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CHAPTER I 

 
 
 

INTRODUCTION TO THE PROBLEM OF COLORECTAL CANCER 
 
 
 

Epidemiology and Pathogenesis 
 

Colorectal adenocarcinoma is the second leading cause of cancer-related death in the United 

States.  Currently, there are an estimated 148,000 new colorectal cancer cases and ~50,000 deaths 

due to this disease annually (Jemal et al. 2009).  Colorectal cancer is thought to progress through a 

series of steps involving mutational inactivation of tumor suppressor genes, activation of oncogenes 

and eventual progression to metastatic lesions (Fearon and Vogelstein 1990).  While localized tumor 

growth may cause significant organ dysfunction and even death, metastases cause the vast majority 

(~90%) of human cancer deaths (Hanahan and Weinberg 2000).  The ability to metastasize is linked 

with the ability of cancer cells to invade adjacent tissues, to gain access to vascular or lymphatic 

channels and to survive transit through the bloodstream so that they may extravasate, then reside 

and colonize heterologous organs or tissues. Cancer cells acquire the capacity of invasion and 

metastasis through regulated processes related to tissue development and homeostasis.  Many steps 

in this process resemble a developmental program known as an ‘epithelial-mesenchymal transition’ 

as the epithelial cells travel from a primary cancer site to a new site of distant metastasis.  

Identification of the key regulators of the processes of metastasis and tumor suppression may provide 

valuable prognostic information to patients with colorectal cancer as well as opportunities for optimal, 

personalized intervention.     
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Genomic Instability 
 
     Chromosomal instability is the most common type of genomic instability in colorectal cancer and 

leads to changes in chromosomal number and structure (Lengauer, Kinzler, and Vogelstein 1997; 

Markowitz and Bertagnolli 2009).  Chromosomal instability can lead to loss of wild-type copies of 

tumor suppressor genes (e.g. APC or Smad4), which normally prevent malignant progression (Hahn 

et al. Dpc4, a candidate tumor suppressor gene at human chromosome 18q21.1 1996; Morin et al. 

1997).  Interestingly, colorectal cancer is not characterized by gene amplification or gene 

rearrangement (Leary et al. 2008); however, DNA-repair defects can occur and can even be 

inherited.  Patients with hereditary nonpolyposis colon cancer have germ-line defects in mismatch-

repair genes and this confers an 80% lifetime risk of colorectal cancer (Lynch et al. 2008).    Loss of 

mismatch-repair function and epigenetic silencing of genes are important in a proportion of patients 

with colorectal cancer, but fall outside the scope of this dissertation (Ionov et al. 1993; Issa 2004) and 

will not be discussed in detail. 

 

Mutational Inactivation of Tumor-Suppressor Genes 

    Wnt signaling pathway activation is considered the initiating event in sporadic colorectal cancer 

formation (Goss and Groden 2000).  The most common mutation in colorectal cancer inactivates the 

adenomatous polyposis coli gene (APC, see Fig. 1).  APC is a key component of a cellular protein 

complex, which normally regulates the degradation of -catenin.  -catenin is the central mediator of 

Wnt signaling and has important roles both developmentally and in carcinogenesis.  Inactivation of 

APC leads to inappropriate nuclear translocation of -catenin where it activates transcription of target 

genes such as cyclin D1 or c-MYC to promote proliferation and de-differentiation.  The second key 

genetic step in colorectal cancer development is inactivation of the p53 pathway via mutation of TP53 
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((Markowitz and Bertagnolli 2009), also see Fig. 1).  Usually both TP53 alleles are lost by a missense 

mutation and loss of chromosome 17p (Baker et al. 1989).  TP53 mediates cell-cycle arrest and the 

cell-death checkpoint (Vazquez et al. 2008) and inactivation is thought to parallel the adenoma to 

invasive carcinoma sequence (Baker et al. 1990).  A potential role of p53 in the 34-gene recurrence 

classifier will be discussed in Chapter II.  A third step in the colorectal cancer progression sequence is 

inactivation of the Transforming Growth Factor-  (TGF ) pathway.  Approximately half of colorectal 

cancers have a defect at the level of the receptor (e.g., T RII) (Grady et al. 1999; Markowitz et al. 

1995) or downstream at the level of the common mediator of TGF  signaling, Smad4, or its partner 

transcription factors (e.g., Smad2 or Smad3) (Takagi et al. 1996; Thiagalingam et al. 1996).  

Inactivation in the TGF  pathway is thought to be coincident with the adenoma to dysplasia or 

carcinoma transition (Also see Fig. 1).  Wnt signaling and TGF  superfamily signaling will be 

discussed in extensive detail below and in Chapter III.   

 

Oncogenic Pathway Activation 

    Oncogenic mutations of RAS or BRAF (also see Fig. 1) activate the mitogen-activated protein 

kinase (MAPK) signaling pathway in ~30% of colorectal cancers (Bos et al. 1987; Davies et al. 2002) 

and this can potentiate defects in the Wnt or TGF  pathways.  For example, recent observations have 

been made in regard to cooperative regulation between oncogenic Ras and TGF  signaling in the 

process of metastatic behavior (Janda et al. 2002; Kanies et al. 2008).  Also, approximately one-third 

of colorectal cancers have mutations in the Phosphatidylinositol 3-Kinase pathway (e.g. PI3KA) and a 

smaller percentage include activation of other downstream mediators of PI3K signaling and loss of 

PTEN which is an inhibitor of PI3K signaling (Parsons et al. 2005).  Although these pathways play 
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Figure 1.  Pathogenesis of colorectal cancer.  The initiating event in the development of colorectal 

cancer is thought to be mutation of APC as shown.  Genetic loss of TP53 and pathway 

components of TGF  signaling are thought to follow.  Other contributing pathways and processes 

thought to be involved in the progression of colorectal cancer are shown (e.g., MSI, MSH2, CIN, 

KRAS, BRAF, PI3K and PTEN).  A schematic of an epithelial-mesenchymal transition (EMT) is 

shown along the bottom and is thought to parallel this progression in a developmentally conserved 

program of events that regulate the transition from an epithelial cell to a more motile metastatic 
phenotype.  The question mark indicates yet unknown factors.  Key:  APC (adenomatous 

polyposis coli); MSI (microsatellite-instability); MSH2 (MutS homolog 2, colon cancer MutS 

homolog 2, colon cancer, nonpolyposis type 1); ACF (aberrant crypt foci); CIN (chromosomal 
instability); BRAF (B-Raf proto-oncogene serine/threonine-protein kinase ); PI3K 

(Phosphatidylinositol 3-Kinase); PTEN (phosphatase and tensin homolog).  Adapted with 

permission from Fearon ER and Vogelstein B, Cell. 1990 Jun 1;61(5):759-67 and Kalluri R, 
Weinberg RA.  The basics of epithelial-mesenchymal transition.  J Clin Invest. 2009 

Jun;119(6):1420-8. 

important roles in the pathogenesis of colorectal cancer they are outside the scope of this work and 

will not be discussed in further detail. 
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Developmental Biology and Carcinogenesis in Intestinal Epithelial Cells 

 

Overview of Prominent Signaling Pathways 

 

         Two major signaling pathways are critical for the development and maintenance of homeostasis 

in the gastrointestinal tract: the TGF  superfamily and Wnt/ -catenin/TCF (T cell-specific transcription 

factor) signaling pathways.  These pathways contribute to the development, differentiation and 

maintenance of homeostasis in intestinal epithelium, whereas mutations or aberrant regulation of 

these pathways contribute to tumor initiation and progression in the intestine (reviewed in (Radtke 

and Clevers 2005)).  In this section, emphasis will be placed on interactions of the TGF  superfamily 

and Wnt pathways and their potential roles in colorectal cancer cell invasiveness and metastatic 

potential.  It is well recognized that other genetic alterations, signaling pathways and processes such 

as angiogenesis are also important contributors of carcinogenesis, tumor progression and metastasis, 

but these will only be mentioned briefly. 

 

Metastasis and Epithelial-Mesenchymal Transition:  Parallels in Developmental Biology and Cancer 

 

         Most solid human tumors are carcinomas that originate in epithelial cells.  In order for these 

cells to invade adjacent layers they become motile and lose cell-cell adhesion then must activate a 

highly conserved program known as epithelial-mesenchymal transition (EMT) (Thiery 2002).  The 

conversion of epithelial cells into mesenchymal cells was defined in the 1980s when epithelial cells 

from embryonic and adult lens were cultured in 3D collagen (Greenburg and Hay 1982).  The reverse 
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process of MET can occur and is best described in nephronic epithelium of the developing kidney 

(Davies 1996).  EMT is tightly controlled, reversible and required for embryonic development, tissue 

reorganization and wound healing (Yang and Weinberg 2008).  During EMT, cells lose epithelial 

polarity and acquire a mesenchymal phenotype (see Fig. 2) with invasive characteristics (Thiery 

2003).  Cell-cell junctions are disrupted in EMT by mechanisms involving loss of expression of the 

adherens junction protein and the key gatekeeper of the epithelial state, E-Cadherin (Kang and 

Massague 2004).  Tight junctions lose polarity and function, and the cells undergoing EMT express 

mesenchymal markers such as vimentin and -smooth muscle actin ( -SMA).  Also, multiple 

transcription factors can induce EMT and have been associated with tumor invasion and metastasis.  

For example, Twist1 is essential for metastasis of a mouse breast cancer line to the lung (Yang et al. 

2004).  In colorectal cancer, nuclear localization of -catenin has been noted at the invasive front of 

tumor invasion and the cells appear to have undergone EMT as noted by loss of E-cadherin and gain 

of mesenchymal markers such as fibronectin (Fodde and Brabletz 2007).  In many cases, cellular 

transformation recapitulates a molecular environment favoring EMT, which in turn disrupts normal 

epithelial cell polarity and results in the acquisition of invasive and metastatic potential.  Thus, a 

growing body of evidence implicates EMT in tumor cell migration, invasiveness and metastatic 

behavior (Cui et al. 1996; Kalluri 2009).  

 

 

 

 

 

 Figure 2.  Schematic of an epithelial-mesenchymal transition.  Epithelial cells marked by expression of E-
cadherin undergo a highly conserved developmental program where a loss of epithelial markers is 
associated with gain of mesenchymal markers (e.g., N-cadherin vimentin, LEF-1).  Adapted with 
permission from Kalluri R, Weinberg RA.  The basics of epithelial-mesenchymal transition.  J Clin Invest. 

2009 Jun;119(6):1420-8. 
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TGF  Superfamily Signaling in Epithelial Biology 

 

    The TGF  superfamily is made up of two subfamilies of cytokines:  1) the TGF /Activin/Nodal 

subfamily and 2) the Bone Morphogenetic Protein (BMP) / Growth and Differentiation Factor (GDF) / 

Muellerian Inhibiting Substance (MIS) subfamily (Shi and Massague 2003).  For purposes of this 

work, the accessory receptors (e.g., Betaglycan, Cripto, or Endoglin), interactions with inhibin, GDFs, 

or the Mullerian subfamily (AMH/MIS) and their associations in the TGF  superfamily will not be 

further discussed.  Specific TGF  and BMP-related cytokines and their shared signaling 

intermediates function as critical developmental regulators, cell growth inhibitors and tumor 

suppressors in normal tissue.  Germline loss of certain components of the signaling intermediates for 

these cytokines often results in embryonic lethality due to their critical roles in development.  On the 

other hand, somatic cell mutations or acquired loss of function may contribute to the development or 

progression of cancer (Massague 2008).  

         The TGF  family of ligands  (e.g., TGF , BMP, Activin) bind and signal through a heteromeric 

complex of ligand-specific type I (Alk 1-7) and type II serine/threonine kinase receptors (Shi and 

Massague 2003).  Ligand access to the serine/threonine kinase receptors is regulated by a family of 

proteins known as ligand traps, proteins that selectively bind to specific TGF  superfamily ligands, 

thereby blocking access to the receptors (Neilson 2005; Shi and Massague 2003).  For example, the 

ligand trap protein, Noggin, inhibits receptor activation of the BMP cytokines 2, 4, and 7 (Fig. 3).  

Other proteins, like kielin-chordin like protein (see Fig. 3) have been noted to enhance BMP signaling 

to promote a more epithelial phenotype (Lin et al. 2007).  A type II receptor is necessary for specific 

ligand binding.  Following binding of ligand to type II receptors, the ligand-bound type II receptor 
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Figure 3.  Overview of TGF  signaling.  Ligand interaction with type II receptors leads to activation of 

type I receptors.  Type I receptors phosphorylate the receptor-associated Smads which complex with 
Smad4 and translocate to the nucleus to induce target gene transcripts.  Ligand traps (e.g., Noggin) or 

agonists (e.g. KCP) can inhibit or potentiate signaling responses.  Key:  TGF  = transforming growth 

factor beta; BMP=bone morphogenetic protein; P=phosphorylation event; RII = receptor type II; RI = 

receptor type I; R-Smads=receptor-associated Smads (Smads 1, 2, 3, 5 or 8); KCP: kielin-chordin like 
protein.  Adapted and re-drawn with permission from Ming Zhao M.D., Ph.D., Vanderbilt Medical 

Center. 

forms an oligomeric complex with the type I receptor, resulting in type I receptor phosphorylation.  

Information from the tissue microenvironment to the cell nucleus by these growth inhibitors is then 

transmitted by specific receptor-associated Smad proteins (R-Smads) associated with the growth 

factor (type II) receptors.  Eight members of the vertebrate TGF  family intracellular signaling 

pathways have been identified, and by consensus are now referred to as Smad1 through Smad8 (Shi 

and Massague 2003).  As a general rule, Smads1, 5, and 8 are R-Smads  

that function to transduce signals from the bone morphogenetic proteins (BMPs) and their specific 

type II (BMPR-II, ActR-II/B) and type I (Alk3, Alk6, Alk2) receptors (see Fig. 3).  
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Smads2 and 3 are important R-Smad substrates of Alk5 that may be activated by either activin 

(through the type II ActR-IIB receptor) or by TGF  selective type II receptors.  Inhibitory Smads 6 and 

7 (I-Smads) inhibit the signaling function of the receptor-activated Smads (not shown in Fig. 3). 

Smad6 preferentially inhibits BMP signaling, whereas Smad7 can inhibit both TGF  and BMP 

signaling by preventing receptor-mediated phosphorylation of the receptor-activated Smad proteins 

(Shi and Massague 2003).  When phosphorylated by the type I receptor, R-Smads associate with the 

common signaling intermediate, Smad4 (co-Smad4), which translocates the entire R-Smad:Co-Smad 

complex to the nucleus, where it associates with one or more of a number of DNA-binding partners 

and activates the transcription of specific target genes important for both growth inhibition and EMT.  

Steady-state levels of Smad proteins are regulated through the ubiquitin-proteasome degradation 

pathway (Massague, Seoane, and Wotton 2005). 

TGF  and Smad4 in Gastrointestinal Homeostasis and Cancer  

         The TGF  family of peptides has a growth inhibitory role in intestinal epithelium.  Kurokowa and 

colleagues (Kurokowa, Lynch, and Podolsky 1987) were the first to report that TGF  was an inhibitor 

of cultured rat intestinal epithelial cells.  It was subsequently determined that inhibition of cultured 

intestinal epithelial cell proliferation after TGF  treatment results from mid-to-late G1 cell cycle arrest 

associated with down-regulation of cyclin D1 (Ko et al. 1995) and inhibition of Cdk4-associated 

retinoblastoma kinase activity (Ko et al. 1998).  In vivo, there is increased expression of both TGF 1 

and type II TGF  receptor (T RII) in intestinal epithelial cells as they migrate from the proliferative 

compartment toward the lumen in both the small intestine and the colon (Barnard et al. 1989; 

Barnard, Warwick, and Gold 1993; Winesett, Ramsey, and Barnard 1996).  This pattern of expression 

is inversely correlated with the mitotic activity in the gut epithelium (Zhang et al. 1997). Taken 
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together, these findings suggest that TGF  plays a regulatory role in intestinal cell proliferation, and 

perhaps differentiation. 

         TGF  regulation of epithelial cell proliferation is altered by cellular transformation. TGF  inhibits 

growth of non-tumorigenic human colonic adenoma cells in culture; however, conversion of adenoma 

to a tumorigenic adenocarcinoma is associated with a decreased response to the inhibitory actions of 

TGF  (Manning et al. 1991).  Studies in human colon carcinoma cell lines have demonstrated a 

correlation between the differentiation state of tumors and sensitivity to the anti-proliferative and 

differentiation-promoting effects of TGF  (Hoosein et al. 1989).  Thus, loss of growth-inhibitory 

responses to TGF  appears to be a common and important event that attends malignant 

transformation of epithelial cells. 

         One of the mechanisms by which tumor cells become resistant to the growth inhibitory actions 

of TGF  may be through down-regulation or mutation of the T RII.  Several studies have suggested 

that a decrease in expression of T RII is a key step for the neoplastic transformation of epithelial cells 

(Arteaga et al. 1988; Kimchi et al. 1988; Sun et al. 1994).  Inactivation of the T RII has been detected 

in a subgroup of colorectal carcinomas associated with the microsatellite instability or replication error 

phenotype found in approximately 13% of all colorectal cancers (Markowitz et al. 1995).  Mutations of 

T RII have also been identified in 15% of microsatellite stable colorectal cancers (Grady et al. 1999).  

Of potential importance are the observations that the subset of colorectal cancers that exhibit 

microsatellite instability (and T RII mutations) tend to be proximal colon cancers and have a better 

prognosis (stage for stage) than the majority of sporadic colorectal cancers that do not share these 

genetic defects (Gryfe et al. 2000; Thibodeau, Bren, and Schaid 1993).  

         In addition to loss of the normal growth inhibitory processes mediated from mutations of the 

T RII, mutations or epigenetic loss of expression of Smad signal transduction proteins also 
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contributes to tumorigenesis and tumor progression in the GI tract (Elliott and Blobe 2005).  Mutations 

of Smad3 have not been identified in human cancers, but 37% of gastric carcinomas exhibit 

decreased Smad3 immunoreactivity and when Smad3 deficient gastric cancer cells are forced to 

express ectopic Smad3, TGF  responsiveness is restored and xenograft growth in nude mice is 

suppressed in Smad3 transfected gastric cancer cells versus controls (Han et al. 2004).  Smad2 

mutations have been identified in a small subset (under 10%) of colorectal cancers (Eppert et al. 

1996; Ohtaki et al. 2001). 

    The most commonly disrupted Smad mediator in cancers, including colorectal cancer, is Smad4.  

Mutations of Smad4 have been identified in 50% of pancreatic cancers (Hahn et al. Homozygous 

deletion map at 18q21.1 in pancreatic cancer 1996), 20-30% of colorectal cancer (Riggins et al. 1997; 

Riggins et al. 1996; Thiagalingam et al. 1996) and in 10-20% of small bowel adenocarcinomas (Blaker 

et al. 2004). Loss of Smad4 expression is correlated with loss of E-cadherin expression (Reinacher-

Schick et al. 2004), liver metastasis and poor prognosis in colon cancer (Alazzouzi et al. 2005; Miyaki 

et al. 1999).  Loss of Smad4 expression and deletion of chromosome 18q have recently been 

associated with increased incidence of lymph node metastasis in colorectal cancer (Tanaka et al. 

2008).  These reports indicate that loss of Smad4 expression is an important contributing factor for 

tumorigenesis in colorectal cancer. 

Bone Morphogenetic Proteins in the Intestinal Tract  

         The role of BMP subfamily ligands and receptors in the GI tract are less well known than that of 

the TGF  subfamily, though recent experimental observations indicate their activity in growth, 

development and cancer.  BMP-2 and its receptors are expressed in the mouse and human colon, 

predominantly in mature colonocytes at the epithelial surface. BMP-2 promotes apoptosis and growth 

inhibition in cultured colon cancer cells (Hardwick et al. 2004).  Howe and colleagues have identified 
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germline mutations in the gene encoding the BMP receptor 1A in Juvenile Polyposis Syndrome (JPS) 

(Howe et al. 2001; Sayed et al. 2002).  Of note, previous studies also implicated Smad4 mutations in 

a significant subset of JPS patients (Howe et al. 1998).  Villin promoter-directed expression of 

Noggin, a natural BMP antagonist, in the intestine of mice as well as targeted disruption of the BMP 

signaling pathway through conditional inactivation of the Bmpr1a gene in mice resulted in similar 

histopathology as is seen in JPS (Haramis et al. 2004; He et al. 2004).  Similarly, BMP-2 expression 

was found to be decreased in microadenomas of familial adenomatous polyposis (FAP) patients 

(Hardwick et al. 2004). These studies indicate that BMP signaling is critical for homeostasis in the 

intestinal tract, and loss of this function leads to pre-cancerous conditions such as JPS and FAP. 

TGF  Superfamily Signaling and EMT 

         In contrast with the tumor suppressive effects of Smad4 intrinsic to TGF  and BMP signaling, 

additional data demonstrate that Smad4 may also regulate EMT, perhaps through TGF  and/or BMP 

mediated signaling interactions with Ras/MAPK, PI3K or Wnt signaling pathways (Valcourt et al. 

2005).  Others have reported that TGF  and BMP ligands and their respective ligand trap peptides 

have homeostatic opposing effects on EMT in some systems, with TGF  promoting and BMPs 

inhibiting EMT (Zeisberg et al. 2003) and (reviewed in (Neilson 2005)).  The balance between a 

differentiated epithelial phenotype and the more aggressive and invasive mesenchymal phenotype is 

also influenced by the abundance and activity of locally produced cytokines.  Rees and colleagues 

recently reported evidence of EMT at the leading invasive front of esophageal adenocarcinomas that 

consisted of loss of membrane E-cadherin expression, increased -SMA and vimentin, along with 

diffuse stromal TGF- 1 immunostaining (Rees et al. 2006).  In contrast, BMP-7 immunostaining was 

absent at the invasive front with occasional cells showing increased immunoreactivity in the central 
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tumor areas.  These data suggest an intricate balance in the epithelial cell microenvironment amongst 

members of the TGF  superfamily to either prevent or promote EMT. 

 

Wnt Signaling in Intestinal Growth, Differentiation and Colorectal Cancer 

    Wnt signaling is a critical regulator of embryonic development. The foundation for characterization 

of canonical Wnt signaling was laid by the discovery that the Drosophila segment polarity gene 

Wingless and the murine proto-oncogene Int-1 were of a common origin (Wg + Int-1 = Wnt) (Nusse 

and Varmus 1982; Rijsewijk et al. 1987).  -catenin-mediated canonical Wnt signaling is critical for 

maintenance of the intestinal epithelial stem cell compartment (Reya and Clevers 2005).  In adult 

organisms, Wnt signaling regulates intestinal crypt progenitor cell compartments and the control of 

cell fate along the intestinal crypt-villus axis (Radtke and Clevers 2005).  This pathway is highly 

conserved from invertebrates to vertebrate organisms and intracellular levels of the key signaling 

mediator, -catenin, are tightly controlled. The differentiated epithelial cell goes to great lengths to 

restrict the levels of cytosolic -catenin. The Wnt pathway is normally activated by Wnt ligand and 

receptor interactions in an embryologic or stem cell microenvironment and it is widely held that the 

central event in canonical Wnt signaling is cytoplasmic accumulation of -catenin and its subsequent 

nuclear translocation and activity (Gordon and Nusse 2006).  Although the non-canonical/Planar Cell 

Poloarity Wnt pathway may play an important role in epithelial pathobiology and cell movement in 

gastrulation (Veeman, Axelrod, and Moon 2003), it will not be discussed further in this work.  

When Wnt signaling is activated, -catenin levels transiently increase intracellularly and -

catenin translocates to the nucleus where it forms a transcriptional regulatory complex with the T cell-

specific transcription factor/lymphoid enhancer-binding factor 1 (TCF/LEF) to activate transcription of 

cyclin D1, c-MYC and other downstream target genes (He et al. 1998; Tetsu and McCormick 1999).  
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In the absence of Wnt signaling, -catenin levels in the cytoplasm are exceedingly low and the -

catenin pools are localized to the adherens junctions in a complex with E-cadherin (see Fig. 4, left 

panel).  Normally, in the absence of a Wnt ligand, low cytoplasmic concentrations of -catenin are 

maintained by the scaffold protein Axin.  Axin coordinates the formation of a protein complex that 

consists of casein kinase 1  (CK1 ), glycogen synthase kinase 3  (GSK3 ), the tumor suppressor 

adenomatous polyposis coli (APC) and protein phosphatase 2A (PP2A) (Fig. 4, left panel, CK1  and 

PP2A not shown).  Together, components of this complex act to constitutively phosphorylate -

catenin, leading to its recognition by the beta-transducin repeat containing ( -TrCP) subunit of the 

SCF ubiquitin ligase complex (SCF -TrCP), catalytic transfer of polyubiquitin chains to -catenin and its 

rapid degradation by the 26S proteasome (Aberle et al. 1997; Ikeda et al. 1998; Kishida et al. 1998; 

Maniatis 1999). 

Inactivating mutations in the APC (adenomatous polyposis coli) gene or activating mutations in 

the -catenin gene (ctnnb1) result in failure to phosphorylate -catenin with stabilization and 

accumulation of -catenin in the cytoplasm and aberrant activation of Wnt signaling (Fig. 4, right 

panel).   Hypophosphorylation of -catenin leads to accumulation in the cytoplasm and translocation 

to the nucleus with resultant regulation of target gene expression with the TCF/LEF family of 

transcription factors (Gordon and Nusse 2006).  The significance of the role of APC in colorectal 

epithelial homeostasis is revealed by the fact that over 80% of sporadic colorectal cancer cases have 

truncating mutations in the APC gene, which has often been considered the gatekeeper in the 

genesis of colorectal cancer because it is the earliest detectable genetic lesion in most premalignant 

colorectal adenomas.  Aberrant stabilization of -catenin in colorectal cancer can result either from 

inactivating APC mutation or stabilizing mutations in -catenin (found in 10% of sporadic colon 

cancers). 
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Figure 4.  Canonical Wnt signaling pathway.  In the absence of Wnt ligand, E-cadherin binds and 
sequesters -catenin to the plasma cell membrane at the adherens junction (with p120 and alpha-

catenin), rendering it unavailable for transcriptional activity (left panel).  Wnt ligand interaction with the 
LRP receptor complex (Frizzled + LRP 5/6) can activate the pathway (right panel) and free cytoplasmic 

-catenin levels increase.  -catenin translocates to the nucleus where it forms a transcriptional 

regulatory complex with TCF/LEF1 (TCF) to activate transcription of downstream targets (e.g., c-MYC). 
Key:  LRP (LDL-receptor related protein), Dsh (Dishevelled), TCF/LEF1 (T-cell factor/lymphoid enhancer 
factor), sFRP (secreted Frizzled-related protein), DKK (Dickkopf), and GSK3 (glycogen synthase kinase 

3 ).  Adapted with permission from the publisher from Logan CY, Nusse R.  The Wnt signaling pathway in development and disease.  Annu Rev 

Cell Dev Biol.  2004; 20:781-810. 

 

 

 

 

 

 

Adherens Junctions, Wnt Signaling and EMT 

         Adherens junctions are specialized forms of cadherin-based adhesive contacts important for 

tissue organization in developing and adult organisms.  E-cadherin is an epithelium-specific cadherin 

that forms protein complexes with cytoplasmic proteins (catenins) that convert the specific, 

homophilic-binding capacity of the extracellular domain into stable cell adhesion.  Critical proteins  

found at the adherens junction include E-cadherin, -catenin, -catenin and p120 catenin (see Fig. 4, 

left panel).  E-cadherin is a calcium-dependent adhesion protein.  It is the major component of the 

adherens junction that facilitates cell-cell communication, and E-cadherin also functions as a tumor 
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suppressor (Christofori and Semb 1999)  Junctional proteins may also serve important roles other 

than as structural components of intercellular junctions.  E-cadherin binds and sequesters 

cytoplasmic -catenin, rendering -catenin unavailable for signaling in the canonical Wnt/ -

catenin/TCF signaling cascade (Nelson and Nusse 2004).  Therefore, E-cadherin like the APC protein 

is an important tumor suppressor protein. Both E-cadherin and APC have essential roles in 

preventing accumulation of cytoplasmic -catenin, and thereby prevent inappropriate activation of the 

Wnt pathway (Christofori and Semb 1999). 

Loss of E-cadherin in epithelial malignancies is associated with invasion, metastasis, and 

worse prognosis (Brabletz et al. 2001; Ikeguchi, Makino, and Kaibara 2001; Ikeguchi et al. 2000; 

Kanazawa et al. E-cadherin expression in the primary tumors and metastatic lymph nodes of poorly 

differentiated types of rectal cancer 2002; Kanazawa et al. Poorly differentiated adenocarcinoma and 

mucinous carcinoma of the colon and rectum show higher rates of loss of heterozygosity and loss of 

e-cadherin expression due to methylation of promoter region 2002).  Loss of normal expression of E-

cadherin may occur by any of several well-described mechanisms. These mechanisms may include 

transcriptional and post-translational regulation of E-cadherin membrane localization and stability.  

Reynolds and colleagues demonstrated that p120 catenin interaction with E-cadherin is essential for 

maintenance of E-cadherin stability and function as a tumor suppressor in epidermoid and colorectal 

cancer cells (Davis, Ireton, and Reynolds 2003; Ireton et al. 2002).  Transcriptional repression is also 

a prominent regulatory mechanism by which E-cadherin expression may be suppressed in epithelial 

and colorectal cancer cells (Batlle et al. 2000).  Two basic-helix-loop-helix (bHLH) proteins, E12/E47 

(Perez-Moreno et al. 2001) and Twist (Yang et al. 2004) have been identified as interacting with the 

E-cadherin promoter E-box region to repress E-cadherin expression and to induce the EMT 

phenotype (Kang and Massague 2004).  Even though it is known that E-cadherin can regulate -
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catenin levels and that E-cadherin itself is regulated via a transcriptional mechanism, the 

transcriptional regulation of -catenin as it relates to colorectal cancer, Smad4 and EMT has not been 

described, but will be discussed in Chapter III. 

Alteration of E-cadherin expression in experimental models has profound effects on the 

invasive and metastatic potential of human cancer cells.  E-cadherin expression in human MDA MB 

231 breast cancer cells suppressed the development of bone metastases in athymic (nude) mice 

(Mbalaviele et al. 1996).  E-cadherin may interact with other Wnt target genes such as EphrinB2 to 

modulate tumorigenesis (Batlle et al. 2002; Cortina et al. 2007) and interestingly, we found EphrinB2 

to be down-regulated in the metastatic gene expression profile found in Chapter II of this work.  

Suppression of the transcriptional repressor, SLUG (or SNAI2) by siRNA restores E-cadherin 

expression and partially reverts the transformed phenotype in Ras transformed rat intestinal epithelial 

cells (Schmidt et al. 2005).  Recent work has shown that restoration of Smad4 in Smad4-deficient 

SW480 colon cancer cells induced E-cadherin expression while reducing total -catenin protein 

levels, and these effects were accompanied by a marked decrease in -catenin/TCF activity (Shiou et 

al. 2007).  These data implicate Smad4 as a key modulator of both EMT and Wnt signaling in colon 

cancer cells and will be expanded upon further in Chapter III. 

Tumor Biology at the Invasive Front 

         Increased nuclear -catenin localization and Wnt signaling have been demonstrated at the 

tumor-stromal interface of the leading invasive edge of tumors and is associated with localized 

evidence of EMT (loss of E-cadherin at the cell membrane) and disruption of cell polarity (Brabletz et 

al. 2001).  This group recently showed that well-to-moderately differentiated pT3 rectal 

adenocarcinomas express basement membrane proteins, but breakdown of the basement membrane 

in many of the rectal cancers occurs in discrete regions adjacent to cancer cells at the invasive front 



 18 

of tumors (Spaderna et al. 2006).  A provocative observation from this report was that the basement 

membrane was rebuilt in both lymph node and distant metastases, accompanied by the same 

glandular morphology observed in the majority of the primary tumor, including the predominance of 

the epithelial phenotype, but that the entire process was recapitulated in the invasive regions of the 

metastatic lesions. These observations support the notion that in most cases, EMT is a dynamic, 

regulated and reversible process.  The notion that -catenin may also play a prominent role at the 

invasive front of colorectal cancers will be introduced in Chapter III. 

 

Other Contributing Pathways in the Pathogenesis of Colorectal Cancer 

 

    The Notch signaling cascade plays a role in intestinal homeostasis, cell fate decisions and 

differentiation (Radtke and Clevers 2005).  This pathway contributes heavily to the development and 

maintenance of secretory and enteroendocrine lineages important for regulation of the intestinal 

epithelial milieu (Jenny et al. 2002; Jensen et al. 2000; Yang et al. 2001).  Interestingly, a major target 

of the Notch signaling pathway, Hes1, is up-regulated in the 34-gene classifier as discussed in 

Chapter II.  Other important growth factor pathways contribute to colorectal cancer and are worthy of 

mention.  Activation of prostaglandins is an early step in the development of an adenoma (Markowitz 

2007) and this response can be induced by inflammation or up-regulation of cyclooxygenase-2 (COX-

2) that spurs the production of prostaglandin E2  (PGE2) and this action is strongly associated with 

colorectal cancer (Cha and DuBois 2007).  Loss of 15-prostaglandin dehydrogenase promotes 

activity of PGE2 and has been noted in the majority of colorectal adenomas and cancers (Yan et al. 

2004).  Interestingly, COX-2 is a Wnt target gene (Howe et al. 1999) and clinical trials have shown the 
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benefits of COX-2 inhibition in prevention and regression of adenomas (Bertagnolli et al. 2006).  The 

potential role of inflammation in the metastatic process will be discussed further in Chapter II.   

    Epidermal growth factor has been noted to play an important role via the epidermal growth factor 

receptor (EGFR) in a subset of colorectal cancer patients (Saltz et al. 2004).  Activation of EGFR can 

mediate up-regulation of prostaglandins (Coffey et al. 1997) in addition to up-regulation of MAPK and 

PI3K signaling pathways, all of which may play a role in lack of response to anti-EGFR therapies in 

advanced colorectal cancers (Wong and Cunningham 2008).  Notably, prominent members of this 

pathway, EGFR and HBEGF were implicated in the metastasis-associated signature as described in 

Chapter II.  Additionally, Vascular endothelial growth factor (VEGF) and its critical role in normal and 

transformative angiogenesis in tumor development and colorectal cancer pathogenesis have been 

well described (Ellis and Hicklin 2008).  The role of anti-VEGF treatment appears promising even 

though patient selection by reliable molecular markers for this treatment remains difficult (Hurwitz et 

al. 2004).  Finally, cancer stem cells play a prominent role in the development of colorectal cancer 

(O'Brien et al. 2007) and eventual metastasis (Boman and Huang 2008).  Although the isolation of 

individual colon cancer stem cells is not currently feasible, certain cell-surface proteins hold promise 

as markers (e.g. CD133, CD44) (Yeung and Mortensen 2009; Zeilstra et al. 2008).  The molecular 

mechanisms of colon cancer stem cell biology and treatment possibilities that would exist once these 

cells are readily identifiable hold great potential for the treatment and prevention of colorectal cancer.  

It is recognized that these additional pathways play important roles in the pathogenesis of colorectal 

cancer and may interact with molecules implicated in our 34-gene classifier and in the Wnt and TGF  

pathways; however, these topics are beyond the scope of this work and will not be addressed further.  
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Predictive and Prognostic Markers and Molecular Detection in Colorectal Cancer 

 

    An immense challenge to clinicians and biologists worldwide is the translation of colorectal cancer 

genomic data into a clinically useful and applicable prognostic test.  As mentioned above, the 

complexities of EGFR signaling via RAS and BRAF along with anti-EGFR therapy have been applied 

with individual patient genomic status in mind and have led to the strong recommendation to have all 

patients with colorectal cancer genotyped for KRAS mutations (Wong and Cunningham 2008).  Only 

a few markers can identify high-risk patients on a consistent basis and thereby be used to guide 

treatment decisions for colorectal cancer patients (e.g., APC, MSH2).  Many other markers have not 

been tested prospectively and have unconfirmed utility as prognostic markers.  It is well established 

that patients with microsatellite-high (MSI-H), sporadic colorectal cancer typically have favorable 

outcome (Samowitz et al. 2001) and recently loss of p27 has been associated with poor outcome in 

stage III colon cancers (Bertagnolli et al. 2009).  Currently, loss of heterozygosity at chromosome 18q 

(Watanabe et al. 2001) is being evaluated prospectively in stage II and stage III patients for its value 

in selection of high-risk stage II and III colorectal cancers at resection.   

    Determination of high-risk colorectal cancers at the earliest stage possible is a primary goal for 

clinicians worldwide (e.g., at surgical resection or in a surveillance assay).  Untargeted adjuvant 

chemotherapy in stage II patients produces a small absolute reduction in death at 5 years (Quasar 

Collaborative et al. 2007), but recent meta-analysis indicates that a sub-group of ‘high-risk’ stage II 

patients do benefit from such treatment (Figueredo, Coombes, and Mukherjee 2008).  Conversely, 

40-45% of stage III patients will not recur after surgical resection of their cancer (Ragnhammar et al. 

2001), whereas 55-60% of stage III patients would die without adjuvant chemotherapy.  Therefore, 

objective identification of high-risk stage II patients who would benefit from adjuvant chemotherapy 
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and selection of low-risk stage III patients who could be spared the cost, morbidity and potential 

mortality of systemic chemotherapy could prevent thousands of deaths each year in the US.  To this 

end, use of molecular detection tools for aberrant DNA methylation in fecal DNA, plasma cell-free 

DNA and in resected tissues with RNA profiling are under intense investigation to uncover reliable 

‘high-risk’ biomarkers (Imperiale et al. 2004; Jorissen et al. 2009; Li et al. 2009).  

 

Biological Models of Colorectal Cancer 

 

  Multiple mouse models of colorectal cancer are in use and have been successful in aiding our 

understanding of colorectal cancer pathogenesis.  For example, since it is known that inappropriate 

activation of the Wnt pathway is the key event in initiation of colonic polyps, the APCMin mouse has 

been particularly informative on its own and with introduction of additional genetic lesions that 

potentiate the development of adenomas and/or adenocarcinomas (Moser, Pitot, and Dove 1990; Su 

et al. 1992; Takaku et al. 1998).  Transplantation models (e.g. xenografts) are an important 

methodology to inform the biology of colon cancer cell tumorigenicity and metastasis and were used 

prior to the development of genetic mouse models (Heijstek, Kranenburg, and Borel Rinkes 2005; 

Kobaek-Larsen et al. 2000).  There are few (if any) genetic mouse models of spontaneous tumor 

development that invade and then metastasize (Taketo and Edelmann 2009).  The development of 

such a model is critical since metastasis is responsible for most of the mortality in colorectal cancer.  

In the meantime, xenograft models and colon cancer cell lines derived from mouse colon cancers 

(Corbett et al. 1975; Franks and Hemmings 1978) in addition to genetic mouse models are the 

workhorses for discovery in the biology and progression of colorectal cancers.   
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    In this body of work, we demonstrate novel, in vitro and in vivo translational application to human 

disease in a mouse colon cancer cell line to the process of metastasis (see Chapter II) in addition to 

testing of human colon cancer cell lines in a xenograft model to compliment in vitro findings in 

exploring the process of tumor suppression (see Chapter III).  Use of these biological models can still 

allow important discoveries even though a spontaneous model of colorectal tumorigenicity and 

metastasis is on the horizon.  For example, we describe two strategies based upon biological models 

that may prove useful in detection of high-risk colorectal cancer patients with use of tissue available 

upon surgical resection to inform treatment decisions and guide novel biologic therapies in Chapters 

II and III of this work.  First, we used a mouse model of colorectal cancer founded on the biology of 

metastasis to identify a gene expression signature that when applied to resected tumor tissues from 

colon cancer patients selected high-risk stage II patients and low-risk stage III patients.  Secondly, we 

used an in vitro model of epithelial cells to uncover a novel mechanism whereby Smad4 represses 

the transcriptional activity of -catenin and downstream Wnt signaling activity.  This program of 

transcriptional repression by Smad4 led to the discovery of a gene expression signature that 

identified an additional subset of high-risk colorectal cancer patients.   
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Summary 

 

    Colorectal cancer is the second most lethal, non-cutaneous epithelial cancer in the United States.  

Metastasis contributes to the majority of cancer-related deaths in this disease.  Metastasis closely 

resembles the developmental process of EMT and reliable models to recapitulate this process can be 

useful to shed light onto the biology and prognosis of patients with colorectal cancer.  In Chapter 2, 

we describe an immunocompetent mouse model that led to the discovery of a gene signature of 

metastasis, which identified stage II and III colon cancer patients prone to recurrence and death from 

metastatic disease, in addition to a low-risk sub-group of stage III patients for whom adjuvant 

chemotherapy provided no additional survival benefit.  These findings form the basis for substantive 

pre-clinical biomarker testing and eventual translational application to a clinical trial.  This work was 

recently published (Smith et al.).   

    On the other hand, defects in tumor suppressor genes affect the majority of colorectal cancer 

patients.  Many pathways are defective in the pathogenesis of colorectal cancer; however, more than 

half of the patients have defects in the Wnt/ -catenin and TGF  signaling pathways which are critical 

for development and intestinal homeostasis.  In Chapter 3, we use in vitro and in vivo models to 

describe a new role for the tumor suppressor Smad4 in the repression of -catenin transcriptional 

activity in epithelial cells.  This repression was associated with down-regulation of Wnt signaling and 

reversal of EMT.  Clinical relevance of this effect was demonstrated by an epithelial cell-specific, 

Smad4-modulated gene expression profile associated with Wnt signaling suppression, which 

contributed prognostic information for colorectal cancer patients independently of pathological 

staging.  This work will be submitted for publication immediately post-dissertation.  These findings 

should facilitate hypothesis testing for biologically-targeted therapeutic interventions based on 
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TGF /Smad and Wnt/ -catenin pathway activity levels.  Overall, these results provide insight into the 

biology of metastasis and tumor suppression in colorectal cancer to promote seamless translation to 

care of the colorectal cancer patient at the bedside. 
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CHAPTER II 

 

AN EXPERIMENTALLY DERIVED METASTASIS GENE EXPRESSION PROFILE PREDICTS 

RECURRENCE AND DEATH IN COLON CANCER PATIENTS 

 

Abstract 

 

    Staging inadequately predicts metastatic risk in colon cancer patients. We used a gene expression 

profile derived from invasive, murine colon cancer cells that were highly metastatic in an 

immunocompetent mouse model to identify colon cancer patients at risk for recurrence.  This phase I, 

exploratory biomarker study used 55 colorectal cancer patients from Vanderbilt Medical Center 

(VMC) as the training dataset and 177 patients from the Moffitt Cancer Center as the independent 

dataset. The metastasis-associated gene expression profile developed from the mouse model was 

refined using comparative functional genomics in the VMC gene expression profiles to identify a 34-

gene classifier associated with high risk of metastasis and death from colon cancer. A metastasis 

score derived from the biologically based classifier was tested in the Moffitt dataset.  A high score 

was significantly associated with increased risk of metastasis and death from colon cancer across all 

pathological stages and specifically in stage II and stage III patients. The metastasis score was 

shown to independently predict risk of cancer recurrence and death in univariate and multivariate 

models. For example, among stage III patients, a high score translated to increased relative risk for 

cancer recurrence (hazard ratio = 4.7 [95% confidence interval=1.566-14.05]). Furthermore, the 

metastasis score identified stage III patients whose 5-year recurrence-free survival was >88% and for 
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whom adjuvant chemotherapy did not increase survival time.  A gene expression profile identified 

from in an experimental model of colon cancer metastasis predicted cancer recurrence and death, 

independently of conventional measures, in patients with colon cancer. 

 

Introduction 

 

 Colorectal carcinoma is the 3rd most commonly occurring non-cutaneous carcinoma and the 

2nd leading cause of cancer-related death in the United States (Jemal et al. 2009).  While it is well 

established that adjuvant chemotherapy for stage III colon cancer patients results in a survival benefit 

for the group, careful review of clinical trials data reveals that 40-44% of stage III patients enrolled in 

“surgery-only” groups did not recur in five years even without adjuvant treatment (Ragnhammar et al. 

2001).  Therefore, this subgroup of stage III patients, if prospectively identifiable, is unlikely to achieve 

benefit from and could be spared adjuvant chemotherapy. In addition, clinical trials have failed to 

demonstrate the benefit of adjuvant chemotherapy when applied to unselected patients with stage II 

colon cancer (Benson et al. 2004; Gill et al. 2004; Mamounas et al. 1999).  On the other hand, some 

studies suggest that a subset of high-risk stage II colon cancer patients may benefit from adjuvant 

therapy (Figueredo et al. 2004; Figueredo, Coombes, and Mukherjee 2008; Quasar Collaborative et 

al. 2007).  Much of these data for stage II patients come from meta-analyses and the question of 

whether adjuvant treatment really improves outcomes in stage II patients with “high-risk” features 

(e.g., T4 lesions, poorly differentiated histology or lymphovascular invasion) has not been answered 

in prospective clinical trials to date. Thus, an accurate and reliable method that identifies patients at 

greatest and least risk (e.g., “high-risk” stage II and “low-risk” stage III patients) could improve the 

selection of individualized therapy within these groups.   
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In this study, an experimental mouse model of metastasis was used to develop a gene 

expression profile that discriminated high versus low risk of cancer recurrence and death in colon 

cancer patients.  This biologically based model identified distinct subsets of stage II and III colon 

cancer patients at greater risk of cancer recurrence and death.  Using a metastasis score derived 

from the gene expression profile, we found that low metastasis score stage III patients did not gain 

significant benefit from adjuvant chemotherapy, suggesting that these patients could have been 

spared the potentially toxic and costly effects of these treatments.  Conversely, high metastasis score 

stage III patients treated with adjuvant chemotherapy had markedly improved outcomes compared 

with high metastasis score patients who did not receive adjuvant chemotherapy. Thus, our 

biologically based gene expression profile provides a potential platform to facilitate selection of colon 

cancer patients who may benefit from adjuvant systemic therapy. 

 

Materials and Methods 

 

Cell Culture and Mouse Model Overview 

 

     MC-38 mouse adenocarcinoma cells were obtained from the American Type Culture Collection 

(ATCC, Manassas, VA) (Lafreniere and Rosenberg 1986).  MC-38 cells were transfected with firefly 

luciferase gene (pGL3 basic, Promega, Madison, WI) and selected (G418, Invitrogen, Carlsbad, 

California).  To enrich for invasive cells, 7.5 x 105 cells were seeded onto 6-well, 8.0 μM pore 

transwell polycarbonate membrane inserts (Costar, Cambridge, MA) coated with 2.5 mg/mL matrigel 

and incubated with serum-free DMEM in the upper chamber and complete DMEM in the bottom well.  

After 12 hours, cells that invaded were aseptically harvested by brief, gentle trypsinization and 
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transferred to new dishes (Poste, Doll, and Fidler 1981) and six serial passages through matrigel-

coated Boyden chambers ensued.  The selected invasive cells and the parental luciferase-expressing 

MC-38 cells were injected into the tail vein and development of lung metastases was assessed (Fidler 

and Nicolson 1976). Development of metastases was determined by bioluminescence imaging 

(Jenkins et al. 2003; Wu et al. 2001). The MC-38met cells were derived by culture of tumor cells from 

a metastatic lung tumor (Whitehead 1976). The Vanderbilt Institutional Animal Care and Use 

Committee approved all animal work.  

Detailed Cell Culture and Mouse Methods 

MC-38 mouse adenocarcinoma cells were obtained from ATCC and cultured. MC-38 cells 

were transfected with firefly luciferase gene in pGL3 basic (Promega, Madison, WI) and selected in 

0.5 mg/mL G418 (Invitrogen, Carlsbad, California) and referred to as MC-38 parentals. To enrich for 

invasive MC-38 parental cells, 7.5 x 105 cells were seeded onto 6-well, 8.0 μM pore transwell 

polycarbonate membrane inserts (Costar, Cambridge, MA) coated with 2.5 mg/mL matrigel and 

incubated with serum-free DMEM in the upper chamber and complete DMEM in the bottom well.  

Cells collected after the 6th passage were designated “MC-38inv”.  To quantify the enrichment of 

invasive cells, cells were again incubated in matrigel-coated transwell filters for 24 hours at 37°C, 5% 

CO2.  Filters were washed and cells on the upper surface were removed with cotton swabs.  The cells 

that had invaded were fixed in 4% paraformaldehyde for 10 minutes and stained with 1% crystal 

violet.  Four random fields were counted to determine the numbers of invaded cells.  To determine 

metastatic potential in vivo, equivalent numbers of MC-38 parental or MC-38inv cells were injected 

into the tail veins of C57BL/6 mice and the mice were followed for development of pulmonary 

metastases.  Briefly, unanesthetized C57BL/6 mice were warmed with a heat lamp to allow for 

venous dilation.  Mice were then placed into a plastic restraining apparatus and 2.5 x 105 MC-38 
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parental, MC-38inv or MC-38met cells were injected via lateral tail vein (n = 10).  Successful injection 

and growth of metastatic lung nodules was confirmed by immediate and then weekly 

bioluminescence imaging (BLI).  MC-38 in vivo metastatic cells (“MC-38met”) were derived from 

metastatic lung nodules following washing and sterilization of fresh tumor tissue in 0.04% sodium 

hypochlorite.  The tissue was next rinsed in PBSA, minced into approximately 1mm3 pieces, collected 

and resuspended in collagenase / neutral protease solution for 90 minutes at 37°C with occasional 

shaking.  Remaining tissue pieces were allowed to settle, and were then re-suspended in fresh 

collagenase / neutral protease solution and incubated at 4°C overnight.  The single-cell suspension 

was transferred to a new tube, centrifuged at 100g for 5 minutes, washed once with growth medium 

and then re-suspended in growth medium and plated onto collagen-coated 25cm flasks and 24-well 

dishes.  Cells were grown at 37°C with 5% CO2 under G418 selection.  The invasive phenotype of the 

MC-38met cells was confirmed both in vitro and in vivo.  For the splenic assay, 2.5 x 105 cells were 

implanted under the splenic capsule 2-3 minutes prior to splenectomy and metastatic foci derived 

from resulting circulating tumor cells were followed as they formed in the liver by BLI.  This work was 

done by Fei Wu, M.D., Ph.D. in the Beauchamp laboratory.  The work that follows was performed by 

J. Joshua Smith, M.D. 
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Human Tissue and Microarray Platforms 

 

     The protocols and procedures for this study were approved by the Institutional Review Boards at 

the University of Alabama-Birmingham Medical Center, Vanderbilt Medical Center (VMC), the 

Veterans Administration Hospital (Nashville, TN) and the H. Lee Moffitt Cancer Center (MCC, Tampa, 

FL).  Representative sections of fresh tissue specimens were flash frozen in liquid nitrogen and 

stored at -80ºC until RNA isolation.  Quality assessment slides were obtained to verify the diagnosis.  

Stage was assessed by American Joint Commission on Cancer (AJCC) guidelines.  RNA was purified 

using the RNeasy  kit (Qiagen, Valencia, CA).  Mouse and human samples were hybridized to 

Affymetrix arrays (Mouse Genome 430 2.0 GeneChip Expression and Human Genome U133 Plus 2.0 

GeneChip Expression Arrays, respectively). 

 

Statistical Methods and Identification of VMC High-Risk Patients 

  

    Microarray data for the metastatic MC-38met cells and the parental MC-38 cells and the human 

data were processed using the Robust MultiChip Analysis (Irizarry et al. 2003) algorithm as 

implemented by Bioconductor (pmid: 12582260).  Mouse probe set identifiers (IDs) were mapped to 

Ensembl Gene IDs based on the mapping provided by Ensembl V49 (http://www.ensembl.org). 

 Median expression levels from multiple probe sets corresponding to the same gene were calculated. 

Mouse genes with one-to-one human ortholog mapping as annotated by Ensembl V49 were carried 

forward for differential expression analysis using the limma package in Bioconductor (Smyth, 

Michaud, and Scott 2005)  The 300-gene metastasis-associated signature was determined with the 

limma package in Bioconductor (Smyth, Michaud, and Scott 2005) based upon 3 criteria: (1) Fold 
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change >2; (2) False discovery rate (FDR) based on the moderated t-test followed by Benjamini and 

Hochberg’s multiple-test adjustment <0.01; and (3) Log odds ratio of differential expression (B-

statistic) > 1. This analysis resulted in a subset of 300 differentially expressed genes that could be 

unambiguously mapped to human orthologs.  Gene expression datasets were separately 

standardized such that each gene had a mean expression value of 0 and a standard deviation of 1 

across samples in a dataset.  A direction of expression was assigned for each gene in each sample 

based on the sign of the standardized value.  Directional concordance between MC-38met cells and 

19 patients from VMC with poor outcome (17 stage IV patients and 2 stage III patients who developed 

metastatic recurrence (n=19)) was determined (exact binomial test, P .10) to refine the metastasis-

associated signature to the 34-gene recurrence classifier.  Specifically, each gene of the murine 

training-set was examined in the VMC patient-derived training set in patients with stage III or stage IV 

disease who had experienced metastasis or cancer-related death.  Nineteen patients fell into these 

categories and the median expression level of each of the 300 genes was examined for concordance 

with MC-38met median expression.  The genes with concordance (+1 or -1) in at least 13 of 19 

patients (Exact binomial test, P 0.10) were selected for the putative recurrence profile.  The 

concordance analysis resulted in a 34-gene profile that was termed the ’34-gene metastasis score’ or 

more simply the ‘34-gene recurrence classifier’.  Integration of mouse and human microarray datasets 

was conducted (Lee and Thorgeirsson 2004).  Clustering (Pearson's correlation coefficient) was 

applied to the integrated data set as follows:  average linkage clustering based on Pearson's 

correlation coefficient was applied to the integrated data set. The ceiling was set to cover 95% of all 

data points (e.g., the top 5% z-scores were truncated).  The corresponding z-score is 2.00 for the 34-

gene classifier. 
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Clinical Outcomes and Testing of the 34-gene Based Metastasis Score 

 

    The association between individual gene expression level and clinical endpoint (overall survival 

(OS), disease-specific survival (DSS) and disease-free survival (DFS)) were first analyzed using a 

Cox Proportional Hazard (PH) model (Beer et al. 2002; Hedenfalk et al. 2001; Tukey 1993; 

Yanagisawa et al. 2003) and definitions for each are provided below (Vanderbilt Cox Model (Training 

Dataset)).  A compound score was calculated for each patient by summation of a Cox PH weighted 

sum (Wald score) of log-2 gene expression for each gene in the classifier (Yanagisawa et al. 2003). 

The compound score was used to measure the impact of the 34-gene classifier on survival (OS and 

DSS) and recurrence (DFS).  A Vanderbilt-derived Cox model and re-sampling Wald tests were 

utilized to rule out over-fitting of the model.  The estimated coefficients of the Cox PH model in the 

VMC data (n=55 patients) were applied to the MCC dataset (n=177 patients). In addition, a censored 

C-index (Harrell et al. 1982) was computed to validate the predictive value of the identified expression 

classifier.  The compound scores were used in a univariate analysis (e.g., log-rank test) to segregate 

patients into higher than median and lower than median compound score groups.  The compound 

score, age, gender and tumor grade were adjusted in the multivariate Cox model for both DSS and 

DFS.  Adjusted P-values as well as the adjusted 95% confidence intervals of the hazard ratios from 

the Cox model were reported.  Fisher’s exact test was used for the T4, histological, microsatellite 

instability status and the stage III metastasis score/chemotherapy analyses. 

Vanderbilt Cox Model (Training Dataset) 

    The association between individual gene expression level and clinical endpoint, (e.g., overall 

survival (OS) or disease-specific survival (DSS)), was first analyzed using a Cox Proportional Hazard 

(PH) model.  Overall-survival was defined as death from any cause.  Disease-specific survival was 
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defined as a documented cancer-related death. A disease-free survival event was defined as 

incidence of recurrence (~75% distant and ~25% local) after R0 resection.  Sixty Affymetrix probe 

sets can be found on the microarray HG U133 Plus 2.0 platform based on the thirty-four classifier 

genes (e.g., multiple probes for each gene were found that mapped to each of the 34 genes).  Their 

expression data were extracted from the VMC dataset (n=55).  Expression data for each Affymetrix 

probe set were treated as the independent variable, and the Cox proportional hazard model was used 

for survival analyses. A compound score was next calculated for each patient by obtaining a Cox PH 

weighted sum (Wald score) of log2 gene expression.  The compound score for patient i is defined as 

i Wi * Xii (where Wi=Wald statistic score for gene i and Xii = log2 gene i * expression level of patient 

i).  Finally, the compound score was used to measure the impact of the 34-gene profile on survival 

and a censored c-index was computed for the validation of the predictive value of the expression 

profile identified. The c-index is a probability of concordance between predicted and observed 

survival, with c = 0.5 for random predictions, and c = 1 for a perfectly discriminating model. The 

univariate analysis was completed using the compound scores to segregate patients into higher than 

median and lower than median compound score groups by Kaplan-Meier estimates to determine 

differences in survival by the log-rank statistic.  The compound score, age gender, and grade were 

adjusted in the multivariate Cox model for overall, disease-specific and disease-free survival.  The 

adjusted P-values as well as the adjusted 95% confidence intervals of the hazard ratios from the Cox 

model were reported.    

Moffitt Cox Model (Test Dataset) 

    Sixty Affymetrix probe sets can be found on the microarray HG U133 Plus 2.0 platform based on 

the thirty-four classifier genes. Their expression data were extracted from the MCC dataset (n=177).  



 34 

Then we applied the estimated coefficients of the Cox PH model from the training set  (n=55) to the 

MCC dataset (n=177). 

Distribution of re-sampling Wald tests with the 34-gene recurrence classifier 

    Sixty Affymetrix probe sets can be found on the microarray HG U133 Plus 2.0 platform based on 

the thirty-four classifier genes.  Their expression data were extracted from the MCC dataset. 

Expression data for each Affymetrix probe set were treated as the independent variable, and the Cox 

proportional hazard model was used for survival analyses. Beta and Wald statistics for each 

Affymetrix probe set were used along with expression data to build up a compound score for each 

patient. The compound score was used as the independent variable to perform overall survival 

analysis based on the Cox model. The Wald test P value was saved as the observed P-value. For the 

re-sampling test, we randomly chose 60 Affymetrix probe sets from the 54675 sets on the whole 

array. We repeated the above procedure and generated one re-sampling Wald test P-value from the 

overall Cox model survival analysis. We repeated the re-sampling and survival analysis procedure 

10,000 times, generating 10,000 re-sampling Wald test P-values.  We transformed both the observed 

and re-sampling P-values into log10 format, plotted a histogram of the 10,000 re-sampling log10 (P- 

values), and added the observed log10 (P-value).  

Cox modeling of Disease-specific survival for relative risk according to percentile score 

    Percentiles across high-score patients were plotted related to relative risk.  Hazard ratios for 50th, 

75th and 90th percentiles were plotted as compared to the 10th percentile.  

Histologic Analysis and Microsatellite Instability in Association with Metastasis score 

    Fisher’s exact test for a 2 x 3 table was used to determine association between histology and 

metastasis score.  Fisher’s exact test was used for the metastasis score, T4 and histological analyses 
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in the stage II and III patients in the MCC dataset in addition to the analysis of the subgroup of 

microsatellite status patients for the combined VMC and MCC datasets. 

 

Pathway Analysis 

 

    Data were analyzed through the use of Ingenuity Pathways Analysis (IPA) and networks were 

generated with the use of IPA (Ingenuity Systems, www.ingenuity.com).  A dataset containing gene 

identifiers and corresponding expression values was uploaded into the application.  Each gene 

identifier was mapped to its corresponding gene object in the Ingenuity Pathways Knowledge Base.  

The cutoffs described in the statistical sections were used to identify genes whose expression was 

significantly differentially regulated.  These genes, called focus genes in IPA, were overlaid onto a 

global molecular network developed from information contained in the Ingenuity Pathways Knowledge 

Base.  Networks of these focus genes were then algorithmically generated based on their 

connectivity.  The Functional Analysis identified the biological functions and/or disease that were 

most significant in the data set.  Fisher’s exact test was used to calculate a P-value determining the 

probability that each biological function and/or disease assigned to the data set is due to chance 

alone. 
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Results 

 

Development of an Immunocompetent Mouse Model of Colon Cancer Metastasis 

 

    Tumors are a heterogeneous mixture of cells with varied invasive and metastatic potential. 

Therefore, we used a conventional invasion assay to enrich for a sub-population of highly invasive 

MC-38 mouse colon cancer cells (Fig. 5A, MC-38inv).  Following six serial passages through 

matrigel, MC-38inv cells were more invasive than MC-38 parental cells both in vitro and in vivo in a 

tail vein injection assay (Fig. 5B and Table 1, P<.001).  Lung tumors derived from MC-38inv cells 

were cultured to derive a highly metastatic cell line, MC-38met.  MC-38met cells were injected into 

the tail vein and spleen and produced extensive metastatic tumors in the lung and liver respectively 

(see Fig. 6 and Table 2).  Please note that the results from Chapter II are published (Smith et al.). 
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MC-38 parental and MC-38inv cells, derived as described in Figure 4 and Materials and Methods, were injected 
into the tail veins of C57BL/6 mice.  21 days post-injection, mice were humanely killed, and lung nodules were 
counted at necropsy. Summary statistics for the data and results are displayed (Mann-Whitney U test, median, 
standard deviation (s.d.)). 

 

 

 

 

 

 

 

 

 

Figure 5.  Cell Culture and Mouse Model:  murine model of metastasis, in vivo monitoring 
and ex vivo proof of metastases.  (A) MC-38 parental cells (heterogeneous: blue and red) 

were subjected to six sequential passages through matrigel-coated transwells (enrichment of 
invasive subpopulations of MC-38 cells (red)) called “MC-38inv”.  After in vivo passage, a 
stabilized cell line (pink cells) called “MC-38met” was established.  (B) MC-38inv cells were 
tested alongside MC-38 parental cells for the ability to form lung metastasis in a tail vein 
assay.  The figure shows representative tumor progression in live (C57BL/6) mice by 
bioluminescent imaging (days 1-21) and at the time of autopsy (day 21). 
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Figure 6.  MC-38 parental and MC-38met gross and histopathology in tail vein and splenic 
assays. Gross and representative histologic sections from lungs and livers of MC-38 parental 
(upper panel) and MC-38met (lower panel) injected mice are shown. For MC-38 parental-injected 
mice, minimal lung nodules (<10) and no liver metastases were noted. Prolific liver metastases 
(>200) were found in the MC-38met injected mice. 

Quantification of the incidence of liver metastasis in the splenic assay and mean 
liver weights taken at necropsy with summary statistics are shown (Mann-Whitney 
U test (SPSS, Version 16; SPSS Inc, Chicago, IL).  Median and standard 
deviation (s.d.) data are displayed.  Of note, in regard to MC-38met liver 
metastasis, 2 mice died prematurely of massive liver metastasis, and analysis 
was done on the 6 mice that survived to the end of the 3-week experiment. 

Quantification of lung weights from the tail vein assay is also shown in the lower 
panel of the table. 
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Discovery of a Gene Expression Profile Associated with Metastasis:  Mouse to Man 

 

    A flow diagram of the derivation of the metastatic gene expression signature and its refinement and 

testing is provided in Figure 7A.  MC-38 parental and MC-38met cell mRNA expression profiles were 

examined by microarray and directly compared to evaluate the gene expression changes associated 

with invasion and metastasis.  Gene elements from this microarray profile were mapped to 11,465 

corresponding human orthologs.  The initial cluster analysis and the 300 gene list are shown in Figure 

8 and Table 3 (Appendix).  In order to refine the signature with relevance to cancer recurrence, each 

of these 300 genes was scored for directional concordance (see Methods) with gene expression data 

from 19 “high-risk” VMC colon cancer patients that either had metastatic disease or had died from 

cancer progression (see Methods).  Thirty-four genes (Table 4) from the metastatic gene signature 

exhibited directional concordance in 13 of the 19 “high-risk” patients.  Since the 300 genes had been 

selected with stringent statistical criteria, we did not further attempt to determine the minimum number 

of genes that could discriminate outcomes. 

The resultant 34-gene expression pattern was designated the recurrence gene classifier and 

was next integrated with the entire VMC human microarray dataset and subjected to unsupervised 

cluster analysis. The recurrence gene classifier separated patients into two clusters (Fig. 7B).  The 

cluster associated with MC-38met cells (cluster 2) contained 17 of the 19 “high-risk” patients used in 

the signature refinement process. 

 

 

 

 



40 

Figure 7.  A) Recurrence classifier development.  VMC two-step schematic for enrichment and 
establishment of the 34-gene recurrence classifier for colon cancer.  Mouse genes were mapped to human 
orthologs and 300 differentially expressed genes (MC-38 parental vs. MC-38met) were identified. These 300 
genes were next refined with 19 “high-risk” patients from the VMC training dataset for concordance.  This 
analysis revealed 34 genes with concordant expression among the 19 high-risk patients and the MC-38met 
cells.  The 34-gene recurrence classifier was then applied to the independent MCC database to determine 
whether it could be used to discriminate patients on the basis of outcomes.  B) Functional genomic cluster 
analysis of the 34-gene recurrence classifier. Mean-centered gene expression data (rows) clustered with 
individual VMC patients (columns) results in two distinct patient groups (cluster 1, pink; cluster 2, green). 
The 19 VMC ”high-risk” patients used in the concordance analysis are marked with a red asterisk. 
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 Genes that were up-regulated or down-regulated in both MC-38met derived cells and in 19 VMC patients with 
poor-prognosis are shown. Gene symbols and associated fold-change in gene expression for MC-38 parental 

versus MC-38met as determined by microarray are given.  Known relationships (connectedness) between up-
regulated and down-regulated genes were determined independently and, where networks existed, functional 

enrichment within the networks was determined in Ingenuity Pathways Analysis (www.ingenuity.com), PubMed 

and on the Affymetrix website (see Materials and Methods).  Ensembl protein identifiers are also noted in Table 
3 (Appendix, p. 104). 
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The Recurrence Classifier Identifies Poor Outcome Colon Cancer Patients in an Independent Colon 

Cancer Dataset 

 

    An independent human colon cancer gene expression and clinical database from the H. Lee Moffitt 

Cancer Center (MCC) was used to test the ability of the recurrence classifier to discriminate patients 

at increased risk of cancer recurrence and death.  The demographics for the training (VMC) and test 

set (MCC) are shown in Table 5.  205 patients were available for analysis in the MCC group and 195 

of these patients had complete demographic, histological grade, stage and differentiation information.  

Of this 195 patient group, we focused on colon cancer patients (n=177) to avoid potential 

confounding effects of neoadjuvant and radiation therapy in rectal cancer patient tumor samples and 

outcomes.  A method for weighted scoring of the gene expression pattern for the recurrence classifier 

was applied (see Methods) and metastasis scores were created. Patients were segregated into 

higher and lower than median metastasis score groups and survival analysis was performed between 

the two groups.  To rule out over-fitting of the model, three separate statistical approaches were 

applied.  First, we developed the metastasis score based on the Cox Proportional Hazard (PH) model 

in the VMC data (n=55 patients) and then applied the estimated coefficients of the Cox PH model 

from VMC data to the MCC dataset (n=177 patients). Thus, the sign and magnitude of the coefficient 

was completely based on the training dataset (VMC) and then tested in the MCC dataset.  High 

metastasis score colon cancer patients across all stages in the MCC dataset had significantly worse 

overall and disease-specific survival compared with low metastasis score patients (Fig. 9A and B, 

P=.003 and P=.04 respectively).  Second, multiple permutation testing was performed using the 34-

gene recurrence classifier and the metastasis score was also robust in this model (see Fig. 10, 

Appendix).  Third, a c-index was calculated to validate the predictive value of the 34-gene metastasis 
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score. The c-index is a probability of concordance between predicted and observed survival, with c = 

0.5 for random predictions, and c = 1 for a perfectly discriminating model. 

In order to determine whether the metastasis score could be used to identify stage II and III 

patients at high risk for recurrence, we tested it on stage II and III patients in the MCC dataset.  Low 

metastasis score patients in each group (stage II alone, Fig. 11A-B and stage III alone, Fig. 11C-D) 

demonstrated significantly better outcomes than high metastasis score patients.  As can be seen in 

the figure, this finding held true in both analyses using the endpoints of disease-specific survival 

(cancer-related death, panels A, C) as well as disease-free survival (recurrence, panels B, D). 

Notably, there were no cancer-related deaths and only one recurrence event in low metastasis 

score stage II patients (see Fig. 11A, B).  At five years, 31% of the high metastasis score stage II 

patients had died of cancer versus none of the low score patients.  For the stage III patients, the five-

year mortality rate was 10.7% for low metastasis score patients as compared with 37.9% for the high 

metastasis score patients (see Fig. 11C).  The median survival time for stage III patients with a high 

metastasis score was 29.4 months.  In sharp contrast, the low metastasis score stage III patients as a 

group faired so well that this group had not reached the threshold to calculate their median survival 

time. We noted no association with either the high or the low metastasis score on available data 

regarding T4 lesions, lymph nodes retrieved, histological grade or microsatellite instability status in 

the MCC dataset (See details, pp. 44-45).  These data show that the 34-gene metastasis score can 

discriminate stage II and III colon cancer patients that have a low- or high-risk of cancer recurrence 

and death. 
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All patients were diagnosed with colorectal adenocarcinoma (stages I-IV) 
according to current American Joint Commission on Cancer (AJCC) 
guidelines.  On hundred seventy-seven of 205 MCC patients met the 

criteria of having AJCC stage I-IV colon cancer as well as complete 
demographic, histologic grade, stage and differentiation information. The 
Vanderbilt training set includes 14 patients from the University of Alabama-

Birmingham Medical Center (tumors provided by M.J.H).      Other in the 
VMC medical record implies not otherwise specified and it implies 
Hispanic or not otherwise specified in the MCC medical record. 

Figure 9. The 34-gene recurrence classifier as tested in the Moffitt Cancer Center (MCC) dataset 
across all stages. Kaplan-Meier estimates of overall and disease-specific survival in the MCC test set. 
Expression data for probes corresponding to the 34-gene recurrence classifier were used to build the 
Cox proportional hazard model from patient data in the Vanderbilt dataset. Plots represent survival 
analyses in the MCC patient data set, based upon Beta and Wald statistics (see Materials and 
Methods) from the Vanderbilt dataset.  (A) Overall and (B) disease-specific survival analyses were 
performed.  
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Figure 11.  Kaplan-Meier estimates from 114 colon cancer (stages II and III) patients under study at 
MCC analyzed with the 34-gene based metastasis score.  Lower than median metastasis score is 
denoted in black and higher than median metastasis score is noted in red.  A low score was associated 
with better disease-specific and disease-free survival in stage II patients (A) Cancer-related death: n = 
57 patients, high scores (9 of 9 total deaths) and (B) Disease-free survival: n = 55, high scores (10 of 11 
total events).  Similarly, a low score was associated with better disease-specific and disease-free 
survival in stage III patients (C) Cancer-related death: n = 57 patients, high scores (14 of 17 total deaths) 
and (D) Disease-free survival: n = 56, high scores (16 of 20 total events).  5-year mortality and 
recurrence rates are shown for stage II and III patients (A-D). 
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High Risk Characteristics and the Metastasis Score 

    In the stage II disease-free survival analysis, the four T4 lesions were evenly distributed between 

high (n=2) and low (n=2) metastasis score patients (P>.99).  The number of MCC T4 tumors is small 

and we will need to assess these characteristics as the metastasis score is tested in additional colon 

cancer patients to confirm this finding in association with the 34-gene metastasis score.  We found no 

significant differences in the distribution of well differentiated, moderately differentiated or poorly 

differentiated tumors in high or low score stage II patients (P=.47 and .22 respectively).  Furthermore, 

in regard to number of lymph nodes retrieved and metastasis score in the disease-specific survival 

analysis, we found equivalent numbers of patients with less than 12 lymph nodes retrieved in the low 

and high score groups (P>.99).  We also queried differentiation status and lymph nodes retrieved in 

the stage III patients and found no association with metastasis score and differentiation status or 

number of lymph nodes retrieved (data not shown).  These data indicate that the metastasis score 

performs independently of traditional pathological markers.  

    To determine if previously described, yet unproved, pathologic “high-risk” features in the stage II 

patients were associated with either the high or the low metastasis score we reviewed the available 

data regarding T4 lesions, lymph node retrieval and histology in the larger MCC dataset. In the 

disease-specific survival analysis, four of the 28 low metastasis score patients had T4 lesions, while 

only one of the 29 high metastasis score patients had a T4 lesion (P=0.19).  In the stage II disease-

free survival analysis, the four T4 lesions were evenly distributed between high (n=2) and low (n=2) 

metastasis score patients (P>0.99).  The numbers of T4 tumors are small in the MCC test set and we 

will need to assess these characteristics as the metastasis score is tested in a larger set of colon 

cancer patients before making any strong statements in association with the 34-gene metastasis 

score.  
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    We found no significant differences in the distribution of well-differentiated, moderately 

differentiated or poorly differentiated tumors in high or low score stage II patients (P=.47 and .22 

respectively).  Furthermore, in regard to the number of lymph nodes retrieved and the metastasis 

score in the disease-specific survival analysis, we found that 12 of 28 low score patients had less 

than 12 lymph nodes retrieved while 12 of 29 high score patients had less than 12 lymph nodes 

retrieved (P>.99).  We also queried differentiation status and lymph nodes retrieved in the stage III 

patients and found no association with metastasis score and differentiation status or number of lymph 

nodes retrieved (data not shown).  These data indicate that the metastasis score performs 

independently of traditional pathological markers. 

Microsatellite Instability and the Recurrence Classifier 

    Other factors known to affect prognosis (e.g., microsatellite instability status [MSI] or CpG island 

methylator phenotype [CIMP]) could potentially impact our signature, however, only 73 (31%) of the 

patients analyzed in this study (VMC + MCC) had MSI status available which prevented a robust 

analysis adjusting for MSI status in a multivariate model. In a preliminary analysis of the 73 patients 

with known MSI status in the combined VMC and MCC datasets, 13 were MSI-high and 60 were 

microsatellite stable (MSS).  Of the MSI-high patients, 7 (54%) were in the low metastasis score 

group and 6 (46%) were in the high metastasis score group.  Additionally, 43% of the MSS patients 

were in the low metastasis score group while 57% were in the high score group.  No significant 

statistical association was noted comparing the recurrence classifier and microsatellite instability 

status in this study (P=.55).  We are prospectively collecting MSI-status on our patients and will factor 

this important prognostic factor into future work in light of the 34-gene classifier.  CIMP status was 

unavailable in the datasets used in our analysis. 
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A High Metastasis Score Predicts Recurrence and Survival in Univariate and Multivariate Models 

    The metastasis score was tested in the MCC patient dataset to determine the relative risk of 

recurrence and cancer-related death.  Patients with a high metastasis score had increased relative 

risk of recurrence, as measured by hazard ratios (HR) across all stages (Table 6, HR 4.9, P<.001).  

High score stage II patients were also at increased relative risk of recurrence (HR 13.1, P=.01). 

Finally, the relative risk of recurrence in stage III patients with a high score was increased in this 

analysis (HR 4.7, P=.006).  These data show that the metastasis score based on the 34-gene 

classifier is a strong predictor of recurrence and cancer-related death in colon cancer patients.   

    Multivariate analysis of the MCC patient data was performed to determine independent predictors 

of recurrence and survival.  After adjusting for metastasis score, gender, tumor stage, age and tumor 

grade, only the metastasis score (P<.001) and tumor stage (P=.002) were significant determinants of 

cancer recurrence (Table 7 (see Appendix)).  We observed similar results with disease-specific 

survival as the outcome measure in univariate and multivariate models (Tables 8 and 9 (see 

Appendix)).  Furthermore, the magnitude of the metastasis score was significantly associated with 

outcome.  Hazard ratios for cancer-related death demonstrated that across all stages, high 

metastasis score patients in the 50th, 75th and 90th percentiles are at increased relative risk of 

cancer-related death (HR=2.0, 3.1 and 4.6, respectively) compared with those patients with scores in 

the 10th percentile (Fig. 12). Therefore, the 34-gene metastasis score is an independent predictor of 

cancer recurrence and death in colon cancer patients even after adjustment for baseline 

characteristics available at resection (e.g., age, grade, stage and sex).  
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Univariate analysis was done with metastasis scores to 
segregate patients from the MCC data set into higher-than-
median and lower-than-median score groups. Hazard ratios 
(HRs) were calculated for each patient group related to 
disease-free survival. 

Figure 12.  Cox model hazard ratios. Percentiles across 
high-score MCC patients were plotted related to relative 
risk. Hazard ratios for the 50th, 75th, and 90th percentiles 
are plotted compared with the 10th percentile and show a 
2.0, 3.1, and 4.6 increased risk of cancer-related death 
from the 50th percentile upward. 
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The 34-gene Based Metastasis Score is Associated with Patient Benefit and Adjuvant Chemotherapy 

in Stage III Colon Cancer Patients 

 

    As described above, a significantly greater proportion of stage III patients with a high metastasis 

score died of cancer as compared with low metastasis score patients.  Thirty percent (17 of 57 

patients) of the stage III patients did not receive adjuvant chemotherapy (CTX).  Therefore, we sought 

to determine if there was a difference in survival between high and low metastasis score patients 

related to CTX administration. Stage III patients with a low metastasis score had equivalent survival 

outcomes regardless of whether or not they received adjuvant CTX (Table 10, 10% with CTX versus 

12.5% without CTX, P>.99).  Among stage III patients with a high metastasis score, a significantly 

greater proportion of patients who did not receive CTX died from their cancer as compared with those 

who did receive adjuvant CTX (86% vs. 36%, P=.04).  There was no statistically significant difference 

in follow-up interval or in the proportion of patients receiving CTX when comparing high and low 

metastasis score groups (P=.576 and P=.770). These data suggest that stage III patients with a low 

metastasis score did not gain significant benefit from adjuvant CTX, whereas stage III patients with a 

high metastasis score had a better outcome after adjuvant CTX. 



 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pathway Analysis of the 34-gene Recurrence Classifier 

 

    In order to relate our findings to basic tumor biology, we subjected the recurrence classifier to 

Ingenuity Pathways Analysis (IPA, Ingenuity Systems®, www.ingenuity.com).  Up-regulated genes 

formed a single network enriched for cancer and cell death while the down-regulated gene network 

was enriched for cell-to-cell signaling/interaction and immune response (see Table 4 and details 

below). 

Table of proportions shows associations between metastasis score, 

cancer-related death and exposure to adjuvant chemotherapy in 
stage III patients from the MCC data set.  As can be seen in the low 

score panel, no significant association was found between a low 
metastasis score and cancer-related death in those stage III patients 

receiving chemotherapy versus those who did not receive 
chemotherapy (Fisher’s exact test). 
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Figure 13. Functional enrichment of the up-regulated genes in the 
recurrence classifier. Genes or gene products are represented as 
nodes, and the biological relationship between 2 nodes is represented 
as an edge (line). All edges are supported by 1 reference from the 
literature, from a textbook, or from canonical information stored in the 
Ingenuity knowledge base. The 16 up-regulated genes in the classifier 

were considered for the analysis (shaded in gray). Predominant central 
regulatory nodes include p53 (TP53), tumor necrosis factor (TNF), and 
platelet-derived growth factor BB (PDGFBB). 

 Ingenuity Pathways Analysis and the Recurrence Classifier 

    In this analysis, up-regulated genes (n=16) formed a single interacting network that is functionally 

enriched for disease and process including cancer (CXCR7, EGR1, HES1, SPRY4, VDR, NQO1, 

ACTB, MGP), endocrine system disorders (HES1, VDR, EGR1), and cell death (EGR1, NQO1, 

HES1, VDR, MGP) (Table 4 and Fig. 13).  Down-regulated genes (n=18) similarly formed a single 

interacting network enriched for cell-to-cell signaling/interaction (MMP13, PRTN3, HPSE, DFBN31) 

and immune response/development/function (HPSE, PRTN3, MMP13) (Table 4 and Fig. 14). 
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Figure 14. Functional enrichment of the down-regulated genes in the 
recurrence classifier. Genes or gene products are represented as nodes, and 
the biological relationship between 2 nodes is represented as an edge (line). 
All edges are supported by 1 reference from the literature, from a textbook, or 
from canonical information stored in the Ingenuity knowledge base. The 18 
down-regulated genes from the high-risk signature were considered for the 
analysis (shaded in gray). Predominant central regulatory nodes in this 
network include tumor necrosis factor (TNF), cyclin-dependent kinase N1A 
(CDKN1A or p21), and interleukin-1 (IL-1). 
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As can be seen in Fig. 7B, the magnitude of the expression differences between up-regulated 

and down-regulated genes amongst patient samples from these two clusters is quite different, with 

differences in up-regulated genes being of higher magnitude than differences in down-regulated 

genes.  This distinction is suggestive of two uniquely regulated gene networks.  Indeed, when we 

performed network analysis, coordinate regulation of 11 of 16 up-regulated genes (69%) and 7 of 18 

down-regulated genes (39%) is apparent.  We found that the gene network represented by the up-

regulated genes is predominantly enriched in genes related to carcinogenesis, while the network 

represented by the down-regulated genes is predominantly enriched in genes related to inflammation. 

Specifically, a central node of the up-regulated genes was TP53, which has a significant role upon 

inactivation in the progression of colorectal cancer as discussed in Chapter I.  Additionally, a central 

node of the down-regulated genes was Tumor Necrosis Factor, which plays a major role in 

inflammation.  Chronic inflammation is a well-recognized risk factor for cancers of the alimentary tract 

(reviewed in (Wang and DuBois 2008)).  Experimental mouse models have been developed to 

demonstrate that inflammation is a potent tumor promoter in the gastrointestinal tract (Cooper et al. 

2000).  Indeed, the incidence of tumor formation in several genetic mouse models of intestinal 

neoplasia is dependent upon active immune responses induced by gut flora (Kado et al. 2001).  

Conversely, tumor progression is also associated with immune suppression.  In the current study, we 

used microarray analysis to identify perturbations in gene networks related to both carcinogenesis 

and inflammation.  Ongoing work in our laboratory aims to uncover the molecular mechanisms by 

which these two gene networks may interact to promote metastasis in our experimental model. 
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Discussion and Future Directions 

 

 In the present study, the biology of colon cancer metastasis was modeled in 

immunocompetent mice to develop a gene expression classifier that discriminates recurrence and 

survival outcomes in human colon cancer patients.  Stage II and stage III patients with primary colon 

cancers that reflected the recurrence-associated gene expression pattern were at greater relative risk 

of recurrence than those who did not (hazard ratios of 13.1 and 4.7, respectively). This gene 

expression profile, tested with a recurrence scoring method, performed independently of conventional 

pathological staging.   

Perhaps most importantly, this metastasis score identifies stage II patients at high risk of 

recurrence and death and stage III patients at low risk of recurrence and death.  Our biological model 

has identified a subset of high-risk stage II patients that may benefit from adjuvant therapy and a 

subset of low-risk stage II patients who may have an excellent outcome after surgical resection 

without adjuvant therapy.  We found that the 5-year survival rate was >95% in stage II patients with a 

low metastasis score, suggesting that adjuvant chemotherapy would provide minimal benefit in this 

group of patients. In contrast, 31% of stage II patients with a high metastasis score died of cancer.  

Our preliminary analyses of these data suggest that high metastasis score stage II patients should be 

further studied to determine whether they will benefit from adjuvant therapy.    

A unique aspect of our study is the inclusion of sufficient numbers of stage III patients who did 

not receive adjuvant chemotherapy in the MCC database.  This enabled an evaluation of whether the 

molecular metastasis score could predict response to adjuvant therapy.  Of the high metastasis score 

stage III patients who were treated with adjuvant chemotherapy only 36.4% died from cancer, 

whereas 85.7% of the high score patients who did not receive adjuvant chemotherapy died from 
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cancer.  Despite the small numbers in these sub-groups the differences were statistically significant.  

More importantly, equally low proportions of stage III patients with a low metastasis score died of 

cancer regardless of administration of chemotherapy.  Our data suggest that there is a low-risk group 

of stage III patients who could be surgically cured and spared the morbidity, expense and potential 

mortality associated with adjuvant chemotherapy.  This is consistent with prior observations from 

randomized clinical trials that established the benefits of adjuvant chemotherapy in stage III colon 

cancer where 40-44% of patients enrolled in the surgery-only groups did not recur in five years even 

without adjuvant treatment (Ragnhammar et al. 2001).  Determination of an objective scoring method 

whereby the 34-gene classifier can be tested in a prospective fashion is ongoing and will be required 

to determine if the 34-gene based metastasis score can be used clinically to guide decisions 

regarding adjuvant therapy for stage III colon cancer patients.   

Several investigative groups have reported gene expression classifiers with predictive power in 

breast, lung, liver and colorectal cancers (Barrier et al. 2006; Hoshida et al. 2008; Lin et al. 2007; Paik 

et al. 2004; Shedden et al. 2008; Wang et al. 2004). Like the previously described colon cancer 

classifiers, a weakness of our model is the retrospective analysis of prospectively collected clinical 

data.  A 43-gene poor-prognosis signature for colorectal cancer provides a classifier for stage II and 

III patients as a molecular staging device (Eschrich et al. 2005).  In a more recent study, a 

computational model was used to derive a 50-gene signature and a metastasis score for early stage 

colon cancer (Garman et al. 2008).  We found minimal overlap between our 34-gene classifier and 

the previously published, computationally derived colon cancer gene signatures.  We were not 

surprised at this finding since the prior models were computationally determined and ours is founded 

on the biology of metastasis.   
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We find it interesting that 13 of the 34 genes in our proposed classifier have previously 

described roles in cancer, and several others are involved in cell-cell signaling, immune response, 

cell proliferation, embryonic development and cell migration.  Inflammation plays a potent role in 

gastrointestinal tract tumor promotion and tumor progression is associated with immune suppression 

(Cooper et al. 2000; Kado et al. 2001; Wang and DuBois 2008).  In this study, microarray analysis 

identified perturbations in gene networks related to both carcinogenesis (e.g., TP53) and 

inflammation (e.g. TNF).  Ongoing work in our laboratory aims to unravel the molecular mechanisms 

by which these two gene networks may interact to promote metastasis in our experimental model. 

    A number of recent examples provide additional insight into the contributions of components in the 

34-gene classifier to the process of EMT.  For example, TNF-  (a central node of the down-regulated 

genes in the classifier) has been connected to TGF -induced EMT via the Wnt target gene CD44 

(Takahashi et al.).  Additionally, hypoxia has been noted to promote EMT in breast cancer cells via 

up-regulation of HIF1-  to promote transcriptional up-regulation of HES1 (Notch signaling target 

gene) and down-regulation of E-cadherin (Chen, Imanaka, and Griffin).  Also, Zeb1 (a known pro-

EMT gene inversely correlated with E-cadherin (Schmalhofer, Brabletz, and Brabletz 2009)) has been 

found to positively correlate with levels of vitamin D receptor in colorectal tumors (Pena et al. 2009).  

These data open up new possibilities that may inform the process of EMT that can be further 

explored in the MC-38 model in immunocompetent mice. 

The cross-species functional genomics approach yields insights into the molecular 

mechanisms of the metastatic process. Consistent with our approach, gene expression patterns 

identified in wound healing have been applied successfully to breast cancer outcomes (Chang et al. 

2004).  In addition, cell culture and mouse models have also demonstrated relevance to clinical 

outcomes in hepatocellular carcinoma using gene expression profiling (Kaposi-Novak et al. 2006; Lee 
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et al. 2004).  Similarly, our approach has uncovered a gene classifier with prognostic significance in 

colon cancer.   

Although a high score based on the 34-gene recurrence classifier worked well in this study, the 

number of significant genes reported was not based on the smallest number of genes that could 

discriminate the survival endpoint, but was based upon the combined statistical, biological and clinical 

evidence in the available data. There is also the possibility that some of the computationally derived 

genes discovered in human datasets would be missed in a mouse model; however, the biological 

basis of the 34-gene classifier derived from our mouse model seems to be a robust predictor.  The 

possibility of achieving similar or better survival discrimination with different subsets of the genes 

certainly exists; however, we feel that the biological basis of our study provides a solid foundation for 

further translational application and testing of our model. 

In conclusion, the 34-gene based metastasis score can identify stage II and III patients at 

greater risk of colon cancer recurrence and death.  Our biologically based expression classifier 

identifies a potential method for more appropriate selection of patients for systemic therapy after 

curative-intent surgical resection of colon cancer.  Future prospective studies are needed to confirm 

whether chemotherapy may be safely avoided in stage III patients with a low metastasis score and 

whether stage II patients with a high metastasis score can achieve a better outcome if they receive 

adjuvant chemotherapy.  Furthermore, we have begun work to determine the strongest drivers of the 

34-gene classifier with additional statistical modeling as we move forward with the determination of an 

objective score that can be taken into a prospective trial in stage II colon cancer patients.  Finally, 

since the model is based on the biology of metastasis we are currently looking into the ability of the 

34-gene classifier to predict outcome in other epithelial cancers such as breast or lung cancer. 
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CHAPTER III 

 

SMAD4 INHIBITS WNT SIGNALING IN EPITHELIAL CELLS BY TRANSCRIPTIONAL 

REPRESSION OF -CATENIN 

 

Abstract 

 

    Transforming Growth Factor-  and Wnt signaling pathways are essential during embryonic 

development, and later regulate intestinal epithelial cell differentiation and proliferation. Central 

mediators of these pathways, Smad4 and -catenin, have important roles in cellular signaling and 

colorectal cancer pathogenesis.  Smad4 is a tumor suppressor frequently mutated in colon cancer; 

whereas -catenin accumulation and nuclear localization contribute to both the initiation and 

progression of colorectal cancers.  Smad4 expression in Smad4-mutant colon cancer cells results in 

decreased -catenin protein levels and inhibition of -catenin/TCF-driven transcription. Here, we 

determine the mechanism and significance of Smad4 inhibition of Wnt signaling in colorectal cancer.  

We found that Smad4 mediates a direct transcriptional repression of -catenin with resultant inhibition 

of -catenin-mediated gene expression in epithelial cells.  Consistent with these findings, we 

observed that the biological consequence of Smad4 expression in colon cancer cells is reversal of 

epithelial-to-mesenchymal transition (EMT) and cell invasiveness.  From analysis of clinical tumor 

samples, we found that patients whose tumors exhibited high Smad4 expression and reduced 

expression of Wnt target genes have significantly better prognosis than those who exhibit low Smad4 

expression with elevated gene expression of Wnt targets and EMT markers.  
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Introduction 

 

    Mutational inactivation of Adenomatous polyposis coli (APC) occurs in >80% of sporadic colorectal 

cancers associated with the loss of a master cell regulatory mechanism for epithelial cell growth, 

renewal and homeostasis (Ashton-Rickardt et al. 1989; Morin et al. 1997; Rowan et al. 2000; Sansom 

et al. 2004).  APC is part of a cellular protein complex that regulates the availability of the Wnt 

signaling mediator, -catenin, which is critical for maintenance of the intestinal epithelial stem cell 

compartment at steady-state (Aberle et al. 1997; Ikeda et al. 1998; Kishida et al. 1998; Korinek et al. 

1997; Munemitsu et al. 1995; van de Wetering et al. 2002).  In the absence of functional APC, -

catenin accumulates and translocates to the nucleus along with TCF/LEF co-transcriptional mediators 

where it may inappropiately propagate canonical Wnt signaling outside of its normal stem cell niche 

(Radtke and Clevers 2005).  Pathological activation of Wnt signaling participates in the initiation and 

progression phases of colorectal cancer and accumulating evidence suggests that it drives epithelial-

mesenchymal transition (EMT), particularly where signaling is further amplified at the invasive front in 

colorectal cancer specimens (Brabletz et al. 2005; Hlubek et al. 2007).  The EMT process has been 

linked to invasive phenotype and metastatic potential in cancer (Thiery 2002, 2003). 

    The Transforming Growth Factor-  (TGF ) family of ligands (TGF s, Inhibin, Activin, Nodal, Bone 

Morphogenetic Proteins (BMPs)) and cell signaling responses underlie fundamental epithelial cell 

processes of proliferation, apoptosis and differentiation (Massague 2008; Shi and Massague 2003).   

TGF  inhibits epithelial cell growth and proliferation in normal cells, a property which is lost in many 

transformed cells (Ko et al. 1995; Manning et al. 1991) and in cancer (Hanahan and Weinberg 2000; 

Moses, Yang, and Pietenpol 1990; Pietenpol et al. 1990).  Over 50% of colorectal cancers harbor 

inactivating mutations in the TGF /BMP signaling pathway (e.g., receptor or Smad signaling protein 
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(Grady et al. 1999)).  TGF  and BMP signaling occurs through interaction with heterotypic (Type 

I/Type II) serine/threonine kinase receptors which phosphorylate receptor-associated Smads 

(Smad2/3 or Smad1/5/8), and then complex with Smad4 and translocate to the nucleus to promote 

transcription (Shi and Massague 2003).  Smad4, the common mediator of TGF /BMP signaling, is the 

most frequently disrupted Smad mediator in pancreatic (Hahn et al. Homozygous deletion map at 

18q21.1 in pancreatic cancer 1996) and colorectal cancers (Thiagalingam et al. 1996).  Smad4 

mutations have been identified in 50% of pancreatic cancers (Hahn et al. Homozygous deletion map 

at 18q21.1 in pancreatic cancer 1996; Hahn et al. Dpc4, a candidate tumor suppressor gene at 

human chromosome 18q21.1 1996) and 10-35% of colorectal cancers (Markowitz and Bertagnolli 

2009; Riggins et al. 1997; Riggins et al. 1996).  

    TGF /BMP and Wnt signaling pathway crosstalk has an important impact on embryonic 

development and homeostasis (Cadigan and Nusse 1997; Whitman 1998).  For example, expression 

of BMP antagonists is associated with dedifferentiation, increased proliferation and enhanced -

catenin nuclear localization in normal human intestinal epithelium and in cancer (Kosinski et al. 2007).  

Transgenic Noggin expression in the mouse intestine results in intestinal polyps similar to humans 

with Juvenile Polyposis Syndrome (JPS) and these lesions were noted to have increased nuclear -

catenin immunostaining (Haramis et al. 2004).  Smad4 loss plays a significant role in JPS as patients 

with reduced intestinal Smad4 expression are predisposed to the development of intestinal 

carcinomas (Howe et al. 1998).  In Xenopus, Smads interact with TCF/LEF1 and activate 

transcription from the Xenopus Wnt signaling target, Xtwn (Labbe, Letamendia, and Attisano 2000; 

Nishita et al. 2000).  Interestingly, compound Smad4/APC-heterozygous mutant mice develop more 

invasive intestinal carcinomas than APC heterozygous mutant mice in which benign intestinal 

adenomas are the predominant lesion, suggesting that Smad4 expression tempers APC-driven tumor 
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formation (Takaku et al. 1998).  Therefore, dual-regulation of TGF  and Wnt pathways can modulate 

differential responses of growth inhibition, tumor promotion or de-differentiation in epithelial cells; 

however, specific mechanisms by which Smad4 interacts with components of the Wnt signaling 

pathway in colorectal cancer remain largely undefined. 

    In this study, we examined the mechanism by which Smad4 represses -catenin expression and 

Wnt signaling in colorectal cancer.  We found that Smad4 expression results in transcriptional 

repression of -catenin expression and thereby inhibits Wnt signaling, with an associated inhibition of 

the downstream program of Wnt target gene expression.  Finally, the clinical relevance of this effect 

was demonstrated by an epithelial cell-specific, Smad4-modulated gene expression profile associated 

with suppression of Wnt signaling in human colorectal cancer specimens.  This Smad4-modulated, 

Wnt-associated gene expression program yields prognostic information, independent of conventional 

pathological staging in a large cohort of colorectal cancer patients. 

   

Materials and Methods 

 

Primers 

    Primers for all PCR reactions were obtained from either realtimeprimers.com (Elkins Park, PA) or 

from Integrated DNA Technologies, Inc. (Coralville, Iowa) and are listed in (Table 17, see Appendix p. 

187).  

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 

    RNA (see collection method below) was reverse transcribed with MMLV reverse transcriptase 

(Promega, City, State, M170A) in each reaction as described below (Sequences obtained and then 

ordered as above).  RNA (0.5 μg), random hexamers (2.5μL) and RNase/DNase free water (5μL) 
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were incubated at 70ºC for 5 minutes (11μl reaction).  MMLV-RT 5X buffer (5μL), dinucleoside 

triphosphates (dNTPs, 10mM, 5μL), RNAse inhibitor (1μL), MMLV-RT enzyme (1μL) and water (5μL) 

were placed into the 11μL reaction and incubated at 37ºC for 5 minutes, 25ºC for 10 minutes, 37ºC 

for 60 minutes and stopped at 70ºC for 10 minutes.  Red Taq  buffer (2μL), Red Taq  polymerase 

(Sigma-Aldrich, St. Louis, MO) enzyme (1μL), dNTPs (0.4μL), cDNA (2μL), Primer set (2μL, Forward 

+ Reverse) and RNase/DNase free water (12.6μL) were used for each 20μL reaction.  Each cDNA 

reaction was prepared on the same day and then run on a Gene Amp PCR System 9700, Applied 

Biosystems (Foster City, CA) under the following protocol (94°C--5min; 32 cycles of 94°C--20sec; 

55°C-20sec; 72°C-20sec; 72°C--1min).  Twenty μL of the PCR product and 4μL of 6X DNA loading 

dye was then loaded into 2% agarose gel and run at 100V for 1-1.5 hour and visualized on a BioRad 

Molecular Imager (Hercules, CA). 

 

Quantitative real-time PCR (qPCR) 

RNA Collection 

     SW480vector and SW480Smad4 colon cancer cells were seeded equally into 6-well plates.  At 80% 

confluence, cells were harvested in parallel using the Qiagen RNeasy® kit (Valencia, CA), according 

to the manufacturer’s instructions. Samples were DNAse treated during purification and eluted with 

50 μL RNAse/DNAse free water. RNA integrity was checked by visual inspection following agarose 

gel electrophoresis.  Quantitation was conducted in triplicate by UV Spectrophotometry.  RNA 

(300ng) was reverse transcribed using Superscript III (Invitrogen) in each reaction using gene specific 

primers (see Appendix, p. 187).  Reactions were performed for 20 min at 50oC followed by 10min at 

95oC to inactivate enzymes. For PCR reactions, each well contained SYBR Green Master Mix 

(12.5μL) from SuperArray, RNase/DNase free water (10.5μL) combined with 10μM Primer sets (1μL) 
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and 1μL of freshly prepared cDNA.  Each cDNA reaction (25μL) was loaded in quadruplicate in 96 

well plates and run on a Bio-Rad iCycler (Hercules, CA) under the following protocol (1:  95°C, 30sec; 

2:  95°C, 30sec (x2); 3:  95°C, 13min-30sec; 4:  95°C, 15sec; 55°C, 30sec; 72°C, 30sec (x45); 5:  

72°C--7min; 6: 55°C, 10 sec (x100)).  

mRNA Stability 

    SW480vector cells and SW480Smad4 cells were grown in regular medium and treated at 4-hour 

intervals with 5,6-Dichlorobenzimidazole, 1- -D-ribofuranoside (DRB, Sigma, St. Louis, MO).  After 

RNA isolation, qPCR was utilized to determine the difference in -catenin steady-state mRNA levels 

after DRB treatment.  Cells were harvested at 4-hour intervals for 24 hours.  RNA was isolated from 

cells as above at each time point.  Two doses of DRB were used.  qPCR was used to analyze the 

amounts of -catenin mRNA at each time point and analysis of covariance was used to determine if 

the slope if the two lines was significantly different.  Cyber-green qPCR was performed using human 

-catenin primer (see Appendix, p. 187 and main methods). 

Data Analysis 

    For each individual well, fluorescence curves were log transformed and the slope of the logarithmic 

portion of the reaction was extracted to determine efficiency. Ct values and efficiency were utilized to 

calculate the relative expression levels and plotted as 1/Ct (Cronin et al. 2007; Schefe et al. 2006). 

 

Flow Cytometry 

    Transient expression of Smad4 was carried out in SW480 cells and HEK-293T cells along with 

GFP.  GFP-positive cells were separated from GFP-negative cells with a cell sorter and the 

populations were compared.  RNA and protein were isolated from the two populations as described 

and the difference in -catenin mRNA was determined by qPCR after Smad4 expression was 
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confirmed by Western analysis (Flag and Smad4 antibody, see Immunodetection section).  Flow 

Cytometry experiments were performed in the VMC Flow Cytometry Shared Resource.  Specifically, 

SW480 and HEK-293T cells were transiently co-transfected with pRK5 DPC4 Flag (Zhang et al. 

1996) (Addgene, Cambridge, MA), pRK5 and GFP plasmid (pEGFP-C3, BD Biosciences Clontech, 

Mountain View, CA).  After validation that the GFP+ cells represented cells transfected with pRK5 

DPC4 (e.g., +Flag band and Smad4 band on western compared to control SW480 cells; data not 

shown) then qPCR was completed.  pRK5 was used as a negative control and was found to be 

equivalent to GFP- cells by Western and qPCR (e.g., no Flag on Western for SW480s, no change in 

baseline Smad4 levels for HEK-293T cells and no difference in -catenin by qPCR).  Qiagen 

Effectene reagents (Qiagen, Valencia, CA) were used for the transfections and equal amounts of 

DNA (1.0μg) were transfected per well for each experiment.      

 

Chromatin Immunoprecipitation (ChIP) Assay 

    ChIP assays were performed using the EZ-Magna ChIPTM kit (Millipore Cat. # 17-408, Billerica, 

MA) according to the manufacturer’s instructions.  Briefly, SW480vector and SW480Smad4 colon cancer 

cells were fixed in fresh 18.5 % PFA for ten minutes at room temperature prior to cross-linking. After 

cell and nuclear fractionation, DNA from the nuclear fractions was sheared by sonication.  For the 

immuno-precipitation, Protein A beads (Millipore CS200637) were blocked by coating with bovine 

serum albumin (BSA) (1μg/mL) overnight (50-100μL of BSA for each 20μL of Protein A beads).  Cell 

nuclear lysates were pre-cleared by addition of 10μL of coated beads and 2μL of mouse IgG (Santa 

Cruz Biotechnology, Santa Cruz, CA)).  Five microliters of precleared lysates were saved as input.  

500μg of the precleared lysate was used in overnight incubation at 4°C with each of 5 μg Smad4 

antibody (Santa Cruz Biotechnology, Santa Cruz, CA), Anti-Acetyl Histone 3 antibody (Millipore, 
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Billerica, MA ), RNA polymerase II antibody  (Millipore, Billerica, MA),  or mouse IgG (Santa Cruz 

Biotechnology, Santa Cruz, CA).  Following washes and reverse crosslinking, DNA was isolated and 

preparations were made for PCR reactions.  

ChIP PCR 

    For the 20μL PCR reactions, each well contained:  ChIP DNA (2μL), RNase/DNase free water 

(12.4μL), 10X PCR Buffer (2μL), 25 mM magnesium chloride  (1.2μL), 10mM dNTPs (1.6μL), 10μM 

primer set (0.8μL) and Qiagen HotStart Taq (5U/μL, 0.4μL, Valencia, CA).  The following protocol was 

used:  1:  94°C, 3 min; 2:  94°C, 45 sec; 3:  55°C, 45 sec; 4:  72°C, 45 sec (x35); 5:  72°C--2min; 6: 

4°C.  The PCR product and 4μL of 6X DNA loading dye were loaded into a 12% acrylamide gel and 

run at 100 volts for 1.5 hours and visualized on a BioRad Molecular Imager (Hercules, CA, USA). 

 

Transcription Assays 

    SW480vector and SW480Smad4 colon cancer cells were used as described (Shiou et al. 2007). 

SW480 cells from American Type Culture Collection and HEK-293T were cultured in DMEM and 

RPMI media (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum, L-glutamine, 

penicillin and streptomycin. See below for collection and use of Wnt3a conditioned medium for HEK-

293T cells (added post-transfection).  Cells were transiently transfected with pRK5 or pRK5 DPC4 

Flag (Zhang et al. 1996) (Addgene, Cambridge, MA) in addition to TOPflash or FOPflash reporter 

plasmids (Millipore, Billerica, MA) to determine TCF-mediated transcriptional activity 

(Topflash/FOPflash ratio, representative of independent experiments).  Qiagen Effectene reagents 

(Qiagen, Valencia, CA) were used for the transfections and equal amounts of DNA were transfected 

per well for each experiment.  SW480 and SW480Smad4 cells were transiently transfected with wild-

type -catenin (Xenopus and human (simian CMV promoter in pCS2+), gifts from E. Lee laboratory, 
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Vanderbilt) and TCF-mediated transcription was determined 48 hours post-transfection via 

luminometer (BioTek II, Winooski, VT) and data shown is representative of at least three independent 

experiments.  Luciferase reagents (Dual-Glo Luciferase Assay System Cat# E 2940, Promega, 

Madison, WI) were used per manufacturer instructions.  

 

Microarray Experiments:  Human tissues, Cell Lines and Microarray Platform 

    The protocols and procedures for the Vanderbilt Medical Center (VMC) cohort were approved by 

the Institutional Review Boards at the University of Alabama-Birmingham Medical Center, Vanderbilt 

Medical Center and the Veterans Administration Hospital (Nashville, TN).  The Moffitt samples were 

also approved by their local IRB.  Representative sections of fresh tissue specimens were flash 

frozen in liquid nitrogen and stored at -80ºC until RNA isolation.  Quality assessment slides were 

obtained to verify the diagnosis of cancer or normal adjacent mucosa.  Stage was assessed by 

American Joint Commission on Cancer (AJCC) guidelines for both cohorts of tumor samples.  RNA 

for human tissue and cells was purified using the RNeasy  kit (Qiagen, Valencia, CA).  Cells were 

harvested at 70-80% in regular medium for RNA isolation.  Samples were hybridized to the Human 

Genome U133 Plus 2.0 GeneChip Expression Affymetrix  array.  Six, independent biologic replicates 

were harvested for SW480vector cells and each of the three independent SW480Smad4 clones.  RNA 

was isolated as above and hybridized to the same platform. 

 

Wnt target list 

    A Wnt target list was verified, updated and gene identifiers were collected.  Published support for 

these targets was verified and the gene identifiers were converted to Affymetrix probe identifiers.  
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This list was then used to determine Wnt enrichment for the Smad4-modulated cell line and human 

data as described in the statistical methods (see Appendix, pp. 177).  

 

Wnt3a Conditioned Medium 

     L Wnt-3A cells (ATCC #CRL-2647) were brought up in high glucose DMEM supplemented with 

10% FBS, l-glutamine, pen-strep, and G418 at 400μg/mL.  They were allowed to grow to ~60% 

confluence, and were then split at 1:10 into five T75 flasks in 10mL complete DMEM / flask without 

G418. The cells were allowed to grow for 4 days, then the conditioned medium was removed from the 

flasks, sterile filtered, and placed into a 50mL conical tube.  The five flasks were re-fed with 10mL 

complete DMEM, and were cultured for an additional 4 days.  The medium was removed and sterile 

filtered as before.  The first and second harvest of conditioned medium were labeled as such and 

stored at 4°C.   The 1st and 2nd batch of conditioned medium was mixed 1:1 and per ATCC protocol 

and we applied the conditioned medium at 1:1. 

 

Immunodetection 

Immunoblots 

    Cells were lysed in radioimmunoprecipitation assay buffer and lysates were sonicated and 

centrifuged and protein concentration was determined with bovine serum albumin standards. Western 

blotting was carried out as described (Dhawan et al. 2005) with antibodies to E-cadherin (BD 

Biosciences, San Jose, CA), -catenin (BD Biosciences, San Jose, CA), Vimentin (Santa Cruz 

Biotechnology, sc-6260, Santa Cruz, CA), Smad4 (Santa Cruz Biotechnology, Santa Cruz, CA), anti-

Flag M2 (Sigma, St. Louis, MO), PARP (nuclear control, Santa Cruz Biotechnology, Santa Cruz, CA) 

and -actin (Santa Cruz Biotechnology, Santa Cruz, CA).  SW480, SW480vector and SW480Smad4 
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clones were harvested and cell lysates were subjected to western blot with use of E-cadherin and 

vimentin specific antibodies ( -actin was used as a loading control).  Active Motif Nuclear Extract 

Reagents (Carlsbad, CA) were used to obtain nuclear fractions per manufacturer’s instructions 

Immunofluorescence 

    SW480vector and SW480Smad4 cells were each stained for -catenin, E-cadherin or p120 catenin and 

4’6’-diamidino-2-phenylindole (DAPI) after methanol fixation.  Antibodies for immunofluorescence: -

catenin (Sigma, 1:2000, anti-rabbit, Alexa-fluor 579); E-cadherin (BD Biosciences, 1:100, anti-mouse, 

alexa-fluor 488) and p120 catenin (courtesy of Albert B. Reynolds, Ph.D. laboratory, p120 rabbit: 

1:250, p120 mouse: 1:1000 (p120-rabbit: red-594; p120-mouse: Green-488). DAPI was used as 

indicated in the figure legends (Vector Laboratories, Inc., Burlingame, CA).  Photomicrographs of 

confocal images were acquired with an Olympus Fluoview microscope (Olympus FV-1000) fitted with 

a 40X objective.  Images were merged using Olympus Fluoview software.  Experiments, data 

analysis and presentation of figures were performed in part through the use of the VUMC Cell 

Imaging Shared Resource. 

Immunohistochemistry 

     Colorectal and normal adjacent tissue samples from Vanderbilt Medical Center were stained for 

Smad4 and -catenin.  Slides were stained using a 1:50 dilution of mouse monoclonal anti-Smad4 

antibody (100μg/mL stock, Santa Cruz Biotechnology, Santa Cruz, CA) or a 1:800 dilution of mouse 

monoclonal anti- -catenin antibody (250μg/mL stock, BD Biosciences, San Jose, CA).  In both cases, 

antigen retrieval was carried out in citrate buffer (pH = 6.0) under pressure for 15 minutes, followed by 

quenching with H202.  Antigen retrieval was carried out in EDTA at 98oC in a decloaking chamber and 

quenched with H202.  Photomicrographs were taken with the Ariol® SL-50 system at 20X. All images 

were acquired with a 20X objective on a CoolSNAP-ES CCD camera.  Images were captured as a 



 70 

montage and selected areas in original resolution are displayed as enlarged images.  Native 

resolution (0.322 microns/pixel) is shown. 

 

Functional Assays 

Matrigel invasion assay 

    Transwells (8 μm pore size, 6.5 mm in diameter) from Costar (Cambridge, MA) were coated with 

40μL of 2.5 mg/mL Matrigel and incubated for 2h.  Cells were trypsinized, washed with PBS, 

resuspended in serum-free medium with 0.2% BSA, and then seeded in Transwells (75,000 

cells/well).  Cells were grown on Transwells with 10% FBS containing medium in the lower chamber 

for 72h.  Transwells were fixed in 70% ethanol for 1 hour at 4oC. Cells remaining in the top chamber 

were removed with cotton swabs, and the cells that traversed to the reverse side of the inserts were 

rinsed with PBS and stained with propidium iodide for 1h to overnight at room temperature.  Cells 

were counted under a light microscope (at 200X) and invasive cell numbers were the averages of five 

areas on each insert.  Each invasion assay was done in triplicate and repeated thrice. 

Athymic (nude) mouse tumorigenicity assay 

    SW480vector and SW480Smad4 cells were grown in regular medium and 1 x 106
 cells were injected 

into sixteen, 6-week old, athymic nude (female, nu/nu ((Harlan Sprague Dawley, Indianapolis, IN)) on 

opposite flanks (e.g., SW480vector on the left and SW480Smad4 colon cancer cells on the right).  The 

mice were followed every other day and the tumors were measured at weekly intervals and the mice 

were sacrificed uniformly at week 4.  Tumors were assumed to be spheroid and volume was 

calculated by the appropriate formula (volume = 4/3 ( r2)).  The Vanderbilt Institutional Animal Care 

and Use Committee approved all animal work. 
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Gene set analysis 

     WebGestalt (Zhang, Kirov, and Snoddy 2005) (http://bioinfo.vanderbilt.edu/webgestalt) was used 

to analyze the top signaling pathways in the refined, Smad4-modulated, epithelial-specific target list 

(n=787 probesets).  This tool can be used to suggest biological areas that are important to a gene set 

and warrant further investigation.  Kyoto Encyclopedia of Genes and Genomes (KEGG, Kanehisa 

Laboratories, Kyoto University, Japan) pathway function was utilized and the cut-offs of P<.05 

(Fisher’s exact test) and minimum of 5 genes per pathway were selected. 

 

Statistical analysis 

    Microarray data were normalized with the Robust MultiChip Averaging (RMA) algorithm (Irizarry et 

al. 2003) as implemented in the Bioconductor package Affy.  For pairwise group comparisons, t-test 

in the Limma package (Smyth 2004) in Bioconductor was used to identify differentially expressed 

probe sets between the two groups under comparison (e.g., SW480vector versus SW480Smad4 or 

normal adjacent specimens versus stage I cancers).  The implementation of t-test in Limma uses an 

empirical Bayes method to moderate the standard errors of the estimated log-fold changes, this 

results in a more stable inference, especially for experiments with a small number of arrays.  The 

Wilcoxon rank sum test was used to assess the inverse relationship between Smad4 and -catenin. 

To test if the direction of change between Smad4 and -catenin was significant, we tested the 

interaction effect between genes (Smad4, -catenin) and groups (normal, cancer).  An FDR  of 

0.0005 was used as a cut-off to evaluate the potential enrichment of Wnt targets in the SW480vector 

and SW480Smad4 comparison.  Fisher’s exact test was then utilized to determine if there was a 

significant enrichment upon comparison of the genes significantly differentially regulated by Smad4 

and an annotated and updated Wnt target list.  Smad4-modulated human tumor signatures were 
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generated by determination of genes differentially expressed for each of the three Smad4 probes on 

the Affymetrix  array.  We focused on available ‘grade A’ Affymetrix  probes for Smad4 mapped to 

exonic transcript regions.  The genes for the probe with the most significant number of differentially 

expressed targets (FDR<0.05) were then overlapped with the Smad4 gene expression profile from 

the cells to determine epithelial-specific Smad4 target genes.  We then determined if there was a 

significant enrichment of Wnt target genes in this epithelial-specific list.  We then used the Smad4-

modulated, Wnt enriched gene list to execute unsupervised hierarchical cluster analysis and clinical 

outcome determination.  Hierarchical clustering with complete linkage and Euclidean distance was 

applied to generate heatmaps. The three clusters were discovered by unsupervised, hierarchical 

clustering and Kaplan-Meier estimates were performed. The log-rank test was used to determine if 

there were significant differences across three clusters for survival outcomes.   To assess the 

independence of cluster membership and cancer stages of the patients, we used the chi-square test.  

Student’s t-test or ANOVA was used for qPCR and TOPflash assays and P-values were designated 

as indicated (*P<.05, **P<.01 or ***P<.001 and non-significant (P>.05, ns)). Difference in slope 

between groups in Fig. 17B was found by analysis of variance (no significant interaction between 

groups by dose or time was noted (P=.88)).  GraphPad Prism  software was used for analysis of 

data in Figures 15; 17; 18; 20; 22, 26 and 27  (*P<.05, **P<.01, ***P<.001 and P>.05=ns by ANOVA 

and Student’s t-test respectively). 
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Results 

 

Smad4 Expression Reduces Transcription of -catenin mRNA 

    SW480 cells are microsatellite stable, 18q21del and harbor a splice site disruption in the remaining 

Smad4 allele (Woodford-Richens et al. 2001).  In addition, these cells have additional inactivating 

mutations of the tumor suppressor genes, APC and p53, plus an activating mutation of k-Ras (Capon 

et al. 1983; Rodrigues et al. 1990; Rowan et al. 2000).  We previously reported that Smad4 

restoration in SW480 colon cancer cells is associated with suppression of -catenin/TCF-dependent 

expression of TOPflash reporter gene activity and reduction in steady-state levels of cellular -catenin 

protein (Shiou et al. 2007); however, the mechanism by which this occurs is unknown.  In the present 

studies, we found that expression of -catenin mRNA is significantly reduced in SW480 cells in which 

Smad4 is either stably or transiently expressed (Figure 15A-C).  These findings were reproduced by 

overexpression of Smad4 in HEK-293T cells demonstrating that the observed effect is independent of 

mutations in APC and KRAS (Fig. 15D).  Thus, Smad4 expression reduces steady-state levels of -

catenin mRNA in both colon cancer cells and in epithelial, human embryonic kidney cells.  

    To determine whether the decrease in -catenin mRNA levels is due to decreased transcription of 

the -catenin gene (ctnnb1), RNA polymerase II bound to the 2nd exon (+460 to +579) was assessed 

by chromatin immunoprecipitation (ChIP).  A clear decrease in RNA polymerase II (POL2RA) binding 

at the ctnnb1 gene was observed in SW480Smad4 cells as compared with control SW480vector cells 

(Fig. 16A).  These data indicate transcriptional suppression of ctnnb1 upon Smad4 expression in 

SW480 cells. 

    The ctnnb1 promoter/enhancer region (-4500 to +1) contains ~15 putative Smad binding elements 

(Fig. 17A, Appendix).  The area around which we designed the ctnnb1 promoter/enhancer region 
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primers is shown in Fig. 18A (see Appendix; ~ -3400 to -3000).  Four minimal Smad binding elements 

are noted at this location (see bold gray text and bars).  To determine whether the decrease in -

catenin mRNA transcription is associated with Smad4 interaction with the ctnnb1 5’ upstream region, 

we performed a Smad4 ChIP experiment specific for the -3393 to -3136 5’ region and observed a 

marked increase in Smad4 binding to this region in SW480Smad4 compared to SW480vector cells (Fig. 

16B, lanes 5 and 6).  These data indicate that direct Smad4 interaction with the ctnnb1 5’ upstream 

regulatory region may contribute to suppression of -catenin mRNA transcription.  

    It should be noted that these effects on -catenin mRNA were reflected at the protein level.  Smad4 

restoration in SW480 cells is associated with significant down-regulation of -catenin in both whole 

cell and nuclear lysates (Figure 17A and B).  Because others have reported that -catenin mRNA 

stability may play a role in its activity  (Gherzi et al. 2006), we assessed whether Smad4 restoration 

alters -catenin mRNA stability in SW480 cells.  SW480vector and SW480Smad4 cells were treated with 

the RNA polymerase II inhibitor, 5,6-Dichlorobenzimidazole, 1- -D-ribofuranoside (DRB) and -

catenin mRNA levels were assessed at 4 hour intervals.   No significant differences were observed in 

-catenin mRNA stability in the SW480vector cells compared with SW480Smad4 cells in independent 

experiments using two different concentrations of DRB carried out to 24 hours (P=.88, Fig. 18B, 

Appendix).  Thus, we concluded that Smad4 restoration in SW480 colon cancer cells does not reduce 

-catenin mRNA by decreasing -catenin mRNA stability. 
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Figure 15.  Smad4 expression represses transcription of -catenin mRNA.  (A) RT-PCR and (B) quantitative 
RT-PCR (qPCR) analysis of steady-state -catenin mRNA levels in SW480

Smad4
 clones vs. SW480

vector
.  

Each of two independent SW480
Smad4

  clones were compared to SW480 colon cancer cells (independent 

replicates are displayed; ***P<.001, ANOVA, mean +/- SEM).  (C-D) Transient expression of Smad4 was 
carried out in SW480 cells and HEK-293T cells along with GFP.  GFP positive cells were compared to GFP-
negative cells and the difference in -catenin mRNA was determined by qPCR (plotted as 1/Ct, independent 
replicates are shown; *P<.05, student’s t-test, mean +/- SEM displayed). 

Figure 16.  Smad4 restoration in SW480 cells is associated with transcriptional down-regulation and binding to the ctnnb1 
promoter/enhancer.  (A) Representative, gel resolved, 119bp PCR amplified bands from exon 2 of ctnnb1 in a POL2RA 

Chromatin immunoprecipitation (ChIP) assay are displayed.  Histone and IgG antibodies are used as positive and negative 
controls, respectively, and amplification of input DNA is shown on the right. Amplified bands for the control gapdh promoter 
(166bp) are also displayed.  (B) Representative ctnnb1 promoter-specific PCR amplified bands (225bp) from a Smad4 

ChIP assay are shown on an agarose gel.  IgG serves as a negative control and Histone H3 as a positive control for 
binding to the ctnnb1 promoter.  Amplification of input DNA using -catenin primers is shown on the right hand side of the 
gel.  Amplified bands for the control gapdh promoter (166bp) are also displayed.  Lanes 1, 3, 5 and 7 represent SW480

vector
 

cells while lanes 2, 4, 6 and 8 represent SW480
Smad4.3

 as indicated (+ or -) for (A) and (B). 
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Figure 17.  Smad4 restoration in SW480 cells is associated with down-regulation 
of -catenin mRNA which is reflected at the protein level.  Steady-state protein 

levels for -catenin and Smad4 in cellular fractions by Western blot are displayed. 
(A) -actin was the loading control for whole cell lysates.  (B) PARP served as the 
nuclear marker.  Antibodies were used as described in Methods.  
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Smad4 Repression of Wnt Activated Transcription is Independent of APC Mutation and Occurs in a 

Dose-Dependent Manner 

    SW480 cells lack functional APC and therefore exhibit relatively high Wnt transcriptional activity.  

We previously reported that restoration of Smad4 expression in SW480 cells causes a marked 

reduction in activity of the Wnt signaling reporter, TOPflash (Shiou et al. 2007).  To further evaluate 

the inhibition of TOPflash by Smad4, we first confirmed that transient co-expression of Smad4 inhibits 

TOPflash activity in SW480 cells (Fig. 19A).  We also determined that transient overexpression of 

Smad4 suppressed TOPflash activity in HEK-293T cells (wild type APC) in the presence or absence 

of Wnt3a ligand (Fig. 19B).  Finally, we found that increasing doses of Smad4 in SW480 and HEK-

293T cells results in increasing suppression of TOPflash activity (Fig. 19C and D).  Thus, Smad4 

expression suppresses TOPflash in a dose-dependent manner and it does so independently of Wnt 

pathway activation and in the presence of wild-type APC. 

 

Smad4 Inhibition of TOPflash Activity is -catenin Dependent 

    TOPflash activity is controlled by a transcriptional complex composed of several proteins, any of 

which might be altered by Smad4 expression to inhibit reporter activity.  We next determined whether 

inhibition of TOPflash by Smad4 is -catenin dependent.  First, we co-expressed TOPflash along with 

wild-type -catenin under the control of a constitutively active CMV promoter.  We found that co-

expression of wild-type -catenin restored robust TOPflash activity in SW480Smad4 cells to comparable 

levels observed in parental SW480 cells demonstrating that suppression of TOPflash activity by 

Smad4 is restored by expression of -catenin with a heterologous promoter (Fig. 20A, p. 77).  Next,  
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Figure 19.  Smad4 expression represses TOPflash activity in an APC independent manner.  (A) 
SW480 and (B) HEK-293T cells were transiently transfected with TOPflash and FOPflash reporter 
plasmids.  The ratio of measured light units from TOP and FOPflash luciferase is graphed with either 

empty vector or Smad4 transfection as indicated (0.4μg used).  Each graph is representative of at 

least 2 independent experiments (***P<.001, student’s t-test, mean +/- SEM displayed).  Wnt3a 
conditioned medium (1:1) was added to HEK-293T cells as indicated after transfection.  (C) 
SW480

parental
 and (D) HEK-293T cells were transiently transfected with TOPflash and FOPflash 

reporter plasmids.  The ratio of measured light units (relative luciferase activity) from TOPflash 
luciferase and FOPflash luciferase is graphed with doses of Smad4 transfection as indicated. 
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we conducted a Smad4 concentration-response transfection experiment in SW480 cells with and 

without co-expression of wild-type -catenin.  As seen in Fig. 20B, transient Smad4 expression in 

SW480 cells suppressed Wnt-specific transactivation in a concentration-dependent fashion when no 

exogenous -catenin was present.  Consistent with the proposition that Smad4 directly suppresses 

transcriptional activity of the ctnnb1 gene, Smad4 expression does not suppress TOPflash upon co-

expression of exogenous -catenin under the control of a heterologous promoter (Fig. 20C).  These 

data further support a model in which Smad4 acts to inhibit Wnt-signaling through transcriptional 

repression at the -catenin promoter.  
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Figure 20.  Smad4 inhibition of TOPflash activity is -catenin dependent.  (A) SW480vector and SW480Smad4.3 
were transiently transfected with wild-type -catenin (Xenopus data shown and representative of independent 
replicates with human -catenin).  Luciferase activity, expressed in light units, from the TOPflash reporter is 
graphed for each condition (**P<.01 and ***P<.001, student’s t-test,  ***P<.001, ANOVA, mean +/- SEM 
displayed).  (B) TOPflash activity was assessed in SW480 cells transiently transfected with control vector (0.4g, 
0.6g and 0.8g, lanes 2-4), Smad4 (0.4g, 0.6g and 0.8g, lanes 5-7) and reporter plasmids (all lanes).  Relative 
light units from TOP/FOPflash luciferase is displayed for one representative biological replicate (ns=P>.05, 
ANOVA for SW480 vs. control vector; *P<.05, ANOVA for SW480 vs. Smad4, mean +/- SEM displayed for all). 
(C) TOPflash activity was likewise assessed in SW480 cells transiently transfected with control vector (0.4 μg, 
0.6 μg and 0.8 μg, lanes 2-4), Smad4 (0.4μg, 0.6μg, and 0.8μg, lanes 5-7) and also co-transfected with 0.2 μg 
wild-type human -catenin (lanes 2-8).  (two biologic replicates displayed, ns=P>.05, ANOVA, mean +/- SEM 
displayed). 
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Figure 21.  Smad4 cannot suppress TOPflash independently of -catenin.  TOPflash 

activity was determined as described in Materials and Methods in SW480vector cells (lane 1: 

TOP and FOP only; lane 5:  TOP, FOP and the N-Lef1-VP16 fusion construct) and 
SW480Smad4 cells (lanes 2-4:  TOP and FOP only;  lanes 6-8:  TOP, FOP and the N-Lef1-
VP16 construct); ***P<.001 and ns=P>.05, ANOVA for both, mean +/- SEM displayed. 

We tested whether or not Smad4 represses TOPflash activity independently of -catenin with use of 

the N-Lef1-VP16 construct.  This construct directs the expression of an N-terminal truncated form of 

Lef1 fused to a VP16 activator protein removing the -catenin binding site on Lef1 and eliminating the 

requirement for -catenin interaction with Lef1 to activate TOPflash. Thus, if Smad4 suppresses TOP-

flash in the presence of N-Lef1-VP16, we would conclude that Smad4-mediated inhibition of Wnt 

signaling is -catenin independent, implicating other members of the Wnt-sigaling transcriptional 

complex.  In these experiments, we found that Smad4 expression does not suppress TOPflash 

activity when N-Lef1-VP16 is expressed (Fig. 21).  These data confirm that attenuation of Wnt-

specific transactivation by Smad4 restoration is -catenin-dependent and cannot be attributed to 

altered activity in other members of the TCF/LEF transcriptional complex. 
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Smad4 Inhibits Wnt Target Gene Expression While Reversing EMT 

    Since we observed inhibition of -catenin/TCF-dependent reporter activity in SW480 cells, we 

assessed whether Wnt target gene expression is also altered by Smad4 expression.  Global gene 

expression analysis of SW480vector and SW480Smad4 colon cancer cells by microarray was performed 

to assess changes in gene expression caused by restored Smad4 expression.  We used the following 

stringent criteria to determine differential expression of SW480vector compared with SW480Smad4 colon 

cancer cells:  FDR<0.005 and fold-change >4 (see Materials and Methods) to obtain an epithelial- 

specific, Smad4 expression profile (see Table 11, Appendix).   

Smad4 Inhibition of Wnt Target Gene Expression 

    We then queried this list of significantly altered genes for enrichment of published and annotated 

Wnt target genes (see Table 12 and Fig. 22 (schematic) in the Appendix).  This Wnt target gene 

identifier list was mapped to Affymetrix  probesets and overlapped with the Smad4 expression profile 

(n=1668 probesets) to determine enrichment.  We observed significant changes and enrichment in 

expression of Wnt target genes (P<.001) and EMT markers in the differentially expressed profile (see 

hierarchical cluster analysis in Fig. 23A) indicative of negative regulation of Wnt pathway targets.  The 

Smad4-modulated, Wnt-enriched targets are noted in Table 13 (see Appendix).  For example, 

expression of Wnt target genes known to be associated with negative regulation of the Wnt pathway, 

namely E-cadherin (Jamora et al. 2003) (also associated with reversal of EMT), -transducin repeat 

containing (BTRC) and dickkopf 1 (DKK1) was significantly up-regulated by Smad4 restoration 

whereas expression of Wnt targets associated with pathway activation such as Axin2, Lef1, Apcdd1 

(Takahashi et al. 2002), CyclinD1 and Claudin1 were significantly down-regulated when Smad4 was 

expressed.  We verified the microarray-predicted expression changes in Axin2, Lef1, Apcdd1, 

CyclinD1 and E-cadherin by RT-PCR and qPCR (Fig. 23B-C and data not shown).   
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Figure 23.  A Smad4-specific gene expression profile reflects down-regulation of Wnt signaling.  
(A) Unsupervised clustering (p.80) of SW480vector (indicated by red bar, n = 6) and SW480Smad4.1-3 (indicated 

by blue bar, n = 6 each of 3 clones) in columns and Wnt target genes in rows are shown in the heatmap. 

Up-regulated genes are indicated by dark blue and down-regulated genes are indicated by dark red.  (B) 
RT-PCR and (C) qPCR assessment of representative steady state Wnt target mRNAs (Axin2, Lef1 and 

Apcdd1) in SW480Smad4 clones versus SW480vector cells (three biological replicates (loading control, 

Gapdh)).  For qPCR, SW480vector and each of two independent SW480Smad4 clones were compared to the 
SW480 colon cancer cells.  At least three biologic replicates were completed and representative biologic 
replicate data is shown (***P<.001, ANOVA). 
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Smad4 Expression is Associated with Reversal of EMT in Colon Cancer Cells 

      It is well established that Wnt signaling is deregulated secondary to an adenomatous polyposis 

coli (APC) mutation in >80% of colorectal cancers and recently, nuclear localization of -catenin has 

been associated with EMT in this setting (Hlubek et al. 2007).  As previously noted, the most 

commonly disrupted Smad mediator in cancer, including colorectal cancer, is Smad4, located on 

chromosome 18q21 (Hahn et al. Dpc4, a candidate tumor suppressor gene at human chromosome 

18q21.1 1996; Thiagalingam et al. 1996).  SW480 colon cancer cells are a useful model to investigate 

potential cross-talk between canonical Wnt signaling and TGF  signaling in colorectal cancer for the 

following reasons:  1) They exhibit high baseline canonical Wnt activity due to a mutation in APC.  

This mutation constitutes a deletion at the carboxyl terminus at residue 1338.  This missing area 

contains Ser-Ala-Met-Pro (SAMP) motifs otherwise known as SAMP repeats, which are important for 

Axin binding (Behrens et al. 1998) (the truncated protein still contains -catenin binding sites (Yang et 

al. 2006)); and 2) Smad4 is mutated via loss of one allele of chromosome 18 with the second allele 

not expressed due to a splice site mutation (Woodford-Richens et al. 2001). 

    Smad4 restoration has been associated with induction of E-cadherin and P-cadherin in colon 

cancer cells and loss of Smad4 has been associated with loss of E-cadherin in colon cancer patients 

(Muller et al. 2002; Reinacher-Schick et al. 2004).  These studies were some of the first to 

demonstrate the potential role of Smad4 in the reversal of EMT.  Since -catenin is part of the 

basolateral junctional complex along with E-cadherin and p120 catenin we sought to determine if 

Smad4 restoration in SW480 colon cancer cells is associated with a reversal of EMT and 

establishment of a functional cell membrane complex.  We noted E-cadherin induction upon Smad4 

restoration along with marked reduction in the intermediate-filament protein vimentin (Fig. 24A).  

Vimentin has been characterized as an EMT marker and a putative Wnt target gene (Gilles et al. 
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Figure 24.  Smad4 expression restores an epithelial cell phenotype in colon cancer cells. (A) An immunoblot for 

SW480, SW480vector and SW480Smad4 cells (SW480
Smad4.1-4.3

) for E-cadherin and vimentin antibodies is shown ( -actin, 

loading control).  (B and C) Confocal immunofluorescence of -catenin (red) is shown to demonstrate junctional 
membrane localization in SW480

Smad4
 cells (left panel) compared with SW480

vector
 cells (right panel).  The cell nuclei 

were stained with DAPI (blue).  Images were acquired with the Olympus FV-1000 as described in Methods and scale 
bars are 20μM (white). 

2003; Kalluri 2009).  We analyzed SW480, SW480vector and SW480Smad4 cells for localization and 

distribution of -catenin, E-cadherin and p120 catenin with confocal microscopy.  A marked increase 

in membrane-localized -catenin in addition to a marked cuboidal phenotype was noted in 

SW480Smad4 cells compared with SW480vector cells (Fig. 24B and C).   
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Figure 25.  Smad4 expression is associated with membrane localization of -catenin and E-

cadherin in colon cancer cells.  Confocal immunofluorescence for -catenin (red) and E-cadherin 
(green) is shown for SW480Smad4 (A) and SW480vector (B) cells. Images were acquired with the 
Olympus FV-1000 as described in Methods.  The merged images along with DAPI (blue) are 
shown along with the z-stack (z height of 32.5μM is shown for both).  Scale bars are 20μM (white). 

    As can be seen in the vertical plane of the image (Fig. 25A, z-stack), -catenin and E-cadherin 

demonstrate membranous co-localization upon Smad4 expression compared with lack of 

membranous co-localization of these components in the SW480vector cells (Fig. 25B).  These data 

strongly support functional reversal of EMT with re-introduction of Smad4 in SW480 colon cancer 

cells.  Additionally, we noted markedly enhanced nuclear and cytoplasmic -catenin in the 

SW480vector cells along with poorly localized E-cadherin (Fig. 24C).  These data support observations 

made by Hublek, et. al. where high nuclear -catenin activity was noted at the invasive front of 

colorectal cancers (Hlubek et al. 2007).  These data are supportive of the idea that a reduction in total 

levels of -catenin mediated by the transcriptional repression via Smad4 is part of the Smad4-

mediated tumor suppressor program in colon cancer cells. 
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    Lastly, we noted that -catenin co-localized with p120 catenin and that p120 catenin in turn co-

localized with E-cadherin at the cell membrane (data not shown) in an independent SW480Smad4 clone 

compared with the dense cytoplasmic and sparse membrane decoration of p120 catenin and -

catenin that we had observed in the SW480vector and SW480 cells (Fig. 26A and B, z-stack not 

shown).  These data indicate that Smad4 restoration in SW480 colon cancer cells is associated with 

reversal of EMT.  

     Recent work by an independent group (Tian et al. 2009) recapitulates our previously published 

findings of suppression of TOPflash and down-regulation of the Wnt target gene Claudin-1 upon 

Smad4 re-expression (Shiou et al. 2007).  This group did not demonstrate basolateral membrane 

component co-localization, nor do they explore further mechanistic insights into our initial 

observations.  Our current data extend previous observations by multiple independent laboratories to 

demonstrate that Smad4 restoration in colon cancer cells reverses EMT and leads to an epithelial 

phenotype as supported by co-localization of basolateral membrane components in association with a 

significant down-regulation of -catenin levels.  In summary, as previously reported (Shiou et al. 

2007), we observed marked up-regulation of E-cadherin in addition to the new observations of -

catenin and p120 cell membrane co-localization, reduction in nuclear -catenin and down-regulation 

of the putative Wnt target and EMT marker, vimentin (Gilles et al. 2003), in response to restoration of 

Smad4 expression (Fig. 24-26). 
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Figure 26.  Smad4 expression is associated with membrane localization of p120 catenin and -

catenin in colon cancer cells.  (A) Junctional localization of -catenin (red) co-localized with p120 
catenin (green) is show by confocal immunofluorescence in SW480

Smad4
 cells compared with (B) 

cytoplasmic and nuclear localization in the SW480
vector

 cells.  (C) Merged images along with DAPI 
are shown as above.  Images were acquired with the Olympus FV-1000 as described in Methods. 
Scale bars are 20μM for each image (white). 
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  We further sought to determine the functional consequences of Smad4 restoration in SW480 colon 

cancer cells in vitro and in vivo with invasion and xenograft flank tumorigenicity assays.  SW480vector 

cells are significantly more invasive in an invasion assay compared with SW480Smad4 cells (Fig. 27, 

P<.01).  Smad4 has been noted to decrease tumorigenicity in a unilateral flank model in nude mice 

(Schwarte-Waldhoff et al. 1999); however, this phenomenon has not been tested in a model that 

more closely mimics that of human tumor development and progression.  We placed SW480vector cells 

on the left flank of 6-week old nude mice and SW480Smad4 cells on the right flank.  We did this so that 

each mouse would serve as it’s on control and more closely resemble tumor cells in a human 

colorectal tumor where Smad4 loss and retention occur in the same organism.  Tumors were 

monitored weekly over the course of 4 weeks and the mice were sacrificed and final ex vivo tumor 

volume was determined.  SW480vector cells were significantly more tumorigenic than SW480Smad4 cells 

in this bilateral flank xenograft model (Fig. 28, P<.05).  These data further substantiate the tumor 

suppressive role for Smad4 in colon cancer and its potential role in the reversal of EMT in the context 

of deregulated canonical Wnt signaling in epithelial biology.  These data substantiate our 

observations that Smad4 restoration and marked reduction in -catenin mRNA levels and 

transcriptional activity mediate downstream inhibition of Wnt signaling and reverse EMT in colon 

cancer cells and corroborate the role of Smad4 as a tumor suppressor (Schwarte-Waldhoff et al. 

1999). 
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Figure 27.  Smad4 expression significantly decreases colon cancer cell invasion.  Matrigel 
invasion assays (representative biological replicates shown) demonstrate significant reduction 
of invasion ((proliferation control not shown) **P<.01, Student’s t-test, mean +/- SEM 
displayed).   

Figure 28.  Smad4 expression significantly decreases tumorigenicity in a nude mouse model. 
Suppression of tumorigenicity upon Smad4 restoration in SW480 cells in a nude mouse model 
is displayed (tumor volumes calculated from post-sacrifice ex vivo measurements taken at 4 
weeks post-injection of cells are shown (*P<.05, Student’s t-test, mean +/- SEM displayed)). 
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Smad4 and -catenin Levels Demonstrate Significant Inverse Expression Patterns in Human 

Colorectal Cancer Patient Specimens 

    In order to assess the clinical relevance of our cell culture studies, we examined the relationship 

between Smad4 and -catenin expression in surgically resected colorectal cancer specimens.  

Smad4 and -catenin expression were analyzed in tumor samples from 250 colorectal cancer 

patients as compared with ten normal adjacent colorectal tissue specimens, by microarray analysis in 

a combined dataset of patient samples from Vanderbilt Medical Center and the Moffitt Cancer Center 

(Table 14).  As seen in Fig. 29A-B, we noted significant down-regulation of Smad4 and up-regulation 

of -catenin in colorectal tumors, and this trend was noted for each stage of colorectal cancer as 

compared with normal adjacent mucosa.  Furthermore, we noted highly significant inverse expression 

of Smad4 and -catenin (Fig. 30, P<.0001).  Further supportive evidence for this inverse expression 

pattern was noted when we stained normal adjacent colon and colon adenocarcinoma specimens for 

Smad4 and -catenin.  We noted positive Smad4 nuclear and cytoplasmic staining in the stroma and 

epithelium of normal adjacent mucosa while -catenin demonstrated membranous staining along the 

crypt with nuclear and cytoplasmic staining at the base of the crypt (Fig. 31 A-B and native resolution 

in E-H).  Interestingly, we observed negative staining for Smad4 in a colon cancer specimen except 

for sparse positive stromal cells.  In contrast, we noted strong nuclear and cytoplasmic -catenin 

staining in the serial section of the same tumor (Fig. 31 C-D and native resolution in I-J).  These data 

support the clinical significance of the association between Smad4 down-regulation and a parallel up-

regulation of -catenin in the progression from normal colonic epithelium to colon adenocarcinoma.  
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Human colorectal and normal adjacent specimen microarray dataset 
demographics.  Colorectal cancer patients from Vanderbilt Medical Center 
(VMC, n=55)), Moffitt Cancer Center (MCC, n=195) and 10 MCC normal 
adjacent colon specimen patients used for microarray analyses are 
displayed.  All patients were diagnosed with colorectal adenocarcinoma and 
staged according to American Joint Commission on Cancer (AJCC) 
guidelines (stages I-IV) and the 10 normal adjacent specimens were 
evaluated by a pathologist and determined to contain no adenocarcinoma 
contribution (only normal colonic mucosa).  The normal specimens were 
normal adjacent colon mucosa specimens from patients whose colons were 
resected for colon cancer.  VMC 55 includes 14 patients from the University 
of Alabama-Birmingham Medical Center.  Other in the VMC medical record 
implies ‘not otherwise specified’ and implies ‘Hispanic, not otherwise 
specified’ in the MCC medical record. 



94 

Figure 29.  (A) Smad4 expression is significantly down-regulated in colorectal cancer patient 

tumors compared with normal adjacent mucosal specimens.  Comparison of expression for exonic 
Smad4 probes on the Affymetrix® microarray platform for normal adjacent colon tissue versus 

colorectal cancers (stages I-IV) is shown for the combined VMC/MCC data (202526_at (**P<.001 
for all comparisons); 235725_at (***P .01 for all comparisons);  202527_s_at (*P .02 for all 

comparisons except normal versus stage II)).  (B) -catenin expression is significantly up-regulated 
in colorectal cancer patient tumors compared with normal adjacent mucosal specimens. 

Comparison of expression for exonic -catenin probes on the Affymetrix® microarray platform for 
normal adjacent colon tissue versus colorectal cancers (stages I-IV) is shown for the combined 

VMC/MCC data (223679_at (**P<.01 for all comparisons); 1554411_at (*P<.05 for all comparisons 
except for stage 4, P=.06); 201533_at (*P<.05 for all comparisons)). 
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Figure 30.  Smad4 and -catenin demonstrate significant inverse expression patterns 

in colorectal cancer patients.  250 patients with colorectal cancer evaluated by 

microarray analysis are compared with normal adjacent colonic mucosa for Smad4 

and -catenin expression levels.  Normalized expression values for normal tissue and 

colorectal adenocarcinomas (all stages) are displayed. The P-values of normal vs all 

colorectal cancers for Smad4 and for -catenin are not shown on the graph  (P=.01 

for Smad4 and P<.001 for -catenin, Wilcoxon rank sum test).  The P-value for the 

interaction effect between Smad4 and -catenin is displayed (P<.0001) to 

demonstrate the significant inverse expression patterns. 
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Figure 31.  Smad4 and -catenin levels show inverse expression in colorectal cancer tumors. 

Representative photomicrographs of normal adjacent colon (A-B) and a colon 

adenocarcinoma (C-D) stained for Smad4 and -catenin are shown.  Scale bars represent 100 

microns (p. 93).  Scaled images are shown in A-D (p. 93) and native resolution is shown in E-J 
(p. 94). Images were captured as a montage and selected areas in original resolution are 
displayed in E-J.  All images were acquired with a 20X objective on a CoolSNAP-ES CCD 
camera (see Methods). Scale bars in E-H are 20 microns (normal) and in I-J serial sections 
are 50 microns (cancer). 
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A Smad4-Modulated, Wnt Target Gene Expression Pattern is Correlated with Outcome in Colorectal 

Cancer Patients 

    Given that Smad4 expression suppresses -catenin mRNA and TOPflash activation and these 

changes are associated with EMT, we wanted to test whether a Smad4-dependent, Wnt 

transcriptional program contains predictive information for clinical outcomes in colorectal cancer 

patients.  We reasoned that the human colorectal cancer microarray dataset would reflect a 

repressed Wnt transcriptional program since we observed a highly significant inverse pattern of 

expression between Smad4 and -catenin.  Thus, we conducted a stringent differential expression 

analysis between Smad4 high vs. Smad4 low patients in the primary tumor dataset (FDR<0.05).  To 

generate this list, we focused on the Smad4 probe with the most significant number of differentially 

expressed genes.  Next, in order to refine the list of differentially expressed genes for epithelial-

specific targets, the differential expression profile from the colon cancer cell lines (SW480 and 

SW480Smad4) was intersected with the list of differentially expressed genes in the patient tumor 

samples (Fig. 32A, Appendix).  We queried this group of targets (451 mapped genes corresponding 

to 787 probes) in WebGestalt and discovered enrichment in the following signaling pathways:  

Mitogen-activated protein kinase (MAPK), TGF , Wnt, and T and B Cell Receptor signaling (Table 15, 

P<.05).   

 

 

 

 

 

 Signaling Pathways implicated in the human colorectal cancer Smad4-modulated, epithelial-specific co-expression 
module.  The top 5 signaling pathways implicated by the Smad4-modulated, epithelial-specific global expression 
analysis (n=787 probesets) as found in WebGestalt with Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways are indicated.  Cut-offs of P<.05 and 5 molecules per pathway were used.  Fisher’s exact P-value and 
number of implicated molecules is displayed. 
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    We then asked if there was significant enrichment of Wnt target genes in this intersected list (see 

Fig. 32B, Appendix) and found that Wnt target gene representation was significant  (P<.001) in this 

Smad4 co-regulated, epithelial-specific expression profile (32 probes, 18 distinct Wnt target genes 

are shown in Table 16).  High Smad4 expression was associated with significant down-regulation of 

Axin2 and Claudin1 (both Wnt-induced) whereas low Smad4 expression was associated with 

significant up-regulation of Lef1, Versican, Fibronectin and Twist (all activated by Wnt in the absence 

of Smad4).  Claudin1 is associated with metastatic behavior in colorectal cancers (Dhawan et al. 

2005), while Fibronectin and Twist are well-known markers of EMT (Yang and Weinberg 2008).  

These data compliment the cell culture array findings and provide a solid clinical parallel to our colon 

cancer cell line observations.  

 

 

 

 

 

 

 

 

 

 

 

 

Smad4-modulated, epithelial-specific Wnt target genes in human colorectal cancer.  32 
Wnt target probesets (18 individual gene IDs displayed) in common amongst the SW480 

Smad4-modulated, Wnt-enriched gene expression profile and the 202527_s_at (Smad4 
probe) gene expression profile are displayed.  Blue indicates down-regulation with high 
Smad4 levels and red indicates up-regulation upon low Smad4 levels for this display (the 
reverse scenario is not displayed).  These Smad4 co-regulated Wnt enriched probes were 
then used to determine if they could separate patient groups based upon unsupervised 
hierarchical cluster analysis and subsequently to determine if they could predict outcome in 
colorectal cancer patients (see Fig. 31).   
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    Since Smad4 is a tumor suppressor and has shown promise as a potential biomarker in colorectal 

cancer patients (Alazzouzi et al. 2005), we assessed whether the Wnt target gene probes co-

regulated by Smad4 expression could identify distinct colorectal cancer patient groups in 

unsupervised cluster analysis.  The Smad4-modulated Wnt target genes clustered patients into three 

distinct groups (Fig. 33A).  Importantly, Wnt target gene expression exhibited a marked change in 

these groupings; for example, Cysteine-rich angiogenic inducer, 61 (CYR61), Versican, and 

Fibronectin are markedly down-regulated in cluster 1 while Lef1, Axin2 and Twist 1 are up-regulated 

in clusters 2 and 3.  These data are consistent with the notion that Wnt target genes previously 

implicated in processes of Wnt activation and EMT are down-regulated (e.g., Fibronectin in (ten 

Berge et al. 2008)) in the context of high Smad4 expression and up-regulated when Smad4 

expression is reduced (e.g., Twist1 in (Howe et al. 2003)).   

    In order to determine whether this Smad4 co-regulated gene list discriminates patient groups on 

the basis of clinical outcome, overall and disease-free survival analyses were conducted in the 250 

patient colorectal cancer combined databases (VMC and MCC).  We observed significant differences 

in outcomes for patients in each of these three clusters for overall survival (P<.001) and disease-free 

survival, (P=.01, Fig. 33B). These data suggest that although there are significant differences by 

overall survival for clusters 2 and 3 that these differences are diminished when recurrence is the 

primary outcome measure.  One interpretation may be that loss of the Smad4-modulated 

transcriptional program is important for both overall survival (death from all causes including cancer-

related deaths) and disease-free survival (evidence of recurrent disease) whereas the transcriptional 

program found in clusters 2 and 3 may become similar when the outcome measured is recurrence 

only.  These differences in outcome could not be attributed to cancer stage as determined by analysis 

of stage distribution among each cluster of patients (P=.48).  These data indicate that the epithelial 
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Figure 33.  Smad4-modulated Wnt target genes are significantly associated with better survival in colorectal cancer 
patients. (A) Unsupervised cluster analysis of Smad4-modulated Wnt targets in 250 colorectal cancer patients. 
Individual clusters are denoted by red, purple and navy lines.  Individual patients are represented by columns and Wnt 
specific Affymetrix probes are represented in rows. Up-regulated genes are indicated by dark blue and down-regulated 
genes are indicated by dark red.  (B) Kaplan-Meier survival estimates for each cluster of patients are shown for overall 

and disease-free survival (OS, DFS).  P-values shown compare all three clusters.  

cell-specific transcriptional program regulated by Smad4 specifically related to suppression of Wnt 

signaling correlates with stage-independent prognostic information in colorectal cancer patients. 
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Discussion and Future Directions 

 

    In this chapter, we provide evidence that Smad4 is an important modulator of -catenin gene 

expression and downstream Wnt signaling.  Smad4 expression inhibits Wnt activity and associated 

Wnt target gene expresson patterns in colon cancer cells and in tumors resected from colon cancer 

patients.  The clinical relevance of these findings was demonstrated by application of the Smad4-

associated Wnt transcriptional program to colorectal cancer patient datasets.  

    Dynamic signaling interplay between Wnt and TGF  superfamily members is evident in embryonic 

development and in homeostasis of the adult organism (Nishita et al. 2000; Radtke and Clevers 

2005).  For example, BMPs can suppress TCF/LEF transcription in hair follicles (Jamora et al. 2003) 

and can influence TCF4 transcription in muscle (Bonafede et al. 2006).  Smads interact with TCF/LEF 

transcription factors in a cooperative fashion to activate target genes both developmentally (Nishita et 

al. 2000) and during carcinogenesis (Labbe et al. 2007).  In other contexts, expression of a BMP 

antagonist, such as Noggin, is associated with increased nuclear and cytoplasmic -catenin and with 

up-regulation of Wnt target genes (Kosinski et al. 2007).  Independent studies also show that 

transgenic expression of Noggin in vivo is associated with increased expression of -catenin 

(Haramis et al. 2004).  Similarly, expression of other TGF  superfamily antagonists is associated with 

EMT (Zeisberg et al. 2003).  Notably, direct regulatory interaction between the central mediators of 

Wnt and TGF  signaling, -catenin and Smad4, has not been described, even though defects in both 

pathways contribute to more than half of all colorectal cancers. 

    Negative regulation of Wnt signaling can occur at multiple levels; however, the dominant paradigm  

for pathway regulation is through post-translational modification of -catenin leading to proteasomal 

mediated degradation of intracellular levels to meter the Wnt signal (Clevers 2006).  However, recent 
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work also suggests transcriptional activation of -catenin as potentially important at the invasive front 

of colorectal cancers (Bandapalli et al. 2009; Nollet et al. 1996).  Here, we provide additional 

evidence, in support of a new model for regulation of Wnt signaling in which Smad4 directly represses 

-catenin transcription in epithelial cells.  

    Our data show that Smad4 associates with the 5’ region upstream of ctnnb1 suggesting that the 

suppression of ctnnb1 transcription may be a direct effect of Smad4.   Future work will determine 

precisely which cis-elements of the implicated area of the ctnnb1 promoter/enhancer are necessary 

and sufficient for transcriptional repression induced by Smad4, and will determine which 

transcriptional co-regulators participate with Smad4 in this regulation (e.g., p300, Smads 1/5/8 or 

Smads 2/3).   Additionally, determination of the ligand dependence of this effect remains to be 

addressed.   For example, Smad4 restoration in colon cancer cells may enable autocrine TGF  or 

BMP signaling ((Beck et al. 2006) and our unpublished observations) as a potential mechanism to 

further propagate resultant downstream tumor suppressor effects of Smad4.  Our gene expression 

microarray observations of the significant inverse correlation of Smad4 and -catenin expression in 

250 colorectal cancer patients corroborated the observations we made in cultured colon cancer cells.  

In addition, analysis of the epithelial-specific, Smad4 co-regulated genes confirm that expression of 

Smad4 in colorectal cancers is associated with suppression of specific Wnt target genes.  For 

example, we found that Wnt stimulated targets, Axin2, Claudin1, Inhibitor of DNA binding 2, dominant 

negative helix-loop-helix protein (ID2) and Jun oncogene are all significantly down-regulated when 

Smad4 expression levels are high in the primary colorectal tumors.  Finally, we observed that the 

Smad4 co-regulated gene list contains stage-independent prognostic information that can be tested in 

future clinical datasets for potential use in prospective identification of high-risk colorectal cancer 

patients.  These data indicate that the transcriptional profile associated with Smad4 loss may be more 
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informative than analysis of Smad4 loss alone in prediction of clinical outcomes in colorectal cancer 

patients.  

    In summary, our data uncover a previously unrecognized function of Smad4 in transcriptional 

repression of the ctnnb1 gene.  Our data also provide new insights into the modulation of the Wnt 

transcriptional program by Smad4 that has important implications for their cooperative roles in 

homeostasis in intestinal epithelium and tumorigenesis.  This Smad4-modulated, epithelial-specific, 

Wnt-enriched gene signature has potential prognostic value beyond conventional pathological staging 

of colorectal cancer patients. These findings should also facilitate hypothesis testing for biologically 

targeted therapeutic interventions based on the level of activity of the TGF /Smad or Wnt signaling 

pathways.    
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CHAPTER IV 

 

SUMMARY OF FINDINGS AND FUTURE DIRECTIONS 

 

Brief Review 

 

    Colorectal cancer is the second leading cause of cancer-related deaths in the United States, and 

most of these deaths are a consequence of metastatic disease.  Understanding the biology of 

metastasis and loss of tumor suppression is critical to identify patients at highest risk of cancer-

related death.  We used biological models to gain mechanistic insights into these areas to translate 

into optimal care of colorectal cancer patients.  Chapter II:  Staging inadequately predicts metastatic 

risk in colon cancer patients.  We addressed this problem by developing a biological mouse model of 

metastasis where gene expression analysis led to the discovery of a metastasis-associated profile.  

Profile refinement in a colorectal cancer patient test set uncovered a 34-gene classifier that when 

translated to a metastasis score identified colon cancer patients in an independent test set at highest 

risk of death from recurrence.  It also identified high-risk stage II and III patients, and importantly 

revealed low-risk stage III patients for whom adjuvant chemotherapy did not improve survival.  This 

34-gene classifier predicted poor outcome, independently of conventional measures, thereby 

providing insight into the biology of colon cancer metastasis.  Chapter III:  Loss of tumor suppressor 

genes is evident in the majority of colorectal cancer patients. TGF  and Wnt signaling pathways are 

implicated in this process and are essential during development, epithelial cell differentiation and 

proliferation.  Since we previously noted reduction in -catenin levels and suppression of Wnt activity 

upon Smad4 restoration in colon cancer cells, we examined the mechanism by which Smad4 
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represses -catenin expression and Wnt signaling.  Smad4 expression results in transcriptional 

repression of -catenin and thereby inhibits Wnt signaling, with associated inhibition of downstream 

Wnt target gene expression and reversal of epithelial-mesenchymal transition.  The clinical relevance 

of this effect was demonstrated by an epithelial cell specific, Smad4-modulated gene expression 

profile associated with suppression of Wnt signaling, which contributed prognostic information 

independent of conventional pathological staging, in a large cohort of colorectal cancer patients.  

These findings should facilitate hypothesis testing for biologically targeted therapeutic interventions 

based on TGF /Smad or Wnt signaling pathway activity levels. 

 

Future Directions for the 34-gene Classifier 

 

Validation and Optimization of the 34-gene Classifier in Clinical Samples 

    We are currently working on three separate fronts to move the 34-gene classifier toward clinical 

application.  First, we are developing an objective metastasis score for colorectal cancer.  The validity 

of the proposed molecular predictor must be tested as an objective score that can be applied to 

individual patients prospectively.  However, before this can be done we are using primary tumors 

resected from stage II and III patients with colorectal cancer with mature follow-up data (>3 years) to 

build a statistically robust model represented by data from four independent academic centers (VMC, 

UAB, MCC and The Ludwig Cancer Institute in Melbourne Australia).  We will build the model in a 

combined dataset from the VMC/MCC groups (n=250 patients, see Chapter III) and test it in 

retrospectively collected, mature samples from UAB and Melbourne.  We will combine the 34-gene 

classifier and several other credible colon cancer signatures (Barrier et al. 2006; Eschrich et al. 2005; 

Garman et al. 2008; Jorissen et al. 2009; Lin et al. 2007) proposed to predict a recurrence-prone 
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phenotype to systematically evaluate combinations of gene expression patterns for their association 

with colon cancer metastasis and recurrence according to the method proposed by Paik (Paik et al. 

2004).  The results of these analyses will be competed head-to-head with the biologically based 34-

gene metastasis score.  We will re-build the Cox Model (see Chapter II) in the combined 250 patient 

dataset and then test the results in an independent dataset made up of Melbourne and UAB patients 

for whom microarray data is readily available (n=180 patients).  Our proposed sample size will allow 

at least 80% power to detect a hazard ratio of 1.70 between high and low score groups with an FDR = 

0.003.  These efforts will allow us to determine an objective metastasis score in a foundation of 

patients samples linked to mature clinical outcome in four independent academic settings to be 

carried forward in prospective analysis of the resultant metastasis score. 

    Secondly, we will determine the optimal platform for detection of the 34-gene metastasis score.  

Many technical issues stand in the way of the development of a robust clinical assay and include 

preservation of resected surgical specimens, amount and quality of purified RNA and reproducibility 

and robustness of the assay.  We and our collaborators have overcome many of the collection issues 

and are now focusing on continual high quality RNA isolation from pathologically verified tissues that 

can be analyzed by the proposed assays (see below).  We will compete head-to-head comparisons of 

expression values of the 34-genes from matched fresh frozen samples versus formalin fixed paraffin 

embedded (FFPE) tissues.  Since routine tissue collection (e.g., community and regional hospitals) 

does not employ rigorous standardization methods as have been used to develop the original 

metastasis score (see Chapter II), a clinical test will be designed to detect the metastasis signature in 

FFPE tissues in order to be widely applicable.  The details of this process are beyond the scope of 

this dissertation, but briefly we will use the following three competing platforms to determine the best 

method of detection:  a) Applied Biosystems  qPCR; b) High Throughput Genomics’ qNPA  
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technology; c) GeneTitan based microarray with Affymetrix  technology.  The major goals of this 

work will be to determine whether differential expression analysis is comparable in fresh frozen 

versus FFPE tumor tissue and to determine which platform for a clinical test is most reliable.   

    Lastly, we will test the optimized metastasis signature (determined as described above) in a 

blinded fashion on archival FFPE tissue collected in our multi-institutional collaboration, in order to 

determine the sensitivity, specificity, accuracy and clinical validity of the resultant score.  This 

optimized signature will provide us with preliminary data that will be required to advance the work 

toward a prospective clinical trial to predict outcomes in stage II and III patients.  The ultimate goal is 

to develop a deliverable assay on a robust platform that is ready to be applied to a prospective clinical 

trial.  Future clinical trials would be based on collaboration with National Cancer Institute cooperative 

groups who have access to large numbers of patients across many academic centers and institutions. 

   

Determination of the Primary Drivers of the 34-gene Classifier 

    We are concurrently in the process of determining which of the 34 genes in the metastasis score 

truly drive the predictive ability of the score.  We are collaborating with our colleagues in biostatistics 

to model the ‘driver’ genes in the signature using the compound scoring method as applied to the 

combined VMC/MCC data and then will validate this in additional test sets.  So far, our work has 

shown that 11 genes of the signature show equivalent predictive power compared to the 34 genes 

(preliminary data, not shown).  We are also comparing the specificity and sensitivity of these 11 

genes to the 34 genes in this dataset.  Additionally, preliminary work has shown that the biologically-

based metastasis score may be informative in other epithelial cancers such as breast and lung 

cancer (data not shown).  We are in the process of finishing a manuscript to describe these findings. 
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Identification of Central Transcriptional Regulators in the 34-gene Classifier 

    In collaboration with colleagues in the biostatistics and bioinformatics departments at VMC we 

have begun to identify metastasis-related co-expression modules in a biologically meaningful way to 

reflect potential underlying regulatory mechanisms central to the transcriptional program driving the 

molecularly encoded, metastasis-prone phenotype.  For example, the 300-gene metastatic gene 

signature (see Chapter II) has been used to identify 18 metastasis-related transcriptional modules 

that appear to be robust in prediction of colorectal cancer survival.  These data are based on the idea 

that it is possible to identify regulatory mechanisms responsible for gene de-regulation in cancer 

signatures by searching for the unifying, coordinate transcription factor binding sites amongst genes 

in a gene expression classifier (Rhodes et al. 2005).   Work to identify novel transcriptional regulators 

of the metastatic phenotype has begun and this work has subsequently been funded to further 

identify metastasis-related networks and screen for metastasis-related transcriptional modules using 

mouse and human colorectal cancer cell lines.  These networks and transcriptional modules will then 

be tested and validated in our growing set of test and training datasets for clinical outcomes.  For 

example, transcriptional factors discovered in this manner will be tested functionally via small 

interfering RNA and short hairpin RNA-mediated approaches to verify biological relevance in both 

mouse and human cell line models.  Specifically, cell migration and invasion assays (see Chapters II 

and III) will be used to evaluate loss or gain of invasive capacity for each identified transcriptional 

factor that has been validated in a survival-prediction model.  We will subsequently validate effects on 

apoptosis, proliferation and anoikis in addition to proceeding with in vivo experiments to confirm 

regulation of an invasive phenotype.  Repressors of metastasis can be identified in a like manner and 

will be validated as above.  Both metastasis effectors and metastasis repressors can then be 

validated in colorectal cancer samples by qPCR (and potentially immunohistochemistry) via our 
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continued collaboration with Dr. Kay Washington in Pathology.  These approaches bring together the 

unique strengths of bioinformaticists, systems biologists, cancer cell biologists, biostatisticians, 

physician-scientists and clinical teams to address a complex clinical problem.  The use of 

complimentary network-based models and biological models to determine functions of genes 

identified in metastasis-prone signatures will provide a means whereby valuable regulators of 

metastasis can discovered, validated and moved toward robust clinical application. 

 

Differences and Overlap Between the 34-gene Classifier and Recently Published High-risk 

Gene Signatures for Colorectal Cancer Patients 

 

    As discussed in Chapter II, numerous gene expression signatures that identify high-risk colorectal 

cancer patients have been put forth as potentially useful in various prediction models.  Unfortunately, 

prior prediction classifiers were determined on inconsistent microarray platforms to prevent a 

balanced comparison.  In this section, I will focus on two of the most recent signatures, which have 

been developed on the same modern Affymetrix platform as described in Chapters II and III of this 

work, and their relevance and potential relationship with our 34-gene classifier.    It should be noted 

that all other published gene expression signatures for colorectal cancer used computational methods 

to determine their classifiers, whereas we used a biological model refined with a comparative 

functional genomics approach to determine the 34-gene classifier.   

    The most recent unit of published work is from the Ludwig Colon Cancer (LCC) Initiative 

Laboratory in Australia (Jorissen et al. 2009).  We note some interesting similarities between our 

proposed 34-gene recurrence classifier and their work.  This group used a comparison between early 

stage (stage I) and late stage (stage IV) patients to determine a 128-gene signature that was 
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validated in an independent set of stage II and III colorectal cancer patients.  Of note, some of the 

MCC patients used in this analysis were also used in both Chapters II and III of our work.  Even 

though there is no specific gene overlap between our 34-gene classifier and this 128-gene classifier 

there is similarity in the biological processes implicated.  For example, amongst the up-regulated 

genes in the LCC classifier, processes of extracellular matrix biology and embryonic development 

were implicated by Gene Ontology analysis (e.g., COL5A1 (collagen, type V, alpha 1), Integrins 

(ITGB1)), and similarly, in our use of Ingenuity Pathways Analysis we found that up-regulated genes 

were enriched for processes of cellular and embryonic development and connective tissue 

development / function (e.g., EGR1 (early growth response 1), HES1 (hairy and enhancer of split 1 

(Drosophila), SPRY4 (sprouty homolog 4 (Drosophila)), ACTB ( -actin), PDLIM5 (PDZ and LIM 

domain 5)).  The LCC down-regulated genes implicated processes of immune function as well as 

proteasomal genes (e.g. Immunoglobulins (IGHA1), chemokines (CCL28) and PSMB genes like 

PSMB9 (proteasome-related)).  Our biologically-based signature derived from an immunocompetent 

mouse model showed that the down-regulated genes formed a network around Tumor Necrosis 

Factor (e.g., MMP13 (matrix metallopeptidase 13 (collagenase 3)) and HPSE (heparanase)) to 

suggest a prominent role for the immune system in the modulation of the metastasis-prone 

phenotype.  We also found that the 300-gene metastatic gene signature had twelve genes in common 

with the 128-gene signature.  These genes (e.g., PDGFC (platelet derived growth factor C), POSTN 

(periostin, osteoblast specific factor) and ITGBL1 (integrin, beta-like 1 (with EGF-like repeat 

domains)) are involved in processes of connective tissue development and cellular adhesion 

indicating that our approaches while different have implicated similar biological processes and 

networks that are important for the pathogenesis of a high-risk colorectal cancer phenotype.  The 

discrepancy in overlap could be attributed to our use of a mouse model that may have missed human 
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genes important for the process of metastasis that were uncovered in the LCC signature.  Likewise, it 

is possible that our approach uncovered novel regulators of metastasis with a purely biological basis 

that extend even beyond colorectal cancer epithelial pathobiology.   

 Another recent genomic approach to stratify colon cancer risk was put forth by a group from 

Duke University (Garman et al. 2008), wherein they developed a classifier that identified high-risk 

patients with computational models in early stage patients who had recurred and applied it to two 

independent datasets.  They went on to show that this 50-gene classifier was able to identify 

compounds (e.g. COX-2 inhibitors, PI3K inhibitors) with biological activity against colorectal cancer 

cell lines in culture.  Unlike our 34-gene classifier, they did not note any association with their 

signature and chemotherapeutic intervention in colorectal cancer patients.  We found no intersection 

between the 50-gene classifier and our 34-gene classifier; however, upon further review it was 

interesting to note that the 50-gene signature implicated COX-2 (using a Connectivity Map approach 

(Lamb et al. 2006)), an important inflammatory mediator in colorectal cancer pathogenesis, and our 

signature uncovered a transcriptional module of down-regulated genes that suggest modulation of 

inflammation to be important for the metastatic phenotype.  Prior to the publication of their 50-gene 

signature, I performed an independent analysis where the 34-gene signature was input into the 

Connectivity Map (Lamb et al. 2006), and I noted that the top compound implicated was 

acetylsalicylic acid (also known as aspirin, 18 Sept 2008 analysis, unpublished results, data not 

shown).  These data compliment the Duke University group’s findings.  Even though we found some 

broad similarities, there was still minimal overlap amongst the 50-gene classifier and the 300-gene 

metastatic signature with only two genes overlapping, POSTN (periostin, osteoblast specific factor) 

and NDRG family member 2.  POSTN has now been identified in three recent models and will surely 

be used in our development of an objective score as we more forward.  Again, the minimal overlap 
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could be due to loss of important human genes with use of the mouse model, but it is encouraging to 

note that central processes amongst the analyses (e.g., inflammation and extracellular matrix / 

connective tissue biology) seem to remain relevant to inform factors critical for the identification of the 

high-risk colorectal patient.  It is important to note that all three of these signatures are highly 

enriched for processes related to carcinogenesis such as cell-cell signaling, cellular development, 

cellular proliferation, cytoskeletal remodeling and modulation of inflammatory mediators.  These data 

support our development of an objective score (as above) since it is likely that a combination of gene 

co-expression modules may uncover a superior gene expression classifier.   

    Lastly, since we used a comparative functional genomics approach originally modeled in the 

prediction of high-risk hepatocellular carcinoma (HCC) patients, we asked if there was any overlap 

amongst these pioneering studies (Lee et al. 2004; Lee et al. 2006) and our work.  We found overlap 

amongst the genes downstream of FOS and JUN as they related to the hepatoblast subtype of HCC 

who had associated poor outcome (Lee et al. 2006).  For example, ATF3 (activating transcription 

factor 3), TNC (tenascin C) and NR4A1 (nuclear receptor subfamily 4, group A, member 1) were 

found in both our 300-gene signature and the cluster associated with the hepatoblast sub-type of 

HCC.  These genes are implicated in processes of apoptosis (e.g., NR4A1), extracellular matrices 

(e.g., TNC) and transcriptional modulation of apoptotic events and response to TGF  signaling 

partners (e.g., ATF3).   Indirect connections include PTGS2 (prostaglandin-endoperoxide synthase 2 

(prostaglandin G/H synthase and cyclooxygenase), also known as COX-2) and MMP1 (matrix 

metallopeptidase 1 (interstitial collagenase)).  This is interesting as an inflammatory central node that 

seems to become a common theme across this survey of prognostic classifiers.  Also, MMP10, 

MMP12 and MMP13 were implicated in the 300-gene metastatic signature in our MC-38parental to 

MC-38met comparison as well as in the functional genomic enrichment of the rat hepatoblast 
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phenotype in poor prognosis patients with HCC.  We noted very little overlap from the initial 2004 

paper from this group other than enrichment of proteinases (MMPs) in the selection of optimal mouse 

models of human HCC (e.g., Myc, E2f1 and Myc E2f1 transgenic mice).  In conclusion, gene overlap 

in the comparison of high-risk colorectal cancer and HCC patients reflect common processes on the 

pathway of carcinogenesis that were revealed in independent comparative genomic model systems 

(e.g., modulation of immune responses).  These data support the use of these models, but suggest 

that specific carcinoma sub-types will result in distinctive gene expression profiles with common 

themes important for the metastatic process. 

 

Interactions Amongst the 34-gene Classifier and the Smad4-expression Profile 

 

    As described in Chapter III, we discovered a Smad4-modulated, epithelial-specific, Wnt-enriched 

gene expression classifier that identified colorectal cancer patient sub-groups with regard to clinical 

outcome independently of conventional measures.  One interesting notion is that this tumor 

suppressor-modulated gene expression profile could validate putative tumor suppressors and 

oncogenes in the 34-gene classifier.  In regard to putative tumor suppressors, we noted that SYT17 

(synaptotagmin XVII), MUM1L1 (melanoma associated antigen (mutated) 1-like 1) and HPSE 

(heparanse) were all up-regulated in the presence of Smad4.  Very little is known about the ‘syt-like’ 

proteins.  Synaptotagmins are thought to play a role in calcium sensing and neurotransmitter release 

and may be involved in calcium-dependent exocytosis (Koh and Bellen 2003).  This might suggest 

that Smad4 has a role in processes of neural development and homeostasis which is supported in 

other neural environments as Smad4 has a transcriptional and synergistic effect with BMP2 on -

aminobutyric acid (GABA)-modulated neuronal differentiation via Gat1 (GABA transporter sub-type I) 
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(Yao et al.).  GABA is the chief inhibitory neurotransmitter in mammalian neurobiology.  This is quite 

interesting as investigators from Baylor College of Medicine recently noted an association between 

neuronal ingrowth (e.g., perineural invasion) and tumor invasiveness / poor prognosis in colorectal 

cancer patients (Liebig et al. Perineural invasion in cancer: A review of the literature 2009; Liebig et 

al. Perineural invasion is an independent predictor of outcome in colorectal cancer 2009).  This brings 

up the possibility of an undiscovered association with Smad4 loss and perineural invasion.  One could 

speculate that Smad4 tempers neuronal outgrowth into epithelial structures via inhibitory action 

through GABAergic control of differentiated neurons.  There is no published literature on MUM1L1; 

however, it is interesting to note that several melanoma-associated genes with generally unknown 

biological functions (e.g., MAGEB2 (melanoma antigen family B, 2), MAGEA3 (melanoma antigen 

family A, 3) are up-regulated in the presence of Smad4 in SW480 cells.  These melanoma-associated 

genes, typically only expressed in the testes, have been implicated in a p53-dependent manner to 

apoptosis in colon cancer cells (Yang et al. 2007).   HPSE is thought to play a role in invasiveness of 

renal cell carcinoma and has been found to be associated with increased tumor stage and disease-

free survival (Mikami et al. 2008).  These data provide some additional evidence to support the idea 

that down-regulation of these genes in the 34-gene classifier as putative tumor suppressors are 

important in the progression of the metastatic phenotype.   

    Regarding putative oncogenes, VDR (vitamin D (1,25- dihydroxyvitamin D3) receptor) was found in 

the genes down-regulated by Smad4 in SW480 colon cancer cells (see Chapter III, FDR<0.005, fold-

change > 4).  Interestingly, as noted in Chapter II there is now some data to support the role of VDR 

in EMT as related to ZEB1 expression (see page 57).  As shown in Chapter III, Smad4 restoration in 

SW480 colon cancer cells is associated with down-regulation of -catenin, inhibition of Wnt signaling 

and reversal of EMT in vitro and in vivo.  The finding of VDR up-regulation in the highly invasive MC-
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38met cells and as part of the 34-gene classifier indicate that the gene encoding the Vitamin D 

receptor may be an important target of Wnt/ -catenin signaling that plays an potential role in the 

acquisition of a more mesenchymal and invasive phenotype.  Recent evidence suggests that VDR 

does interact with Wnt signaling components (e.g., TCF4, E-cadherin and Snail) in association with a 

less invasive phenotype (Beildeck et al. 2009; Pena et al. 2009), although it should be noted that the 

biological validation of the interaction in these studies was unimpressive.  The potential connection 

between Smad4 and VDR is made more intriguing by the mounting level of evidence that implicates 

Vitamin D deficiency as a potential factor in colorectal cancer progression (Egan et al. ; Kure et al. 

2009).  Chronically low vitamin D levels could potentiate compensatory up-regulation of the vitamin D 

receptor in the setting of APC and Smad4 loss, which then promotes progression from dysplastic 

adenoma to carcinoma.  Smad3-4 heteromeric complexes may bind the VDR promoter in COS cells 

in a synergistic manner requiring both TGF -responsive and Vitamin D-responsive promoter 

elements (Subramaniam et al. 2001).  The biological effects of this transcriptional interaction are 

unknown, but open the door to interesting hypotheses in regard to the relationship with the central 

mediator of TGF  signaling and the complex biology of VDR homeostasis. 

 

Further Dissection of the Mechanism of Smad4 Inhibition of Wnt/ -catenin Signaling 

 

    Use of a nude mouse model as described in Chapter III could be used to provide in vivo evidence 

of the biological mechanism of Smad4 repression of -catenin transcriptional activity.  We could 

repeat the experiment as described in Chapter III, but this time use laser capture microdissection to 

isolate the invading front of the resultant tumors to prove whether Smad4 expression and the 

observed reduction in tumorigenicity is indeed due to repression of -catenin mRNA at the invasive 
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edge of the tumors.  We could also determine if there is indeed a down-regulation of -catenin mRNA 

and protein in the Smad4 expressing tumors as indicated by qPCR, Western, and 

Immunohistochemistry/Immunofluorescence analyses.  Another way to use this model would be to 

incorporate the use of a novel Wnt inhibitor developed by our collaborator Ethan Lee.  We would be 

able to determine if Smad4 expression could potentiate suppression of tumorigenicity in the presence 

of the inhibitor or if suppression of tumorigencity occurs independently of administration of the Wnt 

inhibitor.  Since the Wnt inhibitor prevents -catenin-mediated Wnt transcriptional activity upstream of 

-catenin transcription, we would be able to determine if Smad4 has an additional effect on -catenin 

transcriptional activity downstream of this inhibitor to affect tumorigenicity and measures of invasion 

in vitro.  Either way, we could determine whether Smad4 is required for suppression of Wnt activity in 

association with -catenin repression in vivo and complimentary in vitro approaches. 

    Another in vivo model that we are currently developing is an inducible, epithelial-specific Smad4 

knockout mouse.  As we gain more numbers for each timepoint of inducible Smad4 depletion in the 

colony, we can determine if Smad4 loss alone is sufficient to promote up-regulation of -catenin 

levels (mRNA and protein) in the areas of Smad4 loss.  Another mouse model in development is the 

epithelial-specific Smad4 knockout mouse crossed with the APCMin1638 mouse.  This mouse could 

inform our hypothesis that Smad4 tempers progression toward a more invasive phenotype even in 

the absence of APC.  It would also tell us if APC loss must occur in order to see the biological effects 

of -catenin repression in vivo.  Another interesting mouse model to directly inform whether this 

transcriptional repression occurs in vivo is to cross the epithelial-specific Smad4 knockout mouse with 

a TOPflash mouse.  The development of this mouse is also underway in the laboratory and will 

provide an additional model whereby we can directly test our hypothesis that Smad4 does indeed 
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repress -catenin transcriptional activity in vivo to promote a more epithelial phenotype and prevent 

progression to invasive adenocarcinoma via inhibition of Wnt transcriptional activation.   

    We are also collaborating with Kay Washington in Pathology to further examine a number of 

colorectal cancer specimens where the invasive front or leading edge of the tumor can be examined.  

We hypothesize that in the invasive, EMT-prone areas where Brabletz’s group (Schmalhofer, 

Brabletz, and Brabletz 2009) has noted loss of E-cadherin and gain of -catenin that we would 

observe loss of Smad4.  Furthermore, we hypothesize that areas of colorectal cancer tumors that 

remain differentiated (membranous E-cadherin and -catenin staining) also have retained Smad4 

expression.  We are also accumulating more colorectal cancer tumor specimens to determine if the 

loss of Smad4, gain of -catenin and loss of E-cadherin can further inform colorectal cancer 

outcomes.  It is certainly possible that the transcriptional program of Smad4 loss is more informative 

than simply looking at Smad4 gain or loss by immunohistochemical analysis alone. 

    Lastly, we have begun collaboration with local experts in transcriptional and protein regulation (Dr. 

Bill Tansey and Dr. Dan Liebler) to further investigate the mechanisms by which Smad4 represses 

Wnt/ -catenin signaling.  For example, we will determine the transcriptional program regulated by 

Smad4 modulation of Wnt signaling in colorectal cancer cells by extending our ChIP findings with 

massively parallel short-read sequencing of DNA fragments obtained through ChIP-sequencing 

(ChIP-seq).  We can conduct Smad4 and TCF4 ChIP-seq experiments where we anticipate that we 

will observe reduced TCF4-binding to Wnt target genes in the presence of intact BMP/Smad4 

signaling.  These data will provide more sensitive and quantitative support to our proposed 

mechanism and will allow sequence-specific detail that can inform critical co-regulators with Smad4 in 

this process of Wnt/ -catein suppression.  Additionally, we will identify co-regulatory proteins involved 

in Smad4-driven repression of Wnt/ -catenin transcriptional activity in colon cancer cells.  We will use 
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a shotgun proteomic approach (liquid chromotagraphy and tandem mass-spectrometry) to gain 

insight into the transcriptional regulatory protein complexes with high sensitivity.  We can then use a 

small-interfering RNA approach to prove the necessity and sufficiency for identified co-regulatory 

proteins that may work in concert with Smad4 in repression of Wnt/ -catenin signaling.  The multiple 

approaches at our disposal will provide important insights into the homeostatic, intersecting regulatory 

roles of the TGF  and Wnt/ -catenin signaling pathways to illuminate our understanding of their 

contribution to the progression of colorectal cancer.  These findings can then facilitate identification of 

new molecular targets to translate into therapeutic interventions that benefit colorectal cancer 

patients. 

 

Summary 

 

    Colorectal cancer is the second most lethal, non-cutaneous epithelial cancer in the United States.  

Metastasis contributes to the majority of cancer-related deaths in this disease.  Metastasis closely 

resembles the developmental process of epithelial-mesenchymal transition and reliable models to 

recapitulate this process can be useful to shed light onto the biology and prognosis of patients with 

colorectal cancer.  Herein we describe a mouse model that led to the discovery of a gene signature of 

metastasis using comparative functional genomics, which identified stage II and III colon cancer 

patients prone to recurrence and death from metastatic disease, in addition to a low-risk sub-group of 

stage III patients for whom adjuvant chemotherapy provided no additional survival benefit.  These 

findings form the basis for substantive pre-clinical biomarker testing and eventual translational 

application to a clinical trial.  On the other hand, loss of tumor suppressor genes affects the majority 

of colorectal cancer patients to permit progression of disease.  Many pathways are defective in the 
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pathogenesis of colorectal cancer; however, more than half of the patients have defects in the Wnt/ -

catenin and Transforming Growth Factor-  signaling pathways, which are critical for development and 

intestinal homeostasis.  This body of work also uses in vitro and in vivo models to describe a new role 

for the tumor suppressor Smad4 in the repression of -catenin transcriptional activity in epithelial 

cells.  This repression was associated with down-regulation of Wnt signaling and reversal of EMT.  

Clinical relevance of this effect was demonstrated by an epithelial cell-specific, Smad4-modulated 

gene expression profile associated with Wnt signaling suppression, which contributed prognostic 

information for colorectal cancer patients independently of pathological staging.  These findings 

should facilitate hypothesis testing for biologically-targeted therapeutic interventions based on 

TGF /Smad and Wnt/ -catenin pathway activity levels.  Overall, these results provide insight into the 

biology of metastasis and tumor suppression in colorectal cancer to promote seamless translation to 

care of the colorectal cancer patient at the bedside. 
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Figure 8. Functional genomic clustering of the 300-gene metastatic 
signature.  Cluster analysis of mean-centered gene expression data (rows) 
with individual VMC patients (columns). Individual gene symbols in the 

metastasis-associated signature are listed at the right side of the 
dendrogram, and the 34 genes that make up the recurrence classifier are 
highlighted in yellow. Patient IDs are listed along the bottom. The patients 
who clustered with MC-38 parental cells are highlighted in red and those 
who clustered with MC-38met cells are highlighted in green. The heatmap 
key is 4-fold on the original signal intensity scale, which corresponds to 2-
fold on a log2 scale. Key (1) Sample source: red, MC-38 parental; green, 
MC-38 invasive derivative (MC-38met); blue, patient samples; (2) Ensembl 
Human Gene identifiers: right side of heatmap.  

Appendix 
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TABLE 3 
 

300 GENE METASTATIC SIGNATURE 
 

Display ID Gene Stable 
ID 

Fold 
Change 

Description (Protein name) 

AQP1 ENSG000001
06125 

17.613 Aquaporin-1 (AQP-1) 

OGN ENSG000001

06809 

13.176 Mimecan precursor (Osteoglycin) (Osteoinductive factor) (OIF). 

IL2RG ENSG000001

47168 

13.041 Cytokine receptor common gamma chain precursor (Gamma-C) (Interleukin- 2 receptor gamma chain) (IL-
2R gamma chain) (p64) 

GRAMD1C ENSG000001
78075 

11.665 GRAM domain-containing protein 1C. 

AQP5 ENSG000001
61798 

10.694 Aquaporin-5 (AQP-5) 

C2orf40 ENSG000001
19147 

8.53 Esophageal cancer related gene 4 protein precursor. 

C15orf26 ENSG000001

56206 

6.934 Uncharacterized protein C15orf26. 

EREG ENSG000001

24882 

6.87 Epiregulin precursor (EPR). 

OLR1 ENSG000001
73391 

6.555 Oxidized low-density lipoprotein receptor 1 (Ox-LDL receptor 1) (Lectin-type oxidized LDL receptor 1) 
(Lectin-like oxidized LDL receptor 1) 

PTGS1 ENSG000000
95303 

6.348 Prostaglandin G/H synthase 1 precursor (EC 1.14.99.1) (Cyclooxygenase- 1) (COX-1) (Prostaglandin-
endoperoxide synthase 1) 

TMEM98 ENSG000000
06042 

6.279 Transmembrane protein 98 (Protein TADA1). 

PDZRN3 ENSG000001

21440 

6.012 PDZ domain-containing RING finger protein 3 (Ligand of Numb-protein X 3) (Semaphorin cytoplasmic 
domain-associated protein 3) 

C13orf33 ENSG000001
02802 

5.998 Uncharacterized protein C13orf33 (Activated in W/Wv mouse stomach 3 homolog) (hAWMS3). 

IGFBP4 ENSG000001
41753 

5.842 Insulin-like growth factor-binding protein 4 precursor (IGFBP-4) (IBP- 4) (IGF-binding protein 4). 

APOD ENSG000001
89058 

5.723 Apolipoprotein D precursor (Apo-D) (ApoD). 

DIO2 ENSG000002

11448 

5.179 Type II iodothyronine deiodinase (EC 1.97.1.10) (Type-II 5' deiodinase) (DIOII) (Type 2 DI) (5DII). 

MYH10 ENSG000001

33026 

5.127 Myosin-10 (Myosin heavy chain 10) (Myosin heavy chain, nonmuscle IIb) (Nonmuscle myosin heavy chain 
IIb) (NMMHC II-b) (NMMHC-IIB) 

MME ENSG000001
96549 

5.066 Neprilysin (EC 3.4.24.11) (Neutral endopeptidase) (NEP) (Enkephalinase) (Neutral endopeptidase 24.11) 
(Atriopeptidase) 

PRRX2 ENSG000001
67157 

5.022 Paired mesoderm homeobox protein 2 (PRX-2) (Paired-related homeobox protein 2). 

PLA2G7 ENSG000001
46070 

4.896 Platelet-activating factor acetylhydrolase precursor (EC 3.1.1.47) (PAF acetylhydrolase) (PAF 2-
acylhydrolase) 

PID1 ENSG000001

53823 

4.646 PTB-containing, cubilin and LRP1-interacting protein (P-CLI1) (Phosphotyrosine interaction domain-
containing protein 1) 

SCARA5 ENSG000001

68079 

4.597 Scavenger receptor class A member 5 (Scavenger receptor hlg). 

C14orf159 ENSG000001
33943 

4.261 UPF0317 protein C14orf159, mitochondrial precursor. 

PDLIM2 ENSG000001
20913 

4.222 PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) (PDZ-LIM protein). 

NR4A2 ENSG000001
53234 

4.131 Orphan nuclear receptor NR4A2 (Orphan nuclear receptor NURR1) (Immediate-early response protein 
NOT) 

AGT ENSG000001

35744 

3.934 Angiotensinogen precursor (Serpin A8) [Contains: Angiotensin-1 (Angiotensin I) (Ang I); Angiotensin-2 
(Angiotensin II) 

SRPX2 ENSG000001
02359 

3.909 Sushi repeat-containing protein SRPX2 precursor. 

FAM84A ENSG000001
62981 

3.891 Protein FAM84A (Protein NSE1). 
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SYBU_HUM
AN 

ENSG000001
47642 

3.876 Syntabulin (Syntaxin-1-binding protein) (Golgi-localized syntaphilin- related protein). 

CXCR7 ENSG000001
44476 

3.854 C-X-C chemokine receptor type 7 (CXC-R7) (CXCR-7) (G-protein coupled receptor RDC1 homolog) 
(RDC-1) (Chemokine orphan receptor 1) 

ASPN ENSG000001
06819 

3.79 Asporin precursor (Periodontal ligament-associated protein 1) (PLAP- 1). 

C1QTNF3 ENSG000000

82196 

3.642 Complement C1q tumor necrosis factor-related protein 3 precursor (Secretory protein CORS26). 

PCDHB15 ENSG000001
13248 

3.564 Protocadherin beta 15 precursor (PCDH-beta15). 

SCAMP5 ENSG000001
98794 

3.553 Secretory carrier-associated membrane protein 5 (Secretory carrier membrane protein 5). 

ODZ4 ENSG000001
49256 

3.486 Teneurin-4 (Ten-4) (Tenascin-M4) (Ten-m4) (Protein Odd Oz/ten-m homolog 4). 

HS3ST1 ENSG000000

02587 

3.355 Heparan sulfate glucosamine 3-O-sulfotransferase 1 precursor (EC 2.8.2.23) (Heparan sulfate D-
glucosaminyl 3-O-sulfotransferase 1) 

HAS2 ENSG000001

70961 

3.347 Hyaluronan synthase 2 (EC 2.4.1.212) (Hyaluronate synthase 2) (Hyaluronic acid synthase 2) (HA 
synthase 2). 

GGTL3 ENSG000001
31067 

3.285 Gamma-glutamyltransferase 4 precursor (EC 2.3.2.2) (Gamma- glutamyltranspeptidase 4) 

ANKH ENSG000001
54122 

3.285 Progressive ankylosis protein homolog (ANK). 

SEMA3A ENSG000000
75213 

3.193 Semaphorin-3A precursor (Semaphorin III) (Sema III). 

ITGA8 ENSG000000

77943 

3.19 Integrin alpha-8 precursor [Contains: Integrin alpha-8 heavy chain; Integrin alpha-8 light chain]. 

MYBPHL ENSG000001
34222 

3.145 Proline/serine-rich coiled coil protein 1. 

TINAGL1 ENSG000001
42910 

2.994 Tubulointerstitial nephritis antigen-like precursor (Tubulointerstitial nephritis antigen-related protein) (TIN 
Ag-related protein) 

PDE4B ENSG000001
84588 

2.994 cAMP-specific 3',5'-cyclic phosphodiesterase 4B (EC 3.1.4.17) (DPDE4) (PDE32). 

RRBP1 ENSG000001
25844 

2.991 Ribosome-binding protein 1 (Ribosome receptor protein) (180 kDa ribosome receptor homolog) (ES/130-
related protein). 

RENBP ENSG000001

02032 

2.983 N-acylglucosamine 2-epimerase (EC 5.1.3.8) (GlcNAc 2-epimerase) (N- acetyl-D-glucosamine 2-
epimerase) (AGE) (Renin-binding protein) (RnBP). 

EDA2R ENSG000001
31080 

2.967 Tumor necrosis factor receptor superfamily member 27 (X-linked ectodysplasin-A2 receptor) (EDA-A2 
receptor). 

MRGPRF ENSG000001
72935 

2.908 Mas-related G-protein coupled receptor member F (Mas-related gene F protein) (G-protein coupled 
receptor 140) 

NR4A1 ENSG000001
23358 

2.886 Orphan nuclear receptor NR4A1 (Orphan nuclear receptor HMR) (Early response protein NAK1) (TR3 
orphan receptor) 

CHRNA1 ENSG000001

38435 

2.873 Acetylcholine receptor subunit alpha precursor. 

EVI2A ENSG000001

26860 

2.869 EVI2A protein precursor (Ecotropic viral integration site 2A protein homolog) (EVI-2A). 

AIG1 ENSG000001
46416 

2.843 Androgen-induced protein 1 (AIG-1). 

AK1 ENSG000001
06992 

2.817 Adenylate kinase isoenzyme 1 (EC 2.7.4.3) (ATP-AMP transphosphorylase) (AK1) (Myokinase). 

PTPLAD2 ENSG000001
88921 

2.807 protein tyrosine phosphatase-like A domain containing 2 

ACTB ENSG000000

75624 

2.805 Actin, cytoplasmic 1 (Beta-actin). 

MGP ENSG000001
11341 

2.794 Matrix Gla-protein precursor (MGP) (Cell growth-inhibiting gene 36 protein). 

FAM43A ENSG000001
85112 

2.794 Protein FAM43A. 

CRYAB ENSG000001
09846 

2.776 Alpha crystallin B chain (Alpha(B)-crystallin) (Rosenthal fiber component) (Heat-shock protein beta-5) 
(HspB5) 

HES1 ENSG000001
14315 

2.77 Transcription factor HES-1 (Hairy and enhancer of split 1) (Hairy- like) (HHL) (Hairy homolog). 

PCDHB16 ENSG000001

96963 

2.749 Protocadherin beta 16 precursor (PCDH-beta16) (Protocadherin 3X). 

NIPSNAP1 ENSG000001
84117 

2.74 Protein NipSnap1. 

EMB ENSG000001 2.712 Embigin precursor. 
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70571 

ALDH3A1 ENSG000001

08602 

2.684 Aldehyde dehydrogenase, dimeric NADP-preferring (EC 1.2.1.5) (ALDH class 3) (ALDHIII). 

ANGPT1 ENSG000001
54188 

2.659 Angiopoietin-1 precursor (ANG-1). 

SEMA3B ENSG000000
12171 

2.629 Semaphorin-3B precursor (Semaphorin V) (Sema V) (Sema A(V)). 

CAPN6 ENSG000000
77274 

2.611 Calpain-6 (Calpamodulin) (CalpM) (Calpain-like protease X-linked). 

ITGBL1 ENSG000001

98542 

2.592 integrin, beta-like 1 (with EGF-like repeat domains) 

TMEM14A ENSG000000

96092 

2.578 Transmembrane protein 14A. 

DUSP1 ENSG000001
20129 

2.571 Dual specificity protein phosphatase 1 (EC 3.1.3.48) (EC 3.1.3.16) (MAP kinase phosphatase 1) (MKP-1) 

MCTP2 ENSG000001
40563 

2.566 multiple C2 domains, transmembrane 2 

EGR1 ENSG000001
20738 

2.477 Early growth response protein 1 (EGR-1) (Krox-24 protein) (Transcription factor Zif268) (Nerve 
growth factor-induced protein A) (NGFI-A) 

CHST2 ENSG000001

75040 

2.477 Carbohydrate sulfotransferase 2 (EC 2.8.2.-) (N-acetylglucosamine 6-O- sulfotransferase 1) (GlcNAc6ST-
1) (Gn6ST) 

F2RL1 ENSG000001
64251 

2.473 Proteinase-activated receptor 2 precursor (PAR-2) (Thrombin receptor- like 1) (Coagulation factor II 
receptor-like 1) 

VDR ENSG000001
11424 

2.448 Vitamin D3 receptor (VDR) (1,25-dihydroxyvitamin D3 receptor). 

PDGFC ENSG000001
45431 

2.439 platelet-derived growth factor C precursor 

PCDHB18 ENSG000001

46001 

2.414 protocadherin beta 18 pseudogene (PCDHB18) on chromosome 5 

C6orf64 ENSG000001

12167 

2.394 Uncharacterized protein C6orf64. 

ELOVL6 ENSG000001
70522 

2.391 Elongation of very long chain fatty acids protein 6 (hELO2). 

NQO1 ENSG000001
81019 

2.385 NAD(P)H dehydrogenase [quinone] 1 (EC 1.6.5.2) (Quinone reductase 1) (NAD(P)H:quinone 
oxidoreductase 1) 

SEC16B ENSG000001
20341 

2.384 leucine zipper transcription regulator 2 

UBXD6 ENSG000001

04691 

2.351 UBX domain-containing protein 6 (Reproduction 8 protein) (Protein Rep- 8). 

PDGFRB ENSG000001
13721 

2.335 Beta platelet-derived growth factor receptor precursor (EC 2.7.10.1) (PDGF-R-beta) (CD140b antigen). 

TMEPAI ENSG000001
24225 

2.327 Transmembrane prostate androgen-induced protein (Solid tumor- associated 1 protein). 

TPBG ENSG000001
46242 

2.321 Trophoblast glycoprotein precursor (5T4 oncofetal trophoblast glycoprotein) (5T4 oncotrophoblast 
glycoprotein) (5T4 oncofetal antigen) (M6P1). 

C3orf33 ENSG000001
74928 

2.308 Uncharacterized protein C3orf33. 

CD300LB ENSG000001

78789 

2.308 CD300 molecule-like family member b 

PLP1 ENSG000001
23560 

2.299 Myelin proteolipid protein (PLP) (Lipophilin). 

COL12A1 ENSG000001
11799 

2.295 Collagen alpha-1(XII) chain precursor. 

RDH10 ENSG000001
21039 

2.293 retinol dehydrogenase 10 

PTPN22 ENSG000001

34242 

2.292 Tyrosine-protein phosphatase non-receptor type 22 (EC 3.1.3.48) (Hematopoietic cell protein-tyrosine 
phosphatase 70Z-PEP) 

SULF2 ENSG000001

96562 

2.284 Extracellular sulfatase Sulf-2 precursor (EC 3.1.6.-) (HSulf-2). 

TLR3 ENSG000001
64342 

2.277 Toll-like receptor 3 precursor (CD283 antigen). 

STOX2 ENSG000001
73320 

2.275 storkhead box 2 

ALOX5AP ENSG000001
32965 

2.255 Arachidonate 5-lipoxygenase-activating protein (FLAP) (MK-886-binding protein). 

TAPBPL ENSG000001

39192 

2.245 Tapasin-related protein precursor (TAPASIN-R) (Tapasin-like) (TAP- binding protein-related protein) 
(TAPBP-R) (TAP-binding protein-like). 
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ZMAT3 ENSG000001
72667 

2.242 p53 target zinc finger protein isoform 1 

SLAMF8 ENSG000001
58714 

2.241 SLAM family member 8 precursor (B-lymphocyte activator macrophage expressed) (BCM-like membrane 
protein). 

PSMB10 ENSG000002
05220 

2.237 Proteasome subunit beta type 10 precursor (EC 3.4.25.1) (Proteasome MECl-1) (Macropain subunit 
MECl-1) 

PSMB9 ENSG000002

04261 

2.225 Proteasome subunit beta type 9 precursor (EC 3.4.25.1) (Proteasome chain 7) (Macropain chain 7) 

ACYP2 ENSG000001
70634 

2.195 Acylphosphatase-2 (EC 3.6.1.7) (Acylphosphate phosphohydrolase 2) (Acylphosphatase, muscle 
type isozyme). 

XDH ENSG000001
58125 

2.186 Xanthine dehydrogenase/oxidase [Includes: Xanthine dehydrogenase (EC 1.17.1.4) (XD); Xanthine 
oxidase (EC 1.17.3.2) (XO) 

SOD3 ENSG000001
09610 

2.183 Extracellular superoxide dismutase [Cu-Zn] precursor (EC 1.15.1.1) (EC-SOD). 

NRP1 ENSG000000

99250 

2.174 Neuropilin-1 precursor (Vascular endothelial cell growth factor 165 receptor) (CD304 antigen). 

COL6A2 ENSG000001

42173 

2.171 Collagen alpha-2(VI) chain precursor. 

GLT8D4 ENSG000001
72986 

2.17 Glycosyltransferase 8 domain-containing protein 4 (EC 2.4.1.-). 

ADH7 ENSG000001
96344 

2.163 Alcohol dehydrogenase class 4 mu/sigma chain (EC 1.1.1.1) (Alcohol dehydrogenase class IV mu/sigma 
chain) (Retinol dehydrogenase) (Gastric alcohol dehydrogenase). 

TCN2 ENSG000001
85339 

2.158 Transcobalamin-2 precursor (Transcobalamin II) (TCII) (TC II). 

PARP9 ENSG000001

38496 

2.154 Poly [ADP-ribose] polymerase 9 (EC 2.4.2.30) (PARP-9) (B aggressive lymphoma protein). 

ATF5 ENSG000001
69136 

2.154 Cyclic AMP-dependent transcription factor ATF-5 (Activating transcription factor 5) (Transcription factor 
ATFx). 

STC2 ENSG000001
13739 

2.15 Stanniocalcin-2 precursor (STC-2) (Stanniocalcin-related protein) (STCRP) (STC-related protein). 

ADCY7 ENSG000001
21281 

2.133 Adenylate cyclase type 7 (EC 4.6.1.1) (Adenylate cyclase type VII) (ATP pyrophosphate-lyase 7) (Adenylyl 
cyclase 7). 

SERPINB8 ENSG000001
66401 

2.131 Serpin B8 (Cytoplasmic antiproteinase 2) (CAP-2) (CAP2) (Proteinase inhibitor 8). 

NAPRT1 ENSG000001

47813 

2.129 nicotinate phosphoribosyltransferase domain containing 1 

SCRN3 ENSG000001
44306 

2.115 Secernin-3. 

COL27A1 ENSG000001
96739 

2.109 collagen, type XXVII, alpha 1 

EGFR ENSG000001
46648 

2.1 Epidermal growth factor receptor precursor (EC 2.7.10.1) (Receptor tyrosine-protein kinase ErbB-1). 

SPRY4 ENSG000001

87678 

2.093 Sprouty homolog 4 (Spry-4). 

P2RX7 ENSG000000

89041 

2.084 P2X purinoceptor 7 (ATP receptor) (P2X7) (Purinergic receptor) (P2Z receptor). 

COLEC12 ENSG000001
58270 

2.084 collectin sub-family member 12 

GPC1 ENSG000000
63660 

2.075 Glypican-1 precursor. 

FLCN ENSG000001
54803 

2.074 Folliculin (Birt-Hogg-Dube syndrome protein) (BHD skin lesion fibrofolliculoma protein). 

ALG8 ENSG000001

59063 

2.072 Probable dolichyl pyrophosphate Glc1Man9GlcNAc2 alpha-1,3- glucosyltransferase (EC 2.4.1.-) 

RSAD2 ENSG000001
34321 

2.07 radical S-adenosyl methionine domain containing 2 

DCTD ENSG000001
29187 

2.059 Deoxycytidylate deaminase (EC 3.5.4.12) (dCMP deaminase). 

SORBS3 ENSG000001
20896 

2.054 Vinexin (Sorbin and SH3 domain-containing protein 3) (SH3-containing adapter molecule 1) (SCAM-1). 

TACC2 ENSG000001
38162 

2.052 Transforming acidic coiled-coil-containing protein 2 (Anti Zuai-1) (AZU-1). 

EMP3 ENSG000001

42227 

2.05 Epithelial membrane protein 3 (EMP-3) (YMP protein) (Hematopoietic neural membrane protein) (HNMP-
1). 

HOXB2 ENSG000001
73917 

2.049 Homeobox protein Hox-B2 (Hox-2H) (Hox-2.8) (K8). 

CYP51A1 ENSG000000 2.042 Cytochrome P450 51A1 (EC 1.14.13.70) (CYPLI) (P450LI) (Sterol 14-alpha demethylase) (Lanosterol 14-
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01630 alpha demethylase) 

CRABP2 ENSG000001

43320 

2.023 Cellular retinoic acid-binding protein 2 (Cellular retinoic acid- binding protein II) (CRABP-II) (Retinoic acid-
binding protein II, cellular). 

NP_001009
555.2 

ENSG000001
09686 

2.021 SH3 domain protein D19 

RAB3IL1 ENSG000001
67994 

2.021 RAB3A interacting protein (rabin3)-like 1 

PTPRE ENSG000001
32334 

2.016 Receptor-type tyrosine-protein phosphatase epsilon precursor (EC 3.1.3.48) (Protein-tyrosine 
phosphatase epsilon) (R-PTP-epsilon). ] 

SLC30A1 ENSG000001

70385 

2.016 Zinc transporter 1 (ZnT-1) (Solute carrier family 30 member 1). 

GHR ENSG000001

12964 

2.015 Growth hormone receptor precursor (GH receptor) (Somatotropin receptor) [Contains: Growth hormone-
binding protein (GH-binding protein) 

PDLIM5 ENSG000001
63110 

2.011 PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein). 

NP_079178.
2 

ENSG000001
78401 

2.006  

BBS4 ENSG000001
40463 

-2 Bardet-Biedl syndrome 4 protein. 

TMTC2 ENSG000001

79104 

-2.003 Transmembrane and TPR repeat-containing protein 2. 

STARD8 ENSG000001
30052 

-2.004 StAR-related lipid transfer protein 8 (StARD8) (START domain- containing protein 8). 

CORO2A ENSG000001
06789 

-2.007 Coronin-2A (WD repeat-containing protein 2) (IR10). 

SLC25A23 ENSG000001
25648 

-2.011 solute carrier family 25, member 23 

MATN2 ENSG000001

32561 

-2.011 Matrilin-2 precursor. 

HAO1 ENSG000001

01323 

-2.012 Hydroxyacid oxidase 1 (EC 1.1.3.15) (HAOX1) (Glycolate oxidase) (GOX). 

HTATSF1 ENSG000001
02241 

-2.017 HIV Tat-specific factor 1 (Tat-SF1). 

GPR155 ENSG000001
63328 

-2.018 Integral membrane protein GPR155 (G-protein coupled receptor PGR22). 

ALDH18A1 ENSG000000
59573 

-2.025 Delta 1-pyrroline-5-carboxylate synthetase (P5CS) (Aldehyde dehydrogenase 18 family member A1) 

MAOA ENSG000001

89221 

-2.03 Amine oxidase [flavin-containing] A (EC 1.4.3.4) (Monoamine oxidase type A) (MAO-A). 

NDRG2 ENSG000001
65795 

-2.035 Protein NDRG2 (Protein Syld709613). 

HS3ST5 ENSG000001
75818 

-2.039 Heparan sulfate glucosamine 3-O-sulfotransferase 5 (EC 2.8.2.23) (Heparan sulfate D-glucosaminyl 
3-O-sulfotransferase 5) 

ASAHL ENSG000001
38744 

-2.047 N-acylethanolamine-hydrolyzing acid amidase precursor (EC 3.5.1.-) (N- acylsphingosine amidohydrolase-
like) (ASAH-like protein) 

GAS2L3 ENSG000001
39354 

-2.047 GAS2-like protein 3 (Growth arrest-specific 2-like 3). 

LRRC20 ENSG000001

72731 

-2.048 Leucine-rich repeat-containing protein 20. 

PHEX ENSG000001
02174 

-2.05 Phosphate-regulating neutral endopeptidase (EC 3.4.24.-) (Metalloendopeptidase homolog PEX) (X-linked 
hypophosphatemia protein) 

FBXO32 ENSG000001
56804 

-2.05 F-box only protein 32 (Muscle atrophy F-box protein) (MAFbx) (Atrogin- 1). 

CXCL12 ENSG000001
07562 

-2.051 Stromal cell-derived factor 1 precursor (SDF-1) (CXCL12) (Pre-B cell growth-stimulating factor) (PBSF) 
(hIRH) 

MEX3D ENSG000001

81588 

-2.052 RNA-binding protein MEX3D (RING finger and KH domain-containing protein 1) (RING finger protein 193). 
8] 

LDLRAD3 ENSG000001

79241 

-2.059 low density lipoprotein receptor class A domain containing 3 

CA6 ENSG000001
31686 

-2.061 Carbonic anhydrase 6 precursor (EC 4.2.1.1) (Carbonic anhydrase VI) (Carbonate dehydratase VI) (CA-
VI) (Secreted carbonic anhydrase) . 

TMEM121 ENSG000001
84986 

-2.064 Transmembrane protein 121. 

NEFL ENSG000001
04725 

-2.065 Neurofilament light polypeptide (NF-L) (Neurofilament triplet L protein) (68 kDa neurofilament protein). 

C7orf46 ENSG000001

88732 

-2.067 Uncharacterized protein C7orf46. 
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PDLIM7 ENSG000001
96923 

-2.07 PDZ and LIM domain protein 7 (LIM mineralization protein) (LMP) (Protein enigma). 

NNMT ENSG000001
66741 

-2.078 Nicotinamide N-methyltransferase (EC 2.1.1.1). 

MMP12 ENSG000001
10347 

-2.081 Macrophage metalloelastase precursor (EC 3.4.24.65) (HME) (Matrix metalloproteinase-12) (MMP-12) 
(Macrophage elastase) (ME). 

EXOC6 ENSG000001

38190 

-2.09 Exocyst complex component 6 (Exocyst complex component Sec15A) (Sec15- like 1). 

ITPKB ENSG000001
43772 

-2.1 Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5- trisphosphate 3-kinase B) 

C6orf145 ENSG000001
68994 

-2.1 Uncharacterized protein C6orf145. 

NP_056994.
3 

ENSG000001
43951 

-2.104  

PTPRM ENSG000001

73482 

-2.104 Receptor-type tyrosine-protein phosphatase mu precursor (EC 3.1.3.48) (Protein-tyrosine phosphatase 
mu) (R-PTP-mu). 

FAM125B ENSG000001

96814 

-2.109 Protein FAM125B. [Source:Uniprot/SWISSPROT;Acc:Q9H7P6] 

C20orf74 ENSG000001
88559 

-2.118 250 kDa substrate of Akt (AS250). [Source:Uniprot/SWISSPROT;Acc:Q2PPJ7] 

KLHL8 ENSG000001
45332 

-2.123 Kelch-like protein 8. [Source:Uniprot/SWISSPROT;Acc:Q9P2G9] 

C8orf32 ENSG000001
56795 

-2.123 Uncharacterized protein C8orf32. [Source:Uniprot/SWISSPROT;Acc:Q96HA8] 

SNORA32 ENSG000001

66012 

-2.123 Protein JOSD3. [Source:Uniprot/SWISSPROT;Acc:Q9H5J8] 

MPPED2 ENSG000000
66382 

-2.125 Metallophosphoesterase domain-containing protein 2 (Fetal brain protein 239) (239FB). 
[Source:Uniprot/SWISSPROT;Acc:Q15777] 

LYPLA3 ENSG000001
03066 

-2.132 1-O-acylceramide synthase precursor (EC 2.3.1.-) (ACS) (Lysosomal phospholipase A2) 
(Lysophospholipase 3) (LPLA2) 

FAM62A ENSG000001
39641 

-2.138 Protein FAM62A (Membrane-bound C2 domain-containing protein). 

PRTN3 ENSG000001
96415 

-2.143 Myeloblastin precursor (EC 3.4.21.76) (Leukocyte proteinase 3) (PR-3) (PR3) (AGP7) (Wegener 
autoantigen) (P29) (C-ANCA antigen)  

NP_116012.

2 

ENSG000001

37463 

-2.15 ovary-specific acidic protein [Source:RefSeq_peptide;Acc:NP_116012] 

PTPRK ENSG000001
52894 

-2.152 Receptor-type tyrosine-protein phosphatase kappa precursor (EC 3.1.3.48) (Protein-tyrosine phosphatase 
kappa) (R-PTP-kappa). 

CCNG2 ENSG000001
38764 

-2.159 Cyclin-G2. [Source:Uniprot/SWISSPROT;Acc:Q16589] 

S100A3 ENSG000001
88015 

-2.163 Protein S100-A3 (S100 calcium-binding protein A3) (Protein S-100E). 
[Source:Uniprot/SWISSPROT;Acc:P33764] 

C3orf28 ENSG000001

14023 

-2.167 E2-induced gene 5 protein. [Source:Uniprot/SWISSPROT;Acc:Q96A26] 

HBEGF ENSG000001

13070 

-2.192 Heparin-binding EGF-like growth factor precursor (HB-EGF) (HBEGF) (Diphtheria toxin receptor) 

SLC44A2 ENSG000001
29353 

-2.206 Choline transporter-like protein 2 (Solute carrier family 44 member 2). 
[Source:Uniprot/SWISSPROT;Acc:Q8IWA5] 

GFRA2 ENSG000001
68546 

-2.215 GDNF family receptor alpha-2 precursor (GFR-alpha-2) (Neurturin receptor alpha) (NTNR-alpha) 
(NRTNR-alpha) 

HK1 ENSG000001
56515 

-2.216 Hexokinase-1 (EC 2.7.1.1) (Hexokinase type I) (HK I) (Brain form hexokinase). 
[Source:Uniprot/SWISSPROT;Acc:P19367] 

CXorf15 ENSG000000

86712 

-2.219 Gamma-taxilin (Lipopolysaccharide-specific response protein 5). 
[Source:Uniprot/SWISSPROT;Acc:Q9NUQ3] 

MARK1 ENSG000001
16141 

-2.221 Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (MAP/microtubule affinity-regulating kinase 1). 

ID1 ENSG000001
25968 

-2.228 DNA-binding protein inhibitor ID-1 (Inhibitor of DNA binding 1). 

B3GALNT1 ENSG000001
69255 

-2.231 UDP-GalNAc:beta-1,3-N-acetylgalactosaminyltransferase 1 (EC 2.4.1.79) (Beta-3-GalNAc-T1) (Beta-1,3-
galactosyltransferase 3) 

CLYBL ENSG000001
25246 

-2.235 Citrate lyase beta subunit-like protein, mitochondrial precursor (EC 4.1.-.-) (Citrate lyase beta-like). 

PRR6 ENSG000001

66582 

-2.249 Proline-rich protein 6 (Nuclear protein p30). [Source:Uniprot/SWISSPROT;Acc:Q7Z7K6] 

PVRL2 ENSG000001
30202 

-2.261 Poliovirus receptor-related protein 2 precursor (Herpes virus entry mediator B) (HveB) (Nectin-2) (CD112 
antigen). 

STAMBPL1 ENSG000001 -2.262 AMSH-like protease (EC 3.1.2.15) (AMSH-LP) (STAM-binding protein-like 1). 
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38134 [Source:Uniprot/SWISSPROT;Acc:Q96FJ0] 

OSTF1 ENSG000001

34996 

-2.267 Osteoclast-stimulating factor 1. [Source:Uniprot/SWISSPROT;Acc:Q92882] 

CLCN3 ENSG000001
09572 

-2.288 Chloride channel protein 3 (ClC-3). [Source:Uniprot/SWISSPROT;Acc:P51790] 

C6orf141 ENSG000001
97261 

-2.303 Uncharacterized protein C6orf141. [Source:Uniprot/SWISSPROT;Acc:Q5SZD1] 

MXI1 ENSG000001
19950 

-2.308 MAX-interacting protein 1 (Protein MXI1). [Source:Uniprot/SWISSPROT;Acc:P50539] 

GADD45G ENSG000001

30222 

-2.308 Growth arrest and DNA-damage-inducible protein GADD45 gamma (Cytokine- responsive protein CR6). 

ARHGAP29 ENSG000001

37962 

-2.323 PTPL1-associated RhoGAP 1 [Source:RefSeq_peptide;Acc:NP_004806] 

VLDLR ENSG000001
47852 

-2.327 Very low-density lipoprotein receptor precursor (VLDL receptor) (VLDL- R). 
[Source:Uniprot/SWISSPROT;Acc:P98155] 

SPDYA ENSG000001
63806 

-2.327 Speedy protein A (Speedy-1) (Spy1) (Rapid inducer of G2/M progression in oocytes A) (RINGO A) 
(hSpy/Ringo A). 

CIRBP ENSG000000
99622 

-2.336 Cold-inducible RNA-binding protein (Glycine-rich RNA-binding protein CIRP) (A18 hnRNP). 
[Source:Uniprot/SWISSPROT;Acc:Q14011] 

BCKDHB ENSG000000

83123 

-2.339 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial precursor (EC 1.2.4.4) 

ENAH ENSG000001
54380 

-2.339 Protein enabled homolog. [Source:Uniprot/SWISSPROT;Acc:Q8N8S7] 

NDRG1 ENSG000001
04419 

-2.349 Protein NDRG1 (N-myc downstream-regulated gene 1 protein) (Differentiation-related gene 1 protein) 
(DRG-1) 

DENND2A ENSG000001
46966 

-2.356 DENN domain-containing protein 2A. [Source:Uniprot/SWISSPROT;Acc:Q9ULE3] 

SLC2A1 ENSG000001

17394 

-2.36 Solute carrier family 2, facilitated glucose transporter member 1 (Glucose transporter type 1, 
erythrocyte/brain) (GLUT-1) 

NRN1 ENSG000001

24785 

-2.368 Neuritin precursor. [Source:Uniprot/SWISSPROT;Acc:Q9NPD7] 

EPHB2 ENSG000001
33216 

-2.369 Ephrin type-B receptor 2 precursor (EC 2.7.10.1) (Tyrosine-protein kinase receptor EPH-3) (DRT) 
(Receptor protein-tyrosine kinase HEK5) (ERK) (Tyrosine-protein kinase TYRO5) 

NMNAT3 ENSG000001
63864 

-2.369 Nicotinamide mononucleotide adenylyltransferase 3 (EC 2.7.7.1) (NMN adenylyltransferase 3) 

SH3BP4 ENSG000001
30147 

-2.396 SH3 domain-binding protein 4 (Transferrin receptor-trafficking protein) (EH-binding protein 10). 
[Source:Uniprot/SWISSPROT;Acc:Q9P0V3] 

INSIG2 ENSG000001

25629 

-2.4 Insulin-induced gene 2 protein (INSIG-2). [Source:Uniprot/SWISSPROT;Acc:Q9Y5U4] 

GLUL ENSG000001
35821 

-2.406 Glutamine synthetase (EC 6.3.1.2) (Glutamate--ammonia ligase) (GS). 
[Source:Uniprot/SWISSPROT;Acc:P15104] 

ETS2 ENSG000001
57557 

-2.407 Protein C-ets-2. [Source:Uniprot/SWISSPROT;Acc:P15036] 

ENO2 ENSG000001
11674 

-2.424 Gamma-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Neural enolase) (Neuron-specific 
enolase) (NSE) 

NAALAD2 ENSG000000
77616 

-2.427 N-acetylated-alpha-linked acidic dipeptidase 2 (EC 3.4.17.21) (N- acetylated-alpha-linked acidic 
dipeptidase II) (NAALADase II). 

TFRC ENSG000000

72274 

-2.437 Transferrin receptor protein 1 (TfR1) (TR) (TfR) (Trfr) (CD71 antigen) (T9) (p90) [Contains: Transferrin 
receptor protein 1, serum form (sTfR)]. 

CTH ENSG000001
16761 

-2.458 Cystathionine gamma-lyase (EC 4.4.1.1) (Gamma-cystathionase). 
[Source:Uniprot/SWISSPROT;Acc:P32929] 

REEP1 ENSG000000
68615 

-2.462 Receptor expression-enhancing protein 1. [Source:Uniprot/SWISSPROT;Acc:Q9H902] 

TRIB3 ENSG000001
01255 

-2.474 Tribbles homolog 3 (TRB-3) (Neuronal cell death-inducible putative kinase) (p65-interacting inhibitor of 
NF-kappaB) (SINK). 

CSN3 ENSG000001

71209 

-2.475 Kappa-casein precursor. [Source:Uniprot/SWISSPROT;Acc:P07498] 

C9orf72 ENSG000001

47894 

-2.479 Uncharacterized protein C9orf72. [Source:Uniprot/SWISSPROT;Acc:Q96LT7] 

NP_001070884.
1 

ENSG000002
05084 

-2.501 CDNA: FLJ22167 fis, clone HRC00584 (Hypothetical protein FLJ22167). 
[Source:Uniprot/SPTREMBL;Acc:Q9H6L2] 

ZFPM2 ENSG000001
69946 

-2.521 Zinc finger protein ZFPM2 (Zinc finger protein multitype 2) (Friend of GATA protein 2) (FOG-2) (hFOG-2). 

ARRDC4 ENSG000001
40450 

-2.523 Arrestin domain-containing protein 4. [Source:Uniprot/SWISSPROT;Acc:Q8NCT1] 

C20orf112 ENSG000001

97183 

-2.53 Uncharacterized protein C20orf112. [Source:Uniprot/SWISSPROT;Acc:Q96MY1] 
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C9orf30 ENSG000000
66697 

-2.54 UPF0439 protein C9orf30 (Protein L8). [Source:Uniprot/SWISSPROT;Acc:Q96H12] 

GALNT12 ENSG000001
19514 

-2.541 Polypeptide N-acetylgalactosaminyltransferase 12 (EC 2.4.1.41) (Protein-UDP 
acetylgalactosaminyltransferase 12) 

GADD45A ENSG000001
16717 

-2.549 Growth arrest and DNA-damage-inducible protein GADD45 alpha (DNA- damage-inducible transcript 1) 
(DDIT1). 

RAB7L1 ENSG000001

17280 

-2.566 Ras-related protein Rab-7L1 (Rab-7-like protein 1). [Source:Uniprot/SWISSPROT;Acc:O14966] 

NP_001071087.
1 

ENSG000002
15114 

-2.574  

LAMA4 ENSG000001
12769 

-2.576 Laminin subunit alpha-4 precursor. [Source:Uniprot/SWISSPROT;Acc:Q16363] 

TCEAL1 ENSG000001
72465 

-2.576 Transcription elongation factor A protein-like 1 (TCEA-like protein 1) (Transcription elongation factor S-II 
protein-like 1) 

SLC25A30 ENSG000001

74032 

-2.586 Kidney mitochondrial carrier protein 1 (Solute carrier family 25 member 30). 
[Source:Uniprot/SWISSPROT;Acc:Q5SVS4] 

CTGF ENSG000001

18523 

-2.599 Connective tissue growth factor precursor (Hypertrophic chondrocyte- specific protein 24). 
[Source:Uniprot/SWISSPROT;Acc:P29279] 

ERO1L ENSG000001
97930 

-2.622 ERO1-like protein alpha precursor (EC 1.8.4.-) (ERO1-Lalpha) (Oxidoreductin-1-Lalpha) (Endoplasmic 
oxidoreductin-1-like protein) (ERO1-L). 

ABTB2 ENSG000001
66016 

-2.624 Ankyrin repeat and BTB/POZ domain-containing protein 2. [Source:Uniprot/SWISSPROT;Acc:Q8N961] 

C9orf89 ENSG000001
65233 

-2.64 BINCA_HUMAN Isoform 2 of Q96LW7 - Homo sapiens (Human) [Source:Uniprot/Varsplic;Acc:Q96LW7-2] 

DNAJC12 ENSG000001

08176 

-2.671 DnaJ homolog subfamily C member 12 (J domain-containing protein 1). 
[Source:Uniprot/SWISSPROT;Acc:Q9UKB3] 

GNAZ ENSG000001
28266 

-2.687 Guanine nucleotide-binding protein G(z) subunit alpha (G(x) alpha chain) (Gz-alpha). 
[Source:Uniprot/SWISSPROT;Acc:P19086] 

THBS2 ENSG000001
86340 

-2.689 Thrombospondin-2 precursor. [Source:Uniprot/SWISSPROT;Acc:P35442] 

CITED1 ENSG000001
25931 

-2.726 Cbp/p300-interacting transactivator 1 (Melanocyte-specific protein 1). 
[Source:Uniprot/SWISSPROT;Acc:Q99966] 

PKIA ENSG000001
71033 

-2.729 cAMP-dependent protein kinase inhibitor alpha (PKI-alpha) (cAMP- dependent protein kinase inhibitor, 
muscle/brain isoform). 

TSC22D3 ENSG000001

57514 

-2.744 TSC22 domain family protein 3 (Glucocorticoid-induced leucine zipper protein) (Delta sleep-inducing 
peptide immunoreactor) 

CLU ENSG000001
20885 

-2.769 Clusterin precursor (Complement-associated protein SP-40,40) (Complement cytolysis inhibitor) (CLI) 
(NA1/NA2) (Apolipoprotein J) (Apo-J) 

SNCA ENSG000001
45335 

-2.792 Alpha-synuclein (Non-A beta component of AD amyloid) (Non-A4 component of amyloid precursor) 
(NACP). 

ADD3 ENSG000001
48700 

-2.8 Gamma-adducin (Adducin-like protein 70). [Source:Uniprot/SWISSPROT;Acc:Q9UEY8] 

PRELID2 ENSG000001

86314 

-2.802 PRELI domain containing 2 isoform c [Source:RefSeq_peptide;Acc:NP_612501] 

MBOAT2 ENSG000001

43797 

-2.825 Membrane-bound O-acyltransferase domain-containing protein 2 (EC 2.3.-.-) (O-acyltransferase domain-
containing protein 2). 

PDK1 ENSG000001
52256 

-2.825 [Pyruvate dehydrogenase [lipoamide]] kinase isozyme 1, mitochondrial precursor (EC 2.7.11.2) (Pyruvate 
dehydrogenase kinase isoform 1). 

MUM1L1 ENSG000001
57502 

-2.828 MUM1-like protein 1 (Mutated melanoma-associated antigen 1-like protein 1). 
[Source:Uniprot/SWISSPROT;Acc:Q5H9M0] 

HIST1H1C ENSG000001
87837 

-2.843 Histone H1.2 (Histone H1d). [Source:Uniprot/SWISSPROT;Acc:P16403] 

SASH1 ENSG000001

11961 

-2.911 SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat- containing protein). 
[Source:Uniprot/SWISSPROT;Acc:O94885] 

IL33 ENSG000001
37033 

-2.916 Interleukin-33 precursor (IL-33) (Interleukin-1 family member 11) (IL- 1F11) (Nuclear factor from high 
endothelial venules) (NF-HEV). 

MDM1 ENSG000001
11554 

-2.963 Mdm4, transformed 3T3 cell double minute 1, p53 binding protein isoform 1 

C4orf31 ENSG000001
73376 

-2.968 Uncharacterized protein C4orf31. [Source:Uniprot/SPTREMBL;Acc:Q8TB73] 

CDKN1C ENSG000001
29757 

-2.977 Cyclin-dependent kinase inhibitor 1C (Cyclin-dependent kinase inhibitor p57) (p57KIP2). 
[Source:Uniprot/SWISSPROT;Acc:P49918] 

P4HA2 ENSG000000

72682 

-2.984 Prolyl 4-hydroxylase subunit alpha-2 precursor (EC 1.14.11.2) (4-PH alpha-2) (Procollagen-proline,2-
oxoglutarate-4-dioxygenase alpha-2 subunit). 

ITGA6 ENSG000000
91409 

-3.008 Integrin alpha-6 precursor (VLA-6) (CD49f antigen) [Contains: Integrin alpha-6 heavy chain; Integrin alpha-
6 light chain]. 

SH3YL1 ENSG000000 -3.01 SH3 domain containing, Ysc84-like 1 [Source:RefSeq_peptide;Acc:NP_056492] 
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35115 

SYT17 ENSG000001

03528 

-3.095 B/K protein [Source:RefSeq_peptide;Acc:NP_057608] 

KLF6 ENSG000000
67082 

-3.099 Krueppel-like factor 6 (Core promoter element-binding protein) (B- cell-derived protein 1) (Proto-oncogene 
BCD1) (Transcription factor Zf9) 

EVI1 ENSG000000
85276 

-3.265 Ecotropic virus integration site 1 protein homolog (EVI-1). [Source:Uniprot/SWISSPROT;Acc:Q03112] 

EDG3 ENSG000002
13694 

-3.28 Sphingosine 1-phosphate receptor Edg-3 (S1P receptor Edg-3) (Endothelial differentiation G-protein 
coupled receptor 3) 

TMCC3 ENSG000000

57704 

-3.305 Transmembrane and coiled-coil domains protein 3. [Source:Uniprot/SWISSPROT;Acc:Q9ULS5] 

DOCK10 ENSG000001

35905 

-3.311 Dedicator of cytokinesis protein 10 (Zizimin-3). [Source:Uniprot/SWISSPROT;Acc:Q96BY6] 

BBS2 ENSG000001
25124 

-3.339 Bardet-Biedl syndrome 2 protein. [Source:Uniprot/SWISSPROT;Acc:Q9BXC9] 

ENPP2 ENSG000001
36960 

-3.43 Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 precursor (EC 3.1.4.39) (E-NPP 2) 

ATF3 ENSG000001
62772 

-3.488 Cyclic AMP-dependent transcription factor ATF-3 (Activating transcription factor 3). 
[Source:Uniprot/SWISSPROT;Acc:P18847] 

RUNDC3B ENSG000001

05784 

-3.539 RUN domain containing 3B [Source:RefSeq_peptide;Acc:NP_612147] 

RNF128 ENSG000001
33135 

-3.588 E3 ubiquitin-protein ligase RNF128 precursor (EC 6.3.2.-) (RING finger protein 128) (Gene related to 
anergy in lymphocytes protein). 

TEX11 ENSG000001
20498 

-3.655 testis expressed sequence 11 isoform 2 [Source:RefSeq_peptide;Acc:NP_112566] 

DEPDC7 ENSG000001
21690 

-3.777 novel 58.3 KDA protein isoform 1 [Source:RefSeq_peptide;Acc:NP_001070710] 

DFFB ENSG000001

69598 

-3.889 DNA fragmentation factor subunit beta (EC 3.-.-.-) (DNA fragmentation factor 40 kDa subunit) (DFF-40) 
(Caspase-activated deoxyribonuclease) 

ADAM8 ENSG000001

51651 

-4.022 ADAM 8 precursor (EC 3.4.24.-) (A disintegrin and metalloproteinase domain 8) (Cell surface antigen 
MS2) (CD156a antigen) (CD156). 

TMEM176B ENSG000001
06565 

-4.161 Transmembrane protein 176B (Protein LR8). [Source:Uniprot/SWISSPROT;Acc:Q3YBM2] 

MLF1 ENSG000001
78053 

-4.27 Myeloid leukemia factor 1 (Myelodysplasia-myeloid leukemia factor 1). 
[Source:Uniprot/SWISSPROT;Acc:P58340] 

TMEM176A ENSG000000
02933 

-4.5 Transmembrane protein 176A (Hepatocellular carcinoma-associated antigen 112). 
[Source:Uniprot/SWISSPROT;Acc:Q96HP8] 

HPSE ENSG000001

73083 

-4.673 Heparanase precursor (EC 3.2.-.-) (Heparanase-1) (Hpa1) (Endo- glucoronidase) [Contains: 
Heparanase 8 kDa subunit; Heparanase 50 kDa 

DFNB31 ENSG000000
95397 

-5.112 Whirlin (Autosomal recessive deafness type 31 protein). 
[Source:Uniprot/SWISSPROT;Acc:Q9P202] 

ALCAM ENSG000001
70017 

-5.185 CD166 antigen precursor (Activated leukocyte-cell adhesion molecule) (ALCAM). 
[Source:Uniprot/SWISSPROT;Acc:Q13740] 

ADM ENSG000001
48926 

-5.301 ADM precursor [Contains: Adrenomedullin (AM); Proadrenomedullin N-20 terminal peptide (ProAM-N20) 
(ProAM N-terminal 20 peptide) 

STBD1 ENSG000001
18804 

-5.85 Genethonin-1. [Source:Uniprot/SWISSPROT;Acc:O95210] 

C9orf19 ENSG000001

22694 

-6.111 Golgi-associated plant pathogenesis-related protein 1 (Golgi- associated PR-1 protein) (GAPR-1) (Glioma 
pathogenesis-related protein 2) 

POSTN ENSG000001
33110 

-6.552 Periostin precursor (PN) (Osteoblast-specific factor 2) (OSF-2). 
[Source:Uniprot/SWISSPROT;Acc:Q15063] 

TNC ENSG000000
41982 

-6.868 Tenascin precursor (TN) (Tenascin-C) (TN-C) (Hexabrachion) (Cytotactin) (Neuronectin) (GMEM) (JI) 
(Myotendinous antigen) 

MYOT ENSG000001
20729 

-7.135 Myotilin (Titin immunoglobulin domain protein) (Myofibrillar titin- like Ig domains protein) (57 kDa 
cytoskeletal protein). 

MMP10 ENSG000001

66670 

-7.886 Stromelysin-2 precursor (EC 3.4.24.22) (Matrix metalloproteinase-10) (MMP-10) (Transin-2) (SL-2). 
[Source:Uniprot/SWISSPROT;Acc:P09238] 

SYCE2 ENSG000001

61860 

-8.051 Synaptonemal complex central element protein 2 (Central element synaptonemal complex protein 1). 
[Source:Uniprot/SWISSPROT;Acc:Q6PIF2] 

ITM2A ENSG000000
78596 

-9.112 Integral membrane protein 2A (E25 protein). [Source:Uniprot/SWISSPROT;Acc:O43736] 

C10orf58 ENSG000001
22378 

-9.877 Uncharacterized protein C10orf58 precursor. [Source:Uniprot/SWISSPROT;Acc:Q9BRX8] 

BLNK ENSG000000
95585 

-10.908 B-cell linker protein (Cytoplasmic adapter protein) (B-cell adapter containing SH2 domain protein) (B-cell 
adapter containing Src homology 2 domain protein) 

GAP43 ENSG000001

72020 

-13.043 Neuromodulin (Axonal membrane protein GAP-43) (Growth-associated protein 43) (PP46) (Neural 
phosphoprotein B-50). 
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MC-38 parental versus MC-38met expression changes as determined in Materials and 
Methods are displayed for the 300 gene metastasis-associated signature.  Mouse 
probe set identifiers (IDs) were mapped to Ensembl Gene IDs based on the mapping 
provided by Ensembl V49 (http://www.ensembl.org) and are displayed in addition to 
fold-change and the gene name as noted in WebGestalt.  The genes in the 34-gene 
classifier are bolded. 

LCN2 ENSG000001
48346 

-16.838 Neutrophil gelatinase-associated lipocalin precursor (NGAL) (p25) (25 kDa alpha-2-microglobulin-related 
subunit of MMP-9) (Lipocalin-2) 

MMP13 ENSG000001
37745 

-17.341 Collagenase 3 precursor (EC 3.4.24.-) (Matrix metalloproteinase-13) (MMP-13). 

CRABP1 ENSG000001
66426 

-21.012 Cellular retinoic acid-binding protein 1 (Cellular retinoic acid- binding protein I) (CRABP-I) 
(Retinoic acid-binding protein I, cellular). 

FABP4 ENSG000001

70323 

-38.52 Fatty acid-binding protein, adipocyte (AFABP) (Adipocyte lipid-binding protein) (ALBP) (A-FABP). 
[Source:Uniprot/SWISSPROT;Acc:P15090] 
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Figure 10. Distribution of 10,000-permutation Wald tests for the 177 MCC 
patients with the 34-gene metastasis score. Beta and Wald statistics for each 
Affymetrix probe set were used along with expression data to build up a 
metastasis score for each patient. The score was used as the independent 
variable to perform overall survival analysis based on the Cox model. The Wald 
test P-value was saved as the observed P-value. For the re-sampling test, we 
randomly chose 60 Affymetrix probe sets from the 54,675 sets on the whole 
array. We repeated the above procedure and generated 1 re-sampling Wald 
test P-value from the overall Cox model survival analysis. We repeated the re-
sampling and survival analysis procedure 10,000 times, generating 10,000 re-
sampling Wald test P-values. We transformed both the observed and re-
sampling P-values into log10 format, plotted a histogram of the 10,000 re-
sampling log10 (P values), and added the observed log10 (P-value). 



133 

A summary of a multivariate analysis, using the MCC 
patient variables to calculate independent risk factors, 
is shown. Metastasis score (P<.001) and stage (P= 
.002) were each found to be significant predictors of 
DFS in the multivariate model. Metastasis score, age, 
sex, and grade were adjusted in the multivariate Cox 
model for DFS, and the results for each risk factor and 
DFS are shown.  Adjusted P-values as well as the 
adjusted 95% confidence intervals (CI) of the -

coefficient from the Cox model were reported. 

Univariate analysis with the use of the metastasis score to segregate 

patients from the MCC data set into higher-than-median and lower-
than-median score groups. Hazard ratios were calculated for each 
patient group related to DSS.  The 95% confidence intervals (CIs) 

and P-values for the test are given in the table. NA implies that no 
hazard ratio from the Cox model was calculated because no cancer-
related deaths occurred in the patients with stage II colon cancer with 

a low score. The P-value for stage II DSS in this model was 
calculated according to exact log-rank test for unequal follow-up 
(Heinze, Gnant, and Schemper 2003). 
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A summary of a multivariate analysis, using the MCC patient variables to calculate 
independent risk factors, is shown in the table. Metastasis score (P<.001), stage (P< .001) 
and age (P=.04) were each found to be significant predictors of DSS in the multivariate 
model. Metastasis score, age, sex, and grade were adjusted in the multivariate Cox model 
for both OS and DSS, and the results for each risk factor and DSS are shown. The 

adjusted P-values as well as the adjusted 95% confidence intervals (CIs) of the -

coefficient from the Cox model were reported. 
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Figure 18.  (A) Ctnnb1 promoter/enhancer minimal Smad binding elements and region of 
amplification schematic of an area of the ctnnb1 promoter (-3400 to -3000) is displayed.  Smad 
binding elements are in gray and the 5’ and 3’ primer regions are underlined and bold black.  (B) 

Smad4 restoration in SW480 cells does not affect -catenin mRNA stability. SW480vector and 
SW480Smad4 were treated with 5,6-Dichlorobenzimidazole 1--D-ribofuranoside (DRB, specific RNA 
polymerase II inhibitor) as indicated for 0, 4, 8, 12, 16, 20 and 24 hours.  Relative expression for 
steady-state -catenin mRNA was determined after DRB treatment and is displayed.  Analysis of 
variance was used to determine if any significant interactions occurred between groups (P = .88). 
SW480vector is denoted in black and SW480Smad4.1 is denoted in blue.  Two doses of DRB were used 
and data from the 100μM dose is shown. 
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TABLE 11 
 
 

GLOBAL GENE EXPRESSION ANALYSIS OF SW480VECTOR 
VERSUS SW480SMAD4 COLON CANCER CELLS 

UP-REGULATED BY SMAD4 

Affymetrix 
probe 

Coef FDR Gene 
Symbol 

228640_at -8.714577898 4.44E-25 PCDH7 

227711_at -7.958764655 1.21E-37 GTSF1 

206218_at -7.756652036 5.43E-36 MAGEB2 

209942_x_at -7.717070359 5.91E-36 MAGEA3 

214612_x_at -7.696179633 1.12E-37 MAGEA6 

211124_s_at -7.657882354 1.15E-32 KITLG 

201849_at -7.383997352 8.17E-32 BNIP3 

226534_at -7.173853692 1.02E-29 KITLG 

207029_at -7.000946956 2.42E-28 KITLG 

214603_at -6.883081796 5.43E-36 MAGEA2B 

1552767_a_at -6.784122115 2.48E-33 HS6ST2 

201445_at -6.727393674 4.08E-33 CNN3 

230030_at -6.615547924 9.59E-35 HS6ST2 

205919_at -6.535255899 4.65E-33 HBE1 

202983_at -6.531039709 2.61E-35 HLTF 

218186_at -6.442496555 2.94E-35 RAB25 

1553830_s_at -6.39486666 7.13E-35 MAGEA2 

243110_x_at -6.360154734 9.45E-34 NPW 

201117_s_at -6.217523105 3.19E-30 CPE 

209301_at -6.214799538 7.82E-29 CA2 

205767_at -6.06146787 1.31E-25 EREG 

218677_at -5.966475635 1.02E-22 S100A14 

227919_at -5.907829919 4.55E-24 UCA1 

201848_s_at -5.89585183 2.42E-28 BNIP3 

206295_at -5.885920052 5.68E-33 IL18 

204971_at -5.816499121 1.11E-28 CSTA 

205466_s_at -5.794299158 4.45E-22 HS3ST1 

223551_at -5.71991099 8.13E-25 PKIB 

225381_at -5.644466412 3.31E-34 LOC399959 

231192_at -5.553414689 3.85E-28 NA 

201116_s_at -5.534183303 6.95E-33 CPE 

208837_at -5.517704249 2.92E-29 TMED3 

223592_s_at -5.440415817 1.9E-32 RNF135 
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204688_at -5.439822765 8.91E-33 SGCE 

204035_at -5.396409789 6.4E-15 SCG2 

202388_at -5.386649931 3.1E-09 RGS2 

205347_s_at -5.384823628 4.25E-19 TMSB15A 

208937_s_at -5.356431362 4.42E-29 ID1 

234469_at -5.355394233 5.42E-34 OR51B4 

225945_at -5.344472359 2.98E-30 ZNF655 

226621_at -5.343865646 9.1E-26 FGG 

202527_s_at -5.294875093 1.38E-30 SMAD4 

235557_at -5.268789269 3.68E-28 LOC150763 

213816_s_at -5.208338904 5.32E-31 MET 

213258_at -5.203966325 2.58E-34 TFPI 

209199_s_at -5.181597286 7.11E-21 MEF2C 

202973_x_at -5.152029952 4.02E-32 FAM13A 

202620_s_at -5.104496061 2.41E-25 PLOD2 

229402_at -5.094923313 9.11E-29 SAMD13 

226302_at -5.059370209 6.24E-25 ATP8B1 

204083_s_at -5.023699267 2.73E-31 TPM2 

1554803_s_at -5.017672119 5.8E-33 TRIM72 

204304_s_at -5.016762846 3.94E-21 PROM1 

212094_at -4.965591224 9.12E-17 PEG10 

226909_at -4.961649578 9.54E-32 ZNF518B 

201272_at -4.939658251 3.03E-30 AKR1B1 

239913_at -4.907918746 5.75E-31 SLC10A4 

224022_x_at -4.794553413 1.67E-24 WNT16 

219412_at -4.748236738 6.75E-31 RAB38 

203708_at -4.734864329 5.71E-24 PDE4B 

201828_x_at -4.713025367 7.59E-32 FAM127A 

221690_s_at -4.711097692 9.47E-29 NLRP2 

203789_s_at -4.610964515 3.03E-30 SEMA3C 

1552766_at -4.608769757 4.27E-25 HS6ST2 

1555801_s_at -4.588397302 4.73E-33 ZNF385B 

211675_s_at -4.519218284 3.19E-31 MDFIC 

202072_at -4.505536699 2.98E-30 HNRNPL 

207826_s_at -4.489496389 3.88E-24 ID3 

201427_s_at -4.475176247 1.05E-23 SEPP1 

221731_x_at -4.455090423 5.36E-15 VCAN 

228297_at -4.440584307 3.31E-26 CNN3 

203510_at -4.437460842 1.19E-27 MET 

210664_s_at -4.425081818 4.4E-28 TFPI 

234994_at -4.406643543 4.9E-22 TMEM200A 
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213664_at -4.378061462 4.73E-26 SLC1A1 

212148_at -4.369511371 5.23E-15 PBX1 

213222_at -4.353416112 2.86E-24 PLCB1 

204620_s_at -4.349783568 2.54E-15 VCAN 

213156_at -4.3412992 3.65E-21 NA 

219355_at -4.328726428 2.12E-29 CXorf57 

205729_at -4.320124371 6.93E-28 OSMR 

1555800_at -4.317205827 4.76E-28 ZNF385B 

206155_at -4.297905664 1.8E-15 ABCC2 

219932_at -4.277046336 1.38E-27 SLC27A6 

208782_at -4.262519874 3.63E-32 FSTL1 

237159_x_at -4.255301528 1.43E-31 AP1S3 

203680_at -4.254882045 2.42E-28 PRKAR2B 

225540_at -4.209549986 2.8E-24 MAP2 

213158_at -4.203307735 1.73E-20 NA 

202619_s_at -4.190018133 3.67E-26 PLOD2 

1555733_s_at -4.188721418 6.51E-30 AP1S3 

228624_at -4.161792378 1.14E-29 TMEM144 

211302_s_at -4.146115095 4.78E-25 PDE4B 

217948_at -4.140555857 3.19E-30 FAM127B 

1555731_a_at -4.131869279 7.16E-30 AP1S3 

217047_s_at -4.1196971 8.47E-24 FAM13A 

1555148_a_at -4.111957437 1.36E-28 C2orf65 

232113_at -4.092979863 9.25E-24 NA 

209676_at -4.08367698 9.1E-26 TFPI 

228063_s_at -4.067851885 2.82E-24 NAP1L5 

218546_at -4.058686835 6.93E-28 C1orf115 

220615_s_at -4.056984743 5.66E-29 FAR2 

210273_at -4.054999962 3.74E-17 PCDH7 

226789_at -4.032101474 1.09E-27 LOC647121 

209200_at -4.023766598 7.29E-19 MEF2C 

205239_at -4.017174485 1.04E-12 AREG 

232202_at -3.994040074 3.94E-23 NA 

210868_s_at -3.993594161 6.24E-27 ELOVL6 

220445_s_at -3.968126454 4.52E-30 CSAG2 

242888_at -3.956452569 4.59E-24 NA 

203989_x_at -3.953777314 9.41E-26 F2R 

210145_at -3.936997211 9.51E-27 PLA2G4A 

238689_at -3.927653449 3.9E-10 GPR110 

233364_s_at -3.908621286 4.39E-25 NA 

204256_at -3.902968671 2.03E-31 ELOVL6 
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217564_s_at -3.890419141 6.14E-25 CPS1 

235148_at -3.884689862 3.44E-24 KRTCAP3 

203974_at -3.866536097 7.0E-28 HDHD1A 

227082_at -3.864585197 2.98E-19 NA 

232125_at -3.849416984 5.29E-18 NA 

225575_at -3.845970999 4.97E-26 LIFR 

201951_at -3.841131165 1.01E-28 ALCAM 

201952_at -3.808702785 4.03E-29 ALCAM 

223591_at -3.80165121 1.22E-28 RNF135 

226051_at -3.794081845 1.37E-24 SELM 

244111_at -3.792417998 1.67E-27 KRT222P 

230563_at -3.782348339 2.02E-25 RASGEF1A 

211668_s_at -3.750162363 2.27E-28 PLAU 

220513_at -3.746918551 2.23E-22 KHDC1 

204086_at -3.7337206 1.95E-28 PRAME 

205479_s_at -3.722298056 9.49E-28 PLAU 

231270_at -3.720636164 2.0E-27 CA13 

204172_at -3.702774939 1.2E-26 CPOX 

227522_at -3.690120227 2.12E-28 CMBL 

205226_at -3.686800911 1.07E-25 PDGFRL 

206125_s_at -3.682994854 2.14E-27 KLK8 

206504_at -3.657277738 3.47E-17 CYP24A1 

1554726_at -3.613681754 2.06E-24 ZNF655 

238717_at -3.605031631 4.52E-27 NA 

218976_at -3.590523155 6.32E-15 DNAJC12 

219263_at -3.577439277 2.26E-26 RNF128 

204036_at -3.574944814 5.03E-19 LPAR1 

204920_at -3.566868522 1.03E-22 CPS1 

212097_at -3.557795675 2.44E-25 CAV1 

219388_at -3.539240511 1.94E-27 GRHL2 

35201_at -3.528824527 8.4E-32 HNRNPL 

206204_at -3.522214479 4.28E-22 GRB14 

1565162_s_at -3.517355862 3.35E-25 MGST1 

218854_at -3.503859364 8.86E-25 DSE 

1555734_x_at -3.492347773 2.65E-27 AP1S3 

231766_s_at -3.490052336 7.74E-18 COL12A1 

205364_at -3.481846545 3.14E-22 ACOX2 

229019_at -3.466191232 1.3E-23 ZNF385B 

203695_s_at -3.462992194 2.08E-23 DFNA5 

225171_at -3.443087477 6.38E-26 ARHGAP18 

227121_at -3.4281626 1.36E-20 NA 
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203060_s_at -3.412554427 9.34E-27 PAPSS2 

229053_at -3.384903559 8.57E-25 SYT17 

209156_s_at -3.382179814 2.91E-26 COL6A2 

219298_at -3.37738782 5.34E-24 ECHDC3 

221113_s_at -3.374678227 3.5E-19 WNT16 

203355_s_at -3.370498665 1.16E-21 PSD3 

231736_x_at -3.368596188 7.85E-29 MGST1 

213094_at -3.367202397 1.45E-25 GPR126 

202489_s_at -3.359702254 1.62E-21 FXYD3 

212092_at -3.356624139 3.04E-13 PEG10 

202525_at -3.353412135 1.16E-26 PRSS8 

207057_at -3.349627303 8.45E-24 SLC16A7 

227070_at -3.346608462 2.39E-25 GLT8D2 

212096_s_at -3.344989331 4.44E-17 MTUS1 

202022_at -3.344215626 4.25E-23 ALDOC 

203153_at -3.33202304 4.56E-15 IFIT1 

210467_x_at -3.331867005 1.0E-24 MAGEA12 

206140_at -3.326595869 1.11E-21 LHX2 

225809_at -3.322894826 6.38E-26 DKFZP564O
0823 

204653_at -3.315954782 7.79E-26 TFAP2A 

228261_at -3.314303056 7.55E-28 MIB2 

230356_at -3.30586423 3.16E-18 NA 

1552849_at -3.30525836 1.38E-26 C2orf65 

204751_x_at -3.290821488 1.8E-24 DSC2 

210002_at -3.269376566 9.4E-25 GATA6 

204671_s_at -3.26738077 5.96E-25 ANKRD6 

224918_x_at -3.248369818 7.04E-29 MGST1 

243252_at -3.246229836 3.02E-23 NA 

203650_at -3.242541388 5.97E-29 PROCR 

205153_s_at -3.242324115 2.89E-25 CD40 

225173_at -3.234731199 8.89E-27 ARHGAP18 

203065_s_at -3.225436457 1.81E-23 CAV1 

226250_at -3.222065773 1.19E-18 NA 

212095_s_at -3.210585956 2.55E-16 MTUS1 

229160_at -3.209625482 9.41E-18 MUM1L1 

218692_at -3.208583974 3.33E-20 GOLSYN 

230720_at -3.207581907 2.41E-22 RNF182 

206197_at -3.193820402 4.26E-26 NME5 

205383_s_at -3.183059099 1.9E-17 ZBTB20 

219271_at -3.177097937 2.14E-24 GALNT14 
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202948_at -3.177013167 7.63E-25 IL1R1 

228062_at -3.172877406 1.61E-20 NAP1L5 

205581_s_at -3.15898932 4.48E-27 NOS3 

1569878_at -3.149466187 1.14E-24 CCNYL2 

213515_x_at -3.148007631 1.42E-27 HBG2 

206153_at -3.147855065 3.05E-18 CYP4F11 

236207_at -3.145806606 1.24E-29 SSFA2 

204472_at -3.145799656 6.29E-17 GEM 

207761_s_at -3.145321878 6.13E-24 METTL7A 

213807_x_at -3.143497429 5.0E-27 MET 

236016_at -3.143027237 7.49E-28 NA 

206429_at -3.142523286 2.42E-24 F2RL1 

204955_at -3.141921582 5.31E-25 SRPX 

238423_at -3.141814342 1.42E-09 SYTL3 

219750_at -3.132514368 2.23E-22 TMEM144 

226817_at -3.121466629 1.83E-26 DSC2 

230063_at -3.113323812 2.47E-21 ZNF264 

206653_at -3.111298887 3.8E-26 POLR3G 

1564220_a_at -3.090428336 1.61E-25 NA 

215646_s_at -3.086916374 6.75E-11 VCAN 

218613_at -3.083731234 3.94E-23 PSD3 

225664_at -3.080903286 5.73E-17 COL12A1 

204602_at -3.075203281 7.58E-13 DKK1 

205382_s_at -3.065475664 2.52E-27 CFD 

224657_at -3.063017504 1.5E-23 ERRFI1 

226771_at -3.054194491 7.15E-28 ATP8B2 

219313_at -3.049959847 2.48E-22 GRAMD1C 

1555742_at -3.035934535 6.89E-20 NA 

213913_s_at -3.035221065 2.23E-22 TBC1D30 

211599_x_at -3.014005885 5.87E-27 MET 

230033_at -3.007559616 2.74E-26 C19orf51 

206654_s_at -3.000015858 2.01E-23 POLR3G 

200884_at -2.999726868 4.81E-27 CKB 

229393_at -2.992552015 7.75E-25 L3MBTL3 

227176_at -2.985382221 3.39E-24 SLC2A13 

223302_s_at -2.976060076 5.81E-26 ZNF655 

238029_s_at -2.974147273 1.21E-25 SLC16A14 

226420_at -2.974099614 5.69E-19 EVI1 

225450_at -2.957741769 3.28E-24 AMOTL1 

206354_at -2.95763142 4.16E-21 SLCO1B3 

227481_at -2.95431255 6.92E-25 CNKSR3 



142 

218718_at -2.947594188 1.13E-24 PDGFC 

213506_at -2.945904401 5.52E-26 F2RL1 

243880_at -2.935303789 3.17E-23 GOSR2 

218858_at -2.931609016 2.64E-20 DEPDC6 

235515_at -2.927796442 3.67E-23 C19orf46 

219667_s_at -2.922669403 6.24E-17 BANK1 

213355_at -2.922156919 2.87E-17 ST3GAL6 

223674_s_at -2.915435592 7.24E-23 CDC42SE1 

230570_at -2.912693627 1.5E-24 NA 

223895_s_at -2.901323348 3.66E-21 EPN3 

231120_x_at -2.895096213 8.18E-17 PKIB 

229155_at -2.893568353 4.66E-25 NA 

212151_at -2.878455904 3.3E-12 PBX1 

221760_at -2.878257538 3.04E-20 MAN1A1 

209782_s_at -2.872259794 2.0E-17 DBP 

229842_at -2.864040635 1.22E-21 ELF3 

240304_s_at -2.853596666 3.58E-17 TMC5 

229522_at -2.852737795 9.45E-26 SDR42E1 

210508_s_at -2.85076924 1.27E-18 KCNQ2 

212503_s_at -2.849385138 2.04E-22 DIP2C 

221447_s_at -2.843512172 6.12E-23 GLT8D2 

235244_at -2.842713496 8.1E-25 CCDC58 

210445_at -2.842248415 2.44E-12 FABP6 

213309_at -2.836487168 7.62E-25 PLCL2 

222881_at -2.833888932 4.51E-23 HPSE 

219518_s_at -2.832936119 7.63E-21 ELL3 

228152_s_at -2.831026066 2.35E-20 DDX60L 

228365_at -2.828903792 1.1E-24 CPNE8 

239552_at -2.823653202 6.72E-24 VWDE 

238440_at -2.816260391 5.65E-26 CLYBL 

204750_s_at -2.81191368 6.31E-23 DSC2 

226252_at -2.80950496 1.99E-17 NA 

205418_at -2.805670798 5.85E-27 FES 

219959_at -2.80030706 4.53E-26 MOCOS 

203058_s_at -2.79923752 1.17E-21 PAPSS2 

1555461_at -2.794082881 2.07E-23 NA 

214642_x_at -2.791302546 2.08E-21 MAGEA5 

242517_at -2.772630953 9.58E-24 KISS1R 

204015_s_at -2.7699602 3.15E-27 DUSP4 

202506_at -2.767711148 4.7E-27 SSFA2 

220638_s_at -2.758191237 4.42E-24 CBLC 
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208116_s_at -2.75817569 5.15E-21 MAN1A1 

207808_s_at -2.757112623 9.63E-21 PROS1 

227163_at -2.756119378 5.86E-31 GSTO2 

206698_at -2.756093515 4.6E-21 XK 

223611_s_at -2.755286791 1.07E-14 LNX1 

239108_at -2.755162157 9.08E-22 FAR2 

238439_at -2.747656078 3.27E-15 ANKRD22 

222433_at -2.745204447 2.32E-26 ENAH 

1558280_s_at -2.742052225 3.95E-19 ARHGAP29 

231769_at -2.738768145 5.12E-29 FBXO6 

224553_s_at -2.73060438 1.66E-23 TNFRSF18 

227204_at -2.719298401 1.61E-24 PARD6G 

215505_s_at -2.714276881 1.21E-24 STRN3 

228115_at -2.713305041 1.09E-15 NA 

229377_at -2.711026806 5.36E-25 GRTP1 

235057_at -2.710892139 3.83E-22 ITCH 

211571_s_at -2.710027617 1.41E-10 VCAN 

212762_s_at -2.704396785 2.53E-26 TCF7L2 

212093_s_at -2.700261679 2.14E-14 MTUS1 

220816_at -2.700173124 3.15E-21 LPAR3 

225911_at -2.698684704 2.1E-20 NPNT 

213110_s_at -2.687661089 6.55E-22 COL4A5 

216511_s_at -2.687525169 4.16E-26 TCF7L2 

242873_at -2.683762537 3.99E-12 NA 

209631_s_at -2.669081192 9.25E-23 GPR37 

205014_at -2.668687759 9.12E-21 FGFBP1 

215411_s_at -2.659420935 1.03E-23 TRAF3IP2 

202180_s_at -2.659001081 5.12E-20 MVP 

1552797_s_at -2.640691771 1.82E-09 PROM2 

231984_at -2.638588534 1.06E-23 MTAP 

225166_at -2.632803947 1.85E-21 ARHGAP18 

205917_at -2.631145266 1.4E-19 ZNF264 

206219_s_at -2.623368947 3.79E-22 VAV1 

212543_at -2.622852136 4.62E-18 AIM1 

204897_at -2.621565623 8.05E-19 PTGER4 

227785_at -2.616760968 1.7E-25 SDCCAG8 

229744_at -2.615904284 3.11E-30 SSFA2 

205139_s_at -2.609968595 9.9E-22 UST 

222662_at -2.608194996 2.24E-19 PPP1R3B 

212136_at -2.605979124 2.49E-21 ATP2B4 

203939_at -2.595928019 4.57E-13 NT5E 
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216035_x_at -2.588755147 3.12E-24 TCF7L2 

238681_at -2.58814915 3.64E-19 GDPD1 

224209_s_at -2.587297003 5.75E-20 GDA 

204619_s_at -2.586155238 1.26E-10 VCAN 

233562_at -2.584864607 1.74E-23 LOC84856 

226679_at -2.584847266 1.6E-19 SLC26A11 

201564_s_at -2.582499682 1.51E-24 FSCN1 

204319_s_at -2.58183463 4.73E-29 RGS10 

244246_at -2.574497798 5.91E-20 MIPOL1 

214279_s_at -2.574449097 5.81E-22 NDRG2 

244467_at -2.570876372 1.57E-20 C22:CTA-
250D10.9 

227491_at -2.564046565 1.18E-24 ELOVL6 

217820_s_at -2.562130958 1.1E-23 ENAH 

229849_at -2.560134547 4.69E-24 NA 

204014_at -2.558299779 9.62E-21 DUSP4 

201925_s_at -2.558030298 3.93E-22 CD55 

215346_at -2.552319516 5.86E-17 CD40 

200907_s_at -2.551995251 4.77E-11 PALLD 

210138_at -2.550268024 1.5E-20 RGS20 

213839_at -2.548538976 1.89E-19 CLMN 

1569025_s_at -2.547810792 4.0E-20 FAM13A 

202742_s_at -2.546225199 0.00000109 PRKACB 

228946_at -2.542925602 6.17E-21 INTU 

203130_s_at -2.541420185 6.94E-23 KIF5C 

201061_s_at -2.54131482 4.0E-22 STOM 

228551_at -2.540600024 3.84E-20 DENND5B 

206103_at -2.540167218 2.6E-25 RAC3 

219825_at -2.539667435 3.44E-18 CYP26B1 

207558_s_at -2.53932263 5.59E-20 PITX2 

227875_at -2.536752763 3.96E-23 KLHL13 

222376_at -2.525063494 8.25E-19 NA 

223125_s_at -2.524473663 9.44E-25 C1orf21 

235059_at -2.524201803 1.54E-21 RAB12 

219863_at -2.508380659 3.83E-18 HERC5 

222240_s_at -2.506488897 6.76E-25 ISYNA1 

209469_at -2.494158538 4.26E-17 GPM6A 

239468_at -2.490602425 0.0000704 MKX 

1558290_a_at -2.489411159 6.0E-29 PVT1 

239752_at -2.485450206 7.81E-15 NA 

39248_at -2.481989948 2.6E-15 AQP3 
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242909_at -2.475624144 1.98E-22 NA 

208925_at -2.47392851 4.32E-22 CLDND1 

210933_s_at -2.47288671 9.99E-25 FSCN1 

216248_s_at -2.472379771 3.55E-17 NR4A2 

204419_x_at -2.46852187 2.96E-24 HBG2 

202786_at -2.465276854 4.76E-28 STK39 

241703_at -2.462837738 1.67E-23 RUNDC3B 

203595_s_at -2.460553892 1.26E-23 IFIT5 

207723_s_at -2.457058628 1.85E-12 KLRC3 

229414_at -2.450730356 3.11E-23 PITPNC1 

210827_s_at -2.450374333 2.2E-23 ELF3 

215016_x_at -2.449757301 9.25E-19 DST 

220334_at -2.446802574 9.59E-18 RGS17 

1552334_at -2.445591258 1.26E-19 TRIOBP 

204201_s_at -2.441912187 3.58E-14 PTPN13 

204622_x_at -2.433455377 1.16E-16 NR4A2 

225541_at -2.43127256 7.31E-27 RPL22L1 

228057_at -2.424539548 1.32E-17 DDIT4L 

236281_x_at -2.423450679 8.31E-10 HTR7 

236117_at -2.42195651 8.08E-23 NA 

225295_at -2.420013443 1.52E-19 SLC39A10 

219562_at -2.41994567 3.67E-20 RAB26 

216685_s_at -2.418407723 8.44E-26 MTAP 

200897_s_at -2.413700944 4.58E-11 PALLD 

204844_at -2.411813434 4.55E-20 ENPEP 

221884_at -2.408874578 8.51E-18 EVI1 

219317_at -2.406259636 3.92E-24 POLI 

226034_at -2.405437601 2.81E-22 NA 

210517_s_at -2.403974323 2.22E-21 AKAP12 

219062_s_at -2.402414218 2.54E-23 ZCCHC2 

204798_at -2.401685117 2.55E-20 MYB 

1557302_at -2.400892598 6.56E-23 NA 

238956_at -2.39838517 2.28E-14 NA 

239078_at -2.397673309 1.64E-24 C1orf58 

212254_s_at -2.394675208 2.03E-18 DST 

235419_at -2.391357716 9.17E-20 NA 

204379_s_at -2.38948196 1.17E-16 FGFR3 

213912_at -2.387467978 3.48E-23 TBC1D30 

218970_s_at -2.384507656 1.63E-18 CUTC 

218211_s_at -2.382994542 3.37E-24 MLPH 

226559_at -2.381724319 1.45E-15 IER5L 
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238794_at -2.381364868 4.81E-25 C10orf78 

241726_at -2.380834256 7.5E-21 NA 

223541_at -2.376448189 3.97E-14 HAS3 

223721_s_at -2.373262893 8.48E-11 DNAJC12 

50965_at -2.373088131 7.47E-20 RAB26 

225974_at -2.371042464 5.98E-23 TMEM64 

210665_at -2.371023084 2.27E-18 TFPI 

242338_at -2.369495102 9.63E-23 TMEM64 

224837_at -2.362078813 8.81E-21 FOXP1 

223276_at -2.360042631 2.8E-28 MST150 

203324_s_at -2.359112619 4.51E-23 CAV2 

216037_x_at -2.358301977 3.0E-24 TCF7L2 

210942_s_at -2.355113717 4.14E-15 ST3GAL6 

220318_at -2.354217024 1.68E-17 EPN3 

204956_at -2.35136885 3.89E-20 MTAP 

228314_at -2.34298296 5.4E-19 LRRC8C 

205530_at -2.341727308 3.06E-18 ETFDH 

206023_at -2.336700825 9.56E-25 NMU 

213032_at -2.336382918 4.6E-17 NFIB 

241386_at -2.335936188 1.32E-20 NA 

206315_at -2.334084738 4.31E-18 CRLF1 

238649_at -2.332228407 4.63E-21 PITPNC1 

219501_at -2.32975691 3.77E-15 ENOX1 

203910_at -2.324574039 2.74E-22 ARHGAP29 

226857_at -2.323803698 2.77E-26 ARHGEF19 

1554149_at -2.322576045 5.36E-21 CLDND1 

225524_at -2.319532144 5.52E-13 ANTXR2 

231930_at -2.316968436 1.67E-17 ELMOD1 

219745_at -2.315155002 3.42E-17 TMEM180 

238846_at -2.310058123 2.61E-18 TNFRSF11A 

213715_s_at -2.307354435 1.03E-21 KANK3 

205442_at -2.306395681 4.09E-18 MFAP3L 

1554291_at -2.299490869 7.31E-19 UHRF1BP1
L 

239367_at -2.299091115 2.66E-09 BDNF 

213943_at -2.298439083 3.32E-20 TWIST1 

1559072_a_at -2.297135034 3.2E-17 ELFN2 

203788_s_at -2.295512365 1.59E-21 SEMA3C 

205164_at -2.295046411 9.87E-25 GCAT 

223851_s_at -2.290556897 2.02E-21 TNFRSF18 

209290_s_at -2.289841846 2.54E-18 NFIB 
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212761_at -2.28766511 5.28E-27 TCF7L2 

201860_s_at -2.287091723 7.09E-21 PLAT 

200906_s_at -2.285367635 2.52E-09 PALLD 

201510_at -2.284003238 1.48E-21 ELF3 

219403_s_at -2.281773111 2.39E-22 HPSE 

205129_at -2.281750982 6.03E-23 NPM3 

1554008_at -2.280937971 2.33E-23 OSMR 

203571_s_at -2.274123013 6.83E-21 C10orf116 

1557638_at -2.273933699 5.87E-22 NA 

235725_at -2.273083712 5.0E-23 SMAD4 

214164_x_at -2.271581144 9.77E-20 CA12 

230003_at -2.268851852 9.36E-17 NA 

211363_s_at -2.266075096 9.21E-25 MTAP 

222196_at -2.264699986 2.27E-19 LOC286434 

208146_s_at -2.257275585 1.22E-19 CPVL 

201926_s_at -2.25406707 1.0E-22 CD55 

223533_at -2.253817136 8.11E-23 LRRC8C 

211162_x_at -2.24419709 6.8E-25 SCD 

219371_s_at -2.243542755 3.03E-16 KLF2 

235046_at -2.241750319 1.55E-09 NA 

212150_at -2.240688215 2.03E-25 EFR3A 

1558111_at -2.239388205 3.03E-23 MBNL1 

206396_at -2.238842124 1.5E-19 SLC1A1 

212759_s_at -2.234653689 8.48E-22 TCF7L2 

226806_s_at -2.232823927 1.67E-17 NA 

209289_at -2.231123874 4.08E-21 NFIB 

201060_x_at -2.228081779 2.07E-23 STOM 

202887_s_at -2.226973135 7.03E-10 DDIT4 

217599_s_at -2.226474718 1.39E-21 MDFIC 

207818_s_at -2.219821009 1.48E-08 HTR7 

235429_at -2.219775815 2.32E-20 NA 

236738_at -2.215289746 4.56E-17 LOC401097 

223278_at -2.213288887 1.0E-23 GJB2 

223741_s_at -2.212339789 1.33E-22 TTYH2 

212190_at -2.207184847 4.38E-13 SERPINE2 

212192_at -2.206906628 4.81E-12 KCTD12 

238067_at -2.206885272 9.93E-18 TBC1D8B 

206108_s_at -2.206342102 4.73E-26 SFRS6 

213470_s_at -2.203941459 1.84E-24 HNRNPH1 

224391_s_at -2.203768456 5.49E-24 SIAE 

208820_at -2.202814572 7.26E-28 PTK2 
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210683_at -2.202481324 5.67E-21 NRTN 

222997_s_at -2.202198979 5.39E-25 MRPS21 

228304_at -2.20173752 2.26E-20 RBM43 

210674_s_at -2.201371666 1.94E-24 PCDHA12 

205613_at -2.199178015 9.53E-21 SYT17 

212646_at -2.197875564 6.88E-20 RFTN1 

229014_at -2.195243947 3.72E-23 FLJ42709 

237301_at -2.194549347 1.66E-12 NA 

226597_at -2.191144077 3.35E-24 REEP6 

222904_s_at -2.19096284 1.7E-14 TMC5 

221002_s_at -2.188630371 1.27E-26 TSPAN14 

238935_at -2.187654217 8.23E-20 RPS27L 

232038_at -2.186699925 5.55E-19 C6orf170 

244190_at -2.186679423 1.75E-16 PNPLA8 

225387_at -2.185394243 2.95E-24 TSPAN5 

231597_x_at -2.180740468 3.46E-18 NA 

211330_s_at -2.177374872 4.14E-21 HFE 

1555950_a_at -2.176171757 5.14E-23 CD55 

214647_s_at -2.175408957 2.17E-22 HFE 

213358_at -2.174443225 3.71E-21 KIAA0802 

236489_at -2.172194371 0.0000874 NA 

225388_at -2.168822335 2.14E-24 TSPAN5 

207753_at -2.168802352 3.88E-17 ZNF304 

201724_s_at -2.165669027 5.95E-23 GALNT1 

1568612_at -2.165363384 1.02E-16 GABRG2 

201312_s_at -2.162356546 5.56E-22 SH3BGRL 

203238_s_at -2.158115439 2.55E-21 NOTCH3 

229396_at -2.151821585 4.59E-21 OVOL1 

221577_x_at -2.151709512 2.31E-17 GDF15 

227468_at -2.149524868 6.6E-20 CPT1C 

33494_at -2.144454036 1.07E-21 ETFDH 

1558605_at -2.139598979 2.75E-13 NA 

204848_x_at -2.13747121 9.37E-22 HBG1 

1554679_a_at -2.136531549 2.14E-24 LAPTM4B 

206492_at -2.13101951 8.5E-18 FHIT 

209846_s_at -2.128564814 1.23E-21 BTN3A2 

219517_at -2.127827846 1.34E-18 ELL3 

213310_at -2.127519626 9.11E-20 EIF2C2 

208029_s_at -2.126987611 2.49E-26 LAPTM4B 

203323_at -2.123316848 2.92E-19 CAV2 

242979_at -2.123012504 1.96E-17 IRS1 
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218986_s_at -2.122216262 1.44E-17 DDX60 

209470_s_at -2.119516833 5.44E-16 GPM6A 

1552390_a_at -2.117108474 2.27E-18 C8orf47 

235308_at -2.115841372 3.33E-13 ZBTB20 

219358_s_at -2.114960416 4.34E-18 ADAP2 

211708_s_at -2.114304678 9.39E-25 SCD 

236045_x_at -2.111589877 3.11E-16 NA 

235004_at -2.109642594 9.67E-16 RBM24 

201311_s_at -2.101077609 2.39E-21 SH3BGRL 

219580_s_at -2.096086728 5.07E-14 TMC5 

208767_s_at -2.095274155 1.84E-26 LAPTM4B 

208818_s_at -2.091826751 1.27E-23 COMT 

210135_s_at -2.090304766 7.66E-22 SHOX2 

209615_s_at -2.088132125 3.07E-23 PAK1 

222592_s_at -2.087742598 1.25E-09 ACSL5 

230055_at -2.087483511 5.02E-19 KHDC1 

225459_at -2.085854697 1.8E-21 AMOTL1 

224838_at -2.085138059 2.64E-20 FOXP1 

202345_s_at -2.084080705 3.87E-24 FABP5 

227839_at -2.083256509 4.26E-17 MBD5 

219179_at -2.082352139 7.19E-11 DACT1 

234775_at -2.081043614 7.7E-19 OR51B5 

225959_s_at -2.079950407 2.62E-26 ZNRF1 

213603_s_at -2.079568923 7.74E-26 RAC2 

64408_s_at -2.078774794 1.24E-18 CALML4 

209890_at -2.075707099 3.42E-26 TSPAN5 

212149_at -2.075161897 3.63E-26 EFR3A 

242917_at -2.074628664 3.4E-20 RASGEF1A 

1560318_at -2.071669901 3.42E-17 ARHGAP29 

223515_s_at -2.063004351 2.51E-25 COQ3 

225666_at -2.062031945 2.02E-25 TMTC4 

218322_s_at -2.061837645 9.4E-09 ACSL5 

204621_s_at -2.061823092 1.3E-14 NR4A2 

227856_at -2.061406395 1.45E-21 C4orf32 

235259_at -2.05960176 8.58E-19 PACRGL 

228221_at -2.057100154 1.72E-19 SLC44A3 

234513_at -2.056798045 4.76E-15 ELOVL3 

227438_at -2.052855149 9.6E-24 ALPK1 

223599_at -2.051444212 1.14E-11 TRIM6 

206241_at -2.050136178 7.15E-24 KPNA5 

207821_s_at -2.049817423 1.89E-28 PTK2 
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209183_s_at -2.04766941 5.25E-19 C10orf10 

202741_at -2.046644699 0.00000455 PRKACB 

239196_at -2.045578374 1.01E-16 ANKRD22 

204820_s_at -2.044677939 5.46E-23 BTN3A3 

215321_at -2.041116616 1.47E-20 RUNDC3B 

222558_at -2.039580946 4.55E-25 RPRD1A 

204560_at -2.039232955 2.21E-21 FKBP5 

220474_at -2.034038032 3.17E-14 SLC25A21 

208817_at -2.030383448 7.1E-23 COMT 

211105_s_at -2.030065139 1.73E-20 NFATC1 

224976_at -2.02987832 1.16E-20 NFIA 

223435_s_at -2.029598288 6.64E-19 PCDHA@ 

224856_at -2.029206572 5.97E-23 FKBP5 

212253_x_at -2.024077043 1.72E-16 DST 

217847_s_at -2.023683745 9.15E-23 THRAP3 

229590_at -2.023221496 5.52E-24 RPL13 

222559_s_at -2.021994511 1.91E-26 RPRD1A 

215867_x_at -2.021876556 4.06E-15 CA12 

202457_s_at -2.020728155 2.74E-20 PPP3CA 

1557103_a_at -2.019716166 6.99E-16 LMTK3 

231768_at -2.019542023 4.48E-17 USF1 

224840_at -2.017108093 2.35E-25 FKBP5 

36475_at -2.016527424 4.66E-27 GCAT 

204040_at -2.016436312 4.74E-18 RNF144A 

235871_at -2.013394239 2.51E-17 LIPH 

235325_at -2.00983031 3.38E-20 SPG7 

212135_s_at -2.008966591 1.44E-18 ATP2B4 

230281_at -2.002073034 1.96E-21 C16orf46 

227126_at -2.000756882 6.6E-16 PTPRG 

228653_at -2.00053394 2.62E-15 SAMD5 

DOWN-REGULATED BY SMAD4  

Affymetrix 

probe 
Coef FDR 

Gene 

Symbol 

223948_s_at 2.001595545 1.13E-20 TMPRSS3 

217585_at 2.003528658 7.13E-18 NEBL 

211160_x_at 2.004615463 1.72E-24 ACTN1 

1552562_at 2.007497781 1.07E-19 ZNF570 

1552423_at 2.008817735 1.37E-17 ETV3 

1552740_at 2.009394831 6.78E-17 C2orf15 
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227013_at 2.010912568 6.69E-24 LATS2 

219440_at 2.011493007 2.29E-18 RAI2 

224204_x_at 2.012325661 1.24E-20 ARNTL2 

227808_at 2.012557765 4.40E-24 DNAJC15 

1557448_a_at 2.012567813 2.06E-18 NA 

228030_at 2.020441304 1.24E-19 RBM6 

36920_at 2.021345788 6.65E-18 MTM1 

1555852_at 2.022349974 1.28E-16 PSMB9 

208712_at 2.02402084 1.88E-24 CCND1 

235729_at 2.024360154 1.07E-17 ZNF514 

204254_s_at 2.024505089 1.41E-20 VDR 

229576_s_at 2.024874112 7.17E-23 TBX3 

208682_s_at 2.025867161 8.50E-21 MAGED2 

209710_at 2.026305792 2.03E-20 GATA2 

241418_at 2.026645289 2.56E-14 LOC344887 

230398_at 2.028443161 2.94E-19 TNS4 

201826_s_at 2.030994562 6.39E-17 SCCPDH 

213924_at 2.032093713 1.81E-20 MPPE1 

1553713_a_at 2.032228876 5.78E-20 RHEBL1 

1554576_a_at 2.033707581 1.43E-18 ETV4 

1556533_at 2.033752706 2.89E-20 C17orf52 

223616_at 2.034100611 3.53E-19 ZNF649 

219884_at 2.03499411 8.53E-24 LHX6 

243918_at 2.037096622 4.12E-17 NA 

227822_at 2.037255454 8.90E-18 ZNF605 

203627_at 2.037826204 1.21E-19 IGF1R 

219873_at 2.038049187 1.83E-15 COLEC11 

203438_at 2.039098575 7.21E-16 STC2 

223408_s_at 2.039693313 7.48E-20 FOXK2 

219565_at 2.04111855 4.20E-22 CYP20A1 

226342_at 2.04136412 1.24E-18 SPTBN1 

230352_at 2.042149583 1.42E-22 PRPS2 

210869_s_at 2.043353091 2.99E-22 MCAM 

202082_s_at 2.04459877 1.32E-20 SEC14L1 

220921_at 2.045143936 4.89E-16 SPANXA1 

243010_at 2.045331613 2.60E-23 MSI2 

204683_at 2.047862438 2.17E-19 ICAM2 

206286_s_at 2.047952074 2.16E-18 TDGF1 

1568813_at 2.047958281 3.53E-19 NA 

212549_at 2.049792864 7.68E-24 STAT5B 

226092_at 2.051485079 3.83E-22 MPP5 
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210510_s_at 2.052339859 7.65E-18 NRP1 

227897_at 2.05331385 2.78E-16 RAP2B 

207401_at 2.053682625 2.22E-18 PROX1 

202124_s_at 2.055352439 9.63E-19 TRAK2 

227566_at 2.056882796 7.44E-13 NTM 

209917_s_at 2.057188894 6.74E-20 TP53TG1 

239154_at 2.057287968 4.12E-20 NA 

212774_at 2.057394225 1.60E-19 ZNF238 

231149_s_at 2.057565784 6.60E-19 ULK4 

232088_x_at 2.059196391 2.20E-18 
hCG_20390
27 

232140_at 2.060920271 6.20E-20 
LOC100132
352 

209737_at 2.061799186 1.46E-19 MAGI2 

229826_at 2.063509151 3.04E-23 LOC440957 

209496_at 2.064566187 1.98E-18 RARRES2 

1553055_a_at 2.066659568 1.30E-15 SLFN5 

219826_at 2.067977547 1.21E-17 ZNF419 

207468_s_at 2.069248903 6.63E-25 SFRP5 

225674_at 2.069280895 2.44E-24 BCAP29 

204881_s_at 2.070045873 1.20E-20 UGCG 

244570_at 2.070129534 3.71E-22 
LOC100130
360 

200953_s_at 2.071157243 2.08E-18 CCND2 

240690_at 2.071931025 6.39E-18 NA 

233949_s_at 2.072414505 1.60E-19 MYH7B 

219389_at 2.07248453 3.26E-19 SUSD4 

228293_at 2.072505967 5.32E-20 DEPDC7 

1560156_at 2.073033034 5.95E-20 NA 

210196_s_at 2.075470397 2.53E-21 PSG1 

207413_s_at 2.076069147 8.75E-20 SCN5A 

225564_at 2.076641127 1.62E-22 SPATA13 

201830_s_at 2.077757208 1.53E-22 NET1 

220265_at 2.078674309 3.57E-20 GPR107 

226657_at 2.079603059 1.66E-21 MGC33894 

243065_at 2.082862865 3.14E-19 NA 

217707_x_at 2.08591528 2.16E-10 SMARCA2 

200660_at 2.088782815 3.93E-26 S100A11 

204831_at 2.08913978 8.25E-21 CDK8 

225677_at 2.089658537 7.74E-24 BCAP29 

215237_at 2.089948665 1.15E-18 DOCK9 

226040_at 2.090890673 4.53E-14 NA 
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226267_at 2.091210936 1.40E-17 JDP2 

239050_s_at 2.092050641 6.10E-17 NA 

202637_s_at 2.092272057 5.21E-17 ICAM1 

1555270_a_at 2.092656737 3.78E-23 WFS1 

229061_s_at 2.093069871 2.45E-18 SLC25A13 

219264_s_at 2.093702869 3.63E-19 PPP2R3B 

205500_at 2.095203785 4.31E-19 C5 

232382_s_at 2.09796432 9.34E-19 PCMTD1 

223916_s_at 2.098387577 2.43E-17 BCOR 

214021_x_at 2.101508248 5.05E-21 ITGB5 

208637_x_at 2.103540823 8.57E-25 ACTN1 

231034_s_at 2.10436072 6.78E-18 NHSL1 

223974_at 2.108570947 3.77E-18 MGC11082 

225844_at 2.10878755 5.15E-23 POLE4 

224919_at 2.11114806 4.05E-25 MRPS6 

219496_at 2.112316233 2.72E-22 ANKRD57 

230002_at 2.112740538 1.19E-22 CLCC1 

223874_at 2.113688945 6.77E-19 ARP11 

228843_at 2.114183729 2.49E-19 NA 

203279_at 2.117560595 5.97E-23 EDEM1 

212298_at 2.118482295 8.49E-16 NRP1 

204214_s_at 2.119549905 6.18E-24 RAB32 

213393_at 2.120549932 2.40E-20 NA 

220054_at 2.121974766 5.46E-20 IL23A 

240151_at 2.123985943 3.56E-21 LOC404266 

203002_at 2.128986284 1.11E-23 AMOTL2 

238624_at 2.129004934 2.15E-21 NA 

229294_at 2.12918493 7.99E-20 JPH3 

230689_at 2.129656116 1.42E-20 NA 

215238_s_at 2.131748535 7.00E-19 DOCK9 

206337_at 2.13208729 7.74E-14 CCR7 

225512_at 2.13353456 6.10E-22 ZBTB38 

203628_at 2.134682951 1.29E-19 IGF1R 

219321_at 2.136116032 6.08E-21 MPP5 

209356_x_at 2.138117527 3.63E-17 EFEMP2 

227261_at 2.138432886 3.36E-18 KLF12 

201566_x_at 2.139151764 2.14E-10 ID2 

209619_at 2.139220283 2.66E-17 CD74 

205801_s_at 2.139690005 2.71E-23 RASGRP3 

229225_at 2.140132561 2.06E-15 NRP2 

200856_x_at 2.140995159 2.13E-22 LOC100133
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918 

203231_s_at 2.142190856 3.23E-16 ATXN1 

223405_at 2.145369713 4.13E-18 NPL 

222902_s_at 2.146389349 2.01E-22 DEM1 

230120_s_at 2.147590245 4.86E-20 PLGLB2 

236223_s_at 2.147713742 5.30E-21 RIT1 

228638_at 2.152274214 3.70E-22 FAM76A 

206665_s_at 2.154857428 2.50E-21 BCL2L1 

228825_at 2.15547215 1.73E-19 PTGR1 

228400_at 2.157018484 4.07E-17 SHROOM3 

228290_at 2.157621704 5.01E-18 
NCRNA001
53 

1562056_at 2.157678768 6.04E-17 NA 

230434_at 2.158918924 1.69E-21 KLHL23 

209383_at 2.159584029 3.12E-19 DDIT3 

204220_at 2.159756718 7.27E-20 GMFG 

205463_s_at 2.160642566 5.79E-21 PDGFA 

226453_at 2.161034619 1.01E-26 RNASEH2C 

235094_at 2.163013073 2.15E-17 NA 

225045_at 2.16464947 4.81E-20 CCDC88A 

230954_at 2.165301557 1.95E-15 C20orf112 

227410_at 2.166369676 8.09E-22 FAM43A 

1555883_s_at 2.17037673 2.48E-21 SPIN3 

201464_x_at 2.171310811 1.69E-21 JUN 

228462_at 2.17165176 4.40E-19 IRX2 

225946_at 2.172986747 5.12E-20 RASSF8 

217966_s_at 2.173719784 9.05E-17 FAM129A 

206632_s_at 2.174145788 6.91E-19 APOBEC3B 

229512_at 2.175074274 6.07E-18 FAM120C 

236571_at 2.175346953 1.38E-19 NA 

1564413_at 2.175589441 5.12E-23 FLJ36116 

201905_s_at 2.175816402 5.69E-25 CTDSPL 

204288_s_at 2.176209802 7.95E-21 SORBS2 

206463_s_at 2.181560277 1.59E-17 DHRS2 

204345_at 2.183398049 6.40E-20 COL16A1 

1557523_at 2.185284448 2.79E-17 LOC92270 

226947_at 2.189390496 5.78E-20 GUSBL2 

209396_s_at 2.18985411 1.18E-19 CHI3L1 

201125_s_at 2.190253032 1.05E-25 ITGB5 

205761_s_at 2.191036913 3.63E-23 DUS4L 

226979_at 2.191835189 2.25E-23 MAP3K2 
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204416_x_at 2.192392719 8.69E-21 APOC1 

227452_at 2.192587304 1.81E-11 NA 

209565_at 2.192604649 3.24E-24 RNF113A 

236982_at 2.193180652 5.90E-22 NA 

1553992_s_at 2.194080028 4.19E-21 NBR2 

229835_s_at 2.195955942 3.76E-23 SLMO2 

239376_at 2.197553452 9.00E-21 NA 

230752_at 2.200905719 1.35E-17 NA 

225656_at 2.201408373 1.40E-19 EFHC1 

229332_at 2.20261466 2.48E-23 HPDL 

213229_at 2.20769639 3.82E-18 DICER1 

1553587_a_at 2.208114119 3.18E-22 POLE4 

223689_at 2.209418779 4.34E-23 IGF2BP1 

223764_x_at 2.210973597 3.14E-21 NIPSNAP3B 

209107_x_at 2.211818881 4.68E-22 NCOA1 

235589_s_at 2.212601928 1.47E-19 MDM4 

210051_at 2.213887075 2.04E-22 RAPGEF3 

1569366_a_at 2.214491667 6.87E-22 ZNF569 

232884_s_at 2.214818286 1.75E-18 ZNF853 

214022_s_at 2.215183032 2.68E-12 IFITM1 

218113_at 2.215609105 7.57E-14 TMEM2 

200739_s_at 2.215985691 3.13E-16 SUMO3 

242550_at 2.216052553 2.79E-17 EIF3B 

1565347_s_at 2.216537648 9.72E-20 TFE3 

243802_at 2.217170512 8.25E-21 DNAH12 

205600_x_at 2.217420008 2.58E-22 HOXB5 

1557128_at 2.217702135 1.34E-21 FAM111B 

226283_at 2.217711829 3.93E-18 WDR51B 

226137_at 2.21788027 5.12E-15 ZFHX3 

244174_at 2.21822943 7.70E-19 NA 

231697_s_at 2.222143822 6.69E-19 TMEM49 

233825_s_at 2.225136539 1.83E-22 CD99L2 

210249_s_at 2.22765983 1.64E-22 NCOA1 

215923_s_at 2.228127747 1.63E-22 PSD4 

219748_at 2.230102725 2.32E-19 TREML2 

1557164_a_at 2.230837534 3.13E-18 NA 

206777_s_at 2.232567152 1.17E-20 CRYBB2 

204972_at 2.233495323 5.35E-17 OAS2 

216867_s_at 2.233724387 4.64E-18 PDGFA 

229128_s_at 2.240231277 1.18E-25 ANP32E 

201721_s_at 2.241516614 8.31E-18 LAPTM5 



156 

218435_at 2.242415626 1.96E-26 DNAJC15 

220658_s_at 2.243257146 2.04E-20 ARNTL2 

219655_at 2.243716362 2.88E-18 C7orf10 

1562020_s_at 2.244373268 9.51E-16 NT5DC4 

236557_at 2.247268716 3.38E-21 ZBTB38 

1569349_at 2.248470451 3.63E-19 C11orf30 

223253_at 2.255457401 7.77E-25 EPDR1 

212285_s_at 2.255846238 1.21E-23 AGRN 

1553115_at 2.257716576 3.93E-22 NKD1 

235728_at 2.258440694 3.37E-22 ZFP3 

236313_at 2.262691633 2.80E-16 CDKN2B 

238909_at 2.264083249 2.24E-19 S100A10 

219833_s_at 2.266662965 2.72E-21 EFHC1 

237213_at 2.267957724 1.89E-22 NA 

206542_s_at 2.268495126 4.43E-11 SMARCA2 

230588_s_at 2.26893631 3.24E-22 LOC285074 

202166_s_at 2.26894137 4.09E-25 PPP1R2 

226360_at 2.270965971 7.18E-26 ZNRF3 

219594_at 2.276200112 9.30E-20 NINJ2 

225619_at 2.27933342 1.70E-20 SLAIN1 

243539_at 2.280464316 2.97E-18 KIAA1841 

212843_at 2.280821942 7.26E-21 NCAM1 

219228_at 2.281481382 1.36E-20 ZNF331 

218746_at 2.283749284 2.55E-18 TAPBPL 

206110_at 2.283753927 2.17E-16 HIST1H3H 

242133_s_at 2.284749335 8.59E-20 NA 

224917_at 2.287054718 2.25E-19 TMEM49 

206482_at 2.289575164 5.99E-18 PTK6 

1566129_at 2.292361106 1.51E-19 LIMS1 

203382_s_at 2.297054498 9.84E-21 APOE 

238530_at 2.297178011 1.08E-15 NNT 

203342_at 2.297696771 5.23E-25 TIMM17B 

215041_s_at 2.302335267 6.63E-19 DOCK9 

214182_at 2.302450885 1.27E-23 
LOC100132
430 

238017_at 2.30266678 3.00E-19 SDR16C5 

222590_s_at 2.304525182 1.34E-20 NLK 

228235_at 2.304826282 8.48E-20 MGC16121 

209663_s_at 2.305761611 1.07E-17 ITGA7 

228044_at 2.307392289 1.90E-20 SERP2 

1556769_a_at 2.308736467 3.45E-11 NA 
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214079_at 2.3092358 3.59E-17 DHRS2 

214257_s_at 2.317524854 4.09E-24 SEC22B 

235456_at 2.31789932 8.56E-20 NA 

212538_at 2.318434416 1.05E-19 DOCK9 

208868_s_at 2.3191494 1.61E-18 
GABARAPL
1 

201185_at 2.321616506 4.43E-19 HTRA1 

229146_at 2.334810625 2.86E-20 C7orf31 

214718_at 2.339950988 2.70E-21 GATAD1 

229347_at 2.342111401 4.01E-20 NA 

217967_s_at 2.342287847 1.60E-16 FAM129A 

213627_at 2.343989481 6.02E-22 MAGED2 

211094_s_at 2.349676385 5.48E-19 NF1 

1557470_at 2.35214077 1.74E-21 SPATA13 

205560_at 2.352471305 3.91E-22 PCSK5 

210852_s_at 2.352904467 7.40E-20 AASS 

1557129_a_at 2.355912134 5.23E-17 FAM111B 

235287_at 2.356216674 3.70E-18 CDK6 

213788_s_at 2.356276173 1.72E-22 BRD3 

214071_at 2.356849843 5.05E-20 GNAL 

225927_at 2.359979205 6.73E-23 MAP3K1 

222900_at 2.362214604 1.80E-22 NA 

204072_s_at 2.362433975 2.33E-15 FRY 

239186_at 2.366138856 1.21E-17 MGC39372 

1553539_at 2.368424487 1.64E-21 KRT74 

204417_at 2.372461661 3.51E-17 GALC 

218031_s_at 2.373123466 1.22E-21 FOXN3 

218625_at 2.37475004 1.05E-19 NRN1 

230454_at 2.375836886 3.37E-18 ICA1L 

205559_s_at 2.376415248 7.13E-22 PCSK5 

227396_at 2.376681062 4.62E-20 PTPRJ 

230333_at 2.377484203 8.53E-18 NA 

235174_s_at 2.378567624 4.40E-17 
LOC100128
822 

224279_s_at 2.37939089 5.20E-21 CABYR 

1552846_s_at 2.380488849 1.13E-16 RAB42 

1555486_a_at 2.380667612 6.67E-22 FLJ14213 

242005_at 2.381646968 8.49E-09 NA 

203851_at 2.386195698 2.97E-16 IGFBP6 

1562722_at 2.386480515 5.89E-18 PRR20 

202688_at 2.386891314 3.07E-24 TNFSF10 

222877_at 2.387693277 9.24E-20 NA 
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206154_at 2.389289678 3.16E-19 RLBP1 

1568838_at 2.390377891 2.91E-19 
LOC100132
169 

1569157_s_at 2.390953677 4.47E-20 ZNF846 

223690_at 2.39209856 3.23E-20 LTBP2 

212807_s_at 2.392381239 1.79E-20 SORT1 

218359_at 2.393447801 1.13E-19 NRSN2 

210948_s_at 2.396963985 2.17E-21 LEF1 

213931_at 2.397088384 9.10E-12 ID2 

203008_x_at 2.400463233 1.75E-24 TXNDC9 

1569194_at 2.400501605 5.29E-23 ZNF789 

236616_at 2.401208101 2.66E-20 NA 

203849_s_at 2.405282122 5.29E-22 KIF1A 

235033_at 2.40613372 3.05E-22 NPEPL1 

1557169_x_at 2.407279654 4.04E-20 HCG11 

219342_at 2.40841727 1.64E-21 CASD1 

218691_s_at 2.408811819 5.68E-23 PDLIM4 

219704_at 2.411197714 4.27E-18 YBX2 

209185_s_at 2.411377875 9.94E-21 IRS2 

1558953_s_at 2.416290339 3.41E-22 CEP164 

235106_at 2.416651379 2.50E-25 MAML2 

244819_x_at 2.417623502 8.57E-20 PSPH 

223223_at 2.424008178 2.72E-24 ARV1 

228083_at 2.427311316 1.50E-24 CACNA2D4 

202778_s_at 2.428996215 3.76E-22 ZMYM2 

212531_at 2.429591585 
0.0025938

8 
LCN2 

232579_at 2.431224355 5.92E-22 
LOC100134
229 

211758_x_at 2.43151623 1.34E-23 TXNDC9 

224687_at 2.431689668 6.22E-23 ANKIB1 

206523_at 2.432252009 4.38E-22 CYTH3 

212848_s_at 2.433040461 4.37E-26 C9orf3 

227444_at 2.433107577 8.87E-24 ARMCX4 

231102_at 2.434022619 3.73E-20 CROT 

217248_s_at 2.441686527 4.84E-19 SLC7A8 

220945_x_at 2.441891651 2.20E-21 MANSC1 

216242_x_at 2.442773935 3.65E-28 POLR2J2 

240436_at 2.442979333 2.90E-20 LOC650794 

231215_at 2.447110217 1.04E-19 NA 

202165_at 2.447219345 5.31E-26 PPP1R2 

243362_s_at 2.447771709 1.81E-25 LOC641518 



159 

225469_at 2.448593445 2.44E-22 LYRM5 

1553112_s_at 2.448684642 2.53E-21 CDK8 

230233_at 2.450919218 1.04E-20 NA 

218656_s_at 2.451324483 3.32E-18 LHFP 

201124_at 2.455181162 1.19E-21 ITGB5 

212845_at 2.458030326 8.27E-23 SAMD4A 

214830_at 2.458110752 5.50E-20 SLC38A6 

229376_at 2.458315358 2.74E-18 PROX1 

1553430_a_at 2.45967347 5.72E-23 EDARADD 

217867_x_at 2.461823473 2.74E-26 BACE2 

211029_x_at 2.462131571 4.47E-21 FGF18 

211518_s_at 2.462756098 5.24E-19 BMP4 

234300_s_at 2.466006077 5.91E-24 ZFP28 

230493_at 2.467010452 3.12E-20 SHISA2 

228222_at 2.470152644 1.45E-28 PPP1CB 

238692_at 2.471620829 5.90E-20 BTBD11 

225142_at 2.473334323 8.04E-20 JHDM1D 

228415_at 2.481084749 4.98E-24 AP1S2 

221552_at 2.482259348 4.01E-23 ABHD6 

208291_s_at 2.484371863 2.13E-22 TH 

45288_at 2.484689693 5.32E-23 ABHD6 

225782_at 2.4885047 5.62E-17 MSRB3 

242940_x_at 2.488792755 8.27E-17 DLX6 

238790_at 2.49042345 1.26E-18 LOC374443 

1556029_s_at 2.492654079 3.77E-21 NMNAT2 

202458_at 2.493320695 8.91E-18 PRSS23 

223824_at 2.497765348 5.41E-23 C10orf59 

229071_at 2.5040351 5.99E-21 C17orf100 

227401_at 2.505415699 2.23E-22 IL17D 

228606_at 2.507506499 1.92E-24 TM4SF19 

219282_s_at 2.507967101 4.90E-22 TRPV2 

228846_at 2.508651133 2.25E-22 MXD1 

203736_s_at 2.50875283 4.25E-18 PPFIBP1 

1552566_at 2.509456886 1.30E-23 BTBD16 

224938_at 2.509850856 4.06E-18 NUFIP2 

210762_s_at 2.512737366 1.08E-20 DLC1 

207279_s_at 2.516595637 5.77E-19 NEBL 

206669_at 2.516792867 2.16E-23 GAD1 

224848_at 2.523164821 2.19E-15 CDK6 

227272_at 2.526906819 1.68E-20 C15orf52 

210915_x_at 2.530172079 4.55E-23 IL23A 
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229588_at 2.534369092 1.51E-19 DNAJC10 

202083_s_at 2.538327568 3.87E-22 SEC14L1 

223739_at 2.538742913 6.71E-24 PADI1 

210657_s_at 2.545125308 4.43E-19 4-Sep 

204929_s_at 2.546628907 2.02E-23 VAMP5 

220936_s_at 2.547772759 3.12E-20 H2AFJ 

214708_at 2.553155318 1.45E-22 SNTB1 

230149_at 2.555232646 1.52E-19 NA 

206544_x_at 2.555600954 2.93E-13 SMARCA2 

204588_s_at 2.558845817 7.98E-20 SLC7A7 

209184_s_at 2.559764509 1.12E-20 IRS2 

227062_at 2.563096141 4.82E-18 
NCRNA000
84 

201466_s_at 2.56324932 6.42E-19 JUN 

229733_s_at 2.56495409 3.65E-24 NA 

209525_at 2.565347936 4.24E-22 HDGFRP3 

215303_at 2.567164893 1.11E-23 DCLK1 

217591_at 2.570261733 1.59E-25 NA 

208869_s_at 2.573823294 1.00E-18 
GABARAPL
1 

201109_s_at 2.573994148 4.04E-22 THBS1 

205978_at 2.57408841 3.16E-16 KL 

205932_s_at 2.576250783 3.08E-18 MSX1 

219147_s_at 2.577576972 1.94E-24 C9orf95 

242775_at 2.577963951 5.99E-21 NA 

1558834_s_at 2.578003331 1.35E-20 C1orf62 

229986_at 2.584916186 6.55E-20 ZNF717 

222451_s_at 2.588591474 1.65E-28 ZDHHC9 

210495_x_at 2.592240002 6.08E-21 FN1 

214502_at 2.592304165 2.67E-15 HIST1H2BJ 

229972_at 2.594771252 9.40E-20 NA 

207198_s_at 2.595742123 1.49E-27 LIMS1 

1555613_a_at 2.596414903 3.81E-21 ZAP70 

241782_at 2.596834913 4.54E-18 NEBL 

205365_at 2.598157886 3.32E-20 HOXB6 

205453_at 2.601337422 2.88E-25 HOXB2 

238493_at 2.602519404 2.39E-24 ZNF506 

200740_s_at 2.602629908 5.91E-20 SUMO3 

220663_at 2.605479691 4.84E-20 IL1RAPL1 

212415_at 2.608578786 3.59E-27 SEPT6 

215596_s_at 2.611561549 5.20E-25 RNF160 

226546_at 2.611601139 4.78E-22 NA 
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1559957_a_at 2.61293232 5.46E-26 LOC642852 

213496_at 2.614702672 1.68E-18 LPPR4 

227976_at 2.615452007 5.14E-25 LOC644538 

223827_at 2.615606039 2.54E-22 TNFRSF19 

225273_at 2.616880947 2.38E-18 WWC3 

231152_at 2.617052743 3.71E-19 INO80D 

224847_at 2.617239964 7.22E-16 CDK6 

229667_s_at 2.617988155 1.75E-13 HOXB8 

217551_at 2.624708864 2.74E-19 LOC441453 

235534_at 2.626553245 2.21E-23 NA 

213711_at 2.6270004 1.25E-20 KRT81 

212687_at 2.628671505 1.48E-25 LIMS1 

218996_at 2.630093152 6.52E-25 TFPT 

1570253_a_at 2.632084155 2.62E-20 RHEBL1 

202638_s_at 2.632396737 5.56E-20 ICAM1 

213167_s_at 2.633073058 1.29E-22 MRPS6 

235371_at 2.633729214 6.39E-23 GLT8D4 

1553082_at 2.638987331 5.35E-22 CRYGN 

211534_x_at 2.639368024 5.39E-22 PTPRN2 

229481_at 2.646663455 1.72E-23 NKD1 

200857_s_at 2.647355601 6.47E-23 NCOR1 

206648_at 2.647885848 7.40E-21 ZNF571 

219856_at 2.651534227 4.94E-20 C1orf116 

235721_at 2.651585801 3.95E-23 DTX3 

213619_at 2.652091616 1.30E-26 HNRNPH1 

216092_s_at 2.655620029 2.11E-22 SLC7A8 

225908_at 2.661959797 1.29E-20 IAH1 

211817_s_at 2.665448517 2.33E-26 KCNJ5 

219569_s_at 2.666397326 6.30E-25 TMEM22 

222553_x_at 2.670001961 2.75E-23 OXR1 

217868_s_at 2.670411347 1.20E-26 METTL9 

235433_at 2.671279443 3.16E-23 APOOL 

228095_at 2.67185217 1.99E-25 PHF14 

229344_x_at 2.675173631 4.78E-23 RIMKLB 

214375_at 2.679820282 2.47E-20 PPFIBP1 

208916_at 2.687475864 9.33E-27 SLC1A5 

211458_s_at 2.687822464 3.64E-19 
GABARAPL
3 

222589_at 2.690853033 9.39E-25 NLK 

222453_at 2.691637451 1.13E-22 CYBRD1 

209189_at 2.70318444 2.14E-20 FOS 
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219928_s_at 2.703674363 2.19E-23 CABYR 

243752_s_at 2.705237358 6.85E-22 CYTH3 

219520_s_at 2.705766291 6.61E-22 WWC3 

226001_at 2.707334474 5.62E-18 KLHL5 

227200_at 2.709102953 5.28E-27 NA 

231101_at 2.709451736 2.47E-26 PPP2R5E 

201009_s_at 2.711959391 1.10E-22 TXNIP 

212565_at 2.714181192 9.57E-23 STK38L 

219383_at 2.714389113 2.14E-21 FLJ14213 

212915_at 2.715503393 5.02E-18 PDZRN3 

214374_s_at 2.716634372 1.13E-19 PPFIBP1 

218318_s_at 2.718494575 3.10E-22 NLK 

1558733_at 2.720284614 3.29E-25 ZBTB38 

204255_s_at 2.720440918 1.66E-23 VDR 

202752_x_at 2.72675246 3.83E-23 SLC7A8 

219561_at 2.727281932 5.46E-20 COPZ2 

206987_x_at 2.733241904 8.93E-23 FGF18 

210886_x_at 2.734013152 1.18E-22 TP53TG1 

202086_at 2.734053393 1.34E-20 MX1 

218182_s_at 2.734588961 1.43E-23 CLDN1 

211538_s_at 2.736931126 1.87E-20 HSPA2 

221969_at 2.739111186 9.26E-25 NA 

218831_s_at 2.74041632 3.51E-23 FCGRT 

204867_at 2.740742067 1.12E-22 GCHFR 

226388_at 2.740900213 2.69E-19 TCEA3 

222446_s_at 2.741084196 1.09E-29 BACE2 

214577_at 2.744038735 7.56E-19 MAP1B 

228570_at 2.744539538 8.28E-23 BTBD11 

235567_at 2.746922896 1.03E-25 RORA 

207156_at 2.74706823 8.98E-21 HIST1H2AG 

1554711_at 2.747710605 6.88E-24 CALHM3 

239253_at 2.748044295 8.25E-21 NA 

226880_at 2.750824571 3.51E-29 NUCKS1 

234937_x_at 2.751097385 2.70E-23 ZFP28 

242218_at 2.759858224 2.16E-22 PPARD 

211259_s_at 2.760066972 1.86E-25 BMP7 

228642_at 2.763479147 2.92E-21 NA 

235652_at 2.765957674 1.66E-21 NA 

219682_s_at 2.769690004 1.30E-23 TBX3 

201289_at 2.770069888 6.99E-22 CYR61 

206670_s_at 2.771756305 3.63E-26 GAD1 



163 

215143_at 2.777088868 2.86E-27 DPY19L2P2 

206027_at 2.777527968 2.63E-18 S100A3 

223879_s_at 2.778035041 2.40E-24 OXR1 

219956_at 2.778433201 6.63E-25 GALNT6 

234921_at 2.779834627 1.67E-25 ZNF470 

209882_at 2.780056048 8.17E-22 RIT1 

221679_s_at 2.783758889 2.15E-25 ABHD6 

1554588_a_at 2.787018053 5.53E-23 TTC30B 

205278_at 2.787437337 8.43E-25 GAD1 

204249_s_at 2.78859104 6.91E-20 LMO2 

235085_at 2.788616539 1.87E-25 PRAGMIN 

206529_x_at 2.790086911 3.97E-18 SLC26A4 

230921_s_at 2.792987468 2.90E-23 PCBP2 

210105_s_at 2.798231022 2.73E-19 FYN 

223380_s_at 2.800396774 1.20E-27 LATS2 

225147_at 2.806400148 1.62E-26 CYTH3 

222471_s_at 2.807653539 1.75E-25 KCMF1 

236646_at 2.81320894 5.58E-25 C12orf59 

226558_at 2.813509149 1.95E-24 MAFIP 

204890_s_at 2.815517589 3.15E-23 LCK 

230621_at 2.817255849 7.34E-25 IAH1 

238694_at 2.818601233 2.38E-24 NA 

218747_s_at 2.820068988 7.00E-24 TAPBPL 

238657_at 2.82400144 4.47E-22 UBXN10 

227949_at 2.825372558 4.84E-25 PHACTR3 

210281_s_at 2.828039059 8.43E-24 ZMYM2 

37966_at 2.831967027 7.81E-25 PARVB 

222447_at 2.840431917 3.13E-25 METTL9 

227931_at 2.847320339 2.61E-21 INO80D 

233555_s_at 2.847941069 1.21E-24 SULF2 

1558762_a_at 2.848265911 2.08E-26 ZNF789 

203962_s_at 2.850394472 2.11E-17 NEBL 

201110_s_at 2.852335514 1.58E-20 THBS1 

233078_at 2.8544519 2.09E-25 API5 

224558_s_at 2.854875645 6.10E-22 MALAT1 

228443_s_at 2.856889863 1.25E-27 SETD8 

223761_at 2.85812778 1.20E-21 FGF19 

236266_at 2.858944632 6.05E-23 RORA 

213170_at 2.861273196 1.65E-24 GPX7 

1557167_at 2.862626168 1.08E-27 HCG11 

1555882_at 2.863408774 9.28E-21 SPIN3 
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216442_x_at 2.864553299 8.49E-22 FN1 

214285_at 2.864898698 6.56E-22 FABP3 

219471_at 2.875115171 1.22E-21 C13orf18 

210764_s_at 2.875186002 3.15E-21 CYR61 

215779_s_at 2.878489324 8.14E-21 HIST1H2BG 

218704_at 2.879029597 4.53E-12 RNF43 

220120_s_at 2.879997514 7.85E-21 EPB41L4A 

202196_s_at 2.883172702 7.85E-21 DKK3 

203780_at 2.891948589 2.12E-21 MPZL2 

205896_at 2.897695863 8.50E-23 SLC22A4 

219229_at 2.904763308 1.64E-22 SLCO3A1 

229138_at 2.914177929 7.07E-26 PARP11 

239201_at 2.92142664 4.56E-25 PFTK2 

216033_s_at 2.926287099 1.24E-18 FYN 

209684_at 2.926710608 1.72E-21 RIN2 

218197_s_at 2.927985173 3.53E-26 OXR1 

217875_s_at 2.928532323 5.16E-23 PMEPA1 

220198_s_at 2.930982355 4.69E-17 EIF5A2 

225999_at 2.936788241 6.42E-25 RIMKLB 

207819_s_at 2.940537895 9.51E-22 ABCB4 

229715_at 2.942281878 1.85E-23 NA 

229374_at 2.944915381 2.32E-19 EPHA4 

236224_at 2.945667905 1.34E-24 RIT1 

212810_s_at 2.951099474 7.94E-21 SLC1A4 

206094_x_at 2.953284642 3.30E-22 UGT1A6 

203726_s_at 2.957757615 3.05E-21 LAMA3 

211685_s_at 2.96149178 1.05E-23 NCALD 

221210_s_at 2.96479409 3.44E-23 NPL 

206018_at 2.965856536 7.22E-27 FOXG1 

202520_s_at 2.966266328 1.86E-29 MLH1 

235296_at 2.96673825 1.28E-17 EIF5A2 

205027_s_at 2.96787861 1.54E-19 MAP3K8 

221701_s_at 2.969423295 1.34E-24 STRA6 

204532_x_at 2.97400928 1.90E-23 UGT1A9 

212464_s_at 2.974592447 2.25E-21 FN1 

218959_at 2.978045777 9.68E-24 HOXC10 

208523_x_at 2.983316263 6.20E-23 HIST1H2BI 

208359_s_at 2.988707177 3.11E-25 KCNJ4 

209678_s_at 2.990360354 1.67E-27 PRKCI 

207433_at 2.992147196 4.72E-27 IL10 

209738_x_at 2.992733224 2.80E-24 PSG6 
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213304_at 2.994941365 1.24E-23 FAM179B 

223821_s_at 3.007094886 2.34E-25 SUSD4 

222772_at 3.007656919 1.50E-24 MYEF2 

204682_at 3.009389542 1.25E-23 LTBP2 

207457_s_at 3.010484146 2.24E-25 LY6G6D 

1555935_s_at 3.011664905 1.27E-25 HUNK 

230659_at 3.014414171 4.62E-24 NA 

212678_at 3.018656696 1.64E-22 NF1 

1557051_s_at 3.01880922 1.81E-22 NA 

212486_s_at 3.021382261 8.28E-21 FYN 

239302_s_at 3.022161904 2.52E-23 NA 

1569003_at 3.023956205 3.13E-25 TMEM49 

236893_at 3.027199566 1.57E-21 LOC404266 

242053_at 3.029760682 2.21E-27 TSGA10 

203973_s_at 3.033407815 1.60E-27 CEBPD 

207126_x_at 3.034107725 2.01E-23 UGT1A1 

204702_s_at 3.037002154 1.26E-23 NFE2L3 

226985_at 3.03917817 2.59E-22 FGD5 

230543_at 3.039482654 1.06E-21 USP9X 

219414_at 3.042323841 3.44E-24 CLSTN2 

242919_at 3.042397123 3.76E-25 ZNF253 

226368_at 3.044476729 2.41E-26 CHST11 

229889_at 3.049284265 2.25E-24 C17orf76 

226438_at 3.05300151 6.45E-25 SNTB1 

222787_s_at 3.054226348 9.72E-22 TMEM106B 

226462_at 3.058577494 9.73E-22 STXBP6 

212624_s_at 3.058729751 1.93E-15 CHN1 

205031_at 3.066126601 5.28E-27 EFNB3 

222833_at 3.067725068 3.50E-25 LPCAT2 

229307_at 3.067819733 5.74E-26 ANKRD28 

218559_s_at 3.068188107 7.24E-24 MAFB 

224341_x_at 3.069047039 4.37E-24 TLR4 

1553169_at 3.069946087 9.10E-26 LRRN4 

206377_at 3.078103353 3.17E-23 FOXF2 

242358_at 3.07827769 4.73E-26 NA 

213317_at 3.078925255 1.28E-24 CLIC5 

205569_at 3.080914454 1.49E-18 LAMP3 

225227_at 3.084100368 2.93E-22 NA 

210241_s_at 3.088168138 8.27E-27 TP53TG1 

207173_x_at 3.088815133 2.98E-19 CDH11 

201904_s_at 3.091204573 3.51E-29 CTDSPL 
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215821_x_at 3.091464394 4.46E-25 PSG3 

209395_at 3.099208694 8.28E-24 CHI3L1 

242277_at 3.101355236 3.39E-26 NA 

1553708_at 3.103480987 4.81E-27 MGC16075 

239503_at 3.103590838 1.88E-19 NA 

209755_at 3.104083386 5.00E-27 NMNAT2 

235749_at 3.104584658 1.90E-20 UGCGL2 

216604_s_at 3.106659642 5.35E-27 SLC7A8 

202007_at 3.110914043 9.98E-22 NID1 

219044_at 3.111074496 5.26E-24 THNSL2 

229026_at 3.118641983 1.29E-28 CDC42SE2 

212944_at 3.119559517 7.76E-20 SLC5A3 

227377_at 3.119606163 3.02E-23 IGF2BP1 

239598_s_at 3.120525058 5.40E-25 LPCAT2 

211596_s_at 3.124352767 5.91E-22 LRIG1 

230413_s_at 3.124654725 8.64E-21 NA 

210387_at 3.124719238 2.65E-25 HIST1H2BG 

211719_x_at 3.128023957 1.55E-22 FN1 

219221_at 3.128483641 3.35E-28 ZBTB38 

203779_s_at 3.130956385 8.77E-25 MPZL2 

205295_at 3.134799125 4.01E-23 CKMT2 

241359_at 3.144879456 1.99E-24 NA 

221795_at 3.146945213 5.05E-26 NTRK2 

202687_s_at 3.147073082 3.88E-25 TNFSF10 

214519_s_at 3.148534536 1.25E-23 RLN2 

228425_at 3.148587345 1.70E-24 LOC654433 

201906_s_at 3.151942859 1.08E-28 CTDSPL 

228291_s_at 3.152102348 1.34E-28 
NCRNA001
53 

242414_at 3.160941765 9.27E-26 QPRT 

222067_x_at 3.164923606 6.51E-23 HIST1H2BD 

225224_at 3.167873628 7.19E-25 C20orf112 

228260_at 3.167937441 1.93E-23 ELAVL2 

202150_s_at 3.169633642 1.48E-24 NEDD9 

209930_s_at 3.175048161 7.98E-24 NFE2 

235027_at 3.176345734 2.49E-22 NA 

213916_at 3.18346116 1.53E-23 ZNF20 

222760_at 3.188897031 4.01E-25 ZNF703 

210195_s_at 3.189117192 4.06E-21 PSG1 

225799_at 3.190146974 7.81E-24 LOC541471 

228496_s_at 3.191692441 2.44E-24 CRIM1 
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204268_at 3.194336992 2.70E-12 S100A2 

208527_x_at 3.197008809 1.13E-20 HIST1H2BE 

214469_at 3.197656593 2.54E-21 HIST1H2AE 

211819_s_at 3.202997316 3.66E-26 SORBS1 

228834_at 3.210596069 1.84E-28 TOB1 

214012_at 3.215036503 9.45E-27 ERAP1 

242931_at 3.219085974 3.83E-21 LONRF3 

229464_at 3.220409334 1.06E-24 MYEF2 

241710_at 3.238456722 3.97E-26 
hCG_16452
20 

209594_x_at 3.249023467 3.30E-23 PSG9 

1554241_at 3.250334949 6.28E-28 COCH 

205366_s_at 3.251242849 1.50E-25 HOXB6 

206404_at 3.25327442 8.87E-23 FGF9 

226381_at 3.255810971 3.17E-24 PS1TP4 

212676_at 3.259798167 2.42E-28 NF1 

203892_at 3.260253426 8.91E-26 WFDC2 

227145_at 3.261117526 1.73E-26 LOXL4 

230508_at 3.268772847 9.99E-22 DKK3 

207210_at 3.272731269 3.25E-20 GABRA3 

205258_at 3.273248638 3.05E-26 INHBB 

209904_at 3.277786804 5.07E-20 TNNC1 

226779_at 3.280685382 9.71E-23 NA 

209815_at 3.281610512 2.66E-21 PTCH1 

228915_at 3.285719453 1.55E-23 DACH1 

231583_at 3.290446809 4.08E-27 KRT74 

231382_at 3.291539204 4.79E-24 FGF18 

206114_at 3.292026783 5.59E-18 EPHA4 

222484_s_at 3.29309274 2.32E-28 CXCL14 

226400_at 3.297416583 1.23E-29 CDC42 

208490_x_at 3.302425158 1.54E-22 HIST1H2BF 

214343_s_at 3.303704979 1.50E-23 ATXN7L1 

1558103_a_at 3.304902938 1.27E-26 NA 

212811_x_at 3.305983632 1.97E-23 SLC1A4 

214051_at 3.312024364 7.00E-24 TMSB15B 

205591_at 3.313182374 2.55E-22 OLFM1 

215071_s_at 3.31669792 3.19E-20 HIST1H2AC 

1562019_at 3.321844815 9.45E-26 NT5DC4 

218137_s_at 3.32409875 1.09E-26 SMAP1 

204724_s_at 3.328063372 2.06E-22 COL9A3 

226235_at 3.328312862 5.92E-27 LOC339290 
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204044_at 3.331959558 3.91E-24 QPRT 

236193_at 3.332513301 1.50E-19 HIST1H2BC 

209806_at 3.343591279 1.58E-25 HIST1H2BK 

208257_x_at 3.34607547 1.01E-24 PSG1 

219961_s_at 3.354413029 2.87E-29 
NCRNA001
53 

237186_at 3.356912568 6.01E-26 NA 

205738_s_at 3.362927631 6.21E-21 FABP3 

209269_s_at 3.365373432 3.08E-24 SYK 

219848_s_at 3.368954135 2.70E-27 ZNF432 

224833_at 3.370488127 2.52E-18 ETS1 

225728_at 3.379041546 1.64E-26 SORBS2 

203961_at 3.379333563 1.24E-17 NEBL 

200854_at 3.379639302 1.86E-26 NCOR1 

202208_s_at 3.390133072 9.55E-27 ARL4C 

209911_x_at 3.390447922 9.77E-25 HIST1H2BD 

227051_at 3.393997025 1.21E-24 NA 

219557_s_at 3.394651404 4.89E-24 NRIP3 

228256_s_at 3.395902027 8.56E-19 EPB41L4A 

240277_at 3.397874068 5.77E-25 NA 

229125_at 3.404690429 1.24E-24 KANK4 

230518_at 3.407325711 1.56E-25 MPZL2 

201147_s_at 3.408915494 4.18E-22 TIMP3 

218002_s_at 3.413670852 4.90E-26 CXCL14 

236180_at 3.413725375 2.04E-24 NA 

209994_s_at 3.417156665 5.50E-24 ABCB1 

208180_s_at 3.418227421 1.66E-19 HIST1H4H 

206115_at 3.419306335 5.05E-20 EGR3 

204872_at 3.426118643 1.26E-26 TLE4 

203946_s_at 3.429296488 1.06E-23 ARG2 

242722_at 3.43132621 1.27E-26 LMO7 

221609_s_at 3.431766211 1.10E-25 WNT6 

218280_x_at 3.43358477 1.91E-21 
HIST2H2AA
3 

1553185_at 3.436712669 1.94E-26 RASEF 

205234_at 3.438681084 6.08E-28 SLC16A4 

229400_at 3.442130704 1.66E-24 HOXD10 

214175_x_at 3.442659003 2.87E-29 PDLIM4 

211084_x_at 3.447692676 7.57E-20 PRKD3 

203423_at 3.451237788 1.41E-20 RBP1 

204973_at 3.462579662 5.20E-26 GJB1 

214639_s_at 3.464284098 3.96E-23 HOXA1 
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226279_at 3.465148945 4.47E-26 PRSS23 

1553186_x_at 3.468866127 8.93E-28 RASEF 

219634_at 3.472907883 3.71E-28 CHST11 

224498_x_at 3.474353316 4.05E-24 AXIN2 

209032_s_at 3.483990832 2.30E-25 CADM1 

201162_at 3.486300954 3.21E-29 IGFBP7 

224724_at 3.486464188 6.31E-28 SULF2 

229534_at 3.487454536 1.20E-28 ACOT4 

243018_at 3.49147799 2.47E-24 NA 

1559584_a_at 3.493709322 6.23E-28 C16orf54 

229623_at 3.499105535 2.87E-29 FLJ12993 

212098_at 3.499524574 1.75E-31 LOC151162 

209590_at 3.504695514 2.55E-23 BMP7 

1555673_at 3.513525839 2.13E-16 KRTAP2-1 

222565_s_at 3.514912198 3.25E-18 PRKD3 

213131_at 3.516221723 7.26E-20 OLFM1 

206022_at 3.518190011 1.95E-26 NDP 

238695_s_at 3.521733381 6.95E-23 RAB39B 

223949_at 3.53259321 3.39E-27 TMPRSS3 

1558801_at 3.533063313 9.99E-29 NA 

209610_s_at 3.533881544 2.21E-24 SLC1A4 

210004_at 3.549781842 1.19E-21 OLR1 

235056_at 3.551035745 3.53E-24 ETV6 

227819_at 3.555562288 1.67E-24 LGR6 

240633_at 3.555740535 9.45E-27 DOK7 

222921_s_at 3.567858989 2.32E-26 HEY2 

238183_at 3.56870017 3.75E-24 NA 

212233_at 3.580045163 3.47E-21 MAP1B 

1553171_x_at 3.583225164 1.05E-29 LRRN4 

220122_at 3.587221935 6.69E-21 MCTP1 

214290_s_at 3.593323297 2.62E-22 
HIST2H2AA
3 

208608_s_at 3.593706296 1.16E-25 SNTB1 

242844_at 3.60342123 8.37E-29 PGGT1B 

1559283_a_at 3.60354118 1.55E-27 CNPY1 

214091_s_at 3.604606747 3.33E-27 GPX3 

228964_at 3.606325636 2.14E-22 PRDM1 

226372_at 3.615380692 1.81E-27 CHST11 

1557094_at 3.618353821 1.02E-24 LOC728449 

222747_s_at 3.62329679 9.18E-22 SCML1 

230372_at 3.624822182 3.35E-27 HAS2 
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213069_at 3.626213628 1.24E-25 HEG1 

238969_at 3.629876991 1.19E-27 C3orf55 

228948_at 3.631920862 7.17E-18 EPHA4 

227850_x_at 3.637266729 1.18E-26 CDC42EP5 

220994_s_at 3.639351184 3.26E-21 STXBP6 

235649_at 3.64769918 4.33E-24 ADAMTS8 

48106_at 3.656384257 2.87E-29 SLC48A1 

225841_at 3.65684861 9.99E-29 C1orf59 

235289_at 3.657854186 7.15E-22 EIF5A2 

237313_at 3.662435127 1.21E-27 NA 

212338_at 3.664925421 3.31E-25 MYO1D 

233819_s_at 3.669702757 5.04E-27 RNF160 

228865_at 3.669830923 5.52E-19 C1orf116 

204830_x_at 3.677088958 5.97E-26 PSG5 

238096_at 3.679980581 4.42E-26 LOC284023 

218416_s_at 3.68025929 6.90E-27 SLC48A1 

205646_s_at 3.680578535 6.28E-26 PAX6 

230748_at 3.692286047 4.72E-12 SLC16A6 

214696_at 3.699585888 7.46E-25 C17orf91 

220494_s_at 3.708426655 7.21E-30 NA 

206432_at 3.709321911 2.19E-25 HAS2 

225872_at 3.71195561 1.41E-28 SLC35F5 

228904_at 3.713381355 7.66E-30 HOXB3 

236235_at 3.718283344 1.83E-28 ITCH 

228345_at 3.726095245 4.01E-27 CHIC1 

1555355_a_at 3.729906852 5.07E-22 ETS1 

226085_at 3.738869522 1.80E-28 CBX5 

221214_s_at 3.743771322 4.89E-29 NELF 

232203_at 3.745645043 9.29E-32 NA 

202146_at 3.750056622 1.10E-26 IFRD1 

230075_at 3.755303862 7.34E-25 RAB39B 

208546_x_at 3.759832814 9.32E-22 HIST1H2BH 

205632_s_at 3.761877371 2.25E-28 PIP5K1B 

201150_s_at 3.762011986 5.12E-23 TIMP3 

205201_at 3.772931511 9.23E-27 GLI3 

208579_x_at 3.780347319 4.57E-22 H2BFS 

205531_s_at 3.79027671 3.22E-27 GLS2 

206002_at 3.792491392 4.65E-27 GPR64 

207540_s_at 3.799417725 2.05E-23 SYK 

220102_at 3.805958165 3.23E-26 FOXL2 

218952_at 3.814312485 3.19E-30 PCSK1N 
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207060_at 3.823088997 9.94E-28 EN2 

220394_at 3.823936895 1.39E-27 FGF20 

214660_at 3.824036967 2.61E-26 ITGA1 

204790_at 3.826606855 2.00E-27 SMAD7 

202147_s_at 3.828678788 1.32E-27 IFRD1 

239647_at 3.838528607 2.70E-27 CHST13 

219778_at 3.844163234 1.36E-26 ZFPM2 

204584_at 3.849827547 8.78E-27 L1CAM 

240211_at 3.851610171 3.39E-29 
LOC100130
468 

201249_at 3.864588999 1.09E-26 SLC2A1 

218793_s_at 3.869769929 3.45E-14 SCML1 

243179_at 3.870345274 1.08E-27 
LOC100130
360 

238937_at 3.88472757 3.24E-26 ZNF420 

218330_s_at 3.885973773 2.99E-21 NAV2 

236083_at 3.897142097 6.89E-25 BCL2L15 

1553972_a_at 3.900856051 2.03E-23 CBS 

232035_at 3.907804241 1.13E-20 HIST4H4 

204469_at 3.91159933 5.31E-26 PTPRZ1 

208596_s_at 3.913039415 1.02E-24 UGT1A3 

226731_at 3.926404968 6.57E-28 PELO 

209493_at 3.931165422 1.09E-26 PDZD2 

236420_s_at 3.954543082 3.21E-29 ANO4 

210479_s_at 3.967363693 5.75E-28 RORA 

225978_at 3.96824882 2.85E-29 RIMKLB 

201008_s_at 3.971573101 7.15E-31 TXNIP 

202627_s_at 3.973616853 4.46E-23 SERPINE1 

213620_s_at 3.975647758 1.10E-25 ICAM2 

227565_at 3.975884347 2.98E-23 NA 

1564706_s_at 3.980337827 6.41E-27 GLS2 

222695_s_at 3.989645196 3.80E-26 AXIN2 

218417_s_at 4.004491731 9.46E-29 SLC48A1 

212816_s_at 4.010155616 3.38E-23 CBS 

228600_x_at 4.027358429 9.54E-25 C7orf46 

209201_x_at 4.028777862 7.41E-25 CXCR4 

208607_s_at 4.034989312 9.99E-29 SAA2 

224851_at 4.035295105 3.92E-20 CDK6 

222925_at 4.03948058 8.30E-32 DCDC2 

232297_at 4.039491621 4.65E-24 NA 

226068_at 4.041592156 4.09E-21 SYK 

213048_s_at 4.041706887 3.33E-29 NA 
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44790_s_at 4.042203229 1.50E-25 C13orf18 

227889_at 4.046036821 7.95E-28 LPCAT2 

229912_at 4.075280266 1.33E-26 SDK1 

226875_at 4.078960786 9.35E-27 DOCK11 

203381_s_at 4.097717865 3.23E-26 APOE 

242761_s_at 4.100822533 2.58E-25 ZNF420 

210140_at 4.103643002 6.80E-30 CST7 

211002_s_at 4.11660951 3.08E-28 TRIM29 

235740_at 4.11663046 2.81E-23 NA 

242383_at 4.12562674 7.51E-25 NA 

1558102_at 4.130863136 5.43E-28 NA 

219476_at 4.144578882 5.94E-22 C1orf116 

218236_s_at 4.150359247 2.32E-15 PRKD3 

211919_s_at 4.163901543 7.34E-25 CXCR4 

227647_at 4.164212433 2.89E-25 KCNE3 

229613_at 4.165578886 1.21E-30 NA 

204891_s_at 4.181607846 3.89E-29 LCK 

236917_at 4.181801964 7.60E-30 LRRC34 

210426_x_at 4.205522322 4.53E-30 RORA 

216603_at 4.210926725 3.24E-28 SLC7A8 

206224_at 4.213573867 1.03E-24 CST1 

243495_s_at 4.216301839 3.78E-27 NA 

208481_at 4.216352669 2.92E-29 ASB4 

227449_at 4.217585021 2.97E-13 EPHA4 

1554026_a_at 4.236308926 9.46E-25 MYO10 

235795_at 4.248285776 3.31E-24 PAX6 

213479_at 4.252895427 1.08E-27 NPTX2 

218803_at 4.260248536 7.66E-30 CHFR 

202982_s_at 4.265488808 7.10E-29 ACOT2 

207038_at 4.27226843 2.34E-15 SLC16A6 

214455_at 4.273043763 5.91E-21 HIST1H2BC 

201250_s_at 4.282654706 2.16E-24 SLC2A1 

226084_at 4.283899123 1.96E-23 MAP1B 

218454_at 4.285978428 1.30E-27 PLBD1 

214995_s_at 4.287614379 1.42E-30 APOBEC3F 

240572_s_at 4.288868869 2.99E-27 LOC374443 

228920_at 4.299633496 2.07E-29 ZNF260 

227099_s_at 4.300338886 7.49E-28 LOC387763 

219117_s_at 4.301041604 1.54E-29 FKBP11 

236471_at 4.308036167 7.46E-24 NFE2L3 

203815_at 4.310438056 7.98E-31 GSTT1 
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217228_s_at 4.315831944 1.11E-28 ASB4 

219118_at 4.320368737 1.67E-27 FKBP11 

235457_at 4.330850064 4.13E-30 MAML2 

213285_at 4.334974113 4.48E-27 TMEM30B 

231849_at 4.341804272 1.60E-30 KRT80 

211071_s_at 4.348007242 5.99E-25 MLLT11 

202783_at 4.363360503 2.22E-32 NNT 

221648_s_at 4.395444773 7.37E-29 NA 

204042_at 4.406209156 6.76E-25 WASF3 

205003_at 4.411778434 1.81E-19 DOCK4 

228266_s_at 4.418838091 2.73E-29 HDGFRP3 

215125_s_at 4.423254251 1.19E-27 UGT1A@ 

202207_at 4.430268677 6.79E-26 ARL4C 

212143_s_at 4.4325135 9.68E-31 IGFBP3 

203508_at 4.45742527 8.66E-28 TNFRSF1B 

212776_s_at 4.462552662 3.47E-28 OBSL1 

222771_s_at 4.466520226 1.28E-29 MYEF2 

206029_at 4.488030927 3.18E-28 ANKRD1 

229215_at 4.495802842 1.23E-30 ASCL2 

236979_at 4.506821068 6.37E-31 BCL2L15 

205110_s_at 4.514206803 3.13E-27 FGF13 

219109_at 4.51482857 3.96E-30 SPAG16 

1558388_a_at 4.519733027 9.21E-25 NA 

222449_at 4.524503386 1.64E-30 PMEPA1 

203559_s_at 4.524531879 7.53E-30 ABP1 

227753_at 4.532066865 1.50E-27 TMEM139 

222150_s_at 4.5404784 2.07E-30 PION 

221666_s_at 4.544133022 1.88E-31 PYCARD 

222513_s_at 4.572953768 1.11E-28 SORBS1 

226829_at 4.579320075 4.97E-29 AFAP1L2 

214571_at 4.581354757 8.54E-30 FGF3 

213789_at 4.584017391 3.35E-28 EBP 

205858_at 4.608291805 2.45E-26 NGFR 

204523_at 4.612446101 3.79E-32 ZNF140 

209591_s_at 4.628920548 1.66E-25 BMP7 

237720_at 4.629160973 1.69E-25 ASB4 

220048_at 4.632384526 9.52E-30 EDAR 

209030_s_at 4.633525554 1.96E-28 CADM1 

1569342_at 4.654604987 1.19E-31 GLI3 

243489_at 4.662489597 2.54E-25 NA 

221024_s_at 4.68438753 4.03E-30 SLC2A10 
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213142_x_at 4.686111868 1.13E-30 PION 

214456_x_at 4.703079815 4.23E-29 SAA2 

239791_at 4.709513144 1.07E-29 LOC404266 

211840_s_at 4.711666435 4.73E-29 PDE4D 

239153_at 4.720703792 4.89E-29 HOTAIR 

219563_at 4.726677676 1.36E-24 C14orf139 

209822_s_at 4.729414324 1.10E-30 VLDLR 

203799_at 4.730316936 1.86E-32 CD302 

202708_s_at 4.730427145 1.75E-25 HIST2H2BE 

227812_at 4.738529483 1.33E-28 TNFRSF19 

227279_at 4.746540064 1.87E-31 TCEAL3 

201010_s_at 4.759053982 5.51E-30 TXNIP 

1553602_at 4.762446302 1.53E-21 MUCL1 

209040_s_at 4.768668189 5.51E-30 PSMB8 

223434_at 4.770714033 1.50E-29 GBP3 

209101_at 4.777273007 9.79E-30 CTGF 

203030_s_at 4.78142293 4.93E-28 PTPRN2 

213164_at 4.784594136 4.26E-26 SLC5A3 

221796_at 4.785325049 3.61E-31 NTRK2 

211796_s_at 4.787469259 1.56E-28 IL23A 

201348_at 4.802407705 1.98E-29 GPX3 

229095_s_at 4.809985359 1.01E-28 LIMS3 

229634_at 4.810504894 1.08E-30 TMEM139 

201825_s_at 4.820029158 1.18E-29 SCCPDH 

229963_at 4.828070892 2.58E-30 BEX5 

202206_at 4.833388086 1.83E-28 ARL4C 

1553681_a_at 4.83503507 3.05E-30 PRF1 

1552626_a_at 4.843176559 6.32E-29 TMEM163 

202784_s_at 4.85124007 4.02E-30 NNT 

230560_at 4.856434044 3.43E-25 STXBP6 

235182_at 4.866079067 2.32E-26 ISM1 

211966_at 4.879895185 9.03E-31 COL4A2 

232676_x_at 4.883374704 1.56E-33 MYEF2 

231940_at 4.893912693 1.75E-31 ZNF529 

201508_at 4.90618738 3.14E-28 IGFBP4 

228262_at 4.910615305 1.86E-28 MAP7D2 

209598_at 4.918544008 2.29E-31 PNMA2 

211549_s_at 4.938244818 3.08E-30 HPGD 

202283_at 4.943811341 6.40E-31 SERPINF1 

240687_at 4.951694879 2.11E-31 PASD1 

224176_s_at 4.964145784 1.71E-28 AXIN2 
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229830_at 4.969258134 4.21E-29 PDGFA 

222450_at 4.977795355 5.32E-31 PMEPA1 

227236_at 5.024594887 8.77E-30 TSPAN2 

1558700_s_at 5.038946702 3.00E-31 ZNF260 

216693_x_at 5.054395533 1.21E-29 HDGFRP3 

204045_at 5.054625784 9.95E-33 TCEAL1 

209387_s_at 5.060435864 7.03E-32 TM4SF1 

231867_at 5.065919831 5.32E-31 ODZ2 

214247_s_at 5.076833805 3.89E-29 DKK3 

238780_s_at 5.077502968 2.44E-28 NA 

204932_at 5.102161875 6.22E-26 
TNFRSF11
B 

228523_at 5.106581599 1.84E-26 NANOS1 

242013_at 5.114226909 1.55E-31 BCL2L15 

218963_s_at 5.114492799 8.34E-14 KRT23 

203029_s_at 5.12017628 2.12E-26 PTPRN2 

202286_s_at 5.137666 3.47E-17 TACSTD2 

222803_at 5.152802825 1.99E-31 PRTFDC1 

209526_s_at 5.15724731 7.00E-33 HDGFRP3 

222549_at 5.167696239 1.70E-33 CLDN1 

240055_at 5.174996434 3.92E-31 NA 

206560_s_at 5.178857464 2.57E-33 MIA 

218723_s_at 5.196995571 1.44E-27 C13orf15 

202628_s_at 5.213883908 2.83E-25 SERPINE1 

221558_s_at 5.248422657 2.73E-29 LEF1 

237721_s_at 5.275233137 3.34E-29 ASB4 

231227_at 5.278884299 9.59E-35 NA 

204933_s_at 5.302809105 1.66E-29 
TNFRSF11
B 

226682_at 5.31364024 5.80E-33 RORA 

201506_at 5.320158709 1.31E-30 TGFBI 

211429_s_at 5.323447734 4.90E-27 SERPINA1 

236918_s_at 5.339461334 2.16E-32 LRRC34 

230795_at 5.340692109 8.14E-27 NA 

209213_at 5.428561762 6.04E-33 CBR1 

203798_s_at 5.457496327 1.43E-31 VSNL1 

235940_at 5.463010338 9.49E-34 C9orf64 

203304_at 5.483975709 2.16E-22 BAMBI 

203797_at 5.509456097 3.95E-31 VSNL1 

219836_at 5.514210182 1.11E-29 ZBED2 

235845_at 5.52188532 3.92E-31 SP5 

218087_s_at 5.527335081 2.82E-28 SORBS1 
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226226_at 5.540056241 1.72E-32 TMEM45B 

203914_x_at 5.58234348 9.02E-31 HPGD 

223503_at 5.605728792 2.31E-30 TMEM163 

222696_at 5.615989091 1.36E-30 AXIN2 

210095_s_at 5.619119696 3.65E-31 IGFBP3 

209031_at 5.62842311 9.01E-32 CADM1 

214617_at 5.6378784 4.20E-29 PRF1 

210836_x_at 5.702551823 2.41E-32 PDE4D 

202504_at 5.717674814 5.82E-32 TRIM29 

212775_at 5.732467036 1.61E-34 OBSL1 

209386_at 5.755728019 2.29E-31 TM4SF1 

210837_s_at 5.771365504 9.54E-32 PDE4D 

211548_s_at 5.797156674 1.42E-30 HPGD 

202149_at 5.83374799 6.28E-31 NEDD9 

203474_at 5.838363348 4.93E-30 IQGAP2 

205399_at 5.885915621 9.99E-29 DCLK1 

211564_s_at 5.891723978 9.54E-32 PDLIM4 

221011_s_at 5.901510021 3.08E-30 LBH 

202833_s_at 5.906131804 8.46E-27 SERPINA1 

211003_x_at 5.906561411 2.07E-33 TGM2 

229580_at 5.970583176 5.37E-34 NA 

215034_s_at 6.072809343 7.03E-32 TM4SF1 

211573_x_at 6.081013458 5.83E-34 TGM2 

237974_at 6.093435795 4.30E-35 ABHD12B 

213425_at 6.10880796 7.00E-33 WNT5A 

211964_at 6.126274623 6.51E-32 COL4A2 

209655_s_at 6.202016916 3.69E-33 TMEM47 

217028_at 6.218488412 1.66E-25 CXCR4 

209524_at 6.247652627 8.35E-34 HDGFRP3 

205990_s_at 6.30708769 1.81E-34 WNT5A 

204205_at 6.331443474 6.93E-30 APOBEC3G 

203913_s_at 6.452092708 1.34E-34 HPGD 

232231_at 6.49125603 7.28E-16 RUNX2 

235619_at 6.531240266 5.60E-35 LOC285986 

229800_at 6.665510164 1.81E-35 DCLK1 

228962_at 6.692436894 4.08E-33 PDE4D 

204115_at 6.719502089 1.61E-34 GNG11 

230323_s_at 6.831382501 9.04E-35 TMEM45B 

207935_s_at 6.88218859 1.96E-34 KRT13 

201042_at 6.970819459 7.13E-35 TGM2 

236892_s_at 7.016783909 5.91E-36 LOC404266 
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201426_s_at 7.036826527 5.91E-30 VIM 

203413_at 7.099925614 6.04E-33 NELL2 

227376_at 7.130645468 6.10E-35 GLI3 

204491_at 7.24870063 8.28E-37 PDE4D 

214023_x_at 7.270976799 3.97E-36 TUBB2B 

201163_s_at 7.309927506 5.60E-35 IGFBP7 

216236_s_at 7.387604268 9.53E-28 SLC2A14 

228335_at 7.391273205 7.80E-38 CLDN11 

205174_s_at 7.717056894 8.70E-37 QPCT 

202497_x_at 7.75240915 3.31E-26 SLC2A3 

201820_at 7.777504885 7.14E-36 KRT5 

200799_at 7.801303143 1.24E-33 HSPA1A 

223800_s_at 7.804629034 1.05E-32 LIMS3 

202498_s_at 7.843883924 2.75E-27 SLC2A3 

222088_s_at 7.847920371 6.59E-27 SLC2A14 

227475_at 7.989488515 3.57E-34 FOXQ1 

202499_s_at 8.332857437 3.30E-24 SLC2A3 

209656_s_at 8.729730884 5.08E-35 TMEM47 

225016_at 9.310729468 2.09E-36 APCDD1 

 

Global gene expression analysis of SW480vector and SW480Smad4 colon 
cancer cells by microarray was performed to assess changes in gene 
expression caused by restored Smad4 expression.  We used the 
following stringent criteria to determine differential expression of 
SW480vector compared with SW480Smad4 colon cancer cells:  FDR<0.005 
and fold-change >4 (see Materials and Methods) to obtain an epithelial 
specific, Smad4 expression profile.  Up-regulated and down-regulated 
Affymetrix  probesets are displayed along with the log2 coefficient, FDR 

and gene symbol.   A negative coefficient in this analysis indicates up-
regulation in the presence of Smad4 and a positive coefficient indicates 
down-regulation in the presence of Smad4. 
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TABLE 12 
 

WNT TARGET LIST GENE IDENTIFIERS 
 
 
 

Gene ID Gene 
Gene 
Symbol 

Cells or tissue 
validation 

Reference 1:  PMID Reference 2:  PMID 

4609 c-myc MYC human colon cancer  He 1998:  9727977  

4613 n-myc MYCN mesenchyme limbs 
Ten Berge 2008:  
18776145 

 

595 Cyclin D CCND1 human colon cancer Tetsu 1999: 10201372 
Shtutman 1999:  
10318916 

6932  Tcf-1 TCF7 human colon cancer  Roose 1999:  10489374  

51176 LEF1 LEF1 human colon cancer 
Hovanes, 2001:  
11326276 

Filali 2002:  12052822 

5467  PPARdelta PPARD human colon cancer  He TC,1999:  10555149   

3725  c-jun JUN human colon cancer  Mann B, 1999:  9990071  

8061  fra-1 FOSL1 human colon cancer  Mann B, 1999:  9990071  

5329  uPAR PLAUR human colon cancer  Mann B, 1999:  9990071  

4316 
matrix metalloproteinase 
MMP-7 

MMP7 human colon cancer Brabletz 1999:  10514384 
Crawford 1999:  
10362259 

8313 Axin-2 AXIN2 human colon cancer Yan, 2001:  11752446 Lustig, 2002:  11809809 

4897 Nr-CAM NRCAM human colon cancer 
Conacci-Sorrell 2002:  

12183361 
 

6925 ITF-2 TCF4 human colon cancer Kolligs, 2002:  12086873  

2520 Gastrin GAST human colon cancer Koh, 2000:  10953028  

960 CD44 CD44 human colon cancer 
Wielenga 1999:  

10027409 
 

1948 EphB/ephrin-B EFNB2 human colon cancer Batlle, 2002:  12408869  

1947 EphB/ephrin-B EFNB1 human colon cancer Batlle, 2002:  12408869  

1949 EphB/ephrin-B EFNB3 human colon cancer Batlle, 2002:  12408869  

652 BMP4 BMP4 human colon cancer Kim 2002:  12019147  

9076 claudin-1 CLDN1 human colon cancer Miwa 2002:  11939410  

332 Survivin BIRC5 human colon cancer Zhang, 2001:  11751382  

7422 VEGF VEGFA human colon cancer Zhang, 2001:  11507052  

8817 FGF18 FGF18 human colon cancer 
Shimokawa 2003:  
14559787 

 

474 Hath1 ATOH1 human colon cancer Leow 2004:  15342386  

4233 Met MET human colon cancer Boon 2002:  12234972  

1906 endothelin-1 EDN1 human colon cancer Kim 2005:  15558022  

26292 c-myc binding protein MYCBP human colon cancer Jung 2005:  15979100  

3897 L1 neural adhesion L1CAM human colon cancer Gavert 2005:  15716380  

3398 Id2 ID2 human colon cancer 
Rockman 2001:  
11572874 

Willert 2002:  12095419 
(see this paper for others) 

182 Jagged JAG1 human colon cancer Rodilla, 2009:  19325125  

7074 Tiam1 TIAM1  Colon tumors Malliri 2005:  16249175  

4843 Nitric Oxide Synthase 2 NOS2 
Hepg2, Hct116  and dld-
1 cells 

Du, 2006  

22943 Dickkopf DKK1 Various cells, tumors Niida 2004:  15378020  
Gonzalez-Sancho 2004:  

15592505 

2254 FGF9 FGF9 
ovarian endometrioid 
adenocarcinoma 

Hendrix, 2006:  16452189  

26281 FGF20 FGF20 Various cells, tumors 
Chamorro 2004:  

15592430 
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8549 LGR5/GPR49 LGR5 Intestine Barker, 2007:  17934449  

6662 Sox9 SOX9 Intestine Blache 2004:  15240568  

6662 Sox9 SOX9 mesenchyme Hill, 2005:  15866163 Day 2005:  15866164 

860 Runx2 RUNX2 chondrocytes Dong 2006 Hill, 2005:  15866163 

64388 Gremlin GREM2 fibroblasts 
Klapholz-Brown 2007:  

17895986 
 

57167 SALL4 SALL4  Bohm, 2006:  16899215  

8792 RANK ligand TNFRSF11A Osteoblasts Spencer 2006  

3491 CCN1/Cyr61 CYR61 Osteoblasts Si, 2006:  16581771  

6657 Sox2 SOX2 Xenopus retina 
Van Raay, 2005:  

15820691 
 

9232 
Pituitary tumor transforming 
gene (PTTG) 

PTTG1 
esophageal squamous cell 
carcinoma 

Zhou 2004:  15514942  

28514 Delta-like 1 DLL1 somites 
Galceran, 2004:  
15545629 

Hofmann 2004:  
15545628 

8456 FoxN1 FOXN1 thymus 
Balciunaite 2002:  
12379851 

 

56547 matrix metalloproteinase-26 MMP26 Human 
Marchenko 2002:  

11931652 
 

79923 nanog NANOG ES Pereira, 2006:  16894029 Cole 2008:  18347094 

5460 POU5F1 (aka oct4) POU5F1 ES Cole 2008:  18347094  

6615 snail SNAI1 ES/EB 
Ten Berge 2008:  

18983966 
 

2335 Fibronectin FN1 ES/EB 
Ten Berge 2008:  
18983966 

 

8324 Frizzled 7 FZD7 EC cells Willert 2002:  12095419  

10468 Follistatin FST EC cells, ovary Willert 2002:  12095419 Yao 2004:  15162500  

89780 Wnt3a WNT3A EC cells Zhang 2009:  19109969  

2335 Fibronectin FN1 Mouse lung 
De Langhe 2005:  
15617677 

 

3670 Islet1 ISL1 Cardiac cells Lin 2007:  17519333  

4313 MMP2 MMP2 T cells Wu 2007:  17306568  

4318 MMP9 MMP9 T cells Wu 2007:  17306568  

2335  fibronectin FN1  Xenopus  Gradl 1999:  10409747  

652  BMP4 BMP4  Xenopus  Baker 1999:  10601040  

n/a  myogenic bHLH MYOD1  Xenopus 
 Munsterberg 1995:  
7498788 

 

2020  engrailed-2 EN2  Xenopus 
 McGrew 1999:  
10495268 

 

2697  connexin43 GJA1  Xenopus, Mouse 
 van der Heyden 1998:  
9601103 

 

10804  connexin 30 GJB6  Xenopus 
 McGrew 1999:  

10495268 
 

5916  retinoic acid receptor gamma RARG  Xenopus 
 McGrew 1999:  
10495268 

 

4286  MITF/nacre MITF  Zebrafish  Dorsky, 2000:  10652270 Saito 2002:  12048204 

64220 Stra6 STRA6 
Wnt-1 transformed 
mouse cells 

Szeto 2001:  11358845  

58480 Wrch-1 RHOU 
Wnt-1 transformed 
mouse cells 

Tao, 2001:  11459829  

3604 TNF family 41BB ligand TNFRSF9 
Wnt-1 transformed 

mouse cells 
Tice 2002:  11832495  

1947 ephrinB1 EFNB1 
Wnt-1 transformed 
mouse cells 

Tice 2002:  11832495  

64220 Stra6 STRA6 
Wnt-1 transformed 
mouse cells 

Tice 2002:  11832495  

5168 autotaxin  ENPP2 
Wnt-1 transformed 
mouse cells 

Tice 2002:  11832495  

3671  ISLR ISLR 
Wnt-1 transformed 

mouse cells 
Tice 2002:  11832495  

7291 Twist TWIST1 
Wnt1 induced mammary 
cancer 

Howe, 2003:  12702582  
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4314 Stromelysin MMP3 
Wnt-1 transformed 
mouse cells 

Prieve, 2003:  12697065  

51429  WISP SNX9 
Wnt-1 transformed 
mouse cells 

Xu, 2000:  10716946  

2641 Proglucagon GCG Mouse Ni 2003:  12421827  

632 Osteocalcin BGLAP Mouse Kahler 2003:  12551949  

1044 Cdx1 CDX1 Mouse embryo Pilon 2007:  17537796  

5743 cyclooxygenase-2 PTGS2 mouse (Wnt-1) Howe 1999:  10197631 
Haertel-Wiesmann 
2000:  10884377 

79191 Irx3 IRX3 Mouse brain Braun 2003:  14522868  

6496 Six3 SIX3 Mouse brain Braun 2003:  14522868  

4762 neurogenin 1 NEUROG1 Mouse brain 
Hirabayashi 2004:  
15142975 

 

389058 SP5 SP5 Mouse brain 
Weidinger 2005:  

15797017 

 Fujimura 2007:  

17090534 

4821 Nkx2.2 NKX2-2 Neural tube Lei, 2006:  16950124  

3569 IL-6 IL6 3T3-L1 Preadipocytes Longo, 2002:  12154096  

420322 WISP-1 WISP1 3T3-L1 Preadipocytes Longo, 2002:  12154096  

8839 WISP-2 WISP2 3T3-L1 Preadipocytes Longo, 2002:  12154096  

3481 IGF-II  IGF2 3T3-L1 Preadipocytes Longo, 2002:  12154096  

10296 Emp MAEA 3T3-L1 Preadipocytes Longo, 2002:  12154096  

3479  IGF-I IGF1 3T3-L1 Preadipocytes Longo, 2002:  12154096  

7424  VEGF-C VEGFC 3T3-L1 Preadipocytes Longo, 2002:  12154096  

5243 MDR1 ABCB1 3T3-L1 Preadipocytes Longo, 2002:  12154096  

10631 Â periostin POSTN  Mouse Wnt-3 
Haertel-Wiesmann 2000:  
10884377 

 

1044 Cdx1 CDX1  Mouse Wnt-3A  Lickert 2000:  10934025  

1046 Cdx4 CDX4 Mouse Wnt-3A Pilon, 2006:  16309666  

1046 Cdx4 CDX4 Zebrafish HSC 
Davidson 2003:  
13679919? 

 

8945 betaTRCP BTRC 293T and HeLa cells 
 Spiegelman 2000:  
10882123 

 

6423  sFRP-2 SFRP2  Mouse (Wnt-4) Lescher 1998:  9853965  

5308 Pitx2 PITX2 pituitary Kioussi 2002:  12464179  

1956 EGF receptor EGFR Liver Tan 2005:  16012954  

1896 Eda (TNF-related) EDA Mouse hair follicle 
Laurikkala 2002:  
11973284 

Durmowicz 2002:  
12039047 

999 E-cadherin CDH1 Mouse hair follicle Jamora, 2003:  12646922  

999 E-cadherin CDH1 ES/EB 
Ten Berge 2008:  

18983966 
 

3852 Keratin KRT5 Mouse hair follicle 
Dasgupta 1999:  
10498690 

 

182 Jagged1 JAG1 Mouse hair follicle Estrach, 2006:  17035290  

1029 P16ink4A CDKN2A Melanocytes Delmas, 2007:  18006687  

1493 CTLA-4 CTLA4 Melanomas Shah 2008:  18563180  

688 mBTEB2 KLF5  Mouse Ziemer 2001:  11134343  

2249 FGF4 FGF4 Mouse tooth bud 
Kratochwil 2002:  
12502739 

 

3576 Interleukin8 IL8 Endothelial cells 
Masckauchan 2005:  
16132617 

 

5979 ret RET rat PC12 Zheng, 1996:  8637712  

2697  connexin43 GJA1  rat cardiomyocytes Ai 2000:  10642594  

1462 versican VCAN 
vascular smooth muscle 
cells 

Rahmani 2005:  
15668231 

 

55504 Tnfrsf19 TNFRSF19 Somitic mesoderm Buttitta 2003:  12781685  

51035 Ubx UBXN1  Drosophila  Riese 1997:  9118221  

127733 Ubx UBXN10  Drosophila  Riese 1997: 9118221  

7993 Ubx UBXN8  Drosophila  Riese 1997:  9118221  
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7471 wingless WNT1  Drosophila  Yu 1998:  9835654  

655 BMP7 BMP7 
human colon cancer 
cells 

Hatzis MCB 2008:   
Beites CL:  19474151 
(weaker indirect evidence) 

652 Dpp BMP4 Drosophila  Yang, 2000:  10934014  

2019 Engrailed 1 EN1 human epithelial cells 
Bachar-Dahan, 2006:  
16571670 

 

8325  Dfrizzled2 FZD8  Drosophila 
 Cadigan 1998(Dfz2 human 
homolog=fz8):  9630221 

 

3219 HOXB9 homeobox B9 HOXB9 lung cancer cells 
Nguyen DX, 2009:  
19576624 

 

9314 KLF4 KLF4 intestinal cells 
Evans PM, 2009:  
19901072 

 

 
 

 
A table of annotated Wnt target genes is shown.  This list was used for Affymetrix  input 

to obtain 282 resultant Affymetrix probes (not shown).  Gene identifier (ID), gene name 
and gene symbol are displayed in addition to validated cells/tissues as noted in the 
published literature.  The first author and PubMed Identifier (PMID) are listed for at least 
two references.  Source for the original list: 
http://www.stanford.edu/~rnusse/pathways/targets.html 
 



182 

Figure. 22:  (A) Smad4 colon cancer expression profile determination:  flow diagram.  The figure shows a 

flow-diagram of the development of a Smad4 gene expression profile in SW480 colon cancer cells 
(FDR<0.005 and fold-change>4).  1668 probesets were implicated which consisted of up-regulated (n=593) 

and down-regulated probesets (n=1075).  (B) Schema for determination of Wnt target gene enrichment in 

the Smad4 expression profile.  The SW480 Smad4 global expression profile (black circle, n=1668 
probesets) was used to determine if there was a significant enrichment of an annotated list of published Wnt 

target genes (gray circle, n=282 probesets) (see Table 12).  The table containing the enriched Smad4-
modulated Wnt targets is Table 13 (dark gray overlap, n=150 probe sets). 
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TABLE 13 
 

SMAD4-MODULATED, WNT ENRICHED TARGETS 
 

Affymetrix 
probe 

Coef FDR Gene Symbol 

213816_s_at -5.208338904 5.32E-31 MET 

221731_x_at -4.455090423 5.36E-15 VCAN 

203510_at -4.437460842 1.19E-27 MET 

204620_s_at -4.349783568 2.54E-15 VCAN 

213807_x_at -3.143497429 5.00E-27 MET 

215646_s_at -3.086916374 6.75E-11 VCAN 

204602_at -3.075203281 7.58E-13 DKK1 

211599_x_at -3.014005885 5.87E-27 MET 

211571_s_at -2.710027617 1.41E-10 VCAN 

204619_s_at -2.586155238 1.26E-10 VCAN 

207558_s_at -2.53932263 5.59E-20 PITX2 

238846_at -2.310058123 2.61E-18 TNFRSF11A 

213943_at -2.298439083 3.32E-20 TWIST1 

215983_s_at -1.755190399 3.48E-22 UBXN8 

212063_at -1.669196296 5.85E-19 CD44 

204489_s_at -1.47796131 1.43E-19 CD44 

202668_at -1.320836633 2.00E-14 EFNB2 

212014_x_at -1.218341893 6.15E-17 CD44 

202669_s_at -1.204038673 4.41E-12 EFNB2 

224471_s_at -1.198348701 6.04E-18 BTRC 

210512_s_at -1.191362159 6.80E-15 VEGFA 

202095_s_at -1.131580202 1.75E-17 BIRC5 

201130_s_at -1.119648171 3.52E-13 CDH1 

209835_x_at -1.092351031 3.57E-17 CD44 

204490_s_at -1.0777488 1.35E-16 CD44 

210916_s_at -1.073401268 2.69E-18 CD44 

204188_s_at -1.0290679 6.19E-17 RARG 

210513_s_at -1.018637972 5.13E-15 VEGFA 

211527_x_at -1.003293473 4.59E-15 VEGFA 

210334_x_at -0.983871923 2.44E-15 BIRC5 

1557905_s_at -0.921889157 1.15E-16 CD44 

211421_s_at -0.884091927 1.17E-09 RET 

217523_at -0.883786496 2.54E-07 CD44 

212171_x_at -0.868778847 5.80E-13 VEGFA 

201131_s_at -0.868599892 2.04E-11 CDH1 

216091_s_at -0.857392319 6.76E-14 BTRC 
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207037_at -0.819544417 7.66E-09 TNFRSF11A 

207922_s_at -0.769870439 3.69E-16 MAEA 

204189_at -0.682444519 1.54E-11 RARG 

202094_at -0.653995507 1.08E-10 BIRC5 

1565483_at -0.653204532 7.18E-05 EGFR 

204901_at -0.621820525 1.25E-11 BTRC 

205879_x_at -0.589409335 3.89E-10 RET 

203361_s_at -0.550288811 2.98E-11 MYCBP 

1565484_x_at -0.487337782 1.40E-06 EGFR 

203359_s_at -0.480112291 6.11E-10 MYCBP 

229221_at -0.476320032 7.40E-05 CD44 

219480_at -0.462653661 2.48E-05 SNAI1 

206634_at -0.412215743 8.90E-05 SIX3 

215771_x_at -0.397667812 1.19E-05 RET 

203360_s_at -0.331871568 4.56E-08 MYCBP 

221331_x_at -0.316135616 1.34634E-04 CTLA4 

220184_at -0.298162725 2.55565E-04 NANOG 

203936_s_at -0.273585702 1.88495E-04 MMP9 

207233_s_at 0.282372198 3.80852E-04 MITF 

209644_x_at 0.308520031 3.50E-07 CDKN2A 

223028_s_at 0.332644354 3.72E-06 SNX9 

209540_at 0.333169751 2.90847E-04 IGF1 

203554_x_at 0.363779621 1.07E-06 PTTG1 

210636_at 0.383131464 2.09E-06 PPARD 

223027_at 0.432717882 8.48E-10 SNX9 

211260_at 0.49250662 5.61E-08 BMP7 

204748_at 0.523747577 3.26E-05 PTGS2 

224325_at 0.581595283 2.83E-07 FZD8 

228038_at 0.595555086 6.04E-09 SOX2 

214701_s_at 0.601019473 1.18E-07 FN1 

221557_s_at 0.610681431 4.69E-07 LEF1 

211577_s_at 0.622106274 3.20E-06 IGF1 

221282_x_at 0.656272386 5.13E-08 RUNX2 

226066_at 0.664734161 3.36E-06 MITF 

204420_at 0.675402303 3.18E-07 FOSL1 

227405_s_at 0.686961958 2.83E-08 FZD8 

213281_at 0.700658487 2.24E-11 JUN 

201871_s_at 0.732825908 1.61E-13 UBXN1 

208044_s_at 0.739911957 2.13E-08 PPARD 

1569334_at 0.748543991 5.49E-11 STRA6 

218995_s_at 0.766521861 4.18E-10 EDN1 
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37152_at 0.842712279 8.64E-12 PPARD 

210984_x_at 0.858900718 5.11E-12 EGFR 

211607_x_at 0.863360829 9.39E-08 EGFR 

209541_at 0.869308094 2.14E-11 IGF1 

209542_x_at 0.952747647 1.05E-09 IGF1 

1569335_a_at 0.955531689 5.00E-12 STRA6 

223168_at 0.963972173 2.87E-06 RHOU 

201984_s_at 0.984776338 5.53E-09 EGFR 

205255_x_at 1.01704237 1.38E-14 TCF7 

205254_x_at 1.026916058 5.09E-14 TCF7 

201069_at 1.068712668 1.29E-11 MMP2 

232109_at 1.167483103 2.81E-13 UBXN10 

222802_at 1.199330545 1.62E-14 EDN1 

202936_s_at 1.293576102 4.93E-10 SOX9 

216417_x_at 1.298462572 1.13E-18 HOXB9 

226461_at 1.349730726 1.71E-19 HOXB9 

239178_at 1.439091976 1.24E-14 FGF9 

201983_s_at 1.446036871 2.78E-10 EGFR 

230092_at 1.459946709 1.42E-15 UBXN10 

206104_at 1.51025451 2.37E-12 ISL1 

201465_s_at 1.524742241 8.14E-16 JUN 

202935_s_at 1.54400712 4.70E-11 SOX9 

203705_s_at 1.582594184 1.73E-18 FZD7 

208711_s_at 1.588606808 7.87E-24 CCND1 

209993_at 1.73480427 3.59E-14 ABCB1 

211485_s_at 1.74932923 2.77E-20 FGF18 

202711_at 1.834688368 6.23E-19 EFNB1 

216994_s_at 1.873677384 7.74E-17 RUNX2 

209211_at 1.882266539 9.29E-18 KLF5 

224090_s_at 1.906822818 1.12E-20 TNFRSF19 

203706_s_at 1.940917236 3.28E-18 FZD7 

209212_s_at 1.97330756 7.51E-23 KLF5 

201565_s_at 1.982069503 6.20E-10 ID2 

208712_at 2.02402084 1.88E-24 CCND1 

201566_x_at 2.139151764 2.14E-10 ID2 

201464_x_at 2.171310811 1.69E-21 JUN 

210948_s_at 2.396963985 2.17E-21 LEF1 

213931_at 2.397088384 9.10E-12 ID2 

211029_x_at 2.462131571 4.47E-21 FGF18 

211518_s_at 2.462756098 5.24E-19 BMP4 

201466_s_at 2.56324932 6.42E-19 JUN 
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210495_x_at 2.592240002 6.08E-21 FN1 

223827_at 2.615606039 2.54E-22 TNFRSF19 

206987_x_at 2.733241904 8.93E-23 FGF18 

218182_s_at 2.734588961 1.43E-23 CLDN1 

242218_at 2.759858224 2.16E-22 PPARD 

211259_s_at 2.760066972 1.86E-25 BMP7 

201289_at 2.770069888 6.99E-22 CYR61 

238657_at 2.82400144 4.47E-22 UBXN10 

216442_x_at 2.864553299 8.49E-22 FN1 

210764_s_at 2.875186002 3.15E-21 CYR61 

221701_s_at 2.969423295 1.34E-24 STRA6 

212464_s_at 2.974592447 2.25E-21 FN1 

205031_at 3.066126601 5.28E-27 EFNB3 

211719_x_at 3.128023957 1.55E-22 FN1 

206404_at 3.25327442 8.87E-23 FGF9 

231382_at 3.291539204 4.79E-24 FGF18 

209994_s_at 3.417156665 5.50E-24 ABCB1 

224498_x_at 3.474353316 4.05E-24 AXIN2 

209590_at 3.504695514 2.55E-23 BMP7 

207060_at 3.823088997 9.94E-28 EN2 

220394_at 3.823936895 1.39E-27 FGF20 

204584_at 3.849827547 8.78E-27 L1CAM 

222695_s_at 3.989645196 3.80E-26 AXIN2 

209591_s_at 4.628920548 1.66E-25 BMP7 

227812_at 4.738529483 1.33E-28 TNFRSF19 

224176_s_at 4.964145784 1.71E-28 AXIN2 

222549_at 5.167696239 1.70E-33 CLDN1 

221558_s_at 5.248422657 2.73E-29 LEF1 

235845_at 5.52188532 3.92E-31 SP5 

222696_at 5.615989091 1.36E-30 AXIN2 

232231_at 6.49125603 7.28E-16 RUNX2 

201820_at 7.777504885 7.14E-36 KRT5 

Smad4-modulated, Wnt enriched target genes and their 

Affymetrix probe identifiers (IDs) are displayed.  Fold-change 
on a log2-scale, False Discovery Rate (FDR) and Gene 

Symbol are also displayed. A negative coefficient in this 

analysis indicates up-regulation in the presence of Smad4 

and a positive coefficient indicates down-regulation in the 
presence of Smad4. 
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Figure 32.  Derivation of epithelial-specific Smad4 targets and determination of Wnt 
enrichment.  (A) Schematic depiction of human Smad4-modulated gene expression profiling 
and pathway analysis.  The large black circle represents the human Smad4 gene expression 
profile (FDR<0.05, n=21889 probesets).  The small light gray circle represents the SW480 cell 
line Smad4 gene expression profile (FDR<0.005, fold-change>4, n=1668 probesets).  The 
darker gray overlap represents epithelial-specific Smad4 co-expression targets (n=787 
probesets).  (B) Schematic for determination of Smad4-modulated, Wnt-enriched epithelial-
specific targets for hierarchical and outcome analyses is displayed.  The dark gray circle 
represents epithelial-specific Smad4 co-regulated targets (n=787 probesets) and the light gray 
circle represents annotated Wnt targets (n=285 probesets).  The overlap represents epithelial-
specific Smad4-modulated Wnt target genes (n=32 probesets). 
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Primers used for quantitative real time PCR, RT-PCR and ChIP assays. 
Primer sets were ordered as indicated in Materials and Methods in Chapter III 
and forward and reverse sequences are displayed. 
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