs=menu('Feature vectors of which class',t.classname);
 mintermmat
 % figure, imagesc(Decisionmat)
 % title(['Image of ',char(t.classname(classnum)),' rules vs ', char(t.classname(classvecs)),'
feature vectors'])
 % xlabel('Minterm labels')
 % ylabel('Feature vectors')
 % figure, plot(sum(Decisionmat))
 % title(['Sum of Decisionmat for ',char(t.classname(classnum)),' rules vs ',
char(t.classname(classvecs)),' feature vectors'])
 % xlabel('Minterm labels')
 figure('Position',[10 50 scrsz(3)*.985 scrsz(4)*2/6]), plot(mean(Decisionmat))
 title(['Average of Decisionmat for ',char(t.classname(classnum)),' minterms vs ',
char(t.classname(classvecs)),' feature vectors'])
 xlabel('Minterm labels')
 % figure, plot(max(Decisionmat))
 % title(['Max of Decisionmat for ',char(t.classname(classnum)),' rules vs ',
char(t.classname(classvecs)),' feature vectors'])
 % xlabel('Minterm labels')
 % figure, plot(median(Decisionmat))
 % title(['Median of Decisionmat for ',char(t.classname(classnum)),' rules vs ',
char(t.classname(classvecs)),' feature vectors'])
 % xlabel('Minterm labels')
 while choice2 ~= 1 & choice2 ~= 2

 87

 choice2=menu('Options', 'Previous Menu' , 'Compare another set of rules', 'Examine a
minterm','Save Minterm','Clear saved minterms');
 if choice2 == 3
 mintermdisplay(Rulematrix);
 elseif choice2 == 4
 savedminterms=savemintermsauto(Rulematrix,-1,savedminterms)
 Ismintermsaved=1;
 elseif choice2 == 5
 savedminterms=[]
 Ismintermsaved=0;
 end
 end
 end
 elseif choice == 3
 while choice3 ~= 1
 choice3=0;
 % Chooses the landmark
 classnum=menu('Rules for which class',t.classname);
 sumvectdata=[];
 % Loop extracts all of the Landmarks to compare with chosen Landmark
 for X1=1:length(t.classname)
 classvecs=X1;
 mintermmat
 % figure, imagesc(Decisionmat)
 % title(['Image of ',char(t.classname(classnum)),' rules vs ',
char(t.classname(classvecs)),' feature vectors'])
 % xlabel('Minterm labels')
 % ylabel('Feature vectors')
 % figure, plot(sum(Decisionmat))
 % title(['Sum of Decisionmat for ',char(t.classname(classnum)),' rules vs ',
char(t.classname(classvecs)),' feature vectors'])
 % xlabel('Minterm labels')
 % figure, plot(mean(Decisionmat))
 % title(['Average of Decisionmat for ',char(t.classname(classnum)),' rules vs ',
char(t.classname(classvecs)),' feature vectors'])
 % xlabel('Minterm labels')
 % functifigure, plot(max(Decisionmat))
 % title(['Max of Decisionmat for ',char(t.classname(classnum)),' rules vs ',
char(t.classname(classvecs)),' feature vectors'])
 % xlabel('Minterm labels')
 % figure, plot(median(Decisionmat))
 % title(['Median of Decisionmat for ',char(t.classname(classnum)),' rules vs ',
char(t.classname(classvecs)),' feature vectors'])
 % xlabel('Minterm labels')
 end
 discrimratio=discriminateratio(sumvectdata,classnum,length(t.classname));

 88

 figure, plot(discrimratio)
 title(['Discriminate Ratio Plot of ',char(t.classname(classnum)),' minterms vs all other
classes feature vectors'])
 xlabel('Minterm labels')
 while choice3 ~= 1 & choice3 ~= 2
 choice3=menu('Options', 'Previous Menu' , 'Compare another class rules to all class
vectors', 'Examine a minterm','Save Minterm','Clear saved minterms');
 if choice3 == 3
 mintermdisplay(Rulematrix)
 elseif choice3 == 4
 savedminterms=savemintermsauto(Rulematrix,discrimratio,savedminterms)
 Ismintermsaved=1;
 elseif choice3 == 5
 savedminterms=[]
 Ismintermsaved=0;
 end
 end
 end
 elseif choice == 4
 choice5 = menu('Image Options', 'Feature extracted', 'New image');
 if choice5 == 1;
 load (uigetfile('*.mat'))
 figure('Position',[10 50 scrsz(3)*.985 scrsz(4)*2/6]), image(x), title(sfilename)
 elseif choice5 == 2
 sfilename = uigetfile('*.bmp');
 x = imread(sfilename);
 %unfold, x = y;
 [xnrows, xncols, xnplanes] = size(x);
 %x = imresize(x, 256/xnrows);
 figure('Position',[10 50 scrsz(3)*.985 scrsz(4)*2/6]), image(x), title(sfilename)
 imagefeatures3 %main output is features, a matrix of features vectors stored as rows
 end
 Isimageloaded=1;
 elseif choice == 5 & Isimageloaded == 1
 process
 while choice4 ~= 1
 choice4 = menu('Options','Exit','Analyze pixel minterms and percentage','Save
Minterms','Analyze Minterms');
 if choice4 == 2

[foundarray,foundarrayperc]=getpixelminterms(mask,Decisionmatim,Rulematrixim,numrows,nu
mcols);
 elseif choice4 == 3
 savedminterms=savemintermsauto(Rulematrixim,foundarrayperc,savedminterms);
 Ismintermsaved=1;
 elseif choice4 == 4

 89

 mintermdisplay(Rulematrixim)
 end
 end
 elseif choice == 6 & Isimageloaded == 1 & Ismintermsaved == 1
 process
 elseif choice == 7
 savedminterms=[]
 Ismintermsaved=0;
 elseif choice == 8
 load (uigetfile('*.mat'))
 elseif choice == 9
 clc
 close all
 if Isimageloaded == 1
 figure('Position',[10 50 scrsz(3)*.985 scrsz(4)*2/6]), image(x), title(sfilename)
 end
 else
 if Isimageloaded == 0
 disp('You must load an image first');
 end
 if Ismintermsaved == 0 & choice == 6
 disp('You must save minterms before applying them');
 end
 end
 choice3=0;
 choice2=0;
 choice4=0;
 choice5=0;
end

 90

mintermmat.m

% Finds the row positions of the Landmark number (classvecs)
Iclass = find(strcmp(t.classname(classvecs) , Landmarks));

% Extracts the features of the Landmark number
featuresT=FV(Iclass,:);

% Numterms = the number of trees that were analyzed to make the rules
Numterms = loopnumbertotal(length(loopnumbertotal));

% Extracts the row positions of the chosen Landmark
III = find(classtotal == classnum);

% Extracts the minterms for all of the chosen Landmark
classrules = rulebasetotal(III, :);

% Extracts the tree number that each minterm was created
loopclass = loopnumbertotal(III);

%mask = ones(numrows*numcols, 1);
% Initialize variables
[featrows, featcols] = size(featuresT);
mask = zeros(featrows, 1);
Decisionmat=[];
Rulematrix=[];

% Get rules from tree number lcount
for lcount = 1:Numterms

 I = find(loopclass == lcount);
 looprules = classrules(I,:);

 [Decisionmat2, mask2] = applyimagerule2(featuresT, looprules, 1, 1);
 Rulematrix=[Rulematrix; looprules];
 mask2 = mask2 / sum(mask2);
 Decisionmat = [Decisionmat Decisionmat2];
 mask = mask + mask2;
end
sumvectdata=[sumvectdata; sum(Decisionmat)];
%figure(2), imagesc(reshape(mask, numrows, numcols)), colormap(gray(256))

 91

mintermdisplay.m

function mintermdisplay(Rulematrix)

mindisplay=input('What is the Minterm label: ');
minindex=find(Rulematrix(mindisplay,:) ~= 0);
Rulematrix(mindisplay,minindex)
figure
for(NN=1:length(Rulematrix(mindisplay,minindex)))
 [DESC,COLORHSV] = describefeature(abs(Rulematrix(mindisplay,NN)));
 if Rulematrix(mindisplay,NN) > 0
 if abs(Rulematrix(mindisplay,NN))>250

subplot(1,length(Rulematrix(mindisplay,minindex)),NN),image(255),colormap(gray(256))
 else
 ImA(1,1,:)=hsv2rgb(COLORHSV);
 subplot(1,length(Rulematrix(mindisplay,minindex)),NN), image(ImA)
 end
 subplot(1,length(Rulematrix(mindisplay,minindex)),NN), title(['Feature
',num2str(abs(Rulematrix(mindisplay,NN)))])
 subplot(1,length(Rulematrix(mindisplay,minindex)),NN), ylabel(DESC)
 subplot(1,length(Rulematrix(mindisplay,minindex)),NN), xlabel('A lot of this feature')
 disp(['Feature ',num2str(abs(Rulematrix(mindisplay,NN)))])
 disp(DESC)
 disp('A lot of this feature')
 else
 if abs(Rulematrix(mindisplay,NN))>250

subplot(1,length(Rulematrix(mindisplay,minindex)),NN),image(255),colormap(gray(256))
 else
 ImA(1,1,:)=hsv2rgb(COLORHSV);
 subplot(1,length(Rulematrix(mindisplay,minindex)),NN), image(ImA)
 end
 subplot(1,length(Rulematrix(mindisplay,minindex)),NN), title(['Feature
',num2str(abs(Rulematrix(mindisplay,NN)))])
 subplot(1,length(Rulematrix(mindisplay,minindex)),NN), ylabel(DESC)
 subplot(1,length(Rulematrix(mindisplay,minindex)),NN), xlabel('Little of this feature')
 disp(['Feature ',num2str(abs(Rulematrix(mindisplay,NN)))])
 disp(DESC)
 disp('Little of this feature')
 end
end

 92

applymin2.m

% classnum = 4;

% Numterms = the number of trees that were analyzed to make the rules
% Numterms = loopnumbertotal(length(loopnumbertotal));
%
% III = find(classtotal == classnum);
% classrules = rulebasetotal(III, :);
% loopclass = loopnumbertotal(III);
%
% %mask = ones(numrows*numcols, 1);
% [featrows, featcols] = size(features);
%mask = zeros(featrows, 1);

%for lcount = 1:Numterms
 % get rules from tree number lcount
% I = find(loopclass == lcount);
% looprules = classrules(I,:);
 looprules=savedminterms;

 [Decisionmat2, mask2] = applyimagerule2(features, looprules, 1, 1);

 mask2 = mask2 / sum(mask2);
 mask = mask2;
 %end

 figure('Position',[10 50 scrsz(3)*.985 scrsz(4)*2/6]), imagesc(reshape(mask, numrows,
numcols)), colormap(gray(256))
 title('Image of Saved Minterms applied to selected image ')
% figure, imagesc(reshape(histeq(mask2), numrows, numcols)), colormap(gray(256))
% title('Histogram equilized Image of Saved Minterms applied to selected image ')

 93

discriminateratio.m

function discrimratio=discriminateratio(sumvectdata,classnum,lengthclassname)

sumvectcorrect=sumvectdata(classnum,:);
sumvectwrong=sum([sumvectdata(1:classnum-1,:);
sumvectdata(classnum+1:lengthclassname,:)]);
discrimratio=sumvectcorrect./sumvectwrong;

 94

describefeature.m

function [description,colorhsv] = describefeature(featnum)

hues = 0:(1/12):1;
sats = 0:(1/4):1;
vals = 0:(1/4):1;

hues = [0 .05 .14 .22 .28 .45 .54 .75 .81 .92 1];
sats = 0:(1/5):1;
vals = 0:(1/5):1;

colorhist = [];
for h = 1:length(hues)-1
 for s = 1:length(sats)-1
 for v = 1:length(vals)-1
 colorhist = [colorhist
 mean([hues(h) hues(h+1)]) mean([sats(s) sats(s+1)]) mean([vals(v) vals(v+1)])];
 end
 end
end

if (featnum <= 250)
 colorhsv = colorhist(featnum, :);
 description = sprintf('hsv color parameters hue=%g saturation=%g value=%g',colorhsv(1),
colorhsv(2), colorhsv(3));
end

if featnum == 251
 description = 'Texture measure based on Laplacian';
 colorhsv=[0 0 0];
end

if featnum == 252
 description = 'Motion detection measure';
 colorhsv=[0 0 0];
end

if featnum == 253
 description = 'Symmetry measure';
 colorhsv=[0 0 0];
end

if featnum > 253
 angle = featnum - 253 - 90;

 95

 description = sprintf('straight line measure at angle of %g degrees',angle);
 colorhsv=[0 0 0];
end

 96

getpixelminterms.m

function
[foundarray,foundarrayperc]=getpixelminterms(mask,Decisionmatim,Rulematrixim,numrows,nu
mcols)

[lookcol lookrow] = ginput(1);
searchpix = zeros(numrows,numcols);
searchpix(round(lookrow),round(lookcol)) = 1;
searchpixarray=reshape(searchpix, numrows*numcols,1);
searchindex=find(searchpixarray == 1);
foundarray=Decisionmatim(searchindex,:);
foundarrayperc=foundarray/sum(foundarray)*100;
figure,plot(foundarrayperc)
title('Percentage of the pixel intensity each minterm contributed')

 97

imagefeatures3.m

y = rgb2hsv(x);
yh = y(:,:,1);
ys = y(:,:,2);
yv = y(:,:,3);

yg = rgb2gray(x);

[nrows, ncols] = size(yh);

hues = [0 .05 .14 .22 .28 .45 .54 .75 .81 .92 1];
sats = 0:(1/5):1;
vals = 0:(1/5):1;

Nfilt = 15;
Ndec = 10;

havg = ones(Nfilt, Nfilt)/(Nfilt^2);

features = [];

rad = (Nfilt+1)/2;

rowsamp = rad:Ndec:(nrows - rad);
colsamp = rad:Ndec:(ncols - rad);
numrows = length(rowsamp);
numcols = length(colsamp);

disp('Adding color features');

yhq = zeros(size(yh));
for i=2:10
 yhq = yhq + ((yh > hues(i))&(yh <= hues(i+1)))*i;
end
yhq = yhq + ((yh >= hues(1))&(yh <= hues(2)))*1;

ysq = zeros(size(yh));
for i=2:5
 ysq = ysq + ((ys > sats(i))&(ys <= sats(i+1)))*i;
end
ysq = ysq + ((ys >= sats(1))&(ys <= sats(2)))*1;

yvq = zeros(size(yh));
for i=2:5

 98

 yvq = yvq + ((yv > vals(i))&(yv <= vals(i+1)))*i;
end
yvq = yvq + ((yv >= vals(1))&(yv <= vals(2)))*1;

yq = (yhq-1)*25 + (ysq-1)*5 + (yvq-1);

 rowindx = 0;
 colorfilt = [];
 for jcol = colsamp
 for irow = rowsamp
 tmp = yq((irow-((Nfilt-1)/2)):(irow+((Nfilt-1)/2)) , (jcol-((Nfilt-1)/2)):(jcol+((Nfilt-
1)/2)));
 ctmp = hist(tmp(:), 0:249);
 colorfilt = [colorfilt ; ctmp];
 end
 end

features = colorfilt/(Nfilt^2);

[reducedrows, reducedcols] = size(colorfilt);

disp('Adding texture feature');
%Laplacian Texture Feature
hlap = [-1 -1 -1
 -1 8 -1
 -1 -1 -1]/8;
texture1 = filter2(havg, abs(filter2(hlap, yg)/256));
texture1 = texture1(rowsamp, colsamp);
features = [features texture1(:)];

disp('Adding canny edge feature');
%Canny Edge Feature
texture2 = filter2(havg, edge(yg, 'canny'));
texture2 = texture2(rowsamp, colsamp);
features = [features texture2(:)];

disp('Adding phase symmetry feature');
%Phase Symmetry Feature - removed - just add zeros here
features = [features zeros(numrows*numcols,1)];

disp('Adding line feature');
% features2 = [];
% eg = edge(yg, 'canny');
% for j = colsamp

 99

% for i = rowsamp
% xwin = eg((i-rad+1):(i-rad+Nfilt),(j-rad+1):(j-rad+Nfilt));
% [xwinr,xp]=radon(xwin ,0:179);
% line = max(xwinr)/(Nfilt^2);
% features2 = [features2
% line];
% end
% end
% features = [features features2];
%
% [numrows,numcols]=size(texture1);

features(:, 254:433) = 0;

 100

savemintermsauto.m

function savedminterms=savemintermsauto(Rulematrix,discrimratio,savedminterms)

if discrimratio == -1
 choice=menu('Minterm options','Enter minterms manually');
else
 choice=menu('Minterm options','Enter minterms manually','Create a threshold from plot','Save
the top (number) minterms');
end
if choice == 2
 disp('If you want a min and max, enter in two numbers (in min max order) in array form');
 disp('Otherwise the number will collect all of the minterms above entered value');
 decidethresh=input('What is the deciding threshhold? ');
 if length(decidethresh) == 1
 index=find(discrimratio >= decidethresh);
 savedminterms=[savedminterms; Rulematrix(index,:)];
 else
 index=find(discrimratio >= decidethresh(1) & discrimratio <= decidethresh(2))
 savedminterms=[savedminterms; Rulematrix(index,:)];
 end
elseif choice == 1
 index=input(' What are the minterms to be saved (in form of array if more than 1)');
 savedminterms=[savedminterms; Rulematrix(index,:)];
elseif choice == 3
 topnum=input(' How many of the top minterms do you want to use ');
 [Y,I] = sort(discrimratio);
 I=fliplr(I);
 savedminterms=[savedminterms; Rulematrix(I(1:topnum),:)];
end

 101

savemintermsman.m

function savedminterms=savemintermsman(Rulematrix,savedminterms)

index=input(' What are the minterms to be saved (in form of array if more than 1)');
savedminterms=[savedminterms; Rulematrix(index,:)];

 102

BIBLIOGRAPHY

[1] J. Chamorro-Martinez, D. Sanchez, and B. Prados-Suarez, A Fuzzy Colour Image

Segmentation Applied to Robot Vision. In Advances in Soft Computing – Engineering,
Design and Manufacturing. Springer, 2002. In Press.

[2] D. Pham and J. Prince, "An Adaptive Fuzzy C-Means Algorithm for Image Segmentation

in the Presence of Intensity Inhomogeneities" Pattern Recognition Letters, vol. 20, no. 1,
pp. 57-68, 15-January,1999.

[3] Y. Fang and T. Tan, A Novel Adaptive Colour Segmentation Algorithm and its

Application to Skin Detection. In Proc. BMVC 2000, pp. 23-31. BMVA, 2000

[4] J. Chamorro, D. Sanchez, B. Prados-Suarez, E. Galan-Perales, and M. Vila, "A

hierarchical approach to fuzzy segmentation of colour images" En: Actas del FUZZ-
IEEE 2003. ST. Louis(USA): 2003.

[5] K. Woods, D. Cook, L. Hall, K. Bowyer, and L. Stark: "Learning Membership Functions

in a Function-Based Object Recognition System" J. Artif. Intell. Res. (JAIR) 3: 187-222
(1995)

[6] S. Lemon, J. Roy, M. Clark, P. Friedmann, and W. Rakowski, "Classification and

regression tree analysis in public health: methodological review and comparison with
logistic regression" Ann Behav Med 2003; 26:172-81.

[7] N. Ito, Y. Shimazu, T. Yokoyama, and Y. Matushita, "Fuzzy Logic Based Non-

Parametric Color Image Segmentation with Optional Block Processing", pp 119-126,
Association of Computing Machinery, 1995 ACM 0-89791-737-5

[8] A. Malaviya and P. Malaviya, "Object recognition using fuzzy set theoretic techniques"

SPIE Proceedings Vol 1962, Paper #6, 12-14 April, 1993, Orlando, FL

[9] http://en.wikipedia.org/wiki/RGB_color_model, Copyright © 2000,2001,2002 Free

Software Foundation, Inc., Boston, MA

[10] http://en.wikipedia.org/wiki/HSV_color_space, Copyright © 2000,2001,2002 Free

Software Foundation, Inc., Boston, MA

[11] http://en.wikipedia.org/wiki/Probability_axioms, Copyright © 2000,2001,2002 Free

Software Foundation, Inc., Boston, MA

[12] J. Bezdek and S. Pal, eds. (1992), "Fuzzy Models for Pattern Recognition", New York:

IEEE Press.

 103

http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/HSV_color_space
http://en.wikipedia.org/wiki/Probability_axioms

[13] H. Stark and J. Woods, "Probability and Random Processes with Applications to Signal
Processing", Prentice-Hall, Upper Saddle River, NJ (2002).

[14] R. Larsen and M. Marx, "An Introduction to Mathematical Statistics and Its

Applications".Third Edition, Prentice-Hall, Upper Saddle River, NJ (2001)

[15] http://en.wikipedia.org/wiki/Fuzzy_logic, Copyright © 2000,2001,2002 Free Software

Foundation, Inc., Boston, MA

[16] R. Haralick and L. Shapiro, "Computer and Robot Vision: Vol. 2," Reading, MA:

Addison-Wesley, 1992.

[17] J. Holland, “Adaptation in Natural and Artificial Systems”, MIT Press, Cambridge, MA,

1975

[18] L. A. Zadeh, Fuzzy Sets and Systems. In: Fox, J. (ed.): Proceedings Symposium on

System Theory, Polytechnic Institute of Brooklyn, April 1965, pp. 29-37.

 104

http://en.wikipedia.org/wiki/Fuzzy_logic

	ELECTRICAL ENGINEERING
	Thesis under the direction of Professor Mitch Wilkes
	Color
	Fuzzy information
	Feature Extraction
	Creating the Classification Tree

	Rule Extraction
	Rule Analysis

	Table 3: TreeTrunk minterm 68 from Dataset 1
	Table 4: AL minterm 48 from Dataset 2
	Extracting Image Features
	Applying the Rules to the Image

	Objective of Experiment
	Experiment Setup
	Results
	APPENDIX

