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CHAPTER I  

INTRODUCTION 

 Embedded computing technology increasingly pervades modern society.  Society faces an 

addiction to the conveniences and features that small embedded computer devices offer, from 

ease of communication [1] to the joy of listening to music on a portable MP3 player [2] to the 

added safety and reliability features of automobiles [3] to advanced intelligence weaved into 

homes and places of work [4][5].  Embedded computing systems are rapidly being integrated 

into many facets of life and society’s dependence on their services is becoming increasingly 

apparent.     

 This insatiable appetite for embedded technology drives the development of increasingly 

complex applications and systems.  Cell phones of a few years ago were simply cell phones.  

New devices integrate reconfigurable logic and color LCD screens, and can be configured to 

support any number of applications [6].  In the next few years, automobiles will cease to favor 

hydraulic systems for controlling braking, preferring instead brake-by-wire technology to 

facilitate electronic control [7].  The x-by-wire technologies require embedded computer 

controllers to facilitate correct, reliable operation.  Embedded computer technology is slowly 

being integrated into the construction of homes and buildings, addressing issues from advanced 

security to climate manipulation [4].   

 From satellites [8][9], to avionics [10], to military applications [11], to entertainment [2], the 

complexity of embedded computing systems is steadily increasing.  The complexity of these 

applications combined with society’s dependence on them, mandates safe, verifiable and reliable 

implementations.  To date, embedded systems have been developed following mostly ad-hoc 

design methods[12].  Tool support for high-level system specification and implementation is 

limited, at best.  The flaws in these traditional, ad-hoc design approaches are unfortunately 

exposed with major disasters involving embedded computing technologies that result in extreme 

dollar losses, or even worse, injury or loss of life.  Recent examples of such disasters include the 

Theron 5 [13], NASA’s Mars Pathfinder [14] and Mars Climate Observer [15], and France’s 

Ariane rocket [16]. 
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 Difficulty in embedded system implementation arises from the tight design constraints 

imposed by strict requirements [17].  Embedded systems must interface directly with their 

environment, requiring the adherence to physical constraints.  Depending on the application 

environment, size weight and power constraints may impose severe restrictions on design 

implementations.  Tight budgets and market pressures impose cost constraints on designs.  These 

and other issues complicate the design process, often resulting in conflicts between different 

design quality metrics.  Developers must properly balance designs against these constraints and 

conflicting criteria in order to produce a successful product.  Managing such complexity renders 

embedded system design a very complex process.   

Embedded System Overview 

 An embedded computer-based system interfaces directly with its environment or as part of a 

larger physical system.  Several examples of embedded systems were presented above, from cell 

phones to MP3 players to automobile control systems to jet airplanes.  Embedded systems 

typically consist of some amount of software executing on an embedded execution platform.  

The size and complexity of an embedded system varies from application to application, with 

some applications consisting of a few hundred lines of code executing on a simple 

microcontroller, while a large distributed application can consist of thousands to millions of lines 

of code executing on hundreds of nodes.   

 Embedded software is typically composed from components, and often has soft or hard real-

time constraints (i.e. execution deadlines) imposed on its execution by its environment.  

Components implement periodic tasks, whose invocations and interactions are normally 

managed by some combination of runtime system, real-time operating system, and execution 

middleware.  Due to application computational requirements, software is often distributed across 

multiple computation nodes in a hardware platform, exposing software developers to the issues 

of parallelization, process and processor synchronization, and data sharing and exchange. 

 Embedded execution platforms provide the infrastructure and resources for embedded 

software to execute.  Platforms can vary in complexity from simple 4- or 8-bit microcontrollers 

and PICs to complex configurable processing elements.  A whole range of implementation 

platforms are observed in the space of embedded computing, from customized logic 

implemented in ASICs, to general purpose processors such as PowerPC processors [18], to DSP 
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processors such as the TMS320C6000 series offered by Texas Instruments [18], to configurable 

logic devices such as the VirtexII Pro series FPGA offered by Xilinx [19].  Other research 

platforms are under development which explore the integration of coarse-grained 

reconfigurability with general-purpose computing [20].  Often times, embedded platforms 

consist of multiple heterogeneous interconnected computing elements, memories, networks, 

sensors, actuators, and other devices.   

 An embedded system consists of the embedded software composition targeted to the 

embedded hardware platform.  The design of an embedded system typically involves the 

selection of an appropriate hardware platform that offers sufficient computational, memory, and 

communication resources to support the application requirements, and to develop a component-

based software composition that can properly implement the desired application behavior.  

Selection of a proper software composition also involves decisions of task distribution and 

scheduling, as well as communication scheduling.  Many of these operations are handled by 

embedded operating systems or runtime environments.  Design implementation includes the 

configuration of the runtime system to implement the specified schedule and mapping for the 

various resources in the execution platform.  Embedded systems often must satisfy critical 

application-specific design requirements or constraints on execution time, performance, size, 

weight, and other nonfunctional requirements.  In some applications, not meeting certain 

requirements not only implies the failure of the design, but could result in severe consequences 

including loss of life.  

Mathematics of System Design 

 Research into embedded computing seeks to develop techniques and tools to facilitate the 

design and implementation of safe, reliable and efficient embedded systems.  Successful 

approaches involve the use of mathematics to formally model embedded applications and to 

prove that modeled designs meet their requirements.  Mathematical design analysis considers a 

design composition, together with information on scheduling, task distribution, resource 

mapping, and task and resource performance metadata in an attempt to mathematically prove or 

disprove that an application meets its requirements.  For example, Liu and Layland [21] 

introduced Rate Monotonic Analysis (RMA), a technique that can be used to analyze whether a 

set of tasks scheduled preemptively for execution on a single processor will meet real-time 
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constraints.  Mathematical analyses such as RMA are used to verify application compositions 

prior to deployment, thus detecting fatal flaws early in the design process.   

Point Design vs. Design Space 

 Modern embedded system design approaches integrate mathematical analysis and 

verification into the design flow.  Tools and developers target a single design which provably, 

through mathematical verification, meets design constraints.  Developers use structured design 

approaches to model and develop a system implementation, then use verification tools and 

testing to analyze the composition.  When testing or analysis indicates a failure, the design 

composition is modified or “tweaked” to fix the discovered flaws.  This design process centers 

on the development and evolution of a single design composition.  This single design can be 

referred to as a point design, where the design represents a single point in the space of possible 

design compositions. 

 The development and analysis of a point design can be contrasted with the development and 

analysis of a design space.  A design space represents the cross product of all possible design 

alternatives in a system composition.  For example, there are several different possible mappings 

of tasks to platform resources, as well as several different implementation alternatives available 

for each task.  A design space formally models tradeoff decisions in embedded system 

composition.  Since the design space formulation is formal, it can be analyzed in a similar 

fashion to the analysis of a point design.  The analysis of a design space is referred to as Design 

Space Exploration (DSE).  The goal of DSE is to analyze design compositions and determine a 

point design or set of point designs in the space which meet the application requirements.  DSE 

involves not only the analysis of a design composition, but analysis and simultaneous evaluation 

of several potential design compositions.  

Design Space Exploration 

 DSE searches through a space of candidate design compositions for those designs which 

meet or exceed certain metrics of goodness.  The metrics of goodness, formally modeled as cost 

functions, represent the set of requirements against which designs are measured.  Design space 

formulations and searches can be categorized into two principal classes: constraint-based 

formulations and optimization-based formulations. 
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 A constraint-based formulation of a design space exploration problem models the process of 

searching the design space as a constraint satisfaction problem.  Constraints formally capture 

invariants on the system composition and performance, and design compositions are evaluated 

against the constraints with the aim of eliminating from the design space those compositions 

which fail to meet the constraints.  The process of eliminating design compositions from the 

design space is called pruning.   

 An optimization-based formulation models the design space as an optimization problem, 

where the space is searched for a single design which minimizes a cost function.  The cost 

function models all the quality metrics for the space in a single mathematical function that can be 

evaluated across the points in the design.  Optimization is constrained by several invariant 

statements on the problem.   

 Regardless of the technique used for searching the design space, DSE utilizes the principle 

of property composition when evaluating cost functions and constraints.  As system designs 

represent compositions of components and mappings, system-level design analysis seeks to 

calculate or predict system-level behavior as a function of component-level behavior.  For 

example, the total gate area required for hardware-based application implementation can be 

approximated by summing the gate area required for each application component used in the 

design.  Performance requirements are modeled mathematically as constraints or cost functions 

over the composition of component level properties.  

 An effective design space exploration tool can be applied to a wide variety of applications.  

Few tools offered in the literature attempt a domain-independent design space modeling and 

exploration approach, favoring instead the integration of domain knowledge with the modeling 

and search process.  However, common to the tools available are the concepts of mathematical 

property composition and search.  Critical to the applicability of design space exploration 

algorithms is the ability to specialize the exploration algorithms to a domain, while shielding the 

exploration implementation from domain details. 

 Another important requirement for broad applicability of a design space exploration tool is 

the expressiveness offered for modeling the design space.  The expressiveness of the design 

space model must be sufficiently rich so as to support the representation of a wide variety of 

applications, as well as a broad class of property composition algorithms.  Over-simplification of 

property composition can limit the applicability and/or accuracy of a design space representation. 
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 A critical requirement of design space exploration concerns the scalability of the space 

representation and search algorithms.  Complexity in system design directly corresponds to 

variability and coupling in the design space.  Only algorithms which can efficiently traverse 

large design spaces are effective at exploring design variability.  Only effective representation 

techniques can be used to accurately model coupling through dependencies.  The scalability of 

an effective design space exploration approach must not be significantly impacted by the types of 

mathematical operations invoked during exploration.   

 Several approaches to design space exploration have been developed and published in the 

literature.  Chapter II gives a sampling of the prominent approaches, together with a critique on 

their applicability.  Several of the approaches have been successfully applied to a limited 

application set.  However, while an approach may work well in one domain, its applicability may 

be limited in other domains.  The variety of successful, but scope-limited design space 

exploration approaches gives rise to the notion of hybrid exploration algorithms.  As no single 

approach has demonstrated a general applicability across all application domains, a hybrid 

exploration approach seeks to integrate successful approaches into a single, unified toolflow.  

Hybrid exploration techniques potentially facilitate a “best-of-both-worlds” approach to design 

space exploration, where the strengths of successful techniques can be applied across a variety of 

applications.  While hybridization of search techniques has been examined, few design space 

exploration tools offer a hybrid exploration approach. 

 The need for hybrid, scalable, expressive design space modeling and exploration tools has 

been the impetus for the research described in this dissertation.  The theme of the work described 

herein follows: 

 

  It is possible to create a domain-independent, scalable, hybrid design 

space exploration tool which integrates symbolic design space pruning with 

constraint satisfaction to facilitate the exploration of large, complex design 

spaces.     

 

 This dissertation discusses the development of a hybrid design space exploration tool to 

facilitate the specification, representation, and pruning of large design spaces.  Chapter II 

outlines current approaches published in the literature on design space modeling and exploration 
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techniques.  Chapter III provides an overview of a finite domain constraint representation of the 

structure of the design space.  Chapter IV defines a language for specifying property composition 

functions for the design space, together with a mapping of the language into a finite domain 

constraint representation.  Chapter V describes an integrated, design space exploration tool, 

where an existing design space exploration approach is merged with the finite domain constraint 

tool to facilitate a hybrid design space exploration implementation.  Chapter V also provides 

scalability data on the finite domain constraint design space representation and search approach.  

Chapter VI concludes the dissertation and discusses future areas of research relating to this topic. 
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CHAPTER II   

BACKGROUND 

 Design space exploration in embedded system design has been addressed in the literature in 

various forms and under various names.  This chapter provides an overview of several tools and 

techniques which automate the process of evaluating tradeoffs in embedded system design.  

While the application domains and goals of each approach differ, all surveyed approaches relate 

through the common goal of quantitative evaluation of design criteria in the context of embedded 

system design.  The techniques surveyed involve integer linear programming, constraint-logic 

programming, parameter-based modeling, combinatorial search heuristics such as simulated 

annealing and evolutionary algorithms, and symbolic constraint satisfaction.   

Mixed Integer Linear Programming 

 Integer linear programming facilitates the modeling and solution of a broad class of 

constrained optimization problems.  The development of solution techniques for linear 

programming has been a focus of the Operations Research community for several years, brought 

from the need to model business-oriented resource allocation and job scheduling problems.  

Dantzig [22] is credited with the initial formulation of a linear program, and with developing a 

solution technique, called the Simplex Method [22][23][24], for solving linear programs.  Mixed 

Integer Linear Programming [25] extends the concept of linear programming and facilitates 

powerful modeling of resource allocation and scheduling problems. 

 A Mixed Integer Linear Program (MILP) is an optimization problem that seeks to minimize 

a cost function subject to a set of constraints.  The following equations define a linear program, 

whereon an MILP formulation is based.   

 

 : TMinimize c x  (1) 
 :Subject to Ax b≤  (2) 
 ,j j jx x x x 0∀ ∈ ∈ ≥  (3) 
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 Equation (1) gives the cost function for the linear program, where x  is an Nx1 vector of 

decision variables.  Equation (2) specifies a set of constraints to which the cost function 

minimization is subject.  A  is an NxM coefficient matrix, while  is a coefficient vector of 

length M.  Some of the decision variables in an MILP are subject to constraints which further 

restrict their domain to the set of natural numbers, as illustrated in Equation (4).  Let 

b

{1, 2,... }Index N= be a set of indices of the decision variables contained in x .   

 ,Z ZI Index j I x⊆ ∀ ∈ ∈j  (4) 

 A solution to the mixed integer linear program linear program is a binding of a value to each 

decision variable, such that all optimization constraints, bounds constraints, and domain 

constraints are satisfied, and where there exists no other such binding for which the value of the 

cost function is lower.  Dantzig developed the Simplex Method [23] for solving linear programs 

without integrality constraints on decision variables.  For programs with integrality constraints, 

solvers employ a search algorithm (ex. branch and bound [26]) in conjunction with Simplex.  A 

MILP solver potentially traverses a tree whose size is exponential in the number of integral 

decision variables in the problem specification.  Due to the worst-case size of the tree, MILP 

solvers have exponential worst-case complexity.  Unfortunately, the explosion in tree size is 

unavoidable for large problems, hampering efforts to scale MILP models.  Various approaches to 

improve the scalability of MILP solvers have been examined, including branching heuristics (ex. 

Branch-and-Cut[27][28], Branch-and-Price[29]) in the search algorithm and optimizations of the 

Simplex algorithm (ex. primal-dual algorithm [24]).  Several commercial LP and MILP solvers 

are available (ILOG CPLEX[30], LINDO[31], OSL from IBM[32]).   

 Although the practical scalability of MILP solvers is improving, scalability remains an issue.  

Further, for some application domains, the requirement imposed by the linearity of the 

constraints is overly restrictive, as some relationships cannot be expressed using simple linear 

combinations and linear constraints.  An MILP formulation requires all optimization criteria to 

be encoded in a single cost function.  However, encoding conflicting goals into a single cost 

function is cumbersome at best. 
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Synthesis of ASIC Applications using MILP 

 Prakash and Parker [33] offer one of the first approaches to system level synthesis in a 

hardware/software codesign framework.  Informally, synthesis is the process of mapping a 

signal-processing application onto a set of configurable hardware resources.  Their approach 

outlines a MILP formulation which, given a formal application specification, determines the 

appropriate ASIC hardware configuration for the application, and maps the application to the 

configuration.  An application is modeled as a directed dataflow graph, where nodes represent 

tasks and edges represent data communication between tasks.  Tasks are characterized with 

metadata modeling execution time for each class of resource in the target platform.  Task 

execution or firing depends on the state of inter-task communication.  Each input of a task is 

assigned a value representing the fraction of the total task execution time after which data is 

consumed on the input.  Likewise, each task output is characterized with a fraction of task 

execution time signifying when, relative to the end time of the task, output data is issued by the 

task.  Task communications are characterized with two profiles: local transfer time (for data 

transfers between co-located tasks) and remote transfer time.  Remote transfer time represents 

only the time spent in communication, not the time spent in arbitration for shared communication 

resources.  The configurable architecture is modeled as a set of processors with point-to-point 

communication links.   

 Synthesis is the determination of a subset of the available processors and communication 

links for inclusion in an implementation, a binding of each task in the application to a selected 

processor, a binding of each inter-task communication link to a hardware communication link, 

and the generation of a schedule for task execution on each processor and data communication 

on each communication link.  The model takes into account cost constraints, scheduling 

constraints and can take into account other application specific constraints as well. 

 The model provides variables representing the various entities in the task graph, together 

with variables representing task firing and termination times, communication start and stop 

times, and Boolean variables representing mappings of software to hardware, and the inclusion 

of a hardware entity in the implementation.  Each input (output) of a task is characterized with a 

parameter dictating the percentage of task execution time relative to the task firing (termination) 

for when data on that input (output) is actually consumed (produced).  For inputs, the percentage 

represents a delay from the time when the task fires to when the input on an input channel is 
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consumed.  For outputs, the percentage represents the time prior to task termination when an 

output is first produced.  In this fashion, their formulation allows an expressive model for 

representing the overlap of communication with computation. 

 The MILP formulation consists of two types of variables, those that represent timing, and 

those that represent allocation.  Allocation variables are binary, in that they take on values of 0 or 

1, while timing variable are real-valued.  An example allocation variable is the task-to-processor 

assignment variable, ad ,σ  that is set to true (1) if subtask in the task graph is mapped to 

processor in the resource graph.  The model includes a constraint requiring that a task be 

allocated to exactly one processor, or, for each task ,

aS

dP

aS 1, =∑
∈ ad PPd

adσ , where represents the 

subset of processors in the resource graph that are capable of executing task .  Other 

allocation variables define whether a particular communication is a local or remote 

communication, and is computed from the allocation variables of each task.   

aP

aS

 Timing information is modeled by relations between timing variables.  Variables are used to 

model the times when data from each input of a task is actually available, when each output data 

is available, when task execution begins and terminates, and when each data communication 

starts and ends.  Constraints relate the data availability times of the inputs to a task to the start 

time of the task, as well as the data availability of the outputs of a task relative to the task end 

time.  Other constraints restrict the communication start and stop times relative to the data 

availability and consumption times on the source and destination tasks of the communications.   

 The model is flexible, in that it can support the formulation of various cost functions for 

minimization.  The authors discuss two cost functions: the minimization of the total execution 

time (modeled by setting a variable equal to the largest task termination time, then minimizing 

the value of that variable), or the minimization of implementation cost.  Implementation cost 

metadata is associated with each architecture component in the resource graph.  This metadata is 

used in combination with information about whether each component in the reference 

architecture is included in the final synthesized architecture to formulate a cost function, which 

can then be minimized (i.e. total cost is the sum of the cost of each architecture component that is 

actually included in the final architecture configuration.).   

 The MILP formulation employs a branch-and-bound solver to implement the exploration of 

the search space.  At the time of writing, they provided a simple example with nine tasks that 
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required 272 variables and 1081 constraints, and in one example, required over four days to 

complete execution (in 1991).  They discuss the fact that their approach works well for small 

examples, but that the runtimes for complex applications are prohibitively expensive. 

Partitioning FPGA-based Applications using MILP 

 Kaul and Vemuri [34] employ MILP to model the temporal partitioning of reconfigurable 

FPGA-based applications.  An application is modeled as a task graph, where each task has 

multiple implementations.  Each implementation represents a different pareto-optimal point on 

the tradeoff curve of area vs. execution time.  Tasks are characterized with metadata describing 

execution time and area consumption for each implementation.  Task pipelining is allowed, in 

that tasks may execute multiple times, consuming an input set on each execution.  Pipelining 

facilitates a reduction in the total number of reconfigurations at the cost of increased application 

latency.   

 A temporal partitioning of a task graph separates the execution of a task graph into phases, 

where one phase is resident on the FPGA at a time.  Temporal partitioning is tasked with the 

separation of the task graph into appropriately sized partitions such that the application latency 

requirements are met, while area constraints of the FPGA are not exceeded.  The temporal 

partitioning problem is formulated as a MILP.  Latency is modeled as the longest execution path 

between two tasks in the task graph, and must factor in reconfiguration times where the path 

crosses temporal partitions.  The MILP model uses latency as a cost function, and seeks to 

minimize overall application latency.  Spatial resource constraints are employed in the model to 

ensure that all tasks in each temporal partition fit in the available area. 

 The MILP formulation is given a fixed number of temporal partitions and optimizes design 

latency by mapping the task graph across those partitions.  Reconfiguration costs imply a 

tradeoff between the number of temporal partitions and the application latency.  A search 

algorithm is employed to determine the appropriate number of temporal partitions to create.  The 

search algorithm implements a linear search between a lower and upper bound on the number of 

partitions, where the MILP model is repeatedly invoked during the search.    
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Critique of MILP for Design Space Exploration 

 Mixed Integer Linear Programming has been widely applied in several domains.  It is a 

domain-independent modeling technique with well-understood solution techniques available.  

However, the expressiveness of the MILP formulation is limited, in that it only supports 

expressions which are linear combinations of decision variables.  Non-linear relationships must 

be somehow captured as sets of linear expressions.  Further, the scalability of MILP solvers has 

been called into question many times in the literature.  While solvers are improving, MILP 

models are currently able only to model “medium-sized” problems at best. 

Linear Pseudo-Boolean Constraints 

 A special case of an ILP problem further constrains all decision variables to the interval 

{ }0,1 .  This formulation is known as the Pseudo-Boolean constraint satisfaction problem [35].  

More formally, a pseudo-Boolean constraint optimization problem is defined as follows: 

 : TMinimize c x  (5) 
 :Subject to Ax b≤  (6) 
 { }1, 0,j jx x x∀ ∈ ∈ 1  (7) 

 Pseudo-Boolean constraints have been applied in modeling several scheduling and 

optimization problems, including formal verification and routing in field programmable gate 

arrays.  Pseudo-Boolean solvers approach the determination of constraint satisfaction and cost 

function optimization in many different ways.  Due to the fact that the pseudo-Boolean 

optimization problem is in fact an integer linear program, standard ILP solver techniques have 

been applied.  However, such techniques do not take advantage of the fact that all decision 

variables are 0-1 variables; other solver techniques attempt to utilize this restriction to formulate 

more efficient searches.   

 Many recent pseudo-Boolean solvers leverage search techniques developed for Boolean 

Satisfiability (SAT).  A SAT solver attempts to determine whether a set of constraints over 

Boolean variables, specified in Conjunctive Normal Form (CNF), are satisfiable.  Satisfiability 

implies the determination of whether a binding of values to the variables in the problem 

specification exists, such that all constraints are satisfied.  Conjunctive Normal Form specifies 

that all constraints are conjunctions of disjunctions of literals, where a literal is either a constraint 
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variable or the logical negation of a constraint variable.  Most SAT solvers are based on the 

Davis-Putnam-Logemann-Loveland (DPLL) algorithm [36], implementing a backtrack search 

involving conflict-based learning.  Chaff [37] is an example of a recently implemented SAT 

solver which integrates several improvements over the standard DPLL algorithm, and as a result, 

performs very well on practical SAT benchmarks.  The pseudo-Boolean solver PBS [38] 

generalizes the advances in SAT solving techniques implemented in recent solvers such as Chaff.  

It applies those algorithms through a conversion of the pseudo-Boolean constraint satisfaction 

problem into Conjunctive Normal Form. 

 Bockmayr implements a solver for pseudo-Boolean constraints based on the application of 

cutting planes [39].  As discussed above, MILP solution techniques involve the iterative 

strengthening of a set of constraints which bound the MILP solution.  These bounding 

constraints are formed during Branch-and-Bound search.  Bockmayr applies cutting planes to the 

set of constraints to strengthen the constraint store, together with branch-and-bound to converge 

on a solution.  He compares the performance of his branch-and-cut solver to the performance of 

a finite-domain constraint solver when applied to a standard optimization problem.  He 

concludes that the pseudo-Boolean constraint formulation is not as compact nor as elegant as the 

finite domain constraint solver, but the branch-and-cut algorithm outperformed the finite domain 

constraint solver on the modeled problem.  

 Pseudo-Boolean constraints form an ongoing area of research in constraint satisfaction.  

Most solvers take only linear pseudo-Boolean constraints, in that all constraints must be linear 

combinations of decision variables.  Some complex design space exploration problems involve 

non-linear models, rendering ILP and pseudo-Boolean models inapplicable.  Ongoing advances 

in SAT solver and ILP solver techniques rapidly advance the state of the art in solver speed and 

scalability, necessitating further comparative studies between pseudo-Boolean solvers based on 

ILP techniques and those based on SAT techniques, as well as between pseudo-Boolean solvers 

and other design space modeling approaches. 

Constraint Logic Programming 

 Constraint Logic Programming (CLP) [40][41] is the result of a unification of research in 

the fields of Artificial Intelligence and Logic Programming.  CLP involves the specification of a 

problem as a set of constraints over a set of variables, where the constraints and variables 
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conform to a constraint domain.  The goal of CLP is to find a pairing of domain value to variable 

for all variables in the problem description, such that all constraints in the problem specification 

are satisfied.  Some applications involve the determination of all such solutions, while other 

applications seek only to determine the existence of a solution.   

 CLP models a problem as a set of constraints that conform to a constraint domain.  A 

domain defines a set of values together with a set of operations over those values.  The Boolean 

constraint domain defines the values{0 , with operations { ,,1} , }∧ ∨ ¬ .  The Arithmetic constraint 

domain for real numbers defines as the value set, with operations +,-,*,/, etc.  A constraint is a 

conjunction of one or more basic constraints, where a basic constraint is the simplest form of a 

constraint defined in the given domain.  A basic constraint consists of an operation together with 

an appropriate number of arguments.   

 Marriott and Stukey [41] formally define a constraint C, conforming to constraint domain 

D, as: 

  (8) 1 2 ... ,nC c c c n= ∧ ∧ ∧ ≥ 0

 Constraints  are called primitive constraints.  C is said to be satisfied only where 

each primitive constraint in C is satisfied.  A valuation 

,ic i n≤

:V Dθ →  for a set of variables V is an 

assignment of values from the constraint domain to the variables in V.  θ  is a solution of C if V 

is a subset of the set of variables in C, and if C holds over θ .  A constraint C is satisfiable if it 

has a solution, otherwise it is unsatisfiable.  The Constraint Satisfaction Problem seeks to 

determine whether a constraint C is satisfiable.  The Constraint Solution Problem seeks to 

determine a solution for constraint C.  

 In theory, determining constraint satisfaction is easier than actually finding a solution, but in 

practice, in many domains the proof of satisfiability involves the search for a solution.  A 

constraint solver takes a constraint C in domain D, and returns true when C is determined to be 

satisfiable, false when not satisfiable, and unknown when the solver cannot determine 

satisfiability.  A complete constraint solver will only return true or false, never unknown.  The 

implementation of a constraint solver is highly domain dependent.   
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Finite Domain Constraints 

 A constraint domain is classified as a finite domain when the cardinality of the value set 

defined in the domain is finite.  Finite constraint domains include the Boolean constraint domain 

as well as the integer constraint domain (where the integer value set is restricted to some finite 

set of integer values).  Constraints over finite domains are widely used in modeling complex 

problems across multiple application domains.  Examples include static scheduling of real-time 

embedded systems [42] and time-table scheduling [43][44].  Van Hentenryck [45] provides 

several examples of applications that can be modeled using finite domain constraints.  Several 

finite domain solvers have been developed, including Mozart[46], JaCoP[47], CHIP[48], and 

CLP(R)[49].   

 The Mozart programming system and constraint solver facilitates the development of 

applications in the Oz language [50].  Oz is a concurrent programming language which has been 

extended to support, among other capabilities, constraint logic programming with finite domain 

constraints.  Mozart is a runtime support system and development support suite for Oz.  Mozart 

offers a compiler/linker, debugger, visualization tools, profiling tools and runtime support for 

Oz-based programs.  While Mozart/Oz offers broad support for several application domains (ex. 

distributed programming, security, web-based applications), the finite domain constraint 

modeling and solution facilities of Mozart are relevant to design space exploration.   

 Mozart facilitates the determination of a solution to a finite domain constraint programming 

problem through three steps: propagation, distribution, and search [51].  Each of these three steps 

relate to the concept of a constraint store, or a centralized database containing information about 

all variables in the constraint program, including the domain of each variable.  The constraint 

solver attempts to bind values from variable domains to variables through a process of shrinking 

the domain of each variable.  When only a single value remains in the domain of a variable, the 

variable is said to be bound to that value.  A solution to the constraint program consists of a 

binding of values to variables for all variables in the constraint store.  The propagation, 

distribution and search steps of the constraint solver attempt to further this process of shrinking 

variable domains in order to calculate a valuation for the constraint program.   

 A finite domain constraint is a relation between finite domain variables.  Each variable is 

supplied a domain which is a subset of the value set of the constraint domain.  Without loss of 

generality, finite domain constraints are discussed with respect to the integer constraint domain.  
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A finite domain constraint consists of a set of operations over a set of variables, and can be 

decomposed into a set of primitive constraints.  A primitive constraint expresses a basic 

operation between finite domain variables.  Due to the fact that all finite domain variables are 

associated with a domain, the constraint solver may be able to reason about the domains of some 

of the variables in a primitive constraint, based on the type of operation implemented by the 

constraint and the domains of the remaining variables in the constraint.  Consider the finite 

domain constraint , where the variables are defined such that , 

, and .  An analysis of the upper and lower bounds of the variables 

involved indicates the elimination of some values from the variable domains, resulting in 

, , and 

x y z+ > {1, 2,...,10}x∈

{1, 2,...,10}y∈ {1, 2,...,10}z∈

{1, 2,...,9}x∈ {1, 2,...,9}y∈ {2,3,...,10}z∈ .  When the solver determines a change in a 

variable’s value domain, the constraint store is updated with the reduced variable domain.  Other 

constraints in the constraint program which depend on the updated value can then retrieve the 

newly shrunken domain from the constraint store in an attempt to further shrink the domain, 

given the new information.  This process is called propagation: where finite domain constraint 

implementations share information about the domains of variables through the constraint store.   

 A realization of a finite domain constraint in Mozart is called a propagator.  All propagators 

operate concurrently, and share a single, centralized constraint store.  When the domain of a 

variable is updated in the constraint store, all propagators which are associated with that variable 

are notified, whereon they take the newly updated variable domain and attempt to further 

eliminate values from the domains of their associated variables.  If successful, any domain 

updates are propagated to the constraint store, whereon the propagator blocks, waiting for new 

information.  Most often, propagators implement interval propagation, where domains of 

variables are examined from the perspective of upper and lower bounds.  Domain propagation 

examines all values in the domain in an attempt to aggressively eliminate domain values.  

Domain propagation is considered computationally expensive, and is therefore not used as often 

as interval propagation. 

 Propagation facilitates the sharing of information between propagators.  This unique 

approach facilitates a modular specification of a constraint program.  However, constraint 

propagation alone is not sufficient for a complete constraint solver.  Often, all propagators in a 

constraint program will block when no new information can be gleaned from a problem 

specification, in which case the solver must resort to distribution and search. 
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 Constraint distribution involves the introduction of a choice point into the constraint 

problem.  Distribution derives two similar, but contradictory sub-problems from a current 

constraint problem by creating two copies of a constraint store and injecting them with 

contradictory constraints.  Proof-by-contradiction guarantees that if a single solution exists, it 

will be found through the solution of exactly one of these contradicting problems.  Distribution 

involves the selection of the contradicting constraints to inject in the cloned constraint stores.  

Often, an un-bound variable is selected from the constraint store and is set equal to a value in one 

sub-problem, and set not equal to a value in the other problem.  Each sub-problem can then be 

solved independently.  Mozart allows the distribution algorithm to be specified as part of the 

constraint program, thus allowing the tailoring of distribution to fit the constraint program. 

 Distribution is invoked only when propagation stalls.  Each time propagation stalls, a 

distribution point is introduced.  The goal of distribution is to facilitate propagation in a newly 

created space through the introduction of new information into the space.  However, if 

propagation stalls again in the newly created space, distribution once again introduces a choice 

point, creating two new sub-problems, and the process repeats.  The process terminates either 

when a solution is found, or when a space is determined to be contradicting, and thus has no 

solution.  Distribution can be modeled as a binary tree, whose nodes model partially solved 

constraint programs, and whose edges represent added constraints.     

 Search involves the traversal of the distribution tree.  Once distribution clones the current 

constraint store and inserts the contradictory constraints, the search algorithm specifies the order 

in which to search the newly created spaces.  While several search orders are possible (breadth-

first, depth-first, or other heuristic-based search orders), depth-first search has been shown to be 

superior with regards to memory consumption over several constraint programming applications.   

Modeling System Synthesis with Finite Domain Constraints 

 Several problems in embedded computing can be modeled using finite domain constraints.  

Kuchcinski et al [47][52][53] have used finite domain constraints in several applications to solve 

difficult embedded systems design problems.  Their published approaches implement variations 

of a common theme: a dataflow-based task graph being scheduled across a distributed, 

heterogeneous set of computation and communication resources such that certain timing and 
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resource constraints are satisfied.  Their application domain principally targets complex System-

on-Chip architectures. 

 Kuchcinski models an application as a directed acyclic graph },{ ETG = , where T is the 

vertex set, and models the set of tasks in the system.  E is the set of directed edges connecting 

tasks, and models data dependencies between tasks.  All data dependencies affect task 

scheduling, in that a task cannot execute prior to the arrival of all its input data, and sends output 

data only on termination of the execution.  Each task is modeled as a three-tuple of finite domain 

variables, },,{ ρδτ=T , where τ  represents the start time of a task, δ represents the time of task 

duration, and ρ  represents the computational resource on which task T executes.  τ  is defined 

such that {0,1,..., }Cτ ∈ , where C represents the maximum duration of the application execution 

cycle.  The time domain is discretized into intervals which specify the granularity of task start 

times.  All resources in the target platform are assigned an integral identifier.  The set of all 

resource identifiers is the domain of all resource allocation finite domain variables.  The domain 

of the task duration variable models the worst case execution times of the task when targeted to 

each type of resource available in the target architecture.  Finite domain constraints are added to 

the model to bind the selection of a particular benchmark value from the execution duration 

domain to the selection of a resource of the corresponding resource class in the resource 

allocation variable domain.  A task execution is modeled as a two-dimensional rectangle in the 

plane defined by execution time vs. resource allocation:   

 ( , ), ( , ), ( , 1), ( , 1)i i i i i i i i i iτ ρ τ δ ρ τ ρ τ δ ρ+ + + +  (9) 

 Task communications are modeled in a similar fashion, where each communication is 

assigned a start time variable, a duration variable, and a resource allocation variable.  However, a 

third dimension in the model must be introduced to account for the fact that communications 

between tasks that are co-located are assumed to be instantaneous, and do not require physical 

communication resources.  A third finite domain variable is introduced to the communication 

specification which takes on a value depending on whether the communication is a local 

communication or not.  Constraints formulating the analysis of communication scheduling 

consider only those mappings whose communication locality variable indicates that the 

communication is a non-local communication.   
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 Precedence constraints specify temporal relationships between task execution variables.  

Suppose a task graph consisted of two tasks, i and j, with communication k connecting i to j, as 

depicted in Figure 1.   

 
Figure 1. A simple task graph 

 The following precedence constraints capture the time dependence between the two tasks 

and the communication:  

 i i kτ δ τ+ ≤  (10) 
 k k jτ δ τ+ ≤  (11) 

 

 The constraints specify that task i must start and run to completion prior to the start time of 

communication k.  Likewise, communication k must start and run to completion prior to the start 

time of task j.  

 Mutually exclusive access to resources is modeled with disjunctive constraints.  For any two 

tasks x and y in the task graph, the following constraint must hold: 

 ( ) ( ) ( )x x y y y x x yτ δ τ τ δ τ ρ ρ+ ≤ ∨ + ≤ ∨ ≠  (12) 

 The exclusion constraint specifies that if two tasks share a resource, their execution 

windows must not overlap.  This models non-preemption of computational resources.  Similar 

constraints are added for each communication link in the system, modeling exclusive access to 

communication resources.   

 Resource constraints are modeled through the rectangle task specification given in Equation 

(9), and a constraint that requires that no two rectangles in the system specification overlap.  

Execution rectangles overlap only when task execution windows overlap when allocated to the 

same resource.  Resource constraints also specify the types of resources employed in the final 

configuration, along with the quantity of each resource type.  These totals are used to formulate 

cost functions based on resource implementation cost.     
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 Optimization criteria are specified as a function of finite domain variables.  The constraint 

solver employed by Kuchcinski facilitates the minimization of a cost function during the 

constraint search.  Application-level requirements can also be inserted into the constraint 

specification.  For example, the maximum task end time can be constrained to be less than some 

bound, modeling a bound on total application latency.   

 While constraint propagation and distribution can be used in conjunction with exhaustive 

branch and bound search techniques to determine solutions to the mapping problem, due to the 

domain sizes of the variables in the specification, Kuchcinski relies on several heuristics to 

quickly prune the design space and arrive at solutions in a more timely fashion.  He describes the 

use of the limited discrepancy search (LDS) heuristic [54] and the credit search heuristic [55].  

LDS attempts to find a solution to the constraint problem by performing small changes to a 

current valuation.  Credit search integrates backtracking to partially search the search space.  

Credits are used to effectively model the time or distance a particular subspace is searched for a 

solution.  When the credits for a particular subspace are completely used, backtracking is used to 

traverse a different part of the space.  Those portions of the space that are deemed highly 

probable to contain a solution are initially assigned more credits than other portions of the space.  

The authors measure execution times of the CLP formulation using randomly generated task 

graphs, and report significant speed gains over similar MILP formulations [56].  

Partial Assignment Technique 

 Szymaneck and Kuchcinski[57] present the Partial Assignment Technique (PAT) to pre-

prune a finite domain constraint program problem specification targeting the MATAS scheduling 

tool [58], thus speeding the design space search.  The technique involves clustering tasks into co-

located sets.  Not all tasks are necessarily clustered.  Nor does PAT attempt to bind the clusters 

to resources.  Rather, it simply focuses on clustering some of the tasks into groups that will be 

co-located by MATAS.  The goal is to reduce the complexity of the assignment and scheduling 

problems.   

 PAT determines what tasks to join into a cluster by defining a measure of “closeness”.   If 

two tasks or groups of tasks are “close,” then merging the two groups into a single group will 

presumably positively impact the overall schedule and memory usage of the mapped application.  

Tasks or groups of tasks that are not “close” do not show such benefits from clustering.  PAT 
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defines a closeness metric as a weighted sum of three scheduling objectives: minimizing 

execution time, minimizing code memory usage, and minimizing data memory usage.  The 

closeness for two groups in time is defined as the estimated speedup gained from eliminating 

interprocessor communication between the groups (since inter-group communication for co-

located groups is assumed to be negligible).  Closeness in code memory measures the impact of 

code sharing between groups.  If much code is shared between two groups, then co-locating the 

groups impacts the overall code memory usage.  Closeness in data memory measures the impact 

of data memory that needs to be replicated on either end of a data communication to buffer the 

communication before (on the sender side) and after (on the receiver side) communication 

between groups.  If the groups are co-located, such replicated data memory is not needed. 

 PAT calculates closeness between all tasks in the specification, and picks the two closest 

tasks for clustering.  This new clustered group is treated as a single task in the analysis, and PAT 

again calculates closeness between all groups and selects the two closest for clustering.  This 

iterative process continues until some predefined reduction factor is achieved.   

 On termination, PAT instead of generating code to physically cluster task groups into single 

tasks, simply generates constraints to add to the constraint specification input to MATAS.  These 

constraints specify that tasks within a group are to be co-located.  For example, if task i and task 

j were clustered by PAT, then PAT would generate the constraint ji ρρ = , where xρ is a finite 

domain variable representing the index of the computation resource to which task x is assigned. 

 PAT is a novel technique, in the sense that it considers in a pre-processor fashion which 

tasks to co-locate, outside of the problem of determining task allocation.  Instead of physically 

gluing together clustered tasks, it simply inserts constraints requiring that tasks be co-located.  

Another feature of PAT is that it is multi-objective, in that it considers closeness in time, code 

memory and data memory individually, but collectively within a unified cost metric. 

Time-Triggered Software 

 Finite domain constraint programming has also been used to generate a static schedule for a 

time-triggered applications targeting a multiprocessor platform connected with a time-triggered 

bus [42].  An application consists of a set of processes, each of which is mapped to one and only 

one processor.  A process is invoked multiple times.  Let P  denote a process, and  denote the iP
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ith invocation of process P.  Let denote the non-negative time of invocation of , and 

let  denote the execution duration time of 

)( iPstart iP

)(Pdur P  (note that execution time is the same across 

all invocations).  The completion time of  can be calculated as follows: 

.  A similar formulation can be made for each message 

iP

)()()( PdurPstartPcompl ii += M in the 

specification, where messages have a start time per invocation, and an invocation-independent 

duration.  Processes have a period of invocation, , which is assumed to be larger than 

the duration of the process, and can be modeled as:  

)(Pperiod

)()()( 1 PperiodPstartPstart ii += − .  The off-

line scheduling of the time-triggered application seeks to define a repetition window, containing 

a schedule of all tasks and message exchanges that can be repeated indefinitely.  The length of 

the repetition window is called the cycle time, CT .  It is a requirement of the time-triggered 

system that for all processes, CTPcompl i ≤)( , and as with Kuchcinski, if two tasks are co-

located, their execution windows may not overlap.  Constraints are used to model the fact that 

message transmission may begin only after the sender task has completed, and that all message 

transmissions must complete within the cycle time, just as with processes.  Constraints also 

model the fact that only one transmission may be active on the bus at one time, in much the same 

fashion that execution windows for co-located tasks cannot overlap. 

 The authors describe a mapping of the time-triggered scheduling problem onto a Mozart-

based finite domain constraint specification.  They discuss different strategies to search for 

solutions for this problem, leveraging results from Operations Research to limit the complexity 

of the branching by determining a proper ordering for the selection of variables for branching.   

Critique of Constraint Logic Programming 

 Constraint Logic Programming has been applied in several domains to model combinatorial 

search problems.  Mature solvers and development tools are available.  Current design space 

exploration techniques using finite domain constraints are highly domain-specific, and are 

limited to the examination of temporal properties and scheduling.  Property composition for 

structural properties has not been addressed in the current approaches.  However, finite domain 

constraints offer a unique model for expressing design space exploration problems.  Finite 

domain constraints are not limited by linearity requirements on constraint expressions, as are 

linear pseudo-Boolean constraint specifications and MILP specifications.  Further, the ability to 
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guide domain distribution and search separately from the problem specification facilitates 

elegant constraint models.   

Combinatorial Search Heuristics 

 General combinatorial search techniques have been applied to the modeling and exploration 

of embedded system design spaces. These techniques implement search heuristics that are 

tailored to the problem domain.  Specifically, three techniques have been surveyed: simulated 

annealing, evolutionary algorithms, and tabu search. 

Simulated Annealing 

 Kirkpatrick [59] noted and applied the annealing concept from physics to model and execute 

combinatorial search.  Annealing is the process of slowly cooling liquid glass or metal into a 

solid state.  If the cooling process proceeds at the proper speed and temperature gradient, the 

resulting solid is quite strong.  If the cooling process proceeds too quickly, the solid is weak and 

brittle.  Annealing involves the reduction of random molecular motion during the transition from 

the liquid to the solid state. 

 Simulated annealing applies the ideas of random movement and cooling to combinatorial 

search, as follows.  Search begins at a random point in the search space.  A cost function 

facilitates the quantitative comparison of two points in the space.  The algorithm repeatedly 

attempts to improve the outcome of the cost function by traversing the space.  At the beginning 

of the search, the search space is modeled as a liquid, and therefore the search algorithm 

incorporates significant randomization when traversing the space.  Randomness is realized 

through arbitrary alterations of the set of values modeling the current location in the search 

space, resulting in a different point in the space.  How drastic the change and how often the 

changes are made depends on the current simulated temperature.  As the simulated temperature 

decreases, the number of random changes introduced in the search process decreases.  Between 

random changes in the search trajectory, the algorithm attempts improve the value of the cost 

function through local search using domain-dependent comparison and improvement algorithms.  

As the search proceeds, the annealing process dictates the lowering of the simulated temperature.  

Once the temperature reaches a certain threshold, search terminates.   
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 Simulated annealing is a heuristic search technique.  It offers no guarantee of determining an 

optimal solution. It does not even offer a guarantee of finding a good solution.  Due to the 

random perturbations in the annealing process, it is resilient to getting “stuck” in a local 

minimum in the search space.  Several applications of simulated annealing algorithms to 

embedded system design space exploration are discussed below.   

3D-Floorplanning of Reconfigurable Architectures 

 Bazargan et al [60] have developed a model for the placement of tasks onto a reconfigurable 

architecture based on 3D-floorplanning.  A reconfigurable architecture (ex. an FPGA) is modeled 

as an array of reconfigurable units.  An application is modeled as a set of tasks, each of which is 

characterized with resource requirements, and a temporal execution specification.  Application 

execution on reconfigurable hardware is modeled as a thee-dimensional volume, where the x and 

y dimensions model the physical reconfigurable resource area, and the z dimension models 

execution time.  The 3D-floorplanning algorithm seeks to determine an off-line mapping of tasks 

onto the reconfigurable architecture.  Each task is modeled as a box with a fixed shape (required 

resources are modeled in the x-y plane, and task execution is modeled in the z plane).  The 

floorplanning algorithm attempts to fit the volumes corresponding to each task within the volume 

modeling the execution platform, such that no two task volumes overlap in any of the three 

dimensions.  The total execution time of the application is represented by the length of the fitted 

application in the z direction.  The authors evaluate several different simulated annealing 

algorithms to model the task placement, implementing various cost functions.   

Cosyma 

 The Cosyma [61] project utilizes a simulated annealing model to perform hardware/software 

partitioning for embedded systems.  Applications are represented using a superset of the ANSI C 

language called Cx.  Cx facilitates the labeling of tasks and intertask communication, as well as 

the capture of timing metadata for tasks, such as execution time bounds.  The Cx specification is 

parsed into a DAG representation, which is then analyzed.  The target platform is a 

heterogeneous architecture consisting of programmable microprocessor cores with memory and 

hard-wired or field programmable hardware logic devices.  Cosyma attempts to map the DAG 

model of an application onto the target architecture.  This is done using a dual-loop search.  In 

the inner loop, a simulated annealing search is performed that attempts to optimize a hardware-
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to-software mapping for a given cost function and timing constraints.  The outer loop adapts the 

cost function when more knowledge is obtained about performance metadata.  Initially, all tasks 

are mapped to software, and the simulated annealing algorithm attempts to iteratively move tasks 

to hardware until timing constraints are met.   

Evolutionary Algorithms 

 Evolutionary algorithms [62][63] are another class of heuristic combinatorial search 

algorithms used to model embedded system design space exploration problems.  Evolutionary 

algorithms or genetic algorithms model the process of evolution in nature, where survival of the 

fittest and natural selection are used to model and explore a combinatorial search space.  The 

search space is modeled as a population that grows across generations.  Natural populations grow 

and diversify through the production of offspring from parents.  The genetic makeup of an 

offspring is a combination of the makeup of the genes of the parents.  The combining of the 

parents’ genes to form an offspring is referred to as crossover.  Natural selection, or the principle 

of “survival of the fittest,” implies that those offspring that are not fit for survival perish.  

Mutation in a population introduces characteristics in an offspring that are not present in either 

parent.  Mutation is modeled as a random change to the genetic makeup of an offspring when the 

offspring is born.  Through these concepts of crossover, selection and mutation, a population 

grows and improves across generations. 

 Genetic algorithms model combinatorial search problems after the process of evolution.  

Members of a population represent different points or potential solutions in a search space.  

Crossover selects two points in the space for combination to produce another point in the space.  

Crossover implements a kind of local search, implementing a hill climbing algorithm through the 

examination of adjacent points in the space to generate “good” offspring.  A fitness function 

compares a newly created offspring against the current population.  If the offspring is deemed fit 

for survival, it is included as part of the population.  Determination of fitness models natural 

selection.  Mutation introduces small random changes during crossover, adapting the process of 

combining the parents to form the offspring.  Evolution proceeds generation after generation, 

iteratively improving the population.  A genetic algorithm typically terminates after a set number 

of generations have evolved.  The actual implementations of crossover, selection, and mutation 

are highly problem-specific.  Genetic algorithms have been widely used and applied in multi-
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objective search problems [64][65][66], making it an often-selected candidate for the exploration 

of embedded system design spaces.   

System-Level Synthesis Using Evolutionary Algorithms 

 Lothar Theile’s group at ETH Zurich has studied the use of evolutionary algorithms to 

model the synthesis of embedded applications.  In [67], an approach for performing 

hardware/software partitioning and scheduling for a heterogeneous embedded platform is 

discussed, which uses evolutionary algorithms.  Applications are modeled as a dependence 

graph, where nodes represent either computations or communications, and edges represent 

dependencies between nodes.  An architecture is also modeled as a graph, where nodes represent 

either computation resources or communication resources (e.x. point-to-point communication 

link or a bus), and edges represent directed associations between resources.  A formal model is 

developed facilitating the specification of user-defined constraints on the binding of tasks to 

resources, called a specification graph.  A specification graph is a set of related dependence 

graphs, where edges relating dependence graphs model potential bindings.  A dependence graph 

captures the set of tasks and inter-task communications in an application.  A second dependence 

graph models the hardware architecture onto which the application will be modeled.  Directed 

edges in the specification graph connecting these two dependence graphs model potential 

resource allocations.  Formally, a specification graph ( ),S S SG V E=  consisting of D dependence 

graphs , and a set of mapping edges ( ), ,1i i iG V E i D= ≤ ≤ ME .  The model stipulates , 
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=∪ , where .  Each dependence graph in 

the specification graph models a level of abstraction of the problem, thus facilitating in a sense a 

hierarchical approach to the mitigation of complexity in the model.  The mapping edges 

1,1Mi i iE V V i+⊆ × ≤ ≤ D

ME  are 

viewed as potential mappings.  For example, a task which can be allocated to multiple resources 

will have a mapping edge connecting it to each such resource.  All resources in the resource 

dependence graphs are not necessarily included in a final synthesized system; the synthesis 

algorithm determines which resources to include in an implementation. 

 A specification graph models several potential implementations.  An activation is defined to 

be a function { }: S SV Eα ∪ 0,1 , which models whether a node or edge in the specification 

 27



 

graph is selected for inclusion in an implementation.  Selection is indicated through the value 1.  

An allocation is defined as the subset of all activated nodes and edges in the specification graph.  

A binding is defined as the set of all activated mapping edges in the specification graph.  A 

feasible binding is a binding which meets the following constraints: 

• all activated edges connect activated nodes 

• for all activated nodes, only one outgoing mapping edge is activated  

• for all activated edge, if the edge connects entities which are not co-located, a 

corresponding communication resource is also activated to handle the inter-resource 

communication 

 A feasible allocation is defined as an allocation which allows at least one feasible binding.  

Scheduling is also defined within the context of a specification graph.  Given 1 PG G=  as the 

problem dependence graph that models the application and a function ( , )delay v β +∈  which 

assigns an execution time to task  based on its allocation in feasible binding v β , a schedule is a 

function  that satisfies all edges : PVτ + ( ),i j Pe v v E= ∈ , ( ) ( ) ( , )j i iv v delay vτ τ β≥ + .  This 

simply implies the precedence relation between tasks and inter-task communication: task outputs 

can only be communicated on after the task execution terminates.   

 Formally, an implementation of a specification graph consists of a feasible allocation, a 

feasible binding, and a schedule.  The problem of determining an implementation can be phrased 

as an optimization problem, where some cost function is minimized, subject to criteria of an 

implementation definition (i.e. that the cost function minimization results in a valid 

implementation).  The optimization problem is implemented as a genetic algorithm. 

Critique of Combinatorial Search Heuristics 

 Combinatorial search heuristics are domain-independent search algorithms which are 

specialized to the application domain.  Arguably, the algorithms are “too abstract,” in that 

several aspects of the application of the algorithm to the domain require intimate domain 

knowledge.  For example, the implementation of the crossover function in a genetic algorithm is 

highly domain-specific.  The crossover implementation of one genetic algorithm implementation 

may look nothing like the crossover implementation of another.  While both genetic algorithms 

and simulated annealing algorithms offer the benefit of resilience to getting “stuck” on local 
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maxima due to the random perturbations introduced during traversal, neither offers guarantees of 

coverage of the search space.  They are not even guaranteed to offer good solutions 

 Branch and Bound in Real-Time Software Synthesis 

 Branch and bound algorithms are commonly employed in design space exploration.  Branch 

and bound is effective when applied to spaces which can be iteratively decomposed and refined, 

and where quality metrics can be evaluated on partially explored spaces to produce upper or 

lower bounds on the value of the metric.  The branching step involves the refinement of a 

partially explored space into a set of contradictory spaces, which can each in turn be further 

refined and explored.  Two spaces are contradictory if they represent mutually exclusive 

subspaces of the search space.  The bounding step of the algorithm evaluates a partially refined 

subspace over one or more quality metrics.  The quality metric function returns a bound on the 

metric, implying that all solutions contained in the subspace are bound by the returned value.  

Global search criteria are specified over these quality metrics.  If at any point in the search it 

becomes apparent that the quality metrics for a subspace fall out of bounds of the search criteria, 

the subspace is marked as “bounded” and is not further refined.  Unbounded leaf nodes in the 

resulting search tree represent solutions to the search problem.  Branch and bound can be used to 

model both optimization problems and constraint satisfaction problems.   

Minimum Required Speedup 

 Axelsson [68] offers a novel metric and algorithm for analyzing the schedulability of fixed-

priority-based preemptive task schedules, as well as a technique for partitioning a task graph 

onto a heterogeneous architecture graph.  His formulation centers around a performance metric, 

called the minimum required speedup (MRS).  MRS effectively denotes the minimum speedup 

required from a system in order for a particular timing deadline to be met.  Axelsson illustrates 

the utility of this metric in hard real-time schedulability analysis, as well as task distribution. 

 An application is defined as a set of tasks },...,,{ 21 mB τττ=  with well-defined worst-case 

execution times.  Let )( iD τ be a deadline, and )( iT τ be an invocation period for task Bi ∈τ .  The 

targeted execution platform consists of an embedded microprocessor, an ASIC, embedded 

memories, caches and busses, or various combinations of these components.  The synthesis 

algorithm attempts to discern the proper architecture composition for a given application.   
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 Runtime scheduling is based on a fixed-priority assignment, and employs pre-emption.  It is 

assumed that a task may need multiple resources (ex. a processor, a bus, and an embedded 

memory) in order to run.  Preemption covers any type of resource, not just a computational 

resource, as is traditionally considered in real-time analysis.  A task partitioning is described as a 

binding of all tasks to resources in the execution platform, such that the resource requirements of 

each task are met.  Schedulability analysis attempts to determine whether a given task 

distribution partitioning, together with a fixed priority assignment for all tasks results in all tasks 

meeting their respective deadlines.  Task deadlines are compared against their worst case 

response times in order to determine whether deadlines are violated.  The minimum required 

speedup for a task measures how much faster the system must run in order for that task to meet 

its deadline.  Axelsson develops from his formulation a means to calculate the worst-case 

response time for a task, which differs slightly from traditional uniprocessor formulations, due to 

the complex nature of the architecture, and the fact that a task may require several resources that 

are not necessarily computational resources in order to execute.  The MRS for a task is 

calculated from the worst case response time, by finding the minimum ratio of the worst case 

response time to execution time in the execution window of the task.   

 Axelsson uses the MRS metric as a basis to perform design space exploration to find an 

optimal task partitioning.  The partitioning algorithm attempts first to meet timing deadlines and 

then attempts to minimize cost.  It utilizes MRS to calculate a lower bound on the speedup 

required for all partitions that can be generated from a partial partitioning.  Using this lower 

bound, Axelsson implements a branch-and-bound search of the space to find quality partitions.  

A partial solution consists of a partial mapping of tasks to resources.  Each branch step selects an 

unbound task and binds it to a set of resources.  The MRS for a partial partitioning specifies a 

bound on the design space search by allowing the comparison of a newly generated partial 

partition against the best found thus far.  If no speedup is required, implementation costs are 

compared instead of MRS.  A complete solution is defined as a partition where all tasks in the 

application are mapped to real computational resources in the architecture. 

 The algorithm utilizes heuristics to speed the search process.  Heuristics are applied to 

produce an order for selecting the next task for partitioning when branching, as well as the order 

in which the n new partial partitions generated from branching are considered for evaluation.  

The heuristics applied are:  
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• Allocate the most demanding tasks first, where “demanding” is measured by the length of 

the deadline (i.e. order task selection by deadline) 

• Before deadlines are met, allocate to the ASIC resources.  After deadlines are met, 

allocate to processors.   

• Attempt to balance processor loads by trying processors in order of increasing load. 

 The MRS calculation is polynomial, but a large-degree polynomial, rendering the MRS 

computation expensive and impractical for large-scale systems. 

Component Allocation in the AIRES Toolkit 

 Wang et al [69] develop a method for allocating components to distributed resources using 

what they term an “informed” branch and bound algorithm.  Their approach searches for 

distributions which meet multiple resource constraints.  In the design flow, component 

distribution occurs prior to timing analysis and schedule synthesis.   

 An application consists of a set of tasks or components.  Each task has a discrete set of 

inputs and outputs, modeled as ports.  On execution, data is consumed from input ports, and on 

termination, data is enqueued into output ports.  Each component is characterized with metadata 

describing its resource consumption rates, for both computation and memory.  A communication 

link between tasks is characterized by a resource consumption rate as well, representing the size 

of the communication.  A platform is modeled as a set of processing elements together with a 

single globally shared communication link, connecting all processing devices.  Each processor is 

characterized with metadata describing its maximum resource capacity, for both memory and 

computation.  The communication link is also characterized with a resource capacity.  A valid 

partitioning of an application graph onto a resource graph is a partitioning that does not violate 

any resource capacity constraints.  For each processor in the resource graph, the sum of resource 

consumption rates of all tasks that are mapped to that processor must not exceed the 

computational resource capacity of the processor.  Similarly, memory and communication 

resource capacities cannot be exceeded.  The partitioning algorithm attempts to populate a set of 

partitions, where one partition is mapped to each processor.   

 The branch and bound algorithm utilizes a few heuristics to aid the search process.  Partition 

distribution proceeds in a sorted order.  Possible partition branchings are sorted according to a 

competence function.  The competence function is a linear combination of measurements of 
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resource requirements, and estimates the probability that a particular mapping decision will lead 

to a constraint violation.  Forward checking removes from consideration those possible branch 

points which do indeed result in constraint violations.  Forward checking is computationally 

expensive, but becomes cheaper as the number of unallocated tasks decreases; hence forward 

checking is applied only after some minimum number of tasks have been allocated.   

Critique of Branch and Bound 

 Branch and bound algorithms are employed in many combinatorial search problems.  The 

algorithm is successfully applied only where an appropriate branching algorithm can be 

formulated, and where an accurate, “tight” bound estimate can be determined early in the 

branching process.  Branch and bound has exponential complexity in the worst-case due to the 

recursive branching and search of the tree.  However, with appropriate branching and bounding 

algorithms, branch and bound can be applied to large search problems.   

Parameter-Based Design 

 A design space can be represented using a parametric model [70].  Variables or parameters 

represent variation in the system.  System behavior is modeled as some mathematical function of 

those variables.  It is often the case in multi-objective search, especially with parameter-based 

search, that a designer seeks a set of pareto-optimal parameter settings.  A pareto-optimal [71] 

parameter set is a set of valid parameter values for all variables in the system description, where 

for each mathematically described objective, no other parameter set performs better with respect 

to that objective.  However, for a given objective, there may be several pareto-optimal parameter 

sets which perform equally well.  It is often the goal of multi-objective design space exploration 

to find the set of all pareto-optimal parameter sets, for each objective of the search.  Different 

authors advocate different approaches to determining these pareto sets. 

Platune 

 Vahid and Givargis offer Platune[72][73] as a tool for exploring the design space of a 

system-on-a-chip (SoC) architecture.  They model a SoC as a set of parameters, each with 

discrete, finite domains.  They implement fast performance prediction models as functions of the 

SoC parameters to explore the design space.  They explore the space with the objectives of 
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minimizing power, area and total application execution time.  They develop a pruning algorithm 

that partitions the design space into subspaces, which are independently searched for local 

pareto-optimal settings.  Global search then iteratively combines the pareto sets from each 

independent subspace into global pareto-optimal parameter settings.  Design space exploration 

allows developers to “tune” parameters [74] such that the proper application performance is 

observed. 

 Platune models a particular statically configurable SoC architecture using several 

parameters.  Their architecture offers a MIPS R3000 processor that can be run at 32 different 

voltage levels, from 1.0V to 4.2V in 0.1V increments, implying 32 possible voltage levels, each 

of which corresponds to a unique execution frequency.  The architecture supports various 

instruction and data cache sizes (10 total, ranging from 128 – 64 KB, in multiples of 2), line size 

(4, 8, 16, 32, 64 B), and set associativities (1-, 2-, 4-, 8-, or 16-way).  Other parameters govern 

bus widths and encodings, communication interfaces for off-chip interfacing, etc.  The 

architecture defines a total of 26 different parameters, resulting in a configuration space in excess 

of  configurations. 1410

 Design space exploration in Platune utilizes a fast architecture simulation model [75] to 

determine pareto-optimal parameter sets for each of the metrics of interest (area, power 

consumption, and execution time).  The simulation model is derived from the component IP 

library performance models for the components in the configurable architecture.  This simulation 

model can be evaluated across the full configuration space in an exhaustive search.  However, 

the size of the configuration space prohibits the use of exhaustive linear search techniques. 

 Platune optimizes the design space search through an analysis of parameter dependence.  

The authors note that some parameters in the architecture description are independent with 

respect to performance calculations.  For example, they postulate that the instruction cache line 

size setting does not affect the optimal parameter setting for the data cache line size.  Parameter 

dependence is modeled as a directed graph, where the nodes in the graph represent parameters, 

and directed edges model parameter dependencies.  Platune clusters the strongly connected 

components of the parameter dependence graph, and for each graph component, exhaustively 

searches the parameter space for pareto-optimal parameter settings.  This local search involves 

setting the parameter values of all independent parameters to some arbitrary value (since all 
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parameters outside the cluster do not affect the performance calculation based on the parameters 

within the cluster).   

 Once exhaustive local search determines the set of pareto-optimal parameter settings for 

each of the strongly connected components in the parameter dependence graph, Platune 

generates the global pareto-optimal parameter sets.  Local pareto-optimal parameter sets are 

iteratively combined and evaluated using the simulation model.  Only those merged parameter 

sets which are themselves pareto-optimal are retained.  The recursive merging of pareto-optimal 

parameter sets from adjacent clusters continues until all parameter sets have been merged.  The 

result of the recursive merging process is a set of parameter sets which are pareto-optimal over 

the full architecture space.   

 Platune offers a superior approach to co-simulation techniques (ex. see[76]) used in early 

hardware-software codesign tools for design space exploration.  The approach centers on 

parameter independence.  The complexity of the global search is 2KO
⎛ ⎞
⎜ re N is the number 

of parameters and K is the number of strongly connected components in the parameter 

dependence graph.  If many parameters are independent, then K is large and complexity 

decreases.  If many parameters are dependent, there are few, large components in the graph, 

resulting in exponential complexity.  Large components imply long exhaustive component search 

times.  Vahid and Givargis report 2000x speedup over gate-level simulation for the Platune 

design space search.   

N

⎟
⎝ ⎠

, whe

PICO 

 The PICO project [77] at HP Labs focuses on the generation of a customized embedded 

computer architecture from a C-based application.  It tailors a configurable architecture to fit the 

computational needs of the application.  The architecture consists of a configurable VLIW core 

connected to a non-programmable accelerator (NPA) subsystem.  An NPA is custom logic that 

can be used to implement compute-intensive loop nests from the application code, thus 

accelerating the VLIW performance.  PICO advocates a hierarchical approach to design, where 

subsystems are designed and analyzed separately, followed by a system-level composition and 

analysis based on subsystem designs.  PICO imposes a consistent toolflow at each level of the 
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design hierarchy, consisting of a template, a spacewalker, an evaluator and a constructor, as 

depicted in Figure 2.   

Constructor 

Design 
Specification Evaluator 

Spacewalker 

 
Figure 2. Toolflow for design space exploration in PICO 

 A template defines parameters representing the design space for an architectural component 

or subsystem, together with a set of rules and constraints on that subsystem that must be honored.  

Some parameters in the template model may be fixed or invariant across the design space 

represented by the template, while other parameters are allowed to vary. 

 The spacewalker tool explores the parameter space defined by the template.  It attempts to 

explore the space of parameter settings for a given template.  The evaluator quantifies the quality 

of a particular set of parameter values against multiple metrics.  The evaluator is used to 

determine whether a set of parameter values eclipses another set.  The spacewalker uses the 

evaluator to search for pareto-optimal parameter settings, by comparing sets of parameter values.  

The spacewalker utilizes heuristics to order the search trajectory in such a way that areas of the 

design space that are likely to contain pareto-optimal designs are considered, while those areas of 

the space deemed “uninteresting” are skipped. 

 The constructor implements decisions made by the spacewalker, by realizing a template 

implementation bound to a parameter set achieved through spacewalking.  While the 

Template 

Pareto-Optimal 
Designs
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spacewalker operates on a fairly abstract representation of a subsystem, the constructor deals 

with low-level implementation details. 

 PICO advocates a hierarchical design and exploration strategy.  The purpose behind the 

hierarchical exploration strategy is the partitioning of the design space into independent 

subspaces that are searched separately and independently.  Fast design space pruning is achieved 

through the postulation that pareto-optimal designs for the system can be composed from pareto-

optimal subsystem designs, and thus only the pareto-optimal subsystem designs need to be 

considered during the composition step.  The PICO authors do not explore the validity of this 

assumption.  However, they do state that the composition is only valid if each subsystem 

evaluator takes into account some global quality metric (i.e. how well a subsystem design will 

perform in the global context), acknowledging the fact that local optimization does not always 

lead to globally good designs.   

 PICO specializes the design space exploration methodology and toolflow in Figure 2 for a 

VLIW-based configurable architecture.  The architecture is divided into three subsystems: the 

VLIW core, the cache/memory subsystem, and the NPA subsystem.  The evaluators for the full 

system and each subsystem define two metrics: cost and performance.  Cost is defined in terms 

of gates or silicon area, while performance is a function of the number of cycles to execute the 

application, and is derived via a combination of simulation and static estimation techniques.  The 

evaluator for the NPA subsystem consists of cost evaluation metrics using the parameterized 

formulas for area and gate count from the macrocell library containing the components used in 

the NPA.  The VLIW evaluator uses the same method for cost estimation.  It uses a heuristic 

formula for performance evaluation that involves estimating cycle counts from each basic block 

by multiplying the schedule length by the profiled execution frequency.   

 The spacewalker tool [78] implements the actual exploration of the architecture.  The design 

space exploration time was found to be dominated by the exploration of the VLIW parameter 

space, since evaluation of a VLIW parameter setting involves the synthesis of a customized 

architecture and simulator, followed by the execution of a simulation of the target application to 

determine fitness.  The spacewalkers for the NPA and cache subsystems search their respective 

parameter spaces exhaustively for pareto-optimal subsystem designs.   The system-level 

spacewalker combines the results of the subsystem pareto sets into system-level pareto sets.  

Since the exploration time is dominated by the VLIW subsystem parameter search, design space 

 36



 

exploration through the separation of the subset designs aids the search process tremendously by 

eliminating the need to simultaneously explore the VLIW subsystem with the memory and NPA 

subsystems.   

Evaluation of Parameter-Based Design 

 Parameter-based design space exploration techniques employ search algorithms to evaluate 

pareto-optimal parameter sets.  The approaches outlined above appeal to parameter/subspace 

independence to facilitate rapid composition of system-level pareto-optimal parameter sets.  In 

the case of Platune, subspaces are defined along the boundaries of parameter independence.  In 

PICO, subspaces are separated through design hierarchy.  In both cases, subspaces are searched 

independently for pareto-optimal configurations.  The composition of system-level pareto sets 

from subspace pareto sets significantly prunes the size of the parameter space, facilitating 

efficient design space exploration.   

 However, the parameter-based approach relies on the ability to decompose the deisgn space 

into independent subspaces.  This assumption can be a weak assumption in the presence of cross-

cutting concerns or tightly coupled systems.  If a system can be accurately modeled as a 

composition of fairly independent subsystems, and performance evaluation metrics can be 

developed for each subsystem that reflect global performance potentials and pitfalls, then the 

PICO and Platune approaches are highly applicable.  The parameter-based approaches also rely 

on fast parameter evaluation models.  Platune is especially susceptible to the speed of the 

parameter evaluation model, due to the use of exhaustive search within each parameter cluster.  

Design Space Exploration Tool (DESERT) 

  Neema [79][80] has developed the Design Space Exploration Tool, or DESERT, which 

facilitates the representation and exploration of large design spaces.  Of the approaches 

mentioned above, unique to DESERT is the elevation and formalization of the concept of a 

design space, together with the specification of exploration algorithms on the design space 

model.  Design space exploration is a user-guided process of applying constraints to the design 

space specification, with the goal of pruning from the space those designs which do not satisfy 

the applied constraints.  DESERT offers a simple input language through which is specified a 

design space model and a set of constraints.  On termination, the pruned design space is returned 
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through a well-defined output interface.  Internally, DESERT employs symbolic methods to 

represent and prune the space.   

DESERT Design Space Model 

 DESERT offers a domain-independent modeling language for specifying design space 

exploration problems.  A design space consists of a set of configurations.  DESERT facilitates 

the compact representation of a large set of configurations through a tree-based model.  

Constraints on the design space composition are captured as OCL expressions.     

Figure 3 shows a UML-based representation of the top-level DESERT design space modeling 

language.  A DesertSystem object models the design space.  A DesertSystem object 

holds one or more CosntraintSets, one or more Spaces, and potentially several 

Relations.  A Space, together with its corresponding Elements, models a hierarchical, 

tree-based representation of a design space.  A Space contains an Element, known as the root 

Element of the tree.  Elements can contain other Elements.  In the design space model, 

containment has two different meanings.  A design space models a set of choices or alternatives.  

In such a context, containment can be used to enumerate the potential outcomes of a choice.  A 

design space also models composition, or how parts compose to form a group or whole.  In this 

context, containment can be used to model composition.  The type of containment exhibited by a 

particular Element is specified with the decomposition attribute.  If decomposition is set to 

TRUE, then the containment relationship between the Element and its children is taken to be 

composition; whereas if the decomposition attribute is set to FALSE, the Element is taken to 

model a choice point, whose children enumerate potential outcomes of the choice.  Elements 

which contain no other Element are referred to as LEAF Elements, since they form the 

leaves of the tree.  Elements modeling composition are said to have AND decomposition and 

are referred to as AND nodes, while Elements modeling choice points are described as having 

OR decomposition, and are referred to as OR nodes.  The tree of Elements rooted at a Space 

object is referred to as an AND-OR-LEAF tree. 
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Figure 3. UML representation of DESERT design space model 

 A DesertSystem object contains one or more ConstraintSet objects.  A 

ConstraintSet contains a set of Constraints, which model constraints on the structure 

of the AND-OR-LEAF tree.  A constraint is captured using an extended subset of OCL [81], and 

is specified in the expression attribute of the Constraint.  All constraints apply at a context, 

which is represented as an association between the Constraint and an Element in an AND-

OR-LEAF tree.  Relations capture relations between different objects in the design space 

definition.  Specifically, the ElementRelation specifies an association between two 

Elements.   

 The compositional structure of the design space represented as an AND-OR-LEAF tree is 

attributed with quantitative metadata called properties.  Properties quantify metrics over the 

design space, and can be used as the basis for design space pruning.  A unique aspect of 

DESERT is the separation of the specification of property metadata from the specification of the 

composition of the property metadata.  Metadata is specified at the LEAF level of the AND-OR-

LEAF tree.  Each property is supplied a property composition function, selecting from a set of 

supported functions, a mathematical operation to calculate property value of an interior tree 

node, based the values of the node’s children.  Figure 4 gives the UML description of the 

DESERT Property class.  There are two types of properties supported in DESERT, a 
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VariableProperty and a ConstantProperty.  A Property is assigned to an 

Element, referred to as its owner, and is associated with a Domain.  In the PCM_STR attribute 

of the Property class is specified a string referring to the type of property composition to be 

employed for the property.  The available property composition functions include Additive, 

Multiplicative, Arithmetic Mean, Geometric Mean, Minimum, Maximum, None, and Custom.  

Custom composition allows the user to specify an extension to the DESERT code base to 

implement property composition.  A ConstantProperty represents a named constant 

assigned to a LEAF node.  A VariableProperty models a variable, which is assigned a 

Member (or value) from the Domain.  A VariableProperty may be bound through 

AssignedValues relations, to a subset of values from the Domain, one of which is selected 

for binding during exploration.   

 
Figure 4. UML representation of DESERT Properties 

 Desert Domains are represented in Figure 5.  A domain models a set of values.  Two types 

of domains are supported in Desert: a CustomDomain and a NaturalDomain.  A 

NaturalDomain models a range of natural numbers between the domain minimum and 

maximum.  A CustomDomain models a set of members, called CustomMembers.  Relations 

between CustomMembers can be specified through the MemberRelation.   
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 A design space models a set of choices.  Choice is modeled in two locations: in the AND-

OR-LEAF tree structure, and in the variability of binding values to properties.  The design space 

represents the cross product of all possible choice outcomes.  Design space exploration seeks to 

enumerate all design configurations in the design space which satisfy all constraints in the 

constraints set which are selected for application by the user.  The application of a constraint 

removes configurations from the space, resulting in a smaller, “pruned” design space.  Only 

those configurations in the configuration set which meet or satisfy the applied constraints are 

retained.  DESERT utilizes symbolic methods to implement constraint satisfaction.   

 
Figure 5. UML representation of DESERT domains and domain membership 

Symbolic Constraint Satisfaction 

 DESERT implements design space exploration symbolically using Ordered Binary Decision 

Diagrams (OBDD-s) [82].  DESERT executes a binary encoding of the design space, including 

the AND-OR-LEAF tree and the constraints, and implements the constraint satisfaction 
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algorithms symbolically.  The symbolic representation of the design space facilitates the 

manipulation of the full design space during constraint satisfaction, rather than treating each 

design configuration in the space individually.  The binary encoding of the space involves the 

assignment of a unique integer identifier to each node in the AND-OR-LEAF tree and translation 

of that ID into a vector of BDD variables, and the establishment of the relationships between tree 

nodes which reflects the containment semantics.  Property composition functions are 

implemented symbolically as well.  Constraints model functions on property compositions, or 

logic functions over the state of selection of variables in the tree.  Constraints are encoded as 

BDDs as well.  Constraint satisfaction is simply the composition of a constraint with the 

symbolic design space representation.  The resulting BDD models a pruned design space.   

 Neema reports on the scalability of the symbolic design space representation.  The OBDD-

based design space representation is found to be highly scalable, except when applying 

constraints against composed properties, where the property composition function invokes 

arithmetic operations.  The BDD-based representation was shown to scale to design spaces 

consisting of  configurations, through parametric generation of the design space.  However, 

pruning of design spaces was found to not scale as well under certain conditions.  It was found 

that constraint operations which involve composed properties whose composition functions 

require arithmetic operations do not scale due to an explosion of the number of BDD nodes 

required to represent the arithmetic composition.  Where the design space pruning requires only 

the invocation of logical or relational operations, the scalability of the representation is not 

impaired.   

18010

Exploration of Adaptive Computing Systems 

 DESERT was originally developed to explore the design space rising from structurally 

adaptive signal processing applications targeting a heterogeneous computing platform containing 

reconfigurable resources.    An adaptive computing system is an embedded system that can be 

configured or reconfigured to meet application demands.  Its target platform is a set of 

heterogeneous computing elements connected with point-to-point communication links.  The 

platform consists of programmable microprocessors and DSPs, programmable logic devices 

(FPGAs), ASICs, and other devices such as data source and sink devices (modeling sensors and 

actuators).  Application adaptation is modeled using hierarchical finite state machines, where the 
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states represent the modes of the system, and the transitions between states model adaptation.  

Each mode represents a set of computations that executes on the platform.  These computations 

are modeled using a hierarchical dataflow diagram.  The diagram is hierarchical in the sense that 

complex tasks can be composed from a set of simple tasks.  Design alternatives are explicitly 

captured in the application model hierarchy, acknowledging the fact that there may be several 

different implementations or compositions that may be of interest for the final implementation.  

It is the task of the design space exploration to select between implementation alternatives prior 

to deployment.  Resources are modeled as a graph, where nodes model computational resources 

and edges represent point-to-point communication links.   

 Constraints can be specified in all aspects of an adaptive system design, from the modal 

behavior, to the application representation, to the resource representation.  Certain classes of 

constraints are supported by the adaptive computing systems toolset.  Composability / 

Compatibility constraints model structural requirements on the system implementation, ex. “task 

A and task B must be co-located”, or “the selection of alternative X implies the selection of 

alternative Y”.  Performance constraints model the non-functional requirements of the system, 

such as latency and throughput requirements.  For example, a performance constraint could state 

that the end to end latency within a particular mode must be less than 10 seconds.   

 The adaptive computing system model is translated into the DESERT design space model to 

facilitate design space exploration.  The application hierarchical structure mirrors the structure of 

an AND-OR-LEAF tree, in that alternative nodes in the application hierarchy are modeled as OR 

nodes in DESERT, composition nodes are modeled as AND nodes, and leaf-level application 

components are modeled using LEAF nodes in DESERT.  Application components are 

characterized with metadata abstracting component performance.  These metadata are 

instantiated in DESERT as properties.  Specifically, the adaptive computing specification 

facilitates the posting of constraints against the composed latency of the system, where latency is 

defined as the length in time of the longest computation path through the application graph.  The 

latency property composition function in DESERT is implemented as a custom function.     

Critique of DESERT 

 DESERT facilitates the representation and exploration of combinatorial design spaces.  It 

offers a domain-independent design space modeling specification.    However, the input model 
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and the OBDD-based implementation impose some limitations on design space exploration.  

DESERT was designed to examine the structural properties of design composition, as opposed to 

behavioral properties.  Only those types of properties which can be modeled through the 

composition of children can be aptly captured within DESERT.  Specifically, timing and 

behavioral properties are difficult to model in this representation.  The scalability issues of the 

OBDD-based symbolic representation of the design space have been discussed.  The scalability 

limitations restrict the classes of operations available for the specification of property 

composition, and hamper the applicability of DESERT to a broad class of design spaces 

requiring pruning based on arithmetically composed properties.   

 The design space modeling language supported by DESERT is not sufficiently expressive.  

Resource allocation is typically modeled as a VariableProperty associated with a LEAF 

node, and is bound to a CustomDomain.  The CustomDomain enumerates all potential 

resources available for binding.  Exploration then seeks to bind a CustomMember in the 

resource domain to the VariableProperty modeling the allocated resource.  The 

expressiveness issue is highlighted when the resource set is very large, as with configurable 

resources.  Enumerative techniques in such circumstances become prohibitively expensive as the 

configurability space increases in size.  Further, the enumerative nature of OR node 

decomposition can also be cumbersome when modeling a large space of alternative 

compositions. 

Design Space Exploration Summary and Critique  

 Design space exploration is widely used in embedded system design.  Several modeling and 

search approaches have been presented which allow developers to traverse complex design 

spaces in search of designs which meet certain criteria.  No single technique represents a 

panacea; each technique has its benefits, its issues and problems.  Parametric-based techniques 

rely on fast simulation models to traverse the design space.  These simulation models trade 

accuracy for speed, and must architect a proper balance between model granularity and accuracy.  

The Constraint Logic Programming modeling formulation is a powerful representation 

mechanism for embedded system design space exploration.  Current formulations tend to focus 

on the scheduling aspects of embedded system synthesis.  When compared to exploration 

approaches that abstract timing and behavior dynamics into simple property values (“structural 
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property” approaches), exploration techniques involving schedulability analysis and synthesis do 

not scale nearly as well.  The approaches surveyed required search heuristics which limit the 

coverage of the search in order to converge on solutions.  Further, while the models facilitate 

variability in the architecture through configuration, structural variation in the application 

specification is not supported.  Mixed Integer Linear Programming techniques rely on the 

Simplex method together with a branch and bound or similar technique to traverse the design 

space.  MILP formulations are limited in expressiveness (due to the linearity in the cost function 

and constraints), and are well-known to have scalability issues.  The techniques surveyed which 

utilize branch and bound algorithms rely on the formulation of tight bounds estimates on the 

evaluation metrics of the design space.  Such bounds may be difficult to formulate for a multi-

objective design space search.  Due to a potential explosion in memory usage, branch and bound 

algorithms must be carefully crafted in order to achieve scalability.  Stochastic and general 

heuristic techniques are widely used to implement design space exploration.  They guarantee 

neither success, nor quality solutions.  Their application to design space exploration is highly 

domain-specific, and the scalability of the implementation varies widely from implementation to 

implementation.  The approach taken in DESERT is unique, in that it offers full coverage of the 

design space and the potential for a scalable space representation.  However, practical concerns 

limit the actual scalability, due to the explosion of the OBDD representation.  Neema’s approach 

is widely applicable due to the domain-independent nature of the design space modeling 

language. 

 In general, all the surveyed techniques except for DESERT are too narrow.  Each technique 

offers a solution to a specific problem or problem domain.  Only DESERT attempts to generalize 

the concept of design space exploration across problems and problem domains.  While each 

exploration technique has been shown to be applicable under certain circumstances, each 

demonstrates issues with expressiveness and/or scalability.   

 Finite domain constraint programming in Mozart has been shown to be an effective, 

expressive tool in modeling a range of design space exploration problems.  The current 

approaches utilizing finite domain modeling techniques focus only on a particular problem 

domain.  However, the potential for generalizing a finite domain design space exploration 

approach exists, and in fact is broached in this research.   
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 The goal of this dissertation is to illustrate the development of a hybrid, domain-

independent design space exploration tool which is both expressive and scalable.  

The approach leverages and extends the domain-independent design space model 

defined in DESERT, through the establishment of a Mozart-based finite domain 

constraint implementation of design space exploration.  Expressiveness in 

modeling property composition is addressed through the development of a 

language for specifying property composition relationships.  A hybrid tool 

approach integrates the existing BDD-based symbolic constraint application and 

pruning algorithms with constraint satisfaction offered through the finite domain 

constraint space representation.  Scalability is achieved through the careful 

crafting of the finite domain model, and through the appropriate application of 

hybrid search techniques.   
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CHAPTER III   

A FINITE DOMAIN DESIGN SPACE MODEL 

 A principle claim of this dissertation is that finite domain constraints can be used to model 

and search design spaces.  This chapter details a mapping of the DESERT design space model 

into a Mozart-based finite domain constraint specification.  Specifically, it describes the finite 

domain representation of the AND-OR-LEAF tree, design space properties, and OCL 

constraints.  Further, the chapter discusses a customized finite domain distribution algorithm that 

was developed as part of this work, as well as various search strategies, including a best-case 

search approach involving the maximization of constraint utilization.  Throughout the chapter, 

analyses are provided on the performance, scalability and limitations of the finite domain design 

space model.   

A Formal DESERT Design Space Model 

 Chapter II detailed the UML specification of the DESERT design space model.  This section 

provides a specification of the design space model using formal logic and set-valued semantics.  

The finite domain constraint design space model is a translation of this formal specification into 

an Oz-based finite domain model.   

A Design Space , ,DS TS CS Ctxt=  is a three-tuple, consisting of a set TS  of AND-OR-LEAF 

trees, a set CS  of constraints, and a function : DSCtxt CS V→ , where DS
T TS

V
∈

= ∪ TV  is the union 

of all vertex sets  of each tree T in TS.  Ctx  specifies the context of application for all 

constraints in CS .   

TV t

 An AND-OR-LEAF tree is a tree ,T V E=  with vertex set V  and directed edge set 

.  Let  be a map that returns, for some vertex v  the set of 

vertices which are the destinations of all edges in E whose source vertex is v .  Let V  be 

partitioned into three sets 

E V V⊆ × : (children V P V ) V∈

AV , , and , such that OV LV , ( )Lv V v V ildren vch∀ ∈ ∈ ↔ =∅ .  Vertices 

in AV  are called AND nodes, and model composition or the part-whole relationship, implying 

that the AND node is composed of its children.  Vertices in  are called OR nodes, and model OV
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design choice.  Children of an OR node enumerate potential outcomes of the choice.  Vertices in 

 model LEAF nodes in the tree and represent basic units of composition in the design space.  

Let 

LV

{ }: , ,decomp V AND OR LEAF→  denote the decomposition of a vertex in the AND-OR-

LEAF tree, such that the following relation holds: 

 
( )
(
( )

, ( )

( )

( )

A

O

L

v V decomp v AND v V

decomp v OR v V

decomp v LEAF v V

∀ ∈ = ↔ ∈ ∧

)= ↔ ∈ ∧

= ↔ ∈

 (13) 

 Design space exploration is the process of determining which vertices in the AND-OR-

LEAF tree are selected.  Formally, let { }: 1,selected V 0

( )
( )

)

 be a function which returns whether a 

vertex in the AND-OR-LEAF tree has been selected (where a value of 1 implies selection).  

Then the following relationships must hold through design space exploration: 

  (14) , ( ), ( )Av V u children v selected v selected u∀ ∈ ∀ ∈ =

  (15) 
( )

, ( )O
u children v

v V selected u selected v
∈

∀ ∈ =∑

 Equation (14) states that if an AND node in the AND-OR-LEAF tree is selected, then all its 

children must also be selected.  If it is not selected, no child may be selected.  This relationship 

models the composition semantics of an AND node, where the parent is composed from all of 

the children.  Equation (15) defines selection for an OR node.  The constraint implies that where 

the OR node itself is selected, exactly one child of the OR node may be selected.  Where the OR 

node is not selected, no child of the OR node is selected.  This relationship enforces the 

semantics of choice modeled by the OR node, where a choice can only have a single outcome, 

and the children of the OR node enumerate all potential outcomes.   

 A design space configuration is a subset of the nodes in the AND-OR-LEAF tree, all of 

which are selected.  Formally, let  be the root node of the tree (i.e. r V∈ , (v V r children v∀ ∈ ∉ ).  

Then, 

 , ( )Cfg V r Cfg v Cfg selected v⊆ ∈ ∧∀ ∈ ==1 (16) 
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A design space models a set of configurations.  The number of configurations in the design space 

can be calculated recursively.  Let  be a function adhering to the following 

relation:   

:NumCfgs V →

 
( )

( )

( ), ( )

, ( ) ( ), ( )

1, ( )

u children v

u children v

NumCfgs u decomp v AND

v V NumCfgs v NumCfgs u decomp v OR

decomp v LEAF

∈

∈

⎧ =
⎪
⎪∀ ∈ = =⎨
⎪
⎪ =⎩

∏

∑  (17) 

Depending on the structure of the tree, the number of configurations modeled by a tree can grow 

exponentially with the number of nodes in the tree.  Neema reports the generation of an AND-

OR-LEAF tree consisting of roughly 11,000 nodes which models  configurations [79].   18010

 DESERT facilitates the quantitative evaluation of a design space through the concept of a 

property.  A property models a numerical relationship between nodes in the tree.  Properties are 

defined over a domain, which is defined to be some subset of the set of natural numbers.  

Property composition is the process of calculating a property value of an interior tree node, based 

on the values of the node’s children.  A property composition function captures the exact 

mathematical relationship between a parent and its children in order to compose a property.  

LEAF nodes in the tree are assigned literal property values in order to facilitate composition.  An 

AND-OR-LEAF tree may be characterized with multiple properties; each assigned a property 

composition function.  DESERT supports several generic property composition functions 

(additive, multiplicative, min, max, arithmetic mean, geometric mean), and also supports a 

custom property composition, where users may provide a plug-in tool to specify custom property 

composition functions.  Formally, an AND-OR-LEAF tree is characterized with a set of 

properties .  The function 

 specifies the type of 

property composition for each property defined over the tree.  Let  be a 

function which returns the domain of a property, where  represents the power set.  Let 

 be a function which returns the value assigned to a LEAF node 

in the tree for a given property.  The following constraint must hold on assigned values: 

Props

: { , , , , , , ,PropType Props Add Mult Max Min AMean GMean None Cust→ }

)

( )

: (domain Props →P

( )iP

: LAssignedValue V Props× →

  (18) , , ( , )Lv V p Props AssignedValue v p domain p∀ ∈ ∀ ∈ ∈
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Equation (18) states that an assigned property value must be contained in the domain of the 

property.   

 A property composition function defines a relationship between the property value of an 

interior tree node and the property values of its children.  More formally, additive property 

composition is defined as follows: ( )addProp Props PropType addProp Add∀ ∈ == ,  let 

:V ( )AddProp domain addProp→  be subject to the following relation: 

 (19) 
( )

( )

( ), ( )

, ( ) ( )* ( ), ( )

( , ), ( )

u children v

u children v

AddProp u decomp v AND

v V AddProp v AddProp u selected u decomp v OR

AssignedValue v addProp decomp v LEAF

∈

∈

⎧ =
⎪
⎪∀ ∈ = =⎨
⎪
⎪ =⎩

∑

∑

Property composition functions for other property composition types are similarly defined.   

A Finite Domain Model for the AND-OR-LEAF Tree 

 The design space representation offered by Neema models a space as a tree encoding 

alternative design compositions.  The concurrency model employed by Oz offers an elegant 

facility for modeling the AND-OR-LEAF tree, as well as the containment relationships between 

tree nodes.  The finite domain model translates and implements the formal design space 

modeling specification presented above.   

 In Oz, constraints relate variables which are restricted to finite domains of integer values.  

Constraints operate on variables whose values have not yet been determined.  In the design space 

finite domain model, tree nodes are modeled as finite domain variables, while the containment 

relationships between nodes are implemented as constraints on those variables.  Constraints are 

designed so as to facilitate propagation where possible, such that as more information about the 

domain of a tree variable becomes known, that information can be used to derive information 

about other tree variables.  Since all constraint propagators act concurrently, as information 

about a variable becomes available, reactions to that information can propagate in several 

directions (up and down, as well as laterally) across the tree.   

 The Oz model of the AND-OR-LEAF tree centers on the concept of selection.  A Boolean 

finite domain variable is defined for each node in the AND-OR-LEAF tree, whose value gives 

the state of that node in the tree.  The variable models the  function described formally selected
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above, where the variable is assigned the value 1 to indicate selection, 0 to indicate non-

selection.  While selection of a node has not been determined, the variable is constrained only to 

the [0,1] domain.  The finite domain variables modeling node selection are referred to as the 

select variables, owning to the fact that their value represents the selection state of the nodes in 

the tree. 

 Equations (14) and (15) formally define the containment relationships between AND-OR-

LEAF tree nodes.  The finite domain model for the AND-OR-LEAF tree implements these 

relationships as finite domain constraints over the Boolean select variables.  Recall that an AND-

OR-LEAF tree is a tree ,T V E= .  jv V∀ ∈ , let { }0,1jSel ∈  be a finite domain variable 

modeling the selection of vertex  (where jv { }1,2,...,j∈ V  is referred to as the index of vertex 

).  Then equation (20) below encodes the relations specified in equations (14) and (15) as 

relations between finite domain variables.   

jv

  (20) 
( )

( )

, ( )

, ( )
k j

k j

k j
v children v

j
k j

v children v

Sel decomp v AND

Sel
Sel decomp v OR

∈

∈

⎧ =
⎪

= ⎨
=⎪

⎩

∏

∑

 The translation of equation (20) into an Oz-based implementation must focus on the 

facilitation of propagation.  An implementation that facilitates propagation is one where a single 

change in select variable assignment implies the binding of potentially many other select 

variables.  The containment relationships defined by the AND-OR-LEAF tree, if exploited 

properly by the finite domain implementation, can exhibit strong propagation.  For example, if 

the select variable of an AND node is marked as selected, then all children of the AND node can 

be marked as selected.  Conversely, if an AND node is marked as unselected, then all children 

are equivalently marked as unselected.  Propagation of variable selection or lack of selection is 

critical to the performance of the finite domain implementation.   

Implementation of the Finite Domain Model 

 Figure 6 gives the Oz implementation of the finite domain constraints modeling the AND-

OR-LEAF tree relationships, as specified in equation (20).  The two procedures, AndNode and 

OrNode, establish the relationships between the select variables modeling tree nodes and the set 
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of select variables modeling their children.  The procedures are invoked on the select variable of 

each parent node in the tree (and thus are invoked only on interior nodes).  If a node has AND 

decomposition, the AndNode procedure is invoked; OrNode is invoked for nodes with OR 

decomposition.  Each procedure is passed two parameters, ChildSelList and NodeSel.  

ChildSelList is a list containing the select variables modeling the children of the node.  

NodeSel is the select variable modeling the node.  Line (2) of the AndNode procedure iterates 

through the ChildSelList and sets each child select variable equal to the parent select 

variable.  The finite domain implementation appears to deviate from the operation defined in 

equation (20).  However, while the implementation in Figure 6 is functionally equivalent, it 

facilitates a higher degree of propagation.      

 
(1) proc {AndNode ChildSelList NodeSel} 
(2)  {ForAll ChildSelList  
(3)     proc {$ S}  
(4)      S =: NodeSel   
(5)     end  
(6)  } 
(7) end 
(8)  
(9) proc {OrNode ChildSelList NodeSel} 
(10)  {FD.exactly NodeSel ChildSelList 1} 
(11) end 

Figure 6. Oz code implementation of equation (20) 

 The OrNode procedure also functionally, but not literally, implements the operations 

described in equation (20).  It employs FD.exactly, a built-in Mozart constraint.  Line (10) 

defines a constraint that states that the number of variables in the ChildSelList which can 

take on the value 1 is exactly equal to the value of NodeSel.  In the case where the node is 

selected, NodeSel will be assigned the value 1 and line (10) requires that exactly one child of 

the OR node be selected.  However, if NodeSel is assigned the value 0, exactly zero of the 

children are selected (implying that all are unselected).  Note that the relationship facilitates 

propagation in the reverse direction as well:  if a child of an OR node is selected, then line (10) 

implies a binding of 1 to the NodeSel variable, and a binding of 0 to the remaining children. 
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Simple Tree Example 

 Figure 7 offers a simple AND-OR-LEAF tree example.  Tree nodes are labeled with their 

name and an assigned ID (ex. the root AND node, N1, is assigned ID 1).  Figure 8 contains the 

Oz implementation of this simple example.  The select variables of the tree are declared in a 

finite domain tuple, where the assigned ID of a node is used as an index into the tuple.  The tree 

structure is specified through the invocations of the AndNode and OrNode procedures to 

establish the relationships between variables modeling tree nodes.  

 
Figure 7. Simple AND-OR-LEAF tree 

 
(1) proc {AppTree} 
(2)  NumNodes = 6 
(3) el = {FD.tuple sel NumNodes [0#1]}  S
(4) in 
(5)  {AndNode [Sel.2 Sel.4 Sel.3] Sel.1} 
(6) rNode [Sel.5 Sel.6] Sel.4}  {O
(7) end 

Figure 8. Oz implementation of the select variables modeling the AND-OR-LEAF tree in Figure 6 

A Finite Domain Model for Design Space Properties 

 The DESERT design space model not only allows the succinct compositional representation 

of large design spaces, but also the representation of properties defined over the space.  The 

quantification of properties facilitates the specification of constraints on properties, which, on 

application, cause the design space to be pruned.  This section details the definition of a finite 

domain model for DESERT properties, and discusses the relation between the property model 

and the Boolean select variables defined above. 
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A Finite Domain Property Tree 

 Chapter II discussed the assignment of properties to the AND-OR-LEAF tree.  The finite 

domain representation of property composition involves the instantiation of a finite domain 

variable for each node in the tree, for each property defined over the tree.  Finite domain 

constraints implement the appropriate property composition function for each property across the 

tree.  Just as with the implementation of the constraints modeling the relationships between 

select variables, a design goal of the implementation of property composition relationships is the 

facilitation of propagation of property values across the tree, where possible.  Formally, 

ip Props∀ ∈ , , let jv V∀ ∈ { }0,..., .ijpval FD max∈  model the property value of property ip  at 

node  in the AND-OR-LEAF tree, where jv { }1,2,...,i Pro∈ ps  is called the property index, and 

{ }1,2,...,j V∈  is the node index.   is a constant in the Mozart environment, 

representing the largest supported integer value. 

.FD max

 All properties are defined over a domain.  The domain of a property is modeled as a subset 

of the set of natural numbers.  A domain is represented in the finite domain design space model 

as a set of constraints on the finite domain of each property variable.  Let  be a 

function that returns the smallest integer value contained in a set of integers.  Similarly, let 

 return the largest integer value of a set of integers.  The following relation 

implements a binding of a property value to its appropriate domain: 

: ( )min →P

))i

: ( )max →P

 , , ( ( )) ( (i j i ijp Props v V min domain p pval max domain p∀ ∈ ∀ ∈ ≤ ≤  (21) 

The constraints resulting from equation (21) restrict the finite domains of the property variables 

to the range of values bounded by the bounds on their corresponding property domain.   

 DESERT supports domains containing non-contiguous ranges of numbers, called 

CustomDomains.  A CustomDomain is used when modeling resource allocation, and 

contains indices of resources to which objects may be assigned.  In the case of 

CustomDomains, the finite domains of all property variables assigned to the custom domain 

can be further restricted to reflect the “holes” in the domain. 

 Value assignments to properties set by the user are directly instantiated as assignments in the 

finite domain model.  Recall that the partial function  returns an assignment of a AssignedValue
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value to a property at a given LEAF node, if such an assignment has been made by the user.  

Equation (22) captures this assignment. 

 
( )

( )
, , ( , )

( ,

i j L i j

ij i j

p Props v V AssignedValue p v undefined

pval AssignedValue p v

∀ ∈ ∀ ∈ ≠ →

=
 (22) 

 Property composition functions are implemented as finite domain constraints, relating the 

finite domain property variables in the tree.  The implementation of property composition 

separates the OR node composition function from the AND node composition function.  AND-

OR-LEAF tree semantics stipulate that at most one child of an OR node will be selected for 

inclusion in a configuration.  The property value of the OR node will reflect the value of the 

selected child, regardless of the type of property composition invoked.  Hence, the generic 

property composition function for OR nodes is given in equation (23): 

 
( )

, ,
k j

i j O ij ik
v children v

kp Props v V pval pval sel
∈

∀ ∈ ∀ ∈ = ∗∑  (23) 

The dot product of the select variables of the children with the property variables of the children 

results in the equation of the parent property value with the property value of the selected child, 

if any.  In the case where no child is selected, the parent is assigned a property value of 0. 

 Property values for AND nodes depend not only on the property values of the children of the 

node, but also on the declared composition type of the property.  Recall that  is a 

function which returns the type of property composition declared by the user for a given 

property.  Equation (24) provides a specification for AND node property composition of additive 

properties. 

PropType

 
( )

( ) , ,
k j

i i j A ij ik
v children v

p Props PropType p Add v V pval pval
∈

∀ ∈ = ∀ ∈ = ∑  (24) 

Similarly, equation (25) specifies a property composition function for multiplicative properties. 

 
( )

( ) , ,
k j

i i j A ij ik
v children v

p Props PropType p Mult v V pval pval
∈

∀ ∈ = ∀ ∈ = ∏  (25) 

 The finite domain property composition specification effectively defines an AND-OR-LEAF 

tree specification for each property defined over the tree, which structurally mirrors the 

relationships defined between the select variables.  The separate trees are related through the 
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select variable tree, since all OR-node property compositions depend on the values of the select 

variables of its children. 

Implementation of the Finite Domain Property Model 

 The property composition relations defined in the previous section define correctness criteria 

for the enforcement of AND-OR-LEAF tree semantics with regards to property composition.  

They do not, however, necessarily translate directly into an efficient finite domain model.  As 

with the implementation of the finite domain select variable relationships, the implementation of 

the property composition finite domain model must take into consideration the concerns of 

facilitating propagation during the search process.   

 The flexibility of Oz facilitates many different implementation approaches for the property 

composition relationships.  One such approach involves the literal implementation of the 

mathematical relationships between property variables outlined above (see equations (23), (24), 

and (25)).  Another implementation path utilizes built-in symbolic Oz propagation routines to 

model the semantic intention of the property composition relations.  Both of these techniques are 

employed in the Oz implementation of property composition relationships.   

 Figure 9 illustrates an Oz implementation of equation (24), additive property composition 

for AND nodes.  The procedure takes as parameters a list containing the property variables of the 

children of the AND node in ChPropList, as well as the property variable for the AND node 

itself in NodePropVar.  It sets the property variable of the AND node equal to the sum of the 

variables in the child property list, by invoking the FD.sum propagator provided by the Mozart 

environment.  This built-in propagator implements propagation in both directions, implying that 

not only is the solver able to deduce information about NodePropVar based on the values and 

domains of the variables in ChPropList, but the reverse is also the case: the solver can also 

use domain information of the NodePropVar to deduce information on the property values of 

the node’s children.  Other DESERT-supported property composition types for AND nodes are 

implemented in similar fashion.  AND node property composition basically implements a literal 

translation of the finite domain specification of the property composition function. 
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(1) proc {AndNodeAdditive ChPropList NodePropVar} 
(2)  {FD.sum ChPropList ‘=:’ NodePropVar} 
(3) end 

Figure 9. Oz implementation of the AND-node additive property composition relation defined in equation 
(24)  

 The implementation of property composition for OR nodes must be adapted from a literal 

translation so as to facilitate propagation.  Figure 10 provides a simple implementation of the 

OR-node property composition relationship given in equation (23).  The goal of the composition 

relationship is to set the OR-node property variable equal to the value of the selected child.  The 

implementation below is passed four parameters, an ordered list containing the select variables of 

the children of the OR node in ChSelList, the select variable for the OR node in NdSelVar, 

an ordered list containing the property variables for the children of the OR node in 

ChPropList, and the property variable for the OR node in NdPropVar.  The fact that the two 

lists are ordered is significant.  The implementation assumes a correspondence between the child 

select variable list and the child property variable list that is based on list order.  The 

implementation utilizes the FD.element constraint provided by Mozart to implement an 

index-based list lookup operation.  The list lookup facilitates propagation in both directions (i.e. 

not only in the direction of the result of the look up, but also in the direction of the index 

variable).  The first FD.element statement attempts to look up from the list of select variables 

a child variable whose value has the same value as that of the OR node select variable.  The 

index in the list of the matching child variable is assigned to the local variable SelChIndex (an 

example of propagation in the “reverse” direction).  The second FD.element statement uses 

the SelChIndex value to look up the selected child’s property value, and to assign it to the OR 

node property variable (an example of propagation in the “forward” direction).     

  
(1) proc {BlkOrNdProp ChSelList  
(2)    NdSelVar ChPropList NdPropVar} 
(3)  SelChIndex = {FD.decl} 
(4) in 
(5)  {FD.element SelChIndex ChSelList NdSelVar} 
(6) FD.element SelChIndex ChPropList NdPropVar}  {
(7) end 

Figure 10. Blocking Oz implementation of the OR-node property composition relation defined in equation (23) 
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 The OR-node property composition defined in Figure 10 does not facilitate efficient 

propagation of property values across the tree.  The outcome of the finite domain constraint 

search process is a binding of values to the select variables that model selection or pruning in the 

tree.  However, the implementation above depends on grounded values of the select variables of 

the children of the OR node in order to determine the OR-node property value.  Hence, this 

routine will block until the variables in ChSelList and ChPropList are all bound to single 

values, relying completely on distribution to determine the values of the select variables for the 

OR node children.  Only after significant distribution can this procedure assign a value to the 

property variable for the OR node.   

 The implementation in Figure 10 has been extended to facilitate propagation by including 

redundant finite domain constraints that reflect variable interval information from the children to 

the parent in the tree.  During the search process, the actual values of all finite domain variables 

are likely not bound to a particular value, but are known to be restricted to some finite domain.  

While the implementation probably cannot, through propagation alone, determine the exact value 

of the OR node property variable, in most cases it can further constrain the domain of the 

variable.  The extended implementation of OR node property composition posts constraints that 

restrict the domain of the OR node property variable to reflect the minimum lower bound of all 

its children, and the maximum upper bound of all its children.  This extension is redundant with 

respect to the implementation offered in Figure 10, in that when the selected child is found, 

obviously the domain of the OR-node property variable will reflect the domain of the selected 

child property variable (since they will be assigned to each other).  However, the posting of the 

redundant constraint facilitates the upward propagation of information much sooner in the search 

process than would otherwise be allowed with the simple blocking implementation.  Further, the 

posting of the domain monitoring constraints constantly updates as propagators update the 

domains of the child property variables, thus dynamically updating the OR node property 

variable and facilitating further upward propagation.   

 A second redundant constraint is also added to the implementation given in Figure 10.  It 

may be the case that through the posting of constraints or through distribution that the domain of 

the OR node property variable is modified.  In that case, it may be possible to determine if a 

child of the OR node has been NOT selected, by comparing the value of the property variable of 

each child against that of the parent.  Since the value of the OR node is set equal to the value of 
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the selected child, if a child’s domain is disjoint with the finite domain of the parent OR node, it 

is safely concluded that the child cannot be selected.  In such a case, the extended 

implementation marks the child as being not selected.  Note that the converse of this statement is 

not true: It is not the case that if a child property variable is equal to the value of the parent, that 

that child is automatically selected, since there may be multiple children with equivalent property 

values.  Figure 11 provides the extended Oz implementation, including the redundant constraints 

discussed.  Note that the two FD.element statements are enclosed in a thread block, due to 

the fact that FD.element blocks when passed a list whose elements are not all bound to 

values. 

 
(1) proc { OrNodeProperty ChSelList  
(2)     NdSelVar ChPropList NdPropVar} 
(3)  SelChIndex = {FD.decl} 
(4)  MaxChildVal = {ListMax ChPropList} 
(5)  MinChildVal = {ListMin ChPropList} 
(6) in 
(7)  thread 
(8)   {FD.element SelChIndex ChSelList NdSelVar} 
(9)   {FD.element SelChIndex ChPropList 
(10)        NdPropVar} 
(11)  end 
(12)  
(13)  NdPropVar =<: MaxChildVal 
(14)  NdPropVar >=: MinChildVal 
(15)  
(16)  {List.forAllInd ChPropList  
(17)   proc {$ Ind ChVal} 
(18)    {FD.impl (ChVal \=: NdPropVar)  
(19)       ({Nth ChSel Ind} =: 0)  
(20)       1} 
(21)   end 
(22)  } 
(23) end 

Figure 11. Oz implementation of OR node property composition, including redundant constraints to facilitate 
propagation 

 The implementation of LEAF node property assignment is trivial, in that it is simply a 

process of instantiating assignments of variables to values.  The translation process which 
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instantiates the finite domain model inserts the appropriate assignment statements so as to 

implement equation (22). 

 The finite domain model for representing DESERT properties and property composition was 

outlined in the equations and figures above.  Several issues were addressed that affect both 

correctness as well as performance.  In the case of OR node property composition, redundant 

constraints were added to the specification to facilitate propagation early in the search process, 

thus alleviating some of the dependence on distribution to achieve search results.  To facilitate 

performance of constraint satisfaction, the finite domain model implementation focuses on the 

use of propagation to further the search process without affecting scalability. 

Simple Property Example 

 Figure 12 extends the simple AND-OR-LEAF tree example from Figure 7 by adding an 

additive property, called AP.  For each LEAF node in the tree, the property value is bound to a 

specific value, while the property values for nodes N1 and N4 are left unbound, to be determined 

by the search process.  The DESERT Property AP is designated an additive property, and is 

associated with a property domain whose minimum bound is 0 and maximum bound is 32000.   

 
Figure 12. Simple tree example, annotated with additive property AP 

 Figure 13 provides an Oz implementation of the finite domain model for the tree in Figure 

12.  In line (3), The Sel tuple is declared for the tree, just as in the example code in Figure 8.  

Lines (4) and (5) give the declaration of variables NDMin and NDMax, which reflect the bounds 

imposed by the property domain.  Line (6) shows the declaration of the AP property tuple, 

containing one variable per tree node, where each variable is initially constrained to the interval 
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defined by the property’s domain.  Lines (8) and (9) establish the parent-child tree relationships 

between the select variables for nodes N1 and N4, respectively.  Lines (10)-(13) assign the AP 

property values that are bound a-priori.   Lines (14)-(15) establish for the OR node N4 the 

property composition relationship between the property variable modeling the node (AP.4) and 

the property variables modeling the node’s children (AP.5 and AP.6).  Since the node is an OR 

node, the OrNodeProperty procedure is invoked to establish these relationships.  Line (15) 

similarly establishes the property composition relationships between AND node N1 and its 

children.  Since AP is defined to be an additive property, and N1 is an AND node, the 

AndNodeAdditive procedure is invoked.  Since additive property composition at an AND 

node does not depend on the select variables, it is passed only the property variables 

corresponding to the children of the node (AP.2, AP.4 and AP.3), and the property variable 

modeling the node property value (AP.1).   

 
(1) proc {AppTree} 
(2)  NumNodes = 6 
(3)  Sel = {FD.tuple sel NumNodes [0#1]} 
(4)  NDMin = 0 
(5)  NDMax = 32000 
(6)  AP = {FD.tuple ap NumNodes [NDMin#NDMax]} 
(7) in 
(8)  {AndNode [Sel.2 Sel.4 Sel.3] Sel.1} 
(9)  {OrNode [Sel.5 Sel.6] Sel.4} 
(10)  AP.2 =: 10 
(11)  AP.3 =: 20 
(12)  AP.5 = 7 
(13)  AP.6 = 5 
(14)  {OrNodeProperty [Sel.5 Sel.6] Sel.4  
(15)        [AP.5 AP.6] AP.4} 
(16)  {AndNodeAdditive [AP.2 AP.4 AP.3] AP.1} 
(17) end 

Figure 13. Oz implementation of the simple property example of Figure 12 

 Figure 14 shows the results of the invocation of the procedure defined in Figure 13.  The 

variables representing property AP have been constrained by the respective relationships.  Note 

that the property value at node N4 reflects the interval [5-7], indicating that it is yet 

undetermined what the exact property value is.  While the property variable for node N4 has not 

 61



 

been bound to particular value, its domain has been reduced to the interval [5-7], indicating that 

the property value is 5, 6, or 7.  The property value for node N1 is likewise bound to an interval, 

as opposed to a particular value, pending an assignment to node N4’s property variable.  

However, the interval at N1 has been reduced to reflect the interval at N4, indicating that the 

property value at N1 will be 35, 36, or 37.  The power of finite domain constraints is illustrated 

in this example, in that although the problem specification did not directly result in a binding of a 

value to N4’s property variable, it did constrain the value to a range.  This constrained range 

propagates upward in the tree, causing the range of the parent of N4 to be constrained as well.  It 

should also be noted that if the finite domain propagators utilized domain propagation instead of 

interval propagation, the domain of N4’s property variable AP.4 would be restricted to the values 

[5, 7].  However, domain propagation is considered expensive (evaluation of domain propagation 

is highly enumerative and suffers from the same drawbacks as the over-reliance on distribution).   

N1

N4

N3N2

N5 N6

AP=20

AP=5AP=7

AP=10

AP=[5-7]

AP=[35-37]

 
Figure 14. AND-OR-LEAF tree showing the results of finite domain propagation for the property AP 

Summary of the Finite Domain Property Model 

 The finite domain model for DESERT properties and property composition mirrors the 

relationships between the AND-OR-LEAF tree select variables.  Finite domain variables are 

used to represent property values at each node in the tree, and constraints implement tree 

relationships between those variables.  The implementation of the property model takes into 

account several performance and scalability issues, in an attempt to establish a finite domain 

model that relies highly on propagation for the determination of property values. 
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A Finite Domain Model for OCL Constraints 

 DESERT employs an extended subset of the Object Constraint Language (OCL) to allow the 

modeler to specify restrictions on design space composition.  These user-provided constraints 

result in operations affecting the structure of the AND-OR-LEAF tree.  This section outlines the 

translation of the DESERT OCL constraint language into a finite domain constraint 

specification.   

 DESERT implements only a subset of the Object Constraint Language, and extends that 

subset with operations that facilitate the specification of design space pruning.  Constraints are 

assigned a particular application context, corresponding to a node in the AND-OR-LEAF tree.  

Contexts in OCL are treated as objects, and context traversal is facilitated through functional 

navigation.  The application context for a constraint is returned by the OCL function self.  

DESERT OCL supplies several functions to support tree navigation.  For example, the parent 

function may be invoked to access the context corresponding to the parent tree node of a context. 

The children function may be invoked to access the children of a particular context (returned 

as a list of contexts).  The children function may also be used to access an individual child of 

a context, by passing the name of the child as a parameter to the function.  Constraints specify 

relations between contexts, or between properties of contexts.  DESERT registers all property 

names as OCL function names, thereby allowing users to employ property names as functions in 

the constraint specification in order to access context properties.  DESERT offers the 

implementedBy function to allow users to specify a binding of a choice in the design space 

model.  It can be employed to bind a particular child of an OR node to the OR node, thus 

specifying the resolution to the choice modeled by the OR node.  It may also be used to bind a 

DESERT property at a particular context to a value in the property’s domain.    

 Figure 15 shows an example DESERT OCL constraint, relative to the example AND-OR-

LEAF tree from Figure 12.  The context of the constraint is intended to be the node N4.  The 

constraint specifies a requirement that the context returned by self, in this case, node N4 is to be 

“implemented by” the context named N5, corresponding to a child of N4.  Since the context of 

application refers to an OR node, the constraint specifies the requirement that node N5 be 

selected as the outcome of the choice modeled by node N4.   
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constraint SelectConstraint() { 
 self.implementedBy() = self.children(“N5”) 
} 

Figure 15. Example DESERT OCL constraint, whose context is the node N4 from Figure 12 

 Logical, arithmetic and relational operations are supported in the specification of constraint 

relations.  Constraints typically specify an invariant relation that imposes some restrictions on the 

design space model, and often, relational operators are used to specify quantitative bounds on 

composed property values.  Continuing the AP property example introduced in Figure 12, 

suppose that a designer wishes to impose the constraint that requires that, regardless of how the 

design space is composed, the composed property value at the root node be bounded by the value 

35.  A DESERT OCL constraint implementing the bound requirement is shown in Figure 16.   

 
constraint APConstraint() { 
 self.AP() <= 35 
} 

Figure 16. DESERT OCL constraint requiring the value of the context’s AP property not exceed 35 

 When the above constraint is associated with node N1 from Figure 12 as its context, it has a 

pruning effect on the tree.  Any configuration in the tree whose composed property value 

exceeds 35 is pruned, or eliminated from consideration.  The constraint solver is responsible for 

implementing this pruning operation. 

A Finite Domain Model for DESERT OCL Constraints 

 In order to apply DESERT OCL constraints to the finite domain constraint design space 

model, the OCL constraints must be translated into finite domain constraints relating to the finite 

domain representation of the AND-OR-LEAF tree.  While the syntax of finite domain constraints 

differs from that of DESERT OCL, the semantics of the two constraint languages are similar, 

with respect to design space exploration and pruning.  This section describes the semantic 

translation of DESERT OCL constraints into a finite domain constraint representation.   

 Basic DESERT OCL constraints may be classified into two categories: those that relate two 

constraint contexts, and those that relate one or more DESERT properties.  Complex constraints 

can be formed by composing constraints from these two categories using logical, relational and 
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arithmetic operators.  Constraints that relate two contexts utilize the implementedBy function 

to specify a binding between context objects.  The only type of OCL collection that is currently 

supported in DESERT OCL is a collection of contexts, as is returned by the children 

function.  List iteration is not supported (thus constraints cannot be posted against collections in 

DESERT OCL).   

 The finite domain model for DESERT OCL constraints utilizes the finite domain variables 

defined for the AND-OR-LEAF tree, as well as those defining the properties of the tree.  A 

DESERT property accessed by an OCL constraint at a context corresponds to the finite domain 

property variable of the node that is represented by the context.  Similarly, an OCL constraint 

which relates two contexts is implemented as a relation between the Boolean select variables 

modeled by each context.  Navigation between contexts changes the point of access of tree 

variables from one node to another.  Since list iteration is not supported, all constraint navigation 

functions can be resolved during the translation from OCL to the finite domain constraint 

implementation.     

 OCL facilitates the specification of constraints that may or may not be satisfied.  It does not 

necessarily imply that a constraint must be satisfied.  Hence, the translation algorithm separates 

the specification of the constraint implementation from the specification of whether the 

constraint must be satisfied or not.  Reification of the constraint implementation statements is 

employed by the translator in order to implement this separation.  Requirements on whether a 

constraint should be satisfied can themselves be formulated as constraints on the reified 

constraint variables.   

 Figure 17 shows a finite domain implementation of the DESERT OCL constraint from 

Figure 15.  The implementedBy function is implemented as an equivalence constraint 

between the select variables corresponding to the related contexts.  The application context for 

the constraint is node N4, whose select variable is denoted Sel.4 (the member of the Sel tuple 

whose index is 4, corresponding to the ID of node N4).  On the right hand side of the operation, 

constraint navigation is used to navigate to the context corresponding to node N5.  The select 

variable corresponding to node N5 is denoted Sel.5.  Line (1) below specifies that the select 

variable of node N4 is required to be the same as that of node N5, specifying that if either is 

determined to be selected, then both must be selected.  This equation constraint is reified into the 

temporary Boolean variable TmpBool.1.  Note that the constraint does not necessarily imply 
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that the select variable of node N5 takes on the value 1, since it is unknown at translation time 

whether the parent OR node itself has been selected.   

 The implementedBy function when applied at an OR node context not only implies the 

binding of one child to the parent, but also implies that all remaining children cannot be selected.  

Line (2) implements the reified zeroing of Sel.6, corresponding to the only other child of N4.  

Line (3) reifies the conjunction of the reified results of the translated statements into 

TmpBool.3.  Since the constraint in Figure 15 is specified as requirement of the design space 

composition, the translated constraint statements must be satisfied.  Hence, line (4) posts the 

constraint on TmpBool.3, requiring that it, and equivalently all the above reified variables, take 

the value 1. 

 
(1) TmpBool.1 =: (Sel.4 =: Sel.5) 
(2) TmpBool.2 =: (Sel.6 =: 0) 
(3) TmpBool.3 =: {FD.conj TmpBool.1 TmpBool.2} 
(4) TmpBool.3 =: 1 

Figure 17. Oz implementation of the DESERT OCL constraint from Figure 15 

 A DESERT OCL constraint that refers to a DESERT property accesses a finite domain 

variable that models the property value at the context of the OCL constraint.  Figure 18 shows 

the Oz implementation of the OCL constraint depicted in Figure 16.  Line (1) contains a 

reification of the constraint implementation, with line (2) implementing the requirement that the 

constraint be satisfied.  The AP function invoked on the context of constraint application returns 

the finite domain variable modeling the AP property at the node corresponding to that context, or 

in this case, node N1.  The AP property variable for node N1 is AP.1, the variable in the AP 

property tuple which corresponds to N1’s ID.  Thus the OCL constraint imposes the finite 

domain constraint that stipulates that the finite domain variable AP.1 must take on a value 

which is less than or equal to 35.   

 
(1) TmpBool.4 =: (AP.1 <=: 35) 
(2) TmpBool.4 =: 1 

Figure 18. Oz implementation of the DESERT OCL constraint from Figure 16 
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DESERT OCL Constraints and Finite Domain Propagation 

 DESERT OCL constraints facilitate the specification of restrictions on design space 

composition.  Constraints either specify bindings between select variables, or restrict domains of 

property variables.  The addition of a constraint to the finite domain constraint store adds 

information to the store, potentially invoking propagation.  Property composition functions 

specify the “upward” propagation of information, by defining the property value of a node in 

terms of the values of its children.  In contrast, the specification of an OCL constraint on an 

interior node of the AND-OR-LEAF tree facilitates the “downward” propagation of information.  

The constraint propagators discussed above have been implemented so as to facilitate 

propagation in both directions across the tree.  A goal of downward propagation is to determine 

which variables, if any, cannot be selected due to the imposition of OCL constraints.  Interval 

propagation of composed property values can result in the binding of values to select variables 

through the definition of property composition at an OR node.  The “bi-directionality” of 

propagation offered by the tree relation implementation is a key performance attribute of the 

finite domain design space implementation.   

Summary of Finite Domain Model for OCL Constraints 

 DESERT OCL constraints are translated into finite domain constraints to facilitate the 

specification of user-defined tree pruning operations and their application to the finite domain 

AND-OR-LEAF tree representation.  Operations on context objects are implemented as relations 

between select variables.  OCL constraint operations involving DESERT properties are 

translated into operations involving the finite domain variables that model the DESERT 

properties.  The implementation of finite domain property composition and the implementation 

of select variable tree relations both facilitate the downward propagation of information specified 

by the OCL constraint at its context of invocation.   

Finite Domain Distribution 

 The finite domain model of the DESERT AND-OR-LEAF tree, properties and OCL 

constraints has been developed so as to facilitate a high degree of propagation during the search 

process.  However, as noted in Chapter II, in general, propagation alone is not sufficient to 

implement a complete constraint solver.  While Mozart provides basic distribution algorithms 
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that implement a set of heuristics that have been shown to be generally effective, a customized, 

application-specific distribution algorithm can utilize knowledge of the problem structure to 

better tailor distribution to fit the propagation model.  This section outlines a customized 

distribution algorithm that implements several heuristics to facilitate a rapid resolution to the 

finite domain design space search problem. 

 An examination of propagation patterns from the finite domain design space model reveals 

several strategies for the implementation of distribution heuristics.  As discussed above, the 

implementation of tree relationships between select variables, as well as those between property 

variables, facilitates both “upward” and “downward” tree propagation.  The addition of 

information about a variable can have far-reaching effects in the tree due to propagation.  The 

propagation model for an AND node equates the select variables of the children of the node to 

their parent, facilitating propagation in either direction.  Downward propagation halts at an OR 

node, since search must determine the outcome of the choice modeled at an OR node.  However, 

if a child of an OR node is determined to be selected, upward propagation is facilitated.  Due to 

this fact, if a select variable chosen at random for distribution, binding the variable as selected 

potentially results in greater propagation than marking it as not selected.  Distribution on a select 

variable results in two contradictory spaces, one where the select variable is bound to the value 1, 

and one where it is bound to 0.  The distribution algorithm employs the “SelectFirst” heuristic 

when determining the order in which to search the resulting cloned spaces.     Algorithm 1 

specifies the distribution algorithm applied to select variables.  The algorithm is passed in 

SelVarList a list of select variables which have not yet been bound to values.  The 

CloneSpace function clones the current computational space, and creates a thread wherein the 

evaluation of the cloned space proceeds.  The function returns a true value in the caller thread, 

and false in the newly created thread.  In the former case, line (4) sets the select variable to 1, 

while in the latter, line (6) sets the variable to the value 0.   
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(1) DistributeSel(SelVarList)  
(2)  let s be the head of SelVarList  
(3)  if CloneSpace() { 
(4)   post(“s = 1”) 
(5)  else 
(6)   post(“s = 0”) 
(7)  } 
(8) end 

Algorithm 1. Distribution algorithm for distributing select variables 

 The distribution algorithm must also consider property variables as candidates for 

distribution.  The goal of the finite domain search is to bind all select variables to values, to 

determine a valid configuration that meets the modeled constraints.  However, it is often the case 

that the DESERT OCL constraints involve operations on DESERT properties.  The propagation 

model for property composition outlined above facilitates upward and downward propagation of 

property values.  Property composition for an OR node depends directly on the select variables 

of the node and the children of the node.  Hence, property composition can affect tree node 

selection.  Due to the size of a select variable domain, distribution on a select variable can 

produce only two constraints.  However, the domain of a property variable is typically much 

larger than that of a select variable, requiring the application of a distribution heuristic.   

 The distribution algorithm, when selecting between property variables, must determine 

which variable to distribute on, as well as how to formulate the constraints to insert into the 

cloned spaces.  The algorithm appeals to the first-fail heuristic to address the issue of variable 

selection.  The list of unbound property variables is sorted according to domain size, whereon a 

variable whose domain size is minimal is selected for distribution.  The algorithm then employs a 

domain-splitting heuristic to formulate two contradictory constraints.  Let pv  be the chosen 

property variable.  Let  be a function which returns the finite domain of a finite 

domain variable.  Let  be the midpoint 

of the domain of the selected property variable.  Then, for distribution on 

FDDomain

( )( ( )) ( ( ))m max FDDomain pv min FDDomain pv⎡ ⎤= −⎢ ⎥/ 2

pv , the distribution 

algorithm generates the following two contradictory constraints: pv m<  and pv m≥ .   Since it 

is not clear that either cloned space will be more likely than the other to more effectively induce 

propagation, neither space is favored during the search.  Algorithm 2 gives the implementation of 

the distribution of property variables.  It is passed a list of as-yet unbound property variables.   
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(1) DistributeProperty(PVList) 
(2)  Let pv in PVList be chosen such that  
(3)     FDDomain(pv) is minimal 
(4)  if CloneSpace() { 
(5)   post(“pv < m”) 
(6)  else 
(7)   Post(“pv >= m”) 
(8)  } 
(9) end 

Algorithm 2. Distribution algorithm for distributing on property variables 

 Prior to the application of the above algorithms, the distributor filters the set of variables 

available for distribution.  Algorithm 3 gives the implementation of the variable filtering 

algorithm.  The algorithm is passed a list of records, where each record contains the select 

variable and the set of property variables corresponding to a tree node.  During the finite domain 

search process, it may be the case that a select variable for a node has been bound to a value, 

while one or more of the node’s property variables remain unbound.  Conversely, it may also be 

the case that one or more of the property variables are bound to values, while the select variable 

remains unbound.  It represents wasted effort to distribute on an unbound property variable 

whose node has been marked as unselected, since that variable’s property value does not affect 

the property values higher in the tree.  Hence, the FilterTreeList algorithm filters out not 

only those variables which have been bound to values, but also those property variables whose 

nodes have been marked as unselected.  Filtration separates the node variables into two lists, one 

containing unbound select variables, and the other containing unbound property variables.   
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(1) [SelVList, PropVList] = FilterTreeList(TreeNodeList) 
(2)  ForAll n in TreeNodeList { 
(3)   if n.Sel is unbound 
(4)    put n.Sel on the SelVList 
(5)     
(6)   if (n.Sel is unbound) or  
(7)    (n.Sel is bound to the value 1) 
(8)   { 
(9)    ForAll pv in n.PropVars { 
(10)     if pv is unbound 
(11)      put pv on the PropVList 
(12)    } 
(13)   } 
(14)  }  
(15) end 

Algorithm 3. Variable filtering algorithm used in distribution 

 Algorithm 4 provides the implementation of the full distribution algorithm used in the finite 

domain design space model.  The algorithm is passed in TNList a list of records of tree node 

variables, containing one record for each node in the AND-OR-LEAF tree.  The algorithm 

executes in its own thread, and only performs an action when propagation halts.  When the 

distributor determines that propagation cannot proceed given the current state of the constraint 

store, it invokes Algorithm 3 to filter the list of tree node records, in order to obtain the list of 

“distributable” variables.  The algorithm either distributes on a select variable, or on a property 

variable, alternating between the two lists on each invocation.  When distributing on a property 

variable, Algorithm 2 is invoked in line (7); when distributing on a select variable, line (10) sees 

the invocation of Algorithm 1.   
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(1) DistributeVars(TNList) 
(2)  bool isPropTurn = false 
(3)  forever { 
(4)   wait for current computation space  
(5)     to complete all propagation 
(6)   [SelVList, PropVList] = FilterTreeList(TNList) 
(7)   if isPropTurn { 
(8)    DistributeProperty(PropVList) 
(9)    isPropTurn = false 
(10)   else 
(11)    DistributeSel(SelVList) 
(12)    isPropTurn = true 
(13)   } 
(14)  }    
(15) end 

Algorithm 4. Distribution algorithm implementing finite domain design space search 

Constraint Utilization and Finite Domain Search 

 The third component of a complete finite domain solver, after propagation and distribution, 

is search.  Mozart offers three general options for implementing search: search for one result, 

search for all results, and search for the best result.  Best-case search employs a branch-and-

bound algorithm together with a user-provided solution evaluation function in order to maximize 

a solution quality metric.  The finite domain model for DESERT utilizes the built-in search 

algorithms in different contexts, depending on the use-case of the finite domain search. 

Single-Solution and All-Solution Search 

 The finite domain model outlined in this chapter can be used to quickly find a single 

solution to the design space problem.  A solution to the search problem represents a single 

configuration in the design space, which satisfies all user-provided constraints.  Simple depth-

first search through the distribution tree results in a single solution to the finite domain design 

space model with a minimal number of distribution steps.   

 All-solution search can be employed to calculate all valid solutions to the finite domain 

model.  All-solution search simply continues the one-solution search depth-first search 

algorithm.  When a solution to the problem is encountered, it is added to a solution list.  All-

solution search exhaustively explores the full design space.  The challenge with all-solution 

search is that the number of solutions in a design space may be very large.  Distribution 
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implements a partial enumeration of the space, where, at each distribution step, each of the 

cloned spaces potentially contains several solutions.  Distribution must be performed in order to 

obtain the list of solutions.  The enumeration of an exponential number of solutions causes the 

finite domain search process to terminate prematurely due to exponential growth in memory 

requirements.     

 In contrast, the symbolic constraint representation approach employed in DESERT does not 

depend on partially enumerative techniques in order to apply constraints.  Constraints are applied 

to the symbolic representation of the space, resulting in a pruned OBDD representation.  This 

pruned representation holds all valid configurations of the space.  After pruning terminates, the 

BDD library can be used to determine if the pruned space contains a large number of 

configurations, in which case DESERT warns the user to apply more constraints.  Since the 

process of pruning the finite domain representation of the space involves partial enumeration, 

there is no equivalent operation to determine, after all constraints have been applied, how many 

configurations result.  However, the finite domain search process can be terminated prematurely, 

on detection of an exponential growth in the number of solutions. 

Constraint Utilization and Best-Solution Search 

 The disadvantage of space enumeration brought on by all-solutions search has motivated the 

implementation of a best-case search.  The finite domain model for design space exploration 

extends DESERT by allowing the conversion of under- and over-constrained design spaces into 

near-critically constrained spaces, through the concept of constraint utilization.  DESERT OCL 

constraints are grouped by the modeler into sets, where each set is assigned a utilization number.  

The utilization number applies to each member of the set, and indicates the relative importance 

of producing design compositions where the constraints contained in the set are satisfied.  In the 

case where the modeler wishes to require that a constraint be applied to the space irrespective of 

the utilization outcome, the constraint is assigned to a constraint set whose utilization index is -1.  

Best-case search in Mozart attempts to maximize total constraint utilization, by searching for 

solutions whose total constraint utilization is maximal.  Total constraint utilization is simply the 

sum of all utilization numbers of all constraints that are satisfied for a given solution.  Recall the 

formal definition of a configuration Cfg  given in equation (16).  Let 

( )Configs P V sol Configs⊆ ∀ ∈ ,  is a configuration.  Let  be a function which sol :cutil CS →
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returns the user-provided constraint utilization number for a constraint.  Let  

be a function which calculates the utilization of a configuration.   Then equation (26) defines the 

utilization function Ut . 

:Util Configs →

il

 , ( ) (
c CS sol c

sol Configs Util sol cutil c
∈ →

∀ ∈ = )∑  (26) 

 The Oz implementation of constraint utilization is accomplished through constraint 

reification.  All finite domain implementations of DESERT OCL constraints must be reified in 

order to facilitate the determination of which constraints have been satisfied and which have not.  

In the case of constraint utilization calculation, it is assumed that some constraints will be 

satisfied, while others will not.  The search process determines which constraints are indeed 

satisfied and thereby contribute to the constraint utilization function.  The constraint utilization 

calculation can be converted into a simple multiply-add operation over the set of reified 

constraint variables, as shown in equation (27).  The ( solc TRU== )E  expression indicates the 

reification of the evaluation of constraint c over solution into a 0/1 variable.  Where the 

constraint is satisfied for a solution, the reified variable takes on the value 1.  Where the 

constraint is not satisfied, the variable takes on the value 0 and therefore does not contribute to 

the total utilization sum.  The use of reified constraint variables simplifies the implementation of 

the utilization calculation. 

sol

 ( ) ( ) ( )sol
c CS

Util sol cutil c c TRUE
∈

= ∗ ==∑  (27) 

 Constraint reification facilitates the determination of constraint utilization.  Constraint 

utilization facilitates the conversion of an over-constrained design space into a near-critically 

constrained design space.  The modeler simply assigns to each constraint a utilization number, 

and the search implements a best-case search to maximize utilization.  However, as a 

consequence of the assignment, not all constraints specified in the over-constrained space will be 

satisfied.  An over-constrained design space has no solution which satisfies all constraints.  A 

best-case search solution using constraint utilization approximates the best solution possible for 

the over-constrained solution.  Constraint utilization calculations can also be used to map an 

under-constrained space to an over-constrained space, by supplying more constraints. 
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 Best-case search in Mozart employs an ordering function that requires future solutions to be 

“better” than the current “best” solution.  The user-provided ordering function implements a 

quantitative metric for comparing solutions, and once a solution is found, posts a constraint that 

requires that future solutions improve on the metric.  In the case of constraint utilization, the 

ordering function simply posts the constraint that the total utilization of a future solution must be 

greater than the current utilization.   

 
proc {UtilOrder OldUtil NewUtil} 
 NewUtil >: OldUtil 
end 

Figure 19. Oz implementation of best-case ordering function for constraint utilization 

Performance Implications of Constraint Utilization 

 The use of reification in constraint utilization impacts the performance of the design space 

search.  Since all user-provided constraints are reified, they are not directly applied to the space, 

and have no direct pruning effect.  Utilization calculations must wait until the solver derives 

sufficient information so as to determine whether a constraint is satisfied or not.  This represents 

a search for a single solution through an extremely under-constrained space.  DESERT OCL 

constraints facilitate downward propagation of property domains, and have an impact on space 

composition.  The removal of their effect on propagation absolutely hampers performance.  

However, once a single solution to the constraint utilization problem is found, propagation can 

affect the values of the reified constraint variables on subsequent searches for “better” solutions.  

The ordering function depicted in Figure 19 effectively posts a constraint to the search space.  

Due to the forward and backward propagation capabilities of finite domain constraints, the 

ordering constraint causes propagation back through the constraint utilization calculation 

procedure, directly affecting the values of the reification variables.  Such propagation can 

determine that in order to achieve a better constraint utilization value, a particular reified variable 

must be set to one.  This causes the corresponding constraint to actually post to the design space, 

and results in further constraint propagation.  However, such a situation is not considered the 

common case, due to the fact that many different combinations of reification variables can lead 

to utilization improvements.   
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 A second effort attempts to partially rectify the performance implications of the use of 

constraint utilization and reification.  The reification variables can be added to the distribution 

list, allowing the distribution process to assign a value to the reified variable, thereby causing the 

constraint to be posted in one of the distributed subspaces, resulting in what propagation effects 

the constraint brings about.  Such distribution can also short-circuit the constraint utilization 

calculation by “guessing” early on that a constraint is satisfied and calculating the resulting 

utilization value.  The remaining constraint relations ensure that such a guess is correct (if not the 

search is halted at this node). 

Summary of Constraint Utilization techniques 

 The use of constraint reification to facilitate utilization computations allows a unique 

approach to design space exploration.  Best-case solutions to over-constrained spaces can be 

approached, by modeling the relative importance of whether a given constraint actually is 

satisfied in a search outcome.  The use of constraint reification to implement utilization hampers 

performance, but due to the strength of the propagation model, the performance degradation does 

not render the approach unusable. 

Summary of the Finite Domain Constraint Model for DESERT 

 A finite domain constraint model for representing and exploring design spaces has been 

developed.  The model implements the semantics of the DESERT AND-OR-LEAF tree through 

finite domain constraint relations over variables that model different aspects of the tree.  Boolean 

finite domain variables model inclusion in or exclusion from a configuration.  DESERT 

properties are modeled as finite domain variables, and property composition is implemented as a 

set of relations between property variables.  DESERT OCL constraints are mapped onto the 

finite domain representation as relations involving the variables modeling different aspects of the 

AND-OR-LEAF tree.  The model offers a customized distribution algorithm that tailors 

distribution decisions to the structure of the finite domain model.  Search is implemented using 

the built-in Mozart search facilities, and all three classes of search are supported.  Since 

distribution and search naturally enumerates the design space, a best-case search approach has 

been implemented to convert over-constrained and under-constrained design spaces into near-
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critically constrained spaces.  The approach attempts to maximize constraint utilization for the 

set of constraints assigned by the modeler.   

 Many performance considerations have been addressed in the development of the finite 

domain model.  The AND-OR-LEAF tree relationships have been crafted so as to facilitate the 

propagation of values and intervals, where appropriate up and down the tree.  Property 

composition routines facilitate the imposition of constraints from above, and values from below, 

and can propagate information in either direction to facilitate the search.  The distribution 

algorithm implements several problem-specific heuristics when selecting variables for 

distribution, and also when devising constraints on those variables.  The goal of the distribution 

algorithm is to facilitate as much propagation as possible, in as few distribution steps as possible.  

The constraint utilization techniques outlined above degrade performance, due to the diminished 

role of a constraint through reification.  However, the finite domain model attempts to partially 

rectify this degradation by facilitating propagation across the utilization calculations through to 

the reification variables, and by distributing on reified constraint variables.  
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CHAPTER IV  

THE PROPERTY COMPOSITION LANGUAGE 

 DESERT facilitates the modeling of property composition through a limited suite of 

property composition functions.  These functions represent classes of operations that define a 

tree node’s property value in terms of some mathematical operation on the property values of the 

node’s children.  This chapter discusses the modeling limitations on property composition 

specification imposed by the current DESERT approach, both in computational tractability and 

in expressiveness.  To address these limitations, a language called PCL (Property Composition 

Language) has been developed to facilitate expressive modeling of complex property 

composition functions.  Tools have been developed to translate PCL statements into a finite 

domain constraint representation that leverages the finite domain model of the AND-OR-LEAF 

tree.  This chapter outlines the design of PCL, as well as the finite domain representation and 

translation of the language.   

Limitations in Modeling Property Composition 

 The expressiveness of the DESERT property composition functions is overly restrictive.  A 

property composition function is an implementation of a mathematical function that models the 

calculation of a property value at a node in terms of the property values of the children of the 

node.  In general, property composition is difficult to model, often requiring complex 

mathematical relationships.  For example, consider a latency property of a multi-processor, 

signal processing application.  The calculation of the composed latency property involves a 

longest path analysis across the application graph, and must take into account computational 

resource sharing and scheduling, and communication bandwidth, delays and resource sharing.  

Such complex calculations cannot be modeled as a simple, one-dimensional mathematical 

operation, such as those offered by DESERT.  While DESERT offers the capability of 

developing “custom” property composition routines as a plug-in to the solver framework, the 

development of such routines is cumbersome and requires developer knowledge of the internal 

DESERT data structures. 
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 Neema reports on the scalability issues of the OBDD approach that are encountered when 

performing complex mathematical operations in DESERT [79].  The OBDD representation of 

the design space actually utilizes multi-terminal binary decision diagrams (MT-BDDs) to 

facilitate the representation of data in mathematical operations.  The MT-BDD representation 

utilizes integers as the terminal nodes in the data structure, as opposed to the 0 and 1 terminal 

nodes in the OBDD structure.  An MT-BDD structure achieves a high degree of compaction in 

representation size when there is a significant re-use of terminal values.  When there is not a high 

degree of reuse of terminal nodes, the MT-BDD representation can become exponential.  In the 

case where the DESERT domain of the property contains a wide range of numbers, it is highly 

likely that such an MT-BDD explosion will occur.  The observed behavior of the DESERT 

BDD-based pruning indicates that for design spaces requiring the representation and evaluation 

of mathematical operations, the BDD quickly becomes exponential in memory size as the 

problem size scales up.  Pruning of highly orthogonal design spaces is also prohibitively 

expensive in the presence of mathematical operations.  The BDD representation of the design 

space does scale well as a representational mechanism (Neema reports the ability to represent 

spaces of up to different configurations), and as a coarse-grained pruning approach, so long 

as the pruning operations do not involve mathematics that cause the BDD representation to 

explode. 

18010

 The lack of expressiveness for modeling complex property composition relationships, as 

well as the lack of scalability for implementing simple property composition relationships 

implies a serious flaw in the DESERT toolset.  The work presented in this chapter rectifies this 

flaw, through the development of a property composition language that is sufficiently expressive 

so as to facilitate the modeling of complex relationships.  The implementation of the language 

must scale to large problem sizes without incurring an exponential explosion in memory or 

execution time. 

The Property Composition Language 

 The Property Composition Language is a simple scripting language that supports the 

specification of both linear and non-linear mathematical operations involving multiple properties 

and multiple types of properties.  Tree navigation is fully supported, in similar fashion to 

DESERT OCL.   
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PCL Variables, Operations, Expressions and Statements 

 PCL is a typed programming language that provides a simple syntax for modeling property 

composition operations.  There are only two data types supported in PCL: var and list.  var 

represents a variable, a placeholder for a single value, that can be assigned to and read from.  In 

PCL, all variables (either var or list) are single-assignment, in that once a variable has been 

assigned, it cannot be re-assigned.  A PCL list represents a list of variables.  Lists of lists are 

not supported, and the length of a list must be well-defined when a PCL specification is 

interpreted.  Properties can be accessed as PCL vars through provided property access 

operations.  Iteration through lists is performed using customizable list iteration operations that 

are provided with PCL. 

 PCL supports mathematical operations between variables.  A full host of operations are 

supported, including arithmetic, logical and relational operations.  Linear arithmetic operations, 

such as addition, subtraction and multiplication are supported, as are non-linear operations, such 

as integer division, modulo arithmetic, and integer exponentiation (a variable raised to an integer 

power).  Supported logical operations include conjunction, disjunction, implication, equivalence, 

and logical negation.  Relational operations define variable comparisons, utilizing the following 

operations: greater-than, less-than, equal-to, not-equal-to, greater-than-or-equal-to, less-than-or-

equal-to.  Other comparison operations include min and max, which return the minimum and 

maximum, respectively, of two variables.   

 Operations involving one or more variables and one or more operators are collected into 

PCL expressions.  PCL operations are specified through operators (the syntax of the operators is 

provided in Appendix A, which contains the input specification for lexical analysis of PCL, and 

Appendix B, which contains the context free grammar of PCL).  There are two classes of 

operators supported in PCL: binary operators and unary operators.  Unary operations include 

logical negation and arithmetic negation.  The remaining operators discussed above are binary 

operators.  An operator, together with its argument(s) defines an expression.  Operators may take 

expressions as arguments.  An expression models a value, the result of the evaluation of the 

expression on its arguments.  By virtue of the recursive nature of the expression definition, an 

expression can be large and complex, involving multiple variables and multiple operations.  PCL 

supports the use of parentheses to disambiguate operation association, and to form a single 
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expression from a set of expressions.  The formulation of PCL expressions is similar in concept 

to the formulation of expressions in C or other high-level programming languages. 

 PCL allows variable assignment.  All variables are single-assignment variables, in that a 

variable may be assigned to only once.  Variables that are never assigned to should not be read 

from, and the PCL parsing and evaluation tools output a warning when such a circumstance is 

encountered.  Variables are defined (or assigned to) using the assignment operator.  A valid 

assignment involves the assignment to a variable of any valid PCL expression that is type-

equivalent to the variable.  Type equivalence implies that only expressions that evaluate to 

simple variables may be assigned to simple variables, while only expression that evaluate to list 

variables may be assigned to list variables.  Type equivalence on assignment is verified during 

PCL evaluation. 

 Variable assignment is a type of PCL statement.  In contrast to an expression, a statement 

does not represent a value.  Thus, assignments may not be “chained” together, as in C (i.e. 

a=b=c=d is not a legal PCL statement).  PCL supports other types of statements as well, 

including declaration statements, control statements, and call statements.  A declaration 

statement contains a variable declaration, possibly including an initialization assignment to some 

expression.  All PCL variables must be declared prior to use.  A control statement represents an 

if-then-else decision statement.  Although the language syntax supports if-then-else statements, 

the PCL evaluation does not currently support decisions at the implementation level.  Call 

statements represent invocations of PCL functions, which are discussed below. 

Modularity in PCL: Properties and Functions 

 All statements in PCL are defined within a function.  A function is a collection of PCL 

statements.  A function has a set of formal input parameters, and can return a variable.  A special 

type of function is defined as a property.  A property function defines a DESERT 

property, and represents a PCL entry point.  The variable returned by a property function is 

associated with a DESERT property, allowing the operations defined in and invoked by the 

function to define the property value.  Other than this point, a property definition is no 

different from that of any other PCL function.  PCL functions that are not defined with the 

property keyword are identified with the keyword function.  The use of functions in PCL 

facilitates a modular approach to the specification of property composition. 
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 A function contains a set of statements.  All statements in a function form a block, which 

defines a scope for the definition of variables.  All scopes are local, in the sense that a variable is 

only visible within the scope where it is declared.  All variables must be defined within a scope, 

and global variables are not supported.  If a new block is entered (in the case where a function is 

invoked), only variables defined within the new scope are available for access.  All functions, on 

the other hand, are defined in a single global namespace.  Local function definitions are not 

supported.  The formal parameters of a function are treated as initialized variable declarations, 

and are visible within the scope defined by the function’s block.  A return statement may be 

placed anywhere within the block defined by a function, causing the evaluation of the function to 

return control (and any associated return expression) to the caller.   

 Function invocations are allowed in two different locations in PCL.  A function that returns 

a variable can be invoked as part of an expression.  Any function can be invoked as a statement, 

where the expression returned by the function, if any, is ignored.  Note that due to the scoping 

rules imposed by PCL, except under special circumstances, such function invocations typically 

do not accomplish anything.   

Tree Navigation 

 OCL statements apply at a particular context.  A PCL property specification, likewise, 

applies at a context, corresponding to a node in the AND-OR-LEAF tree.  The specification 

defines a DESERT property corresponding to the context of invocation.  However, unlike OCL 

statements, PCL specifications are evaluated over several contexts, owning to the fact that 

composed properties are defined over all nodes in the tree.  PCL abstracts the particulars of 

which node the statements are applied to into the concept of a context, and tree navigation is 

facilitated through functional operations relative to the invocation context.  Such tree navigation 

is pattered after the navigation capabilities of DESERT OCL.  Built-in PCL functions allow 

access to different contexts.  The parent function returns the parent of the current context.  The 

children function returns a list of context objects, representing the children of the current 

context.  A specific child may be accessed by passing the child’s name as a string literal to the 

children function.  Calls to functions that access or change contexts can be chained together 

using the dot operator syntax, passing the result context of a function call as the invocation 

context of the next function call.  The self function returns the original invocation context of 
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the PCL specification.  The PCL syntax for tree navigation differs slightly from the OCL 

navigation syntax, in that PCL employs function invocation syntax instead of the simple dot-

object syntax used in OCL.  For example, a statement to access all the children of the parent of 

the current context in OCL appears as: self.parent.children, where as in PCL, the 

statement appears as self().parent().children(). 

 Tree navigation is typically used to navigate to a particular context, which is then used to 

access a property variable for that context.  Property access is facilitated through the prop 

function, provided in PCL.  The name of the property being accessed is passed as a string literal.  

The function sel returns a Boolean variable whose value indicates whether an invocation 

context has been marked for inclusion or exclusion from the set of configurations in the design 

space.  These property access functions are invoked at the end of a tree navigation statement, 

with the same dot operator syntax.  Both of these property access functions can be invoked on a 

simple context, as well as on a list of contexts.  When invoked on a list of contexts, the function 

implicitly loops through the list and applies the simple function on each list member and collects 

the results into an output variable list.  For example, self().property(“area”) returns a 

variable representing the area DESERT property belonging to the invocation context, while 

self().children().property(“area”) returns a list of variables corresponding to 

the area property variables belonging to the children of the invocation context.   

List Iteration Functions 

 General user-defined iteration is not supported in PCL.  However, limited support is 

available for iteration through a list of variables.  Such iteration is effected through “built-in” list 

iteration functions.  These functions visit each member of the list, from head to tail, and invoke a 

user-specified function on each list member.  The user passes the name of the node-visitation 

function as a parameter to the iteration function.  The PCL evaluator algorithm handles the 

mechanics of passing the list node to the node visitor.  Only two list iteration functions are 

supported, which differ based on what is done with the results of a node visitation.  The ForAll 

list iteration function accepts two parameters, the list to iterate over, and the name of the visitor 

function to invoke when visiting a node.  The visitor function must accept a single variable: the 

list member, and must return a simple expression.  ForAll collects each expression returned by 

the node visitor function into a list and, after finishing the list iteration, returns the list of 
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returned expressions.  The ForAllAcc returns a single expression that represents the 

accumulated result of visitation of each node.  As with ForAll, ForAllAcc is passed a user-

specified node visitor function.  However, in contrast to the ForAll node visitor function, the 

ForAllAcc node visitor is passed not only the list member, but also an expression representing 

the accumulated results of the previous node visitations.  The node visitor is responsible for 

visiting the node and accumulating the results of the visit with the previously accumulated visit 

results.  This new accumulation expression is returned to the list iteration function, and passed to 

the node visitor on invocation for the next list member.  On exhaustion of the list, the list 

iteration function returns the accumulation expression to the caller.  ForAllAcc takes three 

parameters, the list to iterate over, the name of the visitor function, and an initial accumulator 

value.   

Simple PCL Example:  Area Property 

 Figure 20 provides a simple example of a PCL property composition specification.  The 

property being modeled is a simple additive property called area.  Such a specification could be 

employed when modeling the composition of FPGA configurations.  The area property 

composition allows a user to specify a constraint on the total area of a composition, requiring 

that a composition fit in the available gate area.  While gate area is not necessarily a simple 

additive property, a coarse-grained model suffices to illustrate the PCL implementation.  Line (1) 

defines the helper function SumVar, which is later used as a list node visitor function.  Line(5) 

defines the entry point to the area property calculation, with a property declaration called 

areaProperty.  Line (6) obtains a list of area property variables, corresponding to the 

children of the context of invocation.  The list is stored in the list variable chAreaProps.  Line 

(7) illustrates the invocation of the ForAllAcc list iteration function.  The function is passed 

the chAreaProps list as the list to iterate on, followed by “SumVar,” the name of the 

function to invoke while visiting each member of the list.  The third parameter is the integer 

literal 0, representing an initial accumulation value of 0.  Line (1) begins the definition of the 

visitor function SumVar, which is invoked by the ForAllAcc function. This function takes 

two parameters, v1, representing the visited list member, and v2, representing the accumulated 

results of the previous list member visits.  Line (2) sees the return of the addition of v1 to v2.  In 
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the context of list accumulation, this simply takes the current list member, adds it to the 

accumulator and returns the summed result.  The ForAllAcc function returns the results of 

accumulation across all list members, and line (7) sees that value stored into a newly declared 

variable named ret.  In line (8), the variable ret is returned, effectively assigning the results of 

accumulation to the area property of the invocation context.   

 
(1) function var = SumVar(var v1, var v2) { 
(2)  return (v1 + v2);  
(3) } 
(4)     
(5) property areaProperty( ) { 
(6)  list chAreaProps= self().children().prop(“area”); 
(7)  var ret = ForAllAcc(chAreaProps, “SumVar”, 0); 
(8)  return (ret); 
(9) } 

Figure 20. Example PCL function modeling an additive property called area 

PCL Interpretation 

 PCL is designed to facilitate dynamic interpretation.  Specifically, a design goal of PCL was 

to avoid the need of invoking a separate language compiler to generate an executable 

specification.  Otherwise, the design space exploration tools would need to be rebuilt after any 

change to a user-defined PCL specification.  Instead, the PCL interpreter has been designed to 

dynamically compile and interpret a PCL specification.  The execution semantics of PCL is built 

on the finite domain design space model, discussed in Chapter III.  The PCL interpreter is tasked 

with the translation of a PCL specification into an equivalent finite domain specification that can 

form part of the finite domain design space search.   

Expression Trees 

 The mapping of PCL statements into finite domain constraints centers on the development 

of a finite domain expression tree.  An expression tree models a complex chain of operations that 

evaluates to a value.  The PCL interpreter translates a PCL specification into a set of PCL 

expression trees, and then maps the set onto a set of finite domain expression trees.  Finite 

domain expression trees have execution semantics assigned by the finite domain constraint 

solver, and therefore can be evaluated as the finite domain design space model is pruned.  
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However, the translation process begins with the evaluation of a PCL specification, which results 

in the construction of a PCL expression tree.   

 Formally, a PCL expression tree is a tree: 

 , ,T V E VT=  (28) 

where, 

  is a set of vertices;  V

  is a set of directed edges; and E VxV⊆

  is a function mapping a vertex to a vertex type. : { , ,VT V BinOp UnOp Leaf→ }

 An expression tree models a set of PCL operations.  Vertices in the tree model operations 

between sub-trees.  Leaf nodes in the tree model variables or data, items which are not refined 

further by the PCL specification.  The vertex type denotes the type of operation modeled by the 

node: BinOp  indicates a binary operation; UnOp  indicates a unary operation; and  

indicates the vertex models data as opposed to an operation, and represents a leaf node in the 

tree.  Edges in the tree connect operations to operands.   

Leaf

 Figure 21 provides an example PCL expression tree modeling the PCL expression in 

equation (29).  All vertices of type BinOp  have two output connections, and model binary 

operations.  The single interior tree vertex with only one output connection is of type UnOp , 

modeling a unary arithmetic negation.  The leaves of the tree model either data (integer literals) 

or variables (ex. a, b, c).   

 ( )( ) ( )( )*3 / %a b c a c+ > −  (29) 
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Figure 21. Example PCL Expression tree modeling the PCL expression in equation  
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 A PCL specification consists of a set of PCL statements.  Although the name “expression 

tree” implies the ability to only model PCL expressions, the translation process facilitates the 

capture of a complete PCL specification as an expression tree.  A PCL expression tree is similar, 

but not equivalent to an Abstract Syntax Tree (AST).  A PCL AST is generated through the 

parsing of a PCL specification.  A PCL expression tree results from the evaluation of the PCL 

AST at a particular context.   

Translation into Trees 

 The PCL interpreter first parses a PCL expression, and then translates it into a PCL 

expression tree by evaluating the expression with respect to a particular context.  All PCL 

expressions can be modeled as an expression tree.  The structure and semantics of PCL facilitate 

the mapping of a complete PCL specification into a single expression tree.  The translation 

algorithm is a one-pass algorithm that substitutes expressions corresponding to the definition of a 

variable in the locations where the variable is used or read from.  Central to this approach are the 

rules that all PCL variables are logic (single-assignment) variables, and that a variable must be 

defined before it is used.  These rules facilitate the separation of the evaluation of an expression 

that defines (or writes to) a variable from the evaluation of expressions where the variable is 

used.  Variables are defined either through initialization in the variable declaration statement, or 

through assignment, by the association of an expression with the variable.  The defining 

expression can refer to variables only if those variables have been defined previously in the PCL 

specification.    Algorithm 5 provides a pseudocode description of the translation of a variable 

declaration into an expression tree.  Algorithm 6 provides a similar description of the translation 

of an assignment statement.  In both cases, the expression assigned to the variable is first 

translated into an expression tree.  Note that the algorithm for translating an expression into an 

expression tree is described later (see Algorithm 9).   The tree is then inserted into the definition-

tree map, against the name of the defined variable.  By creating this binding, when expressions 

are encountered which reference the defined variable, the translator can simply look up the 

corresponding defining expression tree in the map, and use it in the place of the variable 

reference when mapping the expression to an expression tree.   
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(1) TranslateVarDecl(var decl stmt, ctxt,  
(2)       def-tree map, funcTable) 
(3)  if the var decl contains an initialization, 
(4)   T = TranslateExpr(decl init expr, ctxt,  
(5)         def-tree map, funcTable) 
(6)   let vname be the variable name 
(7)   Insert [vname, T] into def-tree map  
(8)  end if 
(9) end 

Algorithm 5. TranslateVarDecl algorithm, implementing the translation of a variable declaration statement 

 
(1) TranslateAssignStmt(assign stmt, ctxt, 
(2)        def-tree map, funcTable) 
(3)  T = TranslateExpr(assignment source expr,  
(4)        ctxt, def-tree map, funcTable) 
(5)  Let dstVName be the name of the assignment dst var 
(6)  Insert [dstVName, T] into def-tree map  
(7) end 

Algorithm 6. TranslateAssignStmt algorithm, implementing the translation of an assignment statement 

 Given the process of substituting variable definition expression trees in the place of 

references to the defined variables as outlined above, the expression provided in a PCL return 

statement primarily defines the expression tree resulting from the evaluation of a PCL 

specification.  Only those expression trees which are in some way associated with the expression 

contained in the return statement actually from part of the expression tree returned by a 

specification.  In this fashion, the PCL translator implicitly performs dead-code elimination.  

Algorithm 7 shows how return statements are translated into an expression tree, and then 

returned.  

 
(1) ExprTree = TranslateReturnStmt(ret stmt, ctxt,  
(2)        def-tree map, funcTable) 
(3)  T =TranslateExpr(return expr, ctxt,  
(4)        def-tree map, funcTable) 
(5)  return T 
(6) end 

Algorithm 7. TranslateReturnStmt algorithm, implementing the translation of a return statement 
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 A PCL specification begins at a property declaration.  The translation of a PCL property into 

an expression tree consists of translating all the statements contained in the property 

specification.  The statements in the specification must be processed in the order in which they 

appear in the original PCL source.  PCL supports the three types of statements discussed above: 

variable declaration statements, assignment statements and return statements.  Algorithm 8 gives 

the implementation of the translation algorithm for PCL functions.  The algorithm takes four 

parameters, the PCL specification, the context (location in the AND-OR-LEAF tree) where the 

specification is to be evaluated, a list of actual parameters corresponding to the specification’s 

formal parameters, and a table of PCL functions.  The function table contains references to all 

functions defined in the global PCL namespace.  Line (3) declares the definition-tree map, which 

holds the expression trees associated with variable definitions.  Lines (4) – (6) insert all actual 

parameter expression trees passed to the function into the map against their formal parameter 

counterparts.  The algorithm then delegates the translation of each statement, based on statement 

type.  Note that only the translation of a return statement actually produces an expression tree 

that is returned.   
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(1) ExprTree = PclTranslator(PclSpec, context,  
(2)         actParams list,  pclFnTable)  
(3)  Map def-tree map 
(4)  Insert all actual parameter expression  
(5)    trees into def-tree map, against  
(6)    their corresponding formal parameter names 
(7)  
(8)  ForAll pclStmt in PclSpec { 
(9)   switch (StmtType(pclStmt)) { 
(10)    case  VarDeclStmt: 
(11)     TranslateVarDecl(pclStmt, context,   
(12)       def-tree map, pclFnTable) 
(13)    case AssignStmt: 
(14)     TranslateAssign(pclStmt, context,  
(15)       def-tree map, pclFnTable) 
(16)    case ReturnStmt: 
(17)     return TranslateRetStmt(pclStmt, context, 
(18)         def-tree map, pclFnTable) 
(19)   } 
(20)  } 
(21)  
(22)  //evaluation did not result in the generation 
(23)   of an expression tree //  
(24)  return nil   
(25) end 

Algorithm 8. The PclTranslator algorithm dispatches each statement for translation, and returns the appropriate 
expression tree 

  The above algorithms define the translation of a PCL specification, in terms of PCL 

expressions.  The translation of a PCL expression into an expression tree remains to be defined.  

There are several different classes of PCL expressions which must be translated into an 

expression tree.  Expressions often contain one or more sub-expressions, which are evaluated 

through a recursive invocation of the expression evaluation algorithm.  Algorithm 9 gives the 

implementation of the expression translator.  It simply delegates the translation, based on the 

type of expression.   
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(1) ExprTree = TranslateExpr(PclExpr expr, context,  
(2)        def-tree map, funcTable) 
(3)  switch(ExprType(expr)) { 
(4)   case BinOpExpr: 
(5)    return TranslateBinOpExpr(expr, context,  
(6)        def-tree map, funcTable) 
(7)   case UnOpExpr: 
(8)    return TranslateUnOpExpr(expr, context,  
(9)        def-tree map, funcTable) 
(10)   case ParenExpr: 
(11)    return TranslateExpr(expr.subExpr, context, 
(12)        def-tree map, funcTable) 
(13)   case CallExpr: 
(14)    return TranslateCallExpr(expr, context,  
(15)        def-tree map, funcTable) 
(16)   case VarExpr: 
(17)    return TranslateVarExpr(expr, def-tree map) 
(18)   case ralExpr:  Lite
(19)    return TranslateLiteralExpr(expr) 
(20)  } 
(21)  
(22)  //else unsupported expression type 
(23)  return NULL 
(24) end 

Algorithm 9. TranslateExpr algorithm, implementing a dispatch based on expression type 

 Recall that a PCL expression tree contains only three types of vertices: BinOp , UnOp , and 

.  All types of expressions supported by PCL must be represented by combinations of these 

three classes of expression trees.  The list of PCL expression classes can be seen in Algorithm 9: 

Leaf

BinOpExpr , , , , VarExpr , and .  The  

expression is a special case that models the grouping of one or more operations.  The group of 

operations is modeled as a sub expression, which is evaluated and returned.  The structure of the 

expression tree retains the semantics of the grouping.  The remaining cases are treated and 

translated individually. 

UnOpExpr ParenExpr CallExpr LiteralExpr ParenExpr

 A Lite  expression represents data in an expression.  Two types of literal data are 

supported in PCL: string literals and integer literals.  Literal data is modeled as a  node in a 

PCL expression tree, as shown in Algorithm 10.   

ralExpr

Leaf
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(1) ExprTree = TranslateLiteralExpr(literal expr)  
(2) if the literal expression is an integer literal then 
(3)   return new IntegerExprTreeLeaf(literal expr) 
(4)  else 
(5)   return new StringExprTreeLeaf(literal expr) 
(6)  end 
(7) end 

Algorithm 10.  TranslateLiteralExpr algorithm, responsible for translating literal data into Expression Tree leaf 
nodes 

  VarExpr  expressions represent references to variables.  In contrast to a variable 

definition, a VarExpr  expression represents a use of a variable.  As described previously, the 

translation of such an expression simply amounts to the retrieval of the expression tree bound to 

the variable name through the def-tree map.  This tree corresponds to the expression that defines 

the variable.  Algorithm 11 shows the pseudocode implementation of this operation. 

 
(1) ExprTree = TranslateVarExpr(var expr, def-tree map)  
(2)  ExprTree T = lookup the variable name in  
(3)      the def-tree map 
(4)  if T==NULL then 
(5)   Error(“Variable used prior to being defined”) 
(6)  end 
(7)  return T 
(8) end 

Algorithm 11.  TranslateVarExpr algorithm, implementing the translation of a variable usage reference via 
expression tree lookup 

 Unary operations are modeled as UnOpEx  expressions.  The only unary operations PCL 

supports are logical negation and arithmetic negation.  A unary operation expression contains the 

operation, together with the expression on which the operation operates.  Unary operations are 

modeled as UnOp  expression trees, which simply reflect the operator information in the unary 

expression, with a link to the expression tree modeling the unary operator’s operand.  Algorithm 

12 shows the implementation of the translation of a unary expression into a unary expression 

tree. 

pr
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(1) ExprTree = TranslateUnOpExpr(unOpExpr, context,  
(2)           dt map, funcTable) 
(3)  ExprTree subTree = TranslateExpr(unOpExpr.subExpr, 
(4)          ctxt, dt map, funcTable) 
(5)  return new UnOpExprTree(unOpExpr.op, subTree) 
(6) end 

Algorithm 12.  TranslateUnOpExpr algorithm, implementing the translation of a unary operation expression 
into a unary operation expression tree 

 The translation of binary operation expressions is similar to the translation of unary 

expressions.  A binary operation expression consists of a binary operator and two operands, a 

left-hand side (LHS) and a right hand side (RHS).  As all operators are not commutative, the 

relative order between operands must be preserved.  Algorithm 13 gives the implementation of 

the translation of a binary operation expression to a binary operation expression tree. 

 
(1) ExprTree = TranslateBinOpExpr(binOpExpr, context,  
(2)            dt map, funcTable) 
(3)  ExprTree LHS = TranslateExpr(binOpExpr.lhs, ctxt,  
(4)           dt map, funcTable) 
(5)  ExprTree RHS = TranslateExpr(binOpExpr.rhs, ctxt,  
(6)           dt map, funcTable) 
(7)  return new BinOpExprTree(LHS, binOpExpr.op, RHS) 
(8) end 

Algorithm 13.  TranslateBinOpExpr algorithm, implementing the translation of binary operation expressions 
into binary operation expression trees 

 Expressions involving function calls are perhaps the most complex to translate to expression 

trees.  A Cal  expression contains a call chain, consisting of one or more function 

invocations connected with the dot operator.  All functions in the chain except the final function 

call implement context navigation, simply traversing from one context to another.  The context 

returned by the penultimate call in the chain is passed as the invocation context for the final call 

in the chain.  The translator returns the expression tree that is produced from the evaluation of 

the final call at the navigated context.  The implementation of the translation of a function call 

expression into an expression tree is provided in Algorithm 14.   

lExpr
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(1) ExprTree = TranslateCallExpr(callExpr, context,  
(2)           dt  map, funcTable) 
(3)  Let finalFn be the last function invocation  
(4)  in the callExpr.callChain  
(5)  
(6) Let navFns = callExpr.callChain / {finalFn}  
(7)  
(8)  //navigate invocation contexts to the  
(9)  //final function context 
(10)  currentCtxt = context 
(11)  ForAll navFn in navFns { 
(12)   nextCtxt = TranslateFnInvoke(navFn, currentCtxt,  
(13)            dt map, funcTable) 
(14)   currentCtxt = nextCtxt 
(15)  } 
(16)    
(17)  //invoke final function 
(18)  ExprTree T = TranslateFnInvoke(finalFn, currentCtxt,  
(19)             dt map, funcTable) 
(20)  return T 
(21) end 

Algorithm 14.  TranslateCallExpr algorithm, implementing context navigation and showing function invocation 

 The translation of a call chain into an expression tree depends on the evaluation of a PCL 

function at a particular context.  The evaluation of a PCL function involves evaluation and 

translation of the actual parameters passed to the function invocation.  The actual parameters 

represent defining assignments for the formal parameters in the called function, as illustrated in 

Algorithm 8.  Further, the translator must locate the function implementation, through indexing 

the function table against the invoked function’s name.  Once the function implementation has 

been obtained, the translator issues a call to the PclTranslator algorithm listed in Algorithm 8 to 

evaluate the invoked function.  It passes the evaluated actual parameters, as well as the current 

context of invocation. 
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(1) ExprTree = TranslateFnInvoke(funcObj, context,  
(2)           dt map, funcTable) 
(3)  list actParTrees 
(4)  ForAll ap in funcObj.actParams { 
(5)   apTree = TranslateExpr(ap, context,  
(6)           dt map, funcTable) 
(7)   put apTree into actParTrees 
(8)  } 
(9)  
(10)  funcImpl = lookup funcObj.name in funcTable 
(11)  return PclTranslator(funcImpl, actParTrees,  
(12)         context, funcTable) 
(13) end 

Algorithm 15.  TranslateFnInvoke algorithm, implementing the evaluation of a function invocation 

 In summary, the translation algorithm outlined in the above algorithms facilitates the 

translation of a PCL specification into a PCL expression tree.  Such translations occur relative to 

a particular invocation context, and apply only to that context.  The PCL expression tree can be 

easily translated into a finite domain expression tree, which can be evaluated during design space 

exploration.   

From Expression Trees to Finite Domain Constraints 

 The goal of PCL is to facilitate the evaluation of complex, user-defined property 

composition functions in the context of the finite domain design space model.  Such evaluation 

allows the results of property composition to affect the design space pruning.  To facilitate such 

evaluation, a mapping has been developed to translate a PCL expression tree into a set of finite 

domain constraints. 

 The mapping of a PCL expression tree onto a set of finite domain constraints begins with the 

association of expression tree variables with finite domain variables.  In PCL, all variables are 

local variables or formal parameters.  The entry point to a PCL specification is a property 

specification, which by definition, takes no parameters, but does return a variable.  The 

evaluation of a property specification returns an expression tree which models the result of the 

application of the specification at a particular context.  This resulting expression tree is bound to 

the finite domain property variable corresponding to the context at which the PCL specification 

is invoked.  Since all variables are local variables, the only way to associate information external 
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to the PCL specification with an evaluation of the specification is through the built-in PCL 

functions.  For example, the property PCL function returns the finite domain variable associated 

with the property whose name is passed as a parameter, and whose context is the context of 

invocation of the function.   

 By returning relevant DESERT finite domain variables from the built-in PCL functions, the 

PCL expression tree resulting from the evaluation of a PCL specification models a set of 

expressions relating finite domain variables.  All relations that are modeled in the PCL 

expression tree have corresponding implementations in Mozart.  Thus a PCL expression tree 

whose leaf nodes correspond to finite domain variables effectively represents a set of finite 

domain constraint operations.  Chapter V discusses the challenges of implementing the tree-

based representation of finite domain operations in the context of a design space exploration tool. 

PCL Modeling Example 

 This section examines the use of DESERT and PCL to model the composition of FPGA-

based applications from a parameterized component IP library.  The use of an IP library 

facilitates the rapid composition of high-performance applications, without the tedium of hand-

crafting and optimizing component implementations to fit the features of the architecture.  A 

common tradeoff in the implementation of FPGA-based operations concerns the gate-area 

required by an implementation, as compared to the implementation’s latency.  Typical hardware 

implementations offer the ability to trade area for latency or vice versa.  Ideally, a designer 

would like a low-latency, low-area design, but these to metrics often stand in conflict.  The 

designer is therefore left with the task of balancing the gate area used by a particular component 

implementation against the latency exhibited by the component.  Application-level requirements 

drive the development, and impose constraints on the design.  For example, available chip area is 

almost always a constrained resource (due to chip count, power, cost, size, heat, or other 

constraints).  Many applications impose an end-to-end latency constraint, due to real-time 

processing constraints imposed by the environment of the application.  Thus, the goal of 

balancing the latency and area of an FPGA design becomes a task of meeting application-level 

design constraints.  This section describes a hypothetical parameterized component library 

targeting a hypothetical FPGA platform.  However, while hypothetical, the example is 

illustrative of real FPGA platforms and the problem of targeting parameterized component 
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libraries to those platforms.  The example outlines the use of DESERT and PCL to model the 

property composition and constraint satisfaction problem imposed on FPGA developers, and 

describes the translation of the problem into a finite domain constraint implementation. 

A Parameterized Component IP Library 

 FPGA components are often developed using a parametric approach.  Parameters supplied 

by the component integrator adapt the structure and behavior of the implementation, tailoring it 

to the needs of the application developer.  The exhibited behavior and structural properties of the 

component are a function of these parameters.  A component has a number of input data busses, 

and a number of output data busses.  It is assumed that all input busses are of the same width, as 

are all output busses, but input bus width need not be the same as the output bus width.  A 

parameterized component models a set of “concrete” components, or the set of components 

which are generated from the parameterized component by supplying values for the parameters.   

 Latency and area are two important measures of quality of an FPGA component 

implementation.  However, it is often the case that these parameters stand in opposition to each 

other: low-latency designs typically occupy more gate area than high-latency designs.  A given 

component functionality can typically be implemented in several different ways, and each way 

can be characterized on the latency-area tradeoff curve.  The need to balance application-level 

area and latency against nonfunctional requirements on area and latency reduce much of the 

design process to a tradeoff analysis on the parameter space of each component, and across 

alternative component compositions.  In this example, the tradeoff analysis is modeled as a 

design space exploration problem over the composed latency and area properties of an 

application.   

 The tradeoff between latency and area for a given component can be mathematically 

modeled as a single integer parameter.  A large parameter value indicates a design which 

strongly favors a low-latency implementation, at the expense of increased gate area.  Conversely, 

a small parameter value represents a design which is highly optimized for a small area 

implementation, possibly at the cost of increased latency.  For each parameterized component in 

the component library, the performance of the components which can be generated from the 

library is modeled as a function of the parameters.  While all parameterized components are 
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characterized with the same parameter set, the performance of each parameterized component 

must be modeled individually.   

 Formally, a component IP library is a pair ,UC T , where UC  represents a set of 

deployable components and T  represents a set of component types.  Let each component in UC  

be associated with a type, and let  be a function which returns the type of a 

component.  Each component in UC  is characterized with three parameter values, denoting 

number of input connections, number of output connections, and a parameter modeling the 

relative latency-to-area tradeoff for the component implementation.  Let  be a map 

which returns the number of input connections for a component,  be a map which 

returns the number of output connections for a component, and  be a map which 

returns the latency-area tradeoff parameter value for a component.  

:Type UC T→

:IW UC →

:OW UC →

:LAP UC →

{ }, tt T let PC c UC T c t∀ ∈ = ∈ == tPC( )ype .   denotes a parameterized component of type t.  Let 

 be the set of all parameterized components.  A set of parameter domains is defined 

for each of the three parameters over each component type.  

t
t T

PC PC
∈

=∪

{ }, t tt T let IWDom i c PC IW c i∀ ∈ = ∈ ∀ ∈ =, ( ) .  Similarly, 

{ }, t tt T let OWDom i c PC OW c i∀ ∈ = ∈ ∀ ∈ =, ( ) , and 

{ }, t tt T let LAPDom i c PC LAP c i∀ ∈ = ∈ ∀ ∈ =, ( ) .  Let t
t T

IWDom IWDom
∈

=∪ , 

, and .  To facilitate design space exploration, 

component properties are defined parametrically with respect to component type.  Hence, 

  be a function which returns the area of a 

component  whose parameter values correspond to those passed in the function.  

Similarly,  be a function which returns 

the latency of a component .   

t
t T

OWDom OWDom
∈

=∪ t
t T

LAPDom LAPDom
∈

=∪

, :t t t tt T let Area IWDom OWDom LAPDom∀ ∈ × × →

tc PC∈

, :t t t tt T let Latency IWDom OWDom LAPDom∀ ∈ × × →

tc PC∈

 The component library model in this example relies on the assertion that mathematical 

models of performance metrics may be developed as a function of these three parameters, to 

sufficient accuracy so as to permit coarse-grained exploration of the design space.  Qualitatively, 

a parameterized component models a set of components which are related through a common set 
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of property modeling functions.  In reality, typically this implies the generic implementation of a 

component using parameters, whereas the concrete components model the set of components 

which can be generated from the generic component.     

Example Property Function: Adder Component 

 Consider a parameterized adder component depicted in Figure 22.  Adder is a component 

which performs the addition of two numbers to produce a third.  The two inputs are issued on 

busses each of width IW, while the output is issued on a bus of width OW.  The internal structure 

and behavior of the adder is parameterized by LAP, representing the relative tradeoff of an adder 

implementation between latency and area.  The adder simply performs the operation 

on 2’s-complement integer numbers.   C A B= +

 
Figure 22. Parameterized adder component 

 Adders can be implemented in many ways.  A very small footprint adder is illustrated in 

Figure 23, where a single one-bit adder is used to implement an N-bit binary adder.  This 

implementation utilizes very little chip area, but suffers from the long latency imposed by the 

approach of adding just one bit at a time.  Figure 24 illustrates a low-latency implementation of 

an adder, where the adder utilizes an N-bit combinatorial adder implementation.  The area 

required for the N-bit adder implementation is several times that required by the one-bit 

implementation, but the latency is much lower.  Other adder implementations involve the 

cascading of lower-order binary adders to form higher-order adders, based on the principle that 

lower-order adders require fewer gates than higher order adders.  Cascading adders increases 

latency.  Note that design approaches that consider throughput optimizations through pipelining 

could also be considered, but are not addressed in this model.   
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Figure 23.   Small-area, high-latency IW-bit adder composed of shift registers (SR) and a single one bit adder 

 
Figure 24. High-area, low-latency N-bit adder composed completely of combinatorial logic 

 The properties of a parameterized component are formulated as linear or non-linear 

functions of the design parameters.  The functions model how a parameterized component scales 

over its parameter space.  In the case of the low-area, high-latency adder depicted in Figure 23, 

the area and latency of the adder is a function of the area and latency, respectively of the one-bit 

adder implementation, which is information that must be obtained through data sheets on the 

implementation device.  Likewise, information on N-bit shift registers must also be available 

from data sheets.  Let  be a set of sub-components, which are composed to form 

components in the component library.  Let 

Parts

: Partsχ →  be a function which retrieves the area 

for a part used to compose a component.  It is required that the gate-area and latency values of all 

parts in the  set be well defined.  Let  be a function which, given an 

integer N representing a number of bits, returns a part in the parts set representing an N-bit 

adder.  Similarly, let  be a function, which given an integer N representing a 

number of bits, gives a part in the parts set representing an N-bit shift register.  Given this 

information, a function modeling the area of the low-area, high-latency adder in Figure 23 is 

formulated as follows: 

Parts :adder Parts→

:SR Parts→

 
_1 ( , ) * ( (1))
2* ( ( )) 1* ( ( ))

Area b IW OW IW adder
SR IW SR OW

χ
χ χ

= +
+

 (30) 

 The area of the N-bit adder implementation from Figure 24 is formulated as follows:  
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 _ ( , ) ( ( )Area Nb IW OW adder IW )χ=  (31) 

 where the only logic used in the implementation is in the adder itself.  

 A property function for the parameterized adder component is a function of IW, OW, and 

LAP, and subsumes the functions characterized in equations (30) and (31).  Depending on the 

type of component, it is possible to determine a single mathematical function relating the 

property value to the parameter values.  However, in this case, a piecewise linear function is used 

to model the parameterized component area.  It is assumed that all adders of “lower” area (i.e. 

whose LAP parameter is less than half the maximum value) are implemented as cascaded one-bit 

adders, whereas all “low-latency” adders are implemented using the combinatorial logic 

approach from Figure 24.  Thus, a property function modeling the area of the parameterized 

adder component  in terms of the three parameters is as follows: tPC

 

* ( (1)) 2* ( ( ))
max( )( ( )),

2( , , )

max( )( ( )),
2

t

t

t

IW adder SR IW
LAPDomSR OW LAP

AreaAdd IW OW LAP

LAPDomadder IW LAP

χ χ

χ

χ

+⎧
⎪
⎪ + <
⎪= ⎨
⎪
⎪

≥⎪
⎩

(32) 

 A similar approach can be used to model the latency of the parameterized adder component. 

Design Composition through Exploration 

 The parameterized FPGA component library allows developers to quickly compose efficient 

designs.  The development process consists of composing applications from parameterized 

components, and then binding parameters to each parameterized component instance to generate 

a set of composed “concrete” components.  The specification of component properties as a 

function of component parameters facilitates the separation of these two steps into a manual 

design composition step to define the composition, and an exploration step to bind parameter 

values to each component.  As part of the design specification, the user models the requirements 

of the design implementation as constraints on the composed design.  The constraints represent 

bounds on the properties of the composed design.  PCL and DESERT can be used to model and 

implement the process of binding parameters to parameterized components as a design space 

exploration problem. 
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 Figure 25 shows a UML diagram describing an FPGA application composition utilizing the 

parameterized IP component library.  An application is composed of Components.  A 

Component is either a ParameterizedComponent, representing a parameterized 

component from the IP library, or a ComposedComponent, representing a composition of 

other components.  Component objects contain Ports, which are associated with ports of 

other components through PortConnection associations.  PortConnections model 

point-to-point communication links between components.  Each Port is characterized with a 

PortNumber attribute and a PortWidth attribute.  The width of the port corresponds to the 

width in bits of the bus connecting two ports.  Note that the PortWidth of a source port must 

match the PortWidth of the corresponding destination port.  Ports are defined as 

unidirectional, in that they either provide information to a component, or send information from 

a component.  Constraints specify requirements on a composition, typically representing 

bounds on the total area and total latency of a composed component.   

ComposedComponent

FPGA_Application

Component

ParameterizedComponent

AreaPropertyFunction : String
LatencyPropertyFunction : String

Port

PortNumber : Integer
PortWidth : Integer

PortConnection

Constraint

ConstraintSpec : String

0..*

0..*

InPort
0..*

OutPort 0..*

src 0..*

dst
0..*

0..*
0..*

 
Figure 25. UML depiction of FPGA application composition 

 An FPGA application conforming to the structure modeled in Figure 25 does not completely 

define an application.  A deployable application must bind parameter values to all parameterized 

components used in a composition.  The process of determining appropriate parameter values for 

the parameterized components of an FPGA application composition is modeled as a design space 
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exploration problem using DESERT and PCL.  This is accomplished by mapping the application 

composition onto an AND-OR-LEAF tree, and mapping the parameterized component property 

composition functions into PCL expressions.   

 The translation of the composition into an AND-OR-LEAF tree is fairly straightforward: 

component composition exemplifies the part/whole relationship, which is modeled through AND 

decomposition in DESERT.  A parameterized component models a set of alternative 

components, and thus could be modeled using OR-decomposition.  However, the use of OR-

decomposition to model the parameter space of each parameterized component requires the 

enumeration of the parameter space, which is tedious at best, and leads to a combinatorial 

explosion of alternatives at worst.  Instead, the parameterized component is modeled as a LEAF 

node in the DESERT AND-OR-LEAF tree, and is characterized with VariableProperties 

whose composition is defined through PCL statements.   

 Constraints capture bounds on composed property values.  PCL statements are used to 

model parameterized component properties as a function of the component parameters.  Once 

those property values have been determined, they are propagated upwards through the AND-OR-

LEAF tree in order to establish values to constrain against in the constraint application.  The 

specification of property composition across the hierarchy of the AND-OR-LEAF tree presents a 

separate and distinct problem from the specification of the property function for a parameterized 

component.  The composition of a property depends on the results of the property function 

translation, but is specified separately.  Composition of gate area is modeled as an additive 

property, where the area of a composed component is simply the sum of the areas of the 

component’s children. 

 The property function modeling the area of an adder was defined above in equation (32).  

Figure 26 provides a translation of that equation into PCL, thus providing an implementation that 

can be used for design space exploration.  The translation of the PCL specification into finite 

domain constraints, as described earlier in this chapter, facilitates the establishment of finite 

domain variables which model the parameters of each parameterized component, as well as the 

output of the area property function.  The user does not have to bind specific values to the IW, 

OW, and LAP properties at the onset of the design space search.  Rather, the propagation 

employed in the finite domain constraint model allows the search process to bind values to the 

parameters which result in area values that meet user-supplied constraints.  Thus the use of 
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DESERT and PCL automates the process of binding parameters to the parameterized 

components used in a design specification. 

 
(1) property FPGA_Area( ) { 
(2)  var IW = self().prop(“IW”); 
(3)  var OW = self().prop(“OW”); 
(4)  var LAP=self().prop(“LAP”); 
(5)  var IsAreaOptimized = (LAP < (LapMAX/2)); 
(6)  var AreaOptArea; 
(7)  var LatOptArea;  
(8)   
(9)  AreaOptArea =  (IW*adder_area(1)) +(2*SR_area(IW))+  
(10)       (SR_area(OW)); 
(11)  LatOptArea = adder_area(IW); 
(12)   
(13)  return ( (IsAreaOpt*AreaOptArea) +  
(14)     ((!IsAreaOpt)* LatOptArea) ); 
(15) } 

Figure 26. PCL specification of area property function described in equation (32) 

Summary of PCL  

 The Property Composition Language facilitates the specification of complex, parameter-

based functions for modeling property composition in the context of design space exploration.  

The language design focuses on achieving the proper balance between expressive power and the 

feasibility of implementation.  The implementation of PCL has focused on the realization of PCL 

specifications as finite domain constraints which build on the DESERT finite domain constraint 

model discussed in Chapter III.  This section highlights several design decisions which have 

impacted the design and implementation of PCL. 

Expressiveness Limitations 

 PCL offers an amalgamation of the tree navigation semantics from DESERT OCL with the 

computational modeling facilities of finite domain constraints.  The language implementation 

separates the issue of computation specification from the context of application, and facilitates a 

modular, procedural specification.  However, certain constructs common to many high-level 

programming languages are missing in PCL.  Specifically, user-defined iteration and user-

defined decision making are not supported.   
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 PCL does support a limited, structured list iteration function.  Built-in list iteration functions 

apply a user-defined PCL visitor function to each member of a list.  These functions are neither 

explicitly condition-controlled nor counter-controlled.  Chapter V illustrates that design space 

exploration using the finite domain constraint representation involves the translation of the 

design space model into finite domain constraints, and the dynamic evaluation of the constraints.  

The definition of a loop construct which can be dynamically instantiated and evaluated presents a 

challenge in Mozart.  While the implementation of user-defined looping could be realized 

through the dynamic definition of a procedure defining the loop body, and a separate construct 

that implements the looping criteria along with the loop body invocation, such a construct has 

not been determined to be needed.  Future implementations of PCL could provide a user-defined 

looping mechanism which implements these semantics. 

 PCL does not implement explicit user-defined decisions.  The language specification calls 

for an if-then-else construct, but the implementation of the construct, as with user-defined 

iteration, presents a challenge.  User-defined decisions in a PCL statement imply the evaluation 

of some decision criteria, based on which the implementation posts a set of constraints.  

Operationally, this has the effect of reifying the contents of an if PCL block and an else 

block.  The contents of an if block are posted only if the condition evaluates to true.  If the 

condition evaluates to false, the contents of the else block are posted.  Regardless of which 

block is posted, the posting of the block is delayed until the results of the evaluation of the 

condition are known.  This delay impacts the constraint solver’s ability to propagate results into 

and out of if and else blocks, impacting the performance of the search.   

 However, through constraint reification, this delay in propagation can be partially mitigated.  

An implementation of an if-else construct can reify all statements in the if block into a 

single variable that is set equal to the true evaluation of the statement condition.  All statements 

in the else block can be reified into a single variable that is set equal to the false evaluation of 

the condition.  Thus the if-else statement is effectively converted from a decision into a set of 

constraint operations where propagation can proceed by relating the contents of the reified 

blocks to other constraint statements.  This approach is similar to predication in computer 

architecture, or the conversion of control flow to dataflow in compiler theory.  

 While Mozart does offer sufficient expressive power to allow the implementation of the if-

else PCL statement, the necessity of supporting the statement has not been established.  As was 
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seen in Figure 26, PCL naturally supports reification, allowing decisions to be explicitly coded as 

a dot-product between decision outcomes and decision variables.  The usability of PCL could 

arguably be raised by adding explicit support for an if-else construct; however, it is not clear 

that any gains would be seen in search performance.  In any case, the current implementation of 

the PCL translation does not preclude the inclusion of such an if-else implementation.   

 Implementation Inefficiency 

 The evaluation approach in PCL involves the translation of all PCL statements into 

expression trees, and the return of the single expression resulting from the evaluation of the 

return statement.  As described above, all variable uses are tracked to their definition, which, 

when evaluated, results in an expression tree.  The expression tree modeling a variable definition 

is substituted at the location of a variable use in the translation of PCL statements.  Thus, the 

expression tree modeling the return statement expression tree merges any expression tree defined 

previously on which it depends.   

 The merging of dependent expression trees through variable uses in PCL evaluation can lead 

to redundancies in the final expression tree structure.  If a PCL specification contains multiple 

references to a single variable, the current one-pass evaluation algorithm substitutes the 

expression tree representing the variable into the expression tree modeling the result in multiple 

locations, once for each variable usage reference.  A consequence of this redundancy is a 

potential explosion in the size of the returned tree.  The redundancy can be mitigated through the 

generation of a temporary finite domain variable to capture the expression tree resulting from the 

evaluation a variable definition.  The evaluation of a use of a variable translates to a reference to 

the temporary finite domain variable instead of the tree definition.   

 A performance consideration with the finite domain constraint solver is the size of the 

problem specification (i.e. the number of finite domain variables used in the model).  This 

impacts performance due to the way Mozart distributes on variables by cloning a stalled space.  

As the size of the finite domain model increases, the search performance decreases.  Hence, the 

generation of unnecessary temporaries is detrimental.  However, the redundant specification of 

tree operations described above also has the effect of increasing the size of the finite domain 

model.  Hence, the evaluation of PCL into finite domain constraints must take into consideration 

how and how often a variable is used, and should spill representations into temporary finite 
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domain variables when deemed appropriate in order to achieve a minimally sized finite domain 

model. 

 However, such optimizations may not be necessary.  PCL specifications are intended to be 

small (tens of lines of code).  They describe small mathematical functions characterizing 

property composition.  Large redundancies result when a specification contains many uses of a 

variable whose definition results in a large expression tree.  In practical cases, PCL specifications 

are not long, and each statement is not overly complex, so the likelihood of an explosion in tree 

size due to redundant expressions is small.  The PCL evaluation algorithm was implemented 

based on the assumption that small redundancies could be tolerated, and that an over-aggressive 

approach for generating temporaries would be a detriment to search performance.   

PCL Conclusions 

 While PCL is not as expressive as a traditional high-level programming language, it offers a 

language for modeling complex linear and non-linear property composition functions, together 

with an algorithm for mapping specifications into finite domain constraints.  This chapter has 

described the features of the language, the evaluation algorithm for translating PCL into a finite 

domain representation, and has discussed an example application utilizing PCL to model 

parameter-based property composition required for the design space exploration of a 

parameterized component IP library.  The finite domain implementation of PCL integrates with 

the finite domain AND-OR-LEAF tree model described in Chapter III, thus facilitating the 

posting of DESERT OCL constraints on properties whose composition is defined using PCL 

statements.  PCL leverages the concepts of application context and tree navigation from 

DESERT OCL, and mathematics, list iteration and assignment from Mozart.  Some traditional 

language features (iteration, decision) are missing from PCL, but their necessity has yet to be 

established.   
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CHAPTER V  

DESERTFD:  AN INTEGRATED DESIGN SPACE EXPLORATION TOOL 

 Chapters III and IV have described a model for using finite domain constraints to represent 

and prune design spaces.  This chapter describes DesertFD, a design space exploration tool 

which integrates the finite domain model described in Chapter III and the PCL language and 

mapping algorithms described in Chapter IV into the DESERT tool infrastructure.  DesertFD 

offers a hybrid design space exploration implementation, where the finite domain constraint 

design space modeling approach is integrated with the OBDD model used in DESERT.  This 

chapter details the integrated, hybrid design space tool, as well as the online creation and 

evaluation of the finite domain constraint model.  A scalability analysis of the finite domain 

model is presented.   

DESERT Toolflow 

 DESERT offers an integrated toolset for modeling, pruning and enumerating design spaces.  

Figure 27 depicts the DESERT toolflow, where a design space with constraints is provided to 

DESERT through the XML input interface.  DESERT creates a representation of the design 

space and invokes the DesertUI user interface, which allows the user to select constraints to 

apply to the space.  The DesertUI allows forward and backward navigation, and drives the 

OBDD-based design space pruning.  Once the user terminates the interactive pruning of the 

space, the pruned design space is enumerated into a set of configurations, which is returned to 

the user through the output XML interface.   
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Figure 27. DESERT toolflow 

DESERT and Scalability 

 While Chapter II provides a detailed overview of the concepts of design space exploration 

using DESERT, this section discusses some implementation artifacts of DESERT which lead to 

and impact the design of DesertFD.  Specifically, the use of MTBDDs to encode the design 

space leads to issues with scalability, as have been reported by Neema [79].  MTBDDs allow 

values other than 0 and 1 as terminals in the graph-based decision diagram representation.  

Neema utilizes this MTBDD representation to encode property composition functions 

symbolically.  Integer property values of are encoded as terminal values in an MTBDD 

representation.  Many types of property composition functions implement mathematics between 
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property values of children nodes in the AND-OR-LEAF tree (ex. additive property 

composition).  Neema encodes such arithmetic property composition functions as symbolic 

operations over MTBDD nodes.   

 Just as with OBDD representations, MTBDDs achieve compaction by eliminating 

redundancies in the tree.  However, unlike OBDDs, MTBDDs may have many different terminal 

nodes.  MTBDDs achieve compaction effectively when complex operations share the same set of 

numbers as operands, thus allowing terminal nodes to be reused.  However, if an MTBDD is 

used to represent an operation involving little correlation between terminal values, a 

combinatorial explosion in the number of nodes needed to represent the operation can, and often 

does result.  Such “exploded” MTBDDs, for any practical problem size, exhibit poor 

computation times.   

 Neema detailed several experiments on the scalability of the BDD representation of the 

design space [79].  He concluded that the symbolic representation of the space scaled very well 

as a representation of the space, in that spaces consisting of up to  configurations could be 

represented using the BDD approach.  However, other experiments uncovered scalability issues 

when pruning design spaces, where arithmetic operations were invoked during property 

composition.  His experiments (described in more detail later in this chapter) reveal an explosion 

in wall-clock time required to prune spaces of much smaller size (ex.  configurations) when 

pruning involves the invocation of arithmetic operations.  Neema concludes that the BDD 

representation scales well for representing large design spaces, as well as for pruning the space 

using relational and logical operations.  However, for arithmetic operations, the BDD 

representation cannot manage nearly as large of spaces. 

18010

1510

 Although scalability is a concern under arithmetic property composition, the BDD 

representation of the design space offers several valuable features.  It is a symbolic 

representation of the design space, in that all possible design space configurations are 

simultaneously maintained in a single space representation.  Pruning operations on that 

representation apply to the set of all configurations simultaneously, not simply one configuration 

at a time.  For operations which are easily represented under Boolean logic (ex. logical and 

relational operations), the BDD representation scales very well.  Further, the complexity of 

representing and pruning an under-constrained space is equivalent to that of an over-constrained 
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space.  Only after all constraints have been applied is the space enumerated, providing all valid 

configurations as outputs of the pruning process.   

DesertFD Architecture and Implementation 

 DesertFD implements a hybrid design space exploration algorithm, integrating the finite 

domain constraint mapping and model discussed in Chapter III with the symbolic constraint 

satisfaction approach implemented in DESERT.  Figure 28 shows the architecture of a hybrid 

approach to design space exploration, integrating both the finite domain constraint solver and the 

OBDD-based symbolic manipulation tools.  In such a tool, the design space is maintained in a 

centralized repository, and is mapped into the domain of each pruning tool.  The goal of the 

integration is to facilitate wider applicability of the design space representation and scalability of 

exploration and pruning.  A fully hybrid exploration algorithm distributes the task of pruning the 

design space between integrated solvers.  A partitioning approach to hybridization involves the 

analysis of the structure of the space in order to determine how to partition the space into 

subspaces, where each subspace is solved by a different solver.  The results are then integrated.  

A serialized approach involves the partial pruning of the full design space using one solver, 

followed by subsequent pruning in another solver.  Both the partitioning approach and 

serialization approach generalize to an architecture involving multiple solvers.    

 
Figure 28. High-level architecture of a hybrid design space exploration tool 

 111



 

 DesertFD employs a serialized hybrid exploration algorithm.  The design space definition is 

first mapped onto the OBDD representation for symbolic manipulation and constraint 

satisfaction.  Only those constraints which do not invoke operations which cause exponential 

explosions in the BDD representation are made available for application to the symbolic 

representation.  Once the user terminates the coarse-grained space pruning with the BDD 

representation, the resulting pruned design space is mapped into a finite domain constraint 

representation, whereon the remaining constraints are applied.  The following sections describe 

the implementation of the finite domain design space pruning tool and its integration into the 

DESERT toolflow.  Subsequently, a description of the hybrid approach to design space 

exploration employed in DesertFD is discussed. 

Implementation of Finite Domain Pruning 

 The finite domain design space pruning tool implements the finite domain design space 

model discussed in Chapter III.  It also implements PCL and the PCL finite domain translator 

discussed in Chapter IV.  The following sections describe the integration of the finite domain 

model into the DESERT infrastructure and toolflow.  Figure 29 depicts the DesertFD toolflow 

for translating and pruning a design space specification with finite domain constraints.  The 

toolflow utilizes and extends existing infrastructure from the DESERT toolflow.  A design space 

is provided to DesertFD in the form of an XML file.  The design space specification encodes not 

only the design space AND-OR-LEAF tree, but also contains the constraints and any PCL 

functions specified by the user.  DesertFD instantiates the design space model, and parses the 

constraints and PCL functions.  Next, the design space is evaluated.  Design space evaluation, in 

the context of the finite domain constraint implementation, is the process of translating the 

design space specification, constraints, and PCL statements into the finite domain constraint 

representation.  The evaluator sends the resulting design space specification to the Oz Engine for 

implementation of the finite domain search problem.  The results of the search are recovered 

from the Oz Engine and returned as a set of design configurations to the user through the output 

XML interface.  Each of these important steps is described in more detail below. 
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Figure 29. DesertFD Toolflow for Finite Domain Design Space Search 

Design Space Evaluation 

 Design Space Evaluation is the process of translating the input design space specification 

into a finite domain representation.  The toolflow for the evaluation module is depicted in Figure 

30.  The module takes as inputs the AND-OR-LEAF tree specification built from the XML input 

file, parsed constraint specifications and parsed PCL specifications.  The parsed specifications 

are passed in the form of abstract syntax trees, which are analyzed in the evaluation modules.  

All three evaluation sub-modules (Constraint Evaluation, AND-OR-LEAF Evaluation and PCL 

Evaluation) perform a mapping onto a Mozart abstract syntax tree (AST).  The Mozart AST 

provides a clean abstraction of the entities in a Mozart-based finite domain model, facilitating the 
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separation of the instantiation of a finite domain model from the mechanics of its 

implementation.  Once the three evaluation sub-modules have mapped their respective input 

specifications into the Mozart AST, the resulting model of the finite domain representation is 

translated into a set of commands which are issued to the Mozart solver through a TCP interface.  

The command generator module is responsible for managing the proper creation and formatting 

of commands such that the finite domain model can be received and instantiated properly within 

Mozart.  The TCP interface is a simple duplex interface that issues data to the Mozart 

environment.   

Configuration 
Commands

TCP Interface

Command Generator

Mozart Abstract Syntax Tree

AND-OR-
LEAF 

Evaluation

Constraint 
Evaluation

PCL 
Evaluation

Design 
Space Tree

Parsed 
Constraints

Parsed PCL 
Specs

 
Figure 30. Toolflow for DesertFD’s Finite Domain Design Space Evaluation 

 The evaluation of the design space specification to produce a finite domain model depends 

on the three evaluation sub-modules depicted in Figure 30.  Each sub-module implements a 

semantic translation from a given input specification onto the Mozart AST.  The AND-OR-

LEAF evaluation module implements the finite domain translation algorithms discussed in 

Chapter III, where the select variables and property variables are instantiated.  The DesertFD 

support infrastructure supplied to the Mozart solver implements the finite domain constraints that 
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model parent-child tree relationships for both the select variables and for the various classes of 

property composition.  The AND-OR-LEAF evaluation sub-module simply instantiates 

references to these constraints, supplying the appropriate finite domain variables as arguments.  

 The constraint evaluation module implements the translation of DESERT OCL constraint 

specifications into finite domain constraints.  Each constraint has an associated application 

context, specified by the user.  The constraint evaluator evaluates each constraint at its context 

by translating context access functions and property access functions into relations between finite 

domain variables, as discussed in Chapter III.  These relations are mapped onto the Mozart AST 

for later instantiation into Mozart.   

 The PCL evaluation module implements the evaluation algorithms discussed in Chapter IV.  

All PCL statements are evaluated against their appropriate contexts.  In contrast to constraints, 

PCL statements apply to a leaf node as well as to all its tree ancestors.  Thus the translator must 

trace PCL context points back from an initial context and repeatedly apply them to each ancestor 

in order to correctly implement property composition.  Note that if two context points share an 

ancestor, the PCL evaluator need only map the evaluation of the common ancestor once.  The 

evaluation of a PCL specification returns an expression tree, which is then translated into an 

expression tree in the Mozart AST.   

 Once the three evaluation modules have translated their respective input specifications into 

the Mozart AST, the complete AST is translated into commands.  These commands model 

instructions for instantiating the finite domain model, together with instructions for properly 

managing variable distribution.  The commands are issued to the TCP interface as a simple byte 

stream. 

The Oz Engine 

 The finite domain implementation of design space exploration utilizes the Oz engine utility 

provided with the Mozart tool infrastructure.  The Oz engine facilitates stand-alone execution of 

Oz programs.  There are several ways to provide the Oz engine with the finite domain model to 

execute.  A finite domain model may be instantiated in Oz code, compiled and linked with the 

Mozart build tools, and packaged as a Mozart module.  The module name is then passed to the 

Oz Engine via command line parameter on invocation, whereon the engine loads the module and 

invokes the module’s specified entry point.  Oz supports external communication through several 
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interfaces: file I/O, XML, and inter-process communication.  Specifically, Mozart supports inter-

process communication through a TCP connection.  Using this interface, an Oz program 

executing under the Oz Engine can communicate with another program and exchange data.  Oz 

is a dynamic language that provides significant flexibility for runtime adaptation and definition.  

It is also a higher-order language, in that it allows procedures to be passed as data to other 

procedures.  The dynamic features of Oz, together with the TCP interface are used to implement 

the instantiation of the finite domain representation of the design space.   

Mozart Implementation of Design Space Exploration 

 The implementation of the finite domain model for design space exploration utilizes the Oz 

Engine’s TCP interface to receive configuration commands.  Figure 31 illustrates the architecture 

of the Mozart side of DesertFD, where configuration commands are translated into actual finite 

domain constraints, and the finite domain solver is invoked.  The command parsing module is 

responsible for parsing all configuration commands received from the TCP connection, and 

posting the corresponding finite domain constraints.  The solver then iterates between the 

propagation module, and the distribution module.  The propagation module represents the 

instantiated finite domain constraints, while the distributor module implements the distribution 

algorithm discussed in Chapter III.  When the solver arrives at the search exit criteria (which 

varies depending on search scenario), it packages the solution(s) to the finite domain problem it 

encountered, and issues them across the TCP Interface.   

 There are three different search exit criteria available in Mozart: first solution, best solution 

and all solutions.  In the first solution search, the search terminates when a single valid solution 

to the finite domain model is encountered.  In all-solution search, the search terminates only after 

exhaustively exploring the entire space for solutions.  Best solution search is implemented using 

the constraint utilization function discussed in Chapter III, where the solver attempts to 

maximize the utilization of the set of provided constraints.  In this case, the search terminates 

with a single result: the first result encountered which exhibits maximal constraint utilization 

with respect to all other solutions.  Each solution to the finite domain design space problem 

represents a valid configuration which meets the user-provided constraints.  DESERT 

implements all-solutions search, but tests the final pruned BDD representation to determine if the 

pruned configuration space contains too many configurations to enumerate.  As previously 
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discussed, the distribution process partially enumerates the design space as the search proceeds, 

and hence no corresponding test is available in Mozart.  However, a search may be killed 

prematurely; thus if an all-solutions search is invoked on a severely under-constrained large 

design space, a solver could be constructed which kills the search after the number of solutions 

exceeds a certain threshold.  This implementation effectively amounts to the same result as the 

symbolic approach. 

 
Figure 31. DesertFD Mozart Implementation Architecture 

Alternative Implementation 

 Prior to deriving the dynamic command generation and constraint posting implementation 

described above, an alternative implementation architecture was attempted and found infeasible.  

This first attempt involved direct Oz code generation.  Instead of generating commands from the 

Mozart AST, as depicted in Figure 30, this solution implemented a code generator module, 

which instantiated the AST directly as textual Oz code.  The Oz code was then compiled and 
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linked as a Mozart module by the Mozart build tools and executed as a stand-alone application.  

It utilized the same runtime infrastructure that services the operations covered in Figure 31, but 

instead of dynamically communicating through the TCP connection, it wrote its search results to 

a file.  This alternative toolflow is depicted in Figure 32.  The main difference between the code 

generation approach and the dynamic command parsing approach is the need to have the Mozart 

compiler and linker in the tool chain.  The generated code utilizes large data structures which 

hold the finite domain variables for modeling the AND-OR-LEAF tree and tree properties.  The 

Mozart documentation describes the compiler as inefficient when compiling code containing 

large data structures.  For a large design space, the compilation time was longer than ten wall-

clock minutes, while the search required a matter of seconds to determine a single solution.  

After determining the inadequacy of the compiler with regards to large data structures, the 

dynamic command approach described above was implemented.  However, the code generator 

remains as part of the tools for debugging and visualization purposes. 

 A comparison of the two approaches leads to a few conclusions.  The code generation 

approach is easier to visualize and to debug, since a stand-alone program can be separated from 

the DesertFD infrastructure and debugged with the Mozart debugging tools.  The dynamic 

command generation approach is more complex, in that more steps are needed to carry a design 

space through to implementation (command generation, command parsing, and the TCP support 

code on both sides of the interface).  Debugging is a challenge, in that the code which generates 

the commands cannot be separated from the code that processes the commands.  However, the 

dynamic command generation approach is more efficient, in that all parsing and file I/O is 

eliminated through the use of the TCP connection.  Commands are effectively maintained in a 

“compiled” state in the Mozart AST and passed in that state through the generated commands.  

The code generation approach dumps all constraints to a file and relies on the Mozart compiler to 

recover the meaning of the text.  The dynamic command generation approach imposes some 

restrictions on the structures available in the Mozart AST, in that the AST cannot offer any 

structures which cannot be issued to Mozart dynamically.  This presents a challenge when 

implementing certain structures in PCL (if-then-else and iteration).  Such challenges are not 

present in a direct code generation approach, due to the fact that the Mozart language offers an 

if-then-else construct and several iteration constructs that could be instantiated directly.  Nesting 
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of statements within dynamically generated constructs presents a challenge that, while feasible, 

is not straightforward to accomplish. 

 

Oz Code Generator

Mozart Abstract Syntax Tree

DesertApp.oz

Mozart Build Tools

Evaluated Design Space

Mozart Search

Results.txt

 
Figure 32. Alternative DesertFD Implementation Toolflow 

Integration and Hybridization 

 A goal of this research is to integrate the symbolic design space exploration technique 

implemented by Neema with the finite domain constraint implementation.  The reason for this 

integration is to implement a hybrid design space search tool that utilizes each approach where it 

is best suited.  For example, the scalability discussion above highlights the fact that the BDD 

approach scales very well when applied to design spaces containing only logical and relational 

operations.  However, when applied to arithmetic operations, the approach does not scale as well.  

However, the finite domain constraint approach is designed to take advantage of the arithmetic 

operations offered by Mozart, and in fact scales very nicely for arithmetic operations 

(quantitative data follows in this chapter).  BDDs have been shown to be effective at representing 

and managing large, complex logic minimization problems.  Where a design space can be 

effectively encoded into a logic minimization problem, it makes sense to use the BDD to prune 
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the space.  Finite domain constraints have not been shown to be nearly effective as a BDD 

representation at logic minimization.  Hence, the merging of the two approaches can potentially 

increase the overall scalability of design space exploration.  

 A hybrid search toolflow is depicted in Figure 33.  The toolflow represents a merging of the 

BDD-based DESERT toolflow with the finite domain constraint-based tooflow.  The user passes 

a design space definition, complete with constraints and PCL specifications to DesertFD through 

the XML input interface.  The hybrid search approach advocates the use of the BDD-based 

design space representation as an initial coarse-grained design space pruning, where constraints 

not involving arithmetic operations can be applied.  After the coarse-grained pruning step, the 

finite domain constraint representation of the pruned design space is instantiated and searched 

for satisfactory results.  Prior to the encoding of the initial design space into the BDD 

representation, the constraints must be sorted into two sets, differentiated based on the type of 

operations required to be invoked in order to determine constraint satisfaction.  Some constraints 

require the invocation of operations which do not scale well under the BDD representation.  

Other constraints require only operations which do scale well (logic functions, relational 

operations).  The constraint set is thus partitioned based on operation scalability.   Those 

constraints which do not affect the scalability of the BDD are made available to the DesertUI 

module for selection and application by the user, while those which may affect the scalability are 

passed directly to the finite domain constraint evaluation module. 

 Once the user terminates the application of constraints in the symbolic representation, the 

resulting pruned BDD is converted into a logic function which becomes part of the finite domain 

design space representation.  The remaining modules are invoked to deploy the finite domain 

design space representation as described above.  The sections below provide the details of the 

constraint selection and BDD translation functions used in the hybrid design space exploration 

tool.   
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Figure 33. Toolflow Representation of Hybrid BDD-Finite Domain Design Space Exploration Tool 
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Constraint Set Partitioning 

 The set of user-provided constraints is partitioned into two sets based on predictions of 

whether the application of a constraint will result in a non-scaling BDD operation.  In general, 

constraints which require the invocation of operations involving arithmetic functions do not scale 

well under the BDD.  In order to determine whether a constraint application will result in an 

exponential “explosion” of the BDD representation, the constraint set partitioning algorithm 

must examine not only those operations which are directly invoked in the constraint text itself, 

but the operations invoked by the functions that the constraint utilizes.  Of most importance is 

the examination of constraints which depend on composed properties.  Since constraints do not 

directly invoke property composition functions, the constraint set partitioning algorithm must 

determine whether a constraint depends on a property, and if so, whether the property is 

composed.  If the property is a composed property, then the algorithm must determine if the 

invocation of the property composition function will result in a BDD explosion.   

 At this point, the constraint set partitioning algorithm is free to apply heuristics in order to 

predict a BDD explosion.  A first order, pessimistic analysis of a property composition function 

leads to the determination that if the composition function invokes any arithmetic operation 

(addition, subtraction, multiplication, etc), then it is assumed to not scale under the BDD 

representation.  This approach is safe, in that it restricts the set of constraints which are allowed 

to be applied to the BDD representation to a subset of those which will not cause an exponential 

explosion.   

 However, second-order analyses allow other constraints to be passed to the BDD.  As 

discussed above, one reason behind the exponential explosion in the BDD representation is the 

lack of reuse of MTBDD terminal nodes.  An analysis of a DESERT property and its 

corresponding domain may lead to a high likelihood of terminal node reuse.  In the case where 

the declared domain of a property is sufficiently small, it may be the case that for additive 

properties, the BDD representation does scale.  However, the scalability for such an additive 

property also depends on the size of the AND-OR-LEAF tree and its structure as well.  Further 

quantitative investigations of such heuristics are needed in order to determine appropriate cases 

where arithmetic properties do scale well under the BDD representation. 
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From BDD to Logic Function 

 Once the user finishes applying the partitioned constraint set to the symbolic design space 

representation, the resulting pruned design space must be translated into a finite domain 

constraint representation.  The pruned BDD encodes relationships between design configurations 

that result from the application of the constraints as specified by the user.  However the BDD 

does not retain the original AND-OR-LEAF tree structure explicitly.  DESERT retains the 

encodings of each node in the AND-OR-LEAF tree in order to identify what nodes remain in the 

pruned design space, and what nodes have been pruned.  DESERT does not convert a BDD 

representation back into an AND-OR-LEAF tree.  Instead, when the pruning of the space 

terminates, DESERT simply enumerates all solutions to the BDD.  Each BDD solution 

represents one valid design configuration.  DESERT then iterates through the list of BDD 

solutions and builds a configuration list from it by querying each BDD solution as to whether or 

not each node in the AND-OR-LEAF tree has been selected for inclusion in the tree.  Such 

enumerative techniques are appropriate under the original use case of DESERT, where the 

design space pruning is assumed to prune the space down to a manageable (  

configurations) size.  However, for the hybrid approach, it is intended to use the BDD 

representation to prune the design space, resulting in smaller, but still very large (  –  

configurations) design spaces.  Enumeration of these coarse-grained pruned design spaces is 

prohibitively expensive.  Thus DesertFD implements an algorithm to recover the information 

encoded in the BDD without enumerating the space. 

2~ 10

5010 10010

 DesertFD converts the BDD representation of the coarse-grained pruned design space into a 

logic function.  When the user finishes the application of constraints and the DesertUI dialog 

closes, all MTBDD nodes in the BDD representation of the space are quantified out of the 

representation.  The resulting OBDD models a logic function whose “true” outcomes model 

valid design configurations.  The logic function itself is not exponential in size, but models a 

potentially exponential number of design configurations.   The BDD nodes represent the 

variables of the logic function.  These variables originate with the encoding of the design space.  

The logic function modeled by the BDD only correlates with the AND-OR-LEAF tree through 

these encoding variables.  Each tree node may have multiple bits assigned to it for its encoding, 

depending on its location in the tree and the number and type of descendants it has.  The logic 

function specifies which nodes are included in a configuration.  If the encoding of a particular 
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node in the AND-OR-LEAF tree is not implied by the BDD representation, then the node has 

been pruned from the design space.  It may also be the case that a node has been marked as 

included for some, but not all configurations. 

 The finite domain representation of the AND-OR-LEAF tree involves the creation of 

Boolean select variables for each node in the tree to model whether a node has been selected for 

inclusion in a configuration or not.  These select variables correspond to the nodes in the AND-

OR-LEAF tree in much the same way as the binary encoding bit string in the BDD corresponds 

to a tree node.  A BDD could in fact be constructed from BDD variables which mimic the select 

variables of the AND-OR-LEAF tree.  This new BDD could model the same logic operations 

between nodes as the original BDD.  Thus this second BDD would become an equivalent design 

space representation, but instead of depending on the binary encoding bit strings, the second 

BDD depends only on variables which correspond to the Boolean select variables in the finite 

domain model.  The BDD To Logic Function implements precisely this conversion, where a new 

BDD is created from the pruned BDD.  Equation (33) gives the implementation of the BDD 

update function, where  represents the pruned BDD, is the set of all nodes in the 

AND-OR-LEAF tree, and 

PBDD Nodes

BddVar  is the set of BDD variables in .  Let  

 be a function that maps a node in the AND-OR-LEAF tree to a 

corresponding BDD variable.  This BDD variable models the select variable of the finite domain 

model.  The set of BDD variables which correspond to node selection is distinct from the set of 

encoding variables in the pruned BDD.  Let  be a function that returns a the BDD 

corresponding to the binary encoding of a node (note: see Neema [79] for details on design space 

encoding and encoding algorithm).  Equation (33) establishes the equivalence between the BDD 

variables modeling node selection with the BDD modeling node encoding. 

PBDD

:SelectVar Nodes BddVar→

Encoding

 ( ( )
n Nodes

APBDD PBDD SelectVar n Encoding n
∈

= ∧ ⇔ ( ))∏  (33) 

where, in this context, the product implies conjunction over the BDDs resulting from the 

equivalence operation between the select variable for a node and the BDD representing the 

encoding of that node.   represents an augmented pruned BDD. APBDD

 Once the pruned BDD has been augmented with the node equivalence statements modeled 

in equation (33), all encoding variables are existentially quantified out.  Existential quantification 

is used to implement variable substitution, where the BDD variables modeling node selection are 
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substituted into the pruned BDD in the place of their corresponding set of encoding variables.  

The existential quantification is given in equation (34).  Let  be a set of 

BDDs.  Then, 

( )
n Nodes

E Encoding n
∈

= ∪

 ( ) ( )( )
( ) ( )

0
v v E v E

SBDD APBDD v v
∀ ∈ ∨ ¬ ∈

= ∧ = ∨ =1∏  (34) 

where the product again refers to conjunction.   

 The BDD that results from the existential quantification of all encoding BDD variables 

represents a logic function defined on only the node select variables.  The canonical form of the 

logic function modeled by the BDD can be explicitly represented as a set of finite domain 

constraints which relate the select variables of the design space model.  The algorithm for 

implementing the recovery of the logic function is implemented in two steps.  First, all paths in 

the BDD from the one terminal back to the root node are marked.  Any path in the BDD that 

leads to the one terminal node represents a valid configuration.  Algorithm 16 provides an 

implementation of the reverse walk through the BDD structure, marking all paths.  The algorithm 

is invoked at the one terminal node.   

 
(1) MarkAncestors(BddNode) 
(2)  //BddNode is a node in an Ordered  
(3)  //  Binary Decision Diagram 
(4)    
(5)  if BddNode is already marked 
(6)   return 
(7)   
(8)  mark BddNode 
(9)  ForAll l in BddNode.inputLinks { 
(10)   Mark l 
(11)   MarkAncestors(l.source) 
(12)  } 
(13) end 

Algorithm 16.  MarkAncestors algorithm, for reverse traversal of an OBDD 

 Once the ancestors of the one terminal node are marked, the algorithm proceeds with the 

translation of the BDD into a logic function.  A node in an OBDD represents a variable in the 

logic function.  Each variable may be negated, indicated by a flag in the node.  Each node has at 
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most two output connections: a “one” output connection, and a “zero” output connection.  The 

“one” connection models the conjunction of the variable with the expression modeled by the 

BDD rooted at the destination of the connection.  A “zero” output connection models the 

conjunction of the negation of the node variable with the expression resulting from an evaluation 

of the connection destination.  In the case where both connections are present in the BDD, the 

resulting logic function is a disjunction of the conjunctions modeled by each connection.  Figure 

34 gives a simple example of an OBDD which models the function ( ) ( )A C A B C∧¬ ∨ ¬ ∧ ∧¬ .   

A

B

C

0

1

0 1

1

0

1 0

 
Figure 34. Example OBDD 

 The algorithm for converting a BDD node into a logic expression is presented in Algorithm 

17.  The algorithm executes after the nodes in the BDD have been marked.  It recursively builds 

a logic expression tree from the nodes in the tree.  It examines each of the two possible output 

connections of the node in turn.  If an output connection is marked, it recurses to translate the 

BDD rooted at the destination of the connection into an expression tree modeling the 

corresponding logic expression.  It then adds a node to the returned expression tree, including the 

variable modeled by the node in the expression.  The addition of the variable into the expression 

tree is accomplished through the conjunction of the node’s variable with the expression retuned 

by the recursive function invocation.  Conjunction and disjunction are operations that are 

supported by the expression tree, and are captured as binary expression tree nodes whose 

operation correspond to the conjunction or disjunction operation, and whose children are the 

arguments to the operation.  In the case of the “one” output connection, the returned expression 

is AND’ed with the variable, while in the case of the “zero” output connection, the returned 
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expression is AND’ed with the logical negation of the variable.  In the case where both children 

are marked, the algorithm returns in line (20) the disjunction of the two children expressions.  In 

the case where only one child is marked, the appropriate child expression is returned.  The case 

where no child is marked does not occur, since marking is performed from the bottom of the tree 

to the top. 

 
(1) ExprTree =BddNodeToLogicExpr(BddNode) 
(2)  //BddNode is a node in an Ordered  
(3)  // Binary Decision Diagram 
(4)  if BddNode is the One Terminal 
(5)   return ExprTree(TRUE) 
(6)    
(7)  ExprTree oneResult, zeroResult 
(8)    
(9)  if BddNode’s “one” output connection is marked { 
(10)   oneChExpr = BddNodeToLogicExpr(BddNode.oneChild) 
(11)   oneResult = new ExprTree(oneChExpr, AND,  
(12)          BddNode.variable) 
(13)  } 
(14)  if BddNode’s “zero” output connection is marked { 
(15)   zeroChExpr= BddNodeToLogicExpr(BddNode.zeroChild) 
(16)   zeroResult = new ExprTree(zeroChildExpr, AND, 
(17)          NOT(BddNode.variable)) 
(18)  } 
(19)   
(20)  if both children are marked 
(21)   return new ExprTree(oneResult, OR, zeroResult) 
(22)  else if “one” output child is marked 
(23)   return oneResult 
(24)  else if “zero” output child is marked 
(25)   return zeroResult 
(26)  else 
(27)   return NULL 
(28) end 

Algorithm 17.  BddNodeToLogicExpr algorithm, implementing the translation of a BDD rooted at a node into a 
logic expression 

 The entry point to the BDD translation algorithm is provided in Algorithm 18.  This 

algorithm simply invokes the node marking algorithm, followed by the invocation of Algorithm 

17 to translate the root node into a logic expression.  The result of the translation is an expression 
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tree modeling the logic function represented by the BDD.  This expression tree can be easily 

mapped onto the Mozart AST for translation into a finite domain constraint expression. 

 
(1) ExprTree =BddToLogicExpression(PBDD) 
(2)  //PBDD is a pruned Ordered Binary Decision Diagram 
(3)  MarkAncestors(PBDD.oneTerminal) 
(4)  return BddNodeToLogicExpr(PBDD.root) 
(5) end 

Algorithm 18.  BddToLogicExpression algorithm, implementing the translation of a BDD to a logic expression 
tree 

Structural Redundancy 

 The translation of the pruned BDD into a logic expression over the select finite domain 

variables allows the finite domain representation of the design space to leverage the results of the 

BDD-based pruning.  The solutions to the resulting logic function specify all satisfactory 

solutions to the design space exploration problem.  The application of those constraints which 

are deemed inappropriate for application under the BDD representation further prunes the space.  

This logic function alone is theoretically a sufficient representation of the design space to 

facilitate pruning, since the function encodes not only relationships between configurations, but 

also the structure of the AND-OR-LEAF tree.  However, the format of the tree structure 

information encoded in the logic function limits propagation.  The finite domain model for the 

AND-OR-LEAF tree, in contrast, has been designed to facilitate propagation.  Further, 

constraints are specified against the AND-OR-LEAF tree proper, as opposed to the binary 

encoding of the tree.  While it is possible (and indeed is accomplished by DESERT) to convert 

constraints into logic formulas and apply them to the constraint representation through logic 

operations, the finite domain constraint solver has not been shown to be as efficient as other 

representation techniques (ex. OBDDs) at solving logic problems.  The logic-oriented approach 

would effectively amount to an encoding of the BDD approach using finite domain constraints, 

and would not leverage to the extent possible the powerful propagation features offered by the 

original finite domain design space model. 

 A feature of the concurrent nature of a finite domain constraint model is the ability to add 

constraints and information to the problem specification.  Such additions strengthen the 

constraint store and can lead to a more rapid convergence on a solution.  In this sense, partially 
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redundant constraints can be helpful.  However, the addition of too much information can lead to 

scalability issues with the model due to the addition of state information. 

 With respect to the merging of the BDD representation with the finite domain 

representation, the translation of the BDD into a logic function over the AND-OR-LEAF select 

variables represents a re-encoding into finite domain constraints of the structural information of 

the design space.  The addition of the logic function to the finite domain model enforces the 

relationships that are derived during BDD-based pruning.  It does add to the state of the problem 

and therefore does affect the scalability of the finite domain search.  However, the scalability of 

the overall toolset is positively impacted due to the fact that the BDD can be applied to some 

design spaces where the finite domain constraint approach proves inefficient.     

Quantitative Scalability Analysis 

 The ability to manage large design spaces is a critical requirement in design space 

exploration.  This section reports on a quantitative scalability analysis of the finite domain design 

space representation and exploration algorithms.  It leverages a parametric design space model 

developed by Neema for the evaluation of DESERT.  The analysis seeks to determine how well 

the finite domain representation scales with respect to design space size. 

Parametric Design Space Generation 

 The evaluation of DesertFD captures the performance of the finite domain search over 

automatically generated design spaces.  The space generation algorithm was adapted from the 

parameter-based space generator algorithm developed by Neema.  The generator creates an 

AND-OR-LEAF tree, where the depth, width, and content of the tree are specified through 

parameters.  The generator creates full, dense design spaces, where LEAF nodes only occur at 

the maximum depth of the tree.  The tree is rooted at an AND node.  The user specifies the 

maximum depth of the tree through the parameter , where the root is at level 0 and all LEAF 

nodes in the tree appear at level .  An interior tree node has LEAF children if and only if it is at 

level  in the tree.  The number of children created for an OR node is controlled by the 

parameter 

L

L

1L −

AltN , representing the number of alternatives represented by the parent.  The 

decomposition type of each OR-node child is determined strictly by node level:  LEAF nodes are 

generated at level , otherwise OR-nodes contain only AND-decomposed children.  The L
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number and decomposition of children of an AND node is controlled by two parameters:  and ON

AN .  The  parameter specifies the number of children of an AND node with OR 

decomposition, while the 

ON

AN  parameter specifies the number of children with AND-

decomposition.  The total number of children of an AND node  is the sum of these two 

parameters:  .   For AND nodes at level 

CN

C AN N N= + O 1L −  in the tree,  LEAF nodes are 

generated.  Figure 35 depicts a generated AND-OR-LEAF tree, where square boxes represent 

AND-decomposed nodes, diamond-shaped boxes represent OR-decomposed nodes, and rounded 

boxes represent LEAF nodes at level  of the tree. 

CN

L

 
Figure 35. Generated AND-OR-LEAF tree, adapted from Neema [79] 

 A single design space property is defined over the generated AND-OR-LEAF tree.  The 

property is defined to be a simple additive property.   Each LEAF node in the generated tree is 

assigned a property value that is sampled from a random variable.  The scalability of the finite 

domain AND-OR-LEAF design space representation and exploration algorithms are studied with 

respect to a single constraint that expresses a bound on the composed property value of the root 
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of the AND-OR-LEAF tree.  The constraint is generated according to a bound parameter passed 

to the generator.   

 The design space generation tool was adapted from the specification developed by Neema to 

better test the scalability of the finite domain design space representation.  Neema’s design space 

generation algorithm assigns to each primitive a property value between 0 and 127 that is 

produced by sampling a uniformly distributed random variable.  Since the property defined over 

the design space is an additive property, the composed property value of the root-level AND-

node for a single configuration can be calculated by summing the property values of all LEAF 

nodes that are selected for inclusion in the configuration.  As the size of the design space 

increases, the number of leaf nodes in each configuration increases as well.  As the number of 

leaf nodes becomes large, the composed property value can be approximated by a constant, times 

the average value of the random variable used to sample LEAF node property values.  Due to the 

dense nature of the design space composition, as the size of the design space increases, the 

number of leaf nodes per configuration becomes approximately the same, and hence there is little 

difference from one design configuration to another between the composed property values at the 

root node.  When examining the value of the property at the root node across all design 

configurations, the range of possible values tend to cluster around a particular point on a number 

line.  The point is equal to the average number of LEAF nodes across the configurations in the 

design, multiplied by the average LEAF node property value.  As the size of each configuration 

increases, and as the number of configurations in the space increases, the clustering around this 

point becomes more dense.   

 A constraint applies a bound to that number line, in that all configurations whose composed 

property value lies to the left of the constraint bound are kept, while those to the right are 

discarded or pruned.  Due to the clustering property of the design space generation tool, a 

constraint tends to have an “all-or-nothing” effect in design space pruning.  If the constraint is 

placed to the left of the cluster, the likelihood of finding a satisfactory configuration in the space 

is small.  On the other hand, if the constraint bound is placed to the right of the cluster, the 

constraint has almost no effect in pruning the space, since most configurations are below the 

bound.  As the density of the cluster increases with the scaling up of the design space size, it 

becomes increasingly difficult to establish a constraint bound which does not either severely 

over-restrict or under-restrict the space.   
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 In order to mitigate this clustering behavior, the design space generation utility was adapted.  

A goal of design space pruning is to be able to apply one or more constraints to a large space, 

and thereby reduce the size of the space to a more manageable size.  To mimic this desired 

behavior, a the design space generator was modified to produce design spaces whose 

configurations cluster around two separate points on the number line representing the root-level 

composed property value.  Most configurations are to cluster around the greater of the two 

points, while a few are to cluster around the smaller point.  In order to accomplish the proper 

clustering, each node in the tree is assigned a flag that determines if it is to be included in the set 

of configurations that cluster around the smaller point.  This flag is propagated during design 

space construction in such a way so as to guarantee the proper construction of a small set of 

“small” configurations.  The design space is constructed from the root node down, and the root 

node is selected for inclusion in “small-valued” configurations.  If an AND node is flagged for 

inclusion in a small-valued configuration, then all its children are likewise flagged as small.  If 

an AND node is not flagged as small, then none of its children are flagged as small.  Algorithm 

19 depicts the implementation of the AND-node generation algorithm. 
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(1) AOLNode =GenAndNode(CurLev,L, IsSmall,  
(2)         AltN , , ON AN ) 

(3)   C ON N N= + A

(4)  AOLNode = new AOLNode(AND) 
(5)  
(6)  if CurLev >= L { 
(7)   //Create  LEAF nodes at bottom of the tree CN
(8)   { }1,..., Ci N∀ ∈  

(9)    AOLNode.children[i] = GenLeafNode(IsSmall) 
(10)  } 
(11)  else { 
(12)   //create  OR node children ON
(13)   { }1,..., Oi N∀ ∈   

(14)    AOLNode.children[i] =  
(15)       GenOrNode(CurLev+1, L, IsSmall,  
(16)          AltN , , ON AN ) 

(17)   //create AN  AND node children 

(18)   { }1,..., Ai N∀ ∈   
(19)    AOLNode.children[i] =  
(20)       GenAndNode(CurLev+1, L, IsSmall, 
(21)           AltN , , ON AN ) 
(22)  }   
(23)   
(24)  return AOLNode 
(25) end 

Algorithm 19.   GenAndNode algorithm for generation of AND nodes in design space scalability study 

  The implementation of the OR-node generation algorithm is given in Algorithm 20.  If the 

OR node is marked for inclusion in “small-valued” configurations, the algorithm must randomly 

select two children of the OR node to likewise mark for inclusion.  If the current level meets or 

exceeds the maximum depth of the tree, the algorithm produces AltN  LEAF nodes.  Otherwise, 

AltN  AND nodes are generated.   
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(1) AOLNode = GenOrNode(CurLev, L, IsSmall,  
(2)         AltN , , ON AN ) 
(3)  AOLNode = new AOLNode(OR) 
(4)  Let IsChildSmall[ AltN ] be an array of Boolean flags  
(5)  Initialize IsChildSmall flags to small 
(6)  
(7)  if IsSmall  
(8)   Set two random members of IsChildSmall to true 
(9)  
(10)  if CurLev >= L { 
(11)   //Create AltN  LEAF nodes at bottom of the tree 

(12)   { }1,..., Alti N∀ ∈  
(13)    AOLNode.children[i] =  
(14)        GenLeafNode(IsChildSmall[i]) 
(15)  } 
(16)  else { 
(17)   {1... }Alti N∀ ∈  
(18)    AOLNode.children[i] =  
(19)       GenAndNode(CurLev+1, L,  
(20)           IsChildSmall[i],  
(21)           AltN , , ON AN ) 
(22)  } 
(23)  return AOLNode 
(24) end 

Algorithm 20.   GenOrNode algorithm to generate OR nodes in design space scalability study 

 LEAF node generation focuses on the production of property values.  In order to create 

composed property values which cluster around two distinct points on the number line, the 

LEAF-level property values are created according to the following specifications.  If the LEAF 

node is marked for inclusion in small-valued configurations, the LEAF property value is sampled 

from an integer random variable uniformly distributed over the interval [0, 5000).  If the node is 

not selected, then the property value is set to a value sampled from a normally distributed 

random variable with mean of 100000 and standard deviation of 200.  Each leaf is assigned a 

property named “AddProp,” which is bound to the randomly generated property value.  The 

“AddProp” property is defined to have simple additive composition (i.e. the composed property 

value is equal to the sum of the property values of the children).  The algorithm implementing 

LEAF node generation is given as Algorithm 21.   
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(1) AOLNode = GenLeafNode(IsSmall) 
(2)  AOLNode = new AOLNode(LEAF) 
(3)  if IsSmall  
(4)   PropValue = uniformly distributed random number 
(5)    between 0 and 5000 
(6)  else 
(7)   PropValue = sample of Gaussian distributed  
(8)       random variable, with mean=100000, 
(9)       stddev = 200 
(10)  end  
(11)    
(12)  AOLNode.property(“AddProp”) = PropValue 
(13)  return AOLNode 
(14) end 

Algorithm 21.  GenLeafNode algorithm to generate LEAF nodes in design space scalability study 

Representing Design Spaces: Propagators and Variables 

 The design space generation tool was used to create several design spaces of increasing size.  

The size of the space is measured by the number of configurations modeled by the space.  Figure 

36 shows a set of generated design spaces, plotted against their respective sizes on a log scale.  

The set of spaces were generated by feeding the parameters 4L = , , , while 

varying 

10AltN = 3ON =

AN .  As can be seen in the plot, the size of the space grows very quickly with respect to 

increases in AN .  Each space represented in Figure 36 was successfully represented in the finite 

domain model.  Figure 37 depicts the number of AND-OR-LEAF tree nodes in each design 

space model.  The number of tree nodes grows linearly with the independent parameter.  Since 

Figure 36 depicts linear growth of the log of the design space size over the range of the 

parameter, it can be concluded that the number of configurations modeled by the design space is 

an exponential function of the number of tree nodes. 
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Figure 36. Size of generated design space, vs. AN  

AND-OR-LEAF Tree Size (L=4, Nalt=10, No=3)
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Figure 37. Number of AND-OR-LEAF tree nodes in the generated design spaces 

 A design space is represented as a set of finite domain variables and constraints.  The finite 

domain constraints implement the tree structure, while the variables encode the state of inclusion 

 136



 

or exclusion from a configuration or composed property values.  Figure 38 depicts the number of 

finite domain variables required to encode the set of design spaces generated for Figure 36.  The 

number of finite domain variables used to represent the space effectively grows with the log of 

the number of design configurations.  Neema reported similar growth characteristics with the 

symbolic design space representation.  A similar linear growth relationship is exhibited in the 

number of propagators created in the finite domain design space model, as show in Figure 39.  

Hence, since the number of propagators and variables used to implement a finite domain 

representation of a design space grows as the log of the number of configurations encoded by the 

space, the finite domain representation itself scales very nicely.  However, the ability to represent 

a design space means very little if a finite domain solver cannot successfully prune the 

representation.   
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Figure 38. Number of finite domain variables used to encode a set of design spaces 
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Number of Finite Domain Propagators Created (L=4, 
Nalts=10, No=3)
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Figure 39. Growth of the number of finite domain propagators created to model the generated design spaces  

Over-, Under- and Critically-Constrained Spaces 

 A DESERT OCL constraint is translated into a set of finite domain constraints that are 

added to the design space model.  These additional constraints strengthen the constraint store by 

providing additional information (through reducing intervals or binding values to variables).  

Adding information to the constraint store implies the potential for propagation.  Hence, adding 

constraints to the design space model can have the effect of decreasing the time to solution 

through the facilitation of propagation.  By adding a constraint that provides no “new” 

information to the store (i.e. the constraint is already entailed by the store), no propagation 

results.  This is effectively what happens when a constraint establishes a bound far to the right of 

the cluster of composed property values, as discussed in the above section.  Large, under-

constrained spaces have a large number of potential solutions.  Distribution over large, severely 

under-constrained spaces results in an exponential growth in memory usage for a finite domain 

constraint solver.  This is due to the fact that distribution effectively performs an enumeration of 

an exponential space.  The finite domain model used in DesertFD is not immune to this 
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characteristic of Mozart.  A worst-case scenario for scalability examines how large of an under-

constrained space can be searched by the finite domain design space model.   

 The following experiments utilize the constraint utilization, best-case search model 

described in Chapter III.  A single constraint is generated at the root node of the AND-OR-LEAF 

tree, which establishes an upper bound on the composed property value at that node.  This 

constraint is assigned a utilization number, and the solver is instructed to find a solution which 

maximizes utilization.  This effectively implements a single-solution search.  In the worst-case 

scenario, the bound established by the constraint is very large and has little effect on the pruning 

of the space.  Specifically, in the experiment below, the constraint value was set at  (the 

composed property values ranged from  to , thus the bound was set at roughly 

an order of magnitude greater than the largest composed property value).  Figure 40 shows the 

time required to determine a single solution to the finite domain problem modeling a severely 

under-constrained design space.  Note that the final three design spaces could not be searched 

due to lack of virtual memory.  Thus, the finite domain approach successfully pruned spaces 

containing  configurations in this worst-case scenario. 

81.0 10×
63.0 10× 75.0 10×

18010

Constraint Application Time for Severely Under-Constrained Space 
(L=4, Nalt=10, No=3)

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

Na

Ti
m

e 
(m

s)

 
Figure 40. Time to a single solution for a severely under-constrained design space 
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 However, there is a significant difference between the worst-case and the best-case scenario.  

The best case scenario with respect to this metric is a space where the application of a constraint 

results in significant propagation and elimination of design configurations.  Such “near critically-

constrained” spaces are not the general case in design space exploration, but their examination 

results in several observations on scalability.  The high impact of propagation on the design 

space search of the best case scenario significantly reduces memory requirements of the search 

and results in much faster search times.  Figure 41 depicts the results of the search of a near-

critically constrained design space.  Not only are the search times nearly an order of magnitude 

better, but spaces of much larger size were able to be searched as well.  In this example, a design 

space of  was pruned in less than 6 seconds.  It should be noted that Figure 41 does not 

predict the constraint application time of all “critically constrained” design spaces.  Research into 

phase transitions indicates that constraint satisfaction problems can be constructed which, when 

critically constrained, contain very few solutions which are very difficult to find.  The results 

presented here do not pretend to contradict such findings, due to the fact that the design space 

constructed in this example does not exhibit a structure which results in a phase transition (or at 

least no phase transition was experimentally discovered). 
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Figure 41. Constraint application time for near-critically constrained design spaces 
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 The finite domain model scalability varies, depending on how tightly constrained the design 

space is.  A finite domain model tends to become exponential in memory size as the number of 

distribution steps grows.  At each distribution step, the space containing the state of the finite 

domain search problem is cloned and adjusted according to the distribution algorithm.  The 

scalability of a finite domain model depends on the number of distribution steps required to 

arrive at a solution, as well as the size of the cloned constraint store.  Figure 42 compares the 

number of distribution steps required to arrive at a solution for the under-constrained and near-

critically constrained design spaces described above.  In the near-critically constrained case, the 

number of spaces cloned remains fairly constant, whereas for the under-constrained case, the 

number of spaces cloned grows linearly.  The size of the constraint store is a function of the 

number of finite domain variables employed in the model, which as Figure 38 shows, grows 

linearly with increasing AN .  The increase in distribution steps required to solve the model, 

together with the increase in size of constraint store, prevents the pruning of under-constrained 

design spaces in this example with AN  greater than or equal to 8.   
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Number of Cloned Spaces in Design Space Search (L=4, 
Nalts=10, No=3)
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Figure 42. Number of space cloned during finite domain evaluation of under-constrained and near-critically 

constrained design spaces 

 The solution of a design space exploration problem becomes increasingly difficult as the 

space transitions from a critically-constrained space to a severely under-constrained space.  

Figure 43 shows the effect of successively relaxing a constraint on a generated design space.  A 

single design space with parameters 4L = , 5AltsN = , 3ON = , and 5AN =  was generated for this 

experiment, and repeatedly solved, using various constraint bounds.  This space models roughly 

 configurations.  The smallest composed property value in the space is 3,068,057, while the 

largest composed property value is 18,876,151.  For this experiment, the space was annotated 

with a single constraint, imposing a bound on the root-level composed property value.  The value 

of this bound was increased over successive executions of the solver.  The chart shows both the 

constraint application time and the number of cloned spaces utilized during the search.  Note that 

for constraint bounds lower than the minimum value, the problem becomes an over-constrained 

space, and the search fails.  All such cases for this space exhibited similar behavior: 

approximately 330 ms search time, with no cloned spaces.  Similarly, for all constraint bounds 

7110
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significantly above the maximum composed value, the space becomes severely under-

constrained, and all searches result in approximately the same search time (2400 ms) and number 

of cloned spaces (366).  The chart clearly shows the correlation between constraint application 

time and number of distribution steps: an increase in the number of distribution steps correlates 

with an increase in the search time. 

 An interesting search result captured in Figure 43 is the behavior of over-constrained design 

spaces.  Interval propagation facilitates bounds-checking and evaluation.  In the case of the 

generated design space, interval propagation was able to establish a lower bound on the 

composed property value prior to the commencement of distribution.  When the constraint bound 

is placed below that lower bound, the constraint solver can immediately determine that the 

design space is over constrained by comparing with this bound.  By virtue of this comparison, 

the search terminates very quickly.  However, while this result will be common in many design 

space compositions, it cannot be generically stated that DesertFD will always be able to 

determine that a space has no solutions without distribution.  The use of logical implication in 

constraints can lead to the construction of an over-constrained design space, but where interval 

propagation cannot determine a bound sufficiently tight so as to detect the infeasibility of the 

space.   

 The severely under-constrained case is also represented in Figure 43.  In the case where the 

constraint bound is placed well above the maximum composed property value of the design 

space, the constraint has no affect on propagation.  In the case of this experiment, when the 

constraint is placed above the value of the upper bound of the initial interval of the composed 

property value of the root node, then the constraint is already entailed by the constraint store, and 

has no effect on propagation.  In the case of this generated example, interval propagation is able 

to determine a tight upper bound to the composed property value at the context of the constraint; 

thus the threshold where the constraint bound has an effect is quite close to the maximum 

composed property value of the design space. 
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Figure 43. Chart showing the constraint application time and number of cloned spaces resulting from the 

solution of a single design space whose constraint bound is successively relaxed 

 Figure 43 illustrates a fairly sharp transition from minimum search time to search times 

closer to the maximum time.  However, a “zoomed in” examination of a section of this graph 

illustrates some interesting relationships during this transition.  The left-most points in the 

dataset plotted in Figure 44 correspond to the over-constrained case, where the constraint bound 

is set below the minimum composed property value in the design space.  As can be seen in the 

figure, as the constraint bound increases, the search time and number of cloned spaces required 

to converge at a solution increases, until peaking between the constraint bound values of 

 and .  The search time then falls, and then falls again sharply just after the 

bound value of .  This is followed by a second cycle of the search time rising and then 

falling.  The plot illustrates the fact that search performance is not simply a linear relationship 

with the constraint bound over the transition from an over-constrained to severely under-

constrained space.  Depending on the structure of the space and the property values involved, 

some design spaces may converge to a solution more quickly than others.  The cyclic nature of 

63.1 10× 63.15 10×
63.15 10×
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the data depicted in Figure 44 suggests a transition from a difficult-to-solve design space to an 

easy-to-solve design space.   
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Figure 44. Chart showing a zoomed-in view of a portion of Figure 43, illustrating the transition from an over-

constrained space to under-constrained space.   

Width vs. Depth 

 The design space generation tool can be used to construct spaces that vary by width as well 

as by depth.  The above experiments that show a change of design space size have varied only 

the number of AND-decomposed children of an AND node through the AN  parameter.  

Effectively this widens the AND-OR-LEAF tree by supplying each AND node with more 

children.  An analysis was performed on the sensitivity of the design space scalability to tree 

structure by varying the width through the  parameter instead of ON AN , and by varying the 

depth instead of the width. 

 The number and position of OR nodes in the design space structure control the orthogonality 

of the space.  Figure 45 shows how the size of a generated space grows as the number of OR-
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decomposed children of an AND node is increased.  In this case, the number of AND-node 

children of OR nodes is fixed at 10, while the quantity of AND-decomposed children of AND 

nodes is fixed at 3.  The depth of the tree is set to 4, as in the previous experiments.  It can be 

seen that the log of the number of configurations modeled in the space is linear in the number of 

OR node children of AND nodes.  By way of comparison, the parameter set , 4L = 10AltsN = , 

,  results in a space modeling  configurations, while the parameter set 3AN = 8ON = 16810 4L = , 

, ,  results in  configurations.  The generated space grows faster 

with 

10AltsN = 8AN = 3ON = 22310

AN  than with . ON
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Figure 45. Chart depicting the change in size of design space against the number of OR node children of an 

AND node.   

 The scalability of the finite domain model is affected by the structure of the space.  By 

increasing the number of OR-node children of an AND node, the generated space contains many 

more OR nodes.  The propagation model for AND node finite domain variables is much stronger 

than the model for OR nodes.  Therefore, a highly orthogonal design space must rely on 

distribution more than a space composed more of AND nodes.  The increased reliance on 

distribution impacts scalability, as described previously.  Figure 46 shows the performance of the 
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constraint solver on highly orthogonal, severely under-constrained design spaces.  The search of 

the space generated for parameter 7ON =  did in fact terminate successfully, but exhibited a very 

long execution time (over 400 seconds), due to virtual memory consumption which exceeded the 

RAM capacity of the benchmark machine.  The search performance grows linearly in the number 

of cloned spaces, but the execution time grows super-linearly.  The data shows poorer scalability 

for highly orthogonal design spaces.   
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Figure 46. Chart showing the constraint solver performance on increasingly orthogonal design spaces 

 An examination of search performance for deep, as opposed to wide, design spaces was also 

performed.  For this experiment, several design spaces were generated with the following 

parameter set: , , 2AltsN = 2AN = 1ON = , and by varying .  Figure 47 plots the log of the 

generated design space size against the maximum depth of the tree.  It can be seen that the log of 

the size of the space is a super-linear function of the depth of the tree. 

L
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Figure 47. Chart showing the sizes of design spaces generated by varying the depth of the AND-OR-LEAF tree  

 The performance of the design space search over deep trees is given in Figure 48.  Both 

dependent variables are plotted in log scale.  While both the search time and number of cloned 

spaces exhibit exponential growth, prior to memory exhaustion occurring at tree depth of 9, the 

observed execution performance is acceptable.  The design space generated , for example, 

is successfully searched in approximately 14 seconds, involving 834 distribution steps.  An 

observation of the performance of the deep design spaces is that they require more distribution 

steps in order to converge on a solution, when compared to wide design spaces.  Chapter III 

describes the propagation model for both select variables and for property composition.  While 

the propagation model is constructed to support upward and downward propagation, values, 

especially those of the boolean select-variables, propagate easily across the children of a node, 

but downward propagation halts at an OR node. 

8L =

 148



 

Constraint Applcation Performace over Varying Depth Trees 
(Nalt=2, Na=2, No=1)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4 5 6 7 8 9

L

Ti
m

e 
(lo

g 
sc

al
e,

 m
s)

0

0.5

1

1.5

2

2.5

3

3.5

# 
C

lo
ne

d 
Sp

ac
es

 (l
og

 s
ca

le
)

Constraint Application Time Number Cloned Spaces

 
Figure 48. Chart showing the performance of constraint application to increasingly deep design spaces 

Experiment Evaluation and Applicability 

 The above experiments illustrate the degree of scalability of the finite domain model for 

design space exploration employed by DesertFD.  This section comments on the fairness of the 

experiments in establishing the scalability, and notes limitations in the tests, prior to the 

summary of findings and conclusions presented in the next section.  

 The design space generation utility produces only full, dense design spaces.  While for some 

cases, this structure represents a worst-case scenario, a more randomly generated design space 

structure may potentially reflect actual design spaces.  Further, only one DESERT OCL 

constraint is generated and applied to the space.  Rarely is it the case that a single constraint will 

drive the design space exploration.  However, for the purpose of illustrating scalability, a single 

constraint does suffice.  Also, the fact that a single constraint is applied renders the use of the 

best-case search for the maximization of constraint utilization as wasted effort.  Specifically, 

once a solution to the constraint is found, the algorithm continues the search in order to prove 
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that a better value cannot be found.  This may result in a larger number of distribution steps than 

would otherwise be needed.   

 The generation of LEAF level property values such that composed property values are 

separated into distinct clusters affects the difficulty of the design space exploration problem.  

When a constraint bound is placed below the values of the majority of the higher cluster, interval 

propagation facilitates the removal of a large number of nodes from the design space prior to the 

first distribution step.  While this illustrates the power of the propagation model, the complexity 

of the problem is reduced significantly prior to distribution. 

 When compared to the symbolic design space representation method employed by Neema, 

the experiments described here lack in a few aspects.  The OBDD representation encodes all 

solutions in the design space.  The experiments here employ a best-case search, where only one 

solution is calculated.  This approach is employed in order to avoid the exponential memory 

growth associated with an all-solutions search across an under-constrained search problem. 

Scalability Conclusions 

 The data support several conclusions.  First, the cause of scalability limitations is related to 

distribution.  Distribution is measured by the number of times the solver clones a space during 

the search.  When the number of distribution steps can be kept small and bounded, the finite 

domain representation of the design space scales very well.  The worst case situation for the 

finite domain representation of a design space is a severely under-constrained space.  Search of 

such spaces rely heavily on distribution, and thus encounter scalability problems.  The 

experiments presented in this chapter illustrate the successful representation and pruning of 

severely under-constrained design spaces modeling up to  configurations in the case of very 

deep design spaces,  configurations for highly orthogonal spaces, and  configurations 

for wide, but less orthogonal spaces.  The experiment examining scalability for critically 

constrained spaces illustrates the pruning of a design space modeling  configurations.   

8710
14010 18010
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 These experiments illustrate the power of the propagation model implemented for design 

space exploration.  The finite domain model described in Chapter III establishes a single Boolean 

finite domain variable for every node in the AND-OR-LEAF tree.  Further, a finite domain 

variable is allocated for every node in the tree for each type of property assigned to the tree.  The 

property variables assigned to interior tree nodes model composed property values.  Without 
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propagation, the solution of a finite domain model would require sufficient distribution steps to 

establish values for each of the select variables and each of the property variables.  Propagation 

facilitates the binding of values to some of these variables based on the values of other variables.  

In the above experiments, the largest number of distribution steps needed to obtain a solution to a 

space was 834, with the parameter set 2AltsN = , 2AN = , 1ON = , and 8L = .  This space results 

in an AND-OR-LEAF tree consisting of 5274 nodes, and models  configurations.  As 

mentioned in the discussion above, it represents the worst case encountered for propagation, due 

limitations on vertical propagation.  However, even with limited propagation, the ratio of 

distribution steps to finite domain variables modeling tree node values is roughly 0.08.   

8610

 Neema reported scalability concerns with the application of arithmetic constraints to the 

symbolic design space representation.  He illustrated the limitation in scalability to design spaces 

modeling up to  configurations.  All experiments in this section have applied arithmetic 

constraints, where the worst-performing worst-case scenario scaled to at least 

configurations.  The scalability of the BDD approach for logical and relational constraints, 

coupled with the ability to prune large, highly under-constrained spaces, supplies the impetus 

behind the unification of the two techniques in the hybrid design space exploration technique. 

1510

8610

Conclusions 

 DesertFD is an integrated design space exploration toolset which builds on the structure of 

DESERT.  Neema developed a highly scalable design space model and exploration techniques 

based on a binary encoding and an OBDD-based symbolic design space representation.  

DesertFD extends DESERT through the translation of the design space model into a finite 

domain constraint representation.  The finite domain representation is translated and dynamically 

instantiated in the Mozart engine, where best-case branch and bound search is used to determine 

a solution which best meets utilization criteria specified by the user.  The best-case solution is 

returned to the user in the DESERT XML syntax.  DesertFD integrates the OBDD-based design 

space exploration tool with the finite domain constraint solver by translating a pruned BDD-

based design space into a logic function, which is then expressed as a finite domain constraint 

expression tree.  This expression tree captures the dependencies derived during BDD-based 

pruning, and applies those dependencies to the finite domain-based search.  Any constraint 

which is determined to potentially cause scalability problems in the BDD representation is 
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marked for application in the finite domain constraint representation.  All other constraints are 

passed to the BDD for potential selection and application by the user.  Once the BDD-based 

pruning is terminated, the representation is translated into a finite domain representation and 

transmitted to the Oz Engine for finite domain search. 

 A quantitative analysis of the scalability of the finite domain representation of design spaces 

has been presented.  The finite domain representation has been shown to scale to large numbers 

of design configurations for various types of design space composition.  The issue of the degree 

of constraint of a design space has been discussed, including an illustration of the best-case 

situation for design space exploration: where a constraint bound is sufficiently close to a solution 

value so as to make the search trajectory obvious to the distribution algorithm.  In such cases, 

very little distribution is needed to determine a solution to the finite domain model, allowing 

very large (up to  configurations) design spaces to be pruned. 37710
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CHAPTER VI  

CONCLUSIONS AND FUTURE WORK 

 Design space exploration is an important area of research in the field of embedded systems 

design.  Design is a process of intelligently weighing tradeoff decisions.  Design space 

exploration formalizes this concept of tradeoff evaluation through the application of formal 

analyses to design compositions.  Design space exploration strives to determine a design or small 

set of designs which meet formally specified criteria.  Several tools have been developed and 

described in the literature which implement design space exploration algorithms tailored to 

various classes of applications.  Each tool takes a different approach with differing metrics and 

degrees of success.  The variety of tools and approaches indicates the difficulty of the design 

space exploration problem, and that, arguably, no single “best” solution approach exists.  Rather, 

hybrid design space exploration approaches must be examined, which integrate and unify 

successful exploration techniques.  This dissertation has examined the development of such a 

hybrid exploration technique, embodied in a tool called DesertFD. 

Summary of Findings 

 DesertFD is built on DESERT, the design space exploration tool developed by Neema.  

DESERT offers a domain-independent design space modeling specification which facilitates the 

specification of a design space as an attributed AND-OR-LEAF tree.  Constraints capture 

relationships between nodes in the tree, and properties quantified over the tree.  Design space 

exploration in DESERT is a constraint satisfaction problem, where the constraints encode the 

non-functional requirements of the design.  DESERT implements the constraint satisfaction 

problem using a symbolic representation of the space and constraints, based on Ordered Binary 

Decision Diagrams.  The OBDD-based representation of the design space has been found to be 

highly scalable, except when pruning operations involve arithmetic operations.   

 DesertFD leverages the domain-independent design space modeling specification of 

DESERT, but translates the design space exploration and constraint satisfaction problem into a 

finite domain constraint representation.  An efficient finite domain propagation model has been 

developed to implement the AND-OR-LEAF tree semantics, as well as property composition 

 153



 

functions for the various classes of property composition supported by DESERT.  DESERT OCL 

constraints have been translated into finite domain constraints as well.  A customized distribution 

algorithm has been implemented to facilitate a complete finite domain design space search.   

 DesertFD extends the design space modeling specification of DESERT with the Property 

Composition Language.  The set of property composition functions supported by DESERT is 

limited to a small set of functions which implement a single composition operation, over a single 

property.  The Property Composition Function facilitates the specification of arbitrarily complex 

mathematical functions for modeling property composition.  PCL functions may reference 

properties other than the property type specified as the result of the composition.  Non-linear 

mathematical operations are also supported, including integer division and modulus, and 

exponentiation.  The PCL specification of properties facilitates a parametric specification of 

property composition, where LEAF nodes need not be supplied with simple numerical data for 

property values.  Rather, value computation can be left as a function of a PCL specification.  

DesertFD provides a translator for PCL which maps PCL specifications into a finite domain 

representation, leveraging the AND-OR-LEAF finite domain representation.    

 DesertFD integrates the OBDD-based symbolic constraint satisfaction engine implemented 

in DESERT with the finite domain constraint search described above.  Due to scalability 

considerations of the OBDD space representation with respect to arithmetic operations, the set of 

constraints supplied in the design space model is sorted based on whether the application of the 

constraint will result in an explosion of BDD nodes in the symbolic representation.  DesertFD 

then prunes the design space using the symbolic approach of DESERT, and translates the 

resulting pruned BDD into a Boolean logic expression.  This expression is translated into a set of 

finite domain constraints, together with the design space specification and the remaining OCL 

constraints.  The finite domain constraints are fed to the Oz Engine dynamically through a TCP 

connection.  When the finite domain constraint solver encounters a solution to the pruned design 

space, it returns the solution to the user.   

 The scalability of the finite domain constraint representation of the design space has been 

quantitatively evaluated.  The design space representation has been found to be highly scalable 

across several classes of generated design spaces.  Scalability limitations in the finite domain 

representation are encountered when the number of distribution steps required to arrive at a 
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solution becomes unbounded.  However, where the number of distribution steps can be kept 

bounded, the finite domain representation is highly scalable. 

Future Work 

 The major result of this research is an integrated toolset implementing design space 

exploration through symbolic pruning and constraint satisfaction.  There are several potential 

directions that can build on the work described in this dissertation, outlined in the sections 

below. 

Design Space Modeling 

 The domain-independent design space modeling specification supported by DESERT and 

DesertFD is limited by the use of enumeration of design choice.  Often, a design space is more 

naturally modeled using a parametric approach.  Currently, OR nodes model design choice.  All 

potential outcomes of a design choice must be enumerated and explicitly included in the design 

space definition.  Certain classes of design spaces are more elegantly modeled with a parametric 

approach, where parameters embody design choice.  Parametric modeling could also be used to 

encode the compositional structure of the space.   

 An issue has arisen when attempting to model the mapping of an application onto 

reconfigurable resources using the current DESERT modeling specification.  The current 

approach for modeling resource allocation involves the creation of a property to represent the 

resource binding, and the specification of the domain of that property to be the set of resources to 

which the object may be bound.  For a configurable resource, an enumeration of the potential 

resource bindings can become prohibitively expensive, if the space of configurability is large.  

Techniques are needed to facilitate the representation of property domains as spaces themselves, 

without requiring explicit enumeration. 

 The representation of shared resources can be complicated in the design space model.  While 

the current resource allocation model facilitates the representation of shared resources (simply 

through the binding of multiple elements to the same resource), property composition functions 

which depend on the characteristic of shared resources are difficult to specify.  An extension of 

the design space model to more explicitly represent shared and sharable resources is warranted. 
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Scalability Improvements with DesertFD 

 The scalability of the hybrid search approach offered by DesertFD should be examined and 

improved.  The scalability analysis of the finite domain design space model illustrated the 

inverse relation between scalability and number of distribution steps.  An examination of 

heuristics to facilitate increased scalability in the finite domain search is warranted.  Mozart 

offers significant flexibility in guiding distribution and search through heuristics.  Multiple 

heuristics have been reported in the literature, and should be evaluated and integrated where 

appropriate in the finite domain search.   

 DesertFD implements a simple integration of the finite domain constraint solver with the 

symbolic BDD-based constraint satisfaction tool.  Future research should quantitatively 

characterize the benefits and drawbacks of each solution technique, and examine the possibility 

of a more dynamic, interactive hybrid search.  Such a dynamic approach could involve the 

translation of the search problem from a finite domain specification back into a BDD-based 

specification for further refinement.  The goal of tighter integration is to improve the scalability 

of the search. 

Solver Integration 

 DesertFD has outlined a hybrid design space exploration technique, involving the OBDD-

based symbolic representation of DESERT and the finite domain constraint representation 

presented in this dissertation.  As discussed previously, the number of approaches identified in 

the literature for modeling and solving embedded system design space exploration problems not 

only justifies, but practically implies the need for hybrid search approaches.  A future direction 

for research with design space exploration tools involves the integration of other modeling 

techniques and solvers.  Specifically, as benchmarks indicate performance benefits of 

pseudoboolean solvers when compared to finite domain solvers, a pseudoboolean solver could be 

integrated into the design space exploration tool suite.   

 Arguably more pressing, however, is the need to integrate a solver which supports floating 

point operations.  This need is highlighted by an attempt to model reliability as a composed 

property.  Reliability is a probabilistic measure of the likelihood of failure of a component or 

system.  Reliability in some systems can be modeled as a composable property, with 

multiplicative composition.  However, due to the probabilistic nature of reliability values, an 
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integer representation of the property composition function necessarily involves explicit 

quantization.  In applications where precision is critical, an implementation of fixed-point 

arithmetic would be necessary to represent with high accuracy the composition operations.  The 

integration of a solver capable of managing floating point calculations mitigates the tedium of 

managing fixed point arithmetic in the integer-based finite domain solver.  Candidate solvers 

include an MILP-based solver or CLP(R).   

 Design space modeling in DESERT and DesertFD facilitates the pruning of spaces based on 

composed structural properties of a design.  These properties abstract away the complexities of 

dynamic interactions at the behavioral level of design, by lumping quantitative estimates of 

worst-case or average-case behavior into single parameters.  Often, these worst-case estimates 

are highly pessimistic, resulting in poor pruning of the design space.  The development and 

integration of behavioral estimation models into the design space exploration flow could be 

explored in order to improve pruning.  However, such approaches need to be tempered with data 

on the size of the design spaces, due to the fact that dynamic behavioral estimation tends to be 

more computationally intensive, and can hamper the scalability of the search. 

 A by-product of solver integration should be increased hybridization of the design space 

search.  The justification for hybridization stipulates that each good search technique 

demonstrates its own strengths, but also has its drawbacks.  As solvers are integrated, 

quantitative analyses must be performed to characterize the behavior of the solver across 

different classes of datasets.  Hybridization seeks to exploit each solver in such a way so as to 

glean the benefits of what each solver does well, and sidestep areas where a solver exhibits poor 

performance.  Further, the task of mapping a problem specification into the solver domain must 

be benchmarked as well in order to facilitate a cost/benefit analysis of dynamically mapping a 

design space representation onto a different solver. 

Embedding Exploration 

 Embedded architectures are becoming larger and more complex.  Often, architectures 

facilitate structural reconfiguration to allow a better fit of an application computation on the 

architecture’s resources.  Currently, the topic of dynamic reconfiguration is an open topic of 

research.  Design space exploration could be used to traverse the space of potential application-

to-architecture mappings at runtime.  However, current approaches utilized in DESERT and 
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DesertFD are likely poor candidates to implement such exploration.  The on-line exploration 

algorithms must be deterministic if they are to be integrated into a real-time embedded system.  

An interesting research direction is the amalgamation of off-line static design space analysis and 

pruning with on-line exploration.  The goal of the off-line search is to prune the full design space 

into a small subspace which can then be pruned and explored deterministically at runtime.  The 

goal is complicated by the need to allow sufficient variance in the on-line design space so as to 

facilitate dynamic optimization.   

Tool Integration 

 The domain-independent nature of DesertFD facilitates its use across a wide variety of 

applications and application domains.  Ongoing research into Model-Integrated Computing 

[83][84] (MIC) seeks to facilitate the rapid development of domain-specific modeling 

environments for use in system design and analysis.  In many such application domains, the 

process of design implies the exploration of a design space.  DesertFD can be integrated into the 

toolflow of the domain-specific modeling environment through semantic translation.  Ongoing 

research into the specification of model-based translators has developed techniques to specialize 

domain-independent model-translation interfaces and APIs into domain-specific interfaces [85].  

Tools and techniques can be explored which facilitate the easy integration of DesertFD into 

model-integrated computing-based toolflows.  Specifically, the PCL offers several built-in 

functions to facilitate access to properties and other context-specific information.  Tools can be 

developed which specialize the PCL with domain-specific information relating concepts in a 

domain-specific language to the domain-independent PCL functions. 
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Appendix A 

PCL LEXICAL ANALISYS SPECIFICATION 

%{ 
#include <stdlib.h> 
#include <string.h> 
 
void handleStrCnst(const char *in, char **out); 
 
 
%} 
%% 
"+" {return(PLUS);} 
"-" {return(MINUS);} 
"*" {return(STAR);} 
"/" {return(FSLASH);} 
"%" {return(PCENT);} 
"<" {return(LT);} 
"<=" {return(LEQ);} 
">" {return(GT);} 
">=" {return(GEQ);} 
"==" {return(EQEQ);} 
"!=" {return(NEQ);} 
"!" {return(BANG);} 
"&&" {return(ANDAND);} 
"||" {return(OROR);} 
"=" {return(EQ);} 
"," {return(COMMA);} 
"(" {return(LPAREN);} 
")" {return(RPAREN);} 
"." {return(DOT);} 
"[" {return(LBRACK);} 
"]" {return(RBRACK);} 
"{" {return(LBRACE);} 
"}" {return(RBRACE);} 
";" {return(SEMICOLON);} 
"if" {return(IF);} 
"then" {return(THEN);} 
"else" {return(ELSE);} 
"elseif" {return(ELSEIF);} 
"return" {return(RETURN);} 
"function" {return(FUNCTION);} 
"var" {return(VAR);} 
"list" {return(LIST);} 
"property" {return(PROPERTY);} 
\"[^\"]*\" {handleStrCnst(yytext, &(yylval.sval));return(STRCNST);} 
[a-zA-Z]([a-zA-Z0-9_])* {yylval.sval=strdup(yytext); return(IDENTIFIER);} 
-?[0-9]+ {sscanf(yytext, "%i",(yylval.ival)); return(DECINT);} 
\n   
" "   
\t   
%% 
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void handleStrCnst(const char *in, char **out) 
{ 
 int len; 
 if(in[0] == '\"') 
  *out = strdup(&in[1]); 
 else 
  *out = strdup(in); 
   
 len = strlen(*out); 
 if((*out)[len-1] == '"') 
  (*out)[len-1] = '\0'; 
} 
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Appendix B 

PCL CONTEXT-FREE GRAMMAR SPECIFICATION 

%{ 
int yylex(void); 
%} 
 
%token PLUS 
%token MINUS 
%token STAR 
%token FSLASH 
%token PCENT 
%token BANG 
%token LT 
%token LEQ 
%token GT 
%token GEQ 
%token EQEQ 
%token NEQ 
%token ANDAND 
%token OROR 
%token EQ 
%token COMMA 
%token LPAREN 
%token RPAREN 
%token DOT 
%token LBRACK 
%token RBRACK 
%token LBRACE 
%token RBRACE 
%token SEMICOLON 
%token IF 
%token THEN 
%token ELSE 
%token ELSEIF 
%token RETURN 
%token FUNCTION 
%token VAR 
%token LIST 
%token PROPERTY 
%token STRCNST 
%token IDENTIFIER 
%token DECINT 
 
 
%left PLUS MINUS STAR FSLASH PCENT ANDAND OROR 
%nonassoc LT LEQ GT GEQ EQEQ NEQ 
 
%% 
 
prog: funcList   
 ; 
funcList: func    
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 | func funcList   
 ; 
func: prototype body  
 ; 
prototype: PROPERTY IDENTIFIER formalParams     
 | FUNCTION VAR EQ IDENTIFIER formalParams  
 | FUNCTION LIST EQ IDENTIFIER formalParams  
 | FUNCTION IDENTIFIER formalParams      
 ; 
formalParams: LPAREN formalParamList RPAREN   
 ; 
formalParamList: formalParam COMMA formalParamList   
 | formalParam     
 | /*nothing*/   
 ; 
formalParam: varDecl     
 | listDecl    
 ; 
varDecl: VAR IDENTIFIER   
 ; 
varDeclInit: varDecl EQ opExpression  
 ; 
listDecl: LIST IDENTIFIER   
 ; 
listDeclInit: listDecl EQ opExpression     
 | listDecl EQ LBRACK varList RBRACK   
 ; 
varList: varList COMMA IDENTIFIER   
 | IDENTIFIER      
 | /*nothing*/      
 ; 
body: LBRACE statementList RBRACE   
 ; 
statementList: statement   
 | statement statementList   
 ; 
statement: declStatement SEMICOLON  
 | opStatement SEMICOLON  
 | controlStatement SEMICOLON  
 | returnStatement SEMICOLON  
 ; 
declStatement: varDeclInit   
 | varDecl   
 | listDeclInit  
 | listDecl   
 ; 
controlStatement: ifStatement   
 ; 
ifStatement: ifPart elseifList elsePart  
 ; 
ifPart: IF conditionExpr THEN body  
 ; 
elseifList: elseifPart elseifList  
 | /*nothing*/    
 ; 
elseifPart: ELSEIF conditionExpr THEN body  
 ; 
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elsePart: ELSE body    
 | /*nothing*/   
 ; 
conditionExpr: LPAREN opExpression RPAREN  
 ; 
returnStatement: RETURN opExpression  
 ; 
opStatement: assignStatement   
 | callStatement   
 ; 
callExpression: call DOT callExpression     
 | call       
 ; 
callStatement: callExpression   
 ; 
call: IDENTIFIER LPAREN actParams RPAREN  
 ; 
actParams: actParamList   
 |/*nothing*/   
 ; 
actParamList: actParam COMMA actParamList  
 | actParam      
 ; 
actParam: callExpression    
 | operand         
 ; 
assignStatement: IDENTIFIER EQ opExpression  
 ; 
opExpression: opExpression PLUS opExpression    
 | opExpression MINUS opExpression   
 | opExpression STAR opExpression   
 | opExpression FSLASH opExpression   
 | opExpression PCENT opExpression   
 | opExpression ANDAND opExpression   
 | opExpression OROR opExpression   
 | opExpression EQEQ opExpression   
 | opExpression NEQ opExpression    
 | opExpression LT opExpression    
 | opExpression LEQ opExpression    
 | opExpression GT opExpression    
 | opExpression GEQ opExpression    
 | opParenExpr       
 | operand       
 | BANG operand      
 | callExpression      
 ; 
opParenExpr: LPAREN opExpression RPAREN  
 | MINUS LPAREN opExpression RPAREN  
 ; 
operand: IDENTIFIER    
 | MINUS IDENTIFIER  
 | DECINT    
 | STRCNST    
 ; 
%% 
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APPENDIX C 

CASE STUDY:  EMBEDDED AUTOMOTIVE SOFTWARE  

 The automotive industry currently seeks to develop robust, reliable, fault-tolerant embedded 

implementations of x-by-wire applications.  X-by-wire refers to the replacement of mechanical 

or hydraulic systems in the vehicle with computer-based systems.  One such application is called 

steer-by-wire, where the traditional mechanical/hydraulic connection between the steering wheel 

of a vehicle and its wheels is replaced by an electronic connection between sensors and actuators.  

X-by-wire applications present several design challenges, due to the impact of strict safety and 

reliability requirements on the embedded control system.  This appendix examines the tradeoff 

between increased application reliability brought through redundancy, and the hard 

schedulability requirements imposed on the system.  DesertFD is used to model the tradeoff 

decision and its impact on resource allocation as a design space exploration problem.  

Specifically, the space of alternative application-to-architecture mappings is captured as a design 

space, and is analyzed over reliability and schedulability metrics.   

 Steer-By-Wire Application 

 Steer-by-wire utilizes sensors and actuators to facilitate the steering control of a vehicle.  

Typically, steering in a passenger vehicle is implemented through a physical connection between 

the steering column and the rack and pinion system connected to the wheels.  The rack and 

pinion is responsible for converting adjustments to the steering wheel angle into lateral 

adjustments to wheel position.  Hydraulics have been introduced into the steering system to 

implement power steering, facilitating a reduction in the force required on the steering wheel to 

implement a turn.  Steer-by-wire seeks to replace this physical connection between the steering 

column and the rack and pinion with a reliable, fault-tolerant embedded computer system.  

Sensors are placed on the steering column to capture change-of-direction input from the user.  

Actuators are placed on the rack and pinion to allow the computer system to control lateral wheel 

motion.  The embedded computer system implements an intelligent feedback control algorithm, 

which not only facilitate steering changes based on user input, but also potentially increases the 

safety of the vehicle through explicit detection and management of faults. 
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 The integration of embedded processing in the vehicle control platform facilitates new 

approaches to safety, reliability and fault-tolerance in vehicle design.  Steer-by-wire, for 

example, takes not only the current state of the vehicle and the user-specified direction change 

requests, but also uses other information gleaned from sensors throughout the vehicle.  Sensors 

provide information on the current position of all four wheels, the state of the motor, pitch, yaw 

and roll of the vehicle and several other relevant metrics.  This information is fed to the control 

algorithm in order to determine the proper actuation to apply.  The control algorithms are 

designed to react to faults so as to maximize the safety of the vehicle occupants.  In the presence 

of faults, the system enters a degraded mode of operation.  In the presence of serious faults, a 

mechanical steering system backup is enabled. 

 Typical steer-by-wire applications utilize sensors and actuators scattered throughout the 

vehicle.  The embedded computing platform consists of several ECUs (Electronic Control Units) 

connected through a fault-tolerant bus.  A typical ECU contains a microprocessor, memory and a 

bus interface controller.  Sensors and actuators interface directly to an ECU.  The physical layout 

of the embedded platform typically relates to the location of the sensors.  The steer-by-wire 

algorithm utilizes position information gleaned from sensors at each of the four wheels.  The 

application also implements a supervisory control algorithm which is responsible for analyzing 

the current fault state of the system and for determining whether and when to disengage actuators 

and engage mechanical backups.  Figure 49 shows the embedded platform used in this design 

space analysis.  The platform consists of five ECUs, one for each wheel in the vehicle, and one 

“supervisor” ECU.  Each ECU is connected to a set of sensors and actuators.  Each wheel ECU is 

interfaced to wheel position sensors, which sense the absolute and relative wheel position.  Each 

wheel ECU is interfaced to an actuator which implements the torque on the rack and pinion 

responsible for turning each wheel.  Sensors are placed on the steering wheel to sense torque and 

handwheel position.  The torque sensor is interfaced to ECU F1, while ECUs F2 and RL are 

interfaced to handwheel position sensors.  In order to give the vehicle operator a sense of 

connectivity with the road, feedback is provided to the steering handwheel through the Steering 

Feedback Torque actuator interfaced to ECU F1. 
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Figure 49. Embedded automotive computing platform for steer-by-wire application 

 The steer-by-wire application examined in this case study seeks to implement four-wheel 

by-wire steering, and explicitly manages system faults.  The algorithm consists of a set of data 

dependent, concurrent tasks.  The application is modeled as a directed dataflow graph, where the 

nodes in the graph represent tasks and edges represent signals, or information that is 

communicated between tasks.  The task model does not support queuing of signals between 

tasks.  Each task is annotated with metadata describing the worst-case execution time for the 

task.  Since all ECUs in this study contain equivalent microprocessors, the worst-case execution 

time of a task does not depend on resource allocation.  All tasks in the application have the same 

five millisecond deadline.  When a task executes, it consumes the signals on which it depends, 

performs its computation, and produces the output signals which it sources.  A real-time 

operating system on each ECU is responsible for executing all tasks mapped to the ECU such 

that no task misses a deadline.   
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 Input data to the application is received through sensors.  The steer-by-wire application is 

coupled with other applications in a real vehicle environment.  These other applications provide 

the steer-by-wire application with real-time processed information generated from other sensors 

which are not part of the steer-by-wire platform.  These data that are received from other 

applications as inputs to the steer-by-wire application are modeled as sensors in this analysis, 

even though they are not necessarily generated from hardware sensors.  Examples of such data 

include the current vehicle speed and the pitch, yaw and roll of the vehicle.  Just as with real 

sensors, these virtual sensors are assumed to be bound to individual ECUs, modeling the location 

in the processing network where the relevant data is held.   

 Figure 50 depicts the steer-by-wire application analyzed in this study.  Each box represents a 

logical collection of tasks.  Edges in the graph model signals.  The ProcessPosition task is 

responsible for sampling the position sensors associated with each wheel to determine the current 

state of the wheel.  The ProcessSteeringWheelData task is responsible for determining 

inputs from the user by reading the steering wheel angle and position sensors.  Sensor data is 

analyzed by the task and compared against thresholds in order to detect anomalies due to sensor 

faults.  The fault information is passed to the FaultDIR task, which implements fault detection, 

isolation and recovery.  The FaultDIR task takes the sensor fault information from the steering 

wheel and wheel sensor tasks, as well as information on wheel motor temperature, in order to 

determine whether the vehicle has encountered a fault.  On the detection of a fault, the task 

attempts to isolate the fault and apply appropriate recovery measures.  Recovery involves the 

communication of the fault state of the vehicle to the supervisor and feedback controller, as well 

as the communication of a fail-safe steering state to the actuators.  The Supervisor is 

responsible for monitoring the state of the vehicle to determine if a mechanical steering backup 

should be engaged.  The Supervisor is implemented as a triple-redundant module with voting 

between replicated nodes, so as to increase fault-tolerance.  The feedback controller implements 

the control algorithms for the steer-by-wire system, where the sensor information is used 

together with the fault mode (degraded vs. normal) to determine a set of commands to send to the 

actuators.  The Actuation task is responsible for converting actuation commands calculated 

by the controller into valid torque outputs to the actuators connected to the vehicle rack and 

pinion modules to implement a change in vehicle direction.  Actuation also produces a force 
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feedback actuator command which translates into a torque applied to the steering column, giving 

the user a sense of connection between the steering wheel and the vehicle environment.  
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Figure 50. Steer-by-wire application 

Steer-by-Wire Design Goals 

 The steer-by-wire application has real-time processing deadlines.  A consistent five 

millisecond execution period is imposed on all tasks in the application.  Each task is 

characterized with a worst-case execution time.  A goal of designers is to map the tasks in the 

application onto the embedded platform in such a way so as to facilitate the meeting of real-time 

deadlines.  While forwarding can be implemented to route sensor data to consumer tasks which 

are allocated to a remote ECU, a preferred task allocation involves the placement of tasks onto 

ECUs such sensor inputs and actuator outputs do not have to be forwarded.  For some tasks, such 

an allocation is not possible, due to the use of multiple sensors, each of which interface to a 

different ECU.  If an ECU is over-utilized, the likelihood of a task missing a deadline increases.  

A first-order analysis of schedulability using rate-monotonic schedulability analysis [21] can 

eliminate potential task-to-processor allocations which cannot be proven to be schedulable.   

 Steer-by-wire implementations must be highly reliable.  Reliability in this sense is distinct 

from fault-tolerance and safety.  Reliability is the probability that over a given time, that a 

component or subsystem will be free of failure.  Reliability of a composed system can be 
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calculated from the reliability metrics of the subsystems.  Reliability theory [86] dictates that for 

a system composed such that if any single subsystem fails, then the system as a whole fails, the 

system is said to be serially composed.  Assuming that the failure of a subsystem is an 

independent event from all other subsystems, the probability of reliable operation of a serially-

composed system can be calculated as the product of the probability of reliable operation of each 

subsystem.  The multiplicative nature of reliability calculations requires the composition of 

highly reliable subsystems in order to produce a reliable system.   

 The reliability of a system can be improved through parallel composition.  Parallel 

composition introduces redundancy into the system.  In a parallel composition, the composed 

system is deemed to be reliable if at least one of the redundant subsystem instances is 

functioning properly.  Redundancy can be introduced into the steer-by-wire system through 

replication and voting.  N-way redundancy is implemented by replicating a task N times in the 

task graph.  The inputs to the task are replicated N times by a splitter node.  The outputs of each 

replicated task are sent to a voting task, which produces a single output based on a majority-rule 

comparison of inputs received from replicated tasks.  The splitter and voting tasks are assumed to 

always be reliable.  Figure 51 depicts a triple-redundant implementation of a task T1, where 

tasks T1_1, T1_2, and T1_3 are identical replications of each other.   

T1_1

T1_2

T1_3

Splitter Voter

T1

 
Figure 51. Triple-redundant implementation of task T1 

 The composed reliability of the replicated system reflects the voting scheme used.  In the 

case of majority-rule, the reliability is calculated as the probability that a simple majority of the 
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tasks will succeed.  In the case of triple redundancy, reliability can be calculated as follows.  Let 

 be the probability that a task t  operates as intended by the designer.  The reliability of a triple-

redundant parallel configuration task t  is then the probability that either all three replicated 

instances will agree, or that any two will agree while one fails.  Noting that the sum of the 

probability of success and the probability of failure equate to unity, equation (35) gives the 

reliability composition function for a triple-redundant voting parallel configuration. 

ts

  (35) 2
3 3 2t treliability s s= − 3

t

An analysis of equation (35) reveals that the triple-redundancy increases reliability only when 

.  The computation again assumes that the failure modes of the redundant tasks are 

independent.   

0.5ts ≥

 For the purposes of this study, the task of the designer is to determine a mapping of 

application tasks onto the set of available resources such that the resulting application is 

schedulable, and sufficiently reliable.  Where the reliability of the application is deemed 

insufficient, the designer can select tasks in the task graph to implement in a replicated parallel 

configuration, as discussed above.  Figure 52 models a choice node in a task graph, where the 

user is allowed to select between task T1Solo, representing a single implementation of the task 

T1, and task T1Triple, modeling the triple-redundant case.  The number of tasks in the steer-

by-wire application in this study totaled 19.  The designer must consider a very large tradeoff 

space when evaluating potential task-to-processor allocations.  Without considering the potential 

need to replicate tasks, the total number of ways the 19 tasks can be mapped to the set of 5 

processors is , or .  Only those mappings which meet the schedulability and 

reliability requirements can be considered for implementation.  When considering the potential 

for replication due to a strict reliability constraint, the size of the configuration space becomes 

very large (  configurations), necessitating a more automated approach to exploring the 

space. 

195 131.9 10×

60~ 10
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T1Solo

T1Triple

T1Or

 
Figure 52. Task T1Or models a choice between a triple-redundant implementation of task T1 or a single 

implementation 

Definition of the Steer-by-Wire Design Space 

 The mapping of the steer-by-wire application onto the embedded hardware platform can be 

modeled as a design space exploration problem.  Schedulability and reliability are formally 

quantified as properties of the design space, and constraints can be formulated on the composed 

property values.  This section gives a formal description of the task allocation problem, along 

with a mapping of the formal description onto the formal design space description. 

 A steer-by-wire application is modeled as a directed graph ,G T S= , where  is a set of 

tasks and  is a set of directed edges between tasks, referred to as signals.  Let 

 be a function which gives the reliability measure for each task in the graph, such 

that .  Let  be a function which returns the worst case 

execution time for a task, in units of microseconds.  A steer-by-wire platform  is a three-tuple 

T

S T T⊆ ×

:Rel T →

, 0 ( ) 1t T Rel v∀ ∈ ≤ ≤ :WCET T →

P

, ,P E S A= , where  is a set of ECUs,  is a set of sensors, and  is a set of actuators.  Each 

sensor is interfaced to exactly one ECU.  Let  be a map which returns the ECU to 

which a sensor is interfaced.  Similarly, let  be a map which returns the ECU to 

which an actuator is interfaced.  A task may depend on data from one or more sensors.  Let 

 be a function which returns the set of sensors on which a task depends (where 

 denotes the power set of ).  Likewise, let 

E S A

:SToE S E→

:AToE A E→

: (TSens T S×P )

)( )SP S : (TAct T A×P  be a function which returns the 

set of actuators which receive data from a particular task.  Note that 

1 2 1 2 1 2, , ( ) (t t T t t TAct t TAct t∀ ∈ ≠ ∩ =) ∅ , since only one task may output to an actuator.  

However, multiple tasks may read from the same sensor.  Let an Allocation  be A T E⊆ ×
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defined such that , t tt T p A p t e∀ ∈ ∃ ∈ = ,  for some ECU , and e

( ) ( )1 2 1 21 1 2 2 1 2, , , ,t t t tp t e p t e A t t implies p p∀ = = ∈ = = .  There are several Allocations which 

can be derived for a given application mapping onto a given platform.  Let  be the set of all 

possible allocations.  Note that 

AS
TAS E= .  Constraints formally capture the requirements on the 

application, and specify restrictions on composed property values.  Let C be a set of constraints.  

The allocation problem consists of finding a AS c C∈ ∀ ∈ ,  is satisfied over allocation .  This 

study focuses on two metrics which impact resource allocation, schedulability and reliability.  

Requirements over both metrics are formulated as constraints.  A schedulability constraint 

imposes the requirement that for a given allocation, all ECUs meet the rate monotonic 

scheduling utilization bound.  A reliability constraint requires that an application meet some 

minimum bound on composed reliability.   

c a

 The steer-by-wire specification is modeled as a design space using the AND-OR-LEAF tree 

composition semantics.  The composed application is modeled as an AND node in the AND-OR-

LEAF tree.  The composed application consists of a set of tasks, each of which can potentially be 

replicated.  A task is either implemented singly (“single” redundancy) or with triple redundancy.  

A triple-redundant case is modeled as an AND node containing three LEAF nodes.  Each such 

LEAF node is a copy or replica of the single case.  Figure 53 illustrates the mapping of a task 

into a set of AND-OR-LEAF tree nodes.  All leaf nodes are assigned unique names, but each of 

the four leaf nodes models the same task. 

T1Triple

T1Or

T1Solo

= OR-Node

= AND-Node

= LEAF Node

Task 
T1

T1_1 T1_2 T1_3

Splitter Voter

 
Figure 53. Example mapping of a task T1 in the steer-by-wire specification into a set of AND-OR-LEAF tree 

nodes 
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 Properties are used to represent the quantitative aspects of the design space.  All LEAF 

nodes in the tree are assigned two non-composed properties: Resource and WCET.  The WCET 

property of a task is bound to the worst-case execution time of the task supplied in the task 

model.  The four LEAF nodes modeling each task in the application are all assigned the same 

WCET value.  Resource allocation is modeled as the binding of a value to the Resource variable 

property.  The domain of the Resource property represents the set of ECUs available in the 

computation platform.  All LEAF nodes’ Resource properties share the same domain, implying 

that prior to the application of the constraints, any task can be mapped to any ECU in the 

platform. 

 Reliability is modeled as a composable property.  In the case of serial composition, 

reliability composes multiplicatively.  In the case of triple redundancy, reliability composes 

according to equation (35).  The AND-OR-LEAF tree semantics facilitate the representation of 

composition with an AND node.  AND composition is necessary to represent both serial 

composition and parallel composition.  Hence, the type of computation to employ for property 

composition while exploring the space is not clear based simply on the type of tree node.  It is 

however discernable from the structure of the tree.  Triple redundancy is modeled as an AND 

node containing three LEAF nodes.  At no other location in the tree does an AND node contain 

LEAF nodes.  Hence the property composition function for modeling reliability must examine 

the structure of the tree in order to determine whether to apply multiplicative composition or the 

redundant composition formula.  The composition formula is also responsible for the 

quantization of the probability values used to represent task reliability.  The finite domain 

constraint approach employed in DesertFD currently only supports integer-based mathematics, 

so all floating point numbers are scaled by the constant 100.  Rounding is implemented through 

the addition of a scaled 0.5, followed by truncation implemented through integer division (ex. a 

number x is rounded as follows: 50_
100

xrnd x +
= , where the division operation is integer 

division).   

 The PCL specification for reliability property composition is given in Figure 54.  Lines (1)-

(3) define a helper function QMultVar which returns a quantized product of two variables.  

Note that PCL only supports integer division.  Line (6) defines the property function named 

reliability.  The function first determines which type of property composition to apply by 
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examining the structure of the tree from the context of application.  The PCL function is applied 

only at AND nodes in the tree, hence if all children of the context of application are LEAF 

nodes, then it can be assumed that the node models a triple-redundancy.  Whereas if it is not the 

case that all children are leaf nodes, then the node models a serial reliability composition, and 

simple multiplicative property composition is applied.  Line (8) employs the isNodeLeaf 

built-in function, which returns a Boolean true only if the context of invocation is a LEAF node 

(or in the case of a list context, if all nodes in the list are LEAF nodes).  The result is stored in 

the isReplNode variable.  Line (9) acquires the list of property variables corresponding to the 

children of the application context, and Line (10) gets the first variable in the list.  Since in the 

replicated case, all replicated nodes are assumed to have the same reliability, the first property 

value on the list is used in the composition.  Line (11) assumes that the context of application 

indicates a replicated composition, and implements equation (35), quantized as discussed above.  

Line (14) assumes a non-replication context, and implements a simple product over all reliability 

property variables of the children of the current context.  Lines (15) and (16) multiply the result 

of the context query with the respective replication results, and line (18) returns the sum of the 

products.  Since isReplNode is a 0/1 integer variable, the function returns either the value 

calculated for ReplSum in line (15) or for NotReplSum in line (16).   
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(1) function var = QMultVar(var v1, var acc) 
(2) { 
(3)  return(((v1 * acc) + 50)/100); 
(4) } 
(5)  
(6) property reliability( )  
(7) { 
(8)  var isReplNode = self().children().isNodeLeaf(); 
(9)  list relPs = self().children().prop("reliability"); 
(10)  var relVal = listHead(relPs); 
(11)  var ReplRes = 3*((relVal*relVal+50)/100) 
(12)    -(2*(relVal*relVal*relVal+5000)/10000); 
(13)   
(14)  var NotReplRes = ForAllAcc(relPs, "QMultVar", 100); 
(15)  var ReplSum = ReplRes *(isReplNode==1); 
(16)  var NotReplSum = (isReplNode==0)*NotReplRes; 
(17)   
(18)  return(ReplSum+NotReplSum); 
(19) } 

Figure 54. PCL specification for reliability property composition 

 The representation of schedulability as a composable property in the design space definition 

is challenging.  The schedulability criterion dictates that for a given allocation, all tasks must 

meet their deadlines.  The determination of schedulability depends on an allocation, but the 

allocation is the result of design space exploration.  The difficulty of modeling schedulability lies 

in the construction of the property composition rules and schedulability constraints so as to allow 

constraint propagation to impact the set of potential allocations without needing to enumerate the 

set.  Schedulability in this study is determined by processor utilization.  All tasks are assigned a 

worst-case execution time, and all tasks are assigned the same period of 5 milliseconds.  

Utilization, for a given allocation a AS∈ ,  is a function which is defined as 

follows. 

:autil E →

 
,

( ) ( )a
t T t e a

util e WCET t
∈ < >∈

= ∑  (36) 

Utilization is a composable property.  However, it does not compose on the same decomposition 

as reliability.  Utilization composes along processor allocation boundaries.  Hence, reification is 

employed across all possible allocations in order to calculate the utilization of a processor.  In the 

design space model, each ECU is modeled as a member of a CustomDomain, modeling the 
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domain of the resource property for each task.  Each such CustomDomain member is assigned 

a property called utilization, whose composition is defined in the PCL specification given 

in Figure 55.  The property calculation employs in line (11) the built-in function allLeaves, 

which returns as a list of variables all the leaves which descend from the context on which it is 

invoked.  The function spaceRoot returns the context corresponding to the root element of the 

current DESERT Space, or in this case, the root element of the AND-OR-LEAF tree.  Thus, 

line (11) returns all the LEAF nodes in the AND-OR-LEAF tree.  It then iterates across those 

LEAF nodes in order to determine which have been allocated to the current context.  The helper 

function CalcUtil defined in line (1) is responsible for determining if a LEAF node has been 

• allocated to the ECU modeled by the current context of invocation 

• selected for inclusion in the current configuration. 

If both of these criteria are met, then the WCET of the LEAF node is added to the utilization 

total for the ECU.  Line (3) determines if the LEAF task has been allocated to the current ECU, 

by comparing the value of the resource property of the LEAF node against the ID of the current 

context.  The result is reified into the variable lMap.  Line (5) multiplies the reified result of line 

(3) with the value of the WCET property for the current LEAF node, and stores the result in the 

variable lUtil (giving a value of 0 where the task has not been mapped to the current ECU, but 

a value equal to the WCET when it has).  Line (6) multiplies the WCET result by the value of the 

select variable for the current LEAF, indicating that the WCET can only contribute to the 

utilization bound when it has been selected for inclusion in the current configuration.  The 

resulting value is accumulated with the previous utilization for this ECU and returned.   
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(1) function var = CalcUtil(var leaf, var acc) 
(2) { 
(3)  var lMap = (ToContext(leaf).prop("resource") ==  
(4)           self().getID());  
(5)  var lUtil = (lMap) * ToContext(leaf).prop("WCET");  
(6)  return acc + (lUtil * ToContext(leaf).sel()); 
(7) } 
(8)  
(9) property utilization ( )  
(10) { 
(11)  list leafList = spaceRoot().allLeaves(); 
(12)  var util = ForAllAcc(leafList, "CalcUtil", 0); 
(13)  return(util); 
(14) }  

Figure 55. PCL specification for utilization calculation  

 Schedulability is modeled as a constraint over the utilization property of each ECU.  For 

each ECU in the model, the constraint in Figure 56 is added to the constraint set.  The constraint 

bound is derived from the shared 5 ms period between all tasks on each processor, and the 69.3% 

upper bound on utilization.   

 
constraint schedConstraint() { 
 self.utilization() < 3465 
} 

Figure 56. Schedulability constraint, requiring that for each processor, the total compute time be bounded by 
3465 microseconds 

 The property composition function implements the utilization calculation.  However, the 

calculation does not facilitate strong propagation, due to the use of reification to determine the 

outcome of the calculation.  As a result, the constraint applied to the utilization composition does 

not result in significant pruning of the design space prior to distribution.  Further, the steer-by-

wire application is not compute-bound.  Distribution is employed more as a function of the 

distribution of sensors throughout the platform rather than the need to split computation across 

processing units to facilitate the meeting of real-time deadlines.  However, with the replication 

resulting from the analysis of reliability, the computation requirements of the application can 

increase significantly.  Hence, it is necessary to determine that the application does indeed meet 

these minimum schedulability requirements. 
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 The reason for the poor propagation performance of the utilization composition formula is 

the circular dependence between resource allocation and the processor utilization constraint.  In 

order to facilitate early pruning of the design space, a second utilization constraint is formulated 

which breaks this circular dependence.  It can be noted that if the total computational 

requirements across all tasks of an application exceeds the total available computation time on all 

resources, then the configuration cannot be implemented on the platform.  The total computation 

time required by an application can be calculated by summing the worst-case execution times of 

all selected tasks in the design space.  The total available computation time can be calculated by 

multiplying the number of ECUs in the platform by the period of computation which is shared 

across all tasks.  This is represented in the design space using additive property composition over 

a property called computeTime.  LEAF nodes in the tree are assigned the worst-case execution 

time of the WCET property.  A constraint is placed at the root node of the AND-OR-LEAF tree 

which limits the total composed computeTime property to the upper bound of available 

compute time.  Figure 57 gives the OCL specification of the total compute time constraint.  The 

right-hand side of the equation represents the upper bound on the total compute time available in 

the network, assuming that all tasks execute at a 5 ms rate.  There are five processors in the 

network, and each must meet the 69.3% utilization bound, giving 5 times (5000*0.693) 

microseconds of total available compute time.  The constraint is not a tight constraint, due to the 

significant slack in the schedule of the processors.  However, the constraint does eliminate those 

configurations which are grossly unschedulable, prior to the determination of an allocation. 

 
constraint compTime() } 
 self.computeTime() < 5*5*693 
} 

Figure 57. Constraint on total computation time for a five-processor configuration, with a five millisecond 
period 

 Resource allocation constraints are employed in the design space model to represent rules of 

composition and allocation.  It was noted above that equation (35) improves reliability only 

when the reliability of the task to be replicated is greater than 0.5.  A constraint is placed in the 

design space model at each of the OR nodes modeling the potential for replication, stating that if 

the task’s reliability is less than 0.5, then the singleton alternative should be automatically 
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selected.  While the constraint solver can implicitly derive this result through property 

composition, the addition of the constraint speeds the propagation.  Figure 58 gives an OCL 

implementation of this selection constraint, as applied to the example AND-OR-LEAF tree given 

in Figure 53. 

 
constraint selConstr() { 
 (self.children(“T1Solo”).reliability() < 50) 
  implies 
 (self.implementedBy()=self.children(“T1Solo”)) 
} 

Figure 58. Selection constraint applying to the OR node T1Or in Figure 53, stating that if the reliability of the 
modeled task is less than 50, then do not replicate the task 

 The reliability property composition function assumes that the failure of a component or task 

is an independent event from the failure of other tasks.  Given that many tasks fail due to 

hardware faults, this assumption is not necessarily valid.  However, in an attempt to separate the 

failure modes of the replicated tasks, constraints are inserted into the model at each AND node 

modeling task replication, stating that all replicated tasks must be allocated to different 

resources.  A more valid assumption is that the failure modes of tasks allocated to separate 

resources are not as related as those of co-located tasks.  Three constraints are inserted at each 

AND node modeling replication, stating that the resources of each of the replicated nodes cannot 

be equal.  The constraint corresponding to the T1Triple node in Figure 53 is given in Figure 

59. 
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constraint replConstr1() { 
 self.children(“T1_1”).resource() <> 
  self.children(“T1_2”).resource() 
} 
 
constraint replConstr2() { 
 self.children(“T1_1”).resource() <> 
  self.children(“T1_3”).resource() 
} 
 
constraint replConstr3() { 
 self.children(“T1_2”).resource() <> 
  self.children(“T1_3”).resource() 
} 

Figure 59. Replication constraints requiring that no replicated nodes share a resource 

 It was noted in the platform discussion that each sensor and each actuator is interfaced to 

exactly one ECU.  While sensor information can be relayed from ECU to ECU, it leads to a more 

efficient, lower-latency implementation when tasks which directly depend on sensor information 

can be allocated to the ECU which is interfaced to the sensor.  Likewise, for tasks which output 

to actuators, ideally those tasks are allocated to the resource which interfaces to the actuator.  It 

may not be possible to create an allocation where all such constraints are met.  For example, 

some tasks read the wheel position information from all four wheel sensors.  The design space 

model employs constraint utilization to model the desire that tasks be mapped to resources which 

interface to the appropriate sensors and actuators.  The constraint solver attempts to maximize 

total constraint utilization.  For those situations where all such co-location constraints cannot be 

met, an allocation is produced which attempts to meet most of the constraints.  Recall that 

 is a map which returns the set of sensors which directly interface to a task.  

Similarly,  is a map which returns the set of actuators to which a task interfaces.  

Then, , ideally the following constraints hold: 

: (TSens T S×P )

): (TAct T S×P

,t T a AS∀ ∈ ∀ ∈

 
( ), , ( )

( ), , ( )

s TSens t t SToE s a

c TAct t t AToE c a

∀ ∈ ∈

∀ ∈ ∈
 (37) 

The constraints are extended to cover the replicated tasks as well.  Obviously, for the replicated 

tasks, the requirement that states that replicated tasks cannot be co-located, and the reified 

constraint stating that tasks should be located on the resource which interfaces to their dependent 
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sensors and actuators are directly in conflict.  Due to the optimization of constraint utilization, 

the constraint solver attempts to satisfy the constraints in equation (37) only where possible.  

Each such allocation constraint is assigned a utilization value of 10 (owning to the fact that no 

allocation constraint has priority over any other allocation constraint).   

 The final constraint that is added to the design space specification is a constraint on the 

composed reliability of the system.  Figure 60 gives the OCL implementation of the reliability 

constraint, which is assigned to the root node of the AND-OR-LEAF tree as its context of 

application.  The constraint requires that the composed system be greater than 50.  This appears 

to be a weak requirement, but due to the multiplicative composition exhibited by reliability, 

highly reliable configurations are difficult to achieve. 

 
constraint reliabilityConstr() { 
 self.reliability() > 50 
} 

Figure 60. Constraint on the composed reliability of the system, applied at the root context 

 This case study seeks to model reliability as a composable property, used in the context of 

pruning the resource allocation space of embedded automotive software.  It does not pretend to 

be a study in modeling component reliability.  Due to the lack of quality reliability estimates for 

the tasks in the application model, a random reliability value was assigned to each task, by 

sampling a random variable uniformly distributed on the interval [85, 99].  If proper reliability 

metrics can be obtained for the tasks in the system, the analysis approach can still be applied. 

Exploration Results 

 The design space model discussed above, together with the constraint set was explored using 

DesertFD.  All constraints were parsed and translated and applied in the finite domain constraint 

environment.  The space initially contains  configurations.  The exploration of the space 

revealed several details about the structure of the design space.  The space was determined to be 

highly under-constrained.  There are a very large number of potential solutions which satisfy all 

imperative constraints.  It was described in previous chapters that the exploration of a large, 

under-constrained space leads to exponential growth in the memory requirements of the search.  

An interesting aspect of this particular design space is the fact that all solutions to the space seem 
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to exhibit the same maximum constraint utilization value of 550.  The best-case utilization search 

encounters a single solution with utilization of 550 and proceeds to search for a solution which 

exhibits better utilization.  This subsequent search neither encounters any solutions to the space 

which better this utilization value, nor is able to terminate the search, due to the size of the space 

and the dependence of the search on distribution.  The successful solution was encountered in a 

depth-first search, requiring 131 distribution steps.  The single encountered solution presents a 

composed reliability of 51, and utilization values on each processor between 3457 and 3054.  Of 

the 19 tasks in the application, the solution selects 14 for triple-redundant implementation, in 

order to satisfy the reliability constraint.  Five tasks are implemented without replication in order 

to satisfy schedulability requirements.  The time required to encounter this single solution was 

about 0.5 seconds.   

Conclusions and Future Analyses 

 The design space presented in this case study is under-constrained.  The constraints on 

reliability facilitate pruning of the space.  Schedulability constraints on processor utilization can 

only impact the search after an allocation of tasks to processors has been determined, thus only 

facilitating pruning after significant distribution.  The slack in the schedule implies that many 

configurations are schedulable according to rate monotonic criteria.  In order to achieve a better 

pruning of the space, the space must be analyzed along other axes.  Specifically, distribution of 

tasks imposes delays in the end-to-end latency of computation.  The schedulability analysis does 

not take into account the dependencies between tasks, and ignores the issue of scheduling 

communications over the fault-tolerant bus.  Addressing these and other issues can lead to a 

significant contraction of the design space.   
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