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CHAPTER I 

 

INTRODUCTION 

 

Statement of Problem 

 Nonenzymatic glucose modification of proteins occurs by the free aldehyde group 

of glucose modifying the side-chain of lysine residues at the ε-amino group and the N-

terminal α-amino groups on proteins.  This reaction, known as the Maillard protein 

glycation pathway, leads to the reversible formation of a Schiff base followed by a 

practically irreversible rearrangement to an Amadori intermediate.  The Amadori 

intermediate then undergoes several cycles of condensations and oxidative 

fragmentations to produce irreversible heterogeneous compounds referred to as advanced 

glycation end products (AGEs) (Brownlee 1995).  One of the most common AGEs found 

in tissues is Nε-carboxymethyllysine (CML).  Another pathway of protein modification 

by glucose involves the autooxidation of glucose or the Schiff base to form low weight 

carbonyl compounds such as glyoxal (GO), methylglyoxal (MGO), and glycolaldehyde 

(GLA), which can modify lysine as well as arginine residues (Voziyan and Hudson 

2005). 

 AGEs have been implicated in the pathogenesis of diseases, such as diabetes, 

atherosclerosis, neurodegeneration, and in ageing.  The elevated levels of glucose found 

in diabetes can lead to the acceleration of glycation reactions, which have been found to 

affect both the cardiovascular and renal systems (Brownlee, Cerami et al. 1988; 

Brownlee, Cerami et al. 1988).  In human diabetic kidneys, glycated collagen IV was 
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found (Raabe, Hopner et al. 1998), and in atherosclerosis, AGEs have been found on low 

density lipoproteins (Imanaga, Sakata et al. 2000).  AGEs have also been reported to play 

a role in Alzheimer’s disease and in ageing (Thorpe and Baynes 1996; Sasaki, Fukatsu et 

al. 1998).  

Although the chemical structures of many AGEs have been determined and new 

AGEs are continuously being discovered, how glycation reactions affect protein function 

is not understood.  Baynes and colleagues studied the model protein ribonuclease to 

determine the sites of Amadori and CML formation.  In this study, they point out the 

need for an understanding of how glycation affects protein function.  Currently, it is 

unknown how the sites of glycation and AGE formation are related, nor is it known what 

effect different protein environments have on the formation of AGEs (Brock, Hinton et 

al. 2003).  Assays do exist to detect the presence of particular AGEs, which can serve as 

surrogate markers of glycation reactions in vivo.  However, it is not known if these 

modifications are benign or if they do in fact affect protein function and are directly 

involved in pathogenic mechanisms. 

Because of the role of AGEs in many diseases, it has been important to find 

inhibitors to the formation of AGEs.  Pyridoxamine (PM) is an in vitro inhibitor of the 

formation of AGEs by blocking the reaction at the Amadori intermediate (Booth, 

Khalifah et al. 1996).  The exact mechanism of how PM functions as a post-Amadori 

inhibitor is unknown.  However, it has been determined that PM scavenges reactive 

carbonyl products of glucose degradation along with interfering with the catalytic role of 

redox metal ions in glycoxidative reactions (Voziyan, Metz et al. 2002).  In vivo PM 

prevented the development of nephropathy and retinopathy in the streptozotocin rat 
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model of diabetes (Degenhardt, Alderson et al. 2002; Stitt, Gardiner et al. 2002).  Phase II 

clinical trials of PM in diabetic nephropathy have been completed.  The in vivo 

mechanism of action of PM remains unknown, although it is assumed to act as a post-

Amadori inhibitor and as a scavenger of reactive aldehydes.  

The main objective of this study was to use different model proteins to gain 

insight into the question of how glucose modifications alter protein functionality and how 

PM prevents the loss of function in these reactions.  The model proteins ribonuclease A 

(RNase), lysozyme, bovine serum albumin (BSA), and ubiquitin were utilized in these 

studies.  Lysozyme was focused on more intensely to address the following questions: (1) 

what is the variety of modifications that form; (2) what structural features of the protein 

environment promote the formation of modifications, i.e. residue exposure, specific 

motifs; (3) what are the requirements for PM protection against the formation of 

modifications, i.e. residue exposure, specific motifs.  The results of this study provide 

insight into the damaging effects of glucose modifications on protein function, which 

includes CML formation on lysine residues and the oxidation of tryptophan residues, 

along with the degradation and cross-linking of proteins.  PM provided protection against 

CML formation and the oxidation of tryptophan residues in addition to preserving protein 

integrity and functionality.  The results of this study advance the knowledge of glycation 

reactions and PM protection against protein damage induced by glucose modifications. 
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Advanced Glycation End Products 

 

Chemistry of AGE Formation 

Since AGEs have been implicated in many diseases, the chemistry of how AGEs 

form has been extensively investigated.  AGEs form as a result of the Maillard reaction.  

This reaction involves the aldehyde group on glucose, or other reducing sugar, modifying 

the ε-amino side-chain of lysine residues or the N-terminal α-amino groups of 

polypeptides.  This leads to the reversible formation of a Schiff base followed by a 

practically irreversible rearrangement to a more stable ketoamine known as the Amadori 

intermediate, or fructosyllysine.  The Amadori intermediate then undergoes several 

cycles of condensations and oxidative fragmentations to produce irreversible 

heterogeneous compounds referred to as AGEs (Brownlee 1995).  Many AGEs, 

comprised of different chemical structures, have now been detected in animal and human 

tissues, such as the most prominent AGE Nε-carboxymethyllysine (CML), pentosidine (a 

lysine-arginine crosslink), and glucosepane (Fig 1) (Ahmed, Thorpe et al. 1986; Hayase, 

Nagaraj et al. 1989; Sell and Monnier 1989).  
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Figure 1.  Maillard Glycation Pathway. 

 

AGEs can also form from another pathway of protein modification by glucose, 

which involves the autoxidation of glucose or the Schiff base, particularly in the presence 

of transition metals, to form low weight carbonyl compounds such as glyoxal (GO), 

methylglyoxal (MGO), and glycolaldehyde (GLA).  These reactive carbonyl compounds 

can modify both α- and ε-amino groups as well as the guanidinium group of arginine.  

This is unlike glucose, which reacts mainly with amino groups (Voziyan and Hudson 

2005).  These carbonyl compounds have been found to cross- link proteins via MOLD 

(methylglyoxal lysine-lysine dimer) and GOLD (glyoxal lysine-lysine dimer) (Ahmed, 

Brinkmann Frye et al. 1997; Degenhardt, Thorpe et al.  1998; Odani, Shinzato et al. 

1998).  The carbonyl compounds also modifiy arginine residues forming products such as 

hydroimidazolone (Thornalley 2005). 
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A variety of AGEs have been identified (Fig 2), and as mentioned above, they 

arise as result of different pathways.  For instance, the Amadori intermediate can undergo 

non-oxidative rearrangement and hydrolysis reactions to form products such as 1-

deoxyglucosones and 3-deoxyglucosones (1DG, 3DG), which both contain the carbon 

skeleton of glucose (Thorpe and Baynes 2003).  The AGEs CML, Nε-carboxyethyllysine, 

and pentosidine require oxidative fragmentation of the carbon skelton of glucose, while 

the formation of pyrraline is a non-oxidative process.  Other AGEs like verperlysines and 

crosslines are fluorescent and appear to derive directly from glucose, maintaining the 

intact carbon skelton of glucose (Thorpe and Baynes 2003). 
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Figure 2.  AGE Structures.  The structures of some of the known AGEs are seen above. 
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While AGEs form from carbohydrate precursors such as glucose, advanced lipoxidation 

end products (ALEs) form from the modification of proteins by polyunsaturated fatty 

acids in lipoproteins.  Malondialdehyde (MDA) and hydroxynonenal (HNE) form 

adducts on lysine (MDA-Lys, HNE-Lys) (Onorato, Jenkins et al. 2000).  The products 

CML and CEL may arise from both carbohydrate and lipid modifications of proteins 

(Metz, Alderson et al. 2003).   

Reactive oxygen species (ROS) can be generated from the formation of both 

AGEs and ALEs.  The autoxidation of glucose or the oxidative degradation of the 

Amadori intermediate can lead to the formation of ROS such as superoxide anion, 

hydrogen peroxide, and hydroxyl radical.  Lipid peroxidation produces the ROS peroxyl 

and alkoxyl radical.  ROS cause damage to amino acid side chains in proteins, such as the 

oxidation of cysteine to sulfonate, the conversion of methionine to sulphoxide, and the 

hydroxylation of aromatic amino acids.  Oxidation of tryptophan residues occurs 

producing products such as hydroxytryptophans (HTRP), kynurenine (KYN), and 3-

hydroxykynurenine (3OH-KYN) (Finley, Dillon et al. 1998).  ROS also play a role in 

diseases like diabetes and atherosclerosis by triggering pathogenic signaling (Li and Shah 

2003).  Thus, the three major pathways of protein damage by glycation reactions are the 

(1) Amadori pathway, (2) reactive carbonyl species pathway, and (3) reactive oxygen 

species pathway (Fig 3). 
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Figure 3.  Pathways of Protein Damage by Glycation Reactions .  The following pathways are 
represented above: (1) the Amadori pathway, (2) the reactive carbonyl species pathway, (3) the reactive 
oxygen species pathway. 
 

Physiological Complications of AGEs 

AGEs have been implicated in many diseases, such as diabetes, atherosclerosis, 

neurodegeneration, and in ageing.  Diabetes is characterized by high levels of glucose, 

which leads to many physiological complications such as diabetic nephropathy.  High 

glucose levels lead to the formation of AGEs, which alter the structure and function of 

proteins like the extracellular matrix proteins.  The non-enzymatic glycation of proteins is 

a slow process and has been found to occur on long- lived proteins such as collagen IV, 

which is a major component of the renal extracellular matrix.  This results in diminished 

glomerular filtration rates, which is evident in the high levels of AGEs found in both 

plasma and tissues (Raabe, Molsen et al. 1996; Heidland, Sebekova et al. 2001).   

3 

1 

2 
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 Other complications associated with diabetes are eye diseases such as 

retinopathy.  AGEs have been found in retinal vessels in diabetics and are associated with 

the microvascular dysfunction in the retina (Stitt, Gardiner et al. 2002).  AGEs are also 

involved in altering the cornea in diabetic patients.  There is an increased risk for the 

development of cataracts in diabetics, which is caused by protein modifications in the 

lens of the eyes leading to loss of vision (Jain, Lim et al. 2002). 

Accelerated atherosclerosis is another major complication associated with 

diabetes.  Elevated levels of AGEs have been found in diabetic patients with coronary 

heart disease, and immunohistochemical analyses have detected AGEs in atherosclerotic 

lesions.  AGEs have been found on low density lipoproteins (LDL) and contribute to the 

altered clearance of LDL from the body.  Studies have also shown that glycated LDL can 

be taken up by macrophages leading to foam cell formation, which is characteristic of 

atherosclerotic lesions (Basta, Schmidt et al. 2004; Brown, Dean et al. 2005). 

AGEs have also been reported to play a role in neurodegenerative diseases such 

as Alzheimer’s disease.  Alzheimer’s is characterized by the presence of neurofibrillary 

tangles and plaques made of tau proteins and amyloid β  proteins.  Immunohistochemical 

analyses have identified AGEs in the neurofibrillary tangles and plaques from 

Alzheimer’s patients.  In fact, glycation of amyloid β  proteins increases aggregation in 

vitro.  The results of these studies suggest that AGEs may contribute to the neuronal 

dysfunction found in Alzheimer’s disease (Sasaki, Fukatsu et al. 1998). 

The process of ageing is not well understood, but AGEs may contribute to ageing.  

AGEs accumulate on long- lived proteins and the formation of AGEs produces reactive 

oxygen species.  These two factors are linked to ageing.  The levels of AGE biomarkers, 
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such as CML and pentosidine, increase with age.  With age, there is also an increased risk 

of cataracts due to protein modifications in the lens.  Age-dependent stiffening of the 

tendons occurs due to collagen modifications (Baynes 2000). 

 

Pyridoxamine  

Because of the role of AGEs in many diseases, it has been important to find 

inhibitors to the formation of AGEs.  In a search for inhibitors of AGEs, the Hudson 

laboratory discovered that pyridoxamine (Fig 4), a natural intermediate of vitamin B6 

metabolism, is an in vitro inhibitor of the conversion of the Amadori intermediate to 

AGEs, such as CML (Booth, Khalifah et al. 1997; Khalifah, Baynes et al. 1999).  In vivo, 

pyridoxamine prevented the development of renal disease, inhibiting albuminuria and 

creatinemia in the streptozotocin-diabetic rat (Degenhardt, Alderson et al. 2002).  

Pyridoxamine was also found to inhibit dyslipidemia in the streptozotocin-diabetic rat.  

Decreases in CML and CEL were observed along with decreased cross-linking of skin 

collagen (Metz, Alderson et al. 2003).  PM is currently in on the FDA “fast track” for 

Phase III clinical trials for the treatment of diabetic nephropathy.  Other preclinical data 

suggest that PM may also be a candidate for the treatment of diabetic retinopathy, 

hyperlipidemia, and kidney stone disease in addition to diabetic nephropathy (Voziyan 

and Hudson 2005).  Therefore, PM has been established to prevent some of the 

physiological complications of AGEs.  However, the exact mechanism of how PM 

functions is not entirely understood. 
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Figure 4. Structure of Pyridoxamine. 

 

Studies have been conducted in order to better understand the mechanism of PM.  

As mentioned previously, reactive low molecular weight carbonyl products can form 

from glucose autoxidation and through the degradation of the Schiff base intermediate.  

They can also be produced from lipid peroxidation reactions.  Experiments were carried 

out to determine if PM can react carbonyl compounds such as glyoxal and glycoaldehyde.  

The results showed that PM protects proteins from carbonyl stress by trapping these 

carbonyl compounds thus preventing the formation of AGEs (Voziyan, Metz et al. 2002).   

Further studies revealed that PM prevents the Amadori intermediate from 

converting to AGEs by interfering with the catalytic role of redox metals.  PM can form 

complexes with transition metals with particular preferences for Cu2+ and Fe3+.  The 

aminomethyl and phenol moieties on PM bind to the metal, so PM structural analogs 

lacking these moieties were studied to determine how they compared to PM in the 

inhibition of CML formation.  The structural analogs showed no inhibition, while an 

analog that possessed both required moities did show inhibition.  Additional studies have 

demonstrated that PM does not form adducts with the Amadori intermediate.  Therefore, 
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the results of these studies show that PM inhibits CML formation by interfering with the 

metal ions involved in the glycoxidative reaction (Voziyan, Khalifah et al. 2003). 

PM also shows some effectiveness against reactive oxygen species.  By inhibiting 

the post-Amadori reactions from occurring, PM is also inhibiting the ROS that are 

generated from those reactions.  Studies have found that PM repressed the accumulation 

of the hydroxyl radical, •OH, in the Fenton reaction (Voziyan and Hudson 2005) and the 

superoxide radical, O2
•-, in red blood cells treated with glucose (Jain and Lim 2001).  

Malondialdehyde levels, a marker for free radical lipid peroxidation, were reduced in 

streptozotocin-diabetic hamsters treated with PM (Takatori, Ishii et al. 2004).  The results 

of these studies suggest that PM is protecting against ROS.  Therefore, the mechanism of 

action of PM includes the following: (1) inhibiting the Maillard reaction at the Amadori 

intermediate, (2) scavenging of reactive carbonyl compounds, and (3) trapping reactive 

oxygen species (Fig 5).  Though these studies do provide important insight into the 

mechanism of PM, there still remain unanswered questions, in particularly involving 

AGE formation in diverse protein microenvironments. 
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Figure 5.  PM Inhibition of AGE Formation.  The following pathways are represented above: the 
Amadori pathway, the reactive carbonyl species pathway, the reactive oxygen species pathway.  PM 
inhibition of the reactions has the potential to prevent or delay the development of diseases that arise from 
these pathways. 
 

Model Protein Systems  

 

The main objective of this study was to use different model proteins to gain 

insight into the question of how glucose modifications alter protein functionality and how 

PM prevents the loss of function in these reactions.  The model proteins ribonuclease A 

(RNase), lysozyme, bovine serum albumin (BSA), and ubiquitin were utilized in these 

studies.   

While studies have been conducted on the mechanisms of glycation reactions, 

there still remain many unanswered questions.  For instance, it is unknown what protein 

modifications arise as a result of lysine microenvironments.  Studies were carried out 

with RNase to determine how protein environment affects glycation, but the focus was 
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only on the Amadori and CML modifications (Brock, Hinton et al. 2003).  As mentioned 

earlier, there are many possible AGEs; therefore, there exists a need to more thoroughly 

study how the microenvironments of lysine residues affect the formation of 

modifications.  This particular study will address these questions by using a set of 

proteins with a particular focus on lysozyme. 

In addition to determining what varieties of modifications are formed during 

glycation reactions, the factors that influence the formation of the specific modifications 

also need to be determined.  For instance, residue exposure, neighboring resides, and 

structural characteristics, such as the presence of certain motifs, may influence the type of 

modification that forms.  Past studies have been conducted on peptides to determine how 

certain neighboring residues affect the reactivity of amino groups to glycation.  Results 

indicate that hydrophobic and charged residues located near lysine residues increase the 

reactivity of those lysines to glycation (Mennella, Visciano et al. 2005).  While these 

results are true for peptides, it is unknown how the microenvironment of lysine residues 

within an intact protein affects the reactivity of those residues to glycation.  This question 

is addressed in this study by characterizing the glycation of model proteins. 

 As mentioned previously, studies have revealed that PM works by trapping 

reactive carbonyl compounds, interfering with the catalytic role of redox metals, and 

reacting with ROS.  However, there is still much to be learned about the mechanism of 

PM in specific protein environments.  For instance, certain structural features may be 

required for PM inhibition.  The experiments conducted in this study address how 

different protein environments affect PM protection of AGE formation.   
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 Since AGEs have been implicated in many diseases, it is important to study 

glycation reactions under physiologically relevant conditions.  Many past studies have 

been conducted using extremely high concentrations of glucose.  While these studies 

have provided information about glucose modifications, more relevant insight can be 

gained by investigating the modifications that arise as a result of physiological 

concentrations of glucose, which has been the focus of this particular study. 

 

RNase 

The ribonuclease A protein used in these experiments comes from bovine 

pancreas.  It functions to catalyze the cleavage of the phosphodiester bond between the 

5’-ribose of a nucleotide and the phosphate group attached to the 3’-ribose of an adjacent 

nucleotide.  The molecular weight of RNase is 13,700 Daltons, and it contains ten lysine 

residues, K-1, 7, 31, 37, 41, 61, 66, 91, 98, 104.  Residues located in the active site of 

RNase are His-12 and His-119 (Worthington Biochemical). 

 Baynes and co-workers have used RNase A as a model protein system in the 

study of glycation.  Recent work has utilized ESI-LC-MS to study the specific sites of 

glycation on RNase in an effort to learn more about how glycation affects proteins.  

RNase samples were incubated with 0.4 M glucose at 37°C for 3, 7, and 14 days, and 

then digested with trypsin.  ESI-LC-MS analysis revealed that Lys-1, 7, 37, and 41 were 

the main sites of Amadori formation and Lys-7, 37, and 41 were the main sites of CML 

formation.  The work also revealed that Amadori is the main precursor of CML formation 

(Brock, Hinton et al. 2003).  We will utilize these results, along with our data, to analyze 

how PM affects the glycation process in RNase.  Since the three dimensional structure of 
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RNase has been solved, structural requirements needed for PM action can be assessed 

(Carlisle, Palmer et al. 1974). 

 

Lysoyzme 

 The lysozyme protein used in these experiments comes from hen egg whites and 

is known as lysozyme “c”.  Lysozyme functions to hydrolyze the β-1, 4 glucosidic 

linkages between N-acetylmuramic acid and N-acetylglucosamine, which occur in 

microorganisms such as Micrococcus lysodeikticus.  The molecular weight of lysozyme 

is 14,388 Daltons, and it contains six lysine residues, K-1, 13, 33, 96, 97, 116.  Residues 

located in the active site of lysozyme are Asp-52, Asp-101, and Glu-35 (Worthington 

Biochemical). 

The glycation of lysozyme has been examined in a few previous studies.  

Kislinger and colleagues studied the glycation of lysozyme by matrix-assisted laser 

desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS).  The samples 

contained lysozyme along with high levels of glucose (100, 250, 500 mM) and were 

incubated at nonphysiological temperatures (50°C) for 1, 4, 8, and 16 weeks.  Samples 

were digested with endoproteinase Glu-C followed by MALDI-TOF mass spectrometry 

analysis.  The results of the study revealed two peaks in the spectra of samples incubated 

with glucose that were consistent with the formation of an Amadori product and CML 

(Kislinger, Humeny et al. 2003).  Another study involved studying the glycation of 

lysozyme by ESI-mass spectrometry.  Lysozyme samples were incubated with glucose in 

a 1:1 molar ratio of ε-amino group:sugar carbonyl groups at 50°C for 1, 2, 5, 10, and 14 

days.  Samples were subjected to a tryptic digestion.  The results of this particular study 
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found that all six lysine residues were involved in glycation dependent upon incubation 

time.  The order of reactivity of lysine residues is as follows: Lys-97 > -33 > -1 > -13 > -

116 > -96 (Yeboah, Alli et al. 2004).  Further studies need to be conducted in order to 

determine how the protein microenvironment affects the formation of AGEs on 

lysozyme.  These issues will be addressed in this study.  Also, by utilizing PM in these 

glycation reactions, more knowledge can be gained about how PM affects the glycation 

process.  Again, the three dimensional structure of lysozyme has also been solved, so 

structural requirements needed for PM action can be assessed (Blake, Koenig et al. 1965). 

 

BSA 

Another model protein used in our experiments is bovine serum albumin.  The 

molecular weight of BSA is 66,430 Daltons, and it contains fifty-nine lysine residues 

(Sigma).  BSA functions to transport fatty acids that are insoluble in circulating plasma.  

BSA has also been studied in glycation reactions.  Lapolla and colleagues set up 

glycation experiments which involved incubating BSA with 0.5 M glucose at 37°C for 0, 

15, 39, 60, and 90 days.  The samples were subjected to digestion with proteinase K 

followed by both MALDI-MS and HPLC/ESI-MS in order to identify AGE peptides.  It 

was determined that a complex set of AGE peptides are generated that have molecular 

masses in the range of 300-3500 Daltons (Lapolla, Fedele et al. 2001).  Baynes and 

colleagues also studied BSA in glycation reactions.  From those studies, it was concluded 

that a dominant AGE that forms is CML (Reddy, Bichler et al. 1995).  While the three 

dimensiona l structure of BSA has not yet been solved, the structure of human serum 

albumin (HSA) has been determined, and BSA shares 76% sequence homology with 
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HAS (Huang, Kim et al. 2004).  Again, further knowledge about the mechanism of PM 

and the structural requirements necessary for the inhibition of AGEs can be gained by 

studying BSA glycation. 

 

Ubiquitin 

The human ubiquitin used in these experiments has a molecular weight of 8,565 

Daltons, and it contains seven lysine residues, K-6, 11, 27, 29, 33, 48, 63 (Sigma).  

Ubiquitin, a highly conserved protein, functions in the degradation of many proteins in 

eukaryotic cells.  Proteins are targeted for degradation through the covalent binding of the 

selected proteins and ubiquitin at lysine residues (Ciechanover 1998).    Past studies have 

used ubiquitin as a model protein to study the antiglycation effects of polyamines 

spermine and spermidine.  In these studies, ubiquitin was incubated with methylglyoxal 

for 96 hours at 37°C.  These studies revealed that structural changes do occur to ubiquitin 

over time.  Further studies need to be carried out to examine what effect glucose 

modifications have on ubiquitin and how the microenvironment of ubiquitin affects the 

formation of AGEs.  Other past studies have not addressed these issues, but the present 

study will address these questions along with using PM to study its influence on glycation 

in ubiquitin.  Also, the three dimensional structure of ubiquitin has been determined, 

which will aide in the these studies (Vijay-Kumar, Bugg et al. 1987). 
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CHAPTER II 

 

EXPERIMENTAL PROCEDURES 

 

Materials and Reagents 

The following chemicals were purchased from Fisher Scientific: sodium carbonate, 

sodium phosphate monobasic, Tween 20. 

 

The following chemicals were purchased from Sigma: sodium azide, casein, 

D(+)glucose, pyridoxamine dihydrochloride, anti-rabbit-IgG alkaline phosphatase 

conjugate, diethanolamine, bovine serum albumin (fatty acid free; low endotoxin), 

phosphatase substrate, 5-bromo-4-chloro-3-indolyl phosphate, nitro blue tetrazolium. 

 

Non-fat dry milk was purchased from Bio-Rad.  

 

Ribonuclease A from bovine pancrease and lysozyme from hen egg whites were 

purchased from Worthington Biochemicals. 

 

Human ubiquitin was a gift from Dr. Anthony Serianni (University of Notre Dame). 

 

The following chemicals were purchased from Boston Biochem: ubiquitin-protein 

conjugation kit, ubiquitin aldehyde, anti-ubiquitin. 
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Methods 

 

In Vitro Glycation of Proteins  

Modification of RNase, lysozyme, BSA, and ubiquitin by glucose was carried out 

in 0.2 M sodium phosphate buffer, pH 7.5, containing 0.03% sodium azide to prevent 

bacterial growth.  RNase, lysozyme, and BSA samples contained 8 mg/mL of protein, 

while ubiquitin samples contained 1 mg/mL of protein.  The samples also contained 

various amounts of D-glucose (5, 30, or 100 mM) in the presence or absence of 

pyridoxamine (5 or 20 mM).  Solutions were incubated in the dark at 37°C for forty days.  

Aliquots were removed at 0, 10, 20, and 40 days and stored at -20°C until analysis. 

 

Determination of Enzymatic Activity 

Ribonulclease A.  The enzymatic activity of RNase was determined according to a 

previously published method (Kalnitsky, Hummel et al. 1959; Voziyan, Metz et al. 

2002).  Samples containing RNase were diluted to 3 µg/mL in 0.1 M sodium acetate, pH 

5.0, and allowed to equilibrate at 37°C in a water bath for 5 minutes.  100 µL of the 

diluted RNase samples were mixed with 100 µL of 1% yeast RNA in the same buffer.  

After incubation at 37°C for 5 minutes, the reaction was stopped by the addition of 100 

µL of an ice-cold solution of 0.8% lanthanum nitrate in 18% perchloric acid.  The 

samples were then incubated on ice for 10 minutes to allow for complete precipitation of 

undigested RNA followed by centrifugation at 12,000 x g for 10 minutes.  An aliquot of 

the supernatant (20 µL) was removed and diluted to 1 mL with distilled water.  The 
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amount of digested RNA was determined by measuring the absorbance at 260nm.  The 

relative activity was calculated by taking the zero day time point to be at 100% activity. 

Lysozyme.  The enzymatic activity of lysozyme was determined by measuring the 

rate of lysis of Micrococcus lysodeikticus cells according to Shugar (Shugar 1952).  

Samples containing lysozyme were diluted to 17 µg/mL in distilled water and kept on ice.  

A solution of 0.3 mg/mL Micrococcus lysodeikticus cells in 0.1 M potassium phosphate 

buffer, pH 7.0, was made just prior to the assay.  Then 100 µL of diluted lysozyme was 

mixed with 900 µL of Micrococcus lysodeikticus cells.  The rate of lysis of the 

Micrococcus lysodeikticus cells was determined by measuring the change in absorbance 

at 450nm, which was measured every 15 seconds for two minutes (∆A450).  The relative 

activity was calculated by taking the zero day time point to be at 100% activity. 

 Ubiquitin.  Ubiquitin activity was determined using the assay kit from Boston 

Biochem according to the manufacturer’s protocol.  The following components were part 

of the reaction mixture: 3.3 µL energy solution, 13.3 µL (10 µg) conjugation fraction A, 

13.3 µL (10 µg) conjugation fraction B, 44.0 µL (44 µg) ubiquitin from sample 

incubations, 3.4 µL (1.7 µg) ubiquitin aldehyde, and 1.6 µL sodium phosphate buffer.  

The reaction mixture was pre- incubated for 5 minutes at 37°C to allow for inhibition of 

ubiquitin C-terminal hydrolases followed by the addition 1.0 µL (100 ng) of the substrate 

(lysozyme) to initiate the reaction.  The reaction mixture was incubated for 3 hours at 

37°C.  The reactions were stopped by adding concentrated (6X) SDS-PAGE sample 

buffer followed by SDS-PAGE on a 4-20% gradient gel.  Samples were electrophoresed 

at a voltage of ~140V at room temperature until the bromophenol blue dye had reached 

the lower edge of the gel.  For Western blot analysis, the samples were transferred to 
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Immobilon-P membrane at 80V at 4°C for 1 hour.  The membrane was blocked in 5% 

non-fat dry milk in TBS for 0.5 hours at room temperature followed by incubation with 

anti-ubiquitin rabbit polyclonal antibody (1:1000 dilution) at room temperature overnight.  

The membrane was then washed 5 times for 15 minutes followed by incubation with an 

alkaline phosphatase-conjugated secondary antibody, goat anti-rabbit IgG (1:1000 

dilution) for 1.5 hours at room temperature.  The membrane was washed again and 

developed with alkaline phosphatase substrate solution until the desired intensity was 

achieved.  The reaction was stopped by rinsing with water. 

 

Determination of CML Formation by ELISA 

 Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect AGE, Nε-

carboxymethyllysine (CML), formation on the model proteins studied.  Antibodies R618 

(Booth, Khalifah et al. 1996) raised against glycated RNase were used to detect CML 

modification on glycated lysozyme, BSA, and ubiquitin.  Antibodies R1549 raised 

against glycated BSA were used to detect CML modification on glycated RNase.  The 

following procedure was used for both antibodies.  Glycated lysozyme, BSA, and 

ubiquitin were diluted to 1 ng/µL (for R618) or glycated RNase was diluted to 5 µg/mL 

in 0.05 M sodium carbonate buffer, pH 9.5-9.7.  Diluted proteins (200 µL) were coated 

on a 96-well polystyrene plate overnight at room temperature.  The wells were washed 

with a 0.15M NaCl and 0.05% Tween-20 solution.   The wells were then blocked with 

200 µL of 2% casein in sodium carbonate buffer for one hour at 37°C followed by 

extensive washing.  Antibodies R618 (1:350 dilution) or antibodies R1549 (1:500 

dilution) were added to the wells and incubated for one hour at 37°C followed by 
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washing.  An alkaline phosphatase-conjugated anti-rabbit secondary antibody (1:2,000 

dilution) was added to the wells and the incubation was carried out for one hour at 37°C.  

After the extensive washing, the p-nitrophenylphosphate substrate in 1.0 M 

diethanolamine solution (200 µL/well) was added to the plates and the absorbance of the 

released p-nitrophenolate was detected at 405nm using a Spectra Max 190 microplate 

reader from Molecular Devices. 

 

SDS-PAGE Analysis of Glycated Samples 

Integrity and crosslinking of the glycated proteins were analyzed by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).  The samples were 

diluted in 2X sample buffer and incubated for 5 minutes in boiling water.  The samples 

and standard molecular weight marker were then loaded onto a 4-20% gradient Tris-

glycine SDS-PAGE gel.  Samples were electrophoresed at ~140V at room temperature 

until the bromophenol blue dye had reached the lower edge of the gel.  The proteins were 

visualized using Coomassie Brilliant Blue staining. 

 

Mass Spectrometry Analysis of Gycated Samples 

Lysozyme samples that had been incubated for 40 days at 37°C alone, with 100 

mM glucose, or 100 mM glucose in the presence of 5 mM PM or 20 mM PM were 

selected for analysis by mass spectrometry.  The samples were analyzed by the 

Proteomics Laboratory, which is part of the Mass Spectrometry Research Center at 

Vanderbilt University.  The samples were prepared using the spin filter protocol for 

proteomic analysis (Manza, Stamer et al. 2005).  The sample proteins were digested with 
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chymotrypsin.  HPLC-MS (high performance liquid chromatography-mass spectrometry) 

analysis of the resulting peptides was performed using a ThermoFinnigan LTQ ion trap 

mass spectrometer equipped with a Thermo MicroAS autosampler and Thermo Surveyor 

HPLC pump, Nanospray source, and Xcalibur 1.4 instrument control.  The peptides were 

separated on a packed capillary tip, 100 µm x 11 cm, with C18 resin (Jupiter C18, 5 

micron, 300 angstrom, Phenomonex, Torrance, CA) using an inline solid phase extraction 

column that was 100µm x 6cm and packed with the same C18 resin (using a frit 

generated with from liquid silicate Kasil 1).  The flow from the HPLC pump was split 

prior to the injection valve.  The flow rate during the solid phase extraction phase of the 

gradient was 1 µL/min, and during the separation phase it was 700 nL/min.  Mobile phase 

A was 0.1% formic acid, while mobile phase B was acetonitrile with 0.1% formic acid.  

A 95 minute gradient was performed with a 15 minute washing period (100 % A for the 

first 10 minutes followed by a gradient to 98% A at 15 minutes) to allow for solid phase 

extraction and removal of any residual salts.  After the initial washing period, a 60 minute 

gradient was performed in which the first 35 minutes was a slow, linear gradient from 

98% A to 75 % A, followed by a faster gradient to 10 % A at 65 minutes and an isocratic 

phase at 10 % A at 75 minutes.  MS/MS spectra of the peptides were obtained using data-

dependent scanning,  which consisted of one full MS spectrum (mass range of 400-2000 

atomic mass units) followed by three MS/MS spectra.   
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Analysis of Mass Spectrometry Data 

 Proteomic analysis of the data generated from the HPLC-MS experiments was 

performed using Sequest (developed by John Yates and Jimmy Eng), which is an 

algorithm or program that identifies proteins by matching MS-MS data to database 

sequences (Liebler 2002).  Essentially, Sequest works by recording the MS-MS scan 

from the instrument along with the m/z value of the precursor ion and the scan data.  

Parameters can then be defined to search for specificities relevant to the experiment.  In 

this case, peptides were matched based on the chymotryptic digestion of the known 

lysozyme sequence.  Searches were also performed for specific modifications, such as 

CML and HTRP.  Then theoretical MS-MS spectra were generated from the specified 

peptides and compared with the actual MS-MS spectrum obtained from the instrument.  

A correlation score (Xcorr) was calculated based on the match between the actual and 

theoretical spectra.  This value is determined by how well the b- and y- ions from the 

actual spectrum match the theoretical spectrum.  Then a list of peptides was generated 

with all the corresponding information, such as the correlation score, charge state of the 

peptide (z), scan number, and MS-MS spectra.  After confirming the identity of the 

peptide, the peak containing the peptide of interest was identified in the chromatogram 

and the area of the peak was determined.  The program Xcalibur was utilized to view the 

HPLC chromatograms and MS spectra.  The area of the peak containing the modified 

peptide was then normalized to a reference peptide, which did not contain any 

modifications and was present in all the samples. 
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CHAPTER III 

 

RESULTS 

 

Damage By Glucose Modification to Structure and Activity of Proteins  
and Effect of PM 

 

RNase 

CML Formation.  Previous studies have shown that CML is a dominant AGE that 

forms in glycation reactions, and PM has been found to inhibit glycation reactions at the 

Amadori intermediate.  Therefore, ELISA experiments were conducted in order to 

determine the kinetics of CML formation on lysine residues of RNase at physiologically 

normal (5 mM) and diabetic (30 mM) glucose levels.  No modification was observed at 

the 0 day time point, but CML formation did increase with time in samples treated with 

glucose, but not in control samples that were incubated without glucose.  Only a small 

amount of CML is detected in samples treated with 30 mM glucose, while no CML 

formation is seen in samples treated with 5 mM glucose (Fig 6A).  The presence of PM 

prevents CML formation in samples incubated with 30mM glucose.  Supraphysiological 

glucose levels (100 mM) were also employed in order to obtain more robust signals.  The 

biological process of glucose modification is a relatively slow process, so the use of 

supraphysiological levels of glucose allows for a faster reaction.  Compared to the RNase 

samples incubated with 30 mM glucose, the samples that were incubated with 100 mM 

glucose showed a much more dramatic increase in CML formation over time (Fig 6B).  

Again, PM did prevent CML formation in samples treated with 100 mM glucose.  Thus, 
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RNase treated with glucose showed a time and concentration dependent increase in CML 

formation, whereas RNase treated with glucose in the presence of PM resulted in no 

detectable CML formation. 

 Degradation and Cross-Linking of RNase.  SDS-PAGE was carried out to 

determine what effects glycation had on the degradation and cross- linking of RNase.  

RNase incubated with 5 mM glucose resulted in a very small decrease in band intensity 

over the incubation time period (Fig 7A) as determined by gel automated digitizing 

software.   The decrease in band intensity was more pronounced in samples treated with 

30 mM glucose both in the presence and absence of 5 mM PM (Fig 7B), especially at 40 

days in samples with and without PM.  RNase samples treated with 100 mM glucose 

show an even more significant decrease in band intensity compared to the 30 mM 

samples (Fig 7C).  PM also appears to protect this decrease in band intensity to some 

extent especially at 40 days (100 mM).  The decrease in band intensity can be attributed 

to protein degradation as a result of glycation.  Protein degradation is also apparent by the 

low molecular weight band observed under the main band (Fig 7B and C).  No 

intermolecular cross-links were detected in any of the samples.  Therefore, it appears that 

the degradation of RNase occurs in a glucose concentration dependent manner and that 

PM exhibits some degree of protection against degradation.  

Enzymatic Activity.  In order to determine if glucose modifications affect the 

function of RNase and what affect PM has on function, enzymatic activity assays were 

carried out.  The control (RNase incubated alone) remains at ~90% activity over the 

course of the incubation time period.  Samples containing RNase incubated with 5 mM 

glucose, 30 mM glucose, and 30 mM glucose in the presence of 5 mM PM showed a 
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gradual decline in enzymatic activity, with ~40% activity remaining on day 40 (Fig 8A).  

Since RNase incubated with 30 mM glucose in the presence and absence of 5 mM PM 

declined in activity levels at the same rate, PM had no effect on the protection of 

enzymatic function.  Similar results were also found for samples treated with 100 mM 

glucose.  RNase incubated with 100 mM glucose or 100 mM glucose in the presence of 5 

mM PM showed a decline in activity levels, with ~30% activity remaining on day 40 (Fig 

8B).  Again, PM had no effect on enzymatic activity levels.  Thus, RNase treated with 

glucose showed a time and concentration dependent decrease in enzymatic activity, and 

PM had no effect on the activity levels. 
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Figure 6.  Effect of PM on CML Formation on RNase.  Samples containing RNase (8 mg/mL) were 
incubated with 5 mM glucose or 30 mM glucose (A) in the presence or absence of 5 mM PM or 100 mM 
glucose (B) in the presence or absence of 5 mM PM.  The sample incubations were carried out at 37°C in 
0.2 M sodium phosphate buffer, pH 7.5, containing 0.03% sodium azide.  ELISA was used to determine the 
amount of CML formation.  The protocol is described under “Methods.”  Each point represents an average 
of triplicate measurements.   
5 mM glucose-diamonds, 30 mM and 100 mM glucose-squares, 5 mM PM -triangles 

B. 100mM Glucose 

A. 5, 30mM Glucose 
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Figure 7.  SDS-PAGE of RNase Samples.  Samples containing RNase (8 mg/mL) were incubated with 5 
mM glucose (A) or 30 mM glucose in the presence or absence of 5 mM PM (B) or 100 mM glucose in the 
presence or absence of 5 mM PM (C).  The sample incubations were carried out at 37°C in 0.2 M sodium 
phosphate buffer, pH 7.5, containing 0.03% sodium azide.  The samples were analyzed by 4-20% SDS-
PAGE as described in the “Methods.”  The numbers underneath the gel represent band intensity as 
determined by UN-SCAN-IT Gel Automated Digitizing System. 
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Figure 8.  Effect of PM on RNase Activity Levels.  Samples containing RNase (8 mg/mL) were incubated 
with 5 mM glucose or 30 mM glucose (A) in the presence or absence of 5 mM PM or 100 mM glucose (B) 
in the presence or absence of 5 mM PM.  The sample incubations were carried out at 37°C in 0.2 M sodium 
phosphate buffer, pH 7.5, containing 0.03% sodium azide.  RNase activity levels were determined as 
described under “Methods.”  Each point represents an average of triplicate measurements.  For the control, 
activity values from four different experiments were averaged together due to inconsistencies in the activity 
levels of different batches of RNase.   
Control-circles, 5 mM glucose-diamonds, 30 mM and 100 mM glucose-squares, 5 mM PM-triangles 

A. 5, 30mM Glucose 

B. 100mM Glucose 
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Lysozyme 

CML Formation.  In addition to the model protein RNase, lysozyme was also 

utilized to study glycation reactions.  ELISA experiments were conducted in order to 

determine the kinetics of CML formation on lysine residues of lysozyme.  Only a small 

amount of CML is detected in samples treated with diabetic physiological levels of 30 

mM glucose, while no CML formation is seen in samples treated with normal 

physiological levels of 5 mM glucose (Fig 9A).  The presence of PM prevents CML 

formation in samples incubated with 30 mM glucose.  Compared to the lysozyme 

samples incubated with 30mM glucose, the samples that were incubated with 100 mM 

glucose (supraphysiological levels) showed a much more dramatic increase in CML 

formation (Fig 9B).  Both 5 and 20 mM PM were incubated with lysozyme to determine 

if 20 mM PM produced a more dramatic effect than 5 mM PM.  However, in these 

experiments, both 5 mM and 20 mM PM prevented CML formation to the same extent in 

samples treated with 100 mM glucose.  Thus, lysozyme treated with glucose showed a 

time and concentration dependent increase in CML formation, whereas lysozyme treated 

with glucose in the presence of PM resulted in no detectable CML formation. 

Degradation and Cross-Linking of Lysozyme.  SDS-PAGE analysis was carried 

out to determine what effects glycation had on the degradation and cross-linking of 

lysozyme.  Lysozyme incubated with 5 mM glucose resulted in stable band intensity over 

the incubation time period (Fig 10A) as determined by gel automated digitizing software.   

Samples treated with 30 mM glucose in the absence of PM showed intermolecular cross-

links of lysozyme forming over time.  This is evident in the bands located at 25.9 kDa, 

which is consistent with the molecular weight for intermolecular cross-links of lysozyme.  
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These cross- links are not seen at 0 days, but do appear at 20 and 40 days.  However, the 

presence of PM in samples incubated with 30 mM glucose resulted in decreased cross-

linking formation (Fig 10B).  Similar results as those obtained with the 30 mM glucose 

samples are also seen with lysozyme treated with 100 mM glucose (Fig 10C).  These 

results indicate that PM is decreasing the cross-linking of lysozyme in glycated samples.  

Glucose modifications do not appear to cause protein degradation in lysozyme.  

Therefore, it appears that the cross- linking of lysozyme occurs in a glucose concentration 

dependent manner and that PM does exhibit a pronounced effect on the protein cross-

linking in these samples. 

Enzymatic Activity.  In order to determine if glycation affects lysozyme functions 

and if PM ameliorates the effects of glycation, enzymatic activity assays were conducted.  

The control (lysozyme incubated alone) remains at 100% activity over the course of the 

incubation time period.  Samples containing lysozyme incubated with 30 mM glucose 

showed a gradual decline in enzymatic activity, with ~30% activity remaining on day 40.  

Samples incubated with 5 mM glucose and samples incubated with 30 mM glucose in the 

presence of 5 mM PM showed a greater protection of enzymatic activity, with activity 

levels only decreasing to ~75% on day 40 (Fig 11A).  Both 5 mM PM and 20 mM PM 

showed similar levels of activity protection in samples incubated with 100 mM glucose, 

with activity levels decreasing to ~55% on day 40 compared to levels of ~10% in samples 

treated with 100 mM glucose in the absence of PM (Fig 11B).  The results of these 

experiments show that PM is protecting against the loss of enzymatic activity.  Therefore, 

PM did have an effect on enzymatic activity levels of lysozyme, which is unlike the 

results seen with RNase. 
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Figure 9.  Effect of PM on CML Formation on Lysozyme .  Samples containing lysozyme (8 mg/mL) 
were incubated with 5 mM glucose or 30 mM glucose (A) in the presence or absence of 5 mM PM or 100 
mM glucose (B) in the presence or absence of 5 mM PM.  The sample incubations were carried out at 37°C 
in 0.2 M sodium phosphate buffer, pH 7.5, containing 0.03% sodium azide.  ELISA was used to determine 
the amount of CML formation.  The protocol is described under “Methods.”  Each point represents an 
average of triplicate measurements.   
5 mM glucose-diamonds, 30 mM and 100 mM glucose-squares, 5 mM PM-triangles, 20 mM PM-inverted 
triangles

B. 100mM Glucose 

A. 5, 30mM Glucose 
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Figure 10.  SDS-PAGE of Lysozyme Samples.  Samples containing lysozyme (8 mg/mL) were incubated 
with 5 mM glucose (A) or 30 mM glucose in the presence or absence of 5 mM PM (B) or 100 mM glucose 
in the presence or absence of 5 mM PM (C ).  The sample incubations were carried out at 37°C in 0.2 M 
sodium phosphate buffer, pH 7.5, containing 0.03% sodium azide.  The samples were analyzed by 4-20% 
SDS-PAGE as described in the “Methods.”  The numbers underneath the gel represent band intensity as 
determined by UN-SCAN-IT Gel Automated Digitizing System. 
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Figure 11.  Effect of PM on Lysozyme Activity Levels.  Samples containing lysozyme (8 mg/mL) were 
incubated with 5 mM glucose or 30 mM glucose (A) in the presence or absence of 5 mM PM or 100 mM 
glucose (B) in the presence or absence of 5 mM PM.  The sample incubations were carried out at 37°C in 
0.2 M sodium phosphate buffer, pH 7.5, containing 0.03% sodium azide.  Lysozyme activity levels were 
determined as described under “Methods.”   
5 mM glucose-diamonds, 30 mM and 100 mM glucose-squares, 5 mM PM-triangles, 20 mM PM-inverted 
triangles 

A. 5, 30mM Glucose 

B. 100mM Glucose 
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BSA 

CML Formation.  BSA is another model protein that was used in the glycation 

studies. ELISA was performed to determine the kinetics of CML formation on BSA.  

Only a small amount of CML is detected in samples treated with diabetic physiological 

levels of 30 mM glucose, while no CML formation is seen in samples treated with normal 

physiological levels of 5 mM glucose (Fig 12A).  The presence of PM prevents CML 

formation in samples incubated with 30mM glucose.  Compared to the BSA samples 

incubated with 30 mM glucose, the samples that were incubated with 100 mM glucose 

(supraphysiological levels) show a much more dramatic increase in CML formation (Fig 

12B).  Again, PM did prevent CML formation in samples treated with 100 mM glucose.  

Thus, BSA treated with glucose showed a time and concentration dependent increase in 

CML formation, whereas BSA treated with glucose in the presence of PM resulted in no 

detectable CML formation. 

Degradation and Cross-Linking of BSA.  SDS-PAGE analysis was carried out to 

determine what effects glycation had on the degradation and cross- linking of BSA.  BSA 

incubated with 5 mM glucose resulted in stable band intensity over the incubation time 

period (Fig 13A) as determined by gel automated digitizing software.   Samples treated 

with 30 mM glucose in the absence of PM showed some changes over time, which is 

evident in the smearing of the bands at 20 and 40 days.  Slightly higher molecular weight 

bands are also present in addition to the band smearing.  These higher molecular weight 

bands likely represent intramolecular cross- links of BSA, since the molecular weight is 

not consistent with the formation of multimers of BSA.  However, the presence of PM in 

samples incubated with 30 mM glucose resulted in decreased band smearing (Fig 13B).  
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There is less smearing of the bands seen at 20 and 40 days.  Similar results as those 

obtained with the 30 mM glucose samples are also seen with BSA treated with 100 mM 

glucose (Fig 13C).  These results indicate that PM is decreasing the intramolecular cross-

linking of BSA in glycated samples.  Therefore, it appears that the intramolecular cross-

linking of BSA occurs in a glucose concentration dependent manner and that PM does 

exhibit a distinct effect on the protein cross- linking in these samples. 
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Figure 12.  Effect of PM on CML Formation on BSA.  Samples containing BSA (8 mg/mL) were 
incubated with 5 mM glucose or 30 mM glucose (A) in the presence or absence of 5 mM PM or 100 mM 
glucose (B) in the presence or absence of 5 mM PM.  The sample incubations were carried out at 37°C in 
0.2 M sodium phosphate buffer, pH 7.5, containing 0.03% sodium azide.  ELISA was used to determine the 
amount of CML formation.  The protocol is described under “Methods.”  Each point represents an average 
of triplicate measurements.   
5 mM glucose-diamonds, 30 mM and 100 mM glucose-squares, 5 mM PM -triangles 

A. 5, 30mM Glucose 

B. 100mM Glucose 
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64.2 kDa

181.8 kDa
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40d20d0d
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1.141.031.001.111.111.00  

Figure 13.  SDS-PAGE of BSA Samples.  Samples containing BSA (8 mg/mL) were incubated with 5 mM 
glucose (A) or 30 mM glucose in the presence or absence of 5 mM PM (B) or 100 mM glucose in the 
presence or absence of 5 mM PM (C).  The sample incubations were carried out at 37°C in 0.2 M sodium 
phosphate buffer, pH 7.5, containing 0.03% sodium azide.  The samples were analyzed by 4-20% SDS-
PAGE as described in the “Methods.”  The numbers underneath the gel represent band intensity as 
determined by UN-SCAN-IT Gel Automated Digitizing System. 
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Ubiquitin 

CML Formation.  Ubiquitin was also used as a model protein of interest in the 

glycation studies.  ELISA experiments were carried out to determine CML formation on 

ubiquitin.  Only a small amount of CML is detected in samples treated with diabetic 

physiological levels of 30 mM glucose, while no CML formation is seen in samples 

treated with normal physiological levels of 5 mM glucose (Fig 14A).  The presence of 

PM prevents CML formation in samples incubated with 30 mM glucose.  Compared to 

the ubiquitin samples incubated with 30 mM glucose, the samples that were incubated 

with 100 mM glucose (supraphysiological levels) show a much more dramatic increase in 

CML formation (Fig 14B).  Again, PM did prevent CML formation in samples treated 

with 100 mM glucose.  Thus, ubiquitin treated with glucose showed a time and 

concentration dependent increase in CML formation, whereas ubiquitin treated with 

glucose in the presence of PM resulted in no detectable CML formation. 

Degradation and Cross-Linking of Ubiquitin.  SDS-PAGE analysis was carried 

out to determine what effects glycation had on the degradation and cross-linking of 

ubiquitin.  Ubiquitin incubated with 5 mM glucose resulted in stable band intensity over 

the incubation time period (Fig 15A) as determined by gel automated digitizing software.   

Samples treated with 30 mM glucose in the absence of PM showed some degradation 

over time with more pronounced degradation occurring at 40 days.  However, the 

presence of PM in samples incubated with 30 mM glucose resulted in less degradation of 

the protein (Fig 15B).  Similar results as those obtained with the 30 mM glucose samples 

are also seen with ubiquitin treated with 100 mM glucose (Fig 15C).  Only protein 
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degradation was observed in these samples; no cross- linking was apparent.  These results 

indicate that PM is decreasing the degradation of ubiquitin in glycated samples. 

Enzymatic Activity.  Enzymatic activity assays were conducted to determine what 

affect glycation has on ubiquitin function and to observe if PM ameliorates the effects of 

glycation.  Ubiquitin can conjugate with other ubiquitin molecules resulting in self-

ubiquitiniation.  As a result of ubiquitin conjugation, ubiquitin ladders are observed.  

Differences in the ubiquitin ladders are observed in these particular glycated samples and 

are dependent on glucose concentration and the presence of PM.  The control reactions 

are seen in Figure 15A.  In samples incubated with 5 mM glucose, there are less intense 

ubiquitin ladders observed at 40 days compared to 0 days (Fig 16A).  In samples treated 

with 30 mM glucose, there is a time dependent decrease in the intensity of the ubiquitin 

ladder, but when PM is present, it prevents the decrease (Fig 16B).  Similar results are 

seen in samples treated with 100 mM glucose with and without PM (Fig 16D).  The 

decrease in the ubiquitin ladder does seem to be more prominent in samples that were 

incubated with 100 mM glucose compared to those with 30 mM glucose.  However, in 

the presence of PM, there the ubiquitin ladder is intact.  Therefore, PM is protecting the 

ubiquitin conjugation reactions in these samples. 
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Figure 14.  Effect of PM on CML Formation on Ubiquitin.  Samples containing ubiquitin (1 mg/mL) 
were incubated with 5 mM glucose or 30 mM glucose (A) in the presence or absence of 5 mM PM or 100 
mM glucose (B) in the presence or absence of 5 mM PM.  The sample incubations were carried out at 37°C 
in 0.2 M sodium phosphate buffer, pH 7.5, containing 0.03% sodium azide.  ELISA was used to determine 
the amount of CML formation.  The protocol is described under “Methods.”  Each point represents an 
average of triplicate measurements.  
5 mM glucose-diamonds, 30 mM and 100 mM glucose-squares, 5 mM PM -triangles 

B. 100mM Glucose 

A. 5, 30mM Glucose 
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Figure 15.  SDS-PAGE of Ubiquitin Samples.  Samples containing ubiquitin (1 mg/mL) were incubated 
with 5 mM glucose (A) or 30 mM glucose in the presence or absence of 5 mM PM (B) or 100 mM glucose 
in the presence or absence of 5 mM PM (C ).  The sample incubations were carried out at 37°C in 0.2 M 
sodium phosphate buffer, pH 7.5, containing 0.03% sodium azide.  The samples were analyzed by 4-20% 
SDS-PAGE as described in the “Methods.”  The numbers underneath the gel represent band intensity as 
determined by UN-SCAN-IT Gel Automated Digitizing System. 
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Figure 16.  Effect of PM on Ubiquitin Activity.  Samples containing ubiquitin (1 mg/mL) were incubated 
with 5 mM glucose (B) or 30 mM glucose in the presence or absence of 5 mM PM (C ) or 100 mM glucose 
in the presence or absence of 5 mM PM (D).  Control reactions contain the reaction mixture minus the 
listed component or only the individual component (A).  The sample incubations were carried out at 37°C 
in 0.2 M sodium phosphate buffer, pH 7.5, containing 0.03% sodium azide.  Ubiquitin activity was 
determined as described under “Methods.” 
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Detection of AGE Formation on Lysozmye by Mass Spectrometry 

 

PM Inhibition of CML Formation 

In order to probe more deeply into the differences seen in glycation patterns and 

enzymatic activity profiles, lysozyme was chosen as the model protein to study using 

mass spectrometry.  While studies have been conducted to detect glucose modifications 

such as CML (Fig 17) on lysozyme, there are no studies using MS to look at the 

differences in modifications detected when PM is present.  Lysozyme samples which had 

been incubated for 40 days with 100 mM glucose in the absence or presence of 5 mM and 

20 mM PM were examined.   

 

 
CH2 NH

COOH

Lysine

 
 

Figure 17. Structure of CML.  
 

After MS analysis, the modifications of CML on lysine residues and HTRP on 

tryptophan residues were searched for using the program Sequest.  Currently, no studies 

exist which examine the modification of tryptophan residues as a result of glycation 

reactions   Table 1 shows the results found for peptides containing CML on K-96 and K-

97, such as the following peptide found in the glucose sample: 

AKCMLKCMLIVSDGNGMNAW.  All six lysine residues were analyzed, but detailed 

results are shown for only K-96 and K-97.  Using the information obtained from Sequest, 

the elution profiles of the respective peptides were located in the chromatogram (Fig 18).  
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Then peptide identification was confirmed by the MS spectrum (Fig 19).  Most of the 

corresponding b and y ions are detected in the spectrum and are consistent with mass 

shifts of 58 atomic mass units (molecular mass difference between lysine and CML) on 

K-96 and K-97.  In order to determine the relative intensity of the modifications present 

in each sample, the area of the peak containing the peptide of interest was determined and 

normalized to a reference peptide found in all the samples, which was not subject to 

modification (Fig 18 and Table 1).  All six lysine residues, K-1, 13, 33, 96, 97, and 116, 

were analyzed, and the highest CML relative intensity occurs on K-96 and K-97 found in 

the glucose treated lysozyme sample (Fig 20).  The data for K-96 and K-97 also shows 

that the control contains very little CML, while lysozyme incubated with glucose in the 

presence of 5 mM PM shows less CML detection, and even less CML relative intensity 

levels are found in lysozyme incubated with glucose in the presence of 20 mM PM.  

Similar trends are also seen on K-33.  This data is consistent with PM preventing the 

formation of CML.  CML was also detected on other lysine residues, such as K-1, while 

PM treated samples exhibit relatively little or no CML.  There was practically no CML 

detected on K-13 or K-116 in any of the samples.  This can be explained by not all of the 

residues being accessible to modification due to protein structural constraints, which 

illustrates the effects of protein configuration and environment on glycation reactions.
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Table 1.  MS Data on Peptides containing CML on K-96 and K-97. 
Sample Residue Peptide Xcorr Scan # z MH+ MH2+ MH3+ Area Relative 

Intensity 
Control K-96 & K-97 AKCMLKCMLIVSDGNGMNAWVAW 3.44 7460 2 1962.1 981.6 654.7 3843204 0.15 

Glucose   K-96 & K-97 AKCMLKCMLIVSDGNGMNAW 3.68 5174 2 1605.8 803.4 535.9 175623050 6.55 

Glucose  +  
5 mM PM 

K-96 & K-97 AKCMLKCMLIVSDGNGMNAW 4.25 5114 2 1607.2 804.1 536.4 105884025 3.85 

Glucose  +  
20 mM PM 

K-96 & K-97 AKCMLKCMLIVSDGNGMNAW 4.28 5102 2 1608.3 804.7 536.8 62968232 1.82 

 
The following defined parameters were obtained from Sequest.  The Xcorr value is the cross correlation score, which is the normalized score that is a measure of 
how well the actual spectrum matches to the theoretical spectrum.  The z value is the charge state of the peptide.  MH+ is the mass of the singly charged peptide, 
while MH2+ and MH3+ represent the mass of the doubly and triply charged peptides, respectively.  The area values were obtained from the elution chromatogram.  
The relative intensity values were obtained by normalizing the area values to a matching reference peptide. 
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Figure 18.  HPLC Elution Profiles of Lysozyme Peptides containing CML on K-96 and K-97. 

B. Glucose 

D. Glucose + 20 mM PM 

C. Glucose + 5 mM PM 

A. Control 
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Figure 19.  MS Spectrum of Lysozyme Peptide containing CML on K-96 and K-97. 
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Figure 20.  CML Relative Intensity Chart. 
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PM Inhibition of HTRP Formation 

As mentioned above, modifications of HTRP (Fig 21) on tryptophan were also 

searched for using Sequest.  It should be pointed out that glucose does not directly react 

with tryptophan residues and modifications like HTRP are not considered AGEs.  

However, HTRP may form as a result of glycation reactions, since ROS are generated 

from glucose autoxidation and from intermediates formed in the AGE formation 

pathway. 

 

NH

N
H O

OH

OH
OH

OH

OH

 

Figure 21.  Structure of HTRP. 

 

Indeed, the results from this study do show that HTRP forms in glycation reactions.  

Table 2 shows the results found for peptides containing HTRP on W-62 and W-63, such 

as the following peptide found in the glucose sample: GILQINSRWHTRP WHTRP .  Again, 

all six tryptophan residues were analyzed, but detailed results are shown for only W-62 

and W-63.  Using the information obtained from Sequest, the elution profiles of the 

respective peptides were located in the chromatogram (Fig 22).  Then peptide 

identification was confirmed by the MS spectrum (Fig 23).  Most of the corresponding b 

and y ions are detected in the spectrum, and the y ions detected are consistent with mass 
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shifts of 16 atomic mass units (molecular weight of HTRP) on W-62 and W-63.  The 

relative intensities of HTRP were determined in the same manner as those for CML, as 

explained above.  All six tryptophan residues, W-28, 62, 63, 108, 111, and 123, were 

analyzed, and the highest HTRP relative intensity occurs on W-62 and W-63 found in the 

glucose treated lysozyme sample (Fig 24).  The data for W-62 and W-63 also shows that 

the control contains very little HTRP, while lysozyme samples treated with glucose in the 

presence of PM (both 5 and 20 mM) contain much less HTRP than samples incubated 

with glucose alone.  Similar results are seen with W-28, W-62, and W-108.  This data is 

consistent with PM protecting against damage by ROS.  Some data inconsistencies are 

seen, such as detection of HTRP on W-63 only in samples containing PM but not in 

samples treated only with glucose.  This could be attributed to only detecting the most 

abundant peptides, which in this case, may be the peptides that contain HTRP on both W-

62 and W-63.  Perhaps, this occurs because the chymotryptic digestion of lysozyme 

resulted in preferential cleavage of peptides containing both W-62 and W-63, which in 

this case could be considered an artifact of the digestion of glycated lysozyme. 
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Table 2.  MS Data on Peptides containing HTRP on W-62 and W-63. 
Sample Residue Peptide Xcorr Scan 

# 
z MH+ MH2+ MH3+ Area Relative 

Intensity 
Control W-62 & W-63 GILQINSRWHTRPWHTRP  2.93 8103 2 1304.8 652.9 435.6 38580746 1.49 

Glucose W-62 & W-63 GILQINSRWHTRPWHTRP  2.86 8198 2 1305.1 653.1 435.7 564049595 21.05 

Glucose  +  
5 mM PM 

W-62 & W-63 GILQINSRWHTRPWHTRP  2.88 8174 2 1305.2 653.1 435.7 83601230 3.34 

Glucose  +  
20 mM PM 

W-62 & W-63 GILQINSRWHTRPWHTRP  2.15 7055 2 1304.9 653.0 435.6 271993810 7.88 

 
The following defined parameters were obtained from Sequest.  The Xcorr value is the cross correlation score, which is the normalized score that is a measure of 
how well the actual spectrum matches to the theoretical spectrum.  The z value is the charge state of the peptide.  MH+ is the mass of the singly charged peptide, 
while MH2+ and MH3+ represent the mass of the doubly and triply charged peptides, respectively.  The area values were obtained from the elution chromatogram.  
The relative intensity values were obtained by normalizing the area values to a matching reference peptide. 
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Figure 22.  HPLC Elution Profiles of Lysozyme Peptides containing HTRP on W-62 and W-63. 

A. Control 

D. Glucose + 20 mM PM 

B. Glucose 

C. Glucose + 5 mM PM 
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Figure 23.  MS Spectrum of Lysozyme Peptide containing HTRP on W-62 and W-63. 
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Figure 24.  HTRP Relative Intensity Chart.
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CHAPTER IV 

 

DISCUSSION 

 

AGEs have been implicated in many diseases, particularly diabetic complications.  

While PM has shown promising results against preventing the formation of AGEs and the 

complications that arise as a result of AGEs, a lack of knowledge still exists as to how 

PM functions as an AGE inhibitor.  The purpose of this study was to examine how 

glucose modifications affect the function of model proteins and how PM inhibits these 

glycation reactions.  The model proteins RNase, lysozyme, BSA, and ubiquitin were all 

studied in order to determine how different protein environments affect the formation of 

AGEs and efficacy of PM.   

 

PM Inhibition of AGE Formation 

 The prominent AGE, CML, has been detected in diseases such as diabetic 

nephropathy.  This study found that CML levels increase over time in all of the model 

proteins that were incubated with various concentrations of glucose ranging from 5 mM 

to 100 mM (Fig 6, 9, 12, and 14).  The glucose levels employed in this study are of 

physiological relevance.  These results are of particular importance since previous studies 

have not been conducted utilizing physiological glucose concentrations, which are the 

normal 5 mM glucose levels, the diabetic 30 mM glucose levels, and the 

supraphysiological 100 mM glucose levels.  The higher concentrations of glucose invoke 

a greater increase in CML formation.  However, PM was found to inhibit CML formation 
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in all the proteins.  These results indicate that PM is functioning to block the conversion 

of the Amadori intermediate to CML in different protein environments. 

 

PM Protection Against Protein Degradation and Cross-Linking 

 Electrophoresis experiments revealed differences in glycation patterns among the 

model proteins.  After prolonged incubation with glucose, especially 100 mM glucose, 

RNase appears to undergo degradation (Fig 7).  This correlates with previous studies 

stating that ROS, formed from either glucose autoxidation or oxidative degradation of the 

Amadori intermediate, can cause fragmentation of the protein backbone (Ookawara, 

Kawamura et al. 1992).  However, PM protected RNase from degradation, suggesting 

that PM may be functioning to scavenge the ROS generated in these reactions. 

 Different glycation patterns were seen with lysozyme.  After extended incubation 

times, such as those seen at 40 days, lysozyme, which was treated with 30 mM and 100 

mM glucose, was cross- linked (Fig 10).  This conclusion is made based on the fact that 

the molecular weight of lysozyme is approximately 14 kD and the bands seen above 14 

kD correspond to multimers of lysozyme, such as the band at 28 kD which would 

indicate an intermolecular cross-linking of two lysozyme molecules.  Also, the 

electrophoresis experiments were performed under reducing conditions, so only strong 

covalent interactions would be able to withstand such conditions.  Previous studies do 

state that glycation reactions can result in the cross- linking of proteins, particularly 

through arginine residues, such as pentosidine and glucosepane.  Cross- links can also 

form through lysine residues, such as MOLD and GOLD.  Lysozyme does contain six 

lysine residues and eleven arginine residues.  Therefore, it is reasonable to conclude that 
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the glucose modifications present on lysozyme are inducing the formation of cross- links.  

Conversely, PM protected against the formation of cross- links, as is evident when 

comparing lysozyme treated with 100 mM glucose in the presence of PM at 40 days to 

that of lysozyme treated in the absence of PM.  While some cross- linking is still present 

in PM treated samples, it is dramatically reduced.  Therefore, PM is protecting against 

cross- linking.  PM protection against cross- linking has not been previously reported, so it 

could be another mechanism of PM action. 

 BSA also exhibits cross-linking when exposed to glycation reactions, though it is 

a different type of pattern than that observed for lysozyme.  Electrophoresis experiments 

of BSA incubated with 30 mM and 100 mM glucose in the absence of PM showed 

possible intramolecular cross- linking of BSA over the incubation time, which is indicated 

by the smearing of the bands and the slightly higher molecular weight band seen at 20 

and 40 days (Fig 13).  This higher molecular weight band is not consistent with 

intermolecular cross- linking, or the formation of multimers of BSA.  However, it is quite 

possible that intramolecular cross- links are formed within the BSA molecule itself as a 

result of glycation.  PM protects against BSA cross-linking, which is evident is decreased 

band smearing and the less intense band of the higher molecular weight species. 

Ubiquitin exhibits a different glycation pattern compared to lysozyme and BSA, 

but one that is similar to RNase.  Under conditions that involve ubiquitin incubation with 

30 mM and 100 mM glucose in the absence of PM, ubiquitin also appears to degrade 

over time, which is evident by the decrease in band intensity seen at 40 days (Fig 15).  

Again, PM may be protecting against ROS formation, because in the presence of PM, 

there is less degradation.   
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 Though the model proteins do vary in their glycation patterns, PM does protect 

the integrity of RNase, lysozyme, BSA, and ubiquitin.  This data supports other studies, 

which have concluded that PM is capable of several different mechanisms of protection 

from glycation (Voziyan and Hudson 2005).  However, the data presented here points out 

that even in different protein environments, there is still PM protection from protein 

degradation and cross- linking.  The fact that PM can be effective even in different protein 

environments could be attributed to the effectiveness seen in PM usage in animal 

experiments and clinical trials. 

 

PM Protection of Protein Function 

 Another important aspect of this study was to determine how effective PM is in 

protecting protein function.  Enzymatic activity assays revealed that glucose incubation 

with both RNase and lysozyme resulted in diminished enzyme function over time (Fig 8 

and 11).  Declines in enzymatic activity levels occurred over the incubation period in the 

presence of both 30 mM and 100 mM glucose, with more pronounced declines seem with 

100 mM glucose.  This indicates that glucose modifications do affect protein function, 

which can be indicative of why physiological complications arise in the presence of 

excess glucose levels.  Though both RNase and lysozyme exhibit similar declines in 

enzymatic function in the presence of glucose, differences in activity levels were 

observed when the proteins were incubated with PM.    In the presence of 5 and 20 mM 

PM, lysozyme maintains high levels of enzymatic  activity, suggesting that PM is 

inhibiting against the loss of protein function (Fig 11).  Different concentrations of PM 

were utilized in order to determine if more efficient results were achieved in the presence 
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of higher concentrations of PM.  Since glucose is an aldehyde, it possesses the potential 

to react with PM, which means that PM could be functioning to scavenge the excess 

glucose.  The glucose concentrations in these experiments were several folds higher than 

that of the PM concentrations.  However, similar activity levels were observed in the 

presence of both 5 and 20 mM PM.  Therefore, PM is protecting lysozyme function in 

these experiments, but not through glucose scavenging.  The results seen also indicate 

that the Amadori intermediate is not as detrimental to protein function as AGEs, such as 

CML, since PM is blocking the formation of AGEs at the Amadori intermediate.   

Though there is protection of lysozyme function in the presence of 5 mM PM, 

RNase activity levels decline to the same extent as those of RNase incubated with 

glucose alone (Fig 8).  Therefore, RNase behaves differently in response to PM.  PM 

protects against cross-linking, degradation, and CML formation, but not from the loss of 

enzymatic function, which suggests that in certain proteins blocking the conversion of the 

Amadori intermediate to AGEs may not be necessary to affect function.  Perhaps, the 

initial glucose modifications present on RNase are enough to induce damage to protein 

functionality.  Though these are model proteins, similar situations may be encountered in 

vivo as well.  Some proteins may functionally benefit from PM blocking the formation of 

AGEs.  However, in other proteins PM may be unable to prevent the initial damage 

caused by the glucose modifications.   

 Protection of ubiquitin function was also observed in the presence of PM (Fig 16).  

Ubiquitin ladders, or ubiquitin conjugation with itself, were observed in samples treated 

in the presence of 5 mM PM along with 30 or 100 mM glucose.  However, ubiquitin 

incubated with glucose alone resulted in decreased band intensity along the ubiquitin 
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ladder.  These results indicate that glucose modifications may affect the ability of 

ubiquitin to conjugate with other ubiquitin molecules.  Ubiquitination occurs by ubiquitin 

binding to other ubiquitin molecules through lysine residues.  Since glucose 

modifications target lysine residues, it is reasonable to conclude that glucose induced 

modifications present on lysine would hinder ubiquitination (Passmore and Barford 

2004).  However, PM seems to protect the ability of ubiquitin conjugation, which again 

suggests that blocking the formation of AGEs, even at intermediates along the pathway, 

protects protein function. 

 PM preserved the function of both lysozyme and ubiquitin in the presence of 

excess glucose.  As mentioned above, it is currently understood that PM blocks the 

formation of AGEs by inhibiting the conversion of the Amadori intermediate.  Therefore, 

in the cases of both lysozyme and ubiquitin, it seems that inhibiting the formation of 

AGEs was sufficient to maintain protein function.  Again, protecting protein function 

may be one of the means of effectiveness seen with PM treatment in diabetic 

nephropathy.  Since glycation occurs very slowly, it may be clinically beneficial that PM 

can inhibit AGE formation even in cases where excess glucose levels may have been 

present for an extended period of time. 

 

PM Inhibition of CML Formation 

 Since differences were seen in enzymatic activity levels for RNase and lysozyme 

in the presence of PM, mass spectrometry experiments were performed to better study 

lysozyme and to assess those observed differences, along with determining the site-

specific differences.   ELISA experiments showed that lysozyme incubation with glucose 
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resulted in increased CML formation that occurred in a time and glucose concentration 

dependent manner, while PM inhibited the formation of CML (Fig 9).  PM also preserved 

lysozyme function, while glucose modifications resulted in diminished enzyme activity 

(Fig 11).  The purpose of the mass spectrometry experiments was to identify the sites of 

glucose modifications and to determine if PM did in fact prevent the formation of AGEs.  

Using mass spectrometry to study glycation has been employed in numerous previous 

studies.  However, the use of mass spectrometry to study differences in glycation patterns 

induced on lysozyme due to PM has not been explored.   

Lysozyme contains six lysine residues, which are potential sites for glucose 

modification.  After searching for CML modifications present on lysozyme, which had 

been incubated with only glucose, it was determined, that CML was present on K-1, 33, 

96, and 97 (Fig 20).  The highest CML relative intensity was found to occur on peptides 

that contained CML on both K-96 and K-97.  Not all lysine residues were subject to 

glucose modification.  As mentioned earlier, studies involving peptide glycation 

determined that charged residues located near lysine residues increase the reactivity of 

lysines to glycation (Mennella, Visciano et al. 2005).  Acidic and basic residues in 

lysozyme comprise 21% of the amino acid sequence.  By examining the x-ray structure 

of lysozyme (Blake, Koenig et al. 1965), it was determined that charged residues, such as 

H-15 and D-101, are located near K-96 and K-97.  Thus, the proximity of these charged 

residues to K-96 and K-97 might promote glycation at these sites.  K-96 and K-97 are 

also located near the active site cleft, so CML formation at these sites might be linked to 

the loss of enzyme function (Fig 11).  Residues located in the active site of lysozyme are 

D-52, D-101, and E-35, which are acidic residues.  The formation of CML on K-96 and 
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K-97 changes the positive charge carried on these basic lysines to negative charges, thus 

changing the dynamics of the active site.  The disturbance in these interactions could lead 

to the loss of protein function.  Further examination of the x-ray structure also reveals 

that K-13 and K-116 are located close to one another and are not surrounded by as many 

charged residues as the other lysine residues.  Consequently, these two residues show the 

least intense CML signals (Fig 20). 

Notable differences in CML intensity levels were observed in the presence of PM.  

Less CML was observed when lysozyme was incubated with glucose in the presence of 5 

mM PM and those levels were reduced even further in the presence of 20 mM PM (Fig 

20).  Less CML is detected on K-96 and K-97 in the presence of PM.  In the absence of 

PM, these were the sites of the most intense CML signals.  As mentioned earlier, by 

examining the x-ray structure, it was reasonable to conclude tha t CML formation at K-96 

and K-97, which are located near the active site of the enzyme, could contribute to the 

loss of enzymatic activity. However, by PM blocking the conversion of the Amadori 

intermediate to CML, the enzyme function is protected (Fig 11).  Thus, perhaps the 

Amadori intermediate is not as harmful as CML to enzyme function.  While the Amadori 

intermediate is a more bulky constituent, it possesses a neutral charge, which is unlike the 

negatively charged CML.  This charge difference could contribute to the protection seen 

in enzymatic activity.  These mass spectrometry results clearly indicate that PM does 

prevent and or reduce the amount of CML formed due to glucose modifications of lysine 

residues.  These results also support the findings obtained from assessing CML 

formation, glycation patterns, and enzymatic activity.  While ELISA experiments found 

no CML formation in the presence of PM, mass spectrometry experiments do indicate 
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that there is CML present.  It is reasonable to conclude that ELISA experiments may not 

have detected low levels of CML present on some residues due to the inaccessibility of 

some lysine residues to antibody binding.  Also, according to the mass spectrometry 

results, the majority of CML formation occurs on certain residues, such as K-33, 96, and 

97, so CML detected on these residues could have led to very strong signals, which 

overshadowed the CML present on other residues.  The reduction of CML levels detected 

in the presence of PM by the mass spectrometry experiments could also account for the 

preservation of lysozyme function in the presence of PM.  Again, the results obtained 

from the different biochemical analyses all suggest that PM does prevent against the 

formation of CML. 

 

PM Protection Against the Oxidation of Tryptophan Residues 

 Mass spectrometry results revealed that PM, in addition to inhibiting CML 

formation on lysozyme, also protects against the oxidation of tryptophans (Fig 24).  

Again, the oxidation of tryptophan residues in response to glycation reactions has not 

been previously reported.  Therefore, PM protection of tryptophans from oxidation due to 

glucose is novel.  Lysozyme contains six tryptophan resides, of which W-28, 62, 63, and 

108 were found to be oxidized.  The highest HTRP relative intensity levels were found to 

occur on W-62 and W-63, while decreased levels of HTRP were found in the presence of 

PM (Fig 24).  Examination of the x-ray structure of lysozyme reveals that W-62 and W-

63 are located near the vicinity of K-97, which is the lysine residue, along with K-96, 

found to contain the highest CML relative intensity levels.  Therefore, perhaps glycation 

at these lysine residues influenced the oxidation of W-63 and W-63.  Again, oxidized 
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tryptophan residues can occur due to damage by ROS.  In this particular case, ROS may 

have been generated due to the autoxidation of glucose or the oxidation of other 

intermediates in the glycation pathway.  In this case, as in previous studies, PM is 

protecting against the damage caused by ROS.  Thus, the mass spectrometry experiments 

have confirmed that PM is indeed protecting against the formation of oxidized 

tryptophans. 

 

Final Conclusions  

 The purpose of this study was to gain insight into how glucose modifications that 

arise from physiologically relevant levels of glucose affect model proteins and how PM 

inhibits these reactions.  Biochemical analyses on RNase, lysozyme, BSA, and ubiquitin 

have revealed that glucose modifications do induce the formation of CML, cause protein 

degradation and cross-linking, and hinder enzyme function.  However, PM prevents CML 

formation, protects protein integrity, and preserves enzyme function.  More detailed mass 

spectrometry experiments involving lysozyme revealed site-specific information on the 

formation of CML and HTRP modifications along with providing evidence that the use 

of PM prevents these modifications.  The novelties obtained from this study are as 

follows: (1) knowledge of glucose modifications arising from physiological 

concentrations of glucose; (2) confirmation of PM protection of protein function; (3) 

evidence of PM protection of protein cross- linking; and (4) indication of tryptophan 

oxidation due to glucose and PM protection of tryptophan oxidation.  The data gained 

from this study further advances the knowledge of the benefits of PM along with 

providing insight into the mechanism of PM action.   
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Future Work 

 Future plans are ongoing to further study lysozyme by mass spectrometry.  The 

experiments presented here will be repeated several times in order to obtain statistically 

significant data.  Also, there are other modifications that arise from glucose, which can be 

identified and quantified.  Though beyond the scope of this work, similar studies 

involving mass spectrometry can also be extended to involve the other model proteins in 

this study, RNase, BSA, and ubiquitin, in order to gain further knowledge of PM 

mechanism and how glucose modifications are affected by protein environment. 
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