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CHAPTER I

INTRODUCTION AND OVERVIEW OF EXPERIMENTS IN THIS DISSERTATION

Categorization is a fundamental cognitive process. When we judge an object to be a

member of a category, we are then able to make inferences about that object based only on its

category membership. For instance, when presented with a flower we might immediately classify

it as a rose. Based only on this category assignment, we are careful when handling the stem

because roses have thorns. Notwithstanding the thorns, we may still incline our head toward the

petals because roses smell good. We know that roses have both thorns and a pleasing fragrance

based on our prior exposure to many different members of the rose category and it is not

necessary to rediscover these common features with each new rose that we encounter. This

ability to generalize from accumulated past experience to our present experience allows us to

fluidly interact with a cluttered and constantly changing world, guiding our actions to both avoid

harm and seek pleasure.

Understanding categorization has been the goal of an extensive amount of research in

cognitive psychology. Using behavioral (Homa, 1978; Homa & Vosburgh, 1976; Medin &

Schaffer, 1978; Posner, Goldsmith, & Welton, 1967; Posner & Keele, 1968; S. K. Reed, 1972),

mathematical modeling (Anderson, 1991; Ashby & Gott, 1988; Ashby & Maddox, 1993; Estes,

1986; Hintzman, 1986; Koriat, Goldsmith, & Pansky, 2000; Lamberts, 2000; Nosofsky, 1984;

Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994; Palmeri & Nosofsky, 2001), and

neuropsychological (Alvarez, Zola-Morgan, & Squire, 1995; Knowlton, Mangels, & Squire,

1996; Knowlton & Squire, 1993; Knowlton, Squire, & Gluck, 1994; J. M. Reed, Squire,

Patalano, Smith, & Jonides, 1999) techniques, scientists have documented numerous behavioral

phenomena associated with categorization and formulated theories to account for these

phenomena. However, even with this extensive corpus of knowledge, current research based on

behavioral and modeling methods does not support any single theory of categorization above the

rest since each of the competing theories is able to account for many of the same categorization

results.

One example of this failure to reach consensus can be found with respect to the nature of

the neural systems underlying categorization. Although early theories of categorization presumed
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a single-categorization system, recent evidence from the fields of behavioral neuropsychology

and mathematical modeling suggest that there may be different neural systems associated with

different aspects of categorization tasks. However, there are limitations on the conclusions that

can be drawn from each these experimental approaches. For instance, behavioral

neuropsychological evidence obtained from lesion-deficit models cannot be obtained for all brain

regions and the effects of particular lesions are not always consistent across subjects (Price &

Friston, 2002). In addition, when degenerate systems exist, there may be no evidence of a deficit

associated with a lesion that affects only one of several systems that are sufficient to complete

the task (Edelman & Gally, 2001; Price & Friston, 2002). Similarly, evidence from mathematical

modeling of behavioral results from empirical studies is not conclusive in that equivalent models

proposing different cognitive processes may be constructed and good model fits can often be

obtained for ostensibly poor models of cognitive process (Olsson, Wennerholm, & Lyxzen,

2004; Pitt & Myung, 2002). Therefore, although we have learned a great deal about

categorization using these research methods, no single research method appears to be sufficient

to address the nature of the neural systems supporting categorization.

Although cognitive psychologists have traditionally been interested in understanding

psychological process independent of brain structure (Nyberg, 1999), with advances in our

knowledge of the relationship between brain structure and psychological function there is now a

move to accept that the brain can inform our understanding of the mind. Just as statistically

significant differences in behavioral measures such as reaction time and percent correct are

presumed to reflect psychologically relevant differences in processing, statistically significant

differences in neural activation are also presumed to reflect psychologically relevant differences

in processing. In addition, the spatial locations – neural loci – of these differences can also reveal

information about psychological process based on our cumulative knowledge of tasks that are

associated with differential activation in these same neural regions. Thus, experimentation

utilizing functional neuroimaging methods can provide additional, converging, evidence with

which to understand psychological process.

In this dissertation, I utilize functional magnetic resonance imaging (FMRI) to address

questions about the neural basis of the cognitive processes supporting the explicit learning and

testing of perceptual category knowledge. Although the goal of the dissertation is to identify the

neural correlates of explicit category learning and testing, the experimental paradigms I have
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chosen to explore this issue have all been previously associated with the identification of

multiple- or hybrid- categorization systems in the behavioral, behavioral neuropsychological, or

modeling literature. The choice of these paradigms is based on the idea that the behavior elicited

by these particular tasks can be thought of as representing extremes along a continuum and for

that reason, these paradigms should also provide the greatest opportunity to find differential

activation either within or between neural regions with respect to differences in experimental

conditions. This approach should therefore provide us with insight with respect to the neural

processes supporting a range of categorization tasks rather than just those neural processes

associated with a single categorization task relative to a non-categorization control.

In Experiments 1 and 2, FMRI is used to identify neural correlates associated with

different aspects of categorization tasks such as the stage of learning (early versus late), type of

categorization task (prototype-distortion versus probabilistic-cue), category assignment

(deterministic versus probabilistic), and type of training (feedback versus exposure). In

Experiment 1, I examine variations of two categorization tasks that have been used in behavioral

neuropsychological research, the results of which have supported the existence of multiple-

categorization systems. Similarities and differences in neural activation associated with

performance during both the early and late stages of these two tasks is then evaluated in light of

the extant neuropsychological, modeling and FMRI literature. In Experiment 2, I partially

replicate the early condition of Experiment 1 controlling for differences in the stimuli. Review of

the extant FMRI literature suggests that differences in neural activation associated with different

categorization paradigms may actually be associated with the type of learning paradigm

(feedback versus exposure) rather than the type of categorization task (prototype-distortion

versus probabilistic-cue). Therefore, a second goal of Experiment 2 is to examine whether

differences in the type of categorization task (prototype-distortion versus probabilistic-cue),

differences in learning paradigm (feedback versus exposure), and differences in category phase

(learning versus testing) are associated with differences in functional activation.

In contrast to Experiments 1 and 2, in which the primary focus is on differences in neural

activation associated with differences in the categorization tasks, Experiment 3 investigates in

greater detail the neural activation associated with performance of a single categorization task

over the course of eight learning epochs completed in a single training session. Evidence from

mathematical modeling of behavioral data has demonstrated that there is a qualitative shift in
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categorization behavior as subjects perform category learning and transfer tasks (Johansen &

Palmeri, 2002; Nosofsky, Palmeri, & McKinley, 1994; D. J. Smith & Minda, 1998). Various

explanations proffered for this shift have included a change in representation from rules to

exemplars (Johansen & Palmeri, 2002), a change in selective attention to features (Nosofsky &

Johansen, 2000), and a change in representation from prototypes to exemplars (D. J. Smith &

Minda, 1998). In Experiment 3, I examine the pattern of functional activation over the course of

category acquisition within neural regions previously associated with rule-based categorization,

hypothesis testing, and guessing (Elliott & Dolan, 1998; Elliott, Rees, & Dolan, 1999; Patalano,

Smith, Jonides, & Koeppe, 2001) and LTM encoding and retrieval (Squire, Stark, & Clark, 2004)

utilizing a priori regions-of-interest to examine changes in neural activation consistent with a

change in representation from rules-to-exemplars.

Experiments 1, 2, and 3 investigate the neural substrates associated with paradigms from

the extant behavioral, FMRI, and modeling literature and discussion with respect to these

experiments is initially limited to the neural substrates specifically associated with the

experimental manipulations. However, in the final chapter I will return to a question that spans

these three experiments that is, what are the neural processes associated with the performance of

explicit categorization tasks. The picture that is beginning to emerge from the extant functional

imaging literature and the results of the current experiments is one of a dynamic process in which

the neural regions associated with categorization include a group of stable underlying regions

that are active relative to control conditions across a variety of categorization tasks as well as

neural regions that are specifically associated with various components of the categorization

task, such as the learning paradigm and stage of acquisition.

This dissertation is presented in five chapters including this introduction. Chapter II

reviews the relationship between various models of categorization and the neural systems of

learning and memory that may instantiate this cognitive process. Experiments 1 and 2,

examining neural differences associated with differences in categorization tasks, are then

presented jointly in Chapter III and Experiment 3, examining neural differences associated with a

single categorization task over the course of category learning, is presented in Chapter IV.

Chapter V concludes with an analysis of activation across the three experiments and a general

discussion of what the three experiments may tell us about the neural correlates of explicit

category learning and testing.
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CHAPTER II

THEORIES OF CATEGORIZATION AND NEURAL SYSTEMS

OF LEARNING AND MEMORY

How is perceptual categorization instantiated in the brain? Do the neural processes

supporting categorization change with various aspects of the categorization task? with increased

experience? or, do these neural processes change with both task and experience? These questions

arise from a body of categorization research that has evolved from two research traditions –

empirical studies of normal human behavior and behavioral neuropsychological studies of

subjects with brain damage. The goal of the current chapter is to examine how various theories

of categorization relate to the neural systems of learning and memory. To this end, three possible

views of how categorization may be instantiated in the brain are discussed. In the first view,

categorization is dependent on explicit memory processes that are supported by the same medial

temporal learning and memory system as recognition and recall. In the second view,

categorization is dependent on a nondeclarative memory process that is supported by a cortico-

cortical learning and memory system. And, in the third view, categorization is dependent on

competition between nondeclarative memory processes and verbalizable rule-based processes

that are supported by a fronto-striatal learning and memory system.

Exemplar Theories of Categorization and the Medial Temporal Lobe System

The medial temporal lobe (MTL) structures specifically associated with normal LTM

function are often collectively referred to as the hippocampal complex (HC) and can generally be

defined as including the parahippocampal cortex, perirhinal cortex, entorhinal cortex,

hippocampus (which includes the CA1, CA2, and CA3 subfields), dentate gyrus, fimbria, fornix,

and subicular complex (Amaral, 1999). The array of intact and impaired abilities traditionally

associated with damage to these anatomical regions within the MTL system is well known and

the syndrome is referred to as anterograde amnesia (AA) (Milner, 1968; Milner, Corkin, &

Teuber, 1968; Parkin, 1997; Scoville, 1968). AA is characterized by intact short-term memory in

conjunction with impaired long-term memory (LTM). Thus, if you introduce yourself and enter
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into a brief conversation with a subject with AA (amnesiac), the amnesiac can address you

correctly during the conversation since they will be able to retain your name in short-term

memory however, 24-hours later you can repeat the exact same conversation since the amnesiac

is unable to utilize LTM to recall your name or the conversation from the prior day’s encounter.

In fact, poor performance on tests of recall (the ability to produce a previously seen item when

cued by a previously associated item), and recognition (the ability to correctly identify a

previously seen item as “old” when presented a second time), is a hallmark of the amnesiac

syndrome. Recall and recognition tasks test episodic, or declarative, memory which can be

defined as conscious, LTM for specific events (Squire et al., 2004) such as where you last placed

your car keys or that the University of Kansas Jayhawks won the NCAA Final Four basketball

championship in 1988.

The MTL neural system is generally associated with various exemplar models of

categorization (Hintzman, 1986; Nosofsky, 1988a, 1991; Nosofsky & Zaki, 1998; Palmeri &

Flanery, 1999, 2002). Exemplar models are based on the assumption that each instance of a

category is stored as an exemplar in LTM and that these exemplars are accessed in order to make

a category decision. Exemplar models generally determine categorization of a target item as a

member or nonmember of a category based on similarity. For instance, in the Generalized

Context Model (GCM), similarity is based on the similarity of the to-be-categorized item (the

target) to the stored exemplars of the category relative to the stored exemplars of all relevant

categories (Nosofsky, 1984, 1988b). In general, the more similar a target exemplar is to other

stored members of a particular category, the more likely the individual will respond affirmatively

that the target item is a member of that category. Nosofsky has demonstrated that the GCM can

be used to model both recognition and categorization decisions since, in essence, recognition can

be thought of as a case of categorization where the category consists of one item (Nosofsky,

1986, 1988a). Since intact recognition performance depends on an intact MTL (Squire et al.,

2004), the relationship between categorization and recognition in the GCM implies that

exemplar-based categorization is also dependent on an intact MTL (Nosofsky & Zaki, 1998;

Palmeri & Flanery, 1999, 2002).

Despite behavioral and modeling evidence that categorization is dependent on an intact

MTL system, evidence of this relationship from functional neuroimaging is relatively sparse. In

one study that did identify differential activation of the MTL, Reber and colleagues (Reber,
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Gitelman, Parrish, & Mesulam, 2003) used distortions of dot-patterns as stimuli (prototype-

distortion paradigm) to compare activation associated with implicit and explicit category

learning. In this experiment, one group of subjects learned the category through incidental

(implicit) exposure and a second group of subjects learned the category through intentional

(explicit) exposure. Subjects in both conditions were then tested on their ability to make

categorical judgments with respect to the learned category while functional images were

collected (functional images were not collected during the category learning phase of the

experiment). In an anatomically defined ROI analysis of the MTL, Reber and colleagues

identified an increase in activity in the left anterior hippocampus for the intentional

categorization condition relative to the incidental categorization condition.

Aizenstein et al. (Aizenstein et al., 2000) also utilized a prototype-distortion paradigm in

a task comparing implicit and explicit exposure learning of categorical stimuli. However, in this

study, presenting the different categorical stimuli in different colors and having subjects perform

a color-mapping task achieved exposure to the category. In the incidental exposure condition

subjects were instructed to attend to the dot patterns as they were presented paying attention only

to the color. A pattern would be presented for 1500 ms after which it would change to either red,

yellow or blue and remain on the screen for an additional 1500 ms. In both conditions, subjects

were instructed to press a key corresponding to the color of the stimulus. In the explicit learning

condition subjects were instructed to also look for a pattern within the presented stimuli. In

contrast to Reber et al. (2003), subjects in this study were scanned only during the acquisition

phase of the task and not during a subsequent transfer test. In this study, Aizenstein and

colleagues reported a region of right MTL that showed increased activity relative to baseline for

both categorical and noncategorical stimuli in both the incidental and intentional learning

conditions.

Finally, Poldrack and colleagues have also reported differential activity in the MTL for a

probabilistic-cue categorization task relative to a perceptual-motor baseline task. In this study,

the category learning condition was explicit but the feedback was probabilistic rather than

deterministic as in the Reber (Reber et al., 2003) and Aizenstein (Aizenstein et al., 2000) studies.

In this study, two regions of the left hippocampus were found to have differential activation

relative to the baseline task.
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Prototype Theories of Categorization and the Cortico-Cortical System

A second learning and memory system that does not depend on an intact MTL is the

cortico-cortical (also referred to as neocortical) system (Aggleton & Brown, 1999; Baddeley,

Vargha-Khadem, & Mishkin, 2001; McClelland, McNaughton, & O'Reilly, 1995; O'Reilly &

Rudy, 2000, 2001). This learning and memory system appears to be important for slow (as

opposed to one-trial) learning of items based on multiple exposures to stimuli. The neural

substrate underlying this particular system is not as well specified as that underlying the MTL

system but would include portions of the occipital, parietal, and cingulate cortex. One candidate

substrate for this system would be the second (non-hippocampal) axis of Aggleton and Brown’s

(1999) dual-axis theory. Aggleton and Brown (1999) have proposed that dual anatomical

systems account for the pattern of results reported in amnesiac and animal lesion studies of LTM

as measured by tests of recognition and recall. In this system, a hippocampal-anterior thalamic

system (part of the medial temporal system previously described) is integral for episodic memory

that supports recall and remember-recognition judgments, and a separate perirhinal-medial dorsal

thalamic system is capable of supporting know-recognition judgments based on familiarity. The

non-hippocampal know-recognition circuit is not dependent on the hippocampus and is

dependent on direct projections of the perirhinal cortex to the medial dorsal nucleus of the

thalamus. One of the implications of Aggleton and Brown’s theory is that if damage is limited to

the hippocampal circuit, the subject will experience anterograde amnesia coupled with intact

know-recognition.

Whereas AA is associated with impaired explicit memory processes supported by the

MTL, it is also associated with spared implicit memory processes that may be supported by the

intact cortico-cortical system. Implicit (nondeclarative) memory can be described as unconscious

memory for items or events to which the subject has previously been exposed (Squire et al.,

2004). Implicit memory is usually assessed via indirect measures such as decreased reaction

times for previously encountered items relative to new items. In some types of skill learning

tasks, such as tracing a figure by looking at your hand in a mirror, amnesiacs show the same

practice effects as normal subjects (evidence of spared implicit memory) even though they will

deny having previously completed the task (evidence of impaired explicit memory).
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The ability of this cortico-cortical system to support learning and memory in the absence

of an intact MTL system has recently been identified in a group of subjects with a syndrome

called developmental amnesia (DA). DA arises from ischaemic or anoxic episodes during

infancy or early childhood that result in significant neuronal death of the CA1 field of the

hippocampus (Baddeley et al., 2001; Vargha-Khadem et al., 1997). Thus, in DA, the

hippocampal circuit of Aggleton & Brown's (1999) dual-axis system is disrupted while the

cortical learning system supported by the perirhinal-medial dorsal thalamic circuit remains intact.

One of the remarkable aspects of DA is that, despite severe impairments in spatial, temporal, and

episodic memory, individuals with this disorder are able to acquire semantic knowledge

sufficient to progress through elementary and high school (Vargha-Khadem et al., 1997) as well

as exhibit some spared recognition memory skills (Baddeley et al., 2001; Broman, Rose, Hotson,

& Casey, 1997) thus demonstrating the ability of the cortico-cortical system to acquire

information in the absence of an intact MTL system.

Prototype theories of categorization are often associated with the cortico-cortical learning

and memory system1. A basic assumption of prototype theories is that categorization decisions

are based on a comparison of the to-be-categorized item to an abstracted central tendency –

prototype – of previously seen category members (Homa, 1978; Homa & Vosburgh, 1976; S. K.

Reed, 1972). If an individual is asked to determine whether two target stimuli are members of the

category, the reaction time and accuracy of the response will depend on the target’s similarity to

the prototype (or prototypes in a multiple category model) rather than a similarity metric based

on a comparison of the target item to each of the previously seen category members and

nonmembers as in exemplar theory.

If categorization is dependent on the cortico-cortical learning and memory system rather

than the MTL system, then amnesiacs should be unimpaired at categorization. Behavioral

evidence supporting this view comes from a series of prototype-distortion categorization studies

that have reported AA subjects can categorize items as well as normal control subjects despite

being impaired on old-new recognition judgments for the same stimuli when compared to normal

age-matched controls (Filoteo, Maddox, & Davis, 2001; Knowlton & Squire, 1993; J. M. Reed et

al., 1999; Squire & Knowlton, 1995).

                                                
1 Although prototype theories are often associated with a cortical learning and memory system, there is nothing in
these theories per se that would require their dependence on a cortical learning system. Prototype theories could also
be instantiated via the MTL or fronto-striatal learning systems.
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Functional neuroimaging also provides evidence of a cortico-cortical categorization

system. In two studies utilizing an implicit exposure paradigm, Reber, Stark & Squire (1998a,

1998b) have consistently found an area of decreased activation in posterior occipital cortex (BA

18/19) associated with the processing of category members relative to both nonmembers – items

generated from the same super-prototype as the member stimuli – (Reber, Stark, & Squire,

1998a) and random dot-patterns (Reber, Stark, & Squire, 1998b). They have interpreted this

region of deactivation as reflecting more rapid or less effortful processing of categorical stimuli

that can, in turn, support categorization.

Rule-Based and Hybrid Theories of Categorization and the Fronto-Striatal System

Rule-based and hybrid models of categorization are often associated with a third neural

system of learning and memory, the fronto-striatal system. For purposes of this thesis, the frontal

system includes both frontal and prefrontal cortical regions and the striatal system is broadly

construed to include the ventral and dorsal striatum (caudate, putamen, nucleus accumbens), the

basal ganglia (globus pallidus, substantia nigra pars reticulate, ventral pallidum) and the

thalamus (ventral anterior and medial dorsal nuclei). The striatum is innervated by the entire

cerebral cortex, including the limbic system, and projects to the basal ganglia, which, in turn

project to the thalamic nuclei.

Frontal cortex is most often associated with short-term and/or working memory. In

addition to the striatal connections noted above, frontal cortex is highly interconnected with all

of the sensory, motor, and subcortical structures of the brain (Miller & Cohen, 2001). This

interconnection with other brain structures places the frontal cortex in a position to be involved

in many higher-level brain functions. This possibility is born out by the results of a meta-analysis

of 275 imaging studies of various perceptual and cognitive tasks (Cabeza & Nyberg, 2000). In

this meta-analysis, frontal lobe activation was associated with almost all of the tasks studied.

However, despite the large number of FMRI studies reporting frontal lobe activation, the

functional organization of this cortical region and how it supports higher-level cognitive function

is still debated. Fletcher and Henson (2001) have reviewed the results of FMRI studies of

working memory, episodic encoding, and episodic retrieval and have proposed that three

divisions of the lateral frontal lobes are associated with three different types of information
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processing. They suggest that the ventrolateral regions are active during updating and

maintenance of information, the dorsolateral regions are active during selection, manipulation,

and monitoring of information, and the anterior lateral cortex is active during the selection of

processes and subgoals (Fletcher & Henson, 2001). Similarly, other researchers have also

associated ventral regions with maintenance and dorsal regions with manipulation of information

(Owen, Milner, Petrides, & Evans, 1996; Petrides, 1996). However, this characterization of the

function of frontal cortex is not the only possibility. An alternative organization of frontal cortex

based on evidence from single-cell recordings in primates is that the ventro- and dorsolateral

regions are associated with memory and attention whereas the orbital and medial regions are

associated with inhibition (Goldman-Rakic, 1987). Yet another view, proposed by O'Reilly and

colleagues (O'Reilly, Noelle, Braver, & Cohen, 2002), is that the frontal cortex is organized

based on the level of a stimulus representation's abstraction with orbital areas encoding featural

information and dorsolateral areas encoding more abstract dimensional information.

Recent evidence also suggests frontal cortex is associated with the use of rules (Bunge,

Kahn, Wallis, Miller, & Wagner, 2003; Elliott & Dolan, 1998; Elliott et al., 1999; Miller, 2000;

Miller & Cohen, 2001; Miller, Freedman, & Wallis, 2002; O'Reilly et al., 2002; Patalano et al.,

2001; E. E. Smith, Patalano, & Jonides, 1998; Wallis, Anderson, & Miller, 2001; Wallis &

Miller, 2003). For instance, Wallis and colleagues (Wallis et al., 2001; Wallis & Miller, 2003)

have demonstrated single-cell activity in the frontal cortex of monkeys with the application of

abstract rules. After training the monkeys on two abstract rules, neurons were recorded from

dorsolateral, ventrolateral, and orbital prefrontal cortex while monkeys applied the rules.

Neurons selective to each of the rules were found throughout these regions. Bunge, et al. (2003)

extended this paradigm to humans also identifying areas of frontal and motor cortex associated

with association of abstract rules to uncommon objects.

Similar to the research on the role of the frontal cortex, there is no general agreement on a

single-role of the striatal system in learning and memory (Joel, Niv, & Ruppin, 2002). Three

prominent views that have emerged as to the role of the basal ganglia system in human

information processing are that the basal ganglia are primarily involved in serial processing

(Gurney, Prescott, & Redgrave, 2001), action selection (Gurney et al., 2001), and/or

reinforcement learning (Joel et al., 2002; Schultz, Trembley, & Hollerman, 2003). A fourth

possibility recently suggested by Joel and colleagues (2002) is that the basal ganglia act as a
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dimension reduction mechanism as part of a cortico-pallido-thalamo-cortical loop (Joel et al.,

2002). Regardless of the functional role of the striatal system, it is generally agreed that this

system mediates cortical processing via five functional loops, the corticostriatothalamocortical

loops, or circuits (Afifi & Bergman, 1998) which project to motor, oculomotor, dorsolateral

prefrontal, lateral orbitofrontal prefrontal, and limbic cortex. The primary connections of the four

loops that project to frontal cortex are shown in Table 1.

Function of the striatal system is impaired in patients with Parkinson’s Disease (PARK)

(Packard & Knowlton, 2002). PARK is caused by disruption of the dopaminergic system

(dopamine is a neuromodulator) within the striatum. Although PARK is most often identified

with its physical effects – tremors and halted or ballistic movements – it has also been associated

with deficits in tasks such as stimulus-response associations, delayed alternation, mirror reading,

sequence learning, probabilistic-cue classification, cognitive set shifting, and response selection

(Packard & Knowlton, 2002). Individuals with PARK are reported to be impaired at early epochs

of categorization tasks in which the category feedback structure is probabilistic (Knowlton et al.,

1996) but to have no impairments with respect to perceptual (prototype-distortion) categorization

(Reber & Squire, 1999).

Table 1
Primary Connections of Corticostriatothalamacortical Loops

Corticostriatothalamocortical Loop
 Oculomotor Dorsolateral Orbitofrontal Limbic

Cortex FEF
SEF
DLPFC
PPC

DLPFC
PPC

LOPC ACC
MOFC

Striatum Caudate Caudate Caudate Ventral
Direct:

Indirect:

SNr, GPi

GPe, STh

GPi, SNr

GPe, Sth

GPi, Snr

GPe, STh

V. Pallidum

Thalamus Vapc
VAmc
DMpm

Vapc
Dmpc

Vamc
Dmmc

DMmc

FEF, frontal eye field; SEF, supplementary eye field; DLPFC, dorsolateral prefrontal cortex;
PPC, posterior parietal cortex; LOPC, lateral orbital prefrontal cortex; ACC, anterior cingulate
cortex; MOFC, medial orbitofrontal cortex; SNr, substantia nigra pars reticulata; GPi, internal
segment of globus pallidus;  GPe, external segment of globus pallidus;  STh,  subthalamic
nucleus; VApc, ventral anterior nucleus pars parvicellularis; VAmc, ventral anterior pars
magnocellularis; DMpm, dorsomedial nucleus parsmultiformis; DMpc, dorsomedial nucleus
pars parvicellularis; DMmc, dorsomedial nucleus pars magnocellularis (adapted, Afifi &
Bergman, 1998).



13

Lesions of the frontal lobe are a second source of fronto-striatal dysfunction. These

lesions, often the result of stroke or accident, disrupt the fronto-striatal learning system by

effectively disconnecting one or more of the corticostriatothalamocortical loops. In particular,

lesions of the dorsolateral prefrontal circuit have been associated with deficits in spatial memory

and cognitive disturbances whereas lesions of the lateral orbitofrontal loop have been observed

to result in impairments in switching behaviors and obsessive-compulsive behaviors (Packard &

Knowlton, 2002).

Rule-based theories of categorization are often associated with the fronto-striatal learning

and memory system. Historically, the earliest models of categorization adopted a classical theory

of categorization in which categories were represented as a set of necessary and sufficient

conditions, or rules (Bruner, Goodnow, & Austin, 1956; E. E. Smith & Medin, 1981). However,

the classical theories failed to explain many of the behavioral results obtained in categorization

experiments and prototype (Minda & Smith, 2002; S. K. Reed, 1972; D. J. Smith & Minda,

1998), exemplar (Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 1984), and decision

bound (Ashby & Gott, 1988; Ashby & Maddox, 1993) theories of categorization emerged as

early successors to these rule-based theories. However, rule-based categorization is now

reemerging as a component of several hybrid models of categorization (Ashby, Alfonso-Reese,

Turken, & Waldron, 1998; Ericksen & Kruschke, 1998; Johansen & Palmeri, 2002; Nosofsky &

Palmeri, 1998; Nosofsky, Palmeri et al., 1994).

Neuroimaging has also provided evidence of fronto-striatal activation with

categorization. Patalano and colleagues have utilized PET to examine the differential role of

rules and exemplars in learning perceptual categories (Patalano et al., 2001; E. E. Smith et al.,

1998). Patalano et al. adapted the methodology and behavioral analyses used by Allen and

Brooks (1991) in which test items were constructed such that positive test items would be

categorized the same and negative test items would be categorized differently based on the

categorization strategy (rule application or exemplar similarity) used by the subject (Allen &

Brooks, 1991). Stimuli consisted of cartoon animals with 10 binary-valued features. Subjects

learned to categorize items using either a rule-based or exemplar-similarity strategy before being

scanned. Subjects received feedback during the learning trials but not during the transfer trials

and PET data were collected only during transfer trials. Results were interpreted as revealing two

distinct neural patterns. During rule application, prefrontal (BA 6 and BA 46) and posterior
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parietal (BA 7) areas were active with respect to a passive viewing baseline. The exemplar

similarity condition was associated with occipital (BA 17, 18, 19) and cerebellar regions.

Patalano et al. also reported a second condition of this experiment in which subjects were given a

new rule for each of the testing runs in order to decrease the possibility that subjects reverted to

an exemplar strategy for making their decisions in the rule-based condition. The results of this

second study largely replicated the first experiment. The results of the two experiments taken

together suggest bilateral activation of frontal regions within BAs 9, 44, 46 and BA 6, parietal

regions within BAs 7/19, and occipital regions within BA 18 (inferior to the AC/PC line) are

associated with a rule-based categorization strategy and the exemplar similarity condition is

associated with activations in occipital cortex.

Whereas Patalano and colleagues (Patalano et al., 2001; E. E. Smith et al., 1998) tested

whether there were differences in neural activation associated with categories acquired using

either rule-based or exemplar-similarity strategies, Ashby and colleagues (Ashby et al., 1998)

have proposed a hybrid model of category learning called COVIS (COmpetition between Verbal

and Implicit Systems) that is based on competition between two categorization systems. Ashby

and colleagues propose that human categorization can be accounted for by two underlying

neuropsychological systems – a verbal rule-based categorization system and an implicit

categorization system. Although previous researchers may have associated certain

neuropsychological processes with categorization, COVIS proposes a complete

neuropsychological circuit associated with each of the two competing categorization systems

within the model.

Figure 1 presents a schematic of the major components and pathways of COVIS (Ashby

et al., 1998). In the implicit system (large broken lines in Figure 1), a representation of the

stimulus is computed in extrastriate (inferotemporal) cortex. Extrastriate cortex then projects to

the tail of the caudate nucleus where the association between the stimulus and category response

is made. The caudate tail either learns a category decision bound through the feedback process

or, alternatively, associates a category response with a region of perceptual space (Ashby &

Waldron, 1999). After the category response is determined, the response choice is communicated

to prefrontal cortex via an activation circuit that includes the globus pallidus and the thalamus.

The verbal system in COVIS (Ashby et al., 1998) (small broken lines in Figure 1)

includes the anterior cingulate and prefrontal cortex. The model specifies that the anterior
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cingulate is responsible for rule selection and that

the selected rule is then communicated to the

prefrontal cortex. Connections from prefrontal

cortex activate the longitudinal axis of the

caudate. The role of the caudate in the verbal

system is to mediate rule switching and learn the

appropriate response criteria. As in the implicit

system, once a response category is determined,

the response choice is communicated to prefrontal

cortex via an activation circuit that includes the

globus pallidus and the thalamus.

At this point in the process, both the

implicit and the verbal system will have computed

a category response but these responses may not

be the same, resulting in competition between the

two systems (Ashby et al., 1998). In COVIS, the

strongest response wins out, but a neural

mechanism for resolving this response

competition is not specified. One possible neural

mechanism to implement this winner-take-all

strategy could be lateral inhibition within the striatum prior to communicating the response on to

motor cortex (solid line) since both circuits include this structure.

Seger and Cincotta (2002) have used functional imaging to test one of the underlying

assumptions of the COVIS model. In their study, Seger and Cincotta examined activation in the

striatum during three visual concept learning tasks: a verbal, rule-based, task in which rectangles

could be categorized based on their height and width; an implicit task in which the integration of

the length and angle of two lines determined the appropriate category response; and a novel-

implicit task in which stimuli could be categorized based on the diameter of a circle and angle of

the diameter line (Seger & Cincotta, 2002). The COVIS model (Ashby et al., 1998) would

predict activation in the head of the caudate associated with verbal rule application and in the tail

of the caudate associated with implicit category learning. Although significant activation of the

Figure 1. Schematic of COVIS. In COVIS both an
implicit system (large broken lines) and a verbal
system (small broken lines) act in competition to
make category decisions (adapted from Ashby, et
al., 1998).
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striatum was observed in both the verbal and implicit categorization tasks tested by Seger and

Cincotta, differences in activation between the head and tail of the caudate relative to the

characteristics of the two tasks was not found. However, it should be noted that in this

experiment Seger and Cincotta did not collect functional images during the early acquisition

phase of category learning. Failure to find a difference in caudate activation between the verbal

and implicit categorization tasks may be due to their failure to collect data during the acquisition

phase of the task rather than the testing phase since subjects might be relying on declarative

memory (or other) processes to support these later stages of categorization as suggested by

Poldrack et al. (2001). In addition, in a system that relies on competition, there might not be

differential activation since both systems may attempt to generate a response even though one

system consistently wins the competition.

Despite Seger and Cincotta's failure to find evidence directly supporting the COVIS

model, their study did identify portions of the striatal system as being active with categorization.

And, in fact, the striatal system has been found active with categorization relative to simple

response tasks in several imaging studies. For instance, Poldrack and colleagues have adapted a

probabilistic-cue categorization task for use in two functional imaging studies and found that the

striatal system (the system that is damaged in PARK) is active during probabilistic-cue

categorization (Poldrack et al., 2001; Poldrack, Prabhakaran, Seger, & Gabrieli, 1999) with

respect to two different baseline conditions. Although the striatal system has long been

associated with motor learning, in their first study Poldrack and colleagues (Poldrack et al.,

1999) reported the right caudate to be active during acquisition of their categorization task

relative to a visually similar baseline condition. This result is consistent with the behavioral

deficit observed in early probabilistic categorization learning by PARK subjects. In a second

study, Poldrack et al. (Poldrack et al., 2001) addressed in more detail the timing of striatal

involvement over the course of probabilistic categorization. Using an event-related design, they

concluded that early learning was dependent on hippocampal processes while associative

learning systems dependent on the striatal system governed later learning. However, they further

noted that the engagement of the medial temporal lobe system was modulated by whether the

task encouraged the use of declarative or nondeclarative processes or strategies. In contrast to the

hybrid model proposed by Ashby et al. (Ashby et al., 1998) in which competition occurs between

categorization systems dependent on frontal and striatal neural systems, Poldrack and colleagues
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interpreted the results of their experiment in terms of competition between categorization

systems dependent on MTL and striatal neural systems.

The results across functional neuroimaging studies, rather than providing a consensus as

to which neural regions of the brain are consistently associated with categorization, actually

support the idea that the neural systems supporting categorization may be highly variable and

differentially sensitive to manipulations of both the categorization task and the cumulative

experience the subject has had with the task. What is beginning to emerge from these studies is

that the nature of the categorization task depends on multiple factors and although a neural

region – or regions – may be associated with each of these factors, the activity within each of

these regions may also change with the cumulative experience the subject has with the

categorization task. In addition, the change in neural activation that takes place within these

regions over time may occur at different rates for different tasks. At this point, the behavioral,

modeling and functional neuroimaging results are still inconclusive as to what neural systems

support categorization which would, in turn, provide additional insight into which theory of

categorization best reflects the psychological processes supporting categorization behavior. The

goal of the experiments presented in Chapters III and IV is to shed additional light on this issue.
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CHAPTER III

NEURAL CORRELATES ASSOCIATED WITH

DIFFERENCES IN CATEGORIZATION TASKS

Experiment 1

The fundamental question addressed by the experiments in this dissertation is: What

neural processes underlie the explicit learning of perceptual categories? My approach to this

question is to use FMRI to investigate experimental paradigms in which the results have been

interpreted to support a multiple categorization systems view. I have focused on studying these

particular paradigms since they are most likely to yield information about neural regions that

may be differentially active with various aspects of categorization. Experiments 1 and 2,

presented in this chapter, explore how neural activation may vary with respect to differences

between categorization tasks whereas Experiment 3, presented in Chapter IV, explores in greater

detail how neural activation associated with a single categorization task may change over the

course of category acquisition.

Experiment 1 investigates the neural basis of two categorization paradigms – variations

of prototype-distortion and probabilistic-cue classification tasks – that have previously been

studied in neuropsychological and normal populations. Although these categorization tasks vary

on several dimensions, comparison of the outcomes from behavioral neuropsychological studies

utilizing these tasks has been taken as evidence of multiple-categorization systems.

In prototype-distortion tasks, prototypes of stimuli such as dot-patterns, polygons, and

objects with multiple binary-valued features are distorted in accordance with an algorithm or rule

to create category members (Homa, 1978; Homa & Vosburgh, 1976; Posner et al., 1967; Posner

& Keele, 1968; J. M. Reed et al., 1999). These types of stimuli have been used in numerous

studies of normal subjects. However, Knowlton and Squire (1993) adapted the prototype-

distortion paradigm to test both categorization and recognition in subjects with anterograde

amnesia (AA) (Knowlton & Squire, 1993; Squire & Knowlton, 1995). They reasoned that if

categorization depended on a nondeclarative memory system and recognition depended on the

MTL memory system, then amnesiacs should be impaired on recognition but not categorization

relative to normals subjects. In the prototype-distortion paradigm used by Knowlton and Squire,
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subjects were shown a series of dot patterns and instructed to point to the center of each pattern

when presented. After this exposure phase, subjects were then shown a series of new dot patterns

and required to identify them as members (dot patterns generated from the member prototype) or

nonmembers (randomly generated dot patterns) of the previously studied category. The category

structure used for these dot-pattern categorization paradigms was deterministic in that if a dot

pattern was generated from the member prototype, the item was always to be classified as a

member of the prototype's category. In the recognition version of this task, subjects were

exposed eight times to five dot patterns and were then asked to make old-new recognition

decisions with respect to the five old and five new dot patterns. In this study, the results for the

AA subjects were comparable to normal controls for categorization but were impaired compared

to normal controls for old-new recognition (Knowlton & Squire, 1993) supporting their view that

categorization and recognition are dependent on separate memory systems. Squire and Knowlton

then followed up their original study by testing a profoundly amnesiac individual, EP, using the

same dot-pattern paradigm. While the AA subjects in Knowlton and Squire (1993) had been

impaired compared to normal subjects they were still above chance at old-new recognition. By

contrast, EP, a profoundly amnesiac subject, was completely at chance on the old-new

recognition portion of the task but was still able to perform comparable to normal controls on

categorization (Squire & Knowlton, 1995).

The results of these dot-pattern studies of AA populations by Squire and colleagues were

followed by several additional studies that extended the results to a larger class of stimuli. Reed

and colleagues (J. M. Reed et al., 1999) found results similar to Squire and colleagues when

testing amnesiacs using distortions of object-like stimuli (cartoon animals) and Filoteo and

colleagues (Filoteo et al., 2001) also reported the ability of amnesiacs to learn and retain a

category described by a complex quadratic rule in which the stimuli could be described as

distortions of a prototype. Taken together, the results of these studies supported the view that

categorization was dependent on a different memory system than recognition and recall since

AA subjects showed no impairment on categorization of various classes of prototype-distortion

stimuli but were impaired at recognizing or recalling the same types of stimuli and that this

dissociation in abilities applied to a broad class of stimuli.

Reber and Squire also used a variation of this prototype-distortion paradigm to test

categorization and recall in subjects with Parkinson's Disease (PARK) (Reber & Squire, 1999).
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When Reber and Squire (1999) tested PARK subjects on their ability to categorize dot-pattern

stimuli, they found performance in this neuropsychologically impaired group to be comparable

to normal controls (Reber & Squire, 1999). In addition, they found the PARK subject's recall of

the testing episode to also be unimpaired compared to the normal controls. However, in contrast

to the prototype-distortion studies in which subjects with both AA and PARK were reported to

have intact categorization abilities, subjects with PARK had been reported to be impaired

compared to AA and normal subjects during the early stages of a probabilistic-cue categorization

task (Gluck, Oliver, & Myers, 1996; Knowlton et al., 1996; Knowlton et al., 1994). In this

categorization task, the stimuli consisted of a set of four cards. On any trial, subjects were shown

one, two, or three of the four possible cards. Each card was probabilistically (rather than

deterministically) associated with either the A or B category and on any trial an A or B response

could, depending on the assigned probabilities, receive feedback indicating a correct or incorrect

response (Knowlton et al., 1994). In testing AA and normal control subjects in this probabilistic

task, Knowlton and colleagues (Knowlton et al., 1994) reported that the performance of the AA

group was the same as that for controls during the first 50 trials but that the AA group was

impaired compared to controls during later learning (trials 100 to 350). Knowlton and colleagues

proposed that early probabilistic learning was not dependent on structures supporting LTM but

that the normal controls were able to rely on declarative memory for trials during the late

learning epochs, thus accounting for their late training advantage over the AA subjects.

In a second probabilistic-cue study, Knowlton and colleagues (Knowlton et al., 1996)

used the probabilistic-cue categorization task to again test AA and Control subjects but in this

study they also tested a group of subjects with PARK. In this study, the AA and Control subjects

performed at comparable levels for trials 41-50 (70.3%, 67.2%) while PARK subjects were

comparatively impaired during this same early learning phase (56.3%). However, average

percent correct for trials 51-150 revealed no deficits for either the AA or PARK group compared

to the normal controls (Control, 66.1%; AA, 59.2%; PARK, 61.4%). The dissociation in

performance between AA and PARK subjects during the early epochs of the card categorization

task was taken to support the view that early learning during the probabilistic-cue categorization

task was dependent on the striatal system – the system damaged in PARK subjects but intact in

AA subjects.

The pattern of behavioral results for AA and PARK subjects on the prototype-distortion
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and probabilistic-cue tasks relative to each other and to normals has been taken to support a

multiple-categorization systems view in which the early stage of the probabilistic-cue

categorization task is dependent on a striatal categorization system and prototype-distortion

categorization is dependent on a cortical categorization system. However, categorization

behavior in neuropsychologically impaired subjects may not be indicative of the neural processes

supporting categorization behavior in normal populations. In addition, methodological issues

have been identified in the prototype-distortion paradigms used to test amnesiacs that would

allow subjects to perform at above-chance levels with significantly impaired memory (Nosofsky

& Zaki, 1998) and without any memory whatsoever (Palmeri & Flanery, 1999, 2002).

Since comparison of the results from neuropsychological studies utilizing prototype-

distortion and probabilistic-cue tasks has lead to the proposal of multiple categorization systems,

I chose to directly juxtapose variants of these two tasks in normal subjects while collecting

functional images. Comparing the tasks in this way should allow us to identify neural substrates

differentially active with the two tasks. Although several neuroimaging studies have examined

neural activation in normal subjects during variations of these two tasks (Aizenstein et al., 2000;

Poldrack et al., 2001; Poldrack et al., 1999; Reber et al., 2003; Reber et al., 1998a, 1998b; Reber,

Wong, & Buxton, 2002; Vogels, Sary, Dupont, & Orban, 2002), none of the studies to date have

examined the neural activation associated with both types of tasks within the same group of

subjects, and, therefore, it has been difficult to draw conclusions about whether the same or

different neural processes support these tasks. In Experiment 1, two groups of subjects were

tested in either an early (less than 50 trials) or late (greater than 100 trials) category learning

condition. I chose to test subjects in these two conditions since experiments with PARK and AA

subjects had indicated that there might be a difference in neural processing between early and

late epochs of the probabilistic-cue categorization task. Subjects in each of the learning

conditions completed blocks of a prototype-distortion task with a deterministic category

feedback structure and blocks of a probabilistic-cue task as well as blocks of control stimuli and

blocks of fixation. The only differences between the early and late experimental conditions were

the amount of training subjects received before the collection of functional images and the use of

new stimulus sets for each imaging run in the early epoch condition.

Although the prototype-distortion paradigms previously used to test AA subjects used an

implicit exposure paradigm, the variation of this task used in Experiment 1 was modified to use
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an explicit feedback paradigm so it could be tested in conjunction with the probabilistic-cue task.

This change in learning condition was necessary since use of an explicit categorization condition

in the probabilistic-cue task would almost certainly contaminate subject performance if used at

the same time as an implicit learning condition in the prototype-distortion task. This change in

the learning condition for the prototype-distortion task from implicit to explicit should, if

anything, bias the results against finding a difference in neural activation between the two

categorization paradigms since it eliminates a salient difference (implicit vs. explicit learning)

between the tasks originally used to demonstrate this dissociation in categorization behavior

between AA and PARK subjects. However, this change also eliminates one of the problems

inherent with implicit learning paradigms in that normal subjects in these paradigms may

actually be aware, or become aware, of the learning task and adopt an explicit learning strategy.

The change to an explicit learning paradigm also eliminates a difference in feedback conditions

used in the studies of neuropsychological populations. However, differences still remain between

the tasks including the type of category structure used – deterministic versus probabilistic – and

the type of stimuli used – distortions of a prototype pattern versus a set of four cards with a

probabilistic assignment of cues to categories.

If the reported behavioral dissociation between PARK and AA subjects on the prototype-

distortion and probabilistic-cue categorization tasks is evidence of neural regions that are

differentially sensitive to the differences in these two categorization tasks, I would expect

differences in neural activation in normal subjects. In addition, if the probabilistic-cue task is

dependent on a striatal learning system, as suggested by the early learning deficits reported for

subjects with PARK compared to AA and Control subjects on this task, I would also expect that

a subset of these differential activations should be associated with the corticothalamocortical

processing loops of the fronto-striatal neural system. Further predictions with respect to neural

activation associated with these tasks are less clear. Some studies report no deficit for AA or

PARK subjects during later stages of training (Knowlton et al., 1996; Knowlton et al., 1994)

suggesting that late categorization is based on a system that is not damaged in either population

(the cortico-cortical system) while other studies report a deficit for AA subjects with extended

training on the probabilistic-cue task (Gluck et al., 1996) suggesting that performance late in the

probabilistic-cue task may be dependent on the MTL system damaged in AA. These changes in

reported behavior could be reflected in the data as a differential change in activity with respect to
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the task, the training epoch, or as an interaction of task and epoch.

Method

Subjects

Subjects were 22 individuals affiliated with Vanderbilt University who received cash

payment or participation credit in an introductory psychology course in exchange for their

participation. All subjects were tested individually. Written informed consent was acquired from

each individual before testing.

Apparatus and Image Acquisition Parameters

Imaging was performed on a GE 1.5T SIGNA clinical MRI scanner fitted with a high

performance local head gradient and RF coils. Functional T2* -weighted images were acquired

using a gradient echo, single-shot echo planar imaging sequence (GR-EPI) with a matrix size of

64 x 64, echo time (TE) of 60 ms, flip angle of 90 degrees, TR of 2000 ms, in-plane resolution of

3.75 x 3.75 and slice thickness of 7mm with a 1mm gap. Oblique-axial slices were placed with

the bottom slice parallel to the ventral plane of the brain to provide whole brain coverage. Each

subject completed three or four functional imaging scans during which both behavioral and

imaging data were collected. For anatomical localization, a standard whole-brain, T1-weighted,

3D SPGR sequence was acquired before the functional data collection (124 sagittal slices, in-

plane resolution of 0.9375, slice thickness of 1.3mm, no gap).

Stimuli were back-projected onto a screen located outside of the magnet bore which

subjects viewed through a periscope mirror attached to the head coil. The mirror was manually

adjusted for each subject so that the stimuli would be viewed at the center of the mirror.

Stimuli

Subjects completed blocks of categorization, control, and fixation trials. The stimuli for

the categorization and control blocks were either nine-sided polygons (Homa, 1978) (dot-

patterns with the dots connected in a pre-defined order) for the prototype-distortion task or

combinations of cards with symbols on them for the probabilistic-cue task (Knowlton et al.,

1994). One advantage of using polygon stimuli rather than dot pattern stimuli is that the

correspondence of the vertices between category members is always known regardless of the

level of distortion (Homa, 1978). This correspondence is not always obvious for high distortion

dot-pattern stimuli.
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Prototype-distortion Condition. The nine-sided polygons used in the prototype-distortion

condition (PD) were derived from dot-pattern stimuli. The first step in the stimulus generation

process was to generate a random pattern of nine dots on a two-dimensional matrix (Posner &

Keele, 1968). To create a coherent novel object the dots were then connected by a solid line to

form a nine-sided polygon (Homa, 1984). This polygon then served as a super-prototype from

which the category A and B prototypes were derived. The category A and B prototypes were

very-high-level distortions of the super-prototype. Category A and B stimuli were then generated

in accordance with a computer algorithm by moving the vertices of the A and B prototypes to

create new items. The stimuli in the PD condition were presented as yellow lines on a black

background.

The underlying category feedback structure for the PD was deterministic (Posner &

Keele, 1968). An item generated from the A member prototype was always to be categorized as

an A and an item generated from the B prototype was always to be categorized as a B. However,

since the category A and B prototypes were generated from the same super-prototype, the items

could be confused, and the subject could make errors while learning the category.

Prototype-distortion Control Condition. A second set of polygon stimuli were generated

from a second randomly generated prototype to be used in the prototype-distortion control

condition (PDX). These stimuli were used as a perceptual control for purposes of the functional

imaging analysis and were always presented in white on a black background. Subjects were

instructed to attend to the control stimulus and make a button press. No categorization decision

was possible since corrective feedback was not provided in this condition.

Probabilistic-cue Condition. Stimuli for the probabilistic-cue condition (PC) were four

cards. Each card was identified by a distinctive grouping of squares, circles, triangles, or

diamonds. For each trial one, two, or three of the four possible cards would be presented

(Knowlton et al., 1994). The cards were displayed as yellow objects and borders on a black

background.
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The underlying category feedback

structure for the PC was probabilistic (Knowlton

et al., 1994), and the card combinations were

assigned the same outcome probabilities as

those used by Knowlton, Squire, and Gluck

(1994). These probabilities are listed in Table 2.

New sets of PC stimuli for use in the Early

condition were generated by randomly assigning

the cues to the four cards resulting in new

probabilities being assigned to the various cue-

combinations.

Probabilistic-cue Control Condition.

Stimuli for the probabilistic-cue control

condition (PCX) were four cards. Similar to the

PC condition, each card was identified by a

distinctive design and one, two, or three of the

four possible cards would be presented for each

control trial. To prevent confusion with the PC

stimuli, the cards were presented as white borders and objects on a black background. Subjects

were required to attend to the stimulus and press a button. The PCX stimuli were used as a

perceptual control for purposes of the functional imaging analysis. No categorization decision

was possible on PCX trials since corrective feedback was not provided.

Fixation. Subjects also completed blocks during which they attended to a centrally

located fixation cross. Subjects were also required to make a button press during the fixation

trials.

Table 2
Probabilistic-cue combinations for card stimuli

Cue P (cue combination)
Pattern 1 2 3 4 Task P(outcome)
1 0 0 0 1 0.140 0.15
2 0 0 1 0 0.084 0.38
3 0 0 1 1 0.087 0.10
4 0 1 0 0 0.084 0.62
5 0 1 0 1 0.064 0.18
6 0 1 1 0 0.047 0.50
7 0 1 1 1 0.041 0.21
8 1 0 0 0 0.140 0.85
9 1 0 0 1 0.058 0.50
10 1 0 1 0 0.064 0.82
11 1 0 1 1 0.032 0.43
12 1 1 0 0 0.087 0.90
13 1 1 0 1 0.032 0.57
14 1 1 1 0 0.041 0.79
On any trial, 1 of 14 possible combinations of four
cues could appear with the probability indicated
above (P(cue combination)). Each combination of
cues predicted outcome A with the probability P
(outcome) shown above and predicted outcome B
with a probability of 1-P (outcome). In this
example, the cue associations for the A category
were 75%, 57%, 43%, and 25% for cues 1
through 4, respectively (Adapted from Knowlton,
Squire & Gluck, 1994).

Figure 2. Block Design for Experiment 1. All FMRI runs started with 20 seconds of
equalization (EQ) followed by blocks of fixation (F), experimental trials (PD, PC) and control
trials (PDX, PCX). Blocks of experimental and control trials were randomized with the
constraint that a block of a particular task type could not be repeated until one block of each
task had been completed. A block of fixation trials occurred after every four task blocks.

EQ PD PCXPCPDX F PDPCXPC PDX FF PC PCXPDXPD F PDPDXPC PCX F



26

Procedure

This experiment used a mixed design in which one factor – EPOCH – was tested between

subjects and a second factor – TASK – was tested within subjects. EPOCH was manipulated by

either providing training trials prior to the functional imaging run and maintaining the same set

of stimuli during the entire testing session – the Late Epoch (LE) condition – or by withholding

all training trials and changing the stimulus set with each functional imaging run – the Early

Epoch (EE) condition. TASK included the two experimental conditions previously discussed

(PD, PC) and their control conditions (PDX, PCX). Fixation was used as the baseline for

purposes of calulating percent signal change from baseline for all conditions.

Procedure – Early Epoch Condition

The purpose of the EE Condition was to test subjects only during the early learning

stages, fewer than 50 trials, of both categorization tasks since the primary result reported by

Knowlton and colleagues (1994) had been that PARK subjects were impaired compared to AA

subjects during this stage of learning for the PC task. This was accomplished by withholding

training trials prior to scanning and using new stimuli for each functional imaging run.

Runs. Subjects in the Early Epoch (EE) condition were given written instructions prior to

the scan session in addition to a verbal explanation of the experimental procedures. For each

FMRI run, a new set of PD and PDX stimuli were generated, and a new assignment of

probabilities was made to the PC stimuli. Three or four functional imaging runs were collected

for each subject depending on time constraints.

Blocks. During each functional imaging run, subjects completed six blocks in each of the

four possible task and control conditions: PD, PDX, PC, PCX. Each block included eight trials,

and six complete sets of stimulus blocks were collected per run resulting in 48 trials per

condition. Blocks of task trials were randomized with the constraint that a block of a particular

task type could not be repeated until one block of each task had been completed. A block of

fixation trials occurred after every four task blocks.

Trials. Each trial had a total duration of 2500 ms. A fixation cross appeared for 250 ms

immediately followed by presentation of the stimulus. Stimulus and response collection was a

variable amount of time that was terminated based either on the subject’s response or a

maximum response time of 1750. If the subject responded prior to the response deadline,

corrective feedback was immediately presented and remained on the screen until the end of the
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trial (total trial time of 2500 msec). If the subject did not respond prior to the response deadline,

response collection was disabled, and corrective feedback was presented for a total of 500 ms

(total trial time of 2500 msec).

Procedure – Late Epoch Condition

The purpose of the Late Epoch (LE) Condition was to test subjects only during the "late"

learning stages (as defined by Gluck et al., 1996) of the two tasks. This was accomplished by

having the subjects complete 100 trials each of PD and PC categorization prior to collection of

functional images and by using the same set of stimuli for the entire testing session. Otherwise,

all other procedures were the same as in the EE condition.

Late Epoch Pre-training. Subjects completed a pre-training session in which they

completed 100 trials each of PD and PC before the collection of functional images. These trials

were completed concurrent with acquisition of structural images at the beginning of the scan

session. Thus, when subjects in the LE condition started the functional imaging runs, they were

effectively in the late learning (greater than 100 trials) phase of both categorization tasks.

Runs. Same as EE condition with the exception that in the LE condition, the stimuli and

category feedback structure were the same for each run, and each block included only four sets

of stimulus blocks per run resulting in 32 trials per run. Four functional imaging runs were

collected for each subject in the LE condition. The difference in the length of runs in the EE and

LE conditions was due to a scanner upgrade that allowed for longer imaging runs in the EE

condition.

Blocks & Trials. Same as EE condition.

Analysis

Behavioral Data Analysis

Behavioral data, percent correct and reaction time (RT) were collected concurrent with

the functional imaging runs and analyzed using a standard computer statistics package.

Functional Imaging Analysis

All functional imaging data were analyzed using the AFNI (Analysis of Functional

NeuroImages) software package (Cox, 1996).

 Individual Subjects. Prior to statistical analysis of the functional images, each subject’s

time-dependent functional imaging data were examined and corrected for large between phase
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fluctuations due to scanner artifacts and subject movement. Images from each functional run

were then registered to a single base image to correct for in-plane and out-of-plane subject

movement. The six motion parameters used to correct each phase of the imaging run were

recorded and used as covariates in the statistical analysis. All images collected during the 20

second equalization period at the beginning of each functional imaging run were discarded. Each

subject’s structural image was also registered to the same functional base image.

Each subject's motion-corrected functional imaging runs were then reduced to a measure

of percent signal change relative to the fixation baseline for each condition. To convert activation

to a measure of activity associated with each task, a stimulus function of 1's and 0's representing

condition and non-condition time points was created for each of the four task conditions in each

run (PD, PDX, PC, PCX) and then convolved with a canonical hemodynamic response function.

The four convolved condition functions and the six motion parameters obtained from the image

registration process were then submitted as independent variables (IVs), with the voxel

activation value as the dependent variable (DV), to a multiple regression analysis. The full model

included an estimate of baseline and linear drift in addition to the IVs. The output of this analysis

for each individual was then converted to a measure of percent signal change relative to baseline

by dividing the beta weights obtained from the regression analysis for each condition in each

voxel by the beta weight for the baseline condition in each voxel. The results of this analysis

were then placed into the standard coordinate system of Talairach and Tournoux (Talairach &

Tournoux, 1988).

Group Analysis. Since the inflation of Type I error is a concern in FMRI analyses, I chose

to limit the statistical analysis to neural regions that showed maximal activity for the

categorization relative to the control conditions. To identify these regions-of-interest (ROIs), the

percent signal change values for each subject in both the EE and LE conditions were submitted

to an ANOVA to determine voxels in which there was a significant main effect of categorization

(PD, PC) relative to control (PDX, PCX). Regions of maximum intensity within this map were

then identified and spherical ROIs with a 4 mm radius (257 vmul) were created at these voxel

coordinates for use in additional statistical analysis of the data. The advantage of using a smaller

ROI defined in the manner described above is that it provides better localization of the activation

as well as avoids dilution of the measured neural activation that can result from averaging results

across a large number of voxels with varying degrees of response to the experimental conditions.
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The next step in the ROI analysis was to calculate a measure of net percent signal change

for use in a second analysis limited to the ROIs showing a significant main effect of

categorization. The values used in this ROI-based analysis were the net percent signal change for

each experimental condition derived by subtracting the percent signal change value for each of

the control conditions from the percent signal change value for each of the experimental task

conditions. This calculation resulted in four IVs as follows: EPD (Early PD – Early PDX), LPD

(Late PD – Late PDX), EPC (Early PC – Early PCX), and LPC (Late PC – Late PCX). The

average net percent signal change reported for each of the ROIs was then investigated using a

2x2 mixed-effect ANOVA.

Results

Behavioral Data

As illustrated in Figure 3, subjects were able to acquire information about category

membership in both the prototype-distortion and probabilistic-cue tasks. Consistent with the

method used in other studies using probabilistic-cue tasks (Gluck et al., 1996; Knowlton et al.,

1996; Knowlton et al., 1994), trials in the PC task were scored based on the category for which

they had the highest probability of membership. That is, if a card combination was included in

the A category 75% of the time, a response of ‘A’ by the subject was scored as a correct response

Figure 3. Mean percent correct in the four categorization conditions of Experiment 1. In the
early condition, mean percent correct was 65% for the Prototype-distortion task and 62% for
the Probabilistic-cue task. In the late condition, mean percent correct was 77% for the
Prototype-distortion task and 69% for the Probabilistic-cue task. Error bars are rmse.
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regardless of the feedback received. Items with a 50% chance of being included in either

category were excluded from the accuracy analysis. One subject in the late condition was

excluded from both the behavioral and functional imaging analysis as s/he failed to achieve

above-chance performance on either categorization task.

A mixed-effect ANOVA for the average percent correct for each subject by condition

confirmed a significant main effect of EPOCH [F(1,19) = 13.281, p < .05]. Neither the main

effect of TASK [F(1,19) = 4.332, p > .05] nor the interaction of EPOCH and TASK [F(1,19) =

0.817, p > .05] was significant. A mixed-effect ANOVA for the average reaction time (RT) for

each subject confirmed a significant main effect of TASK [(F(1,19) = 7.28, p < .05] – RTs were

greater for the PC relative to the PD task. Neither the main effect of EPOCH [F(1,19) = 0.929, p

> .05] nor the interaction of EPOCH and TASK [(F(1,19) = 0.018, p > .05] was significant.

Timeouts (failure to respond before the response deadline) averaged less than 2%.

Neuroimaging Data

Categorization Regions-of-Interest (ROIs). Table 3 lists the voxel coordinates

(Talairach & Tournoux, 1988) for the maximum intensity voxel of the 20 regions-of-interest in

which significant changes were observed for the categorization tasks relative to the control tasks.

These coordinates then served as the center of mass for the spherical ROIs created and used for

the ROI-based statistical analysis of the functional images as discussed in the analysis section.

After identification of the ROIs, the four net activation values (EPD, EPC, LPD, LPC) for

the 20 ROIs were further investigated in a two-factor mixed-effect ANOVA. As reported in

Table 3, seven of these neural regions (4 frontal, 2 occipital, 1 parietal) were found to have a

significant main effect of TASK and one region in the right inferior parietal lobe was found to

have a significant interaction of EPOCH and TASK. None of the regions were found to have a

significant main effect of EPOCH.

Discussion

The differences between the two experimental conditions tested in Experiment 1 were

broad - as were the task differences in the behavioral neuropsychological studies that motivated

the study - and therefore, the conclusions that can be drawn from these results are somewhat

limited. Although the behavioral results indicate that performance on the prototype-distortion
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Table 3.
Experiment 1 Regions of Interest and ANOVA Results
LR AP IS Hem Brain Region BA Effect F p

Frontal
0 57 0  Medial Medial Frontal Gyrus 10

37 46 17  Right Middle Frontal Gyrus 10 TASK 8.080 0.010
-21 31 42  Left Middle Frontal Gyrus 8 TASK 7.155 0.015
-29 22 -4  Left Inferior Frontal Gyrus 47
32 22 -4  Right Inferior Frontal Gyrus 47
1 14 48  Medial Superior Frontal Gyrus 6 TASK 5.573 0.029

47 10 32  Right Middle Frontal Gyrus 9
0 -17 43  Medial Paracentral Lobule 31 TASK 6.649 0.018

Limbic
8 2 9  Right Caudate Body

-8 -2 11  Left Thalamus *

Temporal
-45 -58 31  Left Superior Temporal Gyrus 39

Parietal
36 -39 45  Right Inferior Parietal Lobule 40 EPOCH X TASK 9.254 0.007
0 -46 34  Medial Precuneus 31 . . .

28 -51 41  Right Superior Parietal Lobule 7 . . .
-32 -53 45  Left Inferior Parietal Lobule 40 TASK 7.015 0.016
24 -63 50  Right Superior Parietal Lobule 7

-48 -66 33  Left Angular Gyrus 39

Occipital
37 -76 7  Right Middle Occipital Gyrus 19 TASK 5.823 0.026

-40 -78 3  Left Middle Occipital Gyrus 19 TASK 7.976 0.011
-10 -89 4  Left Lingual Gyrus 17

Regions of Interest based on maximum F values for categorization conditions relative to control
conditions. R = Right (+), L = Left (-); A = Anterior(+), P = Posterior(-), S = Superior (+), I =
Inferior (-); Hem = Hemisphere; Brain Regions = Talairach Label; BA = Brodmann Area; * no
Brodmann label. Effects = ROIs with significant effects as confirmed by ANOVA; TASK = Main
Effect of Task; EPOCH X TASK = Interaction of Epoch and Task; F = F value for reported effect
from ANOVA with degrees of freedom = 1,19; p = achieved p-value for reported effect from
ANOVA.

and probabilistic-cue tasks was roughly equated, seven neural regions exhibited differential

activity with performance of the PD relative to the PC task. This difference in neural activation

in the absence of sigificant differences in behavioral performance would tend to support the

conclusion that different categorization systems support these two categorization tasks or that

different areas are engaged in certain kinds of tasks2. In addition, although I did not find

                                                
2 Although differential activation in FMRI may be a necessary condition to conclude that a separate system exists,
differential activation by itself is not sufficient to conclude that a separate system exists. FMRI of normal subjects,
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significant differences associated with task in the caudate or thalamus, as might be predicted

from previous fMRI studies, four of the activations (three frontal and one cingulate) were

associated with neural regions that are part of the extended fronto-striatal processing system

which, as discussed in Chapter II, innervates dorsal lateral prefrontal cortex (DLPFC), medial

orbitofrontal cortex (MOC), and anterior cingulate cortex (ACC) via the

corticostriatothalamocortical loops.

The three frontal regions differentially active with respect to the two categorization tasks

(PC > PD) have previously been associated with a variety of tasks requiring working memory

(Cabeza & Nyberg, 2000). In particular, the superior gyrus (BA 6) has been associated more

generally with verbal working memory tasks (Fiez, 1996; Coull, 1996) whereas the right middle

frontal gyrus (BA 10) has been associated with numerous problem solving tasks such as the

Wisconsin Card Sorting task (Goldberg, 1998; Berman, 1995), the Tower of London task (Baker,

1996), and Raven’s Analytical task (Prabhakar, 1997) as well as a conceptual reasoning task

(Rao, 1997). Activation of the left middle frontal gyrus (BA 8) has been associated with

language (Bookheimer, 1995; Bottini, 1994), semantic retrieval associated with categorization

(Demb, 1995; Demonet, 1994) and generation tasks (Phelps, 1997), and conceptual priming

(Demb, 1995; Gabrieli, 1996). This main effect of TASK may indicate that the categorization

processes supporting probabilistic-cue categorization rely upon holding and manipulating inputs

to the categorization process in a way that is different than the categorization processes

supporting prototype-distortion categorization since activation was greater for the probabilistic-

cue task relative to the prototype-distortion task in each of these frontal regions. These results

would also appear to be consistent with those of a recent study in which performance on a

probabilistic-cue classification learning task was facilitated by electrical stimulation of the

prefrontal, but not occipital, cortex (Kincses, et al., 2003) supporting the finding that the neural

locus of process differences in early epochs of PD and PC categorization is associated with

cognitive functions supported by the frontal lobes rather than the basal ganglia. In addition, a

recent study by Gluck and colleagues (Gluck, Shohamy, & Myers, 2002) of the strategies used

by normal subjects in solving the probabilistic-cue task reports that normal subjects use one of

several strategies, including two simple rule-based strategies, when solving certain probabilistic-

                                                                                                                                                            
by itself, is not sufficient to make conclusions with respect to multiple-systems. See Chapter V and Price and Friston
(2003) for a more detailed discussion of this issue.
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cue tasks. The results of this study (Gluck et al., 2002) taken with the pattern of differential

neural activation reported in the current experiment suggest that the deficits reported for PARK

subjects during the early stages of probabilistic-cue classification may be due to an impaired

ability to apply rules that is dependent on intact frontal lobe function rather than an impaired

ability to make a stimulus-response association that is dependent on intact basal ganglia

functions. The possibility of a hybrid categorization sytem that includes an early, rule-based

categorization system is examined in greater detail in Experiment 3, presented in Chapter IV.

An interaction of TASK and EPOCH was reported for one region in the right inferior

parietal lobule (IPL). Activity in parietal areas has been identified in several categorization

studies (Aizenstein et al., 2000; Reber et al., 2002; Seger et al., 2000; Vogels et al., 2002)

however no single factor across these studies appears to be exclusively associated with these

activations. One possibility for this pattern of activation is that the different stimuli used for the

two experimental tasks are processed in different ways. For instance, the prototype-distortion

task uses a single, nine-sided polygon for each trial whereas the probabilistic-cue task uses one to

three cards for each trial. Figure 4 shows that activation in the right IPL decreased between the

Early and Late epochs of the prototype-distortion task whereas activity for the probabilistic-cue

task increased from the Early to Late epoch. Shafritz, Gore and Marois (2002) have reported that

regions of superior and inferior parietal cortex are more active in feature conjunction tasks – like

the probabilistic-cue task – than in single-object tasks – like the prototype-distortion task

Figure 4. EPOCHxTASK interaction – right inferior parietal lobule. Panel on the left shows
the location of the ROI in a coronal plane. Relative activation for each experimental
condition (net of control) is presented in the left panel. Structural image is an average image
from all subjects. Error bars are rmse.
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(Shafritz, Gore, & Marois, 2002) and therefore, in the current experiment, it may be the

relationship between the type of stimuli and the subject's strategy for learning the categories that

resulted in the reported interaction. One can speculate that a single card in the probabilistic-cue

task is a simple stimulus compared to a single ten-sided polygon in the prototype-distortion task.

If subjects adopt a strategy during early epochs of the probabilistic-cue task of attending to a

single card, as suggested by Gluck et al. (2002) and then change to a multi-cue strategy in late

epochs of the probabilistic-cue task in which they attend to all of the presented cards, the pattern

of increasing neural activation between Epochs of the PC task shown in Figure 4 might be

expected. In the case of the single-object stimuli used in the PD task, this switch in strategy may

not take place and the resultant decrease in activation between the Early and Late epoch may

simply reflect the general reduction in activation that occurs with task repetition.

One unanticipated result of this study was that none of the ROIs tested were associated

with a significant main effect of EPOCH. Given the significant effect of EPOCH reported for the

behavioral data and previous research reporting a dissociation in the pattern of results reported

for early and late epochs of the PD and PC tasks for AA, PARK, and normal subjects, one might

have also predicted a difference in neural activation with respect to this factor. However,

whereas TASK was tested within subjects, EPOCH was tested between subjects and therefore,

the failure to find a result in the between subject factor may simply be due to the limited power

to identify an effect related to this aspect of the experimental design.

As previously noted, although differential results were reported for the two experimental

tasks in Experiment 1, there are problems with interpretation due to the choice of paradigm that

was dictated by the extant behavioral neuropsychological studies. First, as previously noted, the

experimental tasks varied on more than one factor. The tasks differed in the type of stimuli used,

polygon versus cards; the feedback structure assigned to the stimuli, deterministic versus

probabilistic; and the level of variation in the stimuli, multiple distortions of a prototype versus a

single set of four cards; therefore, any differential activation associated with the tasks could be

attributed to one or more of these factors. A second limitation of Experiment 1 was that both

tasks used an explicit learning paradigm. Several of the behavioral neuropsychological studies

that motivated the current work used implicit learning paradigms and therefore, differences noted

between performance by neuropsychological populations and the normal subjects tested in

Experiment 1 could be due to the differences in learning and testing associated with using an
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implicit or explicit learning paradigm. Experiment 2, below, will address some of the limitations

in interpretation due to the experimental design used in Experiment 1 and the categorization

FMRI literature in general whereas Experiment 3, presented in Chapter IV, will address changes

in neural activation over the course of category acquisition. Addressing differences between

implicit and explicit categorization paradigms is beyond the scope of this dissertation.

Experiment 2

The results from Experiment 1 are generally consistent with the inference that has been

drawn in the behavioral neuropsychological literature that there is a difference in the neural

systems underlying prototype-distortion and probabilistic-cue categorization tasks since there

were significant main effects of TASK reported for a number of neural regions associated with

the fronto-striatal learning and memory system. However, since more than one experimental

factor differed between the two experimental conditions of Experiment 1, no definitive

conclusions could be drawn with respect to the factor or factors directly associated with these

results. Therefore, one of the goals of Experiment 2 is to address some of the limitations of

Experiment 1.

A second goal of Experiment 2 is to address some of the limitations found with respect to

various categorization tasks reported in the literature. As noted in Chapter II, activation with

respect to categorization relative to control has been reported in the MTL, cortico-cortical, and

fronto-striatal learning and memory systems. However, these results are not consistently found

between studies. Although some studies have specifically addressed issues with respect to

multiple-categorization systems (Aizenstein et al., 2000; Patalano et al., 2001; Poldrack et al.,

2001; Poldrack et al., 1999; Reber et al., 2003), the results across the limited number of

neuroimaging studies of categorization published to date have failed to reach any clear consensus

with respect to specific brain regions subserving any particular categorization system or task.

One reason for this failure to achieve consensus across studies may be due to differences in the

experimental designs used to test subjects. In adapting categorization tasks for FMRI studies,

several aspects of the categorization task structure are consistent. For example, in a typical

explicit categorization paradigm, stimuli are assigned to two or more categories according to a

method determined by the experimenter. Subjects then participate in some type of learning task

in order to acquire the object-category assignments (category training) and are then tested either
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on how well they have learned the category assignments (category testing) or on how they apply

their category knowledge to new items (category transfer). However, despite these consistencies

in the structure of the categorization experiments, there are still many aspects of the experimental

paradigms that vary. For instance, in many experiments the stimuli are assigned to the category

deterministically (object X is always an A) but other studies use probabilistic category

assignments (object X is usually an A, but sometimes a B). Similarly, subjects can be tested on

category transfer after training that is either relatively short (40 training trials) or long (256

training trials). Finally, subjects often learn the category structure via an explicit feedback

paradigm in which they see a stimulus, offer a response, and then receive corrective feedback

(often referred to as supervised, intentional, or explicit learning). Alternatively, subjects can

learn the category structure via an explicit exposure paradigm in which they see a stimulus and

are told its category membership – similar to a paired associates task – or via implicit (or

incidental) exposure paradigms in which they see a series of items from a single category

without being told before the exposure task of any relationship between the stimuli being viewed

and any subsequent categorization tests. Given the number of possible task differences and the

relatively small number of categorization studies utilizing FMRI it is not suprising that there has

been little consistency in the experimental conditions tested or the results reported from these

studies.

A review of the experimental conditions in FMRI studies of categorization with

paradigms similar to the paradigms used in this dissertation (Aizenstein et al., 2000; Patalano et

al., 2001; Poldrack et al., 2001; Poldrack et al., 1999; Reber et al., 1998a, 1998b; Reber et al.,

2002; Seger & Cincotta, 2002; Seger et al., 2000; Vogels et al., 2002) reveals that in these

studies functional images were gathered during both the learning and testing or transfer stages of

the task in only 3 of the 10 studies. Of the remaining 7 studies, functional images were collected

only during the transfer portion of the task and therefore evaluation of changes in activity with

respect to early category acquisition is not possible in these studies. Similarly, 8 of the 10 studies

used deterministic category feedback structures while the remaining two studies utilized

probabilistic feedback structures. And, in these studies, 4 used an implicit learning paradigm and

6 used an explicit learning paradigm. In addition to the differences in the categorization

paradigm, the stimuli used in these categorization studies have also varied. In general, the

probabilistic-cue studies have used a variation of the card categorization task described in
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Experiment 1 while the deterministic studies have used a variety of stimulus sets such as dot

patterns, polygons, checkerboard patterns, and simple objects with variable numbers of binary

features. The stimulus sets used in the deterministic studies were all generated based on

distortions or variations from a category prototype. Other differences that have not been

controlled for across studies include level of performance and the baseline conditions used to

evaluate the experimental conditions.

Although there is certainly nothing incorrect in studying a limited set of conditions within

an experiment, this approach should also limit the conclusions that can be drawn across studies.

Given that one of the impediments to understanding the FMRI literature as it relates to

categorization is that it is difficult to draw conclusions between studies that vary by more than

one study parameter, one of the goals of Experiment 2 is to study a limited set of parameters that

have been associated with differential activation in a variety of studies within one group of

subjects. Therefore, in Experiment 2, I used a within-subjects, 2 (learning versus testing) x 2

(deterministic versus probabilistic category structure) x 2 (exposure versus feedback learning)

factorial design to study neural activation associated with three factors that had not previously

been studied in a single subject group. Designing Experiment 2 in this way also achieves a

second goal, which is to partially replicate the Early Epoch condition of Experiment 1 using a

single stimulus set – a difference in conditions that had limited interpretation of the results of

Experiment 1. I chose to further investigate the Early, rather than Late, learning condition since

differences in performance between neuropsychological populations had been consistently

associated with early categorization. Most important, the paradigm used in Experiment 2 will

provide additional insight into whether the differences reported in the behavioral

neuropsychological literature and previous FMRI studies with respect to the prototype-distortion

and probabilistic-cue task are associated with the underlying category structure (deterministic

versus probabilistic) or the type of learning paradigm used to acquire the category (exposure

versus feedback) – two factors that had been confounded in previous studies (Poldrack et al.,

2001; Poldrack et al., 1999) as well as in drawing conclusions between studies (Knowlton et al.,

1996; Knowlton & Squire, 1993; Knowlton et al., 1994; Squire & Knowlton, 1995).

In Experiment 2, I collected functional images while subjects participated in the early

stages of category learning and testing. During one session, subjects completed learning and

transfer tasks with stimuli that had a deterministic category structure. During another scan
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session, the same group of subjects completed learning and testing tasks with stimuli that had a

probabilistic category structure. During each session, subjects completed four pairs of functional

imaging runs (8 runs per session). For each pair of runs, the first run was always a category

learning run during which the subject learned the category via either feedback category learning

or exposure category learning. Following each training run, the subject was then tested without

feedback. The data for learning and testing were collected in separate functional imaging runs

(rather than in alternating blocks of learning and testing within a single run) to avoid possible

carryover effects between the learning and transfer tasks (Braver, Reynolds, & Donaldson, 2003;

Visscher et al., 2003).

The stimuli were similar to the card stimuli used in Experiment 1 however, the set of

stimuli was expanded so new items could be used for each pair of imaging runs (See Appendix

A). For each complete scanning session, subjects were to be tested twice in each of the different

conditions using one of the two types of category feedback structures (deterministic or

probabilistic). The category structure used in the first scanning session was randomly assigned

for each subject and subjects were then tested in the second day's scanning session using

whichever category feedback structure was not tested in the first day's session. The eight

conditions tested in Experiment 2 are summarized in Table 4.

Functional imaging of these conditions will allow us to systematically evaluate the neural

basis of different types of learning (feedback versus exposure) and category feedback structure

(probabilistic versus deterministic) at both the time of initial learning and at the time of category

testing for each of the possible learning conditions.

Table 4
Experimental Conditions of Experiment 2

LEARNING TESTING
Exposure Feedback

Deterministic Probabilistic Deterministic Probabilistic

DEL DET
PEL PET

DFL DFT
PFL PFT

Two learning (L) conditions: Feedback (F) or Exposure (E) with two possible category
structures: Deterministic (D) or Probabilistic (P) which then result in four possible
testing (T) conditions based on the type of learning condition.
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Method

Subjects

Subjects were 10 individuals affiliated with Vanderbilt University who received cash

payment for their participation. All subjects were tested individually and self-reported to be

right-handed with normal or corrected-to-normal vision. Written informed consent was acquired

from each individual before each testing session.

Apparatus and Image Acquisition Parameters

Imaging was performed on a GE 3T SIGNA research MRI scanner fitted with a high

performance local head gradient and RF coils. Functional T2*-weighted images were acquired

using a gradient echo, single-shot echo planar imaging sequence (GR-EPI) with a matrix size of

64 x 64 (FOV 240mm), echo time of 60 ms, flip angle of 70 degrees, TR of 2500 ms, in-plane

resolution of 3.75 x 3.75, and slice thickness of 7mm, with 0 mm gap. 18 axial slices were placed

starting at the ventral surface of the temporal lobe and extending in the superior plane to provide

whole brain coverage. Subjects completed eight functional imaging scans during each of two

imaging sessions during which both behavioral and imaging data were collected.

For anatomical localization, a standard whole-brain, T1-weighted, 3D FSPGR sequence

was acquired after functional data collection (124 sagittal slices, in-plane resolution of 0.9375,

slice thickness of 1.2 mm, no gap).

Stimuli

 Stimuli for each condition were four cards, similar to the cards used for the probabilistic-

cue task in Experiment 1 and other probabilistic-cue experiments reported by Knowlton and

colleagues (Gluck et al., 1996; Knowlton et al., 1996; Knowlton et al., 1994). However, for

purposes of this experiment, an expanded set of 64 card stimuli were created so that a unique set

of four cards could be used for each set of learning/testing runs. The 64 card stimuli were

constructed from eight nameable objects arranged in eight different configurations. For any set of

four stimuli presented to a subject, the same object/configuration pairing was not used for more

than one set of learning/testing functional imaging runs. Subject to this constraint, all stimuli

were randomly assigned to conditions and subjects. Stimuli were presented using a mirror

focused on a screen outside of the scanner on which the stimuli were projected.

Probabilistic Category Structure. For each trial one, two, or three of the four possible

cards were presented in one of 12 stimulus combinations. The cards were displayed as blue
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objects and borders on a white background. The underlying category feedback structure for the

probabilistic condition was similar to the structure used by Knowlton and colleagues with the

exception that the two stimuli in the Knowlton and Squire paradigm that had a 50% probability

of being a member of the A or B category were excluded from the set. Stimuli for each pair of

learning/testing imaging runs were assigned by drawing sets of four cards from the 64 card set

without replacement and randomly assigning the cues to the cards.

Deterministic Category Structure. The deterministic stimuli were constructed in the same

manner as the probabilistic stimuli. However, identification of the item as a member of category

A or B was deterministic. For instance, if an item in the deterministic condition was assigned a

cue pattern that would result in an 'A' category assignment 75% of the time in the probabilistic

condition, the item would be treated as an 'A' 100% of the time in the deterministic condition.

Deterministic stimuli were presented with the same frequencies as the probabilistic stimuli. Pilot

testing confirmed that the category feedback assignments of the four training conditions resulted

in equated performance (percent correct) in the four transfer conditions.

Control Conditions. Stimuli for the Control conditions (probabilistic and deterministic)

were drawn from the same pool of 64 cards. However, to distinguish the control stimuli from the

categorical stimuli, the control stimuli were presented as red objects and borders on a white

background. As with the categorical stimuli, one, two or three of the four possible cards were

presented for each control trial and subjects were simply required to press a button within a

response deadline. Category feedback or identification was never provided for these items.

Presentation of control stimuli was yoked to presentation of categorization stimuli to equate the

experimental and control conditions on exposure. Thus, for each block of 8 categorization trials

(learning or testing) a block of 8 control trials was also presented.

Fixation. Subjects also completed three 20-second periods of fixation presented at the

beginning, midpoint, and end of each imaging run. During fixation subjects attended to a

centrally located fixation cross presented in black type on a white background.

Procedure

Functional Imaging Sessions. Subjects participated in two functional imaging sessions.

Eight functional imaging runs (two per condition) were collected during each session for a total

of 16 functional imaging runs per subject over the two scanning sessions. On the first day of

scanning subjects learned the categorical assignments using either a deterministic or probabilistic
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category structure. The category structure for session 1 was determined at random and the

remaining, unused, category structure was then used approximately one week later for session 2.

The category structures were blocked by session in order to minimize subject confusion during

the learning and testing sessions. Similarly, the order of presentation for the two types of

learning runs (exposure or feedback) was randomly assigned to the four possible learning runs

during each session (runs 1,3,5, and 7) subject to the constraint that two runs of exposure and

two runs of feedback learning were assigned for each scanning session. Scan numbers 2, 4, 6,

and 8 in each scanning session were always transfer runs which did not vary from each other

except for the type of learning paradigm that had been used in the immediately preceding

learning run and the card stimuli assigned to the condition.

Functional Imaging Runs. Stimuli in the learning and testing runs were presented in a

series of 8-trial blocks. For the learning scans, each scan included 6 blocks of learning trials

interleaved with 6 blocks of control trials in an ABBA (Petersson, Elfgren, & Ingvar, 1999;

Skudlarski, Constable, & Gore, 1999) design to control for linear drift during the scan. Testing

scans were structured the same as the learning scans with the only difference being the absence

of corrective feedback.

Trials. All trials had the same temporal structure. Each trial started with a 250 ms fixation

cross, a stimulus was then presented for 1750 ms during which the subject could respond. If the

subject responded before the 1750 ms deadline, the stimulus would remain on the screen and the

computer would provide an appropriate response to the subject’s key press. If the subject failed

to respond within 1750 ms, the stimulus would remain on the screen but the computer would

then cancel the response collection process and instead would provide an appropriate response.

Trials terminated after a total elapsed time of 2500 ms per trial. Table 5 outlines the response

request and feedback screens for each condition. All responses were made using a button box

held in the subject’s right hand during the scanning session. The index finger was used to record

an 'A' response and the middle finger was used to record a 'B' response. Similar trial timing

parameters were used in Experiment 1 and results from that experiment indicated that subjects

were able to learn the categories within these timing constraints. Subjects received complete

written instructions via a self-paced computer presentation as well as verbal instructions before

collection of functional images.
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TABLE 5.
Structure of Learning, Testing, and Control Trials in Experiment 2

Duration
Feedback

Learning Trials
Exposure

Learning Trials
Testing
Trials

Control
Trials

Fixation
= 250 ms

+ + + +

Response
Request
≤ 1750 ms

A or B?
(Subjects press
index finger for
an A, middle
finger for B)

Category A
(Subjects press
index finger to

acknowledge A,
middle finger for B)

A or B? Press a Key.

Correct
Response
≥ 500 ms

Correct,
Category A

Correct,
Category A

Response
Collected.

Response
Collected.

Incorrect
Response
≥ 500 ms

Incorrect,
Category A

Incorrect,
 Category A

Response
Collected.

Response
Collected.

No
Response
= 500 ms

Response not
Detected.

Category A

Response not
Detected.

Category A

Response not
Detected.

Response not
Detected.

First column describes the time allocations for each 2,500 ms trial. Columns 2
through 5 describe the possible actions and screen displays for each stage in a trial
for the four possible trial types. The stimulus appeared on the screen immediately
after the fixation cross and stayed on the screen until the end of the trial (2,250 ms).
ms = milliseconds

Analysis

Behavioral Data Analysis

Behavioral data (percent correct and RT) were collected concurrent with the functional

imaging runs and analyzed using a standard computer statistics package.

Functional Imaging Analysis

All functional imaging data were analyzed using the AFNI (Analysis of Functional

NeuroImages) software package (Cox, 1996).

Individual Subjects. After collection of functional images, the following steps were taken

to convert each functional imaging run into a measure of percent signal change for each

experimental variable. First, an algorithm was used to identify outliers (spikes) in each series of

images and, in the case where an outlier was identified, replace the outlier with a new value

based on the average of images immediately prior to and after the outlier. Next, to correct for

small amounts of motion, each functional image was registered to a base functional image
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acquired immediately before acquisition of the 3-dimensional structural MRI. The six motion

parameters required to register each image to the base image were recorded for use in the

subsequent regression analysis. Next, a mean activation value was determined for each voxel

within each functional imaging run and then each series of functional images was normalized by

dividing the activation in each voxel at each point in time by the mean value for that voxel for

that imaging run and dividing the result by 100. The resulting activation value was then spatially

smoothed using a 4mm gaussian filter. Finally, the functional activation profiles were submitted

to a regression analysis that included the 6 motion parameters generated during volume

registration as well as two ideal functions - one representing the hypothetical hemodynamic

response function for neural regions active with respect to the blocks of control stimuli and one

representing the hypothetical hemodynamic response function for neural regions active with

respect to the blocks of categorical stimuli. The results of this regression analysis were then

converted to a measure of percent signal change relative to the fixation baseline. Each subject’s

data were then placed into the coordinate system of Talairach and Tournoux (Talairach &

Tournoux, 1988) for inclusion in the group level analysis.

Group Analysis. As in Experiment 1, to control for Type I error rate I chose to limit the statistical

analysis to a limited number of neural regions that showed maximal activity for categorization

relative to control. To identify these ROIs, the percent signal change values for each subject in

the experimental and control conditions were submitted to an ANOVA to determine voxels in

which there was a significant main effect of categorization relative to control. Regions of

maximum intensity within this map were then identified and spherical ROIs (257 vmul –

approximately 2.5 voxels in original acquisition matrix) were created at these voxel coordinates

for use in additional statistical analysis of the data. The advantage of using a smaller ROI defined

in the manner described above is that it provides better localization of the activation as well as

avoids dilution of the measured neural activation that can result from averaging results across

large numbers of voxels with varying degrees of response to the experimental conditions. The

next step in the ROI analysis was to calculate a measure of net percent signal change for use in

the ANOVA by subtracting the percent signal change value for each of the experimental control

conditions from the percent signal change value for each of the experimental task conditions.

This subtraction resulted in net activation values for the eight IVs listed in Table 4. The average
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Figure 5. Performance in the four test conditions of Experiment 2. The only difference
between test conditions was the learning condition used for category acquisition prior to the
test runs. There was no significant main effect of category structure (deterministic versus
probabilistic: ANOVA [F(1,8)=0.417]) or type of learning (feedback versus exposure:
ANOVA [F(1,9)=0.082]). DXT = deterministic exposure; DFT = deterministic feedback; PXT
= probabilistic exposure; PFT = probabilistic feedback. Error bars are rmse.
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neural activation reported for each of the ROIs was then investigated using a 2

(Learning/Testing) x 2 (Feedback/Exposure) x 2 (Deterministic/Probabilistic) ANOVA.

Results & Discussion

Behavioral

Since the task during exposure training consisted of simply acknowledging the correct

category by making a button press, subjects were expected, and did, perform at ceiling. Average

percent correct in the two feedback learning conditions, DFL and PFL, was 71% and 62%,

respectively. Although it was not possible, due to the structure of the different learning tasks, to

equate performance between the four learning conditions, Figure 5 illustrates that category

testing after equal numbers of learning trials in these four conditions was equated across the four

conditions as confirmed by a two-way ANOVA. Similar to the results for percent correct,

analysis of RTs revealed no significant main effects related to the three experimental factors (all

F's < .367, all p's > .05). Timeouts accounted for less than 2 percent of test trials.
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Neuroimaging

Categorization Regions-of-Interest. Table 6 lists the voxel coordinates (Talairach &

Tournoux, 1988) for the maximum intensity voxel of the 17 ROIs in which significant changes

were observed for the categorization tasks relative to the control tasks. These coordinates are

also the center of mass for the spherical ROIs created and used for further statistical analysis of

the functional images.

After identification of the ROIs, the eight net activation values (DEL, DFL, PEL, PFL,

DET, DFT, PET, PFT) for the 17 ROIs were further investigated via ANOVA. The results of the

ANOVA for regions with statistically significant effects are reported in the last 3 columns of

Table 6.
Experiment 2 Regions of Interest and ANOVA Results
LR AP IS Hem Brain Region BA Effect F p

Frontal
46 13 40  Right Middle Frontal Gyrus 8 LTxFX 11.76 .001

-28 4 56  Left Middle Frontal Gyrus 6 FX 5.714 .020
2 58 -4  Right Medial Frontal Gyrus 10

50 15 0  Right Inferior Frontal Gyrus 47
-39 14 -5  Left Inferior Frontal Gyrus 47 LTxFX 5.255 .026

Limbic
1 18 43  Right Cingulate Gyrus 32 LTxFX 8.106 .006
8 -4 14  Right Thalamus AN FX 4.019 .050

-12 -14 16  Left Thalamus * LTxFX 14.52 .000
43 -12 10  Right Insula 13

Temporal
-51 -60 29  Left Middle Temporal Gyrus 39 LT 14.66 .000
-51 -60 29  Left Middle Temporal Gyrus 39 FX 9.830 .003
47 -62 -3  Right Inferior Temporal Gyrus 19

Occipital
-34 -70 -8  Left Lingual Gyrus 18 LTxFX 4.520 .038
-7 -80 -8  Left Lingual Gyrus 18 LTxFX 6.938 .011
37 -67 -6  Right Lingual Gyrus 18
-8 -74 17  Left Cuneus 18 LTxFX 7.279 .009

Parietal
3 -61 60  Right Precuneus 7

-3 -47 36  Left Precuneus 31
Regions of Interest based on maximum F values for categorization conditions relative to control
conditions. R = Right (+), L = Left (-); A = Anterior(+), P = Posterior(-), S = Superior (+), I =
Inferior (-); Hem = Hemisphere; Brain Regions = Talairach Label; BA = Brodmann Area; * no
Brodmann label. Significant Effects = ROIs with significant effects confirmed by ANOVA; LT =
Main Effect of Learn vs Test; FX = Main Effect of Feedback vs. Exposure; LTxFX = Interaction
of Learn vs.Test and Feedback vs Exposure; F = F value for reported effect from ANOVA with
degrees of freedom = 1,19; p = achieved p-value for reported effect from ANOVA.
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Table 6. As reported in Table 6, seven regions were found to have a significant interaction of

task phase and training (LTxFX), 2 regions were found to have a significant main effect of

training (feedback versus exposure), and 1 region, the left middle temporal gyrus, was found to

have significant main effects of both task phase (learning versus testing) and training (feedback

versus exposure), but not a significant interaction of the two factors. None of the regions were

found to have a significant main effect of category assignment (deterministic versus

probabilistic) in the absence of a significant interaction.

One goal of Experiment 2 was to isolate differences in the category learning condition

(feedback versus exposure), category assignment (deterministic versus probabilistic) and,

category task phase (learning versus testing) – three factors that had either been confounded

within previous experiments or were often not explicitly accounted for when making

comparisons across studies. One conclusion that can be drawn from Experiment 2 is that whereas

differences in the learning condition and category task phase are found to be associated with

significant differential neural activation, differences in category assignment (deterministic versus

probabilistic) – at least with respect to this particular categorization task – are not. The primary

result reported for the ROIs investigated in this experiment is that there is a significant

interaction of category learning condition and category task phase since an interaction of these

two experimental factors was reported for 7 of the 17 ROIs.

An example of this interaction is illustrated in Figure 6. In this ROI, activation in the left
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Figure 6. LTxFX interaction - left thalamus ROI. The panel on the left
shows the location of the ROI in the coronal plane. The right panel reports
the percent signal change for each experimental condition (net of control).
Structural image is an average image from all subjects. Error bars are
rmse.
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thalamus was greater during feedback learning (black and gray bars in the LEARN condition)

relative to exposure learning regardless of the category structure. A similar pattern of activation

was found in all of the ROIs reporting a significant LTxFX interaction. Four of the ROIs

reporting this interaction were associated with the fronto-striatal learning system and this pattern

of activation would be generally consistent with the proposed role of the striatal system in

feedback learning tasks.

The LTxFX interaction was also observed in three occipital regions including two left

lingual gyrus ROIs and the left cuneus (all BA 18). Since the visual characteristics of the stimuli

in Experiment 2 were the same for all conditions, differences in neural activation in these visual

perception regions cannot be attributed to perceptual differences in the stimuli as in Experiment

1. Reber and colleagues have previously reported differential activation of occipital cortex

associated with processing of categorical stimuli (Reber et al., 1998a, 1998b; Reber et al., 2002).

In these studies, areas of relative deactivation in occipital cortex were reported for a learned

category relative to both a contrast category and random, noncategorical, items. However, in

Reber's paradigms, subjects were exposed to the categorical stimuli multiple times prior to

testing and were not exposed to the contrast category prior to testing. Therefore, the deactivation

of occipital cortex reported for the learned category relative to the contrast category stimuli may

have also been due the relative amount of exposure subjects had received to the stimuli prior to

testing. Relative to the same baseline, previously seen items would show reduced activation due

to priming or habituation (Buckner et al., 1998) and new, noncategorical stimuli would show

greater activation as a result of their novelty (Gabrieli, Brewer, Desmond, & Glover, 1997) and

therefore, a direct comparison of activation for the two stimulus conditions could result in a

deactivation for the category relative to the contrast category conditions. In the current study,

exposure to the experimental and control stimuli was equated, eliminating priming and novelty

effects as possible explanations for differences in activation between the various experimental

conditions. One conclusion that can be drawn from the current study with regard to these

occipital activations is that neural regions normally associated with low-level perceptual

processing can show differential activation with respect to higher-level cognitive task demands,

possibly through the action of attentional modulation (Vidnyanszky & Sohn, 2005) and/or

recurrent processing loops (Lamme, 2000, 2002; Lamme & Roelfsema, 2000).

As previously noted, the conclusions that could be drawn from the results of Experiment
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1 were limited since more than one experimental factor varied between the task conditions.

Seven ROIs in Experiment 1 showed a significant main effect associated with activation during

the prototype-distortion task relative to the probabilistic-cue task. Since both tasks in Experiment

1 were learned using a feedback paradigm, the difference in activation should be related to one

of the factors that differed between the two TASK conditions such as the category structure

(deterministic versus probabilistic) or the stimuli (polygons versus cards). The results of

Experiment 2 appear to eliminate differences in category structure as being the source of the

differential activation in Experiment 1 since in Experiment 2 no significant main effects of

category structure were found.

One possible concern with the paradigm used in Experiment 2 is that subjects were tested

using only a single category feedback structure within a session (one-half were tested using

probabilistic category structures in the first session and one-half were tested using deterministic

category structures in the first session). This approach was taken to reduce the possibility of

subject confusion with respect to the various learning conditions. However, the results would

indicate that this blocking of category structure within session had no effect. In general,

activation for probabilistic and deterministic conditions (which were manipulated between

sessions) was similar across conditions whereas activation for exposure versus feedback learning

conditions (which were manipulated within each session) was associated with differences in

activation. If blocking the fMRI sessions by category structure had an effect on subject

performance, I would have expected main effects associated with deterministic versus

probabilistic learning to be exagerated.

A second limitation of this study is that categorization was observed only during the early

stages of learning rather than during both early and late epochs of categorization as in

Experiment 1. However, the decision to limit Experiment 2 to the early stages of learning was

motivated by the extant neuropsychological literature and fMRI experiments in which

differences were identified in early, but not late, performance. Since the FMRI results of

Experiment 1 failed to show a main effect of EPOCH, limiting Experiment 2 to the early epochs

of category learning and testing allowed me to accommodate three experimental conditions. It is

still possible that if training was extended for longer periods of time differences in activation

between conditions related to category acquisition over time might be observed. This question

will be further addressed within the context of a single categorization task in Chapter IV.
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Finally, it should be noted that, although there was no difference associated with category

assignment in Experiment 2 (deterministic versus probabilistic), this null result may be a

function of the particular stimuli that were used. One possibility may be that this particular type

of stimuli, one-to-three cards, lends itself to a rule-based strategy but that deterministic and

probabilistic category assignment would result in differential activation if a different type of

stimuli, such as single objects with binary features, were used. For instance, Hopkins and

colleagues (Hopkins, Myers, Shohamy, Grossman, & Gluck, 2004) have tested amnesiac

(hypoxic) subjects using both card stimuli and a set of object stimuli with multiple features. In

both cases, category feedback was assigned using probabilistic-cues. However, in this study, the

amnesiac subjects were impaired during early training on a probabilistic-cue task when the

integral object stimuli were used but, consistent with prior studies, the amnesiac subjects

performed comparable to controls during early training when the card (non-integral) stimuli were

used providing evidence that the type of stimuli, may have an impact on how the task is

performed.

The results from Experiment 2 provide additional insight into the neural correlates of

category learning and testing. Whereas I did find evidence of neural regions that appear to be

differentially sensitive to changes in learning condition and learning phase, contrary to the

conclusions drawn from previous studies, I did not find evidence that, in the case of card stimuli,

neural regions are differentially sensitive to differences in category structure.
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CHAPTER IV

CHANGES IN NEURAL CORRELATES OVER

 THE COURSE OF CATEGORY ACQUISITION

Experiment 3

 Taken together, the results of Experiments 1 and 2 generally support the conclusion that

differences in neural activation are associated with differences in explicit categorization tasks.

However, based on behavioral, modeling and behavioral neuropsychological studies, I also

expected to find evidence of differential neural activity with respect to early versus late category

acquisition. Contrary to this expectation, changes in neural activity associated with early versus

late category acquisition were not found to be statistically significant in Experiment 1 and this

condition was not tested in Experiment 2.

Experiment 3 revisits the issue of changes in categorization over the course of category

acquisition by examining changes in activity within a single categorization paradigm

(Experiment 1 examined two paradigms) utilizing a within-subjects design (Experiment 1

examined this factor between subjects) and a 3-Tesla scanner (Data for Experiment 1 were

acquired with a 1.5-Tesla scanner) to acquire the data. As discussed in Chapter II, shifts in

categorization behavior have been viewed as evidence of various hybrid categorization systems

in which one type of category system or representation is used during early epochs of the task

and another system or representation is used during later epochs of the task. Whereas

Experiments 1 and 2 demonstrated that neural activity may change with respect to differences in

the categorization task, the goal of Experiment 3 is to examine how neural activity may change

over the course of category acquisition.

To maximize my ability to identify a change in neural activation over time, I utilized a

behavioral paradigm in which change in category behavior over time has been documented in

several behavioral studies. Evidence from these empirical and modeling studies has supported a

hybrid model of categorization in which a rule-based categorization system accounts for

judgements made during early epochs of categorization (Johansen & Palmeri, 2002; Nosofsky &

Palmeri, 1998) and an exemplar-based system for late epochs of the same task (Johansen &

Palmeri, 2002). This hybrid model, as the name implies, evolved by combining aspects of single-
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system models of categorization. As noted in Chapter II, hybrid models have been able to

address patterns of behavioral data that are not well-described by single-system models by

positing multiple-systems that utilize different processes or representations for each system

(Ericksen & Kruschke, 1998; Johansen & Palmeri, 2002; Johnstone & Shanks, 2001; Nosofsky,

Palmeri et al., 1994; D. J. Smith & Minda, 1998). Using hybrid models, researchers have been

able to explain categorization phenomena that include a bias toward the use of verbal rules in

categorization (Ashby et al., 1998), distributions of individual-subject generalization patterns for

ill-defined categories (Johansen & Palmeri, 2002), and performance on categorization of

prototypes versus exceptions (D. J. Smith & Minda, 1998; D. J. Smith, Murray, & Minda, 1997).

The behavioral paradigm adapted for use in the current experiment actually arose from a

series of studies investigating the use of rule-based decisions in categorization. In response to a

pattern of behavioral categorization data that was not well specified by a single-system model,

Nosofsky, Palmeri and McKinley (1994) proposed a rule-plus-exception (RULEX) model of

classification learning. Classification decisions in the RULEX model were made by having the

model form a rule and then remember (store) exceptions to that rule. Subject to a criterion, the

model would search for perfect single-dimension rules, imperfect single-dimension rules and

conjunctive rules to classify stimuli. If successful at any of these rule-testing stages, the model

could continue with the successful rule and then learn exceptions to that rule (Nosofsky, Palmeri

et al., 1994).

One set of behavioral data to which the RULEX model was fit was a set of results

reported by Medin and Schaffer (1978) that had previously been used to support the context

model: a single-system exemplar model of categorization. Subjects in the Medin and Schaffer

study were tested on stimuli that had four binary-valued features. The category structures used to

assign stimuli to the categories in this series of experiments were ill-defined in that a simple rule

could not be formed to correctly categorize the items into two categories. Both the context model

(Medin & Schaffer, 1978) and RULEX (Nosofsky, Palmeri et al., 1994) provided good fits to the

average classification data reported by Medin and Schaffer. However, Nosofsky et al. extended

their analysis to examine the generalization patterns for individual subjects. A generalization

pattern is the pattern of responses made to new, transfer stimuli, after receiving feedback training

and these patterns can be indicative of the manner in which a subject is making categorization

decisions. Nosofsky et al. (1994) tested whether RULEX could predict a distribution of
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generalization patterns by collecting data on a large number of subjects using the same category

structures used by Medin and Schaffer (1978). RULEX and the context model were fit to the

distribution of observed generalization patterns after 16 blocks of training and RULEX was able

to account for 85.7% of the variance compared to only 35.9% accounted for by the context

model (Nosofsky, Palmeri et al., 1994). Thus, while both RULEX and the context model were

able to account for the average transfer data in categorization paradigms, RULEX was also able

to account for individual subject variability that was masked by averaging the data.

In the RULEX model only rules and exceptions were stored for use in making category

decisions. However, the RULEX model would then predict no recognition memory for items

unless they were exceptions to the rule – a result inconsistent with known human behavior.

Palmeri and Nosofsky (1995) therefore extended the RULEX model to account for recognition

data by allowing for the storage of some residual memory for non-exception items and allowing

special weighting of exception items in the summed similarity calculation for making recognition

decisions. While the generalization patterns still showed a noticeable proportion of the subjects

using imperfect single-dimension rules to categorize transfer items, the generalization pattern

after 25 blocks of training also indicated that the largest proportion of subjects used an exemplar-

based strategy. Nosofsky, Palmeri and McKinley (1994) had also reported the same exemplar-

based pattern in their generalization pattern after 16 blocks of training but in their study the

proportion of subjects observed to be using the exemplar-based strategy had been less than either

of the rule-based conditions. The emergence of these exemplar-consistent generalization patterns

in the later blocks of category learning is consistent with theories that posit the creation of

memory traces with each exposure to an instance of an item. Under these theories, exposure to

items can eventually lead to automatic memory-based responses to that item (Logan, 1988, 1992,

2002; Palmeri, 1997).

Johansen and Palmeri (2002) sought to explore the basis of the exemplar generalizations

reported by Nosofsky and colleagues (Nosofsky, Palmeri et al., 1994; Palmeri & Nosofsky,

1995) by modifying these earlier paradigms in two ways. First, they extended the number of

training blocks to 32. Second, they introduced testing of transfer blocks at intervals during the

training (rather than only at the end) in order to determine how the rule-based and exemplar

generalizations were changing over time. In this study, subjects learned to categorize nine stimuli

as either members of category A or category B in a standard feedback training paradigm. Each
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pass through the nine stimuli comprised one training block. After subjects had completed a

certain number of training blocks, they were asked to categorize the 9 training stimuli as well as

7 additional transfer stimuli without receiving feedback. The subject's pattern of A/B category

judgments for the 7 transfer stimuli (referred to as their generalization pattern) was interpreted as

a behavioral marker indicating whether the subject was making decisions consistent with a rule-

based or exemplar-based model of categorization. Using this modified paradigm, Johansen and

Palmeri (2002) reported behavioral and theoretical modeling evidence that they interpreted as

supporting a shift in representation from single diagnostic dimensions, or simple rules, during

early learning, to multiple-dimensions, or exemplars, during late learning.

Johansen and Palmeri (2002) interpreted their results in terms of a representational shift

from a rule-based representation during early categorization epochs to an exemplar-based

representation during late epochs. However, the rules-to-exemplars interpretation was not the

only possible explanation. For instance, the behavioral data could also reflect a categorization

process in which selective attention to dimensions of the stimulus changed over time as

suggested by Nosofsky and Johansen (2000) who have been able to fit an exemplar model to the

generalization pattern reported for Experiment 2 of Palmeri and Nosofsky (1995). Thus, hybrid

models of categorization have developed to explain more complex patterns of behavioral data

but questions remain with respect to the nature of the processes underlying these models. Since

one of the acknowledged limitations of mathematical models is that different models can often

predict the same behavior (Olsson et al., 2004; Pitt & Myung, 2002), Experiment 3 was designed

to examine the neural processes associated with this shift in categorization behavior over the

course of category acquisition by searching for affirmative evidence of a rules-to-exemplars

process dissociation (Poldrack, 2000).

Functional neuroimaging studies have previously associated rule use in categorization,

hypothesis testing, and guessing with specific neural regions in the frontal and parietal lobes as

well as the cingulate and striatal system (Elliott & Dolan, 1998; Elliott et al., 1999; Patalano et

al., 2001) and long-term memory primarily with the medial temporal lobe (Scoville & Milner,

1957; Squire & Knowlton, 2000). Experiment 3 will focus on examining these neural regions for

evidence of a shift in functional activation over the course of category acquisition. As noted

above, evidence of a shift in representation from rules-to-exemplars will be sought in the form of

a process dissociation in the neuroimaging results of normal subjects (Poldrack, 2000). In FMRI,
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a process dissociation occurs when the activation in two neural regions changes in opposite

directions relative to some independent variable, such as training epoch. For instance, if a rule-

based system is used during early, but not late, epochs of categorization, I should find differential

activation for categorization relative to control during early - but not late - epochs of the task in

neural regions previously associated with cognitive processes such as rule application,

hypothesis testing, and/or guessing. The pattern of results expected for MTL activations under

exemplar theory is slightly more complicated in that there will be activation associated with both

exemplar storage and exemplar retrieval. If distinct neural regions are differentially active with

encoding and retrieval, then I might expect two patterns of activation within the MTL, a pattern

of decreasing activation over time associated with exemplar encoding and a second pattern of

increasing activation over time associated with exemplar retrieval. Therefore, in addition to an

analysis similar to the one used in Experiments 1 and 2, I will also use an ROI analysis to test for

patterns of activity consistent with a rules-to-exemplars process dissociation.

To test for this process dissociation, I chose to replicate Johansen and Palmeri's (2002)

original task as closely as possible while still meeting the methodological demands of a

functional imaging paradigm. In adapting the Johansen and Palmeri paradigm, I made three

modifications. First, since subjects would generally make more errors during early learning

relative to late learning, they would receive different proportions of corrective feedback during

different learning epochs. To control for this possible confound, I included two types of

categorization trials, learning and testing trials. Subjects received corrective feedback during

learning trials but did not receive corrective feedback during testing trials. A second adjustment

made to the original behavioral paradigm was to yoke presentation of control stimuli to

presentation of the learning and testing stimuli, thus equating the control, learning, and testing

conditions for number of exposures and eliminating any effects related to priming (Buckner et

al., 1998; Newman, Twieg, & Carpenter, 2001). A final adjustment to the paradigm was to use a

fixed timing sequence for the learning, testing, and control trials rather than allow subjects an

unlimited amount of time in which to make a categorization decision and response. This change

from the original paradigm allowed us to equate total exposure time for the stimuli within and

between subjects. Pilot subjects were tested to assure that they were able to acquire the category

using these fixed presentation and response time limits.
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Method

Subjects

Subjects were 11 individuals affiliated with Vanderbilt University who received cash

payment for their participation. Each subject participated in two separate FMRI sessions

approximately 6 weeks apart. All subjects were tested individually and self-reported to be right-

handed with normal or corrected-to-normal vision. Written informed consent was acquired from

each individual before each testing session.

Apparatus and Image Acquisition Parameters

Imaging was performed on a GE 3T SIGNA research MRI scanner fitted with a high

performance local head gradient and RF coils. Functional T2*-weighted images were acquired

using a gradient echo, single-shot echo planar imaging sequence (GR-EPI) with a matrix size of

64 x 64 (FOV 240mm), echo time of 60 ms, flip angle of 70 degrees, TR of 2000 ms, in-plane

resolution of 3.75 x 3.75, and slice thickness of 7 mm with 0 mm gap. 18 axial slices were placed

starting at the ventral surface of the temporal lobe and extending in the superior plane to provide

whole brain coverage. Each subject completed between four and eight functional imaging scans

during which both behavioral and imaging data were collected. For anatomical localization, a

standard whole-brain, T1-weighted, 3D FSPGR sequence was acquired after functional data

collection (184 sagittal slices, in-plane resolution of 0.9375, slice thickness of 1mm, no gap).

Stimuli

 Stimuli were four sets of objects (rockets, lamps, sailboats, and neckties – see Appendix

B for details regarding stimulus construction) randomly paired and assigned to the two

conditions for each subject.

Within each condition, one set of objects was assigned to the category learning (LEARN)

and testing (TEST) conditions and the other was assigned to the control condition (CNTRL).

Each set of objects varied along four binary-valued dimensions (Medin & Schaffer, 1978).

Assignment of physical dimensions and features to the abstract category structure for each object

group was randomized for each subject.

Stimuli were assigned to Category A (5 items) and Category B (4 items) as illustrated in

the top and bottom panels of Table 7. Stimulus presentation was via goggles worn within the

scanner headcoil. Resolution of the goggles was set to 1024 x 768. At this resolution, the stimuli

subtended approximately 5 degrees of visual angle.



56

Table 7
Category Structures used in Experiment 3

Medin & Schaffer (1978) Exp 2,3; Johansen & Palmeri (2003) Exp1
Category A Category B

A1 0 0 0 1 B1 0 0 1 1
A2 0 1 0 1 B2 1 0 0 1
A3 0 1 0 0 B3 1 1 1 0
A4 0 0 1 0 B4 1 1 1 1
A5 1 0 0 0

Johansen & Palmeri (2003) Experiment 3
Category A Category B

A1 0 0 0 1 B1 0 0 1 1
A2 0 1 0 1 B2 1 1 0 1
A3 0 0 0 0 B3 1 1 1 0
A4 0 1 1 0 B4 1 0 1 0
A5 1 0 0 0

Each object has four binary-valued dimensions. 0 represents one value on
the dimension and 1 represents the other value. A1 through A5 were
assigned to the A category; B1 through B4 were assigned to the B category.
The 7 remaining stimuli (16 total possible stimuli for each stimulus set minus
the 5 stimuli assigned to category A and the 4 stimuli assigned to category
B) were not used.

Procedure

All subjects were tested in both conditions of the experiment in two separate functional

imaging sessions completed approximately six weeks apart. Due to a scanner malfunction, data

from the second scan session for one subject was lost. The only difference between the two scan

sessions was the underlying category structure of the stimuli. In the first scan session I used the

category structure from Experiment 3 of Johansen & Palmeri (2002) (bottom panel of Table 7)

whereas in the second scan session I used the category structure from Experiment 3 of Medin

and Schaffer (1978) (top panel of Table 7).

Pre-Scan Familiarization Session. An hour before the scan session, subjects completed a

short, pre-scan familiarization session. During this session, task instructions were presented via a

short, self-paced, computer presentation. As part of this presentation, subjects practiced making

categorization judgments in both untimed and timed categorization trials using stimuli (chairs

and abstract designs) that were never used for the experimental trials.

Functional Imaging. LEARN, TEST, and CNTRL stimuli were always presented in

blocks of 9 trials. Each of the 9 categorical stimuli were presented during each block with the

order of stimulus presentation for each block based on a random sample of the 9 possible stimuli
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drawn without replacement. The CNTRL stimuli were matched with the LEARN and TEST

stimuli for number and length of exposure and provided a non-categorization baseline for

purposes of identifying ROIs. The entire scan session included 8 functional MRI scans during

which a total of 32 blocks of each stimulus type were presented. As illustrated in Figure 7, each

separate functional imaging scan included 4 blocks of LEARN trials during which subjects

received corrective feedback, four blocks of TEST trials during which subjects received no

corrective feedback and 8 blocks of CNTRL trials presented in an ABBA design to control for

scanner drift (Petersson et al., 1999; Skudlarski et al., 1999).

LEARN Trials. Following Medin and Schaffer (1978) and Johansen and Palmeri (2002),

subjects learned the category during the LEARN trials in a standard category learning procedure.

For each trial, the subject was presented with one of the 9 category stimuli (5 A’s, 4 B’s). Each

trial started with a 250 ms fixation cross after which the stimulus was presented with the question

‘A or B ?’ immediately below the stimulus. Subjects had up to 1750 ms to respond before

corrective feedback was presented. If the subject responded prior to the 1750 ms deadline, the

stimulus remained on the screen and the corrective feedback was immediately displayed beneath

the stimulus. If the subject made a correct categorization decision, the corrective feedback would

state ‘Correct’. If the subject made an incorrect categorization decision, the corrective feedback

would state ‘Incorrect it’s a __ ’ with the name of the correct category. Responses were made

via a button response box strapped to the subject’s right hand. Subjects were instructed to press

their first finger for a category ‘A’ response and to press their middle finger for a category ‘B’

response. If the subject did not respond within the 1750 ms time limit, the feedback screen stated

‘no response detected, it’s a ___’ with the name of the correct category response. Subjects

were told during the familiarization session that if they received feedback that no response was

detected they either did not respond within the response deadline limit or their fingers had

slipped off of the appropriate response box keys and that they should make appropriate

corrections on future trials.

Figure 7. Schematic of block design used in Experiment 3. EQ: Equilization – 20
seconds of fixation at beginning of run, F: Fixation – 16 seconds of fixation baseline, LR:
block of LEARN trials, TS: block of TEST trials, C: block of CNTRL trials. The order of
experimental blocks in the first half of the FMRI scan is mirrored in the second half of
the scan.

EQ F LR CTSC F LR CTSC F LRC TS CFLRC TS C F
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TEST Trials. The second type of trials that subjects completed were TEST trials. TEST

trials were the same as LEARN trials (same stimuli, same time constraints) except that subjects

did not receive corrective feedback. Instead, subjects would see either ‘response collected’ if

they had responded within the 1750 ms time limit or ‘response not detected’ if the response

was not made within the deadline.

CNTRL Trials. The presentation of control stimuli was yoked to the categorization

stimuli (LEARN and TEST) in order to provide a second baseline condition that was equated to

these categorization conditions for visual complexity and number of exposures. Therefore, for

each block of nine LEARN or nine TEST trials the subject would also complete a block of nine

CNTRL trials. CNTRL trials differed from the categorization trials in two ways. First, the

control stimuli came from a different set of objects than the LEARN and TEST stimuli. Second,

subjects were asked to ‘Press a Key’ rather than make a categorical ‘A or B?’ judgement. Like

the TEST trials the subject's response was simply acknowledged as ‘response collected’ or

‘response not detected’.

Analysis

Functional Imaging Analysis

All functional imaging data were analyzed using the AFNI (Analysis of Functional

NeuroImages) software package (Cox, 1996).

Individual Subject Data. Prior to statistical analysis of the functional images, each

subject’s time-dependent functional imaging data were examined and corrected for large

between phase fluctuations due to scanner artifacts and subject movement. Images from each

functional run were then registered to a single base image to correct for in-plane and out-of-plane

subject movement. The six motion parameters used to correct each phase of the imaging run

were recorded and used as covariates in the statistical analysis to determine percent signal

change for each condition. Each subject’s structural image was also registered to the same

functional base image.

Each individual's motion-corrected functional imaging runs were then reduced to a

measure of percent signal change relative to the fixation baseline for each condition. To convert

activation to a measure of activity associated with each task a stimulus function of 1's and 0's

representing condition and non-condition time points was created for each of the task conditions
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in each run (LEARN, TEST, and CNTRL) and then convolved with a canonical hemodynamic

response function. The convolved condition functions and the six motion parameters obtained

from the image registration process were then submitted as independent variables (IVs) with the

voxel activation value as the dependent variable (DV) to a multiple regression analysis. The full

model included an estimate of baseline in addition to the four IV’s. The output of this analysis

for each individual was then converted to a measure of percent signal change and placed into the

coordinate system of Talairach and Tournoux (Talairach & Tournoux, 1988).

Group Analysis. Prior to creating ROI maps or completing statistical analyses, an analysis

was completed to determine whether I could collapse conditions across the two scanning

sessions. The only difference in the experimental conditions between the scan sessions was that

different category structures were used (see Table 7). A comparison of functional activation for

the LEARN, TEST, and CNTRL conditions in sessions 1 versus session 2 revealed no statistical

differences within conditions thereby allowing us to collapse data across the two category

structures increasing the statistical power of the tests to find differences associated with the

remaining independent variables.

ROI Analyses. I performed two sets of analyses, one based on functionally determined

ROIs and a second analysis based on a priori ROIs.

Maximum Intensity ROI Map. To provide continuity between the analyses performed on

the data in Experiments 1 and 2 and the current experiment, I created a initial functional map to

identify ROIs based on Maximum Intensity for categorization relative to the control conditions.

To identify these ROIs, the percent signal change values for each subject in both TASK

conditions (LEARN and TEST) and the CNTRL condition were submitted to an ANOVA to

determine voxels in which there was a significant main effect (corrected for multiple

comparisons through a combination of statistical threshold and cluster size) of categorization

relative to control. Regions of maximum intensity within this map were then identified and

spherical ROIs (257 vmul) were created at these voxel coordinates for use in additional statistical

analysis of the data.

Rule-based ROI Map. To identify areas specifically associated with rule-type activity, an

ROI map was created by placing spherical ROIs with a 4mm radius (Patalano et al., 2001;

Poldrack et al., 2001) at the Talairach coordinates reported in studies of rule application

(Patalano et al., 2001), hypothesis testing (Elliott & Dolan, 1998), and guessing (Elliott & Dolan,
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1998, 1999). These ROIs were then investigated for evidence of differential activity with respect

to LT and RUN.

MTL ROI Map. The procedures used to identify areas specifically associated with MTL

activity required several steps. The first step in generating the MTL ROIs was to create two

separate MTL ROI maps to identify areas of differential activity with respect to either early

(Early ROI map) or late (Late ROI map) categorization versus control. The Early map was the

result of a paired t-test comparing the LEARN and TEST conditions of runs 1 and 2 with the

CNTRL condition of runs 1 and 2. The Late map was the result of a paired t-test comparing the

LEARN and TEST conditions of runs 7 and 8 with CNTRL conditions of runs 7 and 8. To

correct for multiple comparisons, only voxels reaching a statistical significance threshold of p <

.0001 and in contiguous clusters exceeding 300 vmul were included in the final Early and Late

ROI maps resulting in areas with statistical significance of p < .05 corrected for multiple

comparisons.

The next step after creation of the Early and Late ROI maps was to identify areas of

conjunction between the two maps. Therefore, for each voxel in the MTL, there were four

possibilities with respect to the Early and Late functional ROI maps. A voxel could be included

1) only in the Early map, 2) only in the Late map, 3) in both the Early and Late maps or 4) in

neither the Early or Late map. The thresholded Early and Late ROI maps were therefore

combined and further analyzed to identify areas associated 1) only with early categorization

minus control resulting in the EO ROI map 2) only with late categorization minus control

resulting in the LO ROI map and 3) both early and late categorization minus control resulting in

the EandL ROI map. It should be noted that the process of creating conjunction maps could

result in clusters with volumes of less than 300 vmul. However, since these smaller clusters were

originally included in maps thresholded at p < .05, corrected for multiple comparisons, they have

been retained for further statistical analysis.

Results & Discussion

Behavioral

Behavioral data (percent correct and reaction time) were collected concurrent with

collection of the functional images. As illustrated in Figure 8, subjects were able to learn the

category across the series of eight training runs. ANOVA confirmed a significant effect of RUN
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(1 through 8) [F(7, 142) = 27.633, p < .05], no effect of category structure (J&P vs M&S)

[F(1,142) = 1.60, p > .05], and no significant interaction of RUN and category structure

[F(7,142) = 0.444, p > .05]. Since the ANOVA revealed no statistical differences between the

J&P and M&S Figure 8 reports the combined mean percent correct for all subjects for both

Session 1 and Session 2 data collection. An ANOVA performed on mean RTs also confirmed a

significant main effect of RUN (1 through 8) [F(7, 142) = 2.257, p < .05] .

Since the accuracy data indicated no statistically significant difference in performance

between the J&P and M&S conditions I also tested whether there was a functional difference

between the two category structures. Consistent with the behavioral results, paired t-tests for

each condition confirmed there were no statistically significant differences in neural activation

between sessions using the J&P or the M&S category structures and therefore, for purposes of

the neuroimaging analysis, the data from these two conditions were treated as one condition.

Maximum Intensity ROI Analysis

Consistent with the analysis of Experiments 1 and 2, I first identified ROIs corrected for

multiple comparisons based on the comparison of the categorization conditions (LEARN and

TEST) relative to the control condition (CNTRL). The results of this ROI analysis are presented

Figure 8. Mean percent correct for categorization performance in LEARN and TEST conditions
for each run (1 through 8) of Experiment 3. Performance across runs improved as confirmed
by ANOVA [F(7,68) = 27.63, p < .05]. Error bars are rmse.
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in Table 8. A main effect of TASK was found for 7 of the 20 regions. The difference isolated

between these two conditions was whether subjects were receiving feedback (LEARN) or not

(TEST) after they made their categorization judgement. As in Experiments 1 and 2, there is

differential activation with this manipulation in the thalamus and lingual gyrus. Using these

ROIs, a main effect of RUN was identified only in the left middle frontal gyrus (BA 46), an area

that has been associated with on-line monitoring and manipulation of cognitive representations

(Petrides, 1996, 2002) and the right lingual gyrus (BA 18). I had reported two regions of the

Table 8
Experiment 3 Regions of Interest and results of ANOVA
LR AP IS Hemi Brain Region BA Effect F p

Frontal
50 15 26  Right Middle Frontal Gyrus 9 LT 3.957 .048
35 21 -5  Right Inferior Frontal Gyrus 47
44 29 24  Right Middle Frontal Gyrus 46

-38 5 29  Left Inferior Frontal Gyrus 9
-41 24 18  Left Middle Frontal Gyrus 46 RUN 2.873 .006
-13 45 38  Left Superior Frontal Gyrus 8

Limbic
-2 -40 34  Left Cingulate Gyrus 31
2 38 0  Right Anterior Cingulate Gyrus 24
0 15 39  Left Cingulate Gyrus 32

11 -5 14  Right Thalamus VAN LT 15.604 .000
-12 -7 6  Left Thalamus VLN LT 15.282 .000
-6 -24 -4  Left Red Nucleus LT 22.575 .000

Temporal
-51 -59 31  Left Superior Temporal Gyrus 39
-33 -57 -17  Left Fusiform Gyrus 37 LT 17.323 .000
-41 -60 -4  Left Middle Temporal Gyrus 37
-30 23 -2  Left Insula 13
35 -17 18  Right Insula 13 LT 8.776 .003

Parietal
5 -64 42  Right Precuneus 7

-24 -63 38  Left Precuneus 7

Occipital
5 -77 -14  Right Lingual Gyrus 18 LT 17.524 .000

RUN 2.254 .030
Regions of Interest based on maximum F values for categorization conditions relative to control
conditions. R = Right (+), L = Left (-); A = Anterior(+), P = Posterior(-), S = Superior (+), I =
Inferior (-); Hem = Hemisphere; Brain Regions = Talairach Label; BA = Brodmann Area; * no
Brodmann label. Effects = ROIs with significant effects confirmed by ANOVA; LT = Main Effect of
Learn vs Test; RUN = Main Effect of RUN 1 through RUN 8; F = F value for reported effect from
ANOVA with degrees of freedom = x,x (LT) or x,x (RUN); p = achieved p-value for reported effect
from ANOVA.
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leftlingual gyrus to be differentially active with the feedback relative to no feedback in

Experiment 2 and suggested that this activation may be related to an attentional effect related to

stimulus features (Vidnyanszky & Sohn, 2005) and/or recurrent processing of stimuli via

feedforward and feedback circuits (Lamme, 2000; Lamme & Roelfsema, 2000). Taken together,

the results of this overall analysis are consistent with Experiment 1 and 2 and neither support nor

refute the rules-to-exemplars hypothesis. Therefore, I will turn to examination of regions based

on a priori ROIs for additional evidence of a process dissociation.

A Priori Rule and MTL ROIs

As noted in the introduction of this experiment, if categorization is associated with a shift

from a rule-based system to an exemplar (or other) system, one pattern of results that would

provide strong evidence of this shift would be a process dissociation in which areas of frontal

cortex previously associated with rules would show decreasing activation and areas of MTL

previously associated with exemplar retrieval would show increasing activation as experience

with the stimuli increases.

To test for significant activation in areas previously associated with rules, I created ROIs

from coordinates reported in studies of rule application in categorization (Patalano et al., 2001),

hypothesis testing (Elliott & Dolan, 1998), and guessing (Elliott et al., 1999). I then interogated

these regions using an ANOVA to test for main effects of TASK (Learn versus Test) and RUN

(1 through 8) as well as the interaction of TASKxRUN. In addition, for regions that showed a

significant main effect of RUN, I also tested whether the linear contrast was significant.

Summary results of this analysis are reported in Table 9.

A rules-to-exemplars system could operate in one of several ways. In one scenario, the

rule-based system may be automatic and compete with the exemplar system to produce a

response. In this case, I could expect activity associated with rule application to remain fairly

constant over the entire period of category acquisition since the system would continue to

generate and apply the rule to supply the rule-based response regardless of whether it ultimatly

won or not. In this case, it would be relatively difficult to make any strong conclusions, based on

neural activation, as to whether categorization was being supported by the rule-based or

exemplar-based system. I will refer to this pattern of activation as the "weak" version of the

rules-to-exemplars hypothesis. However, a second possibility is that the rule-based system could
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operate during early acquisition with activation decreasing as a second system acquired enough

information to generate a response based on memory traces (exemplar) or an abstracted

representation of previously seen items (prototype). This pattern of responses would provide

stronger evidence of a shift in categorization from an early rule-based system to a late exemplar-

based system. I will refer to this pattern of activation as the "strong" version of the rules-to-

exemplars hypothesis. The four regions reported in Table 9 with a significant main effect of

RUN also had a significant linear trend (p < .05) with greater activation reported during early

than late epochs of the task. This is the pattern of results predicted for rule-based ROIs in the

strong version of a rules-to-exemplars process dissociation.

At this point, I have identified areas with activation patterns consistent with one-half of

the strong version of the rules-to-exemplars process dissociation – that is, I have identified four

neural regions previously associated with rule-use, hypothesis testing, or guessing that are

associated with significant linear changes (decreases) in activation with increased experience

with the stimuli. I now turn my attention to evidence of exemplar encoding and retrieval during

the categorization task.

Table 9
Rule ROIs with Significant Effects
Study LR AP IS Hem Brain Region BA Effect F p

G -37 35 24 L Middle Frontal Gyrus 10 RUN 2.246 .031
G 15 26 -12 R Inferior Frontal Gyrus 47 RUN 2.757 .009
H -8 22 48 L Medial Frontal Gyrus 8 RUN 2.426 .020
R 39 19 25 R Middle Frontal Gyrus 9 RUN 2.704 .010

G 6 33 24 R Anterior Cingulate 32 LT 6.257 .013
H 46 6 16 R Insula 13 LT 4.527 .034
P -33 -5 46 L Middle Frontal Gyrus 6 LT 5.184 .024
R 1 -13 0 R Thalamus * LT 29.86 .000
H 10 -13 7 R Thalamus * LT 10.82 .001
G -45 -51 45 L Inferior Parietal Lobule 40 LT 4.762 .030

Regions significantly active for categorization conditions relative to control conditions. Study =
study from which the ROI used in the conjunction analysis was identified. P = (Patalano et al.,
2001); H = (Elliott & Dolan, 1998); G = (Elliott et al., 1999); R = Right (+), L = Left (-); A =
Anterior (+), P = Posterior (-); S = Superior (+), I = Inferior (-); Hem = Hemisphere; Brain Region
= Talairach Area; BA = Brodmann Area.; * = no Brodmann Area; Effect = Factor with Significant
Effect; F = value of F-statistic; p = p-value associated with F statistic. RUN = Main effect of
RUN; LT = Main effect of TASK (Learn versus Test).
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Unlike the rule retrieval condition, I do not have a limited set of studies that would result

in a finite set of exemplar ROIs. However, since exemplars are presumed to be encoded and

retrieved from LTM, exemplar encoding and retrieval should be associated with activity in the

MTL. I tested this hypothesis by looking for regions of activity in the MTL identified in the EO,

LO and EandL ROI maps. As noted in the analysis section, the process of creating the EO, LO,

and EandL ROI maps could result in clusters with volumes of less than 300 vmul from ROI

maps that had been previously thresholded at p < .05 corrected for multiple comparisons and

therefore, since the anatomical regions within the MTL are also relatively small, I included any

regions exceeding 100 vmul (approximately one voxel in original acquisition data) in the

reported results.

In addition to the relatively small anatomical regions within the MTL, analysis and

interpretation of MTL activations is complicated by several additional factors. First, encoding

and retrieval are confounded in that every trial is both an encoding and a retrieval trial (Stark &

Okado, 2003). Therefore, if encoding and retrieval are supported by the same neural tissue, then

activation specific to these two tasks may not be identified. Second, the medial temporal lobe is

particularly susceptible to elevated baselines relative to task conditions when the baseline

condition does not require significant effort (Flanery, Law, & Stark, 2004; Law et al., Accepted

pending revision; Newman et al., 2001; Stark & Squire, 2001). These elevated baseline levels

can then result in either no differential activation or a relative deactivation of medial temporal

areas for task relative to baseline conditions. In this second case, as in the case of relative

activations, it is the pattern of activation relative to the other experimental conditions –

increasing or decreasing - that is interpreted. Finally, due to its location, the MTL has a lower

signal-to-noise ratio than other regions of cortex and therefore, statistically significant results are

often elusive. However, even given these limitations in FMRI, the results of the ANOVA for

areas of the MTL based on the EO, LO and EandL ROIs also appear to support the strong

version of the rules-to-exemplars hypothesis. The results of this analysis are reported in Table

10.

The medial temporal activations reported in Table 10 show a relative deactivation of the

medial temporal lobe relative to baseline during performance of the categorization LEARN and

TEST blocks. These activations can be grouped into two patterns – two areas showing a relative

decrease in activation with task experience – the type of pattern expected to be associated with
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exemplar encoding and decreases in exemplar novelty (Kirwan & Stark, in press; Martin, 1999)

– and three areas showing a relative increase in activation with task experience – the type of

pattern expected to be associated with exemplar retrieval as memory strength increases (Flanery

et al., 2004; Law et al., Accepted pending revision). The left hemisphere activations listed in

Table 10 are located along an anterior-posterior hippocampal axis with the two anterior

activations in the left panel (one significant, one approaching significance) of the figure showing

a pattern of decreasing activation and the three posterior activations in the right panel (one

significant, one approaching significance, one not significant) showing a pattern of increasing

activation.

Evidence of an anterior-posterior axis associated with encoding and retrieval processes

has previously been suggested by a meta-analysis completed by Tulving and colleagues

(Tulving, Habib, Nyberg, Lepage, & McIntosh, 1999) and demonstrated empirically by

Gabrielli, et al. (Gabrieli et al., 1997). However, the data on this issue remain open to debate

(Schacter & Wagner, 1999). In the case of the present data, the reported results from the seven

HC ROIs after conjunction analysis are over relatively small ROIs (498 to 103 vmul) with only 3

of the 7 meeting criteria for statistical significance (p < .05) and 2 of the 7 approaching

significance (p < .10). It may be the specificity of these smaller regions that allows this pattern to

emerge since larger ROIs would group together two different activation patterns resulting in a

pattern that looks nonspecific to either encoding or retrieval. In fact, the HC region located

between the left hemisphere anterior and posterior HC activations, although having a

statisticially significant main effect of RUN, showed a pattern of activation that was not specific

Table 10.
Medial Temporal Lobe Activation over the Course of Category Learning
vmul LR AP IS Hem Brain Region ROI map F p

166 24 -22 -12 R Parahippocampal Gyrus LO 1.033 .408
103 -15 -3 -13 L Parahippocampal Gyrus LO 2.402 .021
128 -18 -17 -15 L Parahippocampal Gyrus LO 1.752 .097
171 -22 -22 -14 L Parahippocampal Gyrus EandL 2.254 .030
498 -23 -20 -14 L Parahippocampal Gyrus EO 1.842 .079
266 -26 -36 -4 L Hippocampus EO 1.340 .231
167 -20 -41 -5 L Parahippocampal Gyrus EO 2.461 .018
R = Right (+), L = Left (-); A = Anterior (+), P = Posterior (-); S = Superior (+), I = Inferior (-);
Hem = Hemisphere; vmul = volume; Effect = Factor with Significant Effect; F = value of F-
statistic for the main effect of RUN; p = p-value associated with F statistic; LO = Late Only; EO
= Early Only; EandL = Early and Late.
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to either encoding or retrieval. This could be the result of either an HC region that is equally

active with both encoding and retrieval or the effect of averaging an HC region that includes

separate areas – one active with encoding and one active with retrieval. Additional reasons why

this pattern may have emerged in the data are that I collected data over the entire learning

sequence, the data were analyzed without collapsing across these different learning epochs, and

the method used to identifying ROIs based on differential activation during either early or late

ROIs might be better able to identify these contrasting patterns.

An additional pattern seen in the results is that 6 of the 7 MTL regions identified by the

EO, LO, and EandL ROI maps were located in the left hemisphere. While no conclusions can be

drawn from this data with respect to hemispheric specialization, abstract processing has

Figure 9. Activation of left hippocampal complex. The panel on the left shows the two anterior
activations from the LO ROI map and the right panel shows the three posterior activations
from the EO ROI map. The graphs depict the average activation for each quartile for the most
anterior (left graph) and most posterior (right graph) regions. Activations for both of these
regions showed a statistically significant effect of RUN.
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previously been associated with left hemisphere processing and specific object processing has

been associated with right hemisphere processing (Marsolek, 1995, 1999). However, it has been

suggested that the left hemisphere advantage reported by Marsolek for abstract objects may be

attributable to a left hemisphere advantage for semantic processing (Curby, Hayward, &

Gauthier, 2004).

Anatomical Atlas Basal Ganglia ROIs

Since the fronto-striatal system had been found to be differentially active with task

differences in Experiments 1 and 2, I also completed an analysis of the basal ganglia regions

using ROIs based on the Talairach Atlas. However, none of the regions defined in this manner

were found to have significant main effects of RUN or TASK.

Attention versus Rules

Two possible alternatives to the rules-to-exemplars hypothesis are that the observed

behavioral shift may be accounted for by a shift in selective attention between features (Johansen

& Palmeri, 2002; Nosofsky & Johansen, 2000) or shifts in selective attention between rules

(Ericksen & Kruschke, 1998). The current data do not speak to this issue. The evidence of

process dissociation I have reported in the present study, although consistent with a rules-to-

exemplars shift, does not exclude the possibility that mechanisms of selective attention are

supporting categorization performance. Rules and attentional processes may be the same or

interdependent processes since disrupting attentional processes appears to interfere more with

categorization tasks that depend on rule application (Ashby, Maddox, & Bohil, 2002; Maddox,

Ashby, Ing, & Pickering, 2004; Waldron & Ashby, 2001).

Due to its ubiquitous nature, attention must almost certainly play a part in the

categorization process. However, if shifts in selective attention are part of this process, any

theory proposing shifts in attention supporting this behavioral shift will also need to

accommodate evidence from the current study which clearly supports a pattern of early neural

activity supporting rule application and exemplar encoding combined with late neural activity

supporting exemplar retrieval. Taken together, the results of these analyses support the

conclusion that there is a shift in categorization systems or representations from a rule-based

system supporting categorization judgments during early epochs of the task to an exemplar (or

prototype) based system supporting categorization judgements during late epochs of the task.
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CHAPTER V

GENERAL DISCUSSION

The experiments in this dissertation have explored the question – What are the neural

correlates of explicit categorization? Analysis and Discussion of Experiments 1, 2, and 3 focused

on identifying neural correlates differentially active with task manipulations that had previously

been associated with multiple- or hybrid systems of categorization. These experiments utilized

FMRI to identifiy areas of differential neural activity which, if found, would provide a

converging source of evidence supporting a multiple-categorization systems view of

categorization. And, in general, it would appear that there is evidence of differential activation

across a variety of category learning and testing conditions. However, it should be noted that

finding differential activation in an FMRI study does not necessarily mean that there are multiple

systems supporting a cognitive process. Whereas multiple systems are inferred in behavioral

studies from double dissociations, it is not possible to definitively identify a separate system

using whole brain FMRI in normal subjects because differential activation may be evidence of

functional segregation, where processing depends on one and only one neural area, functional

integration, where processing depends on two or more areas, or functional degeneracy, in which

several sufficient systems can support processing (Price & Friston, 2002). To find affirmative

evidence of a separate system utilizing FMRI, neuroimaging data from both normal and brain

damaged subjects with specific lesions to each area showing functional differentiation must be

collected - a task which is beyond the scope of this dissertation.

Thus, the results of Experiments 1, 2, and 3, may suggest, but do not prove, the existence

of multiple categorization systems. However, another aspect of the data collected and analyzed

in Experiments 1, 2, and 3, suggests that categorization is subserved by a stable system of neural

regions that are active with categorization regardless of task differences. In the current chapter I

examine the neural regions in Experiments 1, 2, and 3 that were found to be differentially active

with the categorization relative to the control conditions. The coordinates for the voxel of

maximum intensity for these regions were reported in Tables 3, 6, and 8 for Experiments 1, 2,

and 3, respectively, and used for the differential analyses presented for those experiments.
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To identify areas associated with categorization relative to control commonly active

across the three experiments, I took the thresholded maps for the categorization relative to the

control conditions for each experiment (p < .05, corrected for multiple comparisons), applied a 3

mm blurring filter to each map, averaged the maps, and then thresholded the maps to include

only areas of maximal overlap across the three experiments. Using this procedure, I identified

fifteen areas of neural activation common to all three experiments. The Talairach labels and

coordinates for the centers of mass for these areas are listed in Table 11 and illustrated in Figure

10.

 This analysis reveals multiple neural regions that are active when subjects perform

categorization but not when they respond to visually similar stimuli. These fifteen regions

Table 11
Areas of Activation Common across Experiments 1, 2, and 3

vmul LR AP SI Hem Gyrus BA

Frontal
3860 -3 53 4 Left Medial Frontal Gyrus 10

774 41 36 17 Right Middle Frontal Gyrus 46/10
4206 2 20 39 Right Cingulate Gyrus 32

600 -31 20 1 Left Insula/Inferior Frontal Gyrus 13/47/45
1840 34 19 -1 Right Inferior Frontal Gyrus 47/13
6327 38 8 38 Right Middle Frontal Gyrus 9

843 -42 7 27 Left Inferior Frontal Gyrus 9
394 -27 1 49 Left Middle Frontal Gyrus/SFG 6

Limbic
1717 13 -5 10 Right Thalamus/Caudate -

602 -13 -8 11 Left Thalamus/Caudate -

Temporal/Parietal/Occipital
7253 -3 -36 37 Left Cingulate Gyrus 31

19676a -29 -52 46 Left Inferior Parietal Lobule Var
2112 -47 -59 31 Left Angular Gyrus 39

30888a 27 -60 37 Right Precuneus Var
8815 -37 -71 2 Left Middle Occipital Gyrus Var

To identify areas associated with categorization relative to control commonly active across the
three experiments, the thresholded maps for the categorization relative to the control conditions
for each experiment (p < .05, corrected for multiple comparisons) were blurred with a 3 mm
filter, averaged and then thresholded to include only areas of maximal overlap across the three
experiments. vmul = volume in mm3; R = Right (+), L = Left (-); CM = Center of Mass, A =
Anterior(+), P = Posterior(-), S = Superior (+), I = Inferior (-), Hem = Hemisphere; BA =
Brodmann Area.
a – large regions extending over multiple neural regions were listed based on the location of the
voxel at the center of mass
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showing sustained activity during the categorization tasks relative to the control tasks

demonstrate that categorization is also supported by the sustained activity by this group of neural

regions. The three occipital areas identified are generally associated with perceptual processing

of visual stimuli (Buckner et al., 1998; Van Essen, Drury, Joshi, & Miller, 1998; Van Essen et

al., 2001), the frontal regions with working memory, cognitive control, and rule application

(Braver et al., 1997; Courtney, Petit, Maisog, Ungerleider, & Haxby, 1998; Elliott et al., 1999;

Fletcher & Henson, 2001; Goldman-Rakic, 1995; Miller, 2000; Miller & Cohen, 2001; Wallis et

al., 2001; Wallis & Miller, 2003), the cingulate regions with cognitive control and error

detection/monitoring (Carter et al., 1998; Elliott & Dolan, 1998; Peterson et al., 1999) , parietal

regions with attention (Colby & Goldberg, 1999; Corbetta et al., 1998; Culham & Kanwisher,

2001; Desimone & Duncan, 1995; Kanwisher & Wojciulik, 2000; Shafritz et al., 2002; Shipp,

2004) and the caudate/basal ganglia with stimulus/response mapping (Goldman-Rakic, 1995;

Graybiel, 1995; Graybiel, Aosaki, Flaherty, & Kimura, 1994; Gurney et al., 2001; Hayes,

Davidson, Keele, & Rafal, 1998; Joel et al., 2002; Packard & Knowlton, 2002). And, these same

areas have also been found differentially active in fMRI studies of categorization in addition to

the three studies reported in this dissertation (Aizenstein et al., 2000; Poldrack et al., 2001;

Poldrack et al., 1999; Reber et al., 2003; Reber et al., 1998a, 1998b; Reber et al., 2002; Seger &

Cincotta, 2002; Seger et al., 2000; Vogels et al., 2002).

If discussion had been limited to the results of the differential analyses reported in

Chapters III and IV, I may have interpreted the evidence reported in those chapters as supporting

multiple-categorization systems since the areas of reported differential activation did not overlap

across these studies. Conversely, had I limited the analysis to the results reported in the current

Figure 10. Neural areas active with categorization relative to control tasks common across
Experiments 1, 2 and 3. Five coronal slices spaced 30 mm apart starting at 50 mm anterior to the
anterior commissure (AC) and ending 70 mm posterior to the AC. Slices are presented with the
left (L) hemisphere on the left side of the image. The Talairach coordinates for the center of mass
for each region are reported in Table 11.

L
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Chapter, I may have interpreted the evidence in terms of a single-categorization system since the

areas of reported differential activation showed significant amounts of overlap.

Based on a review of both implicit and explicit categorization studies utilizing a variety

of paradigms and experimental methods, Keri (2003) has proposed an integrative model of

category learning in which three category learning subsystems – subserved by the medial

temporal lobe, the basal ganglia, and sensory neocortex – are mediated by abstract rules,

attentional allocation, and decisional processes – subserved by the lateral prefrontal cortex and

anterior cingulate cortex. As I will discuss in the following paragraphs, this model would appear

to fit well with the differential results reported for Experiments 1, 2, and 3 as well as with the

overall results reported in Table 11.

Learning Subsystems

 Basal Ganglia

 In accord with Keri's model in which the basal ganglia are an important category

learning subsystem, the combined results clearly show bilateral activation of portions of the

caudate/thalamus for categorization relative to control tasks. The coronal image in the center

panel of Figure 10 shows a slice of cortex that illustrates an area of bilateral activation of the

caudate/thalamus. Keri's (2003) model proposes that the basal ganglia is associated with

stimulus-response and stimulus-reward mapping  - an analysis that is supported by the

differential results reported for Experiments 1 and 2. In Experiment 1, although the basal ganglia

were differentially active for categorization relative to control conditions, I did not find a

statistically significant difference in activation within the basal ganglia between early

deterministic categorization and early probabilistic categorization.

 In Experiment 2, I again found the basal ganglia active for categorization relative to

control conditions. In addition, differential activation was reported in the right thalamus with

respect to the learning task (feedback versus exposure) and an interaction of learning (feedback

versus exposure) and task phase (learning versus testing) was found in the left thalamus. But

again I did not find differences within the basal ganglia during learning with respect to the type

of category feedback structure (probabilistic versus deterministic) that was being used. Thus,

across these two experiments the basal ganglia were active when subjects were associating a

stimulus – regardless of the category feedback structure.
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Poldrack and colleagues (1999, 2001) have previously reported basal ganglia activity

with the probabilistic card task and medial temporal activity with a paired associates version of

the same task (similar to Experiment 2). However, in these studies, the probabilistic task was

learned in a feedback paradigm while the paired-associate task was learned in an exposure

paradigm. Thus, the difference in activation could be associated with the type of category

structure being used in the two conditions or the feedback versus exposure learning use in the

two conditions. The results of Experiment 2 control for this confound and do not report

differential activation between category structure conditions when controlled for the type of

learning condition, again supporting Keri's (2003) proposal that the basal ganglia are associated

with stimulus response and/or reward mapping rather than with a particular type of category

structure.

Medial Temporal Lobe

Of the three category learning subsystems identified by Keri, the medial temporal system

is the only system for which I do not find evidence in the combined results reported in Table 11.

However, anterior, ventral anterior, and medial portions of the medial temporal lobe are highly

susceptible to imaging artifacts such as signal drop-out due to their close proximity to the sinus

cavities. In addition, the signal-to-noise ratio in these areas is very low and Experiment 1 was

scanned using a 1.5 Tesla MRI scanner. In addition, the hippocampus and related cortical regions

are relatively small and variable between subjects. Most studies that find activation within this

region use ROI analyses based on a small volume correction and/or use specialized alignment

techniques based on anatomical markers. Although I did not find evidence of medial temporal

activity in the combined results reported in Table 11, I did identify neural activity in the

hippocampal complex associated with encoding and/or retrieval in Experiment 3.

Sensory Neocortex

Keri (2003) identifies a sensory neocortex learning subsystem that is sensitive to stimulus

similarity and frequency. Keri posits this system based on results from categorization studies in

which learning is incidental/implicit such as the series of dot-pattern studies completed by Reber

and colleagues (Reber & Squire, 1999; Reber et al., 1998a, 1998b). Since the experiments in this

dissertation utilized explicit training and testing, differential activation within sensory neocortex
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was not necessarily an expected outcome in the differential analyses. However,

implicit/incidental learning may still occur in the presence of explicit learning and therefore,

differential activation of sensory neocortex might still occur. In fact, I found widespread

activation of occipital neocortex for categorization relative to control in the combined results.

The coronal image on the far right of Figure 10 shows a slice of cortex that includes bilateral

activation of both parietal and occipital cortex. Since all of the control conditions included

stimuli that were matched with the categorical condition stimuli on both number and length of

exposure, the differential activation cannot be attributed to perceptual priming. Thus, across the

three experiments in this dissertation, sensory neocortex showed greater activation with respect

to blocks of categorical stimuli than noncategorical stimuli. However, without further

experiments, it is unclear what the significance of this increased activation in sensory neocortex

may be. Lamme has proposed that conscious processing of stimuli depends on feedback from

higher level visual and association areas to lower level sensory neocortex (Lamme & Roelfsema,

2000). It may be this feedback processing in occipital and parietal cortex that is occuring during

blocks of categorization - where the stimuli are relevant to the expeirmental task – relative to the

control stimuli – where the stimuli have no experimental relevance to the participant.

Mediation by Orbitofrontal, Lateral Prefrontal, and Anterior Cingulate Cortex

In addition to the three learning subsystems, Keri (2003) identifies networks of neural

regions including the orbitofrontal, lateral prefrontal, and anterior cingulate cortex that support

abstract rule generation, top-down attentional control, and decision making processes which he

characterizes as mediating the three learning subsystems. Again, evidence of these cortical

networks is also found in the differential and combined results reported above. For instance, in

Experiment 3 I identified neural regions associated with rule application in previous functional

imaging studies and then examined functional activatin within these areas while subjects learned

ill-defined categories. In a subset of these regions activation during early phases of learning was

significantly different than activation during late phases as would be expected with a shift away

from rule use during later epochs of the task. In the group results, there were also significant

portions of the cingulate cortex commonly active across the three experiments with

categorization relative to control. Neuroimaging studies have associated the cingulate with

functions such as error monitoring, cognitive control, response selection, and attention (Carter et
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al., 1998; Elliott & Dolan, 1998; Peterson et al., 1999) making this region a likely candidate for

the mediation among the learning subsystems suggested by Keri. Finally portions of a fronto-

parietal attentional network (Shipp, 2004) are shown as active in the combined results as would

also be predicted by Keri's model of category learning.

Conclusion

It should be clear from the analyses presented in Chapters III, IV, and V that

categorization is a dynamic, whole brain process that is responsive to changes in the learning

environment. Had I limited the analysis to statistical comparisons of activation during

categorization relative to activation during perceptual control tasks, I may have concluded that

categorization was well specified by a single-system model since a common network of areas

was active during early and late learning as well as across different types of learning paradigms.

Similarly, had I limited the analysis to statistical comparisons of the differential activation

between categorization tasks, I may have concluded that categorization was well specified by a

multiple system model since these analyses result in areas of differential activation that do not

overlap. The answer most likely lies somewhere between these extremes – similar to a

component processes view of categorization (Palmeri & Flanery, 2002; Roediger, Buckner, &

McDermott, 1999; Witherspoon & Moscovitch, 1989) which, as described by Witherspoon and

Moscovitch is :

'based on the assumption that performance on each task requires the operation of

many components, some of which are common to tasks and some of which are

not. Performances on each task may be independent from each other to the extent

that their components differ (or the information they use is different), leaving

open the possibility that some components (or types of information) may be more

critical in this regard than others.'  (Witherspoon & Moscovitch, 1989, p. 89)

At the outset of this dissertation, I stated that categorization is a fundamental cognitive

process that allows us to fluidly interact with our enrvironment. If we take a step back from the

experimental data that have been collected over the years, one can note that no one has identified

a subject population that is completely at chance at all forms of categorization. Even with PARK
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subjects, categorization performance is impaired – but still above chance – on only a particular

form or strategy of category learning. From this one piece of observational datum, one could

have concluded that categorization must involve a set of neural regions that are combined in such

a way as to be fairly robust in the face of injury – something similar to a group of component

processes.

If categorization is best described as relying on a group of component processes, it has

implications for both past and future research. For instance, if categorization is supported by

component processes, it becomes more challenging to instantiate an overall theory of

categorization and then test models of this theory quantitatively. Many questions will need to be

answered with respect to each of the component categorization processes. For instance, with

respect to the use of rules during early learning, is the use of rules a required component of

category learning or just one of several possible methods or strategies that can be used to acquire

the category? If there are several ways in which the category can be acquired, do they work in

parallel or is there top-down control of which method is used? Are there aspects of the learning

environment that can evoke one method over another? Do neural differences during learning

result in neural differences during transfer? The experiments in this dissertation provide only a

first step in addressing these questions.

In the past, cognitive psychologists had the output of a single black box – the brain – with

which to understand cognitive processes. Manipulation of experimental variables resulted in the

change of one or two behavioral markers that could then be interpreted within the framework of

various theories. With the advent of functional neuroimaging, the single black box has grown to

over 70,000 black boxes – the number of voxels in an average whole brain neuroimaging study –

that change in varying ways with the same manipulation of an experimental variable providing

us with a rich set of data with which to understand cognitive processes. But, there is no such

thing as a free lunch (Friedman, 1974; Heinlein, 1969). The cost of these 70,000 observations is

greatly increased complexity of the results to be interpreted. But the benefit of this increased

complexity may be the ability to reach our ultimate goal – understanding the relationship

between the mind and the brain.
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APPENDIX A

Stimuli - Experiment 2

Stimuli for experiment 2 were created by combining eight nameable objects and eight

possible configurations. Using these objects and configurations, a total of 64 different cards can

be generated for use in the various conditions of experiment 2. The same set of 64 cards were

used for the control condition with the exception that the objects were red objects on white cards

with red borders.

Object : Triangle
Configuration: A

Object : Star
Configuration: B

Object : Circle
Configuration: C

Object : Square
Configuration: D

Object : Moon
Configuration: E

Object : Target
Configuration: F

Object : Diamond
Configuration: E

Object : Heart
Configuration: G

Figure 11. Card stimuli used in Experiment 2.
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APPENDIX B

Materials – Experiment 3

Stimulus Construction and Norming

Stimuli for Experiment 3 consisted of four sets of stimuli - Rockets, Lamps, Sailboats

and, Neckties. The rocket stimuli were modeled on stimuli previously used by Nosofsky et al.

(Nosofsky & Palmeri, 1998; Nosofsky, Palmeri et al., 1994) and the lamp stimuli were modeled

on stimuli previously used by Lamberts (Lamberts & Freeman, 1999). The sailboat and necktie

stimuli were newly created for use in the experiment. All of the stimuli had four binary-valued

features. To assure that the salience of the stimulus dimensions was roughly equal we collected

similarity ratings for pairs of stimuli that varied by 0, 1 or 2 features (similar to (Minda & Smith,

2002)) as described in the following paragraph. The goal of this testing was to create features

that, when changed, resulted in the same similarity ratings.

For each trial, subjects were presented two stimuli, sequentially, for 2000 ms each. After

the second stimulus was erased from the screen, subjects were asked to rate how similar the

stimuli were to each other on a scale of 1 (Very Alike) to 5 (Very Different). Subjects were

allowed 3000 ms to use the numeric keypad to record their judgements. In written and verbal

instructions subjects were told "when making your similarity judgment, it is important you you

attend to ALL of the features of the objects rather than any single feature."  All ratings were

made within category – that is lamps were only compared to lamps.

Data were then analyzed for the comparison conditions in which the stimuli varied by

only one dimension. If the average similarity ratings for these six comparisons were found to be

statistically significant (as confirmed by ANOVA), the features would be adjusted to increase or

decrease the salience of the particular feature or features that based on the subject ratings.
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Table 12. Rocket Dimensions

A B C D

Wing Tail Nose Decoration

binary value 0 triangular jagged square stripes

binary value 1 rectangular boxed pointed triangles

Figure 12. Rocket stimuli used in Experiment 3.
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Table 13. Lamp Dimensions

A B C D

Base Upright Shade Finial

binary value 0 smooth thick wide spherical

binary value 1 stacked thin thin rectangular

Figure 13.  Lamp stimuli used in Experiment 3.
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Table 14. Sailboat Dimensions

A B C D

Hull Flag Porthole Sail

binary value 0 angular rectangular round long

binary value 1 rounded triangular diamond short

Figure 14.  Sailboat stimuli used in Experiment 3.
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Table 15. Necktie Dimensions

A B C D

Bow Stripes Pattern Width Bow Shape

binary value 0 vertical hexagon thin hexagon

binary value 1 horizontal circle fat square

Figure 15. Necktie stimuli used in Experiment 3.
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