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CHAPTER I 

 

INTRODUCTION 

 

Functional magnetic resonance imaging (fMRI) relies on the detection and 

analysis of temporal signals that are indirectly sensitive to neuronal activity.  Maps of 

cognitive networks based on these signals may be generated through the construction and 

analysis of models based on a priori knowledge of carefully designed tasks performed 

during image acquisition. However similar network maps can be generated through 

analysis of residual fMRI signal variance in cognitive steady states, absent of changes in 

the prescribed cognitive task.  These analyses are generally referred to as measurements 

of functional connectivity.  While steady state functional connectivity analyses, and in 

particular resting state functional connectivity analyses, have generated quite a bit of 

interest, important questions remain regarding their implementation and interpretation.  

The following body of work is an attempt to address some of these shortcomings in the 

communal understanding of steady state functional connectivity analyses. 

 

Functional Magnetic Resonance Imaging 

 

Overview 

 Functional magnetic resonance imaging has become an important and useful tool 

for observing hemodynamic changes through time in cerebral vasculature, and has been 

used in neuroimaging for almost 20 years.  FMRI is a non-invasive method of generating 
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and observing contrast between functionally separable regions of gray matter, and is 

usually used to map cerebral activity tomographically.  Simply put, fMRI is used to 

identify what parts of the brain are being activated during carefully designed cognitive 

tasks.  FMRI has made significant contributions to fields such as neuroscience, 

psychology, and medicine among others.  In order to understand fMRI based measures of 

functional connectivity, it is important to start with a brief introduction to standard fMRI 

concepts, as these underlie more complicated functional connectivity analyses. 

 The central assumption underlying fMRI is that localized hemodynamic changes 

(vasodilation, increased blood flow and oxygen consumption) are proportional to 

underlying neuronal tissue electrical activity. (Logothetis, et al. 2001; Mathiesen, et al. 

1998) Due to its reliance on sensitivity to hemodynamic changes, fMRI indirectly marks 

changes in neural activity.  Typical fMRI studies employ gradient echo excitations to 

measure signals produced by the bulk nuclear magnetization of hydrogen protons, whose  

magnetic moments can be spatially localized via echo planar gradient schemes. 

(Mansfield 1977; Worthington and Mansfield 1990)  Inhomogeneity in the static 

magnetic field, as is present with the introduction of endogenous paramagnetic agents 

like deoxyhemoglobin, results in dephasing of nearby nuclear spins, yielding signal 

decreases. (Ogawa, et al. 1990)  When focal regions of gray matter are recruited for the 

performance of a specific task (performed during image acquisition), the natural 

hemodynamic response over compensates for increased oxygen consumption, washing 

out newly formed deoxyhemoglobin, and locally increasing the magnetic field 

homogeneity, resulting in increased signal.  This blood oxygen level dependent (BOLD) 

contrast results in increased image brightness in regions recruited for the performance of 
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the given task.  BOLD contrast is emphasized in gray matter through choosing echo times 

approximately equal to the measured 

! 

T
2

*  relaxation time (Bandettini, et al. 1994) of that 

tissue.  While there are incentives to acquire fMRI data in as large of a static magnetic 

field as is possible, typical fMRI can and has been performed using commonly available 

clinical hardware. (Constable, et al. 1993; Jack, et al. 1994) 

 

Typical Analysis - Preprocessing 

Analysis of fMRI data takes a variety of forms, many serving specific functions, 

and each with its merits and shortcomings.  While the specific methods/algorithms used 

may vary, many of the goals of typical fMRI analyses remain the same.  FMRI data are 

usually distilled down to maps of activation via a variety of statistical tests.  This 

activation results from performance of some prescribed cognitive task.  From this point 

forward, activation will be used to describe BOLD signal increases, probably associated 

with increases in neuronal firing, typically during an organized task.  Several methods of 

removing artifacts from, or preprocessing, signals before such analysis have become 

common.  These include motion correction, slice timing correction, and spatial 

smoothing. 

The need for motion correction arises from the fact that in fMRI studies, a series 

of images are gathered over a period of time on the order of tens to hundreds of seconds, 

during which the subject may move, thus destroying the registration between image 

volumes. (Friston, et al. 1996)  This can be a particular problem in analysis of some tasks 

because the task itself can induce head motion.  An example of this is when a subject’s 

head moves in step with squeezing a hand held responder.  However, more subtle sources 
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of motion have also been problematic, such as that associated with swallowing of saliva. 

(Birn, et al. 1999)  While motion artifact within the acquisition time of a single image 

volume is difficult to correct (typically this is minimized by using as short of an 

acquisition time as possible), motion between image volumes reduces to an image 

registration problem, commonly solved through maximization of spatial mutual 

information between images. (Maes, et al. 1997) 

 Slice timing correction refers to the removal of an artifact resulting from the 

acquisition of multiple slices, one at a time, to create a volume. (Kneeland, et al. 1986; 

VandeMoortele, et al. 1997) In this case, each slice is acquired as a separate image, and is 

temporally separated from the previous slice by at least the time required for one full 

sampling of k-space, often by more.  In an attempt to reduce signal losses arising from 

magnetization saturation effects, slices are frequently sampled in an interleaved fashion, 

such that if six slices were acquired, they would be sampled in the following order: 1, 3, 

5, 2, 4, and 6, thus increasing the time between adjacent slice acquisitions.  If the 

repetition time for the entire set of slices is 2 seconds, slice 1 and slice 2 may be acquired 

1 second apart, though they are collapsed into the same imaging volume that is 

commonly thought of as being acquired at one point in time.  Slice timing correction 

methods attempt to account for this difference in slice acquisition times, usually by 

temporal interpolation either of task regressors or of the data. (Friston, et al. 1998; 

VandeMoortele, et al. 1997) 

 Spatial smoothing serves to reduce the effects of spatially independent noise in 

any given image, though it can be used for other purposes as well. (Fransson, et al. 2002) 

Spatial smoothing commonly involves computing a weighted average of neighboring 
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voxels via convolution with a filter kernel, thereby reducing very high spatial frequencies 

in the image.  To reduce the effects of high spatial frequencies, one could also decrease 

the contributions to the image from the edges of k-space, though both approaches risk 

eliminating weak activations and blurring out focal activations.  In the practice of 

comparing activity maps from individual subjects on a group level, spatial smoothing has 

been promoted as a method for increasing the overlap between subjects through the 

blurring of individual differences in activation. 

 

Typical Analysis – The GLM 

 So far, the methods of data analysis discussed do not address the extraction of 

activity information from the data.  They simply prepare the data for more reliable 

analysis through removing acquisition artifacts, and thus are considered as 

‘preprocessing’ steps.  Once complete, the data may be subjected to several types of 

further analysis to detect activation. 

Extracting activity information is the most common objective of fMRI, and is 

typically done by assuming that a general linear model (GLM) of the task can be used to 

fit the data. (Friston, et al. 1995a; Friston, et al. 1995b; Friston, et al. 1994a; Friston, et al. 

1994b)  This method basically consists of testing the accuracy of a specific hypothesis or 

model for how the signal is expected to behave.  This is done through determining the 

linear relationship between the model parameters and the data.  An example of a simple 

model is shown in equation 1.1, where y(t) is the time series of a single voxel, x(t) is one 

regressor being tested, and e(t) is the residual error of the total model.  The model is 

considered to be the sum of all the regressors, each multiplied by its respective beta  
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! 

y(t) = "1 # x1(t)+ c + e(t)            (1.1) 

 

weight plus the constant term.  Estimation of the model parameters β and c is commonly 

accomplished through implementing an ordinary least squares solution.  The term β, or 

beta weight, is a measure of how well the regressor predicts the data.  Construction of 

regressors is commonly done through use of the time course of a particular stimulus 

simultaneously presented with data acquisition temporally convolved with a canonical 

hemodynamic response function.  The canonical hemodynamic response can take a 

variety of forms, with a common one being that of a gamma function.  The residual error 

represents the variance of y(t) that can not be explained by a linear manipulation of the 

regressor.  It is useful to remember that these models are applied on a voxel-by-voxel 

basis, where the signal and regressors are 1D time courses. 

 This model is flexible in that multiple regressors can be simultaneously evaluated, 

with each regressor having its own beta weight, as is shown in equation 1.2.  The 

constant term is usually modeled as a unity time course, thus leaving the β parameters as  

 

! 

y(t) = "1 # x1(t) + "2 # x2(t) +"3 # x3(t) +"4 # x4 (t) + c + e(t)                   (1.2) 

 

the only ones needing estimation.  So long as each regressor is orthogonal to the others, 

beta weights represent how well a given regressor fits the data.  If any regressors are not 

orthogonal, then the beta weights may underestimate the true amount of variance 

explained by those regressors.  After estimation of all the model parameters, it then 

becomes possible to test for effects through interrogation of the beta weights.  Here it 
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becomes useful to change to matrix notation.  Equation 1.2 can be rewritten in terms of a 

two dimensional matrix of regressors (X; rows=model #, columns = time), and a column 

matrix of beta weights (B) for those regressors, shown in equation 1.3.  Regressors can be 

tested for significance by comparing their beta weights against the standard error of the 

whole model.  In the case  

 

! 

y(t) = BX + e                      (1.3) 

 

where one regressor is expected to explain all of the conditions of interest, for example 

when you only have two conditions and the time course of one condition is the inverse 

representation of the other (i.e. block designed tasks of stimulation verses rest), 

interrogation of the beta weight for that one regressor completely tests for significant 

differences between conditions.  This test can be done in matrix form by taking the dot 

product of B with a contrast matrix (called the estimate of the effect), and dividing by the 

square root of the estimated variance of that product (called the variance of the effect), 

yielding a t-statistic.  This is shown in equation 1.4.  The contrast matrix will have one 

value for each regressor, with zeros for all regressors not being tested, and a one in the 

place of the regressor being tested.  If there are four regressors, and the first one is 

 

! 

T =
" c #

est var " c #( )( )
           (1.4) 

 

tested for significance, then the contrast matrix ‘c’ is a column matrix c=[1 0 0 0].  If two 

regressors need to be compared, as is the case when there are multiple conditions and 
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several may serve as an interesting baseline condition, then the contrast matrix can be 

manipulated to account for this test as well.  If we are contrasting the first regressor 

against the second, then the contrast matrix becomes c=[1 -1 0 0].  This highlights the 

flexibility of the general linear model, though the obvious limitation is that your test is 

only as good as the regressors that are put into the model. 

It may be useful to generally discuss some aspects the general linear model and its 

application to fMRI data.  An underlying assumption of general linear models is that the 

hemodynamic response to changes in neuronal activation is linear. (Dale and Buckner 

1997)  Because changes in neural activity generally produce changes in signal, and 

because task performance is related to neural activity, the model of the data used is 

typically a model of the task, with specific signal regressors representing various task 

conditions.  In addition, the hemodynamic response and its temporal effects must  be 

incorporated into the model because BOLD signals are hemodynamic in origin.  This can 

be accomplished through a convolution of each regressor with an estimate of the  

hemodynamic response function.  The goodness of the fit of the model is used as a 

surrogate measure of the effect of the task on the signal, and thus neuronal activity from 

that volume of tissue. 

 

Functional Connectivity Analysis 

 

What is Functional Connectivity? 

While typical BOLD fMRI analyses involve detecting potential signal changes 

using a priori knowledge of the task design, designing tasks for which these predictions 
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can be made can become extremely difficult and may not be necessary to map functional 

networks across the brain.  Alternatively, fMRI studies of inter-voxel temporal 

similarities can be used to map functional networks using functional connectiivty.  

Functional connectivity may be broadly described as measurable similarity between 

neurophysiologic signals originating from spatially distinct regions of the brain. (Friston, 

et al. 1993)  Similarity between neurophysiologic signals has been used as a measure of 

functional relationships for decades in electrophysiological studies (Gerstein and Perkel 

1969; Perkel, et al. 1967), and most fMRI analyses make use of this idea.  The difference 

between fMRI based functional connectivity analyses and typical fMRI mapping 

techniques is that measures of functional connectivity, in principal, rely only on signals 

contained within the data themselves, meaning that knowledge of task design is not 

necessary.  Restating this point, common fMRI activity studies compare a model to the 

signal from single voxels, whereas functional connectivity studies compare the signal 

from one voxel to that from another voxel.  This point is highlighted by the development 

of steady-state functional connectivity measures where task related temporal variance in 

BOLD signals is minimized, with the most popular being measurements made in the 

resting state (i.e. the subject is asked to lie still with their eyes closed and do nothing).  

Steady state measurements will be referred to as those made while the subject is 

instructed to keep their cognitive state constant.  Functional connectivity analyses are one 

of a relatively few methods available for studying functional organization of the brain at 

rest.  Furthermore, the development of reliable steady state measures of functional 

connectivity allows fMRI mapping techniques to be performed in situations where 
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subject compliance may be difficult or impossible to achieve, broadening the potential 

uses of these measurements in a clinical setting. 

The above definition of functional connectivity may appear vague, partly because 

the term ‘functional connectivity’ has been used by different people to mean different 

things. (Horwitz 2003)  In general, most investigators agree that functional connectivity 

analyses should focus on analyzing temporal variance that is not related to the 

performance of a task, and yields only a functional measure of the ‘connectedness’ of two 

regions.  This is different from anatomic connectivity because these regions need not be 

directly linked via physical nerve fibers, though it is assumed that they communicate with 

intermediary regions potentially playing a role between them.  Functional connectivity 

generally does nothing to tell the investigator which region is affecting the other, or said 

differently, it establishes no cause and effect relationship between brain regions.  It 

simply identifies regions whose neurophysiologic signals are similar, generally 

identifying functionally related networks of brain regions. 

 The first fMRI study of functional connectivity in the resting state was performed 

at the Medical College of Wisconsin illustrating that virtually the same motor network 

map achieved through analysis of data acquired during a finger tapping task could be 

generated though measuring the correlations of low frequency BOLD signals at rest. 

(Biswal, et al. 1995)  This study made two important contributions to the greater fMRI 

community.  First, this provided a method for probing functional relationships across the 

brain in the resting state.  Second, this study identified the functional significance of low 

frequency fluctuations in BOLD signals, which may have gone underappreciated 

previously. 
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Steady State Functional Connectivity Analysis 

 The first step in understanding functional connectivity analyses is clearly 

identifying what signals we are interested in, what potential confounding covariates are, 

and how they can be removed.  Going back to Biswal’s original analysis, it was 

suggested that low frequency (<0.1Hz) BOLD signals contained the majority of the 

information needed to construct resting state motor maps. (Biswal, et al. 1995)  Studies 

critically sampling cardiac and respiratory variations confirm that the variance underlying 

resting state functional connectivity maps (remember this is one subset of steady state 

experiments) primarily lie in the 0-0.1Hz range. (Cordes, et al. 2001)  It has also been 

shown that these signals are truly of a hemodynamic origin, as opposed to being an 

artifact of measurement via fMRI, evidenced by studies of BOLD signals in near-infrared 

data. (Obrig, et al. 2000)  These signals have been described as representing ‘intrinsic 

variance’ due to their existence in cognitive steady states where task driven signal 

variance is minimized.  However, intrinsic fluctuations are present during task 

performance as well, and some evidence suggests that they add linearly to task induced 

variance. (Fox, et al. 2006) 

The minimization of artifacts is an important part of steady state functional 

connectivity analyses.  Common practices include temporally low pass filtering steady 

state data at 0.1Hz to remove the potential for higher frequency noise while preserving 

necessary variance for construction of functional connectivity maps.  Motion artifacts are 

almost always reduced through the application of registration techniques, though residual 

motion artifacts frequently exist temporally. As such, linear regression of the six standard 
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estimated motion parameters (usually estimated during the initial motion correction via 

coregistration) is common, as is removal of very low signal drifts not uncommon in fMRI 

data.  Finally, because functional networks are presumed to be focal, fluctuations 

occurring on the spatial scale of the whole brain are commonly assumed to be 

confounding, thus linear regression of the global time series (the average temporal signal 

across the whole brain) has become common as well. 

 

 

Figure 1.1 - Typical processing steps taken prior to steady state functional connectivity 
analysis. 
 

 The majority of steady state functional connectivity analyses fall into one of two 

categories.  These categories are seed region analyses and data-driven analyses of which 

independent component analyses are the most commonly used.  While these categories 

differ in several ways, their goals remain the same.  Both approaches attempt to identify 

regions of the brain whose BOLD signals co-vary, thus constructing networks of related, 

functionally relevant BOLD signals.  The two most important differences between these 

categories of analyses are the a priori information needed and the interpretation of their 

results. 
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 Independent component analysis of fMRI data began as a solution to the cocktail 

party problem. (Bell and Sejnowski 1995)  Blind source separation of input signals into 

maximally independent, or minimally redundant, source signals is the process that has 

become known as independent component analysis (ICA).  Similar to less generalized 

principal component analyses, data are reduced to a set number of components together 

representing the original signal.  If we describe fMRI data as being two dimensional (one 

spatial dimension representing spatial location and one dimension representing time), 

ICA analysis of fMRI data must a priori assume spatial independence of the signals (a.k.a  

spatial ICA, the most common type for fMRI data) (McKeown, et al. 1998; McKeown 

and Sejnowski 1998), or temporal independence (Calhoun, et al. 2001), or some 

combination of the two used in conjunction. (Seifritz, et al. 2002)  An important feature 

of ICA techniques is the blind part of blind source separation.  This means that sources of 

variance are identified, and their variance isolated, without any a priori knowledge of the 

sources required, and it is this feature that has garnered the approach a great deal of 

attention.  The output of a spatial ICA of fMRI data is a number of maps constructed 

from functional signals on the individual subject level, each potentially representing 

functionally relevant networks.  Each map identifies regions whose signals are similar, 

which are interpreted as being functionally connected. 

 However, ICA of fMRI data suffers some significant limitations.  The fact that 

these calculated maps only potentially represent functionally relevant networks is one.  

The practical reality is that most spatial ICA of human fMRI data typically result in a 

large number of maps, many of which do not represent any easily identifiable functional 

network.  Thus, identifying what components are most interesting, and assigning 
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functional significance to those components is a challenge.  This amounts to a difficulty 

in interpreting ICA results.  Once spatially independent groups of regions are identified, 

what groups are important, and what components just represent noise? (Calhoun, et al. 

2001)  What components have been identified by neuronally driven signals, and what 

components have been identified using other physiologically driven temporal variance? 

(Birn, et al. 2008) 

 The main alternative to independent component analysis is the seed region 

correlation analysis.  In this approach, a region of interest is identified a priori, and 

correlations between that region and the rest of the brain are calculated as a measure of 

functional connectivity. (Biswal, et al. 1995; Hampson, et al. 2002; Lowe, et al. 2000)  

The most general correlation analysis would involve measuring the correlation between 

every possible pair of voxels within the brain.  However, this analysis is too 

computationally intensive given current resources and results in a large set of results that 

are difficult to decipher.  Generally this approach has not been used.  Alternatively, 

studies have mapped functional connectivity through measuring the correlation between 

the average time course from a seed region and every individual voxel within the brain, 

creating whole brain maps of functional connectivity to a specific seed. 

 The major advantage of seed region functional connectivity analyses is their ease 

of interpretation.  Correlations measured in a target region represent functional 

connectivity to the seed region.  In addition, seed region analyses benefit from the 

freedom to choose any desired seed region.  This supports hypothesis driven studies, 

where particular interest lies in the connectivity between known regions of the brain. 

However, the obvious limitation in comparison to ICA is the need for a priori definition 
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Figure 1.2 - Two common methods for generating steady state functional connectivity 
maps. 

 

of the seed region.  This usually means that additional data need to be acquired in order to 

spatially define regions of interest (ROIs). 

 

Quantification of Functional Connectivity 

 When performing seed region functional connectivity analyses, correlation 

coefficients (Pearson’s) are commonly used to measure similarity between functionally 

relevant signals.  Other measures have been used, affecting their interpretation.

 Pearson’s correlation coefficients, first described by Francis Galton (Galton 

1888), are useful for describing linear relationships between normally distributed 

variables, which approximately describes observed fMRI time series (see Figure 1.3).  

These measurements are bounded between negative one and one, with identical signals 

having a correlation coefficient of one.  Correlation coefficients are merely a value of the 

normalized cross correlation function with lag equal to zero (a.k.a. 0th order cross 

correlation).  Because correlation coefficients are bounded, groups of correlation 
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measures may not be normally distributed, especially if many values are near their 

inherent limits.  For this reason, prior to performing statistical tests, it is common to apply 

Fisher’s z transformation to ‘normalize’ (i.e. make the distribution of values more nearly 

normal) the measures of correlation. (Fisher 1928; Hampson, et al. 2006)  However, 

depending on the actual correlations measured, this may not be necessary. 

 

 

Figure 1.3 - Empirically measured fMRI data have an approximately normal distribution 
through time.  The histogram on the right represents the distribution of signal from all 
green voxels (left) across 512 image volumes. 

 

 Coherence between temporal signals has also been used as a marker of functional 

connectivity in fMRI data. (Sun, et al. 2004)  Coherence can be thought of as the 

correlation of the frequency spectra of two signals.  Likewise, coherence measures are 

sensitive to linear relationships of frequency components of each signal and trend 

towards unity as signals become linearly related. (Shiavi 1999)  Measures of coherence 

are insensitive to phase offsets between signals, which can be either an advantage or a 

disadvantage, depending on the situation.  For example, the phase insensitivity of 

coherence measures may be particularly problematic for some studies of causality, but 

may be advantageous in observing wide spread networks whose signals have large 
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temporal lags.  Either way, measurement of coherence as a marker of functional 

connectivity has not become commonplace.  As a different measure of connectivity, some 

studies have instead focused on measuring the lag of the maximum correlation.  The 

phase shift index (PSI) (Xu, et al. 2006) has been shown to have some functional 

significance, evidenced by its decrease in Alzheimer’s patients known to have 

compromised anatomic connectivity between brain regions. (Xu, et al. 2008)  The utility 

and functional significance associated with both coherence measures and the phase shift 

index emphasizes the point that important functional information is contained in the 

frequencies shared by signals, as well as in their phase relative to each other. 

 

Anatomic vs. Functional Connectivity 

 Suggestions of functional relationships between regions of the brain lead to 

obvious questions about the underlying structural connections that may facilitate their 

neuronal communication.  The relationship between functional connectivity (measured 

with fMRI) and structural connectivity (generally measured with tractography analysis of 

diffusion tensor imaging data) remains unclear.  Analysis of typical fMRI data dominated 

by variance related to task design (i.e. non-steady state data) has informed tractography 

analyses leading to more reliable mapping of motor, memory, visual, and language 

networks, though these only represent synergistic fusion of functional and structural 

information. (Guye, et al. 2003; Jang, et al. 2005; Kim, et al. 2006a; Kim, et al. 2006b; 

Takahashi, et al. 2007; Takahashi, et al. 2008; Upadhyay, et al. 2007; Vernooij, et al. 

2007) We know almost nothing of what one type of connectivity tells us about the other.  

Effective connectivity analyses, different from functional connectivity in its implication 
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of causality and its need for an assumed network model, has shown agreement with 

structural connectivity analyses in their implication of connectivity between primary 

auditory cortex and the lateral planum polare and anterior superior temporal gyrus. 

(Upadhyay, et al. 2008)  Still this does not inform us as to how structure drives functional 

connectivity measures.  Pathalogic deficits in structural connectivity, measured with 

water transverse diffusivity in white matter, predict decreases in functional connectivity 

measured with fMRI (Lowe, et al. 2008), though this pathologic relationship may not be 

representative of the normal brain. In a recent study done by myself and others, we found 

that between two functionally and structurally connected regions in the language 

network, measurements of functional connectivity positively correlated with the bundle 

thickness of the white matter bundle structurally connecting the regions.  Not only do 

these studies highlight the opportunity for future studies of structural-functional 

connectivity relationship, these distinctly different types of information suggest the 

opportunity for development of approaches modeling brain connectivity simultaneously 

using both types of data. (Rykhlevskaia, et al. 2008) 

 

Physiologic Noise and Related Issues 

 The art of correlation analyses of fMRI data requires isolation of interesting 

signals from the pool of potential confounding covariates.  Though we have already 

described in brief the common methods used for noise reduction in functional 

connectivity analyses, it may be worthwhile to cover this topic in more detail.  Covariates 

can suggest interesting relationships between signals that actually arise from truly 

unrelated or irrelevant sources.  The aims of a particular study govern what 
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physiologically based signals should be considered as noise, and which should be 

preserved as signal.  As mentioned earlier, most of the information underlying functional 

connectivity maps lies in the low temporal frequencies, leading us to confine our 

definition of signal to frequencies below 0.1Hz.  Meanwhile, the most common forms of 

physiological noise include residual motion artifacts, pulsatility related to blood flow, 

respiratory artifacts (manifested through a variety of mechanisms), among others which 

can alias into the low frequencies. 

 Many methods have been adopted for the removal of undesirable physiological 

noise.  A widely used method involves retrospectively correcting image data 

(RETROICOR) using low order fourier series whose frequencies and phases are dictated 

by measurements made in separately recorded cardiac and respiratory signals. (Glover, et 

al. 2000)  While proving to be a highly effective method for removing cardiac and 

respiratory noise, this method relies on signals that are measured simultaneously with 

image acquisition, a prerequisite that many imaging studies do not meet. 

 Alternatively, measurements made from specific regions of tissue have been used 

to represent undesirable noise.  For example, variance contained in voxels covering the 

white matter or cerebral spinal fluid might be assumed to be dominated by noise given 

the low probability of significant changes in cellular metabolism of their underlying 

tissue.  Assuming that the signal of interest is contained in focal tissue that is small 

compared to the total size of the brain, the average signal across the brain (a.k.a. the 

global time course) has also been removed as a method of reducing unwanted 

physiological noise. (Desjardins, et al. 2001; Macey, et al. 2004)  In each of these cases, a 

signal representing common, uninteresting variance is measured and needs to be removed 
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prior to functional connectivity mapping. 

There are multiple methods for practically calculating residual correlations 

between time courses after the effects of a third time course have been taken out.  Partial 

correlation coefficients involving three time series (two of interest and one common 

confound) can be measured in terms of a combination of pair wise correlations. (Spiegel 

1972)  While this method can be extended to account for the regression of multiple 

signals (motion parameters in addition to the global time course, for example), this 

extension becomes cumbersome and is unnecessary.  Assuming that covariates add 

linearly (an underlying assumption of the just mentioned partial correlation coefficient as 

well), the general linear model can be more easily used to quantify the contribution of a 

range of noise sources to a given voxel’s signal, and the residual error of the model 

represents the variance remaining unexplained by those covariates.  Measuring the 

correlations using the residual variance of two signals after modeling each using the same 

set of regressors is an efficient method of calculating partial correlations that yields 

identical results to the pair wise correlation method. 

However, it is important to remember that linearly regressing imaging signals 

derived from the images themselves (i.e. regressing global time courses from individual 

within-brain voxel signals) by definition means that the signal and the regressor are not 

independently measured.  It has been argued that this will lead to complications in 

interpreting maps of correlation coefficients calculated after global time course 

regression. (Murphy, et al. 2009)  Remember that an underlying assumption of using 

global time courses as models of noise is that the signals of interest are found over focal 

regions of the brain that are small in comparison to the volume of tissue contributing to 
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the global time course.  Despite this controversy, removal of the global time course via 

linear regression has been used in a number of studies of functional connectivity, 

including studies of the default mode hypothesis. (Fox, et al. 2005; Fransson 2005) 

 

Clinical Significance of Functional Connectivity Measurements 

 Functional connectivity has shown to be predictive of a variety of clinically 

relevant measures.  Behaviorally, resting state functional connectivity between language 

regions has been shown to predict reading performance across subjects. (Hampson, et al. 

2006)  Even within a given subject, it has been suggested that intrinsic BOLD variance 

can explain some trial-to-trial variability in both event related hemodynamic responses 

(Fox, et al. 2006) and in their behavioral correlates (force of button pressing for 

example). (Fox, et al. 2007).  Differences in resting state functional connectivity also 

match gender and age differences in IQ. (Schmithorst and Holland 2006) 

 A variety of studies have demonstrated changes in functional connectivity in the 

context of known pathology.  Just covering a sampling of representative studies, patients 

suffering from dyslexia show differences in the spatial extent of connectivity between the 

left and right inferior frontal gyrus and the cerebellum (Stanberry, et al. 2006).  Patients 

with multiple sclerosis have shown deficits in functional connectivity within the frontal 

and motor cortices (Cader, et al. 2006; Lowe, et al. 2002), while schizophrenic patients 

have shown differences in prefrontal, parietal, and temporal cortices (Liang, et al. 2006; 

Whalley, et al. 2005), further highlighting the potential for clinical relevance assigned to 

measures of functional connectivity. 
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Where Do We Go Next? 

 Despite the rapidly growing number of steady state functional connectivity 

studies, some fundamental questions remain unanswered.  The first is whether the low 

frequency variance measured in resting states is representative of that under other 

cognitive conditions.  Two chapters in this thesis are dedicated to addressing this topic.  

First we review our earlier study of functional connectivity in the motor network, and 

then we continue with its extension into the working memory and default mode networks.  

Second, we explore methods of extending functional connectivity analyses using other 

functionally relevant signals measured with electroencephalography. Finally, we explore 

methods by which functional connectivity analyses can be improved through advanced 

image acquisition and analysis, in the form of ultra high field imaging and measurements 

of mutual information. 
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CHAPTER II 

 

TASK DEMAND MODULATION OF STEADY-STATE FUNCTIONAL 
CONNECTIIVTY TO PRIMARY MOTOR CORTEX 

 

Overview 

 The following chapter recounts one of our initial studies of functional 

connectivity in normal subjects, and is intended to serve as background for the studies 

discussed in the following chapters.  Here we investigated whether steady state 

measurements of functional connectivity were affected by cognitive load, and we found 

that they were within the sensorimotor network.  It was this study that led to our studies 

of cognitive load in the working memory and default mode networks, presented in the 

next two chapters.  This study was published shortly after it was presented in connection 

with my master’s thesis work. (Newton, et al. 2007) 

 

Introduction 

 Interregional correlations between BOLD signals have been identified, even in the 

absence of a task or stimulus, as possible indicators of functional connectivity between 

regions in the brain. (Biswal, et al. 1995; Biswal, et al. 1997)  Although there has been 

considerable interest in using such measurements to assess neural circuits,  significant 

questions about how to perform and interpret them remain unanswered.  Several studies 

have shown that functional connectivity can be measured in the resting state, and that  

maps of some systems and circuits can be reproducibly obtained without performing a 

task or being subject to a stimulus. (Biswal, et al. 1995; Cordes, et al. 2002; Fransson 
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2005; Greicius, et al. 2003; Quigley, et al. 2001)  Other studies have focused on 

measuring functional connectivity during continuous task performance. (Kemmotsu, et al. 

2005; Lowe, et al. 2000; Sun, et al. 2004)  Hampson et al. (Hampson, et al. 2004; 

Hampson, et al. 2002) and Hirsh et al. (Hirsch, et al. 2004) broadened their scope to 

include data gathered both during a resting state, as well as during continuous 

performance of a task or with constant stimulation, and found that functional connectivity 

in the steady state during stimulation was modified compared to a baseline state.  

However, as noted recently in a review by Raichle et al. (Raichle and Gusnard 2005), the 

relationship between functional connectivity and traditional activation patterns has 

proven to be confusing and difficult to characterize.  Studies that quantitatively evaluate 

the effects of steady-state task performance, in particular the effects of task demand, on 

interregional correlations in low frequency BOLD fluctuations are still needed. 

 One system in which functional connectivity has been explored extensively with 

fMRI is the motor system.  This system is particularly appealing because a large body of 

literature exists, providing information about the major regions of the human brain 

involved in the execution of many motor tasks, and the influence they have on each other.  

Finger tapping has been the focus of many fMRI studies because there are known to be 

large BOLD signal changes in motor cortex during the movement of even a single finger, 

and finger tapping can be quite easy for subjects to execute reliably. 

 Several activation studies have been previously performed on the motor system, 

using a variety of tasks. (Cramer, et al. 2002; Debaere, et al. 2001; Dhamala, et al. 2003)  

It has been found that the specific design of a task can predictably affect changes in the 

BOLD signal.  For example, Dhamala et al. (Dhamala, et al. 2002) found that when a 



 

 29 

subject was allowed to create their own pattern of finger tapping, increases in complexity 

of the pattern correlated well with increases in activity in the primary motor cortex, 

supplementary motor area, basal ganglia, thalamus, and cerebellum.  However, in this 

case, tapping patterns were not well controlled, and functional connectivity was not 

addressed.  This type of question has been addressed more broadly in studying the effects 

of task demand on activity in finger movement tasks [Wexler et. al. 1997], and it was 

found that finger tapping rate did modulate activity, though only in the contralateral 

primary motor cortex.  Rao et al. (Rao, et al. 1996) recorded activity in a finger tapping 

task in which subjects were paced at a variety of tapping rates.  They found that activity 

increased with increases in the tapping rate in a variety of motor areas, with subjects 

tapping at 1, 2, 3, 4, and 5Hz.  However, this relied heavily on analysis of only a few 

specific, selected voxels in each region, and also did not address the subject of functional 

connectivity.  Riecker et al. (Riecker, et al. 2003) published a study intricately mapping 

how activity changes with the rate of finger tapping in paced tapping, where the subjects 

were paced at 1, 2,3, 4, 5, and 6Hz.  They found that activity increased as finger tapping 

rate increased in primary motor cortex, supplementary motor area, cerebellum, and 

thalamus.  However, not all regions showed the same pattern of activation increases.  

Activation in some regions seems to scale linearly with tapping rate, while others follow 

more complicated relationships.  However, these activation studies did not address 

tapping rate effects on functional connectivity. 

 Toma et al. (Toma, et al. 2002) investigated the effect of movement rate on both 

activity and functional coupling using electro-encephalography (EEG).  Using measures 

like EEG band-power and correlation, they found that tapping rate can have an effect on 
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functional coupling.  In slow movements (≤ 1Hz), they reported being able to see the 

strengthening of coupling between regions followed by uncoupling before the next tap 

was executed.  Fast movements showed continuous coupling.  Limitations on spatial 

resolution constrained their ability to resolve regions within the brain, and also limited 

the number of regions chosen to study.  No strict mapping of the functional data onto 

anatomical landmarks was done. 

 In contrast, Jiang et al. (Jiang, et al. 2004) studied the modulation of functional 

connectivity in a finger tapping task using a network model based on graph theory.  They 

found that it was possible to delineate between the different component tasks contained 

within the execution of a single finger tap, but they did not look at how connectivity 

between regions changed as tapping rate was modulated. 

 The purpose of this study was to evaluate how fMRI measures of functional 

connectivity, based on steady state interregional correlations, are modulated in an audibly 

paced finger tapping task by varying the task demand, and to investigate the underlying 

factors contributing to any such changes.  Tapping rate was used as a measure of task 

demand.  If steady-state interregional correlations of BOLD data reflect connectivity, we 

would expect those correlations to change for some regions as task demand increases, 

reflecting the recruitment of those areas to a network for completion of the task. 

(Hampson, et al. 2004; Hampson, et al. 2002; Morgan and Price 2004)  Some areas may 

show strong connectivity regardless of the task demand, while others could display more 

complicated relationships.  A two-fold approach was taken.  First, the effects of tapping 

rate on mean interregional correlations to left primary motor cortex in a steady-state 

finger tapping task were investigated.  Second, the origins of changes in mean 
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interregional correlations were explored by studying the variations in the number of 

highly correlated voxels within regions of interest (ROIs). 

 

Methods 

 

Subjects 

 Eleven normal, right-handed subjects were recruited for participation in this 

study.  All subjects were self identified as right handed, and were in good health.  All 

subjects provided informed consent in accordance with procedures developed by the 

Institutional Review Board at Vanderbilt University, and were compensated.  The subject 

pool was composed of 4 male and 7 female subjects, and ranged in age from 19 to 34 

years (mean=25). 

 

Imaging and Setup 

 Imaging was performed using on a 3-T whole-body MRI scanner (GE Medical 

Systems, Milwaukee, WI), using a ‘bird cage’ head coil.  A high resolution T1-weighted 

scan was performed, using conventional parameters (TE=3.4ms, TR=250ms, 256x256 

matrix, 7mm slice thickness, FOV=24cm), and was set up such that both the number of 

slices and their location coincided with the five functional data sets.  All functional 

images were acquired using 18 slices of 64x64 pixels covering a field of view of 24cm 

using an acquisition band width of 62.5kHz.  Slices were 7mm thick, with no gap 

between slices.  All anatomic and functional image slices were axially oriented.  Four 

volumes were discarded at the beginning to allow the magnetization to reach equilibrium.  
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Slices were acquired in an interleaved fashion, with TE=25ms, TR=2s, and a flip angle of 

90°.   All subjects were prepared with a button pad attached to their right wrist, 

headphones equipped with a microphone, and goggles containing LCD screens for visual 

cues.  Button pads were provided by Rowland Institute of Science, Boston, MA.  LCD 

goggles were produced by Resonance Technologies, Northridge, CA.  Head restraints 

were used to reduce motion. 

 

Functional Scans 

 Five functional scans were performed in total.  The first functional scan consisted 

of one resting period, lasting 200 seconds, where the subject was visually presented with 

the word ‘REST’, no auditory cue was given, and the subject was asked to rest.  The 

second functional scan was a blocked design and lasted 200 seconds, as shown in Figure 

2.1.  The blocked design consisted of three blocks of 60 seconds each, and a final resting 

period of 20 seconds.  Each block was split into three distinct parts, including a resting 

period of 20 seconds (silent rest), a passive listening task where the auditory cue was 

presented at 2Hz (beeping rest), and a 2Hz tapping task lasting for 20 seconds (beeping 

tapping).  For all tapping periods, the word ‘TAP’ was visually displayed, and the subject 

was presented with an auditory beep (10kHz, 20ms) that repeated at the desired rate of 

tapping.  The subject was instructed to treat the beeping as a metronome and to pace their 

tapping with it.  The remaining three functional scans were acquired with the subject 

performing a steady state tapping task, consisting of a 30s resting period, followed by a 

200s steady tapping period, and concluding with a 30s resting period.  Pre and post task 

resting periods were removed prior to analysis.  Each of these three steady state tasks 
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used a different auditory cueing rate during tapping, with the three rates being 1, 2, and 

4Hz.  All four functional scans lasting 200s and not having a blocked design are 

considered steady-state scans. 

 

 

Figure 2.1 - Task design used for the isolation of functionally active motor and auditory 
voxels during audibly paced finger tapping at two taps per second.  ‘Silent Rest’ refers to 
a period where the subject was visually presented with the word ‘REST’, no auditory cue 
was presented, and no tapping was performed.  ‘Beeping Rest’ refers to the time where 
the subject was visually presented with the word ‘REST’, the pacing auditory cue was 
presented, but the subject did not tap.  ‘Beeping Tapping’ refers to when the subject was 
visually presented with the word ‘TAP’, and the subject executed the finger tapping task 
being paced by the auditory cues. 
 

 During all tapping periods, performance was measured by recording timing 

information for each tap executed.  One tap was defined as the depressing and releasing 

of the button on the button pad with the right index finger.  All cues (visual and auditory) 

were presented with the help of MATLAB version 7 (The Mathworks Inc. Natick, MA), 

in combination with the Psych Toolbox extensions. (Pelli 1997) 

 

ROI Definition 

 Preprocessing was performed using SPM2 fMRI processing software 

(www.fil.ion.ucl.ac.uk/spm/software/spm2) to realign and reslice data as well as correct 

for slice timing issues.  Realignment parameters were inspected to confirm the absence of 
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gross head motion.  Paired t-tests were used to test for differences between motion 

parameters gathered during different stimulus frequencies.  Spatial smoothing was not 

performed in order to reduce the likelihood that highly correlated voxels would influence 

their neighbors. 

 Regions of interest were defined in a two step process.  First, large regions were 

drawn on high resolution, T1 weighted anatomic images using predetermined landmarks 

for each region.  Regions were allowed to span over multiple slices.  Once these regions 

were defined, they were refined by excluding any voxels that were not significantly 

activated in the blocked design experiment.  This can be thought of as selecting active 

voxels in the 2Hz stimulus condition, and grouping them into functional groups based on 

their anatomic location.  Defined motor regions included left primary motor (PM), 

supplementary motor area (SMA), and right cerebellum (CB).  An additional ROI was 

defined in the right auditory cortex (AUD).  A control region (CONTROL) was defined 

as being the entire brain excluding any voxels contained in already defined ROIs.  The 

voxels contained within the brain were identified using an appropriate signal threshold 

(30.5+/- 5.9% of individual maximum).  This threshold was settled upon by visual 

inspection of whole brain masks of all subjects. 

 PM anatomical boundaries were defined as those voxels surrounding and 

including the contralateral central sulcus.  This ROI was drawn manually from the edge 

of the brain, around the tip of the central sulcus, back to the edge of the brain, splitting 

the space between the central sulcus and neighboring sulci.  Superior and inferior limits 

were defined by the top of the brain and the top of the ventricles respectively.  Anatomic 

landmarks for SMA were the tips of sulci surrounding the midline of the brain, on both 
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sides, with the superior limits defined by the top of the brain and the inferior limits 

defined by the top of the ventricles.  The anatomic region containing AUD was defined as 

being contained between the top and the bottom of the ventricles, extending laterally 

from the midline to the edge of the brain.  CB was defined as being contained on slices 

including the cerebellum, in the hemisphere ipsilateral to the tapping hand. 

 All anatomically defined ROIs were then refined using functional activation 

maps.  Activation maps used for this refinement were generated using SPM2, making use 

of the general linear model (Friston, et al. 1994), with a threshold for activity set at 

p<0.001 uncorrected for multiple comparisons, and voxel clusters of at least 5 voxels.  

Activation maps were generated using the blocked design functional data, where periods 

of ‘silent rest’ were compared to ‘beeping rest’ in order to locate auditory activation.  

This auditory activation map was used for refinement of AUD.  PM, SMA, and CB were 

refined using motor activation maps.  Motor activation maps were constructed by 

comparing ‘beeping rest’ periods to ‘beeping tapping’ periods.  From this point on, an 

ROI refers only to the activated voxels within the defined anatomic boundaries. 

 

Partial Correlation Coefficient Map Generation 

 The focus of this study was to calculate correlations between the signal from one 

region to the signal in another region.  This was accomplished by first generating partial 

correlation coefficient maps where each voxel has a partial correlation coefficient, ‘r’ 

value, associated with it.  Partial correlation maps for each subject were calculated 

making use of equations 2.1 and 2.2.  The term ‘rxy’ refers to the Pearson’s correlation 

coefficient for two time series, x and y.  Both x and y have N time points.  The term ‘rxy·z’ 
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refers to the partial correlation coefficient between x and y with the effects of z removed.  

In this case, z has the same number of time points as x and y.  Partial correlation maps 

were generated for each of the four steady-state functional scans (rest, 1, 2, 4Hz tapping).  

Prior to their use in equations 1 and 2, all time series were linearly detrended and low 

pass filtered with a cut off frequency equal to 0.1Hz, using a Chebyshev Type II filter.  

The filter was implemented in both the forward and the reverse direction in order to 

prevent phase distortion. 
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 Partial correlation maps were generated showing the partial correlation between 

the average PM time course (x) and the time course for every voxel (y), removing the 

effects of the global time course (z).  First, an average time course for PM was calculated 

by averaging the signal from each PM voxel at each time point.  A similar procedure was 

performed to construct an average time course for the whole brain, which was considered 

the global time course which may have been influenced by various effects of no specific 

interest to motor regional connectivity.  Voxels within the brain that should be included 

in this global time course were identified using the before mentioned signal threshold and 

included voxels within previously defined ROIs.  The third time series used in calculating 
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partial correlation maps was the time course from each voxel, taken individually.  Steady-

state tapping scans had their resting periods removed before the partial correlation 

coefficient maps were generated. 

 

Analysis 

 Two major analyses were applied.  Each analysis tested for two different effects 

using two ANOVAs.  The first analysis addresses the question of whether the strength of 

correlations to PM for each ROI changes as a function of the tapping rate.  This consisted 

of calculating the mean partial correlation (MPC) coefficient within an ROI.  The MPC 

represents the strength of correlation between an ROI and PM.  This was done for all 

steady-state data (rest, 1Hz, 2Hz, and 4Hz tapping) and for each ROI (SMA, CB, AUD, 

and CONTROL).  Statistical analysis was done using R version 2.0.0 (www.r-

project.org).  ANOVAs were used to test whether tapping rate affected the MPC of an 

ROI (i.e. 0Hz vs. 1Hz, 2Hz vs. 4Hz, etc.) and to test whether ROIs had a different MPC 

at each tapping rate (i.e. SMA vs. CB, AUD vs. CONTROL, etc.).  In each case, if the 

ANOVA was significant with a p-value ≤ 0.05, paired t-tests were performed to 

determine significant differences between values. 

 The second analysis addressed the question of whether changes in correlation 

were due to changes in the number of correlated voxels.  This consisted of establishing a 

correlation threshold for each subject, and calculating the percent of the voxels above that 

threshold (PAT) within each ROI for that subject.  Again, these correlations are between 

an ROI and PM.  Results were then averaged across subjects, and studied for significant 

differences.  The threshold used for each subject was the mean of all the partial 
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correlations for all voxels throughout the whole brain plus one standard deviation.  

Again, two ANOVAs were performed, as was done for the MPC, where a p-value of less 

than 0.05 led to paired t-testing. 

 

Results 

 

ROI Definition and Partial Correlation Coefficient Map Generation 

 There were three cases where data were found to be unusable for analysis.  In 

each case, only one aspect of the analysis was affected, and thus the remaining data from 

that subject could be included in the appropriate analyses.  Analysis of intertap intervals 

and number of executed taps were used to evaluate tapping performance.  During 1Hz 

cueing for 200s, subjects averaged 203+/-4 taps (mean +/- stdev, target 200 taps).  During 

2Hz cueing for 200s, subjects averaged 401+/-3 taps (target 400 taps).  During 4Hz 

cueing, subjects averaged 782+/-25 taps (target 800 taps).  It was seen that performance 

was most accurate across subjects at the 2Hz tapping rate, with the poorest accuracy at 

the 4Hz tapping rate.  One subject’s 4Hz tapping data were discarded based on several 

extended intertap intervals attributed to reported fatigue, in addition to a tap count (750 

taps) falling outside of the mean minus one standard deviation across subjects.  Analysis 

of motion parameters showed no effect of stimulus frequency on maximum 

displacements or rotations (p<0.05), as well as no displacements greater than 1mm or 

rotations greater than 0.03 radians in any direction. 

 Activation maps were generated for each subject, for motor activation and 

auditory activation separately.  Sample ROIs and their relation to auditory and motor 
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activation maps of the same subject can be seen in Figure 2.2 and Figure 2.3.  ROIs were 

defined for each subject, and the number of voxels in each refined ROI was counted.  The 

mean of the number of voxels in each region across subjects can be seen in Table 2.1.  

Two cases were discarded due to lack of detectable activation within the anatomical 

boundaries of an ROI. 
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Figure 2. 2 - Activation maps generated from the blocked task design overlaid on T1 
weighted anatomic images.  Activity thresholds were calculated without accounting for 
multiple comparisons,with p≤0.001, and a minimum cluster size of 5.  (A)  Auditory 
activation calculated by comparing ‘beeping rest’ periods with ‘silent rest’ periods.  (B)  
Motor activation maps calculated from comparing ‘beeping tapping’ periods with 
‘beeping rest’ periods. 

 

 

Figure 2. 3 - Location of ROIs on a representative subject.  These ROIs were identified 
by establishing anatomical boundaries and then refining the ROI within those boundaries 
by keeping only significantly activated voxels within them.  The activation maps from 
Figure 2.2 were used for this refinement.  1=left primary motor (PM) 2=supplementary 
motor area (SMA), 3=right cerebellum (CB), 4=right auditory cortex (AUD). 
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TABLE 2.1:  Number of voxels per ROI across subjects 

 PM SMA CB AUD Control 
Mean 47 30 57 67 1.77E+04 
Std dev. 17 46 18 50 2.00E+03 

 

 For all subjects, ROIs were distinct from each other, with no overlaps.  Maps of 

partial correlation coefficients between each voxel and the average PM signal, accounting 

for the global time course, were successfully constructed for all subject’s steady-state 

scans.  An example of a map of partial correlation coefficients can be seen in Figure 2.4.  

This example was taken from the same subject as Figures 2.2 and 2.3, and the 2Hz 

steady-state tapping data were again used. 

 

 
Figure 2. 4 - A map of partial correlation coefficients between each voxel and the 
average time course from PM (see Figure 2.3, #1) overlaid on a high resolution, T1 
weighted image.  These partial correlations represent the correlation of each voxel to the 
average time series from PM, removing the effects of the global time course.  These 
correlations were calculated from steady-state tapping data, with the subject tapping at 
2Hz.  Steady-state scans imaged the subject with TR=2s over a scan time of 200s.  Maps 
of this nature were generated for each subject during rest and steady-state finger tapping 
at 1, 2, and 4Hz.  Note that significant correlation clusters exist in and around the ROIs 
identified in Figure 2.3. 
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MPC Analysis 

 Figure 2.5 shows the MPC of each ROI averaged across subjects at each tapping 

rate.  Note that correlations in the control region are uniformly low, while correlations in 

other ROIs are much higher.  ANOVA showed that MPC was modified by tapping rate in 

all regions except SMA (SMA: p=0.23;CB: p=0.01; AUD: p=7.4e-5; CONTROL: 

p=0.001).  Paired t-tests between rates can be seen for each ROI in Table 2.2. 

 

TABLE 2.2:  Paired t-test results between tapping rates within ROI 

 SMA CB AUD CONTROL 
 MPC PAT MPC PAT MPC PAT MPC PAT 
 p-value p-value p-value p-value p-value p-value p-value p-value 
0Hz-1Hz 0.05* 0.03* 0.05* 0.03* 7.4e-3* 0.01* 0.28 0.41 
0Hz-2Hz 0.66 0.56 0.01* 0.01* 3.3e-4* 1.8e-4* 0.02* 0.77 
0Hz-4Hz 0.11 0.02* 0.07 0.07 4.9e-3* 4.1e-3* 2.8e-3* 0.45 
1Hz-2Hz 0.16 0.07 0.26 0.71 0.05* 0.03* 0.13 0.67 
1Hz-4Hz 0.44 0.35 0.34 0.84 0.21 0.26 0.08 0.11 
2Hz-4Hz 0.90 0.56 0.61 0.93 0.74 0.71 0.33 0.22 
* denotes p-values ≤ 0.05       
 

 

 ANOVA also showed that within a tapping rate, MPCs were different between 

ROIs (p ≤ 0.01 for all rates).  CB correlations to PM were not found to be different from 

CONTROL at rest, but were different during tapping.  Similarly, correlations between 

AUD and PM were not statistically different from correlations between CONTROL and 

PM at rest, but were different during cued finger tapping.  At rest, PM correlations to 

AUD and SMA were significantly different from each other, but as tapping rate 

increased, their difference lost significance.  The t-test results for differences between 

ROIs correlation to PM, at each tapping rate, are summarized in Table 2.3.  P-values 

were not corrected for multiple comparisons. 
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Figure 2. 5 - Across subjects average of the Mean Partial Correlation (MPC) of each 
region during a given steady-state task demand.  Error bars represent the standard 
deviation between subjects.  Paired t-tests for significant differences between regions can 
be seen in Table 2.3.  0Hz is the resting state data.  Notice that some ROIs were 
significantly correlated to PM at all task demands (SMA), while others showed 
modulation (CB and AUD).  The control region consistently showed low correlation. 

 

 

 
 

Figure 2. 6 - When looking at the voxels within a given ROI, the Percent Above 
Threshold (PAT) is shown to closely mirror results of the ROIs MPC.  This suggests that 
changes in the percent of correlated voxels within a region drives changes in the MPC.  
Tests for significant differences between the ROIs and between tapping rates can be seen 
in Tables II and III.  Error bars represent the standard deviation between subjects. 
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TABLE 2.3:  Paired t-test results between ROIs within tapping rate 
 

 REST: 0Hz TAPPING: 1Hz TAPPING: 2Hz TAPPING: 4Hz 
 MPC PAT MPC PAT MPC PAT MPC PAT 
 p-value p-value p-value p-value p-value p-value p-value p-value 
SMA-CB 0.16 0.19 0.18 0.37 0.51 0.33 0.77 0.57 
SMA-AUD 0.02* 0.04* 6.5e-3* 0.01* 0.68 0.82 0.33 0.42 
SMA-Control 2.1e-3* 0.01* 7.3e-5* 2.1e-4* 3.9e-3* 6.6e-3* 2.4e-3* 6.4e-3* 
CB-AUD 0.54 0.27 0.06 0.14 0.17 0.37 0.25 0.57 
CB-Control 0.28 0.14 1.7e-5* 3.5e-4* 8.7e-7* 6.6e-5* 2.9e-3* 8.7e-3* 
AUD-Control 0.96 0.86 1.3e-3* 2.8e-3* 2.3e-6* 7.9e-6* 5.8e-7* 1.1e-3* 
* denotes p-values ≤ 0.05 
 

      

 

PAT Analysis 

 Figure 2.6 shows that finger tapping rate can affect the percent of the voxels in a 

given ROI above a given correlation threshold.  These results represent the average PAT 

across subjects.  ANOVA confirmed that rate affected the PAT in CB (p=0.01) and AUD 

(p=0.18e-3), but not in SMA (p=0.06) or CONTROL (p=0.44).  In general, as the tapping 

rate increased, all regions except the control region increased in the percent of voxels 

above the correlation threshold, though not all these increases were statistically 

significant.  The results of paired t-tests are reported in Table 2.2.  ANOVA confirmed 

that within a tapping rate, ROIs had significantly different PATs (p ≤ 0.02 for all rates).  

Corresponding results for t-tests looking for differences between ROIs at each tapping 

rate can be seen in Table 2.3.  
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Discussion 

 The data presented here supports the idea that task demand can affect measures of 

functional connectivity made during the execution of a task.  This is significant because 

many studies until now have not considered the effect of task demand on measures of 

functional connectivity.  In addition, it is interesting that changes in the number of voxels 

within ROIs that were significantly correlated to PM mirrored changes in mean 

correlation of the regions.  This suggests the underlying cause for mean correlation 

changes within a region is the recruitment of additional voxels rather than changes in a 

fixed set of voxels. 

 The data presented here supports the assertion that resting state correlations 

reflect functional networks, and that steady state correlations can change in both 

magnitude and pattern when a task is executed.  In order to complete a given task, it may 

be expected that some regions must become recruited into a functional network.  If 

interregional correlations truly measure functional connectivity, it may also be expected 

that those correlations should change for some brain regions when going from a resting 

state to task performance.  These data show that mean correlations to PM at rest are 

different from mean correlations during finger tapping.  In addition, it has been shown 

that different states of activity can affect connectivity differently, even when the nature of 

the task is similar.  This can be seen by comparing SMA and CB in Figure 2.5.  SMA is 

highly connected to PM at all levels of activity, including rest.  CB behaves differently in 

that it has weak connectivity to PM at rest, but strong connectivity while tapping, though 

CB connectivity with PM is not affected by the rate of tapping.  Conversely, AUD 

correlation to PM is significantly changed at each tapping rate.  Failure to see changes in 
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connectivity between tapping rates may be due to a saturation effect.  This may apply to 

SMA-PM correlations, which are always high, or to CB-PM correlations which are high 

when the task is performed. 

 There is an overall trend of the data to become more variant during 4Hz tapping.  

However, despite the increased variance, paired t-tests yield significant results.  The 

increased variance at 4Hz tapping could have a variety of explanations.  Because the 4Hz 

tapping scan occurred last, there was a higher likelihood that the subjects had moved 

significantly with respect to the blocked design scan, as well as the T1-weighted scan, on 

which the ROIs were based.  Also, 4Hz tapping was reported to be significantly more 

difficult than 1 or 2Hz tapping.  Thus, motion artifacts were more likely.  Some subjects 

also reported wrist cramping and muscle fatigue.  Though most subjects tapped 

accurately at all tapping rates, it was observed that there was more variation in the 

tapping rates when the cuing rate was 4Hz. 

 The construction of partial correlation coefficient maps from steady state 

acquisitions revealed functional networks that closely coincided with regions of 

activation in a block design experiment, as can be seen in comparing Figure 2.2 and 

Figure 2.4.  This adds to the body of evidence showing that steady state low frequency 

correlations can be used to reveal functional networks.  Particularly high correlations 

were observed in and around the seed region, PM, which should be expected because the 

voxels in PM each contributed to the signal being used as the base for all correlations.  It 

should be noted that all ROIs were created through refining anatomical regions using 

functional data acquired during 2Hz tapping.  It is likely the precise extent of this 

activation would change with tapping rate, and that some of those voxels significantly 
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active during 2Hz tapping would not be detected during 1Hz, tapping.  Similarly, some 

voxels not active during 2Hz tapping might have been activated during 4Hz tapping.  

This was necessary to keep the size of ROIs constant across tapping rates.   

 Given that interregional correlations change with task demand during a finger 

tapping task, a question arises whether those changes are due to changes in the 

correlation of a fixed set of voxels to PM, or due to changes in the number of correlated 

voxels contained within the ROI.  Figure 2.6 suggests that increases in the number of 

correlated voxels account for average increases in interregional correlations.  This figure 

mirrors the mean correlation analysis seen in Figure 2.5.  This evidence argues that it is 

the number of correlated voxels which drives observed changes in overall functional 

connectivity, though it can not be ruled out that magnitude changes in correlation 

contribute as well. 

 It has been seen that in an audibly cued finger tapping task, auditory activation 

can be found even when attempting to generate motor contrast from a blocked design task 

consisting of cuing without tapping and cuing with tapping. (Woodruff, et al. 1996)  This 

unexpected auditory activation was attributed to attentional modulation.  It can be 

observed in the mean ROI correlation analysis that AUD appears to behave in a similar 

fashion to motor ROIs as tapping rate is increased.  One hypothesis explaining this is that 

both AUD and PM are being stimulated at the same frequency, which creates inherent 

correlations in their BOLD responses.  Though all three stimulus frequencies may be 

aliased to 0Hz when sampled in 2 second intervals, and thus pass through the applied low 

pass filter, aliasing effects are unlikely to explain increases in correlation as the stimulus 

frequency increases, as is seen in AUD-PM correlations.  Furthermore, uniformly high 



 

 48 

SMA-PM correlations across stimulus frequencies, including rest, argue against aliasing 

being the source of changes in correlations when comparing rest to task performance in 

AUD and CB. 

 Aliasing of physiological noise has been a topic of recent study, and potentially 

could confound studies such as those reported here.  Sampling at 0.5Hz, respiratory and 

cardiac frequencies may be aliased into the low frequency spectrum.  Of these, aliasing of 

the respiratory signal is less troublesome because it will likely be resolved in some or all 

subjects.  Even so, both cardiac and respiratory effects are present over the entire brain, 

and will contribute to the global time course whose effects have been removed via the 

partial correlation approach.  Furthermore, their residual influence should not change 

with tapping rate. 

 A second hypothesis regarding the behavior of AUD is that it is being recruited to 

complete the given task.  This increase in correlation between PM and AUD may 

represent the creation and refinement of a network of cortical regions used together to 

perform a given task.  Close inspection of Table 2.3 reveals a pattern that emerges as 

tapping rate increases.  It is shown that CB-PM correlations and AUD-PM correlations 

become different from the control region only when the task is performed, and that AUD-

PM correlations become more like SMA-PM correlations as the tapping rate and the 

auditory cue rate increased.  This might be explained by attentional modulation in an 

auditory cued task, or may provide evidence of an effective connection between motor 

cortex and auditory cortex used to complete the task.  However, this question must be 

more directly addressed.  Figure 2.7 summarizes the trend in interregional correlations 

that develops as tapping rate increases. 
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 Implicit in our study design, it was hypothesized that activity during conventional 

block design can predict regions that are correlated.  This study requires the 

establishment of a seed ROI, but it is possible that a self-organizing map (SOM) could be 

used to eliminate the need to define a seed region. (Peltier, et al. 2003)  This may 

illuminate other regions, or networks of regions, at work that have not been anticipated.  

Though self identification of handedness is thought to be less reliable than standardized 

testing, the effects of handedness on this study are likely to be minimal due to the 

consistent choice of the seed ROI contralateral to the tapping hand. (Jancke, et al. 1998)  

Better control of handedness may have allowed for additional analysis of ipsilateral 

primary motor cortex.  However, despite these limitations, this study has shown that task 

demand can modulate functional connectivity in the motor system. 

 

 

Figure 2. 7 - A visualization summarizing the significant results from Table 2.3, Figure 
2.5 and Figure 2.6.  Colored lines projecting from PM represent the average MPC across 
subjects of each region to PM, as shown in Figure 2.5, with color of the line denoting the 
specific value.  The MPC color scale is given by the color bar located at the bottom of the 
figure.  Looking within each tapping rate, solid MPC lines indicate that the ROI’s 
correlations to PM are significantly different from those in the control region, as shown 
in Table 2.3.  Dotted MPC lines mean that the correlations are not significantly different 
from those in the control region.  The mean PAT across subjects, as shown in Figure 2.6, 
is proportional to the diameter of each ROI’s circle.  A general trend can be seen where 
ROIs develop correlations that are increasingly different from those in the control region 
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as tapping rate increases.  This could reflect that tighter coupling of the system may be 
required at higher task demands. 
 

Conclusions 

 The present study has shown that in a finger tapping task, the rate of finger 

tapping affects interregional correlations in the motor cortex.  Furthermore, evidence has 

been presented here that the source of these correlation changes is likely to be changes in 

the fraction of significantly correlated voxels in an ROI, as opposed to magnitude 

changes of the same significantly correlated voxels.  Finally, evidence has been provided 

that interregional correlations can illuminate connections made to complete a task which 

are not strong at rest. 

 

References 

 

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional connectivity in the 
motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 
34(4):537-41. 

Biswal BB, Van Kylen J, Hyde JS. 1997. Simultaneous assessment of flow and BOLD 
signals in resting-state functional connectivity maps. NMR Biomed 10(4-5):165-
70. 

Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K. 2002. Hierarchical 
clustering to measure connectivity in fMRI resting-state data. Magn Reson 
Imaging 20(4):305-17. 

Cramer SC, Weisskoff RM, Schaechter JD, Nelles G, Foley M, Finklestein SP, Rosen 
BR. 2002. Motor cortex activation is related to force of squeezing. Hum Brain 
Mapp 16(4):197-205. 

Debaere F, Swinnen SP, Beatse E, Sunaert S, Van Hecke P, Duysens J. 2001. Brain areas 
involved in interlimb coordination: a distributed network. Neuroimage 14(5):947-
58. 

Dhamala M, Pagnoni G, Wiesenfeld K, Berns GS. 2002. Measurements of brain activity 
complexity for varying mental loads. Phys Rev E Stat Nonlin Soft Matter Phys 
65(4 Pt 1):041917. 



 

 51 

Dhamala M, Pagnoni G, Wiesenfeld K, Zink CF, Martin M, Berns GS. 2003. Neural 
correlates of the complexity of rhythmic finger tapping. Neuroimage 20(2):918-
26. 

Fransson P. 2005. Spontaneous low-frequency BOLD signal fluctuations: an fMRI 
investigation of the resting-state default mode of brain function hypothesis. Hum 
Brain Mapp 26(1):15-29. 

Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. 1994. 
Statistical parametric maps in functional imaging: A general linear approach. 
Human Brain Mapping 2(4):189-210. 

Greicius MD, Krasnow B, Reiss AL, Menon V. 2003. Functional connectivity in the 
resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad 
Sci U S A 100(1):253-8. 

Hampson M, Olson IR, Leung HC, Skudlarski P, Gore JC. 2004. Changes in functional 
connectivity of human MT/V5 with visual motion input. Neuroreport 15(8):1315-
9. 

Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. 2002. Detection of 
functional connectivity using temporal correlations in MR images. Hum Brain 
Mapp 15(4):247-62. 

Hirsch JG, Lowe MJ, Schwenk S, Rossmanith C, Hennerici MG, Gass A. Functional 
connectivity in the motor and auditory systems: a reproducibility study at 3T; 
2004. p 1072. 

Jancke J, Peters M, Schlaug G, Posse S, Steinmetz H, Muller-Gartner HW. 1998. 
Differential magnetic resonance signal change in human sensorimotor cortex to 
finger movements of different rate of the dominant and subdominant hand. 
Cognitive Brain Research 6(4):279-284. 

Jiang T, He Y, Zang Y, Weng X. 2004. Modulation of functional connectivity during the 
resting state and the motor task. Hum Brain Mapp 22(1):63-71. 

Kemmotsu N, Villalobos ME, Gaffrey MS, Courchesne E, Muller RA. 2005. Activity and 
functional connectivity of inferior frontal cortex associated with response conflict. 
Brain Res Cogn Brain Res 24(2):335-42. 

Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD. 2000. Correlations in 
low-frequency BOLD fluctuations reflect cortico-cortical connections. 
Neuroimage 12(5):582-7. 

Morgan VL, Price RR. 2004. The effect of sensorimotor activation on functional 
connectivity mapping with MRI. Magn Reson Imaging 22(8):1069-75. 

Newton AT, Morgan VL, Gore JC. 2007. Task demand modulation of steady-state 
functional connectivity to primary motor cortex. Hum Brain Mapp 28(7):663-72. 

Pelli d. 1997. The Video Toolbox softare for visual psychophysics: transforming numbers 
into movies. Spatial Vision 4:5. 

Peltier SJ, Polk TA, Noll DC. 2003. Detecting low-frequency functional connectivity in 
fMRI using a self-organizing map (SOM) algorithm. Human Brain Mapping 
20(4):220-226. 

Quigley M, Cordes D, Wendt G, Turski P, Moritz C, Haughton V, Meyerand ME. 2001. 
Effect of focal and nonfocal cerebral lesions on functional connectivity studied 
with MR imaging. AJNR Am J Neuroradiol 22(2):294-300. 



 

 52 

Raichle ME, Gusnard DA. 2005. Intrinsic brain activity sets the stage for expression of 
motivated behavior. J Comp Neurol 493(1):167-76. 

Rao SM, Bandettini PA, Binder JR, Bobholz JA, Hammeke TA, Stein EA, Hyde JS. 
1996. Relationship between finger movement rate and functional magnetic 
resonance signal change in human primary motor cortex. J Cereb Blood Flow 
Metab 16(6):1250-4. 

Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H. 2003. Parametric 
analysis of rate-dependent hemodynamic response functions of cortical and 
subcortical brain structures during auditorily cued finger tapping: a fMRI study. 
Neuroimage 18(3):731-9. 

Sun FT, Miller LM, D'Esposito M. 2004. Measuring interregional functional connectivity 
using coherence and partial coherence analyses of fMRI data. Neuroimage 
21(2):647-58. 

Toma K, Mima T, Matsuoka T, Gerloff C, Ohnishi T, Koshy B, Andres F, Hallett M. 
2002. Movement rate effect on activation and functional coupling of motor 
cortical areas. J Neurophysiol 88(6):3377-85. 

Woodruff PW, Benson RR, Bandettini PA, Kwong KK, Howard RJ, Talavage T, 
Belliveau J, Rosen BR. 1996. Modulation of auditory and visual cortex by 
selective attention is modality-dependent. Neuroreport 7(12):1909-13. 

 
 



 53 

CHAPTER III 

 

THE EFFECTS OF COGNITIVE LOAD ON FUNCTIONAL CONNECTIVITY IN 
THE WORKING MEMORY AND DEFAULT MODE NETWORKS 

 

Introduction 

Steady-state correlations in low frequency blood oxygen level dependent (BOLD) 

magnetic resonance imaging (MRI) signals have been interpreted as revealing functional 

connectivity between regions within the human brain (Biswal, et al. 1997; Biswal, et al. 

1995; Hampson, et al. 2006b; Lowe, et al. 2000).  Most studies have examined 

interregional correlations in the resting state in which no task or stimulus effects are 

specifically encoded into the temporal variance of BOLD signals (Cordes, et al. 2001; 

Lowe, et al. 1998; Prohovnik, et al. 1980; Rogers, et al. 2007; van de Ven, et al. 2004), 

though functional connectivity can also be measured during steady state tasks.  

Measurements of functional connectivity have been shown to vary with cognitive 

load in some networks.  In previous studies of the motor system, we have shown that 

measures of functional connectivity scale with the rate of finger tapping in some regions 

and not in others (Newton, et al. 2007).  We and others have established that connectivity 

measured during performance of steady state tasks may be greater than at rest (Fox, et al. 

2005; Hampson, et al. 2004; Hampson, et al. 2001; Hampson, et al. 2006b; Lowe, et al. 

2000; Newton, et al. 2007).  In the working memory system specifically, path analysis 

has shown that effective connectivity increases under increased cognitive loads (Honey, 

et al. 2002).  Correlation analysis focusing on the trial-by-trial variance in event related 

working memory responses (as a different measure of steady state functional 
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connectivity) has shown decreasing functional connectivity during delay periods between 

the hippocampus, the fusiform face area, and the inferior frontal gyrus (Rissman, et al. 

2004; Rissman, et al. 2008). Principal component analysis (PCA) has also been used to 

examine working memory systems, showing different networks with load dependent 

connectivity for the encoding and maintenance periods of an event related task 

(Woodward, et al. 2006).  However, none of these studies specifically addressed how 

working memory load changes some typical fMRI measures of functional connectivity 

across the brain during steady-state working memory tasks. 

Analyses of steady state fMRI data, specifically resting state data, have also 

revealed a variety of networks including one which has become known as the default 

mode network (Fox, et al. 2005; Greicius, et al. 2003; Raichle, et al. 2001) comprised of 

brain regions that are more active during rest periods, absent of directed attention 

demanding tasks.  Various data analysis techniques have shown that this default mode 

network can be identified in the resting conscious state in most subjects (Arfanakis, et al. 

2000; Beckmann, et al. 2005; Meyer-Baese, et al. 2004; van de Ven, et al. 2004).  It has 

been recently shown that these default mode regions are functionally connected not only 

in conscious awake states but during light stages of sleep (Horovitz, et al. 2007), and 

under light anesthesia (Greicius, et al. 2008).  However, the specific role played by these 

regions in the resting state remains a topic of increased debate, as does their relationship 

to those networks recruited for specific cognitive tasks.  While changes in functional 

connectivity within a network have been measured between the resting state (when the 

default-mode network may be most active) and during task performance (Esposito, et al. 

2006; Hampson, et al. 2004; Hampson, et al. 2006b), relatively few studies have looked 
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closely at changes in functional connectivity between networks that may have separate 

functions.  Fransson et al., (Fransson 2006) describes a change in correlations between a 

recruited cognitive network and the default mode network, in response to a known task.  

However, it remains unclear whether the connectivity between working memory regions 

and those in the default mode network scales over a range of cognitive loads. 

There are two aims of this study.  The first aim is to quantify the degree to which 

functional connectivity within the working memory network is modulated by cognitive 

load.  Secondly, we aim to identify whether the functional connectivity of the default 

mode network (either within itself or between it and the working memory network) 

changes as a function of cognitive load.  We hypothesize that increasing cognitive load 

may cause gradual decreases in synchronization within the default mode network.  These 

analyses provide further insight into the underlying factors affecting typical 

measurements of functional connectivity using fMRI, and increase our understanding of 

the default mode network and its role in the normal brain. 

 

Materials and Methods 

 

Subjects 

Ten healthy subjects were recruited for participation in this study.  All were right 

handed by self report.  The subject pool consisted of 8 female and 2 male volunteers, with 

an age range of 20-36 years (median=27 years).  All subjects provided informed consent 

in accordance with procedures approved by the Institutional Review Board at Vanderbilt 

University, and were compensated for their participation.  Two of the ten subjects were 
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removed from the study for failure to complete all necessary tasks, yielding data from 

eight subjects which are presented here. 

 

Imaging and Initial Processing 

All subjects were imaged using a Philips Achieva 3T MR scanner, using an eight 

channel SENSE coil.  Four functional data sets were acquired in each subject using a 

single shot, gradient-echo echo planar imaging (EPI) pulse sequence (TR=2s, TE=35ms) 

with a SENSE acceleration factor of 1.8.  The multi-slice images covered 12.2 cm of 

brain and were acquired axially (matrix size: 64x64), using a field of view of 240mm.  

Voxels measured 3.75mm x 3.75mm x 3.5mm.  All functional data had slice timing and 

motion artifacts corrected, were co-registered within each subject, and were normalized 

to the MNI 152 template using the SPM5 software 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5/).  High resolution T1 weighted 

anatomic images were acquired using conventional parameters, and were used in 

normalization. 

 

Cognitive Tasks 

Each subject completed four fMRI runs: three N-back, and one resting state run.  

The resting state run consisted of 100 images of each slice acquired over 200 seconds, 

and subjects were instructed to lie still with eyes closed.  Each N-back run was performed 

with a verbal identity working memory N-back task (1-back, 2-back, and 3-back tasks in 

random order).  These N-back runs each consisted of a 300-second (150 image volumes) 

block-design portion with N-back and 0-back conditions in alternating 30-second blocks 



 57 

(15 letters, 3 targets per 30s block), followed by a 200-second steady-state portion of the 

N-back task only containing 20 targets (Figure 3.1).  Stimuli were a single letter 

presented at the beginning of the acquisition of each image volume. 

 

 

 

Figure 3.1 - General task description for data acquired during N-back task performance.  
Note that data were separated into two types of data: blocked-designed task data and 
steady-state task data. 
 

Regions of Interest 

Regions of interest (ROIs) were defined based on statistical parametric mapping 

of the block-design portions of the N-back runs, and were classified into in three separate 

groups: task positive regions, activated by the working memory task; task negative 

regions, deactivated by the working memory task; and control regions, where signal 

showed no significant response to the task manipulation.  These definitions were made 

using the results of fitting a general linear model to the block-design data of all N-back 

tasks at the individual subject level, and entering the results into a second level random 

effects analysis across subjects.  Regions of significant activation and deactivation during 

working memory performance were identified from the group-level statistical contrast of 

average N-back signal versus 0-back.  To identify positively activated clusters, an 

uncorrected one-tailed voxel-level threshold of p<0.001 was applied, followed by a 
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cluster size threshold to achieve correction for multiple comparisons at a false discovery 

rate (FDR) of 0.001. (Curran-Everett 2000; Genovese, et al. 2002) Positive activations 

generally coincided with previously reported working memory regions (D'Esposito, et al. 

1995; McCarthy, et al. 1994; Owen, et al. 2005).  For negatively activated clusters, FDR 

was held to 0.005; deactivations generally coincided with the default mode network 

(Greicius, et al. 2003; Raichle, et al. 2001).  The statistical threshold applied to task 

negative regions was raised in order to capture weaker deactivation in left parietal cortex, 

a known default mode region. (Fransson 2005)  Control regions were defined using maps 

showing voxels with no significant positive or negative activation with respect to the task 

(voxel-level p>0.05 uncorrected).  ROIs were defined from these clusters by retaining all 

significant voxels within 8 mm of the cluster peak, except for control ROIs which 

contained all voxels within 8mm of their cluster peaks.  Table 3.1 lists all eleven ROIs, 

their locations (MNI coordinates), and abbreviations of our nomenclature. 

 

Functional Connectivity Analysis 

Functional connectivity measures were calculated based on the steady-state data 

after discarding the first 5 volumes. All time series had a discrete cosine basis high-pass 

filter with period of 100 seconds applied to remove very low frequency trends and drifts, 

and residual correlates of motion remaining in the data after image realignment and 

normalization had their effects minimized through linear regression of the first-order 

estimated motion parameters.  Cardiac, respiratory, and global trends were minimized 

through regression of the average signal across the entire brain.  A 0.1 Hz Chebyshev 

Type II low-pass filter was also applied.  The connectivity measure used was the Pearson 
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correlation coefficient, converted to an approximately normal random variable via the 

Fisher Z transformation (Fisher 1928; Hampson, et al. 2006b) according to Equation 3.1, 

where r is the Pearson’s correlation and N denotes the degrees of freedom (estimated as 

being equal to the number of acquired images here). 

 

Table 3.1: ROI Locations 

MNI coordinates 
# Location 

X Y Z 
Description 

1 Right parietal 33 -45 39 Working memory 
(Task positive) 

2 Right Frontal 33 12 63 Working memory 
(Task positive) 

3 Pre-SMA (pSMA) 0 12 60 Working memory 
(Task positive) 

4 Left Frontal -24 3 54 Working memory 
(Task positive) 

5 Right Prefrontal 45 42 24 Working memory 
(Task positive) 

6 Left Prefrontal (LPFC) -45 9 39 Working memory 
(Task positive) 

7 Prefrontal Dorsal -6 63 30 Default mode 
(Task negative) 

8 Left Parietal -48 -72 36 Default mode 
(Task negative) 

9 Posterior Cingulate 
(PCC) -3 -39 33 Default mode 

(Task negative) 

10 Right occipital cortex  
(ROCC) 10 -90 2 Visual (Control) 

11 Left occipital cortex -10 -90 2 Visual (Control) 

 



 60 

 

! 

z =  atanh r( ) "  N - 3                  (3.1) 

 

Four separate analyses of connectivity were performed.  In the first, a mean time 

series was calculated for each ROI at each load, and these representative time courses 

were tested for significant effects of load on their pair-wise correlation using a one way 

ANOVA through the R statistical package. (http://www.r-project.org/)  All possible pairs 

of ROIs were tested (# of tests = 54).  Load effects were considered significant at p<0.05, 

uncorrected for multiple comparisons across paths. 

In the second connectivity analysis, within network changes in functional 

connectivity were measured by calculating the average correlation across all paths within 

a given network.  This measurement was termed the path independent connectivity (PIC).  

The distribution of values across subjects was tested for effects of load within the 

working memory, default mode, and control networks. 

In the third analysis, a modified seed region approach was used.  Focusing again 

on individual paths (i.e. pairs of regions) and identifying only those paths showing 

significant effects of load, one region was defined as being the seed, while the other was 

defined as the target.  Connectivity maps to the seed were constructed for the entire brain 

by correlating each individual voxel’s time course with the mean seed region time course.  

These maps were entered into a 2nd level ANOVA with four levels (i.e. four different 

cognitive loads) using SPM5, testing for effects of load on these voxel-wise functional 

connectivity maps across the brain.  Clusters of voxels showing significant effects of load 



 61 

(p<0.05 uncorrected) across subjects on functional connectivity bordering or within the 

target region were interpreted as supporting evidence of load effects in these paths. 

 The fourth functional connectivity analysis stemmed from inspection of the 

results from the previous analyses.  Preliminary results from a variety of working 

memory seed regions showed load related changes in functional connectivity to a region 

of the posterior cingulate cortex not currently covered by any ROI.  To summarize these 

observations, a new seed region (See Figure 3.6A) was identified by selecting a 

connected cluster of voxels in the posterior cingulate cortex showing significant load 

effects (p<0.001 uncorrected) across all functional connectivity maps employing a 

working memory (task positive) seed region (6 maps/subject/load, 48 total maps/load).  

Functional connectivity maps were calculated across the entire brain using this new seed 

region, and these maps were tested on a voxel-by-voxel basis for significant effects of 

steady state cognitive load across subjects (p<0.01 uncorrected), as was done previously.  

For comparative purposes, the location of voxels within the PCC showing load related 

changes in activation during performance of block designed N-back tasks was calculated 

as well. 

 

Results 

 In five subjects, performance was measured during steady state N-back 

acquisitions as the percent of targets correctly identified (1 back: 98 +/- 2.7 %; 2 back: 79 

+/- 11%; 3 back: 52 +/-15%), suggesting the increase in task difficulty.  Signal changes 

as a percent of the total signal were measured during the block designed portion of each 

N-back task for each ROI, and are plotted in Figure 3.2.  Load related increases in 
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activity were qualitatively identified in all working memory regions, with negligible 

increases occurring when increasing load from 2 Back to 3 Back conditions.  (Figure 

3.3A and B).  Functional connectivity within both the working memory and default mode 

networks were modulated by cognitive load in steady state working memory tasks, which 

is illustrated in Figures 3.3C and D.  Changes in connectivity occur with N-back 

conditions in regions identified in the GLM analysis of block designed task data.  

Between pairs of ROIs, six paths were found to have significant changes in 

functional connectivity related to cognitive load, shown in Figure 3.4.  These included 

paths within the working memory network (Left Frontal - Left Prefrontal; PreSMA – 

Right Frontal; PreSMA – Left Prefrontal), within the default mode network (Prefrontal 

Dorsal – Posterior Cingulate), and between the working memory and the default mode 

network (Right Parietal – Posterior Cingulate).  One path showed significant load effects 

between left frontal task positive region and left occipital cortex. 

Analyzing full connectivity maps, the load effect on each path was confirmed 

through the presence of clusters of voxels having load dependent functional connectivity 

bordering the target regions, the locations of which are reported in Figure 3.4.  In each 

case, significant but relatively weak (p<0.05 uncorrected) load effects were observed. 
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Figure 3. 2 - Percent signal changes were measured during the block designed portion of 
each N-back task.  The numbers listed alongside ROI names correspond to ROI #s in 
Table 3.1. 
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Figure 3. 3 - (A) Group activity map, showing the main effect of task across loads. (B) 
ROI locations.  Red: Task Positive Network, Blue: Task Negative Network, Yellow: 
Control regions.  ROI number key is in Table 1.  (C) Resting state functional connectivity 
map to region 6.  (D) Steady State 2 back functional connectivity map to region 6.  Note 
the qualitative increase in connectivity in task positive regions when compared to the 
resting state, and a decrease in connectivity in task negative regions. 
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Figure 3.4 - Standard box plots showing the six paths containing significant effects of 
cognitive load on steady state functional connectivity.  Defining each path as containing a 
seed region and a target region (seed-target as showin in each path’s title), clusters of 
load affected voxels were located near each target region when analyzing seed region 
connectivity maps (coordinates of cluster shown for comparison with ROI centers listed 
in Table 1). 



 66 

 Analyzing average within network changes in functional connectivity, Figure 3.5 

shows that the networks showing both positive changes and negative changes with the 

task exhibited load related increases in PIC (p=0.063 & p-0.037 respectively), with no 

such load effect within the control network (p=0.12). 

 

 

Figure 3.5 - Mean +/- standard deviation across subjects of the path independent 
connectivity (PIC) measure within networks.  The PIC was calculated as the mean 
connectivity across all possible pairs of ROIs within each specified network (i.e. Pos – 
Pos reflects the average connectivity of every working memory ROI to every other 
working memory ROI.  Results show increases in functional connectivity within the 
working memory and within the default mode network as load increases. Pos = task 
positive; Neg = task negative; Ctrl = control network 
 

Analysis of all working memory functional connectivity maps together showed a 

cluster of voxels with load dependent functional connectivity in the posterior cingulate 

cortex (p<0.001 corrected for multiple comparisons at the cluster peak, Figure 3.6A), 

though they only partially overlapped with the PCC region defined in Table 3.1, which 

was a definition based on task activation (see Figure 3.6B).  Comparing voxels with load 

dependent functional connectivity (to the working memory network) to those having load 

dependent activity during the blocked design task again separated the posterior cingulate 

cortex into at least two distinct regions, one superior and anterior to the other (Figure 
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3.6A).  This superior and anterior portion of the PCC was analyzed as a new seed region 

of load effects in functional connectivity, similar to that performed for previously defined 

regions.  Maps of load effects showed significant clusters (p<0.01 uncorrected) in all 

originally defined working memory and default mode ROIs (Figure 3.6C). 

 

 

Figure 3.6 - (A) Differences between load effects on block designed task activation and 
load effects in functional connectivity to the working memory network.  Crosshairs 
identify the same location in both images, highlighting the differences in cluster locations 
within the posterior cingulate cortex. (B)  The new posterior cingulate seed region (cyan) 
used for stage 3 functional connectivity analysis.  Red and blue ROIs correspond to those 
shown in Figure 3.3.  (C)  Results showing the effects of cognitive load on functional 
connectivity to the new seed region. The location of regions from Table 1 are shown on 
top for reference, as is the location of the seed region.  The newly defined region of the 
posterior cingulate cortex shows significant load effects (p<0.01 unc) in most task 
positive and task negative regions listed in Table 1. 
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Discussion 

 We have presented results from four analyses of steady state functional 

connectivity in the working memory and default mode networks.  As prior work 

demonstrated graded load effects in the motor network (Newton, et al. 2007), this study 

has demonstrated a similar effect in a cognitive domain (working memory) across a range 

of cognitive loads.  Comparing connectivity measured in the resting state to that 

measured during steady-state task performance, these data confirm previously reported 

increases in steady-state connectivity within the working memory network across a wider 

range of conditions. (Hampson, et al. 2006a)  Our data also demonstrate that functional 

connectivity is not modulated in a binary fashion (representing a ‘turning on’ or a 

‘turning off’ of the synchronization within a given network), but rather functional 

connectivity is modulated in a gradual fashion as cognitive load changes. 

Whether or not these changes are subject to a ceiling effect (as might be 

evidenced by the smaller changes in connectivity accompanying the transition from 

2back to 3back steady state tasks) remains unclear.  Figure 3.2 suggests that working 

memory regions experience load related increases in the mean BOLD signal that taper off 

at very high loads (N=2 - N=3), an effect that was relatively uniform across working 

memory regions.  This may be the result of drops in the accuracy of task performance.  

Load related changes in the mean BOLD signal was not observed among most default 

mode regions (prefrontal dorsal being the only potential exception), while load related 

changes in functional connectivity were observed in the posterior cingulate cortex.  This 

suggests that load related changes in task activity does not necessarily dictate the 

presence of load related changes in functional connectivity, though this could be better 
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supported by more rigorous comparisons of block designed activation and steady state 

functional connectivity. 

The second goal of this work was to determine how connectivity changes within 

the default mode network as well as between the default mode network and the working 

memory network in the context of a continuous working memory task.  When we focus 

on average connectivity measured between all pairs of regions belonging to the same 

network, load related increases in functional connectivity (the PIC) are significant for 

both the working memory and the default mode network.  This significance potentially 

represents a convergence of the within network steady functional connectivity, 

supporting the view that functional connectivity dynamically changes within and between 

cognitive networks according to the cognitive demands present.  We report increased 

synchrony within the default mode network as working memory load increases, contrary 

to some previous reports (Fransson 2006) that suggest that correlations within the default 

mode network trend towards zero as cognitive load increases.  However, our data do 

replicate previously reported findings of negative correlations between working memory 

regions and default mode regions (Fox, et al. 2005; Greicius, et al. 2003).  We expand on 

those results by suggesting that the relationship between the networks is affected not just 

by task prescence but by task load, particularly in the posterior cingulate cortex where we 

report decreasing correlations.  Functional connectivity measured under conditions other 

than rest may provide new information augmenting that obtained from passive subjects 

alone. 

The potential for differences between the behavior of functional connectivity 

measures and conventional task responses is emphasized by our results from the posterior 
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cingulate cortex.  We found that distinctly different regions show load related changes in 

traditional task activation than show load related changes in functional connectivity to 

working memory regions (Figure 3.6A).  This suggests that there are functional 

subdivisions within the large region of deactivation generally covering the posterior 

cingulate cortex, a region implicated as playing a particularly complex role in the default 

mode network. (Buckner, et al. 2008)  There is evidence that at least two areas are 

encompassed in this deactivation including the posterior cingulate cortex and 

restrosplenial cortex, with the latter lying more posterior and inferior to the other. 

(Buckner, et al. 2008; Kobayashi and Amaral 2007)  However, continued subdivision 

anteriorly along the cingulate gyrus may be possible as well, evidenced by studies of the 

anterior cingulate cortex. (Margulies, et al. 2007) 

 The continuous, dynamic nature of changes in our measured functional 

connectivity may have particular relevance for interpreting the behavior of the default 

mode network.  The basic default mode hypothesis distinguishes between those brain 

regions that are primarily engaged in the resting state (default mode), and those that are 

not.  Speculations on the underlying cognitive differences between the resting state and 

other ‘active’ conditions have focused on classifying thoughts into different types.  For 

example, it has been posited that task related (default mode) deactivations may be related 

to switching from introspective, self-oriented thought to attention demanding, goal-

oriented thought (Gusnard, et al. 2001; Raichle, et al. 2001).  Fransson suggests that there 

may be more than one type of cognition being accomplished by the default mode 

network, with example functions being self representation and self-referential mental 

events (Fransson 2006), or self-reflective and self-referential thought (Fransson 2005), 
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though these hypotheses still operate under the assumption that the default mode network 

is either active or not depending on the type of thought.  Our data suggest that the default 

mode network does not simply ‘switch off’ as if operating in a binary fashion, but that it 

gradually changes its activity according to the current cognitive demands.  This may also 

argue against a simple cessation of one type of thought in favor of another.  It is also 

possible that this changing synchrony between brain regions represents inhibition 

modulated by a third region of the brain (Greicius, et al. 2003), though the role of BOLD 

synchrony in measuring inhibition is beyond the scope of this study. 

Our finding that functional connectivity changes as a function of cognitive 

demand may be important for studies developing methods for connectivity measurement 

in traditional fMRI data, as the temporal dynamics of these connectivity changes remain 

unclear.  Measuring connectivity during traditional fMRI protocols would be useful 

because successful techniques could greatly increase the amount of candidate data 

available for connectivity analysis.  One method (Fair, et al. 2007) uses short segments of 

steady-state data from within larger blocks of a condition acquired during a block 

designed experiment.  In this case, our results suggest that functional connectivity would 

not remain constant throughout these blocked tasks.  If the demand induced changes in 

functional connectivity occur slowly compared to the length of task blocks (i.e. blocks 

were short relative to the time required for connectivity changes to occur), then 

estimating connectivity over the entire length of those blocks may produce poor estimates 

of the true condition dependant functional connectivity.  The temporal dynamics of these 

changes remain unclear. 
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The possible influence of global time course regression on the results and 

interpretation of functional connectivity analyses has recently been highlighted.  It has 

been argued that negative correlations between the default mode network and the 

working memory network may be an artifact of removing the global signal. (Murphy, et 

al. 2009)  However, our study places no particular importance on the sign of measured 

correlations, merely on whether they change across loads.  Given this fact along with the 

potential for beneficial removal of artifacts and global baseline correlations, we chose to 

include global time course regression.  Measurement of load effects with and without 

global signal removal in future studies may provide insight into the possible effects of 

this preprocessing tool. 

The present study is limited in several ways.  First, the complicated functional 

connectivity of the posterior cingulate cortex, and the potential for functional subdivision 

along the cingulate gyrus needs further investigation.  Second, the relatively low number 

of subjects used in this study and the low accuracy of the three back performance 

necessitates further work to confirm whether these are ceiling effects in functional 

connectivity.  Lastly, investigating the functional connectivity between typical ‘default 

mode’ regions and those of various other cognitive networks may lead to a better 

understanding of the functional role played by the default mode network. 

 

Conclusions 

 In conclusion, we have demonstrated that functional connectivity within the 

working memory network modulates gradually with working memory load (i.e. task 

condition), culminating in increased synchrony between signals from various working 
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memory regions.  Furthermore, the functional connectivity between working memory 

regions and default mode regions changes with load as well, a finding highlighted by our 

results in the posterior cingulate cortex. 
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CHAPTER IV 

 

BOLD CORRELATES OF THETA POWER ACROSS WORKING MEMORY LOADS 

 

Introduction 

Neural activity manifests as electrical discharges within brain circuits that 

stimulate changes in blood flow and tissue oxygenation measurable by blood oxygen 

level dependent (BOLD) MRI.  Although electrical activity and the subsequent 

hemodynamic response are coupled, there precise relationship is not well understood, and 

their have been few studies that quantitatively relate their features.  Moreover, while 

electrical events occur on a timescale of milliseconds, we are unable to noninvasively 

identify their spatial locations very accurately, whereas BOLD signal changes occur over 

several seconds and may be resolved to millimeter accuracy.  Thus, approaches that can 

combine the favorable aspects of both types of information synergistically are of potential 

importance. 

Electrophyiological measurements made in concert with functional imaging may 

be useful in functional connectivity analyses.  Most functional connectivity analyses 

based on seed regions require additional imaging runs to aid in the definition of those 

seed regions.  As has already been discussed, one method involves performing a 

conventional fMRI experiment whose activation map can localize functionally relevant 

tissue.  Alternatively, studies have used high resolution structural images to define seed 

regions anatomically.  Measurement of electroencephalographic (EEG) oscillations 

provides another functionally relevant signal that may be used to map related regions 
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across the brain using techniques common to most fMRI functional connectivity 

analyses, potentially identifying regions which are appropriate to be entered into 

subsequent connectivity analyses. (Hampson, et al. 2002)  

EEG is a method of measuring two dimensional distributions of functionally 

relevant electrical potentials across the scalp.  EEG studies make use of arrays of 

electrodes organized along standardized grids covering the scalp, where voltage 

differences between each electrode and a common reference electrode (EEG voltage) are 

recorded.  Typical EEG data are simply the spatial maps of EEG voltage measured 

repetitively through time, with the spatial location of each electrode either being 

measured or inferred from the placement scheme used.  This leads to data that are three 

dimensional with two spatial dimensions and one temporal dimension. EEG voltages on 

the scalp are produced by electrical changes associated with neuronal activity.  The 

surface potential represents the integrated effect of diverse sources of currents within the 

volume conductor of the brain and head.  Voltage changes on the scalp arise primarily 

from graded synaptic potentials of the pyramidal neurons, both excitatory and inhibitory 

in nature, though less significant contributions may be made from synchronous fast 

action potentials (either calcium or sodium mediated), and dendritic calcium spikes 

following hyperpolarization. (Olejniczak 2006)  Current flow between within-brain 

neuronal sources and scalp electrodes, referred to as volume conduction, is affected by 

the conductive properties of all tissues traversed including at least the scalp, fat, skull, 

and brain tissue (Gevins, et al. 1995), though the complications associated with volume 

conduction may be different for each study based on the specific analyses performed. 
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There is evidence that local field potentials are related to the BOLD response 

underpinning fMRI. (Lauritzen and Gold 2003; Logothetis, et al. 2001)  Based on this, 

EEG and fMRI have been measured and/or analyzed simultaneously in an attempt to 

identify regions of the brain that are functionally related to various types of EEG signals.  

One example of this is the spatial localization of epileptic foci using timing information 

measured with EEG (Cunningham, et al. 2008; Gotman, et al. 2004).  In this case, 

temporal changes in EEG voltage itself (e.g. timing of epileptic spikes) informs the 

analysis of fMRI data.  Another example is the co-analysis of event related potentials 

measured with EEG and BOLD signal changes measured with fMRI.  This novel method 

of combining EEG data with BOLD sensitive images was developed by Horovitz et al 

(Horovitz, et al. 2004; Horovitz, et al. 2002), who looked at correlated BOLD signal 

changes measured inside the scanner with electrophysiological changes in event related 

potentials measured while subjects performed the same task outside the scanner.  This 

method has also been used to identify those regions throughout the brain that may 

contribute to the measured electrical potentials recorded at the scalp. 

Functional significance has also been attributed to changes in cortical rhythms, 

leading to studies that have focused instead on measuring the hemodyanamic correlates 

of various frequency bands within EEG data.  These studies also attempt to marry the 

advantages of both modalities, namely the high temporal resolution of EEG measured 

over long imaging runs (allowing for frequency analysis of its data across multiple 

intervals of time), and high spatial resolution of tomographic fMRI data allowing for 

more specific localization than is achievable by EEG measurements alone.  By separating 

the EEG data into several segments (i.e. epoching), and estimating the power spectrum of 
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each segment, time courses of power across a range of frequencies in EEG data can be 

used for modeling fMRI signals using the general linear model.  Examples include 

studies of the 8-12Hz alpha band (Goldman, et al. 2002; Laufs, et al. 2003), the 17-23Hz 

beta band (Laufs, et al. 2003), the 1-3Hz delta band (Lu, et al. 2007), and the 3-8Hz theta 

band (Scheeringa, et al. 2007; Scheeringa, et al. 2009).  Changes in power within given 

EEG frequency bands have been studied during task performance in some cases, though 

studies of the resting state have continued to become more common.  Simultaneous 

measurements of EEG and fMRI signals allow the identification of those BOLD signals 

that covary with electrophyiological measurements across increasing cognitive loads. 

 A key cognitive network that may be amiable to studies utilizing simultaneous 

EEG and fMRI is working memory.  Working memory is the temporary storage of 

information that plays a supportive role in the performance of a variety of cognitive tasks 

(Baddeley 1981),  and changes in theta power along the frontal midline (FMθ) have been 

correlated with changes in working memory load.  (Basar-Eroglu, et al. 1992; Klimesch 

1996a; Klimesch 1999; Roschke and Fell 1997; Yordanova, et al. 2003) Dipole source 

modeling suggests that FMθ power arises from anterior cingulate cortex (Gevins, et al. 

1997; Onton, et al. 2005; Reischies, et al. 2005), though some have hypothesized that 

these results may mask a more diffuse source located closer to the surface of the brain. 

(Scheeringa, et al. 2007)  It has been shown that frontal midline theta is correlated with 

hippocampal glutamate concentrations during performance of some difficult cognitive 

tasks (Gallinat, et al. 2006), though the question of whether hippocampal theta (electrical 

oscillations measured via single cell recordings in the theta band) drives FMθ remains 

unclear. (Miller 1991) Analysis of theta power and functional connectivity in 
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simultaneously acquired EEG and fMRI data may provide a method of evaluating this 

proposed interaction between cingulate cortex and the hippocampus. 

 This study has two goals.  First, we attempt to illustrate a method of spatially 

locating regions of cortex associated with specific features of the EEG utilizing load 

modulated correlations between BOLD signals band power estimates from EEG data.  

Second, we apply this method to a study of functional connectivity during steady state 

working memory tasks, with a particular interest in the cingulate cortex, hippocampus 

and related structures. 

 

Methods 

 

Functional Tasks 

EEG and fMRI data were simultaneously recorded during a series of 24 

experiments spanning six subjects.  FMRI and EEG data were analyzed under four steady 

state conditions and during one block designed task.  Not all tasks were completed by all 

subjects.  Each run consisted of some variation on a verbal identity working memory task 

using letters presented every 2s.  A block designed task consisted of 120 images covering 

alternating blocks of 0 back and 2 back tasks (15 letters/block, 20% were targets).  

Blocked task images were analyzed with a standard general linear model to identify 

voxels significantly activated and deactivated within each subject (2 back vs. 0 back, 

p<0.005, no minimum cluster size). (Ragland, et al. 2002)  Each steady state run 

consisted of 100 images, and corresponded to one of a range of working memory loads.  

Working memory load was controlled by the number of letters required to be held in 
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working memory, with loads of zero, one, two, or three being used for a given run (0 

back, 1 back, 2 back, 3 back).  All subjects completed the block designed task.  Out of six 

subjects completing steady state tasks, images were acquired in four subjects under the 0 

back condition, in six subjects under the 1 back condition, in five subjects under the 2 

back condition, and in three subjects under the 3 back condition. 

 

Imaging and Initial Processing 

All MRI images were acquired on a 3T Philips Achiva scanner with a volume 

transmit and an eight channel SENSE receive coil.  Each subject had high resolution T1 

weighted images gathered for use in normalizing images to the MNI 152 template.  All 

functional images were acquired using single shot, gradient echo, echo planar imaging 

acquired axially covering the full cerebrum, with the following imaging parameters: field 

of view = 200x200mm in plane, voxel dimensions = 2.5x2.5x3.5mm, 35 slices, 

TR/TE=2s/35ms, SENSE factor = 1.8, flip angle = 79°.  Functional images had slice 

timing and motion artifacts corrected, were co-registered within subject, and were 

spatially normalized (final voxel dimensions: 3x3x3mm) using SPM5.  

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) 

 

EEG Acquisition 

EEG data were recorded outside the MR scanner as well as simultaneously with 

functional images inside the scanner using a 64 channel Neuroscan MagLink Cap in 

combination with a Synamps 2 amplifier and a PC running Neuroscan’s ‘Scan’ software 

(version 4.4).  All EEG data were recorded from each electrode with a 10kHz sampling 
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rate, and were separated into epochs of 2s each.  Those data, recorded simultaneously 

with image acquisition, underwent two artifact removal processes.  Artifacts resulting 

from switching of magnetic gradient coils were removed by subtracting the average 

artifact measured across any given epoch and that on either side of it. (Allen, et al. 2000)  

Following gradient artifact removal, signals were resampled at 1kHz and low pass 

filtered at 30Hz. 

Ballistocardiogram artifacts were removed through analysis of pulse oximetery 

data simultaneously recorded with fMRI and EEG data.  Pulse oximeter signals were high 

pass filtered and voltage thresholded in order to identify the timing of heart beats.  The 

corresponding EEG data surrounding each detected heartbeat were separated into epochs.  

Epochs were corrected for baseline drifts and averaged together, creating an average 

ballistocardiogram artifact for each EEG channel.  A spatial singular value decomposition 

was performed on those average artifacts, the output of which was input to a spatial 

filtering algorithm to remove ballistiocardiogram artifacts from each channel’s full time 

course.  A high pass filter with a cutoff frequency of 0.6Hz was then applied to each 

channel’s full time course  

 

Calculation of Theta Power Time Courses 

 Trigger pulses output by the MR scanner were used to synchronize EEG and 

fMRI data acquisitions for each functional run in order that EEG data could be separated 

into epochs corresponding to the acquisition of each full fMRI image volume.  For each 

epoch, frequency spectra were estimated over the first 1.8s, leaving a 200ms gap between 

measurements.  The average power across the frequency band of 3-8Hz was calculated 
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for each electrode and all epochs, resulting in a time course of theta band power for each 

electrode.  The average theta time course was calculated across all 20 frontal electrodes, 

resulting in one theta time course per experiment (i.e. for each functional imaging run).  

These theta time courses were convolved with a canonical hemodynamic response 

function prior to their use in the analysis of fMRI data. 

 

Estimation and Analysis of Theta Correlations to BOLD Signals 

 Analysis of partial correlation to theta power in steady state fMRI data was 

accomplished through use of a general linear model.  The theta power time course was 

used as a regressor along with estimated motion parameters and a global fMRI time 

course as confounds, resulting in a map of steady state correlations to theta power across 

the brain (theta power maps) in each subject at each load.  Theta power maps from the 

zero back, one back, two back, and three back conditions were entered into an 

unbalanced repeated measures ANOVA with two factors covering subjects and loads as 

factors.  The positive and negative effects across loads (i.e. those voxels that were 

positive or negative across loads) were estimated with significance set at p<0.05 

uncorrected for multiple comparisons.  Those regions whose theta power changed from 

load to load (i.e. the main effect of load) were identified through an F-contrast of values 

at adjacent loads, with a significance threshold of 0.005 uncorrected for multiple 

comparisons. 

 In order to generally describe those regions in which BOLD signals were 

correlated to theta power across all loads, or those whose correlation to theta power 

changed with load, the locations of the three most significant local maxima within each 
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cluster were converted to Talairach coordinates, and input to Talairach Daemon 

(Lancaster, et al. 2000).  The results were then summarized to describe the cluster.  In 

order to decrease the number of clusters needing identification, the p-value thresholds 

were relaxed and/or the minimum number of voxels in a cluster was increased.  The 

specific thresholds used can be found in Tables 4.1-4.3.  These different thresholds were 

used only for generally describing clusters, and the threshold of p<0.005 uncorrected for 

multiple comparisons with no minimum cluster size was used for all other results 

presented here. 

 

ROI Definition and Analysis 

 Three regions of interest were defined around voxels found to significantly 

change their steady state correlation to theta power across N-back loads.  These regions 

corresponded to the connected cluster of voxels significantly affected by load within the 

supplementary motor area (SMA), the posterior cingulate cortex (PCC), and along the 

parahippocampal gyrus (PHG).  Beta weights for theta power from the general linear 

model analyses were averaged within each region of interest for each subject at each 

load. 

 

Analysis of Steady State Functional Connectivity to the PHG 

 Steady state functional connectivity under all four N-back conditions (0, 1, 2, and 

3) was calculated across the brain to the PHG using a seed region connectivity analysis.  

Prior to connectivity analysis, functional images had their global time course, six 

estimated motion parameters, and low frequency cosine basis functions regressed out.  
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Each voxel’s time course was linearly detrended and demeaned, and was filtered at 0.1 

Hz using a Chebychev Type II low pass filter.  Functional connectivity analysis of the 

PHG consisted of estimating the average time course across the seed region and 

calculating the correlation of that time course to that of every within-brain voxel, yielding 

one map of functional connectivity across the brain for each subject and load.  These 

maps were entered into an unbalanced repeated measures ANOVA identifying those 

voxels positively correlated with the seed on average across loads, those negatively 

correlated with the seed on average across loads, and those whose correlation to the seed 

changed as a function of load.  In each of these cases, the significance threshold was set 

to p<0.005 uncorrected for multiple comparisons, with no minimum cluster size.  A 

visualization of this overall analysis strategy is outlined in Figure 4.1. 

 

 

Figure 4.1 - Schematic description of functional connectivity analyses, where seed 
regions are either defined from activity maps based on another run or from maps of 
correlation to theta power in the steady state. 
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Results 

 

Steady State Correlations to Theta Power 

 Significant positive and negative correlations to theta power were measured on 

average across all steady state working memory conditions, some of which match regions 

identified by activation maps calculated from the block designed task data (shown in 

Figure 4.2).  Positive correlations were measured in the supplementary motor area and 

the left primary motor cortex (Brodmann’s areas 4 & 6), among other regions.  Negative 

correlations were measured in the posterior cingulate cortex, and the medial frontal 

cortex, among other regions. 

 Significant changes in correlation to theta power were measured in regions 

overlapping those just described, though the most significant effects were not predicted 

by what regions were most correlated across conditions (either positively or negatively).  

The most significant regions found to have changing correlation to theta power across 

loads were the visual cortex, the supplementary motor area, the cingulate cortex, and the 

parahippocampal gyrus.  Locations and descriptions of all these regions are found in 

Table 4.1-4.3. Shading identifies local maxima within the same cluster.  The top three 

local maxima are listed for each cluster, unless fewer than three exist.  Clusters were 

omitted from the report if they resided along major contrast boundaries (e.g. the edge of 

the brain), rising suspicion of residual motion artifacts. 
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Figure 4.2 - (A) Typical Activation/Deactivation in response to performance of the block 
designed task. (B) Average correlations to theta power across the 0 back, 1 back, 2 back, 
and 3 back steady state tasks.  Thresholds correspond to those used in Table 4.1 and 4.2.  
(C) Regions whose correlations to theta power changed with steady state cognitive load.  
Thresholds used correspond to those from Table 4.3. 
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Description of Cluster

T equivZ p(unc) X Y Z

5.99 4.15 1.65E-05 -15.00 15.00 50.00

5.56 3.97 3.54E-05 40.00 -22.50 72.50

4.98 3.72 1.01E-04 5.00 -12.50 67.50

4.98 3.72 1.00E-04 -62.50 0.00 -2.50

4.11 3.27 5.34E-04 -55.00 7.50 2.50

3.12 2.67 3.76E-03 -57.50 10.00 -12.50

4.76 3.61 1.51E-04 45.00 -37.50 -5.00

4.34 3.40 3.39E-04 60.00 -52.50 2.50

4.15 3.30 4.86E-04 35.00 -7.50 -5.00

4.66 3.56 1.83E-04 2.50 -87.50 -27.50

3.61 2.99 1.41E-03 -5.00 -90.00 -17.50

4.06 3.24 5.90E-04 -22.50 -27.50 70.00

3.91 3.16 7.83E-04 -30.00 -27.50 50.00

3.24 2.75 2.98E-03 -40.00 -15.00 67.50

3.98 3.20 6.86E-04 -45.00 -47.50 -22.50

3.37 2.83 2.30E-03 -35.00 -47.50 -15.00

2.40 2.16 1.52E-02 -40.00 -30.00 -25.00

3.85 3.12 8.90E-04 -22.50 -77.50 7.50

2.52 2.25 1.23E-02 -30.00 -80.00 0.00

2.45 2.20 1.39E-02 -22.50 -87.50 22.50

3.79 3.09 9.90E-04 -42.50 -77.50 -12.50

3.68 3.03 1.23E-03 -42.50 -70.00 2.50

3.38 2.84 2.23E-03 -50.00 -70.00 -10.00

3.72 3.05 1.13E-03 -45.00 -22.50 -5.00

3.16 2.70 3.48E-03 -57.50 -37.50 7.50

2.79 2.45 7.21E-03 -55.00 -47.50 7.50

3.68 3.03 1.22E-03 27.50 -67.50 -5.00

3.40 2.85 2.16E-03 12.50 -45.00 -10.00

3.03 2.62 4.46E-03 20.00 -55.00 0.00

3.64 3.00 1.34E-03 -32.50 -25.00 27.50

3.35 2.82 2.39E-03 -37.50 -7.50 22.50

3.15 2.69 3.57E-03 -40.00 0.00 25.00

3.32 2.81 2.51E-03 -20.00 -57.50 60.00

2.98 2.58 4.94E-03 -17.50 -60.00 75.00

2.81 2.46 6.89E-03 -32.50 -40.00 72.50

Right Lingual Gyrus

Left Insula, Brodmann Area 13

Superior Parietal Lobule, Brodmann Area 7

Left Parahippocampal Gyrus, Brodmann Area 36

Left Middle Occipital Gyrus

Left Middle Occipital Gyrus, Brodmann Area 18

Left Middle Temporal Gyrus

Superior Temporal Gyrus, Brodmann Area 22

Middle Temporal Gyrus

Left Lingual Gyrus

Left Precentral Gyrus, Brodmann Area 4

(Positive Effect Of Load, p<0.05 unc, minimum cluster size=50)

Voxel Level MNI 152 Coordinates

Medial Frontal Gyrus, Brodmann Area 6

Table 4.1 - Average Positive Correlation to Theta Power Across Loads

 

 

Description of Cluster

T equivZ p(unc) X Y Z

5.07 3.76 8.49E-05 45.00 27.50 10.00

4.25 3.35 4.00E-04 -30.00 25.00 -5.00

4.15 3.30 4.87E-04 27.50 42.50 32.50

4.24 3.34 4.16E-04 20.00 -65.00 -30.00

3.40 2.85 2.16E-03 27.50 -40.00 -32.50

2.97 2.57 5.04E-03 42.50 -40.00 -30.00

3.95 3.19 7.23E-04 -30.00 -52.50 -32.50

2.98 2.58 4.92E-03 -32.50 -67.50 -37.50

2.39 2.15 1.56E-02 -22.50 -65.00 -25.00

3.73 3.06 1.11E-03 -20.00 45.00 30.00

2.07 1.90 2.85E-02 -10.00 37.50 27.50

1.83 1.72 4.31E-02 -25.00 52.50 30.00

3.57 2.96 1.54E-03 30.00 15.00 0.00

3.13 2.68 3.69E-03 20.00 32.50 -7.50

2.61 2.32 1.03E-02 25.00 32.50 -17.50

3.56 2.96 1.56E-03 -7.50 -62.50 15.00

3.40 2.85 2.16E-03 7.50 -65.00 12.50

2.29 2.08 1.87E-02 2.50 -55.00 17.50

3.33 2.81 2.48E-03 -27.50 62.50 0.00

3.20 2.73 3.20E-03 -37.50 57.50 12.50

3.18 2.71 3.33E-03 -17.50 55.00 7.50

3.21 2.73 3.12E-03 -42.50 20.00 -7.50

3.15 2.69 3.54E-03 -42.50 17.50 5.00

2.94 2.55 5.34E-03 -45.00 17.50 15.00

3.07 2.64 4.12E-03 -60.00 -50.00 42.50

2.90 2.53 5.78E-03 -52.50 -47.50 55.00

2.44 2.19 1.41E-02 -47.50 -40.00 40.00

2.95 2.56 5.29E-03 -42.50 -65.00 27.50

2.91 2.53 5.71E-03 -35.00 -72.50 27.50

2.52 2.25 1.21E-02 -35.00 -67.50 35.00

2.89 2.52 5.92E-03 -15.00 17.50 70.00

2.38 2.15 1.58E-02 -12.50 12.50 62.50

1.86 1.74 4.11E-02 -5.00 22.50 70.00

Inferior Parietal Lobule, Brodmann Area 40

Middle Temporal Gyrus, Brodmann Area 39

Superior Frontal Gyrus

Medial Frontal Gyrus

Posterior Cingulate, Brodmann Area 23

Superior, Middle, and Medial Frontal Gyri

Inferior Frontal Gyrus

Inferior Frontal Gyrus

Right Cerebellum

Left Cerebellum

Superior Frontal Gyrus, Brodmann Area 10

Table 4.2 - Average Negative Correlation to Theta Power Across Loads

(Positive Effect Of Load, p<0.05 unc, minimum cluster size=50)

Voxel Level MNI 152 Coordinates
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Region of Interest Analysis 

 Beta weights were plotted as a measure of correlation to theta power in the 

regions of interest (posterior cingulate cortex, supplementary motor area, and 

parahippocampal gyrus).  These data can be seen in Figure 4.3.  Generally decreasing 

correlation to theta power was observed in the SMA, while correlations measured in the 

PCC were generally increasing.  Correlations in the PHG showed a less consistent pattern 

across loads, with 1 back and 3 back conditions possessing the highest correlation to theta 

power.   

 

Functional Connectivity to PHG 

 The PHG region of interest was significantly correlated with known regions of the 

default mode network including the posterior cingulate cortex, the medial frontal cortex, 

and the lateral parietal regions.  PHG also was significantly negatively correlated with 

regions associated with working memory performance, as shown in Figure 4.4. 

Description of Cluster

F equivZ p(unc) X Y Z

25.91 4.39 5.64E-06 0.00 -67.50 12.50

16.13 3.77 8.06E-05 -5.00 -60.00 0.00

15.37 3.71 1.04E-04 -12.50 -65.00 7.50

20.25 4.07 2.32E-05 20.00 -2.50 -20.00 Right  Parahippocampal Gyrus, Amygdala

19.69 4.04 2.72E-05 -27.50 -77.50 22.50

19.36 4.01 2.99E-05 -32.50 -85.00 12.50

18.04 3.92 4.40E-05 -20.00 -85.00 20.00

16.56 3.81 7.00E-05 5.00 -37.50 32.50 Right Cingulate Gyrus, Brodmann Area 31

13.99 3.58 1.70E-04 32.50 -20.00 47.50

9.57 3.07 1.08E-03 35.00 -17.50 40.00

9.03 2.99 1.40E-03 27.50 -17.50 35.00

13.10 3.49 2.38E-04 -40.00 27.50 -2.50 Left Inferior Frontal Gyrus

11.84 3.36 3.93E-04 25.00 -25.00 50.00

9.22 3.02 1.28E-03 20.00 -17.50 45.00

9.04 2.99 1.40E-03 20.00 -10.00 40.00

11.80 3.35 3.99E-04 35.00 57.50 22.50 Right Middle Frontal Gyrus, Brodmann Area 10

11.75 3.35 4.09E-04 -15.00 -32.50 52.50 Left Cerebrum,Frontal Lobe,Sub-Gyral

10.38 3.18 7.41E-04 0.00 -20.00 62.50

9.64 3.08 1.04E-03 2.50 -10.00 72.50

9.88 3.11 9.31E-04 57.50 -47.50 45.00 Right Inferior Parietal Lobule, Brodmann area 40

Right Precentral Gyrus, Brodmann Area 4

Right Cingulate Gyrus, Brodmann Area 24

Inter-Hemispheric, Frontal, Medial Gray Matter

Voxel Level MNI 152 Coordinates

Posterior Cingulate, Brodmann Area 30

Left Middle Occipital Gyrus

Table 4.3 - Main Effect Of Load p<0.005 unc c20
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Figure 4.3 - Average correlation to frontal theta power measured in three regions of 
interest.  Regions were identified through measurement of significant changes in their 
correlation to theta power across loads (p<0.005 uncorrected).  Solid bars represent the 
average across subjects, with error bars marking the standard deviation across subjects. 

 

 

Figure 4.4 - Functional connectivity to the ROI in the parahippocampal gyrus.  Note the 
positive functional connectivity within the default mode network, negative functional 
connectivity within the working memory network, and relative lack of changes in 
functional connectivity across loads in most areas.  Statistical thresholds were set at an 
uncorrected p<0.005 keeping all clusters regardless of size for all maps. 
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Discussion 

 The results presented here demonstrate that measurements of theta power can be 

used to inform the analysis of steady state fMRI data.  Our study suggests that frontal 

midline theta power is related to the parahippocampal gyrus, and thus to the default mode 

network.  This was shown by our ability to identify the parahippocampal gyrus by 

mapping those voxels whose BOLD signal’s correlation to frontal theta power changes 

with working memory load (Table 4.3) and then mapping its functional connectivity 

across loads in the whole brain (Figure 4.4).   We have provided new evidence that there 

are regions whose BOLD signals are positively correlated to theta power in the steady 

state including bilateral primary motor cortex and the supplementary motor area.  This 

correlation may suggest that those regions play a role in the production of frontal midline 

theta power, though this would be a topic needing further investigation.  Our data support 

previous studies that suggest that frontal theta power is negatively correlated with default 

mode regions (specifically the posterior cingulate cortex), and we have shown that 

significant changes in theta power occur in a variety of regions in addition to the 

parahippocampal gyrus. 

 The underlying source of changes in frontal midline theta has been difficult to 

identify.  A number of studies have shown that theta power is related to performance of 

working memory tasks.  (Klimesch 1996b; Klimesch, et al. 1997a; Klimesch, et al. 

1997b; Klimesch, et al. 1996; Weiss, et al. 2000)  The positive correlations across N-back 

loads observed here suggest a possible role for sensory motor cortex, in particular the 

supplementary motor area which may relate to attention. (Coull 2004)  These regions 

have not been identified in previous studies of steady state correlations between BOLD 
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signals and frontal theta power, though only a handful of studies have investigated BOLD 

correlates of theta power in the steady state.  Negative correlations have been identified 

in the default mode network by at least two studies (Scheeringa, et al. 2007; Scheeringa, 

et al. 2009), however these studies focused on either data acquired in the resting state or 

data acquired during the Sternberg working memory task.  Both of these conditions are 

significantly different from the steady state N-back conditions focused on here.  The 

Sternberg task is a paradigm which requires much less frequent updating of working 

memory content, instead providing extended maintenance intervals which may 

themselves be interesting.  Another difference between this study and those previously 

reported is the way in which theta power time courses were calculated.  Those studies by 

Sheeringa et al. used spatial independent component analysis to estimate independent 

sources with frontal midline topology prior to frequency band analysis. This blind source 

separation may exclude temporal variance that is not ignored by other studies of theta 

power. 

 Another topic of debate is whether the hippocampus plays a role in driving 

production of frontal midline theta power measured at the scalp and what that role may 

be.  While direct measurements of theta oscillations have been recorded from the 

hippocampus in rodents, cats, dogs, non-human primates and humans, attributing a 

specific function to these signals has proven difficult (thoroughly discussed by  (Buzsaki 

2005)).  Frontal midline theta power measured on the scalp has more consistently been 

liked to attention, memory encoding, memory maintenance, among other functions, 

which are all involved with accurate performance of the N-back task.  Our data suggest 

the right parahippocampal cortex may be functionally linked to those regions responsible 
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for observed theta power at the scalp.  It is unlikely that parahippocampal cortex plays a 

direct role in generating FMθ due to its location and weak BOLD correlations under 

some N-back conditions, though its load dependent changes in correlations to theta, its 

association with the default mode network during steady state N-back tasks (shown in 

Figure 4.4), and its established role in some working memory paradigms (Ranganath and 

Rainer 2003; Stern, et al. 2001) support the view that the parahippocampal gyrus is 

functionally related to FMθ.  With some studies suggesting that frontal midline default 

mode regions directly generate FMθ, the strong functional connectivity between 

parahippocampal gyrus and these regions across N-back loads may be significant. 

 

Conclusions 

We have shown that frontal midline theta power measured at the scalp has both 

postive and negative BOLD correlations across a range of steady state N-back tasks.  

Regions whose BOLD correlates of theta power change with cognitive load include the 

parahippocampal gyrus, p which has high functional connectivity with the default mode 

network across the N-back conditions presented here.  This latter finding may have 

implications for how the hippocampus and related regions are associated with those 

regions generating theta rhythms observed at the scalp. 
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CHAPTER V 

 

METHODOLOGICAL ADVANCES FOR FMRI MEASUREMENTS OF 
FUNCTIONAL CONNECTIVITY 

 

Introduction 

 

Overview 

 Although steady state functional connectivity measurements by fMRI are in 

routine use, there is continuing interest in improving the methods used and the quality of 

information obtained.  In practice, the methods of image acquisition and analysis used 

today are very similar to those originally described 14 years ago. (Biswal, et al. 1995)  

Both image acquisition and image analysis present potential opportunities for 

improvement.  The goal of this chapter is to demonstrate two methodological 

developments that can improve seed region based functional connectivity analyses of 

steady state data.  The first development focuses on improving spatial resolution through 

acquiring images at 7T using smaller voxels than are commonly used at 3T.  This may 

decrease partial volume effects that blur and dilute BOLD activity to the benefit of 

functional connectivity measurements.  The second advance is to consider alternative 

approaches to image analysis.  Here we will investigate the utility of mutual information 

as a nonlinearly sensitive marker of steady state functional connectivity in place of 

simple linear correlations. 
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Imaging at 7T to Diminish Partial Volume Averaging 

The opportunities for improving fMRI measurements of functional connectivity 

start at image acquisition.  Recent advances in MRI scanners such as using higher fields 

can provide higher resolution images than are in currently common use.  Most fMRI 

experiments gather relatively low resolution images by echo planar imaging.  However, 

higher resolution images with an adequate signal to noise ratio (SNR) and significant 

BOLD contrast can be acquired through imaging at higher field strengths, as has been 

shown at 7T. (Yacoub, et al. 2001)  Typical voxel volumes in images acquired at 3T are 

27mm3, while useful fMRI images can be acquired at 7T with voxel volumes as small as 

1mm3.   As voxel volumes increase, so does the likelihood that the tissue within a voxel 

is functionally heterogeneous.  If only part of the voxel volume contributes to the 

expected BOLD signal, the rest of the voxel may bring contributions that obfuscate the 

signal of interest, or at least dilute it.  This problem is generally referred to as partial 

volume averaging.  Studying BOLD based functional connectivity at 7T with smaller 

voxel volumes may decrease partial volume effects and may reveal activation changes 

more accurately.  The question then becomes whether increases in spatial resolution that 

decrease partial volume averaging affect the estimates of connectivity. 

Acquiring fMRI images in larger static magnetic fields (B0) brings several 

advantages as well as some disadvantages, and it is important to understand the 

associated tradeoffs.  As B0 increases, the frequency at which spins precess also increases 

linearly, meaning increased signal measured via Faraday induction.  Increases in signal 

can be used to decrease voxel volume while maintaining SNR.  The common metaphor is 

that increased SNR is “spent” on decreasing voxel volume. 
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The benefit of increased SNR is coupled with faster dephasing due to local field 

inhomogeneities (the basis for the BOLD contrast), improving typical fMRI contrast.  

However, phase accumulation due to any inhomogeneity in the static magnetic field is 

also increased, resulting in extraordinary degradation of echo planar images in regions of 

the brain near large changes in magnetic susceptibility.  Also increased are T1 relaxation 

times, specific absorption rates (SAR), B1 inhomogeneities, and dielectric effects, each of 

which may present significant challenges.  These serve only as examples of a wide 

variety of issues associated with performing fMRI in increasing static field strengths.  

However, the possibilities presented by working with more potential signal as well as 

more BOLD contrast from any given tissue make a compelling case for addressing the 

possible difficulties and acquiring fMRI data at 7T. 

Carefully designed studies may be able to avoid some of the problems associated 

with imaging at 7T while providing an opportunity to assess the benefits of decreasing 

voxel volume on measurements of functional connectivity.  Imaging over a limited 

number of slices placed in the superior portion of the brain (covering motor cortex, for 

example) will avoid the large B0 inhomogeneities that are likely to be present lower in the 

brain, where the sinuses and the ear canals present large susceptibility borders.  

Decreasing the through plane coverage at any given in plane resolution also decreases the 

minimum repetition time between image volumes, compensating for limited gradient 

performance.  Gradient echo imaging schemes reduce the effects of B1 inhomogeneities 

compared to spin echo schemes because those B1 inhomogeneities are not allowed to 

compound over several refocusing pulses.  Single shot EPI schemes also reduce the 

deposited energy, minimizing the dangers associated with increased SAR.  Finally, using 
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parallel receive coils will reduce the time required for each planar image, reducing 

distortion associated with remaining B0 inhomogeneities. 

 

Measuring Connectivity with Mutual Information 

Beyond image acquisition, new methods of image analysis may yield improved 

measurements of functional connectivity.  Common measures of connectivity based on 

correlation are sensitive only to linear relationships between signals.  Simple linear 

measures of connectivity have been used to identify relevant functional networks,. 

(Biswal, et al. 1995; Cordes, et al. 2000; Hampson, et al. 2002; Kiviniemi, et al. 2004; 

Lowe, et al. 2000; Lowe, et al. 1998)  However, a priori there is little justification for 

assuming only a linear relationship between signals, yet nonlinear couplings have not 

been extensively explored.  Mutual information may be an improved or complementary 

marker of functional connectivity due to its sensitivity to both linear and nonlinear 

relationships between signals (Eckhorn and Popel 1974; Pereda, et al. 2005; Wang, et al. 

2005), and has recently been applied to fMRI data. (Salvador, et al. 2007; Salvador, et al. 

2005)   

Mutual information measured between two signals, as might be measured in 

calculating functional connectivity between two fMRI time courses, is defined as the 

difference between their summed individual entropies and their joint entropy, shown in 

equation 5.1.  

 

! 

MI X,Y( ) =H X( ) +H Y( ) "H X,Y( )          (5.1) 
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From a conceptual point of view, the Shannon entropy of a signal is inversely 

proportional to the certainty with which it can be predicted. (Shannon 1948)  Joint 

entropy can be thought of as the uncertainty in predicting one signal given knowledge of 

the other.  For example, uniformly distributed random signals have higher entropy than 

normally distributed random signals, which in turn contain more entropy than Poisson 

distributed random numbers (Pereda, et al. 2005), as is shown in Figure 5.1 where ‘H’ is 

Shannon entropy. 

 

 

Figure 5. 1 - Histograms of three signals with different probability density functions, and 
their associated Shannon entropy (mirroring results shown in Pereda E et al, 2005, Figure 
3). 

 

Mutual information and Pearson’s correlation coefficients are conceptually 

similar.  Like Pearson’s correlation coefficients, mutual information is essentially a 

measurement of one signal’s relationship to the other scaled by some property of both 

signals individually.  In the case of mutual information, this relationship is defined in 

terms of individual entropies and joint entropy.  In the case of Pearson’s correlation 

coefficients, this relationship is defined in terms of individual variances and covariance.  
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Equations 5.2 and 5.3 highlight this similarity, where equation 5.3 is identical to equation 

5.1 but written in a way to highlight this similarity.  

 

! 

r =
covariance between x and y

individual standard deviation of x( ) individual standard deviation of y( )
  (5.2) 

 

! 

MI X,Y( ) = individual entropy of x( ) + individual entropy of y( ) " joint entropy of x and y( )       (5.3) 

 

In order to calculate mutual information, the entropy of both signals, and their 

joint entropy, must be estimated.  The most common method for accomplishing this is 

through estimation of probability density functions for each signal and their joint 

probability density function via histogram approximation. (Kraskov, et al. 2004)  A 

thorough explanation of how mutual information is calculated via histogram 

approximation can be found elsewhere (Pereda, et al. 2005), as are more general 

properties of mutual information (Aczél J. 1975).  The definitions of individual entropies 

and joint entropy in terms of probability density functions (p) are shown here in equations 

5.4 and 5.5, with the resulting definition of mutual information being shown in equation 

5.6.  ‘B’ refers to the bins used to approximate the probability density functions.  For the 

purposes of this study, we will consider mutual information estimated only with uniform 

bin widths, though other methods have been described. (Darbellay 1999; Darbellay and 

Vajda 1999)   
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! 

H X( ) = - pi ln pi( )
i=1

Bx

"             (5.4) 

 

! 

H X,Y( ) = - pij ln pij( )
j=1

BY

"
i=1

BX

"                 (5.5) 

 

! 

MI X,Y( ) = pijln
pij

pip j

" 

# 
$ $ 

% 

& 
' ' (      (5.6) 

 

Mutual information has been shown to be useful in studying neurophysiologic 

signals apart from fMRI.  Examples include quantifying global synchronization between 

time series in electroencephalography (EEG) (Kraskov 2004), evaluating the voltage 

response of modeled Hodgkin-Huxley-type neurons (Machens 2002), and testing the 

goodness of neuronal encoding models. (Borst and Theunissen 1999)  A particularly 

successful application of mutual information has been in comparing images, as is done in 

the application of registration techniques (Collignon, et al. 1994; Pluim, et al. 2003; Viola 

1995), and these examples together serve to highlight the potential utility of applying 

mutual information measurements to fMRI data. 

However, calculation of mutual information through estimation of probability 

density functions presents practical challenges for fMRI data.  This stems from the 

relatively slow temporal sampling frequencies typical of fMRI data  (about three orders 

of magnitude slower than EEG), and the low tolerance of participating subjects for 

exceptionally long scans.  Illustrating this point, note that the examples listed in the 

previous paragraph either make use of simulated data where temporal sampling is not 
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actually limited, or involve modalities capable of relatively high temporal sampling rates 

(kHz in the example of EEG).  In the case of calculating spatial mutual information, the 

number of samples is equal to the number of pixels or voxels in the images and this tends 

to be very large.  In fMRI based functional connectivity analyses, the number of samples 

in a signal is a function of both the time needed to acquire one image volume (typically in 

the range of 0.5-2s) and the number of images acquired (on the order of hundreds of 

images for estimation of mutual information). 

It is possible that mutual information may reveal previously undetected functional 

relationships between regions of the brain measured at rest.  The challenge presented by 

the requirement for so many images to be acquired at such relatively slow rates can be 

addressed by steady state imaging, and specifically by imaging in the resting state.  

Resting state fMRI eliminates issues of fatigue and task tolerance that may limit the 

requite number of images from being acquired during the performance of more 

demanding cognitive tasks.  

 

Summary 

The studies presented here have two aims.  The first aim is to test whether 

decreasing voxel volume improves measurements of resting state functional connectivity 

through decreasing partial volume averaging.  We hypothesize that it will, representing 

an improvement in image acquisition for functional connectivity studies.  The second aim 

is to test whether mutual information is useful as a nonlinearly sensitive marker of 

functional connectivity.  We hypothesize that there may be regions of the brain whose 
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resting state BOLD signals are nonlinearly related, and that these regions will be 

identified by mutual information. 

 

Methods & Results 

 

Improving Image Acquisition: Partial Volume Effects Measured at 7T 

Overview 

 In order to evaluate the influence of partial volume effects in functional 

connectivity measurements, we tested whether the distribution of measured functional 

connectivity values changed within the sensorimotor system.  We also evaluated effects 

of voxel size on overall BOLD contrast in sensorimotor activations. 

Subjects / Hardware 

 Five subjects were imaged on a Philips Achieva 7T MRI scanner with a volume 

transmit RF coil and a SENSE receive coil (16 channels, Nova Bionics).  All subjects 

were normal and right handed by self report. 

 

Image Acquisition 

 Each subject had a series of five functional images acquired, in addition to high 

resolution anatomic images for structural reference.  Subjects initially performed a block 

designed finger tapping task while images were acquired and analyzed in real time for 

activation (single shot gradient echo EPI, 90 volumes, FOV=192mm, TR/TE = 

2000/28ms, flip θ = 69.6°, voxel size = 1x1x2mm, SENSE factor = 3.92).  The task 

consisted of 20s tapping with the left hand (thumb pressed to each finger in order from 
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index to pinky, back and forth at the quickest comfortable pace), 20s tapping with the 

right hand (same scheme), and 20s resting with their eyes open.  This sequence was 

repeated three times.  This real time analysis was used to locate the left and right primary 

motor cortices, as well as the supplementary motor area.  Seven contiguous slices 

covering these structures were identified for further imaging.  Four functional 

connectivity experiments were performed covering these seven slices with increasingly 

larger voxels.  Subjects began each connectivity series by repeating the previously 

described finger tapping task, after which they were instructed to close their eyes and 

rest.  The post-task resting state lasted for 500s.  Images were acquired again using single 

shot gradient echo EPI (680 volumes, FOV = 192mm, flip θ = 53.8°, TR/TE = 

1000/28ms, SENSE factor = 3.92, full k-space acquisition).  The voxel volumes used 

were 2mm3, 4.5mm3, 8mm3, and 18mm3 corresponding to resolutions of 1x1x2mm, 

1.5x1.5x2mm, 2x2x2mm, and 3x3x2mm.  Seven slices were imaged at the highest 

resolution, while all three other resolutions spanned 13 slices with the central seven 

matching those slices imaged at 1x1x2mm resolution. 

 

Image Analysis: General Comments 

 Two major analyses were used to test for effects of partial volume averaging in 

functional connectivity data.  The first analysis was a comparison of the contrast between 

motor and non-motor voxels in seed region functional connectivity maps measured at 

each resolution.  This analysis served to establish whether the motor network was better 

distinguished from the background of the brain at one resolution versus the other.  The 

second analysis was a comparison of the steady state correlations between the primary 
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motor cortices at each resolution and served to establish whether the apparent 

connectivity within the motor network changed as a function of voxel volume.  

Prior to either analysis, all images were corrected for slice timing artifacts and 

motion artifacts using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/).  Each 

voxel’s BOLD time course underwent linear regression of the six estimated motion 

parameters, low frequency cosine basis functions, and the global time course calculated 

across the whole brain.  All voxels’ time courses also were low pass filtered at 0.1Hz 

using a Chebychev Type II filter, linearly detrended, and de-meaned as well. 

 

Image Analysis #1 

 Seed region functional connectivity maps were calculated for each subject by 

manually selecting a single activated voxel along the right primary motor cortex as the 

seed voxel.  This voxel was identified through analysis of the block designed data 

gathered at the the highest resolution, and its location was interpolated in order to identify 

the corresponding larger voxel at every other resolution.  Thus all connectivity maps were 

constructed from single voxel seed regions, where the only variable between resolutions 

is the size of the voxels.  All available slices were analyzed at each resolution. 

 Functional connectivity maps were constructed by calculating the Pearson’s 

correlation between every voxel and the seed voxel.  Connectivity maps were segmented 

into two regions: the motor network, and the non-motor voxels within the brain.  Motor 

voxels were identified at the highest resolution through finding voxels significantly 

activated during either left or right handed finger tapping according to the blocked task 

portion of the data acquisition using an F-test (FWE corrected, p<0.05, no minimum 
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cluster size), and were interpolated in order to identify the same voxels at every other 

resolution.  The histogram of functional connectivity measurements were calculated at 

each resolution for both motor and non-motor voxels, where voxel counts were 

normalized by the total number of voxels activated at each resolution.  Finally, the 

contrast to noise ratio (CNR) between the motor network and the rest of the brain was 

calculated as defined by equation 5.7. 

 

! 

CNR =  
rmotor " rnon -motor[ ]

1

N
non -motor

r
non -motor

" rnon -motor( )
2

i=1

N
non-motor

#

   (5.7) 

 

Paired t-tests were conducted to identify significant differences between the CNR 

measured at different resolutions across subjects. 

 

Image Analysis #2 

 In order to measure changes in the distribution of connectivity values within the 

motor system, analysis was restricted to the specific set of voxels belonging to the 

primary motor cortices (PMC).  These voxels were defined as the entire connected cluster 

of voxels significantly activated (p<0.05, no minimum cluster size, FWE corrected) 

covering the left and right PMC respectively, and were identified based on the highest 

resolution data (that containing 1x1x2mm voxels).  Their locations were interpolated to 

locate corresponding voxels at every other resolution.  Analyses of data containing 

1.5x1.5x2mm voxels, 2x2x2mm voxels, and 3x3x2mm voxels was restricted to the 

central seven slices corresponding to the seven slices acquired with 1x1x2mm voxels.  
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Pearson’s correlation coefficients were measured between every possible pair of voxels at 

each resolution, and were analyzed for changes in their distribution as a function of voxel 

volume. 

 

Results 

 Significant activation was measured in the sensorimotor system in all five 

subjects imaged at 7T with all four resolutions.  The motor network was defined based 

upon activation measured in the highest resolution data, and the location of those voxels 

in lower resolution images was calculated via linear interpolation, an example of which 

can be seen in Figure 5.2.  Functional connectivity maps were calculated for each subject 

at each resolution, an example of which can be seen in Figure 5.3. 

 

 

Figure 5. 2 - The seed voxel (green) and the motor network (red) were defined for each 
subject based on the highest resolution data (representative subject shown).  Their 
locations were interpolated to identify the same voxels across all resolutions. 
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Figure 5. 3 - Examples from one subject of increased specificity associated with 
functional connectivity mapping with decreasing voxel volumes.  The seed voxel is 
marked with a red ‘+’. 

 

 Described previously as analysis #1, we measured the distributions of correlation 

measurements among both the motor voxels (red, Figure 5.2) and the non-motor voxels 

(everything else within the brain, Figure 5.2).  Correlations measured within the motor 

network gradually increased as voxel volume decreased, as shown in Figure 5.4.  

Correlations measured throughout the rest of the brain remained unchanged as a function 

of voxel volume (Figure 5.5), and the comparison of the distributions between motor and 

non-motor voxels can be seen in Figure 5.6.  There is increasing separation between the 

correlations measured in motor voxels verses those measured in non-motor voxels.  This 

separation led to significant differences in the measured CNR between the motor network 

and the rest of the brain, as shown in Table 5.1.  With respect to Table 5.1, note that when 

the Bonferroni correction for six tests is applied, the differences between the highest and 

lowest resolution images (3x3x2mm vs. 1x1x2mm) remains significant.  

 



 111 

 

Figure 5. 4 - These are the distributions of functional connectivity (correlation) among 
MOTOR voxels at each resolution.  (Top) The average distribution across subjects, with 
error bars representing the standard deviations across subjects. (Bottom) The distribution 
across subjects fit with a Gaussian curve at each resolution. 
 

 

Figure 5. 5 - These are the distributions of functional connectivity (correlation) among 
NON-MOTOR voxels at each resolution.  (Top) The average distribution across subjects 
with error bars representing the standard deviations across subjects. (Bottom) The 
distribution across subjects fit with a Gaussian curve at each resolution. 
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Figure 5. 6 - A comparison of the distributions of correlation among motor and non-
motor voxels at each resolution.  These curves correspond to those shown in the bottom 
panes of Figures 5.4 and 5.5. 
 

 

1x1x2mm 1.5x1.5x2mm 2x2x2mm 3x3x2mm

1x1x2mm -

1.5x1.5x2mm 0.0396* -

2x2x2mm 0.0266* 0.0143* -

3x3x2mm 0.0033* 0.0732 0.3172 -

* marks values below 0.05

Table 5.1 - Probability of No Significant CNR Differences Between 

Resolutions 

(p-values from paired t-tests)
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 Previously described as analysis #2, we measured the distribution of all possible 

pairs of individual voxels in the right and left primary motor corticies, the results of 

which can be seen in Figure 5.7.  As voxel volume decreased, a weak trend towards 

higher correlations was observed.  This is represented by the shifting of the distributions 

to the right as a function of voxel volume. 

 

 

Figure 5. 7 - Pair-wise connectivity measured between all pairs of voxels in the left and 
right primary motor corticies weakly changes as a function of voxel volume.  (Top) The 
average distributions across subjects at each resolution, with error bars representing the 
standard deviation across subjects.  (Bottom) The average distributions across subjects at 
each resolution are overlaid for comparison, with smaller voxel volumes showing a slight 
shift towards higher correlations. 
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Improving Image Analysis: Mutual Information Measurement of Functional Connectivity 

Overview 

 We used mutual information to measure functional connectivity in the 

sensorimotor network, and compared the regions identified to those identified by 

connectivity quantified with Pearson’s correlation coefficients.   Furthermore, we isolated 

the nonlinear relationships underlying differences between correlation coefficient and 

measurements of mutual information through linear regression analyses, confirming that 

the new regions identified by mutual information were nonlinearly related to the seed 

region. 

 

Subjects / Image Acquisition 

 Eight normal subjects were imaged on a Philips Achieva 3T MRI scanner, with a 

volume transmit and an eight channel SENSE receive coil.  One subject was removed 

from the study due to excessive motion during imaging.  In each subject, high resolution 

T1 weighted images were acquired for anatomical reference with the same geometry as 

that used later for functional images. 

Each subject had three sets of functional images acquired.  First, images were 

acquired as a localizer for the sensorimotor network during a block designed finger 

taping task analyzed for activation in real time using IViewBOLD software 

(TR/TE=2000/35ms, θflip= 79°, SENSE factor =1.8, FOV=200mm, 2.5mm isotropic 

voxels).  This analysis was used to identify a subset of slices to be imaged more quickly 

with limited through plane coverage.  The finger tapping task consisted of left handed 
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finger tapping and right handed finger tapping, finishing with a resting period.  All three 

conditions were for 20s each, and the group was repeated three times (180s total).   

Focusing on the final two functional runs, one run consisted of a set of 512 

images acquired in the resting state.  The other run consisted of a set of 180 matching 

images acquired during a repeat of the finger tapping task.  The imaging parameters for 

both of these runs were as follows: TR/TE=1000/35ms, θflip= 79°, SENSE factor =1.8, 

FOV=200mm, 2.5mm isotropic voxels.  Through plane coverage was limited to seven 

slices in three subjects to match that acquired in a separate spin echo fMRI experiment 

(not presented here), and was expanded to the maximum allowed by the 1s TR (15 slices) 

in the remaining four subjects.  

 

Image Analysis 

 All functional data were corrected for slice timing and motion artifacts using 

SPM5. (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/)  All resting state data 

underwent linear regression of the six estimated motion parameters, low frequency cosine 

basis functions, and the global time course calculated across the whole brain.  All voxels’ 

time courses also were low pass filtered at 0.1Hz using a Chebychev Type II filter, 

linearly detrended, and de-meaned. 

A seed region was defined in the left primary motor cortex based on GLM 

analysis of the task data.  This region was chosen based on the connected cluster of 

voxels significantly activated by either right or left handed finger tapping as defined by 

an F-test of both conditions versus rest (p<0.05, FWE corrected).  
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Three maps of functional connectivity were calculated in the resting state data.  

First, a simple map of Pearson’s correlation coefficients was calculated.  Second, a map 

of mutual information, sensitive to linear and non-linear relationships, was calculated 

according to equation 5.6.  Lastly, a map of mutual information sensitive only to 

nonlinear relationships was calculated.  The latter was obtained by linearly regressing the 

seed region’s time course from every voxel’s individual time course, and calculating the 

mutual information between the individual voxel’s residual variance and the seed region.  

These maps will be referred to as ‘nonlinear mutual information maps’ throughout the 

rest of this manuscript.  All three connectivity maps were thresholded to include only the 

top 5% of the values within the brain in order to minimize the effects of differences 

between the distributions of Pearson’s correlations and measurements of mutual 

information, and with a minimum cluster size of ten voxels. 

 Due to differences between subjects in the number of slices imaged and limited 

coverage across all subjects, functional connectivity maps were analyzed on the 

individual subject level, they were not spatially normalized, but were instead individually 

assessed for similarities/differences between functional connectivity maps across 

subjects.  Specific emphasis was placed on determining whether regions related to the 

sensorimotor system were identified as being nonlinearly related to the seed region in the 

left primary motor cortex. 

 

Results 

 In all seven subjects imaged at 3T, significant activation was measured during the 

finger tapping task, as was functional connectivity in the resting state.  Examples of these 
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results can be seen in Figure 5.8.  Functional connectivity maps measured with mutual 

information revealed regions that were not identified by Pearson’s correlation coefficients 

along the middle frontal gyrus.  These voxels also were identified after linear regression 

across the brain of the seed region’s time course, suggesting that they have a non-linear 

relationship to the seed region.  Their consistency across subjects is evidenced by the 

lateral-frontal clusters seen in nonlinear mutual information maps shown in Figure 5.9. 

 

 

Figure 5. 8 - These are four maps of the sensorimotor network.  On the left is a typical 
activity map, which is compared to three maps of functional connectivity measured in 
resting state data.  The green arrow identifies a region along the middle frontal gyrus that 
is identified as being nonlinearly related to the left primary motor cortex. 
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Figure 5. 9 - These are through-plane projections of three functional connectivity maps 
measured in each subject.  Note that lateral frontal regions consistent with the middle 
frontal gyrus are identified in maps of mutual information that are not identified in maps 
of correlation coefficients in many subjects.  These regions remain after linear regression 
of the seed region’s time course, highlighting the utility of nonlinear sensitivities.  
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Figure 5. 10 - The signals from two nonlinearly related voxels, as identified via mutual 
information, were compared with a scatter plot.  PMC - primary motor cortex; MidFG -  
middle frontal gyrus. 

 

Discussion 

 Here we have demonstrated two methodological advances that may be used in the 

future to improve functional connectivity analyses performed with fMRI data.  In our first 

experiment, we showed that by acquiring images at 7T and decreasing voxel volume, we 

were able to reduce detrimental partial volume effects and increase the sensitivity and 

specificity of functional connectivity measurements.  In our second experiment, we 

demonstrated the potential utility of measures of connectivity by using mutual 

information to identify the middle frontal gyrus as participating in the motor network.  

This region is not commonly identified using Pearson’s correlation coefficients. 

 The effects of partial volume averaging have been described in a variety of MRI 

applications, and our data serve to shed light on this issue in the context of functional 
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connectivity measurement.  Partial volume effects have been described in many different 

contexts such as classifying multiple sclerosis lesions (Firbank, et al. 1999), tissue 

segmentation (Bullmore, et al. 1995), and T2 measurements of vasculature (Stainsby and 

Wright 1998), and are not unique to MRI data. (Fazio and Perani 2000)  With respect to 

the role of partial volume averaging on measurements of connectivity, most attention has 

been paid to structural connectivity measurements using diffusion tensor imaging and 

fiber tracking analyses. (Alexander, et al. 2001; Frank 2001; Tuch DS 1999)  In those 

studies, voxel volume is larger than the axonal fibers of interest.  Where fibers of 

different orientations cross, partial volume effects can cause an apparent decrease in 

diffusion anisotropy that hides the underlying reality that diffusion is very anisotropic in 

two or more distinct directions.  Our data serve to extend the discussion of partial volume 

effects in connectivity measurements into measurements of functional connectivity as 

well. 

 Our finding that resting state functional connectivity maps more closely mirror 

typical activity maps as images are acquired at higher spatial resolutions suggests that the 

activity is more focal may be revealed using lower resolution images.  This idea is 

supported by mounting evidence of functional organization of the brain on spatial scales 

approaching 1mm, observed in imaging studies of the subdivisions of the thalamus 

(Gilbert, et al. 2001), optical dominance columns of the visual cortex (Yacoub, et al. 

2008), and recently in the digit separation of the somato-sensory cortex. (Stringer EA 

2009) 

 Transitioning functional connectivity studies towards being performed in very 

large magnetic fields (7T) may provide benefits beyond simply providing access to 
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higher spatial resolutions.  It has been suggested that as B0 increases, physiological 

variations in MR signals may increase relative to thermal noise, potentially allowing 

BOLD variance to dominate temporal signals. (Triantafyllou, et al. 2005)  Any increase 

in physiological BOLD variations relative to thermal noise potentially improves 

functional connectivity measurements (as it would all fMRI) through increasing temporal 

SNR.  However, physiological noise also includes signals that are not neuronally based, 

cardiac and respiratory signals being the most dominant, and increases in the power of 

these signals highlights the importance of removing variance that is not of interest.  

Reliable mapping of functional connectivity necessitates the separation of variance 

unique to specific cognitive networks from all the other sources of temporal variance.  It 

is possible that the quality of functional connectivity measurements made at 7T will 

continue to improve as methods for isolating the ‘intrinsic’ variance also improve. 

 By measuring functional connectivity with mutual information, we also have 

presented evidence of nonlinear relationships between the middle frontal gyrus and the 

left primary motor cortex, suggesting that the middle frontal gyrus may participate in the 

sensorimotor network.  That this is a nonlinear relationship is supported by two pieces of 

evidence.  First, the middle frontal gyrus is not identified in maps of correlation 

coefficients, which we know are sensitive only to linear relationships.  Second, maps of 

mutual information retain lateral frontal regions consistent with the middle frontal gyrus 

after linear relationships to the left primary motor cortex have been removed through 

linear regression. Given the evidence that there is a nonlinear relationship between these 

regions, the question becomes whether there is reason to believe that these regions are 

actually functionally related.  Lesion studies have implicated the middle frontal gyrus as 
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underlying deficites in apraxia patients (Haaland, et al. 2000), and voluntary movement 

of the right index finger has been shown to induce the Bereitschaftspotential, or  the 

‘readiness potential’, originating from a source along the left middle frontal gyrus with 

corresponding increases in perfusion measured along the middle frontal gyrus with 

positron emission tomography. (Pedersen, et al. 1998)  Middle frontal gyrus has also been 

implicated in some attention demanding motor tasks. (Lang, et al. 1988)  All of these 

provide support for a functional link between the middle frontal gyrus and primary motor 

cortex, as implicated by our measurements of mutual information. 

 Nonlinear relationships can be identified by methods other than through 

measurement of mutual information, though other methods may not be as sensitive to the 

variety of nonlinear relationships.  Nonlinear curve fitting usually requires a priori 

definition of a model for the relationship between signals, which may not be known.  A 

common voxel’s nonlinear relationship to other voxels may be variable, and those 

differences mean that parametric curve fitting to one curve may be more appropriate 

some places than others.  Analysis of the full cross correlation function can capture some 

nonlinear relationships between signals, though this is really limited to phase shifts. 

 

Conclusions 

 We have demonstrated that measurements of functional connectivity may be 

improved through acquisition of higher resolution images, and through implementation of 

data analyses sensitive to nonlinear couplings.  Our studies at 7T show that smaller 

voxels, which decrease partial volume effects, help separate the sensorimotor network 

from the rest of the brain in typical maps of functional connectivity and increase r values.  
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Implementing mutual information as a nonlinear metric of functional connectivity 

identified regions of the sensorimotor network that were not identified by Pearson’s 

correlation coefficients, namely the middle frontal gyrus. 
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