
A FINITE DOMAIN MODEL

FOR DESIGN SPACE

EXPLORATION

By

Brandon Kerry Eames

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

May, 2005

Nashville, Tennessee

Approved:

Professor Janos Sztipanovits

Professor Gabor Karsai

Doctor Theodore A. Bapty

Professor Gautam Biswas

Doctor Ben A. Abbott

Doctor Sandeep K. Neema

Copyright © 2005 by Brandon Kerry Eames

All Rights Reserved

In memory of my father,

Oliver Dean Eames

June 18, 1948 – February 10, 2005

 iii

ACKNOWLEDGEMENTS

 I would be truly ungrateful without acknowledging the influence, help, guidance and support

from several sources. First and foremost, I thank my wife, Natalie, for her constant love and

companionship. Her unwavering patience and support, not only through six years of graduate

school, but throughout our married life has inspired and sustained me during this journey. I

know no words to express my humble gratitude, admiration and devotion to her. I also thank my

children, Karissa Rose and Warner Andrew. Their enthusiasm and loving smiles erase the

deepest of frustrations. I acknowledge the love and support of my parents, who are largely

responsible for my entrance into an academic career. To my wife’s parents, thank you for your

support of us and our children albeit over a great distance.

 I wish to thank the members of my committee for their involvement in this research. To my

advisor, Professor Janos Sztipanovits, thank you for having confidence in my work when I did

not, and for sharing your vision, but leaving to me the joy of discovery. To Dr. Ted Bapty, I am

very grateful for the opportunity to have worked with you for several years at ISIS. With your

patient mentoring style, I felt I was treated as your colleague, not just as a student. Thank you

for giving me the opportunity to learn the ropes as a researcher. Trips to PI meetings were

always an adventure. To Dr. Sandeep Neema, I owe you a great deal. Much of the work in this

dissertation draws on your research; I am very grateful not only for the time and attention you

gave this research, but for your friendship as well. To Dr. Gabor Karsai, thanks for being

involved in my graduate school career, and for the advice on my future as a faculty member. To

Dr. Gautam Biswas, thank you for teaching a great class on modeling and for encouraging me in

my future career in academics. To Dr. Ben Abbott, thank you for sparking my interest in

embedded systems while at Utah State, and for getting me interested in graduate school. Your

constant insistence that I not settle in anything I do has been a source of inspiration at times of

weakness.

 To everyone at the Institute for Software Integrated Systems (ISIS), both present and former

members, I am a better person for having known you. The friendships and memories I have

made here I will treasure throughout my life. Dr. Jon Sprinkle, thanks for the great times we had

with photography and vacations to Florida. Dr. James “Bubba” Davis, Dr. Akos Ledeczi, Dr.

Greg Nordstrom, Dr. Jason Scott, Dr. Gyula Simon, Zoltan Molnar, Gabor Pap, and so many

 iv

others, I am grateful for your friendship and positive influence. To the present and former

graduate students at ISIS, Dr. Aditya Agrawal, Steve Nordstrom, Kumar Chhokra, Dr. Jeff Gray,

Abdullah Sowayan, Shweta Shetty, Di Yao, Shikha Ahuja, Brano Kusi, Robert Regal, and so

many others, thank you for being so accepting, and for creating a positive environment for

graduate studies. I wish to thank Dr. Sherif Abdelwahed for his help with the formal logic, and

David Hanak for help in learning the Mozart programming system. To the administration of

ISIS, Michele Codd and Lorene Morgan among others, you have made my time as a graduate

student not only bearable but enjoyable, through your supportive and congenial personalities. I

appreciate your tutelage in preparing me for the administrative side of my future academic

career.

 I am very appreciative of the fellowship and friendship of the members of the West

Nashville Ward of the Church of Jesus Christ of Latter-day Saints. You have been family for the

last six years, and your willingness to serve at a moment’s notice is inspiring. Thank you for

being there for us in our times of need.

 Finally, I would like to gratefully acknowledge the financial support for this research. This

work has been partially supported by the National Science Foundation, the Defense Advanced

Research Projects Agency, the IBM Corporation, and by Vanderbilt University through a Harold

Sterling Vanderbilt Fellowship.

 v

TABLE OF CONTENTS

Page

DEDICATION... iii

ACKNOWLEDGEMENTS... iv

LIST OF FIGURES ... ix

LIST OF EQUATIONS ... xiii

LIST OF ALGORITHMS..xv

LIST OF ABBREVIATIONS... xvii

Chapter

I. INTRODUCTION ...1

Embedded System Overview ..2
Mathematics of System Design...3

Point Design vs. Design Space ..4
Design Space Exploration ...4

II. BACKGROUND ...8

Mixed Integer Linear Programming..8
Synthesis of ASIC Applications using MILP..10
Partitioning FPGA-based Applications using MILP...12
Critique of MILP for Design Space Exploration...13
Linear Pseudo-Boolean Constraints ..13

Constraint Logic Programming...14
Finite Domain Constraints...16
Modeling System Synthesis with Finite Domain Constraints18
Partial Assignment Technique...21
Time-Triggered Software ..22
Critique of Constraint Logic Programming...23

Combinatorial Search Heuristics ..24
Simulated Annealing ...24
Evolutionary Algorithms ...26
Critique of Combinatorial Search Heuristics...28

Branch and Bound in Real-Time Software Synthesis...29
Minimum Required Speedup...29
Component Allocation in the AIRES Toolkit ...31
Critique of Branch and Bound...32

Parameter-Based Design ...32
Platune ...32
PICO ..34
Evaluation of Parameter-Based Design...37

Design Space Exploration Tool (DESERT)..37

 vi

DESERT Design Space Model..38
Symbolic Constraint Satisfaction ..41
Exploration of Adaptive Computing Systems ...42
Critique of DESERT..43

Design Space Exploration Summary and Critique..44

III. A FINITE DOMAIN DESIGN SPACE MODEL ...47

A Formal DESERT Design Space Model ...47
A Finite Domain Model for the AND-OR-LEAF Tree ..50

Implementation of the Finite Domain Model ..51
Simple Tree Example ..53

A Finite Domain Model for Design Space Properties ..53
A Finite Domain Property Tree ...54
Implementation of the Finite Domain Property Model ...56
Simple Property Example..60
Summary of the Finite Domain Property Model ...62

A Finite Domain Model for OCL Constraints ..63
A Finite Domain Model for DESERT OCL Constraints...64
DESERT OCL Constraints and Finite Domain Propagation...................................67
Summary of Finite Domain Model for OCL Constraints..67

Finite Domain Distribution ...67
Constraint Utilization and Finite Domain Search ...72

Single-Solution and All-Solution Search ..72
Constraint Utilization and Best-Solution Search...73
Performance Implications of Constraint Utilization..75
Summary of Constraint Utilization techniques ...76

Summary of the Finite Domain Constraint Model for DESERT..................................76

IV. THE PROPERTY COMPOSITION LANGUAGE...78

Limitations in Modeling Property Composition ...78
The Property Composition Language ...79

PCL Variables, Operations, Expressions and Statements80
Modularity in PCL: Properties and Functions...81
Tree Navigation ...82
List Iteration Functions..83
Simple PCL Example: Area Property...84

PCL Interpretation...85
Expression Trees..85
Translation into Trees..87
From Expression Trees to Finite Domain Constraints ..95

PCL Modeling Example..96
A Parameterized Component IP Library ...97
Example Property Function: Adder Component ...99
Design Composition through Exploration...101

Summary of PCL ..104
Expressiveness Limitations ...104

 vii

Implementation Inefficiency..106
PCL Conclusions ...107

V. DESERTFD: AN INTEGRATED DESIGN SPACE EXPLORATION TOOL108

DESERT Toolflow..108
DESERT and Scalability ...109

DesertFD Architecture and Implementation ...111
Implementation of Finite Domain Pruning..112
Design Space Evaluation ...113
The Oz Engine ...115
Mozart Implementation of Design Space Exploration ..116
Alternative Implementation...117
Integration and Hybridization..119
Constraint Set Partitioning...122
From BDD to Logic Function ...123
Structural Redundancy ..128

Quantitative Scalability Analysis..129
Parametric Design Space Generation ..129
Representing Design Spaces: Propagators and Variables135
Over-, Under- and Critically-Constrained Spaces...138
Width vs. Depth...145
Experiment Evaluation and Applicability ...149
Scalability Conclusions ...150

Conclusions...151

VI. CONCLUSIONS AND FUTURE WORK ..153

Summary of Findings..153
Future Work ..155

Design Space Modeling...155
Scalability Improvements with DesertFD ...156
Solver Integration ..156
Embedding Exploration...157
Tool Integration ...158

Appendix

A. PCL LEXICAL ANALISYS SPECIFICATION...159

B. PCL CONTEXT-FREE GRAMMAR SPECIFICATION...161

C. CASE STUDY: EMBEDDED AUTOMOTIVE SOFTWARE164

REFERENCES ..183

 viii

LIST OF FIGURES

Figure Page

1. A simple task graph ...20

2. Toolflow for design space exploration in PICO..35

3. UML representation of DESERT design space model..39

4. UML representation of DESERT Properties ...40

5. UML representation of DESERT domains and domain membership41

6. Oz code implementation of equation (20) ...52

7. Simple AND-OR-LEAF tree...53

8. Oz implementation of the select variables modeling the AND-OR-LEAF
tree in Figure 6...53

9. Oz implementation of the AND-node additive property composition
relation defined in equation (24) ...57

10. Blocking Oz implementation of the OR-node property composition
relation defined in equation (23) ...57

11. Oz implementation of OR node property composition, including
redundant constraints to facilitate propagation..59

12. Simple tree example, annotated with additive property AP ..60

13. Oz implementation of the simple property example of Figure 12...................................61

14. AND-OR-LEAF tree showing the results of finite domain propagation
for the property AP..62

15. Example DESERT OCL constraint, whose context is the node N4 from
Figure 12..64

16. DESERT OCL constraint requiring the value of the context’s AP
property not exceed 35 ..64

17. Oz implementation of the DESERT OCL constraint from Figure 1566

18. Oz implementation of the DESERT OCL constraint from Figure 1666

 ix

19. Oz implementation of best-case ordering function for constraint
utilization...75

20. Example PCL function modeling an additive property called area.................................85

21. Example PCL Expression tree modeling the PCL expression in equation86

22. Parameterized adder component..99

23. Small-area, high-latency IW-bit adder composed of shift registers (SR)
and a single one bit adder ..100

24. High-area, low-latency N-bit adder composed completely of
combinatorial logic..100

25. UML depiction of FPGA application composition ...102

26. PCL specification of area property function described in equation (32).......................104

27. DESERT toolflow ...109

28. High-level architecture of a hybrid design space exploration tool................................111

29. DesertFD Toolflow for Finite Domain Design Space Search113

30. Toolflow for DesertFD’s Finite Domain Design Space Evaluation..............................114

31. DesertFD Mozart Implementation Architecture..117

32. Alternative DesertFD Implementation Toolflow ..119

33. Toolflow Representation of Hybrid BDD-Finite Domain Design Space
Exploration Tool..121

34. Example OBDD...126

35. Generated AND-OR-LEAF tree, adapted from Neema [79]...130

36. Size of generated design space, vs. AN ..136

37. Number of AND-OR-LEAF tree nodes in the generated design spaces136

38. Number of finite domain variables used to encode a set of design spaces....................137

39. Growth of the number of finite domain propagators created to model the
generated design spaces...138

40. Time to a single solution for a severely under-constrained design space139

 x

41. Constraint application time for near-critically constrained design spaces140

42. Number of space cloned during finite domain evaluation of under-
constrained and near-critically constrained design spaces ..142

43. Chart showing the constraint application time and number of cloned
spaces resulting from the solution of a single design space whose
constraint bound is successively relaxed...144

44. Chart showing a zoomed-in view of a portion of Figure 43, illustrating
the transition from an over-constrained space to under-constrained space.145

45. Chart depicting the change in size of design space against the number of
OR node children of an AND node. ..146

46. Chart showing the constraint solver performance on increasingly
orthogonal design spaces...147

47. Chart showing the sizes of design spaces generated by varying the depth
of the AND-OR-LEAF tree ...148

48. Chart showing the performance of constraint application to increasingly
deep design spaces...149

49. Embedded automotive computing platform for steer-by-wire application166

50. Steer-by-wire application ..168

51. Triple-redundant implementation of task T1...169

52. Task T1Or models a choice between a triple-redundant implementation
of task T1 or a single implementation ...171

53. Example mapping of a task T1 in the steer-by-wire specification into a
set of AND-OR-LEAF tree nodes ...172

54. PCL specification for reliability property composition...175

55. PCL specification for utilization calculation...177

56. Schedulability constraint, requiring that for each processor, the total
compute time be bounded by 3465 microseconds...177

57. Constraint on total computation time for a five-processor configuration,
with a five millisecond period ...178

58. Selection constraint applying to the OR node T1Or in Figure 53, stating
that if the reliability of the modeled task is less than 50, then do not
replicate the task ..179

 xi

59. Replication constraints requiring that no replicated nodes share a
resource..180

60. Constraint on the composed reliability of the system, applied at the root
context ...181

 xii

LIST OF EQUATIONS

Equation Page
1... 8

2... 8

3... 8

4... 9

5... 13

6... 13

7... 13

8... 15

9... 19

10... 20

11... 20

12... 20

13... 48

14... 48

15... 48

16... 48

17... 49

18... 49

19... 50

20... 51

21... 54

22... 55

23... 55

24... 55

25... 55

26... 74

27... 74

28... 86

29... 86

 xiii

30... 100

31... 101

32... 101

33... 124

34... 125

 xiv

LIST OF ALGORITHMS

Algorithm Page

1. Distribution algorithm for distributing select variables...69

2. Distribution algorithm for distributing on property variables ...70

3. Variable filtering algorithm used in distribution ...71

4. Distribution algorithm implementing finite domain design space search72

5. TranslateVarDecl algorithm, implementing the translation of a variable
declaration statement ...88

6. TranslateAssignStmt algorithm, implementing the translation of an
assignment statement...88

7. TranslateReturnStmt algorithm, implementing the translation of a return
statement..88

8. The PclTranslator algorithm dispatches each statement for translation,
and returns the appropriate expression tree ...90

9. TranslateExpr algorithm, implementing a dispatch based on expression
type…… ..91

10. TranslateLiteralExpr algorithm, responsible for translating literal data
into Expression Tree leaf nodes ..92

11. TranslateVarExpr algorithm, implementing the translation of a variable
usage reference via expression tree lookup ...92

12. TranslateUnOpExpr algorithm, implementing the translation of a unary
operation expression into a unary operation expression tree...93

13. TranslateBinOpExpr algorithm, implementing the translation of binary
operation expressions into binary operation expression trees ...93

14. TranslateCallExpr algorithm, implementing context navigation and
showing function invocation ...94

15. TranslateFnInvoke algorithm, implementing the evaluation of a function
invocation ..95

16. MarkAncestors algorithm, for reverse traversal of an OBDD125

 xv

17. BddNodeToLogicExpr algorithm, implementing the translation of a
BDD rooted at a node into a logic expression...127

18. BddToLogicExpression algorithm, implementing the translation of a
BDD to a logic expression tree..128

19. GenAndNode algorithm for generation of AND nodes in design space
scalability study ...133

20. GenOrNode algorithm to generate OR nodes in design space scalability
study…. ...134

21. GenLeafNode algorithm to generate LEAF nodes in design space
scalability study ...135

 xvi

 LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit

AST Abstract Syntax Tree

CLP Constraint Logic Programming

DSP Digital Signal Processor

DSE Design Space Exploration

FPGA Field Programmable Gate Array

LP Linear Program

MIC Model Integrated Computing

MILP Mixed Integer Linear Program

MRS Minimum Required Speedup

MTBDD Multi-Terminal Binary Decision Diagram

NPA Non-Programmable Accelerator

OBDD Ordered Binary Decision Diagram

OCL Object Constraint Language

PIC Programmable Interrupt Controller

RMA Rate Monotonic Analysis

SoC System-on-a-Chip

 xvii

CHAPTER I

INTRODUCTION

 Embedded computing technology increasingly pervades modern society. Society faces an

addiction to the conveniences and features that small embedded computer devices offer, from

ease of communication [1] to the joy of listening to music on a portable MP3 player [2] to the

added safety and reliability features of automobiles [3] to advanced intelligence weaved into

homes and places of work [4][5]. Embedded computing systems are rapidly being integrated

into many facets of life and society’s dependence on their services is becoming increasingly

apparent.

 This insatiable appetite for embedded technology drives the development of increasingly

complex applications and systems. Cell phones of a few years ago were simply cell phones.

New devices integrate reconfigurable logic and color LCD screens, and can be configured to

support any number of applications [6]. In the next few years, automobiles will cease to favor

hydraulic systems for controlling braking, preferring instead brake-by-wire technology to

facilitate electronic control [7]. The x-by-wire technologies require embedded computer

controllers to facilitate correct, reliable operation. Embedded computer technology is slowly

being integrated into the construction of homes and buildings, addressing issues from advanced

security to climate manipulation [4].

 From satellites [8][9], to avionics [10], to military applications [11], to entertainment [2], the

complexity of embedded computing systems is steadily increasing. The complexity of these

applications combined with society’s dependence on them, mandates safe, verifiable and reliable

implementations. To date, embedded systems have been developed following mostly ad-hoc

design methods[12]. Tool support for high-level system specification and implementation is

limited, at best. The flaws in these traditional, ad-hoc design approaches are unfortunately

exposed with major disasters involving embedded computing technologies that result in extreme

dollar losses, or even worse, injury or loss of life. Recent examples of such disasters include the

Theron 5 [13], NASA’s Mars Pathfinder [14] and Mars Climate Observer [15], and France’s

Ariane rocket [16].

 1

 Difficulty in embedded system implementation arises from the tight design constraints

imposed by strict requirements [17]. Embedded systems must interface directly with their

environment, requiring the adherence to physical constraints. Depending on the application

environment, size weight and power constraints may impose severe restrictions on design

implementations. Tight budgets and market pressures impose cost constraints on designs. These

and other issues complicate the design process, often resulting in conflicts between different

design quality metrics. Developers must properly balance designs against these constraints and

conflicting criteria in order to produce a successful product. Managing such complexity renders

embedded system design a very complex process.

Embedded System Overview

 An embedded computer-based system interfaces directly with its environment or as part of a

larger physical system. Several examples of embedded systems were presented above, from cell

phones to MP3 players to automobile control systems to jet airplanes. Embedded systems

typically consist of some amount of software executing on an embedded execution platform.

The size and complexity of an embedded system varies from application to application, with

some applications consisting of a few hundred lines of code executing on a simple

microcontroller, while a large distributed application can consist of thousands to millions of lines

of code executing on hundreds of nodes.

 Embedded software is typically composed from components, and often has soft or hard real-

time constraints (i.e. execution deadlines) imposed on its execution by its environment.

Components implement periodic tasks, whose invocations and interactions are normally

managed by some combination of runtime system, real-time operating system, and execution

middleware. Due to application computational requirements, software is often distributed across

multiple computation nodes in a hardware platform, exposing software developers to the issues

of parallelization, process and processor synchronization, and data sharing and exchange.

 Embedded execution platforms provide the infrastructure and resources for embedded

software to execute. Platforms can vary in complexity from simple 4- or 8-bit microcontrollers

and PICs to complex configurable processing elements. A whole range of implementation

platforms are observed in the space of embedded computing, from customized logic

implemented in ASICs, to general purpose processors such as PowerPC processors [18], to DSP

 2

processors such as the TMS320C6000 series offered by Texas Instruments [18], to configurable

logic devices such as the VirtexII Pro series FPGA offered by Xilinx [19]. Other research

platforms are under development which explore the integration of coarse-grained

reconfigurability with general-purpose computing [20]. Often times, embedded platforms

consist of multiple heterogeneous interconnected computing elements, memories, networks,

sensors, actuators, and other devices.

 An embedded system consists of the embedded software composition targeted to the

embedded hardware platform. The design of an embedded system typically involves the

selection of an appropriate hardware platform that offers sufficient computational, memory, and

communication resources to support the application requirements, and to develop a component-

based software composition that can properly implement the desired application behavior.

Selection of a proper software composition also involves decisions of task distribution and

scheduling, as well as communication scheduling. Many of these operations are handled by

embedded operating systems or runtime environments. Design implementation includes the

configuration of the runtime system to implement the specified schedule and mapping for the

various resources in the execution platform. Embedded systems often must satisfy critical

application-specific design requirements or constraints on execution time, performance, size,

weight, and other nonfunctional requirements. In some applications, not meeting certain

requirements not only implies the failure of the design, but could result in severe consequences

including loss of life.

Mathematics of System Design

 Research into embedded computing seeks to develop techniques and tools to facilitate the

design and implementation of safe, reliable and efficient embedded systems. Successful

approaches involve the use of mathematics to formally model embedded applications and to

prove that modeled designs meet their requirements. Mathematical design analysis considers a

design composition, together with information on scheduling, task distribution, resource

mapping, and task and resource performance metadata in an attempt to mathematically prove or

disprove that an application meets its requirements. For example, Liu and Layland [21]

introduced Rate Monotonic Analysis (RMA), a technique that can be used to analyze whether a

set of tasks scheduled preemptively for execution on a single processor will meet real-time

 3

constraints. Mathematical analyses such as RMA are used to verify application compositions

prior to deployment, thus detecting fatal flaws early in the design process.

Point Design vs. Design Space

 Modern embedded system design approaches integrate mathematical analysis and

verification into the design flow. Tools and developers target a single design which provably,

through mathematical verification, meets design constraints. Developers use structured design

approaches to model and develop a system implementation, then use verification tools and

testing to analyze the composition. When testing or analysis indicates a failure, the design

composition is modified or “tweaked” to fix the discovered flaws. This design process centers

on the development and evolution of a single design composition. This single design can be

referred to as a point design, where the design represents a single point in the space of possible

design compositions.

 The development and analysis of a point design can be contrasted with the development and

analysis of a design space. A design space represents the cross product of all possible design

alternatives in a system composition. For example, there are several different possible mappings

of tasks to platform resources, as well as several different implementation alternatives available

for each task. A design space formally models tradeoff decisions in embedded system

composition. Since the design space formulation is formal, it can be analyzed in a similar

fashion to the analysis of a point design. The analysis of a design space is referred to as Design

Space Exploration (DSE). The goal of DSE is to analyze design compositions and determine a

point design or set of point designs in the space which meet the application requirements. DSE

involves not only the analysis of a design composition, but analysis and simultaneous evaluation

of several potential design compositions.

Design Space Exploration

 DSE searches through a space of candidate design compositions for those designs which

meet or exceed certain metrics of goodness. The metrics of goodness, formally modeled as cost

functions, represent the set of requirements against which designs are measured. Design space

formulations and searches can be categorized into two principal classes: constraint-based

formulations and optimization-based formulations.

 4

 A constraint-based formulation of a design space exploration problem models the process of

searching the design space as a constraint satisfaction problem. Constraints formally capture

invariants on the system composition and performance, and design compositions are evaluated

against the constraints with the aim of eliminating from the design space those compositions

which fail to meet the constraints. The process of eliminating design compositions from the

design space is called pruning.

 An optimization-based formulation models the design space as an optimization problem,

where the space is searched for a single design which minimizes a cost function. The cost

function models all the quality metrics for the space in a single mathematical function that can be

evaluated across the points in the design. Optimization is constrained by several invariant

statements on the problem.

 Regardless of the technique used for searching the design space, DSE utilizes the principle

of property composition when evaluating cost functions and constraints. As system designs

represent compositions of components and mappings, system-level design analysis seeks to

calculate or predict system-level behavior as a function of component-level behavior. For

example, the total gate area required for hardware-based application implementation can be

approximated by summing the gate area required for each application component used in the

design. Performance requirements are modeled mathematically as constraints or cost functions

over the composition of component level properties.

 An effective design space exploration tool can be applied to a wide variety of applications.

Few tools offered in the literature attempt a domain-independent design space modeling and

exploration approach, favoring instead the integration of domain knowledge with the modeling

and search process. However, common to the tools available are the concepts of mathematical

property composition and search. Critical to the applicability of design space exploration

algorithms is the ability to specialize the exploration algorithms to a domain, while shielding the

exploration implementation from domain details.

 Another important requirement for broad applicability of a design space exploration tool is

the expressiveness offered for modeling the design space. The expressiveness of the design

space model must be sufficiently rich so as to support the representation of a wide variety of

applications, as well as a broad class of property composition algorithms. Over-simplification of

property composition can limit the applicability and/or accuracy of a design space representation.

 5

 A critical requirement of design space exploration concerns the scalability of the space

representation and search algorithms. Complexity in system design directly corresponds to

variability and coupling in the design space. Only algorithms which can efficiently traverse

large design spaces are effective at exploring design variability. Only effective representation

techniques can be used to accurately model coupling through dependencies. The scalability of

an effective design space exploration approach must not be significantly impacted by the types of

mathematical operations invoked during exploration.

 Several approaches to design space exploration have been developed and published in the

literature. Chapter II gives a sampling of the prominent approaches, together with a critique on

their applicability. Several of the approaches have been successfully applied to a limited

application set. However, while an approach may work well in one domain, its applicability may

be limited in other domains. The variety of successful, but scope-limited design space

exploration approaches gives rise to the notion of hybrid exploration algorithms. As no single

approach has demonstrated a general applicability across all application domains, a hybrid

exploration approach seeks to integrate successful approaches into a single, unified toolflow.

Hybrid exploration techniques potentially facilitate a “best-of-both-worlds” approach to design

space exploration, where the strengths of successful techniques can be applied across a variety of

applications. While hybridization of search techniques has been examined, few design space

exploration tools offer a hybrid exploration approach.

 The need for hybrid, scalable, expressive design space modeling and exploration tools has

been the impetus for the research described in this dissertation. The theme of the work described

herein follows:

 It is possible to create a domain-independent, scalable, hybrid design

space exploration tool which integrates symbolic design space pruning with

constraint satisfaction to facilitate the exploration of large, complex design

spaces.

 This dissertation discusses the development of a hybrid design space exploration tool to

facilitate the specification, representation, and pruning of large design spaces. Chapter II

outlines current approaches published in the literature on design space modeling and exploration

 6

techniques. Chapter III provides an overview of a finite domain constraint representation of the

structure of the design space. Chapter IV defines a language for specifying property composition

functions for the design space, together with a mapping of the language into a finite domain

constraint representation. Chapter V describes an integrated, design space exploration tool,

where an existing design space exploration approach is merged with the finite domain constraint

tool to facilitate a hybrid design space exploration implementation. Chapter V also provides

scalability data on the finite domain constraint design space representation and search approach.

Chapter VI concludes the dissertation and discusses future areas of research relating to this topic.

 7

CHAPTER II

BACKGROUND

 Design space exploration in embedded system design has been addressed in the literature in

various forms and under various names. This chapter provides an overview of several tools and

techniques which automate the process of evaluating tradeoffs in embedded system design.

While the application domains and goals of each approach differ, all surveyed approaches relate

through the common goal of quantitative evaluation of design criteria in the context of embedded

system design. The techniques surveyed involve integer linear programming, constraint-logic

programming, parameter-based modeling, combinatorial search heuristics such as simulated

annealing and evolutionary algorithms, and symbolic constraint satisfaction.

Mixed Integer Linear Programming

 Integer linear programming facilitates the modeling and solution of a broad class of

constrained optimization problems. The development of solution techniques for linear

programming has been a focus of the Operations Research community for several years, brought

from the need to model business-oriented resource allocation and job scheduling problems.

Dantzig [22] is credited with the initial formulation of a linear program, and with developing a

solution technique, called the Simplex Method [22][23][24], for solving linear programs. Mixed

Integer Linear Programming [25] extends the concept of linear programming and facilitates

powerful modeling of resource allocation and scheduling problems.

 A Mixed Integer Linear Program (MILP) is an optimization problem that seeks to minimize

a cost function subject to a set of constraints. The following equations define a linear program,

whereon an MILP formulation is based.

 : TMinimize c x (1)
 :Subject to Ax b≤ (2)
 ,j j jx x x x 0∀ ∈ ∈ ≥ (3)

 8

 Equation (1) gives the cost function for the linear program, where x is an Nx1 vector of

decision variables. Equation (2) specifies a set of constraints to which the cost function

minimization is subject. A is an NxM coefficient matrix, while is a coefficient vector of

length M. Some of the decision variables in an MILP are subject to constraints which further

restrict their domain to the set of natural numbers, as illustrated in Equation (4). Let

b

{1, 2,... }Index N= be a set of indices of the decision variables contained in x .

 ,Z ZI Index j I x⊆ ∀ ∈ ∈j (4)

 A solution to the mixed integer linear program linear program is a binding of a value to each

decision variable, such that all optimization constraints, bounds constraints, and domain

constraints are satisfied, and where there exists no other such binding for which the value of the

cost function is lower. Dantzig developed the Simplex Method [23] for solving linear programs

without integrality constraints on decision variables. For programs with integrality constraints,

solvers employ a search algorithm (ex. branch and bound [26]) in conjunction with Simplex. A

MILP solver potentially traverses a tree whose size is exponential in the number of integral

decision variables in the problem specification. Due to the worst-case size of the tree, MILP

solvers have exponential worst-case complexity. Unfortunately, the explosion in tree size is

unavoidable for large problems, hampering efforts to scale MILP models. Various approaches to

improve the scalability of MILP solvers have been examined, including branching heuristics (ex.

Branch-and-Cut[27][28], Branch-and-Price[29]) in the search algorithm and optimizations of the

Simplex algorithm (ex. primal-dual algorithm [24]). Several commercial LP and MILP solvers

are available (ILOG CPLEX[30], LINDO[31], OSL from IBM[32]).

 Although the practical scalability of MILP solvers is improving, scalability remains an issue.

Further, for some application domains, the requirement imposed by the linearity of the

constraints is overly restrictive, as some relationships cannot be expressed using simple linear

combinations and linear constraints. An MILP formulation requires all optimization criteria to

be encoded in a single cost function. However, encoding conflicting goals into a single cost

function is cumbersome at best.

 9

Synthesis of ASIC Applications using MILP

 Prakash and Parker [33] offer one of the first approaches to system level synthesis in a

hardware/software codesign framework. Informally, synthesis is the process of mapping a

signal-processing application onto a set of configurable hardware resources. Their approach

outlines a MILP formulation which, given a formal application specification, determines the

appropriate ASIC hardware configuration for the application, and maps the application to the

configuration. An application is modeled as a directed dataflow graph, where nodes represent

tasks and edges represent data communication between tasks. Tasks are characterized with

metadata modeling execution time for each class of resource in the target platform. Task

execution or firing depends on the state of inter-task communication. Each input of a task is

assigned a value representing the fraction of the total task execution time after which data is

consumed on the input. Likewise, each task output is characterized with a fraction of task

execution time signifying when, relative to the end time of the task, output data is issued by the

task. Task communications are characterized with two profiles: local transfer time (for data

transfers between co-located tasks) and remote transfer time. Remote transfer time represents

only the time spent in communication, not the time spent in arbitration for shared communication

resources. The configurable architecture is modeled as a set of processors with point-to-point

communication links.

 Synthesis is the determination of a subset of the available processors and communication

links for inclusion in an implementation, a binding of each task in the application to a selected

processor, a binding of each inter-task communication link to a hardware communication link,

and the generation of a schedule for task execution on each processor and data communication

on each communication link. The model takes into account cost constraints, scheduling

constraints and can take into account other application specific constraints as well.

 The model provides variables representing the various entities in the task graph, together

with variables representing task firing and termination times, communication start and stop

times, and Boolean variables representing mappings of software to hardware, and the inclusion

of a hardware entity in the implementation. Each input (output) of a task is characterized with a

parameter dictating the percentage of task execution time relative to the task firing (termination)

for when data on that input (output) is actually consumed (produced). For inputs, the percentage

represents a delay from the time when the task fires to when the input on an input channel is

 10

consumed. For outputs, the percentage represents the time prior to task termination when an

output is first produced. In this fashion, their formulation allows an expressive model for

representing the overlap of communication with computation.

 The MILP formulation consists of two types of variables, those that represent timing, and

those that represent allocation. Allocation variables are binary, in that they take on values of 0 or

1, while timing variable are real-valued. An example allocation variable is the task-to-processor

assignment variable, ad ,σ that is set to true (1) if subtask in the task graph is mapped to

processor in the resource graph. The model includes a constraint requiring that a task be

allocated to exactly one processor, or, for each task ,

aS

dP

aS 1, =∑
∈ ad PPd

adσ , where represents the

subset of processors in the resource graph that are capable of executing task . Other

allocation variables define whether a particular communication is a local or remote

communication, and is computed from the allocation variables of each task.

aP

aS

 Timing information is modeled by relations between timing variables. Variables are used to

model the times when data from each input of a task is actually available, when each output data

is available, when task execution begins and terminates, and when each data communication

starts and ends. Constraints relate the data availability times of the inputs to a task to the start

time of the task, as well as the data availability of the outputs of a task relative to the task end

time. Other constraints restrict the communication start and stop times relative to the data

availability and consumption times on the source and destination tasks of the communications.

 The model is flexible, in that it can support the formulation of various cost functions for

minimization. The authors discuss two cost functions: the minimization of the total execution

time (modeled by setting a variable equal to the largest task termination time, then minimizing

the value of that variable), or the minimization of implementation cost. Implementation cost

metadata is associated with each architecture component in the resource graph. This metadata is

used in combination with information about whether each component in the reference

architecture is included in the final synthesized architecture to formulate a cost function, which

can then be minimized (i.e. total cost is the sum of the cost of each architecture component that is

actually included in the final architecture configuration.).

 The MILP formulation employs a branch-and-bound solver to implement the exploration of

the search space. At the time of writing, they provided a simple example with nine tasks that

 11

required 272 variables and 1081 constraints, and in one example, required over four days to

complete execution (in 1991). They discuss the fact that their approach works well for small

examples, but that the runtimes for complex applications are prohibitively expensive.

Partitioning FPGA-based Applications using MILP

 Kaul and Vemuri [34] employ MILP to model the temporal partitioning of reconfigurable

FPGA-based applications. An application is modeled as a task graph, where each task has

multiple implementations. Each implementation represents a different pareto-optimal point on

the tradeoff curve of area vs. execution time. Tasks are characterized with metadata describing

execution time and area consumption for each implementation. Task pipelining is allowed, in

that tasks may execute multiple times, consuming an input set on each execution. Pipelining

facilitates a reduction in the total number of reconfigurations at the cost of increased application

latency.

 A temporal partitioning of a task graph separates the execution of a task graph into phases,

where one phase is resident on the FPGA at a time. Temporal partitioning is tasked with the

separation of the task graph into appropriately sized partitions such that the application latency

requirements are met, while area constraints of the FPGA are not exceeded. The temporal

partitioning problem is formulated as a MILP. Latency is modeled as the longest execution path

between two tasks in the task graph, and must factor in reconfiguration times where the path

crosses temporal partitions. The MILP model uses latency as a cost function, and seeks to

minimize overall application latency. Spatial resource constraints are employed in the model to

ensure that all tasks in each temporal partition fit in the available area.

 The MILP formulation is given a fixed number of temporal partitions and optimizes design

latency by mapping the task graph across those partitions. Reconfiguration costs imply a

tradeoff between the number of temporal partitions and the application latency. A search

algorithm is employed to determine the appropriate number of temporal partitions to create. The

search algorithm implements a linear search between a lower and upper bound on the number of

partitions, where the MILP model is repeatedly invoked during the search.

 12

Critique of MILP for Design Space Exploration

 Mixed Integer Linear Programming has been widely applied in several domains. It is a

domain-independent modeling technique with well-understood solution techniques available.

However, the expressiveness of the MILP formulation is limited, in that it only supports

expressions which are linear combinations of decision variables. Non-linear relationships must

be somehow captured as sets of linear expressions. Further, the scalability of MILP solvers has

been called into question many times in the literature. While solvers are improving, MILP

models are currently able only to model “medium-sized” problems at best.

Linear Pseudo-Boolean Constraints

 A special case of an ILP problem further constrains all decision variables to the interval

{ }0,1 . This formulation is known as the Pseudo-Boolean constraint satisfaction problem [35].

More formally, a pseudo-Boolean constraint optimization problem is defined as follows:

 : TMinimize c x (5)
 :Subject to Ax b≤ (6)
 { }1, 0,j jx x x∀ ∈ ∈ 1 (7)

 Pseudo-Boolean constraints have been applied in modeling several scheduling and

optimization problems, including formal verification and routing in field programmable gate

arrays. Pseudo-Boolean solvers approach the determination of constraint satisfaction and cost

function optimization in many different ways. Due to the fact that the pseudo-Boolean

optimization problem is in fact an integer linear program, standard ILP solver techniques have

been applied. However, such techniques do not take advantage of the fact that all decision

variables are 0-1 variables; other solver techniques attempt to utilize this restriction to formulate

more efficient searches.

 Many recent pseudo-Boolean solvers leverage search techniques developed for Boolean

Satisfiability (SAT). A SAT solver attempts to determine whether a set of constraints over

Boolean variables, specified in Conjunctive Normal Form (CNF), are satisfiable. Satisfiability

implies the determination of whether a binding of values to the variables in the problem

specification exists, such that all constraints are satisfied. Conjunctive Normal Form specifies

that all constraints are conjunctions of disjunctions of literals, where a literal is either a constraint

 13

variable or the logical negation of a constraint variable. Most SAT solvers are based on the

Davis-Putnam-Logemann-Loveland (DPLL) algorithm [36], implementing a backtrack search

involving conflict-based learning. Chaff [37] is an example of a recently implemented SAT

solver which integrates several improvements over the standard DPLL algorithm, and as a result,

performs very well on practical SAT benchmarks. The pseudo-Boolean solver PBS [38]

generalizes the advances in SAT solving techniques implemented in recent solvers such as Chaff.

It applies those algorithms through a conversion of the pseudo-Boolean constraint satisfaction

problem into Conjunctive Normal Form.

 Bockmayr implements a solver for pseudo-Boolean constraints based on the application of

cutting planes [39]. As discussed above, MILP solution techniques involve the iterative

strengthening of a set of constraints which bound the MILP solution. These bounding

constraints are formed during Branch-and-Bound search. Bockmayr applies cutting planes to the

set of constraints to strengthen the constraint store, together with branch-and-bound to converge

on a solution. He compares the performance of his branch-and-cut solver to the performance of

a finite-domain constraint solver when applied to a standard optimization problem. He

concludes that the pseudo-Boolean constraint formulation is not as compact nor as elegant as the

finite domain constraint solver, but the branch-and-cut algorithm outperformed the finite domain

constraint solver on the modeled problem.

 Pseudo-Boolean constraints form an ongoing area of research in constraint satisfaction.

Most solvers take only linear pseudo-Boolean constraints, in that all constraints must be linear

combinations of decision variables. Some complex design space exploration problems involve

non-linear models, rendering ILP and pseudo-Boolean models inapplicable. Ongoing advances

in SAT solver and ILP solver techniques rapidly advance the state of the art in solver speed and

scalability, necessitating further comparative studies between pseudo-Boolean solvers based on

ILP techniques and those based on SAT techniques, as well as between pseudo-Boolean solvers

and other design space modeling approaches.

Constraint Logic Programming

 Constraint Logic Programming (CLP) [40][41] is the result of a unification of research in

the fields of Artificial Intelligence and Logic Programming. CLP involves the specification of a

problem as a set of constraints over a set of variables, where the constraints and variables

 14

conform to a constraint domain. The goal of CLP is to find a pairing of domain value to variable

for all variables in the problem description, such that all constraints in the problem specification

are satisfied. Some applications involve the determination of all such solutions, while other

applications seek only to determine the existence of a solution.

 CLP models a problem as a set of constraints that conform to a constraint domain. A

domain defines a set of values together with a set of operations over those values. The Boolean

constraint domain defines the values{0 , with operations { ,,1} , }∧ ∨ ¬ . The Arithmetic constraint

domain for real numbers defines as the value set, with operations +,-,*,/, etc. A constraint is a

conjunction of one or more basic constraints, where a basic constraint is the simplest form of a

constraint defined in the given domain. A basic constraint consists of an operation together with

an appropriate number of arguments.

 Marriott and Stukey [41] formally define a constraint C, conforming to constraint domain

D, as:

 (8) 1 2 ... ,nC c c c n= ∧ ∧ ∧ ≥ 0

 Constraints are called primitive constraints. C is said to be satisfied only where

each primitive constraint in C is satisfied. A valuation

,ic i n≤

:V Dθ → for a set of variables V is an

assignment of values from the constraint domain to the variables in V. θ is a solution of C if V

is a subset of the set of variables in C, and if C holds over θ . A constraint C is satisfiable if it

has a solution, otherwise it is unsatisfiable. The Constraint Satisfaction Problem seeks to

determine whether a constraint C is satisfiable. The Constraint Solution Problem seeks to

determine a solution for constraint C.

 In theory, determining constraint satisfaction is easier than actually finding a solution, but in

practice, in many domains the proof of satisfiability involves the search for a solution. A

constraint solver takes a constraint C in domain D, and returns true when C is determined to be

satisfiable, false when not satisfiable, and unknown when the solver cannot determine

satisfiability. A complete constraint solver will only return true or false, never unknown. The

implementation of a constraint solver is highly domain dependent.

 15

Finite Domain Constraints

 A constraint domain is classified as a finite domain when the cardinality of the value set

defined in the domain is finite. Finite constraint domains include the Boolean constraint domain

as well as the integer constraint domain (where the integer value set is restricted to some finite

set of integer values). Constraints over finite domains are widely used in modeling complex

problems across multiple application domains. Examples include static scheduling of real-time

embedded systems [42] and time-table scheduling [43][44]. Van Hentenryck [45] provides

several examples of applications that can be modeled using finite domain constraints. Several

finite domain solvers have been developed, including Mozart[46], JaCoP[47], CHIP[48], and

CLP(R)[49].

 The Mozart programming system and constraint solver facilitates the development of

applications in the Oz language [50]. Oz is a concurrent programming language which has been

extended to support, among other capabilities, constraint logic programming with finite domain

constraints. Mozart is a runtime support system and development support suite for Oz. Mozart

offers a compiler/linker, debugger, visualization tools, profiling tools and runtime support for

Oz-based programs. While Mozart/Oz offers broad support for several application domains (ex.

distributed programming, security, web-based applications), the finite domain constraint

modeling and solution facilities of Mozart are relevant to design space exploration.

 Mozart facilitates the determination of a solution to a finite domain constraint programming

problem through three steps: propagation, distribution, and search [51]. Each of these three steps

relate to the concept of a constraint store, or a centralized database containing information about

all variables in the constraint program, including the domain of each variable. The constraint

solver attempts to bind values from variable domains to variables through a process of shrinking

the domain of each variable. When only a single value remains in the domain of a variable, the

variable is said to be bound to that value. A solution to the constraint program consists of a

binding of values to variables for all variables in the constraint store. The propagation,

distribution and search steps of the constraint solver attempt to further this process of shrinking

variable domains in order to calculate a valuation for the constraint program.

 A finite domain constraint is a relation between finite domain variables. Each variable is

supplied a domain which is a subset of the value set of the constraint domain. Without loss of

generality, finite domain constraints are discussed with respect to the integer constraint domain.

 16

A finite domain constraint consists of a set of operations over a set of variables, and can be

decomposed into a set of primitive constraints. A primitive constraint expresses a basic

operation between finite domain variables. Due to the fact that all finite domain variables are

associated with a domain, the constraint solver may be able to reason about the domains of some

of the variables in a primitive constraint, based on the type of operation implemented by the

constraint and the domains of the remaining variables in the constraint. Consider the finite

domain constraint , where the variables are defined such that ,

, and . An analysis of the upper and lower bounds of the variables

involved indicates the elimination of some values from the variable domains, resulting in

, , and

x y z+ > {1, 2,...,10}x∈

{1, 2,...,10}y∈ {1, 2,...,10}z∈

{1, 2,...,9}x∈ {1, 2,...,9}y∈ {2,3,...,10}z∈ . When the solver determines a change in a

variable’s value domain, the constraint store is updated with the reduced variable domain. Other

constraints in the constraint program which depend on the updated value can then retrieve the

newly shrunken domain from the constraint store in an attempt to further shrink the domain,

given the new information. This process is called propagation: where finite domain constraint

implementations share information about the domains of variables through the constraint store.

 A realization of a finite domain constraint in Mozart is called a propagator. All propagators

operate concurrently, and share a single, centralized constraint store. When the domain of a

variable is updated in the constraint store, all propagators which are associated with that variable

are notified, whereon they take the newly updated variable domain and attempt to further

eliminate values from the domains of their associated variables. If successful, any domain

updates are propagated to the constraint store, whereon the propagator blocks, waiting for new

information. Most often, propagators implement interval propagation, where domains of

variables are examined from the perspective of upper and lower bounds. Domain propagation

examines all values in the domain in an attempt to aggressively eliminate domain values.

Domain propagation is considered computationally expensive, and is therefore not used as often

as interval propagation.

 Propagation facilitates the sharing of information between propagators. This unique

approach facilitates a modular specification of a constraint program. However, constraint

propagation alone is not sufficient for a complete constraint solver. Often, all propagators in a

constraint program will block when no new information can be gleaned from a problem

specification, in which case the solver must resort to distribution and search.

 17

 Constraint distribution involves the introduction of a choice point into the constraint

problem. Distribution derives two similar, but contradictory sub-problems from a current

constraint problem by creating two copies of a constraint store and injecting them with

contradictory constraints. Proof-by-contradiction guarantees that if a single solution exists, it

will be found through the solution of exactly one of these contradicting problems. Distribution

involves the selection of the contradicting constraints to inject in the cloned constraint stores.

Often, an un-bound variable is selected from the constraint store and is set equal to a value in one

sub-problem, and set not equal to a value in the other problem. Each sub-problem can then be

solved independently. Mozart allows the distribution algorithm to be specified as part of the

constraint program, thus allowing the tailoring of distribution to fit the constraint program.

 Distribution is invoked only when propagation stalls. Each time propagation stalls, a

distribution point is introduced. The goal of distribution is to facilitate propagation in a newly

created space through the introduction of new information into the space. However, if

propagation stalls again in the newly created space, distribution once again introduces a choice

point, creating two new sub-problems, and the process repeats. The process terminates either

when a solution is found, or when a space is determined to be contradicting, and thus has no

solution. Distribution can be modeled as a binary tree, whose nodes model partially solved

constraint programs, and whose edges represent added constraints.

 Search involves the traversal of the distribution tree. Once distribution clones the current

constraint store and inserts the contradictory constraints, the search algorithm specifies the order

in which to search the newly created spaces. While several search orders are possible (breadth-

first, depth-first, or other heuristic-based search orders), depth-first search has been shown to be

superior with regards to memory consumption over several constraint programming applications.

Modeling System Synthesis with Finite Domain Constraints

 Several problems in embedded computing can be modeled using finite domain constraints.

Kuchcinski et al [47][52][53] have used finite domain constraints in several applications to solve

difficult embedded systems design problems. Their published approaches implement variations

of a common theme: a dataflow-based task graph being scheduled across a distributed,

heterogeneous set of computation and communication resources such that certain timing and

 18

resource constraints are satisfied. Their application domain principally targets complex System-

on-Chip architectures.

 Kuchcinski models an application as a directed acyclic graph },{ ETG = , where T is the

vertex set, and models the set of tasks in the system. E is the set of directed edges connecting

tasks, and models data dependencies between tasks. All data dependencies affect task

scheduling, in that a task cannot execute prior to the arrival of all its input data, and sends output

data only on termination of the execution. Each task is modeled as a three-tuple of finite domain

variables, },,{ ρδτ=T , where τ represents the start time of a task, δ represents the time of task

duration, and ρ represents the computational resource on which task T executes. τ is defined

such that {0,1,..., }Cτ ∈ , where C represents the maximum duration of the application execution

cycle. The time domain is discretized into intervals which specify the granularity of task start

times. All resources in the target platform are assigned an integral identifier. The set of all

resource identifiers is the domain of all resource allocation finite domain variables. The domain

of the task duration variable models the worst case execution times of the task when targeted to

each type of resource available in the target architecture. Finite domain constraints are added to

the model to bind the selection of a particular benchmark value from the execution duration

domain to the selection of a resource of the corresponding resource class in the resource

allocation variable domain. A task execution is modeled as a two-dimensional rectangle in the

plane defined by execution time vs. resource allocation:

 (,), (,), (, 1), (, 1)i i i i i i i i i iτ ρ τ δ ρ τ ρ τ δ ρ+ + + + (9)

 Task communications are modeled in a similar fashion, where each communication is

assigned a start time variable, a duration variable, and a resource allocation variable. However, a

third dimension in the model must be introduced to account for the fact that communications

between tasks that are co-located are assumed to be instantaneous, and do not require physical

communication resources. A third finite domain variable is introduced to the communication

specification which takes on a value depending on whether the communication is a local

communication or not. Constraints formulating the analysis of communication scheduling

consider only those mappings whose communication locality variable indicates that the

communication is a non-local communication.

 19

 Precedence constraints specify temporal relationships between task execution variables.

Suppose a task graph consisted of two tasks, i and j, with communication k connecting i to j, as

depicted in Figure 1.

Figure 1. A simple task graph

 The following precedence constraints capture the time dependence between the two tasks

and the communication:

 i i kτ δ τ+ ≤ (10)
 k k jτ δ τ+ ≤ (11)

 The constraints specify that task i must start and run to completion prior to the start time of

communication k. Likewise, communication k must start and run to completion prior to the start

time of task j.

 Mutually exclusive access to resources is modeled with disjunctive constraints. For any two

tasks x and y in the task graph, the following constraint must hold:

 () () ()x x y y y x x yτ δ τ τ δ τ ρ ρ+ ≤ ∨ + ≤ ∨ ≠ (12)

 The exclusion constraint specifies that if two tasks share a resource, their execution

windows must not overlap. This models non-preemption of computational resources. Similar

constraints are added for each communication link in the system, modeling exclusive access to

communication resources.

 Resource constraints are modeled through the rectangle task specification given in Equation

(9), and a constraint that requires that no two rectangles in the system specification overlap.

Execution rectangles overlap only when task execution windows overlap when allocated to the

same resource. Resource constraints also specify the types of resources employed in the final

configuration, along with the quantity of each resource type. These totals are used to formulate

cost functions based on resource implementation cost.

 20

 Optimization criteria are specified as a function of finite domain variables. The constraint

solver employed by Kuchcinski facilitates the minimization of a cost function during the

constraint search. Application-level requirements can also be inserted into the constraint

specification. For example, the maximum task end time can be constrained to be less than some

bound, modeling a bound on total application latency.

 While constraint propagation and distribution can be used in conjunction with exhaustive

branch and bound search techniques to determine solutions to the mapping problem, due to the

domain sizes of the variables in the specification, Kuchcinski relies on several heuristics to

quickly prune the design space and arrive at solutions in a more timely fashion. He describes the

use of the limited discrepancy search (LDS) heuristic [54] and the credit search heuristic [55].

LDS attempts to find a solution to the constraint problem by performing small changes to a

current valuation. Credit search integrates backtracking to partially search the search space.

Credits are used to effectively model the time or distance a particular subspace is searched for a

solution. When the credits for a particular subspace are completely used, backtracking is used to

traverse a different part of the space. Those portions of the space that are deemed highly

probable to contain a solution are initially assigned more credits than other portions of the space.

The authors measure execution times of the CLP formulation using randomly generated task

graphs, and report significant speed gains over similar MILP formulations [56].

Partial Assignment Technique

 Szymaneck and Kuchcinski[57] present the Partial Assignment Technique (PAT) to pre-

prune a finite domain constraint program problem specification targeting the MATAS scheduling

tool [58], thus speeding the design space search. The technique involves clustering tasks into co-

located sets. Not all tasks are necessarily clustered. Nor does PAT attempt to bind the clusters

to resources. Rather, it simply focuses on clustering some of the tasks into groups that will be

co-located by MATAS. The goal is to reduce the complexity of the assignment and scheduling

problems.

 PAT determines what tasks to join into a cluster by defining a measure of “closeness”. If

two tasks or groups of tasks are “close,” then merging the two groups into a single group will

presumably positively impact the overall schedule and memory usage of the mapped application.

Tasks or groups of tasks that are not “close” do not show such benefits from clustering. PAT

 21

defines a closeness metric as a weighted sum of three scheduling objectives: minimizing

execution time, minimizing code memory usage, and minimizing data memory usage. The

closeness for two groups in time is defined as the estimated speedup gained from eliminating

interprocessor communication between the groups (since inter-group communication for co-

located groups is assumed to be negligible). Closeness in code memory measures the impact of

code sharing between groups. If much code is shared between two groups, then co-locating the

groups impacts the overall code memory usage. Closeness in data memory measures the impact

of data memory that needs to be replicated on either end of a data communication to buffer the

communication before (on the sender side) and after (on the receiver side) communication

between groups. If the groups are co-located, such replicated data memory is not needed.

 PAT calculates closeness between all tasks in the specification, and picks the two closest

tasks for clustering. This new clustered group is treated as a single task in the analysis, and PAT

again calculates closeness between all groups and selects the two closest for clustering. This

iterative process continues until some predefined reduction factor is achieved.

 On termination, PAT instead of generating code to physically cluster task groups into single

tasks, simply generates constraints to add to the constraint specification input to MATAS. These

constraints specify that tasks within a group are to be co-located. For example, if task i and task

j were clustered by PAT, then PAT would generate the constraint ji ρρ = , where xρ is a finite

domain variable representing the index of the computation resource to which task x is assigned.

 PAT is a novel technique, in the sense that it considers in a pre-processor fashion which

tasks to co-locate, outside of the problem of determining task allocation. Instead of physically

gluing together clustered tasks, it simply inserts constraints requiring that tasks be co-located.

Another feature of PAT is that it is multi-objective, in that it considers closeness in time, code

memory and data memory individually, but collectively within a unified cost metric.

Time-Triggered Software

 Finite domain constraint programming has also been used to generate a static schedule for a

time-triggered applications targeting a multiprocessor platform connected with a time-triggered

bus [42]. An application consists of a set of processes, each of which is mapped to one and only

one processor. A process is invoked multiple times. Let P denote a process, and denote the iP

 22

ith invocation of process P. Let denote the non-negative time of invocation of , and

let denote the execution duration time of

)(iPstart iP

)(Pdur P (note that execution time is the same across

all invocations). The completion time of can be calculated as follows:

. A similar formulation can be made for each message

iP

)()()(PdurPstartPcompl ii += M in the

specification, where messages have a start time per invocation, and an invocation-independent

duration. Processes have a period of invocation, , which is assumed to be larger than

the duration of the process, and can be modeled as:

)(Pperiod

)()()(1 PperiodPstartPstart ii += − . The off-

line scheduling of the time-triggered application seeks to define a repetition window, containing

a schedule of all tasks and message exchanges that can be repeated indefinitely. The length of

the repetition window is called the cycle time, CT . It is a requirement of the time-triggered

system that for all processes, CTPcompl i ≤)(, and as with Kuchcinski, if two tasks are co-

located, their execution windows may not overlap. Constraints are used to model the fact that

message transmission may begin only after the sender task has completed, and that all message

transmissions must complete within the cycle time, just as with processes. Constraints also

model the fact that only one transmission may be active on the bus at one time, in much the same

fashion that execution windows for co-located tasks cannot overlap.

 The authors describe a mapping of the time-triggered scheduling problem onto a Mozart-

based finite domain constraint specification. They discuss different strategies to search for

solutions for this problem, leveraging results from Operations Research to limit the complexity

of the branching by determining a proper ordering for the selection of variables for branching.

Critique of Constraint Logic Programming

 Constraint Logic Programming has been applied in several domains to model combinatorial

search problems. Mature solvers and development tools are available. Current design space

exploration techniques using finite domain constraints are highly domain-specific, and are

limited to the examination of temporal properties and scheduling. Property composition for

structural properties has not been addressed in the current approaches. However, finite domain

constraints offer a unique model for expressing design space exploration problems. Finite

domain constraints are not limited by linearity requirements on constraint expressions, as are

linear pseudo-Boolean constraint specifications and MILP specifications. Further, the ability to

 23

guide domain distribution and search separately from the problem specification facilitates

elegant constraint models.

Combinatorial Search Heuristics

 General combinatorial search techniques have been applied to the modeling and exploration

of embedded system design spaces. These techniques implement search heuristics that are

tailored to the problem domain. Specifically, three techniques have been surveyed: simulated

annealing, evolutionary algorithms, and tabu search.

Simulated Annealing

 Kirkpatrick [59] noted and applied the annealing concept from physics to model and execute

combinatorial search. Annealing is the process of slowly cooling liquid glass or metal into a

solid state. If the cooling process proceeds at the proper speed and temperature gradient, the

resulting solid is quite strong. If the cooling process proceeds too quickly, the solid is weak and

brittle. Annealing involves the reduction of random molecular motion during the transition from

the liquid to the solid state.

 Simulated annealing applies the ideas of random movement and cooling to combinatorial

search, as follows. Search begins at a random point in the search space. A cost function

facilitates the quantitative comparison of two points in the space. The algorithm repeatedly

attempts to improve the outcome of the cost function by traversing the space. At the beginning

of the search, the search space is modeled as a liquid, and therefore the search algorithm

incorporates significant randomization when traversing the space. Randomness is realized

through arbitrary alterations of the set of values modeling the current location in the search

space, resulting in a different point in the space. How drastic the change and how often the

changes are made depends on the current simulated temperature. As the simulated temperature

decreases, the number of random changes introduced in the search process decreases. Between

random changes in the search trajectory, the algorithm attempts improve the value of the cost

function through local search using domain-dependent comparison and improvement algorithms.

As the search proceeds, the annealing process dictates the lowering of the simulated temperature.

Once the temperature reaches a certain threshold, search terminates.

 24

 Simulated annealing is a heuristic search technique. It offers no guarantee of determining an

optimal solution. It does not even offer a guarantee of finding a good solution. Due to the

random perturbations in the annealing process, it is resilient to getting “stuck” in a local

minimum in the search space. Several applications of simulated annealing algorithms to

embedded system design space exploration are discussed below.

3D-Floorplanning of Reconfigurable Architectures

 Bazargan et al [60] have developed a model for the placement of tasks onto a reconfigurable

architecture based on 3D-floorplanning. A reconfigurable architecture (ex. an FPGA) is modeled

as an array of reconfigurable units. An application is modeled as a set of tasks, each of which is

characterized with resource requirements, and a temporal execution specification. Application

execution on reconfigurable hardware is modeled as a thee-dimensional volume, where the x and

y dimensions model the physical reconfigurable resource area, and the z dimension models

execution time. The 3D-floorplanning algorithm seeks to determine an off-line mapping of tasks

onto the reconfigurable architecture. Each task is modeled as a box with a fixed shape (required

resources are modeled in the x-y plane, and task execution is modeled in the z plane). The

floorplanning algorithm attempts to fit the volumes corresponding to each task within the volume

modeling the execution platform, such that no two task volumes overlap in any of the three

dimensions. The total execution time of the application is represented by the length of the fitted

application in the z direction. The authors evaluate several different simulated annealing

algorithms to model the task placement, implementing various cost functions.

Cosyma

 The Cosyma [61] project utilizes a simulated annealing model to perform hardware/software

partitioning for embedded systems. Applications are represented using a superset of the ANSI C

language called Cx. Cx facilitates the labeling of tasks and intertask communication, as well as

the capture of timing metadata for tasks, such as execution time bounds. The Cx specification is

parsed into a DAG representation, which is then analyzed. The target platform is a

heterogeneous architecture consisting of programmable microprocessor cores with memory and

hard-wired or field programmable hardware logic devices. Cosyma attempts to map the DAG

model of an application onto the target architecture. This is done using a dual-loop search. In

the inner loop, a simulated annealing search is performed that attempts to optimize a hardware-

 25

to-software mapping for a given cost function and timing constraints. The outer loop adapts the

cost function when more knowledge is obtained about performance metadata. Initially, all tasks

are mapped to software, and the simulated annealing algorithm attempts to iteratively move tasks

to hardware until timing constraints are met.

Evolutionary Algorithms

 Evolutionary algorithms [62][63] are another class of heuristic combinatorial search

algorithms used to model embedded system design space exploration problems. Evolutionary

algorithms or genetic algorithms model the process of evolution in nature, where survival of the

fittest and natural selection are used to model and explore a combinatorial search space. The

search space is modeled as a population that grows across generations. Natural populations grow

and diversify through the production of offspring from parents. The genetic makeup of an

offspring is a combination of the makeup of the genes of the parents. The combining of the

parents’ genes to form an offspring is referred to as crossover. Natural selection, or the principle

of “survival of the fittest,” implies that those offspring that are not fit for survival perish.

Mutation in a population introduces characteristics in an offspring that are not present in either

parent. Mutation is modeled as a random change to the genetic makeup of an offspring when the

offspring is born. Through these concepts of crossover, selection and mutation, a population

grows and improves across generations.

 Genetic algorithms model combinatorial search problems after the process of evolution.

Members of a population represent different points or potential solutions in a search space.

Crossover selects two points in the space for combination to produce another point in the space.

Crossover implements a kind of local search, implementing a hill climbing algorithm through the

examination of adjacent points in the space to generate “good” offspring. A fitness function

compares a newly created offspring against the current population. If the offspring is deemed fit

for survival, it is included as part of the population. Determination of fitness models natural

selection. Mutation introduces small random changes during crossover, adapting the process of

combining the parents to form the offspring. Evolution proceeds generation after generation,

iteratively improving the population. A genetic algorithm typically terminates after a set number

of generations have evolved. The actual implementations of crossover, selection, and mutation

are highly problem-specific. Genetic algorithms have been widely used and applied in multi-

 26

objective search problems [64][65][66], making it an often-selected candidate for the exploration

of embedded system design spaces.

System-Level Synthesis Using Evolutionary Algorithms

 Lothar Theile’s group at ETH Zurich has studied the use of evolutionary algorithms to

model the synthesis of embedded applications. In [67], an approach for performing

hardware/software partitioning and scheduling for a heterogeneous embedded platform is

discussed, which uses evolutionary algorithms. Applications are modeled as a dependence

graph, where nodes represent either computations or communications, and edges represent

dependencies between nodes. An architecture is also modeled as a graph, where nodes represent

either computation resources or communication resources (e.x. point-to-point communication

link or a bus), and edges represent directed associations between resources. A formal model is

developed facilitating the specification of user-defined constraints on the binding of tasks to

resources, called a specification graph. A specification graph is a set of related dependence

graphs, where edges relating dependence graphs model potential bindings. A dependence graph

captures the set of tasks and inter-task communications in an application. A second dependence

graph models the hardware architecture onto which the application will be modeled. Directed

edges in the specification graph connecting these two dependence graphs model potential

resource allocations. Formally, a specification graph (),S S SG V E= consisting of D dependence

graphs , and a set of mapping edges (), ,1i i iG V E i D= ≤ ≤ ME . The model stipulates ,
1

D

S i
i

V V
=

=∪

1

D

S i
i

ME E E
=

= ∪∪ , and
1

1

D

M Mi
i

E E
−

=

=∪ , where . Each dependence graph in

the specification graph models a level of abstraction of the problem, thus facilitating in a sense a

hierarchical approach to the mitigation of complexity in the model. The mapping edges

1,1Mi i iE V V i+⊆ × ≤ ≤ D

ME are

viewed as potential mappings. For example, a task which can be allocated to multiple resources

will have a mapping edge connecting it to each such resource. All resources in the resource

dependence graphs are not necessarily included in a final synthesized system; the synthesis

algorithm determines which resources to include in an implementation.

 A specification graph models several potential implementations. An activation is defined to

be a function { }: S SV Eα ∪ 0,1 , which models whether a node or edge in the specification

 27

graph is selected for inclusion in an implementation. Selection is indicated through the value 1.

An allocation is defined as the subset of all activated nodes and edges in the specification graph.

A binding is defined as the set of all activated mapping edges in the specification graph. A

feasible binding is a binding which meets the following constraints:

• all activated edges connect activated nodes

• for all activated nodes, only one outgoing mapping edge is activated

• for all activated edge, if the edge connects entities which are not co-located, a

corresponding communication resource is also activated to handle the inter-resource

communication

 A feasible allocation is defined as an allocation which allows at least one feasible binding.

Scheduling is also defined within the context of a specification graph. Given 1 PG G= as the

problem dependence graph that models the application and a function (,)delay v β +∈ which

assigns an execution time to task based on its allocation in feasible binding v β , a schedule is a

function that satisfies all edges : PVτ + (),i j Pe v v E= ∈ , () () (,)j i iv v delay vτ τ β≥ + . This

simply implies the precedence relation between tasks and inter-task communication: task outputs

can only be communicated on after the task execution terminates.

 Formally, an implementation of a specification graph consists of a feasible allocation, a

feasible binding, and a schedule. The problem of determining an implementation can be phrased

as an optimization problem, where some cost function is minimized, subject to criteria of an

implementation definition (i.e. that the cost function minimization results in a valid

implementation). The optimization problem is implemented as a genetic algorithm.

Critique of Combinatorial Search Heuristics

 Combinatorial search heuristics are domain-independent search algorithms which are

specialized to the application domain. Arguably, the algorithms are “too abstract,” in that

several aspects of the application of the algorithm to the domain require intimate domain

knowledge. For example, the implementation of the crossover function in a genetic algorithm is

highly domain-specific. The crossover implementation of one genetic algorithm implementation

may look nothing like the crossover implementation of another. While both genetic algorithms

and simulated annealing algorithms offer the benefit of resilience to getting “stuck” on local

 28

maxima due to the random perturbations introduced during traversal, neither offers guarantees of

coverage of the search space. They are not even guaranteed to offer good solutions

 Branch and Bound in Real-Time Software Synthesis

 Branch and bound algorithms are commonly employed in design space exploration. Branch

and bound is effective when applied to spaces which can be iteratively decomposed and refined,

and where quality metrics can be evaluated on partially explored spaces to produce upper or

lower bounds on the value of the metric. The branching step involves the refinement of a

partially explored space into a set of contradictory spaces, which can each in turn be further

refined and explored. Two spaces are contradictory if they represent mutually exclusive

subspaces of the search space. The bounding step of the algorithm evaluates a partially refined

subspace over one or more quality metrics. The quality metric function returns a bound on the

metric, implying that all solutions contained in the subspace are bound by the returned value.

Global search criteria are specified over these quality metrics. If at any point in the search it

becomes apparent that the quality metrics for a subspace fall out of bounds of the search criteria,

the subspace is marked as “bounded” and is not further refined. Unbounded leaf nodes in the

resulting search tree represent solutions to the search problem. Branch and bound can be used to

model both optimization problems and constraint satisfaction problems.

Minimum Required Speedup

 Axelsson [68] offers a novel metric and algorithm for analyzing the schedulability of fixed-

priority-based preemptive task schedules, as well as a technique for partitioning a task graph

onto a heterogeneous architecture graph. His formulation centers around a performance metric,

called the minimum required speedup (MRS). MRS effectively denotes the minimum speedup

required from a system in order for a particular timing deadline to be met. Axelsson illustrates

the utility of this metric in hard real-time schedulability analysis, as well as task distribution.

 An application is defined as a set of tasks },...,,{ 21 mB τττ= with well-defined worst-case

execution times. Let)(iD τ be a deadline, and)(iT τ be an invocation period for task Bi ∈τ . The

targeted execution platform consists of an embedded microprocessor, an ASIC, embedded

memories, caches and busses, or various combinations of these components. The synthesis

algorithm attempts to discern the proper architecture composition for a given application.

 29

 Runtime scheduling is based on a fixed-priority assignment, and employs pre-emption. It is

assumed that a task may need multiple resources (ex. a processor, a bus, and an embedded

memory) in order to run. Preemption covers any type of resource, not just a computational

resource, as is traditionally considered in real-time analysis. A task partitioning is described as a

binding of all tasks to resources in the execution platform, such that the resource requirements of

each task are met. Schedulability analysis attempts to determine whether a given task

distribution partitioning, together with a fixed priority assignment for all tasks results in all tasks

meeting their respective deadlines. Task deadlines are compared against their worst case

response times in order to determine whether deadlines are violated. The minimum required

speedup for a task measures how much faster the system must run in order for that task to meet

its deadline. Axelsson develops from his formulation a means to calculate the worst-case

response time for a task, which differs slightly from traditional uniprocessor formulations, due to

the complex nature of the architecture, and the fact that a task may require several resources that

are not necessarily computational resources in order to execute. The MRS for a task is

calculated from the worst case response time, by finding the minimum ratio of the worst case

response time to execution time in the execution window of the task.

 Axelsson uses the MRS metric as a basis to perform design space exploration to find an

optimal task partitioning. The partitioning algorithm attempts first to meet timing deadlines and

then attempts to minimize cost. It utilizes MRS to calculate a lower bound on the speedup

required for all partitions that can be generated from a partial partitioning. Using this lower

bound, Axelsson implements a branch-and-bound search of the space to find quality partitions.

A partial solution consists of a partial mapping of tasks to resources. Each branch step selects an

unbound task and binds it to a set of resources. The MRS for a partial partitioning specifies a

bound on the design space search by allowing the comparison of a newly generated partial

partition against the best found thus far. If no speedup is required, implementation costs are

compared instead of MRS. A complete solution is defined as a partition where all tasks in the

application are mapped to real computational resources in the architecture.

 The algorithm utilizes heuristics to speed the search process. Heuristics are applied to

produce an order for selecting the next task for partitioning when branching, as well as the order

in which the n new partial partitions generated from branching are considered for evaluation.

The heuristics applied are:

 30

• Allocate the most demanding tasks first, where “demanding” is measured by the length of

the deadline (i.e. order task selection by deadline)

• Before deadlines are met, allocate to the ASIC resources. After deadlines are met,

allocate to processors.

• Attempt to balance processor loads by trying processors in order of increasing load.

 The MRS calculation is polynomial, but a large-degree polynomial, rendering the MRS

computation expensive and impractical for large-scale systems.

Component Allocation in the AIRES Toolkit

 Wang et al [69] develop a method for allocating components to distributed resources using

what they term an “informed” branch and bound algorithm. Their approach searches for

distributions which meet multiple resource constraints. In the design flow, component

distribution occurs prior to timing analysis and schedule synthesis.

 An application consists of a set of tasks or components. Each task has a discrete set of

inputs and outputs, modeled as ports. On execution, data is consumed from input ports, and on

termination, data is enqueued into output ports. Each component is characterized with metadata

describing its resource consumption rates, for both computation and memory. A communication

link between tasks is characterized by a resource consumption rate as well, representing the size

of the communication. A platform is modeled as a set of processing elements together with a

single globally shared communication link, connecting all processing devices. Each processor is

characterized with metadata describing its maximum resource capacity, for both memory and

computation. The communication link is also characterized with a resource capacity. A valid

partitioning of an application graph onto a resource graph is a partitioning that does not violate

any resource capacity constraints. For each processor in the resource graph, the sum of resource

consumption rates of all tasks that are mapped to that processor must not exceed the

computational resource capacity of the processor. Similarly, memory and communication

resource capacities cannot be exceeded. The partitioning algorithm attempts to populate a set of

partitions, where one partition is mapped to each processor.

 The branch and bound algorithm utilizes a few heuristics to aid the search process. Partition

distribution proceeds in a sorted order. Possible partition branchings are sorted according to a

competence function. The competence function is a linear combination of measurements of

 31

resource requirements, and estimates the probability that a particular mapping decision will lead

to a constraint violation. Forward checking removes from consideration those possible branch

points which do indeed result in constraint violations. Forward checking is computationally

expensive, but becomes cheaper as the number of unallocated tasks decreases; hence forward

checking is applied only after some minimum number of tasks have been allocated.

Critique of Branch and Bound

 Branch and bound algorithms are employed in many combinatorial search problems. The

algorithm is successfully applied only where an appropriate branching algorithm can be

formulated, and where an accurate, “tight” bound estimate can be determined early in the

branching process. Branch and bound has exponential complexity in the worst-case due to the

recursive branching and search of the tree. However, with appropriate branching and bounding

algorithms, branch and bound can be applied to large search problems.

Parameter-Based Design

 A design space can be represented using a parametric model [70]. Variables or parameters

represent variation in the system. System behavior is modeled as some mathematical function of

those variables. It is often the case in multi-objective search, especially with parameter-based

search, that a designer seeks a set of pareto-optimal parameter settings. A pareto-optimal [71]

parameter set is a set of valid parameter values for all variables in the system description, where

for each mathematically described objective, no other parameter set performs better with respect

to that objective. However, for a given objective, there may be several pareto-optimal parameter

sets which perform equally well. It is often the goal of multi-objective design space exploration

to find the set of all pareto-optimal parameter sets, for each objective of the search. Different

authors advocate different approaches to determining these pareto sets.

Platune

 Vahid and Givargis offer Platune[72][73] as a tool for exploring the design space of a

system-on-a-chip (SoC) architecture. They model a SoC as a set of parameters, each with

discrete, finite domains. They implement fast performance prediction models as functions of the

SoC parameters to explore the design space. They explore the space with the objectives of

 32

minimizing power, area and total application execution time. They develop a pruning algorithm

that partitions the design space into subspaces, which are independently searched for local

pareto-optimal settings. Global search then iteratively combines the pareto sets from each

independent subspace into global pareto-optimal parameter settings. Design space exploration

allows developers to “tune” parameters [74] such that the proper application performance is

observed.

 Platune models a particular statically configurable SoC architecture using several

parameters. Their architecture offers a MIPS R3000 processor that can be run at 32 different

voltage levels, from 1.0V to 4.2V in 0.1V increments, implying 32 possible voltage levels, each

of which corresponds to a unique execution frequency. The architecture supports various

instruction and data cache sizes (10 total, ranging from 128 – 64 KB, in multiples of 2), line size

(4, 8, 16, 32, 64 B), and set associativities (1-, 2-, 4-, 8-, or 16-way). Other parameters govern

bus widths and encodings, communication interfaces for off-chip interfacing, etc. The

architecture defines a total of 26 different parameters, resulting in a configuration space in excess

of configurations. 1410

 Design space exploration in Platune utilizes a fast architecture simulation model [75] to

determine pareto-optimal parameter sets for each of the metrics of interest (area, power

consumption, and execution time). The simulation model is derived from the component IP

library performance models for the components in the configurable architecture. This simulation

model can be evaluated across the full configuration space in an exhaustive search. However,

the size of the configuration space prohibits the use of exhaustive linear search techniques.

 Platune optimizes the design space search through an analysis of parameter dependence.

The authors note that some parameters in the architecture description are independent with

respect to performance calculations. For example, they postulate that the instruction cache line

size setting does not affect the optimal parameter setting for the data cache line size. Parameter

dependence is modeled as a directed graph, where the nodes in the graph represent parameters,

and directed edges model parameter dependencies. Platune clusters the strongly connected

components of the parameter dependence graph, and for each graph component, exhaustively

searches the parameter space for pareto-optimal parameter settings. This local search involves

setting the parameter values of all independent parameters to some arbitrary value (since all

 33

parameters outside the cluster do not affect the performance calculation based on the parameters

within the cluster).

 Once exhaustive local search determines the set of pareto-optimal parameter settings for

each of the strongly connected components in the parameter dependence graph, Platune

generates the global pareto-optimal parameter sets. Local pareto-optimal parameter sets are

iteratively combined and evaluated using the simulation model. Only those merged parameter

sets which are themselves pareto-optimal are retained. The recursive merging of pareto-optimal

parameter sets from adjacent clusters continues until all parameter sets have been merged. The

result of the recursive merging process is a set of parameter sets which are pareto-optimal over

the full architecture space.

 Platune offers a superior approach to co-simulation techniques (ex. see[76]) used in early

hardware-software codesign tools for design space exploration. The approach centers on

parameter independence. The complexity of the global search is 2KO
⎛ ⎞
⎜ re N is the number

of parameters and K is the number of strongly connected components in the parameter

dependence graph. If many parameters are independent, then K is large and complexity

decreases. If many parameters are dependent, there are few, large components in the graph,

resulting in exponential complexity. Large components imply long exhaustive component search

times. Vahid and Givargis report 2000x speedup over gate-level simulation for the Platune

design space search.

N

⎟
⎝ ⎠

, whe

PICO

 The PICO project [77] at HP Labs focuses on the generation of a customized embedded

computer architecture from a C-based application. It tailors a configurable architecture to fit the

computational needs of the application. The architecture consists of a configurable VLIW core

connected to a non-programmable accelerator (NPA) subsystem. An NPA is custom logic that

can be used to implement compute-intensive loop nests from the application code, thus

accelerating the VLIW performance. PICO advocates a hierarchical approach to design, where

subsystems are designed and analyzed separately, followed by a system-level composition and

analysis based on subsystem designs. PICO imposes a consistent toolflow at each level of the

 34

design hierarchy, consisting of a template, a spacewalker, an evaluator and a constructor, as

depicted in Figure 2.

Constructor

Design
Specification Evaluator

Spacewalker

Figure 2. Toolflow for design space exploration in PICO

 A template defines parameters representing the design space for an architectural component

or subsystem, together with a set of rules and constraints on that subsystem that must be honored.

Some parameters in the template model may be fixed or invariant across the design space

represented by the template, while other parameters are allowed to vary.

 The spacewalker tool explores the parameter space defined by the template. It attempts to

explore the space of parameter settings for a given template. The evaluator quantifies the quality

of a particular set of parameter values against multiple metrics. The evaluator is used to

determine whether a set of parameter values eclipses another set. The spacewalker uses the

evaluator to search for pareto-optimal parameter settings, by comparing sets of parameter values.

The spacewalker utilizes heuristics to order the search trajectory in such a way that areas of the

design space that are likely to contain pareto-optimal designs are considered, while those areas of

the space deemed “uninteresting” are skipped.

 The constructor implements decisions made by the spacewalker, by realizing a template

implementation bound to a parameter set achieved through spacewalking. While the

Template

Pareto-Optimal
Designs

 35

spacewalker operates on a fairly abstract representation of a subsystem, the constructor deals

with low-level implementation details.

 PICO advocates a hierarchical design and exploration strategy. The purpose behind the

hierarchical exploration strategy is the partitioning of the design space into independent

subspaces that are searched separately and independently. Fast design space pruning is achieved

through the postulation that pareto-optimal designs for the system can be composed from pareto-

optimal subsystem designs, and thus only the pareto-optimal subsystem designs need to be

considered during the composition step. The PICO authors do not explore the validity of this

assumption. However, they do state that the composition is only valid if each subsystem

evaluator takes into account some global quality metric (i.e. how well a subsystem design will

perform in the global context), acknowledging the fact that local optimization does not always

lead to globally good designs.

 PICO specializes the design space exploration methodology and toolflow in Figure 2 for a

VLIW-based configurable architecture. The architecture is divided into three subsystems: the

VLIW core, the cache/memory subsystem, and the NPA subsystem. The evaluators for the full

system and each subsystem define two metrics: cost and performance. Cost is defined in terms

of gates or silicon area, while performance is a function of the number of cycles to execute the

application, and is derived via a combination of simulation and static estimation techniques. The

evaluator for the NPA subsystem consists of cost evaluation metrics using the parameterized

formulas for area and gate count from the macrocell library containing the components used in

the NPA. The VLIW evaluator uses the same method for cost estimation. It uses a heuristic

formula for performance evaluation that involves estimating cycle counts from each basic block

by multiplying the schedule length by the profiled execution frequency.

 The spacewalker tool [78] implements the actual exploration of the architecture. The design

space exploration time was found to be dominated by the exploration of the VLIW parameter

space, since evaluation of a VLIW parameter setting involves the synthesis of a customized

architecture and simulator, followed by the execution of a simulation of the target application to

determine fitness. The spacewalkers for the NPA and cache subsystems search their respective

parameter spaces exhaustively for pareto-optimal subsystem designs. The system-level

spacewalker combines the results of the subsystem pareto sets into system-level pareto sets.

Since the exploration time is dominated by the VLIW subsystem parameter search, design space

 36

exploration through the separation of the subset designs aids the search process tremendously by

eliminating the need to simultaneously explore the VLIW subsystem with the memory and NPA

subsystems.

Evaluation of Parameter-Based Design

 Parameter-based design space exploration techniques employ search algorithms to evaluate

pareto-optimal parameter sets. The approaches outlined above appeal to parameter/subspace

independence to facilitate rapid composition of system-level pareto-optimal parameter sets. In

the case of Platune, subspaces are defined along the boundaries of parameter independence. In

PICO, subspaces are separated through design hierarchy. In both cases, subspaces are searched

independently for pareto-optimal configurations. The composition of system-level pareto sets

from subspace pareto sets significantly prunes the size of the parameter space, facilitating

efficient design space exploration.

 However, the parameter-based approach relies on the ability to decompose the deisgn space

into independent subspaces. This assumption can be a weak assumption in the presence of cross-

cutting concerns or tightly coupled systems. If a system can be accurately modeled as a

composition of fairly independent subsystems, and performance evaluation metrics can be

developed for each subsystem that reflect global performance potentials and pitfalls, then the

PICO and Platune approaches are highly applicable. The parameter-based approaches also rely

on fast parameter evaluation models. Platune is especially susceptible to the speed of the

parameter evaluation model, due to the use of exhaustive search within each parameter cluster.

Design Space Exploration Tool (DESERT)

 Neema [79][80] has developed the Design Space Exploration Tool, or DESERT, which

facilitates the representation and exploration of large design spaces. Of the approaches

mentioned above, unique to DESERT is the elevation and formalization of the concept of a

design space, together with the specification of exploration algorithms on the design space

model. Design space exploration is a user-guided process of applying constraints to the design

space specification, with the goal of pruning from the space those designs which do not satisfy

the applied constraints. DESERT offers a simple input language through which is specified a

design space model and a set of constraints. On termination, the pruned design space is returned

 37

through a well-defined output interface. Internally, DESERT employs symbolic methods to

represent and prune the space.

DESERT Design Space Model

 DESERT offers a domain-independent modeling language for specifying design space

exploration problems. A design space consists of a set of configurations. DESERT facilitates

the compact representation of a large set of configurations through a tree-based model.

Constraints on the design space composition are captured as OCL expressions.

Figure 3 shows a UML-based representation of the top-level DESERT design space modeling

language. A DesertSystem object models the design space. A DesertSystem object

holds one or more CosntraintSets, one or more Spaces, and potentially several

Relations. A Space, together with its corresponding Elements, models a hierarchical,

tree-based representation of a design space. A Space contains an Element, known as the root

Element of the tree. Elements can contain other Elements. In the design space model,

containment has two different meanings. A design space models a set of choices or alternatives.

In such a context, containment can be used to enumerate the potential outcomes of a choice. A

design space also models composition, or how parts compose to form a group or whole. In this

context, containment can be used to model composition. The type of containment exhibited by a

particular Element is specified with the decomposition attribute. If decomposition is set to

TRUE, then the containment relationship between the Element and its children is taken to be

composition; whereas if the decomposition attribute is set to FALSE, the Element is taken to

model a choice point, whose children enumerate potential outcomes of the choice. Elements

which contain no other Element are referred to as LEAF Elements, since they form the

leaves of the tree. Elements modeling composition are said to have AND decomposition and

are referred to as AND nodes, while Elements modeling choice points are described as having

OR decomposition, and are referred to as OR nodes. The tree of Elements rooted at a Space

object is referred to as an AND-OR-LEAF tree.

 38

Figure 3. UML representation of DESERT design space model

 A DesertSystem object contains one or more ConstraintSet objects. A

ConstraintSet contains a set of Constraints, which model constraints on the structure

of the AND-OR-LEAF tree. A constraint is captured using an extended subset of OCL [81], and

is specified in the expression attribute of the Constraint. All constraints apply at a context,

which is represented as an association between the Constraint and an Element in an AND-

OR-LEAF tree. Relations capture relations between different objects in the design space

definition. Specifically, the ElementRelation specifies an association between two

Elements.

 The compositional structure of the design space represented as an AND-OR-LEAF tree is

attributed with quantitative metadata called properties. Properties quantify metrics over the

design space, and can be used as the basis for design space pruning. A unique aspect of

DESERT is the separation of the specification of property metadata from the specification of the

composition of the property metadata. Metadata is specified at the LEAF level of the AND-OR-

LEAF tree. Each property is supplied a property composition function, selecting from a set of

supported functions, a mathematical operation to calculate property value of an interior tree

node, based the values of the node’s children. Figure 4 gives the UML description of the

DESERT Property class. There are two types of properties supported in DESERT, a

 39

VariableProperty and a ConstantProperty. A Property is assigned to an

Element, referred to as its owner, and is associated with a Domain. In the PCM_STR attribute

of the Property class is specified a string referring to the type of property composition to be

employed for the property. The available property composition functions include Additive,

Multiplicative, Arithmetic Mean, Geometric Mean, Minimum, Maximum, None, and Custom.

Custom composition allows the user to specify an extension to the DESERT code base to

implement property composition. A ConstantProperty represents a named constant

assigned to a LEAF node. A VariableProperty models a variable, which is assigned a

Member (or value) from the Domain. A VariableProperty may be bound through

AssignedValues relations, to a subset of values from the Domain, one of which is selected

for binding during exploration.

Figure 4. UML representation of DESERT Properties

 Desert Domains are represented in Figure 5. A domain models a set of values. Two types

of domains are supported in Desert: a CustomDomain and a NaturalDomain. A

NaturalDomain models a range of natural numbers between the domain minimum and

maximum. A CustomDomain models a set of members, called CustomMembers. Relations

between CustomMembers can be specified through the MemberRelation.

 40

 A design space models a set of choices. Choice is modeled in two locations: in the AND-

OR-LEAF tree structure, and in the variability of binding values to properties. The design space

represents the cross product of all possible choice outcomes. Design space exploration seeks to

enumerate all design configurations in the design space which satisfy all constraints in the

constraints set which are selected for application by the user. The application of a constraint

removes configurations from the space, resulting in a smaller, “pruned” design space. Only

those configurations in the configuration set which meet or satisfy the applied constraints are

retained. DESERT utilizes symbolic methods to implement constraint satisfaction.

Figure 5. UML representation of DESERT domains and domain membership

Symbolic Constraint Satisfaction

 DESERT implements design space exploration symbolically using Ordered Binary Decision

Diagrams (OBDD-s) [82]. DESERT executes a binary encoding of the design space, including

the AND-OR-LEAF tree and the constraints, and implements the constraint satisfaction

 41

algorithms symbolically. The symbolic representation of the design space facilitates the

manipulation of the full design space during constraint satisfaction, rather than treating each

design configuration in the space individually. The binary encoding of the space involves the

assignment of a unique integer identifier to each node in the AND-OR-LEAF tree and translation

of that ID into a vector of BDD variables, and the establishment of the relationships between tree

nodes which reflects the containment semantics. Property composition functions are

implemented symbolically as well. Constraints model functions on property compositions, or

logic functions over the state of selection of variables in the tree. Constraints are encoded as

BDDs as well. Constraint satisfaction is simply the composition of a constraint with the

symbolic design space representation. The resulting BDD models a pruned design space.

 Neema reports on the scalability of the symbolic design space representation. The OBDD-

based design space representation is found to be highly scalable, except when applying

constraints against composed properties, where the property composition function invokes

arithmetic operations. The BDD-based representation was shown to scale to design spaces

consisting of configurations, through parametric generation of the design space. However,

pruning of design spaces was found to not scale as well under certain conditions. It was found

that constraint operations which involve composed properties whose composition functions

require arithmetic operations do not scale due to an explosion of the number of BDD nodes

required to represent the arithmetic composition. Where the design space pruning requires only

the invocation of logical or relational operations, the scalability of the representation is not

impaired.

18010

Exploration of Adaptive Computing Systems

 DESERT was originally developed to explore the design space rising from structurally

adaptive signal processing applications targeting a heterogeneous computing platform containing

reconfigurable resources. An adaptive computing system is an embedded system that can be

configured or reconfigured to meet application demands. Its target platform is a set of

heterogeneous computing elements connected with point-to-point communication links. The

platform consists of programmable microprocessors and DSPs, programmable logic devices

(FPGAs), ASICs, and other devices such as data source and sink devices (modeling sensors and

actuators). Application adaptation is modeled using hierarchical finite state machines, where the

 42

states represent the modes of the system, and the transitions between states model adaptation.

Each mode represents a set of computations that executes on the platform. These computations

are modeled using a hierarchical dataflow diagram. The diagram is hierarchical in the sense that

complex tasks can be composed from a set of simple tasks. Design alternatives are explicitly

captured in the application model hierarchy, acknowledging the fact that there may be several

different implementations or compositions that may be of interest for the final implementation.

It is the task of the design space exploration to select between implementation alternatives prior

to deployment. Resources are modeled as a graph, where nodes model computational resources

and edges represent point-to-point communication links.

 Constraints can be specified in all aspects of an adaptive system design, from the modal

behavior, to the application representation, to the resource representation. Certain classes of

constraints are supported by the adaptive computing systems toolset. Composability /

Compatibility constraints model structural requirements on the system implementation, ex. “task

A and task B must be co-located”, or “the selection of alternative X implies the selection of

alternative Y”. Performance constraints model the non-functional requirements of the system,

such as latency and throughput requirements. For example, a performance constraint could state

that the end to end latency within a particular mode must be less than 10 seconds.

 The adaptive computing system model is translated into the DESERT design space model to

facilitate design space exploration. The application hierarchical structure mirrors the structure of

an AND-OR-LEAF tree, in that alternative nodes in the application hierarchy are modeled as OR

nodes in DESERT, composition nodes are modeled as AND nodes, and leaf-level application

components are modeled using LEAF nodes in DESERT. Application components are

characterized with metadata abstracting component performance. These metadata are

instantiated in DESERT as properties. Specifically, the adaptive computing specification

facilitates the posting of constraints against the composed latency of the system, where latency is

defined as the length in time of the longest computation path through the application graph. The

latency property composition function in DESERT is implemented as a custom function.

Critique of DESERT

 DESERT facilitates the representation and exploration of combinatorial design spaces. It

offers a domain-independent design space modeling specification. However, the input model

 43

and the OBDD-based implementation impose some limitations on design space exploration.

DESERT was designed to examine the structural properties of design composition, as opposed to

behavioral properties. Only those types of properties which can be modeled through the

composition of children can be aptly captured within DESERT. Specifically, timing and

behavioral properties are difficult to model in this representation. The scalability issues of the

OBDD-based symbolic representation of the design space have been discussed. The scalability

limitations restrict the classes of operations available for the specification of property

composition, and hamper the applicability of DESERT to a broad class of design spaces

requiring pruning based on arithmetically composed properties.

 The design space modeling language supported by DESERT is not sufficiently expressive.

Resource allocation is typically modeled as a VariableProperty associated with a LEAF

node, and is bound to a CustomDomain. The CustomDomain enumerates all potential

resources available for binding. Exploration then seeks to bind a CustomMember in the

resource domain to the VariableProperty modeling the allocated resource. The

expressiveness issue is highlighted when the resource set is very large, as with configurable

resources. Enumerative techniques in such circumstances become prohibitively expensive as the

configurability space increases in size. Further, the enumerative nature of OR node

decomposition can also be cumbersome when modeling a large space of alternative

compositions.

Design Space Exploration Summary and Critique

 Design space exploration is widely used in embedded system design. Several modeling and

search approaches have been presented which allow developers to traverse complex design

spaces in search of designs which meet certain criteria. No single technique represents a

panacea; each technique has its benefits, its issues and problems. Parametric-based techniques

rely on fast simulation models to traverse the design space. These simulation models trade

accuracy for speed, and must architect a proper balance between model granularity and accuracy.

The Constraint Logic Programming modeling formulation is a powerful representation

mechanism for embedded system design space exploration. Current formulations tend to focus

on the scheduling aspects of embedded system synthesis. When compared to exploration

approaches that abstract timing and behavior dynamics into simple property values (“structural

 44

property” approaches), exploration techniques involving schedulability analysis and synthesis do

not scale nearly as well. The approaches surveyed required search heuristics which limit the

coverage of the search in order to converge on solutions. Further, while the models facilitate

variability in the architecture through configuration, structural variation in the application

specification is not supported. Mixed Integer Linear Programming techniques rely on the

Simplex method together with a branch and bound or similar technique to traverse the design

space. MILP formulations are limited in expressiveness (due to the linearity in the cost function

and constraints), and are well-known to have scalability issues. The techniques surveyed which

utilize branch and bound algorithms rely on the formulation of tight bounds estimates on the

evaluation metrics of the design space. Such bounds may be difficult to formulate for a multi-

objective design space search. Due to a potential explosion in memory usage, branch and bound

algorithms must be carefully crafted in order to achieve scalability. Stochastic and general

heuristic techniques are widely used to implement design space exploration. They guarantee

neither success, nor quality solutions. Their application to design space exploration is highly

domain-specific, and the scalability of the implementation varies widely from implementation to

implementation. The approach taken in DESERT is unique, in that it offers full coverage of the

design space and the potential for a scalable space representation. However, practical concerns

limit the actual scalability, due to the explosion of the OBDD representation. Neema’s approach

is widely applicable due to the domain-independent nature of the design space modeling

language.

 In general, all the surveyed techniques except for DESERT are too narrow. Each technique

offers a solution to a specific problem or problem domain. Only DESERT attempts to generalize

the concept of design space exploration across problems and problem domains. While each

exploration technique has been shown to be applicable under certain circumstances, each

demonstrates issues with expressiveness and/or scalability.

 Finite domain constraint programming in Mozart has been shown to be an effective,

expressive tool in modeling a range of design space exploration problems. The current

approaches utilizing finite domain modeling techniques focus only on a particular problem

domain. However, the potential for generalizing a finite domain design space exploration

approach exists, and in fact is broached in this research.

 45

 The goal of this dissertation is to illustrate the development of a hybrid, domain-

independent design space exploration tool which is both expressive and scalable.

The approach leverages and extends the domain-independent design space model

defined in DESERT, through the establishment of a Mozart-based finite domain

constraint implementation of design space exploration. Expressiveness in

modeling property composition is addressed through the development of a

language for specifying property composition relationships. A hybrid tool

approach integrates the existing BDD-based symbolic constraint application and

pruning algorithms with constraint satisfaction offered through the finite domain

constraint space representation. Scalability is achieved through the careful

crafting of the finite domain model, and through the appropriate application of

hybrid search techniques.

 46

CHAPTER III

A FINITE DOMAIN DESIGN SPACE MODEL

 A principle claim of this dissertation is that finite domain constraints can be used to model

and search design spaces. This chapter details a mapping of the DESERT design space model

into a Mozart-based finite domain constraint specification. Specifically, it describes the finite

domain representation of the AND-OR-LEAF tree, design space properties, and OCL

constraints. Further, the chapter discusses a customized finite domain distribution algorithm that

was developed as part of this work, as well as various search strategies, including a best-case

search approach involving the maximization of constraint utilization. Throughout the chapter,

analyses are provided on the performance, scalability and limitations of the finite domain design

space model.

A Formal DESERT Design Space Model

 Chapter II detailed the UML specification of the DESERT design space model. This section

provides a specification of the design space model using formal logic and set-valued semantics.

The finite domain constraint design space model is a translation of this formal specification into

an Oz-based finite domain model.

A Design Space , ,DS TS CS Ctxt= is a three-tuple, consisting of a set TS of AND-OR-LEAF

trees, a set CS of constraints, and a function : DSCtxt CS V→ , where DS
T TS

V
∈

= ∪ TV is the union

of all vertex sets of each tree T in TS. Ctx specifies the context of application for all

constraints in CS .

TV t

 An AND-OR-LEAF tree is a tree ,T V E= with vertex set V and directed edge set

. Let be a map that returns, for some vertex v the set of

vertices which are the destinations of all edges in E whose source vertex is v . Let V be

partitioned into three sets

E V V⊆ × : (children V P V) V∈

AV , , and , such that OV LV , ()Lv V v V ildren vch∀ ∈ ∈ ↔ =∅ . Vertices

in AV are called AND nodes, and model composition or the part-whole relationship, implying

that the AND node is composed of its children. Vertices in are called OR nodes, and model OV

 47

design choice. Children of an OR node enumerate potential outcomes of the choice. Vertices in

 model LEAF nodes in the tree and represent basic units of composition in the design space.

Let

LV

{ }: , ,decomp V AND OR LEAF→ denote the decomposition of a vertex in the AND-OR-

LEAF tree, such that the following relation holds:

()
(
()

, ()

()

()

A

O

L

v V decomp v AND v V

decomp v OR v V

decomp v LEAF v V

∀ ∈ = ↔ ∈ ∧

)= ↔ ∈ ∧

= ↔ ∈

 (13)

 Design space exploration is the process of determining which vertices in the AND-OR-

LEAF tree are selected. Formally, let { }: 1,selected V 0

()
()

)

 be a function which returns whether a

vertex in the AND-OR-LEAF tree has been selected (where a value of 1 implies selection).

Then the following relationships must hold through design space exploration:

 (14) , (), ()Av V u children v selected v selected u∀ ∈ ∀ ∈ =

 (15)
()

, ()O
u children v

v V selected u selected v
∈

∀ ∈ =∑

 Equation (14) states that if an AND node in the AND-OR-LEAF tree is selected, then all its

children must also be selected. If it is not selected, no child may be selected. This relationship

models the composition semantics of an AND node, where the parent is composed from all of

the children. Equation (15) defines selection for an OR node. The constraint implies that where

the OR node itself is selected, exactly one child of the OR node may be selected. Where the OR

node is not selected, no child of the OR node is selected. This relationship enforces the

semantics of choice modeled by the OR node, where a choice can only have a single outcome,

and the children of the OR node enumerate all potential outcomes.

 A design space configuration is a subset of the nodes in the AND-OR-LEAF tree, all of

which are selected. Formally, let be the root node of the tree (i.e. r V∈ , (v V r children v∀ ∈ ∉).

Then,

 , ()Cfg V r Cfg v Cfg selected v⊆ ∈ ∧∀ ∈ ==1 (16)

 48

A design space models a set of configurations. The number of configurations in the design space

can be calculated recursively. Let be a function adhering to the following

relation:

:NumCfgs V →

()

()

(), ()

, () (), ()

1, ()

u children v

u children v

NumCfgs u decomp v AND

v V NumCfgs v NumCfgs u decomp v OR

decomp v LEAF

∈

∈

⎧ =
⎪
⎪∀ ∈ = =⎨
⎪
⎪ =⎩

∏

∑ (17)

Depending on the structure of the tree, the number of configurations modeled by a tree can grow

exponentially with the number of nodes in the tree. Neema reports the generation of an AND-

OR-LEAF tree consisting of roughly 11,000 nodes which models configurations [79]. 18010

 DESERT facilitates the quantitative evaluation of a design space through the concept of a

property. A property models a numerical relationship between nodes in the tree. Properties are

defined over a domain, which is defined to be some subset of the set of natural numbers.

Property composition is the process of calculating a property value of an interior tree node, based

on the values of the node’s children. A property composition function captures the exact

mathematical relationship between a parent and its children in order to compose a property.

LEAF nodes in the tree are assigned literal property values in order to facilitate composition. An

AND-OR-LEAF tree may be characterized with multiple properties; each assigned a property

composition function. DESERT supports several generic property composition functions

(additive, multiplicative, min, max, arithmetic mean, geometric mean), and also supports a

custom property composition, where users may provide a plug-in tool to specify custom property

composition functions. Formally, an AND-OR-LEAF tree is characterized with a set of

properties . The function

 specifies the type of

property composition for each property defined over the tree. Let be a

function which returns the domain of a property, where represents the power set. Let

 be a function which returns the value assigned to a LEAF node

in the tree for a given property. The following constraint must hold on assigned values:

Props

: { , , , , , , ,PropType Props Add Mult Max Min AMean GMean None Cust→ }

)

()

: (domain Props →P

()iP

: LAssignedValue V Props× →

 (18) , , (,)Lv V p Props AssignedValue v p domain p∀ ∈ ∀ ∈ ∈

 49

Equation (18) states that an assigned property value must be contained in the domain of the

property.

 A property composition function defines a relationship between the property value of an

interior tree node and the property values of its children. More formally, additive property

composition is defined as follows: ()addProp Props PropType addProp Add∀ ∈ == , let

:V ()AddProp domain addProp→ be subject to the following relation:

 (19)
()

()

(), ()

, () ()* (), ()

(,), ()

u children v

u children v

AddProp u decomp v AND

v V AddProp v AddProp u selected u decomp v OR

AssignedValue v addProp decomp v LEAF

∈

∈

⎧ =
⎪
⎪∀ ∈ = =⎨
⎪
⎪ =⎩

∑

∑

Property composition functions for other property composition types are similarly defined.

A Finite Domain Model for the AND-OR-LEAF Tree

 The design space representation offered by Neema models a space as a tree encoding

alternative design compositions. The concurrency model employed by Oz offers an elegant

facility for modeling the AND-OR-LEAF tree, as well as the containment relationships between

tree nodes. The finite domain model translates and implements the formal design space

modeling specification presented above.

 In Oz, constraints relate variables which are restricted to finite domains of integer values.

Constraints operate on variables whose values have not yet been determined. In the design space

finite domain model, tree nodes are modeled as finite domain variables, while the containment

relationships between nodes are implemented as constraints on those variables. Constraints are

designed so as to facilitate propagation where possible, such that as more information about the

domain of a tree variable becomes known, that information can be used to derive information

about other tree variables. Since all constraint propagators act concurrently, as information

about a variable becomes available, reactions to that information can propagate in several

directions (up and down, as well as laterally) across the tree.

 The Oz model of the AND-OR-LEAF tree centers on the concept of selection. A Boolean

finite domain variable is defined for each node in the AND-OR-LEAF tree, whose value gives

the state of that node in the tree. The variable models the function described formally selected

 50

above, where the variable is assigned the value 1 to indicate selection, 0 to indicate non-

selection. While selection of a node has not been determined, the variable is constrained only to

the [0,1] domain. The finite domain variables modeling node selection are referred to as the

select variables, owning to the fact that their value represents the selection state of the nodes in

the tree.

 Equations (14) and (15) formally define the containment relationships between AND-OR-

LEAF tree nodes. The finite domain model for the AND-OR-LEAF tree implements these

relationships as finite domain constraints over the Boolean select variables. Recall that an AND-

OR-LEAF tree is a tree ,T V E= . jv V∀ ∈ , let { }0,1jSel ∈ be a finite domain variable

modeling the selection of vertex (where jv { }1,2,...,j∈ V is referred to as the index of vertex

). Then equation (20) below encodes the relations specified in equations (14) and (15) as

relations between finite domain variables.

jv

 (20)
()

()

, ()

, ()
k j

k j

k j
v children v

j
k j

v children v

Sel decomp v AND

Sel
Sel decomp v OR

∈

∈

⎧ =
⎪

= ⎨
=⎪

⎩

∏

∑

 The translation of equation (20) into an Oz-based implementation must focus on the

facilitation of propagation. An implementation that facilitates propagation is one where a single

change in select variable assignment implies the binding of potentially many other select

variables. The containment relationships defined by the AND-OR-LEAF tree, if exploited

properly by the finite domain implementation, can exhibit strong propagation. For example, if

the select variable of an AND node is marked as selected, then all children of the AND node can

be marked as selected. Conversely, if an AND node is marked as unselected, then all children

are equivalently marked as unselected. Propagation of variable selection or lack of selection is

critical to the performance of the finite domain implementation.

Implementation of the Finite Domain Model

 Figure 6 gives the Oz implementation of the finite domain constraints modeling the AND-

OR-LEAF tree relationships, as specified in equation (20). The two procedures, AndNode and

OrNode, establish the relationships between the select variables modeling tree nodes and the set

 51

of select variables modeling their children. The procedures are invoked on the select variable of

each parent node in the tree (and thus are invoked only on interior nodes). If a node has AND

decomposition, the AndNode procedure is invoked; OrNode is invoked for nodes with OR

decomposition. Each procedure is passed two parameters, ChildSelList and NodeSel.

ChildSelList is a list containing the select variables modeling the children of the node.

NodeSel is the select variable modeling the node. Line (2) of the AndNode procedure iterates

through the ChildSelList and sets each child select variable equal to the parent select

variable. The finite domain implementation appears to deviate from the operation defined in

equation (20). However, while the implementation in Figure 6 is functionally equivalent, it

facilitates a higher degree of propagation.

(1) proc {AndNode ChildSelList NodeSel}
(2) {ForAll ChildSelList
(3) proc {$ S}
(4) S =: NodeSel
(5) end
(6) }
(7) end
(8)
(9) proc {OrNode ChildSelList NodeSel}
(10) {FD.exactly NodeSel ChildSelList 1}
(11) end

Figure 6. Oz code implementation of equation (20)

 The OrNode procedure also functionally, but not literally, implements the operations

described in equation (20). It employs FD.exactly, a built-in Mozart constraint. Line (10)

defines a constraint that states that the number of variables in the ChildSelList which can

take on the value 1 is exactly equal to the value of NodeSel. In the case where the node is

selected, NodeSel will be assigned the value 1 and line (10) requires that exactly one child of

the OR node be selected. However, if NodeSel is assigned the value 0, exactly zero of the

children are selected (implying that all are unselected). Note that the relationship facilitates

propagation in the reverse direction as well: if a child of an OR node is selected, then line (10)

implies a binding of 1 to the NodeSel variable, and a binding of 0 to the remaining children.

 52

Simple Tree Example

 Figure 7 offers a simple AND-OR-LEAF tree example. Tree nodes are labeled with their

name and an assigned ID (ex. the root AND node, N1, is assigned ID 1). Figure 8 contains the

Oz implementation of this simple example. The select variables of the tree are declared in a

finite domain tuple, where the assigned ID of a node is used as an index into the tuple. The tree

structure is specified through the invocations of the AndNode and OrNode procedures to

establish the relationships between variables modeling tree nodes.

Figure 7. Simple AND-OR-LEAF tree

(1) proc {AppTree}
(2) NumNodes = 6
(3) el = {FD.tuple sel NumNodes [0#1]} S
(4) in
(5) {AndNode [Sel.2 Sel.4 Sel.3] Sel.1}
(6) rNode [Sel.5 Sel.6] Sel.4} {O
(7) end

Figure 8. Oz implementation of the select variables modeling the AND-OR-LEAF tree in Figure 6

A Finite Domain Model for Design Space Properties

 The DESERT design space model not only allows the succinct compositional representation

of large design spaces, but also the representation of properties defined over the space. The

quantification of properties facilitates the specification of constraints on properties, which, on

application, cause the design space to be pruned. This section details the definition of a finite

domain model for DESERT properties, and discusses the relation between the property model

and the Boolean select variables defined above.

 53

A Finite Domain Property Tree

 Chapter II discussed the assignment of properties to the AND-OR-LEAF tree. The finite

domain representation of property composition involves the instantiation of a finite domain

variable for each node in the tree, for each property defined over the tree. Finite domain

constraints implement the appropriate property composition function for each property across the

tree. Just as with the implementation of the constraints modeling the relationships between

select variables, a design goal of the implementation of property composition relationships is the

facilitation of propagation of property values across the tree, where possible. Formally,

ip Props∀ ∈ , , let jv V∀ ∈ { }0,..., .ijpval FD max∈ model the property value of property ip at

node in the AND-OR-LEAF tree, where jv { }1,2,...,i Pro∈ ps is called the property index, and

{ }1,2,...,j V∈ is the node index. is a constant in the Mozart environment,

representing the largest supported integer value.

.FD max

 All properties are defined over a domain. The domain of a property is modeled as a subset

of the set of natural numbers. A domain is represented in the finite domain design space model

as a set of constraints on the finite domain of each property variable. Let be a

function that returns the smallest integer value contained in a set of integers. Similarly, let

 return the largest integer value of a set of integers. The following relation

implements a binding of a property value to its appropriate domain:

: ()min →P

))i

: ()max →P

 , , (()) ((i j i ijp Props v V min domain p pval max domain p∀ ∈ ∀ ∈ ≤ ≤ (21)

The constraints resulting from equation (21) restrict the finite domains of the property variables

to the range of values bounded by the bounds on their corresponding property domain.

 DESERT supports domains containing non-contiguous ranges of numbers, called

CustomDomains. A CustomDomain is used when modeling resource allocation, and

contains indices of resources to which objects may be assigned. In the case of

CustomDomains, the finite domains of all property variables assigned to the custom domain

can be further restricted to reflect the “holes” in the domain.

 Value assignments to properties set by the user are directly instantiated as assignments in the

finite domain model. Recall that the partial function returns an assignment of a AssignedValue

 54

value to a property at a given LEAF node, if such an assignment has been made by the user.

Equation (22) captures this assignment.

()

()
, , (,)

(,

i j L i j

ij i j

p Props v V AssignedValue p v undefined

pval AssignedValue p v

∀ ∈ ∀ ∈ ≠ →

=
 (22)

 Property composition functions are implemented as finite domain constraints, relating the

finite domain property variables in the tree. The implementation of property composition

separates the OR node composition function from the AND node composition function. AND-

OR-LEAF tree semantics stipulate that at most one child of an OR node will be selected for

inclusion in a configuration. The property value of the OR node will reflect the value of the

selected child, regardless of the type of property composition invoked. Hence, the generic

property composition function for OR nodes is given in equation (23):

()

, ,
k j

i j O ij ik
v children v

kp Props v V pval pval sel
∈

∀ ∈ ∀ ∈ = ∗∑ (23)

The dot product of the select variables of the children with the property variables of the children

results in the equation of the parent property value with the property value of the selected child,

if any. In the case where no child is selected, the parent is assigned a property value of 0.

 Property values for AND nodes depend not only on the property values of the children of the

node, but also on the declared composition type of the property. Recall that is a

function which returns the type of property composition declared by the user for a given

property. Equation (24) provides a specification for AND node property composition of additive

properties.

PropType

()

() , ,
k j

i i j A ij ik
v children v

p Props PropType p Add v V pval pval
∈

∀ ∈ = ∀ ∈ = ∑ (24)

Similarly, equation (25) specifies a property composition function for multiplicative properties.

()

() , ,
k j

i i j A ij ik
v children v

p Props PropType p Mult v V pval pval
∈

∀ ∈ = ∀ ∈ = ∏ (25)

 The finite domain property composition specification effectively defines an AND-OR-LEAF

tree specification for each property defined over the tree, which structurally mirrors the

relationships defined between the select variables. The separate trees are related through the

 55

select variable tree, since all OR-node property compositions depend on the values of the select

variables of its children.

Implementation of the Finite Domain Property Model

 The property composition relations defined in the previous section define correctness criteria

for the enforcement of AND-OR-LEAF tree semantics with regards to property composition.

They do not, however, necessarily translate directly into an efficient finite domain model. As

with the implementation of the finite domain select variable relationships, the implementation of

the property composition finite domain model must take into consideration the concerns of

facilitating propagation during the search process.

 The flexibility of Oz facilitates many different implementation approaches for the property

composition relationships. One such approach involves the literal implementation of the

mathematical relationships between property variables outlined above (see equations (23), (24),

and (25)). Another implementation path utilizes built-in symbolic Oz propagation routines to

model the semantic intention of the property composition relations. Both of these techniques are

employed in the Oz implementation of property composition relationships.

 Figure 9 illustrates an Oz implementation of equation (24), additive property composition

for AND nodes. The procedure takes as parameters a list containing the property variables of the

children of the AND node in ChPropList, as well as the property variable for the AND node

itself in NodePropVar. It sets the property variable of the AND node equal to the sum of the

variables in the child property list, by invoking the FD.sum propagator provided by the Mozart

environment. This built-in propagator implements propagation in both directions, implying that

not only is the solver able to deduce information about NodePropVar based on the values and

domains of the variables in ChPropList, but the reverse is also the case: the solver can also

use domain information of the NodePropVar to deduce information on the property values of

the node’s children. Other DESERT-supported property composition types for AND nodes are

implemented in similar fashion. AND node property composition basically implements a literal

translation of the finite domain specification of the property composition function.

 56

(1) proc {AndNodeAdditive ChPropList NodePropVar}
(2) {FD.sum ChPropList ‘=:’ NodePropVar}
(3) end

Figure 9. Oz implementation of the AND-node additive property composition relation defined in equation
(24)

 The implementation of property composition for OR nodes must be adapted from a literal

translation so as to facilitate propagation. Figure 10 provides a simple implementation of the

OR-node property composition relationship given in equation (23). The goal of the composition

relationship is to set the OR-node property variable equal to the value of the selected child. The

implementation below is passed four parameters, an ordered list containing the select variables of

the children of the OR node in ChSelList, the select variable for the OR node in NdSelVar,

an ordered list containing the property variables for the children of the OR node in

ChPropList, and the property variable for the OR node in NdPropVar. The fact that the two

lists are ordered is significant. The implementation assumes a correspondence between the child

select variable list and the child property variable list that is based on list order. The

implementation utilizes the FD.element constraint provided by Mozart to implement an

index-based list lookup operation. The list lookup facilitates propagation in both directions (i.e.

not only in the direction of the result of the look up, but also in the direction of the index

variable). The first FD.element statement attempts to look up from the list of select variables

a child variable whose value has the same value as that of the OR node select variable. The

index in the list of the matching child variable is assigned to the local variable SelChIndex (an

example of propagation in the “reverse” direction). The second FD.element statement uses

the SelChIndex value to look up the selected child’s property value, and to assign it to the OR

node property variable (an example of propagation in the “forward” direction).

(1) proc {BlkOrNdProp ChSelList
(2) NdSelVar ChPropList NdPropVar}
(3) SelChIndex = {FD.decl}
(4) in
(5) {FD.element SelChIndex ChSelList NdSelVar}
(6) FD.element SelChIndex ChPropList NdPropVar} {
(7) end

Figure 10. Blocking Oz implementation of the OR-node property composition relation defined in equation (23)

 57

 The OR-node property composition defined in Figure 10 does not facilitate efficient

propagation of property values across the tree. The outcome of the finite domain constraint

search process is a binding of values to the select variables that model selection or pruning in the

tree. However, the implementation above depends on grounded values of the select variables of

the children of the OR node in order to determine the OR-node property value. Hence, this

routine will block until the variables in ChSelList and ChPropList are all bound to single

values, relying completely on distribution to determine the values of the select variables for the

OR node children. Only after significant distribution can this procedure assign a value to the

property variable for the OR node.

 The implementation in Figure 10 has been extended to facilitate propagation by including

redundant finite domain constraints that reflect variable interval information from the children to

the parent in the tree. During the search process, the actual values of all finite domain variables

are likely not bound to a particular value, but are known to be restricted to some finite domain.

While the implementation probably cannot, through propagation alone, determine the exact value

of the OR node property variable, in most cases it can further constrain the domain of the

variable. The extended implementation of OR node property composition posts constraints that

restrict the domain of the OR node property variable to reflect the minimum lower bound of all

its children, and the maximum upper bound of all its children. This extension is redundant with

respect to the implementation offered in Figure 10, in that when the selected child is found,

obviously the domain of the OR-node property variable will reflect the domain of the selected

child property variable (since they will be assigned to each other). However, the posting of the

redundant constraint facilitates the upward propagation of information much sooner in the search

process than would otherwise be allowed with the simple blocking implementation. Further, the

posting of the domain monitoring constraints constantly updates as propagators update the

domains of the child property variables, thus dynamically updating the OR node property

variable and facilitating further upward propagation.

 A second redundant constraint is also added to the implementation given in Figure 10. It

may be the case that through the posting of constraints or through distribution that the domain of

the OR node property variable is modified. In that case, it may be possible to determine if a

child of the OR node has been NOT selected, by comparing the value of the property variable of

each child against that of the parent. Since the value of the OR node is set equal to the value of

 58

the selected child, if a child’s domain is disjoint with the finite domain of the parent OR node, it

is safely concluded that the child cannot be selected. In such a case, the extended

implementation marks the child as being not selected. Note that the converse of this statement is

not true: It is not the case that if a child property variable is equal to the value of the parent, that

that child is automatically selected, since there may be multiple children with equivalent property

values. Figure 11 provides the extended Oz implementation, including the redundant constraints

discussed. Note that the two FD.element statements are enclosed in a thread block, due to

the fact that FD.element blocks when passed a list whose elements are not all bound to

values.

(1) proc { OrNodeProperty ChSelList
(2) NdSelVar ChPropList NdPropVar}
(3) SelChIndex = {FD.decl}
(4) MaxChildVal = {ListMax ChPropList}
(5) MinChildVal = {ListMin ChPropList}
(6) in
(7) thread
(8) {FD.element SelChIndex ChSelList NdSelVar}
(9) {FD.element SelChIndex ChPropList
(10) NdPropVar}
(11) end
(12)
(13) NdPropVar =<: MaxChildVal
(14) NdPropVar >=: MinChildVal
(15)
(16) {List.forAllInd ChPropList
(17) proc {$ Ind ChVal}
(18) {FD.impl (ChVal \=: NdPropVar)
(19) ({Nth ChSel Ind} =: 0)
(20) 1}
(21) end
(22) }
(23) end

Figure 11. Oz implementation of OR node property composition, including redundant constraints to facilitate
propagation

 The implementation of LEAF node property assignment is trivial, in that it is simply a

process of instantiating assignments of variables to values. The translation process which

 59

instantiates the finite domain model inserts the appropriate assignment statements so as to

implement equation (22).

 The finite domain model for representing DESERT properties and property composition was

outlined in the equations and figures above. Several issues were addressed that affect both

correctness as well as performance. In the case of OR node property composition, redundant

constraints were added to the specification to facilitate propagation early in the search process,

thus alleviating some of the dependence on distribution to achieve search results. To facilitate

performance of constraint satisfaction, the finite domain model implementation focuses on the

use of propagation to further the search process without affecting scalability.

Simple Property Example

 Figure 12 extends the simple AND-OR-LEAF tree example from Figure 7 by adding an

additive property, called AP. For each LEAF node in the tree, the property value is bound to a

specific value, while the property values for nodes N1 and N4 are left unbound, to be determined

by the search process. The DESERT Property AP is designated an additive property, and is

associated with a property domain whose minimum bound is 0 and maximum bound is 32000.

Figure 12. Simple tree example, annotated with additive property AP

 Figure 13 provides an Oz implementation of the finite domain model for the tree in Figure

12. In line (3), The Sel tuple is declared for the tree, just as in the example code in Figure 8.

Lines (4) and (5) give the declaration of variables NDMin and NDMax, which reflect the bounds

imposed by the property domain. Line (6) shows the declaration of the AP property tuple,

containing one variable per tree node, where each variable is initially constrained to the interval

 60

defined by the property’s domain. Lines (8) and (9) establish the parent-child tree relationships

between the select variables for nodes N1 and N4, respectively. Lines (10)-(13) assign the AP

property values that are bound a-priori. Lines (14)-(15) establish for the OR node N4 the

property composition relationship between the property variable modeling the node (AP.4) and

the property variables modeling the node’s children (AP.5 and AP.6). Since the node is an OR

node, the OrNodeProperty procedure is invoked to establish these relationships. Line (15)

similarly establishes the property composition relationships between AND node N1 and its

children. Since AP is defined to be an additive property, and N1 is an AND node, the

AndNodeAdditive procedure is invoked. Since additive property composition at an AND

node does not depend on the select variables, it is passed only the property variables

corresponding to the children of the node (AP.2, AP.4 and AP.3), and the property variable

modeling the node property value (AP.1).

(1) proc {AppTree}
(2) NumNodes = 6
(3) Sel = {FD.tuple sel NumNodes [0#1]}
(4) NDMin = 0
(5) NDMax = 32000
(6) AP = {FD.tuple ap NumNodes [NDMin#NDMax]}
(7) in
(8) {AndNode [Sel.2 Sel.4 Sel.3] Sel.1}
(9) {OrNode [Sel.5 Sel.6] Sel.4}
(10) AP.2 =: 10
(11) AP.3 =: 20
(12) AP.5 = 7
(13) AP.6 = 5
(14) {OrNodeProperty [Sel.5 Sel.6] Sel.4
(15) [AP.5 AP.6] AP.4}
(16) {AndNodeAdditive [AP.2 AP.4 AP.3] AP.1}
(17) end

Figure 13. Oz implementation of the simple property example of Figure 12

 Figure 14 shows the results of the invocation of the procedure defined in Figure 13. The

variables representing property AP have been constrained by the respective relationships. Note

that the property value at node N4 reflects the interval [5-7], indicating that it is yet

undetermined what the exact property value is. While the property variable for node N4 has not

 61

been bound to particular value, its domain has been reduced to the interval [5-7], indicating that

the property value is 5, 6, or 7. The property value for node N1 is likewise bound to an interval,

as opposed to a particular value, pending an assignment to node N4’s property variable.

However, the interval at N1 has been reduced to reflect the interval at N4, indicating that the

property value at N1 will be 35, 36, or 37. The power of finite domain constraints is illustrated

in this example, in that although the problem specification did not directly result in a binding of a

value to N4’s property variable, it did constrain the value to a range. This constrained range

propagates upward in the tree, causing the range of the parent of N4 to be constrained as well. It

should also be noted that if the finite domain propagators utilized domain propagation instead of

interval propagation, the domain of N4’s property variable AP.4 would be restricted to the values

[5, 7]. However, domain propagation is considered expensive (evaluation of domain propagation

is highly enumerative and suffers from the same drawbacks as the over-reliance on distribution).

N1

N4

N3N2

N5 N6

AP=20

AP=5AP=7

AP=10

AP=[5-7]

AP=[35-37]

Figure 14. AND-OR-LEAF tree showing the results of finite domain propagation for the property AP

Summary of the Finite Domain Property Model

 The finite domain model for DESERT properties and property composition mirrors the

relationships between the AND-OR-LEAF tree select variables. Finite domain variables are

used to represent property values at each node in the tree, and constraints implement tree

relationships between those variables. The implementation of the property model takes into

account several performance and scalability issues, in an attempt to establish a finite domain

model that relies highly on propagation for the determination of property values.

 62

A Finite Domain Model for OCL Constraints

 DESERT employs an extended subset of the Object Constraint Language (OCL) to allow the

modeler to specify restrictions on design space composition. These user-provided constraints

result in operations affecting the structure of the AND-OR-LEAF tree. This section outlines the

translation of the DESERT OCL constraint language into a finite domain constraint

specification.

 DESERT implements only a subset of the Object Constraint Language, and extends that

subset with operations that facilitate the specification of design space pruning. Constraints are

assigned a particular application context, corresponding to a node in the AND-OR-LEAF tree.

Contexts in OCL are treated as objects, and context traversal is facilitated through functional

navigation. The application context for a constraint is returned by the OCL function self.

DESERT OCL supplies several functions to support tree navigation. For example, the parent

function may be invoked to access the context corresponding to the parent tree node of a context.

The children function may be invoked to access the children of a particular context (returned

as a list of contexts). The children function may also be used to access an individual child of

a context, by passing the name of the child as a parameter to the function. Constraints specify

relations between contexts, or between properties of contexts. DESERT registers all property

names as OCL function names, thereby allowing users to employ property names as functions in

the constraint specification in order to access context properties. DESERT offers the

implementedBy function to allow users to specify a binding of a choice in the design space

model. It can be employed to bind a particular child of an OR node to the OR node, thus

specifying the resolution to the choice modeled by the OR node. It may also be used to bind a

DESERT property at a particular context to a value in the property’s domain.

 Figure 15 shows an example DESERT OCL constraint, relative to the example AND-OR-

LEAF tree from Figure 12. The context of the constraint is intended to be the node N4. The

constraint specifies a requirement that the context returned by self, in this case, node N4 is to be

“implemented by” the context named N5, corresponding to a child of N4. Since the context of

application refers to an OR node, the constraint specifies the requirement that node N5 be

selected as the outcome of the choice modeled by node N4.

 63

constraint SelectConstraint() {
 self.implementedBy() = self.children(“N5”)
}

Figure 15. Example DESERT OCL constraint, whose context is the node N4 from Figure 12

 Logical, arithmetic and relational operations are supported in the specification of constraint

relations. Constraints typically specify an invariant relation that imposes some restrictions on the

design space model, and often, relational operators are used to specify quantitative bounds on

composed property values. Continuing the AP property example introduced in Figure 12,

suppose that a designer wishes to impose the constraint that requires that, regardless of how the

design space is composed, the composed property value at the root node be bounded by the value

35. A DESERT OCL constraint implementing the bound requirement is shown in Figure 16.

constraint APConstraint() {
 self.AP() <= 35
}

Figure 16. DESERT OCL constraint requiring the value of the context’s AP property not exceed 35

 When the above constraint is associated with node N1 from Figure 12 as its context, it has a

pruning effect on the tree. Any configuration in the tree whose composed property value

exceeds 35 is pruned, or eliminated from consideration. The constraint solver is responsible for

implementing this pruning operation.

A Finite Domain Model for DESERT OCL Constraints

 In order to apply DESERT OCL constraints to the finite domain constraint design space

model, the OCL constraints must be translated into finite domain constraints relating to the finite

domain representation of the AND-OR-LEAF tree. While the syntax of finite domain constraints

differs from that of DESERT OCL, the semantics of the two constraint languages are similar,

with respect to design space exploration and pruning. This section describes the semantic

translation of DESERT OCL constraints into a finite domain constraint representation.

 Basic DESERT OCL constraints may be classified into two categories: those that relate two

constraint contexts, and those that relate one or more DESERT properties. Complex constraints

can be formed by composing constraints from these two categories using logical, relational and

 64

arithmetic operators. Constraints that relate two contexts utilize the implementedBy function

to specify a binding between context objects. The only type of OCL collection that is currently

supported in DESERT OCL is a collection of contexts, as is returned by the children

function. List iteration is not supported (thus constraints cannot be posted against collections in

DESERT OCL).

 The finite domain model for DESERT OCL constraints utilizes the finite domain variables

defined for the AND-OR-LEAF tree, as well as those defining the properties of the tree. A

DESERT property accessed by an OCL constraint at a context corresponds to the finite domain

property variable of the node that is represented by the context. Similarly, an OCL constraint

which relates two contexts is implemented as a relation between the Boolean select variables

modeled by each context. Navigation between contexts changes the point of access of tree

variables from one node to another. Since list iteration is not supported, all constraint navigation

functions can be resolved during the translation from OCL to the finite domain constraint

implementation.

 OCL facilitates the specification of constraints that may or may not be satisfied. It does not

necessarily imply that a constraint must be satisfied. Hence, the translation algorithm separates

the specification of the constraint implementation from the specification of whether the

constraint must be satisfied or not. Reification of the constraint implementation statements is

employed by the translator in order to implement this separation. Requirements on whether a

constraint should be satisfied can themselves be formulated as constraints on the reified

constraint variables.

 Figure 17 shows a finite domain implementation of the DESERT OCL constraint from

Figure 15. The implementedBy function is implemented as an equivalence constraint

between the select variables corresponding to the related contexts. The application context for

the constraint is node N4, whose select variable is denoted Sel.4 (the member of the Sel tuple

whose index is 4, corresponding to the ID of node N4). On the right hand side of the operation,

constraint navigation is used to navigate to the context corresponding to node N5. The select

variable corresponding to node N5 is denoted Sel.5. Line (1) below specifies that the select

variable of node N4 is required to be the same as that of node N5, specifying that if either is

determined to be selected, then both must be selected. This equation constraint is reified into the

temporary Boolean variable TmpBool.1. Note that the constraint does not necessarily imply

 65

that the select variable of node N5 takes on the value 1, since it is unknown at translation time

whether the parent OR node itself has been selected.

 The implementedBy function when applied at an OR node context not only implies the

binding of one child to the parent, but also implies that all remaining children cannot be selected.

Line (2) implements the reified zeroing of Sel.6, corresponding to the only other child of N4.

Line (3) reifies the conjunction of the reified results of the translated statements into

TmpBool.3. Since the constraint in Figure 15 is specified as requirement of the design space

composition, the translated constraint statements must be satisfied. Hence, line (4) posts the

constraint on TmpBool.3, requiring that it, and equivalently all the above reified variables, take

the value 1.

(1) TmpBool.1 =: (Sel.4 =: Sel.5)
(2) TmpBool.2 =: (Sel.6 =: 0)
(3) TmpBool.3 =: {FD.conj TmpBool.1 TmpBool.2}
(4) TmpBool.3 =: 1

Figure 17. Oz implementation of the DESERT OCL constraint from Figure 15

 A DESERT OCL constraint that refers to a DESERT property accesses a finite domain

variable that models the property value at the context of the OCL constraint. Figure 18 shows

the Oz implementation of the OCL constraint depicted in Figure 16. Line (1) contains a

reification of the constraint implementation, with line (2) implementing the requirement that the

constraint be satisfied. The AP function invoked on the context of constraint application returns

the finite domain variable modeling the AP property at the node corresponding to that context, or

in this case, node N1. The AP property variable for node N1 is AP.1, the variable in the AP

property tuple which corresponds to N1’s ID. Thus the OCL constraint imposes the finite

domain constraint that stipulates that the finite domain variable AP.1 must take on a value

which is less than or equal to 35.

(1) TmpBool.4 =: (AP.1 <=: 35)
(2) TmpBool.4 =: 1

Figure 18. Oz implementation of the DESERT OCL constraint from Figure 16

 66

DESERT OCL Constraints and Finite Domain Propagation

 DESERT OCL constraints facilitate the specification of restrictions on design space

composition. Constraints either specify bindings between select variables, or restrict domains of

property variables. The addition of a constraint to the finite domain constraint store adds

information to the store, potentially invoking propagation. Property composition functions

specify the “upward” propagation of information, by defining the property value of a node in

terms of the values of its children. In contrast, the specification of an OCL constraint on an

interior node of the AND-OR-LEAF tree facilitates the “downward” propagation of information.

The constraint propagators discussed above have been implemented so as to facilitate

propagation in both directions across the tree. A goal of downward propagation is to determine

which variables, if any, cannot be selected due to the imposition of OCL constraints. Interval

propagation of composed property values can result in the binding of values to select variables

through the definition of property composition at an OR node. The “bi-directionality” of

propagation offered by the tree relation implementation is a key performance attribute of the

finite domain design space implementation.

Summary of Finite Domain Model for OCL Constraints

 DESERT OCL constraints are translated into finite domain constraints to facilitate the

specification of user-defined tree pruning operations and their application to the finite domain

AND-OR-LEAF tree representation. Operations on context objects are implemented as relations

between select variables. OCL constraint operations involving DESERT properties are

translated into operations involving the finite domain variables that model the DESERT

properties. The implementation of finite domain property composition and the implementation

of select variable tree relations both facilitate the downward propagation of information specified

by the OCL constraint at its context of invocation.

Finite Domain Distribution

 The finite domain model of the DESERT AND-OR-LEAF tree, properties and OCL

constraints has been developed so as to facilitate a high degree of propagation during the search

process. However, as noted in Chapter II, in general, propagation alone is not sufficient to

implement a complete constraint solver. While Mozart provides basic distribution algorithms

 67

that implement a set of heuristics that have been shown to be generally effective, a customized,

application-specific distribution algorithm can utilize knowledge of the problem structure to

better tailor distribution to fit the propagation model. This section outlines a customized

distribution algorithm that implements several heuristics to facilitate a rapid resolution to the

finite domain design space search problem.

 An examination of propagation patterns from the finite domain design space model reveals

several strategies for the implementation of distribution heuristics. As discussed above, the

implementation of tree relationships between select variables, as well as those between property

variables, facilitates both “upward” and “downward” tree propagation. The addition of

information about a variable can have far-reaching effects in the tree due to propagation. The

propagation model for an AND node equates the select variables of the children of the node to

their parent, facilitating propagation in either direction. Downward propagation halts at an OR

node, since search must determine the outcome of the choice modeled at an OR node. However,

if a child of an OR node is determined to be selected, upward propagation is facilitated. Due to

this fact, if a select variable chosen at random for distribution, binding the variable as selected

potentially results in greater propagation than marking it as not selected. Distribution on a select

variable results in two contradictory spaces, one where the select variable is bound to the value 1,

and one where it is bound to 0. The distribution algorithm employs the “SelectFirst” heuristic

when determining the order in which to search the resulting cloned spaces. Algorithm 1

specifies the distribution algorithm applied to select variables. The algorithm is passed in

SelVarList a list of select variables which have not yet been bound to values. The

CloneSpace function clones the current computational space, and creates a thread wherein the

evaluation of the cloned space proceeds. The function returns a true value in the caller thread,

and false in the newly created thread. In the former case, line (4) sets the select variable to 1,

while in the latter, line (6) sets the variable to the value 0.

 68

(1) DistributeSel(SelVarList)
(2) let s be the head of SelVarList
(3) if CloneSpace() {
(4) post(“s = 1”)
(5) else
(6) post(“s = 0”)
(7) }
(8) end

Algorithm 1. Distribution algorithm for distributing select variables

 The distribution algorithm must also consider property variables as candidates for

distribution. The goal of the finite domain search is to bind all select variables to values, to

determine a valid configuration that meets the modeled constraints. However, it is often the case

that the DESERT OCL constraints involve operations on DESERT properties. The propagation

model for property composition outlined above facilitates upward and downward propagation of

property values. Property composition for an OR node depends directly on the select variables

of the node and the children of the node. Hence, property composition can affect tree node

selection. Due to the size of a select variable domain, distribution on a select variable can

produce only two constraints. However, the domain of a property variable is typically much

larger than that of a select variable, requiring the application of a distribution heuristic.

 The distribution algorithm, when selecting between property variables, must determine

which variable to distribute on, as well as how to formulate the constraints to insert into the

cloned spaces. The algorithm appeals to the first-fail heuristic to address the issue of variable

selection. The list of unbound property variables is sorted according to domain size, whereon a

variable whose domain size is minimal is selected for distribution. The algorithm then employs a

domain-splitting heuristic to formulate two contradictory constraints. Let pv be the chosen

property variable. Let be a function which returns the finite domain of a finite

domain variable. Let be the midpoint

of the domain of the selected property variable. Then, for distribution on

FDDomain

()(()) (())m max FDDomain pv min FDDomain pv⎡ ⎤= −⎢ ⎥/ 2

pv , the distribution

algorithm generates the following two contradictory constraints: pv m< and pv m≥ . Since it

is not clear that either cloned space will be more likely than the other to more effectively induce

propagation, neither space is favored during the search. Algorithm 2 gives the implementation of

the distribution of property variables. It is passed a list of as-yet unbound property variables.

 69

(1) DistributeProperty(PVList)
(2) Let pv in PVList be chosen such that
(3) FDDomain(pv) is minimal
(4) if CloneSpace() {
(5) post(“pv < m”)
(6) else
(7) Post(“pv >= m”)
(8) }
(9) end

Algorithm 2. Distribution algorithm for distributing on property variables

 Prior to the application of the above algorithms, the distributor filters the set of variables

available for distribution. Algorithm 3 gives the implementation of the variable filtering

algorithm. The algorithm is passed a list of records, where each record contains the select

variable and the set of property variables corresponding to a tree node. During the finite domain

search process, it may be the case that a select variable for a node has been bound to a value,

while one or more of the node’s property variables remain unbound. Conversely, it may also be

the case that one or more of the property variables are bound to values, while the select variable

remains unbound. It represents wasted effort to distribute on an unbound property variable

whose node has been marked as unselected, since that variable’s property value does not affect

the property values higher in the tree. Hence, the FilterTreeList algorithm filters out not

only those variables which have been bound to values, but also those property variables whose

nodes have been marked as unselected. Filtration separates the node variables into two lists, one

containing unbound select variables, and the other containing unbound property variables.

 70

(1) [SelVList, PropVList] = FilterTreeList(TreeNodeList)
(2) ForAll n in TreeNodeList {
(3) if n.Sel is unbound
(4) put n.Sel on the SelVList
(5)
(6) if (n.Sel is unbound) or
(7) (n.Sel is bound to the value 1)
(8) {
(9) ForAll pv in n.PropVars {
(10) if pv is unbound
(11) put pv on the PropVList
(12) }
(13) }
(14) }
(15) end

Algorithm 3. Variable filtering algorithm used in distribution

 Algorithm 4 provides the implementation of the full distribution algorithm used in the finite

domain design space model. The algorithm is passed in TNList a list of records of tree node

variables, containing one record for each node in the AND-OR-LEAF tree. The algorithm

executes in its own thread, and only performs an action when propagation halts. When the

distributor determines that propagation cannot proceed given the current state of the constraint

store, it invokes Algorithm 3 to filter the list of tree node records, in order to obtain the list of

“distributable” variables. The algorithm either distributes on a select variable, or on a property

variable, alternating between the two lists on each invocation. When distributing on a property

variable, Algorithm 2 is invoked in line (7); when distributing on a select variable, line (10) sees

the invocation of Algorithm 1.

 71

(1) DistributeVars(TNList)
(2) bool isPropTurn = false
(3) forever {
(4) wait for current computation space
(5) to complete all propagation
(6) [SelVList, PropVList] = FilterTreeList(TNList)
(7) if isPropTurn {
(8) DistributeProperty(PropVList)
(9) isPropTurn = false
(10) else
(11) DistributeSel(SelVList)
(12) isPropTurn = true
(13) }
(14) }
(15) end

Algorithm 4. Distribution algorithm implementing finite domain design space search

Constraint Utilization and Finite Domain Search

 The third component of a complete finite domain solver, after propagation and distribution,

is search. Mozart offers three general options for implementing search: search for one result,

search for all results, and search for the best result. Best-case search employs a branch-and-

bound algorithm together with a user-provided solution evaluation function in order to maximize

a solution quality metric. The finite domain model for DESERT utilizes the built-in search

algorithms in different contexts, depending on the use-case of the finite domain search.

Single-Solution and All-Solution Search

 The finite domain model outlined in this chapter can be used to quickly find a single

solution to the design space problem. A solution to the search problem represents a single

configuration in the design space, which satisfies all user-provided constraints. Simple depth-

first search through the distribution tree results in a single solution to the finite domain design

space model with a minimal number of distribution steps.

 All-solution search can be employed to calculate all valid solutions to the finite domain

model. All-solution search simply continues the one-solution search depth-first search

algorithm. When a solution to the problem is encountered, it is added to a solution list. All-

solution search exhaustively explores the full design space. The challenge with all-solution

search is that the number of solutions in a design space may be very large. Distribution

 72

implements a partial enumeration of the space, where, at each distribution step, each of the

cloned spaces potentially contains several solutions. Distribution must be performed in order to

obtain the list of solutions. The enumeration of an exponential number of solutions causes the

finite domain search process to terminate prematurely due to exponential growth in memory

requirements.

 In contrast, the symbolic constraint representation approach employed in DESERT does not

depend on partially enumerative techniques in order to apply constraints. Constraints are applied

to the symbolic representation of the space, resulting in a pruned OBDD representation. This

pruned representation holds all valid configurations of the space. After pruning terminates, the

BDD library can be used to determine if the pruned space contains a large number of

configurations, in which case DESERT warns the user to apply more constraints. Since the

process of pruning the finite domain representation of the space involves partial enumeration,

there is no equivalent operation to determine, after all constraints have been applied, how many

configurations result. However, the finite domain search process can be terminated prematurely,

on detection of an exponential growth in the number of solutions.

Constraint Utilization and Best-Solution Search

 The disadvantage of space enumeration brought on by all-solutions search has motivated the

implementation of a best-case search. The finite domain model for design space exploration

extends DESERT by allowing the conversion of under- and over-constrained design spaces into

near-critically constrained spaces, through the concept of constraint utilization. DESERT OCL

constraints are grouped by the modeler into sets, where each set is assigned a utilization number.

The utilization number applies to each member of the set, and indicates the relative importance

of producing design compositions where the constraints contained in the set are satisfied. In the

case where the modeler wishes to require that a constraint be applied to the space irrespective of

the utilization outcome, the constraint is assigned to a constraint set whose utilization index is -1.

Best-case search in Mozart attempts to maximize total constraint utilization, by searching for

solutions whose total constraint utilization is maximal. Total constraint utilization is simply the

sum of all utilization numbers of all constraints that are satisfied for a given solution. Recall the

formal definition of a configuration Cfg given in equation (16). Let

()Configs P V sol Configs⊆ ∀ ∈ , is a configuration. Let be a function which sol :cutil CS →

 73

returns the user-provided constraint utilization number for a constraint. Let

be a function which calculates the utilization of a configuration. Then equation (26) defines the

utilization function Ut .

:Util Configs →

il

 , () (
c CS sol c

sol Configs Util sol cutil c
∈ →

∀ ∈ =)∑ (26)

 The Oz implementation of constraint utilization is accomplished through constraint

reification. All finite domain implementations of DESERT OCL constraints must be reified in

order to facilitate the determination of which constraints have been satisfied and which have not.

In the case of constraint utilization calculation, it is assumed that some constraints will be

satisfied, while others will not. The search process determines which constraints are indeed

satisfied and thereby contribute to the constraint utilization function. The constraint utilization

calculation can be converted into a simple multiply-add operation over the set of reified

constraint variables, as shown in equation (27). The (solc TRU==)E expression indicates the

reification of the evaluation of constraint c over solution into a 0/1 variable. Where the

constraint is satisfied for a solution, the reified variable takes on the value 1. Where the

constraint is not satisfied, the variable takes on the value 0 and therefore does not contribute to

the total utilization sum. The use of reified constraint variables simplifies the implementation of

the utilization calculation.

sol

 () () ()sol
c CS

Util sol cutil c c TRUE
∈

= ∗ ==∑ (27)

 Constraint reification facilitates the determination of constraint utilization. Constraint

utilization facilitates the conversion of an over-constrained design space into a near-critically

constrained design space. The modeler simply assigns to each constraint a utilization number,

and the search implements a best-case search to maximize utilization. However, as a

consequence of the assignment, not all constraints specified in the over-constrained space will be

satisfied. An over-constrained design space has no solution which satisfies all constraints. A

best-case search solution using constraint utilization approximates the best solution possible for

the over-constrained solution. Constraint utilization calculations can also be used to map an

under-constrained space to an over-constrained space, by supplying more constraints.

 74

 Best-case search in Mozart employs an ordering function that requires future solutions to be

“better” than the current “best” solution. The user-provided ordering function implements a

quantitative metric for comparing solutions, and once a solution is found, posts a constraint that

requires that future solutions improve on the metric. In the case of constraint utilization, the

ordering function simply posts the constraint that the total utilization of a future solution must be

greater than the current utilization.

proc {UtilOrder OldUtil NewUtil}
 NewUtil >: OldUtil
end

Figure 19. Oz implementation of best-case ordering function for constraint utilization

Performance Implications of Constraint Utilization

 The use of reification in constraint utilization impacts the performance of the design space

search. Since all user-provided constraints are reified, they are not directly applied to the space,

and have no direct pruning effect. Utilization calculations must wait until the solver derives

sufficient information so as to determine whether a constraint is satisfied or not. This represents

a search for a single solution through an extremely under-constrained space. DESERT OCL

constraints facilitate downward propagation of property domains, and have an impact on space

composition. The removal of their effect on propagation absolutely hampers performance.

However, once a single solution to the constraint utilization problem is found, propagation can

affect the values of the reified constraint variables on subsequent searches for “better” solutions.

The ordering function depicted in Figure 19 effectively posts a constraint to the search space.

Due to the forward and backward propagation capabilities of finite domain constraints, the

ordering constraint causes propagation back through the constraint utilization calculation

procedure, directly affecting the values of the reification variables. Such propagation can

determine that in order to achieve a better constraint utilization value, a particular reified variable

must be set to one. This causes the corresponding constraint to actually post to the design space,

and results in further constraint propagation. However, such a situation is not considered the

common case, due to the fact that many different combinations of reification variables can lead

to utilization improvements.

 75

 A second effort attempts to partially rectify the performance implications of the use of

constraint utilization and reification. The reification variables can be added to the distribution

list, allowing the distribution process to assign a value to the reified variable, thereby causing the

constraint to be posted in one of the distributed subspaces, resulting in what propagation effects

the constraint brings about. Such distribution can also short-circuit the constraint utilization

calculation by “guessing” early on that a constraint is satisfied and calculating the resulting

utilization value. The remaining constraint relations ensure that such a guess is correct (if not the

search is halted at this node).

Summary of Constraint Utilization techniques

 The use of constraint reification to facilitate utilization computations allows a unique

approach to design space exploration. Best-case solutions to over-constrained spaces can be

approached, by modeling the relative importance of whether a given constraint actually is

satisfied in a search outcome. The use of constraint reification to implement utilization hampers

performance, but due to the strength of the propagation model, the performance degradation does

not render the approach unusable.

Summary of the Finite Domain Constraint Model for DESERT

 A finite domain constraint model for representing and exploring design spaces has been

developed. The model implements the semantics of the DESERT AND-OR-LEAF tree through

finite domain constraint relations over variables that model different aspects of the tree. Boolean

finite domain variables model inclusion in or exclusion from a configuration. DESERT

properties are modeled as finite domain variables, and property composition is implemented as a

set of relations between property variables. DESERT OCL constraints are mapped onto the

finite domain representation as relations involving the variables modeling different aspects of the

AND-OR-LEAF tree. The model offers a customized distribution algorithm that tailors

distribution decisions to the structure of the finite domain model. Search is implemented using

the built-in Mozart search facilities, and all three classes of search are supported. Since

distribution and search naturally enumerates the design space, a best-case search approach has

been implemented to convert over-constrained and under-constrained design spaces into near-

 76

critically constrained spaces. The approach attempts to maximize constraint utilization for the

set of constraints assigned by the modeler.

 Many performance considerations have been addressed in the development of the finite

domain model. The AND-OR-LEAF tree relationships have been crafted so as to facilitate the

propagation of values and intervals, where appropriate up and down the tree. Property

composition routines facilitate the imposition of constraints from above, and values from below,

and can propagate information in either direction to facilitate the search. The distribution

algorithm implements several problem-specific heuristics when selecting variables for

distribution, and also when devising constraints on those variables. The goal of the distribution

algorithm is to facilitate as much propagation as possible, in as few distribution steps as possible.

The constraint utilization techniques outlined above degrade performance, due to the diminished

role of a constraint through reification. However, the finite domain model attempts to partially

rectify this degradation by facilitating propagation across the utilization calculations through to

the reification variables, and by distributing on reified constraint variables.

 77

CHAPTER IV

THE PROPERTY COMPOSITION LANGUAGE

 DESERT facilitates the modeling of property composition through a limited suite of

property composition functions. These functions represent classes of operations that define a

tree node’s property value in terms of some mathematical operation on the property values of the

node’s children. This chapter discusses the modeling limitations on property composition

specification imposed by the current DESERT approach, both in computational tractability and

in expressiveness. To address these limitations, a language called PCL (Property Composition

Language) has been developed to facilitate expressive modeling of complex property

composition functions. Tools have been developed to translate PCL statements into a finite

domain constraint representation that leverages the finite domain model of the AND-OR-LEAF

tree. This chapter outlines the design of PCL, as well as the finite domain representation and

translation of the language.

Limitations in Modeling Property Composition

 The expressiveness of the DESERT property composition functions is overly restrictive. A

property composition function is an implementation of a mathematical function that models the

calculation of a property value at a node in terms of the property values of the children of the

node. In general, property composition is difficult to model, often requiring complex

mathematical relationships. For example, consider a latency property of a multi-processor,

signal processing application. The calculation of the composed latency property involves a

longest path analysis across the application graph, and must take into account computational

resource sharing and scheduling, and communication bandwidth, delays and resource sharing.

Such complex calculations cannot be modeled as a simple, one-dimensional mathematical

operation, such as those offered by DESERT. While DESERT offers the capability of

developing “custom” property composition routines as a plug-in to the solver framework, the

development of such routines is cumbersome and requires developer knowledge of the internal

DESERT data structures.

 78

 Neema reports on the scalability issues of the OBDD approach that are encountered when

performing complex mathematical operations in DESERT [79]. The OBDD representation of

the design space actually utilizes multi-terminal binary decision diagrams (MT-BDDs) to

facilitate the representation of data in mathematical operations. The MT-BDD representation

utilizes integers as the terminal nodes in the data structure, as opposed to the 0 and 1 terminal

nodes in the OBDD structure. An MT-BDD structure achieves a high degree of compaction in

representation size when there is a significant re-use of terminal values. When there is not a high

degree of reuse of terminal nodes, the MT-BDD representation can become exponential. In the

case where the DESERT domain of the property contains a wide range of numbers, it is highly

likely that such an MT-BDD explosion will occur. The observed behavior of the DESERT

BDD-based pruning indicates that for design spaces requiring the representation and evaluation

of mathematical operations, the BDD quickly becomes exponential in memory size as the

problem size scales up. Pruning of highly orthogonal design spaces is also prohibitively

expensive in the presence of mathematical operations. The BDD representation of the design

space does scale well as a representational mechanism (Neema reports the ability to represent

spaces of up to different configurations), and as a coarse-grained pruning approach, so long

as the pruning operations do not involve mathematics that cause the BDD representation to

explode.

18010

 The lack of expressiveness for modeling complex property composition relationships, as

well as the lack of scalability for implementing simple property composition relationships

implies a serious flaw in the DESERT toolset. The work presented in this chapter rectifies this

flaw, through the development of a property composition language that is sufficiently expressive

so as to facilitate the modeling of complex relationships. The implementation of the language

must scale to large problem sizes without incurring an exponential explosion in memory or

execution time.

The Property Composition Language

 The Property Composition Language is a simple scripting language that supports the

specification of both linear and non-linear mathematical operations involving multiple properties

and multiple types of properties. Tree navigation is fully supported, in similar fashion to

DESERT OCL.

 79

PCL Variables, Operations, Expressions and Statements

 PCL is a typed programming language that provides a simple syntax for modeling property

composition operations. There are only two data types supported in PCL: var and list. var

represents a variable, a placeholder for a single value, that can be assigned to and read from. In

PCL, all variables (either var or list) are single-assignment, in that once a variable has been

assigned, it cannot be re-assigned. A PCL list represents a list of variables. Lists of lists are

not supported, and the length of a list must be well-defined when a PCL specification is

interpreted. Properties can be accessed as PCL vars through provided property access

operations. Iteration through lists is performed using customizable list iteration operations that

are provided with PCL.

 PCL supports mathematical operations between variables. A full host of operations are

supported, including arithmetic, logical and relational operations. Linear arithmetic operations,

such as addition, subtraction and multiplication are supported, as are non-linear operations, such

as integer division, modulo arithmetic, and integer exponentiation (a variable raised to an integer

power). Supported logical operations include conjunction, disjunction, implication, equivalence,

and logical negation. Relational operations define variable comparisons, utilizing the following

operations: greater-than, less-than, equal-to, not-equal-to, greater-than-or-equal-to, less-than-or-

equal-to. Other comparison operations include min and max, which return the minimum and

maximum, respectively, of two variables.

 Operations involving one or more variables and one or more operators are collected into

PCL expressions. PCL operations are specified through operators (the syntax of the operators is

provided in Appendix A, which contains the input specification for lexical analysis of PCL, and

Appendix B, which contains the context free grammar of PCL). There are two classes of

operators supported in PCL: binary operators and unary operators. Unary operations include

logical negation and arithmetic negation. The remaining operators discussed above are binary

operators. An operator, together with its argument(s) defines an expression. Operators may take

expressions as arguments. An expression models a value, the result of the evaluation of the

expression on its arguments. By virtue of the recursive nature of the expression definition, an

expression can be large and complex, involving multiple variables and multiple operations. PCL

supports the use of parentheses to disambiguate operation association, and to form a single

 80

expression from a set of expressions. The formulation of PCL expressions is similar in concept

to the formulation of expressions in C or other high-level programming languages.

 PCL allows variable assignment. All variables are single-assignment variables, in that a

variable may be assigned to only once. Variables that are never assigned to should not be read

from, and the PCL parsing and evaluation tools output a warning when such a circumstance is

encountered. Variables are defined (or assigned to) using the assignment operator. A valid

assignment involves the assignment to a variable of any valid PCL expression that is type-

equivalent to the variable. Type equivalence implies that only expressions that evaluate to

simple variables may be assigned to simple variables, while only expression that evaluate to list

variables may be assigned to list variables. Type equivalence on assignment is verified during

PCL evaluation.

 Variable assignment is a type of PCL statement. In contrast to an expression, a statement

does not represent a value. Thus, assignments may not be “chained” together, as in C (i.e.

a=b=c=d is not a legal PCL statement). PCL supports other types of statements as well,

including declaration statements, control statements, and call statements. A declaration

statement contains a variable declaration, possibly including an initialization assignment to some

expression. All PCL variables must be declared prior to use. A control statement represents an

if-then-else decision statement. Although the language syntax supports if-then-else statements,

the PCL evaluation does not currently support decisions at the implementation level. Call

statements represent invocations of PCL functions, which are discussed below.

Modularity in PCL: Properties and Functions

 All statements in PCL are defined within a function. A function is a collection of PCL

statements. A function has a set of formal input parameters, and can return a variable. A special

type of function is defined as a property. A property function defines a DESERT

property, and represents a PCL entry point. The variable returned by a property function is

associated with a DESERT property, allowing the operations defined in and invoked by the

function to define the property value. Other than this point, a property definition is no

different from that of any other PCL function. PCL functions that are not defined with the

property keyword are identified with the keyword function. The use of functions in PCL

facilitates a modular approach to the specification of property composition.

 81

 A function contains a set of statements. All statements in a function form a block, which

defines a scope for the definition of variables. All scopes are local, in the sense that a variable is

only visible within the scope where it is declared. All variables must be defined within a scope,

and global variables are not supported. If a new block is entered (in the case where a function is

invoked), only variables defined within the new scope are available for access. All functions, on

the other hand, are defined in a single global namespace. Local function definitions are not

supported. The formal parameters of a function are treated as initialized variable declarations,

and are visible within the scope defined by the function’s block. A return statement may be

placed anywhere within the block defined by a function, causing the evaluation of the function to

return control (and any associated return expression) to the caller.

 Function invocations are allowed in two different locations in PCL. A function that returns

a variable can be invoked as part of an expression. Any function can be invoked as a statement,

where the expression returned by the function, if any, is ignored. Note that due to the scoping

rules imposed by PCL, except under special circumstances, such function invocations typically

do not accomplish anything.

Tree Navigation

 OCL statements apply at a particular context. A PCL property specification, likewise,

applies at a context, corresponding to a node in the AND-OR-LEAF tree. The specification

defines a DESERT property corresponding to the context of invocation. However, unlike OCL

statements, PCL specifications are evaluated over several contexts, owning to the fact that

composed properties are defined over all nodes in the tree. PCL abstracts the particulars of

which node the statements are applied to into the concept of a context, and tree navigation is

facilitated through functional operations relative to the invocation context. Such tree navigation

is pattered after the navigation capabilities of DESERT OCL. Built-in PCL functions allow

access to different contexts. The parent function returns the parent of the current context. The

children function returns a list of context objects, representing the children of the current

context. A specific child may be accessed by passing the child’s name as a string literal to the

children function. Calls to functions that access or change contexts can be chained together

using the dot operator syntax, passing the result context of a function call as the invocation

context of the next function call. The self function returns the original invocation context of

 82

the PCL specification. The PCL syntax for tree navigation differs slightly from the OCL

navigation syntax, in that PCL employs function invocation syntax instead of the simple dot-

object syntax used in OCL. For example, a statement to access all the children of the parent of

the current context in OCL appears as: self.parent.children, where as in PCL, the

statement appears as self().parent().children().

 Tree navigation is typically used to navigate to a particular context, which is then used to

access a property variable for that context. Property access is facilitated through the prop

function, provided in PCL. The name of the property being accessed is passed as a string literal.

The function sel returns a Boolean variable whose value indicates whether an invocation

context has been marked for inclusion or exclusion from the set of configurations in the design

space. These property access functions are invoked at the end of a tree navigation statement,

with the same dot operator syntax. Both of these property access functions can be invoked on a

simple context, as well as on a list of contexts. When invoked on a list of contexts, the function

implicitly loops through the list and applies the simple function on each list member and collects

the results into an output variable list. For example, self().property(“area”) returns a

variable representing the area DESERT property belonging to the invocation context, while

self().children().property(“area”) returns a list of variables corresponding to

the area property variables belonging to the children of the invocation context.

List Iteration Functions

 General user-defined iteration is not supported in PCL. However, limited support is

available for iteration through a list of variables. Such iteration is effected through “built-in” list

iteration functions. These functions visit each member of the list, from head to tail, and invoke a

user-specified function on each list member. The user passes the name of the node-visitation

function as a parameter to the iteration function. The PCL evaluator algorithm handles the

mechanics of passing the list node to the node visitor. Only two list iteration functions are

supported, which differ based on what is done with the results of a node visitation. The ForAll

list iteration function accepts two parameters, the list to iterate over, and the name of the visitor

function to invoke when visiting a node. The visitor function must accept a single variable: the

list member, and must return a simple expression. ForAll collects each expression returned by

the node visitor function into a list and, after finishing the list iteration, returns the list of

 83

returned expressions. The ForAllAcc returns a single expression that represents the

accumulated result of visitation of each node. As with ForAll, ForAllAcc is passed a user-

specified node visitor function. However, in contrast to the ForAll node visitor function, the

ForAllAcc node visitor is passed not only the list member, but also an expression representing

the accumulated results of the previous node visitations. The node visitor is responsible for

visiting the node and accumulating the results of the visit with the previously accumulated visit

results. This new accumulation expression is returned to the list iteration function, and passed to

the node visitor on invocation for the next list member. On exhaustion of the list, the list

iteration function returns the accumulation expression to the caller. ForAllAcc takes three

parameters, the list to iterate over, the name of the visitor function, and an initial accumulator

value.

Simple PCL Example: Area Property

 Figure 20 provides a simple example of a PCL property composition specification. The

property being modeled is a simple additive property called area. Such a specification could be

employed when modeling the composition of FPGA configurations. The area property

composition allows a user to specify a constraint on the total area of a composition, requiring

that a composition fit in the available gate area. While gate area is not necessarily a simple

additive property, a coarse-grained model suffices to illustrate the PCL implementation. Line (1)

defines the helper function SumVar, which is later used as a list node visitor function. Line(5)

defines the entry point to the area property calculation, with a property declaration called

areaProperty. Line (6) obtains a list of area property variables, corresponding to the

children of the context of invocation. The list is stored in the list variable chAreaProps. Line

(7) illustrates the invocation of the ForAllAcc list iteration function. The function is passed

the chAreaProps list as the list to iterate on, followed by “SumVar,” the name of the

function to invoke while visiting each member of the list. The third parameter is the integer

literal 0, representing an initial accumulation value of 0. Line (1) begins the definition of the

visitor function SumVar, which is invoked by the ForAllAcc function. This function takes

two parameters, v1, representing the visited list member, and v2, representing the accumulated

results of the previous list member visits. Line (2) sees the return of the addition of v1 to v2. In

 84

the context of list accumulation, this simply takes the current list member, adds it to the

accumulator and returns the summed result. The ForAllAcc function returns the results of

accumulation across all list members, and line (7) sees that value stored into a newly declared

variable named ret. In line (8), the variable ret is returned, effectively assigning the results of

accumulation to the area property of the invocation context.

(1) function var = SumVar(var v1, var v2) {
(2) return (v1 + v2);
(3) }
(4)
(5) property areaProperty() {
(6) list chAreaProps= self().children().prop(“area”);
(7) var ret = ForAllAcc(chAreaProps, “SumVar”, 0);
(8) return (ret);
(9) }

Figure 20. Example PCL function modeling an additive property called area

PCL Interpretation

 PCL is designed to facilitate dynamic interpretation. Specifically, a design goal of PCL was

to avoid the need of invoking a separate language compiler to generate an executable

specification. Otherwise, the design space exploration tools would need to be rebuilt after any

change to a user-defined PCL specification. Instead, the PCL interpreter has been designed to

dynamically compile and interpret a PCL specification. The execution semantics of PCL is built

on the finite domain design space model, discussed in Chapter III. The PCL interpreter is tasked

with the translation of a PCL specification into an equivalent finite domain specification that can

form part of the finite domain design space search.

Expression Trees

 The mapping of PCL statements into finite domain constraints centers on the development

of a finite domain expression tree. An expression tree models a complex chain of operations that

evaluates to a value. The PCL interpreter translates a PCL specification into a set of PCL

expression trees, and then maps the set onto a set of finite domain expression trees. Finite

domain expression trees have execution semantics assigned by the finite domain constraint

solver, and therefore can be evaluated as the finite domain design space model is pruned.

 85

However, the translation process begins with the evaluation of a PCL specification, which results

in the construction of a PCL expression tree.

 Formally, a PCL expression tree is a tree:

 , ,T V E VT= (28)

where,

 is a set of vertices; V

 is a set of directed edges; and E VxV⊆

 is a function mapping a vertex to a vertex type. : { , ,VT V BinOp UnOp Leaf→ }

 An expression tree models a set of PCL operations. Vertices in the tree model operations

between sub-trees. Leaf nodes in the tree model variables or data, items which are not refined

further by the PCL specification. The vertex type denotes the type of operation modeled by the

node: BinOp indicates a binary operation; UnOp indicates a unary operation; and

indicates the vertex models data as opposed to an operation, and represents a leaf node in the

tree. Edges in the tree connect operations to operands.

Leaf

 Figure 21 provides an example PCL expression tree modeling the PCL expression in

equation (29). All vertices of type BinOp have two output connections, and model binary

operations. The single interior tree vertex with only one output connection is of type UnOp ,

modeling a unary arithmetic negation. The leaves of the tree model either data (integer literals)

or variables (ex. a, b, c).

 ()() ()()*3 / %a b c a c+ > − (29)

>

/

%* c

3+

ba

a c

-

Figure 21. Example PCL Expression tree modeling the PCL expression in equation

 86

 A PCL specification consists of a set of PCL statements. Although the name “expression

tree” implies the ability to only model PCL expressions, the translation process facilitates the

capture of a complete PCL specification as an expression tree. A PCL expression tree is similar,

but not equivalent to an Abstract Syntax Tree (AST). A PCL AST is generated through the

parsing of a PCL specification. A PCL expression tree results from the evaluation of the PCL

AST at a particular context.

Translation into Trees

 The PCL interpreter first parses a PCL expression, and then translates it into a PCL

expression tree by evaluating the expression with respect to a particular context. All PCL

expressions can be modeled as an expression tree. The structure and semantics of PCL facilitate

the mapping of a complete PCL specification into a single expression tree. The translation

algorithm is a one-pass algorithm that substitutes expressions corresponding to the definition of a

variable in the locations where the variable is used or read from. Central to this approach are the

rules that all PCL variables are logic (single-assignment) variables, and that a variable must be

defined before it is used. These rules facilitate the separation of the evaluation of an expression

that defines (or writes to) a variable from the evaluation of expressions where the variable is

used. Variables are defined either through initialization in the variable declaration statement, or

through assignment, by the association of an expression with the variable. The defining

expression can refer to variables only if those variables have been defined previously in the PCL

specification. Algorithm 5 provides a pseudocode description of the translation of a variable

declaration into an expression tree. Algorithm 6 provides a similar description of the translation

of an assignment statement. In both cases, the expression assigned to the variable is first

translated into an expression tree. Note that the algorithm for translating an expression into an

expression tree is described later (see Algorithm 9). The tree is then inserted into the definition-

tree map, against the name of the defined variable. By creating this binding, when expressions

are encountered which reference the defined variable, the translator can simply look up the

corresponding defining expression tree in the map, and use it in the place of the variable

reference when mapping the expression to an expression tree.

 87

(1) TranslateVarDecl(var decl stmt, ctxt,
(2) def-tree map, funcTable)
(3) if the var decl contains an initialization,
(4) T = TranslateExpr(decl init expr, ctxt,
(5) def-tree map, funcTable)
(6) let vname be the variable name
(7) Insert [vname, T] into def-tree map
(8) end if
(9) end

Algorithm 5. TranslateVarDecl algorithm, implementing the translation of a variable declaration statement

(1) TranslateAssignStmt(assign stmt, ctxt,
(2) def-tree map, funcTable)
(3) T = TranslateExpr(assignment source expr,
(4) ctxt, def-tree map, funcTable)
(5) Let dstVName be the name of the assignment dst var
(6) Insert [dstVName, T] into def-tree map
(7) end

Algorithm 6. TranslateAssignStmt algorithm, implementing the translation of an assignment statement

 Given the process of substituting variable definition expression trees in the place of

references to the defined variables as outlined above, the expression provided in a PCL return

statement primarily defines the expression tree resulting from the evaluation of a PCL

specification. Only those expression trees which are in some way associated with the expression

contained in the return statement actually from part of the expression tree returned by a

specification. In this fashion, the PCL translator implicitly performs dead-code elimination.

Algorithm 7 shows how return statements are translated into an expression tree, and then

returned.

(1) ExprTree = TranslateReturnStmt(ret stmt, ctxt,
(2) def-tree map, funcTable)
(3) T =TranslateExpr(return expr, ctxt,
(4) def-tree map, funcTable)
(5) return T
(6) end

Algorithm 7. TranslateReturnStmt algorithm, implementing the translation of a return statement

 88

 A PCL specification begins at a property declaration. The translation of a PCL property into

an expression tree consists of translating all the statements contained in the property

specification. The statements in the specification must be processed in the order in which they

appear in the original PCL source. PCL supports the three types of statements discussed above:

variable declaration statements, assignment statements and return statements. Algorithm 8 gives

the implementation of the translation algorithm for PCL functions. The algorithm takes four

parameters, the PCL specification, the context (location in the AND-OR-LEAF tree) where the

specification is to be evaluated, a list of actual parameters corresponding to the specification’s

formal parameters, and a table of PCL functions. The function table contains references to all

functions defined in the global PCL namespace. Line (3) declares the definition-tree map, which

holds the expression trees associated with variable definitions. Lines (4) – (6) insert all actual

parameter expression trees passed to the function into the map against their formal parameter

counterparts. The algorithm then delegates the translation of each statement, based on statement

type. Note that only the translation of a return statement actually produces an expression tree

that is returned.

 89

(1) ExprTree = PclTranslator(PclSpec, context,
(2) actParams list, pclFnTable)
(3) Map def-tree map
(4) Insert all actual parameter expression
(5) trees into def-tree map, against
(6) their corresponding formal parameter names
(7)
(8) ForAll pclStmt in PclSpec {
(9) switch (StmtType(pclStmt)) {
(10) case VarDeclStmt:
(11) TranslateVarDecl(pclStmt, context,
(12) def-tree map, pclFnTable)
(13) case AssignStmt:
(14) TranslateAssign(pclStmt, context,
(15) def-tree map, pclFnTable)
(16) case ReturnStmt:
(17) return TranslateRetStmt(pclStmt, context,
(18) def-tree map, pclFnTable)
(19) }
(20) }
(21)
(22) //evaluation did not result in the generation
(23) of an expression tree //
(24) return nil
(25) end

Algorithm 8. The PclTranslator algorithm dispatches each statement for translation, and returns the appropriate
expression tree

 The above algorithms define the translation of a PCL specification, in terms of PCL

expressions. The translation of a PCL expression into an expression tree remains to be defined.

There are several different classes of PCL expressions which must be translated into an

expression tree. Expressions often contain one or more sub-expressions, which are evaluated

through a recursive invocation of the expression evaluation algorithm. Algorithm 9 gives the

implementation of the expression translator. It simply delegates the translation, based on the

type of expression.

 90

(1) ExprTree = TranslateExpr(PclExpr expr, context,
(2) def-tree map, funcTable)
(3) switch(ExprType(expr)) {
(4) case BinOpExpr:
(5) return TranslateBinOpExpr(expr, context,
(6) def-tree map, funcTable)
(7) case UnOpExpr:
(8) return TranslateUnOpExpr(expr, context,
(9) def-tree map, funcTable)
(10) case ParenExpr:
(11) return TranslateExpr(expr.subExpr, context,
(12) def-tree map, funcTable)
(13) case CallExpr:
(14) return TranslateCallExpr(expr, context,
(15) def-tree map, funcTable)
(16) case VarExpr:
(17) return TranslateVarExpr(expr, def-tree map)
(18) case ralExpr: Lite
(19) return TranslateLiteralExpr(expr)
(20) }
(21)
(22) //else unsupported expression type
(23) return NULL
(24) end

Algorithm 9. TranslateExpr algorithm, implementing a dispatch based on expression type

 Recall that a PCL expression tree contains only three types of vertices: BinOp , UnOp , and

. All types of expressions supported by PCL must be represented by combinations of these

three classes of expression trees. The list of PCL expression classes can be seen in Algorithm 9:

Leaf

BinOpExpr , , , , VarExpr , and . The

expression is a special case that models the grouping of one or more operations. The group of

operations is modeled as a sub expression, which is evaluated and returned. The structure of the

expression tree retains the semantics of the grouping. The remaining cases are treated and

translated individually.

UnOpExpr ParenExpr CallExpr LiteralExpr ParenExpr

 A Lite expression represents data in an expression. Two types of literal data are

supported in PCL: string literals and integer literals. Literal data is modeled as a node in a

PCL expression tree, as shown in Algorithm 10.

ralExpr

Leaf

 91

(1) ExprTree = TranslateLiteralExpr(literal expr)
(2) if the literal expression is an integer literal then
(3) return new IntegerExprTreeLeaf(literal expr)
(4) else
(5) return new StringExprTreeLeaf(literal expr)
(6) end
(7) end

Algorithm 10. TranslateLiteralExpr algorithm, responsible for translating literal data into Expression Tree leaf
nodes

 VarExpr expressions represent references to variables. In contrast to a variable

definition, a VarExpr expression represents a use of a variable. As described previously, the

translation of such an expression simply amounts to the retrieval of the expression tree bound to

the variable name through the def-tree map. This tree corresponds to the expression that defines

the variable. Algorithm 11 shows the pseudocode implementation of this operation.

(1) ExprTree = TranslateVarExpr(var expr, def-tree map)
(2) ExprTree T = lookup the variable name in
(3) the def-tree map
(4) if T==NULL then
(5) Error(“Variable used prior to being defined”)
(6) end
(7) return T
(8) end

Algorithm 11. TranslateVarExpr algorithm, implementing the translation of a variable usage reference via
expression tree lookup

 Unary operations are modeled as UnOpEx expressions. The only unary operations PCL

supports are logical negation and arithmetic negation. A unary operation expression contains the

operation, together with the expression on which the operation operates. Unary operations are

modeled as UnOp expression trees, which simply reflect the operator information in the unary

expression, with a link to the expression tree modeling the unary operator’s operand. Algorithm

12 shows the implementation of the translation of a unary expression into a unary expression

tree.

pr

 92

(1) ExprTree = TranslateUnOpExpr(unOpExpr, context,
(2) dt map, funcTable)
(3) ExprTree subTree = TranslateExpr(unOpExpr.subExpr,
(4) ctxt, dt map, funcTable)
(5) return new UnOpExprTree(unOpExpr.op, subTree)
(6) end

Algorithm 12. TranslateUnOpExpr algorithm, implementing the translation of a unary operation expression
into a unary operation expression tree

 The translation of binary operation expressions is similar to the translation of unary

expressions. A binary operation expression consists of a binary operator and two operands, a

left-hand side (LHS) and a right hand side (RHS). As all operators are not commutative, the

relative order between operands must be preserved. Algorithm 13 gives the implementation of

the translation of a binary operation expression to a binary operation expression tree.

(1) ExprTree = TranslateBinOpExpr(binOpExpr, context,
(2) dt map, funcTable)
(3) ExprTree LHS = TranslateExpr(binOpExpr.lhs, ctxt,
(4) dt map, funcTable)
(5) ExprTree RHS = TranslateExpr(binOpExpr.rhs, ctxt,
(6) dt map, funcTable)
(7) return new BinOpExprTree(LHS, binOpExpr.op, RHS)
(8) end

Algorithm 13. TranslateBinOpExpr algorithm, implementing the translation of binary operation expressions
into binary operation expression trees

 Expressions involving function calls are perhaps the most complex to translate to expression

trees. A Cal expression contains a call chain, consisting of one or more function

invocations connected with the dot operator. All functions in the chain except the final function

call implement context navigation, simply traversing from one context to another. The context

returned by the penultimate call in the chain is passed as the invocation context for the final call

in the chain. The translator returns the expression tree that is produced from the evaluation of

the final call at the navigated context. The implementation of the translation of a function call

expression into an expression tree is provided in Algorithm 14.

lExpr

 93

(1) ExprTree = TranslateCallExpr(callExpr, context,
(2) dt map, funcTable)
(3) Let finalFn be the last function invocation
(4) in the callExpr.callChain
(5)
(6) Let navFns = callExpr.callChain / {finalFn}
(7)
(8) //navigate invocation contexts to the
(9) //final function context
(10) currentCtxt = context
(11) ForAll navFn in navFns {
(12) nextCtxt = TranslateFnInvoke(navFn, currentCtxt,
(13) dt map, funcTable)
(14) currentCtxt = nextCtxt
(15) }
(16)
(17) //invoke final function
(18) ExprTree T = TranslateFnInvoke(finalFn, currentCtxt,
(19) dt map, funcTable)
(20) return T
(21) end

Algorithm 14. TranslateCallExpr algorithm, implementing context navigation and showing function invocation

 The translation of a call chain into an expression tree depends on the evaluation of a PCL

function at a particular context. The evaluation of a PCL function involves evaluation and

translation of the actual parameters passed to the function invocation. The actual parameters

represent defining assignments for the formal parameters in the called function, as illustrated in

Algorithm 8. Further, the translator must locate the function implementation, through indexing

the function table against the invoked function’s name. Once the function implementation has

been obtained, the translator issues a call to the PclTranslator algorithm listed in Algorithm 8 to

evaluate the invoked function. It passes the evaluated actual parameters, as well as the current

context of invocation.

 94

(1) ExprTree = TranslateFnInvoke(funcObj, context,
(2) dt map, funcTable)
(3) list actParTrees
(4) ForAll ap in funcObj.actParams {
(5) apTree = TranslateExpr(ap, context,
(6) dt map, funcTable)
(7) put apTree into actParTrees
(8) }
(9)
(10) funcImpl = lookup funcObj.name in funcTable
(11) return PclTranslator(funcImpl, actParTrees,
(12) context, funcTable)
(13) end

Algorithm 15. TranslateFnInvoke algorithm, implementing the evaluation of a function invocation

 In summary, the translation algorithm outlined in the above algorithms facilitates the

translation of a PCL specification into a PCL expression tree. Such translations occur relative to

a particular invocation context, and apply only to that context. The PCL expression tree can be

easily translated into a finite domain expression tree, which can be evaluated during design space

exploration.

From Expression Trees to Finite Domain Constraints

 The goal of PCL is to facilitate the evaluation of complex, user-defined property

composition functions in the context of the finite domain design space model. Such evaluation

allows the results of property composition to affect the design space pruning. To facilitate such

evaluation, a mapping has been developed to translate a PCL expression tree into a set of finite

domain constraints.

 The mapping of a PCL expression tree onto a set of finite domain constraints begins with the

association of expression tree variables with finite domain variables. In PCL, all variables are

local variables or formal parameters. The entry point to a PCL specification is a property

specification, which by definition, takes no parameters, but does return a variable. The

evaluation of a property specification returns an expression tree which models the result of the

application of the specification at a particular context. This resulting expression tree is bound to

the finite domain property variable corresponding to the context at which the PCL specification

is invoked. Since all variables are local variables, the only way to associate information external

 95

to the PCL specification with an evaluation of the specification is through the built-in PCL

functions. For example, the property PCL function returns the finite domain variable associated

with the property whose name is passed as a parameter, and whose context is the context of

invocation of the function.

 By returning relevant DESERT finite domain variables from the built-in PCL functions, the

PCL expression tree resulting from the evaluation of a PCL specification models a set of

expressions relating finite domain variables. All relations that are modeled in the PCL

expression tree have corresponding implementations in Mozart. Thus a PCL expression tree

whose leaf nodes correspond to finite domain variables effectively represents a set of finite

domain constraint operations. Chapter V discusses the challenges of implementing the tree-

based representation of finite domain operations in the context of a design space exploration tool.

PCL Modeling Example

 This section examines the use of DESERT and PCL to model the composition of FPGA-

based applications from a parameterized component IP library. The use of an IP library

facilitates the rapid composition of high-performance applications, without the tedium of hand-

crafting and optimizing component implementations to fit the features of the architecture. A

common tradeoff in the implementation of FPGA-based operations concerns the gate-area

required by an implementation, as compared to the implementation’s latency. Typical hardware

implementations offer the ability to trade area for latency or vice versa. Ideally, a designer

would like a low-latency, low-area design, but these to metrics often stand in conflict. The

designer is therefore left with the task of balancing the gate area used by a particular component

implementation against the latency exhibited by the component. Application-level requirements

drive the development, and impose constraints on the design. For example, available chip area is

almost always a constrained resource (due to chip count, power, cost, size, heat, or other

constraints). Many applications impose an end-to-end latency constraint, due to real-time

processing constraints imposed by the environment of the application. Thus, the goal of

balancing the latency and area of an FPGA design becomes a task of meeting application-level

design constraints. This section describes a hypothetical parameterized component library

targeting a hypothetical FPGA platform. However, while hypothetical, the example is

illustrative of real FPGA platforms and the problem of targeting parameterized component

 96

libraries to those platforms. The example outlines the use of DESERT and PCL to model the

property composition and constraint satisfaction problem imposed on FPGA developers, and

describes the translation of the problem into a finite domain constraint implementation.

A Parameterized Component IP Library

 FPGA components are often developed using a parametric approach. Parameters supplied

by the component integrator adapt the structure and behavior of the implementation, tailoring it

to the needs of the application developer. The exhibited behavior and structural properties of the

component are a function of these parameters. A component has a number of input data busses,

and a number of output data busses. It is assumed that all input busses are of the same width, as

are all output busses, but input bus width need not be the same as the output bus width. A

parameterized component models a set of “concrete” components, or the set of components

which are generated from the parameterized component by supplying values for the parameters.

 Latency and area are two important measures of quality of an FPGA component

implementation. However, it is often the case that these parameters stand in opposition to each

other: low-latency designs typically occupy more gate area than high-latency designs. A given

component functionality can typically be implemented in several different ways, and each way

can be characterized on the latency-area tradeoff curve. The need to balance application-level

area and latency against nonfunctional requirements on area and latency reduce much of the

design process to a tradeoff analysis on the parameter space of each component, and across

alternative component compositions. In this example, the tradeoff analysis is modeled as a

design space exploration problem over the composed latency and area properties of an

application.

 The tradeoff between latency and area for a given component can be mathematically

modeled as a single integer parameter. A large parameter value indicates a design which

strongly favors a low-latency implementation, at the expense of increased gate area. Conversely,

a small parameter value represents a design which is highly optimized for a small area

implementation, possibly at the cost of increased latency. For each parameterized component in

the component library, the performance of the components which can be generated from the

library is modeled as a function of the parameters. While all parameterized components are

 97

characterized with the same parameter set, the performance of each parameterized component

must be modeled individually.

 Formally, a component IP library is a pair ,UC T , where UC represents a set of

deployable components and T represents a set of component types. Let each component in UC

be associated with a type, and let be a function which returns the type of a

component. Each component in UC is characterized with three parameter values, denoting

number of input connections, number of output connections, and a parameter modeling the

relative latency-to-area tradeoff for the component implementation. Let be a map

which returns the number of input connections for a component, be a map which

returns the number of output connections for a component, and be a map which

returns the latency-area tradeoff parameter value for a component.

:Type UC T→

:IW UC →

:OW UC →

:LAP UC →

{ }, tt T let PC c UC T c t∀ ∈ = ∈ == tPC()ype . denotes a parameterized component of type t. Let

 be the set of all parameterized components. A set of parameter domains is defined

for each of the three parameters over each component type.

t
t T

PC PC
∈

=∪

{ }, t tt T let IWDom i c PC IW c i∀ ∈ = ∈ ∀ ∈ =, () . Similarly,

{ }, t tt T let OWDom i c PC OW c i∀ ∈ = ∈ ∀ ∈ =, () , and

{ }, t tt T let LAPDom i c PC LAP c i∀ ∈ = ∈ ∀ ∈ =, () . Let t
t T

IWDom IWDom
∈

=∪ ,

, and . To facilitate design space exploration,

component properties are defined parametrically with respect to component type. Hence,

 be a function which returns the area of a

component whose parameter values correspond to those passed in the function.

Similarly, be a function which returns

the latency of a component .

t
t T

OWDom OWDom
∈

=∪ t
t T

LAPDom LAPDom
∈

=∪

, :t t t tt T let Area IWDom OWDom LAPDom∀ ∈ × × →

tc PC∈

, :t t t tt T let Latency IWDom OWDom LAPDom∀ ∈ × × →

tc PC∈

 The component library model in this example relies on the assertion that mathematical

models of performance metrics may be developed as a function of these three parameters, to

sufficient accuracy so as to permit coarse-grained exploration of the design space. Qualitatively,

a parameterized component models a set of components which are related through a common set

 98

of property modeling functions. In reality, typically this implies the generic implementation of a

component using parameters, whereas the concrete components model the set of components

which can be generated from the generic component.

Example Property Function: Adder Component

 Consider a parameterized adder component depicted in Figure 22. Adder is a component

which performs the addition of two numbers to produce a third. The two inputs are issued on

busses each of width IW, while the output is issued on a bus of width OW. The internal structure

and behavior of the adder is parameterized by LAP, representing the relative tradeoff of an adder

implementation between latency and area. The adder simply performs the operation

on 2’s-complement integer numbers. C A B= +

Figure 22. Parameterized adder component

 Adders can be implemented in many ways. A very small footprint adder is illustrated in

Figure 23, where a single one-bit adder is used to implement an N-bit binary adder. This

implementation utilizes very little chip area, but suffers from the long latency imposed by the

approach of adding just one bit at a time. Figure 24 illustrates a low-latency implementation of

an adder, where the adder utilizes an N-bit combinatorial adder implementation. The area

required for the N-bit adder implementation is several times that required by the one-bit

implementation, but the latency is much lower. Other adder implementations involve the

cascading of lower-order binary adders to form higher-order adders, based on the principle that

lower-order adders require fewer gates than higher order adders. Cascading adders increases

latency. Note that design approaches that consider throughput optimizations through pipelining

could also be considered, but are not addressed in this model.

 99

Figure 23. Small-area, high-latency IW-bit adder composed of shift registers (SR) and a single one bit adder

Figure 24. High-area, low-latency N-bit adder composed completely of combinatorial logic

 The properties of a parameterized component are formulated as linear or non-linear

functions of the design parameters. The functions model how a parameterized component scales

over its parameter space. In the case of the low-area, high-latency adder depicted in Figure 23,

the area and latency of the adder is a function of the area and latency, respectively of the one-bit

adder implementation, which is information that must be obtained through data sheets on the

implementation device. Likewise, information on N-bit shift registers must also be available

from data sheets. Let be a set of sub-components, which are composed to form

components in the component library. Let

Parts

: Partsχ → be a function which retrieves the area

for a part used to compose a component. It is required that the gate-area and latency values of all

parts in the set be well defined. Let be a function which, given an

integer N representing a number of bits, returns a part in the parts set representing an N-bit

adder. Similarly, let be a function, which given an integer N representing a

number of bits, gives a part in the parts set representing an N-bit shift register. Given this

information, a function modeling the area of the low-area, high-latency adder in Figure 23 is

formulated as follows:

Parts :adder Parts→

:SR Parts→

_1 (,) * ((1))
2* (()) 1* (())

Area b IW OW IW adder
SR IW SR OW

χ
χ χ

= +
+

 (30)

 The area of the N-bit adder implementation from Figure 24 is formulated as follows:

 100

 _ (,) (()Area Nb IW OW adder IW)χ= (31)

 where the only logic used in the implementation is in the adder itself.

 A property function for the parameterized adder component is a function of IW, OW, and

LAP, and subsumes the functions characterized in equations (30) and (31). Depending on the

type of component, it is possible to determine a single mathematical function relating the

property value to the parameter values. However, in this case, a piecewise linear function is used

to model the parameterized component area. It is assumed that all adders of “lower” area (i.e.

whose LAP parameter is less than half the maximum value) are implemented as cascaded one-bit

adders, whereas all “low-latency” adders are implemented using the combinatorial logic

approach from Figure 24. Thus, a property function modeling the area of the parameterized

adder component in terms of the three parameters is as follows: tPC

* ((1)) 2* (())
max()(()),

2(, ,)

max()(()),
2

t

t

t

IW adder SR IW
LAPDomSR OW LAP

AreaAdd IW OW LAP

LAPDomadder IW LAP

χ χ

χ

χ

+⎧
⎪
⎪ + <
⎪= ⎨
⎪
⎪

≥⎪
⎩

(32)

 A similar approach can be used to model the latency of the parameterized adder component.

Design Composition through Exploration

 The parameterized FPGA component library allows developers to quickly compose efficient

designs. The development process consists of composing applications from parameterized

components, and then binding parameters to each parameterized component instance to generate

a set of composed “concrete” components. The specification of component properties as a

function of component parameters facilitates the separation of these two steps into a manual

design composition step to define the composition, and an exploration step to bind parameter

values to each component. As part of the design specification, the user models the requirements

of the design implementation as constraints on the composed design. The constraints represent

bounds on the properties of the composed design. PCL and DESERT can be used to model and

implement the process of binding parameters to parameterized components as a design space

exploration problem.

 101

 Figure 25 shows a UML diagram describing an FPGA application composition utilizing the

parameterized IP component library. An application is composed of Components. A

Component is either a ParameterizedComponent, representing a parameterized

component from the IP library, or a ComposedComponent, representing a composition of

other components. Component objects contain Ports, which are associated with ports of

other components through PortConnection associations. PortConnections model

point-to-point communication links between components. Each Port is characterized with a

PortNumber attribute and a PortWidth attribute. The width of the port corresponds to the

width in bits of the bus connecting two ports. Note that the PortWidth of a source port must

match the PortWidth of the corresponding destination port. Ports are defined as

unidirectional, in that they either provide information to a component, or send information from

a component. Constraints specify requirements on a composition, typically representing

bounds on the total area and total latency of a composed component.

ComposedComponent

FPGA_Application

Component

ParameterizedComponent

AreaPropertyFunction : String
LatencyPropertyFunction : String

Port

PortNumber : Integer
PortWidth : Integer

PortConnection

Constraint

ConstraintSpec : String

0..*

0..*

InPort
0..*

OutPort 0..*

src 0..*

dst
0..*

0..*
0..*

Figure 25. UML depiction of FPGA application composition

 An FPGA application conforming to the structure modeled in Figure 25 does not completely

define an application. A deployable application must bind parameter values to all parameterized

components used in a composition. The process of determining appropriate parameter values for

the parameterized components of an FPGA application composition is modeled as a design space

 102

exploration problem using DESERT and PCL. This is accomplished by mapping the application

composition onto an AND-OR-LEAF tree, and mapping the parameterized component property

composition functions into PCL expressions.

 The translation of the composition into an AND-OR-LEAF tree is fairly straightforward:

component composition exemplifies the part/whole relationship, which is modeled through AND

decomposition in DESERT. A parameterized component models a set of alternative

components, and thus could be modeled using OR-decomposition. However, the use of OR-

decomposition to model the parameter space of each parameterized component requires the

enumeration of the parameter space, which is tedious at best, and leads to a combinatorial

explosion of alternatives at worst. Instead, the parameterized component is modeled as a LEAF

node in the DESERT AND-OR-LEAF tree, and is characterized with VariableProperties

whose composition is defined through PCL statements.

 Constraints capture bounds on composed property values. PCL statements are used to

model parameterized component properties as a function of the component parameters. Once

those property values have been determined, they are propagated upwards through the AND-OR-

LEAF tree in order to establish values to constrain against in the constraint application. The

specification of property composition across the hierarchy of the AND-OR-LEAF tree presents a

separate and distinct problem from the specification of the property function for a parameterized

component. The composition of a property depends on the results of the property function

translation, but is specified separately. Composition of gate area is modeled as an additive

property, where the area of a composed component is simply the sum of the areas of the

component’s children.

 The property function modeling the area of an adder was defined above in equation (32).

Figure 26 provides a translation of that equation into PCL, thus providing an implementation that

can be used for design space exploration. The translation of the PCL specification into finite

domain constraints, as described earlier in this chapter, facilitates the establishment of finite

domain variables which model the parameters of each parameterized component, as well as the

output of the area property function. The user does not have to bind specific values to the IW,

OW, and LAP properties at the onset of the design space search. Rather, the propagation

employed in the finite domain constraint model allows the search process to bind values to the

parameters which result in area values that meet user-supplied constraints. Thus the use of

 103

DESERT and PCL automates the process of binding parameters to the parameterized

components used in a design specification.

(1) property FPGA_Area() {
(2) var IW = self().prop(“IW”);
(3) var OW = self().prop(“OW”);
(4) var LAP=self().prop(“LAP”);
(5) var IsAreaOptimized = (LAP < (LapMAX/2));
(6) var AreaOptArea;
(7) var LatOptArea;
(8)
(9) AreaOptArea = (IW*adder_area(1)) +(2*SR_area(IW))+
(10) (SR_area(OW));
(11) LatOptArea = adder_area(IW);
(12)
(13) return ((IsAreaOpt*AreaOptArea) +
(14) ((!IsAreaOpt)* LatOptArea));
(15) }

Figure 26. PCL specification of area property function described in equation (32)

Summary of PCL

 The Property Composition Language facilitates the specification of complex, parameter-

based functions for modeling property composition in the context of design space exploration.

The language design focuses on achieving the proper balance between expressive power and the

feasibility of implementation. The implementation of PCL has focused on the realization of PCL

specifications as finite domain constraints which build on the DESERT finite domain constraint

model discussed in Chapter III. This section highlights several design decisions which have

impacted the design and implementation of PCL.

Expressiveness Limitations

 PCL offers an amalgamation of the tree navigation semantics from DESERT OCL with the

computational modeling facilities of finite domain constraints. The language implementation

separates the issue of computation specification from the context of application, and facilitates a

modular, procedural specification. However, certain constructs common to many high-level

programming languages are missing in PCL. Specifically, user-defined iteration and user-

defined decision making are not supported.

 104

 PCL does support a limited, structured list iteration function. Built-in list iteration functions

apply a user-defined PCL visitor function to each member of a list. These functions are neither

explicitly condition-controlled nor counter-controlled. Chapter V illustrates that design space

exploration using the finite domain constraint representation involves the translation of the

design space model into finite domain constraints, and the dynamic evaluation of the constraints.

The definition of a loop construct which can be dynamically instantiated and evaluated presents a

challenge in Mozart. While the implementation of user-defined looping could be realized

through the dynamic definition of a procedure defining the loop body, and a separate construct

that implements the looping criteria along with the loop body invocation, such a construct has

not been determined to be needed. Future implementations of PCL could provide a user-defined

looping mechanism which implements these semantics.

 PCL does not implement explicit user-defined decisions. The language specification calls

for an if-then-else construct, but the implementation of the construct, as with user-defined

iteration, presents a challenge. User-defined decisions in a PCL statement imply the evaluation

of some decision criteria, based on which the implementation posts a set of constraints.

Operationally, this has the effect of reifying the contents of an if PCL block and an else

block. The contents of an if block are posted only if the condition evaluates to true. If the

condition evaluates to false, the contents of the else block are posted. Regardless of which

block is posted, the posting of the block is delayed until the results of the evaluation of the

condition are known. This delay impacts the constraint solver’s ability to propagate results into

and out of if and else blocks, impacting the performance of the search.

 However, through constraint reification, this delay in propagation can be partially mitigated.

An implementation of an if-else construct can reify all statements in the if block into a

single variable that is set equal to the true evaluation of the statement condition. All statements

in the else block can be reified into a single variable that is set equal to the false evaluation of

the condition. Thus the if-else statement is effectively converted from a decision into a set of

constraint operations where propagation can proceed by relating the contents of the reified

blocks to other constraint statements. This approach is similar to predication in computer

architecture, or the conversion of control flow to dataflow in compiler theory.

 While Mozart does offer sufficient expressive power to allow the implementation of the if-

else PCL statement, the necessity of supporting the statement has not been established. As was

 105

seen in Figure 26, PCL naturally supports reification, allowing decisions to be explicitly coded as

a dot-product between decision outcomes and decision variables. The usability of PCL could

arguably be raised by adding explicit support for an if-else construct; however, it is not clear

that any gains would be seen in search performance. In any case, the current implementation of

the PCL translation does not preclude the inclusion of such an if-else implementation.

 Implementation Inefficiency

 The evaluation approach in PCL involves the translation of all PCL statements into

expression trees, and the return of the single expression resulting from the evaluation of the

return statement. As described above, all variable uses are tracked to their definition, which,

when evaluated, results in an expression tree. The expression tree modeling a variable definition

is substituted at the location of a variable use in the translation of PCL statements. Thus, the

expression tree modeling the return statement expression tree merges any expression tree defined

previously on which it depends.

 The merging of dependent expression trees through variable uses in PCL evaluation can lead

to redundancies in the final expression tree structure. If a PCL specification contains multiple

references to a single variable, the current one-pass evaluation algorithm substitutes the

expression tree representing the variable into the expression tree modeling the result in multiple

locations, once for each variable usage reference. A consequence of this redundancy is a

potential explosion in the size of the returned tree. The redundancy can be mitigated through the

generation of a temporary finite domain variable to capture the expression tree resulting from the

evaluation a variable definition. The evaluation of a use of a variable translates to a reference to

the temporary finite domain variable instead of the tree definition.

 A performance consideration with the finite domain constraint solver is the size of the

problem specification (i.e. the number of finite domain variables used in the model). This

impacts performance due to the way Mozart distributes on variables by cloning a stalled space.

As the size of the finite domain model increases, the search performance decreases. Hence, the

generation of unnecessary temporaries is detrimental. However, the redundant specification of

tree operations described above also has the effect of increasing the size of the finite domain

model. Hence, the evaluation of PCL into finite domain constraints must take into consideration

how and how often a variable is used, and should spill representations into temporary finite

 106

domain variables when deemed appropriate in order to achieve a minimally sized finite domain

model.

 However, such optimizations may not be necessary. PCL specifications are intended to be

small (tens of lines of code). They describe small mathematical functions characterizing

property composition. Large redundancies result when a specification contains many uses of a

variable whose definition results in a large expression tree. In practical cases, PCL specifications

are not long, and each statement is not overly complex, so the likelihood of an explosion in tree

size due to redundant expressions is small. The PCL evaluation algorithm was implemented

based on the assumption that small redundancies could be tolerated, and that an over-aggressive

approach for generating temporaries would be a detriment to search performance.

PCL Conclusions

 While PCL is not as expressive as a traditional high-level programming language, it offers a

language for modeling complex linear and non-linear property composition functions, together

with an algorithm for mapping specifications into finite domain constraints. This chapter has

described the features of the language, the evaluation algorithm for translating PCL into a finite

domain representation, and has discussed an example application utilizing PCL to model

parameter-based property composition required for the design space exploration of a

parameterized component IP library. The finite domain implementation of PCL integrates with

the finite domain AND-OR-LEAF tree model described in Chapter III, thus facilitating the

posting of DESERT OCL constraints on properties whose composition is defined using PCL

statements. PCL leverages the concepts of application context and tree navigation from

DESERT OCL, and mathematics, list iteration and assignment from Mozart. Some traditional

language features (iteration, decision) are missing from PCL, but their necessity has yet to be

established.

 107

CHAPTER V

DESERTFD: AN INTEGRATED DESIGN SPACE EXPLORATION TOOL

 Chapters III and IV have described a model for using finite domain constraints to represent

and prune design spaces. This chapter describes DesertFD, a design space exploration tool

which integrates the finite domain model described in Chapter III and the PCL language and

mapping algorithms described in Chapter IV into the DESERT tool infrastructure. DesertFD

offers a hybrid design space exploration implementation, where the finite domain constraint

design space modeling approach is integrated with the OBDD model used in DESERT. This

chapter details the integrated, hybrid design space tool, as well as the online creation and

evaluation of the finite domain constraint model. A scalability analysis of the finite domain

model is presented.

DESERT Toolflow

 DESERT offers an integrated toolset for modeling, pruning and enumerating design spaces.

Figure 27 depicts the DESERT toolflow, where a design space with constraints is provided to

DESERT through the XML input interface. DESERT creates a representation of the design

space and invokes the DesertUI user interface, which allows the user to select constraints to

apply to the space. The DesertUI allows forward and backward navigation, and drives the

OBDD-based design space pruning. Once the user terminates the interactive pruning of the

space, the pruned design space is enumerated into a set of configurations, which is returned to

the user through the output XML interface.

 108

Figure 27. DESERT toolflow

DESERT and Scalability

 While Chapter II provides a detailed overview of the concepts of design space exploration

using DESERT, this section discusses some implementation artifacts of DESERT which lead to

and impact the design of DesertFD. Specifically, the use of MTBDDs to encode the design

space leads to issues with scalability, as have been reported by Neema [79]. MTBDDs allow

values other than 0 and 1 as terminals in the graph-based decision diagram representation.

Neema utilizes this MTBDD representation to encode property composition functions

symbolically. Integer property values of are encoded as terminal values in an MTBDD

representation. Many types of property composition functions implement mathematics between

 109

property values of children nodes in the AND-OR-LEAF tree (ex. additive property

composition). Neema encodes such arithmetic property composition functions as symbolic

operations over MTBDD nodes.

 Just as with OBDD representations, MTBDDs achieve compaction by eliminating

redundancies in the tree. However, unlike OBDDs, MTBDDs may have many different terminal

nodes. MTBDDs achieve compaction effectively when complex operations share the same set of

numbers as operands, thus allowing terminal nodes to be reused. However, if an MTBDD is

used to represent an operation involving little correlation between terminal values, a

combinatorial explosion in the number of nodes needed to represent the operation can, and often

does result. Such “exploded” MTBDDs, for any practical problem size, exhibit poor

computation times.

 Neema detailed several experiments on the scalability of the BDD representation of the

design space [79]. He concluded that the symbolic representation of the space scaled very well

as a representation of the space, in that spaces consisting of up to configurations could be

represented using the BDD approach. However, other experiments uncovered scalability issues

when pruning design spaces, where arithmetic operations were invoked during property

composition. His experiments (described in more detail later in this chapter) reveal an explosion

in wall-clock time required to prune spaces of much smaller size (ex. configurations) when

pruning involves the invocation of arithmetic operations. Neema concludes that the BDD

representation scales well for representing large design spaces, as well as for pruning the space

using relational and logical operations. However, for arithmetic operations, the BDD

representation cannot manage nearly as large of spaces.

18010

1510

 Although scalability is a concern under arithmetic property composition, the BDD

representation of the design space offers several valuable features. It is a symbolic

representation of the design space, in that all possible design space configurations are

simultaneously maintained in a single space representation. Pruning operations on that

representation apply to the set of all configurations simultaneously, not simply one configuration

at a time. For operations which are easily represented under Boolean logic (ex. logical and

relational operations), the BDD representation scales very well. Further, the complexity of

representing and pruning an under-constrained space is equivalent to that of an over-constrained

 110

space. Only after all constraints have been applied is the space enumerated, providing all valid

configurations as outputs of the pruning process.

DesertFD Architecture and Implementation

 DesertFD implements a hybrid design space exploration algorithm, integrating the finite

domain constraint mapping and model discussed in Chapter III with the symbolic constraint

satisfaction approach implemented in DESERT. Figure 28 shows the architecture of a hybrid

approach to design space exploration, integrating both the finite domain constraint solver and the

OBDD-based symbolic manipulation tools. In such a tool, the design space is maintained in a

centralized repository, and is mapped into the domain of each pruning tool. The goal of the

integration is to facilitate wider applicability of the design space representation and scalability of

exploration and pruning. A fully hybrid exploration algorithm distributes the task of pruning the

design space between integrated solvers. A partitioning approach to hybridization involves the

analysis of the structure of the space in order to determine how to partition the space into

subspaces, where each subspace is solved by a different solver. The results are then integrated.

A serialized approach involves the partial pruning of the full design space using one solver,

followed by subsequent pruning in another solver. Both the partitioning approach and

serialization approach generalize to an architecture involving multiple solvers.

Figure 28. High-level architecture of a hybrid design space exploration tool

 111

 DesertFD employs a serialized hybrid exploration algorithm. The design space definition is

first mapped onto the OBDD representation for symbolic manipulation and constraint

satisfaction. Only those constraints which do not invoke operations which cause exponential

explosions in the BDD representation are made available for application to the symbolic

representation. Once the user terminates the coarse-grained space pruning with the BDD

representation, the resulting pruned design space is mapped into a finite domain constraint

representation, whereon the remaining constraints are applied. The following sections describe

the implementation of the finite domain design space pruning tool and its integration into the

DESERT toolflow. Subsequently, a description of the hybrid approach to design space

exploration employed in DesertFD is discussed.

Implementation of Finite Domain Pruning

 The finite domain design space pruning tool implements the finite domain design space

model discussed in Chapter III. It also implements PCL and the PCL finite domain translator

discussed in Chapter IV. The following sections describe the integration of the finite domain

model into the DESERT infrastructure and toolflow. Figure 29 depicts the DesertFD toolflow

for translating and pruning a design space specification with finite domain constraints. The

toolflow utilizes and extends existing infrastructure from the DESERT toolflow. A design space

is provided to DesertFD in the form of an XML file. The design space specification encodes not

only the design space AND-OR-LEAF tree, but also contains the constraints and any PCL

functions specified by the user. DesertFD instantiates the design space model, and parses the

constraints and PCL functions. Next, the design space is evaluated. Design space evaluation, in

the context of the finite domain constraint implementation, is the process of translating the

design space specification, constraints, and PCL statements into the finite domain constraint

representation. The evaluator sends the resulting design space specification to the Oz Engine for

implementation of the finite domain search problem. The results of the search are recovered

from the Oz Engine and returned as a set of design configurations to the user through the output

XML interface. Each of these important steps is described in more detail below.

 112

XML Input Interface

XML Output Interface

Full Design Space Model

Design Space Model
PCL Statements

Constraints

Pruned Design Space

Pruned Configuration
Set

Constraint Parser

Mozart Engine: Distribution
and Search

PCL Parser

Design Space Evaluation and Mapping

Figure 29. DesertFD Toolflow for Finite Domain Design Space Search

Design Space Evaluation

 Design Space Evaluation is the process of translating the input design space specification

into a finite domain representation. The toolflow for the evaluation module is depicted in Figure

30. The module takes as inputs the AND-OR-LEAF tree specification built from the XML input

file, parsed constraint specifications and parsed PCL specifications. The parsed specifications

are passed in the form of abstract syntax trees, which are analyzed in the evaluation modules.

All three evaluation sub-modules (Constraint Evaluation, AND-OR-LEAF Evaluation and PCL

Evaluation) perform a mapping onto a Mozart abstract syntax tree (AST). The Mozart AST

provides a clean abstraction of the entities in a Mozart-based finite domain model, facilitating the

 113

separation of the instantiation of a finite domain model from the mechanics of its

implementation. Once the three evaluation sub-modules have mapped their respective input

specifications into the Mozart AST, the resulting model of the finite domain representation is

translated into a set of commands which are issued to the Mozart solver through a TCP interface.

The command generator module is responsible for managing the proper creation and formatting

of commands such that the finite domain model can be received and instantiated properly within

Mozart. The TCP interface is a simple duplex interface that issues data to the Mozart

environment.

Configuration
Commands

TCP Interface

Command Generator

Mozart Abstract Syntax Tree

AND-OR-
LEAF

Evaluation

Constraint
Evaluation

PCL
Evaluation

Design
Space Tree

Parsed
Constraints

Parsed PCL
Specs

Figure 30. Toolflow for DesertFD’s Finite Domain Design Space Evaluation

 The evaluation of the design space specification to produce a finite domain model depends

on the three evaluation sub-modules depicted in Figure 30. Each sub-module implements a

semantic translation from a given input specification onto the Mozart AST. The AND-OR-

LEAF evaluation module implements the finite domain translation algorithms discussed in

Chapter III, where the select variables and property variables are instantiated. The DesertFD

support infrastructure supplied to the Mozart solver implements the finite domain constraints that

 114

model parent-child tree relationships for both the select variables and for the various classes of

property composition. The AND-OR-LEAF evaluation sub-module simply instantiates

references to these constraints, supplying the appropriate finite domain variables as arguments.

 The constraint evaluation module implements the translation of DESERT OCL constraint

specifications into finite domain constraints. Each constraint has an associated application

context, specified by the user. The constraint evaluator evaluates each constraint at its context

by translating context access functions and property access functions into relations between finite

domain variables, as discussed in Chapter III. These relations are mapped onto the Mozart AST

for later instantiation into Mozart.

 The PCL evaluation module implements the evaluation algorithms discussed in Chapter IV.

All PCL statements are evaluated against their appropriate contexts. In contrast to constraints,

PCL statements apply to a leaf node as well as to all its tree ancestors. Thus the translator must

trace PCL context points back from an initial context and repeatedly apply them to each ancestor

in order to correctly implement property composition. Note that if two context points share an

ancestor, the PCL evaluator need only map the evaluation of the common ancestor once. The

evaluation of a PCL specification returns an expression tree, which is then translated into an

expression tree in the Mozart AST.

 Once the three evaluation modules have translated their respective input specifications into

the Mozart AST, the complete AST is translated into commands. These commands model

instructions for instantiating the finite domain model, together with instructions for properly

managing variable distribution. The commands are issued to the TCP interface as a simple byte

stream.

The Oz Engine

 The finite domain implementation of design space exploration utilizes the Oz engine utility

provided with the Mozart tool infrastructure. The Oz engine facilitates stand-alone execution of

Oz programs. There are several ways to provide the Oz engine with the finite domain model to

execute. A finite domain model may be instantiated in Oz code, compiled and linked with the

Mozart build tools, and packaged as a Mozart module. The module name is then passed to the

Oz Engine via command line parameter on invocation, whereon the engine loads the module and

invokes the module’s specified entry point. Oz supports external communication through several

 115

interfaces: file I/O, XML, and inter-process communication. Specifically, Mozart supports inter-

process communication through a TCP connection. Using this interface, an Oz program

executing under the Oz Engine can communicate with another program and exchange data. Oz

is a dynamic language that provides significant flexibility for runtime adaptation and definition.

It is also a higher-order language, in that it allows procedures to be passed as data to other

procedures. The dynamic features of Oz, together with the TCP interface are used to implement

the instantiation of the finite domain representation of the design space.

Mozart Implementation of Design Space Exploration

 The implementation of the finite domain model for design space exploration utilizes the Oz

Engine’s TCP interface to receive configuration commands. Figure 31 illustrates the architecture

of the Mozart side of DesertFD, where configuration commands are translated into actual finite

domain constraints, and the finite domain solver is invoked. The command parsing module is

responsible for parsing all configuration commands received from the TCP connection, and

posting the corresponding finite domain constraints. The solver then iterates between the

propagation module, and the distribution module. The propagation module represents the

instantiated finite domain constraints, while the distributor module implements the distribution

algorithm discussed in Chapter III. When the solver arrives at the search exit criteria (which

varies depending on search scenario), it packages the solution(s) to the finite domain problem it

encountered, and issues them across the TCP Interface.

 There are three different search exit criteria available in Mozart: first solution, best solution

and all solutions. In the first solution search, the search terminates when a single valid solution

to the finite domain model is encountered. In all-solution search, the search terminates only after

exhaustively exploring the entire space for solutions. Best solution search is implemented using

the constraint utilization function discussed in Chapter III, where the solver attempts to

maximize the utilization of the set of provided constraints. In this case, the search terminates

with a single result: the first result encountered which exhibits maximal constraint utilization

with respect to all other solutions. Each solution to the finite domain design space problem

represents a valid configuration which meets the user-provided constraints. DESERT

implements all-solutions search, but tests the final pruned BDD representation to determine if the

pruned configuration space contains too many configurations to enumerate. As previously

 116

discussed, the distribution process partially enumerates the design space as the search proceeds,

and hence no corresponding test is available in Mozart. However, a search may be killed

prematurely; thus if an all-solutions search is invoked on a severely under-constrained large

design space, a solver could be constructed which kills the search after the number of solutions

exceeds a certain threshold. This implementation effectively amounts to the same result as the

symbolic approach.

Figure 31. DesertFD Mozart Implementation Architecture

Alternative Implementation

 Prior to deriving the dynamic command generation and constraint posting implementation

described above, an alternative implementation architecture was attempted and found infeasible.

This first attempt involved direct Oz code generation. Instead of generating commands from the

Mozart AST, as depicted in Figure 30, this solution implemented a code generator module,

which instantiated the AST directly as textual Oz code. The Oz code was then compiled and

 117

linked as a Mozart module by the Mozart build tools and executed as a stand-alone application.

It utilized the same runtime infrastructure that services the operations covered in Figure 31, but

instead of dynamically communicating through the TCP connection, it wrote its search results to

a file. This alternative toolflow is depicted in Figure 32. The main difference between the code

generation approach and the dynamic command parsing approach is the need to have the Mozart

compiler and linker in the tool chain. The generated code utilizes large data structures which

hold the finite domain variables for modeling the AND-OR-LEAF tree and tree properties. The

Mozart documentation describes the compiler as inefficient when compiling code containing

large data structures. For a large design space, the compilation time was longer than ten wall-

clock minutes, while the search required a matter of seconds to determine a single solution.

After determining the inadequacy of the compiler with regards to large data structures, the

dynamic command approach described above was implemented. However, the code generator

remains as part of the tools for debugging and visualization purposes.

 A comparison of the two approaches leads to a few conclusions. The code generation

approach is easier to visualize and to debug, since a stand-alone program can be separated from

the DesertFD infrastructure and debugged with the Mozart debugging tools. The dynamic

command generation approach is more complex, in that more steps are needed to carry a design

space through to implementation (command generation, command parsing, and the TCP support

code on both sides of the interface). Debugging is a challenge, in that the code which generates

the commands cannot be separated from the code that processes the commands. However, the

dynamic command generation approach is more efficient, in that all parsing and file I/O is

eliminated through the use of the TCP connection. Commands are effectively maintained in a

“compiled” state in the Mozart AST and passed in that state through the generated commands.

The code generation approach dumps all constraints to a file and relies on the Mozart compiler to

recover the meaning of the text. The dynamic command generation approach imposes some

restrictions on the structures available in the Mozart AST, in that the AST cannot offer any

structures which cannot be issued to Mozart dynamically. This presents a challenge when

implementing certain structures in PCL (if-then-else and iteration). Such challenges are not

present in a direct code generation approach, due to the fact that the Mozart language offers an

if-then-else construct and several iteration constructs that could be instantiated directly. Nesting

 118

of statements within dynamically generated constructs presents a challenge that, while feasible,

is not straightforward to accomplish.

Oz Code Generator

Mozart Abstract Syntax Tree

DesertApp.oz

Mozart Build Tools

Evaluated Design Space

Mozart Search

Results.txt

Figure 32. Alternative DesertFD Implementation Toolflow

Integration and Hybridization

 A goal of this research is to integrate the symbolic design space exploration technique

implemented by Neema with the finite domain constraint implementation. The reason for this

integration is to implement a hybrid design space search tool that utilizes each approach where it

is best suited. For example, the scalability discussion above highlights the fact that the BDD

approach scales very well when applied to design spaces containing only logical and relational

operations. However, when applied to arithmetic operations, the approach does not scale as well.

However, the finite domain constraint approach is designed to take advantage of the arithmetic

operations offered by Mozart, and in fact scales very nicely for arithmetic operations

(quantitative data follows in this chapter). BDDs have been shown to be effective at representing

and managing large, complex logic minimization problems. Where a design space can be

effectively encoded into a logic minimization problem, it makes sense to use the BDD to prune

 119

the space. Finite domain constraints have not been shown to be nearly effective as a BDD

representation at logic minimization. Hence, the merging of the two approaches can potentially

increase the overall scalability of design space exploration.

 A hybrid search toolflow is depicted in Figure 33. The toolflow represents a merging of the

BDD-based DESERT toolflow with the finite domain constraint-based tooflow. The user passes

a design space definition, complete with constraints and PCL specifications to DesertFD through

the XML input interface. The hybrid search approach advocates the use of the BDD-based

design space representation as an initial coarse-grained design space pruning, where constraints

not involving arithmetic operations can be applied. After the coarse-grained pruning step, the

finite domain constraint representation of the pruned design space is instantiated and searched

for satisfactory results. Prior to the encoding of the initial design space into the BDD

representation, the constraints must be sorted into two sets, differentiated based on the type of

operations required to be invoked in order to determine constraint satisfaction. Some constraints

require the invocation of operations which do not scale well under the BDD representation.

Other constraints require only operations which do scale well (logic functions, relational

operations). The constraint set is thus partitioned based on operation scalability. Those

constraints which do not affect the scalability of the BDD are made available to the DesertUI

module for selection and application by the user, while those which may affect the scalability are

passed directly to the finite domain constraint evaluation module.

 Once the user terminates the application of constraints in the symbolic representation, the

resulting pruned BDD is converted into a logic function which becomes part of the finite domain

design space representation. The remaining modules are invoked to deploy the finite domain

design space representation as described above. The sections below provide the details of the

constraint selection and BDD translation functions used in the hybrid design space exploration

tool.

 120

OBDD/MTBDD Design Space
Representation and Pruning

DesertUI:
User-guided Constraint

Application

XML Input Interface

XML Output Interface

Full Design Space Model

Design Space Model
PCL Statements

Constraints

Pruned Design Space

Pruned Configuration
Set

Constraint Parser/
Sorter

Mozart Engine: Distribution
and Search

PCL Parser

Finite Domain Design Space
Evaluation and Mapping

BDD To Logic
Function

Figure 33. Toolflow Representation of Hybrid BDD-Finite Domain Design Space Exploration Tool

 121

Constraint Set Partitioning

 The set of user-provided constraints is partitioned into two sets based on predictions of

whether the application of a constraint will result in a non-scaling BDD operation. In general,

constraints which require the invocation of operations involving arithmetic functions do not scale

well under the BDD. In order to determine whether a constraint application will result in an

exponential “explosion” of the BDD representation, the constraint set partitioning algorithm

must examine not only those operations which are directly invoked in the constraint text itself,

but the operations invoked by the functions that the constraint utilizes. Of most importance is

the examination of constraints which depend on composed properties. Since constraints do not

directly invoke property composition functions, the constraint set partitioning algorithm must

determine whether a constraint depends on a property, and if so, whether the property is

composed. If the property is a composed property, then the algorithm must determine if the

invocation of the property composition function will result in a BDD explosion.

 At this point, the constraint set partitioning algorithm is free to apply heuristics in order to

predict a BDD explosion. A first order, pessimistic analysis of a property composition function

leads to the determination that if the composition function invokes any arithmetic operation

(addition, subtraction, multiplication, etc), then it is assumed to not scale under the BDD

representation. This approach is safe, in that it restricts the set of constraints which are allowed

to be applied to the BDD representation to a subset of those which will not cause an exponential

explosion.

 However, second-order analyses allow other constraints to be passed to the BDD. As

discussed above, one reason behind the exponential explosion in the BDD representation is the

lack of reuse of MTBDD terminal nodes. An analysis of a DESERT property and its

corresponding domain may lead to a high likelihood of terminal node reuse. In the case where

the declared domain of a property is sufficiently small, it may be the case that for additive

properties, the BDD representation does scale. However, the scalability for such an additive

property also depends on the size of the AND-OR-LEAF tree and its structure as well. Further

quantitative investigations of such heuristics are needed in order to determine appropriate cases

where arithmetic properties do scale well under the BDD representation.

 122

From BDD to Logic Function

 Once the user finishes applying the partitioned constraint set to the symbolic design space

representation, the resulting pruned design space must be translated into a finite domain

constraint representation. The pruned BDD encodes relationships between design configurations

that result from the application of the constraints as specified by the user. However the BDD

does not retain the original AND-OR-LEAF tree structure explicitly. DESERT retains the

encodings of each node in the AND-OR-LEAF tree in order to identify what nodes remain in the

pruned design space, and what nodes have been pruned. DESERT does not convert a BDD

representation back into an AND-OR-LEAF tree. Instead, when the pruning of the space

terminates, DESERT simply enumerates all solutions to the BDD. Each BDD solution

represents one valid design configuration. DESERT then iterates through the list of BDD

solutions and builds a configuration list from it by querying each BDD solution as to whether or

not each node in the AND-OR-LEAF tree has been selected for inclusion in the tree. Such

enumerative techniques are appropriate under the original use case of DESERT, where the

design space pruning is assumed to prune the space down to a manageable (

configurations) size. However, for the hybrid approach, it is intended to use the BDD

representation to prune the design space, resulting in smaller, but still very large (–

configurations) design spaces. Enumeration of these coarse-grained pruned design spaces is

prohibitively expensive. Thus DesertFD implements an algorithm to recover the information

encoded in the BDD without enumerating the space.

2~ 10

5010 10010

 DesertFD converts the BDD representation of the coarse-grained pruned design space into a

logic function. When the user finishes the application of constraints and the DesertUI dialog

closes, all MTBDD nodes in the BDD representation of the space are quantified out of the

representation. The resulting OBDD models a logic function whose “true” outcomes model

valid design configurations. The logic function itself is not exponential in size, but models a

potentially exponential number of design configurations. The BDD nodes represent the

variables of the logic function. These variables originate with the encoding of the design space.

The logic function modeled by the BDD only correlates with the AND-OR-LEAF tree through

these encoding variables. Each tree node may have multiple bits assigned to it for its encoding,

depending on its location in the tree and the number and type of descendants it has. The logic

function specifies which nodes are included in a configuration. If the encoding of a particular

 123

node in the AND-OR-LEAF tree is not implied by the BDD representation, then the node has

been pruned from the design space. It may also be the case that a node has been marked as

included for some, but not all configurations.

 The finite domain representation of the AND-OR-LEAF tree involves the creation of

Boolean select variables for each node in the tree to model whether a node has been selected for

inclusion in a configuration or not. These select variables correspond to the nodes in the AND-

OR-LEAF tree in much the same way as the binary encoding bit string in the BDD corresponds

to a tree node. A BDD could in fact be constructed from BDD variables which mimic the select

variables of the AND-OR-LEAF tree. This new BDD could model the same logic operations

between nodes as the original BDD. Thus this second BDD would become an equivalent design

space representation, but instead of depending on the binary encoding bit strings, the second

BDD depends only on variables which correspond to the Boolean select variables in the finite

domain model. The BDD To Logic Function implements precisely this conversion, where a new

BDD is created from the pruned BDD. Equation (33) gives the implementation of the BDD

update function, where represents the pruned BDD, is the set of all nodes in the

AND-OR-LEAF tree, and

PBDD Nodes

BddVar is the set of BDD variables in . Let

 be a function that maps a node in the AND-OR-LEAF tree to a

corresponding BDD variable. This BDD variable models the select variable of the finite domain

model. The set of BDD variables which correspond to node selection is distinct from the set of

encoding variables in the pruned BDD. Let be a function that returns a the BDD

corresponding to the binary encoding of a node (note: see Neema [79] for details on design space

encoding and encoding algorithm). Equation (33) establishes the equivalence between the BDD

variables modeling node selection with the BDD modeling node encoding.

PBDD

:SelectVar Nodes BddVar→

Encoding

 (()
n Nodes

APBDD PBDD SelectVar n Encoding n
∈

= ∧ ⇔ ())∏ (33)

where, in this context, the product implies conjunction over the BDDs resulting from the

equivalence operation between the select variable for a node and the BDD representing the

encoding of that node. represents an augmented pruned BDD. APBDD

 Once the pruned BDD has been augmented with the node equivalence statements modeled

in equation (33), all encoding variables are existentially quantified out. Existential quantification

is used to implement variable substitution, where the BDD variables modeling node selection are

 124

substituted into the pruned BDD in the place of their corresponding set of encoding variables.

The existential quantification is given in equation (34). Let be a set of

BDDs. Then,

()
n Nodes

E Encoding n
∈

= ∪

 () ()()
() ()

0
v v E v E

SBDD APBDD v v
∀ ∈ ∨ ¬ ∈

= ∧ = ∨ =1∏ (34)

where the product again refers to conjunction.

 The BDD that results from the existential quantification of all encoding BDD variables

represents a logic function defined on only the node select variables. The canonical form of the

logic function modeled by the BDD can be explicitly represented as a set of finite domain

constraints which relate the select variables of the design space model. The algorithm for

implementing the recovery of the logic function is implemented in two steps. First, all paths in

the BDD from the one terminal back to the root node are marked. Any path in the BDD that

leads to the one terminal node represents a valid configuration. Algorithm 16 provides an

implementation of the reverse walk through the BDD structure, marking all paths. The algorithm

is invoked at the one terminal node.

(1) MarkAncestors(BddNode)
(2) //BddNode is a node in an Ordered
(3) // Binary Decision Diagram
(4)
(5) if BddNode is already marked
(6) return
(7)
(8) mark BddNode
(9) ForAll l in BddNode.inputLinks {
(10) Mark l
(11) MarkAncestors(l.source)
(12) }
(13) end

Algorithm 16. MarkAncestors algorithm, for reverse traversal of an OBDD

 Once the ancestors of the one terminal node are marked, the algorithm proceeds with the

translation of the BDD into a logic function. A node in an OBDD represents a variable in the

logic function. Each variable may be negated, indicated by a flag in the node. Each node has at

 125

most two output connections: a “one” output connection, and a “zero” output connection. The

“one” connection models the conjunction of the variable with the expression modeled by the

BDD rooted at the destination of the connection. A “zero” output connection models the

conjunction of the negation of the node variable with the expression resulting from an evaluation

of the connection destination. In the case where both connections are present in the BDD, the

resulting logic function is a disjunction of the conjunctions modeled by each connection. Figure

34 gives a simple example of an OBDD which models the function () ()A C A B C∧¬ ∨ ¬ ∧ ∧¬ .

A

B

C

0

1

0 1

1

0

1 0

Figure 34. Example OBDD

 The algorithm for converting a BDD node into a logic expression is presented in Algorithm

17. The algorithm executes after the nodes in the BDD have been marked. It recursively builds

a logic expression tree from the nodes in the tree. It examines each of the two possible output

connections of the node in turn. If an output connection is marked, it recurses to translate the

BDD rooted at the destination of the connection into an expression tree modeling the

corresponding logic expression. It then adds a node to the returned expression tree, including the

variable modeled by the node in the expression. The addition of the variable into the expression

tree is accomplished through the conjunction of the node’s variable with the expression retuned

by the recursive function invocation. Conjunction and disjunction are operations that are

supported by the expression tree, and are captured as binary expression tree nodes whose

operation correspond to the conjunction or disjunction operation, and whose children are the

arguments to the operation. In the case of the “one” output connection, the returned expression

is AND’ed with the variable, while in the case of the “zero” output connection, the returned

 126

expression is AND’ed with the logical negation of the variable. In the case where both children

are marked, the algorithm returns in line (20) the disjunction of the two children expressions. In

the case where only one child is marked, the appropriate child expression is returned. The case

where no child is marked does not occur, since marking is performed from the bottom of the tree

to the top.

(1) ExprTree =BddNodeToLogicExpr(BddNode)
(2) //BddNode is a node in an Ordered
(3) // Binary Decision Diagram
(4) if BddNode is the One Terminal
(5) return ExprTree(TRUE)
(6)
(7) ExprTree oneResult, zeroResult
(8)
(9) if BddNode’s “one” output connection is marked {
(10) oneChExpr = BddNodeToLogicExpr(BddNode.oneChild)
(11) oneResult = new ExprTree(oneChExpr, AND,
(12) BddNode.variable)
(13) }
(14) if BddNode’s “zero” output connection is marked {
(15) zeroChExpr= BddNodeToLogicExpr(BddNode.zeroChild)
(16) zeroResult = new ExprTree(zeroChildExpr, AND,
(17) NOT(BddNode.variable))
(18) }
(19)
(20) if both children are marked
(21) return new ExprTree(oneResult, OR, zeroResult)
(22) else if “one” output child is marked
(23) return oneResult
(24) else if “zero” output child is marked
(25) return zeroResult
(26) else
(27) return NULL
(28) end

Algorithm 17. BddNodeToLogicExpr algorithm, implementing the translation of a BDD rooted at a node into a
logic expression

 The entry point to the BDD translation algorithm is provided in Algorithm 18. This

algorithm simply invokes the node marking algorithm, followed by the invocation of Algorithm

17 to translate the root node into a logic expression. The result of the translation is an expression

 127

tree modeling the logic function represented by the BDD. This expression tree can be easily

mapped onto the Mozart AST for translation into a finite domain constraint expression.

(1) ExprTree =BddToLogicExpression(PBDD)
(2) //PBDD is a pruned Ordered Binary Decision Diagram
(3) MarkAncestors(PBDD.oneTerminal)
(4) return BddNodeToLogicExpr(PBDD.root)
(5) end

Algorithm 18. BddToLogicExpression algorithm, implementing the translation of a BDD to a logic expression
tree

Structural Redundancy

 The translation of the pruned BDD into a logic expression over the select finite domain

variables allows the finite domain representation of the design space to leverage the results of the

BDD-based pruning. The solutions to the resulting logic function specify all satisfactory

solutions to the design space exploration problem. The application of those constraints which

are deemed inappropriate for application under the BDD representation further prunes the space.

This logic function alone is theoretically a sufficient representation of the design space to

facilitate pruning, since the function encodes not only relationships between configurations, but

also the structure of the AND-OR-LEAF tree. However, the format of the tree structure

information encoded in the logic function limits propagation. The finite domain model for the

AND-OR-LEAF tree, in contrast, has been designed to facilitate propagation. Further,

constraints are specified against the AND-OR-LEAF tree proper, as opposed to the binary

encoding of the tree. While it is possible (and indeed is accomplished by DESERT) to convert

constraints into logic formulas and apply them to the constraint representation through logic

operations, the finite domain constraint solver has not been shown to be as efficient as other

representation techniques (ex. OBDDs) at solving logic problems. The logic-oriented approach

would effectively amount to an encoding of the BDD approach using finite domain constraints,

and would not leverage to the extent possible the powerful propagation features offered by the

original finite domain design space model.

 A feature of the concurrent nature of a finite domain constraint model is the ability to add

constraints and information to the problem specification. Such additions strengthen the

constraint store and can lead to a more rapid convergence on a solution. In this sense, partially

 128

redundant constraints can be helpful. However, the addition of too much information can lead to

scalability issues with the model due to the addition of state information.

 With respect to the merging of the BDD representation with the finite domain

representation, the translation of the BDD into a logic function over the AND-OR-LEAF select

variables represents a re-encoding into finite domain constraints of the structural information of

the design space. The addition of the logic function to the finite domain model enforces the

relationships that are derived during BDD-based pruning. It does add to the state of the problem

and therefore does affect the scalability of the finite domain search. However, the scalability of

the overall toolset is positively impacted due to the fact that the BDD can be applied to some

design spaces where the finite domain constraint approach proves inefficient.

Quantitative Scalability Analysis

 The ability to manage large design spaces is a critical requirement in design space

exploration. This section reports on a quantitative scalability analysis of the finite domain design

space representation and exploration algorithms. It leverages a parametric design space model

developed by Neema for the evaluation of DESERT. The analysis seeks to determine how well

the finite domain representation scales with respect to design space size.

Parametric Design Space Generation

 The evaluation of DesertFD captures the performance of the finite domain search over

automatically generated design spaces. The space generation algorithm was adapted from the

parameter-based space generator algorithm developed by Neema. The generator creates an

AND-OR-LEAF tree, where the depth, width, and content of the tree are specified through

parameters. The generator creates full, dense design spaces, where LEAF nodes only occur at

the maximum depth of the tree. The tree is rooted at an AND node. The user specifies the

maximum depth of the tree through the parameter , where the root is at level 0 and all LEAF

nodes in the tree appear at level . An interior tree node has LEAF children if and only if it is at

level in the tree. The number of children created for an OR node is controlled by the

parameter

L

L

1L −

AltN , representing the number of alternatives represented by the parent. The

decomposition type of each OR-node child is determined strictly by node level: LEAF nodes are

generated at level , otherwise OR-nodes contain only AND-decomposed children. The L

 129

number and decomposition of children of an AND node is controlled by two parameters: and ON

AN . The parameter specifies the number of children of an AND node with OR

decomposition, while the

ON

AN parameter specifies the number of children with AND-

decomposition. The total number of children of an AND node is the sum of these two

parameters: . For AND nodes at level

CN

C AN N N= + O 1L − in the tree, LEAF nodes are

generated. Figure 35 depicts a generated AND-OR-LEAF tree, where square boxes represent

AND-decomposed nodes, diamond-shaped boxes represent OR-decomposed nodes, and rounded

boxes represent LEAF nodes at level of the tree.

CN

L

Figure 35. Generated AND-OR-LEAF tree, adapted from Neema [79]

 A single design space property is defined over the generated AND-OR-LEAF tree. The

property is defined to be a simple additive property. Each LEAF node in the generated tree is

assigned a property value that is sampled from a random variable. The scalability of the finite

domain AND-OR-LEAF design space representation and exploration algorithms are studied with

respect to a single constraint that expresses a bound on the composed property value of the root

...1L
AltNL 1L

CNL ...
......

jA

...
ONO 1A

ANA ...

kO

...
A

1A
AltNA ...

1O

......

 130

of the AND-OR-LEAF tree. The constraint is generated according to a bound parameter passed

to the generator.

 The design space generation tool was adapted from the specification developed by Neema to

better test the scalability of the finite domain design space representation. Neema’s design space

generation algorithm assigns to each primitive a property value between 0 and 127 that is

produced by sampling a uniformly distributed random variable. Since the property defined over

the design space is an additive property, the composed property value of the root-level AND-

node for a single configuration can be calculated by summing the property values of all LEAF

nodes that are selected for inclusion in the configuration. As the size of the design space

increases, the number of leaf nodes in each configuration increases as well. As the number of

leaf nodes becomes large, the composed property value can be approximated by a constant, times

the average value of the random variable used to sample LEAF node property values. Due to the

dense nature of the design space composition, as the size of the design space increases, the

number of leaf nodes per configuration becomes approximately the same, and hence there is little

difference from one design configuration to another between the composed property values at the

root node. When examining the value of the property at the root node across all design

configurations, the range of possible values tend to cluster around a particular point on a number

line. The point is equal to the average number of LEAF nodes across the configurations in the

design, multiplied by the average LEAF node property value. As the size of each configuration

increases, and as the number of configurations in the space increases, the clustering around this

point becomes more dense.

 A constraint applies a bound to that number line, in that all configurations whose composed

property value lies to the left of the constraint bound are kept, while those to the right are

discarded or pruned. Due to the clustering property of the design space generation tool, a

constraint tends to have an “all-or-nothing” effect in design space pruning. If the constraint is

placed to the left of the cluster, the likelihood of finding a satisfactory configuration in the space

is small. On the other hand, if the constraint bound is placed to the right of the cluster, the

constraint has almost no effect in pruning the space, since most configurations are below the

bound. As the density of the cluster increases with the scaling up of the design space size, it

becomes increasingly difficult to establish a constraint bound which does not either severely

over-restrict or under-restrict the space.

 131

 In order to mitigate this clustering behavior, the design space generation utility was adapted.

A goal of design space pruning is to be able to apply one or more constraints to a large space,

and thereby reduce the size of the space to a more manageable size. To mimic this desired

behavior, a the design space generator was modified to produce design spaces whose

configurations cluster around two separate points on the number line representing the root-level

composed property value. Most configurations are to cluster around the greater of the two

points, while a few are to cluster around the smaller point. In order to accomplish the proper

clustering, each node in the tree is assigned a flag that determines if it is to be included in the set

of configurations that cluster around the smaller point. This flag is propagated during design

space construction in such a way so as to guarantee the proper construction of a small set of

“small” configurations. The design space is constructed from the root node down, and the root

node is selected for inclusion in “small-valued” configurations. If an AND node is flagged for

inclusion in a small-valued configuration, then all its children are likewise flagged as small. If

an AND node is not flagged as small, then none of its children are flagged as small. Algorithm

19 depicts the implementation of the AND-node generation algorithm.

 132

(1) AOLNode =GenAndNode(CurLev,L, IsSmall,
(2) AltN , , ON AN)

(3) C ON N N= + A

(4) AOLNode = new AOLNode(AND)
(5)
(6) if CurLev >= L {
(7) //Create LEAF nodes at bottom of the tree CN
(8) { }1,..., Ci N∀ ∈

(9) AOLNode.children[i] = GenLeafNode(IsSmall)
(10) }
(11) else {
(12) //create OR node children ON
(13) { }1,..., Oi N∀ ∈

(14) AOLNode.children[i] =
(15) GenOrNode(CurLev+1, L, IsSmall,
(16) AltN , , ON AN)

(17) //create AN AND node children

(18) { }1,..., Ai N∀ ∈
(19) AOLNode.children[i] =
(20) GenAndNode(CurLev+1, L, IsSmall,
(21) AltN , , ON AN)
(22) }
(23)
(24) return AOLNode
(25) end

Algorithm 19. GenAndNode algorithm for generation of AND nodes in design space scalability study

 The implementation of the OR-node generation algorithm is given in Algorithm 20. If the

OR node is marked for inclusion in “small-valued” configurations, the algorithm must randomly

select two children of the OR node to likewise mark for inclusion. If the current level meets or

exceeds the maximum depth of the tree, the algorithm produces AltN LEAF nodes. Otherwise,

AltN AND nodes are generated.

 133

(1) AOLNode = GenOrNode(CurLev, L, IsSmall,
(2) AltN , , ON AN)
(3) AOLNode = new AOLNode(OR)
(4) Let IsChildSmall[AltN] be an array of Boolean flags
(5) Initialize IsChildSmall flags to small
(6)
(7) if IsSmall
(8) Set two random members of IsChildSmall to true
(9)
(10) if CurLev >= L {
(11) //Create AltN LEAF nodes at bottom of the tree

(12) { }1,..., Alti N∀ ∈
(13) AOLNode.children[i] =
(14) GenLeafNode(IsChildSmall[i])
(15) }
(16) else {
(17) {1... }Alti N∀ ∈
(18) AOLNode.children[i] =
(19) GenAndNode(CurLev+1, L,
(20) IsChildSmall[i],
(21) AltN , , ON AN)
(22) }
(23) return AOLNode
(24) end

Algorithm 20. GenOrNode algorithm to generate OR nodes in design space scalability study

 LEAF node generation focuses on the production of property values. In order to create

composed property values which cluster around two distinct points on the number line, the

LEAF-level property values are created according to the following specifications. If the LEAF

node is marked for inclusion in small-valued configurations, the LEAF property value is sampled

from an integer random variable uniformly distributed over the interval [0, 5000). If the node is

not selected, then the property value is set to a value sampled from a normally distributed

random variable with mean of 100000 and standard deviation of 200. Each leaf is assigned a

property named “AddProp,” which is bound to the randomly generated property value. The

“AddProp” property is defined to have simple additive composition (i.e. the composed property

value is equal to the sum of the property values of the children). The algorithm implementing

LEAF node generation is given as Algorithm 21.

 134

(1) AOLNode = GenLeafNode(IsSmall)
(2) AOLNode = new AOLNode(LEAF)
(3) if IsSmall
(4) PropValue = uniformly distributed random number
(5) between 0 and 5000
(6) else
(7) PropValue = sample of Gaussian distributed
(8) random variable, with mean=100000,
(9) stddev = 200
(10) end
(11)
(12) AOLNode.property(“AddProp”) = PropValue
(13) return AOLNode
(14) end

Algorithm 21. GenLeafNode algorithm to generate LEAF nodes in design space scalability study

Representing Design Spaces: Propagators and Variables

 The design space generation tool was used to create several design spaces of increasing size.

The size of the space is measured by the number of configurations modeled by the space. Figure

36 shows a set of generated design spaces, plotted against their respective sizes on a log scale.

The set of spaces were generated by feeding the parameters 4L = , , , while

varying

10AltN = 3ON =

AN . As can be seen in the plot, the size of the space grows very quickly with respect to

increases in AN . Each space represented in Figure 36 was successfully represented in the finite

domain model. Figure 37 depicts the number of AND-OR-LEAF tree nodes in each design

space model. The number of tree nodes grows linearly with the independent parameter. Since

Figure 36 depicts linear growth of the log of the design space size over the range of the

parameter, it can be concluded that the number of configurations modeled by the design space is

an exponential function of the number of tree nodes.

 135

Design Space Size (L=4, Nalt=10, No=3)

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

Na

Sp
ac

e
Si

ze
 (l

og
 s

ca
le

)

Figure 36. Size of generated design space, vs. AN

AND-OR-LEAF Tree Size (L=4, Nalt=10, No=3)

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

Na

Tr

ee
 N

od
es

Figure 37. Number of AND-OR-LEAF tree nodes in the generated design spaces

 A design space is represented as a set of finite domain variables and constraints. The finite

domain constraints implement the tree structure, while the variables encode the state of inclusion

 136

or exclusion from a configuration or composed property values. Figure 38 depicts the number of

finite domain variables required to encode the set of design spaces generated for Figure 36. The

number of finite domain variables used to represent the space effectively grows with the log of

the number of design configurations. Neema reported similar growth characteristics with the

symbolic design space representation. A similar linear growth relationship is exhibited in the

number of propagators created in the finite domain design space model, as show in Figure 39.

Hence, since the number of propagators and variables used to implement a finite domain

representation of a design space grows as the log of the number of configurations encoded by the

space, the finite domain representation itself scales very nicely. However, the ability to represent

a design space means very little if a finite domain solver cannot successfully prune the

representation.

Number Finite Domain Variables (L=4, Nalt=10, No=3)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10

Na

Va

ria
bl

es

Figure 38. Number of finite domain variables used to encode a set of design spaces

 137

Number of Finite Domain Propagators Created (L=4,
Nalts=10, No=3)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10

Na

Pr

op
ag

at
or

s
C

re
at

ed

Figure 39. Growth of the number of finite domain propagators created to model the generated design spaces

Over-, Under- and Critically-Constrained Spaces

 A DESERT OCL constraint is translated into a set of finite domain constraints that are

added to the design space model. These additional constraints strengthen the constraint store by

providing additional information (through reducing intervals or binding values to variables).

Adding information to the constraint store implies the potential for propagation. Hence, adding

constraints to the design space model can have the effect of decreasing the time to solution

through the facilitation of propagation. By adding a constraint that provides no “new”

information to the store (i.e. the constraint is already entailed by the store), no propagation

results. This is effectively what happens when a constraint establishes a bound far to the right of

the cluster of composed property values, as discussed in the above section. Large, under-

constrained spaces have a large number of potential solutions. Distribution over large, severely

under-constrained spaces results in an exponential growth in memory usage for a finite domain

constraint solver. This is due to the fact that distribution effectively performs an enumeration of

an exponential space. The finite domain model used in DesertFD is not immune to this

 138

characteristic of Mozart. A worst-case scenario for scalability examines how large of an under-

constrained space can be searched by the finite domain design space model.

 The following experiments utilize the constraint utilization, best-case search model

described in Chapter III. A single constraint is generated at the root node of the AND-OR-LEAF

tree, which establishes an upper bound on the composed property value at that node. This

constraint is assigned a utilization number, and the solver is instructed to find a solution which

maximizes utilization. This effectively implements a single-solution search. In the worst-case

scenario, the bound established by the constraint is very large and has little effect on the pruning

of the space. Specifically, in the experiment below, the constraint value was set at (the

composed property values ranged from to , thus the bound was set at roughly

an order of magnitude greater than the largest composed property value). Figure 40 shows the

time required to determine a single solution to the finite domain problem modeling a severely

under-constrained design space. Note that the final three design spaces could not be searched

due to lack of virtual memory. Thus, the finite domain approach successfully pruned spaces

containing configurations in this worst-case scenario.

81.0 10×
63.0 10× 75.0 10×

18010

Constraint Application Time for Severely Under-Constrained Space
(L=4, Nalt=10, No=3)

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

Na

Ti
m

e
(m

s)

Figure 40. Time to a single solution for a severely under-constrained design space

 139

 However, there is a significant difference between the worst-case and the best-case scenario.

The best case scenario with respect to this metric is a space where the application of a constraint

results in significant propagation and elimination of design configurations. Such “near critically-

constrained” spaces are not the general case in design space exploration, but their examination

results in several observations on scalability. The high impact of propagation on the design

space search of the best case scenario significantly reduces memory requirements of the search

and results in much faster search times. Figure 41 depicts the results of the search of a near-

critically constrained design space. Not only are the search times nearly an order of magnitude

better, but spaces of much larger size were able to be searched as well. In this example, a design

space of was pruned in less than 6 seconds. It should be noted that Figure 41 does not

predict the constraint application time of all “critically constrained” design spaces. Research into

phase transitions indicates that constraint satisfaction problems can be constructed which, when

critically constrained, contain very few solutions which are very difficult to find. The results

presented here do not pretend to contradict such findings, due to the fact that the design space

constructed in this example does not exhibit a structure which results in a phase transition (or at

least no phase transition was experimentally discovered).

37710

Constraint Application Time for Near-Critically Constrained Spaces
(L=4, Nalt=10, No=3)

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

Na

Ti
m

e
(m

s)

Figure 41. Constraint application time for near-critically constrained design spaces

 140

 The finite domain model scalability varies, depending on how tightly constrained the design

space is. A finite domain model tends to become exponential in memory size as the number of

distribution steps grows. At each distribution step, the space containing the state of the finite

domain search problem is cloned and adjusted according to the distribution algorithm. The

scalability of a finite domain model depends on the number of distribution steps required to

arrive at a solution, as well as the size of the cloned constraint store. Figure 42 compares the

number of distribution steps required to arrive at a solution for the under-constrained and near-

critically constrained design spaces described above. In the near-critically constrained case, the

number of spaces cloned remains fairly constant, whereas for the under-constrained case, the

number of spaces cloned grows linearly. The size of the constraint store is a function of the

number of finite domain variables employed in the model, which as Figure 38 shows, grows

linearly with increasing AN . The increase in distribution steps required to solve the model,

together with the increase in size of constraint store, prevents the pruning of under-constrained

design spaces in this example with AN greater than or equal to 8.

 141

Number of Cloned Spaces in Design Space Search (L=4,
Nalts=10, No=3)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

Na

C

lo
ne

d
Sp

ac
es

Near-Critically Constrained Under-Constrained

Figure 42. Number of space cloned during finite domain evaluation of under-constrained and near-critically

constrained design spaces

 The solution of a design space exploration problem becomes increasingly difficult as the

space transitions from a critically-constrained space to a severely under-constrained space.

Figure 43 shows the effect of successively relaxing a constraint on a generated design space. A

single design space with parameters 4L = , 5AltsN = , 3ON = , and 5AN = was generated for this

experiment, and repeatedly solved, using various constraint bounds. This space models roughly

 configurations. The smallest composed property value in the space is 3,068,057, while the

largest composed property value is 18,876,151. For this experiment, the space was annotated

with a single constraint, imposing a bound on the root-level composed property value. The value

of this bound was increased over successive executions of the solver. The chart shows both the

constraint application time and the number of cloned spaces utilized during the search. Note that

for constraint bounds lower than the minimum value, the problem becomes an over-constrained

space, and the search fails. All such cases for this space exhibited similar behavior:

approximately 330 ms search time, with no cloned spaces. Similarly, for all constraint bounds

7110

 142

significantly above the maximum composed value, the space becomes severely under-

constrained, and all searches result in approximately the same search time (2400 ms) and number

of cloned spaces (366). The chart clearly shows the correlation between constraint application

time and number of distribution steps: an increase in the number of distribution steps correlates

with an increase in the search time.

 An interesting search result captured in Figure 43 is the behavior of over-constrained design

spaces. Interval propagation facilitates bounds-checking and evaluation. In the case of the

generated design space, interval propagation was able to establish a lower bound on the

composed property value prior to the commencement of distribution. When the constraint bound

is placed below that lower bound, the constraint solver can immediately determine that the

design space is over constrained by comparing with this bound. By virtue of this comparison,

the search terminates very quickly. However, while this result will be common in many design

space compositions, it cannot be generically stated that DesertFD will always be able to

determine that a space has no solutions without distribution. The use of logical implication in

constraints can lead to the construction of an over-constrained design space, but where interval

propagation cannot determine a bound sufficiently tight so as to detect the infeasibility of the

space.

 The severely under-constrained case is also represented in Figure 43. In the case where the

constraint bound is placed well above the maximum composed property value of the design

space, the constraint has no affect on propagation. In the case of this experiment, when the

constraint is placed above the value of the upper bound of the initial interval of the composed

property value of the root node, then the constraint is already entailed by the constraint store, and

has no effect on propagation. In the case of this generated example, interval propagation is able

to determine a tight upper bound to the composed property value at the context of the constraint;

thus the threshold where the constraint bound has an effect is quite close to the maximum

composed property value of the design space.

 143

Constraint Application Time over Varying Constraint Bounds

0

500

1000

1500

2000

2500

3000

0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07 2.5E+07

Cosntraint Bound

Ti
m

e
(m

s)

0

50

100

150

200

250

300

350

400

C

lo
ne

d
Sp

ac
es

Constraint Application Time Number of Cloned Spaces

Figure 43. Chart showing the constraint application time and number of cloned spaces resulting from the

solution of a single design space whose constraint bound is successively relaxed

 Figure 43 illustrates a fairly sharp transition from minimum search time to search times

closer to the maximum time. However, a “zoomed in” examination of a section of this graph

illustrates some interesting relationships during this transition. The left-most points in the

dataset plotted in Figure 44 correspond to the over-constrained case, where the constraint bound

is set below the minimum composed property value in the design space. As can be seen in the

figure, as the constraint bound increases, the search time and number of cloned spaces required

to converge at a solution increases, until peaking between the constraint bound values of

 and . The search time then falls, and then falls again sharply just after the

bound value of . This is followed by a second cycle of the search time rising and then

falling. The plot illustrates the fact that search performance is not simply a linear relationship

with the constraint bound over the transition from an over-constrained to severely under-

constrained space. Depending on the structure of the space and the property values involved,

some design spaces may converge to a solution more quickly than others. The cyclic nature of

63.1 10× 63.15 10×
63.15 10×

 144

the data depicted in Figure 44 suggests a transition from a difficult-to-solve design space to an

easy-to-solve design space.

Constraint Application Time (L=4, Nalts =5, No=3, Na=3)

0

100

200

300

400

500

600

700

800

900

1000

3.05E+06 3.10E+06 3.15E+06 3.20E+06 3.25E+06 3.30E+06 3.35E+06

Constraint Bound

Ti
m

e
(m

s)

0

50

100

150

200

250

C

lo
ne

d
Sp

ac
es

Constraint Satisfaction Time Number of Cloned Spaces

Figure 44. Chart showing a zoomed-in view of a portion of Figure 43, illustrating the transition from an over-

constrained space to under-constrained space.

Width vs. Depth

 The design space generation tool can be used to construct spaces that vary by width as well

as by depth. The above experiments that show a change of design space size have varied only

the number of AND-decomposed children of an AND node through the AN parameter.

Effectively this widens the AND-OR-LEAF tree by supplying each AND node with more

children. An analysis was performed on the sensitivity of the design space scalability to tree

structure by varying the width through the parameter instead of ON AN , and by varying the

depth instead of the width.

 The number and position of OR nodes in the design space structure control the orthogonality

of the space. Figure 45 shows how the size of a generated space grows as the number of OR-

 145

decomposed children of an AND node is increased. In this case, the number of AND-node

children of OR nodes is fixed at 10, while the quantity of AND-decomposed children of AND

nodes is fixed at 3. The depth of the tree is set to 4, as in the previous experiments. It can be

seen that the log of the number of configurations modeled in the space is linear in the number of

OR node children of AND nodes. By way of comparison, the parameter set , 4L = 10AltsN = ,

, results in a space modeling configurations, while the parameter set 3AN = 8ON = 16810 4L = ,

, , results in configurations. The generated space grows faster

with

10AltsN = 8AN = 3ON = 22310

AN than with . ON

Design Space Size (L=4, Nalts=10, Na=3)

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8

No

Sp
ac

e
Si

ze
 (l

og
 s

ca
le

)

Figure 45. Chart depicting the change in size of design space against the number of OR node children of an

AND node.

 The scalability of the finite domain model is affected by the structure of the space. By

increasing the number of OR-node children of an AND node, the generated space contains many

more OR nodes. The propagation model for AND node finite domain variables is much stronger

than the model for OR nodes. Therefore, a highly orthogonal design space must rely on

distribution more than a space composed more of AND nodes. The increased reliance on

distribution impacts scalability, as described previously. Figure 46 shows the performance of the

 146

constraint solver on highly orthogonal, severely under-constrained design spaces. The search of

the space generated for parameter 7ON = did in fact terminate successfully, but exhibited a very

long execution time (over 400 seconds), due to virtual memory consumption which exceeded the

RAM capacity of the benchmark machine. The search performance grows linearly in the number

of cloned spaces, but the execution time grows super-linearly. The data shows poorer scalability

for highly orthogonal design spaces.

Constraint Application Time for Highly-Orthogonal, Severely
Under-Constrained Design Spaces (L=4, Nalts=10, Na=3)

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9

No

Ti
m

e
(m

s)

0

100

200

300

400

500

600

C

lo
ne

d
Sp

ac
es

Constraint Application Time Number of Cloned Spaces

Figure 46. Chart showing the constraint solver performance on increasingly orthogonal design spaces

 An examination of search performance for deep, as opposed to wide, design spaces was also

performed. For this experiment, several design spaces were generated with the following

parameter set: , , 2AltsN = 2AN = 1ON = , and by varying . Figure 47 plots the log of the

generated design space size against the maximum depth of the tree. It can be seen that the log of

the size of the space is a super-linear function of the depth of the tree.

L

 147

Design Space Size (Nalts = 2, Na = 2, No=1)

0

50

100

150

200

250

4 5 6 7 8 9

L

D
es

ig
n

Sp
ac

e
Si

ze
 (l

og
 s

ca
le

)

Figure 47. Chart showing the sizes of design spaces generated by varying the depth of the AND-OR-LEAF tree

 The performance of the design space search over deep trees is given in Figure 48. Both

dependent variables are plotted in log scale. While both the search time and number of cloned

spaces exhibit exponential growth, prior to memory exhaustion occurring at tree depth of 9, the

observed execution performance is acceptable. The design space generated , for example,

is successfully searched in approximately 14 seconds, involving 834 distribution steps. An

observation of the performance of the deep design spaces is that they require more distribution

steps in order to converge on a solution, when compared to wide design spaces. Chapter III

describes the propagation model for both select variables and for property composition. While

the propagation model is constructed to support upward and downward propagation, values,

especially those of the boolean select-variables, propagate easily across the children of a node,

but downward propagation halts at an OR node.

8L =

 148

Constraint Applcation Performace over Varying Depth Trees
(Nalt=2, Na=2, No=1)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4 5 6 7 8 9

L

Ti
m

e
(lo

g
sc

al
e,

 m
s)

0

0.5

1

1.5

2

2.5

3

3.5

C

lo
ne

d
Sp

ac
es

 (l
og

 s
ca

le
)

Constraint Application Time Number Cloned Spaces

Figure 48. Chart showing the performance of constraint application to increasingly deep design spaces

Experiment Evaluation and Applicability

 The above experiments illustrate the degree of scalability of the finite domain model for

design space exploration employed by DesertFD. This section comments on the fairness of the

experiments in establishing the scalability, and notes limitations in the tests, prior to the

summary of findings and conclusions presented in the next section.

 The design space generation utility produces only full, dense design spaces. While for some

cases, this structure represents a worst-case scenario, a more randomly generated design space

structure may potentially reflect actual design spaces. Further, only one DESERT OCL

constraint is generated and applied to the space. Rarely is it the case that a single constraint will

drive the design space exploration. However, for the purpose of illustrating scalability, a single

constraint does suffice. Also, the fact that a single constraint is applied renders the use of the

best-case search for the maximization of constraint utilization as wasted effort. Specifically,

once a solution to the constraint is found, the algorithm continues the search in order to prove

 149

that a better value cannot be found. This may result in a larger number of distribution steps than

would otherwise be needed.

 The generation of LEAF level property values such that composed property values are

separated into distinct clusters affects the difficulty of the design space exploration problem.

When a constraint bound is placed below the values of the majority of the higher cluster, interval

propagation facilitates the removal of a large number of nodes from the design space prior to the

first distribution step. While this illustrates the power of the propagation model, the complexity

of the problem is reduced significantly prior to distribution.

 When compared to the symbolic design space representation method employed by Neema,

the experiments described here lack in a few aspects. The OBDD representation encodes all

solutions in the design space. The experiments here employ a best-case search, where only one

solution is calculated. This approach is employed in order to avoid the exponential memory

growth associated with an all-solutions search across an under-constrained search problem.

Scalability Conclusions

 The data support several conclusions. First, the cause of scalability limitations is related to

distribution. Distribution is measured by the number of times the solver clones a space during

the search. When the number of distribution steps can be kept small and bounded, the finite

domain representation of the design space scales very well. The worst case situation for the

finite domain representation of a design space is a severely under-constrained space. Search of

such spaces rely heavily on distribution, and thus encounter scalability problems. The

experiments presented in this chapter illustrate the successful representation and pruning of

severely under-constrained design spaces modeling up to configurations in the case of very

deep design spaces, configurations for highly orthogonal spaces, and configurations

for wide, but less orthogonal spaces. The experiment examining scalability for critically

constrained spaces illustrates the pruning of a design space modeling configurations.

8710
14010 18010

37710

 These experiments illustrate the power of the propagation model implemented for design

space exploration. The finite domain model described in Chapter III establishes a single Boolean

finite domain variable for every node in the AND-OR-LEAF tree. Further, a finite domain

variable is allocated for every node in the tree for each type of property assigned to the tree. The

property variables assigned to interior tree nodes model composed property values. Without

 150

propagation, the solution of a finite domain model would require sufficient distribution steps to

establish values for each of the select variables and each of the property variables. Propagation

facilitates the binding of values to some of these variables based on the values of other variables.

In the above experiments, the largest number of distribution steps needed to obtain a solution to a

space was 834, with the parameter set 2AltsN = , 2AN = , 1ON = , and 8L = . This space results

in an AND-OR-LEAF tree consisting of 5274 nodes, and models configurations. As

mentioned in the discussion above, it represents the worst case encountered for propagation, due

limitations on vertical propagation. However, even with limited propagation, the ratio of

distribution steps to finite domain variables modeling tree node values is roughly 0.08.

8610

 Neema reported scalability concerns with the application of arithmetic constraints to the

symbolic design space representation. He illustrated the limitation in scalability to design spaces

modeling up to configurations. All experiments in this section have applied arithmetic

constraints, where the worst-performing worst-case scenario scaled to at least

configurations. The scalability of the BDD approach for logical and relational constraints,

coupled with the ability to prune large, highly under-constrained spaces, supplies the impetus

behind the unification of the two techniques in the hybrid design space exploration technique.

1510

8610

Conclusions

 DesertFD is an integrated design space exploration toolset which builds on the structure of

DESERT. Neema developed a highly scalable design space model and exploration techniques

based on a binary encoding and an OBDD-based symbolic design space representation.

DesertFD extends DESERT through the translation of the design space model into a finite

domain constraint representation. The finite domain representation is translated and dynamically

instantiated in the Mozart engine, where best-case branch and bound search is used to determine

a solution which best meets utilization criteria specified by the user. The best-case solution is

returned to the user in the DESERT XML syntax. DesertFD integrates the OBDD-based design

space exploration tool with the finite domain constraint solver by translating a pruned BDD-

based design space into a logic function, which is then expressed as a finite domain constraint

expression tree. This expression tree captures the dependencies derived during BDD-based

pruning, and applies those dependencies to the finite domain-based search. Any constraint

which is determined to potentially cause scalability problems in the BDD representation is

 151

marked for application in the finite domain constraint representation. All other constraints are

passed to the BDD for potential selection and application by the user. Once the BDD-based

pruning is terminated, the representation is translated into a finite domain representation and

transmitted to the Oz Engine for finite domain search.

 A quantitative analysis of the scalability of the finite domain representation of design spaces

has been presented. The finite domain representation has been shown to scale to large numbers

of design configurations for various types of design space composition. The issue of the degree

of constraint of a design space has been discussed, including an illustration of the best-case

situation for design space exploration: where a constraint bound is sufficiently close to a solution

value so as to make the search trajectory obvious to the distribution algorithm. In such cases,

very little distribution is needed to determine a solution to the finite domain model, allowing

very large (up to configurations) design spaces to be pruned. 37710

 152

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

 Design space exploration is an important area of research in the field of embedded systems

design. Design is a process of intelligently weighing tradeoff decisions. Design space

exploration formalizes this concept of tradeoff evaluation through the application of formal

analyses to design compositions. Design space exploration strives to determine a design or small

set of designs which meet formally specified criteria. Several tools have been developed and

described in the literature which implement design space exploration algorithms tailored to

various classes of applications. Each tool takes a different approach with differing metrics and

degrees of success. The variety of tools and approaches indicates the difficulty of the design

space exploration problem, and that, arguably, no single “best” solution approach exists. Rather,

hybrid design space exploration approaches must be examined, which integrate and unify

successful exploration techniques. This dissertation has examined the development of such a

hybrid exploration technique, embodied in a tool called DesertFD.

Summary of Findings

 DesertFD is built on DESERT, the design space exploration tool developed by Neema.

DESERT offers a domain-independent design space modeling specification which facilitates the

specification of a design space as an attributed AND-OR-LEAF tree. Constraints capture

relationships between nodes in the tree, and properties quantified over the tree. Design space

exploration in DESERT is a constraint satisfaction problem, where the constraints encode the

non-functional requirements of the design. DESERT implements the constraint satisfaction

problem using a symbolic representation of the space and constraints, based on Ordered Binary

Decision Diagrams. The OBDD-based representation of the design space has been found to be

highly scalable, except when pruning operations involve arithmetic operations.

 DesertFD leverages the domain-independent design space modeling specification of

DESERT, but translates the design space exploration and constraint satisfaction problem into a

finite domain constraint representation. An efficient finite domain propagation model has been

developed to implement the AND-OR-LEAF tree semantics, as well as property composition

 153

functions for the various classes of property composition supported by DESERT. DESERT OCL

constraints have been translated into finite domain constraints as well. A customized distribution

algorithm has been implemented to facilitate a complete finite domain design space search.

 DesertFD extends the design space modeling specification of DESERT with the Property

Composition Language. The set of property composition functions supported by DESERT is

limited to a small set of functions which implement a single composition operation, over a single

property. The Property Composition Function facilitates the specification of arbitrarily complex

mathematical functions for modeling property composition. PCL functions may reference

properties other than the property type specified as the result of the composition. Non-linear

mathematical operations are also supported, including integer division and modulus, and

exponentiation. The PCL specification of properties facilitates a parametric specification of

property composition, where LEAF nodes need not be supplied with simple numerical data for

property values. Rather, value computation can be left as a function of a PCL specification.

DesertFD provides a translator for PCL which maps PCL specifications into a finite domain

representation, leveraging the AND-OR-LEAF finite domain representation.

 DesertFD integrates the OBDD-based symbolic constraint satisfaction engine implemented

in DESERT with the finite domain constraint search described above. Due to scalability

considerations of the OBDD space representation with respect to arithmetic operations, the set of

constraints supplied in the design space model is sorted based on whether the application of the

constraint will result in an explosion of BDD nodes in the symbolic representation. DesertFD

then prunes the design space using the symbolic approach of DESERT, and translates the

resulting pruned BDD into a Boolean logic expression. This expression is translated into a set of

finite domain constraints, together with the design space specification and the remaining OCL

constraints. The finite domain constraints are fed to the Oz Engine dynamically through a TCP

connection. When the finite domain constraint solver encounters a solution to the pruned design

space, it returns the solution to the user.

 The scalability of the finite domain constraint representation of the design space has been

quantitatively evaluated. The design space representation has been found to be highly scalable

across several classes of generated design spaces. Scalability limitations in the finite domain

representation are encountered when the number of distribution steps required to arrive at a

 154

solution becomes unbounded. However, where the number of distribution steps can be kept

bounded, the finite domain representation is highly scalable.

Future Work

 The major result of this research is an integrated toolset implementing design space

exploration through symbolic pruning and constraint satisfaction. There are several potential

directions that can build on the work described in this dissertation, outlined in the sections

below.

Design Space Modeling

 The domain-independent design space modeling specification supported by DESERT and

DesertFD is limited by the use of enumeration of design choice. Often, a design space is more

naturally modeled using a parametric approach. Currently, OR nodes model design choice. All

potential outcomes of a design choice must be enumerated and explicitly included in the design

space definition. Certain classes of design spaces are more elegantly modeled with a parametric

approach, where parameters embody design choice. Parametric modeling could also be used to

encode the compositional structure of the space.

 An issue has arisen when attempting to model the mapping of an application onto

reconfigurable resources using the current DESERT modeling specification. The current

approach for modeling resource allocation involves the creation of a property to represent the

resource binding, and the specification of the domain of that property to be the set of resources to

which the object may be bound. For a configurable resource, an enumeration of the potential

resource bindings can become prohibitively expensive, if the space of configurability is large.

Techniques are needed to facilitate the representation of property domains as spaces themselves,

without requiring explicit enumeration.

 The representation of shared resources can be complicated in the design space model. While

the current resource allocation model facilitates the representation of shared resources (simply

through the binding of multiple elements to the same resource), property composition functions

which depend on the characteristic of shared resources are difficult to specify. An extension of

the design space model to more explicitly represent shared and sharable resources is warranted.

 155

Scalability Improvements with DesertFD

 The scalability of the hybrid search approach offered by DesertFD should be examined and

improved. The scalability analysis of the finite domain design space model illustrated the

inverse relation between scalability and number of distribution steps. An examination of

heuristics to facilitate increased scalability in the finite domain search is warranted. Mozart

offers significant flexibility in guiding distribution and search through heuristics. Multiple

heuristics have been reported in the literature, and should be evaluated and integrated where

appropriate in the finite domain search.

 DesertFD implements a simple integration of the finite domain constraint solver with the

symbolic BDD-based constraint satisfaction tool. Future research should quantitatively

characterize the benefits and drawbacks of each solution technique, and examine the possibility

of a more dynamic, interactive hybrid search. Such a dynamic approach could involve the

translation of the search problem from a finite domain specification back into a BDD-based

specification for further refinement. The goal of tighter integration is to improve the scalability

of the search.

Solver Integration

 DesertFD has outlined a hybrid design space exploration technique, involving the OBDD-

based symbolic representation of DESERT and the finite domain constraint representation

presented in this dissertation. As discussed previously, the number of approaches identified in

the literature for modeling and solving embedded system design space exploration problems not

only justifies, but practically implies the need for hybrid search approaches. A future direction

for research with design space exploration tools involves the integration of other modeling

techniques and solvers. Specifically, as benchmarks indicate performance benefits of

pseudoboolean solvers when compared to finite domain solvers, a pseudoboolean solver could be

integrated into the design space exploration tool suite.

 Arguably more pressing, however, is the need to integrate a solver which supports floating

point operations. This need is highlighted by an attempt to model reliability as a composed

property. Reliability is a probabilistic measure of the likelihood of failure of a component or

system. Reliability in some systems can be modeled as a composable property, with

multiplicative composition. However, due to the probabilistic nature of reliability values, an

 156

integer representation of the property composition function necessarily involves explicit

quantization. In applications where precision is critical, an implementation of fixed-point

arithmetic would be necessary to represent with high accuracy the composition operations. The

integration of a solver capable of managing floating point calculations mitigates the tedium of

managing fixed point arithmetic in the integer-based finite domain solver. Candidate solvers

include an MILP-based solver or CLP(R).

 Design space modeling in DESERT and DesertFD facilitates the pruning of spaces based on

composed structural properties of a design. These properties abstract away the complexities of

dynamic interactions at the behavioral level of design, by lumping quantitative estimates of

worst-case or average-case behavior into single parameters. Often, these worst-case estimates

are highly pessimistic, resulting in poor pruning of the design space. The development and

integration of behavioral estimation models into the design space exploration flow could be

explored in order to improve pruning. However, such approaches need to be tempered with data

on the size of the design spaces, due to the fact that dynamic behavioral estimation tends to be

more computationally intensive, and can hamper the scalability of the search.

 A by-product of solver integration should be increased hybridization of the design space

search. The justification for hybridization stipulates that each good search technique

demonstrates its own strengths, but also has its drawbacks. As solvers are integrated,

quantitative analyses must be performed to characterize the behavior of the solver across

different classes of datasets. Hybridization seeks to exploit each solver in such a way so as to

glean the benefits of what each solver does well, and sidestep areas where a solver exhibits poor

performance. Further, the task of mapping a problem specification into the solver domain must

be benchmarked as well in order to facilitate a cost/benefit analysis of dynamically mapping a

design space representation onto a different solver.

Embedding Exploration

 Embedded architectures are becoming larger and more complex. Often, architectures

facilitate structural reconfiguration to allow a better fit of an application computation on the

architecture’s resources. Currently, the topic of dynamic reconfiguration is an open topic of

research. Design space exploration could be used to traverse the space of potential application-

to-architecture mappings at runtime. However, current approaches utilized in DESERT and

 157

DesertFD are likely poor candidates to implement such exploration. The on-line exploration

algorithms must be deterministic if they are to be integrated into a real-time embedded system.

An interesting research direction is the amalgamation of off-line static design space analysis and

pruning with on-line exploration. The goal of the off-line search is to prune the full design space

into a small subspace which can then be pruned and explored deterministically at runtime. The

goal is complicated by the need to allow sufficient variance in the on-line design space so as to

facilitate dynamic optimization.

Tool Integration

 The domain-independent nature of DesertFD facilitates its use across a wide variety of

applications and application domains. Ongoing research into Model-Integrated Computing

[83][84] (MIC) seeks to facilitate the rapid development of domain-specific modeling

environments for use in system design and analysis. In many such application domains, the

process of design implies the exploration of a design space. DesertFD can be integrated into the

toolflow of the domain-specific modeling environment through semantic translation. Ongoing

research into the specification of model-based translators has developed techniques to specialize

domain-independent model-translation interfaces and APIs into domain-specific interfaces [85].

Tools and techniques can be explored which facilitate the easy integration of DesertFD into

model-integrated computing-based toolflows. Specifically, the PCL offers several built-in

functions to facilitate access to properties and other context-specific information. Tools can be

developed which specialize the PCL with domain-specific information relating concepts in a

domain-specific language to the domain-independent PCL functions.

 158

Appendix A

PCL LEXICAL ANALISYS SPECIFICATION

%{
#include <stdlib.h>
#include <string.h>

void handleStrCnst(const char *in, char **out);

%}
%%
"+" {return(PLUS);}
"-" {return(MINUS);}
"*" {return(STAR);}
"/" {return(FSLASH);}
"%" {return(PCENT);}
"<" {return(LT);}
"<=" {return(LEQ);}
">" {return(GT);}
">=" {return(GEQ);}
"==" {return(EQEQ);}
"!=" {return(NEQ);}
"!" {return(BANG);}
"&&" {return(ANDAND);}
"||" {return(OROR);}
"=" {return(EQ);}
"," {return(COMMA);}
"(" {return(LPAREN);}
")" {return(RPAREN);}
"." {return(DOT);}
"[" {return(LBRACK);}
"]" {return(RBRACK);}
"{" {return(LBRACE);}
"}" {return(RBRACE);}
";" {return(SEMICOLON);}
"if" {return(IF);}
"then" {return(THEN);}
"else" {return(ELSE);}
"elseif" {return(ELSEIF);}
"return" {return(RETURN);}
"function" {return(FUNCTION);}
"var" {return(VAR);}
"list" {return(LIST);}
"property" {return(PROPERTY);}
\"[^\"]*\" {handleStrCnst(yytext, &(yylval.sval));return(STRCNST);}
[a-zA-Z]([a-zA-Z0-9_])* {yylval.sval=strdup(yytext); return(IDENTIFIER);}
-?[0-9]+ {sscanf(yytext, "%i",(yylval.ival)); return(DECINT);}
\n
" "
\t
%%

 159

void handleStrCnst(const char *in, char **out)
{
 int len;
 if(in[0] == '\"')
 *out = strdup(&in[1]);
 else
 *out = strdup(in);

 len = strlen(*out);
 if((*out)[len-1] == '"')
 (*out)[len-1] = '\0';
}

 160

Appendix B

PCL CONTEXT-FREE GRAMMAR SPECIFICATION

%{
int yylex(void);
%}

%token PLUS
%token MINUS
%token STAR
%token FSLASH
%token PCENT
%token BANG
%token LT
%token LEQ
%token GT
%token GEQ
%token EQEQ
%token NEQ
%token ANDAND
%token OROR
%token EQ
%token COMMA
%token LPAREN
%token RPAREN
%token DOT
%token LBRACK
%token RBRACK
%token LBRACE
%token RBRACE
%token SEMICOLON
%token IF
%token THEN
%token ELSE
%token ELSEIF
%token RETURN
%token FUNCTION
%token VAR
%token LIST
%token PROPERTY
%token STRCNST
%token IDENTIFIER
%token DECINT

%left PLUS MINUS STAR FSLASH PCENT ANDAND OROR
%nonassoc LT LEQ GT GEQ EQEQ NEQ

%%

prog: funcList
 ;
funcList: func

 161

 | func funcList
 ;
func: prototype body
 ;
prototype: PROPERTY IDENTIFIER formalParams
 | FUNCTION VAR EQ IDENTIFIER formalParams
 | FUNCTION LIST EQ IDENTIFIER formalParams
 | FUNCTION IDENTIFIER formalParams
 ;
formalParams: LPAREN formalParamList RPAREN
 ;
formalParamList: formalParam COMMA formalParamList
 | formalParam
 | /*nothing*/
 ;
formalParam: varDecl
 | listDecl
 ;
varDecl: VAR IDENTIFIER
 ;
varDeclInit: varDecl EQ opExpression
 ;
listDecl: LIST IDENTIFIER
 ;
listDeclInit: listDecl EQ opExpression
 | listDecl EQ LBRACK varList RBRACK
 ;
varList: varList COMMA IDENTIFIER
 | IDENTIFIER
 | /*nothing*/
 ;
body: LBRACE statementList RBRACE
 ;
statementList: statement
 | statement statementList
 ;
statement: declStatement SEMICOLON
 | opStatement SEMICOLON
 | controlStatement SEMICOLON
 | returnStatement SEMICOLON
 ;
declStatement: varDeclInit
 | varDecl
 | listDeclInit
 | listDecl
 ;
controlStatement: ifStatement
 ;
ifStatement: ifPart elseifList elsePart
 ;
ifPart: IF conditionExpr THEN body
 ;
elseifList: elseifPart elseifList
 | /*nothing*/
 ;
elseifPart: ELSEIF conditionExpr THEN body
 ;

 162

elsePart: ELSE body
 | /*nothing*/
 ;
conditionExpr: LPAREN opExpression RPAREN
 ;
returnStatement: RETURN opExpression
 ;
opStatement: assignStatement
 | callStatement
 ;
callExpression: call DOT callExpression
 | call
 ;
callStatement: callExpression
 ;
call: IDENTIFIER LPAREN actParams RPAREN
 ;
actParams: actParamList
 |/*nothing*/
 ;
actParamList: actParam COMMA actParamList
 | actParam
 ;
actParam: callExpression
 | operand
 ;
assignStatement: IDENTIFIER EQ opExpression
 ;
opExpression: opExpression PLUS opExpression
 | opExpression MINUS opExpression
 | opExpression STAR opExpression
 | opExpression FSLASH opExpression
 | opExpression PCENT opExpression
 | opExpression ANDAND opExpression
 | opExpression OROR opExpression
 | opExpression EQEQ opExpression
 | opExpression NEQ opExpression
 | opExpression LT opExpression
 | opExpression LEQ opExpression
 | opExpression GT opExpression
 | opExpression GEQ opExpression
 | opParenExpr
 | operand
 | BANG operand
 | callExpression
 ;
opParenExpr: LPAREN opExpression RPAREN
 | MINUS LPAREN opExpression RPAREN
 ;
operand: IDENTIFIER
 | MINUS IDENTIFIER
 | DECINT
 | STRCNST
 ;
%%

 163

APPENDIX C

CASE STUDY: EMBEDDED AUTOMOTIVE SOFTWARE

 The automotive industry currently seeks to develop robust, reliable, fault-tolerant embedded

implementations of x-by-wire applications. X-by-wire refers to the replacement of mechanical

or hydraulic systems in the vehicle with computer-based systems. One such application is called

steer-by-wire, where the traditional mechanical/hydraulic connection between the steering wheel

of a vehicle and its wheels is replaced by an electronic connection between sensors and actuators.

X-by-wire applications present several design challenges, due to the impact of strict safety and

reliability requirements on the embedded control system. This appendix examines the tradeoff

between increased application reliability brought through redundancy, and the hard

schedulability requirements imposed on the system. DesertFD is used to model the tradeoff

decision and its impact on resource allocation as a design space exploration problem.

Specifically, the space of alternative application-to-architecture mappings is captured as a design

space, and is analyzed over reliability and schedulability metrics.

 Steer-By-Wire Application

 Steer-by-wire utilizes sensors and actuators to facilitate the steering control of a vehicle.

Typically, steering in a passenger vehicle is implemented through a physical connection between

the steering column and the rack and pinion system connected to the wheels. The rack and

pinion is responsible for converting adjustments to the steering wheel angle into lateral

adjustments to wheel position. Hydraulics have been introduced into the steering system to

implement power steering, facilitating a reduction in the force required on the steering wheel to

implement a turn. Steer-by-wire seeks to replace this physical connection between the steering

column and the rack and pinion with a reliable, fault-tolerant embedded computer system.

Sensors are placed on the steering column to capture change-of-direction input from the user.

Actuators are placed on the rack and pinion to allow the computer system to control lateral wheel

motion. The embedded computer system implements an intelligent feedback control algorithm,

which not only facilitate steering changes based on user input, but also potentially increases the

safety of the vehicle through explicit detection and management of faults.

 164

 The integration of embedded processing in the vehicle control platform facilitates new

approaches to safety, reliability and fault-tolerance in vehicle design. Steer-by-wire, for

example, takes not only the current state of the vehicle and the user-specified direction change

requests, but also uses other information gleaned from sensors throughout the vehicle. Sensors

provide information on the current position of all four wheels, the state of the motor, pitch, yaw

and roll of the vehicle and several other relevant metrics. This information is fed to the control

algorithm in order to determine the proper actuation to apply. The control algorithms are

designed to react to faults so as to maximize the safety of the vehicle occupants. In the presence

of faults, the system enters a degraded mode of operation. In the presence of serious faults, a

mechanical steering system backup is enabled.

 Typical steer-by-wire applications utilize sensors and actuators scattered throughout the

vehicle. The embedded computing platform consists of several ECUs (Electronic Control Units)

connected through a fault-tolerant bus. A typical ECU contains a microprocessor, memory and a

bus interface controller. Sensors and actuators interface directly to an ECU. The physical layout

of the embedded platform typically relates to the location of the sensors. The steer-by-wire

algorithm utilizes position information gleaned from sensors at each of the four wheels. The

application also implements a supervisory control algorithm which is responsible for analyzing

the current fault state of the system and for determining whether and when to disengage actuators

and engage mechanical backups. Figure 49 shows the embedded platform used in this design

space analysis. The platform consists of five ECUs, one for each wheel in the vehicle, and one

“supervisor” ECU. Each ECU is connected to a set of sensors and actuators. Each wheel ECU is

interfaced to wheel position sensors, which sense the absolute and relative wheel position. Each

wheel ECU is interfaced to an actuator which implements the torque on the rack and pinion

responsible for turning each wheel. Sensors are placed on the steering wheel to sense torque and

handwheel position. The torque sensor is interfaced to ECU F1, while ECUs F2 and RL are

interfaced to handwheel position sensors. In order to give the vehicle operator a sense of

connectivity with the road, feedback is provided to the steering handwheel through the Steering

Feedback Torque actuator interfaced to ECU F1.

 165

Figure 49. Embedded automotive computing platform for steer-by-wire application

 The steer-by-wire application examined in this case study seeks to implement four-wheel

by-wire steering, and explicitly manages system faults. The algorithm consists of a set of data

dependent, concurrent tasks. The application is modeled as a directed dataflow graph, where the

nodes in the graph represent tasks and edges represent signals, or information that is

communicated between tasks. The task model does not support queuing of signals between

tasks. Each task is annotated with metadata describing the worst-case execution time for the

task. Since all ECUs in this study contain equivalent microprocessors, the worst-case execution

time of a task does not depend on resource allocation. All tasks in the application have the same

five millisecond deadline. When a task executes, it consumes the signals on which it depends,

performs its computation, and produces the output signals which it sources. A real-time

operating system on each ECU is responsible for executing all tasks mapped to the ECU such

that no task misses a deadline.

 166

 Input data to the application is received through sensors. The steer-by-wire application is

coupled with other applications in a real vehicle environment. These other applications provide

the steer-by-wire application with real-time processed information generated from other sensors

which are not part of the steer-by-wire platform. These data that are received from other

applications as inputs to the steer-by-wire application are modeled as sensors in this analysis,

even though they are not necessarily generated from hardware sensors. Examples of such data

include the current vehicle speed and the pitch, yaw and roll of the vehicle. Just as with real

sensors, these virtual sensors are assumed to be bound to individual ECUs, modeling the location

in the processing network where the relevant data is held.

 Figure 50 depicts the steer-by-wire application analyzed in this study. Each box represents a

logical collection of tasks. Edges in the graph model signals. The ProcessPosition task is

responsible for sampling the position sensors associated with each wheel to determine the current

state of the wheel. The ProcessSteeringWheelData task is responsible for determining

inputs from the user by reading the steering wheel angle and position sensors. Sensor data is

analyzed by the task and compared against thresholds in order to detect anomalies due to sensor

faults. The fault information is passed to the FaultDIR task, which implements fault detection,

isolation and recovery. The FaultDIR task takes the sensor fault information from the steering

wheel and wheel sensor tasks, as well as information on wheel motor temperature, in order to

determine whether the vehicle has encountered a fault. On the detection of a fault, the task

attempts to isolate the fault and apply appropriate recovery measures. Recovery involves the

communication of the fault state of the vehicle to the supervisor and feedback controller, as well

as the communication of a fail-safe steering state to the actuators. The Supervisor is

responsible for monitoring the state of the vehicle to determine if a mechanical steering backup

should be engaged. The Supervisor is implemented as a triple-redundant module with voting

between replicated nodes, so as to increase fault-tolerance. The feedback controller implements

the control algorithms for the steer-by-wire system, where the sensor information is used

together with the fault mode (degraded vs. normal) to determine a set of commands to send to the

actuators. The Actuation task is responsible for converting actuation commands calculated

by the controller into valid torque outputs to the actuators connected to the vehicle rack and

pinion modules to implement a change in vehicle direction. Actuation also produces a force

 167

feedback actuator command which translates into a torque applied to the steering column, giving

the user a sense of connection between the steering wheel and the vehicle environment.

RRP
RLP
Fro
Ste

ProcessPosition

Pos
Ste

Fai
Fai

Deg

FaultDIR

Ste
RRP
RLP
Fro
Aug
Ste
Deg

Cmd
Cmd
Cmd
Ste
For

FeedbackControl

Ste
Ste
RRP
RLP
Fro
Ste

Sup

Supervisor

Cmd
Cmd
Cmd
For
Fai
Fai

ActuationSWT
SWT
Ste

ProcessSteeringWheelData

Figure 50. Steer-by-wire application

Steer-by-Wire Design Goals

 The steer-by-wire application has real-time processing deadlines. A consistent five

millisecond execution period is imposed on all tasks in the application. Each task is

characterized with a worst-case execution time. A goal of designers is to map the tasks in the

application onto the embedded platform in such a way so as to facilitate the meeting of real-time

deadlines. While forwarding can be implemented to route sensor data to consumer tasks which

are allocated to a remote ECU, a preferred task allocation involves the placement of tasks onto

ECUs such sensor inputs and actuator outputs do not have to be forwarded. For some tasks, such

an allocation is not possible, due to the use of multiple sensors, each of which interface to a

different ECU. If an ECU is over-utilized, the likelihood of a task missing a deadline increases.

A first-order analysis of schedulability using rate-monotonic schedulability analysis [21] can

eliminate potential task-to-processor allocations which cannot be proven to be schedulable.

 Steer-by-wire implementations must be highly reliable. Reliability in this sense is distinct

from fault-tolerance and safety. Reliability is the probability that over a given time, that a

component or subsystem will be free of failure. Reliability of a composed system can be

 168

calculated from the reliability metrics of the subsystems. Reliability theory [86] dictates that for

a system composed such that if any single subsystem fails, then the system as a whole fails, the

system is said to be serially composed. Assuming that the failure of a subsystem is an

independent event from all other subsystems, the probability of reliable operation of a serially-

composed system can be calculated as the product of the probability of reliable operation of each

subsystem. The multiplicative nature of reliability calculations requires the composition of

highly reliable subsystems in order to produce a reliable system.

 The reliability of a system can be improved through parallel composition. Parallel

composition introduces redundancy into the system. In a parallel composition, the composed

system is deemed to be reliable if at least one of the redundant subsystem instances is

functioning properly. Redundancy can be introduced into the steer-by-wire system through

replication and voting. N-way redundancy is implemented by replicating a task N times in the

task graph. The inputs to the task are replicated N times by a splitter node. The outputs of each

replicated task are sent to a voting task, which produces a single output based on a majority-rule

comparison of inputs received from replicated tasks. The splitter and voting tasks are assumed to

always be reliable. Figure 51 depicts a triple-redundant implementation of a task T1, where

tasks T1_1, T1_2, and T1_3 are identical replications of each other.

T1_1

T1_2

T1_3

Splitter Voter

T1

Figure 51. Triple-redundant implementation of task T1

 The composed reliability of the replicated system reflects the voting scheme used. In the

case of majority-rule, the reliability is calculated as the probability that a simple majority of the

 169

tasks will succeed. In the case of triple redundancy, reliability can be calculated as follows. Let

 be the probability that a task t operates as intended by the designer. The reliability of a triple-

redundant parallel configuration task t is then the probability that either all three replicated

instances will agree, or that any two will agree while one fails. Noting that the sum of the

probability of success and the probability of failure equate to unity, equation (35) gives the

reliability composition function for a triple-redundant voting parallel configuration.

ts

 (35) 2
3 3 2t treliability s s= − 3

t

An analysis of equation (35) reveals that the triple-redundancy increases reliability only when

. The computation again assumes that the failure modes of the redundant tasks are

independent.

0.5ts ≥

 For the purposes of this study, the task of the designer is to determine a mapping of

application tasks onto the set of available resources such that the resulting application is

schedulable, and sufficiently reliable. Where the reliability of the application is deemed

insufficient, the designer can select tasks in the task graph to implement in a replicated parallel

configuration, as discussed above. Figure 52 models a choice node in a task graph, where the

user is allowed to select between task T1Solo, representing a single implementation of the task

T1, and task T1Triple, modeling the triple-redundant case. The number of tasks in the steer-

by-wire application in this study totaled 19. The designer must consider a very large tradeoff

space when evaluating potential task-to-processor allocations. Without considering the potential

need to replicate tasks, the total number of ways the 19 tasks can be mapped to the set of 5

processors is , or . Only those mappings which meet the schedulability and

reliability requirements can be considered for implementation. When considering the potential

for replication due to a strict reliability constraint, the size of the configuration space becomes

very large (configurations), necessitating a more automated approach to exploring the

space.

195 131.9 10×

60~ 10

 170

T1Solo

T1Triple

T1Or

Figure 52. Task T1Or models a choice between a triple-redundant implementation of task T1 or a single

implementation

Definition of the Steer-by-Wire Design Space

 The mapping of the steer-by-wire application onto the embedded hardware platform can be

modeled as a design space exploration problem. Schedulability and reliability are formally

quantified as properties of the design space, and constraints can be formulated on the composed

property values. This section gives a formal description of the task allocation problem, along

with a mapping of the formal description onto the formal design space description.

 A steer-by-wire application is modeled as a directed graph ,G T S= , where is a set of

tasks and is a set of directed edges between tasks, referred to as signals. Let

 be a function which gives the reliability measure for each task in the graph, such

that . Let be a function which returns the worst case

execution time for a task, in units of microseconds. A steer-by-wire platform is a three-tuple

T

S T T⊆ ×

:Rel T →

, 0 () 1t T Rel v∀ ∈ ≤ ≤ :WCET T →

P

, ,P E S A= , where is a set of ECUs, is a set of sensors, and is a set of actuators. Each

sensor is interfaced to exactly one ECU. Let be a map which returns the ECU to

which a sensor is interfaced. Similarly, let be a map which returns the ECU to

which an actuator is interfaced. A task may depend on data from one or more sensors. Let

 be a function which returns the set of sensors on which a task depends (where

 denotes the power set of). Likewise, let

E S A

:SToE S E→

:AToE A E→

: (TSens T S×P)

)()SP S : (TAct T A×P be a function which returns the

set of actuators which receive data from a particular task. Note that

1 2 1 2 1 2, , () (t t T t t TAct t TAct t∀ ∈ ≠ ∩ =) ∅ , since only one task may output to an actuator.

However, multiple tasks may read from the same sensor. Let an Allocation be A T E⊆ ×

 171

defined such that , t tt T p A p t e∀ ∈ ∃ ∈ = , for some ECU , and e

() ()1 2 1 21 1 2 2 1 2, , , ,t t t tp t e p t e A t t implies p p∀ = = ∈ = = . There are several Allocations which

can be derived for a given application mapping onto a given platform. Let be the set of all

possible allocations. Note that

AS
TAS E= . Constraints formally capture the requirements on the

application, and specify restrictions on composed property values. Let C be a set of constraints.

The allocation problem consists of finding a AS c C∈ ∀ ∈ , is satisfied over allocation . This

study focuses on two metrics which impact resource allocation, schedulability and reliability.

Requirements over both metrics are formulated as constraints. A schedulability constraint

imposes the requirement that for a given allocation, all ECUs meet the rate monotonic

scheduling utilization bound. A reliability constraint requires that an application meet some

minimum bound on composed reliability.

c a

 The steer-by-wire specification is modeled as a design space using the AND-OR-LEAF tree

composition semantics. The composed application is modeled as an AND node in the AND-OR-

LEAF tree. The composed application consists of a set of tasks, each of which can potentially be

replicated. A task is either implemented singly (“single” redundancy) or with triple redundancy.

A triple-redundant case is modeled as an AND node containing three LEAF nodes. Each such

LEAF node is a copy or replica of the single case. Figure 53 illustrates the mapping of a task

into a set of AND-OR-LEAF tree nodes. All leaf nodes are assigned unique names, but each of

the four leaf nodes models the same task.

T1Triple

T1Or

T1Solo

= OR-Node

= AND-Node

= LEAF Node

Task
T1

T1_1 T1_2 T1_3

Splitter Voter

Figure 53. Example mapping of a task T1 in the steer-by-wire specification into a set of AND-OR-LEAF tree

nodes

 172

 Properties are used to represent the quantitative aspects of the design space. All LEAF

nodes in the tree are assigned two non-composed properties: Resource and WCET. The WCET

property of a task is bound to the worst-case execution time of the task supplied in the task

model. The four LEAF nodes modeling each task in the application are all assigned the same

WCET value. Resource allocation is modeled as the binding of a value to the Resource variable

property. The domain of the Resource property represents the set of ECUs available in the

computation platform. All LEAF nodes’ Resource properties share the same domain, implying

that prior to the application of the constraints, any task can be mapped to any ECU in the

platform.

 Reliability is modeled as a composable property. In the case of serial composition,

reliability composes multiplicatively. In the case of triple redundancy, reliability composes

according to equation (35). The AND-OR-LEAF tree semantics facilitate the representation of

composition with an AND node. AND composition is necessary to represent both serial

composition and parallel composition. Hence, the type of computation to employ for property

composition while exploring the space is not clear based simply on the type of tree node. It is

however discernable from the structure of the tree. Triple redundancy is modeled as an AND

node containing three LEAF nodes. At no other location in the tree does an AND node contain

LEAF nodes. Hence the property composition function for modeling reliability must examine

the structure of the tree in order to determine whether to apply multiplicative composition or the

redundant composition formula. The composition formula is also responsible for the

quantization of the probability values used to represent task reliability. The finite domain

constraint approach employed in DesertFD currently only supports integer-based mathematics,

so all floating point numbers are scaled by the constant 100. Rounding is implemented through

the addition of a scaled 0.5, followed by truncation implemented through integer division (ex. a

number x is rounded as follows: 50_
100

xrnd x +
= , where the division operation is integer

division).

 The PCL specification for reliability property composition is given in Figure 54. Lines (1)-

(3) define a helper function QMultVar which returns a quantized product of two variables.

Note that PCL only supports integer division. Line (6) defines the property function named

reliability. The function first determines which type of property composition to apply by

 173

examining the structure of the tree from the context of application. The PCL function is applied

only at AND nodes in the tree, hence if all children of the context of application are LEAF

nodes, then it can be assumed that the node models a triple-redundancy. Whereas if it is not the

case that all children are leaf nodes, then the node models a serial reliability composition, and

simple multiplicative property composition is applied. Line (8) employs the isNodeLeaf

built-in function, which returns a Boolean true only if the context of invocation is a LEAF node

(or in the case of a list context, if all nodes in the list are LEAF nodes). The result is stored in

the isReplNode variable. Line (9) acquires the list of property variables corresponding to the

children of the application context, and Line (10) gets the first variable in the list. Since in the

replicated case, all replicated nodes are assumed to have the same reliability, the first property

value on the list is used in the composition. Line (11) assumes that the context of application

indicates a replicated composition, and implements equation (35), quantized as discussed above.

Line (14) assumes a non-replication context, and implements a simple product over all reliability

property variables of the children of the current context. Lines (15) and (16) multiply the result

of the context query with the respective replication results, and line (18) returns the sum of the

products. Since isReplNode is a 0/1 integer variable, the function returns either the value

calculated for ReplSum in line (15) or for NotReplSum in line (16).

 174

(1) function var = QMultVar(var v1, var acc)
(2) {
(3) return(((v1 * acc) + 50)/100);
(4) }
(5)
(6) property reliability()
(7) {
(8) var isReplNode = self().children().isNodeLeaf();
(9) list relPs = self().children().prop("reliability");
(10) var relVal = listHead(relPs);
(11) var ReplRes = 3*((relVal*relVal+50)/100)
(12) -(2*(relVal*relVal*relVal+5000)/10000);
(13)
(14) var NotReplRes = ForAllAcc(relPs, "QMultVar", 100);
(15) var ReplSum = ReplRes *(isReplNode==1);
(16) var NotReplSum = (isReplNode==0)*NotReplRes;
(17)
(18) return(ReplSum+NotReplSum);
(19) }

Figure 54. PCL specification for reliability property composition

 The representation of schedulability as a composable property in the design space definition

is challenging. The schedulability criterion dictates that for a given allocation, all tasks must

meet their deadlines. The determination of schedulability depends on an allocation, but the

allocation is the result of design space exploration. The difficulty of modeling schedulability lies

in the construction of the property composition rules and schedulability constraints so as to allow

constraint propagation to impact the set of potential allocations without needing to enumerate the

set. Schedulability in this study is determined by processor utilization. All tasks are assigned a

worst-case execution time, and all tasks are assigned the same period of 5 milliseconds.

Utilization, for a given allocation a AS∈ , is a function which is defined as

follows.

:autil E →

,

() ()a
t T t e a

util e WCET t
∈ < >∈

= ∑ (36)

Utilization is a composable property. However, it does not compose on the same decomposition

as reliability. Utilization composes along processor allocation boundaries. Hence, reification is

employed across all possible allocations in order to calculate the utilization of a processor. In the

design space model, each ECU is modeled as a member of a CustomDomain, modeling the

 175

domain of the resource property for each task. Each such CustomDomain member is assigned

a property called utilization, whose composition is defined in the PCL specification given

in Figure 55. The property calculation employs in line (11) the built-in function allLeaves,

which returns as a list of variables all the leaves which descend from the context on which it is

invoked. The function spaceRoot returns the context corresponding to the root element of the

current DESERT Space, or in this case, the root element of the AND-OR-LEAF tree. Thus,

line (11) returns all the LEAF nodes in the AND-OR-LEAF tree. It then iterates across those

LEAF nodes in order to determine which have been allocated to the current context. The helper

function CalcUtil defined in line (1) is responsible for determining if a LEAF node has been

• allocated to the ECU modeled by the current context of invocation

• selected for inclusion in the current configuration.

If both of these criteria are met, then the WCET of the LEAF node is added to the utilization

total for the ECU. Line (3) determines if the LEAF task has been allocated to the current ECU,

by comparing the value of the resource property of the LEAF node against the ID of the current

context. The result is reified into the variable lMap. Line (5) multiplies the reified result of line

(3) with the value of the WCET property for the current LEAF node, and stores the result in the

variable lUtil (giving a value of 0 where the task has not been mapped to the current ECU, but

a value equal to the WCET when it has). Line (6) multiplies the WCET result by the value of the

select variable for the current LEAF, indicating that the WCET can only contribute to the

utilization bound when it has been selected for inclusion in the current configuration. The

resulting value is accumulated with the previous utilization for this ECU and returned.

 176

(1) function var = CalcUtil(var leaf, var acc)
(2) {
(3) var lMap = (ToContext(leaf).prop("resource") ==
(4) self().getID());
(5) var lUtil = (lMap) * ToContext(leaf).prop("WCET");
(6) return acc + (lUtil * ToContext(leaf).sel());
(7) }
(8)
(9) property utilization ()
(10) {
(11) list leafList = spaceRoot().allLeaves();
(12) var util = ForAllAcc(leafList, "CalcUtil", 0);
(13) return(util);
(14) }

Figure 55. PCL specification for utilization calculation

 Schedulability is modeled as a constraint over the utilization property of each ECU. For

each ECU in the model, the constraint in Figure 56 is added to the constraint set. The constraint

bound is derived from the shared 5 ms period between all tasks on each processor, and the 69.3%

upper bound on utilization.

constraint schedConstraint() {
 self.utilization() < 3465
}

Figure 56. Schedulability constraint, requiring that for each processor, the total compute time be bounded by
3465 microseconds

 The property composition function implements the utilization calculation. However, the

calculation does not facilitate strong propagation, due to the use of reification to determine the

outcome of the calculation. As a result, the constraint applied to the utilization composition does

not result in significant pruning of the design space prior to distribution. Further, the steer-by-

wire application is not compute-bound. Distribution is employed more as a function of the

distribution of sensors throughout the platform rather than the need to split computation across

processing units to facilitate the meeting of real-time deadlines. However, with the replication

resulting from the analysis of reliability, the computation requirements of the application can

increase significantly. Hence, it is necessary to determine that the application does indeed meet

these minimum schedulability requirements.

 177

 The reason for the poor propagation performance of the utilization composition formula is

the circular dependence between resource allocation and the processor utilization constraint. In

order to facilitate early pruning of the design space, a second utilization constraint is formulated

which breaks this circular dependence. It can be noted that if the total computational

requirements across all tasks of an application exceeds the total available computation time on all

resources, then the configuration cannot be implemented on the platform. The total computation

time required by an application can be calculated by summing the worst-case execution times of

all selected tasks in the design space. The total available computation time can be calculated by

multiplying the number of ECUs in the platform by the period of computation which is shared

across all tasks. This is represented in the design space using additive property composition over

a property called computeTime. LEAF nodes in the tree are assigned the worst-case execution

time of the WCET property. A constraint is placed at the root node of the AND-OR-LEAF tree

which limits the total composed computeTime property to the upper bound of available

compute time. Figure 57 gives the OCL specification of the total compute time constraint. The

right-hand side of the equation represents the upper bound on the total compute time available in

the network, assuming that all tasks execute at a 5 ms rate. There are five processors in the

network, and each must meet the 69.3% utilization bound, giving 5 times (5000*0.693)

microseconds of total available compute time. The constraint is not a tight constraint, due to the

significant slack in the schedule of the processors. However, the constraint does eliminate those

configurations which are grossly unschedulable, prior to the determination of an allocation.

constraint compTime() }
 self.computeTime() < 5*5*693
}

Figure 57. Constraint on total computation time for a five-processor configuration, with a five millisecond
period

 Resource allocation constraints are employed in the design space model to represent rules of

composition and allocation. It was noted above that equation (35) improves reliability only

when the reliability of the task to be replicated is greater than 0.5. A constraint is placed in the

design space model at each of the OR nodes modeling the potential for replication, stating that if

the task’s reliability is less than 0.5, then the singleton alternative should be automatically

 178

selected. While the constraint solver can implicitly derive this result through property

composition, the addition of the constraint speeds the propagation. Figure 58 gives an OCL

implementation of this selection constraint, as applied to the example AND-OR-LEAF tree given

in Figure 53.

constraint selConstr() {
 (self.children(“T1Solo”).reliability() < 50)
 implies
 (self.implementedBy()=self.children(“T1Solo”))
}

Figure 58. Selection constraint applying to the OR node T1Or in Figure 53, stating that if the reliability of the
modeled task is less than 50, then do not replicate the task

 The reliability property composition function assumes that the failure of a component or task

is an independent event from the failure of other tasks. Given that many tasks fail due to

hardware faults, this assumption is not necessarily valid. However, in an attempt to separate the

failure modes of the replicated tasks, constraints are inserted into the model at each AND node

modeling task replication, stating that all replicated tasks must be allocated to different

resources. A more valid assumption is that the failure modes of tasks allocated to separate

resources are not as related as those of co-located tasks. Three constraints are inserted at each

AND node modeling replication, stating that the resources of each of the replicated nodes cannot

be equal. The constraint corresponding to the T1Triple node in Figure 53 is given in Figure

59.

 179

constraint replConstr1() {
 self.children(“T1_1”).resource() <>
 self.children(“T1_2”).resource()
}

constraint replConstr2() {
 self.children(“T1_1”).resource() <>
 self.children(“T1_3”).resource()
}

constraint replConstr3() {
 self.children(“T1_2”).resource() <>
 self.children(“T1_3”).resource()
}

Figure 59. Replication constraints requiring that no replicated nodes share a resource

 It was noted in the platform discussion that each sensor and each actuator is interfaced to

exactly one ECU. While sensor information can be relayed from ECU to ECU, it leads to a more

efficient, lower-latency implementation when tasks which directly depend on sensor information

can be allocated to the ECU which is interfaced to the sensor. Likewise, for tasks which output

to actuators, ideally those tasks are allocated to the resource which interfaces to the actuator. It

may not be possible to create an allocation where all such constraints are met. For example,

some tasks read the wheel position information from all four wheel sensors. The design space

model employs constraint utilization to model the desire that tasks be mapped to resources which

interface to the appropriate sensors and actuators. The constraint solver attempts to maximize

total constraint utilization. For those situations where all such co-location constraints cannot be

met, an allocation is produced which attempts to meet most of the constraints. Recall that

 is a map which returns the set of sensors which directly interface to a task.

Similarly, is a map which returns the set of actuators to which a task interfaces.

Then, , ideally the following constraints hold:

: (TSens T S×P)

): (TAct T S×P

,t T a AS∀ ∈ ∀ ∈

(), , ()

(), , ()

s TSens t t SToE s a

c TAct t t AToE c a

∀ ∈ ∈

∀ ∈ ∈
 (37)

The constraints are extended to cover the replicated tasks as well. Obviously, for the replicated

tasks, the requirement that states that replicated tasks cannot be co-located, and the reified

constraint stating that tasks should be located on the resource which interfaces to their dependent

 180

sensors and actuators are directly in conflict. Due to the optimization of constraint utilization,

the constraint solver attempts to satisfy the constraints in equation (37) only where possible.

Each such allocation constraint is assigned a utilization value of 10 (owning to the fact that no

allocation constraint has priority over any other allocation constraint).

 The final constraint that is added to the design space specification is a constraint on the

composed reliability of the system. Figure 60 gives the OCL implementation of the reliability

constraint, which is assigned to the root node of the AND-OR-LEAF tree as its context of

application. The constraint requires that the composed system be greater than 50. This appears

to be a weak requirement, but due to the multiplicative composition exhibited by reliability,

highly reliable configurations are difficult to achieve.

constraint reliabilityConstr() {
 self.reliability() > 50
}

Figure 60. Constraint on the composed reliability of the system, applied at the root context

 This case study seeks to model reliability as a composable property, used in the context of

pruning the resource allocation space of embedded automotive software. It does not pretend to

be a study in modeling component reliability. Due to the lack of quality reliability estimates for

the tasks in the application model, a random reliability value was assigned to each task, by

sampling a random variable uniformly distributed on the interval [85, 99]. If proper reliability

metrics can be obtained for the tasks in the system, the analysis approach can still be applied.

Exploration Results

 The design space model discussed above, together with the constraint set was explored using

DesertFD. All constraints were parsed and translated and applied in the finite domain constraint

environment. The space initially contains configurations. The exploration of the space

revealed several details about the structure of the design space. The space was determined to be

highly under-constrained. There are a very large number of potential solutions which satisfy all

imperative constraints. It was described in previous chapters that the exploration of a large,

under-constrained space leads to exponential growth in the memory requirements of the search.

An interesting aspect of this particular design space is the fact that all solutions to the space seem

6610

 181

to exhibit the same maximum constraint utilization value of 550. The best-case utilization search

encounters a single solution with utilization of 550 and proceeds to search for a solution which

exhibits better utilization. This subsequent search neither encounters any solutions to the space

which better this utilization value, nor is able to terminate the search, due to the size of the space

and the dependence of the search on distribution. The successful solution was encountered in a

depth-first search, requiring 131 distribution steps. The single encountered solution presents a

composed reliability of 51, and utilization values on each processor between 3457 and 3054. Of

the 19 tasks in the application, the solution selects 14 for triple-redundant implementation, in

order to satisfy the reliability constraint. Five tasks are implemented without replication in order

to satisfy schedulability requirements. The time required to encounter this single solution was

about 0.5 seconds.

Conclusions and Future Analyses

 The design space presented in this case study is under-constrained. The constraints on

reliability facilitate pruning of the space. Schedulability constraints on processor utilization can

only impact the search after an allocation of tasks to processors has been determined, thus only

facilitating pruning after significant distribution. The slack in the schedule implies that many

configurations are schedulable according to rate monotonic criteria. In order to achieve a better

pruning of the space, the space must be analyzed along other axes. Specifically, distribution of

tasks imposes delays in the end-to-end latency of computation. The schedulability analysis does

not take into account the dependencies between tasks, and ignores the issue of scheduling

communications over the fault-tolerant bus. Addressing these and other issues can lead to a

significant contraction of the design space.

 182

REFERENCES

[1] Oliphant, M. W., "Radio Interfaces Make the Difference in 3G Cellular Systems," IEEE
Spectrum, vol. 37, pp. 53-58, 2000.

[2] Perry, T. S., "Consumer electronics," IEEE Spectrum, vol. 37, pp. 51-56, 2000.

[3] Jones, W. D., "Building Safer Cars," IEEE Spectrum, vol. 39, pp. 82-85, 2002.

[4] Snoonian, D., "Smart Buildings," IEEE Spectrum, vol. 40, pp. 18-23, 2003.

[5] Lea, R., Gibbs, S., Dara-Abrams, A., and Eytchison, E., "Networking Home

Entertainment Devices with HAVi," IEEE Computer, vol. 33, pp. 35-43, 2000.

[6] Verkest, D., "Machine Chameleon," IEEE Spectrum, vol. 40, pp. 41-46, 2003.

[7] Bretz, E. A., "By-Wire Cars Turn the Corner," IEEE Spectrum, vol. 38, pp. 68-73, 2001.

[8] Cass, S., "2001: A Mars Odyssey," IEEE Spectrum, vol. 38, pp. 58-65, 2001.

[9] DiGregorio, B. E., "Mars: Dead or Alive?," IEEE Spectrum, vol. 40, pp. 36-41, 2003.

[10] Ait-Ameur, Y., Bel, G., Boniol, F., Pairault, S., and Wiels, V., "Robustness Analysis of

Avionics Embedded Systems," LCTES, San Diego, CA, USA, 2003.

[11] Scott, P., "Aerospace & Military," IEEE Spectrum, vol. 37, pp. 97-102, 2000.

[12] Napper, S., "Embedded System Design Plays Catch-up," IEEE Computer, vol. 31, pp.

120-119, 1998.

[13] Peterson, I., Fatal Defect: Chasing Killer Computer Bugs. New York: Random House,

1995.

[14] Wilner, D., "Vx-Files: What Really Happened on Mars?," in Keynote Address, RTSS,

1997:
http://research.microsoft.com/research/os/mbj/Mars_Pathfinder/Mars_Pathfinder.html
(As related by Mike Jones), 1997.

[15] Oberg, J., "Why the Mars Probe," IEEE Spectrum, vol. 36, pp. 34-39, 1999.

[16] Jezequel, J.-M. and Meyer, B., "Design by Contract: The Lessons of Ariane," IEEE

Computer, vol. 30, pp. 129-130, 1997.

[17] Sztipanovits, J. and Karsai, G., "Embedded Software: Challenges and Opportunities,"

Emsoft, 2001.

 183

http://research.microsoft.com/research/os/mbj/Mars_Pathfinder/Mars_Pathfinder.html

[18] available at: http://e-
www.motorola.com/webapp/sps/site/homepage.jsp?nodeId=03C1TR0467

[19] available at: http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Virtex-

II+Pro+FPGAs

[20] Richards, M., Campbell, D., Cottel, D., and Judd, R., "Introduction to Morphware:

Software Architecture for Polymorphous Computing Architectures," Georgia Institute of
Technology, SPAWAR, February 23, 2004.

[21] Liu, C. and Layland, J., "Scheduling Algorithms for Multiprogramming in a Hard-Real-

Time Environment," Journal of the ACM, vol. 20, pp. 46-61, 1973.

[22] Dantzig, G., "Programming in a Linear Structure," Comptroller, Washington, DC,

February, 1948.

[23] Dantzig, G., Linear Programming and Extensions. Princeton, New Jersey: Princeton

University Press, 1963.

[24] Chvatal, V., Linear Programming: W. H. Freeman, 1983.

[25] Schrijver, A., Theory of Linear and Integer Programming: John Wiley & Sons Ltd, 1986.

[26] Aho, A., Hopcroft, J., and Ullman, J., Data Structures and Algorithms: Addison-Wesley

Pub Co., 1983.

[27] Balas, E., Ceria, S., and Cornuejols, G., "Mixed 0-1 Programming by Lift-and-Project in

a Branch-and-Cut Framework," Management Science, vol. 42, pp. 1229-1246, 1996.

[28] Padberg, M. and Rinaldi, G., "A Branch and Cut Algorithm for a Symmetric Travelling

Salesman Polytope," SIAM Review, vol. 33, pp. 60-100, 1991.

[29] Barnhart, C., Johnson, E., Nemhauser, G., and Savelsberg, P., "Branch and Price:

Column Generation for Huge Integer Programs," Operations Research, vol. 46, pp. 316-
329, 1998.

[30] available at: http://www.ilog.com

[31] available at: http://www.lindo.com

[32] available at: http://www-306.ibm.com/software/data/bi/osl

[33] Prakash, S. and Parker, A., "Synthesis of application-specific multiprocessor

architectures," DAC, San Francisco, CA, USA, June, 1991.

 184

http://e-www.motorola.com/webapp/sps/site/homepage.jsp?nodeId=03C1TR0467
http://e-www.motorola.com/webapp/sps/site/homepage.jsp?nodeId=03C1TR0467
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Virtex-II+Pro+FPGAs
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Virtex-II+Pro+FPGAs
http://www.ilog.com/
http://www.lindo.com/
http://www-306.ibm.com/software/data/bi/osl

[34] Kaul, M. and Vemuri, R., "Design-space exploration for block-processing based temporal
partitioning of run-time reconfigurable systems," Journal of Vlsi Signal Processing
Systems for Signal Image and Video Technology, vol. 24, pp. 181-209, 2000.

[35] Bockmayr, A., "Logic programming with pseudo-Boolean constraints," in Constraint

Logic Programming, Selected Research, F. Benhamou and A. Colmerauer, Eds.: MIT
Press, 1993, pp. 327-350.

[36] Davis, M., Logemann, G., and Loveland, D., "A Machine Program for Theorem

Proving," Communications of the ACM, vol. 5, pp. 394-397, 1962.

[37] Moskewicz, C., Madigan, C., Zhao, Y., Zhang, L., and Malik, S., "Chaff: Engineering an

Efficient SAT Solver," Design Automation Conference, 2001.

[38] Aloul, F., Ramani, A., Markov, I., and Sakallah, K., "PBS: A Backtrack-Search Pseudo-

Boolean Solver and Optimizer," Fifth International Symposium on Theory and
Application of Satisfiability Testing, Cincinnati, Ohio, May 6-9, 2000.

[39] Bockmayr, A. and Kasper, T., "Pseudo-Boolean and Finite Domain Constraint

Programming: A Case Study," in Deklarative Constraint Programmierung, U. Geske and
H. Simonis, Eds. Dresden, 1996.

[40] Jaffar, J. and Maher, M. J., "Constraint Logic Programming - a Survey," Journal of Logic

Programming, vol. 20, pp. 503-581, 1994.

[41] Marriott, K. and Stukey, P., Programming with Constraints. Cambridge, MA: MIT Press,

1998.

[42] Schild, K. and Wurtz, J., "Off-Line Scheduling of a Real-Time System," ACM

Symposium on Applied Computing, Proceedings of, Atlanta, GA, 1998.

[43] Henz, M. and Wurtz, J., "Constraint-based time-tabling - A case study," Applied Artificial

Intelligence, vol. 10, pp. 439-453, 1996.

[44] available at: http://www.friartuck.net/news/2002/Media-NBS.htm

[45] Van Hentenryck, P., Constraint Satisfaction in Logic Programming: MIT Press, 1989.

[46] available at: http://www.mozart-oz.org

[47] Kuchcinski, K., "Constraints-driven scheduling and resource assignment," ACM

Transactions on Design Automation of Electronic Systems, vol. 8, pp. 355-383, 2003.

[48] Dincbas, M., Vanhentenryck, P., Simonis, H., Aggoun, A., and Herold, A., "The Chip

System - Constraint Handling in Prolog," Lecture Notes in Computer Science, vol. 310,
pp. 774-775, 1988.

 185

http://www.friartuck.net/news/2002/Media-NBS.htm
http://www.mozart-oz.org/

[49] Jaffar, J., Michaylov, S., Stuckey, P. J., and Yap, R. H. C., "The Clp(R) Language and

System," ACM Transactions on Programming Languages and Systems, vol. 14, pp. 339-
395, 1992.

[50] Smolka, G., "The Oz programming model," Computer Science Today, vol. 1000, pp. 324-

343, 1995.

[51] Wurtz, J., "Oz Scheduler: A Workbench for Scheduling Problems," IEEE International

Conference on Tools with Artificial Intelligence, Toulouse, France, November 16-19,
1996, 1996.

[52] Eles, P., Kuchcinski, K., and Peng, Z. B., "Embedded System Synthesis by Timing

Constraints Solving," ISSS, Antwerp, Belgium, Sept 17-19, 1997.

[53] Kuchcinski, K., "Constraints-driven design space exploration for distributed embedded

systems," Journal of Systems Architecture, vol. 47, pp. 241-261, 2001.

[54] Harvey, W. D. and Ginsberg, M. L., "Limited Discrepency Search," Fourteenth

International Joint Conference of Artificial Intelligence (IJCAI-95), 1995.

[55] Beldiceanu, N., Bourreau, E., Simonis, H., and Chan, P., "Partial search strategy in

CHIP," Second Metaheuristic International Conference, Sophia Antipolis, France, July
21-24, 1997.

[56] Kuchcinski, K., "Synthesis of Distributed Embedded Systems," Euromicro Workshop on

Digital System Design, Milan, Italy, Sept 8-10, 1999.

[57] Szymanek, R. and Kuchcinski, K., "Partial Task Assignment of Task Graphs under

Heterogeneous Resource Constraints," Design Automation Conference (DAC), Anaheim,
CA, USA, June, 2003.

[58] Szymanek, R. and Kuchcinski, K., "A Constructive Algorithm for Memory-Aware Task

Assignment and Scheduling," Ninth International Symposium on Hardware/Software
Codesign, Copenhagen, Denmark, 2001.

[59] Kirkpatrick, S., Gelatt, C., and Vecchi, M., "Optimization by Simulated Annealing,"

Science, vol. 220, pp. 671-680, 1983.

[60] Bazargan, K., Kastner, R., and Sarrafzadeh, M., "3-D Floorplanning: Simulated

Annealing and Greedy Placement Methods for Reconfigurable Computing Systems,"
Design Automation for Embedded Systems, vol. 5, pp. 329-338, 2000.

[61] Ernst, R., Henkel, J., and Benner, T., "Hardware-software Cosynthesis for

microcontrollers," IEEE Design & Test of Computers, pp. 64-75, 1993.

 186

[62] Spears, W., De Jong, K., Back, T., Fogel, D., and de Garis, H., "An Overview of
Evolutionary Computation," European Conference on Machine Learning, Proceedings
of, vol. 667, pp. 442-459, 1993.

[63] "The Hitch-Hiker's Guide to Evolutionary Computation: A list of Frequently Asked

Questions (FAQ)" available at: ftp://rtfm.mit.edu/pub/usenet/news,answers/ai-
faq/genentic

[64] Fonseca, C. and Fleming, P., "An Overview of Evolutionary Algorithms in

Multiobjective Optimization," Evolutionary Computation, vol. 3, pp. 1-16, 1995.

[65] Palesi, M. and Givargis, T., "Multi-Objective design space exploration using genetic

algorithms," CODES, Estes Park, Colorado, USA, 2002.

[66] Steuer, R., Multiple Criteria Optimization: Theory, Computation and Application. New

York: Wiley, 1986.

[67] Blickle, T., Teich, J., and Thiele, L., "System-Level Synthesis Using Evolutionary

Algorithms," Design Automation for Embedded Systems, vol. 3, pp. 23-58, 1998.

[68] Axelsson, J., "Hardware/software partitioning aiming at fulfilment of real-time

constraints," Journal of Systems Architecture, vol. 42, pp. 449-464, 1996.

[69] Wang, S., Merrick, J., and Shin, K., "Component Allocation with Multiple Resource

Constraints for Large Embedded Real-Time Software Design," RTAS, 2004.

[70] Givargis, T. and Vahid, F., "Parameterized System Design," CODES, San Diego, CA,

USA, 2000.

[71] Pareto, V., "Cours d'economic politique," Rouge, Laussanne, Switzerland, 1896.

[72] Givargis, T. and Vahid, F., "Platune: A tuning framework for system-on-a-chip

platforms," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 21, pp. 1317-1327, 2002.

[73] Givargis, T., Vahid, F., and Henkel, J., "System-level exploration for Pareto-optimal

configurations in parameterized system-on-a-chip (December 2002)," IEEE Transactions
on Very Large Scale Integration (Vlsi) Systems, vol. 10, pp. 416-422, 2002.

[74] Vahid, F. and Givargis, T., "Platform tuning for embedded systems design," Computer,

vol. 34, pp. 112-114, 2001.

[75] Givargis, T., Vahid, F., and Henkel, J., "Evaluating Power Consumption of

Parameterized Cache and Bus Architectures in System-on-a-Chip Designs," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, pp. 500-508, 2001.

 187

ftp://rtfm.mit.edu/pub/usenet/news,answers/ai-faq/genentic
ftp://rtfm.mit.edu/pub/usenet/news,answers/ai-faq/genentic

[76] Thomas, D. E., Adams, J. K., and Schmit, H., "A Model and methodology for Hardware-
software codesign," IEEE Design & Test of Computers, pp. 6-11, 1993.

[77] Kathail, V., Aditya, S., Schreiber, R., Rau, B. R., Cronquist, D. C., and Sivaraman, M.,

"PICO: Automatically Designing Custom Computers," IEEE Computer, pp. 39-47, 2002.

[78] Snider, G., "Spacewalker: Automated Design Space Exploration for Embedded Computer

Systems," HP Labs Palo Alto HPL-2001-220, September 10, 2001.

[79] Neema, S., "System-Level Synthesis of Adaptive Computing Systems," Ph.D.

Dissertation. Vanderbilt University, 2001.

[80] Neema, S., Sztipanovits, J., Karsai, G., and Butts, K., "Constraint-based design-space

exploration and model synthesis," Embedded Software, Proceedings, vol. 2855, pp. 290-
305, 2003.

[81] "Object Constraint Language Specification, Version 1.1," Object Management Group,

September, 1997.

[82] Bryant, R., "Graph-Based Algorithms for Boolean Function Manipulation," IEEE

Trasactions on Computers, vol. C-35, pp. 677-691, 1986.

[83] Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., and Karsai,

G., "Composing domain-specific design environments," Computer, vol. 34, pp. 44-+,
2001.

[84] Karsai, G., Sztipanovits, J., Ledeczi, A., and Bapty, T., "Model-integrated development

of embedded software," Proceedings of the Ieee, vol. 91, pp. 145-164, 2003.

[85] Nordstrom, S., Shetty, S., Chhokra, K. G., Sprinkle, J., Eames, B., and Ledeczi, A.,

"ANEMIC: Automatic interface enabler for model integrated computing," Generative
Programming and Component Engineering, Proceedings, vol. 2830, pp. 138-150, 2003.

[86] Becker, P. W. and Jensen, F., Design of Systems and Circuits for Maximum Reliability or

Maximum Production Yield. Tokyo, Japan: McGraw-Hill, 1977.

 188

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

