
AN ANALYSIS OF ERROR DETECTION TECHNIQUES

FOR ARITHMETIC LOGIC UNITS

By

Ryan Bickham

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

.

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2010

Nashville, Tennessee

Approved:

Professor Bharat L. Bhuva

Professor William H. Robinson

ii

ACKNOWLEDGEMENTS

I want to thank Dr. Bharat L. Bhuva and Dr. William H. Robinson for their patience

and guidance throughout the attainment of this Master‟s degree. They challenged me

academically and provided beyond helpful suggestions. Also, I want to thank Daniel

Limbrick for sharing his time and knowledge. His insight and goodwill is greatly

appreciated.

In addition, I want to thank my mother, Donnis Ringstaff. Her unconditional love and

support is uplifting emotionally and spiritually. Lastly, I want to thank all my loved ones

for their thoughts and prayers.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS……………………………………………………………….ii

LIST OF TABLES………………………………………………………...…………......vii

LIST OF FIGURES...…………………………………………………………………...viii

LIST OF ACRONYMS……..……………………………………………….…................x

Chapter

I. Introduction…………………………………………………...………………...…1

II. Overview of Error Detection Methods ………………………………………...…4

Redundancy Codes ……………………..….………………….……….….4

Arithmetic Codes..………….……………..…………………………..…..6

Arithmetic Codes..………….……………..…………………………..…..7

Parity Codes………………………………..……………………..…….…7

III. Selected Error Detection Techniques for ALUs….…………………………….…8

Redundancy

RESO…………………………………………………….………..8

RERO………………………………………………………….......9

Arithmetic Codes

Residue Codes………………….…………………...……………11

Berger Codes

Reduced Berger Check Prediction …...…………..……………...12

Parity Codes

Parity Prediction Code...……….………………..……………….14

Parity and Logic Circuit...……….………………..……………………...15

IV. Error Detection Capabilities and Limitations………..…….....……………....17

RESO…………………………………………………………………….17

RESO for Logical Operations....…………………………………17

RESO for Arithmetic Operations.....………………………….….18

iv

RERO…………………………………………………………………….21

High-speed Modulo-3 Generator…….………………………………..…22

Berger Codes………………………..………………….…………...……23

Berger Check Prediction for Addition……………………..…….23

Berger Check Prediction for 2‟s Complement Subtraction…...…25

Berger Check Prediction for Logical Operations ……………….26

Parity Prediction……………………………………………………….…26

Parity and Logic Unit …………………………………………………....27

V. VHDL Implementation of Error Detection Techniques…………………………28

RESO/RERO………………………..………...……….…………...……28

High-speed Modulo-3 Generator…………………………………......….31

Berger…………………………………………………………………….34

Parity/Parity and Logic Unit………………………………………..……36

Synthesis…………………………………………...…………………….36

VI. Results ….……………………………..…………………...….…………………38

Area, Time, and Power Comparisons for All Techniques

Area Comparison………………………………………….….….38

Time Comparison………….………………………...………..….39

Power Comparison..………………………………...……………41

Area, Time, and Power Comparisons for Each Technique

DMR..……...……………………………………………….……43

High-speed Modulo-3 Generator………………………………...44

Berger.…...…………………………………………..………...…46

RESO…………………………………………………………….47

RERO……...………………………………………...…………...49

Parity………………………………………………………….….50

Parity and Logic………………………………...…………….….52

 Implications of the Error Detection Techniques on Processing Systems…53

VII. Conclusion and Future Exploration….……………………………………....55

Appendix

A. DMR VHDL DESCRIPTION…………………………………………………...56

B. MODULO-3 VHDL DESCRIPTION ………………………………………...…59

v

C. BERGER CHECK PREDICTION VHDL DESCRIPTION………………….…66

D. RESO VHDL DESCRIPTION…………………………………………………..73

E. RERO VHDL DESCRIPTION…………………………………………………..80

F. PARITY DESCRIPTION………………………………………………………..87

G. PARITY AND LOGIC DESCRIPTION………………………………………...90

vi

LIST OF TABLES

 Page

1. Area penalty for an n-bit ALU with error detection.........……………………….39

2. Timing results for an n-bit ALU with error detection ………………………...…40

3. Power results for an n-bit ALU with error detection ……………………………42

vii

LIST OF FIGURES

 Page

1. DMR technique which duplicates the ALU and compares outputs…..…………...5

2. Concurrent error detection in an ALU using RESO ……………………….......…9

3. Concurrent error detection in an ALU using RERO ………………………….....10

4. Residue code adder (or any arithmetic operation)……………………………….12

5. Proposed BCP for ALU………………………………………………………….13

6. Parity Prediction Circuit…………………………………………………………14

7. Parity and Logic Circuit………………………………………………………….16

8. RESO implementation that ensures computation and recomputation steps…….29

9. RERO implementation that ensures computation and recomputation steps……..30

10. Module 1 of high-speed modulo-3 generator ……………………………………32

11. Module 2 of high-speed modulo-3 generator ……………………………………33

12. High-speed modulo-3 generator…………………………………………………34

13. Control PLA of BCP circuit……………………………………………………...35

14. Multioperand Carry Save Adder…………………………………………………35

15. Chain of Logic XOR gates that generate even parity……………………………36

16. Area overhead with an ALU as the baseline…………………………….……….39

17. Timing overhead with an ALU as the baseline………………………………….41

18. Power overhead with an ALU as the baseline…………………………………...42

19. Timing, area, and power results for an n-bit ALU using DMR error detection…43

20. Timing, area, and power overhead for an n-bit ALU using DMR error

detection……………………………………………………………………..44

viii

21. Timing, area, and power results for an n-bit ALU using Mod-3 error detection...45

22. Timing, area, and power overhead for an n-bit ALU using Mod-3 error

detection……………………………………………………………………..45

23. Timing, area, and power results for an n-bit ALU using Berger error detection...46

24. Timing, area, and power overhead for an n-bit ALU using Berger error

detection…………………...…………………………………………………47

25. Timing, area, and power results for an n-bit ALU using RESO error detection...48

26. Timing, area, and power overhead for an n-bit ALU using RESO error

detection……………………………………………………………………...48

27. Timing, area, and power results for an n-bit ALU using RERO error detection...49

28. Timing, area, and power overhead for an n-bit ALU using RERO error

detection……………………………………………………………………...50

29. Timing, area, and power results for an n-bit ALU using Parity error detection....51

30. Timing, area, and power overhead for an n-bit ALU using Parity error

detection……………………………………………………………………...51

31. Timing, area, and power results for an n-bit ALU using Parity and Logic error

detection...52

32. Timing, area, and power overhead for an n-bit ALU using Parity and Logic error

detection……………………………………………………………………...53

ix

LIST OF ACRONYMS

1. ALU…………………………………………………….Arithmetic and Logic Unit

2. BCP………………………………………………………Berger Check Prediction

3. DMR…………………………………………………...Dual Modular Redundancy

4. MCSA…………………………………………….Multioperand Carry Save Adder

5. MOS………………………………………………….Metal-Oxide-Semiconductor

6. MSB…………………………………………………………..Most Significant Bit

7. Mux…………………………………………………………………….Multiplexer

8. PLA……………………………………………………Programmable Logic Array

9. RERO……………………………………….Recomputing with Rotated Operands

10. RESO………………………………………...Recomputing with Shifted Operands

11. RTL………………………………………………………..Register Trasnfer Level

12. SFS…………………………………………………………..Strongly Fault Secure

13. VHDL……Very-High-Speed Integrated Circuits Hardware Description Language

14. VLSI………………………………………………...Very-Large-Scale Integration

1

CHAPTER I

INTRODUCTION

Advanced microelectronic technologies are becoming increasingly susceptible to

faults and errors due to radiation particles. Scaling in very-large-scale integration (VLSI)

systems leads to higher packing densities for transistors [1]. As a result, they are more

likely to be hit by an incident particle, such as neutrons or alpha particles. The interaction

of neutron and alpha particles with semiconductor devices may lead to permanent,

intermittent, or transient faults that result in an error [2, 3]. Thus, error detection becomes

a greater concern [4] for system reliability as transistor size decreases.

When a metal-oxide-semiconductor (MOS) transistor is exposed to high-energy

ionizing irradiation, electron-hole pairs are created in the transistor [5]. Transistor source

and diffusion nodes accumulate charge that may invert the logic state of the transistor [2].

The minimum charge necessary to invert a logic state, or cause a fault, is called critical

charge. Critical charge differs from circuit to circuit and node to node [6].

When technology scales, the probability of collecting the critical charge decreases,

yet critical charge decreases even faster because of lower supply voltages [3]. Thus,

faults will increase as transistor sizing decreases. Permanent faults remain for indefinite

periods until corrective action is taken [2]. Intermittent faults occur repeatedly at the

same location and can be removed by replacing the circuit. Transient faults are induced

by neutron and alpha particles. When a fault is made visible to a user, it is then called an

error. Although faults are necessary to cause an error, not all faults manifest as errors

2

because of the functionality within the circuit [7, 8]. Errors can be classified as either soft

errors or hard errors. Soft errors are caused by transient or intermittent faults, while hard

errors are caused by permanent faults [2].The majority of errors are caused by transient

and intermittent faults [3].

Computer architects investigate new techniques to detect and correct soft errors

caused by transient faults. Usually, a tradeoff is made between the performance of a

processor and the area and power required for error detection. Several error detection

methods exist: redundancy codes [4], arithmetic codes [9], Berger codes [10], and parity

codes [2]. Although these methods can detect radiation-induced errors, they were first

developed to deal with errors induced by harsh environments, novice users, or component

obsolescence [11].

The arithmetic logic unit (ALU) is considered the heart of a processor [4]. An ALU is

a circuit that performs arithmetic and logic operations. A soft error originating from an

ALU can propagate to multiple stages in a processor [12]. An investigation of area,

power, and speed for different error detection techniques will be provided for ALUs in

this thesis. Surprisingly, power consumption penalties for some commonly used

techniques can exceed 300%.

The organization of this thesis is as follows. Chapter II gives an overview of error

detection methods. Specific techniques for each method are provided in Chapter III.

Chapter IV discusses the capabilities of each error detection technique. VHDL code for

each technique is provided in the appendices, and their implementation and synthesis are

provided in detail in Chapter V. Chapter VI presents the area overhead, maximum timing

3

delay, and power consumption of techniques. Chapter VII provides concluding remarks

and future research opportunities.

4

CHAPTER II

OVERVIEW OF ERROR DETECTION METHODS

Soft errors can lead to corrupted data, incorrect program execution, or a complete

disruption of a running program. Error detection methods attempt to ensure system

reliability by identifying errors and producing correct data or results. Advantages and

disadvantages are associated with different techniques within each method. Redundancy

codes, arithmetic codes, parity codes, and Berger codes are types of error detection

methods. Increasing speed, minimizing area, and minimizing power consumption of an

error detection method are a computer architect‟s goals.

Self-checking ALU

 An ALU is used as a baseline when comparing error detection techniques in this

thesis. These techniques are considered self-checking circuits. Self-checking circuits are

encoded in some error-detecting code so that faults may be detected by a checker [13].

For this thesis, the baseline ALU includes addition, subtraction, logical AND, logical OR,

and logical XOR. These particular operations are chosen to provide a fair comparison to

the detection limitations for the Berger Check Prediction circuit (BCP).

Redundancy

Redundancy implies multiple computations of the same inputs for a given circuit. If a

fault occurs in any of the computations, a comparison step of the results will identify the

5

presence of an error. Redundancy may be achieved spatially or temporally. Spatial

redundancy (also termed as hardware redundancy) duplicates hardware for simultaneous

computations, while temporal redundancy (also termed as time redundancy) is by

repeating computations using the same hardware.

Hardware redundancy is the most common form of redundancy [14]. Increased timing

for hardware redundancy is not an issue due to concurrent error detection. Concurrent

error detection is the process of detecting and reporting errors while, at the same time,

performing normal operations of the system [14]. The simplest hardware redundancy

scheme is dual modular redundancy (DMR). DMR, shown in Figure 1, duplicates the

ALU and compares the outputs of the two ALUs. A fault propagating through one of the

ALUs will flag an error when the two ALU outputs are compared [15]. DMR provides

100% error detection, yet it requires 100% overhead (plus the comparator).

Figure 1: DMR technique which duplicates the ALU and compares outputs.

6

Time redundancy is an error detection scheme that reduces additional hardware at the

expense of using extra time [16]. Depending on the application of the processor, time

redundancy may be more affordable than extra hardware. The basic concept of time

redundancy is the repetition of computations in ways that allow errors to be detected. The

leading techniques that use time redundancy are recomputing with shifted operands

(RESO), recomputing with rotated operands (RERO), and Alternating logic [17]. RESO

and RERO are discussed in detail in Chapter III. Alternating logic is not discussed

because it may require 100% area overhead (in addition to time redundancy) to detect

error for some circuit functions [14].

Arithmetic Codes

Arithmetic codes are efficient for providing detection for only arithmetic operators

within an ALU [18]. The information parts of an operand are processed through a typical

arithmetic operator, while a check symbol is concurrently generated (based on the

information bits). Arithmetic codes can ensure fault detection for most arithmetic

operators [19]. AN codes are the simplest form of arithmetic codes [2]. They are formed

by multiplying each data word N and ALU result by a constant A. The following equation

gives an example of an AN code:

A(N1 + N2) = A(N1) + A(N2) (1)

AN codes can be derived by left shift operations [2]. Thus, this thesis does not investigate

AN codes because it incurs both hardware (DMR) and timing (RESO) penalties. Yet,

residue codes are a commonly used arithmetic code and are explored in this thesis.

7

Berger Codes

Berger codes provide error detection for arithmetic and logic operations. The strongly

fault secure (SFS) BCP is the only known technique for self-checking ALUs other than

hardware duplication and two-rail encoded ALUs. A SFS BCP is more efficient than a

two-rail encoded ALU. Berger codes are valid for all unidirectional errors, for which both

1  0 and 0  1 errors may occur but they do not occur simultaneously in a single data

word [19, 20]. The encoding scheme uses the binary representation of the number of 0‟s

in information bits as the check symbol [21].

Parity Prediction Codes

Parity prediction circuits only provide detection for arithmetic operations. The term

“prediction” suggests parity is “predicted”. However, parity “prediction” is not a

speculative process, but it computes the parity of the operands and result for comparison

[2]. Parity prediction adders require the lowest hardware overhead among all known self-

checking adder schemes [22].

8

CHAPTER III

SELECTED ERROR DETECTION TECHNIQUES FOR ALUS

This thesis investigates DMR, RESO, RERO, residue codes, Berger codes, and parity

codes for error detection. These techniques are explored because they represent a variety

of error detection methods. DMR was previously discussed in Chapter II.

RESO

RESO-k refers to shifting by k bits. Assume RESO uses an n-bit ALU and an n-bit

shifter. During the first computation, operands undergo an ALU operation. The result of

the ALU is shifted left and stored into a register, as shown in Figure 2. During the

recomputation step, the operands are shifted left upon entering the ALU. This result is

compared to the previously stored result in the register [23].

Usually, when an n-bit operand is shifted left by k-bit(s), the leftmost k-bit(s) are

moved out of the operand and the right most k-bit(s) are zero. This presents the

possibility of essential bits being removed whenever shifted left, which would lead to an

incorrect result. In order to preserve essential k-bit(s), an (n + k) shifter and (n + k) ALU

is needed. For example, assume the recomputation step uses an n-bit shifter. Let the

operand X be equal to 01010 in binary. If the operand is shifted left by two bits, then the

shifted operand is equal to 01000. The MSBs are shifted out. Now assume the

recomputation step uses an (n + k)-bit shifter. Then the shifted operand is equal to

01010XX. The most significant bits (MSBs) remain in the operand to ensure correct

9

results. The rightmost k-bit(s), XX, should always be zero [23]. Moreover, during the first

computation, k-zeros are added as MSBs for each of the operands.

Figure 2: Concurrent error detection in an ALU using RESO [23].

RERO

RESO and RERO have similar time redundancy characteristics, yet they differ in

ALU size. RESO uses an (n + k)-bit shifter and an (n + k)-bit ALU; whereas Figure 3

shows RERO uses an (n + 1)-bit rotator and an (n + 1)-bit ALU. RERO-k refers to

rotating by k bits. Assume RERO uses an n-bit rotator and an n-bit ALU for two

sequential computations. During the first computation, two operands undergo an ALU

operation and the result is stored in a register. During the recomputation, operands are

rotated right before entering the ALU. Next, the result of the ALU is rotated left and then

compared to the previous result stored in the register from the first computation [4].

10

Figure 3: Concurrent error detection in an ALU using RERO [4].

 RERO designers discovered a serious problem with the carry-out/carry-in bit for

an n-bit ALU. The physical and logical patterns in the ALU are shown as follows:

Physical pattern of bits: (n – 1), (n – 2), . . ., (i + 1), i, . . ., 2, 1, 0

Logical pattern of bits before rotation: (n – 1), (n – 2), . . ., (i + 1), i, . . ., 2, 1, 0

Logical pattern of bits after rotation: i, . . . , 2, 1, 0, (n – 1), (n – 2), . . ., (i + l).

Now, assume two previously rotated operands undergo an arithmetic operation. One

concern of RERO is to ensure the correct carry-in for logic bit (i + 1) and to extract the

carry-out from logic bit (n – 1). There could be cases where the carry-out from logic bit i

to (i + 1) propagates pass logic bit (n – 1) to 0. This technique described could potentially

produce an incorrect result [4].

 In order to ensure correct results, Li et al. propose two features to prevent a case

of the carry-bit continually propagating through the operand [4]. The first feature

11

involves inserting an additional bit in the rotators. The additional bit becomes the MSB

and an (n + 1)-bit ALU is used during computations. The new physical and logical

patterns in the ALU are shown as follows:

Physical pattern with additional bit: @, (n – 1), (n – 2),. . ., (i + 1), i, . . ., 2, 1, 0

Logical pattern of bits before rotation: @, (n – 1), (n – 2), . . ., (i + 1), i, . . ., 2, 1, 0

Logical pattern of bits after rotation: i, . . . , 2, 1, 0, @, (n – 1), (n – 2), . . ., (i + l)

The @-bit represents the additional bit, which is initially set to „0.‟ A carry out cannot be

generated from logical bit @ to 0 with this modification. The second feature avoids the

propagating carry bit by connecting the carry-out of physical bit n with the carry-in of

physical bit 0. During the first computation, the carry-out of the extra bit @ will always

be 0 for arithmetic operations, because the @-bits are always set to „0‟. After rotation,

during the recomputation step, the physical index n contains bit i and the physical index 0

contains bit (i + 1). The physical connection during this step allows the correct carry-out

from logic bit i to be applied to logic bit (i + 1) [4].

Residue Codes

Residue codes are a type of separate arithmetic code, in which the information to

be used in checking is called the residue. The residue, r, of an operand, A, is equal to the

remainder of A divided by the modulo m [24]. For notation, r = A mod m = |A|m. For

example, if m = 3, the residue of A could be any number 002 to 102. Thus, two bits are

needed for checking. If m = 15, the residue of A could be any number 00002 to 11102.

Thus, four bits are needed for checking.

12

Again, residue codes can only be used for arithmetic operations. Two

computations are occurring concurrently in Figure 4 [25]. For the first computation step,

two operands, A and B, undergo an addition operation in the ALU. A residue generator

then produces a residue code from the ALU result. For the recomputation step, each

operand concurrently enters a residue generator. These residues then undergo the same

ALU operation as in the first computation (addition in this case). A modulo-3 residue

code would use a 2-bit ALU and a modulo-15 residue code would use a 4-bit ALU during

the recomputation step. Decreasing n in an n-bit ALU decreases hardware. Thus, a

modulo of m = 3 is used for residue codes in this thesis.

Figure 4: Residue code adder (or any arithmetic operation) [25].

Reduced Berger Check Prediction

Berger codes provide concurrent error detection in arithmetic and logical

operations. The proposed BCP design proved to be fault-secure and self-testing with

13

respect to any single fault in the ALU [26]. Lo et al. suggest that the scheme will provide

considerable savings in hardware logic (or chip area). It assumes the BCP circuit is

implemented instead of a second ALU (for DMR).

During BCP two computations are occurring concurrently in Figure 5. Operands,

for the first computation, undergo simple ALU operations. A Berger check code is then

created based upon the result. The second computation uses BCP to generate a Berger

check code based on the length of the operands. For this step, the Berger check code is

formulated via equations associated with a particular ALU operation [26]. Calculating the

Berger check code will be discussed further in Chapter IV.

Figure 5: Proposed BCP for ALU [26].

14

Parity Prediction

Parity prediction circuits generate parity bits for operands and the result, as shown

in Figure 6. Remember, this technique can only be used for arithmetic operations. For the

first concurrent computation, two operands undergo an arithmetic operation, where the

parity of the result is generated. During the second concurrent computation, parity bits for

each operand are inputs to a logical XOR gate. This result is compared to the result of the

first computation. Moreover, parity prediction circuits are currently used in commercial

microprocessor, such as the Fujitsu SPARC V microprocessor [2].

Figure 6: Parity Prediction Circuit.

15

Parity and Logic Circuit

 This thesis investigates combining the parity prediction circuit with a logic circuit.

This design allows error detection for not only arithmetic, but logic operations. Figure 7

shows the parity prediction circuit along with a duplicated logic unit of an ALU (i.e.,

excluding the original arithmetic hardware). During the first computation, two operands

undergo an ALU operation. This result propagates to the comparator and a parity

generator circuit. Concurrently, for recomputation, the parity bit for each operand is

generated. These parity bits are sent through a logical XOR gate with the parity bit of the

result from the first computation. This stage checks for errors between the computations.

Also, the operands are sent to a logic unit. This result is compared with that of the first

computation. A multiplexer (Mux) selects the error signal of the comparator (for logical

operations) or the parity prediction circuit (for arithmetic operations). An example of this

technique is provided in Chapter IV.

16

Figure 7: Parity and Logic Unit Circuit

17

CHAPTER IV

ERROR DETECTION CAPABILITIES AND LIMITATIONS

One may assume the proposed error detection techniques detect erroneous results for

any case. However, techniques have certain limitations depending on their use. This

section explains special cases when a fault causes an incorrect result, but does not flag an

error. In addition, this section shows the error detection capabilities of other techniques.

RESO

RESO for Logical Operations

For logical operations (AND, OR, NOT, XOR, etc.), RESO-k (for any k) detects

all errors for bit-wise operations when the fault is confined to a single bit-slice. Let bit-

slice i be faulty. If a fault produces an error in the result then the bit i of the first

computation step is incorrect. During the second computation, after the operand is shifted

left by one bit, the bit i is computed by the non-faulty bit-slice bit (i + 1). Bit i of the

recomputation step will be correct and the error would appear in the (i – 1) bit-slice. The

result will not match that of the first computation step, thus signaling an error message

[23]. Below is an example (faulty bits are underlined):

First computation step with a faulty bit-slice:

Operand X = 1011 and operand Y = 1100

Faulty bit slice: 1

Affected operand X = 1001

X_fault OR Y = 1101

18

Shift results = 11010

Recomputation step with a faulty bit-slice:

k = 1

X = 10110 and Y = 11000

Affected operand X = 10100

X_fault OR Y = 11100

An error is flagged when the results of each computation step is compared. Thus, RERO-

k, for any k, detects all bit-wise logic operations.

RESO for Arithmetic Operations

RESO-1 for arithmetic operations needs to be analyzed further for arithmetic

operations. RESO-1 can be applied to ALUs that use disjoint sum and carry networks and

a carry look-ahead network. Instead, a ripple-carry adder is used for the ALU

implementation. Consider a bit-sliced ripple-carry adder with a faulty bit slice i. During

the first computation step, the sum bit of bit-slice i carries a weight of 2
i
 and the carry-out

bit carries a weight of 2
i+1

 [23]. A fault in the sum and/or carry-out i bit-slice could

produce the following results:

Fault in the sum bit: Result is off by ±2
i

Fault in the carry-out bit: Result is off by ±2
i+1

Fault in the sum and carry-out bit: Result is off by ±2
i
 ±2

i+1
 (= ±3 X 2

i
).

Thus, the result of the first computation step could be off by one of {0, ±2
i
, ±2

i+1
, ±3 X

2
i
}.

19

For the second computation step, the operand is shifted left by one bit. Now, the

sum bit of bit-slice i carries a weight of 2
i-1

 and the carry-out bit carries a weight of 2
i
. A

fault in the sum and/or carry-out i bit-slice could produce the following results:

Fault in the sum bit: Result is off by ±2
i-1

Fault in the carry-out bit: Result is off by ±2
i

Fault in the sum and carry-out bit: Result is off by ±2
i-1

 ±2
i
 (= ±3 X 2

i
).

Thus, the result of the second computation step could be off by one of {0, ±2
i-1

, ±2
i
, ±3 X

2
i-1

}. From this analysis, a no-error message could be reported when not only when there

is no error, but when a fault occurs in the sum bit of the first computation and the carry

bit of the second computation (±2
i
). An example of faults that does not flag an error is

shown below (faulty bits are underlined):

 X = 1 and Y = 0

 Faulty bit slice = 1

 First computation step:

 X = 01 and Y = 00

X + Y = 01

 Faulty sum = 11

Shift left = 110

Recomputation step:

Shift X and Y left: X = 10 and Y = 00

Carry bit = 000; Faulty carry bit = 100

Faulty sum = 110

For the recomputation step, the operand must be shifted by more than one bit [23], so a

fault in each computation will flag an error message.

20

RESO-2 is used for the recomputation step. Results of the first computation step

will be the same as in RESO-1 {0, ±2
i
, ±2

i+1
, ±3 X 2

i
}. For the recomputation step, the

operand is shifted left by two bits. Now, the sum bit of bit-slice i carries a weight of 2
i--2

and the carry-out bit carries a weight of 2
i-1

. A fault in the sum and/or carry-out i bit-slice

could produce the following results:

Fault in the sum bit: Result is off by ±2
i-2

Fault in the carry-out bit: Result is off by ±2
i-1

Fault in the sum and carry-out bit: Result is off by ±2
i-2

 ±2
i-1

 (= ±3 X 2
i-2

).

Now, the result of the second computation step could be off by one of {0, ±2
i-2

, ±2
i-1

, ±3

X 2
i-2

}. No single error appears in the first computation step and the second computation

step for RESO-2 [23]. Apply the example from RESO-1 to RESO-2 (faulty bits are

underlined):

 X = 1 and Y = 0

 Faulty bit slice = 1

 First computation step:

 X = 001 and Y = 000

X + Y = 001

 Faulty sum = 011

Shift left = 0110

Recomputation step:

Shift X and Y left: X = 100 and Y = 000

Carry bit = 0000; Faulty carry bit = 0100

Faulty sum = 1000

21

A fault in each computation step would flag an error message (0110 1000) if using

RESO-2.

RERO

RERO-k refers to operands rotating by k-bit(s). An error caused by a faulty bit-slice

can be detected depending on the number of rotations. Li et al. discuss error detection

capabilities for k faulty bit-slices [4]. However, this thesis focuses on a single faulty bit-

slice. RERO-k for a single faulty bit-slice has the same constraints for arithmetic and

logic operations. A single error in each computation step cannot be detected if k = (n + 1)

during the recomputation step. An example is below (faulty bits are underlined):

X = 101 and Y = 010

First computation step:

X + Y = 111

First computation step with faulty bit slice i:

Faulty bit slice = 1

X + Y = 101

Recomputation step:

The @-bit is included in the operands: X = 0101 and Y = 0010

k = (n+1) = 3 + 1 = 4

After left rotation: X = 0101 and Y = 0010

Faulty bit slice = 1

X + Y = 0101

After being rotated by k = (n + 1), the operands remain in the same bit position. Thus, a

faulty bit-slice has the potential of inverting the same bit during the recomputation step.

22

This thesis uses RERO-2 to be consistent with RESO-2. The smallest bit width for an

operand is 8 bits, so k will never equal (n + 1).

High-speed Modulo-3 Generator

The high-speed modulo-3 generator has the capabilities of producing a modulus 3

remainder. The sum feature of the module will not be used. Every operand, A, has a

certain codeword or in this case associated residue, r [24]. Residue codes for error

detection have two concurrent computation steps. During the first concurrent

computation step, two operands, A and B, undergo an arithmetic operation. Then the

high-speed modulo-3 generator will produce a residue, rA[]B ([] refers to any arithmetic

operation). During the second concurrent computation step, the residues, rA and rB, are

generated by the high-speed modulo-3 generator with respect to A and B. Then rA and rB

undergo the same arithmetic operation as in the first computation step. The outcome of

this method should lead to r1[]2 being equal to rA [] rB if there were no faults.

Mathematically speaking, for addition

((A + B) Mod m) = ((A Mod m) + (B Mod m)) Mod m. (2)

The addition operation can be substituted for other arithmetic operators. An example of

residue codes for an addition operation is provided below. A = 10, B = 9 and m = 3.

First concurrent computation: A + B = 10 + 9 = 19

Residue of first computation: 19 Mod 3 = 1

Residue of A during second concurrent computation: 10 Mod 3 = 1

Residue of B during second concurrent computation: 9 Mod 3 = 0

23

Addition of rA and rB: = 1 + 0 = 1.

Thus, the residue of the first computation is equal to modulus of rA + rB of the second

computation.

Berger

The mathematical foundation for arithmetic operations and (addition and

subtraction) then for logical operations (AND, OR, XOR) are provided. Each Berger

check result, Sc, of an ALU operation is a function of X, Y, Xc, and Yc, where X and Y are

operands and Xc and Yc are encoded Berger checks [26]. Given an operation, S = X op Y,

then:

Sc = F(X, Y, Xc, Yc) (3)

Berger Check Prediction for Addition

 We are given the two n-bit operands X (xn, . . ., x2, x1) and Y (yn, . . ., y2, y1) to

obtain a sum S (sn, . . ., s2, s1) with internal carries C(cn, . . ., c2, c1). Every xi, yi, si, and ci

are either 0 or 1. The formula for the i
th

 bit of the operation is:

 xi + yi, + ci-1 = si, + 2ci = (si + ci) + ci [26]. (4)

Let N(X) stand for the number of 1s in the binary representation of X (i.e. N(xi) =

xi). Equation (4) shows a relationship between the number of 1‟s in the operand and in the

sum. The carry output cout is accounted for as one of the internal carries and the MSB of

the sum. The formula for the n-bit case is:

24

 N(X) + N(Y) + N(C) - cin = N(S) + cout + N(C) (5)

Cin (ci-1) is the carry input and cout = cn. The Berger check code is the inversion of (4) and

(4) because it develops a relationship between the operands and sum by calculating the

number of 0‟s. For example the Berger check symbol for the number of 0‟s in the X

operand is Xc.

 Xc = n – N(X). (6)

We can arrive at the Berger check symbol, Sc, by using (4) and (5):

 Sc = Xc + Yc – Cc – cin + cout. (7)

Cc is denoted as the number of 0s in the internal carry. By (4) we know that (5) = n –

N(S) [26].

 Below is an example of (6):

X = 101011 and Y = 101101 and cin = 0

S = 011000, C = 10111, and cout = 1

Xc = 2, Yc = 2 and Cc = 1.

From (7) we know that:

Sc = 2 + 2 – 1 +1 = 4.

We also know that Sc must equal n- N(S). N(S) = N(011000) = 2. Thus, Sc = n – N(S) = 6

–2 = 2 [26].

25

Berger Check Prediction for 2’s Complement Subtraction

The subtraction operation is S = X – Y. We know that subtraction can be calculated by

using addition. Thus, we complement Y bit-wise and add 1. Now, S = X + + 1. We

must take into account the carry input to the adder. In order to obtain plus 1, cin is also

complemented. S = X + + in. The formula for n-bit subtraction is:

 N(X) + N() + N(C) + in = N(S) + cout + N(C) (8)

In thus equation, N() = Yc. The Berger check symbol equation is:

 Sc = Xc – Yc + Cc – in. + cout (14). (9)

Below is an example of (6):

X = 101011 and Y = 101101 and cin = 0

S = 111110, C = 111100, and cout = 0

Xc = 2, Yc = 2 and Cc = 2.

From (8) we know that:

Sc = 2 – 2 + 2 – 1 = 1.

We also know that Sc must equal n- N(S). N(S) = N(111110) = 5. Thus,

Sc = n – N(S) = 6 –5 = 1 [26].

26

Berger Check Prediction for Logical Operations

The equations for the three basic logic operations And (), OR(), and XOR() are

listed below:

AND equation: xi yi xi + yi – (xi yi) (10)

 OR equation: xi yi xi + yi – (xi yi) (11)

 XOR equation: xi yi xi + yi – 2(xi yi). (12)

Now, we determine a relationship between the numbers of 1‟s for (10)

 N(X Y) = N(X) + N(Y) – N(X Y) (13)

A Berger check code for the AND operation can be derived from (13):

 Sc = (X Y)c = N(X)c + N(Y)c – N(X Y)c. (14)

Berger check codes can be derived for OR and XOR operations similarly to the AND

derivation.

Parity Prediction

 Even and odd parity are two types of parity prediction. This thesis uses even

parity to generate parity bits. When using even parity, the parity bit is set to 1 if there is

an odd number of 1‟s in the operand or result. Since parity prediction only detects

arithmetic operations, an addition example is provided below:

X = 101 and Y = 010

27

First computation step:

X + Y = 111

PS = 1 (P is the parity bit).

Recomputation step:

PX = 0, PY = 1

PX XOR PY = 0 XOR 1 = 1 = PC

PS = PC = 1

If a fault occurs during the first computation, one of the bits is inverted. This changes the

parity bit, PS, to 0, which would flag an error when compared to the parity bit of the

concurrent recomputation step.

Parity and Logic

The parity and logic error detection technique operates the same as the parity

prediction circuit. The only difference occurs for a logic operation, in which the

technique uses the duplicated logic unit to compare results with the ALU.

28

CHAPTER V

VHDL IMPLEMENTATION OF ERROR DETECTION TECHNIQUES

All error detection techniques discussed in Chapters III and IV were implemented

with VHSIC (Very-High-Speed Integrated Circuits) Hardware Description Language, or

VHDL, using Altera‟s Quartus II [27] software. VHDL is a hardware description

language (HDL) that describes the behavior and structure of digital designs. It is used for

a variety of digital systems ranging from a few gates to an interconnection of complex

integrated circuits [28]. ModelSim-Altera [29] was used for simulation and debugging to

verify correct behavior of the VHDL models.

RESO/RERO

RESO and RERO use two computation steps with each taking a cycle to

complete. For both techniques, the first computation step involves the conventional

operand undergoing ALU operations. The second computation either shifts or rotates the

operands respectively. In order for the methods to be implemented correctly, a Mux is

placed after the shifter or rotator, as shown in Figure 8 and Figure 9, to ensure the correct

operand enters the ALU. A clock signal is fed to the select input for a 2-to-1 Mux, so the

first computation runs when clock is low and the recomputation runs when clock is high.

29

Figure 8: RESO implementation that ensures computation and

recomputation steps.

30

Figure 9: RERO implementation that ensures computation and

recomputation steps.

31

High-speed Modulo-3 Generator

The high-speed modulo-3 generator produces residue codes through two modules

for implementation. The general process of this technique is shown in Figure 10. An

operand X (xn, xn-1, . . ., x1, x0) is partitioned into multiple 2-bit inputs for Module 1.

Module 1 consists of two AND logic gates and four logic inverters. Module 1 is designed

so that the first input receives a binary variable x1 and the second input receives a binary

input x1 (mod3). For example, x0 and x1 are inputs for Module 1 and xn-1 and xn or inputs

for the last Module 1 if there is an even number of bits in X. If there is an odd number of

bits in X, then the inputs to the last Module 1 are xn and 0. Module 1, shown in Figure 10,

has four outputs Y0 to Y3:

Y0 = x1 0

Y1 = 0

Y2 = 1x0

Y3 = 2.

32

Figure 10: Module 1 of the high-speed modulo-3 generator [30].

Module 2, shown in Figure 11, consist of six AND and two OR logic gates. It has

four outputs 0 to 3 and eight inputs from the outputs of two Module 1s (the first

Module 1‟s outputs: 0 to 3 and the second Module 1‟s outputs: 4 to 7):

0 = x0 2 3 + x2 0 1 + x1x3

1 = 0

2 = x3 1 0 + x1 3 2 + x2x0

3 = 2.

33

Figure 11: Module 2 of the high-speed modulo-3 generator [30].

A complete high-speed modulo-3 generator is constructed from a plurality of

Module 1s followed by a logarithmic array of Module 2s [30]. The configuration of

Module 1 and 2 in Figure 12 can provide modulo-3 generation for binary of any size.

34

Figure 12: High-speed modulo-3 generator [30].

Berger

The first computation involves two operands entering an ALU and calculating a

result. The number of zeros is then counted in the result. The second computation, which

is concurrent with the first, is more complicated. Two operands are sent through Logical

OR and Logical AND gates, where the outputs enter a Mux. The other input for the 3-to-

1 Mux is the carry-out bits from the ALU. The Mux is controlled by select inputs which

are dependent on the control programmable logic array (PLA), shown in Figure 13. The

Mux‟s output is then sent to a zeros counter. This result and zeros count of the two

operands ultimately enter the Multioperand Carry Save Adder (MCSA) in Figure 14. The

35

MCSA determines the Berger check code [31], which is compare to the zeros count of the

ALU‟s result.

Figure 13. Control PLA of BCP circuit.

Figure 14: Multioperand Carry Save Adder [31].

36

Parity Prediction Circuit/ Parity and Logic Circuit

The parity generator in the parity prediction circuit and the parity and logic circuit

use a chain of logic XOR gates to generate a parity bit. For the parity and logic circuit,

the logic unit is a duplication of only the logic unit in the ALU. Figure 15 conveys the

circuitry for generating an even parity bit for an operand X.

Figure 15. Chain of Logic XOR gates that generate even parity.

Synthesis

VHDL models were synthesized using the FreePDK45 cell library [32] and

Cadence Encounter Register Trasnfer Level (RTL) complier. The FreePDK45 cell library

was developed by the Oklahoma State University VLSI Computer Architecture Group. It

consists of 33 cells with a 45-nm transistor size. The FreePDK45 library was chosen

because it was an open-source implementation of a current fabrication technology. Area,

37

power consumption, and maximum time delay reports are generated via the RTL

compiler, cell library, and VHDL models. The area of each gate (cell) and wiring

between gates produce a total area report for each error detection technique. The timing

report uses the longest path in the VHDL model to generate the maximum timing delay.

The RTL compiler sums the inertial (gate) delay of each cell and transport (wire) delay

along the longest path. The power report uses voltage drops associated with a particular

gate to calculate power consumption. Simultaneous switching logic can cause high

transients of dynamic voltage drops for power rails [33], which may drastically increase

power consumption.

38

CHAPTER VI

RESULTS

The focus of this thesis is to compare the area, timing, and power penalties of

error detection techniques for an n-bit ALU. First, the penalties for each technique are

compared amongst each other. Then, penalties are compared for a particular technique for

different ALU sizes.

Area, Timing, and Power Comparisons for All Techniques

Area Comparison

Error detection techniques are compared to a baseline ALU in Table 1 and Figure

16. Table 1 shows all of the error detection techniques are around 2X that of the baseline

ALU, with the exception of RESO, RERO, and Parity. The area penalties for RESO and

RERO are less than 2X of the baseline ALU since they use the same hardware for

recomputation. Parity error detection incurs the smallest area penalty, since it does not

allow error detection for logic operators. Including logic operators would increase the

area. Pargic is an abbreviation for parity and logic error detection technique. Pargic

experiences a larger area penalty than Parity because it includes error detection for logic

operators. However, the high-speed modulo-3 generator area penalty is much larger than

Parity, yet it only detects arithmetic errors. Figure 16 shows the area percent overhead.

DMR percent overhead for all ALU sizes is consistently 120% more than the baseline

ALU. The duplicated ALU uses 100% more area while the comparator uses 20%

additional area.

39

Area (mm2)

8-bit ALU 16-bit ALU 32-bit ALU 64-bit ALU

ALU 477 914 1778 3564

DMR 1037 2002 3899 7816

Mod3 987 1959 3898 7793

Berger 894 1927 3552 7332

RESO 858 1549 2826 5617

RERO 786 1449 2858 5687

Parity 592 1163 2292 4585

Pargic 858 1689 3354 6670

Table 1: Area penalty for an n-bit ALU with error detection.

Figure 16: Area overhead with an ALU as the baseline.

 Timing Comparison

Table 2 show the raw timing results for each design. DMR is consistently the

fastest error detection technique since it uses two concurrent computations. ALU timing

40

results differ from that of DMR because of the DMR‟s comparison stage. Figure 17

shows the percentage in additional timing for all techniques when compared to the ALU

baseline. RESO and RERO are at least 2X slower than the baseline ALU due to

sequential computations. Parity results are similar to DMR. The difference in timing

results for Parity and DMR occurs when the parity bit of the ALU‟s result is generated.

Time (ps)

8-bit ALU 16-bit ALU 32-bit ALU 64-bit ALU

ALU 898 1727 3398 6716

DMR 1157 2046 3693 7052

Mod3 1611 2695 4514 7990

Berger 1284 2282 4178 7651

RESO 2194 3926 7387 14005

RERO 2156 3840 7144 13711

Parity 1163 2050 3780 7100

Pargic 1232 2095 3850 7169

Table 2: Timing results for an n-bit ALU with error detection.

41

.

Figure 17: Timing overhead with an ALU as the baseline.

Power Comparison

Power consumption results are shown in Table 3. DMR power consumption

overhead is very consistent for all ALU sizes. RESO and RERO consume less power than

all error detection techniques, except for Parity, for all n-bit ALUs. One could assume

that Parity should use far less power than RESO and RERO because of low area penalty.

However, the additional power is due to many concurrent computations. As stated

previously, simultaneous switching increases power consumption. Figure 18 conveys that

BCP consumes more power as an ALU increases. Power consumption for BCP ranges

from 186% to 327% more power than the baseline ALU. BCP experiences a drastic

42

power penalty for the 64-bit ALU because of several concurrent computations. The larger

zeros counter causes the large increase in power consumption.

Power (μW)

8-bit ALU 16-bit ALU 32-bit ALU 64-bit ALU

ALU 39 87 170 339

DMR 100 200 403 821

Mod3 116 249 546 1025

Berger 142 295 568 1450

RESO 85 171 324 669

RERO 86 167 346 664

Parity 72 152 313 660

Pargic 115 242 502 1036

Table 3: Power results for an n-bit ALU with error detection.

Figure 18: Power overhead with an ALU as the baseline.

43

Area, Time, and Power Comparisons for All Techniques

 DMR Results

Figure 18 shows the timing, area, and power penalties for DMR error detection.

DMR synthesis was provided for 8-, 16-, 32-, and 64-bit ALUs. Power consumption and

area doubles as the ALU size doubles. Yet, DMR incurs less than a 2X timing penalty as

the ALU size doubles. Since computations are bit-wise and concurrent, the timing

discrepancies manifest for different comparator sizes. Figure 20 provides the overhead

penalty for DMR error detection when compared to a baseline ALU. For understanding,

DMR error detection for a 16-bit ALU requires 119.04% more area than a 16-bit ALU.

The graph shows that area overhead is constant for an n-bit ALU since the ALU and

comparator doubles. However, the maximum timing delay decreases as the ALU size

increases.

Figure 19: Timing, area, and power results for an n-bit ALU using DMR error detection.

44

Figure 20: Timing, area, and power overhead for an n-bit ALU using DMR

error detection.

High-speed Modulo-3 Generator Comparison

 Figure 21 shows the raw Modulo-3 results and Figure 19 shows the percent

overhead for time, area, and power for an n-bit ALU using Modulo-3 error detection.

Figure 22 shows that area overhead is almost constant for an n-bit ALU and the time

overhead decreases as ALU size increases. The power overhead averages around 200%.

45

Figure 21: Timing, area, and power results for an n-bit ALU using Mod-3 error detection.

Figure 22: Timing, area, and power overhead for an n-bit ALU using

 Modulo-3 error detection.

46

Berger Comparison

 Figure 23 shows the raw data for Berger error detection and Figure 24 shows the

percent overhead for time, area, and power for an n-bit ALU. The graph shows that area

overhead is almost constant for all ALU sizes. The maximum time delay decreases as the

ALU increases. The power overhead increases as the ALU size increases. The large

timing penalty for the BCP error detection for a 64-bit ALU is due to the increase in

power consumption of the zeroes counter. One zeros counter for a 32-bit ALU consumes

73 μW, and a zeros counter for a 64-bit ALU consumes 227 μW. The increase in

simultaneous switching logic from the 32-bit ALU to the 64-bit ALU causes extreme

power penalty.

Figure 23: Timing, area, and power results for an n-bit ALU using Berger error detection.

47

Figure 24: Timing, area, and power overhead for an n-bit ALU using Berger error

detection.

RESO Comparison

 Figure 25 shows the raw data for RESO error detection and Figure 26 shows the

percent overhead for time, area, and power for an n-bit ALU. The graph shows that area

overhead, time delay, and power consumption decrease as ALU size increases.

48

Figure 25: Timing, area, and power results for an n-bit ALU using RESO error detection.

Figure 26: Timing, area, and power overhead for an n-bit ALU using RESO error

detection.

49

RERO Comparison

 Figure 27 shows the raw data for RERO error detection and Figure 28 shows the

percent overhead for time, area, and power for an n-bit ALU. The graph shows that area

overhead and power consumption are almost constant for all ALU sizes. Yet, time delay

decreases as the ALU increases.

Figure 27: Timing, area, and power results for an n-bit ALU using RERO error detection.

50

Figure 28: Timing, area, and power overhead for an n-bit ALU using RERO error

detection.

Parity Comparison

 Figure 29 shows the raw data for Parity error detection and Figure 30 shows the

percent overhead for time, area, and power for an n-bit ALU. The graph shows that area

and power consumption almost doubles for all ALU sizes. Also, time delay overhead

decreases as the ALU increases.

51

Figure 29: Timing, area, and power results for an n-bit ALU using Parity error detection.

Figure 30: Timing, area, and power overhead for an n-bit ALU using Parity error

detection.

52

Parity and Logic Comparison

 Figure 31 shows the raw data for Parity and Logic error detection and Figure 32

shows the percent overhead for time, area, and power for an n-bit ALU. The graph shows

that area overhead and power consumption are almost constant for all ALU sizes. Time

delay decreases as the ALU increases.

Figure 31: Timing, area, and power results for an n-bit ALU using Parity error detection.

53

Figure 32: Timing, area, and power overhead for an n-bit ALU using Parity error

detection.

Implications of the Error Detection Techniques on Processing Systems

DMR is the simplest error detection technique to implement. Computer architects

search for techniques that consume less power and use less area than DMR. No technique

will be faster than DMR, yet the goal is to approach its timing capabilities. Most

importantly, an ALU with additional functionality may lead to different results than those

presented in this thesis. Remember the operations for the ALU in this thesis are the same

as those protected by BCP. If area and power are of concern for a computer architect and

both were weighted equally, then RERO is a sufficient error detection technique. RERO

detects error for both arithmetic and logic operations, unlike Parity error detection. Parity

area penalty may be smaller than that of RERO, but it does not protect logic operations. If

area and time are of concern for a computer architect and both are weighted equally, then

Parity and Logic error detection is a sufficient error detection method because the time

54

penalty of RERO exceeds the power penalty of Parity and Logic. Lastly, if power and

time are of concern and both are weighted equally, then DMR is a sufficient error

detection technique because the time penalty of RERO exceeds the power penalty of

DMR.

55

Chapter VII

 Conclusion and Future Exploration

 This thesis provides timing, area, and power reports for five error detection

techniques from three different error detection categories: redundancy codes, arithmetic

codes, and parity codes. Using the 45-nm cell library and Encounter RTL Compiler

enabled a study to accurately synthesize the VHDL models and compare their results.

When comparing each technique individually for an n-bit ALU, area overhead is almost

consistent and the maximum timing delay decreases as the ALU‟s size increases. Yet,

power consumption for all techniques did not show a particular trend. Additional

dynamic power analysis would need to be conducted to account for the switching activity

factor. Moreover, there exist many more error detection techniques than the ones

analyzed in this thesis. The goal was to synthesize techniques (or ones from the same

category) being used today. Future exploration of this thesis could involve pipelining the

time redundancy techniques in order to improve timing delays.

56

APPENDIX A

DMR VHDL DECSRIPTION

LIBRARY ieee;

USE ieee.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;

entity DMR is

 port

 (

 -- Input ports

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 --input A with injected fault

 A_f : in std_logic_vector(7 downto 0);

--input B with injected fault

B_f : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- Output ports

 S : out std_logic_vector(8 downto 0);

 error : out std_logic);

end DMR;

architecture structure of DMR is

 --instance alu

component alu8bit

port

 (

 -- alu inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- alu outputs

 C : out std_logic_vector(8 downto 0)

);

end component;

57

 --internal wires

signal S1 : std_logic_vector(8 downto 0);

signal S_f : std_logic_vector(8 downto 0);

signal errorbus : std_logic_vector(8 downto 0);

 --connect entities

begin

alu: alu8bit port map (A=>A, B=>B, opcode=>opcode, C=>S1);

alu_f: alu8bit port map (A=>A_f, B=>B_f, opcode=>opcode, C=>S_f);

S <= S1; --DMR output

 -- Comparator

Errorbus <= s1 xor s_f;

error <= errorbus(8) or errorbus(7) or errorbus(6) or errorbus(5) or errorbus(4)

or errorbus(3) or errorbus(2) or errorbus(1) or errorbus(0);

end structure;

LIBRARY ieee;

USE ieee.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;

ENTITY alu8bit is

 port(

 -- alu inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- alu outputs

 C : out std_logic_vector(8 downto 0)

);

END alu8bit;

58

architecture behavior of alu8bit is

begin

 process(opcode, a, b)

 begin

 IF opcode = "000" THEN

 C <= ('0'& A) + ('0' & B); -- add

 ELSIF opcode = "001" THEN

 C <= ('0' & A) - ('0' & B); -- subtract

 ELSIF opcode = "010" THEN

 C <= ('0' & A) and ('0' & B); -- and

 ELSIF opcode = "011" THEN

 C <= ('0' & A) or ('0' & B); -- or

 ELSIF opcode = "100" THEN

 C <= ('0' & A) xor ('0' & B); -- xor

 ELSE

 C <= ('0' & A) xor ('0' & B);

 END IF;

 end process;

end behavior;

59

APPENDIX B

MODULO-3 VHDL DECSRIPTION

LIBRARY ieee;

USE ieee.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;

entity Mod3 is

 port

 (

 -- Input ports

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 A_f : in std_logic_vector(7 downto 0);

 B_f : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- Output ports

 C : out std_logic_vector(8 downto 0);

 error : out std_logic);

end Mod3;

architecture structure of Mod3 is

 --instance alu

component alu8bit

port

 (

 -- alu inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 Opcode : in std_logic_vector(2 downto 0);

 -- alu outputs

 C : out std_logic_vector(8 downto 0));

end component;

60

--instance modulo-3 residue generator for alu result

component modulo3alu

port(

 -- modulo3 inputs

 C : in std_logic_vector(8 downto 0);

 -- modulo3 outputs

 modulo3aluout : out std_logic_vector(1 downto 0)

);

end component;

 --instance modulo-3 residue generator for operands

component modulo3input

 port(

 -- modulo3 inputs

 A : in std_logic_vector(7 downto 0);

 -- modulo3 outputs

 modulo3out : out std_logic_vector(1 downto 0)

);

end component;

 --instance residue alu

component alu4bit

port

 (

 -- alu inputs

 A : in std_logic_vector(1 downto 0);

 B : in std_logic_vector(1 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 AluModOut : in std_logic_vector(1 downto 0);

 -- alu outputs

 C : out std_logic_vector(1 downto 0)

);

end component;

 -- internal wires

signal alu8out : std_logic_vector(8 downto 0);

signal alu4wire1 : std_logic_vector(1 downto 0);

61

signal alu4wire2 : std_logic_vector(1 downto 0);

signal comp2 : std_logic_vector(1 downto 0);

signal comp1 : std_logic_vector(1 downto 0);

 -- connect entities

begin

alu8: alu8bit port map (A=>A, B=>B, opcode=>opcode, C=>alu8out);

m3alu: modulo3alu port map (C=>alu8out, modulo3aluout=>comp1);

m31: modulo3input port map (A=>A_f, modulo3out=>alu4wire1);

m32: modulo3input port map (A=>B_f, modulo3out=>alu4wire2);

alu4: alu4bit port map (A=>alu4wire1, B=>alu4wire2, opcode=>opcode,

AluModOut=>comp1, C=>comp2);

 -- comparator

error <= (comp1(1) xor comp1(0)) or (comp2(1) xor comp2(0));

C <= alu8out;

end structure;

LIBRARY ieee;

USE ieee.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;

ENTITY alu8bit is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- alu8bit outputs

 C : out std_logic_vector(8 downto 0)

);

END alu8bit;

architecture behavior of alu8bit is

begin

62

 process(opcode, a, b)

 begin

 IF opcode = "000" THEN

 C <= ('0'& A) + ('0' & B); -- add

 ELSIF opcode = "001" THEN

 C <= ('0' & A) - ('0' & B); -- subtract

 ELSIF opcode = "010" THEN

 C <= ('0' & A) and ('0' & B); -- and

 ELSIF opcode = "011" THEN

 C <= ('0' & A) or ('0' & B); -- or

 ELSIF opcode = "100" THEN

 C <= ('0' & A) xor ('0' & B); -- xor

 ELSE

 C <= ('0' & A) xor ('0' & B);

 END IF;

 end process;

end behavior;

ENTITY alu4bit is

 port(

 -- alu4bit inputs

 A : in std_logic_vector(1 downto 0);

 B : in std_logic_vector(1 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 AluModOut : in std_logic_vector(1 downto 0);

 -- alu4bit outputs

 C : out std_logic_vector(1 downto 0)

);

END alu4bit;

architecture behavior of alu4bit is

begin

 process(opcode, a, b)

 begin

 if opcode = "000" then

 C <= a + b;

 elsif opcode = "001" then

 C <= a - b;

 else

 C <= AluModOut;

 end if;

 end process;

end behavior;

63

ENTITY modulo3input is

 port(

 -- alu8bit inputs

A : in std_logic_vector(7 downto 0);

 -- alu8bit outputs

 modulo3out : out std_logic_vector(1 downto 0)

);

END modulo3input;

architecture behavior of modulo3input is

signal

 x : std_logic_vector(15 downto 0);

signal

 z : std_logic_vector(7 downto 0);

begin

 -- module1 outputs

 x(0) <= a(0) and not a(1);

 x(1) <= not x(0);

 x(2) <= a(1) and not a(0);

 x(3) <= not x(2);

 -- module1 outputs

 x(4) <= a(2) and not a(3);

 x(5) <= not x(4);

 x(6) <= a(3) and not a(2);

 x(7) <= not x(6);

 --module1 outputs

 x(8) <= a(4) and not a(5);

 x(9) <= not x(8);

 x(10) <= a(5) and not a(4);

 x(11) <= not x(10);

 -- module1 outputs

 x(12) <= a(6) and not a(7);

 x(13) <= not x(12);

 x(14) <= a(7) and not a(6);

 x(15) <= not x(14);

 --module2 outputs

 z(0) <= (x(2) and x(6)) or (x(1) and x(3) and x(4)) or (x(0) and x(5) and x(7));

 z(1) <= not z(0);

 z(2) <= (x(4) and x(0)) or (x(7) and x(5) and x(2)) or (x(6) and x(3) and x(1));

 z(3) <= not z(2);

64

z(4) <= (x(10) and x(14)) or (x(9) and x(11) and x(12)) or (x(8) and x(13) and x(15));

z(5) <= not z(4);

z(6) <= (x(12) and x(8)) or (x(15) and x(13) and x(10)) or (x(14) and x(11) and x(9));

z(7) <= not z(6);

--module2 outputs

modulo3out(0) <= (z(2) and z(6)) or (z(1) and z(3) and z(4)) or (z(0) and z(5) and z(7));

modulo3out(1)<= (z(4) and z(0)) or (z(7) and z(5) and z(2)) or (z(6) and z(3) and z(1));

end behavior;

ENTITY modulo3alu is

 port(

 -- alu8bit inputs

C : in std_logic_vector(8 downto 0);

 -- alu8bit outputs

 modulo3aluout : out std_logic_vector(1 downto 0)

);

END modulo3alu;

architecture behavior of modulo3alu is

signal

 x : std_logic_vector(15 downto 0);

signal

 z : std_logic_vector(7 downto 0);

signal

 w : std_logic_vector(7 downto 0);

begin

 -- module1 outputs

 x(0) <= c(0) and not c(1);

 x(1) <= not x(0);

 x(2) <= c(1) and not c(0);

 x(3) <= not x(2);

 -- module1 outputs

 x(4) <= c(2) and not c(3);

 x(5) <= not x(4);

 x(6) <= c(3) and not c(2);

 x(7) <= not x(6);

 -- module1 outputs

 x(8) <= c(4) and not c(5);

 x(9) <= not x(8);

65

 x(10) <= c(5) and not c(4);

 x(11) <= not x(10);

 -- module1 outputs

 x(12) <= c(6) and not c(7);

 x(13) <= not x(12);

 x(14) <= c(7) and not c(6);

 x(15) <= not x(14);

 --module2 outputs

 z(0) <= (x(2) and x(6)) or (x(1) and x(3) and x(4)) or (x(0) and x(5) and x(7));

 z(1) <= not z(0);

 z(2) <= (x(4) and x(0)) or (x(7) and x(5) and x(2)) or (x(6) and x(3) and x(1));

 z(3) <= not z(2);

z(4) <= (x(10) and x(14)) or (x(9) and x(11) and x(12)) or (x(8) and x(13) and x(15));

z(5) <= not z(4);

z(6) <= (x(12) and x(8)) or (x(15) and x(13) and x(10)) or (x(14) and x(11) and x(9));

z(7) <= not z(6);

 --module2 outputs

 w(0) <= (z(2) and z(6)) or (z(1) and z(3) and z(4)) or (z(0) and z(5) and z(7));

 w(1) <= not w(0);

 w(2) <= (z(4) and z(0)) or (z(7) and z(5) and z(2)) or (z(6) and z(3) and z(1));

 w(3) <= not w(2);

 w(4) <= c(8) and not '0';

 w(5) <= not w(4);

 w(6) <= '0' and not c(8);

 w(7) <= not w(6);

 --module2 outputs

modulo3aluout(0) <= (w(2) and w(6)) or (w(1) and w(3) and w(4)) or (w(0) and w(5)

and w(7));

modulo3aluout(1) <= (w(4) and w(0)) or (w(7) and w(5) and w(2)) or (w(6) and w(3)

and w(1));

end behavior;

66

APPENDIX C

BERGER CHECK PREDICTION VHDL DECSRIPTION

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

 -- main module contains alu, berger check predictionn and counter entity

ENTITY bcp8 IS

PORT(

 A :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 B :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 Af :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 Bf :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 opcode :IN STD_LOGIC_VECTOR(0 TO 2);

 result :OUT STD_LOGIC_VECTOR(8 DOWNTO 0);

 error :OUT STD_LOGIC

);

END bcp8;

ARCHITECTURE structure OF bcp8 IS

 --internal wires

SIGNAL carryin :STD_LOGIC;

SIGNAL carry_out :STD_LOGIC;

SIGNAL carry :STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL comp1 :STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL comp2 :STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL cout_res :STD_LOGIC_VECTOR(7 DOWNTO 0);

signal errorbus :STD_LOGIC_VECTOR(3 DOWNTO 0);

 --instance alu

COMPONENT alu8 IS

PORT(

 A :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 B :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 opcode :IN STD_LOGIC_VECTOR(0 TO 2);

 result :OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

 carry_out :OUT STD_LOGIC;

 carry :OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

67

);

END COMPONENT alu8;

 --instance BCP(included several entities)

COMPONENT berg IS

PORT(

 A :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 B :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 C :IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 carry_in :IN STD_LOGIC;

 carry_out :IN STD_LOGIC;

 opcode :IN STD_LOGIC_VECTOR(0 TO 2);

 result_c :OUT STD_LOGIC_VECTOR(3 DOWNTO 0)

);

END COMPONENT;

 -- 0's counter

COMPONENT counter0 is

 port(

 -- inputs

 A : in std_logic_vector(7 downto 0);

 -- outputs

 counterout : out std_logic_vector(3 downto 0)

);

END COMPONENT;

 --instance entities

BEGIN

alu1 :alu8 PORT MAP (A => A, B => B, opcode => opcode, result =>

cout_res, carry_out => carry_out, carry => carry);

bcp1 :berg PORT MAP (A => Af, B => Bf, C => carry, carry_in => carryin,

carry_out => carry_out, opcode => opcode, result_c => comp2);

count1 :counter0 PORT MAP (A => cout_res, counterout => comp1);

 carryin <= '0';

 result <= carry_out & cout_res; --carry out added to result

 --comparator

ErrorBus <= comp1 xor comp2;

Error <= errorbus(3) or errorbus(2) or errorbus(1) or errorbus(0);

END structure;

68

ENTITY counter0 is

 port(

 -- inputs

 A : in std_logic_vector(7 downto 0);

 -- outputs

 counterout : out std_logic_vector(3 downto 0)

);

END counter0;

architecture behavior of counter0 is

signal

 x : std_logic_vector(7 downto 0);

signal

 z,w,y : std_logic_vector(3 downto 0);

signal

 v : std_logic_vector(3 downto 0);

begin

 x <= not A;

 --full adder1

 y(0) <= x(0) xor x(1) xor x(2);

 y(1) <= (x(0) and x(1)) or (x(2) and (x(0) xor x(1)));

 --full adder2

 z(0) <= x(3) xor x(4) xor x(5);

 z(1) <= (x(3) and x(4)) or (x(5) and (x(3) xor x(4)));

 --full adder3

 w(0) <= x(6) xor x(7);

 w(1) <= x(6) and x(7);

 --undefined bits

 y(2) <= '0';

 y(3) <= '0';

 z(2) <= '0';

 z(3) <= '0';

 w(2) <= '0';

 w(3) <= '0';

 --2bit adder

 v <= y + z;

69

 counterout <= v + w;

end behavior;

ENTITY mcsa IS

PORT(

 x_c: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 y_c: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 c_c: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 d: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

 result: OUT STD_LOGIC_VECTOR(3 DOWNTO 0)

);

END mcsa;

ARCHITECTURE structure OF mcsa IS

SIGNAL partial_sum: STD_LOGIC_VECTOR (3 DOWNTO 0);

SIGNAL shift_carry: STD_LOGIC_VECTOR (3 DOWNTO 0);

SIGNAL ps_sc_sum: STD_LOGIC_VECTOR (4 DOWNTO 0);

SIGNAL ps: STD_LOGIC_VECTOR (4 DOWNTO 0);

SIGNAL sc: STD_LOGIC_VECTOR (4 DOWNTO 0);

BEGIN

 PROCESS(x_c, y_c, c_c, d, partial_sum, shift_carry, ps, sc, ps_sc_sum)

 BEGIN

 partial_sum <= x_c XOR y_c XOR c_c;

 shift_carry <=(x_c AND y_c) OR (x_c AND c_c) OR (y_c AND c_c);

 ps <= "0" & partial_sum;

 sc <= shift_carry & "0";

 ps_sc_sum <= ps + sc + ("00" & d);

 result <= ps_sc_sum(3 DOWNTO 0);

 END PROCESS;

END structure;

entity mux is

 port

 (

 -- Input ports

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 carries : in std_logic_vector(7 downto 0);

 opcode0 : in std_logic;

 t1 : in std_logic;

 -- Output ports

 output : out std_logic_vector(7 downto 0)

70

);

end mux;

architecture behavior of mux is

begin

 process(opcode0, a, b, carries, t1)

 variable temp: std_logic_vector(7 downto 0);

 begin

 if opcode0 = '0' and t1 = '0' then

 temp := carries;

 elsif opcode0 = '0' and t1 = '1' then

 temp := carries;

 elsif opcode0 = '1' and t1 = '0' then

 temp := a and b;

 else

 temp := a or b;

 end if;

 end process;

end behavior;

ENTITY pla IS

PORT(

 carry_in : IN STD_LOGIC;

 carry_out : IN STD_LOGIC;

 opcode : IN STD_LOGIC_VECTOR(0 TO 2);

 t : OUT STD_LOGIC_VECTOR(1 TO

5);

 d : OUT STD_LOGIC_VECTOR(1

DOWNTO 0)

);

END pla;

ARCHITECTURE structure OF pla IS

SIGNAL c_in, c_out: STD_LOGIC_VECTOR (1 DOWNTO 0);

BEGIN

 PROCESS(opcode, carry_in, carry_out, c_in, c_out)

 BEGIN

 t <= "00000";

 d <= "00";

 c_in <= "0" & carry_in;

 c_out <= "0" & carry_out;

71

 CASE(opcode) IS

 WHEN "000" =>

 t <= "00100";

 d <= c_out - c_in + 1;

 WHEN "001" =>

 t <= "00100";

 d <= c_out - c_in + 1;

 WHEN "010" =>

 t <= "00111";

 d <= c_out - c_in + 2;

 WHEN "011" =>

 t <= "00111";

 d <= c_out - c_in + 2;

 WHEN "100" =>

 t <= "10100";

 d <= "01";

 WHEN "101" =>

 t <= "01101";

 d <= "01";

 WHEN "110" =>

 t <= "00100";

 d <= "01";

 WHEN "111" =>

 t <= "00000";

 d <= "00";

 WHEN OTHERS =>

 t <= "00000";

 d <= "00";

 END CASE;

 END PROCESS;

END structure;

ENTITY alu8 IS

PORT(

 A: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 B: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 opcode: IN STD_LOGIC_VECTOR(0 TO 2);

 result: ` OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

 carry_out: OUT STD_LOGIC;

 carry: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);

END alu8;

72

ARCHITECTURE structure OF alu8 IS

BEGIN

 PROCESS(opcode, A, B)

 BEGIN

 --carry is hardcoded to arbitrary #s (did not use FAs to obtain carry)

 carry <= "00000000"; carry

 carry_out <= '0';

 IF opcode = "000" THEN

 result <= A + B; -- add

 ELSIF opcode = "001" THEN

 result <= A - B; --subtract

 ELSIF opcode = "100" THEN

 result <= A and B; -- and

 ELSIF opcode = "110" THEN

 result <= A or B; -- or

 ELSIF opcode = "101" THEN

 result <= A xor B; -- xor

 ELSE

 result <= "00000000";

 END IF;

 END PROCESS;

END structure;

73

APPENDIX D

RESO VHDL DECSRIPTION

entity RESO is

 port

 (

 -- Input ports

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 A_f : in std_logic_vector(7 downto 0);

 B_f : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 clr : in std_logic;

 clk : in std_logic;

 -- Output ports

 S : out std_logic_vector(10 downto 0);

 error : out std_logic

);

end RESO;

architecture structure of RESO is

 --instance alu

component alu12bit

 port(

 -- alu8bit inputs

 A : in std_logic_vector(9 downto 0);

 B : in std_logic_vector(9 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 clk : in std_logic;

 -- alu8bit outputs

 C : out std_logic_vector(10 downto 0)

);

END component;

 --instance register

component Reg

 port(

74

 -- DFF inputs

 D : in std_logic_vector(10 downto 0);

 clk : in std_logic;

 clr : in std_logic;

 -- DFF outputs

 Q : out std_logic_vector(10 downto 0)

);

END component;

 --instance mux

component mux2_to_1

 port

 (

 -- Input ports

 d0 : in std_logic_vector(9 downto 0);

 d1 : in std_logic_vector(9 downto 0);

 Sel : in std_logic;

 -- Output ports

 f : out std_logic_vector(9 downto 0)

);

end component;

 --instance shift left shifter

component ShiftL

 port(

 -- rotator inputs

 A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(9 downto 0)

);

END component;

 --instance shift right shifter

component ShiftR

 port(

 -- inputs

 A : in std_logic_vector(7 downto 0);

75

 -- outputs

 C : out std_logic_vector(9 downto 0)

);

END component;

 --instance alu result shifter

component ShiftL_lsb

 port(

 -- inputs

 A : in std_logic_vector(10 downto 0);

 -- outputs

 C : out std_logic_vector(10 downto 0)

);

End component;

 --internal wires

signal aluout : std_logic_vector(10 downto 0);

signal MuxOut1 : std_logic_vector(9 downto 0);

signal MuxOut2 : std_logic_vector(9 downto 0);

signal ROut1 : std_logic_vector(9 downto 0);

signal ROut2 : std_logic_vector(9 downto 0);

signal LOut1 : std_logic_vector(9 downto 0);

signal LOut2 : std_logic_vector(9 downto 0);

signal lsbout : std_logic_vector(10 downto 0);

signal S1 : std_logic_vector(10 downto 0);

signal errorbus : std_logic_vector(10 downto 0);

 --instance entities

begin

SL1: ShiftL port map (A=>A, C=>Lout1);

SL2: ShiftL port map (A=>B, C=>Lout2);

SR1: ShiftR port map (A=>A_f, C=>Rout1);

SR2: ShiftR port map (A=>B_f, C=>Rout2);

Mux1: mux2_to_1 port map (d0=>Lout1, d1=>Rout1, f=>MuxOut1, sel=>clk);

Mux2: mux2_to_1 port map (d0=>Lout2, d1=>Rout2, f=>MuxOut2, sel=>clk);

alu: alu12bit port map (A=>MuxOut1, B=>MuxOut2, opcode=>opcode,

C=>aluout, clk=>clk);

SL_lsb: ShiftL_lsb port map (A=>aluout, C=> lsbout);

76

Reg1: Reg port map (D=>aluout, Q=>S1, clk=>clk, clr=>clr);

S <= lsbout; --result

--comparator

errorbus <= lsbout xor s1;

error <= errorbus(10) or errorbus(9) or errorbus(8) or errorbus(7) or errorbus(6)

or errorbus(5) or errorbus(4) or errorbus(3) or errorbus(2) or

errorbus(1) or errorbus(0);

end structure;

--really an 11-bit alu

ENTITY alu12bit is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(9 downto 0);

 B : in std_logic_vector(9 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 clk : in std_logic;

 -- alu8bit outputs

 C : out std_logic_vector(10 downto 0)

);

END alu12bit;

--really an 11-bit alu

architecture behavior of alu12bit is

begin

 process(opcode, a, b)

 variable temp: std_logic_vector(10 downto 0);

 begin

 if opcode = "000" then

 temp := ('0' & a) + ('0' & b);

 C <= temp;

 elsif opcode = "001" then

 temp := ('0' & a) - ('0' & b);

 C <= temp;

 elsif opcode = "010" then

 temp := ('0' & a) and ('0' & b);

 C <= temp;

 elsif opcode = "011" then

 temp := ('0' & a) or ('0' & b);

 C <= temp;

77

 else

 temp := ('0' & a) xor ('0' & b);

 C <= temp;

 end if;

 end process;

end behavior;

entity mux2_to_1 is

 port

 (

 -- Input ports

 d0 : in std_logic_vector(9 downto 0);

 d1 : in std_logic_vector(9 downto 0);

 Sel : in std_logic;

 -- Output ports

 f : out std_logic_vector(9 downto 0)

);

end mux2_to_1;

architecture behavior of mux2_to_1 is

 begin

-- f <= (d0 and not S) or (d1 and S); -- 2 to 1 mux boolean equation

 with Sel select

 f <= d0 when '0',

 d1 when others;

end behavior;

ENTITY Reg is

 port(

 -- DFF inputs

 D : in std_logic_vector(10 downto 0);

 clk : in std_logic;

 clr : in std_logic;

 -- DFF outputs

 Q : out std_logic_vector(10 downto 0)

);

END Reg;

architecture behavior of Reg is

78

begin

 process(d, clk, clr)

 begin

 if clr = '1' then Q <= "00000000000";

 elsif clk'event and clk = '1'

 then Q <= D;

 end if;

 end process;

end behavior;

ENTITY ShiftL is

 port(

 -- rotator inputs

 A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(9 downto 0)

);

END ShiftL;

architecture behavior of ShiftL is

begin

 C <= A & "00";

end behavior;

ENTITY ShiftL_lsb is

 port(

 -- rotator inputs

 A : in std_logic_vector(10 downto 0);

 -- rotator outputs

 C : out std_logic_vector(10 downto 0)

);

END ShiftL_lsb;

architecture behavior of ShiftL_lsb is

79

begin

 C <= A(8 downto 0)& "00";

end behavior;

ENTITY ShiftR is

 port(

 -- rotator inputs

A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(9 downto 0)

);

END ShiftR;

architecture behavior of ShiftR is

begin

 C <= "00" & A;

end behavior;

80

APPENDIX D

RESO VHDL DECSRIPTION

LIBRARY ieee;

USE ieee.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;

entity RERO is

 port

 (

 -- Input ports

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 A_f : in std_logic_vector(7 downto 0);

 B_f : in std_logic_vector(7 downto 0);

 Opcode : in std_logic_vector(2 downto 0);

 clr : in std_logic;

 clk : in std_logic;

 -- Output ports

 S : out std_logic_vector(8 downto 0);

 error : out std_logic

);

end RERO;

architecture structure of RERO is

 --instance alu

component alu9bit

port

 (

 -- alu inputs

 A : in std_logic_vector(8 downto 0);

 B : in std_logic_vector(8 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- alu outputs

 C : out std_logic_vector(8 downto 0)

81

);

end component;

 --instance register

component FFR

 port(

 -- DFF inputs

 D : in std_logic_vector(8 downto 0);

 clk : in std_logic;

 clr : in std_logic;

 -- DFF outputs

 Q : out std_logic_vector(8 downto 0)

);

END component;

 --instance mux

component mux_2to1

 port

 (

 -- Input ports

 d0 : in std_logic_vector(8 downto 0);

 d1 : in std_logic_vector(8 downto 0);

 Sel : in std_logic;

 -- Output ports

 f : out std_logic_vector(8 downto 0)

);

end component;

 --instance left rotator

component RotatorL

 port(

 -- rotator inputs

 A : in std_logic_vector(8 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END component;

 --instance right rotator

82

component RotatorR

 port(

 -- rotator inputs

 A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END component;

 --instance unrotated operands to enter ALU for first computation

Component Unrotated is

 port(

 -- rotator inputs

 A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END Component;

 --internal wires

signal alu8out : std_logic_vector(8 downto 0);

signal MuxOut1 : std_logic_vector(8 downto 0);

signal MuxOut2 : std_logic_vector(8 downto 0);

signal ROut1 : std_logic_vector(8 downto 0);

signal ROut2 : std_logic_vector(8 downto 0);

signal uROut1 : std_logic_vector(8 downto 0);

signal uROut2 : std_logic_vector(8 downto 0);

signal LOut : std_logic_vector(8 downto 0);

signal S1 : std_logic_vector(8 downto 0);

signal S_f : std_logic_vector(8 downto 0);

signal errorbus : std_logic_vector(8 downto 0);

 --instance entities

begin

RR1: rotatorR port map (A=>A, C=>Rout1);

RR2: rotatorR port map (A=>B, C=>Rout2);

83

UR1: unrotated port map (A=>A_f, C=>uRout1);

UR2: unrotated port map (A=>B_f, C=>uRout2);

Mux1: Mux_2to1 port map (d0=>Rout1, d1=>uRout1, f=>MuxOut1, sel=>clk);

Mux2: Mux_2to1 port map (d0=>Rout2, d1=>uRout2, f=>MuxOut2, sel=>clk);

alu: alu9bit port map (A=>MuxOut1, B=>MuxOut2, opcode=>opcode,

C=>alu8out);

RL: rotatorL port map (A=>alu8out, C=>lout);

FF: FFR port map (D=>alu8out, Q=>S_f, clk=>clk, clr=>clr);

S <= lout; --resul

--comparator

errorbu s <= lout xor s_f;

error <= errorbus(8) or errorbus(7) or errorbus(6) or errorbus(5) or errorbus(4)

or errorbus(3) or errorbus(2) or errorbus(1) or errorbus(0);

end structure;

ENTITY alu9bit is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(8 downto 0);

 B : in std_logic_vector(8 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- alu8bit outputs

 C : out std_logic_vector(8 downto 0)

);

END alu9bit;

architecture behavior of alu9bit is

begin

 process(opcode, a, b)

 variable temp: std_logic_vector(9 downto 0);

 begin

 if opcode = "000" then

 temp := ('0'&a) + ('0'&b) + '1';

 C <= temp(8 downto 0);

 elsif opcode = "001" then

 temp := ('0'&a) - ('0'&b) + '1';

 C <= temp(8 downto 0);

 elsif opcode = "010" then

84

 temp := ('0'&a) and ('0'&b);

 C <= temp(8 downto 0);

 elsif opcode = "011" then

 temp := ('0'&a) or ('0'&b);

 C <= temp(8 downto 0);

 else

 temp := ('0'&a) xor ('0'&b);

 C <= temp(8 downto 0);

 end if;

 end process;

end behavior;

ENTITY FFR is

 port(

 -- DFF inputs

 D : in std_logic_vector(8 downto 0);

 clk : in std_logic;

 clr : in std_logic;

 -- DFF outputs

 Q : out std_logic_vector(8 downto 0)

);

END FFR;

architecture behavior of FFR is

begin

 process(d, clk, clr)

 begin

 if clr = '1' then Q <= "000000000";

 elsif clk'event and clk = '1'

 then Q <= D;

 end if;

 end process;

end behavior;

entity mux_2to1 is

 port

 (

 -- Input ports

 d0 : in std_logic_vector(8 downto 0);

 d1 : in std_logic_vector(8 downto 0);

85

 Sel : in std_logic;

 -- Output ports

 f : out std_logic_vector(8 downto 0)

);

end mux_2to1;

architecture behavior of mux_2to1 is

 begin

-- f <= (d0 and not S) or (d1 and S); -- 2 to 1 mux boolean equation

 with Sel select

 f <= d1 when '0',

 d0 when others;

end behavior;

ENTITY RotatorL is

 port(

 -- rotator inputs

 A : in std_logic_vector(8 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END RotatorL;

architecture behavior of RotatorL is

begin

 C <= A(6 downto 0) & A(8 downto 7);

end behavior;

ENTITY RotatorR is

 port(

 -- rotator inputs

 A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

86

END RotatorR;

architecture behavior of RotatorR is

begin

 c <= A(1 downto 0) & '0' & A(7 downto 2);

end behavior;

ENTITY Unrotated is

 port(

 -- rotator inputs

 A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END Unrotated;

architecture behavior of Unrotated is

begin

 c <= '0' & A;

end behavior;

87

APPENDIX E

RERO VHDL DECSRIPTION

LIBRARY ieee;

USE ieee.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;

entity RERO is

 port

 (

 -- Input ports

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 A_f : in std_logic_vector(7 downto 0);

 B_f : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 clr : in std_logic;

 clk : in std_logic;

 -- Output ports

 S : out std_logic_vector(8 downto 0);

 error : out std_logic

);

end RERO;

architecture structure of RERO is

 --instance alu

component alu9bit

port

 (

 -- alu inputs

 A : in std_logic_vector(8 downto 0);

 B : in std_logic_vector(8 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- alu outputs

 C : out std_logic_vector(8 downto 0)

);

end component;

88

 --instance register

component FFR

 port(

 -- DFF inputs

 D : in std_logic_vector(8 downto 0);

 clk : in std_logic;

 clr : in std_logic;

 -- DFF outputs

 Q : out std_logic_vector(8 downto 0)

);

END component;

 --instance mux

component mux_2to1

 port

 (

 -- Input ports

 d0 : in std_logic_vector(8 downto 0);

 d1 : in std_logic_vector(8 downto 0);

 Sel : in std_logic;

 -- Output ports

 f : out std_logic_vector(8 downto 0)

);

end component;

 --instance left rotator

component RotatorL

 port(

 -- rotator inputs

 A : in std_logic_vector(8 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END component;

89

--instance right rotator

component RotatorR

 port(

 -- rotator inputs

 A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END component;

 --instance unrotated operands to enter ALU for first computation

Component Unrotated is

 port(

 -- rotator inputs

 A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END Component;

 --internal wires

signal alu8out : std_logic_vector(8 downto 0);

signal MuxOut1 : std_logic_vector(8 downto 0);

signal MuxOut2 : std_logic_vector(8 downto 0);

signal ROut1 : std_logic_vector(8 downto 0);

signal ROut2 : std_logic_vector(8 downto 0);

signal uROut1 : std_logic_vector(8 downto 0);

signal uROut2 : std_logic_vector(8 downto 0);

signal LOut : std_logic_vector(8 downto 0);

signal S1 : std_logic_vector(8 downto 0);

signal S_f : std_logic_vector(8 downto 0);

signal errorbus : std_logic_vector(8 downto 0);

 --instance entities

begin

RR1: rotatorR port map (A=>A, C=>Rout1);

RR2: rotatorR port map (A=>B, C=>Rout2);

UR1: unrotated port map (A=>A_f, C=>uRout1);

90

UR2: unrotated port map (A=>B_f, C=>uRout2);

Mux1: Mux_2to1 port map (d0=>Rout1, d1=>uRout1, f=>MuxOut1,

sel=>clk);

Mux2: Mux_2to1 port map (d0=>Rout2, d1=>uRout2, f=>MuxOut2,

sel=>clk);

alu: alu9bit port map (A=>MuxOut1, B=>MuxOut2, opcode=>opcode,

C=>alu8out);

RL: rotatorL port map (A=>alu8out, C=>lout);

FF:FFR port map (D=>alu8out, Q=>S_f, clk=>clk, clr=>clr);

S <= lout; --resul

--comparator

errorbus <= lout xor s_f;

error <= errorbus(8) or errorbus(7) or errorbus(6) or errorbus(5) or errorbus(4) or

errorbus(3) or errorbus(2) or errorbus(1) or errorbus(0);

end structure;

ENTITY alu9bit is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(8 downto 0);

 B : in std_logic_vector(8 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- alu8bit outputs

 C : out std_logic_vector(8 downto 0)

);

END alu9bit;

architecture behavior of alu9bit is

begin

 process(opcode, a, b)

 variable temp: std_logic_vector(9 downto 0);

 begin

 if opcode = "000" then

 temp := ('0'&a) + ('0'&b) + '1';

 C <= temp(8 downto 0);

 elsif opcode = "001" then

 temp := ('0'&a) - ('0'&b) + '1';

 C <= temp(8 downto 0);

 elsif opcode = "010" then

91

 temp := ('0'&a) and ('0'&b);

 C <= temp(8 downto 0);

 elsif opcode = "011" then

 temp := ('0'&a) or ('0'&b);

 C <= temp(8 downto 0);

 else

 temp := ('0'&a) xor ('0'&b);

 C <= temp(8 downto 0);

 end if;

 end process;

end behavior;

ENTITY Unrotated is

 port(

 -- rotator inputs

 A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END Unrotated;

architecture behavior of Unrotated is

begin

 c <= '0' & A;

end behavior;

ENTITY RotatorR is

 port(

 -- rotator inputs

 A : in std_logic_vector(7 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END RotatorR;

architecture behavior of RotatorR is

begin

 c <= A(1 downto 0) & '0' & A(7 downto 2);

end behavior;

ENTITY RotatorL is

92

 port(

 -- rotator inputs

 A : in std_logic_vector(8 downto 0);

 -- rotator outputs

 C : out std_logic_vector(8 downto 0)

);

END RotatorL;

architecture behavior of RotatorL is

begin

 C <= A(6 downto 0) & A(8 downto 7);

end behavior;

entity mux_2to1 is

 port

 (

 -- Input ports

 d0 : in std_logic_vector(8 downto 0);

 d1 : in std_logic_vector(8 downto 0);

 Sel : in std_logic;

 -- Output ports

 f : out std_logic_vector(8 downto 0)

);

end mux_2to1;

architecture behavior of mux_2to1 is

 begin

-- f <= (d0 and not S) or (d1 and S); -- 2 to 1 mux boolean equation

 with Sel select

 f <= d1 when '0',

 d0 when others;

end behavior;

ENTITY FFR is

 port(

93

 -- DFF inputs

 D : in std_logic_vector(8 downto 0);

 clk : in std_logic;

 clr : in std_logic;

 -- DFF outputs

 Q : out std_logic_vector(8 downto 0)

);

END FFR;

architecture behavior of FFR is

begin

 process(d, clk, clr)

 begin

 if clr = '1' then Q <= "000000000";

 elsif clk'event and clk = '1'

 then Q <= D;

 end if;

 end process;

end behavior;

94

APPENDIX F

PARITY VHDL DECSRIPTION

LIBRARY ieee;

USE ieee.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;

entity ppc is

 port

 (

 -- Input ports

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 A_f : in std_logic_vector(7 downto 0);

 B_f : in std_logic_vector(7 downto 0);

 Opcode : in std_logic_vector(2 downto 0);

 -- Output ports

 S : out std_logic_vector(8 downto 0);

 error : out std_logic

);

end ppc;

architecture structure of ppc is

 --instance alu8bit

component alu8bit

port

 (

 -- inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- outputs

95

 C : out std_logic_vector(8 downto 0);

 aluout : out std_logic_vector(7 downto 0)

);

end component;

component parity is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

 -- alu8bit outputs

 C : out std_logic

);

END component;

 -- internal signals

signal ac : std_logic;

signal bc : std_logic;

signal pc : std_logic;

signal Sc : std_logic;

signal S1 : std_logic_vector(7 downto 0);

begin

 -- Port connections

alu8: alu8bit port map (A=>A_f, B=>B_f, opcode=>opcode, C=>S,

aluout=>s1);

p1: parity port map (A=>A, C=>ac);

p2: parity port map (A=>b, C=>bc);

p3: parity port map (A=>s1, C=>sc);

pc <= ac xor bc;

error <= pc xor Sc;

end structure;

ENTITY alu8bit is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

96

 -- alu8bit outputs

 aluout : out std_logic_vector(7 downto 0);

 C : out std_logic_vector(8 downto 0)

);

END alu8bit;

architecture behavior of alu8bit is

signal temp : std_logic_vector(8 downto 0);

 begin

 process(opcode, a, b)

 begin

 IF opcode = "000" THEN

 temp <= ('0'& A) + ('0' & B); -- add

 ELSIF opcode = "001" THEN

 temp <= ('0' & A) - ('0' & B); -- subtract

 ELSIF opcode = "010" THEN

 temp <= ('0' & A) and ('0' & B); -- and

 ELSIF opcode = "011" THEN

 temp <= ('0' & A) or ('0' & B); -- or

 ELSIF opcode = "100" THEN

 temp <= ('0' & A) xor ('0' & B); -- xor

 ELSE

 temp <= ('0' & A) xor ('0' & B);

 END IF;

 end process;

 aluout <= temp (7 downto 0);

 c <= temp;

end behavior;

ENTITY parity is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

 -- alu8bit outputs

 C : out std_logic

);

END parity;

architecture behavior of parity is

begin

c <= a(7) xor a(6) xor a(5) xor a(4) xor a(3) xor a(2) xor a(1) xor a(0);

end behavior;

97

APPENDIX G

PARITY AND LOGIC VHDL DECSRIPTION

LIBRARY ieee;

USE ieee.std_logic_1164.all;

use IEEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;

entity Pargic is

 port

 (

 -- Input ports

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 A_f : in std_logic_vector(7 downto 0);

 B_f : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- Output ports

 S : out std_logic_vector(8 downto 0);

 error : out std_logic

);

end Pargic;

architecture structure of Pargic is

 --instance alu8bit

component alu8bit

port

 (

 -- inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- outputs

98

 C : out std_logic_vector(8 downto 0);

 aluout : out std_logic_vector(7 downto 0)

);

end component;

component parity is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

 -- alu8bit outputs

 C : out std_logic

);

END component;

component logic is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- alu8bit outputs

 C : out std_logic_vector(7 downto 0)

);

END component;

component comparator is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 -- alu8bit outputs

 C : out std_logic

);

END component;

component mux_2to1 is

 port

 (

 -- Input ports

 d0 : in std_logic;

99

 d1 : in std_logic;

 Sel : in std_logic_vector (2 downto 0);

 -- Output ports

 f : out std_logic

);

end component;

 -- internal signals

signal ac : std_logic;

signal bc : std_logic;

signal pc : std_logic;

signal Sc : std_logic;

signal d1 : std_logic;

signal S1 : std_logic_vector(7 downto 0);

signal log : std_logic_vector(7 downto 0);

begin

 -- Port connections

alu8: alu8bit port map (A=>A_f, B=>B_f, opcode=>opcode, C=>S,

aluout=>s1);

p1: parity port map (A=>A, C=>ac);

p2: parity port map (A=>b, C=>bc);

p3: parity port map (A=>s1, C=>sc);

l1: logic port map (A=>A, B=>B, opcode=>opcode,

C=>log);

c1: comparator port map (A=>log, B=>s1, C=>d1);

m1: mux_2to1 port map (d0=>pc, d1=>d1, sel=>opcode, f=>error);

pc <= ac xor bc xor Sc;

end structure;

ENTITY alu8bit is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

100

 B : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- alu8bit outputs

 aluout : out std_logic_vector(7 downto 0);

 C : out std_logic_vector(8 downto 0)

);

END alu8bit;

architecture behavior of alu8bit is

signal temp : std_logic_vector(8 downto 0);

 begin

 process(opcode, a, b)

 begin

 IF opcode = "000" THEN

 temp <= ('0'& A) + ('0' & B); -- add

 ELSIF opcode = "001" THEN

 temp <= ('0' & A) - ('0' & B); -- subtract

 ELSIF opcode = "010" THEN

 temp <= ('0' & A) and ('0' & B); -- and

 ELSIF opcode = "011" THEN

 temp <= ('0' & A) or ('0' & B); -- or

 ELSIF opcode = "100" THEN

 temp <= ('0' & A) xor ('0' & B); -- xor

 ELSE

 temp <= ('0' & A) xor ('0' & B);

 END IF;

 end process;

 aluout <= temp (7 downto 0);

 c <= temp;

end behavior;

ENTITY logic is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 opcode : in std_logic_vector(2 downto 0);

 -- alu8bit outputs

 C : out std_logic_vector(7 downto 0)

);

END logic;

architecture behavior of logic is

101

signal temp : std_logic_vector(7 downto 0);

 begin

 process(opcode, a, b)

 begin

 IF opcode = "010" THEN

 temp <= (A) and (B); -- and

 ELSIF opcode = "011" THEN

 temp <= (A) or (B); -- or

 ELSIF opcode = "100" THEN

 temp <= (A) xor (B);

 ELSE

 temp <= (A) xor (B); -- xor

 END IF;

 end process;

 c <= temp;

end behavior;

ENTITY parity is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

 -- alu8bit outputs

 C : out std_logic

);

END parity;

architecture behavior of parity is

begin

c <= a(7) xor a(6) xor a(5) xor a(4) xor a(3) xor a(2) xor a(1) xor a(0);

end behavior;

entity mux_2to1 is

 port

 (

 -- Input ports

 d0 : in std_logic;

 d1 : in std_logic;

 Sel : in std_logic_vector (2 downto 0);

 -- Output ports

 f : out std_logic

102

);

end mux_2to1;

architecture behavior of mux_2to1 is

 begin

-- f <= (d0 and not S) or (d1 and S); -- 2 to 1 mux boolean equation

 with Sel select

 f <= d0 when "000",

 d0 when "001",

 d1 when others;

end behavior;

ENTITY comparator is

 port(

 -- alu8bit inputs

 A : in std_logic_vector(7 downto 0);

 B : in std_logic_vector(7 downto 0);

 -- alu8bit outputs

 C : out std_logic

);

END comparator;

architecture behavior of comparator is

signal d : std_logic_vector(7 downto 0);

begin

d <= a xor b;

c <= d(7) xor d(6) xor d(5) xor d(4) xor d(3) xor d(2) xor d(1) xor d(0);

end behavior;

103

REFERENCES

[1] K. Roy, T.M. Mak, K. Cheng. “Test considerations for nanometer scale CMOS

circuits”. Proceedings of the 21st IEEE VLSI Test Symposium, pp.313-315. 2003.

[2] S. Mukherjee. Architecture Design for Soft Errors. Burlington, MA: Morgan

Kaufmann, 2008, pp. 2-8.

[3] C. Constantinescu. “Impact of Deep Submicron Technology on Dependability of

VLSI Circuits”, Proceedings International Conference on Dependable Systems

and Network, pp. 205- 209, 2002.

[4] J. Li, E.E. Swartzlander Jr. “Concurrent error detection in ALUs by recomputing

with rotated operands”. International Workshop on Defect and Fault Tolerance in

VLSI Systems, pp. 109-116, 1992.

[5] J.R. Schwank, M.R. Shaneyfelt, D.M. Fleetwood, J.A. Felix, P.E. Dodd, P.

Paillet, V. Ferlet-Cavrois. “Radiation Effects in MOS Oxides”. IEEE

Transactions on Nuclear Science, pp. 1833-1853, 2008.

[6] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson, "On latching probability of

particle induced transients in combinational networks," in 24th IEEE

International Symposium on Fault-Tolerant Computing, Austin, TX, USA, 1994,

pp. 340-9.

[7] L. W. Massengill, A. E. Baranski, D. O. Van Nort, J. Meng, and B. L. Bhuva,

"Analysis of single-event effects in combinational logic-simulation of the

AM2901 bitslice processor," IEEE Transactions on Nuclear Science, vol. 47, pp.

2609-15, 2000.

[8] P.E. Dodd, L.W. Massengill. “Basic mechanisms and modeling of single-event

upset in digital microelectronics”. IEEE Transactions on Nuclear Science, vol.50,

pp. 583-602, 2003.

[9] S.J. Piestrak. “Design of residue generators and multioperand adders modulo 3

built of multioutput threshold circuits”. IEE Proceedings Computer and Digital

Techniques, vol. 141, pp. 129-134, 1994.

[10] J.C. Lo, S. Thanawastien, T.R.N. Rao, “Concurrent error detection in arithmetic

and logical operations using Berger codes”. Proceedings of 9th Symposium on

Computer Arithmetic, pp. 233-240, 1989.

[11] D. P. Siemwiorek, "Architecture of fault-tolerant computers: an historical

perspective," Proceedings of the IEEE, vol. 79, pp. 1710-34, 1991.

http://ieeexplore.ieee.org.proxy.library.vanderbilt.edu/xpls/abs_all.jsp?arnumber=1028880
http://ieeexplore.ieee.org.proxy.library.vanderbilt.edu/xpls/abs_all.jsp?arnumber=1028880

104

[12] V. Srinivasan, J. W. Farquharson, B.L. Bhuva, W.H. Robinson. ”Evaluation of

Error Detection Strategies for an FPGA-Based Self-Checking Arithmetic and

Logic Unit”. MAPLD International Conference, 2005.

[13] J.F. Wakerly. “Partially Self-Checking Circuits and Their Use in Performing

Logical Operations” IEEE Transactions on Computers, Vol. C-23 pp. 658-666,

1974.

[14] B.W. Johnson, J.H. Aylor, H.H. Hana. “Efficient use of time and hardware

redundancy for concurrent error detection in a 32-bit VLSI adder.” IEEE Journal

of Solid-State Circuits, pp. 208-215, 1988.

[15] A. Golander, S. Weiss, R. Ronen. “Synchronizing Redundant Cores in a Dynamic

DMR Multicore Architecture”. IEEE Transactions on Circuits and Systems II:

Express Briefs, pp. 474-478, 2009.

[16] M. Nicolaidis, "Time redundancy based soft-error tolerance to rescue nanometer

technologies," in 17th IEEE VLSI Test Symposium, Dana Point, CA, USA, 1999,

pp. 86-94.

[17] D. A. Reynolds, G. Metze. “Fault Detection Capabilitiesof Alternating Logic”

IEEE Transactions on Computer Science, Vol. C-27, pp. 1093-1098, 1978.

[18] M. Nicolaidis. “Carry Checking/Parity Prediction Adders and ALUs.” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol.11, pp. 121-

128, 2003.

[19] M. Nicolaidis, R.O. Duarte, S. Manich, J. Figueras. “Fault-secure parity

prediction arithmetic operators”. IEEE Design & Test of Computers, vol. 14, pp.

60-71, 1997. IEEE Transaction on Computers,1997.

[20] Y. Saitoh, H. Imai. “Multiple Unidirectional Byte Error-Correcting Codes”. IEEE

Transactions on Information Theory, vol. 37, pp. 903-908, 1991.

[21] G. M. Koob, C. Lau. Foundations of Dependable Computing: System

Implementation. Norwell, MA: Kluwer Academic Publishers, 1994, pp. 37, 49-53.

[22] M. Nicolaidis. “Efficient Implementation of Self-Checking Adders and ALUs”

The Twenty-Third International Symposium on Fault-Tolerant Computing, pp.

586-595, 1993.

[23] J.H. Patel, L.Y. Fung. “Concurrent Error Detection in ALU's by Recomputing

with Shifted Operands.” IEEE Transactions on Computers, pp. 589-595, 1982.

http://ieeexplore.ieee.org.proxy.library.vanderbilt.edu/xpl/RecentIssue.jsp?punumber=92

105

[24] D.D. Gajski, C. Vora. “High-speed modulo-3 generator”. Electronics Letters, Vol.

13, 1977.

[25] R. Forsati, K. Faez, F. Moradi, A. Rahbar. “A Fault Tolerant Method for Residue

Arithmetic Circuits”. International Conference on Information Management and

Engineering, pp. 59-63, 2009.

[26] J.C. Lo, S. Thanawastien, T.R.N. Rao, M. Nicolaidis. “An SFS Berger check

prediction ALU and its application to self-checking processor designs”. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol

11, pp. 525-540, 1992.

[27] “Quartus II Subscription Edition Software”. [Online] Available: http://www.

altera.com/products/software/quartus-ii/subscription-edition/qts-se-index.html.

[Accessed Mar. 12, 2010].

[28] C. Roth, L.K. John. Digital Systems Design Using VHDL. Toronto, Ontario:

Thomson Learning, 2008.

[29] “ModelSim-Altera [Online] Available: http://www.altera.com/products/software/

quartus-ii/modelsim/qts-modelsim-index.html. [Accessed Mar. 12, 2010].

[30] Gajiski, D. Modular Modulo 3 Module. 4,190,893. United States, Feb 26, 1980.

[31] J.C. Lo, S. Thanawastien, and T.R.N. Rao. “Concurrent error detection in

arithmetic and logical operations using Berger codes”. Proceedings of 9th

Symposium on Computer Arithmetic, pp. 233-240, 1989.

[32] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,

P.D.Franzon, M. Bucher, S. Basavarajaiah, J. Oh, R. Jenkal. “FreePDK: An

Open-Source Variation-Aware Design Kit” IEEE International Conference on

Microelectronics Systems Education, pp. 173-174, 2007.

[33] “Voltagestorm Power and Power Rail Verification”. [Online] Available:

http://www.cadence.com/rl/Resources/datasheets/voltage_storm_ds.pdf.

[Accessed Mar. 23, 2010].

