
MODEL-BASED SOFTWARE DESIGN TOOLS

FOR THE CELL PROCESSOR

By

Nicholas Stephen Lowell

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2009

Nashville, Tennessee

Approved:

Professor Gabor Karsai

Professor Sandeep Neema

To my

ever caring, ever supportive,

ever encouraging,

ever humbling, ever faithful,

and ever loving

parents.

ii

ACKNOWLEDGEMENTS

 This research was performed under the support of a Raytheon grant and

Raytheon contact, Andrew M. Vandivort.

 I want to thank Dr. Sandeep Neema, Dr. Gabor Karsai, and the Institute

for Software Integrated Systems (ISIS) for the wonderful support, guidance, and

opportunity to further my education and experience at Vanderbilt University and

as a part of ISIS.

 I also want to thank those professors at Lipscomb University who willingly

went beyond the call of duty to teach me and prepare me for all of life’s

opportunities and challenges.

 Finally, I thank my friends and my family. They bring me joy and laughter,

they exemplify faithfulness and love, and they believe in me even when I do not.

iii

TABLE OF CONTENTS

Page

DEDICATION ..ii

ACKNOWLEDGEMENTS... iii

LIST OF TABLES ...vi

LIST OF FIGURES..vii

LIST OF ABBREVIATIONS ..ix

Chapter

I. INTRODUCTION ... 1

II. BACKGROUND ... 3

III. CELL PROCESSOR.. 8

 PowerPC Processing Element ... 9
 Synergistic Processing Element ... 10
 Memory Flow Controller ... 11
 Element Interconnect Bus .. 12
 Sony PlayStation 3 ... 12

IV. SIGNAL PROCESSING PLATFORM .. 13

 Signal Processing Modeling Language .. 13
 Execution Platform ... 14
 Code Generator.. 17
 Interpreter Tool Chain... 22

V. AUTOMATIC TARGET RECOGNITION EXAMPLE 24

 Modeling... 25
 Generating Code .. 31
 Interpreting ... 32
 Execution on PC... 33
 Reconfigure for Cell.. 35
 Memory Consumption ... 36
 Algorithm Analysis... 38

iv

 Replacing Cores for the Cell and Code Optimizations 48
 Execution on Cell ... 48

VI. RESULTS .. 51

VII. FUTURE WORK .. 56

VIII. CONCLUSION... 60

Appendix

A. META-MODEL OF SPML DATATYPING .. 62

B. META-MODEL OF SPML CORE... 63

C. META-MODEL OF SPML ARCHITECTURE ... 64

D. META-MODEL OF SPML APPLICATION DATAFLOW........................... 65

E. GENERATED WRAPPER CODE FOR CALCULATE_DISTANCE 66

F. GENERATED DATA TYPE HEADER FILE ... 68

G. GENERATED IX86 MAIN.C SYSTEM SOURCE FILE 70

H. GENERATED IX86 SYSTEM MAKEFILE.. 72

I. GENERATED PROCESS TABLE.. 73

J. GENERATED CONFIGURATION FILE... 75

K. GENERATED CELL MAIN.C SYSTEM SOURCE FILE........................... 82

L. GENERATED CELL SYSTEM MAKEFILE .. 83

M. GENERATED WRAPPER CODE FOR SPE-RUN

CALCULATE_DISTANCE .. 85

N. GENERATED SPE CODE FOR CALCULATE_DISTANCE 88

O. GENERATED SPE MAKEFILE FOR CALCULATE_DISTANCE 91

P. MODIFIED SPE CODE FOR MULT_DIFFT_CALC_MEAN_PSR 92

REFERENCES... 95

v

LIST OF TABLES

Table Page

1. Run Time and FLOP Count of Pipe Tasks... 39

2. FLOP Count for ATR Tasks ... 51

3. Performance of ATR .. 52

4. Breadown of Mult_TwoDIFFT_Calc_Mean_PSR on SPEs...................... 53

5. Mult_TwoDIFFT_Calc_Mean_PSR Run Times: XLC vs GCC................. 53

6. Breakdown of Calculate_Distance on SPEs .. 54

vi

LIST OF FIGURES

Figure Page

1. Different Processor Architectures .. 3

2. The Cell Broadband Engine Architecture... 8

3. Die of Cell Processor ... 9

4. Execution Platform... 15

5. Managing Code ... 18

6. SPP Tool Chain ... 22

7. Defining CIMAGE Data Type ... 25

8. AppDataflow Aspect for Calculate_Distance.. 26

9. TypeAspect Aspect for Calculate_Distance ... 27

10. Design of calc_distance_core .. 27

11. ImplAspect Aspect for Calculate_Distance .. 28

12. Design of Pipe Component for ATR... 29

13. Defined Hardware Types ... 30

14. Model of ATR Application for HostPC.. 31

15. Wrapper Code Generator .. 32

16. SPP Tool Chain Control Panel... 33

17. ATR GUI Running on PC... 34

18. Structure of Merged Pipe in ATR ... 40

19. AppDataflow Aspect for Mult_TwoDIFFT_Calc_Mean_PSR 40

20. TypeAspect Aspect for Mult_TwoDIFFT_Calc_Mean_PSR..................... 41

vii

21. ImplAspect Aspect for Mult_TwoDIFFT_Calc_Mean_PSR...................... 41

22. Design of mult_difft_calc_mean_psr_core ... 41

23. Defining ROI Data Type... 44

24. Model of ATR Application for Cell .. 47

25. ATR GUI running on Cell ... 49

26. ATR Timeline ... 55

27. Benefits of Double Buffering .. 57

28. ATR Timeline with Stream Depth of 2.. 58

29. ATR Timeline with Stream Depth of 3.. 59

viii

LIST OF ABBREVIATIONS

API — Application Programming Interface

ATR — Automatic Target Recognition

CPU — Central Processing Unit

DCCF — Distance Classifier Correlation Filter

DMA — Direct Memory Access

DSML — Domain-Specific Modeling Language

DSP — Digital Signal Processor

EA — Effective Address

EIB — Element Interconnect Bus

FFT — Fast Fourier Transform

FLOP — Floating-Point Operation

FLOPS — Floating-Point Operations Per Second

FPGA — Field Programmable Gate Array

GFLOPS — GigaFLOPS

GME — Generic Modeling Environment

GPR — General Purpose Register

GUI — Graphical User Interface

IFFT — Inverse Fast Fourier Transform

IO — Input/Ouput

KB — Kilobyte

LS — Local Store

ix

x

MACH — Maximum Average Correlation Height

MFC — Memory Flow Controller

MFLOPS — MegaFLOPS

OS — Operating System

PC — Personal Computer

PPE — PowerPC Processing Element

PPSS — PowerPC Processor Storage Subsystem

PPU — PowerPC Processing Unit

PSR — Peak-to-Sideloab Ratio

RISC — Reduced Instruction Set Computing

ROI — Region of Interest

SDK — Software Development Kit

SIMD — Single Instruction-Multiple Data

SPE — Synergistic Processing Element

SPML — Signal Processing Modeling Language

SPP — Signal Processing Platform

SPU — Synergistic Processing Unit

UI — User Interface

CHAPTER I

INTRODUCTION

 As improvements slow in transistor size and clock speed, hardware

developers search for alternate configurations in which to increase computational

power and speed. One such implementation is the production of multi-core

architectures. The increase in number of processor units within a system gives

way to physical parallel processing, yielding higher throughput than single-core

architectures. A major difficulty in using such specialized hardware is the call for

specialized programming, in both technique and the adoption of a hardware-

specific API that supports the non-traditional instructions. Thus, adapting

existing applications to these architectures either neglects to seize the

computational advantage or requires a significant amount of code rewrite in order

to realize the performance increase.

 As the complexity of embedded systems grows, the traditional method of

manual code production from start to finish becomes too long and costly for

practicality. The use of domain-specific modeling languages (DSMLs) [12] allows

designers to describe a system using semantics appropriate for that system.

Accompanying the modeling language are automation tools for transforming or

generating the modeled system into a physical product (i.e. source code) in a

fraction of the time it would take a user to develop the same system writing only

code from start to finish. The Generic Modeling Environment (GME) [15] is a

1

toolkit for defining such DSMLs and assists in building the tools (i.e. model

transformers, code generators) one desires to accompany the language.

I have adopted the Cell Broadband Engine Architecture (or, Cell)—the

multi-core architecture resulting from the collaborative efforts of IBM, Sony, and

Toshiba—and have adapted a DSML tool suite, the Signal Processing Platform

(SPP) [17], to take advantage of the multi-core structure and improve signal

processing performance while requiring minimal extra work from the user by

handling most of the specialized programming.

The second chapter provides some general background information about

multi-core architectures and some related work. The third chapter presents

preliminary information surrounding the Cell architecture. Chapter four

introduces the SPP tool chain—the modeling language and the associated

tools—and highlights the updated features that support the Cell and take

advantage of its multiple cores. Following, the fifth chapter provides an example

Automatic Target Recognition (ATR) application showing how to port from a

typical PC CPU to the Cell using the updated tools. Chapter six contains the

results of the example, comparing performances between a typical PC chip and

the Cell. Finally, chapter seven previews the future progressions of this project

while chapter eight presents conclusions drawn from this work.

2

CHAPTER II

BACKGROUND

 A multi-core processor is an arrangement of multiple independent

processing cores on a single chip, typically in a manner in which some resources

are shared among the cores. The architecture may require the cores to share as

much as cache, memory, and busses, or the cores may have a subset of

individual components that eventually diverge to a shared source. Figure 1

shows different possible core architecture designs.

Figure 1. Different Processor Architectures

3

Regardless, there exist physically independent processing units that can be used

to share the workload of a pressing application, allowing for significant

improvements in various aspects of the system, such as execution performance

and physical demands. However, the newness and complexity of the

arrangement call for new implementations of applications and embedded

systems—thinking about division of labor and proper balance. A slightly different

issue sprung from the multi-core emergence involves moving preexisting single-

core applications to the architecture and maintaining the temporal and reliability

constraints often present in embedded systems. Work exists in both areas as

developers strive to adapt to the changing hardware environments and reap the

benefits.

 There are both physical and execution reasons for using multi-core

architectures. Early on, as chip developers increased their transistor density for

faster processor clocks, the combination of higher voltage requirements and

increased current leakage increased the amount of power usage. This also

increased density began to produce denser and faster heat production. As clock

speeds increased, builders were unable to keep up with dissipating the heat

produced by the high-speed single core. The solution for increased performance

without burning chips involved going around the heat issue by adding more cores

to a single chip—cores that run at slower clock speeds—thus allowing for

efficient heat dissipation and, additionally, reducing the power requirements of

the chip [20]. The available advantage, then, of multi-core processors that a user

can utilize is physical parallelization. Developing applications to use all present

4

independent CPUs simultaneously is a sure-fire way to reach the system’s goal

faster.

 As it has already been alluded to, the key to developing for multi-core

architectures involves paralleled systems. The most prominent method involves

identifying the parallelism and implementing multiple threads to execute these

tasks simultaneously [20]. However, as [20] and [4] point out, several issues

must be addressed to ensure proper concurrent execution. These are issues

such as preventing opportunities for race conditions and deadlocks and handling

communication between the threads. [4] also mentions how the performance

increase will be reduced due to necessary overhead that handles work

distribution, and it warns of a thread threshold in some systems where the

overhead consumes more time than the computational cores of the threads, and

the performance depletes. This alludes to a difficulty in developing scalable

code—code that will not decrease in performance if the number of cores

increases. One problem with developed single-core applications is that they

often lack this feature, making it difficult to move to a multi-core architecture.

Porting such an application requires extensive analysis from the user or an

almost complete redevelopment.

 It is perhaps more difficult to take preexisting single-core specific

applications and port them to a multi-core layout while maintaining the integrity of

the system. [19] proposes a method for porting a large embedded system to a

multi-core processor that involves a two step process of componentization and

then partitioning of the tasks of the system. Components are logically grouped

5

tasks from a design point of view and independent of the architecture. Partitions,

whose groupings may intersect with components, are arranged based on their

ability to run concurrently and on which core; thus, they are dependent on the

architecture. The work to be presented develops slightly different ideas of a

component and the partitioning is related to that grouping, as opposed to the

orthogonality in [19]. Whether porting existing systems or developing new

applications, [22] and [16] talk about this difficulty and the necessary analysis of

shared resources and task allocation. It is important to identify the bottlenecks in

the program and avoid them if possible, and to test multiple methods that are

algorithm-friendly. In talking about the impact of network sharing in multi-core

architectures, [16] reveals how different work allocation methods improve

different types of systems and can hinder a system if the wrong one is chosen,

producing unnecessary dependencies and latency.

 When it comes to performance analysis, [13] looks at key points for

benchmarking multi-core architectures in order to find the sources of latency in

order to focus performance tuning in those locations. The two main sources of

inefficiencies were memory and cache. As will be mentioned, some of the cores

on the Cell processor actually lack cache—eliminating that source of latency and

improving benchmark simplicity. [4] takes time to address the difficulty to debug

parallel programs, especially using sequential debuggers.

 Some specific areas in which applications are being optimized for multi-

core architectures to achieve increased performance are [22] which talks about

network security applications and [2] which focuses on optimizing an FFT for a

6

multi-core architecture. It highlights the importance of domain specific

knowledge and analyzing important issues of the specific application such as

load balancing, work distribution, and data-reuse. The work to be presented

parallels this but extends it to a more abstract perspective.

 Something many of these works have in common is the assumption of

identical cores. With this, some of them place a great deal of the task distribution

on the shoulders of the Operating System. The work to be presented here

greatly differs in this venue. As will be discussed, the Cell processor has two

distinguishable core designs and the task allocation is entirely up to the

developer and is more involved due to a limitation of available resources.

7

CHAPTER III

CELL PROCESSOR

The Cell Broadband Engine Architecture is mainly composed of a

PowerPC Processing Element (PPE), eight Synergistic Processing Elements

(SPEs), and an Element Interconnect Bus (EIB). A top-level diagram of the

architecture is in Figure 2 with the die in Figure 3.

Figure 2. The Cell Broadband Engine Architecture

8

Figure 3. Die of Cell Processor1 [10]

PowerPC Processing Element

The PPE is a dual-threaded, 64-bit, big-endian, RISC processor that

complies with the PowerPC architecture with Single-Instruction-Multiple-Data

(SIMD)/vector extensions. It is composed mainly of a PowerPC processor unit

(PPU), L1 cache, and a PowerPC processor storage subsystem (PPSS).

The PPE contains separate 32 KB L1 instruction and data caches and six

execution units for instruction execution. The PPSS handles memory requests

from the PPU and memory-coherence from the EIB. Ports between the two

1 Reprint Courtesy of International Business Machines Corporation, copyright 2009 © International
Business Machines Corporation

9

components produce a capability for loading 32 bytes and storing 16 bytes

independently per processor cycle. The PPSS has a unified 512 KB L2

instruction and data cache with a cache-line size of 128 bytes (same for the L1

caches). Notable registers for the PPE are 32 64-bit general purpose registers

(GPRs), 32 64-bit floating-point registers, and 32 128-bit vector registers.

Running at 3.2 GHz, the PPE is capable of its own intense processing, however,

its main role is a system controller—running the operating system for the

applications executing on the PPE and SPEs. [5]

Synergistic Processing Element

Each SPE is a 128-bit RISC processor with a new SIMD Synergistic

Processing Unit Instruction Set specialized for data-rich and computationally

heavy applications. It is composed of three main components—a synergistic

processor unit (SPU), local memory store, and a memory flow controller (MFC).

The SPE has a 256 KB local store (LS) for both instruction and data, 128

128-bit GPRs, and no cache. It has four execution units, a direct memory access

(DMA) interface, and a communication channel interface. Because a SPE does

not have direct access to main memory, it must transfer any desirable data into

its LS. It does this by sending DMA transfer requests to the MFC through the

communication channel. The MFC then uses the DMA controller for the transfer.

It is important to note that the effective address of the data to be moved must be

minimally quad-word aligned (with the optimal being 128-byte aligned).

10

Furthermore, DMA transfers can be in sizes of 1, 2, 4, 8, or a multiple of 16 bytes

with a limitation of 16 KB per transfer.

Having two (odd and even) execution pipelines, the SPU is capable of

completing two instructions per cycle, if the instruction types allow for it. It

supports single-precision floating-point operations with a fully pipelined 4-way

SIMD execution while double-precision operations are half pipelined. This

includes combinational multiply-add operations for single precision, which means

that two single-precision floating-point operations can be performed on four

values per cycle, allowing for a theoretical performance at 3.2 GHz of

2 × 4 × 3.2 = 25.6 GFLOPS for each SPE. [5] It is important to highlight this as

the theoretical maximum performance. Most pertinent applications involve

instructions other than floating point multiply-adds and so practical performance

is decreased.

Memory Flow Controller

The MFC executes DMA commands autonomously, allowing the SPU to

continue execution during transfers. It can initiate up to 16 independent DMA

transfers. The MFC serves as the SPE’s sole interface to the external world:

main-storage, system devices, and other processor elements. It also handles

communication (mailboxes and signal-notification messages) between the SPE

and the PPE or other SPEs.

11

Element Interconnect Bus

 The EIB is the connection between all components of the Cell—the

processors, main memory, and IO controllers. It has four unidirectional 16-byte

data rings (two clockwise, two counterclockwise) that transfer 128 bytes at a

time. Processors are capable of sending and receiving data simultaneously. Its

internal maximum bandwidth is 96 bytes per cycle and it can support over 100

outstanding DMA requests between main memory and the SPEs. Saturating the

high bandwidth bus would be a hard task for most practical applications.[5][6][14]

Sony PlayStation 3

An easy source for obtaining the Cell processor is Sony’s PlayStation 3.

With the supported functionality to partition the internal hard drive and install a

Linux Operating System (Fedora Core 6 [21] with kernel-2.6.21 in this case), the

privilege to develop on the Cell is readily available. One downside with using the

PlayStation 3 is the limitation to only six of the eight SPEs. Sony disables one

SPE for increased yields and the other SPE is used by a virtualization layer

(called the hypervisor) that falls between the Linux kernel and the physical layer

[14]. Cheap access to the only slightly limited Cell is acceptable enough for

development purposes.

12

CHAPTER IV

SIGNAL PROCESSING PLATFORM

 Past work has developed a Signal Processing Platform (SPP) [17] which

supports model-based design of high-performance signal processing

applications. It consists of a modeling environment, a design-space exploration

tool, analysis tools, a synthesis tool, and a heterogeneous dataflow execution

platform. The following sections briefly describe the features and focus on the

added functionality that allows for supporting the Cell.

Signal Processing Modeling Language

 SPML is a defined DSML, integrated into GME, with the functionality for

modeling the dataflow of a signal processing system (or application). There are

four main features of the modeling environment, of which Appendices A-D show

their defined meta-models. The first is the ability to define data types relevant to

the system, which are then used in collaboration with defined components.

Components are individual blocks that are designated to perform one task of the

system (i.e. filter, FFT, correlation, etc.). Later, each component comes to

represent one process block during execution. Often included in a component

are input and output ports for designating entry and exit points for the data and a

core block for representing the computational task itself. The data types that are

defined are used for associations with the ports of the component. The third

13

feature of SPML is a hardware definition platform. Basic architectures and

hardware profiles can be created and indicate the types of available

communication protocols, the device type (CPU, FPGA, memory device, DSP),

and a few details that pertain to that specific device (such as the type of CPU).

Finally, SPML provides the venue for arranging and connecting the defined

components to build the desired system’s dataflow and appoint a hardware

platform to the components. [17]

 To support the Cell processor in the SPP, it needed to be added to the

available hardware types. Though it is a multi-core architecture, the decision

was made to have it fall into the CPU category. Users would be able to define a

CPU hardware type and then designate that CPU as a CELL. The tools

associated with the SPP see this selection and know how to treat the

architecture.

Execution Platform

 The dataflow execution platform of the SPP includes a lightweight real-

time non-preemptive kernel. Modeled in Figure 4, the kernel handles the

management and movement of the data throughout the system from process

block to process block. The process blocks interact with the kernel using a

simple API for actions such as acquiring and returning memory buffers, bringing

in the next set of data (called dequeuing), or pushing out processed data (called

enqueuing). The benefit of the kernel handling the dataflow is that the process

14

blocks remain isolated and unaware of the other processes, allowing for easy

manipulation later in the design process.

Figure 4. Execution Platform

Some of the additions to the execution platform (already shown in Figure

4) were only Linux-specific but just as necessary when providing support for the

Cell, which had Fedora Core 6 installed on it. The package’s Makefiles for

compiling the kernel and applications provide compilation rules for ix86 machines

running Microsoft Windows, a PowerPC running VXWorks, Xilinx Virtex-II

FPGAs, and now include rules for the Cell running Fedora Core 6 that link with

the Makefiles accompanying IBM’s Cell Software Development Kit (SDK) [7][8].

This required some additional targets, variable renaming, and meticulous

scripting to force the SDK Makefiles to match the file structure that would result if

one was to compile with, say, Microsoft Visual Studio on an ix86 machine. The

platform will compile successfully for both the GNU Compiler Collection (GCC)

[3] for the Cell and IBM’s XLC/C++ [11].

15

 One of the more significant adjustments to the platform is that the kernel

executes process blocks concurrently in the Linux environment. Previously, the

run-time kernel only scheduled and ran the signal processing blocks in a round

robin, sequential manner. Now, when it detects the new environment through

__PPU__ directives, it implements concurrency by creating a POSIX thread (or,

pthread) upon the first execution of each process. These threads run the signal

processing blocks, which now require a simple infinite loop around execution

code that is required to repeat. This proved to be a wise decision for when

programs are loaded and run on SPEs. Structures called SPE contexts are

created and the SPE program is loaded onto the context. Then, running this

SPE context initiates the SPEs to begin executing the program. The context run

function is a thread-blocking call. Therefore, this thread setup is the only way to

run multiple contexts simultaneously.

 Another set of necessary additions to the kernel revolved around the Cell’s

(more specifically, the SPE’s) strict memory alignment stipulations, as mentioned

earlier. Thus, all allocations of memory are now at least quad-word aligned in

anticipation of transfers to a SPE’s LS.

Lastly, in order for data to safely flow through the concurrent system, the

communication streams between the threads are synchronized and treated as

critical resources. Mutexes nicely control the access to interprocess

communication streams and produce thread stalls upon denied requests, as

opposed to wasteful polling loops. A denied request occurs when a thread

attempts to retrieve data from an empty stream queue or if it attempts to push

16

data onto a full stream queue. The kernel, as before, handles the stream

connections between processes and now associates the mutexes and unique

process keys to the streams.

Code Generator

 One part of preparing the modeled system for execution involves a code

generator (the SPML WrapperGen Interpreter) that produces the wrapper code

for each defined component. Based on the component design, it generates the

code that will interact with the kernel in order to bring in the appointed data,

allocate new memory, and prepare it for passing into the core function. It then

generates clean up code and code for sending on the processed data after the

core returns.

For each designed component, the naming and data typing of the

variables and the name of the core function are all directly obtained from the

SPML model. The core has a filename attribute associated with it. This is the

file the user is responsible for producing. He or she needn’t worry about the

movement of the data, but simply how the data is handled once in the core

function. The benefit of this is the modularity of the core. Once the core function

signature matches what the code generator expects, it can perform the task

however the user chooses. Algorithms can be swapped in and out as long as the

signatures match. Figure 5 shows how a modeled FFT component has a core

called fft_core and a FileName attribute of fft_core.c. The generated code,

FFT.c, expects the fft_core to be defined elsewhere and proceeds to call it when

17

necessary. The user must then provide the fft_core.c file, with the fft_core

function defined and matching the signature expected by the generated code.

Figure 5. Managing Code

 In order for the components to continually run in the concurrent

environment, an infinite for-loop is added around the generated code with a

directive that checks for the Cell environment. Also, within these directives, the

wrapper code isn’t required to check on the stream availability—it will simply hold

until the kernel returns with the requested data or having pushed out the

processed data.

18

In addition to the wrapper code, the code generator produces a header file

containing all the data types that the user defined in GME. Then, each

component’s wrapper code includes this file in order to use the defined data

types. Due to the memory alignment issues, every data type needs to be quad-

word aligned in case it is transferred to an SPE. This issue mostly deals with

defined structures and is fixed by keeping track of the primitive data types in the

structure as it is generated. Once they are added, an array of unsigned

characters (one byte each) is added to produce proper alignment. The size of

the padding array is calculated by the equation:

 16%imByteSizePrtotal16pad −= (1)

with totalPrimByteSize being the total number of bytes occupied by the primitive

data types in the structure. Following the padding, any user-defined data types

are added. Since the user-defined data types are properly aligned themselves

when defined, the alignment will hold when they are added to other data types.

 The largest and most valuable addition to the code generator revolves

around generating code for running a core on one of the Cell’s SPEs instead of

the PPE. Currently, the user is faced with some responsibilities—selecting what

components to run on an SPE and ensuring the code and data will fit in the LS—

but he or she typically isn’t burdened with the necessary tasks of setting up an

SPE to run the process and moving the data in and out of the LS. Additionally,

users have the option of using an Allocation attribute that was added to Ports in a

19

component in order to designate how the data should be declared on the SPE.

“Dynamic” allocation generates a pointer to the data structure and line in which

malloc_align() is used to acquire space for the data while selecting “Static”

declares the data structure for compile-time allocation and stores the base

address in the pointer. Typically, this choice should not matter; however, our

example will cover an instance where these selections play an important role.

After the user designs a component and decides to run it on an SPE, he or she

simply adds a file name (in addition to the file name corresponding to the core

function definition) to its attributes with “_spu.c” appended to the end and the

code generator identifies it as an SPE component.

First, the code generator produces wrapper code that diverges from the

original code. It adds code using the API from the runtime management library

[9] to create a SPE context, load the core program on the SPE, and run the

context. The method for providing the SPE with the necessary data involves the

generation of a context_data structure that holds the effective address (EA) of all

pertinent data (which correspond to the ports in the component). Then, the EA of

that structure is passed to the SPE upon execution of the context. Once again,

the structure must meet alignment requirements so a pad array is added to the

structure. The initialization of the context_data structure and the call to run the

SPE context replace the call to the core function, which will now reside in the

SPE source code.

Then, the code generator creates a separate folder with “_spu” appended

to it that corresponds to the core. This is where the SPE program will be built (it

20

is compiled separately). It generates a Makefile for compiling the program and

and the “_spu.c” source file that was specified for the component in the model.

The Makefile defines the program name to be the same as the folder name and it

links with each object file corresponding to the file names included in the

attributes of the modeled component. The source file first contains the same

context_data structure that is defined in the PPE wrapper code. Then, mirroring

the wrapper code, the generator declares the variables corresponding to the

ports of the component and allocates properly aligned memory for them (based

on the selected allocation method). It also declares the context_data structure

and variables that will hold the 64-bit EAs of the data in the context_data. First, a

MFC command is issued for importing the context_data structure. Then, after

acquiring the individual EAs, each data element is brought in through successive

MFC commands. With all data imported into the LS, the core function is invoked.

When it returns, the data corresponding to the output ports is moved to main

memory for transfer by the kernel on the PPE and clean up code concludes the

SPE program. The only addition needed from the user is flags added to the

IMPORTS variable in the Makefile that correspond to any libraries used by the

core function he or she has defined. The user is still only asked to spend most of

his or her resources developing the computational core, and the ability to swap

core algorithms remains intact even on the SPE.

21

Interpreter Tool Chain

 The SPP interpreter tool chain, shown in Figure 6, is a series of tools that

map a SPML model to the dataflow execution platform. The first three

(SPML2Desert, Desert, and Desert2SPML) are for using the DESERT [18] tool

for models that have multiple potential configurations.

Figure 6. SPP Tool Chain

22

These tools allow the user to choose one configuration (typically selecting

hardware platforms for the components) and then another SPML model is

produced with the selected configuration only in place. This model is used for

the next tool, SPML2CoActive which flattens the model and prepares an XML file

for the CoActive tool. The CoActive tool is the entry point of the execution

platform. It takes the flattened system and synthesizes the necessary glue

and configuration artifacts such as communication maps, schedule tables, and

interface specifications for the platform. The final available tool in the chain is

the build tool which will use Microsoft Visual Studio to compile the generated

application files on the ix86 CPU running Microsoft Windows, if it is available.

 One tool-wide update was the addition of CELL as an accepted CPU type

in the model. The tools simply carry this attribute through their processing until it

reaches the CoActive tool. One of the components the CoActive tool produces is

a files for a platform-specific system folder—a main.c source file that contains a

unique definition of main() and an associated Makefile. For example, ix86

systems running Microsoft Windows would have a system folder labeled “win-

ix86” that contained these files. The CoActive tool now generates for a folder

named “fc6-cbe” for the Cell CPU.

 Because the build tool targets the ix86 system, it actually is unneeded for

an application aimed at the Cell. Proper procedure for the Cell involves

transferring the generated application files to the SPP file structure on the Cell

system and running make at the top level. The Cell compiler (XLC or GCC) will

use the pre-built and generated Makefiles to build the application for the Cell.

23

CHAPTER V

AUTOMATIC TARGET RECOGNITION EXAMPLE

The example system used for monitoring the updated SPP is an

embedded real-time Automatic Target Recognition (ATR) system as taken from

[1]. This image-processing system finds and classifies the objects in the input

images that belong to a set of target classes. The main processing steps involve

correlation filtering, where each image is correlated with template filter images

associated with different target classes, producing a set of peak locations that

pinpoint potential targets. These locations form the centers of regions of interest

(ROIs) that are processed further and identified using a Distance Classifier

Correlation Filtering (DCCF) algorithm, which increase the confidence level of the

identified peaks.

The system uses images of 128×128 resolution and can extract up to

eight ROIs (of size 32x32) while searching for three possible target classes. This

computation-intensive ATR algorithm involves a pre-processing step involving a

two-dimensional fast Fourier transform (2D FFT) on the image in order to

correlate the images in the frequency domain. Multiple copies of the current

image pass through a computational pipeline—one for each possible target class

with which the image can be correlated. A maximum average correlation height

(MACH) filter provides these target classes. Before leaving the pipe, the

distance to the other target classes are calculated according to the DCCF

24

algorithm. Finally, the locations of the targets (if any) are located in the image

after the outputs from the pipelines are merged and post-processed.

Modeling

 The first step to building the application involves using the SPML to model

the system: the data types, the components, the potential hardware platforms,

and the dataflow of the system. First, primitive data types are defined (Float,

Double, Int, Char) in preparation for application specific types (typically arrays

and structures) that are based on these primitives. One key data type for the

system is a CIMAGE structure composed of several primitive type variables and

a data array of floats, as shown in Figure 7.

Figure 7. Defining CIMAGE Data Type

25

 The next step involves defining all the components that the application will

need to perform the required task. The components will designate tasks such as

two-dimensional FFTs and IFFTs, scaling, copying, splitting, merging, correlating,

etc. The following example will be for designing a component called

Calculate_Distance. There are three aspects when designing a component. The

AppDataflow aspect, in Figure 8, is used to define the ports of the component—

the entry and exit points for the data that will be used during the execution.

Figure 8. AppDataflow Aspect for Calculate_Distance

Additionally, the NodeRef is designated for applying a hardware platform to the

core (which is done later when designing the dataflow). Figure 9 shows the

TypeAspect view in which the ports are associated with one of the previously

defined data types. For Calculate_Distance, each port is associated with a

unique data type. Finally, the ImplAspect view is where the core that represents

the computational function of the component is implemented.

26

Figure 9. TypeAspect Aspect for Calculate_Distance

The Calculate_Distance core is called calc_distance_core and within it, seen in

Figure 10, is each argument for the core connected to an associated data type.

The expected function signature will correspond to this setup.

Figure 10. Design of calc_distance_core

27

With the core defined, Figure 11 shows how the ports of the component are

connected to the arguments of the core with a pointer association. This will have

pointers to the data sent to the core function.

Figure 11. ImplAspect Aspect for Calculate_Distance

As mentioned earlier, the important filename attribute for the core requires the

filename of the source file(s) that will contain the core function named

calc_distance_core with arguments that match the designed core. For our

example, this function is defined in a file name calc_distance_core.c.

 After Calculate_Distance and all other primitive components are defined,

SPML allows the user to build a compound component which is simply a

component made up of a group of components. This is merely an organizational

feature, yet rather handy when designing a large system like the ATR. The

pipeline in the ATR consists of several stages for processing a copy of the image

that’s being processed. Having the foresight that three pipes will be needed (one

for each potential target), we model a compound component called Pipe. As

28

shown in Figure 12, the pipe consists of a scaling block (Multiply) and an IFFT

(TwoDIFFT) followed by blocks that find the mean and standard deviation of the

data (Calc_Mean_Std) and calculate the PSR (Calc_PSR).

Figure 12. Design of Pipe Component for ATR

These stages correlate the incoming image with an object class from MACH filter

data. The final block (Calculate_Distance) finds the distance from the other

object classes based on the DCCF data [1]. After adding the necessary ports to

the design, the components are connected based on the proper dataflow and the

Pipe compound component is complete.

 After the components needed for the ATR system are defined, before

modeling the dataflow between them, the hardware type(s) the application will

execute on are built. This simpler task involves choosing the type (CPU, FPGA,

memory device, DSP, etc.) and filling in the necessary attributes. For CPU

types, this involves selecting the type of CPU (Host, RiscPC, Cell, etc.). Then,

the user is able to appoint communication ports to the hardware (serial, matlab,

tcp, etc.). These are for communication between hardware types if a multi-

29

hardware platform is going to be used to execute the application. This is not the

case for this example. Figure 13 shows two defined hardware types. HostPC is

of CPUType HOST and has Matlab and Serial communication ports. Cell is of

CPUType CELL with just a Serial communication port.

Figure 13. Defined Hardware Types

With the hardware platforms defined, the ATR components can now be

combined to model the application itself. Within a system compound, copies of

the predefined blocks are inserted and connected according to the dataflow of

the system. Then, the hardware the application will run on is added to the model.

Figure 14 shows the designed dataflow with the HostPC hardware as the

selected platform for execution. Notice how three copies of the Pipe compound

block are used in the model. If the grouping capability were not available, there

would be several more blocks in the model, causing an unnecessary complexity

and unsightliness. With this, the modeling phase for the ATR is complete.

30

Figure 14. Model of ATR Application for HostPC

Generating Code

 With the model in place, the tools in the SPP now carry the load in

developing the ATR application. First, the wrapper code generator

(WrapperGen), shown in Figure 15, generates the wrapper code for each defined

component as previously described. Appendix E shows the code generated for

the Calculate_Distance component while Appendix F contains the generated

data type header file.

31

Figure 15. Wrapper Code Generator

Interpreting

 Next, the SPP Tool Chain, shown in Figure 16, is invoked to interpret the

model and generate the glue code and system configuration files. The first time

through the HostPC is being used, which expects a windows machine running

Microsoft Visual Studio. The CoActive tool expects a win-ix86 system folder and

generates the appropriate code and Makefile as well as the configuration files.

Appendix G contains the generated main.c file, Appendix H shows the generated

system Makefile, Appendix I shows a generated process table and Appendix J

shows the generated configuration file that the kernel uses to build the system at

run time. Finally, the build tool is used to compile the application for the ix86.

32

Figure 16. SPP Tool Chain Control Panel

Execution on PC

 Though the output from executing the completed ATR application can be

as simple as printing the coordinates of the located targets, it is much more

intuitive to see the targets in the image. Thus, a GUI was added on top of the

application, showing the image and the detected targets, as shown in Figure 17.

Specifically, the hardware used for executing the ATR was an Intel Pentium 4

CPU running at 2.4 GHz with 1.5 GB of RAM.

33

Figure 17. ATR GUI Running on PC

34

Figure 17. —cont.

Reconfigure for Cell

 With a successful model, generation, and execution of the ATR on the PC,

we now desire to move it to the Cell for increased performance. With the new

SPP kernel in place—producing threads for each block and using synchronized

communication queues—an application that is functional on another supported

platform, like ix86 PC, requires minimal modification even though the

architectures (and even operating systems) are different.

There are just a few necessary changes in order to compile and execute

the ATR on the PPE of the Cell. For any application, the user only needs to

switch the HostPC hardware platform with the Cell hardware that was defined

earlier and rerun the interpreter tool chain (except for the build tool). The fc6-cbe

35

system folder will be filled with the corresponding Makefile and definition of

main(), and the configuration files will actually require no change. Appendices K

and H show the Cell generated system files. Then, the system can be

transferred to the Cell and compiled, and the system will execute. However,

remember that the PPE is a 64-bit, big-endian core while the PC chip used is 32-

bit using the little-endian convention. Therefore, there are a few pivotal changes

needed to those process blocks in the ATR that deal with the storage model of

the data. It is impossible to give universal specifics for adapting any application

because these types of changes are application specific. In the case of the ATR,

the byte orders of the input files (the images, MACH filter data, and DCCF filter

data) have to be reversed for proper reads. Again, we see the beauty of being

able to easily exchange core function algorithms without disturbing the rest of the

system.

Next, we make more adjustments to the ATR in order to move the

computation-heavy tasks to the SPEs. In preparation for this step, deeper

analysis of the system was necessary. Though being able to fit code and data

onto an SPE’s LS is the motivation, much of what is discussed are general

observations of the algorithm design of the ATR. Therefore, some of the

changes can be applied to the application outside the Cell as well.

Memory Consumption

It was important to look at the amount of memory required by the system

at the high computation moments (the pipelines of the system) because the

36

necessary resources for the computational steps must fit onto an SPE’s LS along

with the corresponding code. Walking through the pipeline blocks from Figure

12, the Multiply component receives an image and the MACH filter data. Each

pixel of an image is stored as a complex (real and imaginary parts) value as a

single-precision floating-point type (size of four bytes for the Cell). Therefore,

with an image of size 128×128, it consumes 128×(128×2)×4 = 128 KB of

memory—half an SPE’s LS! What is worse is that the MACH filter data is the

same size. These two data structures alone would completely consume an

SPE’s 256 KB LS, leaving no room for code and other data.

The multiplied image continues through the pipeline to TwoDIFFT,

Calc_Mean_Std, and Calc_PSR—none of these tasks needing much more

memory for large data other than the image. The traveling image actually ends

its journey in the Calc_PSR process which sends out PSRs for the detected

peaks (up to eight peaks). The final block in the pipe, Calculate_Distance, is a

rather hefty task. In order to extract and normalize the ROIs and calculate their

distances (which involve multiple FFTs and IFFTs among other steps), the task

calls for a copy of the original image, a place to store the ROI, another area for

storing intermediate results, and the DCCF filter data. Fortunately, this filter data

is only 8 KB rather than the 128 KB size of the MACH filter data. Unfortunately,

the image, the ROI, and the buffer are 128 KB each. The amount of data sums

to more than 384 KB—far exceeding that of an SPE’s LS—and the larger-than-

average code still must be included.

37

Being able to move these computation intensive tasks to the SPEs

required an analysis and search for the truly essential resources as well as

potential for segmented processing steps. Furthermore, with the initial design,

with three pipes, each consisting of five blocks, there are 3×5 = 15 individual

tasks and only six SPEs. The methods used for eliminating these dilemmas are

discussed in the next section.

Algorithm Analysis

In order to fit the high-computation pipelines of the ATR application onto

the six available SPEs, a deep analysis of the inner workings of the tasks and the

detailed flow of the involved data was required. The two major obstacles to be

handled were task allocation—how the several task blocks should be placed on

the SPEs—and resource management—how the required data could fit onto the

limited LSs along with code.

For task allocation, the apparent solution to fitting three pipes (of five tasks

each) onto six SPEs was providing two SPEs per pipe and actually merging the

five tasks in a pipe into two larger tasks. The desired result of these mergers

would be two tasks of an equal computational load. Because of the

synchronized queues employed in the system, if one task executes longer than

the other, the shorter task will end up stalling as it waits for data to be pulled from

the interconnecting queue. Quick analysis of both the execution times (on the

PPE) and number of floating-point operations (FLOPs or FLOP count) for each

block, shown in Table 1, provided an idea for the best division of labor.

38

Table 1. Run Time and FLOP Count of Pipe Tasks

Task
Run Time

(µsec) FLOP Count
Multiply 984 193548
TwoDIFFT 4490 1179648
Calc_Mean_Std 261 49159
Calc_PSR 1326 195440
Calculate_Distance 7889 1948448

Based on these values, if the first four tasks were merged into a single

task, it would theoretically execute 193548 + 1179648 + 49159 + 195440 =

1617795 FLOPs in 984 + 4490 + 261 + 1326 = 7061 microseconds. The first

four tasks combined are still not has hefty as the Calculate_Distance task;

however, it is the best configuration for a balanced load. Thus, the pipes were

redesigned to contain only two task blocks, as seen in Figure 18, and the

corresponding source files for the (originally) first four tasks were glued together

into one task, called Mult_TwoDIFFT_Calc_Mean_PSR. Figures 19-22 show the

modeling of this new component. The input ports match those required by the

original Multiply component and the output port corresponds to the output port

from the Calc_PSR component. The newly defined

mult_difft_calc_mean_psr_core, shown in Figure 21 and Figure 22, will actually

do little more than invoke the separate cores used by the original separate

components—multiply_filter_core, ifft_2d_core, calc_mean_std_core, and

calc_psrs_core.

39

Figure 18. Structure of Merged Pipe in ATR

Figure 19. AppDataflow Aspect for Mult_TwoDIFFT_Calc_Mean_PSR

40

Figure 20. TypeAspect Aspect for Mult_TwoDIFFT_Calc_Mean_PSR

Figure 21. ImplAspect Aspect for Mult_TwoDIFFT_Calc_Mean_PSR

Figure 22. Design of mult_difft_calc_mean_psr_core

41

To support this, all the source files that correspond to the separate cores are now

added to the FileName attribute for Mult_TwoDIFFT_Calc_Mean_PSR and a

filename with _spu.c suffix is added to this core and calc_distance_core as well.

This satisfies the task allocation requirements specified.

With sufficient task allocation, the more difficult job—resource

management—remains, requiring a deep look into what data is required and

where in the two tasks. Because of the modularity of the system, the two task

blocks can be viewed separately, starting with

Mult_TwoDIFFT_Calc_Mean_PSR. Note that though this is one source and one

task, the four components it is composed of remain separated within the code.

Therefore, the single task or the four separate tasks of which it composed may

be referred to interchangeably.

Recall that the large data structures existent in the first four tasks are the

image and the MACH filter data, both 128 KB each. Furthermore, originally a

copy of the progressively processed image was passed through each task

because they were threads operating on an image in concurrence with the other

tasks, actually consuming 128 × 4 = 512 KB. Obviously, this is impossible for the

SPE, and fortunately, this is no longer required because these four tasks now

operate sequentially. Thus, a single image can be passed through the algorithm

and data processing is in-place. However, there is still 256 KB of data. Because

the image travels through a majority of the task, it is preferable to keep this

structure in the LS. Looking at the MACH filter, it is realized this data structure is

only necessary during the Multiply processing, the first part of the task.

42

Furthermore, there is a one-to-one relationship between the filter values and the

image values. This situation allows us to use part of the MACH filter data on part

of the image and then replace it with another part of the filter data for processing

the next corresponding section of the image. It should be sufficient to store half

the MACH filter (64 KB) at a time, resulting in data storage size of about 192 KB,

leaving 64 KB for code (which should also be sufficient).

As mentioned earlier, the lengthy Calculate_Distance task originally

required over 384 KB of data: the image, a ROI image structure, and an

intermediate ROI buffer. This task’s algorithm involves acquiring a ROI from a

section of the image and through several stages of computation (where the

intermediate ROI buffer is required) the distances are calculated. This is

repeated eight times, writing a different ROI from the image each time. Because

of the repeated use of the image, it is desired to once again retain it in the LS.

Furthermore, recall that a ROI has a resolution of only 32×32. The full image

structure, CIMAGE, is used because it matches the necessary structure for the

ROI, however, the ROI uses 1/16th of the structure. The necessary size for an

ROI structure is only 32×(32×2)×4 = 8 KB, significantly smaller. By implementing

a new, separate data structure for the ROI and the intermediate ROI buffer,

shown in Figure 23, the amount of data required for the Calculate_Distance is

reduced to about 144 KB, leaving plenty of room on the LS for the other

necessary components (i.e. code).

43

Figure 23. Defining ROI Data Type

The use of the new Allocation attribute for ports is important for this

example, but unfortunately only in hindsight. Because of the compactness and

thorough resourcefulness of the LS, the simple method of allocating data seemed

to be the difference between data corruption and/or incorrect results and

successful execution. Understanding that the location of the data in the LS

differs with the allocation method as does the use of extra memory for buffering,

provides justification for such behavior. Through initial trial and error, we found

that a uniform allocation method—static or dynamic—would not suffice. Only a

combination would produce proper results in the end. Later, deeper analysis

helped reveal a better understanding of what was occurring.

For Mult_DIFFT_Calc_Mean_PSR, the quickest detected fault occurs

when attempting to dynamically allocate all the major data structures. When

44

attempting to do this, attempting to allocate space for the filter data (after

allocating for the image) always results in a NULL return, indicating a lack of

space in LS. However, when declaring all structures statically, there is no

complaint from the compiler about being unable to allocate LS. This time, a

segmentation fault occurs when the library function ifft_1d_r2 is invoked.

Observation of the stack pointer shows it in the middle of the LS at address

0xfb90 before the function call followed by a corrupted value of 0xfffff930 after

the jump. More details were obtained when attempting to declare the CIMAGE

dynamically but keep the other static. Using the GNU debugger and empty

function calls for breakpoints, I was able to quickly isolate where the errors were

occurring. However, it was discovered movement of these functions would shift

the point of error slightly in the address space. This time when moving into

ifft_1d_r2, the stack pointer jumps from address 0x2fbb0 to 0x1f950.

Unfortunately, the data intensive library function has pointers that traverse the

image and eventually overlap with this address and corrupt the stack, causing

the application to fail. When the filter structure is dynamically allocated while the

image and PSRs structures are static, the image is allocated starting at address

0x1fb90 while the stack pointer sits at 0xf930 in the library function. Keeping the

image below the stack seems to be the solution and

Mult_DIFFT_Calc_Mean_PSR executes correctly.

Similarly, for Calculate_Distance, there were arrangements that caused

the program to wrongfully exit when attempting to enter a function or even just a

for-loop. Declaring all structures statically cause it to quit when attempting to

45

enter a for-loop when adding background to the extracted ROIs. Declaring all

structures dynamically managed to allow the program to execute, however the

distance values are incorrect and values in the image are corrupted. Incorrect

mixed combinations alternate between early exits and producing incorrect

distance values. The correct combination found for Calculate_Distance is

dynamically allocating the image and PSRs, HDCCF_Filters, and Distances are

static structures. This is viewed as a testament to how little space remains on

the LS, showing efficient usage of the SPEs. With the proper allocation methods

chosen, this potential problem is avoided.

With all the updates in place, WrapperGen will generate the new Wrapper

code and the corresponding spu files. Appendix L shows the alternate wrapper

code for Calculate_Distance while Appendix M contains the corresponding code

that is generated for the SPE itself, and Appendix N shows the generated

Makefile for the SPE. The PPE acquires passed in data but then sets up the

context_data structure, sets up the SPE context, runs the context with the

structure passed in, and waits for the context to return. It then finishes by

passing forward the processed data. The SPE algorithm involves moving in the

context_data structure, moving in the data referenced in the structure, running

the core function, and finally moving the processed data back to main memory

before returning.

Unfortunately, for the ATR, some minimal user intervention is necessary.

Because of the necessary changes to the Mult_TwoDIFFT_Calc_Mean_PSR

algorithm described above, the generated SPE code needs to be changed to

46

reflect this. As shown in Appendix O, the changes (in bold) involve allocating

and using only half the MACH filter data at a time. Though, there should only be

one core call to mult_difft_calc_mean_psr_core, it first calls the

multiply_filter_core function and uses the first half of the MACH filter data. Then,

it brings in the second half over top of the first half and calls the proper core,

which will call the multiply_filter_core function and expect the second half of the

filter data. The necessary changes are minimal and the user does not spend as

much as time as he or she could writing this code from scratch.

With the task allocation and resource management resolved, we now have

the updated ATR model with the Cell as the targeted hardware, shown in Figure

24, and can rerun the interpretive tools to generate the proper system files for the

application.

Figure 24. Model of ATR Application for Cell

47

Replacing Cores for the Cell and Code Optimizations

In addition to the new cores resulting from the merged components, we

now take advantage of the interchangeability of core functions in order to develop

cores that take advantage of the Cell’s capabilities. The original algorithms for

fft_2d_core and ifft_2d_core are replaced by methods that take advantage of the

FFT library provided by IBM’s Cell SDK 2.1 [7]. In addition, we replace

algorithms for multiply_filter_core, calc_psr_core, and calc_distance_core with

techniques that utilize the vector support of the Cell—operating on four floating-

point values at a time. Some data shuffling and a few other minor data

manipulation instructions are necessary to meet data arrangement requirements

when using these vector instructions, but the exceptional performance increase

remains.

Finally, with all necessary code having been generated, the user is

perfectly capable of making whatever modifications he or she desires (similar to

the necessary changes to Mult_TwoDIFFT_Calc_Mean_PSR mentioned earlier),

typically in order to further increase performance. For the ATR, we observed a

redundancy in repetitive acquisition of static filter data. By storing these

structures locally with the processes (Multiply and Calculate_Distance), it

reduces delays due to waiting for the data and unnecessary copying.

Execution on Cell

After a successful compilation on the Cell, we execute the ATR with a GUI

overlay similar to the PC version, shown in Figure 25.

48

Figure 25. ATR GUI running on Cell

49

 Figure 25.—cont.

50

CHAPTER VI

RESULTS

We used ATR applications that mirror those presented with the exception

that the GUI layer is removed to measure the performance of our developed

system. Data in terms of millions of floating-point operations per second

(MFLOPS), throughput of data, and even frame rate (due to the image-

processing nature of this example) were calculated by averaging ten averages of

run time measurements of one thousand processed images. Knowing the

breakdown of FLOPs for each block per image, shown in Table 2, and the size of

an image (128 KB) allows for computation of the various performance

parameters.

Table 2. FLOP Count for ATR Tasks

Task FLOP Count
ImgSource 0
Hmach_Filter_Src 0
Hdccf_Filter_Src 0
RawImgSplitter 0
PreProcess_Split_Image 1146880
HdccfSplitter 0
Mult_TwoDIFFT_Calc_Mean_PSR 1617795
Mult_TwoDIFFT_Calc_Mean_PSR 1617795
Mult_TwoDIFFT_Calc_Mean_PSR 1617795
Calc_Distance 1948448
Calc_Distance 1948448
Calc_Distance 1948448
Merge_Compare_Distances 0
Post_Processing 47
Target_Overlay 0
UI 0
TOTAL FLOP COUNT 11845656

51

Table 3 contains those performance results for the ATR running on the Intel

Pentium 4 and the two ATR applications that take advantage of the Cell—the

second resulting from the manual optimizations.

Table 3. Performance of ATR

ATR on PC ATR on Cell ATR on Cell Opt
Framerate (frame/s) 35.71 219.45 247.77
Throughput (Mbit/s) 37.45 230.11 259.81
MFLOPS 423.06 2599.55 2935.02

As is shown, using the Cell increased the performance of the ATR system

dramatically. The introduction of physical parallel computing and operations on

multiple data values at a time prove useful in obtaining a faster signal processing

application with little additional work.

 Even with these indisputable results, the following data helps to

breakdown the source, reasoning, and limitations for the increased performance.

Table 4 shows the major sections—both data movement and data crunching

stages—of the Mult_TwoDIFFT_Calc_Mean_PSR algorithm running on the SPEs

with their average completion times, corresponding percentage of time spent in

that step, and MFLOPS achieved in each computational stage, along with the

totals for the entire block. Because there is no cache on the SPEs, the average

data crunching run times are consistent to within ±0.01 microseconds. Note that

the FFT libraries from the SDK help produce nearly four GFLOPS, and it is quite

apparent the calculate_psrs_core function, though using vector instructions when

possible, needs some deeper algorithm alterations to better utilize the Cell.

52

Table 4. Breadown of Mult_TwoDIFFT_Calc_Mean_PSR on SPEs

SPE Section
Avg Time

(usec) Section % MFLOPS
DMA In 56.49 2.84%
multiply_filter_core 59.49 2.99% 1626.73
DMA In 11.25 0.56%
multiply_filter_core 59.75 3.00% 1619.65
ifft_2d_core 310.61 15.60% 3797.84
calc_mean_std_core 15.93 0.80% 3085.94
calculate_psrs_core 947.86 47.59% 206.19
DMA Out 12.94 0.65%
TOTAL 1474.32 1097.32

We should also take the time to point out some differences between the

compilers (GCC and XLC). Table 5 shows the runtimes for

Mult_TwoDIFFT_Calc_Mean_PSR resulting from being compiled by each tool,

and Table 6 shows the performance for Calculate Distance.

Table 5. Mult_TwoDIFFT_Calc_Mean_PSR Run Times: XLC vs GCC

SPE Section
XLC Time

(usec)
GCC Time

(usec)
DMA In 56.49 56.49
multiply_filter_core 59.49 26.97
DMA In 11.25 11.25
multiply_filter_core 59.75 27.29
ifft_2d_core 310.61 226.98
calc_mean_std_core 15.93 53.58
calculate_psrs_core 947.86 947.86
DMA Out 12.94 12.94
TOTAL 1474.32 1363.36

53

Table 6. Breakdown of Calculate_Distance on SPEs

Context Section
GCC Time
(usec)

XLC Time
(usec)

XLC
Section %

XLC
MFLOPS

DMA In 55.11 55.11 6.84%
calc_distance_core 882.43 749.96 93.12% 2598.07
DMA Out 0.28 0.28 0.03%
TOTAL 937.82 805.35 2419.38

Looking at the tables, there are some definite differences in compilations. This

application (and other simpler applications) has shown that the compilers differ at

times when it comes to optimizations in areas such auto-vectorization, branch-

hinting, and good instruction interleaving to take advantage of the dual-issue

pipeline on the SPE. Though we see Mult_TwoDIFFT_Calc_Mean_PSR running

faster with GCC, we found XLC ultimately produced better results for the entire

application.

 One final area worth exploring is the timeline—the flow of an image.

Figure 26 shows the breakdown of the application into its process blocks. The

block size corresponds to their average run times. The parallel processing is

evident however, there appears to be a lot of time in which most of the threads

are waiting. Remember, that the interprocess communication streams only have

a depth of three. If one process has filled its outgoing stream queue, it must wait

for the process at the receiving end to dequeue from the stream. Therefore, as

Figure 26 is indicating, TwoDFFT running on the PPE is the heaviest process

and is the runtime factor. Notice it does not wait in the timeline because all other

processes are waiting on it.

54

Figure 26. ATR Timeline

Furthermore, the runtime of TwoDFFT is equivalent to the spacing between runs

by the Overlay process (one of the final stages for an image). Even though it

uses the Cell SDK’s FFT library, it would be beneficial to further improve its core

or have access to another SPE. We can conclude that the most time-consuming

process block’s run time will closely match the average image-computation time.

One final thing to remember is that balance is a crucial element. The better

balanced the run times of all processes, the less waiting they will do.

55

CHAPTER VII

FUTURE WORK

Even while achieving excellent performance increase, there are further

implementations that can possibly squeeze some additional performance as well

as shift some of the remaining manual work into the automated group.

 Further increased performance will most likely come from optimized core

functions and, as mentioned in [6], double buffering the DMA operations on the

SPEs. Instances where large amounts of data are brought into the LS through

DMA operations and then used for processing could be broken up into smaller

transfers with segmented processing intertwined. This would be similar to the

manual division of the MACH filter data for Mult_TwoDIFFT_Calc_Mean_PSR,

except the segments would perhaps be smaller, allowing for mult-buffering.

Because the DMA operations are handled autonomously by the MFC, it is

wasteful to wait for these operations to complete before performing any

computations. Therefore, a DMA operation should commence on future data

before processing the current data begins. Figure 27 shows a comparison of

general operations with and without double buffering. However, this depends on

the core functions. Though we could generate the code to outline such buffering,

the user would be obligated to modify the core function to support smaller

segment computations rather than a lump set.

56

Figure 27. Benefits of Double Buffering

Further improvements for core functions involve continuing to develop Cell-

specific algorithm: using SIMD instructions and unrolling loops [6]. Loop unrolling

provides more instructions for the SPU, allowing for more instruction interleaving

and helping to prevent any stalls that may occur due to dependencies.

 Currently, work is being done to increase the automation reach of the SPP

tools for the Cell. By providing some additional knowledge about each

component to the model—code size and relative execution time—some

additional tools will be able to analyze the modeled system and develop a

schedule for running cores on SPEs. This will help replace the user’s

responsibility to choose which cores to run on an SPE. Furthermore, the

scheduler will open the possibility to have more SPE-bound cores than available

cores and/or leasing more than one SPE to one component’s core. The results

57

of this new analysis will be reflected in the wrapper code generated and, if

necessary, in some of the generated system files.

One small potential change is moving to a dynamic connection stream

queue length. In the history of the SPP kernel, the queue has grown from two to

three deep, solely based on a recognizable performance increase. Analysis of

this situation using the ATR came to the discovery that the proper queue length

for minimal wait times appears to be the lesser of the following: the number of

streams between the most distant blocks or the time of one complete flow divided

by the longest block runtime, rounded up. Revisiting a timeline, in Figure 28, one

can see a gap between every two TwoDFFT blocks. Using the reasoning just

stated, since a complete image flow takes about 7.8 milliseconds with TwoDFFT

taking about 3.5 milliseconds, then 7.8 ÷ 3.5 = 2.23 which is rounded up to 3.

Figure 28. ATR Timeline with Stream Depth of 2

Figure 29 shows the behavior of the ATR with a stream queue size of three.

Now, there is no waiting by the heaviest component and the only issue is balance

58

between components. Adding this type of analysis to the SPP tools could allow

for the queue size to be adjusted appropriately for the modeled applications,

providing optimum efficiency without waiting space (i.e. if the queue was bigger

than it needed to be).

Figure 29. ATR Timeline with Stream Depth of 3

59

CHAPTER VIII

CONCLUSION

The SPP continues to be a powerful tool for modeling these complex

systems and managing the runtime environment, reducing the necessary man

power and time to produce a functional product. However, we can conclude that

a balance between automation and human intervention will bring about optimum

performance. Automation works best to create the foundation for any application

while late stage manual modifications unique to the current application will unveil

performance increases that are too specific for automation tools to produce.

The big challenge of delaying that point of necessary human intervention

remains. Due to the complexity of the Cell, the further development of

automation tools must have intimate knowledge of the Cell. Perhaps instead of

modifying the current stages of SPP, additional phases should be added to the

tool suite when the Cell is present. The need for ambiguity would no longer be

needed in order to support other architectures—the tools will be able to focus

solely on fitting the system onto the Cell. These tools might involve as much as a

new DSML that separates the cores while still focusing on the work and data

movement. This could allow for direct movement from one SPEs LS to another

and eliminate the middle stage of returning to main memory. The associated

tools (at least one of which to be a scheduler like the one in development) would

strive to produce a balanced workload and utilize computational cores that have

60

been developed specifically for the Cell. Even before this, further development of

more Cell-specific files and cores that need only be produced once for the tool

suite could help to reduce the necessary manual alterations.

 These results suggest that updating the SPP to support the Cell

processor has been a worthwhile success in providing a new platform for

thoroughly increased performance with minimal extra work or knowledge on

behalf of the user. It has helped to continue the progression of modeling

complex embedded applications and deploying them on new, multi-core

architectures. This is an important step as multi-core architectures continue to

grow in popularity and complexity and the desirable systems maintain their

complexity as well. Finally, we can conclude that using the SPP to develop other

applications for the Cell, its SPEs, and associated libraries will present

performance improvements similar to what has been presented.

61

APPENDIX A

META-MODEL OF SPML DATATYPING

62

APPENDIX B

META-MODEL OF SPML CORE

63

APPENDIX C

META-MODEL OF SPML ARCHITECTURE

64

APPENDIX D

META-MODEL OF SPML APPLICATION DATAFLOW

65

APPENDIX E

GENERATED WRAPPER CODE FOR CALCULATE_DISTANCE

/* AWCalculate_Distance.c generated on Wed Feb 18 11:33:50 2009
 */

#include <active.h>
#include "DatatypeSystem.h"

extern void calc_distance_core(DISTANCE_BLOCK *distance_block, HDCCF
*Hdccf, PSR_BLOCK *psr_block, CIMAGE *image);

void Calculate_Distance(void *__data, int __mode)
{
 CIMAGE *Img_data_;
 PSR_BLOCK *PSRs_data_;
 HDCCF *HDCCF_Filters_data_;
 DISTANCE_BLOCK *Distances_data_;
 int num_Distances;

 CIMAGE *image;
 PSR_BLOCK *psr_block;
 HDCCF *Hdccf;
 DISTANCE_BLOCK *distance_block;

#ifdef USING_CELL
 for(;;)
 {
#endif
 #ifdef USING_CELL
 Img_data_ = (CIMAGE*)dequeue(0);
 #else
 Img_data_ = (CIMAGE*)get_input_buffer(0);
 #endif
 #ifdef USING_CELL
 PSRs_data_ = (PSR_BLOCK*)dequeue(1);
 #else
 PSRs_data_ = (PSR_BLOCK*)get_input_buffer(1);
 #endif
 #ifdef USING_CELL
 HDCCF_Filters_data_ = (HDCCF*)dequeue(2);
 #else
 HDCCF_Filters_data_ = (HDCCF*)get_input_buffer(2);
 #endif

 #ifdef USING_CELL
 if(!(Img_data_ && PSRs_data_ && HDCCF_Filters_data_))
 {
 /* no data to execute or no room to put results */
 continue;

66

 }
 #else
 if(!(Img_data_ && PSRs_data_ && HDCCF_Filters_data_ &&
output_slot_available(0)))
 {
 /* no data to execute or no room to put results */
 return;
 }
 #endif

 image = Img_data_;
 psr_block = PSRs_data_;
 Hdccf = HDCCF_Filters_data_;

 Distances_data_ = (DISTANCE_BLOCK *)get_buffer(1 *
sizeof(DISTANCE_BLOCK)/sizeof(int));

 #ifdef USING_CELL
 if(!Distances_data_)
 {
 /* bad output pointer */
 active_error(__LINE__, ACT_MEMORY_OUTOFMEMORY);
 continue;
 }
 #else
 if(!Distances_data_)
 {
 /* bad output pointer */
 active_error(__LINE__, ACT_MEMORY_OUTOFMEMORY);
 return;
 }
 #endif

 distance_block = Distances_data_;

 #ifndef USING_CELL
 dequeue(0);
 #endif
 #ifndef USING_CELL
 dequeue(1);
 #endif
 #ifndef USING_CELL
 dequeue(2);
 #endif

 calc_distance_core(distance_block, Hdccf, psr_block, image);

 num_Distances = 1;
 enqueue_output(0, Distances_data_);

 return_buffer(Img_data_);
 return_buffer(PSRs_data_);
 return_buffer(HDCCF_Filters_data_);
#ifdef USING_CELL
 }
#endif
} /* Calculate_Distance(void *data, int mode) */

67

APPENDIX F

GENERATED DATA TYPE HEADER FILE

#ifndef DATATYPESYSTEM_H
#define DATATYPESYSTEM_H

/*DatatypeSystem.h Generated on Wed Feb 18 11:33:49 2009
*/

typedef float Float;
typedef double Double;
typedef float CplxFloatImgArray[128*128*2];
typedef float HMACH[128*128*2];
typedef float HDCCF[(32*32*2+1)*4];
typedef short Short;
typedef int Int;
typedef long long Long;
typedef unsigned char Uchar;
typedef unsigned char CharArray[128*128];
typedef struct CIMAGE_struct {
 int packet_type;
 int rows;
 int cols;
 int block_number;
 int testing_class;
 float mean;
 float std;
 unsigned char pad[4];
 CplxFloatImgArray data;
} CIMAGE;

typedef struct RAW_IMAGE_struct {
 int packet_type;
 int rows;
 int cols;
 int block_number;
 int testing_class;
 float mean;
 float std;
 unsigned char pad[4];
 CharArray data;
} RAW_IMAGE;

typedef struct PSR_struct {
 int x;
 int y;
 int refno;
 float value;
} PSR;

68

typedef struct PSR_BLOCK_struct {
 int block_number;
 unsigned char pad[12];
 PSR psrs[8];
} PSR_BLOCK;

typedef struct DISTANCE_struct {
 int testing_class;
 int x;
 int y;
 float psr_val;
 float value[3];
 unsigned char pad[4];
} DISTANCE;

typedef struct DISTANCE_BLOCK_struct {
 int block_number;
 int testing_class;
 int num_distances;
 unsigned char pad[4];
 DISTANCE distances[8];
} DISTANCE_BLOCK;

typedef struct DISTANCE_TABLE_struct {
 int block_number;
 unsigned char pad[12];
 DISTANCE distances[3*8];
} DISTANCE_TABLE;

typedef struct TARGET_struct {
 int x;
 int y;
 unsigned char pad[8];
} TARGET;

typedef struct TARGET_BLOCK_struct {
 int block_number;
 unsigned char pad[12];
 TARGET targets[3];
} TARGET_BLOCK;

#endif

69

APPENDIX G

GENERATED IX86 MAIN.C SYSTEM SOURCE FILE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <active.h>

#define PATH_FILE "matlab_path.txt"

int _node_number = 0;
int SAMPLE_RATE = 0;

/*tbd bke hack*/
char path_string[256];
char tmpstr[250];

int main(int argc, char *argv[])
{
 int loop_count = 0;
 int count=0;
 int len;
 FILE *path_file;
 printf("Initting... \n");

 if((path_file = fopen(PATH_FILE , "rt")) == NULL)
 {
 printf("ERROR!! Couldn't open matlab path file <<%s>>!!",
PATH_FILE);
 exit(-1);
 }

 fgets(tmpstr, 245, path_file);
 tmpstr[245] = '\0';
 len = strlen(tmpstr);
 if(tmpstr[len -1] == '\n')
 tmpstr[len-1] = '\0';
 fclose(path_file);
 sprintf(path_string, "%s", tmpstr);

 printf("The path is %s\n", path_string);

 active_init();
 process_funcp_table_init();
 printf(" Done Initting \n");
 active_build_network("build.cfg");

 for(;;)
 {

70

 if((loop_count++ %10000) == 0)
 {
 printf("loop %d.\n", loop_count);
 }

 active_tick();
 if (kbhit())
 {
 break;
 }
 }
 return 0;
}

71

APPENDIX H

GENERATED IX86 SYSTEM MAKEFILE

ifndef ACS_ENV
acs-env-not-defined:
 @echo Set the environment variable by sourcing setup.$$HOSTNAME
endif

Makefile for ix86 specific code

TOPDIR =../../../../
PRJDIR =../../
ARCH=ix86

all: Debug

include $(TOPDIR)/etc/Rules.gnu

Debug Release: dummy
 @MAKEFLAGS=; nmake /nologo /f active.mak "CFG=active - Win32 $@"

clean: dummy
 $(RM) *~ *.log TAGS

wipe distclean: dummy
 $(RM) *~ *.log TAGS
 $(RM) -r Debug Release
 $(RM) *.clw *.aps *.ncb *.opt *.plg
 $(RM) .depend.*

72

APPENDIX I

GENERATED PROCESS TABLE

#include "active.h"

extern void ImgSplitter(void *, int);
extern void Image_Convert(void *, int);
extern void TwoDFFT(void *, int);
extern void splitter(void *, int);
extern void Multiply(void *, int);
extern void TwoDIFFT(void *, int);
extern void Calc_Mean_Std(void *, int);
extern void Calc_PSR(void *, int);
extern void Calculate_Distance(void *, int);
extern void image_src(void *, int);
extern void hmach_filter_src(void *, int);
extern void hdccf_filter_src(void *, int);
extern void Merge_Compare_Distances(void *, int);
extern void Post_Processing(void *, int);
extern void Target_Overlay(void *, int);
extern void ui(void *, int);

void process_funcp_table_init() {
 switch (_node_number) {
 case 0: {
 process_funcp_table[0] = ImgSplitter;
 process_funcp_table[1] = Image_Convert;
 process_funcp_table[2] = TwoDFFT;
 process_funcp_table[3] = splitter;
 process_funcp_table[4] = Multiply;
 process_funcp_table[5] = TwoDIFFT;
 process_funcp_table[6] = Calc_Mean_Std;
 process_funcp_table[7] = Calc_PSR;
 process_funcp_table[8] = Calculate_Distance;
 process_funcp_table[9] = image_src;
 process_funcp_table[10] = hmach_filter_src;
 process_funcp_table[11] = hdccf_filter_src;
 process_funcp_table[12] = Merge_Compare_Distances;
 process_funcp_table[13] = Post_Processing;
 process_funcp_table[14] = Target_Overlay;
 process_funcp_table[15] = ui;
 break;
 }
 }
}

void bct_init() {
 switch (_node_number) {
 case 0: {
 manager_root_stream = stream_create(0, 3, -1, -1, -1);

73

 manager_children = 0;
 break;
 }
 }
}

74

APPENDIX J

GENERATED CONFIGURATION FILE

; install local stream[1] on hw[0]
17 0 1 3 -1 -1 -1
; install local stream[2] on hw[0]
17 0 2 3 -1 -1 -1
; install local stream[3] on hw[0]
17 0 3 3 -1 -1 -1
; install local stream[4] on hw[0]
17 0 4 3 -1 -1 -1
; install local stream[5] on hw[0]
17 0 5 3 -1 -1 -1
; install local stream[6] on hw[0]
17 0 6 3 -1 -1 -1
; install local stream[7] on hw[0]
17 0 7 3 -1 -1 -1
; install local stream[8] on hw[0]
17 0 8 3 -1 -1 -1
; install local stream[9] on hw[0]
17 0 9 3 -1 -1 -1
; install local stream[10] on hw[0]
17 0 10 3 -1 -1 -1
; install local stream[11] on hw[0]
17 0 11 3 -1 -1 -1
; install local stream[12] on hw[0]
17 0 12 3 -1 -1 -1
; install local stream[13] on hw[0]
17 0 13 3 -1 -1 -1
; install local stream[14] on hw[0]
17 0 14 3 -1 -1 -1
; install local stream[15] on hw[0]
17 0 15 3 -1 -1 -1
; install local stream[16] on hw[0]
17 0 16 3 -1 -1 -1
; install local stream[17] on hw[0]
17 0 17 3 -1 -1 -1
; install local stream[18] on hw[0]
17 0 18 3 -1 -1 -1
; install local stream[19] on hw[0]
17 0 19 3 -1 -1 -1
; install local stream[20] on hw[0]
17 0 20 3 -1 -1 -1
; install local stream[21] on hw[0]
17 0 21 3 -1 -1 -1
; install local stream[22] on hw[0]
17 0 22 3 -1 -1 -1
; install local stream[23] on hw[0]
17 0 23 3 -1 -1 -1
; install local stream[24] on hw[0]

75

17 0 24 3 -1 -1 -1
; install local stream[25] on hw[0]
17 0 25 3 -1 -1 -1
; install local stream[26] on hw[0]
17 0 26 3 -1 -1 -1
; install local stream[27] on hw[0]
17 0 27 3 -1 -1 -1
; install local stream[28] on hw[0]
17 0 28 3 -1 -1 -1
; install local stream[29] on hw[0]
17 0 29 3 -1 -1 -1
; install local stream[30] on hw[0]
17 0 30 3 -1 -1 -1
; install local stream[31] on hw[0]
17 0 31 3 -1 -1 -1
; install local stream[32] on hw[0]
17 0 32 3 -1 -1 -1
; install local stream[33] on hw[0]
17 0 33 3 -1 -1 -1
; install local stream[34] on hw[0]
17 0 34 3 -1 -1 -1
; install local stream[35] on hw[0]
17 0 35 3 -1 -1 -1
; install local stream[36] on hw[0]
17 0 36 3 -1 -1 -1
; install local stream[37] on hw[0]
17 0 37 3 -1 -1 -1
; install local stream[38] on hw[0]
17 0 38 3 -1 -1 -1
; install local stream[39] on hw[0]
17 0 39 3 -1 -1 -1
; install local stream[40] on hw[0]
17 0 40 3 -1 -1 -1
; install sw[0] on hw[0]: script[0] (ImgSplitter), inputs[1],
outputs[3] param_words[0]
4 0 0 0 1 3 0
; install sw[1] on hw[0]: script[1] (Image_Convert), inputs[1],
outputs[1] param_words[0]
4 0 1 1 1 1 0
; install sw[2] on hw[0]: script[0] (ImgSplitter), inputs[1],
outputs[3] param_words[0]
4 0 2 0 1 3 0
; install sw[3] on hw[0]: script[2] (TwoDFFT), inputs[1], outputs[1]
param_words[0]
4 0 3 2 1 1 0
; install sw[4] on hw[0]: script[3] (splitter), inputs[1], outputs[2]
param_words[0]
4 0 4 3 1 2 0
; install sw[5] on hw[0]: script[4] (Multiply), inputs[2], outputs[1]
param_words[0]
4 0 5 4 2 1 0
; install sw[6] on hw[0]: script[5] (TwoDIFFT), inputs[1], outputs[1]
param_words[0]
4 0 6 5 1 1 0
; install sw[7] on hw[0]: script[6] (Calc_Mean_Std), inputs[1],
outputs[1] param_words[0]
4 0 7 6 1 1 0

76

; install sw[8] on hw[0]: script[7] (Calc_PSR), inputs[1], outputs[1]
param_words[0]
4 0 8 7 1 1 0
; install sw[9] on hw[0]: script[8] (Calculate_Distance), inputs[3],
outputs[1] param_words[0]
4 0 9 8 3 1 0
; install sw[10] on hw[0]: script[4] (Multiply), inputs[2], outputs[1]
param_words[0]
4 0 10 4 2 1 0
; install sw[11] on hw[0]: script[5] (TwoDIFFT), inputs[1], outputs[1]
param_words[0]
4 0 11 5 1 1 0
; install sw[12] on hw[0]: script[6] (Calc_Mean_Std), inputs[1],
outputs[1] param_words[0]
4 0 12 6 1 1 0
; install sw[13] on hw[0]: script[7] (Calc_PSR), inputs[1], outputs[1]
param_words[0]
4 0 13 7 1 1 0
; install sw[14] on hw[0]: script[8] (Calculate_Distance), inputs[3],
outputs[1] param_words[0]
4 0 14 8 3 1 0
; install sw[15] on hw[0]: script[4] (Multiply), inputs[2], outputs[1]
param_words[0]
4 0 15 4 2 1 0
; install sw[16] on hw[0]: script[5] (TwoDIFFT), inputs[1], outputs[1]
param_words[0]
4 0 16 5 1 1 0
; install sw[17] on hw[0]: script[6] (Calc_Mean_Std), inputs[1],
outputs[1] param_words[0]
4 0 17 6 1 1 0
; install sw[18] on hw[0]: script[7] (Calc_PSR), inputs[1], outputs[1]
param_words[0]
4 0 18 7 1 1 0
; install sw[19] on hw[0]: script[8] (Calculate_Distance), inputs[3],
outputs[1] param_words[0]
4 0 19 8 3 1 0
; install sw[20] on hw[0]: script[9] (image_src), inputs[0], outputs[3]
param_words[0]
4 0 20 9 0 3 0
; install sw[21] on hw[0]: script[10] (hmach_filter_src), inputs[1],
outputs[3] param_words[0]
4 0 21 10 1 3 0
; install sw[22] on hw[0]: script[11] (hdccf_filter_src), inputs[1],
outputs[1] param_words[0]
4 0 22 11 1 1 0
; install sw[23] on hw[0]: script[12] (Merge_Compare_Distances),
inputs[3], outputs[1] param_words[0]
4 0 23 12 3 1 0
; install sw[24] on hw[0]: script[13] (Post_Processing), inputs[1],
outputs[1] param_words[0]
4 0 24 13 1 1 0
; install sw[25] on hw[0]: script[14] (Target_Overlay), inputs[2],
outputs[1] param_words[0]
4 0 25 14 2 1 0
; install sw[26] on hw[0]: script[15] (ui), inputs[1], outputs[0]
param_words[0]
4 0 26 15 1 0 0

77

; install sw[27] on hw[0]: script[3] (splitter), inputs[1], outputs[2]
param_words[0]
4 0 27 3 1 2 0
; install sw[28] on hw[0]: script[3] (splitter), inputs[1], outputs[3]
param_words[0]
4 0 28 3 1 3 0
; connect input port[0] of sw[0] to stream[18] on hw[0]
11 0 0 0 18
; connect output port[0] of sw[0] to stream[1] on hw[0]
10 0 0 0 1
; connect output port[1] of sw[0] to stream[2] on hw[0]
10 0 0 1 2
; connect output port[2] of sw[0] to stream[3] on hw[0]
10 0 0 2 3
; connect input port[0] of sw[1] to stream[13] on hw[0]
11 0 1 0 13
; connect output port[0] of sw[1] to stream[17] on hw[0]
10 0 1 0 17
; connect input port[0] of sw[2] to stream[19] on hw[0]
11 0 2 0 19
; connect output port[0] of sw[2] to stream[4] on hw[0]
10 0 2 0 4
; connect output port[1] of sw[2] to stream[5] on hw[0]
10 0 2 1 5
; connect output port[2] of sw[2] to stream[6] on hw[0]
10 0 2 2 6
; connect input port[0] of sw[3] to stream[20] on hw[0]
11 0 3 0 20
; connect output port[0] of sw[3] to stream[18] on hw[0]
10 0 3 0 18
; connect input port[0] of sw[4] to stream[17] on hw[0]
11 0 4 0 17
; connect output port[0] of sw[4] to stream[19] on hw[0]
10 0 4 0 19
; connect output port[1] of sw[4] to stream[20] on hw[0]
10 0 4 1 20
; connect input port[0] of sw[5] to stream[1] on hw[0]
11 0 5 0 1
; connect input port[1] of sw[5] to stream[11] on hw[0]
11 0 5 1 11
; connect output port[0] of sw[5] to stream[21] on hw[0]
10 0 5 0 21
; connect input port[0] of sw[6] to stream[21] on hw[0]
11 0 6 0 21
; connect output port[0] of sw[6] to stream[22] on hw[0]
10 0 6 0 22
; connect input port[0] of sw[7] to stream[22] on hw[0]
11 0 7 0 22
; connect output port[0] of sw[7] to stream[23] on hw[0]
10 0 7 0 23
; connect input port[0] of sw[8] to stream[23] on hw[0]
11 0 8 0 23
; connect output port[0] of sw[8] to stream[24] on hw[0]
10 0 8 0 24
; connect input port[0] of sw[9] to stream[4] on hw[0]
11 0 9 0 4
; connect input port[1] of sw[9] to stream[24] on hw[0]

78

11 0 9 1 24
; connect input port[2] of sw[9] to stream[15] on hw[0]
11 0 9 2 15
; connect output port[0] of sw[9] to stream[7] on hw[0]
10 0 9 0 7
; connect input port[0] of sw[10] to stream[2] on hw[0]
11 0 10 0 2
; connect input port[1] of sw[10] to stream[12] on hw[0]
11 0 10 1 12
; connect output port[0] of sw[10] to stream[25] on hw[0]
10 0 10 0 25
; connect input port[0] of sw[11] to stream[25] on hw[0]
11 0 11 0 25
; connect output port[0] of sw[11] to stream[26] on hw[0]
10 0 11 0 26
; connect input port[0] of sw[12] to stream[26] on hw[0]
11 0 12 0 26
; connect output port[0] of sw[12] to stream[27] on hw[0]
10 0 12 0 27
; connect input port[0] of sw[13] to stream[27] on hw[0]
11 0 13 0 27
; connect output port[0] of sw[13] to stream[28] on hw[0]
10 0 13 0 28
; connect input port[0] of sw[14] to stream[5] on hw[0]
11 0 14 0 5
; connect input port[1] of sw[14] to stream[28] on hw[0]
11 0 14 1 28
; connect input port[2] of sw[14] to stream[14] on hw[0]
11 0 14 2 14
; connect output port[0] of sw[14] to stream[8] on hw[0]
10 0 14 0 8
; connect input port[0] of sw[15] to stream[3] on hw[0]
11 0 15 0 3
; connect input port[1] of sw[15] to stream[10] on hw[0]
11 0 15 1 10
; connect output port[0] of sw[15] to stream[29] on hw[0]
10 0 15 0 29
; connect input port[0] of sw[16] to stream[29] on hw[0]
11 0 16 0 29
; connect output port[0] of sw[16] to stream[30] on hw[0]
10 0 16 0 30
; connect input port[0] of sw[17] to stream[30] on hw[0]
11 0 17 0 30
; connect output port[0] of sw[17] to stream[31] on hw[0]
10 0 17 0 31
; connect input port[0] of sw[18] to stream[31] on hw[0]
11 0 18 0 31
; connect output port[0] of sw[18] to stream[32] on hw[0]
10 0 18 0 32
; connect input port[0] of sw[19] to stream[6] on hw[0]
11 0 19 0 6
; connect input port[1] of sw[19] to stream[32] on hw[0]
11 0 19 1 32
; connect input port[2] of sw[19] to stream[16] on hw[0]
11 0 19 2 16
; connect output port[0] of sw[19] to stream[9] on hw[0]
10 0 19 0 9

79

; connect output port[2] of sw[20] to stream[33] on hw[0]
10 0 20 2 33
; connect output port[0] of sw[20] to stream[34] on hw[0]
10 0 20 0 34
; connect output port[1] of sw[20] to stream[35] on hw[0]
10 0 20 1 35
; connect input port[0] of sw[21] to stream[35] on hw[0]
11 0 21 0 35
; connect output port[2] of sw[21] to stream[10] on hw[0]
10 0 21 2 10
; connect output port[0] of sw[21] to stream[11] on hw[0]
10 0 21 0 11
; connect output port[1] of sw[21] to stream[12] on hw[0]
10 0 21 1 12
; connect input port[0] of sw[22] to stream[33] on hw[0]
11 0 22 0 33
; connect output port[0] of sw[22] to stream[36] on hw[0]
10 0 22 0 36
; connect input port[0] of sw[23] to stream[7] on hw[0]
11 0 23 0 7
; connect input port[1] of sw[23] to stream[8] on hw[0]
11 0 23 1 8
; connect input port[2] of sw[23] to stream[9] on hw[0]
11 0 23 2 9
; connect output port[0] of sw[23] to stream[37] on hw[0]
10 0 23 0 37
; connect input port[0] of sw[24] to stream[37] on hw[0]
11 0 24 0 37
; connect output port[0] of sw[24] to stream[38] on hw[0]
10 0 24 0 38
; connect input port[0] of sw[25] to stream[40] on hw[0]
11 0 25 0 40
; connect input port[1] of sw[25] to stream[38] on hw[0]
11 0 25 1 38
; connect output port[0] of sw[25] to stream[39] on hw[0]
10 0 25 0 39
; connect input port[0] of sw[26] to stream[39] on hw[0]
11 0 26 0 39
; connect input port[0] of sw[27] to stream[34] on hw[0]
11 0 27 0 34
; connect output port[0] of sw[27] to stream[40] on hw[0]
10 0 27 0 40
; connect output port[1] of sw[27] to stream[13] on hw[0]
10 0 27 1 13
; connect input port[0] of sw[28] to stream[36] on hw[0]
11 0 28 0 36
; connect output port[1] of sw[28] to stream[14] on hw[0]
10 0 28 1 14
; connect output port[0] of sw[28] to stream[15] on hw[0]
10 0 28 0 15
; connect output port[2] of sw[28] to stream[16] on hw[0]
10 0 28 2 16
; activate sw[0] on hw[0]
8 0 0
; activate sw[1] on hw[0]
8 0 1
; activate sw[2] on hw[0]

80

8 0 2
; activate sw[3] on hw[0]
8 0 3
; activate sw[4] on hw[0]
8 0 4
; activate sw[5] on hw[0]
8 0 5
; activate sw[6] on hw[0]
8 0 6
; activate sw[7] on hw[0]
8 0 7
; activate sw[8] on hw[0]
8 0 8
; activate sw[9] on hw[0]
8 0 9
; activate sw[10] on hw[0]
8 0 10
; activate sw[11] on hw[0]
8 0 11
; activate sw[12] on hw[0]
8 0 12
; activate sw[13] on hw[0]
8 0 13
; activate sw[14] on hw[0]
8 0 14
; activate sw[15] on hw[0]
8 0 15
; activate sw[16] on hw[0]
8 0 16
; activate sw[17] on hw[0]
8 0 17
; activate sw[18] on hw[0]
8 0 18
; activate sw[19] on hw[0]
8 0 19
; activate sw[20] on hw[0]
8 0 20
; activate sw[21] on hw[0]
8 0 21
; activate sw[22] on hw[0]
8 0 22
; activate sw[23] on hw[0]
8 0 23
; activate sw[24] on hw[0]
8 0 24
; activate sw[25] on hw[0]
8 0 25
; activate sw[26] on hw[0]
8 0 26
; activate sw[27] on hw[0]
8 0 27
; activate sw[28] on hw[0]
8 0 28
; start hw[0]
1 0

81

APPENDIX K

GENERATED CELL MAIN.C SYSTEM SOURCE FILE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <active.h>

int _node_number = 0;
int SAMPLE_RATE = 0;

int main(int argc, char *argv[])
{
 int loop_count = 0;
 int count=0;
 int len;

 printf("\n\n\n Starting APP \n");
 active_init();
 process_funcp_table_init();
 active_build_network("build.cfg");
 printf(" Done Initting \n");

 for(;;)
 {
 }
 return 0;
}

82

APPENDIX L

GENERATED CELL SYSTEM MAKEFILE

ifndef ACS_ENV
acs-env-not-defined:
 @echo Set the environment variable by sourcing setup.$$HOSTNAME
endif

Makefile for fc6-cbe specific code

TOPDIR = ../../../..
PRJDIR = ../..

Debug Release: dummy
 [-d $@] || mkdir $@
 $(MAKE) -f Makefile CFG=$@ ARCH=cbe All

_LIBS = $(shell ls $(PRJDIR)/sw_component/$(CFG))
LIBS = $(addprefix $(PRJDIR)/sw_component/$(CFG)/, $(_LIBS))

ifdef CFG
INTDIR = $(CFG)

VPATH =
../:$(TOPDIR)/runtime/kernel/:$(TOPDIR)/runtime/arch/common/:$(TOPDIR)/
runtime/arch/fc6-
cbe/:$(PRJDIR)/sw_component/:$(PRJDIR)/sw_component/$(INTDIR)

CFLAGS = -I $(TOPDIR)/include -I $(PRJDIR)/include -qstrict
-qfloat=rsqrt

IMPORTS = -lspe2 -lpthread -lm -lfft
$(TOPDIR)/lib/libkernel.a $(TOPDIR)/lib/lowcbe.a
$(PRJDIR)/sw_component/$(CFG)/proclib.a $(filter %.a, $(LIBS))

CC_OPT_LEVEL = -O5

OBJS = init.o main.o

ifeq ($(CFG),Debug)
CFLAGS += -pg -DDEBUG
OBJS += debug.o
endif

PROGRAM_ppu = active.exe

ifeq ($(CFG),Debug)

83

PROGRAM_ppu = active_d.exe
endif

TARGET_INSTALL_DIR = $(PRJDIR)/run
INSTALL_FILES = $(OBJS)
INSTALL_DIR = $(INTDIR)

endif

include $(TOPDIR)/etc/Rules.gnu

All:
 $(MAKE) -f Makefile CFG=$(INTDIR) ARCH=cbe all
ifdef _USING_XLC
 $(CP) $(patsubst %.o, %.d, $(OBJS)) $(INTDIR)
endif
 $(RM) $(INSTALL_FILES) *.a *.exe

ifneq ($(ARCH),cbe)
clean:
 $(MAKE) -f Makefile CFG=$(INTDIR) ARCH=cbe clean
endif

wipe: dummy
 $(RM) -fr Debug Release

$(MAKE) -f Makefile CFG=$(INTDIR) ARCH=cbe clean

84

APPENDIX M

GENERATED WRAPPER CODE FOR SPE-RUN CALCULATE_DISTANCE

/* AWCalculate_Distance.c generated on Tue Feb 24 10:54:13 2009
 */

#include <active.h>
#include "DatatypeSystem.h"

#include <libspe2.h>

extern spe_program_handle_t calc_distance_core_spu;

typedef struct _calc_distance_core_context_data_t
{
 CIMAGE *Img_ea;
 PSR_BLOCK *PSRs_ea;
 HDCCF *HDCCF_Filters_ea;
 DISTANCE_BLOCK *Distances_ea;
 unsigned char pad[(16-(sizeof(CIMAGE*) + sizeof(PSR_BLOCK*) +
sizeof(HDCCF*) + sizeof(DISTANCE_BLOCK*) + 0)%16)];
} calc_distance_core_context_data_t;

void Calculate_Distance(void *__data, int __mode)
{
 CIMAGE *Img_data_;
 PSR_BLOCK *PSRs_data_;
 HDCCF *HDCCF_Filters_data_;
 DISTANCE_BLOCK *Distances_data_;
 int num_Distances;

 spe_context_ptr_t ctx;
 unsigned int entry;
 spe_stop_info_t stop_info;
 calc_distance_core_context_data_t ctx_data __attribute__
((aligned(128)));

 ctx = spe_context_create(0, NULL);
 spe_program_load(ctx, &calc_distance_core_spu);

#ifdef USING_CELL
 for(;;)
 {
#endif
 #ifdef USING_CELL
 Img_data_ = (CIMAGE*)dequeue(0);
 #else
 Img_data_ = (CIMAGE*)get_input_buffer(0);
 #endif

85

 #ifdef USING_CELL
 PSRs_data_ = (PSR_BLOCK*)dequeue(1);
 #else
 PSRs_data_ = (PSR_BLOCK*)get_input_buffer(1);
 #endif
 #ifdef USING_CELL
 HDCCF_Filters_data_ = (HDCCF*)dequeue(2);
 #else
 HDCCF_Filters_data_ = (HDCCF*)get_input_buffer(2);
 #endif

 #ifdef USING_CELL
 if(!(Img_data_ && PSRs_data_ && HDCCF_Filters_data_))
 {
 /* no data to execute or no room to put results */
 continue;
 }
 #else
 if(!(Img_data_ && PSRs_data_ && HDCCF_Filters_data_ &&
output_slot_available(0)))
 {
 /* no data to execute or no room to put results */
 return;
 }
 #endif

 Distances_data_ = (DISTANCE_BLOCK *)get_buffer(1 *
sizeof(DISTANCE_BLOCK)/sizeof(int));

 #ifdef USING_CELL
 if(!Distances_data_)
 {
 /* bad output pointer */
 active_error(__LINE__, ACT_MEMORY_OUTOFMEMORY);
 continue;
 }
 #else
 if(!Distances_data_)
 {
 /* bad output pointer */
 active_error(__LINE__, ACT_MEMORY_OUTOFMEMORY);
 return;
 }
 #endif

 #ifndef USING_CELL
 dequeue(0);
 #endif
 #ifndef USING_CELL
 dequeue(1);
 #endif
 #ifndef USING_CELL
 dequeue(2);
 #endif

 entry = SPE_DEFAULT_ENTRY;
 ctx_data.Img_ea = Img_data_;

86

 ctx_data.PSRs_ea = PSRs_data_;
 ctx_data.HDCCF_Filters_ea = HDCCF_Filters_data_;
 ctx_data.Distances_ea = Distances_data_;

 spe_context_run(ctx, &entry, 0, &ctx_data, NULL, &stop_info);

 enqueue_output(0, Distances_data_);

 return_buffer(Img_data_);
 return_buffer(PSRs_data_);
 return_buffer(HDCCF_Filters_data_);
#ifdef USING_CELL
 }
#endif
} /* Calculate_Distance(void *data, int mode) */

87

APPENDIX N

GENERATED SPE CODE FOR CALCULATE_DISTANCE

/* calc_distance_core_spu.c generated on Tue Feb 24 10:54:13 2009
 */

#include <active.h>
#include "DatatypeSystem.h"

#include <spu_mfcio.h>
#include <free_align.h>
#include <malloc_align.h>

extern void calc_distance_core(DISTANCE_BLOCK *distance_block, float
*Hdccf, PSR_BLOCK *psr_block, CIMAGE *image);

typedef struct _calc_distance_core_context_data_t
{
 CIMAGE *Img_ea;
 PSR_BLOCK *PSRs_ea;
 HDCCF *HDCCF_Filters_ea;
 DISTANCE_BLOCK *Distances_ea;
 unsigned char pad[(16-(sizeof(CIMAGE*) + sizeof(PSR_BLOCK*) +
sizeof(HDCCF*) + sizeof(DISTANCE_BLOCK*) + 0)%16)];
} calc_distance_core_context_data_t;

void main(unsigned long long speid, addr64 argp, addr64 envp)
{
 int i, j, dma_size;

 CIMAGE *Img_data_;
 PSR_BLOCK *PSRs_data_;
 PSR_BLOCK _PSRs_data __attribute__ ((aligned(128)));
 HDCCF *HDCCF_Filters_data_;
 HDCCF _HDCCF_Filters_data __attribute__ ((aligned(128)));
 DISTANCE_BLOCK *Distances_data_;
 DISTANCE_BLOCK _Distances_data __attribute__ ((aligned(128)));
 int num_Distances;

 CIMAGE *image;
 PSR_BLOCK *psr_block;
 float *Hdccf;
 DISTANCE_BLOCK *distance_block;

 calc_distance_core_context_data_t ctx_data __attribute__
((aligned(128)));

 addr64 Img_addr;
 addr64 PSRs_addr;
 addr64 HDCCF_Filters_addr;

88

 addr64 Distances_addr;

 Img_data_ = (CIMAGE *)_malloc_align(sizeof(CIMAGE), 7);
 PSRs_data_ = &_PSRs_data;
 HDCCF_Filters_data_ = &_HDCCF_Filters_data;
 Distances_data_ = &_Distances_data;

 if(!Img_data_)
 {
 /* bad output pointer */
 printf("Failed Malloc");
 return;
 }

 if(!PSRs_data_)
 {
 /* bad output pointer */
 printf("Failed Malloc");
 return;
 }

 if(!HDCCF_Filters_data_)
 {
 /* bad output pointer */
 printf("Failed Malloc");
 return;
 }

 if(!Distances_data_)
 {
 /* bad output pointer */
 printf("Failed Malloc");
 return;
 }

 mfc_get(&ctx_data, argp.ull,
sizeof(calc_distance_core_context_data_t), 31, 0, 0);
 mfc_write_tag_mask(1<<31);
 mfc_read_tag_status_all();

 Img_addr.ull = (unsigned int)ctx_data.Img_ea;
 PSRs_addr.ull = (unsigned int)ctx_data.PSRs_ea;
 HDCCF_Filters_addr.ull = (unsigned int)ctx_data.HDCCF_Filters_ea;
 Distances_addr.ull = (unsigned int)ctx_data.Distances_ea;

 dma_size = sizeof(CIMAGE);
 i=0;
 while(dma_size > MFC_MAX_DMA_SIZE)
 {
 mfc_get((int*)Img_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
Img_addr.ull + i*MFC_MAX_DMA_SIZE, MFC_MAX_DMA_SIZE, 31, 0, 0);
 i++;
 dma_size -= MFC_MAX_DMA_SIZE;
 }
 mfc_get((int*)Img_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
Img_addr.ull + i*MFC_MAX_DMA_SIZE, dma_size, 31, 0, 0);
 mfc_read_tag_status_all();

89

 dma_size = sizeof(PSR_BLOCK);
 i=0;
 while(dma_size > MFC_MAX_DMA_SIZE)
 {
 mfc_get((int*)PSRs_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
PSRs_addr.ull + i*MFC_MAX_DMA_SIZE, MFC_MAX_DMA_SIZE, 31, 0, 0);
 i++;
 dma_size -= MFC_MAX_DMA_SIZE;
 }
 mfc_get((int*)PSRs_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
PSRs_addr.ull + i*MFC_MAX_DMA_SIZE, dma_size, 31, 0, 0);
 mfc_read_tag_status_all();
 dma_size = sizeof(HDCCF);
 i=0;
 while(dma_size > MFC_MAX_DMA_SIZE)
 {
 mfc_get((int*)HDCCF_Filters_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
HDCCF_Filters_addr.ull + i*MFC_MAX_DMA_SIZE, MFC_MAX_DMA_SIZE, 31, 0,
0);
 i++;
 dma_size -= MFC_MAX_DMA_SIZE;
 }
 mfc_get((int*)HDCCF_Filters_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
HDCCF_Filters_addr.ull + i*MFC_MAX_DMA_SIZE, dma_size, 31, 0, 0);
 mfc_read_tag_status_all();

 image = Img_data_;
 psr_block = PSRs_data_;
 Hdccf = HDCCF_Filters_data_;

 distance_block = Distances_data_;

 calc_distance_core(distance_block, Hdccf, psr_block, image);

 num_Distances = 1;

 dma_size = sizeof(DISTANCE_BLOCK);
 i=0;
 while(dma_size > MFC_MAX_DMA_SIZE)
 {
 mfc_put((int*)Distances_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
Distances_addr.ull + i*MFC_MAX_DMA_SIZE, MFC_MAX_DMA_SIZE, 31, 0, 0);
 i++;
 dma_size -= MFC_MAX_DMA_SIZE;
 }
 mfc_put((int*)Distances_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
Distances_addr.ull + i*MFC_MAX_DMA_SIZE, dma_size, 31, 0, 0);
 mfc_read_tag_status_all();

 _free_align(Img_data_);

} /* calc_distance_core SPE Core */

90

APPENDIX O

GENERATED SPE MAKEFILE FOR CALCULATE_DISTANCE

calc_distance_core Makefile generated on Tue Feb 24 10:54:13 2009

You need to add flags to IMPORTS and any other desired adds

TOPDIR = ../../../..
PRJDIR = ../..
ARCH = cbe

PROGRAM_spu = calc_distance_core_spu
LIBRARY_embed = calc_distance_core_spu.a

VPATH = ../
OBJS = calc_distance_core_spu.o calc_distance_core.o
fft_core.o
CC_OPT_LEVEL = -O5
CFLAGS = -I $(TOPDIR)/include -I $(PRJDIR)/include
IMPORTS = -lm
INSTALL_FILES = calc_distance_core_spu.a
INSTALL_DIR = ..

include $(TOPDIR)/etc/Rules.gnu

91

APPENDIX P

MODIFIED SPE CODE FOR MULT_DIFFT_CALC_MEAN_PSR

/* mult_difft_calc_mean_psr_core_spu.c generated on Wed Feb 18 15:25:53
2009
 */

#include <active.h>
#include "DatatypeSystem.h"

#include <spu_mfcio.h>
#include <free_align.h>
#include <malloc_align.h>

extern void mult_difft_calc_mean_psr_core(float *Hmach, CIMAGE *img,
PSR_BLOCK *psrs);

typedef struct _mult_difft_calc_mean_psr_core_context_data_t
{
 HMACH *Filter_ea;
 CIMAGE *Spectrum_ea;
 PSR_BLOCK *PSRs_ea;
 unsigned char pad[(16-(sizeof(HMACH*) + sizeof(CIMAGE*) +
sizeof(PSR_BLOCK*) + 0)%16)];
} mult_difft_calc_mean_psr_core_context_data_t;

void main(unsigned long long speid, addr64 argp, addr64 envp)
{
 int i, j, dma_size;

 HMACH *Filter_data_;
 CIMAGE *Spectrum_data_;
 CIMAGE _Spectrum_data __attribute__ ((aligned(128)));
 PSR_BLOCK *PSRs_data_;
 PSR_BLOCK _PSRs_data __attribute__ ((aligned(128)));
 int num_PSRs;

 CIMAGE *img;
 float *Hmach;
 PSR_BLOCK *psrs;

 mult_difft_calc_mean_psr_core_context_data_t ctx_data __attribute__
((aligned(128)));

 addr64 Filter_addr;
 addr64 Spectrum_addr;
 addr64 PSRs_addr;

 Filter_data_ = (HMACH *)_malloc_align(sizeof(HMACH)/2, 7);
 Spectrum_data_ = &_Spectrum_data;

92

 PSRs_data_ = &_PSRs_data;

 if(!Filter_data_)
 {
 /* bad output pointer */
 printf("Failed Malloc");
 return;
 }

 if(!Spectrum_data_)
 {
 /* bad output pointer */
 printf("Failed Malloc");
 return;
 }

 if(!PSRs_data_)
 {
 /* bad output pointer */
 printf("Failed Malloc");
 return;
 }

 mfc_get(&ctx_data, argp.ull,
sizeof(mult_difft_calc_mean_psr_core_context_data_t), 31, 0, 0);
 mfc_write_tag_mask(1<<31);
 mfc_read_tag_status_all();

 Filter_addr.ull = (unsigned int)ctx_data.Filter_ea;
 Spectrum_addr.ull = (unsigned int)ctx_data.Spectrum_ea;
 PSRs_addr.ull = (unsigned int)ctx_data.PSRs_ea;

 dma_size = sizeof(HMACH)/2;
 i=0;
 j=0;
 while(dma_size > MFC_MAX_DMA_SIZE)
 {
 mfc_get((int*)Filter_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
Filter_addr.ull + i*MFC_MAX_DMA_SIZE, MFC_MAX_DMA_SIZE, 31, 0, 0);
 i++;
 j++;
 dma_size -= MFC_MAX_DMA_SIZE;
 }
 mfc_get((int*)Filter_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
Filter_addr.ull + i*MFC_MAX_DMA_SIZE, dma_size, 31, 0, 0);
 mfc_read_tag_status_all();
 j++;
 dma_size = sizeof(CIMAGE);
 i=0;
 while(dma_size > MFC_MAX_DMA_SIZE)
 {
 mfc_get((int*)Spectrum_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
Spectrum_addr.ull + i*MFC_MAX_DMA_SIZE, MFC_MAX_DMA_SIZE, 31, 0, 0);
 i++;
 dma_size -= MFC_MAX_DMA_SIZE;
 }

93

 mfc_get((int*)Spectrum_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
Spectrum_addr.ull + i*MFC_MAX_DMA_SIZE, dma_size, 31, 0, 0);
 mfc_read_tag_status_all();

 img = Spectrum_data_;
 Hmach = Filter_data_;

 psrs = PSRs_data_;

 multiply_filter_core(img, Hmach, 0);

 dma_size = sizeof(HMACH)/2;
 i=0;
 while(dma_size > MFC_MAX_DMA_SIZE)
 {
 mfc_get((int*)Filter_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
Filter_addr.ull + j*MFC_MAX_DMA_SIZE, MFC_MAX_DMA_SIZE, 31, 0, 0);
 i++;
 j++;
 dma_size -= MFC_MAX_DMA_SIZE;
 }
 mfc_get((int*)Filter_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
Filter_addr.ull + j*MFC_MAX_DMA_SIZE, dma_size, 31, 0, 0);
 mfc_read_tag_status_all();

 mult_difft_calc_mean_psr_core(Hmach, img, psrs);

 num_PSRs = 1;

 dma_size = sizeof(PSR_BLOCK);
 i=0;
 while(dma_size > MFC_MAX_DMA_SIZE)
 {
 mfc_put((int*)PSRs_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
PSRs_addr.ull + i*MFC_MAX_DMA_SIZE, MFC_MAX_DMA_SIZE, 31, 0, 0);
 i++;
 dma_size -= MFC_MAX_DMA_SIZE;
 }
 mfc_put((int*)PSRs_data_ + i*MFC_MAX_DMA_SIZE/sizeof(int),
PSRs_addr.ull + i*MFC_MAX_DMA_SIZE, dma_size, 31, 0, 0);
 mfc_read_tag_status_all();

 _free_align(Filter_data_);

} /* mult_difft_calc_mean_psr_core SPE Core */

94

REFERENCES

[1] Asaad, S. Bapty, T. Neema, S. “Performance Modeling for Adaptive Parallel
Embedded Systems.” Performance, Computing, and Communications
Conference, 2002. 21st IEEE International. pp. 57-64. 3-5 April 2002.

[2] Chen, Long; Hu, Ziang; Lin, Junmin; Gao, G.R., "Optimizing the Fast

Fourier Transform on a Multi-core Architecture," Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International , pp.1-8, 26-
30 March 2007.

[3] GCC, the GNU Compiler Collection. Free Software Foundation, Inc., 2009.

[Online]. Available: http://gcc.gnu.org/. [Accessed: Jan. 30, 2009].

[4] Goodman, R.; Black, S., "Design challenges for realization of the

advantages of embedded multi-core processors," AUTOTESTCON, 2008
IEEE , pp.447-452, 8-11 Sept. 2008.

[5] IBM. Cell Broadband Engine Programming Handbook, Version 1.1, April 24,

2007.

[6] IBM. Cell Broadband Engine Programming Tutorial, Version 2.1, March 1,

2007.

[7] IBM. Cell Broadband Engine SDK Libraries Overview and Usrs Guide,

Version 2.1. 26 Mar. 2007.

[8] IBM. Software Development Kit 2.1 Installation Guide, Version 2.1. Mar.

2007.

[9] IBM. SPE Runtime Management Library Version 2.1. Mar. 2007.

[10] IBM. “The Cell Chip,” The Cell Project at IBM Research, 2006. [Online].

Available: http://www.research.ibm.com/cell/cell_chip.html. [Accessed: Jan.
27, 2009].

[11] IBM. XL C/C++ for Multicore Acceleration for Linux. [Online]. Available:

http://www-01.ibm.com/software/awdtools/xlcpp/multicore/. [Accessed: Jan.
30, 2009]

[12] Karsai G., Sztipanovits J., Ledeczi A., Bapty T.: “Model-Integrated

Development of Embedded Software,” Proceedings of the IEEE, Vol. 91,
Number 1, pp. 145-164, January, 2003.

95

96

[13] Kayi, A.; Yao, Y.; El-Ghazawi, T.; Newby, G., "Experimental Evaluation of
Emerging Multi-core Architectures," Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International , pp.1-6, 26-30 March
2007.

[14] Kurzak, J., Buttari, A., Luszczek, P., Dongarra, J., “The PlayStation 3 for

High-Performance Scientific Computing,” Computing in Science &
Engineering, Vol. 10, Issue 3, pp. 84-87, May-June 2008.

[15] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C.,

Nordstrom, G., Sprinkle, J., and Volgyesi, P., “The Generic Modeling
Environment,” WISP’2001 Proceedings, IEEE. 24-25 May 2001.

[16] Narayanaswamy, G.; Balaji, P.; Feng, W., "Impact of Network Sharing in

Multi-Core Architectures," Computer Communications and Networks, 2008.
ICCCN '08. Proceedings of 17th International Conference on , pp.1-6, 3-7
Aug. 2008.

[17] Neema, S., Bapty, T., Scott, J., Eames, B., “Signal processing platform: a

tool chain for designing high performance signal processing applications,”
SoutheastCon, 2005. Proceedings. IEEE. pp. 302-307, 8-10 April 2005

[18] Neema S., Sztipanovits J., Karsai G., and Butts K., “Constraint-based

Design-Space Exploration and Model Synthesis,” Proceedings of
Embedded Software Conference (EMSOFT), 2003, in Lecture Notes in
Computer Science (LNCS), Springer-Verlag 2003.

[19] Nemati, F.; Kraft, J.; Nolte, T., "Towards migrating legacy real-time systems

to multi-core platforms," Emerging Technologies and Factory Automation,
2008. ETFA 2008. IEEE International Conference on , pp.717-720, 15-18
Sept. 2008

[20] Szydlowski, C. “Multithreaded Technology & Multicore Processors.” Dr.

Dobb’s Journal, May 2005.

[21] The Fedora Project. See http://fedoraproject.org/ for more information.

[22] Xiang, Yang; Zhou, Wanlei, "Using Multi-Core Processors to Support
Network Security Applications," Future Trends of Distributed Computing
Systems, 2008. FTDCS '08. 12th IEEE International Workshop on , pp.213-
218, 21-23 Oct. 2008.

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER I
	INTRODUCTION
	CHAPTER II
	BACKGROUND
	CHAPTER III
	CELL PROCESSOR
	PowerPC Processing Element
	Synergistic Processing Element
	Memory Flow Controller
	Element Interconnect Bus
	Sony PlayStation 3

	CHAPTER IV
	SIGNAL PROCESSING PLATFORM
	Signal Processing Modeling Language
	Execution Platform
	Code Generator
	Interpreter Tool Chain

	CHAPTER V
	AUTOMATIC TARGET RECOGNITION EXAMPLE
	Modeling
	Generating Code
	Interpreting
	Execution on PC
	Reconfigure for Cell
	Memory Consumption
	Algorithm Analysis
	Replacing Cores for the Cell and Code Optimizations

	Execution on Cell

	CHAPTER VI
	RESULTS
	CHAPTER VII
	FUTURE WORK
	CHAPTER VIII
	CONCLUSION
	APPENDIX A
	META-MODEL OF SPML DATATYPING
	APPENDIX B
	META-MODEL OF SPML CORE
	APPENDIX C
	META-MODEL OF SPML ARCHITECTURE
	APPENDIX D
	META-MODEL OF SPML APPLICATION DATAFLOW
	APPENDIX E
	GENERATED WRAPPER CODE FOR CALCULATE_DISTANCE
	APPENDIX F
	GENERATED DATA TYPE HEADER FILE
	 APPENDIX G
	GENERATED IX86 MAIN.C SYSTEM SOURCE FILE
	GENERATED IX86 SYSTEM MAKEFILE
	APPENDIX I
	GENERATED PROCESS TABLE
	APPENDIX J
	GENERATED CONFIGURATION FILE
	APPENDIX K
	GENERATED CELL MAIN.C SYSTEM SOURCE FILE
	APPENDIX L
	GENERATED CELL SYSTEM MAKEFILE
	APPENDIX M
	GENERATED WRAPPER CODE FOR SPE-RUN CALCULATE_DISTANCE
	APPENDIX N
	GENERATED SPE CODE FOR CALCULATE_DISTANCE
	APPENDIX O
	GENERATED SPE MAKEFILE FOR CALCULATE_DISTANCE
	APPENDIX P
	MODIFIED SPE CODE FOR MULT_DIFFT_CALC_MEAN_PSR
	 REFERENCES

