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CHAPTER I 

 

INTRODUCTION 

 

1.1 Background 

The increase in congestion levels on existing traffic systems, and the limited 

space available for expansion have led to an increased interest in alternative congestion 

reduction methods. The implementation of Intelligent Transportation Systems (ITS) holds 

promise for meeting the challenges of more effective and efficient use of existing 

transportation systems by applying advanced and emerging technologies in information 

processing and communications. Advanced Traveler Information Systems (ATIS), a key 

component of ITS, provide real-time traffic information (both en-route and pre-trip) to 

assist users in trip planning and decision making to improve travel efficiency. Through 

the provision of information, ATIS attempt to achieve several system objectives 

including reducing system congestion, reducing uncertainty, improving mobility, safety, 

and convenience. To achieve these objectives, there is a need for the development of 

more accurate models which lead to more effective investment, design, operation and 

planning of urban transportation networks.  

To support these decisions, dynamic traffic assignment models aim to describe 

network flow dynamics, and form a core component in the evaluation and operation of 

Intelligent Transportation Systems. Three principal time-frames are of interest in 

dynamic network analysis of transportation systems: real-time, within day and day-today 

dynamics (Mahamassani, 1997). Real-time dynamics relates to dynamics that arises due to 
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the effect of real-time traffic information on user decisions (particularly en-route) and system 

performance. Within-day dynamics refers to variations in trip-time due to variation in O-D 

patterns across different departure times. Day-to-day dynamics refers to variation in 

network flows from one day to the next due to various types of internal and external 

system perturbations (Srinivasan and Guo, 2003). Such perturbations include but are not 

limited to: day-to-day departure time and route changes, effect of transportation control 

measures, activity and stop changes, weather-induced effects, incidents and accidents, 

construction, ramp and highway closure, special events such as concerts, etc.(Peeta, 

2001). These perturbations can lead to fluctuations in system performance from day-to-

day as well as the travel experiences of commuters (trip-time reliability, probability of 

arriving late, etc.). Many dynamic network models have focused on the first two 

dimensions of dynamics given the interest in modeling routing decisions under 

information. However, investigations into day-to-day dynamics have received relatively 

limited research attention. Furthermore, there is increasing interest and growing 

recognition of the importance of travel time stability and reliability. For instance, FSHRP 

(Future Strategic Highway Research Program) makes travel time reliability an important 

priority area for research in the upcoming decade. In this context, this study focuses on 

the impact of day-to-day dynamics on network performance and system reliability. In this 

study, system reliability is investigated from the following aspects. Trip time reliability 

for a user is defined as the fraction of days when the experienced travel time exceeds the 

mean travel time by a certain threshold. Reliability of on time arrival is the fraction of 

days when users’ arrival time fell within a threshold from the preferred arrival time. 



 3

Information reliability is measured as the fraction of good messages among total 

messages received by the user.  

In this context, from a theoretical point of view, a robust cost network 

optimization algorithm to account for the randomness of trip time is proposed and its 

application is demonstrated for the static traffic assignment problem. Next, a day-to-day 

simulation framework is developed and integrated with the DYNASMART traffic 

simulator. The proposed day-to-day simulation framework has the capability to capture 

various sources of dynamics and randomness including 1) user’s departure time 

switching behavior, 2) pre-trip and enroute route choice decisions, 3) interaction of day-

to-day, within-day, and real time dynamics, and 4) simulation of incidents and its impact 

on day-to-day dynamics. Using this day-to-day simulation framework, the influence of 

several key factors including user behavior factors, demand management measures, and 

incidents on network evolution, trip-time reliability, and commute experience metrics 

(on-time arrival propensity) are analyzed. From a practical point of view, four potential 

trip time reliability improvement approaches are analyzed. These four approaches include 

transportation control measures, incident management strategies, real-time information 

market penetration, and reduction of departure time switching rate.  

 

1.2 Motivation 

The effectiveness of ATIS and ITS depend on their ability to monitor and predict 

traffic conditions (as they evolve) and the ability to influence user response favorably. 

Given the dynamic nature of information, to support the needs of information supply 

through ATIS, various types of dynamic traffic assignment models have been proposed. 
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These studies have sought to characterize steady state conditions and equilibrium flows, 

typically under the assumption of known but time dependent demand O-D distribution 

(Watling, 1999). Fewer studies examine day-to-day dynamics in real world networks 

(Watling, 1999; Peeta, 2001), particularly dynamics that result from variation in 

departure time decisions of trip-makers despite significant empirical evidence of such 

variability (Hatcher, 1992; Cherrett, 1997; Van Berkum, 1998; Jou, 1998; Lu, 2000). 

Commuter diary studies in Texas indicate that 52% of the commuters switch their 

departure time from day to day, and 25% of the commuters switch their route from day to 

day (Jou, 1998). Disregarding departure time adjustment decisions from day-to-day can 

lead to errors in evaluation of planning options since the time-dependent O-D matrix may 

not be accurate. Another common assumption in dynamic traffic assignment relates to 

equilibrium where users select paths such that all used paths have equal and minimal trip 

times. However, empirical data shows significant route switching in practice (Cherrett, 

1997; Van Berkum, 1998; Lu, 2000).  This suggests that the chosen routes are not 

necessarily optimal under time-varying traffic. Other studies show that equilibrium may 

not exist or may not be stable (Horowitz, 1984), or the system may converge to a 

‘deluded’ equilibrium state (Nakayama,1999). These studies, though, have mainly focused on 

the day-to-day dynamics in a static network, without real-time information or a time-

dependent O-D matrix. Consequently, limited insights are available on 1) how users’ route 

and departure time decisions evolve from day-to-day in response to real-time information and 

system dynamics, 2) how system dynamics, reliability and stability change as a result of user 

response, and 3) the quality and role played by information and other supply-related factors. 
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The insights on the influence of real-time information on day-to-day decisions are 

essential for the evaluation of ATIS and ITS technologies. A clear understanding of day-

to-day dynamics could be applied towards the design of information systems and for the 

development of guidelines to improve the stability and reliability of system performance. 

Furthermore, a better understanding of system performance over a longer multi-day 

planning horizon is also of interest for practical applications including work zone and 

construction planning, incident management, and more cost-effective network design and 

operational decisions. 

The motivation for this study is threefold. First, the development of such day-to-

day network models have important practical applications: 1) to identify or assess 

strategies to guide or steer the system towards the equilibrium (through information or 

other means) when substantial deviations occur, 2) to evaluate the performance of 

demand management strategies from a commute reliability perspective, and 3) to 

investigate the role of incident characteristics on travel delays and identify effective 

strategies to ensure smoother traffic flows from day to day. Insights and models along 

these lines will have important implications for congestion mitigation, improvement of 

travel time reliability, assessment of different travel demand management strategies, 

improvement of incident management strategies, and the evaluation of alternative ITS 

technologies. Second, several sources of day-to-day dynamics are observed and reported 

in real-world networks, but the underlying sources and their influence on system 

volatility and commute reliability are not yet well understood (Huff et. al. 1986, Hazelton 

et. al. 1996a, Cherrett 1997). In this context, there is a need to incorporate richer, 

dynamic, and more behaviorally realistic models of user behavior concerning factors such 
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as departure time and route switching while investigating network reliability. Finally, 

dynamic user equilibrium models currently used for network analysis are inadequate 

while investigating network reliability and day-to-day variability under system 

perturbations because of their steady state assumptions. These assumptions may not hold 

in the presence of system shocks and perturbations (Cantarella, 1995; Cascetta, 1991). 

Therefore, to analyze system reliability and deviations from equilibrium, a day-to-day 

system evolution framework is necessary.  

 

1.3 Objectives 

Given the motivating considerations discussed in the previous section, five major 

objectives are pursued in this study: 1) to propose a robust network assignment algorithm 

to account for the randomness of trip time, 2) to develop a dynamic simulation model for 

analyzing day-to-day dynamics under real-time information, 3) to analyze the impact of 

internal perturbations, particularly the role of users' route and departure time choice 

behavior on day-to-day network dynamics and trip-time reliability, 4) to investigate the 

role of transportation control measures (TCMs) on day-to-day evolution of network flow 

and trip time reliability, and 5) to analyze the effect of unplanned capacity reduction (in 

the form of incidents) on day-to-day dynamics and system reliability. 

Under the first objective to develop an assignment algorithm accounting for trip 

time randomness, two sub-objectives are pursued. The first sub-objective aims to propose 

an algorithm for robust cost optimization in networks with random arc costs involve day-

to-day dynamics. A new formulation and solution methodology is proposed for the robust 

network assignment problem that explicitly considers trip time variability. Several 
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important variants of the robust cost assignment problem are also analyzed. The second 

sub-objective involves demonstrating the performance and practical use of the algorithm 

in an experimental traffic network.  

Under the second objective investigating day-to-day dynamics, the following sub-

tasks are pursued. First, an agent-based belief-desire-intention (BDI) architecture is used 

to model the day-to-day dynamics under the route choice and departure time adjustment 

decision process of commuters. Two empirically calibrated utility maximization behavior 

models are used as the core components of this BDI architecture. Second, the capability 

to simulate day-to-day evolution in traffic flows at the network level is obtained by 

integrating these dynamic and stochastic decision models with a dynamic network traffic 

simulation assignment model (DYNASMART). This integration of within-day and day-

to-day network traffic assignment capabilities depicts a wider range of system 

performance measures at the three levels of dynamics: real-time, within-day, and day-to-

day in a coherent, mutually consistent, and a co-evolving framework. Specifically, the 

integrated framework and simulation model enable the computation of several day-to-day 

related performance measures including departure time switching rate, percentage links 

in common, and individual level switching measures that account for each user’s past 

traffic experience. Furthermore, the variability and reliability at the system level can be 

captured through several indicators including trip time reliability, trip time volatility, and 

on time arrival reliability. In addition the quality of information and its variation over 

time (within-day and from day-to-day) can also be monitored and evaluated.   Thus this 

proposed day-to-day framework will facilitate the analysis of the impacts on information, 

user response, traffic management measures and system control measures, on the 
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evolution of the network performance and its reliability from day-to-day. Third, to 

investigate the effects of different behavioral rules, a model depicting multiple user 

behavior classes (departure time only, en-route route choice only, pre-trip route choice 

only, and combinations of the three) is proposed. Fourth, in order to simulate the 

incidents from day to day, simulation procedures for random sampling incidents are 

developed. Incident characteristics such as the probability of occurrence, durations and 

incident severity are embedded in the proposed simulation framework.  

The following sub-objectives are investigated for the third objective investigating 

internal perturbations. The first sub-objective analyzes the influence of routine 

perturbations induced by small changes in user behavior under real-time information.  

Specifically, the effect of users' route and departure time switching decisions on network 

evolution and its reliability are studied. Under this objective, the influence of joint 

switching, sequential switching, and switching in only one dimension (route only, or 

departure time only) are also analyzed. The second sub-objective investigates the 

influence of changes in users’ sensitivity (responsiveness to system performance factors) 

on system trip-time, network reliability, and commuting performance and reliability (e.g., 

on-time arrival reliability).  In this objective, the influence of users’ responsiveness is 

investigated at two levels: systematic changes in user sensitivity to factors (e.g., mild, 

moderate, or high sensitivity to late schedule delay), and unobserved variations in 

sensitivity to system attributes across different users.  

The fourth objective focuses on the effect of external demand side shocks in 

conjunction with transportation control measures (TCM). Under this objective, the effect 

of staggered work hours, real-time information provision, telecommuting, and work-week 
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compression are studied on day-to-day evolution, system stability, and commute 

reliability measures. 

The fifth and last objective is to analyze the day-to-day dynamics and system 

reliability under non-recurrent supply-side shocks (in the form of incidents). Under this 

objective, the effect of key incident characteristics including the probability, duration, 

and severity on system stability and reliability are investigated, and alternative measures 

to improve network performance and reliability (real-time information, incident 

management measures, and departure time switching rate reduction) are analyzed.  

Through these objectives this study aims to contribute to dynamic and stochastic 

transportation network modeling literature in the following respects: 1) proposing a new 

algorithm for robust cost minimization in networks with random arc costs that explicitly 

takes into account correlated arc costs and trip-time variability on the arcs, 2) developing 

a tool for quantifying and analyzing travel time reliability and stability (an emerging 

thrust in network operations, 3) providing insights on the various factors that affect 

network reliability and day-to-day evolution, 4) identification of  transportation control 

measures to improve network reliability and reduce congestion, and 5) analyzing incident 

impacts on day-to-day dynamics, with guidelines on effective incident management. 

 

1.4 Overview of Approach 

To address the first objective of developing a robust cost assignment algorithm, a 

robust cost network optimization formulation is proposed for networks with random and 

correlated arc costs. The robust cost minimization model aims to minimize a hybrid 

robust cost function that consists of a combination of the mean and variance of arc costs. 
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The associated existence, uniqueness, and optimality conditions are identified and used to 

develop a solution algorithm. A polynomial time algorithm is proposed and implemented 

for solving the robust cost optimization problem when real-valued flows are sufficient. 

Models for several important variants of the robust cost minimization problem are also 

proposed including: 1) minimum variance assignment problem, 2) robust cost 

minimization problem with integer constraints, and 3) robust cost problem with 

independent within-link flows. A two-stage heuristic is proposed when integer valued 

solutions are demanded by the practical application (e.g., network revenue management 

applications where flows represent customer acceptance decisions). The application of 

this general network algorithm to a robust cost traffic assignment problem is also 

demonstrated for a simple test network. On this network, computational experiments are 

used to examine the role of arc trip-time variability on the system performance. The 

results of the robust assignment solution are also compared to the deterministic system 

optimal assignment formulation. 

The second objective of investigating day-to-day dynamics is addressed by 

developing a simulation-based framework to model day-to-day dynamics in network 

flows. Simulation-based models are necessitated by the complexity of the day-to-day 

studies (stochasticity and dynamics), which precludes the use of analytical approaches 

(Nagel, 2000) for realistic networks. The proposed framework accounts for the day-to-

day variation in departure time and routing decisions through the use of empirically 

calibrated user behavior models and agent-based belief-desire-intention architecture as 

described in Chapter 3. This simulation framework provides for a joint and mutually 

consistent representation of within-day and day-to-day dynamics in an integrated 
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framework by integrating a dynamic assignment model (DYNASMART) with this day-

to-day user decision framework.  

The following unique features are included in this simulation framework. An 

agent-based behavior modeling approach is proposed that incorporates empirically 

calibrated models of user decisions under real-time information that accounts for user’s 

past experience, system dynamics and information quality. This agent-based architecture 

is used to represent within-day and day-to-day route choice dynamics and departure time 

adjustment decisions. In particular, this framework provides the capability of simulating 

all day-to-day related variables, past traffic experience and cumulative variables, and 

various performance measures of interest with respect to system volatility, system 

reliability, and information reliability that are typically disregarded in within-day 

dynamic network models. The simulation model also includes the capability to represent 

stochastic incidents that are needed to analyze the impact of incidents on system 

reliability and performance. The new incident simulation procedure captures the 

randomness of incidents from day-to-day, thus relaxing the limitation of the original 

incident model in DYNASMART which allows only pre-determined incidents. This 

integrated simulation model is used to conduct a series of computational experiments to 

achieve the remaining objectives.  

To meet the third objective of investigating internal perturbations, two sets of 

experiments are conducted. The first set of experiments focuses on 1) the effect of joint 

switching versus separate switching, and 2) the influence of initial conditions, in the form 

of different recurrent congestion levels and simultaneous versus sequential switching. 

The second set of experiments examines the role of variations in user behavior. Six 
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factors are considered in this set of experiments. These factors include departure time 

inertia, route switching inertia, sensitivity to late schedule delay, sensitivity to trip time 

volatility, unobserved variability in departure switching behavior, and unobserved 

variability in route switching behavior. The corresponding coefficients in the behavior 

model are varied systematically and the resulting system performance is recorded and 

analyzed.  

The fourth objective involving external perturbations is performed by analyzing 

the effect of transportation control measures (staggered work hours, real-time information 

provision, telecommuting, and work-week compression) on day-do-day dynamics and 

system evolution. The staggered work hour is simulated by staggering the preferred 

arrival times of a fraction of users. Real-time information scenario is simulated by 

providing real-time information to users, as per the desired level of market penetration. 

Telecommuting is modeled by adjusting the demand based on the assumption that a 

certain fraction of users work from home once a week. Work-week compression is 

modeled by assuming that a fraction of commuters have a compressed work week 

schedule, and adjusting their departure times accordingly.  

In analyzing the fifth objective involving supply side shocks, the following tasks 

are performed. First, the impact of the incidents is studied by systematically varying 

unplanned congestion levels (incident probabilities), conditional probability of different 

incident types, severity of the incidents, incident durations, and spatial distribution of 

incidents. Second, alternative measures for improving network performance and 

reliability (real-time information, incident management measures, and departure time 

switching rate reduction) are analyzed and the findings are discussed.  
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This study is distinct from prior studies in the following four respects. 1) The BDI 

agent modeling architecture with dynamic and empirically calibrated user behavior 

models as decision rules in network performance analysis are used, which enables the 

treatment of within-day and day-to-day dynamics as mutually endogenous and co-

evolving stochastic processes in response to information and user behavior. 2) Various 

reliability metrics, such as trip-time reliability and on-time arrival fractions, are accessed 

together with conventional performance measures in this study. 3) Alternate TCM 

strategies and the sensitivity of user behavior on system dynamics are studied, with 

relaxation of steady state assumptions. 4) The impact of incident characteristics and the 

effectiveness of information and incident management approaches under incident 

scenarios are systematically analyzed.  

 

1.5 Structure of This Dissertation 

The rest of the dissertation is organized as follows. Chapter 2 reviews related 

literature on various sources of system perturbation and their impact on day-to-day 

network performance, and highlights critical gaps in modeling day-to-day dynamics 

under real-time information. In Chapter 3, the robust assignment algorithm for minimum 

cost network flows under random arc costs is presented. The simulation framework 

proposed in this study is described in detail in Chapter 4. Chapter 5 presents the 

experimental design, results and findings for alternative user behavior factors and 

transportation control measures (objective 4 and 5). Incident simulation procedures, 

experimental design and analysis are discussed in Chapter 6. The last chapter summarizes 
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the research work and findings, the suggested contributions to new knowledge, and the 

future research directions.  



 15

CHAPTER II 

 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Overview 

This chapter briefly reviews prior studies on within-day and day-to-day dynamics 

in urban transportation network flows. The purpose of this review is to 1) synthesize 

current knowledge on within-day and day-to-day modeling approaches, 2) to recognize 

the essential characteristics of the process under study, and 3) to outline the approaches 

adopted by various researchers and highlight their salient results and limitations with 

regard to the research issues of interest in this study.  

The sources of day-to-day dynamics and variability in urban transportation 

networks are presented in the next section. In Section 2.3, the literature pertaining to 

ATIS and their influence on trip-maker’s behavior and within day and day-to-day 

dynamics are reviewed. Within-day dynamic simulation models based on various 

equilibrium assumptions are presented in Section 2.4. In Sections 2.5 and 2.6 the 

literature on day-to-day route choice-based and departure time based models are 

reviewed. In Section 2.7, agent-based modeling approaches, from both control and user 

behavior point of views, are presented and critiqued briefly. Section 2.8 reviews the 

related research on transportation network reliability analysis. Finally, gaps in the 

literature are identified and the need for the current study is described in Section 2.9. 
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2.2 Sources of Day-to-day Dynamics and Variability 

Traffic networks are routinely subjected to external and often time-varying demand 

and supply side shocks, which affect network performance, resulting in possible deviations 

from equilibrium. Examples of such shocks include changes in traffic patterns due to weather 

(rain/snow) related capacity reductions, planned and unplanned maintenance (Mahmassani, 

1997), special events such as concerts, stochastic accidents and incidents, and other factors.  

Equilibrium-based models are not designed to address the impact of these shocks, or to 

evaluate alternative strategies to manage the impacts of these perturbations (Peeta et. al., 

2001). Traffic studies routinely show the presence of daily, monthly, and seasonal variation 

in flows in real-world networks. A study of traffic on I-10 freeway in San Antonio, 

instrumented with detectors, revealed significant day-to-day variability in traffic speeds (up 

to 20 mph difference) during the evening peak period (Cherrett, 1997). Significant day-to-

day variations in network flows have also been reported by observational studies of traffic in 

the Netherlands and England (Van Burkum, 1998; Lu, 2000).  

Day-to-day dynamic and stochastic effects in trip-maker behavior may also lead to 

significant day-to-day variations observed in real-world networks (Srinivasan and Guo, 

2003).  Departure time switching rates of 56-65% were observed in commuter behavior in 

the cities of Dallas and Austin over a two-week period, while route switching rates estimated 

to be between 23-31% (Hatcher, 1992; Jou, 1998).  These findings suggest that users are 

more likely to switch departure times from day-to-day, whereas, many equilibrium models 

focus mainly on modeling routing decisions. The extent and significance of these switching 

rates call into question the existence of equilibrium traffic flows, particularly, when trip-

maker choice behaviors exhibit significant switching rates.  Several recent studies on the role 
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of real-time traffic information suggest that information induces significant route switching 

behavior within-day and departure time and pre-trip route switching behavior from day-to-

day (Vanghn, 1995; Chen, 1999; Srinivasan, 1999). Furthermore, there is significant 

evidence that users’ learn dynamically about evolving traffic conditions based on information 

and experience, and adjust their behavior accordingly (Nagel, 1994; Rickert, 1997; Selten, 

2002; Iida, 1992; Nakayama, 1999).  

Day-to-day variations in traffic flows could also arise from variations in underlying 

activity patterns of individuals over time (Huff et. al., 1986). For instance, a commuter may 

not stop by the grocery store every day, but do so every few days. Empirical studies note 

significant variability in stop-making behavior (25% of commuters make one or more stops 

during morning commutes and 36% during evening commutes), and stop-duration (with 

average stop durations of 14.5 minutes for morning and 31.6 minutes for evening) during 

commuting trips (Jou et. al., 1998).  These changes can translate into stochastic variations in 

O-D pattern variation from day-to-day.  

Another source of perturbation is real-time information. User equilibrium 

(deterministic) assumes that all users select minimal trip-time paths under information. While 

intuitively appealing, this assumption imposes the following questionable behavioral 

restrictions: perfect knowledge and optimization capabilities under time-varying conditions, 

and identical (homogeneous) decision behavior by all users (Garling, 1998). In fact, in the 

context of real-time information, several studies have found that users do not always know 

the optimal paths under time-varying traffic conditions, and often select sub-optimal paths 

due to habit persistence and inertial considerations (Van Berkum, 1998; Chen, 1999; 

Srinivasan, 1999) or imperfections in information. Furthermore, significant heterogeneity and 
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stochasticity has been observed in users’ route and departure time choice behavior under 

information and experience, especially imperfect information (Iida, 1992; Garling, 1998). 

Further, users may be inclined to select paths/departure times based on multiple objectives 

including trip-time minimization, schedule delay, and travel time reliability (Vanghn, 1995; 

Chen, 1999; Nakayama, 1999), which may not always be mutually consistent (Srinivasan 

and Guo, 2003). 

 

2.3 Role of ATIS on Within-day and Day-to-day Dynamics 

Several studies examine the potential benefits to drivers through the supply of 

real-time traffic information. Advanced Traveler Information Systems provide dynamic 

traffic information to drivers based on prevailing or predicted traffic conditions, in 

contrast to static information that is based on historical or average system conditions. The 

supply of real-time traffic information to trip makers through various types of advanced 

traveler information systems (ATIS) is increasingly viewed as a means of reducing traffic 

congestion in urban networks (Mobility 2000, Final Report of the Working Group on 

ADIS, 1990). Mahmassani (1991) analyzed the system performance and user response 

under various levels of market penetration of information system. Their results indicated 

that actions by drivers under real-time traffic information, in some cases, might result in 

worse conditions for themselves (individual objectives) and for the entire system. 

Another study on the influence of dynamic route guidance system by Hadj-Alouane et al. 

(1995) also indicated that the gains of an individual driver and the system are affected by 

the levels of market penetration, i.e., the fraction of drivers with access to the 

information. Simulation experiments suggested that the magnitude of benefits due to real-
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time traffic information is highly sensitive to the initial conditions in the traffic network 

and drivers' route choice rules (Chen, 1991). Providing real-time information and route 

guidance through ATIS can aid drivers who are not familiar with the traffic network. 

However, the benefits of ATIS may decrease as drivers get more familiar with travel 

conditions, whereas, more experienced drivers may only benefit from ATIS during the 

pre-trip planning stage (Adler, 1993).  

From the studies cited earlier, one conclusion is that ATIS can significantly 

impact drivers' route choice behavior, and thus ATIS offer the potential to benefit drivers 

and alleviate traffic congestion in urban networks. However, the extent and magnitude of 

actual benefits from information varies considerably in different cases and critically 

depends on many factors such as route choice rule, market penetration, and traffic 

conditions. Furthermore, day-to-day dynamics on transportation network and the impact 

of information on day-to-day dynamics and network reliability are not studied. In this 

context, further research on the relationship between drivers' benefits from ATIS and the 

role of ATIS on day-to-day dynamics in the long-run are particularly desirable, and forms 

the focus of this thesis. 

 

2.4 Within-day Dynamics 

Within-day dynamics refers to variations in trip-time due to variation in O-D patterns 

across different departure times. Within-day dynamic models relax the assumption of 

constant trip-time and flow rates in peak period. To represent the time-varying nature of 

flows within the peak period, many researchers have investigated within-day dynamics in 

transportation networks based on the user equilibrium or system optimal frameworks 



 20

(Mahmassani, 1997; Peeta, 2001; Ran, 1996; Li, 1999). The underlying premise is that 

users' seek to minimize their trip-time (or related measure) that accounts for the real-time 

traffic conditions. Based on this premise, several types of ‘dynamic’ equilibria have been 

proposed and aim to represent various cases of practical interest including fixed and elastic 

demand, presence of real-time information, multiple user classes with various objectives, and 

the effect of various types of traffic control systems. A large body of dynamic traffic 

assignment literature has emerged that develop mathematical programming and variational 

inequality formulations and network assignment algorithms to solve for these equilibrium 

conditions (for a comprehensive review of these dynamic assignment and equilibrium 

methodologies, the interested reader is referred to Peeta and Zilliaskopoulos, 2001). One 

common feature among these studies is that at equilibrium no user can improve his/her cost 

by switching unilaterally. Thus, these equilibria are ‘dynamic’ in the sense that the travel 

times of users departing at different times vary on a given day. As such these equilibrium 

flows are intended to represent the time-varying nature of flows once stationarity is achieved.     

However, the equilibria represent “comparative statics” in a day-to-day sense, since 

users have no incentive to change their routes/departure time decisions at equilibrium 

(Srinivasan and Guo, 2003). Under the equilibrium paradigm, therefore, the resulting 

network flows vary across departure times on a given day, but are static for the same 

departure time from day-to-day (Cantarella, 1995; Ran, 1996). Hence, the travel times and 

flows do not vary from day-to-day.  Empirical observations of real-world traffic in several 

cities (Huff, 1986; Cherrett,1997; Van BerKum, 1998; Lu, 2000; Hatcher, 1992) and 

laboratory studies (Hazelton, 1997a; Nagel, 1994; Rickert, 1997; Hu, 1997; Selten, 

2002), however, show that network flows in real-world networks may not necessarily be 
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at or near equilibrium conditions, due to various system perturbations including the effect 

of information and dynamic user decisions. Several sources of perturbations can lead to 

significant day-to-day dynamics and variability in observed flows and trip-times.  

 

2.5 Day-to-day Route Choice Based Models  

To account for these day-to-day variations, a few researchers have investigated 

the evolution in network flows from day-to-day. Cantarella et al. (1995) used a stochastic 

process model and found that system flows may deviate significantly from equilibrium 

due to the effect of information and past experience on route choice decisions. Horowitz 

(1984), in one of the earliest studies in this area, demonstrated that traffic flow can 

exhibit non-convergence, or convergence to non-equilibrium states, even when stochastic 

user equilibrium was unique, due to the role of learning effects on user decisions. In a 

related finding, Nakayama et al. (1999), indicated that network may converge to a 

‘deluded’ equilibrium state which may be considerably worse than equilibrium 

conditions, due to heterogeneity (differences across drivers) of perception (of trip-times 

and paths). More recently, Peeta et al. (2001) questioned whether real-world flows are at 

or near equilibrium conditions given the numerous sources of random shocks (demand, 

supply, incidents, weather, and construction). Selten et. al. (2002) shows that day-to-day 

variation can persist even for an unusually long period even in a fairly simple network 

where only pre-trip information is allowed. 
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2.6  Day-to-day Departure Time Based Models  

In most studies cited above, route choice decisions have been the main source of 

day-to-day variability in network flows. In contrast, the role of departure time decisions 

on network flow evolution has received relatively less attention in network analysis, 

although several empirical studies have found that commuters are more likely to change 

their departure time than route (Mahmassani, 1990). For instance, departure time 

switching rates of 56% and route switching rates of 23% were observed in commute trips 

(based on travel-diary surveys for 2 weeks) in Dallas and Austin (Hatcher, 1992; Jou, 

1998). Due to the focus on the effect of routing decisions in current models, the influence 

of departure time dynamics on network performance, stability and reliability are not yet 

well understood. Furthermore, due to tractability considerations, many day-to-day studies 

do not account for within-day dynamics (with a few exceptions, e.g., Cantarella,1995).  

A few studies try to address the shortcomings above by combining within-day and 

day-to-day dynamics through an integrated framework. Among these studies, Cascetta 

(1991) used a modified version of within-day departure time choice model (Small, 1987) 

and evaluated system performance under alternative control strategies. However, the 

departure time adjustment process is modeled at an aggregate level by assuming that a 

pre-specified fraction of users will reconsider the previous day’s choices. Hu and 

Mahmassani (1997) used a dynamic traffic assignment framework (DYNASMART) to 

evaluate day-to-day network dynamics under real-time information and responsive signal 

control system. The results showed that the departure time patterns converged to a peaked 

flow pattern which had the same mode (peak), regardless of the control strategies that 

were considered. Although this study uses a more disaggregate and empirically calibrated 
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behavioral model, adjustment decisions are only partially accounted for through an 

empirical binary departure time switching model (switch / do not). Further, due to the 

focus on the role of information market penetration and on-line control in this study, few 

insights are obtained on day-to-day dynamics and stability. Duong and Hazelton (2002) 

proposed a new Markov traffic assignment model (MARTS) which incorporates a route 

choice model based on past experience and pre-trip information. The experiments showed 

that providing high quality pre-trip information in highly volatile systems may not be 

entirely beneficial in terms of system performance.  

Most of the results discussed above have been reported using small networks 

(with few links) under simple hypothetical user behavior rules that account for learning 

and switching under experience, and mostly in the absence of real-time information. 

However, the nature and extent of system reliability under information and shocks, 

particularly from a users’ standpoint has not received sufficient research attention and 

still remains to be quantified systematically. 

 

2.7 Agent-based Simulation Approach 

In recent years, many researchers are increasingly exploring the possibility of 

using multi-agent systems to model the intelligent traffic management systems 

(Hernandez, 2002), which is intuitively a natural approach for the high complexity 

problem with multi-user and control interactions such as those present in real-world 

traffic networks. Multi-agent systems are systems composed of multiple interacting 

entities, known as agents with the ability to: make decisions, adapt, adjust and influence 

the environment in which they operate. Agents are systems with two important 
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capabilities: 1) autonomous actions of deciding for themselves what they need to do in 

order to satisfy their objectives, and 2) the capability for interacting with other agents by 

engaging cooperation, coordination, and negotiation. (Wooldridge, 2001). In traffic 

systems, many different entities, such as traffic lights, drivers, and variable message signs 

are present with varying levels of information and decision making abilities 

('intelligence'). These agents are distributed over a large area and interact with each other 

to achieve certain goals. Different agents may seek to fulfill different objectives even 

while participating in the same environment, and make their decisions based on limited 

and imperfect information about the future. The multi-agent approach on traffic flow 

models offers an alternative interpretation of the classical traffic flow models, since it 

relaxes the constraints associated with pre-determined outcomes (for instance, 

equilibrium flows). In contrast, the dynamics of the system is largely determined by 

mutual interactions between the various agents, and the system continues to evolve as 

users learn about the environment and adapt their decisions. The flexibility and the 

versatility of the agent-based representation enable a much richer and less restrictive 

description of system dynamics and evolution. 

Hernandez et. al (2002) described the development of knowledge-based multi-

agent architecture for real-time traffic control, a system capable to reason about the traffic 

behavior and evolution in a manner similar to an expert traffic operator, in order to 

achieve improved system performance. Two relevant members of the TRYS (an agent-

based environment for building ITMS applications for roadway networks) family of 

systems are discussed and compared in Hernandez (2002), given that these systems are 

installed and tested online in traffic control centers. The two systems differ in the way the 
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traffic agents are coordinated (centralized and decentralized control). The traffic network 

is divided into several problem areas, and each area is controlled by a traffic agent. The 

agent has knowledge regarding the underlying network, the usual behavior of vehicles, 

and can reason and suggest signal actions that may improve the traffic condition. The 

control strategies suggested by each local control agent can then be coordinated by a 

higher level coordinator agent. These types of knowledge-based traffic management 

tools, if properly designed and implemented, can significantly simplify and automate the 

control process by operators. However, the accuracy of the decision process is largely 

dependent upon the sophistication level of the knowledge base, and the decisions reached 

by control agents may not be globally optimal. In addition, the impact of these types of 

control systems on system performance is not yet well understood given the limited 

practical deployment of these technologies.  

Agent-based approach for modeling dynamic driver behavior has also received 

attention from multiple researchers. The major advantage of using agents in travel 

behavior modeling is that they are active entities that interact with their environment (by 

receiving and reacting to real-time traffic information) and in concert with other agents in 

the system (Dia, 2002). Agent-based behavior models also allow for coordination of 

agent tasks and actions, which can be useful for modeling the interaction between 

informed and un-informed drivers and co-ordination of their goals which has not been 

investigated adequately in conventional driver behavior modeling studies. Whale et. al. 

(2002) proposed an agent-based route choice behavior model using the Belief-Desire-

Intention (BDI) architecture. The BDI architecture is simplified to a two-layer 

architecture: the tactical and strategic layer. The traffic information (travel time) is 
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obtained using probe vehicles and then provided to informed vehicles. However, the 

switching decision is assumed to be always “comply”, and only pre-trip decision is 

allowed.  In addition, the simulation is conducted in a two-route network with a simple 

network flow assignment model.  

In Dia (2002), an agent-based route choice behavior model based on real world 

driver’s behavioral survey is presented, and interfaced with microscopic traffic 

simulation. The advantage of this model is that it explicitly captures the heterogeneity of 

drivers in terms of socio-economic factor, driver’s aggression, awareness and familiarity 

with the network by utilizing multinomial logit models. However, the perception of real-

time information and the decision process is oversimplified, without considering the 

dynamic nature of the information quality, individual user’s past traffic experience, and 

the interaction of inertia and compliance mechanisms operating in the decision-making 

process. In addition, the model is essentially in real-time dynamic context only. However, 

drivers are assumed to be memory-less from a day-to-day perspective.  

Given the important role of departure time and route choice dynamics, 

representing user decisions from day-to-day at a sufficiently disaggregate level and rich 

temporal resolution is essential. In Srinivasan (2001), an empirically calibrated model of 

dynamic departure time choice provides a richer stochastic representation of user 

decisions. This model explicitly accounts for the role of dynamics in network and 

commute performance, users’ past experience, and users’ departure time switching 

history on a user’s departure time decisions. For route choice decisions under 

information, a disaggregate and behavioral model was developed in Srinivasan (1999). 

This model captures two principal behavioral mechanisms observed in route choice 
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decision process under information: compliance and inertia. These two models have been 

integrated with a dynamic network assignment framework (DYNASMART) in this 

dissertation research. The details of these models used in this research are presented in 

Chapter 4.  

 

2.8 Network Reliability Research on Transportation Networks 

Although reliability analysis is an integral part in design and planning of many 

infrastructure networks (eg., electric power systems and communication networks), 

reliability analysis has received relatively less attention in the context of traffic networks. 

Among the few reliability-related studies pertaining to transportation networks, attention 

is mostly focused on two aspects: travel time reliability and capacity reliability. Du et. al. 

(1997) describes approximation procedures for sensitivity and reliability analysis for a 

degradable transportation system. In this research work, a conventional integrated 

network equilibrium model with variable demand is used to describe flow on a 

degradable transportation network with a range of degradation on roadway capacity. The 

proposed reliability model involves defining the reliability of individual sub-systems (O-

D pairs) as the probability that given some event, the proportional reduction of flow in 

the sub-system is less than some threshold value. The author argued that an exact solution 

is unlikely, even in a relatively simple network. Consequently, an approximation solution 

based on a recursive algorithm was developed to estimate the system reliability.  

Chen et. al. (2002) defined capacity reliability as the probability that the network 

capacity can accommodate a certain traffic demand at a required service level, while 

accounting for drivers’ route choice behavior. A framework is proposed for evaluation of 
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the capacity reliability. Monte Carlo simulation is used to randomly sample the capacity 

of links in the network. For each set of arc capacities generated, a network equilibrium 

algorithm is used to find the equilibrium flows. Then a sensitivity-based approach is used 

to compute the derivatives of the performance function, and the associated reliability 

measures are computed and analyzed. Besides the probabilistic assessment of network 

capacity, travel time reliability is also determined in the evaluation process. Numerical 

results are presented in terms of a simple network with five nodes and two O-D pairs to 

demonstrate the feasibility of the evaluation procedure. However, the drawback of this 

evaluation framework is that a deterministic link travel time evaluation function (BPR 

function) and static equilibrium state are assumed for a given set of arc capacities. 

Considering the internal perturbations, real-time, within-day, and day-to-day dynamics, a 

discrete event simulation method is warranted to evaluate the trip time and capacity 

reliability in transportation networks.   

 

2.9 Research Gaps and Summary 

Several gaps exist in the literature reviewed in this chapter pertaining to urban 

transportation network reliability analysis. Due to incidents, weathers, users’ route and 

departure time decisions, and other day-to-day factors as highlighted earlier, link travel 

time can vary significantly from one day to the next. The travel times between links can 

also be correlated. The randomness of link cost is not considered in traditional user 

equilibrium (UE) and system optimal (SO) assignment models. Stochastic user 

equilibrium models do allow random errors on the information users received, but the 

system variance is not explicitly considered as part of the system objective, and the 
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correlations between random link costs are not captured. There is a need to address this 

gap from methodological point of view. In the next chapter, a new system optimal 

formulation is proposed, with the ability to account explicitly for variance of system cost, 

and allow trade-off between cost and variance in the objective function. In addition, an 

algorithm based on the Method of Successive Assignment (MSA) is proposed to solve 

the formulation.  

From a network modeling point of view, there is a need to incorporate 

behaviorally-based user decision models in network analysis, specifically pertaining to 

day-to-day changes in users’ route and departure time decisions, in response to 

information, experience, and learning. These models should enable the representation of 

stochasticity (for instance, imperfect information quality that changes in response to user 

behavior over time) and heterogeneity (differences in users’ propensities and perceptions 

to switch routes, departure times, or comply with information). To measure system 

stability and travel time reliability, a day-to-day dynamic assignment framework is 

essential wherein the day-to-day system evolution influences, and is influenced by, 

within-day congestion and real-time dynamics (due to information). Among the few 

studies that examine day-to-day dynamics, the role of either departure time switching or 

route switching has received attention. But the effect of joint switching behavior has not 

been sufficiently studied due to tractability or other confounding issues.  

Furthermore, in the commuting context, jointly considering commute 

performance characteristics together with trip time reliability is important. In addition, 

there is a need to represent the influence of system perturbations (both planned and 

unplanned) on day-to-day system evolution. Due to these limitations, many within-day 
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dynamic models are not entirely satisfactory in representing network flows when they 

deviate from equilibrium conditions.  

Because of these modeling limitations, limited insights were obtained from 

extensive empirical analysis, especially from a day-to-day point of view. Specifically, the 

following research questions are not systematically analyzed: 1) What is the role of joint 

switching versus switching in only one dimension? 2) What is the role of user behavior 

factors on day-to-day evolution of network flows? 3) What is the impact of 

Transportation Control Measures on day-to-day dynamics? 4) Which incident 

characteristics have the largest impact on network performance? 5) How does the 

incidents influence the system stability and reliability and how to reduce these effects?  

To answer these questions, experimental factors need to be carefully chosen and 

extensive empirical analysis is needed. To partially address these shortcomings, a 

simulation-based day-to-day network analysis framework is developed and implemented 

in this study to investigate network flow evolution and system reliability from day-to-day 

due to departure time and route choice dynamics. An agent-based behavior modeling 

approach is proposed in this study, that seeks to capture more accurate and realistic agent 

behavior models as decision components for both departure time adjustment decisions 

and route choice decisions. The details of this simulation framework are discussed in 

Chapter 4. 

The use of simulation-based experiments for analysis is necessitated by the 

complexity and nonlinearity of this problem (stochasticity and dynamics), which 

precludes the use of analytical approaches (Nagel 2000) especially for real world 

networks. Further, the direct use of empirical real-world data for analysis is also 
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inadequate, since controlling the experimental factors and observing user response at the 

desired temporal resolution is difficult. Further, the observed evolutionary path (in the 

real-world) is only one possible sample from a set of possible stochastic realizations. 

Based on the day-to-day simulation framework developed in this research, a series 

of computational experiments are conducted and the results are analyzed to explore the 

role of user behavior factors, transportation control measures, and incidents on system 

performance and reliability. These empirical results are presented in Chapters 5 and 6. 
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CHAPTER III 

 

ALGORITHM FOR ROBUST COST MINIMIZATION  
IN NETWORKS WITH RANDOM ARC COSTS 

 

 

3.1 Introduction 

For traffic networks, link travel time can vary from one day to the next due to 

accidents, weather, users’ route and departure time decisions, and other day-to-day factors 

as discussed in chapter one. In addition, the travel times between links can also be 

correlated. The randomness of link cost is not considered in traditional user equilibrium 

(UE) and system optimal (SO) assignment models. Stochastic user equilibrium models do 

allow random errors on the information users received, but the system variance is not 

explicitly considered as part of the system objective, and the correlations between 

random link costs are not considered. Solving the network flow assignment exclusively 

by minimizing cost can lead to a solution with considerably high variance. On the other 

hand, the solution focused on minimizing the variance may give a high system cost. In 

this chapter, a new SO formulation is proposed, with the ability to explicitly account for 

variance of system cost, and allow trade-off between cost and variance in the objective 

function. In addition, an algorithm based on the Method of Successive Assignment (MSA) 

is proposed to solve the formulation.  

Besides in a traffic network, the minimum cost network assignment problem 

arises in numerous other practical applications (e.g., revenue optimization problem, 

warehouse location, internet traffic routing). Given its importance, many efficient 
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algorithms (including polynomial time algorithms) have been proposed to solve the 

minimum cost assignment problem and its variants. For instance, algorithms have been 

developed to address several extensions to the standard minimum cost problem including: 

multiple related objectives (e.g., least cost/time ratio), time-dependence (time-dependent 

minimum cost assignment), multiple user classes (multi-class models), and demand-

supply imbalance (minimum cost with back-log). In a network formulation, arc cost 

refers to the cost associated with the unit flow traversing an arc (e.g., link travel time for 

a driver in a traffic network). In several applications above, the arc costs are deterministic, 

whereas, in many practical problems of interest arc costs are random. Examples of 

problems with random arc costs include reservation management in airline and car rental 

networks (due to random cancellations), project management (uncertainty of task 

durations), and traffic networks (due to day-to-day variation factors such as accidents and 

weather).  

Although, the stochastic shortest path problems have been investigated in several 

studies, the stochastic minimum cost problem has received relatively less attention (Hall, 

1986; Miller et. al., 1994; Provan, 2003). When costs are random, the deterministic 

minimum cost assignment method can be applied with expected costs to obtain the 

minimum expected cost solution. However, this solution can be problematic in two 

respects: 1) This may lead to an unacceptably high level of risk and variability in costs, 

especially in cases where downside risks can have significant monetary penalties, and 2) 

A lower overall cost or higher revenue may be obtained through alternative strategies for 

some random scenarios where this solution is sub-optimal. Further, the minimum 

expected cost solution does not distinguish between cases when arc costs are correlated 
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and those where costs are independent across arcs. To address these shortcomings, this 

chapter proposes an algorithm to find a robust minimum cost assignment when arc costs 

are random. Robustness in this study is defined in terms of a weighted linear combination 

of the mean and variance of system costs, where the relative preference weight for 

risk/variability can be specified by the decision-maker. This algorithm has important 

applications for assessing the robustness of alternative solutions, and is illustrated here in 

the context of a small traffic network with random and correlated link travel times. 

Two objectives are pursued in this chapter: 1) To propose algorithms for robust 

cost optimization in networks with random arc costs, and 2) To apply the algorithm to the 

static traffic network assignment program and demonstrate the performance and benefit 

of the robust system optimal algorithm using an illustrative traffic network.  

This chapter contributes to network modeling under uncertainty in the following 

respects. A polynomial time algorithm is proposed to solve the robust cost optimization 

problem when real-valued flows are sufficient. The optimal solution for this problem 

exists but may not be unique. Models for several important variants of the robust cost 

minimization problem are also proposed including: 1) minimum variance assignment 

problem, 2) robust cost minimization problem with integer constraints, and 3) robust cost 

problem with independent within-link flows. A two-stage heuristic is proposed when 

integer valued solutions are demanded by the practical application (e.g., rental 

reservations acceptance problem). At the empirical level, models are proposed to 

determine the network flow assignment strategies that minimize the hybrid robust cost 

objective for a small traffic network with random and correlated link travel times. In 

particular, the role of randomness (expressed in terms of the variance of link travel time) 
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is investigated on the performance of the Robust Cost Assignment Problem (RCAP) 

solution relative to the expected system optimal travel time solution. 

Section 3.2 defines the robustness criterion in this study, and presents the 

formulation and optimality conditions for the robust cost minimization problem. Section 

3.3 describes an algorithm based on the Frank-Wolfe method to solve this problem, and 

its application is demonstrated using a numerical example. In Section 3.4, three special 

variants of the robust cost optimization problem are discussed. Section 3.5 discusses 

salient results regarding the robustness of alternative strategies based on a series of 

computational experiments for the traffic assignment problem, followed by a few 

concluding remarks in Section 3.6. 

 

3.2. Formulation and Optimality Conditions for Robust Cost Minimization under 
Random Arc Costs 

 

Robustness is defined here by a hybrid robust cost function R(x) that consists of a 

linear combination of the mean and variance of the system cost and is defined as: 

 R(x) =  (1−α)V(x) + α E(x)2 

where  

 R(x) is the robust cost objective function, 

x represents the vector of path flows on the network, 

α is a preference weight reflecting the risk tolerance of the decision-maker 

towards cost variability.  

V(x) is the variance of cost corresponding to the flow vector x, 

E(x)2 is the square of the expected cost resulting from the flow assignment x, 
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A highly risk-averse decision maker (α = 0) may seek to minimize variance of 

cost, whereas a highly risk seeking decision-maker (α = 1) may choose to minimize the 

expected revenue.   

 

3.2.1 Problem Statement 

Consider a graph G(N,A) to be a directed network with N denoting the set of 

nodes and A representing the set of arcs. Each arc (i,j) has an associated cost c(i,j) and 

capacity u(i,j). With each node i in the node set there is an integer value associated with 

that node, b(i), referred to as the demand/supply of node i. The assumption is that the 

network is balanced, (i.e. Σi b(i) = 0). The arc capacity and O-D pairs are assumed to be 

deterministic, but the arc costs are distributed randomly according to a general 

multivariate distribution (C ~ Multivariate (Μ, Σ)). The robust cost assignment may then 

be formally formulated as follows:  

 

Robust Cost Assignment Problem (RCAP) 

 

Minimize  

R(x) 2 2 2(1 )[ 2 ] [ ]a a a b ab a b a a
a a b a a

x x x xα σ ρ σ σ α μ
≠

= − + +∑ ∑ ∑ ∑  (1) 

Subject to:  

mn
l mn

l
f q=∑  - flow balance of network 

0mn
lf ≥  - non-negative path flow 

xa = ,
mn

mn mn
l a l

mn l K
f δ

∈
∑ ∑  for ∀a  - arc-path flow relationship 
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0 a ax w≤ ≤  for ∀a , - capacity constraints   

where: 

m,n   =  origin or destination node name, m ≠ n 

ax    =  flow on arc a,  

 x   =   vector of arc flows{xa} 

aσ   =   standard deviation of cost per unit flow on arc a 

abρ   =   correlation coefficient between arc a and b 

aμ   =   expected cost per unit flow on arc a 

mn
lf  =   flow on path l between O-D pair m-n 

mnq   =  demand on O-D (m-n) 

aw    =  capacity on arc a 

,
mn
a lδ   =  1 if path l between O-D pair m-n uses arc a, otherwise = 0 

The assumption is made that the link costs are deterministic in nature for a given 

scenario, although they vary randomly across different scenarios. 

 

3.2.2 Reformulation of RCAP Using Link-separable Arc Costs 

The Problem RCAP is reformulated below in a separable form, where the overall 

hybrid cost is written as the sum of suitable arc level hybrid costs: 

 

Minimize  

Z(x) 1 2(1 ) ( ) ( )a a
a a

c x c xα α= − +∑ ∑ 3 ( )a
a

c x= ∑    (2) 
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Subject to: 

 mn
l mn

l
f q=∑  -flow balance of network 

0mn
lf ≥  -non-negative path flow 

0 a ax w≤ ≤  for ∀a , - capacity constraints   

where 

2 2
1 ( )a a a a a b b ab

b a
c x x x xσ σ σ ρ

≠

= + ∑  

 2 2
2 ( )a a a a a b b

b a
c x x x xμ μ μ

≠

= + ∑   

             3 1 2( ) (1 ) ( ) ( )a a ac x c x c xα α= − +  

Note that the composite cost term 3ac denotes an arc level hybrid cost that involves a 

convex combination of the mean and variance of original arc costs (which are random 

variables). Furthermore, this arc cost is not only a function of flow on that arc, but also 

depends on flow on all other arcs on the network.  In determining the variances as per 

term c1a , all units of flow on a given link are assumed to experience the same but random 

link cost in a given instance. In other words, the units of flows are grouped together, and 

therefore the associated costs experienced are not mutually independent.  

 

3.2.3 Optimality Conditions 

For ease of illustration, the conditions are first derived for the case when all arc 

flows are unbounded ( )capacity = ∞  in this section, and extended to the case where the 

capacity is later finite in section 3.2.5. 
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To convert the constrained problem RCAP (equation 1 in section 3.2.1) to an 

unconstrained problem, a set of Lagrangian multipliers (umn) are applied to the constraint 

equations and added to the objective function as follows: 

Minimize ( , ) ( ) ( )mn
mn mn l

mn l
L f u R x u q f= + −∑ ∑  

Subject to: 0mn
lf ≥  

First-order necessary conditions for optimality can then be expressed as follows: 

 ( , ) 0mn
l mn

l

L f uf
f

∂
=

∂
 , ,l m n∀                          (3a) 

 ( , ) 0mn
l

L f u
f

∂
≥

∂
 , ,l m n∀       (3b) 

            ( , ) 0mn
l

L f u
u

∂
=

∂
           ,m n∀                           (3c) 

For this problem the term ( , )
mn

l

L f u
f

∂
∂

is given by: 

( , ) ( ) ( )mn
mn mn lmn mn mn

mn ll l l

L f u R x u q f
f f f

∂ ∂ ∂
= + −

∂ ∂ ∂ ∑ ∑    (4) 

Simplifying the right hand side of equation 4, the first term can be rewritten as: 

( ) ( ) i
mn mn

il i l

xR x R x
f x f

∂∂ ∂
= •

∂ ∂ ∂∑  ,
( ) mn

i l
i i

R x
x

δ∂
= •

∂∑     (5a) 

since ,
mni
i lmn

l

x
f

δ∂
=

∂
 from definitional constraint in 1 that links arc flows to path flows. Note 

that the inner term ( )

i

R x
x

∂
∂

 gives the marginal change in system hybrid cost given a unit 

change in flow on arc i and is referred to as the marginal hybrid cost ( it ) on arc i, 

Therefore, expression 5a simplifies as: 
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( ) ( ) mn
i ilmn

il

R x t x
f

δ∂
= •

∂ ∑  =  lT (x)      (5b) 

where lT  represents the total marginal hybrid cost on path (l) for the vector of flows x.  

This follows from the fact that link-path incidence variable is non-zero for only those arcs 

that belong to path (l), and the marginal costs are added along all the arcs that belong to 

path (l). In equation 5b, the marginal hybrid cost for flow on arc i ( )it x is obtained as: 

( )
i

i

R xt
x

∂
=

∂
    

since  R(x) 3 ( )a
a

c x= ∑   

             (1 )
a

α= −∑ 2 2[ a a a a b b ab
b a

x x xσ σ σ ρ
≠

+ ∑ ]  + α [ 2 2
a a a a b b

b a
x x xμ μ μ

≠

+ ∑ ] 

( )( )i
i

R Xt X
x

∂
=

∂

 2 2 2 2(1 ) 2 2i i i i j j ij i i i i j j
j i j ii

x x x x x x
x

α σ σ σ ρ α μ μ μ
≠ ≠

⎛ ⎞⎛ ⎞ ⎛ ⎞∂
= − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  

Simplifying the terms after differentiation, the following expression is obtained for the 

hybrid marginal cost for arc i: 

( )it x = 2 2(1 ) 2 2 2 2i i i j j ij i i i j j
j i j i

x x x xα σ σ σ ρ α μ μ μ
≠ ≠

⎛ ⎞ ⎛ ⎞
− + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  (5c) 

The second term on the RHS of equation (4) can be simplified as: 

( )rs
rs rs k mnmn

rs kl

u q f u
f
∂

− = −
∂ ∑ ∑       (6) 

Based on the expressions in equations 5b and 6, the optimality conditions (3a) yields: 

( , )mn
l mn

l

L f uf
f

∂
=

∂
( ) 0mn

l l mnf T u− =  for ∀ l, m, n    (7a) 
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Optimality condition (3b) can be written as: 

( , ) 0mn
l

L f u
f

∂
≥

∂
 ⇒  0l mnT u− ≥  for ∀ l, m, n      (7b) 

Optimality condition (3c) provides the flow conservation condition: 

( , ) 0mn
l

L f u
u

∂
=

∂
 ⇒  mn

l mn
l

f q=∑  for ∀ m, n      (7c) 

In addition the non-negativity condition 0mn
lf ≥ should also hold at optimality. 

The optimality conditions 7a and 7b will be satisfied under the following two cases: 

a. Flow on path (l) connecting origin-destination pair m-n mn
lf = 0, in which case, 7b 

implies that the corresponding marginal hybrid cost is at least as large as the 

Lagrangian multiplier for the corresponding O-D pair (umn).  

b. Flow on path (l) connecting origin-destination pair m-n mn
lf is strictly positive, in 

which case the corresponding marginal hybrid cost is equal to the minimum 

Lagrangian multiplier for the corresponding O-D pair (umn).  

The conditions (7a-7c) collectively imply that at optimality, all paths that carry flow 

should have equal and minimal total marginal hybrid costs (=umn for each O-D pair m-n).  

 

3.2.4 Existence and Uniqueness of Optimal Solution 

Existence of the optimal solution for the unbounded capacity case, follows from 

the convexity of the robust cost assignment problem (RCAP), since the objective function 

is convex in terms of flows, and the constraints are linear. To see this, note that the 

functions 1ac , and 2ac  are convex (since the corresponding Hessian matrices are positive 

semi-definite). Therefore, the function c3a (for each arc) is convex since it is the convex 
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combination of two convex functions (Luenberger, 1984). The overall objective R(x) is 

the sum of the convex functions c3a across all arcs, and is also convex. Therefore, the 

program is globally convex and the optimal solution exists.  The solution is not 

necessarily unique depending on the arc cost configurations. 

 

3.2.5 Optimality Condition for the Case When Arc Capacities Are Finite 

To handle the case of finite capacity arcs, the formulation in Section 2.3 is 

generalized by adding a cost term c4a(x) that penalizes the violation of arc capacity. This 

penalty is set to 0 if the flow on arc a does not exceed its capacity by more than a pre-

specified capacity tolerance level (e.g. capacity *(1 + tolerance)), and penalty increases 

with increasing deviation otherwise. Thus by adding a suitable arc penalty, a new 

objective function is defined: as  

R1(x) 3 4[ ( ) ( )]a a
a

c x c x= +∑       (8a) 

where c4a(x) is a penalty term for capacity violation which takes the form of: 

1

4 ( )
(1 )

M

a
a

a

xc x M
w

⎛ ⎞
= ⎜ ⎟+ Δ⎝ ⎠

        

where M, M1 are large positive integers 

 ax  is the current flow on link a 

aw  is the capacity of link a 

Δ  is the tolerance applied to capacity violation. 

Repeating the formulation and optimality conditions in Section 3.2.4, with this change: 

Minimize  1( , ) ( ) ( )rs
rs rs k

rs k
L f u R x u q f= + −∑ ∑     (8b) 
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 Subject to:  0rs
kf ≥  

The first order conditions have the same form as in equations 7a, 7b, and 7c, 

except that the marginal hybrid cost on an arc also includes the corresponding marginal 

penalty terms due to possible capacity violation on the arc.  

For a penalty of the form in c4a above, the contribution of the penalty term to the 

hybrid cost on arc a, ,p at  can be computed as: 

 
1 1

4
,

( ) 2
(1 ) (1 )

M

a a
p a

a a a

c x xMt
x w w

−
⎛ ⎞∂

= = ⎜ ⎟∂ + Δ × + Δ ×⎝ ⎠
    (9) 

where   M2 = M1M 

Consequently, the marginal hybrid cost on a path (l) includes the penalty contributions 

for all arcs on this path in addition to the original hybrid cost now also. The new marginal 

hybrid cost including capacity violation penalty ( p
lT ) is given by: 

p
lT = lT + 4 ( ) mna

il
i i

c x
x

δ∂
•

∂∑ = lT + 1,lT      (10) 

where the 1,lT  represents the marginal hybrid cost contribution of the penalty term 

of all arc flows to path l. 

With this change, the optimality conditions can be shown as: 

( , )mn
l mn

l

L f uf
f

∂
=

∂
( ) 0mn p

l l mnf T u− =  for ∀ l, m, n      (11a) 

Optimality condition 3b yields: 

( , ) 0mn
l

L f u
f

∂
≥

∂
 ⇒  0p

l mnT u− ≥  for ∀ l, m, n    (11b) 

Optimality condition 3c yields the flow conservation condition: 
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( , ) 0mn
l

L f u
u

∂
=

∂
 ⇒  mn

l mn
l

f q=∑  for ∀ m, n               (11c) 

Similar to the argument in Section 2.4, the existence of the optimal solution can be 

proved for the finite capacity case, by choosing the penalty term c4a to be a convex 

function of link flows. 

 

3.3 Algorithm Description and Implementation 

 

3.3.1 Algorithm Overview 

Given the optimality condition, and the existence of a solution to the problem 

RCAP, the solution to this convex non-linear program can be found using the Frank-

Wolfe method (Sheffi, 1985; Patriksson, 1998). Although this method is widely applied 

in transportation models, a brief outline is provided for unfamiliar readers. This method 

starts with a feasible flow, and linearizes the objective function evaluated at the feasible 

flow solution from the previous iteration. The smallest total marginal hybrid cost path is 

determined for each O-D pair using a shortest path algorithm at each iteration, which 

constitutes a direction of descent for the objective function. The extent of movement in 

the descent direction is determined using the convex combinations method. This step 

updates the flows for the next iteration. The steps for solving linearized sub-problems, 

direction search, and flow updating are repeated until convergence is achieved. The 

detailed algorithmic steps are outlined below, and may be skipped by familiar readers. 
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3.3.2 Algorithm Description 

Let mnd  denote the total demand from m to n, and k indicates the iteration 

counter. Let mn
lx (k) represent the flow on path l between O-D pair m-n, and mn

ly (k) be 

the auxiliary flow on path l between O-D pair m-n in the kth iteration. Let P(k) denote the 

set of paths found until the kth iteration. 

 

Step 0: initialization 

Set k = 0 

Set x(k) = 0 as the initial feasible flow.  

 

Step1: update hybrid marginal cost 

Compute the marginal hybrid cost on each arc based on the current feasible flow vector 

ta(k) = ta(xk).  

 

Step 2: direction finding 

Compute the shortest marginal hybrid cost path for each OD pair based on ta(k). The 

paths (one for each O-D pair) are referred to as the auxiliary paths (Ak). If some auxiliary 

paths are not present in the current path set P(k), then they are added to the path set for 

the next iteration (i.e. P(k+1) = P(k) ∪ Ak), otherwise P(k+1) = P(k).   

 

Step 3: flow update 

Perform an (implicit) all-or-nothing assignment to the auxiliary paths using at (x(k)) to 

find the auxiliary flows. The auxiliary flows are defined as follows: 
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mn
ly (k) = dmn if l is an auxiliary path for O-D pair m-n in iteration k 

             = 0 otherwise. 

The flows for iteration k+1 are determined using the method of successive averages by 

combining the path flows from the previous iteration with the auxiliary flows from the 

current iteration as follows: 

1( 1) ( ) ( )
1 1

mn mn mn
l l l

kx k x k y k
k k

+ = +
+ +

 

 

Step 4: Convergence test 

Check if the marginal hybrid costs have converged (as per 7a and 7b) or equivalently if 

the flow difference in path flows across successive iterations falls below the convergence 

threshold. If yes, the algorithm is terminated. If not, set the iteration counter k = k+ 1, and 

repeat steps 1-4. 

Note that the convex combination (Franke-Wolfe) algorithm used for solving this 

problem RCAP has a polynomial time complexity (Zangwill, 1969).  

 

3.3.3 Numerical Example 

The following example is used to demonstrate the convergence of this algorithm 

to the optimal solution for the special case where a minimum variance solution is sought 

(α = 0). The cases (α ≠ 0) are presented later in Section 3.5.  The network (see Figure 3-

1) has 8 nodes, 11 links. There is one O-D pair 2-8, with 100 units of demand. The σ (i,j) 

in the graph represents the standard deviation of arc cost, and w (i,j) represents the 

capacity.  
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The iterations of this algorithm are shown in Table 1 and 2. The tables show that 

after 15 iterations the flows are close to equilibrium. Table 1 illustrates that at each 

iteration of the algorithm, the flow is removed from higher marginal hybrid cost paths 

and reassigned to paths with smaller marginal hybrid costs. This process tends to equalize 

the marginal hybrid cost among all used paths, thus bringing the system closer to the 

optimal solution, as seen from Table 2. The objective function value reduces accordingly. 

Note that 98% of the gap between the initial solution and optimal solution is bridged in 

the first three iterations, whereas the rate of convergence slows thereafter. This feature is 

a characteristic of the F-W algorithm whose convergence rate is linear (Zangwill, 1969). 

The rate of convergence when the current flows are close to the optimal value may be 

improved by the use of methods such as Disaggregate Simplicial Decomposition, which 

effectively exploits the structure of the sub-problem and has good reoptimization 

capability.  

 
Figure 3-1  Test network 
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Table  3-1 Pathflows in Test Network Shown on Figure 3-1 
 

2-3-4-7-8 2-6-8 2-3-5-6-8 2-3-5-7-8 2-1-4-7-8
0 100.00 0.00 0.00 0.00 0.00 240.96
1 50.00 50.00 0.00 0.00 0.00 116.54
3 25.00 25.00 25.00 25.00 0.00 106.83
5 16.70 33.30 16.70 16.70 16.70 104.59
15 31.30 25.00 31.30 6.30 6.30 100.14

Final 
Solution 30.80 22.10 34.90 6.10 6.20 100.00

Iteration 
Number

% of Optimal 
Obj. Fn. Value

Path flows

 
 
 

Table 3-2 Path Marginal Variance in Test Network Shown on Figure 3-1 
 

2-3-4-7-8 2-6-8 2-3-5-6-8 2-3-5-7-8 2-1-4-7-8
0 0 0 0 0 0 240.96
1 21400 0 0 0 0 116.54
3 7133.3 10933.3 9866.7 6466.7 0 106.83
5 7520 10560 9120 9720 7480 104.59
15 9626.7 8266.7 8373.3 9493.3 9626.7 100.14

Final 
Solution 8881 8880.6 8881.3 8881.6 8881.1 100.00

Iteration 
Number

Path marginal hybrid cost % of Optimal 
Obj. Fn. Value

 
 

 
 

3.4. Important Variants of the Robust Cost Assignment Problem 

The Robust Cost Assignment Problem subsumes the following important class of 

sub-problems which may be of interest in different practical settings. 

 

3.4.1 Minimum Variance Assignment Problem (MVAP) 

The minimum variance assignment problem (MVAP) arises as a special case of 

the RCAP above by setting alpha = 0. The resultant formulation can be stated as follows: 

 

Minimize  

Z(x) 1 ( )a
a

c x= ∑        (12)  
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Subject to: 

  mn
l mn

l
f q=∑  -flow balance of network 

0mn
lf ≥  -non-negative path flow 

where 

2 2
1 ( )a a a a a b b ab

b a
c x x x xσ σ σ ρ

≠

= + ∑  

The optimality conditions for this problem take the same form as 3(a) to 3(c), 

where the marginal hybrid cost now corresponds to: 

( )it x = 22 2i i i j j ij
j i

x xσ σ σ ρ
≠

+ ∑       (13) 

At Optimality, this total marginal hybrid cost is equal and minimal across all used 

paths. Being a special case of the RCAP problem, the existence of the solution to the 

MVAP is guaranteed by arguments presented in Section 3.2.4. 

 

3.4.2 Robust Cost Assignment with Independent within Link Flows 

In the model presented previously, the assumption was that all flow units passing 

through a link experience the same random arc cost. In this case, with x units of flow on 

an arc, and if σ2 represents the variance in arc costs per unit flow, then the link cost 

variance can be written as x2σ2. This model is referred to as the group flow model. 

In contrast to the ‘group flow’ model, in some cases modeling link flow units as 

experiencing the link cost in a mutually independent manner may be appropriate. This 

occurs for example in cases such as car-rental and hotel reservations management 

problems, where costs represent revenues from individual customers, and the randomness 

arises from cancellation decisions which are made independently across customers. In 
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such a case, with x units of flow on an arc, and if σ represents the variance in arc costs 

per unit flow, then the link cost variance can be written as xσ2, which is much smaller 

than the variance from the group flow model. This model is referred to as the independent 

(within-link) flow model. For the independent flow model, therefore the variance term in 

the RCAP changes as follows: 

 

Minimize  

Z(x) 1 2(1 ) ( ) ( )a a
a a

c x c xα α= − +∑ ∑ 3 ( )a
a

c x= ∑    (14) 

Subject to: 

  mn
l mn

l
f q=∑  -flow balance of network 

0mn
lf ≥  -non-negative path flow 

where 

2
1 '( )a a a a a b b ab

b a
c x x x xσ σ σ ρ

≠

= + ∑  

 2 2
2 ( )a a a a a b b

b a
c x x x xμ μ μ

≠

= + ∑   

             3 1 2( ) (1 ) ( ) ( )a a ac x c x c xα α= − +  

 The formulation of 1 '( )ac x  is derived as follows. Assume the group size is 2, and 

the unit expected cost is E[x], with variance V[x]. For group arrivals case, total expected 

cost can be expressed as E[2x] = 2E[x], and total variance is V[x1 + x1]  =  V[2x] = 4 2σ . 

For independent arrivals case, the total expected cost is the same: E[x1 +x2] = 2E[x]. 

However, the total variance V[x1 + x2] = V[x1] + V[x2] = 2 2σ . In general group size, 
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1 '( )ac x  is formulated as 2
a a a a b b ab

b a
x x xσ σ σ ρ

≠

+ ∑ in this special case, rather than 

2 2
1 ( )a a a a a b b ab

b a
c x x x xσ σ σ ρ

≠

= + ∑ in the general case. The total marginal hybrid cost needs 

to be modified as from the expression in Equation 5(c): 

'( )it x = 2 2(1 ) 2 2 2i i j j ij i i i j j
j i j i

x x xα σ σ σ ρ α μ μ μ
≠ ≠

⎛ ⎞ ⎛ ⎞
− + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑   (15) 

All other conditions including existence also hold for the modified formulation.  

 

3.4.3 Robust Cost Assignment Problem with Integer Flow Requirements 

Note that the hybrid marginal cost algorithm produces real-valued flow solutions, 

whereas, imposing integer constraints on feasible flows may be desirable in some 

contexts. For instance, in the car rental or hotel reservation problems, flows represent 

acceptance or rejection decisions and are therefore integer-valued in nature. The addition 

of the integer flow constraints to the RCAP problem makes this problem computationally 

difficult (NP problem, Beasley and Chu, 1997). A simple and computationally efficient 

heuristic is provided below when integer valued flows are sought for the RCAP problem. 

First, the problem RCAP is solved (by relaxing the integer constraints) and the 

optimal path set (P1) and path flows (X*k) are determined for all paths k ∈ P1. Since the 

objective function is convex and quadratic and the constraint set is linear, the integer 

solution will be close to the real-valued solution of the relaxed problem is intuitively 

expected. Therefore, the proposed heuristic truncates the real-valued path flows and 

redistributes the excess integer flows among a set of potential least cost hybrid paths, in 

order to minimize the total marginal hybrid cost of redistribution, formulated as a mixed 

integer program (MIP), as described below.  
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  The set of potential least marginal hybrid cost paths (P2) is obtained by finding the 

K-smallest marginal cost paths, where K is the excess integral flow that must be 

redistributed. The marginal arc costs for this problem are computed corresponding to the 

hybrid marginal cost evaluated at the truncated integer flows, *( )new
k kx floor x=  where 

floor represents the largest integer smaller than x. The set of feasible paths (P) to which 

the excess integer flows may be reassigned is obtained as the union of the path sets P1 

and P2, since the optimal redistribution of excess flows may involve assignment to a path 

in P1. The least marginal cost assignment of the excess flows to the paths in the path set P 

is obtained by solving the following Mixed Integer Program: 

 

Integer Excess Flow Redistribution Problem (IEFR): 

Minimize:  new
k k k

k P
C (x )y

∈
∑         (16) 

Subject to: 

* new
k k k k

k P k P
= (x - x ) =y y total excess flow

∈ ∈
∑ ∑  

new
k k

k P
(x )kl ly u for lδ

∈

+ ≤ ∀∑  

k 0y for l≥ ∀  

k .y is integer  

The decision variable in this problem is the excess flow yk assigned to path k, 

where k belongs to the path set P = {P1 ∪ P2}. The three constraints ensure that 1) all 

excess flow is assigned across the K paths, 2) the reassignment does not lead to capacity 

violation on any arc, and 3) the reassignment must lead to integer valued solution. The 

performance of this heuristic is compared against the real solution lower bound, true 
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integer solution, and truncated solution for various test networks. This heuristic was 

found to perform reasonably well in terms of accuracy. The results are reported in 

Section 3.5.3. 

Although, this MIP model is also NP-hard in general, the problem is 

computationally more tractable than the original integer-valued problem in practice for 

two reasons. First, there are fewer variables (paths to be considered), and the amount of 

flows to be redistributed is small (compared to the original demand). For instance, due to 

the large dimensionality of the original problem, the optimal solution could not be 

determined when integer constraints were directly imposed on the non-linear program 

RCAP, whereas, the integer solution to the IEFR was always found for runs reported in 

Section 3.5.3. Second, since the MIP formulation is actually an integer network flow 

problem, it can be shown that the constraint coefficient matrix is totally unimodular by 

HTG (Heller & Tompkins / Gale) Theorem (Heller and Tompkins, 1956). Thus solving 

the linear program relaxation of IEFRLP will yield an integer solution.  

 

3.5 Assessing Cost Robustness in the Static Traffic Assignment Problem 

 

3.5.1. Static Traffic Assignment Problem 

In traditional transportation planning process, traffic assignment is an important 

step to assign the vehicular trips to the traffic network based on average link travel time. 

For each travel mode, given the trip OD matrix, the links available to assign traffic, and 

functions to estimate the average link travel time (e.g. a BPR function which relates link 

travel times as a function of the volume/capacity ratio), a unique value of time for the 
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mode, and an assignment method (e.g., User equilibrium or system optimal), the traffic 

flows are assigned to the network. The average link travel time is deterministic given the 

volume assigned to each link. To simplify the presentation of the algorithm, only a single 

travel mode (passenger car) is considered. 

However, due to the various reasons of day-to-day variation of network flows, as 

discussed in the previous chapter, the travel time is essentially a random variable. 

Assignment solutions without considering the uncertainty of travel time can lead to sub-

optimal system cost, especially in a highly uncertain environment. Considering the path 

information provision to travelers, the operational management center may need to be 

judiciously providing path information to users, if travel time varies considerably 

different across links based on historical data.  

 

3.5.2 Network Representation 

To demonstrate the use of the robust cost assignment algorithm, the following 

network model is used, as shown in Figure 3-2. The nodes in the network represent the 

intersections in the traffic network. In this network, there are eight nodes. Arcs on the 

network represent the roadways connecting each intersection. For ease of illustration, 

only one origin (node 1) and one destination (node 8) are modeled in this network, 

although the proposed method is applicable to the case of multiple O-D pairs.  Each link 

has associated attributes. The capacity of each link is based on the roadway 

characteristics. The flows on these arcs represent the number of vehicle trips assigned. 

Average link travel time is given by the BPR function with the following form: 
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     (17) 

Where at   =   mean travel time on arc (a) under flow ax  under normal conditions 

fft   =   free flow travel time on link (a) 

Travel time variance is expressed by 2
aσ . The source of variance includes volume 

fluctuation, incident, weather and other factors discussed in chapter 1. The variance is 

assumed to be a known parameter that is independent of link flow and capacity, and can 

be obtained from historical data.  

 

Figure 3-2 Experimental Network 

 

To represent correlations between link travel times across arcs, the travel times 

are assumed to be distributed as per the multivariate normal distribution with means and 
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variances above, and pre-specified correlations across arcs. Given that the traffic 

assignment decisions have to be integer valued, all the results reported here are obtained 

by using the integer heuristic described in section 3.4.3. 

For demonstration purpose, three major paths from origin to destination are 

modeled. Path 1-2-6-8 is considered an arterial with highest variance, but with shortest 

distance and travel time from origin to destination. Path 1-3-5-8 is considered a freeway 

corridor with normal level of variance, and with medium travel time. Path 1-4-7-8 is 

modeled as a local arterial with lowest travel time variation, but with highest travel time. 

 

3.5.3 Robust System Optimal (RSO) Assignment Formulation 

For the traffic assignment problem, the assumption is that the link travel times for 

all users using a specific link are perfectly dependent (e.g., if incident occurs on this link, 

all users using this link will be affected). Therefore, the group flow model is used for 

computing the robust cost solution. The randomness in link travel time due to various 

factors is captured by the mean and variance described in section 3.5.2. The variance 

levels chosen in the experiments are discussed in the experimental design in next section. 

The objective function for traffic assignment problem may then be modified as 

follows:  

R(x) 2 2 2(1 )[ 2 ] [ ]a a a b ab a b a a
a a b a a

x x x x tα σ ρ σ σ α
≠

= − + +∑ ∑ ∑ ∑  (18) 

Rewrite the objective function to link separable form: 

Z(x) 1 2(1 ) ( ) ( )a a
a a

c x c xα α= − +∑ ∑ 3 ( )a
a

c x= ∑  

Where 
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The total marginal hybrid cost needs to be modified as from the expression in 

Equation 5(c): 
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           (19) 

All other conditions including existence also hold for the modified formulation.  

The problem RSO is solved for the network described in Section 3.5.2, with free-

flow travel times and variances given in figure 3-2. The performance of the robust system 

optimal formulation is compared against the corresponding deterministic User 

equilibrium (UE) and system optimal (SO) solutions based on the BPR function given. 

The formulations for UE and SO problems are presented next. 

 

3.5.4 Deterministic User Equilibrium / System Optimal Benchmarks 

 To compare the performance and benefit of the robust system optimal assignment 

algorithm, two benchmark solutions for the same network are solved, namely user 
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equilibrium (UE) and system optimal (SO). The standard deterministic UE and SO 

formulations are well known, and are presented for completeness below. Given the 

corresponding link cost function (for UE) and marginal cost function (for SO), the same 

successive assignment routine is applied to solve the UE/SO solution for the same 

network settings as benchmarks. 

 

1) Deterministic User Equilibrium Assignment Solution 

The objective for user equilibrium assignment is to minimize the path travel time for each 

individual users. The key user equilibrium assignment conditions are: Each user selects 

the shortest trip time path; all used paths for each O-D pair are minimal and equal; and 

any unused path for a given O-D pair has a greater travel time than any used paths for 

that O-D pair. 

Minimize  

R(x) 
0

( )
ax

a
a s

t s ds
=

= ∑ ∫        (20)  

Subject to:  

mn
l mn

l
f q=∑   -flow balance of network 

0mn
lf ≥   -non-negative path flow 

xa = ,
mn

mn mn
l a l

mn l K
f δ

∈
∑ ∑  for ∀a  -arc-path flow relationship 

0 a ax w for all a≤ ≤  for ∀a , capacity constraints   

Link cost function to find the shortest path: 
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        (21) 

 

2) Deterministic System Optimal Assignment Solution 

The objective for system optimal assignment is to minimize the total system travel 

time. The key SO assignment conditions are: total marginal travel times on all used paths 

are equal and minimal.  

Minimize  

R(x) a a
a

x t= ∑         (22) 

Subject to:  
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It can be shown that for the BPR function above, the link marginal cost function to find 

the shortest path is given by: 
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1 0.75ff i
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i
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       (23) 
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3.5.5 Experimental Design and Procedures 

To explore the potential benefit of the RSO algorithm, and to investigate the 

performance of the algorithm under different variance levels and correlations, three set of 

experiments are conducted, as described as follows: 

In the first set of experiments, the trade-off between average system travel time 

and risk (measured by variance of the system travel time) is analyzed across varying 

levels of risk tolerance (α). In this set of experiments, the medium level variance of travel 

time is assumed as shown in Figure 3-2. The free flow travel time is assigned such that 

the path 1-2-6-8 has the shortest travel time, but also the highest standard deviation, 

which has the same order of magnitude as the free flow travel time. Path 1-3-5-8 has the 

second best travel time with medium variance in the level of 1/2 of the travel time. The 

third path, path 1-4-7-8, has the highest travel time, but the lowest variance level, whose 

magnitude is nearly 0.25 times the free flow travel time. All other links represent side 

streets with only associated switching costs of 1 minute and a standard deviation of 0.25 

minute on each link. The link travel time and variance settings are shown in Table 3-3 

below. In this set of experiment, the correlation of variance across links is assumed to be 

0 to avoid confounding.  

The second set of experiments focuses on investigating the potential benefits of 

the robust cost assignment algorithm under different level of travel time variations. Three 

different variance levels (low, moderate and high) are selected, with moderate level as the 

baseline. The moderate level corresponds to the same variance settings used in 

experiment 1. For low variance case, the standard deviations of link 1-2, 2-6, and 6-8 are 

reduced to 1/4 of the free flow travel time, and the standard deviations of link 1-3, 3-5 
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and 5-8 are reduced to 3/8 of the free flow travel time. For high variance level, the 

standard deviations of link 1-2, 2-6, and 6-8 are increased to 2 times of the free flow 

travel time, and the standard deviations of link 1-3, 3-5 and 5-8 are increased to 3/4 of the 

free flow travel time. It’s expected that the gap of travel time variation across paths 

increases in high variance level, and decreases in low variance level. No correlation 

across links is assumed for this set of experiments. 

 

Table 3-3 Link Level Parameter Settings 

Link SN Tail Head Capacity
Free Flow 

Travel Time 
(min.) 

Standard 
Deviation

(Low) 

Standard 
Deviation 

(Med) 

Standard 
Deviation

(High) 
1 1 2 50 1 0.5 1 2 
2 1 3 50 2 0.75 1 1.5 
3 1 4 50 2 0.5 0.5 0.5 
4 2 3 50 1 0.25 0.25 0.25 
5 2 6 50 4 2 4 8 
6 3 5 50 4 1.5 2 3 
7 4 3 50 1 0.25 0.25 0.25 
8 4 7 50 5 1.25 1.25 1.25 
9 5 6 50 1 0.25 0.25 0.25 

10 5 7 50 1 0.25 0.25 0.25 
11 5 8 50 6 2.25 3 4.5 
12 6 8 50 5 2.5 5 10 
13 7 8 50 7 1.75 1.75 1.75 
 

 

The third experimental factor is to investigate the performance of robust cost 

assignment under different correlation levels. Only the links that belong to the same path 

are assumed to have correlated travel times. For instance, the links 1-2, 2-6 and 6-8 are 

assumed to have mutually correlated travel times with a constant correlation 

( 1 2,2 6 2 6,6 8 1 2,6 8ρ ρ ρ− − − − − −= = ) as noted below. However, the travel times on these links are 
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assumed to be independent of travel times on other network links. Three levels of 

correlations are considered, namely negative, positively low and positively high, with 

correlation coefficients of -0.25, 0.25, and 0.5 correspondingly. The no correlation case is 

taken as the baseline for comparison in this set of experiments. 

The total system wide travel time and variance of travel time are obtained as 

performance measures and analyzed in each experiment. The travel time increase and the 

variance reduction from baseline level, UE and SO assignment benchmarks are also 

compared and analyzed. The O-D demand is taken as 100 trips, and is fixed in all three 

set of experiments. 

Based on the deterministic UE/SO assignment solution, Monte Carlo simulation 

procedures are applied to simulate the variation of travel time with 10000 random 

realizations, and the average system travel time and variance is obtained. In addition, the 

trip time reliability measure is developed as the percentage of reliable realizations. A 

random realization is said to be reliable if the total system travel time does not deviate +/- 

10% from the mean trip time.  

 

3.5.6 Experimental Results and Findings 

1) Experiment I:  Effect of risk tolerance on travel costs from the RCAP solution 

The robust cost assignment algorithm proposed in section 3.3 may be used in two 

ways to assess the variability/risks associated with alternative assignment strategies. First, 

if a decision-maker’s relative preference towards travel time and its variance is known, 

this can form the basis to determine the preference weight for cost variability (given 

weight by 1-α). The robust cost assignment problem may then be solved to yield the 
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assignment strategy that minimizes the robustness of travel time for the given 

(α). However, the preferences towards risk are not well-formed in practice is possible, 

given the sole focus on travel cost minimization in current practice. In such a case, 

several optimal policies may be determined by repeatedly solving problem RSO 

corresponding to various values of (α), and the corresponding average costs and risk may 

be determined for each value of (α). These solutions may then be used to obtain a curve 

depicting the trade-off between trip time variability and average travel time, which may 

be used to inform decision-makers about the variability/cost trade-offs. The variability-

cost trade-off curve can be used to elicit decision-maker preferences regarding the most 

desired variability/average travel time combination. The assignment policy corresponding 

to this preferred variability/cost combination may then be implemented in practice. 

Alternatively, the proposed solutions may be used to provide benchmark levels of 

variability of travel times, against which the variability in travel time with currently used 

practices (user equilibrium assignment) may be compared to assess the acceptability of 

the current travel time variability.  

To test the variability versus cost trade-off, the following set of experiments were 

conducted. The robust cost assignment is obtained for varying levels of variability 

tolerance (α), and the results are compared against the UE and SO solution. The results 

corresponding to different levels of variability tolerance are shown in Table 3-4, and are 

plotted in Figure 3-3. Due to the unbalanced growth rate of variance and cost terms in the 

objective function, the absolute alpha values are not a truthful indication of the weight 

imposed on the cost term. The trade-off curve can be utilized by the decision maker to 

select an appropriate alpha level.  
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Table 3-4 Variability-cost Trade-off 
 

Variability 
Tolerance 

Level Alpha (%) 

% of Travel 
Time Increase 

(from SO) 

% of Variance 
Reduction     
(from SO) 

% of Travel 
Time Increase 

(from UE) 

% of Variance 
Reduction     
(from UE) 

0.00 14.07 35.54 9.14 54.89 
1.00 7.20 33.01 2.57 53.12 
2.00 5.55 31.16 1.00 51.83 
3.00 3.85 28.10 -0.64 49.69 
4.00 2.91 25.62 -1.53 47.95 
5.00 2.45 24.15 -1.97 46.92 
6.00 1.77 21.20 -2.62 44.86 
7.00 1.56 20.37 -2.82 44.28 
8.00 1.26 18.65 -3.11 43.07 
9.00 0.84 15.72 -3.51 41.02 

100.00 0.01 2.55 -4.31 31.81 
 
 

Figure 3-3   Variance-Cost Trade-off Curve
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A greater alpha indicates a decision-maker with a higher variability tolerance, 

whereas, a low alpha indicates a risk averse decision-maker who seeks to minimize 

variance possibly at the expense of average travel times. The results indicate that the 
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RSO solution can reduce nearly 15-35% of the travel time variance while only sacrificing 

1-14% of average travel time. The variance-cost trade-off curve shown in Figure 3-4 may 

be used by a decision-maker to select an assignment solution corresponding to his/her 

variability tolerance level. For instance, a decision-maker who is moderately risk averse, 

may prefer alpha = 4% since it provides 2.9% of the travel time increase from SO 

assignment solution, but is much more robust (with a variance reduction of 25.6%). This 

reduction in variance for the RSO compared to the SO solution was the result of 

difference in assignments in the two cases, as described below. 

In the UE solution, path 1-2-6-8 and 1-3-5-8, the paths with shorter travel time but 

higher variance, are used up to their capacities. Consequently, the variance of system 

travel time increases. The SO solution improves the system travel time by balancing the 

assignment to more paths. However, both UE and SO solutions are not aware of travel 

time variance. RSO solution has the moderate travel time performance, but assigns more 

flows to path 1-4-7-8 (high travel time, but low variance) in order to reduce the travel 

time variation. Therefore, the robust cost assignment performs reasonably well compared 

to the SO and UE, when the decision-maker can make trade-offs between travel times 

and variances across different paths with different levels of travel time variation. The 

path flow comparison is shown in Table 3-5 below. 

 

Table 3-5 Path Flow Comparison among Different Assignment Solutions 

                          Path        
Assignment type             1-2-6-8 1-3-5-8 1-4-7-8 1-2-3-5-8 

RSO with alpha=4% 34 30 31 5 

SO Assignment 44 34 22 0 

UE Assignment 50 50 0 0 
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On the other hand, if the variance difference across paths is minimal, there will 

not be enough opportunities for the trade-off between travel time and variability 

(reflected by cost variability). In such a case, the robust cost assignment solution and the 

SO solution will be close in terms of both travel time and variances.  In practice, travel 

time variation may depend on different roadway characteristics (such as functional 

classification, median type and number of lanes) and other internal and external factors. 

For instance, incident occurrence rate for undivided urban multilane highway can be five 

times higher than the rate for freeway (Traffic and Safety Policies and Procedure Manual, 

TN DOT, 1994). Due to these factors, therefore, opportunities for trade-off between trip 

time and travel time variability is likely to exist among different routes in real world 

networks. 

Table 3-6 Travel Time Reliability Improvement 

Assignment Type Travel Time Reliability (%) 
UE 48% 
SO 54% 

RSO 62% 
  

Table 3-6 shows the improvement of travel time reliability obtained from 10000 

draws of Monte Carlo random realization. RSO solution provides 14% increase in travel 

time reliability from UE solution (system will experience 14% more days with travel time 

variation less than 10% from the mean travel time) and 8% increase from  SO solution. 

 

2) Experiment II: Effect of Various Travel Time Variation Levels 

The performance of the RSO and SO is compared for varying levels of travel time 

variations, as illustrated in Table 3-7. As expected, the results reveal that randomness in 
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travel time contributes significantly to system level travel time variability in the 

deterministic system optimal solution, as described below. The variance trade-off curves 

for three levels of variance are also compared in Figure 3-4. 

 
Table 3-7 Performance Measures for Different Travel Time Variation Levels 

 

Assignment Type Variance Level % Travel Time Increase 
(from SO) 

% Variance Reduction 
(from SO) 

Low variance 2.47 13.68 

Medium variance 2.91 25.62 RSO with 2% - 3% travel 
time increase  

High variance 2.81 32.77 
Notes:    
1. The results in this table are based on RCAP assignment solution with corresponding travel time increase level of 2-3%.
    Alpha levels are 1%, 4% and 10%, corresponding to the Low, Medium and High variance levels. 
2. Percentages are based on the corresponding SO assignment solution for each case. 
 

Figure 3-4   Variance-Cost Trade-off Curve for Different Variance 
Levels
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The results shows that with increasing travel time variability, system travel time 

variability (16576, 27990, and 50818) increase for the deterministic system optimal 
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solution. In the robust system optimal solution, the corresponding average trip times 

(1240, 1245, and 1244) and system variability (14309, 20818, and 34166) are also 

observed to increase. The reduction in system variability obtained by the robust solution 

with the deterministic solution increases with increasing level of uncertainty in the 

network. For instance, the variability reduces from 13.7% to 32.7% relative to the 

deterministic system optimal solution, and this reduction comes at the mild expense of a 

2.5% to 2.9% increase in average trip times. This reduction is mainly due to more trips 

being assigned to low variance paths in the RSO than in the SO solution. The variance 

improvement of the RSO over the SO is significant with medium and high incident 

probabilities (25.6% and 32.7% respectively). Thus, using the RSO in highly uncertain 

environments may be desirable, whereas, the SO solution may be chosen for low travel 

time variation scenarios. 

 

3) Experiment III: Effect of Various Variance Correlation Levels 

The link travel times may be correlated for various reasons including secondary 

incidents, inertial behavior of roadway users, and weather effects. Under the within path 

correlation assumption, three levels of correlations are tested, namely negative correlation, 

positive low correlation, and positive high correlations. The performance measures are 

summarized in Table 3-8. 

 The results of RSO solution with alpha = 4% are compared against the SO and 

UE solutions in corresponding correlation levels. Since the robust SO solution with zero 

correlation disregards correlation in arc travel times, this solution systematically 

underestimates system variance in networks with positive travel time correlations, and 
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overestimates them when the costs are negatively correlated. Thus, the assumption of 

independence of travel times across arcs can lead to biased solutions. When the 

correlation level increases, the variance reduction from corresponding SO solution 

increases from 21.33% (for negative correlation case) to 29.03% (at high correlation 

level). The travel time increase for RSO corresponds to 1.56% to 4.62% from SO 

solution. Notice that with a higher correlation level, the reliability of travel time 

decreases significantly for both the UE and SO solution, as shown in Figure 3-5. 

Although RSO solution has slightly higher travel time (1.56%-4.62%), RSO solution 

leads to more reliable travel time (7% to 9% improvement from corresponding SO 

solution). These results show that correlation trends may be used to select robust 

assignment strategies at different times (e.g., peak and off-peak times) when they can be 

predicted, in order to achieve more reliable system performance and to limit the extent of 

downside system travel time variability. 

Table 3-8 Performance Measures under Different Correlation Levels 

Variance Level Assignment Type Mean 
Travel Time

Mean 
Variance 

Travel Time 
Reliability 

(%) 

% Travel 
Time 

Increase 
(from SO)* 

% Variance 
Increase 

(from SO)*

UE 1265.00  22120.05 60.90  4.51  42.25  
SO 1210.40  15550.50 67.07  0.00  0.00  

Negative 
Correlation     

  (-0.25) RSO (alpha=4%) 1229.31  12232.94 74.10  1.56  -21.33  
UE 1265.00  40000.00 47.52  4.51  42.91  
SO 1210.40  27990.00 53.55  0.00  0.00  No Correlation   

RSO (alpha=4%) 1245.66  20818.25 62.28  2.91  -25.62  
UE 1265.00  57879.95 40.33  4.51  43.16  
SO 1210.40  40429.50 45.74  0.00  0.00  Low Correlation 

(0.25)       
RSO (alpha=4%) 1253.67  29475.50 54.06  3.57  -27.09  

UE 1265.00  75759.90 35.15  4.51  43.30  
SO 1210.40  52869.00 40.48  0.00  0.00  High Correlation 

(0.5)      
RSO (alpha=4%) 1266.30  37522.63 49.06  4.62  -29.03  

       
Notes:       
Percentage travel time and variance increases are measured from the SO solutions in corresponding correlation levels. 
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Figure 3-5 Travel Time Reliability Trends under Different Correlation Levels  
(SO solution) 

 
 

For higher correlation scenarios, a smaller alpha is needed to achieve more 

reliability. This improvement in reliability comes at the expense of increasing average 

system trip-times, as shown in Table 3-9.  

 

Table 3-9 Performance Measures under High Correlation Level 

Scenarios under 
High Correlation 

(0.5)  
Assignment Type

Travel Time 
Reliability 

(%) 

% Travel 
Time 

Increase 
(from SO)* 

% Variance 
Increase 

(from SO)* 

SO (baseline) 0.40  0.00  0.00  
alpha=4%  0.49  4.62  -29.03  
alpha=2% 0.51  8.34  -30.85  
alpha=1% 0.52  9.59  -33.94  

alpha=0.5% 0.53  11.39  -34.60  
RSO 

alpha=0.1% 0.55  14.52  -35.10  
Notes:     
1. Baseline is the SO solution for high correlation case.   
2. For baseline level, travel time = 1210, and variance = 52869.   
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Further, the results indicate that there is a limit to the extent of improvements in 

reliability possible purely due to reassignment of flows in robust network algorithm. To 

achieve further reliability improvements, systematic variance reduction techniques that 

aim to reduce link travel time variability such as transportation control measures or 

incident management measures may be necessary. The influence of transportation control 

measures on network reliability is examined in Chapter 5, and the effect of incident 

management measures on network reliability is investigated in Chapter 6.   

 

3.5.7 Assumptions and Exceptions 

In the empirical analysis above, several simplifying assumptions have been used 

to avoid experimental confounding and to enhance analysis tractability. The link capacity 

is assumed to be constant and deterministic. The O-D demand is assumed to be fixed and 

known. A static assignment formulation is considered. Also, free flow travel time is 

assumed to be constant across scenarios. A single O-D pair is used for convenience of 

illustration. The proposed framework can be generalized in a straightforward manner to 

handle the cases of elastic demand, varying free flow travel times and multiple O-D pairs. 

However, the development of robust assignment algorithm for time-dependent stochastic 

networks is beyond the scope of this study and is an important direction for future 

research.  

 

3.6 Conclusions 

This chapter has formulated and proposed an algorithm to solve robust cost 

minimization in networks with uncertain arc costs, as well as three important variants of 
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this generic problem. The variants considered include 1) minimum variance assignment 

problem, 2) robust cost minimization problem with integer constraints, and 3) robust cost 

problem with independent within-link flows. Existence of a solution is shown for these 

cases, and a strongly polynomial time algorithm is proposed for their solution based on 

the Franke-Wolfe algorithm. In contrast to these cases, where real-valued flows were of 

interest, the chapter also proposes a heuristic to model the robust cost minimization 

problem with integer constraints. The proposed integer heuristic is computationally 

efficient, and reasonably accurate (in terms of deviation from a relaxed LP solution). 

At the empirical level, the application of the proposed RSO model to determine 

robust traffic assignment policy for static traffic assignment problem was presented. The 

RSO model may be used to elicit and understand the relative risk propensity (trade-off 

between travel time and travel time variability). The experimental results indicated that 

the RSO solution is very sensitive to 1) the degree of risk aversion, 2) the level of travel 

time variation, and 3) correlations among links. These results have important implications 

for understanding the reliability of travel time and robustness of traffic assignment 

solutions. The robust cost optimization model also has important implications on 

perishable inventory allocation decisions such as airlines, car-rentals, resorts, and hotels. 

These models may also be extended to infrastructure network design and operations such 

as telecommunication, airline and freight transportation networks, and project scheduling 

networks, where arc costs may be uncertain in nature. 

For future research direction, extending the basic algorithm to robust user 

equilibrium assignment is desirable because user equilibrium assignment may receive 

more attention in practice. Furthermore, the robust algorithm may be extended to time-
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dependent robust UE and SO algorithm, adding the ability to model time-dependent 

features such as departure time and route switching. From a practical point of view, 

exploring robust information strategies is a natural direction of future research. With 

regard to theoretical direction, qualification of variance as a function of flow is a 

challenging direction for future research. 
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CHAPTER IV 

 

DAY-TO-DAY DYNAMIC SIMULATION ASSIGNMENT FRAMEWORK  
AND METHODOLOGY 

 

 

4.1 Overview 

In order to represent and analyze day-to-day dynamics and network reliability in 

urban transportation systems, the following components and features must be represented. 

First, a within-day dynamic traffic assignment model is needed to capture the time 

varying O-D demand, to enable users to receive real-time information and switching 

routes. Secondly, the user decision process must be modeled, with the ability to account 

for both users’ past experience and anticipated congestion and trip time savings. The third 

and the most important component is the feedback loop from day to day, to enable 

consistent, and mutually co-evolving representation of three principal dimensions of 

dynamics: real-time, within-day and day-to-day.  

Two key internal factors that influence day-to-day dynamics in network 

performance include departure time adjustment and variations in route choice decisions 

from day-to-day. Individual user decisions could vary from day to day due to the effect of 

information, past experience or changes in network conditions, as noted previously. 

Therefore, two empirically calibrated behavior models of user response are integrated 

into the existing within-day dynamic traffic simulator. The within-day network 

assignment model used in this study is based upon the well-established dynamic network 

assignment model (DYNASMART), which is described in section 4.2. Section 4.3 
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discusses how the ATIS information supply strategies are simulated in the day-to-day 

context. Next, the two user behavioral models used in this chapter to model day-to-day 

dynamics (for departure time and route choice decisions respectively) are described in 

section 4.4. Based on these behavior models, a day-to-day simulation assignment 

framework is developed, as described in section 4.5. This day-to-day dynamic simulator 

consists of three major components: network dynamic traffic simulation, user response 

(through stochastic route choice model and dynamic departure time adjustment model), 

and information supply through ATIS devices.  

 

4.2   Within-day Dynamic Traffic Simulation  

The within-day network assignment model used in this study is based upon the well-

established dynamic network assignment model (DYNASMART) developed at the 

University of Texas at Austin (Mahmassani,1991). The framework underlying this 

simulation model is presented below. The basic components of this simulation model and 

associated input and output of DYNASMART are also discussed. 

 

4.2.1 Introduction to DYNASMART 

DYNASMART was developed at University of Texas, Austin and contains a core 

simulation-assignment model that includes traffic flow models, path processing 

methodologies, drivers' behavior rules, and information supply strategies which are 

described below. The input data include a time-dependent O-D (origin-destination) 

matrix, traffic control, user class details, and physical properties and spatial/temporal 

constraints of the network. In a given network configuration, the simulation component 
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will take the time-dependent loading pattern of vehicles as an input and process the 

movement of vehicles on the links according to theoretic traffic flow-density 

relationships (e.g., Greenshield’s and speed-density relationships). The resulting system 

performance measures, including time varying speed, density, queue length, and queue 

formation, are modeled and recorded in various outputs as described below.  

  

4.2.2 Within-day Traffic Simulation Components 

The network simulation assignment model consists of three main components: the 

traffic simulator, the network path processing component, and the user decision-making 

components, as illustrated in Figure 4-1. The description of the DYNASMART simulator in 

this section is abstracted from Mahmassani et. al (1991).  

 

 

Figure 4-1 Structure of DYNASMART Simulation Assignment model 

DYNAMIC TRAFFIC 
FLOW SIMULATOR 

PATH PROCESSING 
COMPONENT (Time-Dependent 
K-Shortest Paths) 

ATIS INFORMATION  
(Trip Time on Alternative Routes) 

STOCHASTIC USER BEHAVIOR 
(Based on Observed Travel Behavior) 
Sets of Route Choice Rules 

TIME VARYING  
NETWORK 
PERFORMANCE 
(Density, Speed,  
and Volume) 

NETWORK LOADING 
(Origin-Destination Matrix, 
Current Network Conditions) 
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The first component, dynamic traffic flow simulator uses established traffic flow 

models to define the movement of vehicles through the network. The simulated vehicles 

on a link are moved individually at prevailing speeds consistent with macroscopic speed-

density relations. At the beginning of a simulation run, DYNASMART loads input data 

from a series of input files. At that time, network data, a time-dependent origin-

destination matrix and data associated with market penetration, congestion level, route 

choice rules, and incidents are loaded in a specific order. Vehicles are assigned to the 

network by specifying a time-dependent origin-destination matrix among zones for 

various departure time intervals. The network demand for a 90-minute (considered in this 

study) morning peak period is loaded over a period of 35 minutes. The traffic flow 

simulator consists of two main modules: link movement and node transfer. The link 

movement module processes the movement of vehicles on links during each scanning 

time unit in the simulation. The node transfer module performs the link-to-link transfer of 

vehicles at nodes. The initial movements of simulated vehicles will yield density, travel 

time and estimated delay of each link. These are the input to the second component, path 

processing. 

The path processing component determines the route attributes such as travel time 

for use in the ATIS information supply strategies to informed drivers. For each vehicle 

with access to ATIS information, the K-shortest paths from the vehicle’s current link to 

its desired destination are calculated. The travel times on the K-shortest paths are updated 

by using the prevailing link travel times at each simulation time. 

ATIS information strategies provide information to drivers based on the travel 

times on K-shortest paths. This information could be based upon various forecasting 
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models such as historical averages, real-time prevailing information or predicted travel 

times. In this study, real-time information in the format of prevailing trip time is provided 

to drivers, unless otherwise specified. 

The user behavior component is intended to simulate drivers’ responses to the 

available information according to various sets of plausible drivers’ behavior rules 

governing route-choice decisions. Through these stochastic route choice rules, drivers can 

choose a suitable route from a set of available routes. The drivers’ route selections are 

then reflected as time-varying link flows on links of the network.  

In each time step (6 seconds resolution), the simulator also updates the time-

dependent network performance measures including link and path trip times, density, and 

queue lengths, thus affecting user decisions and experience. These capabilities are 

adapted in this study to compute measures affecting departure time and route choice 

utilities such as schedule delay, and trip-time volatility, and the cycle is repeated for each 

day.  

 

4.3 Simulation of ATIS Information Supply Strategies 

To provide information to network users, data on prevailing traffic conditions 

must be obtained for each time interval, and the corresponding real-time information that 

is provided to drivers (prescriptive or descriptive) must be generated (e.g., VMS 

messages, or best path between specific OD information). An essential  input to the  

model is the fraction of users with access to information.  

In each time step (6 seconds resolution), the within-day traffic simulator described 

above collects and computes the time-dependent network performance measures 
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including link trip times, density, and queue lengths. The time-dependent all pair K-

shortest path (KSP) algorithm is used to compute the K-best path from each origin zone 

to each destination zone at discrete time steps (every 3 minutes in this study). The KSP 

pathset update frequency can be adjusted to increase or decrease the temporal resolution 

of real-time information. The proportion of informed drivers can also be adjusted, and is 

used to vary information market penetration in the empirical experiments described in 

Chapter 6. The ATIS information based on the shortest path algorithm can then be 

provided to users as autonomous driver information (route guidance) to in-vehicle 

navigation systems. In the simulation, both informed and uninformed vehicles can 

respond to dynamic messages from variable message signs (VMS) as well.  In addition to 

enroute information, the within-day simulation also provides the capability to supply pre-

trip information to drivers. Pre-trip information may be based on: 1) best prevailing path, 

2) random path chosen from a path set consisting of three least trip time paths (also 

referred to as ‘best’ paths), or 3) guidance based on system optimal (SO) and user 

equilibrium (UE) assignment policy.  

 

4.4 User Response to Information 

In the proposed simulation framework, user decisions are made at the individual 

level. Each individual driver, with his/her own knowledge, preference and perceptions on 

the traffic network is modeled using an agent. A belief-desire-intention (BDI) 

architecture can be used to represent the driver’s behavior, preferences and goals. The 

BDI architectures originated in the work of the Rational Agency project at Stanford 

Research Institute in the mid-1980s, and the conceptual framework of the BDI model is 
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described in Bratman et. al. (1988). The primary advantage of implementing the BDI 

approach in modeling driver behavior is 1) allowing dynamic adjustment of behavior and 

2) updating knowledge in real time. Figure 4-2 shows the BDI model in a driver behavior 

context. 

 

 

Figure 4-2 BDI Structure for Agent-based Behavior Model 

 

Two empirically calibrated behavior models are used as the core component 

(interpreter) to model day-to-day dynamics are integrated into the day-to-day simulation 

framework (for departure time adjustment and route choice decisions respectively), as 

described in the following section. 
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4.4.1 Departure Time Decision Model 

Given the important role of departure time dynamics, representing departure time 

adjustment decisions from day-to-day at a sufficiently disaggregate level and rich 

temporal resolution is essential. Toward this end, an empirically calibrated model of 

dynamic departure time choice (Srinivasan, 2001) has been integrated with a dynamic 

network assignment framework (DYNASMART) in this study. The empirical model used 

here provides a richer stochastic representation of user decisions, and provided a 

significantly better fit to empirical data than alternative static departure time choice 

models (Srinivasan, 2001). This model explicitly accounts for the role of dynamics in 

network and commute performance, users’ past experience, and users’ departure time 

switching history on a user’s departure time decisions (Srinivasan, 2000). 

In this model, to represent commuting constraints, each commuter is assumed to 

have a target or preferred arrival time (PAT) at the work place, and the user selects 

departure times to reach his/her workplace by this time. The departure time adjustment is 

assumed to take place in two stages. First, a user ‘reviews’ whether the current departure 

time is satisfactory for the next day’s commute (based on current and past traffic 

experience). In the second stage, the current choice is retained if satisfactory. Otherwise, 

the user determines the magnitude of departure time switch based on past experience, 

network performance, and failure to meet arrival time goals. Empirical results 

(Srinivasan, 2001) indicate that the alternatives are considered in aggregate intervals 

(bins) of five-minutes, and alternatives closer to current choices are evaluated 

preferentially ahead of farther alternatives. In other words, a user is more likely to 

consider adjustment by five minutes first before considering a switch by over fifteen 
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minutes. In this model, the user continues to evaluate alternatives sequentially until a 

satisfactory and sufficient alternative is found (Srinivasan, 2001). 

  Accordingly, the adjustment process is represented as a sequence of binary 

decisions. This model is operationalized through a set of corresponding binary 

alternatives and utilities shown in Figure 4-3. The utility values U1… U5, correspond to 

the utility of no adjustment, adjustment by more than 1 minute, adjustment by more than 

5 minutes and so on. The specification of these random utilities, U1,… U5, are given 

below, and the coefficients and parameters of the error-terms are based upon the 

empirical model reported in Srinivasan (Srinivasan, 2001).  

U1 = 0  

 U2 = 0 + 0.176 Dtratio + ε1  

    U3 = -1.36 - 0.16 Dtratio +0.058 Sde + 0.06 Sdl + ε2  

 U4 = 0 + 0.31 Dtratio   + 0.046 Sdl + ε3 

 U5 = 1.51 - 2.79 Dtratio +0.071 Sdl + 0.78 Nsep + -1.84 Nslp - 0.237 Triptime + ε4 

 where:  

Ui        = total utility for i-th switching alternative 

  εi = correlated random error for each switching alternatives 

  Dtratio = trip-time volatility ratio   

  Sde = early schedule delay on previous day   

 Sdl  = later schedule delay on previous day 

 Nsep = cumulative percentage of switching to early departure times  

  Nslp = cumulative percentage of switching to late departure times  

  Triptime      = trip time for previous day 
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Figure 4-3 
Sequential greedy  search adjustment model of departure times 

Departure Time  
   Adjustment 

Alternative 1  
no adjustment 
      U1 = 0 

    At least 1 min. shift  
        U (>1) = β1X + ε1

Alternative 2 
adj. 1-5 min. 
    U2 = 0 

  At least 6 min. shift 
           U(>2) = β2X + ε2 

Alternative 3 
adj. 6-10min. 
      U3 = 0 

At least 11 min. shift 
        U(>3) = β3X + ε3 

Alternative 4 
adj. 11-15min. 
      U4 = 0 
 

Alternative 5 
adj. >15min. 
U5 = β4X + ε4 
 

 

 

The variance-covariance structure of error-terms is shown below. In the structure 

shown, the following variance-covariance parameters are used based on Srinivasan 

(22): σ1 = σ2 = σ3= σ4 = 1, ρ1 = 0.09, ρ2= 0.28. 
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 This model emphasizes the role of empirical factors on departure time adjustment 

decisions. Among the variables, triptime volatility ratio experienced by trip-makers 

significantly influences departure time adjustment behavior. As the trip time variability 

increases, users are more likely to switch departure times. The model also suggests that 

trip time does not significantly influence departure time adjustment decisions but 

schedule delay does. Users departure time adjustments are also sensitive to past 

experiences in the system. Following a late arrival episode on the previous day, users 

tend to select a larger departure time shift alternative at all binary decisions. Following 

early schedule delay, however, users tend to prefer a moderate adjustment of more than 

five minutes compared to a 1-5 minute shift to larger adjustments, but no differences are 

observed in other sequential decisions. Users with a greater cumulative proportion of 

departure switches to earlier departure times on the preceding days, exhibit a disposition 

to shift departure time significantly.  

Based on the departure time choice model, for each day and each user, the utility 

of each alternative is computed based on the previous day’s schedule delay, and 

experience (trip-time volatility ratio and cumulative early and late switches). The random 

errors are generated according to the distribution above using Monte-Carlo simulation. 

The total utilities are compared sequentially according to the greedy departure time 

search model shown in Figure 4-2. For instance, in this model, a user will change 

departure times if U1 < U2, and by 6-10 minutes if U2 > U3 and U1 < U2.  Thus the 

departure time adjustment alternative for each individual is determined according to this 

model on each day. (The actual adjustments are assumed to be uniformly distributed 

within the chosen bin, i.e., the departure time shift could be 7 minutes for a 6-10 minute 
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adjustment bin). Users are assumed to adjust their departure times according to the 

previous day’s schedule delay towards the opposite direction (early switch following late 

schedule delay and vice-versa, since 95% of users in empirical data exhibited this 

behavior). These individual departure time adjustment decisions are aggregated to form 

the time-dependent O-D matrix for the following day. 

 

4.4.2 Route Choice Decision Model 

For route choice decisions under information, a disaggregate and behavioral 

model (Srinivasan 1999) was used. This model captures two principal behavioral 

mechanisms observed in route choice decision process under information: compliance 

and inertia. Inertia is defined as the mechanism underlying a decision maker’s tendency 

to retain the current path. Compliance is the mechanism related to the tendency of a trip 

maker to comply with the best path recommended by ATIS. Route choice instances may 

be classified into two cases. Case 1 corresponds to instances where a user’s current path 

is also the best path. In this case, both mechanisms may favor same alternative (BP=CP). 

In case 2, however, the current path is distinct from the best reported path. In this case, 

inertia favors the current path, whereas compliance favors the best path. In general, 

therefore, the two mechanisms can operate simultaneously and the observed choice 

results from a trade-off between them. The details of this empirical model are abstracted 

and presented below. 

 In each route choice instance (every time a user receives ATIS information), a 

user is assumed to select the alternative path with the highest total utility (consistent with 

random utility maximization framework). The total utility of alternative p (Up) accounts 

for the utilities of Ua and Uc, associated with inertial and compliance mechanisms, 
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respectively, in addition to a path-specific utility (Up). These mechanism-specific utilities 

are unobserved and can vary across individuals and choice instances. They are expressed 

as: 

 Ua (i,t) = f [Z(i), Xa(i,t), βa] + εa(i,t) 

 Uc (i,t) = f [Z(i), Xc(i,t), βc] + εc(i,t) 

Where 

 i = user, 

 t = choice instance, 

Z(i) = trip-maker attributes, 

Xa(i,t) and Xc(i,t) = vectors of attributes related to  the inertia and compliance 

utilities, 

εa(i,t) and εc(i,t) = corresponding error components, and 

βa and βc = vectors of parameters associated with inertia and compliance. 

The total utility of the path alternatives in each case is constructed from the path specific 

components and the mechanism-related utilities, as illustrated in figure 4-4. 
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In case 1, current path is the best reported path. In this case, following the current 

path is consistent with both compliance and inertia. Therefore, the utility of current path 

consists of Ua, Uc and a path-specific component. An interaction component Ua,c = f (βa,c, 

Z, Xa,c) + εa,c is introduced to capture the interaction effect between compliance and 

Case 1: 
Current Path = Best Path 

Inertia + 
Compliance 

Non-Inertia, 
Non-Compliance 

Current Path (P1) 
[Ua + Uc + Ua,c + U1] 

Alternative 
(P2) 

[U2 +η] 

Alternative 
(P3) 

[U3 +η] 

Case 2: 
Current Path ≠ Best Path 

Inertia, 
Non-Compliance 

Non-Inertia, 
Non-Compliance 

Current Path 
(P4) 

[Ua + U4 + η2] 

Best Path 
(P5) 

[Uc+U5 + η3] 

Alternative 
(P6) 

[U6 + η2 + η3] 

Non-Inertia, 
Compliance 

Figure 4-4 
Route Choice Structure Incorporating Both Inertia and Compliance 
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inertia in this case. For the choice of the remaining alternatives, there is no contribution 

of the mechanism utilities to the total utilities. Therefore, their utilities consist only of 

path-specific components and the error term. In case 2, the current path is distinct from 

the best reported path. In this case, the compliance utility is associated with the best path 

and the inertial utility with the current path. The utility for the third alternative (non-

inertia, non-compliance) consists of only path-specific utilities and error terms. The 

empirical calibrated utilities may be expressed as: 

Uc    =  1.50 + 1.83 Ttratio - 1.72 Switchcost - 0.8 Erro + 0.02 Sdl +  1.01 Nsep 

Ua   = 3.63 – 1.17 PretripL2 - 1.17 PretripL3 – 0.45 EnrouteL23 – 2.35 Ttratio 

      - 0.73 Erro – 0.17 Erru - 0.04 Sde -1.00 Nslp -0.99 Nsep 

Ua,c = -2.11+ 1.22 Erro + 1.65 Nslp 

Up   = -0.05 Prevailtime -0.61 Congestion 

where:  

Uc   = Utility for compliance 

Ua   = Utility for inertia 

Ua,c   = Utility for interaction 

Up   = Utility for specific path 

  Ttratio= trip-time saving ratio   

  Switchcost =   distance difference between CP and destination path 

  Sde = early schedule delay on previous day   

 Sdl  = later schedule delay on previous day 

 Nsep = cumulative percentage of switching to early departure times  

  Nslp = cumulative percentage of switching to late departure times  
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PretripL2 =  1 if current information is pretrip information and network  

  congestion level is low 

PretripL2 =  1 if current information is pretrip information and network  

  congestion level is high 

EnrouteL23 = 1 if current information is enroute information and network  

  congestion level is high 

Erro  = Information over estimation error 

  Erru  = Information under estimation error 

  Congestion =   Anticipated congestion level measured in terms of path  

   densities and converted to a continuous scale of between  1 and 4 

  Prevailtime = Prevailing travel time for this path. 

 According to the model, the magnitude of network loads influences both the 

compliance and inertial mechanisms. Increased network loads on both the current and 

previous day result in a decreased inertial effect. Trip makers with more frequent 

switches to later departure times tend to retain their current paths. With more switches to 

earlier departure times, decreased inertial tendency and increased compliance are 

observed. Increased relative trip time savings and increased switching cost decrease the 

propensity to retain the current path. Increased overestimation errors lead to reduced 

inertia and compliance. However, underestimation error merely reduces the tendency to 

continue on the current path.  

Using the time-dependent O-D matrix aggregated by users’ departure time 

adjustment decisions, within-day traffic flows can then be simulated on the network 

according to the route choice model. On a given day t, trip makers are assumed to start 
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with their actual paths selected on the previous day t-1. Pre-trip information quality on 

day t is taken as the cumulative information quality experienced up to day t-1. Enroute 

information quality is taken as the information quality experienced in the previous 

decision instance on the current day. In each decision instance, path-specific utilities are 

computed according to the current congestion levels on the network and the prevailing 

travel times. Inertia and compliance utilities are computed based on the experience of 

current traffic experience (e.g., anticipated congestion level, over/under estimation of 

information in previous link) and past traffic experiences (e.g., schedule delay of 

yesterday, trip time saving ratio, and cumulative early and late switches). In addition, a 

random error term is modeled to account for difference in decisions across individuals. 

According to the route choice structure depicted in Figure 4-3, the systematic utility and 

random error for each alternative path is computed and the path utilities are compared. In 

this model, users are assumed to choose the path that maximizes their utility. Each 

individual user’s route choice decisions are made at the beginning of each day (when pre-

trip information is given) and at each en-route decision node (every link, unless otherwise 

specified).  

 

4.5 Day-to-day Simulation Framework 

Day-to-day dynamics refers to the variation in network flows from one day to the 

next due to internal and external system perturbations. Sources of day-to-day variation 

include departure time adjustment of commuters, different route choice decisions in each day, 

incidents, capacity reduction, weather, seasons, and others.  
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The departure time adjustment can affect day-to-day dynamics. For each day, trip-

makers decide their departure time according to past traffic experience, cumulative switching 

experience and effectiveness of previous departure time adjustment. The model described in 

section 4.4.1 can be used to estimate both the probability that a user will switch and the 

magnitude of departure time shift from the previous day for each commuter. By aggregating 

the departure time switching decisions made by all trip-makers, the time-dependent network 

loading pattern (O-D matrix) is formed. Thus, if all users switch to earlier departure times, 

the loading profile will shift earlier in the peak period. Of course, in practice, some 

commuters will start earlier, and some will retain their current departure time, while some 

will shift to a later departure time. Consequently, due to the time-varying departure times 

across different O-D pairs, the within-day distribution of traffic, congestion, and queuing 

patterns on the network in the peak period will be affected. 

When commuters are on the road, route choice decisions made by commuters are 

affected by the real-time information provided by ATIS, experienced information quality, 

perceived network congestion levels, switching cost, and past traffic experience. The route 

choice dynamics can affect day-to-day dynamics as follows: For each user, today’s pre-trip 

path is based on yesterday’s enroute experience, and today’s pre-trip information is based on 

within-day dynamics of the current day. Further, these within-day dynamics will be 

significantly influenced by the departure time adjustment dynamics as noted above. 

Another noticeable effect is the non-linear dynamic and interactive effect of 

information quality. Information quality is defined in terms of the error of reported travel 

time with respect to experienced travel time. Both the route choice and departure time 

dynamics will affect the within-day and day-to-day dynamics significantly as described 
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above. Consequently, both reported travel time and experienced travel time will vary as a 

function of both within-day and day-to-day network performance. Thus information quality 

depends on the within-day and day-to-day dynamics. On the other hand, the time-varying 

information quality will also affect individual departure time and route choice decision 

process through utilities described previously. 

 

Figure 4-5 Simulation Framework for Day-to-day Dynamics   

 

The interactions between information, information quality, user decision dynamics, 

and network flows occur over three inter-related timescales of real-time, within-day, and day-

to-day, and can be captured in the proposed day-to-day simulation framework as shown in 

Figure 4-5. The framework and models are described in Srinivasan and Guo, 2003 and the 
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interactions can be modeled as follows: 1) Stochasticity in user decisions can be simulated 

based on dynamic input variables from the network simulation model. 2) These stochastic 

decisions can be implemented on network and traffic models resulting in further network 

dynamics (within-day and real-time). 3) The uncertainty in information quality over time can 

be computed by comparing reported information and actual experience of individual drivers, 

which is a key input to stochastic real-time route choice decisions. 4) The dynamic network 

impacts in terms of experienced trip time, congestion, and uncertain information quality can 

be used as inputs to the stochastic departure time decision model, whose outcome yields 

time-varying O-D demands from day-to-day. 5) The time-varying O-D demands in turn 

affect network dynamics, which affects stochastic pre-trip route choice decisions of informed 

users.  

The system evolution modeled in the proposed framework can be summarized by the 

following system of endogenous non-linear dynamic equations (Srinivasan and Guo, 2003). 

Within-day dynamics and real-time dynamics are captured in equations 1-6, and day-to-day 

dynamics is represented generically by equation 7. Within-day dynamics refer to departure 

time varying flows, under fixed O-D demand and when users do not switch routes at en-route 

decision locations. In contrast, real-time dynamics represent network flows when en-route 

switching occurs based on traffic information and user’s experience. In the equations that 

follow, I, h, P, C, Z, and S refer to information, flow, user choice decisions, path cost, user 

experience, and system control (signal) vectors, respectively. The functions φ , r, and 

Γ represent time-varying link-path flow indicator function, link performance vector, and 

time-varying path cost function, respectively, and f1-11 represent functions capturing 
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appropriate dynamics and stochasticity. Subscript 1 on a vector refers to purely within-day 

flows and real-time dynamics, while subscript 2 on a vector refers to within-day dynamics. 

Within-Day and Real-time Dynamics:  

Path Flow Equations: (Traffic Flow and Supply Model) 
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Endogenous Experience Equations: (Information, Decision, and Supply Models) 

Experience:   ),( ,
15

,
1

ττ kt
i

t CXfZ −=  

   ),,( ,
2

,
110

,
2

ktkt
i

t CCXfZ −−= τττ     (6) 

Day-to-day Dynamics  

),(11
,

τ
τ

tadj
t ZDTfD =       (7) 



 95

where DTadj refers to day-to-day departure time adjustment model, and τtZ reflects a 

perceived cost updating model. The three dimensions of dynamics in this non-linear 

dynamic system stem from the stochastic and dynamic decisions of trip-makers 

represented by the following disaggregate equations. 

Departure Time Choice:   )|,,( 0dititi
d

it IZXf θδ τττ =    (8) 

Pre-trip Route Choice:   )|)(),(,( 00 rititi
ro

itk kIkZXf θδ ττ=   (9) 

Enroute Choice:   )|)(),(,( rititi
r

itkr kIkZXf θδ ττ=   (10) 

From an individual commuter’s point of view, the day-to-day simulation cycle is as 

follows: A fixed preferred arrival time is assumed for each user. On the first day, a pre-

specified path and departure time are assumed for each user. Users corresponding to different 

O-D pairs are loaded onto the network as per the pre-specified departure time and route 

distribution, and the link travel time and congestion levels are recorded by the simulator. The 

K-shortest paths between all O-D zone pairs are computed at pre-specified time intervals. 

When an informed user reaches an intersection, information regarding the prevailing travel 

time for the current path, the best path (with least reported travel time), and other alternative 

paths are provided to the user by the in-vehicle devices. The commuter then compares the 

utility of each path according to it’s switching cost, anticipated congestion level, anticipated 

trip time savings, information quality, and his/her past traffic experience such as schedule 

delay on previous day and the cumulative switching history. The utility varies across 

individuals, and therefore consists of a random error term, which reflects this perception 

differences across users. The assumption is that the user will then select the path with the 

maximum utility. For uninformed users, no real-time information is received. Uninformed 

users will stay in their original paths. This process of route selection is repeated at each 



 96

decision node until this user reaches the destination. Upon the completion of today’s 

commuting trip, performance variables related to the most recent commute (such as schedule 

delay, cumulative information error of one day) are computed, and the cumulative variables 

related to day-to-day (e.g., cumulative information errors across days, Nsep/Nslp) are also 

computed. Based on these variables, the user will determine the departure time for the next 

day. A sequential greedy search process is conducted as described in section 4.4.1, the 

decision of switching and the magnitude of adjustment is determined. Based on the departure 

time adjustment decisions of all commuters, a new demand loading pattern is formed for 

tomorrow. The simulation cycle is continued for the desired planning horizon (nearly two 

months - 55 days is used in this study) and performance measures are recorded for analysis as 

described in the following section.  

 

4.6 Performance Measures 

In all experiments described in chapter 5 and 6, network flow evolution is 

characterized by recording and analyzing the following performance measures on each 

day. The effect of the experimental factors is assessed by comparing these performance 

measures across various levels of each factor. All the performance measures discussed 

below have been initially computed at a disaggregate level (i.e. for each vehicle) and then 

averaged across users and days to obtain aggregate system-level measures. Only 

aggregate measures are reported in the results in remaining chapters unless noted 

otherwise. 
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4.6.1 Performance Measures on System Dynamics 

• Within-day travel time is represented by the average trip time of all vehicles on a 

given day.  

• Within-day trip time volatility ratio (on day t) is defined by the change in trip time 

per unit change in departure time, averaged across users who changed departure 

times between days t-1 and t. A greater volatility ratio implies that a small 

departure time shift can lead to large trip-time changes. 

• Network trip time stability is measured by the standard deviation of mean trip 

times (from day to day). 

• Deviation of mean day-to-day trip time from user equilibrium (obtained for initial 

day’s time-dependent O-D demand) is measured in percentage terms. 

 

4.6.2 Commute Performance Measures 

• Late/early schedule delay represents the discrepancy between the actual arrival 

time and the users’ preferred arrival time on the late/early sides respectively.  

• Trip time reliability: measured for each commuter as the fraction of days when 

the individual’s experienced trip time exceeds his/her mean trip time +/- a triptime 

threshold; the threshold is taken as 5 minutes, or 30% of mean trip time, 

whichever is larger to reflect tolerance of at least 5 minutes, and a greater degree 

of tolerance on longer trips. The individual reliabilities are then averaged across 

users. 

• On-time arrival reliability, and probability of early and late schedule delay: These 

are determined by observing the fraction of days when a given user arrived within 
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a desired preferred arrival time window (PAT- threshold, PAT + threshold), ahead 

of the window (arrival time < PAT – threshold), and beyond the window (arrival 

after PAT + threshold), respectively. The threshold is taken as 5 minutes which is 

reasonably intuitive and consistent with indifference bands reported in other 

empirical studies (Liu, 1998; Mahamassani and Chang, 1999). 

 

4.6.3 Information Quality 

 Information error is defined in terms of discrepancy between the reported and 

experienced travel times. Two types of information errors are used to measure 

information quality: overestimation error and underestimation error. Overestimation error 

occurs if the experienced travel time is less than the reported travel time and 

underestimation error occurs when the experienced travel time is more than the reported 

travel time. Based on these notions, the following measures are defined: 

a) Cumulative over and underestimation errors 

The error is measured as the fraction between the travel time difference 

(experienced time – reported time) and the experienced travel time for each vehicle for 

the entire path traversed and then aggregated for all the vehicles with information. The 

error is considered as zero if the absolute difference in the reported and the actual travel 

time is less than 0.25 minutes or if the actual travel time of the vehicle is less than 1 

minute. Cumulative overestimation error for an individual for a given day is the ratio of 

total overestimation error divided by the total number of ATIS messages received. 

Cumulative underestimation is also defined similarly, but based on information 

underestimation errors. The variables are then averaged over all days and across all 
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individuals with information. Cumulative information errors provide an indication of 

magnitude of over and underestimation errors in the system. 

i i
i

i

Experienced travel time Reported travel time
Error

Experienced travel time
−

=  

.
i

i
i

Total overestimation error
Cumulative Overestimation Error

Total no of messages received
=  

.
i

i
i

Total underestimation error
Cumulative Underestimation Error

Total no of messages received
=  

i is for each decision point. 

b) Average over and underestimation errors 

Average overestimation error for an individual for a given day is the ratio of total 

overestimation error divided by the number of overestimated ATIS messages received by 

him/her. Average underestimation is also defined similarly for each individual, but for 

information underestimation errors. The individual average errors are then aggregated 

and averaged across all individuals and days to obtain system level average over and 

underestimation errors. Unlike the cumulative accuracy metrics above, the average 

estimation errors here provide information on both the magnitude and the relative 

frequency of over and underestimation errors. 

.
i

i
i

Total overestimation error
Average Overestimation Error

No of overestimated messages received
=  

.
i

i
i

Total underestimation error
Average Underestimation Error

No of underestimated messages received
=  

c) Information reliability 

Another metric that also combines magnitude of error and relative frequency is 

information reliability. In this study, information reliability is defined as the fraction of 

good messages. A message is said to be “good” (reliable) if the absolute value of 
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overestimation or underestimation error is less than 30%. The variables are then averaged 

over all days and individuals. 

.
.

i
i

i

No of good messages receivedInformation Reliability
Total no of messages received

=   

 

4.6.4 Route Choice and Switching Response Measures 

a) Percentage links in common: 

To analyze the day-to-day switching behavior, the extent of differences in paths 

across consecutive days is analyzed. In comparing the actual paths between two 

consecutive days, a link is considered to be common to both paths if the link was present 

in both paths, regardless of its position in the two paths. Only paths with 7 or more links 

are considered in this computation to avoid significant discontinuities in this metric. Note 

that percentage of users with paths less than 7 links is small (< 9%). Therefore, this 

metric represents the extent of path changes made by users from day-to-day. 

b) Route choice fractions: 

 For case one in the route choice model (the best path is not the current path), the 

fraction of users choosing to stay on the current path, alternative path one, and alternative 

path two are computed. For case two (the best path is distinct from current path), the 

fraction of users choosing to stay on the current path, best path, or the first alternative 

path are recorded. This metric provides an index of within-day switching and compliance. 

For case one, the switching rate is the fraction of users choosing alternative paths. For 

alternative two, the switching rate is the fraction of users choosing the best path or the 

alternative path. In both cases, the compliance rate is given by the fraction of users 

choosing the best path. 
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4.6.5 Individual Level Switching Behaviors 

a) The fraction of users switching departure times:  

In this measure, a departure time shift of at least 3 minutes is considered a switch.  

It is used as a measure of day-to-day departure time switching, for both informed and 

uninformed users.  

b) Switching rate for informed users:  

Users are characterized in terms of switching as: those who switch neither route 

nor departure time, only departure time, only route, or those that switch both dimensions 

from day-to-day. The fraction of users in each of the four categories are recorded and 

reported in the various experiments. Compliance rate is measured as the fraction of 

informed users who switch from the current path to the reported best path. The fraction of 

links common from day-to-day for a given user is taken as an important measure of day-

to-day route switching.  

 

4.6.6 Spatial Rerouting Opportunity Measures 

a) Threshold of relative and absolute trip time saving obtained by switching 

These two metrics are only relevant to cases where users switched routes. 

Threshold of absolute trip time saving is the trip time difference (magnitude in minutes) 

between the reported current path and the path chosen by the user. Threshold of relative 

trip time saving is measured as the ratio of absolute trip time saving divided by the 

reported trip time on the current path. The two performance measures are first computed 

at the individual level for each day for users who switched routes. The individual metric 

is then aggregated across users (who switched) and across days to obtain a system level 
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aggregate measure of the two thresholds. The magnitude of absolute trip time indicates 

the average trip time difference between the current path and the path chosen by user, 

which is a measure of the extent of loading imbalance and rerouting opportunity available 

on the network. The threshold of relative trip time saving, on the other hand, gives the 

ratio of trip-time difference to the reported time on the current path. Thus, this provides a 

measure of the extent of inefficiency of current paths.  

b) Congestion difference 

Congestion difference is defined in terms of the difference in reported congestion 

levels between best (reported) path and worst (reported) path from among the K shortest 

paths. In this study, congestion levels are computed on each link based on the link density 

and converted to a standardized scale of 0-4 (0 indicates uncongested condition and 4 

represents severely congested links) to facilitate congestion color coding. The average 

path level congestion for each reported path is computed by averaging the link level 

standardized congestion levels for all links that belong to that path.  

 

4.7 Unique Features and Capabilities of the Simulator 

 The day-to-day dynamic simulation framework has the following unique features 

and capabilities compared to the existing within-day dynamic simulators.  

1) Day-to-day simulation capability is added, which provides a consistent, and 

mutually co-evolving representation of three principal dimensions of network 

dynamics: real-time, within-day and day-to-day dynamics.  

2) The day-to-day framework provides richer disaggregate dynamic and stochastic 

representation of user behaviors. Two empirically calibrated departure time 
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adjustment and route choice models  are integrated into the simulation framework 

that represent  an agent-based approach: User decisions are made in individual 

user level and can be viewed as being based on a belief-desire-intention (BDI) 

architecture.  

3) The framework has the ability to quantify system performance in non-equilibrium 

states and measurement of network level and individual vehicle level reliability 

and travel time stability.  

4) Capability to model and study the influence of system shocks including 

transportation control measures such as staggered work hours, telecommuting, 

compressed work week, and supply side shocks such as incidents are provided by 

the simulation framework. Monte Carlo random sampling procedures are 

proposed to simulate incident scenarios and capture its impact on system 

dynamics from day to day.  

5) Richer representation of user behavior including capability of modeling 

heterogeneity of user behavioral strategies by allowing multi-user switching 

behavior classes. Users' sensitivities to behavioral factors can be simulated on the 

network by modifying the coefficients of the two behavior models.   

6) Real-time information can be provided to users with variable update frequency 

(every k links in general), whereas in the original simulator, information is 

updated for each user on every link. This capability can be used to analyze the 

trade-off between too frequent and too slow information update on day-to-day 

dynamics.  
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7) The framework provides a wider array of system performance measures including 

all day-to-day related variables, past traffic experience and cumulative variables, 

and various categories of performance measures that enable assessment of 

reliability and trip time jointly.  

 

4.8 Network Characteristics 

 The traffic network, shown in Figure 4-4, represents a part of the urban traffic 

network from the Fort-Worth area near Dallas. The central corridor that connects node 

116 and 117 represents Interstate 35 passing through this area. Main arterials and a 

portion of local streets are also modeled in the network. This network contains 13 zones 

and consists of 178 nodes and 441 links. All 13 zones are considered to be origin and 

destination zones. In this study, all simulation runs were conducted on this network. In 

these experiments, the preferred arrival time (PAT) for each commuter is drawn (using 

Monte-Carlo simulation) from a PAT distribution obtained from an empirical commuter 

survey (Srinivasan, 2001). The PAT for each commuter is assumed to be fixed for the 

duration of the study. 
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Figure 4-6 Representation of Fort-Worth Traffic Network 

 

4.9 Summary 

This chapter has discussed the structure of day-to-day dynamic simulation 

framework used in this study. A well-established dynamic within-day traffic simulator, 
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DYNASMART, was introduced. Information supply and simulation strategies were 

discussed and user response to information was modeled by agent-based BDI 

architecture, using two utility maximization models (departure time adjustment and route 

choice respectively) as the reasoning component. The sources of day-to-day dynamics 

were presented and their role in the day-to-day simulation was described in section 4.5. 

Performance measures used for empirical experiments were described in section 4.6. The 

unique features of simulator were discussed next. Finally, the experimental network used 

in this study was presented. This simulation framework was used as the observational 

basis for the empirical experiments described in the following two chapters. 
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CHAPTER V 

 

EFFECT OF ALTERNATIVE USER BEHAVIOR FACTORS AND 
TRANSPORTATION CONTROL MEASURES 

 

 
 
5.1 Overview 

This chapter describes a series of computational experiments conducted to 

investigate the effect of user behavior factors and transportation control measures on day-

to-day evolution of network flows. The objectives of this chapter are: 1) to analyze the 

influence of routine perturbations in the form of route and departure time switching 

decisions on network reliability and evolution, 2) to investigate the influence of changes 

in users’ sensitivity (responsiveness to system performance factors) on trip-time and 

commuter’s on-time arrival reliability, and 3) to analyze the role of external shocks in the 

form of transportation control measures (TCM). 

 By examining the effect of route and departure time switching behavior on system 

performance and reliability from day-to-day, the first objective seeks insights for 

developing congestion control and network reliability improvement strategies. For the 

second objective, the role of variation in user behavior is studied, and is of interest in 

understanding how users’ responsiveness affects system evolution. Finally, the last set of 

experiments focuses on analyzing the effect of five travel demand management strategies 

on system performance and commute reliability. 

This chapter is organized as follows: In Sections 5.2, three experimental factors 

(routine switching behavior, variation of user behavior parameters, and travel demand 

management strategies) and the associated experimental procedures are described. In 
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section 5.3, experimental results are presented and the significance of findings is 

described, followed by a discussion of assumptions and validation in Section 5.4. 

 

5.2 Experimental Factors 

Three sets of experiments are conducted in this chapter to achieve the 

aforementioned objectives. The first set of experiments investigates the influence of 

internal system perturbations (in the form of routine switching behavior) on day-to-day 

network evolution and system reliability. In the second set, the role of systematic and 

random variation in user behavior parameters on system evolution is explored. The final 

set of experiments analyzes the effect of external shocks, particularly of travel demand 

management strategies, on network performance and commute reliability. In each 

experiment, the experimental factors described below are varied systematically, one at a 

time to avoid confounding changes, and the corresponding system performance measures 

(noted in Section 3.4) are recorded and analyzed. In each experiment, the day-to-day 

simulation was performed for 55 days, and the first five days were excluded from the 

analysis to minimize initialization and simulation bias. Three levels are considered for 

each experimental factor (low, medium, and high) with the medium level corresponding 

to empirically calibrated levels of the factor, unless noted otherwise.  

 

5.2.1 Internal System Perturbations 

The first set of experiments focuses on the role of internal sources of system 

perturbation. Specifically, the effect of route and departure time switching behavior is 

investigated on system evolution and reliability. This objective is motivated by the 
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following research issues: what is the role of joint switching versus switching in only one 

dimension? Is there evidence of state and sequence dependence in joint switching? 

Insights into these questions have important implications for congestion mitigation and 

network analysis.  To address these questions, two experimental factors are considered: 

1) The effect of joint switching versus separate switching (route only and departure time 

switching only); 2) The influence of initial conditions: a) analysis of system evolution 

under high and severe congestion with joint switching, and b) the effect of simultaneous 

versus sequential switching (route switching followed by departure time switching and 

vice-versa).  

In case 1), the network evolution is simulated as per the day-to-day network 

assignment model, and performance measures are recorded for a period of fifty-five days 

under three levels: users are permitted to switch both routes and departure times, only 

route switches are permissible, and only departure time switches are allowed.  In case 2), 

the network evolution is observed for two levels of recurrent congestion corresponding to 

network loadings of about 16000 and 19100 vehicles over a period of 1 hour. To simulate 

sequential (route first) switching, the network evolution is simulated by permitting only 

route switching for the first fifty-five days, followed by a set of another fifty-five days 

where only departure time switching is permitted. The sequential (departure first) case is 

simulated by reversing the order of switching noted above.   
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5.2.2 User Behavior Rules 

In the second set of experiments, the role of variation in user behavior is 

examined. In particular, the effect of users’ sensitivity to system performance and 

experience attributes are investigated under this objective. Six factors are considered: 

departure time inertia, route switching inertia, sensitivity to late schedule delay, 

sensitivity to trip time volatility, unobserved variability in departure switching behavior, 

and unobserved variability in route switching behavior. These factors are chosen to 

obtain insights on how users’ responsiveness affects system evolution.  To examine the 

effect of these factors, the corresponding user behavior coefficient is perturbed 

systematically and the effect noted. For instance, to simulate the effect of changing 

behavioral inertia to route and departure time switching, the coefficients a1, and a2 are 

perturbed from the empirically calibrated values noted in Section 3. With regard to each 

factor, system evolution is observed and recorded under three levels of user sensitivity: 

low, medium, and high (where medium corresponds to empirically calibrated values of 

the corresponding coefficient). The high and low levels were obtained by perturbing the 

baseline coefficient by +/- 50%, unless noted otherwise (+/- 0.5 if baseline level = 0). 

Similarly the coefficients of trip-time volatility ratio and late schedule delay in departure 

switching utility are also varied from the baseline levels in this set of experiments. The 

effect of unobserved variation is captured by examining the role of variance in a) 

departure time switching and b) route switching utilities on system performance (which 

are also perturbed from baseline levels in the manner noted above). A greater variability 

suggests more heterogeneous behavior among users. The system evolution and 
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performance metrics are measured and compared by systematically varying each of the 

six factors above systematically. 

 

5.2.3 Transportation Control Measures 

The third set of experiments investigates the role of planned external shocks on 

day-to-day dynamics and system evolution. In particular, this set aims to analyze the 

effect of four transportation control measures on system performance and commute 

reliability compared to the do-nothing scenario. A severe recurrent congestion level is 

assumed to identify the potential of such strategies in contexts that require urgent 

attention. The transportation control measures that were considered include: a) effect of 

staggering work time, b) effect of providing real-time information to larger fraction of 

users, c) effect of telecommuting, and d) effect of compressed work-week.  

To analyze the influence of staggered work hours, the preferred arrival times of a 

fixed fraction of users (adoption fraction) was staggered from their usual preferred arrival 

times. For instance, in the small shift (15 min.) and low adoption (5%) scenario, the 

assumption is that the arrival times of 5% of the users will be staggered by 15 minutes on 

the late side, with a corresponding fraction of users whose departure time will be 

staggered earlier. Similarly, the influence of staggering by large shifts (30 min.) and 

moderate adoption levels (15%) are also modeled. To simulate wider access to real-time 

information, the market penetration in the network is increased from 20% to 50%. The 

effect of telecommuting is modeled by assuming that a certain fraction (of adopters, say 

10% selected at random from among commuters) telecommute once a week (work from 

home). The assumption is made that telecommuters pick the day when they work at home 
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at random in the work week, but the day of telecommuting is not changed from week-to-

week for a given user. Accordingly, the O-D loading is adjusted on the network, 

depending on the randomly selected telecommuting day for each user (who will 

telecommute).  Of course, second order telecommuting effects such as changes in O-D 

patterns may also be included in the model, but are not considered to avoid confounding. 

Two levels of adoption are considered for telecommuting (low = 10% of users 

telecommute every week and the telecommuting is evenly spread over five days, high = 

25% of users telecommute each week). In contrast, the work week compression strategy 

is modeled by assuming that a certain fraction of commuters (say 10% for low adoption) 

have a compressed work week. In other words, their work week consists of four days per 

week and 10 hours per day. The assumption here is that the arrival time in the morning 

peak remains unchanged on the four days, but the departure time from work gets 

extended by two hours (simulating an increase of 1 hour each in the morning and evening 

is also possible). The network evolution considered here pertains only to the morning 

peak, in view of the influence of schedule delay constraints. The noteworthy feature 

regarding compressed work-week is the cyclic nature of network loading in this case. In 

other words, every fifth day, the network loading decreases significantly (assuming that 

the additional day off is the fifth day), but rebounds the following Monday. Using the 

proposed framework, modeling memorylessness associated with Friday's commute by 

modifying the coefficients suitably is possible. However, this has not been modeled in the 

current study, given the primary focus on first-order effects. The effect of system 

evolution and reliability metrics are compared across strategies. Further, the effect of 

level of adoption of various strategies is also assessed under this set of experiments. The 
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findings from this set of experiments assume significance in the context of effective 

demand management and network analysis and management under external shocks.  

 

5.3 Experimental Results and Discussion 

The results corresponding to experiment 1 to 3 are shown in Tables 5-1 to 5-3, 

respectively. In each experiment, the experimental factors described below are varied 

systematically, one at a time, to avoid confounding, and the corresponding system 

performance measures are recorded and analyzed. The results are described in detail 

below.  

 

5.3.1 Effect of Switching Route Only, Departure Time Only and Joint Switching 

The results in Table 5-1 revealed that the best performance is obtained when only 

route switching (trip time = 14.19 min., and trip time reliability = 90% min) is permitted, 

and the worst performance occurs when there is no route-switching (trip-time = 18.06 

Table 5-1: Effect of Joint Switching, and Sequence of Switching on System Performance

                               Performance\ Average Day-to-day Within-day Trip-time Late On-time Early
Experimental             Measures Trip Time variance volatility ratio Reliability Arrival Arrival Arrival
Scenarios (min.) (min.) (min./min.) (%) Rate (%) Rate (%) Rate (%)
1. High Congestion
   Route Switching Only 14.19 0.43 N/A 90.4 16 23 61
   Departure Time Switching Only 18.06 0.67 1.3 71.4 25 48 27
   Joint Route and Departure 
           Time Switching
   Route Switching Followed by 
           Departure Time Switching
   Departure Time Switching 
       Followed by Route Switching

2. Severe Congestion
   Joint Switching 23.97 2.01 1.54 58.9 32 36 31

   UE-high congestion: 13.97
   UE-severe congestion: 19.09

22 51 2715.69 0.49 1.04 74.3

15.93 0.84 1.09 69.7 31 49 20

15.32 1.97 N/A 89.1 18 46 36
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min, and reliability = 71%). Joint switching leads to a performance in between these 

extreme cases (trip-time = 15.04 min, and reliability = 74%). But, the highest rate of on-

time arrivals correspond to the joint switching case (on-time rate of 51%, compared to 

48% in the departure switching only, and 23% in the route switching case), suggesting 

that much of the departure time switching behavior is aimed at reducing the cost of 

excessive early or late schedule delay. In contrast, the early arrival rates are at a 

maximum when only route switching is permitted (61% versus 27% for the other two 

cases).  This is also reflected in the magnitudes of schedule delays. Early and late 

switching delays are in the range of 3.6-4.25 minutes for joint and departure time 

switching cases, whereas, the average early schedule delay is around 12.3 minutes under 

the route-switching case. When departure time shifts of 3 or more minutes are 

considered, the behavior of informed users also varies across the three cases. For 

instance, users who switch neither route nor departure time is only 19% for the route 

switching scenario, whereas nearly 69% of the users do not switching for the joint 

switching case.  

  The results also show that system evolution is highly non-linear and sensitive to 

initial conditions (Figure 5-1). To test the influence of initial conditions, the impact of 

joint switching was represented at two levels: i) under varying levels of network 

congestion (high and severe congestion levels were tested by increasing the network load 

from 16000 to 19100 vehicles), and ii) considering the influence of sequential versus 

simultaneous switching behavior. With an increasing level of recurrent congestion, the 

system volatility increases drastically and reliability measures reduce considerably (from 

74% under high congestion to around 59% under severe congestion).  In other words, 
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under high congestion, nearly 26% of the days (nearly 1.25 times every 5 days or a work 

week), a user is likely to encounter trip-time values that deviate from his mean 

experienced trip time by over 5 minutes. Under severe congestion this trip-time 

unreliability increases to around 41% (nearly twice every work week, a user may expect 

deviations of over 5 minutes).  

The system states also differ considerably depending on whether the switching 

behavior is simultaneous or sequential in nature (mean trip-times are 15.69, 15.93, 15.32 

for simultaneous, route first, and departure time first switching behavior). In modeling 

sequential behavior (departure time first case), the system evolution was modeled for a 

period of 50 days where departure time switching was allowed, followed by a period of 

50 days when only route switching was permitted. The route first case is also analogously 

defined. Significant differences are also seen in trip-time reliability, early, and late arrival 

rates across the three cases.  Thus, the system does not converge to the same state and the 

evolution varies significantly depending on the interactions between route and departure 

time switching and their sequence. Figure 5-1 illustrates this sensitive dependence 

graphically, particularly for the sequential switching case with departure time switches 

occurring prior to route switching decisions. These results suggest that real-world 

network flows may exhibit non-unique average states under joint route and departure 

switching.  
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5.3.2 Effect of User Behavior Factors on System Reliability and Performance 

The influence of salient behavioral factors is depicted in Table 5-2 and discussed 

subsequently. The variables in the table represent users sensitivity to the associated 

attributes (e.g., sensitivity to late schedule delay, and volatility ratio). The variance in 

departure time column indicates the variability in the departure switching utility for U1+, 

U6+ alternatives compared to the no-switch alternatives. The high and low cases 

represent a 50% increase/decrease relative to the baseline level consists of the empirically 

calibrated model reported in Chapter 4.  

 

Figure 5-1: Effect of Joint Switching and  Route/Departure Time Switching 
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Table 5-2: Effect of User Sensitivity Factors on System Evolution under Joint Switching Decisions

System Performance
   Trip time (min.) 23.97 23.82 22.56 23.27 24.14 26.26 22.07 25.30 22.77
   TT volatility ratio (min. / min.) 2.01 2.77 0.91 1.74 2.14 2.39 1.65 2.45 1.76
   Reliability (fraction) 0.59 0.59 0.64 0.60 0.60 0.58 0.62 0.59 0.60
   Day-to-day std. deviation 1.55 1.00 1.04 1.07 1.06 1.39 1.05 1.33 0.87

Commute Performance 
   Late schedule delay (min.) 5.78 5.42 5.44 5.40 5.85 7.25 4.62 5.91 5.52
   Early schedule delay (min.) 5.36 5.37 5.49 5.54 5.20 4.56 5.92 5.10 5.41
   Early arrival (fraction) 0.31 0.31 0.33 0.32 0.30 0.27 0.34 0.30 0.32
   Ontime arrival (fraction) 0.36 0.38 0.35 0.37 0.37 0.34 0.38 0.37 0.37
   Late arrival (fraction) 0.33 0.31 0.32 0.31 0.33 0.38 0.28 0.33 0.32

Departure Time Response 
   Switching Magnitude to Later(min.) 4.81 4.68 5.05 4.92 4.76 4.61 4.97 4.26 5.11
   Switching Magnitude to Early(min.) 4.98 4.80 5.13 5.13 4.87 4.14 5.76 4.42 5.25
   Switching Rate (%) 0.55 0.77 0.29 0.52 0.58 0.57 0.55 0.59 0.54

Route Choice & Switching
   Percentage links in common (fraction) 0.56 0.55 0.60 0.57 0.57 0.55 0.58 0.55 0.57
   Threshold of relative TT saving(fraction) 0.13 0.13 0.13 0.13 0.12 0.12 0.13 0.13 0.12
   Threshold of absolute TT saving(min) 1.15 1.15 1.13 1.14 1.16 1.21 1.10 1.19 1.14

Individual Level Switching Behaviors
Uninformed users
   DT switch percentage (days/maxdays) 29.00 39.55 15.60 27.70 30.00 27.80 29.90 28.60 29.50
Informed Users
   Non-switching rate (%) 60.00 54.00 71.00 61.00 60.00 61.00 60.00 60.00 60.00
   Route only switch (%) 12.00 10.00 14.00 12.00 12.00 12.00 12.00 12.00 12.00
   Departure time only switch fraction (%) 23.00 30.00 12.00 22.00 24.00 22.00 24.00 23.00 23.00
   Users switching both (%) 5.00 6.00 3.00 5.00 5.00 5.00 4.00 5.00 5.00

Trip-time
Volatility

Ratio
(Low)

Trip-time
Volatility

Ratio
(High)

Late
Schedule

Delay
(Low)

Late
Schedule

Delay
(High)

Network and User Performance Measures
(averaged over 50 days)

Baseline
(Joint

Choice 50
Days)

Departure
Time Inertia

(Low)

Departure
Time Inertia

(High)

Departure
Time

Variance
(Low)

Departure
Time

Variance
(high)
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5.3.2.1 Effect of behavioral inertia 

With increasing departure switching inertia, the system performance improves 

(trip time reduces by about 5.8%, and trip time reliability increases by 6%), whereas 

reducing route switching inertia leads to system improvement. Route switching inertia 

however has a much smaller effect (trip time saving < 2%, relative reliability increases by 

2%). The effect of inertia in departure time and route switching however has a negligible 

impact on early, and late arrival propensities (< 1% change).  The influence on switching 

rates however is marked with departure time switching rates ranging from 29, 55, and 

77% as inertial coefficients (resistance to departure time switching) change from 0.5 to 0, 

and -0.5. In contrast, the influence of route switching inertia is seen on compliance rates 

(compliance rates varying from 5%, 25%, and 62% for high to low inertial coefficients). 

However, the underlying switching dynamics and behavior varies depending on the 

magnitude of inertial effects, although trip-time differences are only marginal. In the 

baseline case (both inertia are moderate), 60% of users switch neither route nor departure 

time, 23% switch departure time only (by 3+ minutes), 12% switch routes only, and 

nearly 5% switch both dimensions. Under the low departure time inertia case, among 

switchers, departure time switches only (29%) are nearly three times more likely than 

route only switches (10%). In contrast, when departure time switching inertia is high, 

route switching rate is higher (14%) than departure time switching only rate (12%), 

suggesting a compensatory influence. The non-switching rates also increases from 54% 

to 71% when departure time inertia increases, whereas, a much smaller effect is seen 

when route switching inertia is increased (60-64%). These results suggest that departure 
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time switching appears to exert a greater influence on day-to-day dynamics than route 

switching. 

  

5.3.2.2 Sensitivity to within-day volatility 

User sensitivity to within-day trip-time volatility has a strong impact on network 

dynamics from day-to-day. When users are highly sensitive to within-day trip-time 

volatility (measured by volatility ratio – change in trip time per minute of change in 

departure time on average), both trip-time unreliability and within-day volatility increase 

significantly. Interestingly, when users are more sensitive to volatility and are more 

responsive to volatility (by switching departure times more aggressively), the volatility is 

in fact amplified rather than dampened. Further, the travel time reliability is the highest 

when users are only mildly sensitive to within-day volatility, and deteriorates as the 

sensitivity to volatility increases. As responsiveness to volatility increases, so does the 

average late schedule delay. But the departure time adjustments tend to be smaller on an 

average (also reflective of the larger volatility), which is also reflective of larger within-

day volatility.  

 

5.3.2.3 Sensitivity to Late Schedule Delay 

As users sensitivity to lateness increases, travel time performance improves 

substantially.  Further, all reliability and volatility measures also improve significantly. 

For instance, information reliability increases from 86% to 89%. Within day volatility 

ratio drops from 2.4 min/min to 1.65 min/min., and day-to-day fluctuations in trip time 

reduces nearly two-fold (standard deviation decreases from 1.39 min to 1.05 min.). In 
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addition, as the sensitivity increases, a regime shift is also observed in the form of larger 

schedule delay accepted by commuters. For low sensitivity, the accepted lateness 

(earliness) is 7.25 min. (4.56 min.) reflecting greater lateness tolerance. In contrast, for 

high sensitivity to late arrivals, the average late (early) schedule delay decreases and is 

4.62 min. (5.92 min.). The greater tolerance to lateness than earliness, seen in the low 

sensitivity case, appears to be a typical response to highly congested commuting traffic, 

whereas, under moderate congestion levels the asymmetry is skewed in favor of larger 

early schedule delay due to risk-averse late arrival behavior among commuters (Liu, 

2001). The findings have some interesting and important implications. First, under 

empirically calibrated levels of users’ sensitivity to late schedule delay, day-to-day 

stability and reliability is poor (compared to high sensitivity). Second, while 

implementing measures such as flexible work hours, caution must be exercised and the 

influence of users sensitivity to late schedule delay should be accounted. Low sensitivity 

to late schedule delay due to certain travel demand measures may more than offset the 

short-term benefits due to departure time staggering of certain users.  

 

5.3.2.4. Effect of Unobserved Variability in Departure Time and Route Switching  

As the variability in departure time utility decreases across users, all performance 

measures deteriorate considerably (trip-time, within-day volatility, and day-to-day 

reliability). This lower variability (more homogeneous switching behavior) leads to an 

increase in uncoordinated switching, resulting in more departure time switching (up from 

54% to 59% (1+ min shift), as well as a slightly increased day-to-day route switching 

(2% decrease in day-to-day common links). Consequently, an increase (decrease) in late 
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schedule delay (early schedule delay) is observed as homogeneity in departure switching 

behavior increases. The within-day system volatility also increases by nearly 40% (1.75 

to 2.44 min) and trip time reliability increases by about 2% as departure time switching 

variance decreases. Furthermore, the magnitude of shifts in departure time decreases as 

variance decreases, suggesting that the system evolution follows some kind of equivalent 

adjustment process (of the type reported in Friesz et al. 1996). Unlike in that study, the 

system evolution however fails to reach user equilibrium here, but the departure time and 

route switching rates appear to reach a steady-state.  

 

5.3.3 Evaluation of Transportation Control Measures (TCM) 

The average travel time performance for different transportation control strategies 

is plotted as a function of time (over days) in Figure 5-2 (a, b, and c). This graph 

highlights the presence of several interesting nonlinear system dynamic features 

especially under the influence of travel demand management measures. First, the travel 

times can vary substantially from day-to-day even in the baseline case (Figure 5-2 (a)), 

indicating the high degree of trip-time fluctuations inherent in severely congested 

systems. Other salient non-linear and non-stationary effects include: the presence of 

trends (decline in mean trip time as a function of days for staggered work hours case 

indicating possible non-stationarity (Figure 5-2 (a))), oscillatory and periodic behavior 

(for the work-week compression strategy (Figure 5-2 (b))), aperiodic behavior and non-

convergence (e.g., telecommuting, increased information (Figure 5-2 (b))), sensitive 

dependence on initial conditions (the patterns of evolution for the 15 min. and 30 min. 

stagger exhibit qualitative differences in patterns (Figure 5-2 (a))). These results suggest 
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that trip-time performance alone is not a good indicator as several of these control 

strategies lead to similar average performance measures. Furthermore, real-world 

networks can exist in a variety of states that may deviate significantly from equilibrium 

for substantially long-periods of time.  

Figure 5-2: Day-to-day Dynamics under Transportation Control Measures 
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(c)
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The TCM’s contribute positively to average trip time performance (Table 5-3). 

Both within-day and day-to-day variability also decrease except in one case. The 

transportation control measures tend to improve travel time reliability in all cases. On-

time arrival rates also improve significantly under many but not all strategies.  Note that 

four strategies produce similar trip-time improvements of nearly 11-13% (small shift with 

high adoption, large shift with low adoption, telecommute with high adoption, and 

increased real-time information supply). But the benefits in terms of trip-time reliability 

differ considerably across these strategies (15.9% for staggered work hour strategy with 

small shift and high adoption, 14.9% for staggered work hour strategy with large shift 

and low adoption, 9.3% for telecommute with high adoption, and 4.75% for increased 

real-time information). Thus, there is a need to jointly consider the effect of trip-time and 

system reliability metrics while evaluating alternative strategies. The effectiveness of 

demand management strategies appears to be sensitive to the nature of the strategy and 

the level of implementation/adoption.  
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Table 5-3: Day-to-day Evolution in System Performance under Transportation Control Measures 

 
 
Note: UE solution had a trip-time of 19.09 min. 
 
 
 
 

 

                        Performance Measures Relative triptime Relative w ithin-day Relative day-to-day Trip Time On-time Early 
 Improvement volatility Variance Reliability arrival arrival rate
Demand Management Measure (%) reduction(%) Reduction(%) Increase (%) rate(%) (%)
   Stagger a: small shif t (15 min.), low  (5%) 5.34 6.86 20.83 4.92 37 32
   Stagger b: small shif t(15 min.), high (15%) 13.45 22.55 30.56 15.93 40 29
   Stagger c: large shif t (30 min.), low  (5%) 13.57 20.59 33.33 14.92 44 25
   Stagger d: large shif t (30 min.), high (15%) 36.22 58.82 49.31 36.61 43 26
   Real-time Information (MP = 50%) 11.30 3.43 6.94 4.75 51 17
   Telecommute - Low  adoption (2% per day, 1day/w eek) 4.96 5.88 34.72 4.92 41 29
   Telecommute - Medium (5% per day, 1 day/w eek) 13.15 19.12 29.17 9.32 39 30
   Work w eek compression - Low  (10%, 1 day of f ) 3.95 1.47 -23.61 3.31 42 28
   Work w eek compression - med (20%, 1 day of f ) 7.82 4.41 -92.36 3.36 39 30
   Baseline Performance (Absolute Measures) 23.08 (min.) 2.04 (min./min.) 1.44 (min.) 59% 39% 30%
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The results indicate that the staggered work hour strategy is likely to be more 

successful than other strategies in terms of congestion mitigation. Furthermore, 

increasing the level of adoption appears to produce a larger benefit than increasing the 

amount of departure time shift/stagger. Two other strategies where the performance is 

level sensitive are telecommuting and work week compression. At moderate levels of 

adoption for these strategies, the benefits are found to be relatively small. However,  

significant trip-time and reliability benefits accrue when the adoption level is high. The 

results from the work-week compression strategy indicate that in some cases, trip-time 

reduction may occur but at the expense of increasing day-to-day variability. The results 

also highlight the fact that real-time information can lead to significantly improved on-

time arrival rate (up from 39% to 51%), but significant trip-time variability is found in 

the system (trip time reliability only increases 4.75% compared to 9%-36% in other 

strategies).   

Despite the improvement in trip-time, significant gaps remain with respect to user 

equilibrium (7.5%-16.75%) even after the TCM strategy is implemented. The gaps 

between TCMs and user equilibrium solutions suggest still further scope for system 

improvement. The only exception is the case of large stagger with high adoption rate, 

where the system performance is better than the user equilibrium flows (corresponding to 

the initial departure time pattern). Thus, significant system improvement may be 

achieved through significant changes in departure time patterns, but such changes must 

be carefully coordinated. Nevertheless, the TDM strategies appear to be effective in 

steering the system performance closer to equilibrium travel times, but not necessarily 

towards the equilibrium state (i.e., high switching and volatility is still present).  
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5.4 Significance of Findings 

The findings from the three sets of experiments have several important 

implications for dynamic network analysis, design of transportation control strategies to 

enhance system performance, and travel time reliability.  

Findings from the first set of experiments regarding system dynamics are also 

noteworthy. First, the high trip-time reliability observed in the severe congestion case, in 

turn, lead to high lateness arrival rates (nearly 32% of users arrive late at the workplace 

after accounting for the PAT + tolerance threshold (5 min.)). Poor reliability, large 

system volatility and high lateness risk, in turn, induced a high degree of departure time 

switching (nearly 55% shift by 1+ minutes, and around 29% shift by more than 3 

minutes), which further accentuated system dynamics. Second, substantial inefficiency 

and gaps existed even after the system evolves for a period of 50 days between average 

system trip time and equilibrium trip times.  The gap increased as the level of congestion 

increased (from 12.3% for the high congestion case, and 20.3% for the severe congestion 

case). Thus, severe congestion makes the system intrinsically unstable due to greater 

departure time switching and appears to be only moderately influenced by route 

switching decisions (through ITS etc.). Third, the data appeared to suggest the possibility 

of a non-stationary and non-ergodic stochastic process driving system dynamics and 

variability. The ensemble average of trip times from twenty different simulations (with 

varying random seeds) was observed to be 15.06 minutes, which differed significantly 

(statistically) from the time-average over days (mean was 15.69 minutes).  

In the second set of experiments, the deterioration in system performance as 

departure time switching variance reduced, suggests that some degree of heterogeneity in 
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departure time switching is beneficial to system stability. In contrast, variability in route-

choice across users had little influence on system performance or variability, and was not 

discussed further. In addition, deterministic models or models that assume more 

homogeneous user behavior may tend to underestimate system reliability metrics. In fact, 

there is greater variability in user behavior. Therefore, in the context of modeling travel 

time reliability and stability, richer and more disaggregate models of user behavior and 

associated variability are needed.  

Findings in experiment 3 have important implications for the evaluation of 

transportation control measures. First, the use of very short-term (e.g., in the 

telecommuting and work-stagger cases, the first two-weeks of data tend to overestimate) 

or very long-term (due to non-stationarity and significant deviations exist from user 

equilibrium models for significant periods of time) horizons for analysis methods can 

lead to erroneous system state predictions, especially due to the presence of trends and 

oscillatory behavior. Second, care must be exercised in evaluating demand control 

measures since several of the effectiveness of some of these strategies are sensitive to the 

level of adoption/deployment (system exhibits very different evolution patterns 

depending on the level). Third, the dynamic evolution and the non-linear features 

observed empirically along with the deviation from short-term and long-term predictive 

models, underscore the need for the collection of richer empirical field data (including 

switching behavior) over reasonably long-periods of time (at least several months) while 

evaluating transportation control measures. While this study provides preliminary 

evidence of highly non-linear system evolution from day-to-day, new modeling tools and 

insights may be needed to uncover the nature and causes of the observed transient states 
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(e.g., chaotic, stability, and stationarity), particularly in order to understand the limits and 

uncertainty associated with model-based predictions. 

 

5.5 Assumptions and Validations 

Caution is advised in interpreting these findings due to the nature of the 

experiments, simulated conditions, and the assumptions regarding experimental factors 

used in this study. Note that the findings will depend on other exogenous factors 

including magnitude of OD flows, network structure and route choice model structure 

and specification. The trends noted here were robust with increasing magnitudes of OD 

flows. However, given the complex and non-linear dynamics in the system, the role 

played by network structure and alternative choice models on network evolution remain 

interesting directions for further research. The effect of supply side shocks and 

perturbations have also not been considered in this study. Further, the deployment of 

TCM’s may be phased over time (steady growth in contrast to the point process assumed 

here).  

Despite these assumptions, the results appear to be robust with real-world 

empirical data and consistent with other simulation-based studies. Based on the simulated 

model using the Fort-Worth network departure switching rate of around 50-60% (≥1 

minute shift) and route switching rate of nearly 25% (when the current path is not the 

best) are observed. These results are consistent with empirical data from Dallas and 

Austin (Jou et. al., 1998) based on a two week survey of nearly 900 commuters 

(switching rates of 52% and 23%, respectively). The compliance rates in this study range 

from 20-30% in most cases, and are consistent with real-world compliance rates of 20-
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50% in many European and U.S. cities (Chatterjee et. al., 2002). The minimum and 

relative trip-time saving corresponding to a route switch were observed to be 1-2.5 

minutes, and 14-24% respectively, which are corroborated by the indifference bands 

reported by other studies using both survey and experimental data (Liu et. al., 1991). 

Further, the average early and late schedule delays obtained in the model are of the order 

of 5-10 minutes which is intuitive and consistent with schedule delay bands noted by 

Hatcher et al.(1992) and Mahmassani et. al (1991). Information reliability was observed 

to be around 85-95% in this study whereas information reliability of about 91% were 

reported by real-world experimental data (Tudor et. al., 2002). Wunderlich et al. (2001) 

reported lateness risk of about 15% using Washington D.C. data, whereas, this 

probability is of the order of 16-25% for moderate congestion in this study.  

  

5.6 Summary 

This chapter investigated the effect of user behavior factors and transportation 

control measures on day-to-day evolution in network flows and trip-time reliability. The 

results suggest that modeling both route and departure time switching response jointly 

when analyzing the day-to-day system evolution is essential. In particular, departure time 

switching appears to be a stronger determinant of system dynamics than route switching 

with respect to many performance measures. System performance and reliability of 

commuter travel (trip-time, on-time reliability) are found to be affected by user behavior 

parameters, particularly sensitivity to system and experience variables. Among these 

factors, sensitivity to late schedule delay and departure time switching inertia were more 

influential than other factors (route switching inertia, travel time, congestion, one more). 
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The results also indicated that unobserved heterogeneity in commuter choice behavior 

can lead to significant differences in system evolution and reliability compared to more 

homogeneous behavior. Travel demand management measures  were found to be 

generally conducive in improving trip-time performance, but the efficacy in terms of 

commute reliability metrics varied depending on the nature of strategy, and the extent of 

adoption by users (more so true for trip time).  These findings may have important 

implications for evaluation of TDM strategies, improving system stability and reliability, 

and deployment and assessment of ITS strategies for congestion mitigation. 

The following research issues arise naturally in the context of day-to-day system 

evolution. At the theoretical level, the nature of stochastic process underlying day-to-day 

dynamics, the extent of possible non-ergodicity and its implications for network planning 

and design warrant further inquiry. With regard to dynamics, examining the role of 

lagged effects, possible asymmetries in evolution and their persistence over time, 

particularly in the context of supply shocks (such as planned constructions or workzones, 

and unplanned incidents) remains an interesting direction for further research. From a 

policy and planning standpoint, investigating the short-term and longer-term impacts of 

pricing based (congestion pricing, or gas price increase) and vehicle occupancy increase 

measures (such as HOV/HOT) may also be of interest.  
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CHAPTER VI 

 

EFFECT OF INCIDENTS ON DAY-TO-DAY DYNAMICS 

 

6.1 Overview 

 Existing incident literature mainly focused on the within-day effect of incidents 

on system performance. In most day-to-day research literature, incidents receive limited 

attention due to the complexity of introducing incidents into a closed form mathematic 

formulation. With the new day-to-day simulation framework developed in this study, this 

chapter focuses on investigating the effect of incidents on day-to-day dynamics and 

network performance. Toward this objective, a day-to-day incident simulation procedure 

is developed. Incident simulation parameters are chosen from historical data reported in 

practice. Performance measures for congestion level and travel time reliability are added. 

Five sets of experiments are conducted with incident enabled simulation in this chapter. 

The first set of experiments focuses on comparing the difference in system evolution 

between with-incident and no-incident simulations. This set of experiments seeks insights 

into the role of incidents on system performance and reliability. The second set of 

experiment then systematically investigates the effect of important incident 

characteristics on system performance, including incident probability, distribution, 

severity and duration. To the extent of the researcher’s knowledge, the incident 

characteristic and its impact on system performance is missing. The third objective is to 

analyze the effectiveness of three ways of improving network performance and reliability 

(experiment 3-5, real-time information, incident management measures, and departure 
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time switching rate reduction). The results from this set of experiments could provide 

insights on design and evaluation of incident management approaches. The results are 

then analyzed and the findings are discussed.  

The rest of this chapter consists of the following sections. Section 6.2 describes 

the motivation and objectives for simulating incidents, as well as the simulation 

procedures and adopted levels of incident characteristics. Section 6.3 discusses the 

experimental procedures and settings for the five set of experiments, and the new 

performance measures used in these experiments. The experimental results are discussed 

in detail in section 6.4 and the significance of the findings is discussed in section 6.5. The 

assumptions underlying this investigation and validation efforts for the experiments are 

discussed in section 6.6. 

 

6.2 Incident Simulation 

 

6.2.1 Motivation 

According to FHWA traffic incident management handbook (2000), in most US 

metropolitan areas, incident-related delay accounts for between 50 and 60 percent of total 

congestion delay. In smaller urban areas, an even larger proportion of delays can be 

attributed to incidents (Cambridge Systematics, 1997). ATIS technologies can be applied 

with greater degree of success towards managing non-recurrent congestion, since these 

are able to detect and broadcast the occurrence of incidents in real-time.  

Emmerink et. al (1995b) analyzed the potential of ATIS in the case of non-

recurrent congestion. In particular, the role of ATIS under road users’ route choice 
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behavior responses was investigated. A testing network with only one O-D pair and nine 

decision points was used in this study. Incidents are simulated using Binomial 

distribution, and the duration and capacity reduction are assumed fixed. Other researchers 

also included the system performance analysis under incident scenarios, but mainly in 

within-day context (Pal, 1999). In contrast, there is less attention on the effect of 

incidents on day-to-day dynamics and system reliability. A better understanding and 

systematical investigation are needed given the limited amount of prior research.   

Understanding how network flow evolves from day to day and the impact of 

system reliability under non-recurrent supply shocks is essential for transportation 

planning, evaluation of ITS information and management strategies, and evaluating and 

improving effectiveness of incident management programs and freeway service patrol 

programs. 

 

6.2.2 Objectives and Approach 

Given the motivation described in the previous section, three sub-objectives are 

proposed in this section. The first objective is to analyze the impact of incidents on 

network performance and system reliability by comparing the results with the no incident 

case reported from the previous chapter. Understanding the difference of system 

evolution between incident and no-incident scenario will help validate the no-incident 

results presented in the previous chapter, and better understand the role of incident on 

traffic system evolution. The second sub-objective is to analyze the impact of different 

incident characteristics. Specifically, the probability of incident occurrence, incident type 

distribution, severity (capacity reduction) and the incident durations are analyzed 
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systematically. Understanding the effect of these incident characteristics can help develop 

more effective incident management strategies. The third sub-objective is to investigate 

the effectiveness of real-time information and incident management approaches on 

congestion reduction and system reliability. The simulation results from this sub-

objective can provide guidance on design and evaluation of the current information and 

incident management practices. 

The objectives are addressed using the Monte Carlo random sampling procedures 

for incident simulation, based on realistic distribution assumptions and parameter settings 

from real world data. The procedure and parameter setting of this simulation procedure is 

described in detail in the next section. The simulation procedure then is integrated into 

the day-to-day simulation framework proposed in Chapter 4.  

 

6.2.3 Day-to-day Incident Simulation Procedures  

In DYNASMART simulator, incident is implemented as capacity reduction on the 

specified link during a specified time window. For each peak hour simulation, the 

number of incidents, incident location, start and end time, and severity (specified as a 

capacity reduction ratio) are pre-specified. If a link is closed, all the vehicles will be 

rerouted after reaching the switching point (i.e. the upstream node of the link).  

 For day-to-day incident simulation, at the beginning of each day, the incident 

simulation procedures are applied to randomly generate the number of incidents based on 

the assumed distribution. When number of incidents are known, they are then be 

allocated to locations randomly picked from a super set. This super location set is 

predefined based on the link characteristics, peak volume and functional classification. 
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Knowing the locations where the incident will occur, the incident type, cross-sectional 

location, and its duration are then realized based on the corresponding distribution.  After 

all the incident parameters are generated, all the incidents are then feed to the 

DYNASMART within-day simulator.  The incident generation procedures and 

distribution assumptions are discussed as follows. 

Using Monte Carlo simulation techniques, incident occurrences are simulated 

each day using a Poisson arrival process. Skabardonis et. al (1999) shows that Poisson 

distribution provided an adequate fit for the incident frequency, suggesting that the 

number of incidents at any time period is random and independent of the number of 

incidents in any other time interval. In addition, incident types, cross-sectional location, 

and its severity are simulated by multinomial distribution. Incident duration, detection, 

response, and clearance times are simulated by random sampling from a log-normal 

distribution. Skabardonis et. al (1999) shows that the log-normal distribution fits well in 

the incident duration distribution based on the Los-Angeles I-10 field data. All 

parameters used in the simulation procedures are based on 1) FHWA Traffic Incident 

Management Handbook (2001), 2) Los-Angeles I-10 dataset (Skabardonis, 1999), and 3) 

1996 accident data in Atlanta, GA (Persley, 1999).   

The simulation procedures and the distribution parameters are described as 

follows: 

 

1) Incident occurrence simulation on different type of highway facilities 

Based on Los-Angeles I-10 incident data (Skabardonis, 1999), average incident 

occurrence rate is 1.3 incidents/dir/mile/3-hour peak period. For the experimental 
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network in the study (Dallas-FW network), the average length of freeway links is 0.44 

mile, and arterial links is 0.25 mile. The assumption is that in the simulated peak period 

no multiple incidents could happen on the same link. For this study, the simulated 

morning peak is 1.5 hours. Linear factor is calculated based on the total length of the 

possible incident location super set and the peak hour duration. This linear factor then is 

applied to the original rate to obtain the rate of 0.286 incidents/mile/dir/peak for the 

Dallas experimental network. For a low and high level of occurrence rate, 10 percentile 

and 90 percentile values based on the mean value and Poisson demand distribution are 

chosen. The intent for choosing these extreme values is to reduce the bias on the 

simulated occurrence of severe incidents induced by random sampling errors and for ease 

of comparison. 

 Based on given incident occurrence rate, random sampling based on the poisson 

distribution is made to generate number of incidents occurred in each link for each day.  

 

2) Conditional probability of different incident types 

 Incident types are divided into accident, breakdown (disablement) and 

Debris/Peds/Others. Given the occurrence of an incident, the conditional probabilities of 

three types in peak hour are 10%, 80%, and 10%, respectively, as per the guidelines in 

the Incident Management Handbook (2001). Using these conditional probabilities, the 

incident type for each incident is determined by two successive random trials using 

binomial distribution.  
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3) Incident cross-sectional locations 

 For the Dallas experimental network, all arterial links are of urban type. The 

shoulders of arterial links are 2” curb and gutter only, so incidents occurred on arterial 

links are always blocking lanes. For freeway links, the conditional probability values for 

locations given the type of the incident are listed in Table 6-1, and are determined by a 

binomial random trial.  

 
Table 6-1 Conditional Probability of Incident Cross-sectional Locations 

Incident Types On 
Shoulder 

Blocking 
lane 

Accident 60% 40% 

Breakdown 80% 20% 

Debris/Peds/Others 70% 30% 

 

4) Incident severity 

 Based on the type of the incidents and number of lanes blocked, the capacity 

reduction ratios are listed in Table 6-2 based on Highway Capacity Manual (2000). The 

number of lanes blocked is assumed to be equally likely, and is determined by a uniform 

distribution. Based on the number of lanes blocked, the capacity reduction ratio is found 

in Table 6-2. This capacity reduction ratio is then applied in the simulation.  

 
Table 6-2 Capacity Reduction Ratio by Facility Type 

Facility    
type 

On Shoulder   
(Non-accident) 

On Shoulder 
(Accident) 

Blocking     
1 Lane 

Blocking      
2 Lanes 

Blocking 3 
Lanes 

1 lane 0.1 0.3 1 1 1 
2 lanes 0.05 0.19 0.65 1 1 
3 lanes 0.01 0.17 0.51 0.83 1 
4 lanes 0.01 0.15 0.42 0.75 0.87 
5 lanes 0.01 0.13 0.35 0.6 0.8 
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5) Incident duration 

There are three components on incident durations: detection, response, and 

clearance times. Incident detection time refers to the time period from occurrence to the 

time when the incident is reported to the reacting agency and the incident is verified. The 

response time starts from verification and ends when the response arrives at the incident 

scene. The clearance time refers to the time period from response arrival to the time when 

incident being completely removed from the freeway and not remaining on the shoulder. 

To simplify the simulation process, incident durations are considered as a whole, and a 

log-normal distribution is assumed. The log-normal distribution parameters are estimated 

given the upper and lower bounds from the incident management handbook. The 

estimated parameters are shown in Table 6-3. 

 The total incident duration then can be simulated by a Log-Normal random 

variable generation given the mean and standard deviation. 

 
Table 6-3 Incident Duration Parameters 

Location  Incident Type Lower Bound Upper Bound Mean of LN(x)** 
Standard 

Deviation of 
LN(X) 

Accident 45 60 3.95  0.06  
Breakdown 15 30 3.05  0.13  On Shoulder 

Others 15 30 3.05  0.13  
Accident 45 90 4.15  0.13  

Breakdown 15 30 3.05  0.13  Blocking Lane 
Others 30 45 3.60  0.08  

 

**Mean and Standard deviation for LN(X) are estimated based on the assumption of symmetric error level of 1%. 

 

6) Incident occurrence time 

 In this chapter, only morning peak hours (from 7:00 AM to 8:30 AM, 1.5 hours in 

duration) are simulated, given that the significant delay is involved in peak hour 
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commuting context. Incident can occur at any time during the peak hour, but is also 

correlated to the link volume. However, in the existing literature, there is no statistical 

analysis and justification on this correlation. If we simulate the incident start time as a 

random or normal distribution, some of the incidents will occur when the network 

loading is low, and the effect of capacity reduction is minimal given the relatively short 

peak hour horizon. For experimental control purpose, a set of fixed start time values (7:20, 

7:25, 7:30, and 7:40)are tried for baseline level and the results are similar.  For brevity, 

only the results from fixed incident start time at 7:25 (corresponds to the start time of the 

peak loading during the morning peak period) is reported.  

 

6.3 Experimental Design and Procedures 

Based on the simulation framework with incident procedure enabled, five set of 

experiments are conducted in this chapter to achieve the aforementioned objectives. The 

first set of experiments focuses on the effect of incident on system evolution under 

different recurrent congestion levels. The objective is to compare against the no-incident 

results presented in previous chapter to discover differences in system evolution. In 

addition, experiment set 2 focuses on the impact of incident characteristics. The purpose 

of experiment 3 to 5 is to explore the effectiveness of potential ways to improve system 

performance and reliability. Specifically, experiment 3 evaluates the system performance 

under different real time information market penetration levels. Experiment 4 focuses on 

the effectiveness of incident management strategies. Experiment 5 is to explore the 

effectiveness of reducing the uncoordinated departure time adjustment behavior of users 

as a control measure from traveler behavioral point of view.  Details of the factors and 
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levels are provided in Sections 6.3.1 to 6.3.3. The corresponding treatment levels 

described next are varied systematically in a series of computational experiments, while 

other experimental factors are held fixed to avoid confounding. Performance measures 

pertaining to system dynamics and reliability, commute performance, information quality, 

route choice and departure-time response metrics are recorded in the experiments and 

analyzed, as described in section 6.4. This set of experiments is also conducted on the same 

Dallas Fort Worth network as in the previous chapter. 

 

6.3.1 Impact of Incidents under Different Recurrent Congestion Level 

Three levels of recurrent congestion are selected corresponding to the loading 

level of 12596 (mild), 15861(high), and 19098(severe) vehicles. The baseline is the mild 

congestion level, with an average travel speed of 18 mph, which corresponds to an 

average travel time of 12.9 min on the network used in this study. For each recurrent 

congestion level, both no-incident and with-incident experiments are conducted. The 

focus on this experimental factor is on the difference of system evolution under incident 

scenarios under different network congestion levels. This experiment seeks insights to 

understanding the impact of incidents on day-to-day dynamics and system reliability 

under different level of network congestion.  

 

6.3.2 Impact of Incident Characteristics: 

This set of experiments attempts to examine the effect of incident levels on the 

system performance and stability from day-to-day. Four incident characteristics are 

varied systematically in this set of experiments: Incident occurrence rate, incident type 
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distribution, incident severity, and incident durations. For each factor, three levels are 

considered: low, moderate, and high. The baseline level is set to the normal incident 

characteristic scenario, with all four factors in the medium level. Under each sub-

experimental factor, the factor under investigation is varied from low to high, with all 

other factors held at the baseline level. Insights on how each of these incident 

characteristics affect system dynamics and network reliability can help evaluate various 

congestion mitigation strategies aimed to reduce congestion induced by incidents and 

developing more effective incident management strategies. Details of parameter settings 

are described as follows: 

 

1) Incident Probability of Occurrence 

Poisson distribution of incident occurrences is assumed. The expected value of the 

Poisson distribution is calculated from the LA I-10 dataset, which corresponds to the 

medium level, with occurrence rate of 0.65 incident per mile per peak hour. For low level 

of incident occurrence rate, 10 percentile value (0.557 incident per mile per peak hour) is 

used. 90 percentile value (0.743 incident per mile per peak hour) of the distribution is 

used for high incident rate level. The percentile values of occurrence counts then 

converted to probability of occurrence in each link. 

 

2) Distribution of Incident Types 
 
 For this experimental factor, the conditional probability of accidents is varied by 

+/- 50% from the baseline level for low and high levels respectively, as listed below: 
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Table 6-4 Experimental Levels for Distribution of Incident Types 

Conditional Probability of Incident Types (%) 
Levels 

Accident Break Down Others 
Low Accident (-50%) 5 85 10 

Medium Accident (mean) 10 80 10 
High Accident (+50%) 20 70 10 

 
 
3) Incident Severity 

In this experimental factor, given incident occurrence and type, the capacity 

reduction values are varied in three levels: Low (25% lower than baseline), Medium 

(baseline capacity reduction), and High (25% higher than baseline level). 

 

4) Incident duration  

For this experimental factor, given other parameters in baseline level, the incident 

duration bounds are scaled up and down 25% to obtain the low and high level. Based on 

the scaled lower and upper bounds, the log normal distribution parameters are 

recalculated and used for incident duration simulation. 

 

6.3.3. Evaluation of Corrective Control Measures to Improve System Performance 
and Reliability  
 
 From a practical level, this set of experiments investigates the effectiveness of 

different ITS alternatives on day-to-day system performance under non-recurrent 

congestion. Specifically, two types of ITS strategies are analyzed in this sub-objective: 

Real-time information market penetration and Incident management strategies. In 

addition, from traveler behavioral point of view, another control measure simulated is the 

coordination of commuters’ departure time adjustment behavior. The details of each 

experimental factor are explained as follows: 
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1) Information Market Penetration 

The first strategy under investigation is the real-time information strategy. By 

providing real-time pre-trip and enroute traveler information to informed users via in-

vehicle devices, this strategy is commonly used and identified in the ITS strategic plans 

for various U.S. cities. Under this experimental factor, various levels of market 

penetration of real-time information are examined, from 10% to 90% with incremental of 

20%. The baseline level is set to 0.1% market penetration, which is intended to represent 

a system with very few informed users (corresponding to early stage of in-vehicle device 

adoption). Understanding the impact of market penetration of informed users, user’s 

response characteristics and day-to-day system dynamics may help in developing 

guidelines for more efficient and reliable ATIS products and services. 

 

2) Incident Management Approaches  

The primary components of the freeway management system consist of a fiber-

optically linked closed loop system with surveillance cameras (CCTV), Dynamic 

Message Signs and ramp meters connected to a set of traffic management centers (TMCs). 

Utilizing the CCTV cameras, incident detection and verification time can be significantly 

shortened (by half, Presley 1999). Incident response software systems can also provide 

immediate response or contact list for each incident, thus reducing the incident 

identification/dispatch time significantly. In addition, a city or state wide emergency 

response team and metro-wide incident management task force can also minimize the 

disruption of the normal traffic flow at an incident.  
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 To test the effectiveness of incident management approaches on system 

performance and reliability, three experimental scenarios are designed. The incident 

management programs are simulated by applying an incident duration reduction factor. 

The first scenario represents the early stage of adoption, by assuming that only a CCTV 

system is installed to help detect and verify the incident occurrence. The corresponding 

incident duration reduction for the first scenario is 10%. The second scenario then 

represents the full adoption of the typical incident management program, along with 

Highway Patrol Services being deployed. In this scenario, a 36% percent incident 

duration reduction is simulated (36% incident duration reduction is adopted from the 

benefit of Atlanta’s NAVIGATOR system). The last scenario assumes an additional 10% 

incident duration reduction (thus a total reduction of 46%). This scenario takes into 

consideration possible further improvements by the coordination of emergency response 

units and additional emergency vehicle dispatch measures such as dedicated emergency 

vehicle signals and lanes.  

By examining the effect of varying information and incident management 

approaches on the system performance and stability from day-to-day, this set of 

experiment seeks insights on the design and evaluation of effective incident mitigation 

strategies.  

 

3) Reduction of Uncoordinated Departure Time Switching Rate 

One important finding in chapter 5 was that departure time switching appears to 

exert a greater influence on day-to-day dynamics than route switching. Results shown 

later in section 6.4.3 will also indicate that the response from non-informed users has a 
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large impact on system dynamics. These findings suggest that reduction of departure time 

switching rate is a promising way to influence non-informed users and reduce system 

congestion and unreliability.  

To test this approach, a set of departure time switching rate reduction levels 

(namely 32%, 17%, 11% and 7%) are selected. The levels selected are based on 60 days 

average values observed in the simulations, and thus are not exactly equal intervals. 

These scenarios are simulated by adjusting the departure time inertia coefficient in the 

departure time adjustment model (described in chapter 5, section 5.3.2) in the range of 0 

to -1.5 until a desired value within a 2% range is observed.  

  

6.3.4 Additional Performance Measures 

Recall that six categories of performance measures used in previous chapters 

(described in detail in Chapter 4) are: 1) system dynamics, 2) commuter performance, 3) 

information quality, 4) route choice and switching response, 5) individual level switching 

behaviors, and 6) spatial rerouting opportunity measures. These measures are also used in 

this chapter. In addition, two additional performance measures are developed and used 

for travel time reliability: travel time index and buffer index. These measures are adopted 

from the Urban Mobility Report (Texas Transportation Institute, 2005). The basic 

definitions are explained as follows. 

 

 1) Travel Time Index: 

Travel Time Index is defined as the ratio of the peak period travel time to the free 

flow travel time. For example, a value of 1.20 means that average peak travel times are 

20% longer than free flow travel times. Travel time index is a measure of network 
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congestion level.  

Travel Time Index = Peak period travel time
Free flow travel time

 

 

2) Buffer Index 

Buffer index is the extra time (or buffer) needed to ensure on-time arrival for most 

trips. For example, a value of 40% means that a traveler should budget an additional 8 

minute buffer for a 20-minute average peak trip time to ensure 95% on-time arrival.  

Buffer Index = 95th percentile travel time average travel time
average travel time

−  

The difference in this study compared to the TTI study is that instead of an 

aggregate measure (e.g., average travel time for all vehicles traveled, estimated by the 

prevailing speed within a certain interval), these measures are computed at a disaggregate 

level for each individual vehicle, and then aggregated to the system level average. 

To avoid the impact of the randomness of incidents, the same set of random 

numbers are used for the incident generation module for each scenario under comparison 

(with the exception of the incident characteristic experiments, in which case they are 

incident specific across scenarios). The results and findings from these sets of 

experiments are presented in the next section. 

 

6.4 Experimental Results and Discussion 

The results corresponding to experiment 1 to 5 are shown in Tables 6-5 to 6-9 

respectively. As noted in chapter 5, the results corresponding to each experimental 

treatment level are presented in terms of percentage deviation from the baseline case 
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(indicated in each experiment), unless noted otherwise. The evolution of a few key 

performance metrics are displayed in Figures 6-1 to 6-7. The results are discussed in 

detail below for each set of experiments. 

 

 6.4.1 Experiment 1: System Performance under Incidents for Different Recurrent 
Congestion Level (Table 6-5) 
 

Under the no-incident scenarios, with increasing network congestion, the average 

network travel time increases significantly (by 42% from moderate to high, and another 

42% from high to severe congestion). The trip time variation from day to day (measured 

as the standard deviation of average trip time across 60 days) also increases dramatically 

(by 163% from moderate to high, and another 36% from high to severe). Furthermore, 

trip time reliability decreases with increasing congestion level (decreases 12.7% from 

moderate to high level, and an additional 11.9% decrease from high to severe congestion 

level). With high and severe congestion levels, average trip time varies considerably from 

day-to-day (trip time reliability is 73% for high congestion level and 61% for severe 

congestion). These observations indicate the importance of travel time reliability and 

variability particularly under highly congested conditions. 
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Table 6-5     Performance Measures under Different Recurrent Congestion Level under Incidents 
 

Mild congestion (NO 
incident) 

Mild congestion 
(With incident) 

High congestion 
(NO incident) 

High congestion 
(With incident) 

Severe congestion 
(NO incident) 

Severe congestion 
(With incident) 

Network and User Performance 
Measures                                 
(averaged over 60 days) Average Std Dev Average Std Dev Average Std Dev Average Std Dev Average Std Dev Average Std Dev 
System Performance                         
   Trip time (min.) 11.47  0.29  12.89  1.47  16.34  0.75  17.71  1.47  23.18  1.0142 24.97  2.00  
   TT volatility ratio (min. / min.) 0.60  0.10  1.03  0.33  1.18  0.21  1.62  0.33  1.95  0.2248 2.30  0.35  
   Reliability (fraction) 0.86  0.22  0.76  0.23  0.73  0.26  0.64  0.26  0.61  0.262 0.54  0.25  
   Travel time index 1.15  1.20  1.40  1.21  2.03  2.11  2.27  2.09  2.96  2.5146 3.25  2.54  
   Buffer index (fraction) 0.51  0.42  0.95  0.62  0.70  0.48  0.95  0.53  0.81  0.4467 0.91  0.46  
Commute Performance                          
   Late schedule delay (min.) 2.50  0.25  3.45  1.32  3.79  0.61  4.66  1.28  5.33  0.8812 6.24  1.74  
   Early schedule delay (min.) 3.33  0.58  3.69  0.61  4.18  0.38  4.55  0.46  5.25  0.2808 5.77  0.47  
   Early arrival (fraction) 0.23  0.19  0.26  0.17  0.27  0.17  0.30  0.16  0.31  0.1545 0.33  0.14  
   Ontime arrival (fraction) 0.61  0.24  0.53  0.21  0.50  0.25  0.44  0.23  0.39  0.2388 0.34  0.22  
   Late arrival (fraction) 0.16  0.14  0.21  0.13  0.23  0.16  0.27  0.14  0.30  0.1579 0.33  0.15  
Departure Time Response                          
   Switching Magnitude to Later(min.) 4.49  0.21  4.49  0.20  4.60  0.16  4.65  0.17  4.74  0.1195 4.83  0.11  
   Switching Magnitude to Early(min.) 4.65  0.12  4.80  0.24  4.78  0.14  4.85  0.22  4.87  0.1801 5.03  0.28  
   Switching Rate (%) 0.49  0.01  0.50  0.01  0.52  0.01  0.53  0.01  0.55  0.0085 0.56  0.01  
Information Quality (Fraction)                         
   Ave. over estimation 0.01  0.00  0.01  0.00  0.03  0.01  0.03  0.01  0.06  0.0068 0.06  0.01  
   Ave. under estimation 0.02  0.00  0.02  0.00  0.03  0.00  0.03  0.00  0.04  0.0032 0.04  0.00  
   Information reliability 0.95  0.00  0.95  0.01  0.92  0.01  0.92  0.01  0.89  0.0082 0.88  0.01  
Route Choice & Switching                         
   Percentage links in common (fraction) 0.65  0.01  0.60  0.03  0.60  0.02  0.55  0.03  0.57  0.0193 0.54  0.02  
   Threshold of relative TT saving(fraction) 0.13  0.00  0.14  0.01  0.14  0.00  0.14  0.01  0.13  0.0047 0.13  0.01  
   Threshold of absolute TT saving(min.) 0.71  0.04  0.85  0.11  0.97  0.04  1.06  0.09  1.14  0.0539 1.17  0.06  
Individual Level Switching Behaviors                         
  Uninformed users                         
   DT switch percentage (fraction) 0.24    0.25    0.26    0.27    0.29    0.30    
  Informed users                         
   Non-switching rate (%) 65.45    64.56    62.98    62.01    60.72    59.70    
   Route only switch (%) 11.42    11.72    12.15    12.44    12.03    12.16    
   Departure Time only switch (%) 19.64    19.91    20.74    21.14    22.56    23.26    
   Users switching both (%) 3.50    3.82    4.13    4.40    4.67    4.88    
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Comparing the incident scenario with corresponding no-incident scenario, the 

average trip time increases from the no-incident case but with a decreasing rate (by 

12.4% under moderate congestion, 8.4% under high congestion, and 7.7% under severe 

congestion). Under incident scenarios, the day-to-day variation of trip time increases 

significantly (with standard deviation doubled under both high and severe congestion 

level). The largest impact on trip time variability occurs under moderate congestion level 

(standard deviation increases by a factor of 4.2). Day-to-day trip time variation trends 

between incident and non-incident scenarios under different congestion levels are shown 

in Figure 6-1. Trip time reliability is also consistently lower under incident scenarios (by 

8-10%).  

 

Figure 6-1 Average travel time under different recurrent congestion 
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In terms of commute performance measures, with increasing network congestion 

under no-incident, both the late schedule delay and early schedule delay increase 
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significantly, with lower increase rate on early schedule delay. Under moderate 

congestion, late schedule delay experienced on the network is 2.5 min. and early schedule 

delay is 3.3 min. Under high congestion, 5.3 min. of late schedule delay and 5.3 min. of 

early schedule delay is observed. Furthermore, the volatility of late schedule delay 

increases by a factor of 2.47. These trends can be explained by the increase in travel time 

with increasing congestion. Under incident scenario, the late schedule delay increases by 

only 23% under high congestion and 17% under severe congestion. However, the 

volatility of late schedule delay is nearly doubled for both cases. A comparison of the 

SDL trends under severe congestion with both incident and no-incident scenarios is 

shown on Figure 6-2. Under incident scenarios, both the late and early arrival rates 

increase by 3-5%, and on-time arrival rate decreases by 3-5% comparing with the 

corresponding no-incident cases. These results show that under the impact of incident, 

commuters will experience much less stable travel in terms of delays from day-to-day.  

 

Figure 6-2 Schedule delay under severe congestion 
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The unstable travel experience can also be explained by user’s behavioral 

response on both departure time adjustment and route choice decisions. Users’ departure 

time adjustment decisions under day-to-day network dynamics is captured through the 

switching rate and the switching magnitude to both earlier and later sides. For departure 

time adjustment behavior under the influence of incidents, the switching rate increases by 

1% consistently for all congestion levels, with 1.5%-3.3% increase in early side 

switching magnitude. The route choice decisions are captured by two related performance 

measures: 1) average percentage links in common, which reflects the degree of day-to-

day route switching, and 2) threshold of relative and absolute trip time saving for users 

choosing the best paths.  With incidents, the percentage of links in common decreases by 

5% percent for both moderate and high congestion levels, and 3% for the severe 

congestion level. This suggests a greater degree of route switching from day to day under 

incidents. The variability of percentage links in common is also consistently higher (by 1-

2%) under incidents. A comparison of percentage links in common for both incident and 

no-incident scenarios under moderate congestion level is given in Figure 6-3. Note that 

even at a moderate congestion level, the percentage of links in common does not 

converge to a certain level, and is bounded by a range of nearly 5% deviation from the 

mean under the incident scenario. This suggests that the route assignment from day–to-

day may not reach steady state. Furthermore, the system performance may also deviate 

from user equilibrium assignment.  

The results from this set of experiments show the significant impacts of incidents 

on day-to-day system performance and reliability. This suggests that considering the 

incident impact for system analysis and evaluation is necessary, and some form of 
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coordination of user information may be needed to steer the system to more desirable 

states. 

 

 

Figure 6-3 Percentage Links in Common under moderate congestion 
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6.4.2 Experiment 2: Impact of Incident Characteristics 

As shown in Table 6-6, the performance measure is compared from low to high 

level for each incident characteristic in this section, unless otherwise specified. 
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Table 6-6     Performance Measures under Different Levels of Incident Characteristics 

Network and User Performance 
Measures                                 
(averaged over 60 days) 

Baseline 

Low 
Incident 

Rate      
(10%ile) 

High 
Incident 

Rate      
(90%ile) 

Low 
Probability 

of 
Accidents

High 
Probability 

of 
Accidents

Low 
Incident 
Severity 

High 
Incident 
Severity 

Low 
Duration 

High 
Duration 

System Performance                   
   Trip time (min.) 12.89  12.39  13.11  12.74  13.50  12.30  13.98  12.78  13.64  
   TT volatility ratio (min. / min.) 1.03  0.91  1.03  0.92  1.18  0.80  1.34  0.95  1.20  
   Reliability (fraction) 0.76  0.80  0.74  0.78  0.72  0.82  0.66  0.78  0.71  
   Travel time index 1.40  1.31  1.43  1.38  1.51  1.31  1.59  1.38  1.54  
   Buffer index (fraction) 0.95  0.82  0.93  0.85  1.15  0.69  1.23  0.87  1.01  
Commute Performance                    
   Late schedule delay (min.) 3.45  3.11  3.46  3.15  3.86  2.83  4.18  3.23  3.88  
   Early schedule delay (min.) 3.69  3.54  3.75  3.61  3.83  3.47  3.96  3.65  3.77  
   Early arrival (fraction) 0.26  0.25  0.26  0.25  0.27  0.24  0.28  0.26  0.27  
   Ontime arrival (fraction) 0.53  0.56  0.52  0.54  0.53  0.57  0.50  0.54  0.51  
   Late arrival (fraction) 0.21  0.19  0.21  0.21  0.21  0.19  0.22  0.20  0.22  
Departure Time Response                    
   Switching Magnitude to Later(min.) 4.49  4.45  4.50  4.51  4.51  4.49  4.55  4.49  4.51  
   Switching Magnitude to Early(min.) 4.80  4.72  4.77  4.73  4.89  4.69  4.93  4.75  4.83  
   Switching Rate (%) 0.50  0.50  0.50  0.50  0.51  0.50  0.51  0.50  0.51  
Information Quality (Fraction)                   
   Ave. over estimation 0.01  0.01  0.02  0.02  0.02  0.02  0.02  0.02  0.02  
   Ave. under estimation 0.02  0.02  0.02  0.02  0.02  0.02  0.02  0.02  0.02  
   Information reliability 0.95  0.95  0.95  0.95  0.95  0.95  0.95  0.95  0.95  
Route Choice & Switching                   
   Percentage links in common (fraction) 0.60  0.60  0.59  0.60  0.59  0.61  0.58  0.60  0.59  
   Threshold of relative TT saving(fraction) 0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  
   Threshold of absolute TT saving(min.) 0.85  0.81  0.87  0.86  0.86  0.80  0.88  0.85  0.87  
Individual Level Switching Behaviors                   
  Uninformed users                   
   DT switch percentage (fraction) 0.25  0.25  0.25  0.25  0.25  0.25  0.26  0.25  0.26  
  Informed users                   
   Non-switching rate (%) 64.56  64.72  64.06  64.36  64.11  64.62  63.91  64.65  64.09  
   Route only switch (%) 11.72  11.92  11.96  11.73  11.89  11.69  11.96  11.72  11.88  
   Departure Time only switch (%) 19.91  19.71  20.11  20.08  20.12  19.88  20.24  19.80  20.13  
   Users switching both (%) 3.82  3.65  3.87  3.83  3.88  3.81  3.89  3.83  3.90  
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 For system performance, incident severity has the most significant impact on 

average travel time. The average trip time increases by 13.7% under high incident 

severity (from 12.3 min. to 14 min.). The increase of average travel time for incident 

duration, probability of accidents, and incident rates are 6.7%, 6%, and 5.8%, 

respectively. For within-day dynamics, trip time volatility ratio increases by 67.5% under 

incident severity, which is consistent with the change in travel time. Other factors have 

less prominent impact on trip time volatility ratio, with around 26% increase in this 

performance measure. Changes of travel time index values are also consistent with the 

average travel time trends. In terms of system reliability, reliability measure decreases by 

16% and buffer index increases by 54% under high incident severity. Incident duration 

also shows large impact on trip time reliability, with 7% decrease in reliability and 16% 

increase in buffer index. For probability of accident, the decrease of reliability is 6% and 

the increase of buffer index is 35%. One general observation is that the impact under low 

and high level is not symmetric when comparing to the baseline level. The high level has 

a much larger impact on system performance.  This unsymmetrical effect indicates that 

the flow is much more unstable and can deteriorate very quickly when the congestion 

level is high. 

 For commute performance, under high incident severity, late schedule delay 

increases by 47.7% (from 2.83 min. to 4.18 min.). Similarly, the on-time arrival rate 

decreases from 57% to 50%. Incident rate and duration also have large impact on the on-

time arrival rate, with a 4% and 3% decrease, respectively, from the low to high level. 

The impact of probability of accident on on-time arrival rates is minimal with only a 1% 

decrease.  



 156 

 Under high incident severity, duration, and probability of accidents, users who 

adjusted their departure time are slightly higher by 1% when comparing with a 

corresponding low level. Switching magnitude for departure time is also higher under a 

high level for all cases, with the largest impact occurring under high incident duration 

(with 5% increase). Route choice responses have the same trends as departure time 

responses, with a 3% decrease in percentage links in common under the high incident 

severity case as the largest impact.  

 In summary, the incident severity has the largest impact on system performance, 

and incident frequency has the least impact. As a general observation, the influence of 

incident characteristics on system reliability is much larger than on travel time. From a 

control measure point of view, the duration is probably the most obvious and direct 

results one can expect from incident management strategies, and the duration reduction 

does have significant impact on system performance and reliability. The incident duration 

reductions are further analyzed in section 6.4.4 (incident management strategies). 

 

6.4.3 Experiment 3:  Role of Information Market Penetration on Day-to-day 
Dynamics  
 

The results for this set of experiments are shown on Table 6-7. 
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Table 6-7     Performance Measures under Different Information Market Penetration 
 

Network and User Performance 
Measures                             
(averaged over 60 days) 

No 
Information 
(0.1% MP)

10% MP 20%MP 30% MP 40% MP 50% MP 60% MP 70% MP 80% MP 90% MP 

System Performance                     
   Trip time (min.) 14.36  13.67  12.89  12.56  12.25  11.85  11.82  11.61  11.57  11.61  
   Trip time (informed) 10.34  10.55  10.72  10.72  10.91  10.86  11.10  11.16  11.28  11.47  
   Trip time (non-informed) 14.37  14.02  13.42  13.37  13.15  12.86  12.91  12.68  12.76  12.86  
   TT volatility ratio (min. / min.) 1.18  1.12  1.03  0.99  0.95  0.88  0.88  0.86  0.87  0.87  
   Reliability (fraction) 0.72  0.74  0.76  0.78  0.79  0.81  0.81  0.81  0.81  0.80  
   Travel time index 1.64  1.52  1.40  1.32  1.27  1.20  1.20  1.17  1.18  1.19  
   Buffer index 0.98  0.97  0.95  0.91  0.90  0.87  0.84  0.85  0.84  0.83  
Commute Performance                      
   Late schedule delay (min.) 3.78  3.62  3.45  3.29  3.19  3.07  3.05  2.94  2.94  2.92  
   Early schedule delay (min.) 3.83  3.75  3.69  3.62  3.61  3.55  3.54  3.51  3.53  3.56  
   Early arrival (total) 0.27  0.26  0.26  0.26  0.26  0.25  0.25  0.25  0.25  0.25  
   Ontime arrival (total) 0.51  0.52  0.53  0.55  0.55  0.56  0.56  0.56  0.56  0.55  
   Late arrival (total) 0.22  0.22  0.21  0.20  0.20  0.19  0.19  0.19  0.19  0.20  
Departure Time Response                      
   Switching Rate (%) 0.51  0.51  0.50  0.50  0.50  0.49  0.49  0.50  0.50  0.50  
Information Quality (Fraction)                     
   Ave. over estimation 0.00  0.01  0.01  0.03  0.04  0.05  0.06  0.07  0.09  0.10  
   Ave. under estimation 0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  
   Information reliability 0.97  0.95  0.95  0.95  0.95  0.94  0.94  0.94  0.94  0.93  
Route Choice & Switching                     
   Percentage links in common (fraction) 0.56  0.60  0.60  0.59  0.59  0.59  0.59  0.59  0.58  0.58  
Individual Level Switching Behaviors                     
Uninformed users                     
  DT switch percentage (fraction) 0.25  0.25  0.25  0.25  0.25  0.25  0.25  0.25  0.24  0.24  
Informed users                     
   Non-switching rate (%) 78.72  70.26  64.56  57.55  51.60  45.28  39.24  33.07  26.94  20.99  
   Route only switch (%) 0.13  6.09  11.72  18.50  24.56  30.77  36.71  42.83  48.86  54.65  
   Departure Time only switch (%) 21.15  21.72  19.91  18.08  15.88  14.07  12.13  10.15  8.24  6.31  
   Users switching both (%) 0.00  1.94  3.82  5.88  7.97  9.88  11.92  13.95  15.97  18.06  
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As the information market penetration (MP) increases, the average trip time 

decreases at a decreasing rate, and stops decreasing when MP is larger than 70% (see 

Figure 6-4). Figure 6-4 also shows the trends of average trip time for both informed and 

uninformed users separately. An important observation is that the benefit of increasing 

information market penetration is largely contributed by non-informed users, rather than 

informed users. This suggests that more accurately modeling the behavior of non-

informed users is equally important to modeling informed users, and the day-to-day 

dynamics induced by the response from non-informed users are also worthy of attention.  

 

Figure 6-4 Average triptime under different information market
penetration
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With increasing market penetration, trip time reliability increases from 72% 

(under no information case) to 81% (with MP = 50%). With further increase in market 

penetration, the travel time reliability remains stable and slightly decreases. These trends 

are also consistent with the system congestion levels, as the travel time index decreases 

steadily, and then increases after market penetration reaches 70%. Similarly, although 
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significant reduction of buffer index is seen in the low to medium level MP (6% from 

10% to 30%), the buffer index measure stops decreasing and converges to 84% under 

high market penetration. The trip time volatility (standard deviation of average trip time) 

keeps decreasing significantly (by 0.34 minutes from 50% to 70%, and 0.24 minutes from 

70% MP to 90% MP).  The results imply that the benefit of larger market penetration 

decreases as the MP increases, though the system can still perform slightly better. Figure 

6-5 shows the trends of trip time reliability, travel time index, and buffer index from day 

to day. These results show that a careful benefit – cost analysis is necessary when design 

and implementing information strategies.  

 

Figure 6-5 Reliability and congestion measures under
different information market penetration 
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The results can be explained by the information quality measures. From 10% to 

40% market penetration level, information quality remains reasonably good (information 

errors remain stable from 10% to 20% MP, and increase slightly from 20% to 40% MP). 

The information reliability also remains stable from 10% to 30% MP. However, as the 
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MP increases further (past 50% MP level), both overestimation and underestimation 

errors increase by a larger rate, and information reliability decreases by 1% with each 

10% step of MP increase.  In addition, with the increasing market penetration, more 

travelers are capable of switching routes because of information. For informed users, 

non-switching rate decreases from 70% (10% MP) to 21% (90% MP), and route only 

switching rate increases from 6% (10% MP) to 55% (90% MP). These aggressive 

switching behaviors indicate that the quality and reliability of prevailing information 

deteriorates quickly with increasing market penetration. This trend is also shown on the 

increasing average trip time of informed users under high market penetration (from 50% 

to 70% then to 90% MP, the travel time of informed users increased by 0.3 minutes).   

This set of experiments suggests that moderate market penetration level (40%-

50%) is desirable from both an average trip time and a day-to-day trip time reliability 

perspective, whereas higher market penetration levels may be considered if a lower 

benefit – cost ratio is acceptable. 

 

6.4.4 Experiment 4: Effectiveness of Incident Management Strategies  

Recall that in experiment 2, the incident duration reduction levels were assumed 

differently than in this experiment. In experiment 2, the major focus was on the effect of 

duration on system performance, and the low and high levels were assumed symmetric 

(+/- 25%). However, in this set of experiments, the capacity reduction ratio is estimated 

from the reported statistics from the literature. The results are summarized in Table 6-8. 
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Table 6-8     Performance Measures under Different Incident Management Scenarios 
 

Baseline (No Incident 
Management) 

Incident Management 
Scenario 1 (10% 

duration reduction) 

Incident Management 
Scenario 2 (36% 

duration reduction) 

Incident Management 
Scenario 3 (46% 

duration reduction) 

Network and User Performance 
Measures                                 
(averaged over 60 days) 

Average Std Dev Average Std Dev Average Std Dev Average Std Dev 
System Performance                 
   Trip time (min.) 12.89  1.47  13.14  1.31  12.78  0.98  12.62  0.86  
   TT volatility ratio (min. / min.) 1.03  0.33  1.03  0.31  0.92  0.23  0.88  0.19  
   Reliability (fraction) 0.76  0.23  0.76  0.23  0.79  0.22  0.80  0.22  
   Travel time index 1.40  1.21  1.45  1.26  1.39  1.29  1.36  1.30  
   Buffer index 0.95  0.62  0.91  0.58  0.81  0.50  0.77  0.47  
Commute Performance                  
   Late schedule delay (min.) 3.45  1.32  3.44  1.16  3.11  0.86  3.02  0.72  
   Early schedule delay (min.) 3.69  0.61  3.69  0.56  3.61  0.57  3.56  0.58  
   Early arrival (total) 0.26  0.17  0.26  0.17  0.25  0.17  0.25  0.17  
   Ontime arrival (total) 0.53  0.21  0.53  0.22  0.55  0.22  0.55  0.22  
   Late arrival (total) 0.21  0.13  0.21  0.13  0.20  0.13  0.20  0.14  
Departure Time Response                  
   Switching Rate (%) 0.50  0.01  0.51  0.01  0.50  0.01  0.50  0.01  
Information Quality (Fraction)                 
   Ave. over estimation 0.01  0.00  0.02  0.00  0.02  0.00  0.02  0.00  
   Ave. under estimation 0.02  0.00  0.02  0.00  0.02  0.00  0.02  0.00  
   Information reliability 0.95  0.01  0.95  0.01  0.95  0.01  0.95  0.00  
Route Choice & Switching                 
   Percentage links in common (fraction) 0.60  0.03  0.59  0.03  0.60  0.03  0.60  0.03  
   Threshold of relative TT saving(fraction) 0.14  0.01  0.14  0.01  0.14  0.01  0.14  0.01  
   Threshold of absolute TT saving(min) 0.85  0.11  0.86  0.11  0.84  0.11  0.84  0.09  
Individual Level Switching Behaviors                 
Uninformed users                 
  DT switch percentage (fraction) 0.25  0.08  0.25  0.08  0.25  0.08  0.25  0.08  
Informed users                 
   Non-switching rate (%) 64.56  12.29  64.36  12.35  64.43  12.74  64.65  12.60  
   Route only switch (%) 11.72  11.37  11.72  11.36  11.88  11.52  11.73  11.36  
   Departure Time only switch (%) 19.91  9.11  19.98  9.14  19.96  9.18  19.88  9.22  
   Users switching both (%) 3.82  4.03  3.95  4.14  3.73  3.94  3.74  3.95  
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In the first scenario of the incident management strategy, the deployment of 

CCTV cameras is assumed to bring 10% incident duration reduction by helping the 

incident detection and verification. Interestingly to see, both the average travel cost and 

the trip time reliability measures are not significantly affected in this scenario (the system 

cost increases slightly by 2% on average, which might due to the dynamics of a particular 

simulation scenario. Trip time reliability does not change). However, the reliability 

improvement is observed in terms of trip time volatility where the standard deviation of 

trip times decreases by 11% from 1.47 to 1.31, and the buffer time index decreases by 4% 

from 95% to 91%. Note that the trip time reliability is a disaggregate measure on an 

individual level, which describes the level of stability of individual user’s trip time from 

one day to the next. However, the trip time volatility is an aggregate measure, which 

gives the standard deviation of average trip times for each day. Buffer index measures the 

budget level one can expect greater than the average trip time. Under nonlinear system 

dynamics, these measures can show different trends. Changes in other categories of 

performance measures are also marginal.  

The second scenario simulates the benefit of a relatively complete deployment of 

the incident management strategy, with improved incident response team deployment to 

reduce the duration of an incident. Under a simulated duration reduction of 36%, system 

benefits are observed for both commute performance and day-to-day travel reliability, 

although the average travel time is reduced by only 1%. The trip time variability is 

reduced by 33% (from 1.47 to 0.98 min.) and trip time reliability increases by 3% (from 

76% to 79%). Buffer time index decreases from 95% to 81%. Trip time volatility ratio is 

also significantly reduced by 10.7%. In terms of commute performance, average on-time 
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arrival rate increases by 2% (from 53% to 55%), and late schedule delay is improved by 

9.6%. Users are obviously better off in their commuting experience. 

The purpose of the third scenario is to evaluate the benefit of further increasing 

the effectiveness of the incident management strategy by achieving additional 10% 

incident duration reduction. The results show that with this further improvement, another 

1.3% of the average travel time reduction is observed. Trip time volatility ratio is also 

further decreased further by 4.3%. In terms of travel time reliability, 1% further improved 

is seen in trip time reliability, and another 5% of reduction is observed for buffer index. 

Although on-time arrival rate does not decrease further, the late schedule delay is reduced 

further by another 3%. A comparison of travel time evolution trends for three different 

incident management scenarios are shown in Figure 6-6.  

 

Figure 6-6 Day-to-day travel time trends under different incident management scenarios 
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The results from this section show that the incident management programs are 

effective ways to reduce congestion, improve travel experience, and increase the 

reliability of travel time. However, there are some interesting observations which need 

attention when evaluating the benefits and effectiveness of the incident management 

program. First, the results from the first incident management scenario indicate that the 

system benefit of this type of ITS deployment only (with limited incident duration 

reductions) is rather limited in terms of system cost benefit and day-to-day reliability. 

Secondly, the results in scenario 2 also show that the incident management programs are 

much more effective in improving travel time reliability than improving average travel 

cost. With further improvement of the effectiveness of incident management, as shown in 

scenario 3, still important improvement of system and reliability of performance can be 

achieved, but perhaps with a lower benefit – cost ratio. The third noteworthy finding is 

that under different incident duration reduction scenarios, the user behavioral measures 

do not change significantly. This observation might imply that the quicker release of 

highway capacities by the incident management strategies might not be fully utilized by 

commuters. The results also imply that opportunities exist to further improve the benefit 

introduced by the incident management strategies. More effective information provision 

strategies might be used to improve the information dissemination and user’s 

responsiveness, thus further increasing the benefit of the incident management program.  
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6.4.5 Experiment 5: The Effectiveness of Reducing Commuters Departure Time 
Switching Rates  
 
 Five different levels of departure time switching rates from 32% to 7% are tested 

under this set of experiments, as shown in Table 6-9. The results in this set of 

experiments are consistent with the trends observed in Chapter 5. Although coordinating 

departure time behavior among users is hard to achieve in practice, this set of 

experiments evaluates the potential of this type of approach, and seek insights on how the 

system performs with underestimated departure time switching behavior. Under low 

departure time switching rate, the system performance improves significantly (trip time 

reduces by up to 7% under 7% departure time switching rate from the baseline level, and 

trip time reliability increases by up to 6%). However, the rate of system performance 

improvement is non-linear as shown in Figure 6-7. Only when the departure time 

switching rate is reduced to a very low level (around 10%) does the higher rate of 

reduction on the average trip time occur. Before this low rate level occurs, the impact of 

departure time switching rate reduction is not significant (<1% per 5% reduction on both 

average trip time and trip time reliability). Under low departure time switching rate (7%), 

the buffer index decreases by 12% and travel time reliability shows improvement. The 

travel time index decreases by 15% from a baseline level (normal departure time 

switching rate), which means the system is less congested. With a decreasing departure 

time switching rate, the early arrival fraction keeps increasing, and both the on-time 

arrival rate and late arrival rate continue to decrease. Under a low switching rate (7%), 

the on-time arrival rate decreases by 16%, but the late arrival rate decreases by 6% and 

the early arrival rate increases by 22%. Late schedule delay improved by about 1 minute 

(from 3.45 min. to 2.51 min.). Percentage of links in common increases from 60% to 63% 
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under a low switching rate (7% and 11%), and thus indicates a more substantial route 

switching behavior. However, the percentage informed users who switch route is not 

increased (i.e., remains stable at the 15.5% level for both 7% and baseline cases).  These 

results show that a low departure time switching rate can lead to more effective route 

switching. Although it is highly impractical to restrict the departure time switching rate 

down to 7%, the results imply that models ignoring or over-simplifying the departure 

time switching behavior can be misleading and overestimate the system performance. 

 

 

Figure 6-7 Average trip time under different departure time 
adjustment rate
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Table 6-9     Performance Measures under Different Departure Time Switching Rate 

Network and User Performance 
Measures                             (averaged 
over 60 days) 

Baseline (DT 
switching rate 

51%) 

DT switching 
rate 32% 

DT switching 
rate 25% 

DT switching 
rate 19% 

DT switching 
rate 11% 

DT switching 
rate 7% 

System Performance             
   Trip time (min.) 12.89  12.75  12.71  12.63  12.44  11.98  
   Trip time (informed) 10.72  10.66  10.62  10.55  10.38  9.92  
   Trip time (non-informed) 13.42  13.25  13.21  13.14  12.94  12.48  
   TT volatility ratio (min. / min.) 1.03  0.67  0.51  0.37  0.21  0.12  
   Reliability (fraction) 0.76  0.77  0.77  0.78  0.79  0.82  
   Travel time index 1.40  1.37  1.35  1.34  1.29  1.19  
   Buffer index 0.95  0.95  0.93  0.94  0.90  0.84  
Commute Performance              
   Late schedule delay (min.) 3.45  3.32  3.29  3.18  2.89  2.51  
   Early schedule delay (min.) 3.69  4.09  4.45  4.90  6.39  8.10  
   Early arrival (total) 0.26  0.29  0.30  0.33  0.40  0.48  
   Ontime arrival (total) 0.53  0.51  0.50  0.48  0.42  0.37  
   Late arrival (total) 0.21  0.20  0.20  0.19  0.18  0.15  
Departure Time Response              
   Cum. Pctg of Switches to Later(%) 0.26  0.17  0.14  0.11  0.07  0.05  
   Cum. Pctg of Switches to Early(%) 0.18  0.11  0.08  0.06  0.03  0.02  
   Switching Magnitude to Later(min.) 4.49  4.60  4.73  4.86  5.23  5.56  
   Switching Magnitude to Early(min.) 4.80  4.82  4.86  4.89  4.96  4.93  
   Switching Rate (%) 0.50  0.32  0.25  0.19  0.11  0.07  
Route Choice & Switching             
   Percentage links in common (fraction) 0.60  0.60  0.61  0.61  0.63  0.63  
   Threshold of relative TT saving(fraction) 0.14  0.14  0.14  0.14  0.14  0.14  
   Threshold of absolute TT saving(min) 0.85  0.86  0.85  0.84  0.83  0.81  
Individual Level Switching Behaviors             
Uninformed users             
  DT switch percentage (fraction) 0.25  0.16  0.13  0.10  0.06  0.04  
Informed users             
   Non-switching rate (%) 64.56  71.75  74.38  76.95  80.21  81.88  
   Route only switch (%) 11.72  13.15  13.62  13.81  14.21  14.45  
   Departure Time only switch (%) 19.91  12.73  10.10  7.76  4.68  3.08  
   Users switching both (%) 3.82  2.38  1.92  1.47  0.91  0.60  
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6.5 Significance of Findings 

The findings in this chapter are quite important for the following reasons. First, 

experiment 1 and 2 show that incidents have a very significant impact on day-to-day 

dynamics of system evolution, especially on trip time reliability. But these results also 

show that, at least at some level of system configuration, the current assumption of only 

significant within-day impact from incidents may be misleading. Secondly, the impact 

of uninformed user behavior is generally neglected in previous analyses, but is shown to 

be very important in this research. Uninformed user behavior can introduce very 

significant system performance benefits, as shown in experiment 3 and 5. Furthermore, 

the impact of departure time variations on system performance is generally not 

addressed in previous research, but is shown to have significant impact on system 

dynamics, especially under incident conditions in experiment 5. Lastly, experiment 4 

shows that the benefit of incident management strategies most contribute to the system 

reliability and volatility, rather than on system cost. These findings can help develop 

more appropriate guidelines for future network analyses and evaluations. 

 

6.6 Assumptions and Validations 

As stated in the previous chapter, caution is advised in explicitly interpreting 

these findings due to the nature of the experiments, simulated conditions, and the 

assumptions regarding experimental factors used in this chapter. Due to certain 

computational limitations, the sample size of the Monte-Carlo simulation used for the 

incident simulation is rather small and thus might deviate from the underlying 

distribution. In addition, the incident rate is not a consistent rate when reviewing current 
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literature. This is likely due to the close relation between incidents and the specific 

network conditions for each network. Incident start times are assumed fixed in this study 

due to the relatively short peak hour loading. In experiment 4, the full range of multi-

dimensional benefits from incident management strategies might not be captured by the 

simulation results. Benefits such as visual identification and verification of the incident 

scene, and many management cost saving aspects may escape detection and a more 

complete understanding in this particular series of simulations. 

Despite these restrictions, the results are robust with empirical data and consistent 

with statistics observed in real world and other previous empirical studies. The observed 

thresholds of relative trip time savings, departure and route choice rates, percentage of 

links in common, information reliability, and average late and early schedule delays are 

consistent with the ranges observed in Chapter 5. In addition, the observed travel time 

index value in the range of 1.4 – 1.5 is consistent with the 1.33 level from the 2003 

Dallas Area Annual Mobility Report on Freeway Mobility and Reliability (Texas 

Transportation Institute, 2004). The buffer index of 0.5 – 0.9 coincides with the buffer 

index values of 0.57-0.96 for I-35 evening peak hours in the same report.  

 

6.7 Summary 

This chapter investigated day-to-day evolution in network flows under the impact 

of incidents. Five sets of experiments were conducted and analyzed. The first experiment 

(recurrent congestion level) focused on the comparison of the impact with and without 

incidents. The second experiment was to investigate the impact of incident characteristics. 

The last three experimental factors (information, incident management strategies, and 
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reduction of uncoordinated departure time switching rate) explored the potential ways to 

improve system performance and reliability. The major findings from this chapter 

include: 1) The network performance deviates significantly from equilibrium under 

incidents, 2) Significant impacts of incident on day-to-day system performance and 

reliability are observed, 3) Incident severity has the largest impact on system 

performance, 4) 40-50% information market penetration level is desirable under real-time 

information supply strategy, 5) Incident management strategies have more benefit in 

travel time reliability rather than average trip time, 6) departure time switching behavior 

has significant impact on system evolution, and 7) non-informed users behavior is 

important in system evaluation and design. The results indicate that the impact of 

incidents on day-to-day dynamics and trip time reliability, the departure time dimension, 

and the response from non-informed users must be considered in network analysis and 

design. These results have some important implications for design of traffic control 

strategies, more effective ATIS implementation guidelines, and incident management 

strategies. 

Future research on the impact of workzones on day-to-day dynamics is an 

interesting direction to find valuable practical insights to improve system cost and 

reliability. Furthermore, understanding the role of information strategies such as Dynamic 

Message Signs on incident and workzone management may also lead to insights to 

improve ITS strategic design. 
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CHAPTER VII 

 

CONCLUSIONS 

 

7.1 Overview 

The goal of this research was primarily to achieve five major objectives. These 

five objectives have been achieved and each is summarized in the following paragraphs.  

The first objective was to propose a robust network assignment algorithm to 

account for the randomness of trip time. This objective was achieved by developing a 

robust cost network assignment formulation with hybrid robust cost function that consists 

of a linear combination of the mean and variance of costs. A polynomial time algorithm 

was proposed to solve the robust cost optimization problem and models for several 

important variants of the robust cost minimization problem were proposed. The algorithm 

was then applied to a deterministic traffic assignment problem that minimized the hybrid 

robust cost objective for an experimental traffic network. The role of randomness 

(expressed in terms of the variance of link travel time) was investigated on the 

performance of the robust assignment solution relative to the expected system optimal 

travel time solution.  

The second objective was to develop a dynamic simulation model for analyzing 

day-to-day dynamics under real-time information. The proposed framework accounts for 

the day-to-day variation in departure time and routing decisions through the use of 

empirically calibrated user behavior models and an agent-based belief-desire-intention 

architecture. This simulation framework provided a joint and mutually consistent 
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representation of within-day and day-to-day dynamics in an integrated framework by 

integrating a dynamic assignment model (DYNASMART) with this day-to-day user 

decision framework.  

With the simulation framework developed in objective 2, objective 3 thought to 

analyze the impact of internal perturbations, particularly the role of users' route and 

departure time choice behavior on day-to-day network dynamics and trip-time reliability. 

Two sets of experiments are conducted in objective 3. These experiments studied the 

effects of joint switching versus separate switching, and the influences exerted upon the 

initial conditions, in the form of different recurrent congestion levels and simultaneous 

versus sequential switching.   

As a natural extension from objective 3, the fourth objective focused on 

investigating the role of transportation control measures (TCMs) on day-to-day evolution 

of network flow and trip time reliability. This objective involved analyzing the effects of 

staggered work hours, real-time information provision, telecommuting, and work-week 

compression on day-do-day dynamics and system evolution. 

The fifth and last objective sought to analyze the effect of unplanned supply 

shocks (in the form of incidents) on day-to-day dynamics and system reliability. 

Specifically, two tasks were accomplished in this objective. First, the impact of the 

incidents was studied by systematically varying unplanned congestion levels (incident 

probabilities), conditional probability of different incident types, severity of the incidents, 

incident durations, and spatial distribution of incidents. Second, three ways of improving 

network performance and reliability (real-time information, incident management 

measures, and departure time switching rate reduction) were analyzed.   
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This chapter presents a summary of the key findings of this research and discusses 

the significance of the findings, and the future research needs in the area of day-to-day 

dynamics. Section 7.2 provides the summary of contributions from this research. Section 

7.3 summarizes the key findings from the major objectives. The significance of findings 

and possible applications are discussed in section 7.4. The last section highlights possible 

future research directions.  

 

7.2 Research Contributions 

The major contributions emerging from this research can be classified as either 

methodological or empirical. Both are described in the following sections. 

 

7.2.1 Methodological Contributions 

In this dissertation research, a new network cost minimization formulation 

explicitly considering the robustness of the solution was proposed and an MSA based 

algorithm was developed to solve the problem. This research contributes new knowledge 

to network modeling under uncertainty in the following respects. A polynomial time 

algorithm was proposed to solve the robust cost optimization problem when real-valued 

flows are sufficient. The results showed that the optimal solution for this problem exists 

and is unique. Models for several important variants of the robust cost minimization 

problem were also proposed including: 1) minimum variance assignment problem, 2) 

robust cost minimization problem with integer constraints, and 3) robust cost problem 

with independent within-link flows. A two-stage heuristic was developed when integer 

valued solutions were demanded by the practical application (e.g. rental reservations 
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acceptance problem). The robust cost optimization model has important implications for 

perishable inventory allocation decisions such as airlines, car-rentals, resorts, and hotels. 

These models may also be extended to infrastructure network design and operations such 

as telecommunication, airline and freight transportation networks, and project scheduling 

networks, where arc costs may be uncertain in nature. 

The second significant methodological contribution is the day-to-day simulation 

framework development. To the researcher’s knowledge, this framework is the first of its 

kind. The proposed framework accounts for the day-to-day variation in departure time 

and routing decisions through the use of empirically calibrated user behavior models and 

an agent-based belief-desire-intention architecture that was described in chapter 3. This 

simulation framework provides for a joint and mutually consistent representation of 

within-day and day-to-day dynamics in an integrated framework by integrating a 

dynamic assignment model (DYNASMART) with this day-to-day user decision 

framework.  

The unique features of this simulator include: 1) an agent-based behavior 

modeling approach that incorporates empirically calibrated utility maximization models 

under information that accounts for user’s past decisions, system dynamics and 

information quality. This agent-based architecture was used to represent within-day and 

day-to-day route choice dynamics and departure time adjustment decisions. In particular, 

this framework provides the capability of simulating all day-to-day related variables, past 

traffic experience and cumulative variables, and various performance measures of interest 

with respect to system volatility, system reliability, and information reliability that are 

often disregarded in within-day dynamic network models. 2) Multiple user classes with 



 175

different switching behavior rules were explicitly modeled. 3) Day-to-day incident 

simulation procedure was developed to evaluate the impact of incidents on system 

reliability and performance. The development of this integrated simulation framework 

has important applications to modeling and forecasting network flow evolution over time, 

dynamic traffic assignment methodologies, and decision support for traffic management. 

This framework is also valuable for the design and implementation of ATIS information 

strategies and the evaluation of alternative traffic control strategies aimed at achieving 

desired system objectives. This framework can also have significant applications in 

supporting strategic and operational planning analysis.  

 

7.2.2 Empirical Contributions 

In Chapter 3, at the empirical level, the application of the proposed Robust 

System Optimal (RSO) assignment model to determine robust traffic assignment policy 

for static traffic assignment problem was presented. The RSO model was then used to 

elicit and understand the relative risk propensity (trade-off between travel time and travel 

time variability). The experimental results indicated that the RSO solution is very 

sensitive to 1) the degree of risk aversion, 2) the level of travel time variation, and 3) 

correlations among links. These results have important implications for understanding the 

reliability of travel time and robustness of traffic assignment solutions.  

 In Chapters 5 and 6, extensive experiments were conducted and analyzed to 

explore the role of user behavior factors, transportation control measures, and incidents 

on system performance and reliability. The findings from these experiments provided 

important insights on network modeling, design and developing congestion control and 
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network reliability improvement strategies, understanding the impact of incidents within 

a day-to-day context and evaluation of effective incident management strategies. 

Significant findings and the significance of these findings are summarized in the next two 

sections. 

 

7.3 Significant Findings 

The major empirical findings from the research in this dissertation are presented 

in this section and their implications discussed in the next section.  

In Chapter 3, the RSO model was used to elicit and understand the relative risk 

propensity (trade-off between travel time and travel time variability). The results 

indicated that the RSO solution can reduce nearly 15-35% of the travel time variance 

while only sacrificing 1-14% of average travel time. Another finding was that system 

variance gap increases rapidly with an increase of variation in travel time. The variance 

improvement of the RSO over the SO is significant with medium and high incident 

probabilities. Thus, using the RSO for highly uncertain environments may be more 

desirable, while the SO solution may a more logical choice for low travel time variation 

scenarios. The correlation scenarios showed that when correlation trends can be predicted, 

these may then be used to select robust assignment strategies at different times (e.g., peak 

and off-peak times). The selected strategy then applied to achieve more reliable system 

performance and to limit the extent of downside system travel time risk. Further, the 

results indicated that there is a limit to the extent of improvements in reliability possible 

purely due to reassignment of flows in a robust network algorithm. To achieve further 

reliability improvements, systematic variance reduction techniques that aim to reduce 
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link travel time variability such as transportation control measures or incident 

management measures may be necessary. 

In Chapter 5, the results revealed that the best performance was obtained when 

only route switching was permitted, and the worst performance occurred when there was 

no route-switching. The results also showed that system evolution is highly non-linear 

and sensitive to initial conditions. The system states differed considerably depending on 

whether the switching behavior was simultaneous or sequential in nature. The system did 

not converge to the same state and the evolution varied significantly depending on the 

interactions between route and departure time switching and their sequence. These results 

suggested that real-world network flows may exhibit non-unique average states under 

joint route and departure switching.  

The following findings from the first set of experiments regarding system 

dynamics are also noteworthy. First, the high trip-time reliability observed in the severe 

congestion case, in turn, leads to high lateness arrival rates. Poor reliability, large system 

volatility and high lateness risk, in turn, induce a high degree of departure time switching, 

which further aggravates system dynamics. Second, substantial inefficiency and gap 

exists even after the system evolves for a period of 50 days between average system trip 

time and equilibrium trip times, and the gap increases as the level of congestion 

increases. Thus, severe congestion makes the system intrinsically unstable due to greater 

departure time switching and appears to be only moderately influenced by route 

switching decisions (through ITS etc.). Third, the data appear to suggest the possibility of 

a non-stationary and non-ergodic stochastic process driving system dynamics and 

variability. 
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 In the user behavior experiments, the results suggested that departure time 

switching appears to exert a greater influence on day-to-day dynamics than route 

switching. When users were more sensitive to volatility and were more responsive to 

volatility (by switching departure times more aggressively), the volatility was in fact 

amplified rather than dampened. As users sensitivity to lateness increased, travel time 

performance improved substantially.  Further, all reliability and volatility measures also 

improved significantly. The deterioration in system performance as departure time 

switching variance reduced, suggested that some degree of heterogeneity in departure 

time switching was beneficial to system stability. Deterministic models or models that 

assume more homogeneous user behavior may tend to underestimate system reliability 

metrics, if in fact, there is greater variability in user behavior. Therefore, in the context of 

modeling travel time reliability and stability, richer and more disaggregate models of user 

behavior and associated variability are needed.  

The results in evaluating transportation control measures suggested that trip-time 

performance alone is not a good indicator as several of these control strategies lead to 

similar average performance measures. Furthermore, real-world networks can exist in a 

variety of states that may deviate significantly from equilibrium for substantially long-

periods of time. There is a need to jointly consider the effect of trip-time and system 

reliability metrics while evaluating alternative strategies. The effectiveness of demand 

management strategies appears to be sensitive to the nature of the strategy and the level 

of implementation/adoption. The results indicated that the staggered work hour strategy is 

likely to be more successful than other strategies in terms of congestion mitigation. 

Furthermore, increasing the level of adoption appeared to produce a larger benefit than 
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increasing the amount of departure time shift/stagger. The results also highlighted the fact 

that real-time information can lead to significantly improved on-time arrival rate (up from 

39 to 51%), but significant trip-time variability is found in the system. Significant system 

improvement may be achieved through significant changes in departure time patterns, but 

such changes must be carefully coordinated. Nevertheless, the Transportation Control 

Measure (TDM) strategies appeared to be effective in steering the system performance 

closer to equilibrium travel times, but not necessarily towards the equilibrium state (i.e., 

high switching and volatility is still present). 

In Chapter 6, the incident results showed that under incident scenarios, the day-to-

day variation of trip time increased significantly, and the largest impact on trip time 

variability occurred under moderate congestion level. Significant impact of incident on 

day-to-day system performance and reliability was seen in this set of experiments. This 

suggests that considering the incident impact for system analysis and evaluation is 

necessary, and some form of coordination through information supply may be needed to 

users to steer the system to more desirable states. In the incident characteristic scenarios, 

the incident severity had the largest impact on system performance, and incident 

frequency had the least impact. The influence of incident characteristics on system 

reliability was much larger than on travel time. The duration reduction did have 

significant impact on system performance and reliability.  

The results from real-time information market penetration experiments implied 

that the benefit of larger market penetration decreased as the MP increased, though the 

system can still perform slightly better. This set of experiments suggested that moderate 

market penetration level (40%-50%) is desirable from both average trip time and day-to-
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day trip time reliability perspective, whereas higher market penetration levels maybe 

considered if a lower benefit – cost ratio is acceptable. In the incident management 

experiments, the results showed that the incident management programs were much more 

effective in improving travel time reliability than was improving average travel cost. 

With further incident management improvements, additional improvements to the system 

and its reliability of performance may occur but with a lower benefit – cost ratio. Under 

different incident duration reduction scenarios, the user behavioral measures did not 

change significantly. This implied that the quicker restoration of highway capacities by 

better incident management strategies might not be fully utilized by commuters. There 

are opportunities exist to further improve the benefits introduced by the incident 

management strategies. More effective information provision strategies might be used to 

improve the information dissemination and user’s responsiveness, thus further increasing 

the benefit of the incident management program. In the last set of experiments, the results 

indicated that a low departure time switching rate can lead to more effective route 

switching. The results implied that models ignoring or over-simplifying the departure 

time switching behavior can be misleading and tend to overestimate the system 

performance. 

 

7.4 Significance of Findings 

The robust cost assignment algorithm proposed in Chapter 3 can be used in two 

ways to assess the variability/risks associated with alternative assignment strategies. First, 

if a decision-maker’s relative preference towards travel time and its variance is well-

formed, this can form the basis to determine the preference weight for cost variability. 
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The robust cost assignment problem may then be solved to yield the assignment strategy 

that minimizes the robustness of travel time for the given risk tolerance level. However, 

the preferences towards risk are not well-formed in practice due to the heavy focus on 

travel cost minimization in current practice. In such a case, several optimal policies can 

be determined by repeated solving of the RSO problem corresponding to various values 

of alpha. The corresponding average costs and risk can be determined for each value of 

alpha. These solutions can then be used to obtain a risk and average travel time trade-off 

curve that is used to inform decision-makers about the risk/cost trade-offs. The risk-cost 

trade-off curve can be used to elicit decision-maker preferences regarding the most 

desired risk/average travel time combination. The assignment policy corresponding to 

this preferred risk/cost combination can then be implemented in practice. Alternatively, 

the proposed solutions can be used to provide benchmark levels of variability of travel 

times, against which the variability in travel time with currently used practices (user 

equilibrium assignment, etc.) is compared to assess the acceptability of current travel 

time risk.  

The results from Chapter 3 have important implications for understanding the 

reliability of travel time and robustness of traffic assignment solutions. The robust cost 

optimization model also has important implications on perishable inventory allocation 

decisions such as airlines, car-rentals, resorts, and hotels. These models may also be 

extended to infrastructure network design and operations such as telecommunication, 

airline and freight transportation networks, and project scheduling networks, where arc 

costs may be uncertain in nature. 
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The findings from Chapter 5 have several important implications for dynamic 

network analysis, design of transportation control strategies to enhance system 

performance, and travel time reliability. First, empirically calibrated levels of users’ 

sensitivity to late schedule delay, day-to-day stability and reliability were poor (compared 

to high sensitivity). Second, while implementing measures such as flexible work hours, 

caution must be exercised and the influence of users sensitivity to late schedule delay 

should be recognized. Low sensitivity to late schedule delay due to certain travel demand 

measures may more than offset the short-term benefits due to departure time staggering 

of certain users.  

Findings in TCM experiments have important implications for the evaluation of 

transportation control measures. First, the use of both very short-term and very long-term 

horizons for analysis methods can lead to erroneous system state predictions, especially 

due to the presence of trends and oscillatory behavior. For example, in the telecommuting 

and staggered work hour cases, the first two-weeks of data tended to overestimate the 

system benefits. On the other hand, using very long-term horizon was also misleading 

due to non-stationarity and significant deviations existed from user equilibrium models 

for significant periods of time. Second, care must be exercised in evaluating demand 

control measures since several of the effectiveness of some of these strategies were 

sensitive to the level of adoption/deployment (system exhibits very different evolution 

patterns depending on the level). Third, the dynamic evolution and the non-linear features 

observed empirically along with the deviation from short-term and long-term predictive 

models, underscored the need for the collection of richer empirical field data (including 

switching behavior) over reasonably long-periods of time (at least several months) while 
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evaluating transportation control measures. While this study provided preliminary 

evidence of highly non-linear system evolution from day-to-day, new modeling tools and 

insights may be needed to uncover the nature and causes of the observed transient states 

(e.g., chaotic, stability, stationarity), particularly in order to understand the limits and 

uncertainty associated with model-based predictions. 

The findings in chapter 6 are important for the following reasons. First, 

experimental results showed that incidents had very significant impact on day-to-day 

dynamics of system evolution, especially on trip time reliability. These results showed 

that at least at some level of system configuration, the current assumption of primary 

within-day impact from incidents in practice is misleading. Secondly, the impact of 

uninformed user behavior had been generally neglected in previous analyses, but was 

shown to be very important as a means of introducing very significant system 

performance benefits. Furthermore, the impact of departure time dimension on system 

performance had been generally neglected in previous research that was shown to have a 

significant impact on system dynamics especially under incidents. Lastly, the benefits of 

incident management strategies mostly impacted system reliability and volatility, rather 

than system cost. These findings should help develop more appropriate guidelines for 

future network analyses and evaluations. 

 

7.5 Directions for Future Research 

Regarding future research directions, further expansion of the basic algorithm 

described in Chapter 3 to robust user equilibrium assignment algorithm is desirable.  User 

equilibrium assignment received more attention in practice, and certainly much more can 
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be studied. Furthermore, the robust algorithm may be extended to a time-dependent 

robust UE and SO algorithm, and would add the ability to model time-dependent features 

such as departure time and route switching. From a practical point of view, exploring 

robust information strategies is a natural direction of future research. With regard to 

theoretical direction, qualification of variance as a function of flow is another challenging 

direction for future research. 

The following research issues arise naturally in the context of day-to-day system 

evolution. At the theoretical level, the nature of stochastic process underlying day-to-day 

dynamics and the extent of possible non-ergodicity and its implications for network 

planning and design warrants further inquiry. A final theoretical direction worth 

considering for future research involves the idiosyncrasies of particular networks.  

With regard to dynamics, examining the role of lagged effects, possible 

asymmetries in evolution and their persistence over time need to be examined. Future 

research on the impact of workzones on day-to-day dynamics is an interesting direction 

to find valuable practical insights to improve system cost and reliability. Understanding 

the role of information strategies such as Dynamic Message Signs on incident and 

workzone management may also lead to insights on improvement of ITS strategic design. 

From a policy and planning standpoint, investigating the short-term and longer-term 

impacts of pricing based strategies (congestion pricing, or gas price increases) and 

vehicle occupancy increasing measures (such as HOV/HOT) may also be of interest.  
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