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CHAPTER I 

 

METALS AND HUNTINGTON’S DISEASE: THEIR POTENTIAL FOR GENE-

ENVIRONMENT INTERACTIONS 

 

Gene-Environment Interactions in Neurodegenerative Disorders 

 Even with conservative estimates, deaths due to neurodegenerative diseases will 

increase by approximately 119% as the elderly population in the United States more than 

doubles by 2040 (Lilienfeld et al. 1993).   Alzheimer’s disease (AD), Parkinson’s disease 

(PD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) are the most 

common of these progressive disorders.  Each is associated with decay in movement, 

balance, and cognitive decline, as well as other nonmotor symptoms.  HD is a 

monogenetic disorder in which a trinucleotide expansion in the huntingtin gene (HTT) 

causes disease.  AD, PD, and ALS are complex disorders with various factors playing a 

role disease risk.   

Familial forms of AD, PD, and ALS are caused by genetic mutations and are 

inherited in an autosomal dominant fashion similarly to HD.  In AD for example, 

mutations in presenilin 1 and amyloid precursor protein lead to autosomal dominant 

inheritance of the disease with early-onset, before age 60.  While, single nucleotide 

polymorphisms in the α-synuclein as well as mutations in parkin, UCH-L1, PINK1, DJ-1, 

and other genes cause inheritable forms of PD (Coppede et al. 2006).  Ten percent of 
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ALS cases are considered familial and are caused by mutations in seven genes, such as 

superoxide dismutase 1 (Bossy-Wetzel et al. 2004). 

Susceptibility to the more common sporadic forms of these diseases can be 

enhanced by environmental, epigenetic, and genetic factors (Bossy-Wetzel et al. 2004).  

These susceptibility factors can change risk of acquiring the disease or alter the 

progression of the disorder, changing the age of onset or symptom severity.  Alterations 

in an associated gene increase the susceptibility to a disease but are not sufficient to cause 

the disease without other modifiers.  For example, the more common late-onset form of 

AD is associated with alterations in apolipoprotein E (APOE).  APOE represents one of 

over 500 genes labeled as genetic risk factors associated with this disease (Bertram et al. 

2008).  Polymorphisms in APOE, cytochrome P450, and monoamine oxidase B are 

considered susceptibility factors for acquiring sporadic PD.  Though risk factors in ALS 

are not as clear cut as in other diseases, mutations in neurofilament and the vascular 

endothelial growth factor (VEGF) receptor have been associated with increased incidence 

of ALS (Coppede et al. 2006).  The prominent genetic connections detailed above 

emphasize that single gene mutations do not completely explain the observed variation in 

patients’ symptoms that can occur in these diseases (Bertram et al. 2005).   

The study of environmental influences on neurological diseases is still somewhat 

in its infancy, but strong evidence has emerged illustrating the importance of gene-

environment interactions.  Environmental risks including participation in sports such as 

soccer or American football has been linked to ALS and PD (Coppede et al. 2006).  

Exposure to toxicants can also increase susceptibility to neurodegenerative disorders.  

One classic example is the induction of Parkinsonism by the neurotoxin 1-methyl-4-
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phenylpyridinium (MPP+), a metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP), which kills the dopaminergic neurons of the substantia nigra (Figure I.I.A. and 

B.).  MPTP is responsible for inducing PD in drug addicts who ingested it as a 

contaminate in their illicit drugs (Johannessen et al. 1984). Additionally, some pesticides, 

such as paraquat, also contain a toxin similar to MPP+, which has been linked to PD 

(Cicchetti et al. 2009).  Both the pesticide and MPP+, inhibit mitochondrial complex I 

function and lead to cell death (Tansey et al. 2007).    

Diseases that are clearly genetic such as HD are even susceptible to modification 

by environmental factors.  Studies of monozygotic twins have shown significant 

variability in HD progression between siblings (Georgiou et al. 1999).  Additionally, 

studies in HD and other neurodegenerative diseases have reported exercise and 

enrichment is beneficial slowing the disease progression (Carreras et al. ; Kramer et al. 

1999; van Dellen et al. 2008; Nichol et al. 2009) 

 

The Neurotoxicity of Metals 

Metals are environmental agents associated with neurodegeneration, and 

exposures to high levels of metal ions have well-defined toxicities within the brain 

(Bossy-Wetzel et al. 2004; Brown et al. 2005; Coppede et al. 2006).  Additionally, 

multiple neurodegenerative disorders have been associated with altered metal 

homeostasis emphasizing the importance of metals for normal brain function.   

 Altered levels of copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), and other 

trace metals have been reported as elevated in neurodegenerative diseases that are not the 
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result of overexposure to these metals.  For example, Cu and Fe are all reported elevated 

in patients’ brains with HD (Dexter et al. 1991; Dexter et al. 1992; Perl et al. 2007).  The 

brains of PD patients also show increases in Fe (Dexter et al. 1991).  Diseases of metals 

such as Wilson’s disease and neuroferritinopathy can also lead to neurodegeneration.  

These two diseases are both caused by genetic mutations that lead to improper storage of 

Cu or Fe respectively (Cozzi et al. 2006; Madsen et al. 2007).   

 Various metals (e.g. Mn, Cu, Zn, and aluminum (Al)), have been found to be 

associated with protein aggregates of multiple neurodegenerative diseases.  Exposure to 

metals can increase the rate of amyloidogenesis or aggregate formation (Jobling et al. 

2001; Uversky et al. 2001; Binolfi et al. 2006).  Cu, for example, binds prion precursor 

protein (PrP), altering the conformation of the protein (Gaeta et al. 2005). Additionally, 

Mn has been shown to promote aggregation without binding to PrP (Levin et al. 2005).  

Proteins with the propensity to form inclusions are thought to accumulate through a 

similar process called amyloidogenesis.  One theory is that the process is facilitated by 

metals due to macromolecular crowding.  The theory of macromolecular crowding  posits 

that limiting space in the cytosol of the cell with any item (e.g. proteins or metals) can 

alter the viscosity and the cytosolic volume available for molecules to move leading to 

aggregation of some proteins (Munishkina et al. 2004).  Given that Mn can induce a 

parkinsonian-like disease and induce aggregation of α-synuclein, it is important to note 

that Lewy bodies, the  aggregates commonly formed in PD, may not form in cases of 

Manganism-related PD (Perl et al. 2007). 

Finally, metals may modify the severity of neurological diseases by increasing 

oxidative stress (Gaeta et al. 2005). Oxidative stress, a by-product of normal oxygen 
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consumption, causes cellular damage as reactive oxygen species (ROS) alter DNA, RNA, 

and proteins.  Fe, Cu, and Mn have all been shown to increase ROS within the cell (Chen 

et al. 2006; Molina-Holgado et al. 2007; Flora et al. 2008).  With oxidative stress already 

being implicated as a primary toxic mechanism in most neurodegenerative diseases, 

exposure to any reagent that increases this stress could push the defective system towards 

death (Beal 1998; Castilho et al. 1999; Bartzokis et al. 2000; Alcaraz-Zubeldia et al. 

2001; Hazell et al. 2006).   

Not only do metals have the potential to alter neurodegenerative diseases, they are 

also toxic.  Metals exist naturally in the environment and can easily become concentrated 

in water supplies, allowing for bioaccumulation.  The neurotoxicity directly associated 

with metal exposure can be seen in Minamata Bay, Japan.  For over thirty years, water 

supplies were contaminated by methyl mercury dumped into the bay by local industry.  

The metal bioaccumulated in the fish and led to poisoning of thousands of people whose 

diets predominantly include fish (Harada 1995).   Mn overexposure can also lead to a 

neurological condition similar to idiopathic PD called manganism (Compare Figure I.1. 

and I.2.A.) (Perl et al. 2007).  Current studies in the United States have found increased 

levels of Mn in families living near a ferromanganese refinery (Haynes et al. 2009).  The 

effect of the exposure in this population is currently being studied, but Mn toxicity has 

long been considered an industrial hazard.  The brain concentrates specific metals, 

including Mn, to various regions leading to toxicity in these areas.  Mn, for example, 

accumulates in the basal ganglia, specifically the globus pallidus, substantia nigra pars 

reticulata, the caudate nucleus and putamen of the striatum.  The dopamine neurons or 
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their projections are lost in these brain regions likely causing the movement disturbances 

seen in manganism (Yamada et al. 1986; Olanow et al. 1996). 

 

 

Figure I.1.  Schematic of Basal Ganglia Circuitry: A. Normal B. Altered in 
Parkinson’s Disease.  (Note the decreased output from the substantia nigra to the 
caudate and putamen.)  Blue arrows represent dopamine signaling, Red arrows represent 
GABA signaling, and Green arrows represent Glutamate signaling.  Modified from 
http://thalamus.wustl.edu/course/cbell6.gif.   
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Manganese 

 

Overview 

Mn is an essential trace element being required for proper growth and survival.  

Mn is found ubiquitously throughout the body and plays a role in the function of multiple 

organs.  Taken into the body primarily through food, its absorption is tightly controlled; 

both the digestive track and the blood brain barrier regulate the accumulation of this 

metal.  For example, only 3-5% of  the Mn ingested moves into the blood and the 

remainder is excreted (Au et al. 2008).   Once in the blood, Mn must cross the restrictive 

blood brain barrier to enter the brain.  Extreme forms of environmental exposure do exist 

leading to a neurodegenerative condition, Manganism (Figure I.2.A.).  However, 

exposure levels considered normal may influence the progression of other 

neurodegenerative diseases.   

 

Mn-Dependent Metalloenzymes 

Mn is an essential cofactor for various enzyme families, regulating amino acid, 

lipid, and both protein and carbohydrate metabolism.  In the brain, important examples of 

these essential metalloenzymes are arginase, glutamine synthetase, pyruvate 

decarboxylase, superoxide dismutase 2 (SOD2), and serine/threonine protein 

phosphatase.  Deficiencies in Mn are rare; in fact, other metals such as Cu and 

magnesium can substitute for Mn keeping many enzymes functional (Christianson 1997; 
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Takeda 2003).  Mn deficiency can lead to a wide range of problems including birth 

defects (e.g. skeletal malformations and impaired growth), seizures, and abnormal 

glucose tolerance (Keen et al. 1999).  

 

 

Figure I. 2.  Schematic of Basal Ganglia Circuitry: A. Altered in Manganism (Note 
loss of GABA signal from Globus Pallidus leading to less signal from the thalamus) B. 
Altered in Huntington’s Disease.(note loss of D2 signal leads to increased signal from 
Thalamus).  Blue arrows represent dopamine signaling, Red arrows represent GABA 
signaling, and Green arrows represent Glutamate signaling.  Modified from 
http://thalamus.wustl.edu/course/cbell6.gif.   
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Indeed, brain disorders have been linked to Mn dependent enzymes.  Epileptic 

seizures can be associated with a reduction in glutamine synthetase activity (Eid et al. 

2008).  Loss of SOD2 activity is known to cause increases in oxidative stress and 

increase the toxicity of mitochondrial respiratory complex inhibitors (Andreassen et al. 

2001).  Proper neurotransmitter signaling is regulated by various Mn-dependent enzymes.  

Nitric oxide signaling is regulated by arginase, and glutamine synthetase regulates the 

cycling of glutamate to glutamine (Estevez et al. 2006; Maciejewski et al. 2008). 

 

Mn Transport 

How Mn is transported is not thoroughly understood, and no transport system has 

been identified that moves only Mn.  The shared transporters can also move other metals 

such as Fe, Co, Cu, Zn, nickel (Ni),  cadmium (Cd), and lead (Pb).  Most Mn is thought 

to cross the blood brain barrier via several mechanisms including facilitated diffusion and 

active transport mechanisms.  The divalent metal transporter (DMT1) along with calcium 

(Ca) and Fe transporters are known to shuttle Mn (Murphy et al. 1991; Rabin et al. 1993; 

Aschner et al. 1994; Gunshin et al. 1997; Garrick et al. 2003).  

Fe transport is tightly linked to the movement of Mn.  The transferrin receptor 

(TfR) moves Mn in the 3+ valence, but has higher affinity for Fe3+ (Malecki et al. 1999).  

Not only can trivalent Mn be transported by the TfR but brain Fe levels can alter Mn 

transport (Keefer et al. 1970; Aschner et al. 1994; Erikson et al. 2004; Fitsanakis et al. 

2008).  DMT1, which transports Mn2+ can be regulated by Fe concentrations.  There are 

two isoforms of DMT1 created by alternative splicing.  One isoform is thought to be 
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regulated by Fe, likely via the IRE sequence of 25 nucleotides within the 3’ untranslated 

region of the gene (Fleming et al. 1998; Lee et al. 1998).  The expression of this 

transporter is ubiquitous but not uniform.  Within the brain, the most densely stained 

areas are in the caudate nucleus, putamen, and substantia nigra pars reticulata, the regions 

most susceptible to Mn toxicity (Huang et al. 2004).  Electrophysiological studies 

indicate that DMT1 acts as a symporter moving both protons and metals across the 

membrane (Gunshin et al. 1997; Garrick et al. 2003).  Additionally, the transporter can 

colocalize with the TfR and removes the bound metal from the acidic endosome after it 

dissociates from the TfR. (Gruenheid et al. 1999).   

The citrate transporter and a metal/bicarbonate ion symporter, ZIP-8, have been 

shown to transport Mn (Davidsson et al. 1989; Aschner et al. 1994; Crossgrove et al. 

2003; He et al. 2006).  The mechanism or relevance of the citrate transporter in relation to 

Mn shuttling is not fully understood.  Zip-8 functions by transporting HCO3
- along with 

Mn (He et al. 2006).  Other Mn transporters are voltage-gated, store-operated, and 

ionotropic glutamate receptor calcium channels (Lucaciu et al. 1997; Kannurpatti et al. 

2000; Riccio et al. 2002).  
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Huntington’s Disease 

 

Overview 

HD is a progressive neurological disorder that affects approximately 1 in 10,000 

individuals worldwide.  One of the first descriptions of HD was in 1872 by George 

Huntington (Huntington 1872).  The disorder is characterized by both cognitive and 

movement abnormalities involving both voluntary and involuntary muscle groups.  The 

most common emotional symptom of the disease is depression; however, irritability, 

apathy, and anxiety can also accompany the choreiform movements of the head, neck, 

and extremities.  HD is fatal, leading to death 10-20 years after the first symptoms 

appear.  Tragically, HD symptoms usually do not appear in an affected individual until 

their mid-thirties, after prime childbearing years have already passed and the disease 

causing mutation has been inherited by the next generation.  HD is an autosomal 

dominant disorder, with each child having a 50/50 chance of inheriting the mutation from 

his/her affected parent.  Many patients who have already witnessed and cared for a parent 

dying from HD choose suicide to spare their loved ones from participating in their 

decline.  The disease is known to be caused by an expansion in a normal trinucleotide 

(CAG) repeat in the HTT gene (Cattaneo et al. 2005; Imarisio et al. 2008; Damiano et al. 

2009).   

Unfortunately, medical science has limited resources to offer HD patients.  

Clinical treatments focus on controlling the symptoms caused by the disease but to date 

no treatment to stop disease progression exists.  Drugs which block dopamine receptors 
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were traditionally used to treat the motor symptoms; however, more recently 

tetrabenazine, which blocks the uptake of dopamine in to vesicles leading to its 

degradation, has been approved to control the jerky motor movements (Adam et al. 

2008).  However, these medications are not recommended for those suffering from with 

depression.  Tranquilizers and antipsychotic drugs have also been used to control the 

symptoms but also are riddled with side effects (Jankovic 2009). 

 

HD Pathology 

With no current ability to halt the disease progression, it is surprising that we 

understand so many of the details of the disease.  The genetic mutation detailed below 

leads to a progressive degeneration of multiple brain regions, focusing initially on the D2 

receptor-positive, medium spiny neurons (MSN) of the striatum.  The loss of these 

neurons produces the defining motor abnormalities associated with HD.  The striatum is a 

key player in the motor circuitry of the brain controlling excitation of the cortex.  In HD, 

the loss of the inhibitory or GABAergic MSN allows overstimulation of the cortex and 

leads to the production of the uncontrollable movements (Figure I.2.B).  As the disease 

progresses, other brain regions such as the cortex, globus pallidus, subthalamic nuclei, 

substantia nigra, cerebellum, and the thalamus, also degenerate.  The neurodegeneration 

in the cortex is predominately a loss of pyramidal neurons (Cowan et al. 2006).  The 

molecular causes of this selective cell loss are still unknown. 
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Wild-type HTT Function 

The function of the normal HTT protein is poorly understood, thus limiting our 

ability to understand the progression of HD.  HTT associates with over 200 proteins and 

has a key role in regulating transcription factors such as RE1/NRSE (Zuccato et al. 2003).  

Due to its large size (~350kDa) and ubiquitous expression pattern, it has been challenging 

to pinpoint a function.  Additionally, the protein has no conserved sequence homology 

with other proteins that can help us elucidate its function (Harjes et al. 2003).  Several 

structural motifs have been  identified, but their roles in HTT function remain unclear.  

The polyglutamines at the amino-terminus of the protein are expanded in the disease state 

with more than 35 glutamines leading to the disorder.  The polyglutamine expansion is 

then followed by the polyproline rich domain that is thought to play a role in making 

HTT soluble.  The other major structural element of HTT is a series of HEAT 

(Huntingtin, Elongation factor 3, protein phosphatase 2A, TOR1) repeats.  The 28-36 

HEAT repeats are thought to play a role in protein scaffolding interactions (Andrade et 

al. 1995; Takano et al. 2002).  The wild-type protein is expressed throughout the cell, 

associated with membranes, mitochondria, and microtubules.  It is also reported to be in a 

soluble form within the cytosol and the nucleus (Hoogeveen et al. 1993; Trottier et al. 

1995; Persichetti et al. 1996; Ferrante et al. 1997; Velier et al. 1998).  A functional 

nuclear export sequence is at the carboxy-terminus of the protein, and it contains a 

potential nuclear localization site.  Studies have also focused on the post-translational 

modifications of the protein such as phosphorylation, palmitoylation, and protein 

cleavage by both caspases and calpains linking these modifications to protein 

aggregation, vesicles transport, and cell death (Figure I.3.) (Kalchman et al. 1996; 
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Humbert et al. 2002; Steffan et al. 2004; Cattaneo et al. 2005; Warby et al. 2005; Imarisio 

et al. 2008; Warby et al. 2009).  

 

 

Figure I.3.  Schematic of HTT Protein Amino Acid Sequence.  Marking indicate the 
following:  NES (nuclear export sequence), Poly-Q (polyglutamine domain), Poly-P 
(polyproline rich area), Black boxes (HEAT repeat clusters), Star (phosphorylation sites), 
Green arrow (palmitoylation site), Blue arrows (calpain cleavage sites), Red arrows 
(caspase cleavage sites).  Modified from (Cattaneo et al. 2005). 

 

Fortunately, orthologs of the human protein exist in all animal systems.  Genetic 

studies in animals have shown that HTT mouse knockouts are embryonic lethal early in 

development (in mouse E7.5) at the stage of gastrulation (Duyao et al. 1995; Zeitlin et al. 

1995).  Early death also occurs in the zebra fish knockdown of HTT, due to a defect in 

cellular Fe acquisition (Lumsden et al. 2007).  Hypomorphic alleles in the mouse, with a 

50% reduction in HTT expression display altered brain development and neurogenesis 

resulting in prenatal death (White et al. 1997).  Adult mice with HTT inactivated in post-

mitotic cells display increased cell death (Dragatsis et al. 2000).  RNAi knockdown of 

HTT in mouse and Drosophila melanogaster have shown severe alterations in organelles 

and vesicle transport (Gauthier et al. 2004; Trushina et al. 2004).  Overexpression of the 
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wild-type protein has shown clearly that it limits apoptosis under a number of conditions 

including when expressed alongside mutant HTT (Hackam et al. 2000; Rigamonti et al. 

2000).  The function of wild-type HTT is crucial for normal development and neuronal 

health, but it is not clear how the expansion of the polyglutamine domain alters one or 

more of the functions of the protein.  The role of HTT in development may indicate a 

dual function of the protein as mutant HTT can recover the embryonic lethality (White et 

al. 1997). 

 

The Genetics of HD 

Found on human chromosome 4, the HTT gene contains a series of CAG repeats 

in the first exon.  The repetitive trinucleotide sequence is translated into a series of 

glutamines in the HTT protein beginning with amino acid number 16.  Every individual 

has CAG repeats in their HTT gene; most people have less than 35 repeats and no 

disease.  In the HD population as a whole the number of repeats inversely correlates with 

disease symptoms; therefore the longer the repeat length the earlier the onset of disease.  

Most HD cases with adult onset have repeat sizes of 40-50 CAGs.  For the individual 

however, the correlation between repeat length and diseases symptoms is loose with only 

60% of the variance in HD age of onset can be accounted for by repeat length (Wexler et 

al. 2004).  It is important to note that most HD models, including the STHdhQ111/Q111 

cellular model and YAC128 model used in this study, have a longer repeat length 

consistent with juvenile cases of HD.  The large expansions are necessary to observe 

disease phenotypes in the mouse in a reasonable and testable period (Wheeler et al. 
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2002).  Juvenile HD has a more severe disease progression with early degeneration 

occurring in the cerebellum. 

HD is part of a family of nine distinct polyglutamine disorders; each of these 

disorders shares the phenomenon of genetic anticipation.  Anticipation is defined as the 

reduction in age of onset across generations due to elongation of the repeat length with 

each subsequent generation.  One group has indicated that the repeat instability is caused 

by DNA repair machinery that cannot function properly due to aberrant interactions 

between the polyglutamines and repair proteins such as CBP (Jung et al. 2007). 

 

Genetic and Environmental Modifiers of Disease Progression 

Huntington’s patients all carry at least one mutated allele.  Each child has a 50% 

chance of inheriting the mutation statistically, if the disease followed a simple Mendelian 

inheritance pattern.  Indeed HD is passed down genetically as a true dominate disorder 

with larger expansion sizes.  Interestingly, data suggests the mutated HTT allele is not 

passed with equal transmission rate with same-sex transmission rates being greater than 

different-sex transmission (i.e. Father to son and mother to daughter rates are greater than 

father to daughter rates).  The same study also reported a tendency for same-sex siblings 

to have higher transmission rates.  Sister sibling pairs had the highest correlation rates in 

the study but these were not significant (Wexler et al. 2004).   

It is well established that the length of the CAG expansion affects the symptoms 

of the disease for the HD population as a whole.  However, the association between the 

severity of HD symptoms and repeat length does not always correspond in the individual.  
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Additionally, multiple studies have found that the symptoms can be modified in patients 

and animal models of the disease (Georgiou et al. 1999; Gomez-Esteban et al. 2007; 

Panas et al. 2008; van Dellen et al. 2008).  In a long term study of a large Venezuelan 

kindred, individuals with a repeat length between 40-50 CAGs the length only accounts 

for 44% of  the variance in age of onset (Wexler et al. 2004).  Due to the close 

relationship of these individuals, many of the genetic modifiers of HD would be common 

throughout the study population.  Additionally, these patients would be exposed to 

common environmental agents that may modify disease.  Therefore, the modifying 

factors are still undefined but both genetic and environmental factors are implicated. 

Studies of homozygotic twins are limited in number but have shown the clinical 

presentation of the disease can be variable even though the repeat length is the same 

(Georgiou et al. 1999; Anca et al. 2004).  Multiple twin studies have implicated other 

genetic modifiers and indeed other groups have found a high degree of inheritability 

(h=0.56) for the remaining variance after taking into account the repeat length (Li et al. 

2003).  A potential genetic interaction between HTT and the glutamate receptor gene has 

been examined by multiple groups.  Specifically, modifications in the 3’ untranslated 

region of GRIK2 encoding the GluR6 subunit of the kainate receptor decrease the age of 

onset (Rubinsztein et al. 1997; MacDonald et al. 1999; Zeng et al. 2006).  A follow up 

study in the Venezuelan kindred did not find an association between age of onset and 

GRIK2 but the authors state that the SNPs in question are rare in the kindred (Andresen et 

al. 2007).  However, genetic polymorphisms within the NR2A and NR2B subunits of the 

glutamate receptor where found to alter the age of onset in the Venezuelan study 

population (Andresen et al. 2007).   
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Because of the unique nature of the Venezuelan study, Wexler et al was able to 

analyze the total environmental effect between sibling groups.  They report that 63% of 

the variance in age of onset  that is not attributed to the repeat length was environmental 

(Wexler et al. 2004).  The Venezuelans’ average age of onset occurs at a significantly 

earlier age than other HD populations even without differences in average life expectancy 

of the population at large.  The study hypothesized that the age of onset differences could 

be due to the living environment of the Venezuelan kindred.  Most of the kindred depend 

on a nearby lake for survival.  Lake Maracaibo is reported to be contaminated by both 

industry and sanitation issues (Wexler et al. 2004).  Again, emphasizing a potential for 

environmental influence.   

 Environmental factors such as exercise and environmental enrichment have been 

examined in HD progression.  Both exercise and enrichment have lead to improvements 

of HD symptoms in HD mouse models (Hockly et al. 2002; Lazic et al. 2006; van Dellen 

et al. 2008).  The enrichment and exercise studies alter brain derived neurotrophic factor 

(BDNF) in these HD models (Zajac et al. 2009).  Changes in BDNF led to increased 

memory and learning, as well as neurogenesis (Bartrup et al. 1997); (Barde 1994; Lee et 

al. 2002).   Dietary changes as well are linked to improvements in HD symptoms through 

BDNF changes (Duan et al. 2003).   

 

A Loss of Function or Gain of a Novel Function Mutation 

The function of wild-type HTT is essential for survival and proper development;  

initiating one of the great debates in the HD field: Does the polyglutamine expansion 

cause HD via a gain of function or a loss of function?  The answer to this very important 
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question would have profound effects on HD treatment strategies.  If wild-type HTT 

function is lost in the presence of the mutation, treatments might focus on the 

downstream activities of the protein.  Alternatively, if mutant HTT has gained a novel 

function, then that specific activity would need to be targeted for rescue by a potential 

treatment.   

The loss of function argument leads to the hypothesis that knockout animals 

would be born and develop the disease as if they carried the mutation.  Unfortunately, it 

is not that simple, as knockout animals die early in embryonic development (Duyao et al. 

1995; Zeitlin et al. 1995; Lumsden et al. 2007).  In fact, the lethal phenotype can be 

overcome by expression of the mutant protein (Dragatsis et al. 1998).  Therefore, the 

embryonic lethality is likely due to a function of HTT that is secondary to the function 

that causes disease.  Wild-type HTT does play a role in cell survival after embryogenesis 

(Van Raamsdonk et al. 2005; Leavitt et al. 2006; Van Raamsdonk et al. 2006)If the wild-

type gene is deleted in post-mitotic cells, the mice show a progressive cell loss in the 

forebrain, giving credence to the loss of function hypothesis (Dragatsis et al. 2000).  HD, 

however, is a dominant disorder, meaning that one mutant allele is sufficient to acquire 

the disease, indicating gain of function (Rubinsztein et al. 2003).  The overexpression of 

wild-type HTT does have the ability to block cell death associated with the 

polyglutamine expansion in cellular HD models and mouse testes (Ho et al. 2001; Leavitt 

et al. 2001).  In the striatum of the YAC mouse model, neuronal pathology can be 

reduced by overexpression of wild-type HTT but this slight improvement does not 

improve motor symptoms (Van Raamsdonk et al. 2006).  Wild-type HTT is known to 

have antiapoptotic effects and therefore improvements in cell viability may be due to 
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inhibition of cell death pathways and not overcoming the effects of mutant HTT 

(Rigamonti et al. 2000; Leavitt et al. 2006).  Alternatively, the mutant HTT may have a 

dominant negative effect, blocking the function of the wild-type protein.  Taken together 

these studies have bolstered both sides of this debate, leading to the idea that the disease 

may be due to both a loss of normal wild-type function and a novel gain of function in the 

presence of the enlarged protein.   

 

Molecular Causes of HD Neuropathology 

Many molecular pathways and processes have been implicated in the progression 

of HD.  Unfortunately, it is still unclear which, if any of these altered cellular 

mechanisms is the initial insult downstream of the polyglutamine expansion.  Protein 

aggregation, mitochondrial dysfunction, excitotoxicity, loss of trophic support, and 

altered transcriptional regulation are some of the proposed molecular sources of the 

neuronal loss.  To add to the complexity, malfunction in many of these cellular processes 

has been demonstrated to lead to similar alterations in cell health.  For example, both 

mitochondrial dysfunction and excitotoxicity can lead to increases in oxidative stress, 

making the identification of the initial molecular insult challenging.  

One of the hallmarks of HD is the formation of protein aggregates containing the 

polyglutamine expanded protein (Ross et al. 2004).  With the protein aggregation 

appearing in the aforementioned affected brain regions and the strong correlation of 

disease severity with repeat length, aggregates were originally thought to be the primary 

cause of pathology (Vonsattel et al. 1985; Davies et al. 1997; Martindale et al. 1998; 
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Scherzinger et al. 1999).  Recent studies have produced strong evidence that aggregation 

does not correlate with cell death and may actually improve neuronal survival (Saudou et 

al. 1998; Kim et al. 1999; Slow et al. 2005).  HTT aggregates form throughout the brain 

of the shortstop mouse model of HD but there is no striatal cell loss or dysfunction at one 

year of age.  The lack of neuronal loss in the presence of a heavy aggregate load indicates 

that HTT inclusions are not toxic (Slow et al. 2005).  Importantly, in vitro studies have 

shown that blocking aggregation does not alter cell survival (Kim et al. 1999).  Other 

studies have examined the aggregate load in specific cell types and shown that the cells 

that contain the most aggregates are, in fact, the surviving interneurons (Kuemmerle et al. 

1999; Arrasate et al. 2004). 

Initially, the HTT protein was proposed to alter mitochondrial function based on 

data from patients where multiple studies found altered metabolism in these individuals.  

The studies reported weight loss, reductions in N-acetylaspartate, elevated lactate, and 

altered glucose metabolism (Kuwert et al. 1993; Koroshetz et al. 1997; Clark 1998; 

Jenkins et al. 1998; Sanchez-Pernaute et al. 1999; Djousse et al. 2002; Mahant et al. 

2003).  The majority of these studies use brain images examining various markers of 

metabolism and mitochondrial function.  Unfortunately, it is challenging to interpret 

these findings due to the prior and ongoing cell loss, which occurs with the disease.  

Perhaps the altered metabolism markers are due to the reduction in cell number.  Animal 

studies have also reported weight loss and altered metabolism in the context of the 

polyglutamine expansion further indicating the role of HTT in nonmotor symptoms 

(Hurlbert et al. 1999; Jenkins et al. 2005; Dai et al. 2009).  Importantly, many HD 

patients also suffer from diabetes, which is due to a lack of insulin secretion and altered 
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Akt activity (Ye et al. 2009).  The insulin pathway is tightly tied to ATP production and 

mitochondrial function has been linked to diabetes (Johannsen et al. 2009).   

Some studies have report that mitochondrial respiration may be reduced in HD 

models.  Reduced activity in HD-affected brain areas and several peripheral tissues has 

been reported for complex I, II, and IV (Gu et al. 1996; Browne et al. 1997; Ciammola et 

al. 2006).  This topic is controversial; indeed, the dysfunction may simply be due to the 

reduction in cell number compared to controls.  An additional study reports that the 

mitochondrial complexes function efficiently but display decreased energy production 

due to a lack of substrates (Milakovic et al. 2005).  Other groups report no alterations in 

mitochondrial respiration at all but these finding were in a pre-symptomatic HD model 

(Guidetti et al. 2001).  This data indicates, that mitochondrial dysfunction may be 

downstream of another HTT insult.  The variations in these studies may be due to the 

variety of cell types examined or the stage of the disease.  The defects in mitochondrial 

energy metabolism may be specific to the striatum.  Several studies have revealed 

mitochondrial dysfunction in the caudate and putamen but these finding where after 

atrophy of these regions and therefore cell loss may contribute significantly to these 

findings (Butterworth et al. 1985; Tabrizi et al. 1999; Guidetti et al. 2001; Sorolla et al. 

2008). 

The first animal models of HD that displayed the selective degeneration of the 

striatum were created by use of 3-nitroproprionic acid (3NPA), a mitochondrial complex 

II inhibitor (Beal et al. 1993; Brouillet et al. 1993; Brouillet et al. 2005).  In primates, 

3NPA-exposed animals present with many of the HD symptoms: dyskinetic movements 

and dystonic postures, as well as the striatal selective lesions (Beal et al. 1993; Brouillet 
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et al. 1995).  The inhibition of succinate dehydrogenase by 3NPA has also been shown to 

increase cell death in cellular models of HD due to mitochondrial depolarization (Gines 

et al. 2003; Ruan et al. 2004).  3NPA stimulates calcium release (Rosenstock et al. 2004) 

and may explain why cellular models of HD show an increased vulnerability to 3NPA 

toxicity, leading to the hypothesis that HD alters calcium handling by the mitochondria 

(Trettel et al. 2000; Gines et al. 2003).  Altered calcium homeostasis is also reported in 

mutant knock-in animals due to heightened instability of the mitochondrial transition 

pore (Choo et al. 2004). 

Mitochondrial defects in calcium handling are also thought to play a role in 

increased excitotoxicity due to the HD mutation.  Activation of N-methyl-D-aspartate 

receptor (NMDAR) in HD mouse model leads to an increase in apoptosis which can be 

blocked by inhibition of the mitochondrial transition pore (Tang et al. 2005). In the 

presence of the mutation, stimulation of NMDARs leads to an increased current and 

intracellular calcium levels (Zeron et al. 2004; Shehadeh et al. 2006; Fernandes et al. 

2007). 

Finally, mitochondria dysfunction can increase reactive oxygen species (ROS) 

within a cell.  Markers of oxidative stress have been found in post-mortem brain studies 

of HD patients, showing damage to proteins, DNA, and phospholipids (Goebel et al. 

1978; Browne et al. 1997).  8-hydroxydeoxyguanosine measurements of DNA oxidative 

damage have even been correlated with disease progression.  Symptoms first appear in 

the dorsal striatum and then move throughout the striatum as the disease progresses 

(Browne et al. 1997).  HD mouse and cell line studies also implicate oxidative stress in 

disease progression (Bogdanov et al. 2001; Choo et al. 2005; Mao et al. 2006).  However, 
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it is possible that the oxidative stress is not the primary cause of the cell loss, as many of 

the animal studies do not observe oxidative damage before significant cell loss (Choo et 

al. 2005).   

As mentioned above, excitotoxicity can lead to mitochondrial dysfunction and the 

production of free radicals (Castilho et al. 1999; Nicholls et al. 1999; Kim et al. 2000; 

Cowan et al. 2006; Fernandes et al. 2007).  It has also been directly linked to the 

degeneration in HD.  The hypothesis that excitotoxicity is the primary insult in HD stems 

from the similarities between HD pathology and that caused by injection of glutamate 

agonists (Coyle et al. 1976; Schwarcz et al. 1984; Beal et al. 1986; Beal et al. 1991; Fan 

et al. 2007).  Medium spiny neurons are the first cells lost in HD, and are the targets of 

glutamatergic inputs from both the cortex and the thalamus.  Modulating the signals at 

these synapses can block cell death induced by 3NPA (Greene et al. 1993; Bogdanov et 

al. 1998).  Studies of one glutamate receptor have shown that increased levels of the 

NMDAR NR2B subunits enhanced death due to HD toxicity (Young et al. 1988; Albin et 

al. 1990; Chen et al. 1999).  The NR2B subunits are responsible for increased calcium 

influx and are highly expressed on the MSNs (Christie et al. 2000; Cepeda et al. 2001).  

Indeed, mutant HTT increases cellular death in the presence of the NR2B subunit (Zeron 

et al. 2001; Zeron et al. 2002).   

Not only can NMDAR modulation alter the HD cell death but also increased 

expression of BDNF has been shown to attenuate HD excitotoxicity (Canals et al. 1998; 

Alberch et al. 2002).  BDNF is essential for the survival of MSNs and is transported by 

HTT along microtubules (Zuccato et al. 2001; Gauthier et al. 2004; Colin et al. 2008).  

The direction of transport depends on phosphorylation of wild-type HTT at serine 421 
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(S421); phosphorylation leads to anterograde transport (Zala et al. 2008).  In the absence 

of phosphorylation, wild-type HTT moves BDNF towards the cell body (Humbert et al. 

2002; Colin et al. 2008).  BDNF can activate many cell survival pathways within the 

cells, but Akt/Insulin signaling has been shown to be essential for survival in striatal cells 

expressing mutant HTT (Humbert et al. 2002).  Additionally AKT can directly 

phosphorylate HTT (Pardo et al. 2006).  BDNF is a known regulator of transcription and, 

importantly, transcriptional dysregulation has been implicated in HD neurodegeneration 

(Zuccato et al. 2001; Chiang et al. 2007; Zuccato et al. 2007).  HTT regulates BDNF at 

the level of transcription by sequestering a transcriptional regulator REST/NRSE in the 

cytoplasm.  The neuron-restrictive silencer element (REST/NRSE) is responsible for the 

activation of many other genes.  Therefore, HTT’s ability to alter transcription is not 

limited to BDNF (Cattaneo et al. 2005).  When mutated, HTT can no longer keep 

REST/NRSE in the cytoplasm, halting transcription of BDNF and other genes (Zuccato 

et al. 2003; Zuccato et al. 2007).  

Metals have also been implicated in the progression HD.  In addition to altered Ca 

handling in the STHdhQ111/Q111 cells, HD patients also display elevated levels of Fe and 

Cu the corpus striatum in both post mortem and FMRI studies (Dexter et al. 1991; 

Bartzokis et al. 2000).  However, many of the mechanisms of metal toxicity are the same 

pathophysiological pathways implicated in the progression of HD (e.g. altered calcium 

homeostasis, protein aggregation, increased oxidative stress, and altered energy 

metabolism).  Importantly, altered metal levels in patients are only the beginning of the 

links between HD and metals.  Cu has been shown to bind HTT, decreasing the solubility 

of the protein (Fox et al. 2007).  The HTT gene increases its expression in response to an 
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elevation in Fe levels (Hilditch-Maguire et al. 2000).  Additionally, zebrafish studies 

have demonstrated that the embryonic lethality due to HTT inactivation in this animal 

model is due to the incorrect utilization of Fe stores (Lumsden et al. 2007).  The 

interaction of HTT and metals has been largely limited to the studies mentioned above 

but other studies have emphasized the potential of metals to promote the aggregation of 

amyloidogenic proteins such as α-synuclein (Uversky et al. 2001).   Intriguingly, a 

mutation of a key iron storage protein leads to the disease neuroferritinopathy.  The 

disease has a phenotype very similar to HD and ultimately leads to an adult onset loss of 

the basal ganglia due to accumulation of Fe in the brain (Curtis et al. 2001).    

The primary insult of HD is still not determined even though many good 

candidates exist as described above.  Understanding the primary source of HD toxicity is 

crucial for blockade of the neurodegeneration and production of potential therapies 

without widespread side effects.  One unique feature of HD is the ability to diagnosis 

patients before the onset of symptoms through genetic testing.  For example, in PD well 

over half the neurons of the substantia nigra are lost before symptoms occur and 

diagnosis does not normally occur until after the onset of symptoms.  Therefore, there is a 

greater possibility that the HD progressive cell loss can be prevented than in other 

neurodegenerative disorders.  Many of the proposed mechanisms of neurodegeneration 

are intertwined, so it is difficult to determine which may be the initial insult.  

Understanding how different toxicants can alter the molecular pathways implicated in 

HD may lead us to the molecular source of the disease.   
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Overview of Specific Aims 

 Current evidence has shown that though HD is a genetic disorder, disease 

progression can be modified by other factors.  For example, the severity and disease 

progression of HD can be altered by the environment enrichment in a mouse model of 

HD (van Dellen et al. 2008).  In humans, two separate studies have shown that the length 

of the CAG expansion alone cannot explain the variability in severity and age of onset of 

HD symptoms (Anca et al. 2004; Wexler et al. 2004).  The environmental agents that 

modify the onset, progression, or clinical presentation of the disease in patients remain 

unknown.  Identification of potential gene-environment interactions of HTT is paramount 

to understand how they may modify HD pathology.   

Interestingly, a number of metals (e.g., Fe, Cu, and Mn) are associated with the 

selective degeneration of specific nuclei of the basal ganglia and share 

pathophysiological similarities with HD (Lee et al. 2006; Perl et al. 2007).  The basis for 

this selectivity is unclear, but both the propensity of these metals to accumulate in 

specific brain regions and the nature of their cellular toxicity (e.g. oxidative stress, 

excitotoxicity, toxic interactions with dopamine, etc.) likely contribute (Erikson et al. 

2003; Tarohda et al. 2004).  In fact, at least four established mechanisms of metal toxicity 

are implicated in HD neuropathology, including oxidative stress, calcium signaling, 

protein aggregation, and altered energy metabolism.  Additionally, Mn and other metals 

have been shown to promote aggregation of prion precursor protein, which like HTT, is 

amyloidogenic.  Determining the modifiers of HD may also help  identify 

pathophysiological mechanisms of the disease.   
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We hypothesized that a toxicant sharing pathophysiological mechanisms with HD 

would exhibit disease-toxicant interactions and would reveal mechanisms of selective 

degeneration and toxicity.  To test this hypothesis, we propose the following questions:  

1) Do metals display a disease-toxicant interaction with the polyglutamine expansion 

disorder HD?  2) What is the nature of the gene-environment/disease-toxicant interaction 

between HD and the divalent metals Mn and Cd?  3) Does mutant HTT impair Mn 

uptake, limiting Mn toxicity? 

 

Specific Aim 1:  Exploration of a Gene-Environment Interactions between Polyglutamine 

Expansion Disorders and Metals. 

We developed and preformed a novel screen for gene-environment interactions 

between HD and various metals.  Utilizing the well-published HD cellular model, 

STHdhQ111/Q111, in comparison to the wild-type STHdhQ7/Q7, we used cell survival as a 

measurement of interaction between HD and metals.  We explored the ability of Mn to 

alter aggregation of Ataxin1, another polyglutamine disorder, by transfection into 

HEK293 cells.   

 

Specific Aim 2:  Describe the Gene-Environment Interactions between the Metals Mn 

and Cd with HD. 

Here, we explored the nature of a Mn-specific interaction we had discovered with 

the HD mutant protein.  To determine whether the interaction is specific to the STHdh 

cell line, we will use both primary cultures and transfection studies.  Additionally, we 

transfected into cells a truncated form of the HTT protein, in order to determine if the 
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polyglutamine domain is required for the interaction.  Finally, we examined various 

markers of pathways that might be involved in Mn or HD pathophysiology by assessing 

proteins by western blot. 

 

Specific Aim 3:  Test the Contribution of Mn Transport to the HD-Mn Interaction 

We continued to explore the HTT-Mn interaction by additional analysis of 

pathway differences discovered in aim 2.  In both the STHdh cellular model and a 

thoroughly studied HD animal model, we analyzed how the HD mutation might alter Mn-

induced cell death, focusing on accumulation of the metal within the cell and brain.    
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CHAPTER II 

 

DISCOVERY OF A NEUROPROTECTIVE GENE-ENVIRONMENT 

INTERACTION BETWEEN HUNTINGTIN AND MANGANESE 

 

Introduction 

In HD, degeneration of the medium spiny neurons of the corpus striatum occurs 

well prior to other affected brain regions such as the cortex (Imarisio et al. 2008).  This 

selective degeneration occurs despite widespread expression of the disease-causing 

polyglutamine-expanded protein, HTT.  Thus, other factors within the striatum may 

uniquely increase the vulnerability of this area to the pathophysiological mechanisms 

behind HD. Interestingly, the toxicant 3-nitroproprionic acid (3NPA), a mitochondrial 

complex II inhibitor, exhibits an HD-like striatal specific neurodegeneration (Beal et al. 

1993).  One explanation of this common pathology is that both mutant HTT and 3NPA 

might impinge upon a shared pathophysiological vulnerability inherent to the striatum.  

Indeed, both HD and 3NPA toxicity cause mitochondrial dysfunction, oxidative stress, 

excitotoxicity, and altered metal homeostasis (Dexter et al. 1991; Beal et al. 1993; 

Imarisio et al. 2008).  In both the STHdh striatal cell model of HD and the R6/2 animal 

model, expression of polyglutamine expanded HTT increases vulnerability to the toxin 

3NPA (Bogdanov et al. 1998; Ruan et al. 2004; Brouillet et al. 2005).   
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We postulate that toxicants acting upon pathophysiological targets modulated in 

HD will exhibit disease-toxicant interactions, even if patients are not normally exposed to 

these toxicants.  Identifying these interactions may uncover mechanisms of selective 

neurodegeneration.  To test this hypothesis, we designed a disease-toxicant interaction 

screen to examine alterations of cell viability due to various toxicants in the context of 

the HD mutation.  Due to their diverse toxicology and similarities to HD pathology, we 

focused on neurotoxic metals (Gaeta et al. 2005). Several studies have also revealed 

elevated levels of Fe and Cu in the striatum of HD patients and animal models (Dexter et 

al. 1991; Fox et al. 2007).  Furthermore, HTT, has been functionally linked to Fe 

homeostasis, and HTT is a Cu-binding protein (Trettel et al. 2000; Fox et al. 2007; 

Simmons et al. 2007).  Thus, metal exposure is a reasonable starting point for a search of 

environmental factors with the potential to modulate HD pathophysiology.  

 

Materials and Methods 

 

Chemicals, Reagents, and Cell Culture Supplies  

Cell culture media and supplements were obtained from Mediatech (Manassas, 

VA) unless indicated.  Cell lines were grown in Dulbecco’s modified Eagle’s medium 

with 10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA), L-glutamine, 400 

g/ml G418 and Penicillin-Streptomycin.  Metals and toxicants used in survival assays 

were from Alfa Aesar (Ward Hill, MA) unless indicated: 3-nitroproprionic Acid (Sigma, 

St. Louis, MO), FeCl3, (VWR, West Chester, PA), MnCl2, CdCl2, CoCl2, CuCl2, PbCl2,  

NiSO4, and ZnCl2.  MTT Reagent, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
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bromide (MTT) salt (VWR, West Chester, PA), Sorenson’s Buffer (0.1 M glycine, 0.1 M 

NaCl2, pH 10.5), dimethyl sulfoxide (DMSO, Sigma, St. Louis, MO).   

The inorganic salt concentration is listed for the following metals:  Ca, Mg, Fe, 

potassium, and sodium are in significant levels in the DMEM we use for cell culture.  

Based on the DMEM technical documents from Sigma Aldrich, the concentrations of 

sodium is ~167mM, calcium (Ca) 2.4mM , Fe 0.2 µM, Mg 811 µM, and potassium 

5.4mM.  Mn levels were not reported in the technical materials.   

 

Description of STHdh Cellular Model of HD 

 The STHdh cell model of HD was created from a targeted knockin of the mouse 

HTT gene (Cattaneo et al. 1998; Trettel et al. 2000; Wheeler et al. 2000).  The cell lines 

express full-length (wild-type or glutamine expanded) HTT from the endogenous locus 

allowing comparisons of phenotypes between wild-type (STHdhQ7/Q7) and mutant 

(STHdhQ111/Q111) cells.  Homozygotes of mutant embryos expressing 111 CAG repeats or 

wild-type 7 CAG repeats were utilized to create this cell model by Trettel et al.  Embryos 

were infected with a temperature sensitive SV40 large T antigen that forces cell division 

(Cattaneo et al. 1998; Trettel et al. 2000).  At 33ºC, the permissive temperature where the 

viral SV40 construct is active, both cell lines can be maintained and passaged.  Cell 

growth at 39ºC is inhibited (Cattaneo et al. 1998).   

 

Cell Culture 

The clonal striatal cell lines – both mutant STHdhQ111/Q111 and wild-type 

STHdhQ7/Q7 were a generous gift from Marcy Macdonald, PhD (Massachusetts General 
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Hospital.  Human embryonic kidney (HEK) 293T cells can be purchased from ATCC.  

The cells were cultured in DMEM with 10% FBS and Penicillin-Streptomycin at 37 ºC. 

 

Frequency of Cell Division  

 Mutant STHdhQ111/Q111 and wild-type STHdhQ7/Q7 cells were plated as for survival 

assays and cultured under standard conditions at 33 ºC.  After 30 hours, cells were 

harvest and counted.  Frequency of division was determined by the equation Nt=No2
tf.  

Where Nt= number of cells at harvest, No= number of cell plated, t= time in culture, and 

f= divison rate or frequency (Sherley et al. 1995).  

 

Cell survival Assays  

STHdhQ111/Q111 and wild-type STHdhQ7/Q7 cells were plated at equal density 

(350000 cells per 10 cm2) the evening before treatment.  Toxins or metals were added to 

the culture media the next morning, and cells exposed for 26 to 30 hours.  Cell viability 

was assessed with a hemacytometer using trypan blue exclusion or MTT assay.  Trypan 

blue exclusion: Cells were harvested after exposure as described above with trypsin and 

counted on a hemacytometer utilizing trypan blue exclusion.  The number of viable cells 

relative to the untreated for each genotype is shown as percent untreated.  MTT assay: 

After treatment as described above, the media was removed, and 500 µl of 0.5% MTT 

salt in MEM (Invitrogen, Carlsbad, CA) containing FBS and Penicillin-Streptomycin was 

added to each well for 4 hours.  Then the media was removed and Sorenson’s Buffer was 

diluted 2.5:20 in DMSO.  200 µl of Sorenson’s Buffer in DMSO was added to the empty 

wells to dissolve the precipitate.  The plates were returned to the incubator until all the 
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MTT salt precipitate could no longer be visualized under a microscope.  60  µl from each 

well was removed and placed in a 96-well plate.  Absorbance at 590  nm was read on a 

Tecan (Durham, NC) plate reader (Ehrich et al. 2000). The average absorbance relative to 

the untreated control is graphed as percent untreated.   

  

Colorimetric LDH Assays 

We used the In Vitro Toxicology Assay Kit (TOX7) (Sigma, St. Louis, MO).  

STHdh cells were counted using a hemacytometer and immediately lysed according to 

the manufactor’s protocol.  Absorbance was measured at 490nm wavelength.    

 

Analysis of  Ataxin-1 Aggregates 

HEK 293T cells were passaged onto glass coverslips and transfected with glutamine-

expanded full-length Ataxin-1 (ATXN1[82Q]) (Bowman et al. 2005; Bowman et al. 

2007).  After expressing ATXN1[82Q] for 24 hours, cells were treated with various 

concentrations of  Mn(II).  Next, cells were harvested and fixed with 4% 

paraformaldehyde (diluted from 16% solution, Electron Microscopy Sciences, Hatfield, 

PA).  Cells were permeablized with PBT (PBS with 0.1% Triton X-100 (Sigma, St. 

Louis, MO ), stained for  ATXN1[82Q] and coverslipped with ProLong Gold antifade 

reagent with DAPI nuclear stain (Invitrogen, Carlsbad, CA).  Fraction of cells with 

inclusions (bright green puncta, see arrow heads) relative to number of transfected cells 

was determine by automated image analysis using NIH ImageJ software.   
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Statistical Analysis  

Univariate ANOVA was performed using SPSS software (SPSS, Inc., Chicago, 

IL).  All post-hoc analyses were done assuming equal variances, error bars are expressed 

as standard error of the mean (SEM).  Post-hoc analyses were completed using Microsoft 

Excel (Redmond, WA).  Standard student’s t-tests were done for differences between 

groups.  

 

RESULTS 

 

Description of STHdh Cellular Model of HD 

 Previous publications have shown that the STHdhQ111/Q111 cells have slower 

growth rates and lower expression of the mutant protein when compared to the wild-type 

Q7 line (Trettel et al. 2000).  We have also seen a reduction in cell division rates in the 

presence of the HD mutation (Figure II.1.).  STHdhQ111/Q111 cells have a reduced 

frequency of cell division compared to wild-type STHdhQ7/Q7. 
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Figure II.1.  STHdh Cell Growth Rates.  Mutant (red) and wild-type (blue) cells were 
plated evenly and the number of cells by trypan blue exclusion.  N=7 independent 
samples (± SEM).  Significantly different in frequency of cell division (* p=0.05 posthoc 
t-test) between wild-type and mutant. 

 

The STHdhQ111/Q111 cell line have also been shown to have an impairment of the 

mitochondrial respiratory chain, altered calcium handling, sensitivity to the toxin 3NPA,  

and heightened excitotoxicity (Seong et al. 2005; Mao et al. 2006; Milakovic et al. 2006; 

Oliveira et al. 2006; Xifro et al. 2008).  Each of these cellular phenotypes could affect our 

analysis of viability.  One classic assay to examine cell viability is lactate dehydrogenase 

activity (LDH).  LDH enzyme is released during cell death but functions in the cytoplasm 

of healthy cells to create energetic substrates for the mitochondria.  Based upon 

differences in LDH activity without Mn exposure we report in chapter III, we examine 

the LDH activity in equal numbers of mutant or wild-type cells and discovered that the 

STHdhQ111/Q111 cells have reduced LDH activity in the absence of any toxin (Figure II.2. 

and Figure III.2).  Absolute differences are difficult to assess, however, the data from 
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these separate figures led us to use the MTT assay, which measures the activity of 

mitochondrial reductase as a measure of cell viability.   

 

 

Figure II.2.  LDH Activity in Wild-type and Mutant STHdh Cells.  An equal number 
of cells (~7000) where harvest, lysed, and  LDH activity was accessed.  n=2 (+SEM).  
Significant differences in activity (* p<0.05 posthoc t-test) between wild-type and 
mutant.   
 

A HD-Toxicant Interaction Screen 

 To establish an experimental model of gene-environment interactions between 

metals and mutant HTT, we utilized the HD mouse striatal cell line.  We focused on cell 

survival as a basic toxicological phenotype for the screen.  Previous research had shown 

that the mutant cell line (STHdhQ111/Q111) line has increased sensitivity to the toxicant 

3NPA (Ruan et al. 2004).  Therefore, as a positive control, we examined cell survival in 

the cell model following 30 hours exposure to 3NPA,   confirming that the mutant 

STHdhQ111/Q111 line has a significant (p<0.05) decrease in cell survival relative to wild-

type cells (Figure II.3.). 
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Figure II.3.  Survival Curve for 3NPA Cytotoxicity in Wild-type versus HD Striatal 
Cell Lines.  350,000 cells of wild-type STHdhQ7/Q7 (blue) or mutant STHdhQ111/Q111 (red) 
cells were exposed to indicated amounts of 3NPA.  The number of viable cells relative to 
the untreated control is shown as percent untreated (± SEM).  Two-way univariate 
ANOVA showed a significant effect of genotype, exposure, and two-way interaction of 
genotype by exposure.  Significant differences in survival (* p<0.05 posthoc t-test) 
between wild-type and mutant cells at specific exposure levels are shown, n=3.   

 

After validating the HD striatal model for detection of gene-environment 

interactions relevant to HD, we initiated the screen to determine if expression of mutant 

HTT modulates sensitivity to a diverse set of metals.  We screened 8 neurotoxic metal 

ions (Fe, Cu, Pb, Co, Zn, Ni, Cd, and Mn) by generating concentration response curves 

(Figure II.4.).  For each metal, preliminary experiments were carried out to identify 

concentration ranges with low to high degrees of cytotoxicity.  Then, concentrations were 

chosen to generate a survival curve to span concentrations from non-toxic to highly toxic 

exposures.  We were unable to induce a high degree of cell death (>40%) for Fe(III) and 

Pb(II) to due to insufficient solubility at higher concentrations.  Nevertheless, statistical 

analysis of cell survival by two-way ANOVA revealed a significant effect of exposure on 

cell survival for each of the eight metals (p<0.001).  Cell survival assessment for six of 

the eight metals tested, Fe(III), Cu(II), Pb(II), Co(II), Zn(II), and Ni(II), produced 

indistinguishable survival curves between wild-type and mutant STHdh cells (Figure 
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II.4.).  In contrast, the survival curves for Cd(II) and Mn(II) both showed differences in 

survival between wild-type and mutant cells (Figure II.4.).  The survival curve for Cd(II) 

showed an increased sensitivity of the mutant STHdhQ111/Q111 cells to cadmium (Cd) 

cytotoxicity.  Statistical analysis by two-way univariate ANOVA showed a significant 

effect of genotype (F(1,29)=5.31, p=0.029) on cell survival.  Posthoc analysis indicated 

that the wild-type line had significantly (p<0.05) higher survival at 50M Cd(II) relative 

to mutant cells (Figure II.4.).  Analysis of Mn toxicity in the STHdh cells revealed an 

unexpected gene-environment interaction, in which cells expressing mutant HTT were 

resistant to Mn toxicity.  Statistical analysis by two-way repeated measures ANOVA 

found a significant effect of genotype (F(1,8)=323.2, p<0.001) on cell survival.  Posthoc 

analysis indicated that the mutant line had significantly (p<0.01) higher survival at 

50M, 100 µM and 300 µM Mn(II) relative to wild-type cells (Figure II.4.).   
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Figure II.4.  HD-Metal Toxicity Cell Survival Screen.  Wild-type STHdhQ7/Q7 (blue) or 
mutant STHdhQ111/Q111 (red) cells cell survival was assessed by MTT assay except for Cu, 
which was assessed by trypan blue exclusion.  The average absorbance (or mean cell 
counts for Cu) relative to the untreated control for each genotype is plotted as percent cell 
survival (± SEM).  n=number of experiments with between 3 and 6 independent replicate 
wells per experiment.  Cu(II) (n=4), Fe(III) (n=3), Cd(II) (n=4), Zn(II) (n=3), Pb(II) 
(n=3), Co(II) (n=4), Ni(II) (n=3), and Mn(II) (n=2).  ANOVA showed a significant effect 
of exposure for all metals (p<0.001), and a significant difference between genotypes only 
for Cd(II) (p=0.029) and Mn(II) (p=0.001).  Significant differences in survival (* p<0.05 
post-hoc t-test) between wild-type and mutant cells at specific exposure levels are shown. 
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Mn survival curve 

The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay 

used in the initial screen is not a direct measure of cell survival.  This assay measures 

mitochondrial reductase activity, and can also indicate mitochondrial stress.  Therefore, 

to confirm directly that the HD-Mn interaction involved changes in cell survival we 

utilized hemacytometer counts with trypan blue exclusion paired with MTT from 

replicate wells.  These data demonstrate that MTT changes directly correlate with the 

change in cell number (Figure II.5.).  Additionally, we used trypan blue exclusion to 

generate new expanded survival curves (Figure II.6.).  The expanded hemacytometer-

based survival curve for Mn confirmed the gene-environment interaction seen by MTT 

assay (Figure II.4. versus Figure II.6.).  Statistical analysis by two-way univariate 

ANOVA found a significant effect of genotype (F(1,88)=59.3, p<0.001) on cell survival 

with Mn exposure, in addition a two-way interaction between genotype and Mn exposure 

was detected (F(10,88)=2.1, p=0.039).  Over a broad range of Mn exposures (40-300 M) 

the HD mutation limited Mn cytotoxicity of the metal when compared to the wild-type 

cell line (p<0.05).  Furthermore, the expanded curve revealed that unlike the wild-type 

STHdhQ7/Q7cells, which have a typical monophasic cytotoxic response, mutant 

STHdhQ111/Q111 cells display a biphasic response to Mn exposure.  At the highest 

concentrations of Mn tested (400-500 M) the toxicity is not significantly different 

between wild-type and mutant cell lines.  Therefore, the survival curve for Mn(II) shows 

a gene-environment interaction wherein Mn counters an inherent decreased viability of 

the mutant HTT cells, while mutant HTT counters the toxic effects of Mn exposure.  A 
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student t-test of cell survival data comparing cells exposed to 40 M Mn with unexposed 

cells within each genotype indicates a significant increase in viability only in the mutant 

cells (Figure II.7.). 

 

 

Figure II.5.  Mn Toxicity in Striatal Cells is Detected Equally by Independent Cell 
Survival Assays.  Equal numbers of wild-type STHdhQ7/Q7 (blue) or mutant 
STHdhQ111/Q111 (red) cells were plated, and exposure to indicated amount of manganese 
chloride.  (± SEM of 2 independent wells for hemacytometer counts and 3 independent 
wells for MTT assay).  Tables show statistical analysis from a univariate ANOVA for 
each curve.  Significant effects of genotype, exposure, or two-way interaction of 
genotype by exposure are designated by red numbering.  There is no significant effect of 
method (blue numbering) on either genotype, Mn-exposure, or genotype by Mn-exposure 
interactions.  * Significant difference in survival (p<0.05 post-hoc t-test assuming 
unequal variance) between wild-type and mutant cells at indicated exposures. 
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Figure II.6.  Concentration-Response Curve for Mn Shows a Gene-Environment 
Interaction with HD.  The number of viable cells, wild-type STHdhQ7/Q7 (blue) or 
mutant STHdhQ111/Q111 (red), is graphed relative to the untreated control is shown as 
percent untreated (± SEM. n=3 independent experiments).  Tables show statistical 
analysis from a two-way univariate ANOVA for each curve.  Significant effects of 
genotype, exposure, or two-way interaction of genotype by exposure are designated by 
red numbering.  * Significant difference  in survival (p<0.05 post-hoc t-test assuming 
unequal variance) between wild-type and mutant cells at indicated exposures. 

 

Mn Induced Aggregation in a Polyglutamine Disease Model 

Polyglutamine expanded HTT aggregates in animal models and human patients, 

but the role of aggregation of HTT in disease progression is complicated.  Unfortunately, 

the full-length protein does not readily form microscopically visible inclusions in cell 

culture models.  The process of amyloidogenesis or aggregate formation is believed to be 

similar between all polyglutamine disorders (Thakur et al. 2002). Aggregation has been 

shown recently to correlate inversely with cellular dysfunction and death in 
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spinocerebellar ataxia type 7 and type 1 (Bowman et al. 2005; Bowman et al. 2007).  

Knowing that Mn can increase the aggregation of prion precursor protein, we wanted to 

test the ability of Mn to alter aggregation of a polyglutamine disorder to understand how 

Mn may alter cell survival.  Therefore, we chose a cellular model of spinocerebellar 

ataxin type 1 containing CAG a repeat length of 82 (ATXN1[82]).  We chose 

ATXN1[82] because of its known ability to aggregate in cellular models (Bowman et al. 

2007).  HEK293T cells, a non-neuronal cell line, were transfected with ATXN1[82] and 

treated with 250 or 500 µM MnCl2.  We report that 500 µM MnCl2 significantly 

increases the rate of aggregate of ATXN1[82] above unexposed ATXN1[82] expressing 

cells (Figure 11.8.).   

 

Figure II.7.  STHdhQ111/Q111 Cell Line Survival is Increased in the Presence of 40µM 
Mn. Viability of wild-type STHdhQ7/Q7 (blue) or mutant STHdhQ111/Q111 (red) 30 hours 
after exposure to 40µM Mn(II) chloride.  The number of viable cells relative to the 
untreated control is shown as percent untreated (± 95% confidence intervals. n=12 
independent experiments).  * Significant difference in survival when compared to 
untreated (p<0.05 t-test assuming unequal variance). 

 



45 

 

 

Figure II.8.  Increased Aggregates of SCA1[82Q] in the Presence of Mn. HEK293 

cells were plated, transfected with ATXN1[82Q] before exposure to media supplemented 
with indicated amounts of Mn(II) chloride.  After 3 days exposure to Mn, cells were 
probed by immunofluorescence for ATXN1[82Q] (green) and DAPI (blue).  Fraction of 
cells with inclusions (bright green puncta, see arrow heads) relative to number of 
transfected cells was determine by automated image analysis using NIH ImageJ software.  
The mean fraction of cells with inclusions (± SEM) is plotted.  * Significant difference in 
survival (p<0.05 t-test assuming unequal variance) compared to exposed cells.  

 

Conclusions 

We used a disease-toxicant interaction screen to evaluate toxicants that may share 

pathophysiological mechanisms underlying HD neurodegenerative processes.  The 

approach exploited the diverse toxicology of metals to reveal processes that may underlie 

gene-environment interactions in disease.  Metals were the toxicant of choice for this 

screen because they are known to alter cellular pathways also implicated in HD 

pathology.  We tested eight metals and the mitochondrial complex II inhibitor 3NPA for 

modification of cell survival in the presence of either wild-type HTT or a polyglutamine-
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expanded form of the protein.  3NPA was a positive control showing increased toxicity in 

the presence of the glutamine-expansion as previously reported (Figure II.3.).  The wild-

type and HD mutant cell lines showed no difference in their response to the metals 

Cu(II), Fe(III), Pb(II), Co(II), Ni(II), or Zn(II) (Figure II.4.).  In contrast, the mutant HD 

cell line was found to have enhanced sensitivity to Cd(II) toxicity, and resistance to 

Mn(II) toxicity.  The selective effect of these two metals strongly suggests that the HD 

mutation can alter the influence of specific environmental toxicants on striatal cell lines 

and validates the utility of a disease-toxicant interaction screen to identify pathways of 

gene-environment interactions. 

Oxidative stress is known to be a key factor in Cu and Fe mediated toxicities and 

is a potential mechanism of HD pathology.  The lack of a significant difference in 

toxicity between genotypes with these metals is consistent with an earlier study that 

found no difference in vulnerability to oxidative stress in another HD cell model (Figure 

II.4.) (Snider et al. 2003).  Furthermore, it suggests that a change in sensitivity to 

oxidative stress is not the source of the altered vulnerability of mutant STHdhQ111/Q111 

cells to Cd, Mn, or 3NPA (Figure II.3. and II.4.).   

Additionally, we report a significant increase in the formation of microscopically 

visible polyglutamine inclusions in a cellular model of spinocerebellar ataxin type1 but 

only at a high concentration of Mn exposure (500 µM) (Figure II.8.).  Although, Mn can 

alter microscopically visible aggregates, recent evidence in the HD field have implicated 

the soluble aggregates, which are not microscopically visible, as the pathological form 

(Luo et al. 2008).  The role of large microscopically visible, insoluble aggregates may be 

to increase survival by sequestering the toxic species within the cell (Williams et al. 
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2008; Sathasivam et al. 2009).  Importantly, we needed high concentrations of Mn 

needed to induce a significant effect on aggregation.  These Mn levels are well above the 

concentrations where we see the differences in survival between STHdhQ7/Q7 and 

STHdhQ111/Q111 (Figures II.4, 5, and 6).  Therefore, the influence on Mn on aggregation 

does not appear to be the same mechanism by which Mn is influencing cell survival in 

the mutant cells.  Further work is necessary to understand what role aggregation may play 

in survival.  

The gene-environment interaction identified here must be further characterized to 

understand the impact on cellular pathology.  To characterize this interaction, first we 

must confirm the interaction in an additional model system.  The STHdh cell line is a 

well-defined model of HD, which contains many of the hallmark phenotypes of the 

disease seen in both animal models and humans (Trettel et al. 2000; Gines et al. 2003; 

Gines et al. 2003; Seong et al. 2005; Mao et al. 2006; Milakovic et al. 2006; Oliveira et 

al. 2006; Xifro et al. 2008).  These cells, however, are known to have different expression 

rates of HTT and that may have a profound effect on survival given that wild-type HTT 

has neuroprotective properties (Trettel et al. 2000).  Additionally, the slower cell division 

rates in the mutant line may influence the uptake and toxicity of Mn (Figure II.1).   

Interestingly, a decrease LDH activity has been reported in the R6/2 mouse model 

of HD (Figure II.2. and III.2.) (Fox et al. 2007).  Microarray of the STHdh cell line show 

altered expression of this enzyme implicating enzyme dysfunction (Lee et al. 2007).  Not 

only do these cells have a reduction in cell division rates but also LDH levels are lower in 

the mutants compared to wild-type (Figure II.1. and 2.).   
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Mn studies have shown that there are dose dependent effects of Mn on the 

mitochondrial electron transport chain.  At low levels (10 µM), Mn stimulates the 

electron transport chain; however, it becomes inhibitory at higher concentrations 

mimicking our Mn response curve in the STHdhQ111/Q111 cells (Heron et al. 2001).  

Altered Mn homeostasis could influence the activity of this enzyme directly or indirectly 

by altering other metals in the brain such as Cu, that alters LDH activity (Pamp et al. 

2005).  Therefore, the different LDH activities we have seen in this HD model though 

intriguing complicate our ability to use this as a simple marker of cell survival.  Given 

that the in vivo toxicity of HTT is due to the expanded polyglutamine domain, we must 

determine if the polyglutamine domain is required for this novel phenotype.  Finally, 

close examination of the cell signaling pathways known to be altered by HD or Mn could 

help identify the mechanisms involved in this phenotype and potential mechanisms of 

disease. 
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CHAPTER III 

 

CHARACTERIZATION OF HUNTINGTIN AND MANGANESE GENE-

ENVIRONMENT INTERACTION 

 

Introduction 

We utilized the screen to uncover interactions based on the hypothesis that a 

toxicant sharing pathophysiological mechanisms with HD would exhibit disease-toxicant 

interactions and would reveal mechanisms of selective degeneration and toxicity.  We 

have discovered a novel gene-environment interaction between HTT and the divalent 

metals Mn and Cd in our previous results (Figures II.4.-II.7.).  Mutant cells have 

increased sensitivity to Cd (Figure II.4.).  However, cells that express the HD mutation 

display reduced toxicity to Mn when compared to cells expressing wild-type HTT.  The 

interaction is specific to the metal Mn and does not occur with the other metals that we 

tested (Cu. Co, Cd, Zn, Pb, Ni, and Fe) (Figure II.4.).  The ability of the HD mutation to 

block toxicity to Mn is one of few results where polyglutamine-expanded HTT improves 

cell viability.   

Common pathophysiological similarities exist between HD and Mn toxicity.  Mn 

accumulates in the basal ganglia and overexposure to Mn2+ is associated with selective 

neurodegeneration of this brain region, the same region altered by HD (Madsen et al. 

2007; Peng et al. 2007; Perl et al. 2007; Stanwood et al. 2009).  The reason for regional 
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specificity in not understood but the involvement of multiple cellular pathways has been 

shown.  A few of the potential mechanisms of death common to both HD and Mn toxicity 

are oxidative stress, calcium signaling, protein aggregation and altered energy 

metabolism.  (Erikson et al. 2003; Tarohda et al. 2004).   

Data indicate that wild-type HTT has a pro-survival effect in the cell; first 

indicated by the embryonic lethality of HTT knockout mice (Duyao et al. 1995; Nasir et 

al. 1995; Zeitlin et al. 1995).  Additional studies in a Drosophila model found 

neurodegeneration after RNAi knockdown of the HTT protein and a mouse model shows 

cell loss in the mature brain with inactivation of HTT (Dragatsis et al. 2000; 

Gunawardena et al. 2003).  HTT is known to alter multiple pathways that may increase 

cell survival.  For example the wild-type protein increases BDNF, an essential 

neurotrophic factor, transport (Zuccato et al. 2001; Pineda et al. 2005; Zuccato et al. 

2005; Gharami et al. 2008; Zala et al. 2008).  It also blocks caspase 3 activity, a protein 

that leads to cell apoptosis (Zhang et al. 2006).  These cell survival pathways converge on 

the activity of protein Akt, specifically increased phosphorylation at S473 is associated 

with neuroprotection (Brunet et al. 2001).  In the STHdh cell model, Akt phosphorylation 

at S473 is reported to be elevated in the mutant STHdhQ111/Q111 line, with no change in the 

levels of total Akt between mutant and wild-type cells (Gines et al. 2003).  Previous 

research has shown that exposure to Mn(II) is associated with activation of the Akt cell 

stress pathway via phosphorylation of S473 (Bae et al. 2006; Liao et al. 2007).  We 

hypothesize that the gene-environment interaction between HTT and Mn will be shown 

in pathways common to both toxicities.  Additionally, analyses of these common 
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signaling mechanisms will allow us to describe the disease-toxicant interaction more 

thoroughly.   

 

Methods 

 

Chemicals, Reagents, and Cell Culture Supplies 

Cell culture reagents are from Mediatech (Manassas, VA) unless indicated.  Cell 

lines were grown in Dulbecco’s Modified Eagle’s Medium with 10% fetal bovine serum 

(Atlanta Biologicals, Lawrenceville, GA), L-glutamine, and Penicillin-Streptomycin.  

400 g/ml G418 was added to media to select for expression of wild-type or mutant HTT 

STHdh cell lines.  Metals, Mn(II) chloride, and Cd(II) chloride, used for assays were 

from Alfa Aesar (Ward Hill, MA).  Buffers and solutions for assays: 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) salt (VWR, West Chester, 

PA), Sorenson’s Buffer (0.1 M glycine, 0.1 M NaCl2, pH 10.5), dimethyl sulfoxide 

(DMSO, Sigma, St. Louis, MO).  PBT (PBS with 0.1% Triton X-100 (Sigma, St. Louis, 

MO), and 4% paraformaldehyde in PBS (diluted from 16% solution, Electron Microscopy 

Sciences, Hatfield, PA) were used for cell imaging studies.  

 

Antibodies 

Human HTT (2166) 1:20000 (Millipore, Billerica, MA), Pan Akt 1:1000 (Cell 

Signaling, Beverly, MA), phospho-Akt 1:1000 (Cell Signaling, Beverly, MA), and actin 
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1:2000 (Developmental Studies Hybridoma Bank, Iowa City, IA).  Appropriate 

secondary antibodies from Jackson Immunoresearch Laboratories (West Grove, PA) were 

used at 1:15000 accordingly: IgG mouse, IgG rabbit, and IgM mouse.  

 

 

Cloning of Full HD constructs 

Full length HD constructs were made for both polyglutamine and wild-type HTT.  

Sequence alignments utilize the NCBI session number  NM_002111.  The construct was 

made in 3 main pieces from a HD construct in pUAST, a gift from Juan Botas (Baylor 

College of Medicine):  the 5’ pieces were assembled by a digest and a three step PCR 

protocol, the middle and largest fragment was created by a simple 2 step subcloning 

procedure and the 3’ end was made using a PCR reaction to create new restriction sites.  

The 5’ end: From the pUAST vector containing HD, we subcloned using a NotI site in 

the vector upstream of the ATG start of HD and an endogenous XbaI site (bp 3782).  The 

polyglutamine expansion of 111 repeats was created by PCR from the YAC128 mouse 

model.  PCR primers were designed with Not1 site upstream of the transcriptional start 

and RsrII site below the polyglutamine expansion (bp384).  PCR reaction 1:5’ 

oligonulceotide ATATGCGGCCGCTCAGGTTCTG; 3’ oligonulceotide TCAGCCACA 

GCCGGTCCGGGTGGCG.  A seconded PCR was done with primers containing the 

RsrII site at the five prime end.  PCR reaction 2:  5’ primer CGCCACCCGGACCGGCT 

GTGGCTGA; 3’ primer CTCCGAGGGGCACCATTC.  The 3’ oligonulceotide was 

designed to overlap the endogenous Xho site (bp655).  PCR reaction 3:  uses 
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oligonulceotide from 5’ from PCR 1 and 3’ from PCR 2.  The product of the third PCR 

reaction was placed into TOPO (Invitrogen) then subcloned using NotI and Xho.   

The middle of the construct was assembled in to pBluescript first:  The central 

piece of HD was an initial Xba digest which cuts at two sites bp9103 and bp3782 

followed by a Xho (bp655) and KpnI (bp 3782) digest leading to a subcloning in 

pBluescript (Invitrogen).    

The 3’ end:  The final piece of the construct was created by PCR with primers 

containing a NOT1 site on the three prime end and PCR over the endogenous Xba at bp 

9103: 5’ oligonulceotide GATAGGATCAGGAAAGGCTTTCC; 3’ oligonulceotide 

TATAGGTACCGCGGCCGCAGGTGGTGACCTTGTGGAC.  The full length 

constructs were cut from pBluescript and cloned into pCDNA3.1 (Invitrogen), a 

mammalian expression vector using the NOT1 sites created at both ends of full length 

HD. 

 

Cell Transfection and Determination of Cell Viability  

Equal numbers of wild-type STHdhQ7/Q7 cells were plated onto glass coverslips 

approximately 10 hours prior to transfection using lipofectAMINETM 2000 (Invitrogen, 

Carlsbad, CA).  The pEGFP-N1 expression vector (Invitrogen, Carlsbad, CA) was co-

transfected with pHTT[128Q] or the control vector at a 1:3 ratio to allow for estimates of 

transfection efficiencies.  Approximately 70% of cells were GFP positive.  Cells were 

treated with MnCl2 24 hours post-transfection and analyzed 30 hours after exposure.  

Coverslips were harvested, washed in PBT, fixed with 4% paraformaldehyde, washed 
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again, and mounted onto slides with ProLong Gold antifade reagent with DAPI nuclear 

stain (Invitrogen, Carlsbad, CA).  DAPI positive cells were imaged by fluorescence 

microscopy using a Zeiss Axioplan microscope (Thornwood, NY) with a 10x objective 

by systematic unbiased sampling of non-overlapping fields.  Number of surviving cells 

per field was quantified using NIH ImageJ by the threshold and analyze particles 

commands as previously described (Bowman et al. 2007). 

 

Cell Survival Assays  

STHdhQ111/Q111 and wild-type STHdhQ7/Q7 cells were plated at equal density 

(350000 cells per 10 cm2) the evening before treatment.  Cells were exposed to metals in 

the culture media for 26 to 30 hours.  Cell viability was assessed with a hemacytometer 

using trypan blue exclusion or MTT assay.  Trypan blue exclusion: Cells were harvested 

after exposure with trypsin and counted on a hemacytometer utilizing trypan blue 

exclusion.  Survival data is graphed as the number of viable cells relative to the untreated 

for each genotype is shown as percent untreated.  MTT assay: After treatment, the media 

was exchanged for 500 µl of 0.5% MTT salt in MEM (Invitrogen, Carlsbad, CA) 

containing FBS and Penicillin-Streptomycin for 4 hours.  Then the media was removed 

and Sorenson’s Buffer was diluted 2.5:20 in DMSO.  200 µl of Sorenson’s Buffer in 

DMSO was added to the empty wells and the plates were returned to the incubator until 

all the MTT salt precipitate could no longer be visualized under a microscope.  60  µl 

from each well was removed and placed in a 96-well plate.  Absorbance at 590  nm was 

read on a Tecan (Durham, NC) plate reader (Ehrich et al. 2000). The average absorbance 

relative to the untreated control is graphed as percent untreated.   
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Primary Culture from YAC128Q and Control Animals. 

Briefly, postnatal day 0-1 pups were obtained from a cross of wild-type FVB and 

positive FVB-Tg(YAC128)53Hay/J (YAC128) animals, created by Michael Hayden and 

colleagues (University of British Columbia, Canada), and obtained from JAX (Bar 

Harbor, ME) (Slow et al. 2003; Tang et al. 2005).  Cerebellum was removed and placed 

in ice cold Hank’s Balanced Salt Solution (Invitrogen).  Tissue was diced, passed through 

a series of reduced bore pasture pipettes, and digested with 0.25% trypsin (Sigma, St. 

Louis, MO) and 1 mg/ml  Dnase I (Sigma, St. Louis, MO).  After dissociation, enzymes 

were inhibited with warm Neurobasal media (Gibco, Carlsbad, Ca) containing 10% FBS 

(Sigma, St. Louis, MO).  Cells were counted and plated at ~1x106 on to ether poly-D-

lysine (Sigma, St. Louis, MO) coated or uncoated dishes.  Neuronal media for cerebellar 

cultures contained DMEM (Mediatech), 15% FBS (Sigma, St. Louis, MO), B27 

supplement (Gibco, Carlsbad, Ca), potassium chloride (Sigma, St. Louis, MO), L-

glutamine (Sigma, St. Louis, MO), penicillin-streptomycin (Mediatech), glucose (Sigma, 

St. Louis, MO), pyruvate (Sigma, St. Louis, MO), and nonessential amino acids (Sigma, 

St. Louis, MO).  The cells were then counted before being plated equally in replicate.  

Some cultures were placed onto poly-D-lysine treated dishes to enrich for neuronal 

attachment while others were placed onto uncoated plates to encourage the growth of 

astrocytes.  Each dissection was maintained as a separate culture.  Astrocytes from the 

striatum were initially cultured in Neurobasal medium (Invitrogen), 10% FBS, B27 

supplement, 2mM glutamine, penicillin-streptomycin.  After 12 days in vitro, neuronal 

cultures were exposed to Mn for 24 hours and cell death assayed by MTT method as 

described above.  The astrocyte cultures were split at day 7 of culture and at this time all 
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cultures from each of each genotype were combined creating one culture from YAC128 

and a one from wild-type control animals.  The day after replating the astrocyte cultures 

the media was changed:  Minimal Essential Media + earl’s salts (Mediatech), 10% FBS, l 

glutamine, penicillin-streptomycin.  Treatment protocol and assays were done as stated 

previously in the neuronal cultures. 

 

Western Blots  

Wild-type and mutant STHdh cell lines were plated evenly and treated with Mn as 

stated above, washed, and counted.  The cell pellet was lysed in a volume of RIPA buffer 

with protease and phosphatase inhibitors proportional to the number of cells, and an equal 

volume of each sample was loaded onto duplicate polyacrylamide gels, one 10% and 

another 6%.  Two gels were necessary due to the size differenced of the proteins.  HTT 

levels were examined on the 6%; Actin, TfR, and Akt on the 10% gel.  Western blots 

were visualized with Thermo Scientific Pierce Supersignal West Dura Extended Duration 

Chemiluminescent Substrate (Waltham, MA) on an Ultralum Omega 12iC (Claremont, 

CA).  Quantification was done using ImageJ (NIH). 

 

Colorimetric LDH Assays 

We used the In Vitro Toxicology Assay Kit (TOX7) (Sigma, St. Louis, MO).  

STHdh cells were plated at equal density (350,000 per dish), exposed to the metal as 

indicated for 30 hours, and then lysed with Triton tx-100 according to the manufactor’s 

protocol.  Intracellular enzyme activity was measured at an absorbance of 490nm.   
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Statistical Analysis  

Univariate and multivariate ANOVAs were performed using SPSS software 

(SPSS, Inc., Chicago, IL).  All post-hoc analysis and pair-wise comparison’s were done 

by Student’s t-tests (two-tailed, assuming equal variances), error bars are expressed as 

standard error of the mean (SEM), all using Microsoft Excel (Redmond, WA).  

 

Results 

 

Phenotypic differences of STHdh Lines, Growth Rates and LDH Activity, Do Not Alter 

Mn Toxicity 

 The wild-type and mutant striatal cell lines are independent lines.  Thus, 

differences in their response to Mn(II) exposure may be due to expression of mutant HTT 

or other inherent differences between the two lines.  Because the mutant STHdh cells are 

known to divide at a slower rate than the wild-type STHdhQ7/Q7 cells, we wanted to 

examine the role of cell division on Mn toxicity (Figure II.1.) (Trettel et al. 2000).  A 

unique feature of the STHdh lines is that the SV40 large T antigen, which drives cell 

division, is temperature sensitive.  Normal cell growth occurs at 33ºC while at a higher 

temperature of 39ºC cell division is blocked (Cattaneo et al. 1998).  Cells were split.  

Some of the cultures were maintained at 33ºC and allowed to divide as normal.  Other 

cells from the split were moved to the non-permissive temperature of 39º for 24 hours, 

and then both groups were exposed to Mn.  Both mutant and wild-type cells show 

toxicity under standard culture conditions (33ºC) with Mn being less toxic in the mutant 

cell line (Figures II.4-6.).  In cultures at 39ºC, where cell division is greatly reduced, both 



58 

 

cell lines displayed an increase in cell death in the absence of Mn (Figure III.1.A.).  

However, the wild-type cells continued to show more death in the presence of Mn when 

compared to the STHdhQ111/Q111 line (Figure III.1.B.).  Together, this data suggests that 

the variation in cell growth rates does not cause the HTT-Mn interaction.    

 

 

Figure III.1.  Absence of Cell Growth Does Not Alter the Mn Phenotype.  STHdh 
cells were plated at equal density, place at 39 C for 24 hours to stop cell division and 
survival analyzed at indicated time or exposed to indicated amounts of Mn n=17 
independent wells (+SEM).  Significant differences within the wild-type unexposed 
samples when compared to 0 hour control (# p=0.05 t-test assuming unequal variance).  
Significant differences within the mutant unexposed samples when compared to 0 hour 
(@ p=0.05 t-test assuming unequal variance).  Significant differences between the 
genotypes after Mn exposure (* p=0.05 t-test assuming unequal variance). 
 

LDH activity is a common marker of cell viability.  However, in the STHdh cells, 

microarray analysis has shown differences LDH RNA levels in the mutant line when 

compared to wild-type (Lee et al. 2007).  We assayed the activity levels of this enzyme to 

explore any differences between the STHdh cell lines.  To explore the ability of Mn to 
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alter LDH activity, we treated equal numbers of wild-type or mutant cells with indicated 

amounts of Mn(II) and examined LDH activity in the cell lysates.  This pilot study 

indicates that at 40 µM Mn LDH activity increase specifically in the mutant cells 

compared to untreated STHdhQ111/Q111.  At 100 µM Mn, mutant Mn exposed cells have 

decreased LDH activity as do wild-type under all exposures concentrations (Figure 

III.2.).  Student’s t-test indicates significance from basal or unexposed cells within each 

genotype.  However, the basal difference in the LDH activities between the two cell lines 

prompted us to examine LDH levels more closely.  Equal numbers of mutant and wild-

type cells show a significant reduction in the activity of LDH in the mutant cells which 

has been reported in other models of HD (Figure II.2.)  (Fox et al. 2007).  Due to these 

basal differences, we did not investigate the effect of Mn on LDH activity further. 

 

Figure III.2.  Intracellular LDH Activity in STHdh Cells.  Equal numbers of cells 
were plated, exposed to indicated amounts of Mn for 30 hours, and then internal LDH 
enzyme activity was measured..  N=2 independent wells (+SEM) .  Significant 
differences in active when compared to basal levels within genotype (* p=0.05 t-test).  
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Expression of Mutant HTT is Sufficient for the Mn-Resistance Phenotype  

To determine if the Mn(II) resistant phenotype is due to expression of mutant 

HTT we transiently expressed full-length human mutant HTT with 128 repeats 

(HTT[128Q]) in the wild-type STHdhQ7/Q7cells.  Transfected cells were examined for 

expression of mutant HTT[128Q] or wild-type HTT[11Q] constructs (Figure III.3.A.).  

Twenty-four hours after transfection with the control or pHTT[128Q] expression vector, 

cells were exposed to vehicle, 40 µM Mn(II), or 100 M Mn(II) and cell survival 

assessed by microscopy.  In addition to the pHTT[128Q] or control vector, cells were co-

transfected with pEGFP-N1 at a 1:3 ratio to allow estimates of transfection efficiencies,  

approximately 70% of cells were GFP positive (Figure III.3.B.).  Statistical analysis by 

two-way univariate ANOVA revealed a significant difference between HTT[128Q] and 

control transfected cells (F(1,108)=7.33, p=0.008) and a significant two-way interaction 

between Mn(II) exposure and transfection (F(2,108)=3.92, p=0.023).  Posthoc analysis 

indicated significantly higher cell survival following Mn exposure in the HTT[128Q] 

transfected cells relative to control cells at both 40 µM (p=0.05) and 100 µM (p<0.001) 

Mn(II) exposures (Figure III.3C.).  Therefore, expression of mutant HTT is sufficient to 

confer resistance to Mn(II) toxicity.   
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Figure III.3.  Expression of Mutant HTT Confers Mn-Resistance Phenotype.  A.  
Lysates harvested from transfection of full length pHTT[11Q]  or pHTT[128Q]  into 
wild-type STHdhQ7/Q7 or mutant STHdhQ111/Q111 cells.  B. Cell images used to 
quantitate transfection efficiencies, approximately 70%.  C. Graph of cell survival.  
Following exposure to Mn(II) chloride for 30 hours.  The number of surviving cells 
per visual field (18 images per transfection/exposure group, 9 images from 2 
independent coverslips) was counted by automated image analysis using NIH ImageJ 
software.  Mean values are plotted as the percentage of cells relative to the average 
number of cells (± SEM) in vehicle exposed controls for each transfection condition, 
n=18 images.  Significant differences in survival (* p<0.05 post-hoc t-test) between 
pHTT[128Q] expressing and control cells are indicated.  

 

In the mutant cell lines, we saw no change in the resistance to Mn toxicity with 

the additional expression of the HTT[128Q] construct  indicating that the lower levels of 

HD expression in the STHdhQ111/Q111 cell line is not responsible for the lack of Mn 

sensitivity (Figure III.4. compare untransfected and pHTT[128]).  The wild-type 

HTT[11Q] transfection into the mutant line suggests that the wild-type HD construct is 
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able to restore Mn sensitivity to the STHdhQ111/Q111 cells (Figure III.4. compare control 

and pHTT[Q11] transfected); these preliminary results suggest that wild-type and mutant 

HD exert opposing effects on Mn sensitivity.  

To examine the role of the polyglutamine domain in the phenotype, we 

transfected HTT[128Q] truncated expression vector into the wild-type cells.  HTT[128Q] 

truncated, was also to increase the resistance of these cells to Mn toxicity, showing that 

the first third of the HTT protein is sufficient for the Mn interaction phenotype (Figure 

III.5.)  

 

 

Figure III.4.  Restoration of Mutant HTT Protein Levels Does Not Alter Mn 
Resistance in Mutant Cells. Transfection of pHTT[128Q] or pHTT[Q11] into 
STHdhQ111/Q111cell line 24 hours before treatment with MnCl2. Graphed as the percentage 
of cells remaining relative to the average number of survival without Mn exposure for 
each transfection condition, n= 18 (± SEM). Significant effect of genotype/transfection, 
exposure, or significant two-way interaction between genotype/transfection and exposure 
is designated by red numbering.  * Significant difference in survival (p<0.05 post-hoc t-
test assuming unequal variance) between control and HTT[128Q] transfected.   

 

To explore further, the Mn-resistance phenotype of neurons expressing mutant 

HTT, we isolated primary neuronal cultures from the YAC128 mouse model of HD (Slow 
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et al. 2003).  The YAC128 mice express full-length human HTT with 128 CAG repeats 

under control of the human HTT promoter on a yeast artificial chromosome.  Both wild-

type copies of the endogenous mouse HTT gene are present in the mutant animals (Slow 

et al. 2003).  Primary cerebellar neuronal cultures from mutant YAC128Q animals have 

decreased sensitivity to Mn toxicity relative to cultures from wild-type animals (Figure 

III.6.).  Therefore, mutant HTT protects against Mn toxicity in both striatal cell lines and 

primary neuronal culture models. 

 

 

Figure III.5.  Truncated HTT with Polyglutamine Domain is Sufficient to Confer 
Resistance.  Transfection of pHTT[128Q] or pHTT[128Q]short into STHdhQ7/Q7cell line 
24 hours before treatment with MnCl2.  After exposure, coverslips stained with DAPI 
underwent systematic unbiased sampling of microscopy fields as previously 
described[63].  Graphed as the percentage of cells remaining relative to the average 
number of survival without Mn exposure for each transfection condition, n= 6 (± SEM).  
a compared to b Significant difference in survival (p<0.01 post-hoc t-test assuming 
unequal variance) between HTT[11Q] and HTT[128Q]short transfected.    
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Figure III.6.  Mutant HTT is Sufficient for Reduced Mn Sensitivity in Primary 
Cerebellar Cultures.  Dissections were done from the brains of FVB wild-type or HD-
YAC128Q litter-mates postnatal 1 animal.  After 12 days, in vitro cells were treated with 
various concentrations of Mn(II) chloride for 48 hours.  Cell survival was analyzed by 
MTT assay.  n=6 independent wells, representative of 3 experiments.  The average 
absorbance relative to the untreated control is graphed as percent untreated (± SEM).  
Tables show statistical analysis from a two-way univariate ANOVA.  Significant effects 
of genotype/transfection, exposure, or two-way interaction of genotype/transfection by 
exposure are designated by red numbering.  * Significant difference in survival (p<0.05 
post-hoc t-test assuming unequal variance) between wild-type and YAC128Q cells.  
 

Primary Cultures from YAC128 May Have a Cell Subtype Specific Responses to Mn 

Exposure.   

Different cell types accumulated different amounts of Mn and astrocytes are 

known to accumulate approximately 80% of the total Mn within the brain (Wedler et al. 

1984; Erikson et al. 2006; Morello et al. 2008).  The STHdhQ7/Q7 and STHdhQ111/Q111 cell 

lines have been reported to be enriched in neuronal cell types (Trettel et al. 2000).  To 

explore the ability of different cell types to affect the insensitivity of the HD mutant to 

Mn, we used primary cultures from the YAC128 mouse model of HD.  Primary cultures 

that have been enriched for neuronal types by plating onto coated coverslips clearly 

display a differential sensitivity to Mn toxicity (Figure III.7.).  Cultures plated onto 

uncoated dishes that enrich for astrocytes, do not show a decrease in cell death after Mn 
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exposure (Figure III.7.).  The different responses of these broad subclasses of cells add 

strength to the argument that specific cell types are more vulnerable to Mn toxicity.  

However, cell staining is necessary to identify the cell types present in these cultures. 

 

 

Figure III.7.  A Subset of Brain Derived Cells from Mutant YAC128 HD Mice are 
Resistant to Mn Toxicity.  Dissections were done from the cerebellum of FVB wild-type 
or HD-YAC128Q litter-mates postnatal 1 animal.  Neuronal mixed cultures were plated 
onto coated coverslips and maintained for 12 days.  Astrocytes were plated onto uncoated 
dishes and split on day 7.  In vitro both cultures were treated with 100µM Manganese 
chloride 24 hours.  The number of cells surviving was analyzed by MTT assay.  n=6 
independent cultures.  The average absorbance relative to the untreated control is graphed 
as percent untreated (± SEM).  * Significant difference in survival (p<0.0001 post-hoc t-
test assuming unequal variance) between wild-type and YAC128Q cells.  

 

40 µM Mn(II) Exposure Does Not Significantly Alter HTT Protein Levels 

The HTT gene has been shown to be Fe-responsive and Mn(II) exposure is known 

to alter cellular Fe levels (Zheng et al. 1999; Hilditch-Maguire et al. 2000).  Given these 

findings and HTT’s ability to influence cell survival, we examined HTT to determine if 

Mn can alter protein levels, which may alter cell viability (Figure III.8.).  Quantitative 

analysis demonstrated that HTT levels were not significantly altered in wild-type or 

mutant striatal cells after exposure to 40 µM Mn(II) for 30 hours.  As previously 
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reported, mutant HTT protein levels are decreased in the STHdhQ111/Q111 cells relative to 

wild-type protein levels in the wild-type cell line (Figure III.3.) (Trettel et al. 2000).   

 

Figure III.8.  Mn(II) Exposure Does Not Alter HTT Protein Levels in Striatal Cells.  
(A) representative blot showing  lysates from STHdhQ7/Q7 (wild-type) or STHdhQ111/Q111 

(mutant) cells after 30 hours of 40µM Mn(II) chloride exposure (+).  (B) Quantification 
of HTT protein expression in striatal cell lines relative to actin.  Mean values are plotted 
as a percentage of the vehicle exposed wild-type cells (± SEM. n=7 independent 
samples).  Statistical analysis of HTT protein levels by two-way univariate ANOVA 
found a significant effect of genotype (F(1,28)=28.1, p<0.001), but indicated no significant 
effect of Mn(II) exposure (F(1,28)=1.13, p=0.298) or a genotype by exposure interaction 
(F(1,28)=1.16, p=0.292).  
 

Diminished Akt Activation in Response to Mn(II) Exposure in HD Striatal Cells 

As changes in S473-phosphorylated Akt (pAkt) levels are associated with both Mn 

toxicity and HD, we hypothesized that this signaling pathway would show disease-

toxicant interactions (Humbert et al. 2002; Gines et al. 2003; Colin et al. 2005; Warby et 

al. 2005).  To begin we quantified pAkt levels following a 30 hour exposure to 40 µM 

Mn(II).  This exposure led to a Mn-dependent increase in pAkt levels (p<0.05) in wild-

type cells, yet mutant cells showed no detectable change in pAkt levels relative to 
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untreated mutant cells (Figure III.9.).  As expected from previous work, pAkt levels were 

elevated in the mutant line versus wild-type in the absence of Mn (Gines et al. 2003).  

Given this, it is possible that the failure to detect a Mn-dependent increase in pAkt was 

due to a general inability of these cells to increase pAkt levels beyond this point. 

 

  

Figure III.9.  Diminished Mn-Dependent AKT Phosphorylation in HD 
Striatal Cells.  Lysates harvested from STHdhQ7/Q7 (wild-type) or STHdhQ111/Q111 
(mutant) cell lines after 30 hours of manganese chloride exposure were analyzed by 
western blot for total Akt (Akt), phosphorylated Akt (S473-P-Akt), and actin.  (A) 
Representative blot showing 3 samples of each genotype-exposure group.  (B-C)  
Quantification of protein expression in striatal cell lines, with (B) S473-P-Akt normalized 
to total Akt, and (C) total Akt normalized to actin.  Mean values are plotted as a 
percentage relative to the vehicle exposed wild-type cells (± SEM, n=7 independent 
samples).  Significant differences in protein levels (* p<0.05 posthoc t-test) between 
vehicle and Mn-exposed cells are indicated  

 
To determine if higher levels of Mn are capable of increasing pAkt levels, we 

exposed cells for a shorter time point (3 hours) to allow us to collect protein before 

significant cell death.  At this time point, other studies reported strong Mn-dependent 
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increases in pAkt levels (Bae et al. 2006; Lee et al. 2009).  Mutant STHdhQ111/Q111 cells 

were capable of increasing pAkt levels in response to high concentrations of Mn(II) 

(Figure III.11.).  However, in the wild-type cells 40 µM Mn(II) was sufficient to 

significantly increase pAkt above basal levels (p>0.05) (Figure III.10.A. and III.11.).  We 

did not detect a significant increase in pAkt above its higher basal levels in mutant cells 

until 200 µM Mn(II) or higher (p>0.05) (Figure III.10.A. and III.11.).  Interestingly, at 

exposures of 100 µM and above, the levels of pAkt in the wild-type cells increased to 

equal the levels seen in mutant cells exposed at the same Mn concentration (Figure 

III.10.C.).  Controlling for the elevated pAkt levels in the mutant by normalizing the 

basal levels of each genotype to 100%, mutant cells exhibited a significant decrease in 

pAkt activation relative to wild-type cells across all tested Mn concentrations (p>0.05) 

(Figure III.10.B.).  

 

Enhanced Akt Activation in Response to Cd(II) Exposure in HD Striatal Cells 

To evaluate whether the reduced phosphorylation of Akt by Mn(II) exposure in 

mutant cells is acting as a specific marker of the Mn-HD interaction, we tested the effect 

of Cd(II) exposure on pAkt levels in the STHdh cell lines.  We tested Cd given its 

opposite effect from Mn on cell survival (Figure II.4.).  Published evidence has 

demonstrated that Cd(II) exposure leads to phosphorylation of Akt at S473 in a variety of 

cell types (Thevenod 2009).  A 3 hour exposure of STHdh cells to 50 µM Cd(II) 

increased pAkt levels in both wild-type and mutant lines (Figure III.10.A. and B.).  

Indeed, despite the elevated basal levels of pAkt, Cd(II) exposed mutant STHdhQ111/Q111 

cells had significantly higher levels of pAkt than wild-type cells (p<0.05) (Figure III.11.).  
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Controlling for the difference in basal pAkt levels, mutant and wild-type cells both had a 

similar ~2-fold increase in pAkt levels (Figure III.10.B.).  Thus the elevated basal pAkt 

levels in the mutant cells does not limit per se the capacity of mutant cells to increase the 

pAkt to total Akt ratio. 

 

 
 
Figure III.10.  Diminished Mn-Dependent Akt Phosphorylation in HD Striatal Cells.  
(A) Lysates harvested from STHdhQ7/Q7 (wild-type) or STHdhQ111/Q111 (mutant) cells after 
3 hours of manganese chloride exposure were analyzed by western blot for 
phosphorylated Akt (S473-P-Akt), total Akt, and actin.  Representative blots are shown.  
(B) Quantification of S473-P-Akt /total Akt expression in striatal cell lines.  Mean values 
were normalized by genotype to the vehicle-only control.  (± SEM, n=4 independent 
samples).  Significant differences in protein levels (* p<0.05 posthoc t-test) between 
genotypes are indicated for each exposure level. 
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Figure III.11.  Diminished Mn-Dependent Akt Phosphorylation in HD Striatal Cells.  
Same data as III.10 regraphed.  Mean S473-P-Akt /total Akt expression ratio values were 
normalized to the wild-type vehicle control (± SEM, n=4 independent samples).  
Significant differences in protein levels (* p<0.05 posthoc t-test) between genotypes are 
indicated for each exposure level.  In collaboration with Michal Wegrzynowicz 
 

Conclusions 

The resistance to Mn toxicity can be conferred to cells expressing wild-type HTT 

by overexpression of the mutant protein and indicates that the different responses to Mn 

between the wild-type and mutant striatal cell lines is not due to some inherent difference 

of the two lines, such as cell division rates and LDH activity (Figures II.1. and 2.).  

Additionally, the gene-environment interaction still exists in the absence of cell division 

(Figure III.1.).  Overexpression of the full-length HD construct increases protein levels 

above the endogenous and validates that the differential response is due to expression the 

mutant protein and not because of the low expression of mutant protein in the 

STHdhQ111/Q111 cells (Figures III.3.A. and III.8.).  Perhaps even more telling is that over-

expression of a wild-type HD construct in the mutant cells can confer sensitivity to Mn in 

cells that normally are resistant, implicating a loss of function in the mutant cells which 

can be overcome by over-expression of the wild-type protein (Figure III.4.).  Our 
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preliminary domain mapping studies have shown that the first third of HTT, which 

contains the mutation, is sufficient for the resistance to Mn (Figure III.5.).  Additionally, 

primary culture data also has shown that the polyglutamine expansion reduces Mn 

toxicity in another cellular model of HD (Figure III.6.).  Our data also indicates that 

neuronal populations, not astrocytes are more sensitive to Mn (Figure III.7.).  The 

absence of differential toxicity in the astrocytic culture may reflect the tendency of these 

cells to accumulate more Mn.  Astrocytes utilize Mn differently than neurons and this 

may play a role in the different survivals we have reported.  For example, astrocytes 

accumulate Mn in the enzyme, GS that is not expressed in neurons (Wedler et al. 1984).  

Finally, we report a blunted response to the Akt cell-signaling pathway (Figures III.9., 10, 

and 11.). 

Following up on the discovery that expression of the disease-causing allele of 

HTT is protective against Mn toxicity, we found no evidence that HTT protein levels are 

altered by 40M Mn(II) exposure, indicating that survival differences between cells does 

not depend on a reduction of the toxic mutant HTT protein levels or an increase of wild-

type expression (Figure III.8.).  However, higher levels of Mn(II) exposure may be able 

to alter the expression of HTT.  Importantly, dosimetry studies have revealed that Mn 

concentrations in rodent striatum are normally between 4 µM to 18 µM, and can increase 

to as high as 70 µM in Mn(II) exposed animals (Aschner et al. 2005). Thus, our 

observation of a HTT-Mn gene-environment interaction at Mn(II) exposures in this range 

is potentially pathologically relevant.   



72 

 

LDH activity data indicates that low levels of Mn may increase the activity of the 

enzyme in the STHdhQ111/Q111 cells.  Changes in both LDH protein level and activity have 

been reported in multiple HD model including the STHdhQ111/Q111 cell line (Fox et al. 

2007; Lee et al. 2007).  LDH is part of the cellular energy metabolism pathway, 

converting pyruvate to lactate (Kasischke et al. 2004).  Mn is known to increase the 

activity of this enzyme in immortalized cell lines (Reaney et al. 2005).  The relationship 

between low LDH level observed in HD models and Mn ability to improve enzyme 

function must be studied more thoroughly.  Given that the STHdhQ111/Q111 cells have been 

reported to have a reduced levels of energetic substrates which reduce the function of 

mitochondria, this may provide a mechanism for improvement in survival we reported 

with low level exposures of Mn (Figure II.2, 7, and III.2,) (Milakovic et al. 2005).  In 

addition, Mn has been reported to stimulate the electron transport chain at low level 

exposures, which could improve survival in the energy deficient STHdhQ111/Q111 cells.   

Cadmium and 3NPA exert their toxic effects directly on the mitochondria (Li et 

al. 2003; Mao et al. 2006).  The mutant STHdhQ111/Q111 cells are reported to have an 

increased susceptibility to multiple mitochondrial stressors (Gines et al. 2003; Seong et 

al. 2005; Oliveira et al. 2006).  More recently, Cd(II) toxicity has been linked to aberrant 

activation of mitogen-activated protein kinases (MAPK) and the mammalian target of 

rapamycin (mTOR) cell signaling pathways (Lopez et al. 2006; Chen et al. 2008).  

Disruption of these signaling pathways has also been suggested in HD (Ravikumar et al. 

2004; Apostol et al. 2006).  Further investigation is needed to determine the relative 

contribution of these and other mechanisms to the increased sensitivity of STHdhQ111/Q111 

cells to Cd(II) toxicity. 
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Activation of Akt via S-473 phosphorylation has been associated with 

neuroprotection (Brunet et al. 2001).  Yet, we found that the increased sensitivity of 

mutant STHdhQ111/Q111 cells to Cd(II) toxicity correlated with increased S473-P-Akt 

levels relative to wild-type exposed cells, while the decreased sensitivity to Mn(II) 

toxicity correlated with a blunted S473-P-Akt response (Figure III.10.).  While this 

observation does not rule out a neuroprotective role for Akt signaling in Mn(II) or Cd(II) 

toxicity, it does demonstrate that enhanced Akt activation between wild-type and HD 

mutant cells does not correlate with improved cell survival following exposure to these 

environmental toxicants in the STHdh cellular model.  Future studies are needed to 

explore changes in Akt signaling following exposure to these metals in animal models of 

HD.  In addition to activation of Akt at S-473, this protein can dually be regulated by 

another phosphorylation site T-308 (Datta et al. 1999) .  The maximal activity of Akt 

requires phosphorylation at both of these residues (Jacinto et al. 2006).  However, these 

two residues have been shown to be differentially regulated.  For example,  T-308 

phosphorylation is not altered by the drug rapamycin but rapamycin blocks S-473 

phosphorylation (Malagelada et al.).    The role of T-308 phosphorylation of Akt in HD 

had not been thoroughly studied and should be investigated in this model.   

Besides Akt, several other kinases are reported to be activated upon Mn exposure 

including ERK (Extracellular signal-regulated kinase), p38, and JNK (c-Jun N-terminal 

kinase) (Bae et al. 2006; Moreno et al. 2008; Lee et al. 2009).  Additionally, Cd has been 

shown to affect MAPK and ERK1/2 signaling in hippocampal slices (Rigon et al. 2008).  

It will be interesting to evaluate how HD influences activation of these and other 

signaling systems that are modulated by Mn and Cd.  
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CHAPTER IV 
 

MUTANT HUNTNGTIN IMPAIRS MANGANESE ACCUMULATION TO LIMIT 

ITS TOXICITY 

 

Introduction 

The divalent metal Mn is essential for proper cellular function, as it is required for 

the activity of many enzymes.  Mn-dependent enzymes are important to many diverse 

cellular functions, playing essential roles in amino acid, lipid, protein, and carbohydrate 

metabolism.  The central nervous system relies on Mn as a cofactor for several key 

enzymes such as glutamine synthetase, pyruvate decarboxylase, superoxide dismutase 2, 

arginase, and serine/threonine protein phosphatase I (Christianson 1997; Takeda 2003).  

Though an essential nutrient, overexposure to Mn can lead to a neurodegenerative 

disorder called manganism.   

Patients with Manganism present with dystonia and hypokinetic movement 

symptoms similar to idiopathic PD (Keen et al. 2000; Olanow 2004; Aschner et al. 2009).  

Even though Mn overexposure is a known risk factor for PD, individuals continue to be 

exposed in various industrial settings, for example in the welding, mining, steel 

production, and automotive repair industries (Cotzias 1958; Roth et al. 2003; Weiss 

2006).  The metal accumulates in the basal ganglia leading to neurodegeneration and 

gliosis of the substantia nigra, globus pallidus, and striatum (Pal et al. 1999; Erikson et al. 

2003).   
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The primary cellular transporter of Mn is the divalent metal transporter (DMT1) 

but calcium and Fe transporters (e.g. TfR) move Mn as well.  (Gunshin et al. 1997; 

Malecki et al. 1999; Garrick et al. 2003).  In addition, the citrate transporter and ZIP-8, a 

metal/bicarbonate ion symporter, have been shown to transport Mn (Davidsson et al. 

1989; Aschner et al. 1994; Crossgrove et al. 2003; He et al. 2006).  However, the 

transporters move multiple metals in addition to Mn with varying affinities.  The divalent 

metal transporter, DMT1 transports Fe, Zn, Cd, Co (cobalt) and Cu (Garrick et al. 2006). 

The Zip8 family members, Zip8 and Zip14, have both been shown to transport Cd (He et 

al. 2006; Girijashanker et al. 2008).   

In chapter II, we reported a gene-environment interaction between the protein 

HTT and Mn, discovered through a metal toxicity screen.  The toxicity of Fe(III), Cu(II), 

Pb(II), Co(II), Zn(II), and Ni(II) were reported to be unchanged in the presence of the 

mutation (Figure II.4.)(Williams et al. 2009).  HTT is mutated in the autosomal dominant 

disorder HD.  HD causes neurodegeneration of the brain including the basal ganglia 

where Mn accumulates.  Additional studies of this interaction, revealed a limited 

response of the Akt cell signaling pathway to Mn in the presence of the HD mutation 

(Figure III.8-11.).  Both Mn exposure and mutant HTT are known to alter the activity of 

Akt (Humbert et al. 2002; Gines et al. 2003; Colin et al. 2005; Warby et al. 2005).  Mn 

fails to cause efficient phosphorylation of Akt S-473 in cell expressing mutant HTT 

(Figure III.8.-11.).  Importantly, the Akt pathway was robustly activated in the presence 

of Cd, indicating that the Akt pathway can respond to stimulation in the presence of the 

mutation (Figure III.10. and 11.).   
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Because the Akt pathway shows a limited response to Mn in the mutant cell line, 

we propose that the accumulation of Mn within the STHdh cells may be altered.  Metal 

accumulation within a cell can be altered by several mechanisms: (1) a reduction in 

transport or uptake, (2) an inability to store or accumulated metals within the cell, or (3) 

an increase in export.  Currently, very little is known about the cellular export of Mn in 

eukaryotes and prokaryotic export pathways are not Mn exclusive, transporting multiple 

divalent metals (Rosch et al. 2009).  Also, previously published data suggest that the 

efflux of Mn from the brain slices may be due to passive diffusion (Yokel et al. 2003).  

Given that, the effect of mutant HTT on Mn transport is highly selective to the metal Mn; 

our data indicate Mn specific transport mechanism behind the gene-environment 

interaction.   

   As mentioned above, both DMT1 and the TfR pathway are possible pathways of 

Mn entry into the cell.  The purpose of TfR is to move Fe+3 through the process of 

endocytosis but it can also move Mn in its 3+ oxidation state (Aschner et al. 1994; 

Malecki et al. 1999; Malecki 2001).  Fe+3 binds to the protein ferritin allowing a 

conformational change which allows binding to the cell surface receptor TfR.  The 

complex is then is endocytosed, where the metal is released and the receptor recycled to 

the cell surface (Roth et al. 2003; Bressler et al. 2007).  Additionally, HTT has been 

functionally linked to Fe homeostasis and mutations in a key Fe storage protein can cause 

an HD-like disorder (Trettel et al. 2000; Cozzi et al. 2006; Simmons et al. 2007).  Several 

studies have also revealed elevated levels of Fe in the striatum of HD patients and animal 

models (Dexter et al. 1991; Fox et al. 2007).  Our previous results led us to hypothesize 
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that the gene-environment interaction between HTT and the metal Mn results in a 

reduction in Mn levels and that differences are due to impairment of Mn transport.   

 

Methods 

 

Chemicals, Reagents, and Cell Culture Supplies 

Unless indicated tissue culture media and supplements were obtained from 

Mediatech (Manassas, VA).  The clonal striatal cell were a acquired from Marcy 

Macdonald, PhD (Massachusetts General Hospital, MA), cell lines were grown in 

Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum (Atlanta Biologicals, 

Lawrenceville, GA), L-glutamine, 400 g/ml G418 and Penicillin-Streptomycin.  Mn(II) 

chloride and Ni(II) chloride were from Alfa Aesar (Ward Hill, MA) and Fe(III) chloride 

was from Sigma (St. Louis, MO).  Buffers for MTT assays: 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) salt (VWR, West Chester, PA), Sorenson’s 

Buffer (0.1 M glycine, 0.1 M NaCl2, pH 10.5), dimethyl sulfoxide (DMSO, Sigma, St. 

Louis, MO).  

 

Cell Survival Assays 

The STHdh cells were cultured at 33ºC (Cattaneo et al. 1998; Trettel et al. 2000).  

For the assays, STHdhQ111/Q111 and wild-type STHdhQ7/Q7 cells were plated at equal 

density (350000/plate) the evening before treatment.  The next morning, culture media 

with the addition of metals, and cells were exposed for 30 hours.  Cell viability was 
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assessed by MTT assay following established protocols (Ehrich et al. 2000). After 

exposure as stated above, media was replaced with 500 µl of 0.5% MTT salt in Minimal 

Essential Medium (MEM) (Invitrogen, Carlsbad, CA) supplemented with FBS and 

Penicillin-Streptomycin.  Cell were cultured with MTT for four hours and then 

exchanged for 200 µl of Sorenson’s Buffer diluted 2.5ml into 20 ml DMSO.  The plates 

were returned to the incubator until all the MTT salt precipitate could no longer be 

visualized under a microscope.  60 µl from each well was removed and placed in a 96-

well plate, and absorbance read at 590  nm.  Cell survival data was normalized by 

genotype to the vehicle-only exposed control included in each independent sample set. 

 

Antibodies 

TfR 1:500 (Invitrogen, Carlsbad, CA), and actin 1:2000 (Developmental Studies 

Hybridoma Bank, Iowa City, IA).  IgG mouse secondary antibody was from Jackson 

Immunoresearch Laboratories (West Grove, PA) and was used at 1:15000.  

 

Westerns Blot 

 Equal numbers of wild-type and mutant STHdh cells were plated (350000/plate) 

and treated with Mn(II) 30 hours.  The cell pellets were lysed in RIPA buffer (50mM 

Tris, 150mM NaCl2, 0.1% SDS, 1.0% Nonidet 40, 12mM deoxcholic Acid, 1x protease 

inhibitor cocktail (Sigma), 1x phosphatase inhibitor cocktails I and II (Sigma) and loaded 

by equal cell number for SDS-PAGE.  Western blots were visualized with Thermo 
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Scientific Pierce Supersignal West Dura Extended Duration Chemiluminescent Substrate 

(Waltham, MA) on an Ultralum Omega 12iC (Claremont, CA).  Measurements of 

integrated density of protein bands were performed with ImageJ (NIH), with background 

correction calculated using a signal ratio error model, as described (Kreutz et al. 2007). 

Calculations of relative signal were normalized to untreated wild-type or mutant sample 

for each set, as indicated. 

 

Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) 

Mn and Fe concentrations were measured with GFAAS (Varian Inc., AA240, 

Palo Alto, CA).  STHdh cells were cultured and treated as described above for cell 

viability assays, harvested by trypsinization, washed multiple times in PBS and then 

flash-frozen until analysis.  For analysis, cell pellets were thawed and digested in 200 µl 

ultrapure nitric acid for 24 hours in a sandbath (60°C).  Mn content was determined by 

the following protocol: A 20 µl aliquot of the digested sample was brought to 1 ml total 

volume with 2% nitric acid for analysis.  Bovine liver (NBS Standard Reference 

Material, USDC, Washington, DC) (10 µg Mn/g) was digested in ultrapure nitric acid 

and used as an internal standard for analysis (final concentration 10 µg Mn/L) as 

published previously (Anderson et al. 2009).  

 

Animal Mn-Exposure  

All animal studies strictly followed protocols approved by the Vanderbilt 

University Institutional Animal Care and Use Committee and were adopted to minimize 

pain and distress of the animals.  The FVB-Tg(YAC128)53Hay/J mouse line (YAC128Q) 
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was obtained from JAX (#004938, Bar Harbor, ME).  The Mn exposure protocol 

followed a previously published paradigm (Dodd et al. 2005).  In brief, 3-month old 

YAC128Q HD mutant mice and their wild-type littermates were injected subcutaneously 

with 50mg/Kg Mn chloride tetrahydrate.  All injections were done blind to genotype.  

Injections were carried out on days 0, 3, and 7.  On day 8, the animals were sacrificed by 

cervical dislocation, and the brain regions were dissected, tails clipped for genotyping, 

and trunk blood collected into heparin-coated tubes.  The tissues were then flash-frozen 

until analysis of metal content.  Analysis of metal content by GFAAS was performed 

blind to genotype and exposure.  Genotyping was done according to a previously 

published method (from JAX, 004938, Bar Harbor, ME) (Slow et al. 2003). 

 

Statistical Analysis 

Univariate, multivariate, and repeated measures ANOVA were performed using 

SPSS software (SPSS, Inc., Chicago, IL).  Post-hoc analysis and pair-wise comparisons 

were done using Microsoft Excel (Redmond, WA) by Student’s t-tests (two-tailed), 

except for comparison of normalized data versus control which were performed by 

testing for non-overlap of the 95% confidence interval, error bars are expressed as 

standard error of the mean (SEM). 
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Results 

 

Cellular Mn Accumulation is Substantially Impaired by Mutant HTT  

Given the severely blunted S473-P-Akt response of the mutant cells to Mn(II) 

exposure, we tested the hypothesis that the expression of mutant HTT impedes the 

cellular stress response to Mn(II) by decreasing accumulation of Mn during exposure 

(Figure III.8-11).  We measured total intracellular Mn and Fe levels following Mn(II) 

exposure in the STHdhQ7/Q7 and STHdhQ111/Q111 cell lines by GFAAS (Garcia et al. 2007).  

We observed that the STHdhQ111/Q111 cells accumulated 4-fold (p<0.005) and 10-fold 

(p<0.001) less Mn after a 30 hour exposure to 40 µM Mn(II) and 100 µM Mn(II) 

respectively (Figure IV.1.A.).  No difference in basal Mn levels was seen.  However, the 

Mn levels in the vehicle-only samples were near the lower detection limit of the GFAAS.  

We retested basal levels of Mn in the STHdh cells by increasing the number of cells and 

therefore increasing levels of Mn above the detection limits of GFAAS.  The 

STHdhQ111/Q111  cells were found to accumulate significantly less Mn under standard cell 

culture conditions (Figure IV.2.).  Under these conditions, Mn levels in the wild-type 

cells were 3.92 fmol per 100 cells (~0.189  nmol/mg protein), whereas in the mutant cells 

basal levels were lower at 1.12 fmol per 100 cells (~0.069  nmol/mg protein).  These data 

strongly indicate that a deficit in net Mn uptake is, at least in part, the source of the 

resistance to Mn toxicity in the STHdhQ111/Q111 cells.  
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Figure IV.1.  Substantial Decrease in Mn Accumulation in HD Striatal Cells.  
Measurement of total intracellular manganese in (blue) STHdhQ7/Q7or (red) 
STHdhQ111/Q111 cell lines.  (A) The average amount of intracellular Mn is plotted on log 
scale (± SEM, n=5 independent samples).  (B) Measurement of total intracellular Fe 
levels in same cells.  The average amount of intracellular iron is plotted on log scale ( 
SEM, n=5 independent samples).  Significant differences in metal levels (* p<0.05 post-
hoc t-test) between wild-type and mutant STHdh cells for each exposure are indicated. 
 
Striatal Specific Deficit in Total Mn Accumulation in YAC128Q HD Mouse Model 

To determine if expression of mutant HTT influences Mn accumulation in vivo, 

we exposed 3-month (presymptomatic) YAC128Q HD mice and wild-type littermates to 

Mn(II) using a subcutaneous Mn exposure paradigm (Slow et al. 2003; Dodd et al. 2005).  
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Loss of striatal volume in the YAC128Q HD mouse model is absent as late as 6 months 

of age, and is first detected at 9 months of age (Slow et al. 2003).  Analyses of cerebellar, 

cortical, hippocampal, and striatal Mn levels by GFAAS indicated that Mn(II) exposed 

wild-type animals had increased total Mn levels in all four brain regions with the striatum 

having the greatest accumulation (Figure IV.3.).  Cerebellum, cortex, and hippocampus 

showed similar increases in Mn levels between wild-type and mutant animals, while 

striatum from wild-type Mn(II) exposed animals showed higher levels than mutant (1.51 

mol Mn/mg protein versus 0.92 mol Mn/mg protein).  A multivariate two-way ANOVA 

was used to analyze regional Mn levels (Table IV.1).  ANOVA found a significant effect 

of Mn(II) exposure for each of the four brain regions (p<0.05).  A significant effect of 

genotype and a genotype by exposure two-way interaction was found for striatum only 

(p<0.05).  Post-hoc analysis of striatal Mn levels showed significantly less (p<0.05) Mn 

accumulation in mutant versus wild-type Mn(II) exposed animals (Figure IV.3.).   

 

 

Figure IV.2.  Low Basal Levels of Mn in Mutant STHdh Cells.  Measurement of total 
intracellular Mn in  (Blue) STHdhQ7/Q7 or (Red) STHdhQ111/Q111 cell lines after under 
standard cell culture conditions.  The mean total metal levels (± std error) are plotted as 
indicated.  * significant difference in survival (p<0.05 t-test assuming unequal variance) 
between wild-type and mutant cells. 
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We have confirmed the impaired striatal Mn accumulation in the YAC128Q HD 

animals in an independent set of animals by inductively coupled plasma mass 

spectrometry.  Therefore, a mouse model of HD that recapitulates the selective 

degeneration of the corpus striatum observed in patients, also exhibited an early and 

selective deficit in striatal Mn accumulation after Mn(II) exposure.  We also examined Fe 

levels in the same brains and analyzed by the same multivariate two-way ANOVA model 

(Figure IV.4. and Table IV.2.).  The analysis failed to find a significant effect of 

genotype, Mn-exposure, or two-way genotype by Mn-exposure interaction for Fe levels 

in any brain region. 

 

 
 
Figure IV.3.  Reduced Striatal Mn Uptake in the YAC128Q HD Mouse Model.  
Wild-type and YAC128Q HD mice exposed to Mn(II).  Mean manganese levels + SEM 
are shown (n = 12 to 14 samples for each genotype-exposure group; 53 animals total).  
ANOVA analyses of total manganese levels see table IV.1.  Post-hoc analysis of the 
genotype effect found a significant difference in striatal manganese accumulation 
between wild-type and mutant animals as indicated (* p<0.05 post-hoc t-test). 
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Factor Brain Region F Significance 

Genotype Cortex F(1,53)=0.385 0.538 

 Striatum F(1,53)=4.901 * 0.032 

 Hippocampus F(1,53)=1.167 0.286 

 Cerebellum F(1,53)=0.015 0.904 

Mn Cortex F(1,53)=15.921 * <0.001 

 Striatum F(1,53)=10.387 * 0.002 

 Hippocampus F(1,53)=6.057 * 0.018 

 Cerebellum F(1,53)=72.399 * <0.001 

Genotype x Mn Cortex F(1,53)=0.063 0.803 

 Striatum F(1,53)=4.504 * 0.039 

 Hippocampus F(1,53)=0.385 0.538 

 Cerebellum F(1,53)=0.099 0.754 

 
Table IV.1.  Analysis of Regional Mn Levels by Multivariate 2-Way ANOVA.  
ANOVA analysis of total manganese levels showed a significant effect of Mn(II) 
exposure for all four brain regions (p<0.05).  A significant genotype and genotype by 
Mn(II) exposure two-way interaction was found for the striatum only (p<0.05).  Post-hoc 
analysis of the exposure effect showed a significant increase in manganese levels in 
Mn(II)-exposed animals compared to vehicle-only animals of the same genotype (p<0.05 
post-hoc t-test, not indicated).  Post-hoc analysis of the genotype effect found a 
significant difference in striatal manganese accumulation between wild-type and mutant 
animals as indicated (* p<0.05 post-hoc t-test).  
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Figure IV.4.  Fe Levels in Mn(II)-Exposed Animals.  Wild-type and YAC128Q HD 
mice exposed to Mn(II) and Fe levels analyzed.  ANOVA analyses see Table IV.2.  Post-
hoc analysis of the genotype effect found a significant difference in striatal manganese 
accumulation between wild-type and mutant animals as indicated (* p<0.05 post-hoc t-
test).  
 
Diminished Response of Fe Pathway to Mn in HD Model.  

The levels of TfR, an essential component of the Fe signaling pathway, have been 

reported to be elevated in response to Mn intoxication and to be altered by mutant HTT 

(Kwik-Uribe et al. 2003; Simmons et al. 2007; Wang et al. 2008).  Others have also 

reported elevated levels of this protein in the mutant STHdh cell line (Trettel et al. 2000).  

Analysis of protein expression levels by western blot indicated TfR levels were lower in 

the mutant cells when compared to the wild-type STHdhQ7/Q7 cells with and without Mn 

exposure.  After exposure to 40 µM Mn, a pathophysiological exposure, we observed the 

anticipated increase in the levels of TfR.  However, no significant change was seen in the 

mutant STHdhQ111/Q111 cell line after exposure to Mn, indicating decreased responsiveness 

to Mn exposure by the mutant STHdhQ111/Q111 cell line as also observed for 

phosphorylated Akt (Figure IV.5. and III.8.-11.) (Williams et al. 2009).  
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Factor Brain Region F Significance 

Genotype Cortex F(1,53)=0.12 0.73 

 Striatum F(1,53)=1.636 0.207 

 Hippocampus F(1,53)=0.425 0.517 

 Cerebellum F(1,53)=5.45 0.024* 

Mn Cortex F(1,53)=3.099 0.085 

 Striatum F(1,53)=1.201 0.278 

 Hippocampus F(1,53)=0.118 0.732 

 Cerebellum F(1,53)=3.192 0.08 

Genotype x Mn Cortex F(1,53)=1.25 0.269 

 Striatum F(1,53)=3.262 0.077 

 Hippocampus F(1,53)=2.163 0.148 

 Cerebellum F(1,53)=0.291 0.592 

Table IV.2.: Analysis of Regional Fe Levels by Multivariate 2-Way ANOVA.  
ANOVA analysis of total Fe levels showed a significant effect of Mn(II) exposure only in 
cerebellum (p<0.05 post-hoc t-test, not indicated).* significance at p < 0.05 

 

Net Fe Accumulation is Altered Two Fold in the Presence of Mutant HTT.  

Given the homeostatic relationships between Mn and Fe, we examined the effects 

of Mn on Fe levels in the STHdh cell lines (Chua et al. 1996; Garcia et al. 2006; Garcia et 

al. 2007; Fitsanakis et al. 2008).  At lower concentrations, Mn had no effect on Fe levels 

in the striatal cells (Figure IV.6.A.; 0 and 40M).  However, at a higher exposure 

(100M), we observed a significant increase in Fe levels in the wild-type cells that was 

not seen in the mutant cells (Figure IV.6.A.; 100M).   
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Because of the altered Fe accumulation and the reduced TfR levels in the 

presence of Mn, we examined the effects of Fe exposure on net Fe levels in the STHdh 

cell (Figure IV.5.) (Williams et al. 2009).  The addition of Fe had no significant effect on 

the two cell lines at lower Fe concentrations (Figure IV.6.B., 0 and 100M).  However, at 

600M, significantly higher Fe levels were observed in the STHdhQ7/Q7 cells relative to 

the mutant cells (Figure IV.6.B.; 600M).  To understand the differences between Mn 

and Fe net accumulation in the cell model, we examined the fold changes between wild-

type and mutant cells after exposure to either Mn or Fe.  The maximal two-fold increase 

in net Fe uptake in wild-type cells relative to mutant HTT cells after Fe exposure was 

well below the almost ten-fold increase in net Mn uptake in wild-type cells relative to 

mutant HTT cells following Mn exposure (Figure IV.6.C.).  
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Figure IV.5.  Mutant Cells have a Diminished Fe Response to Mn. Lysates harvested 
from STHdhQ7/Q7 or STHdhQ111/Q111 cell lines after 30 hours of manganese chloride 
exposure were analyzed by western blot for transferrin receptor (TfR), and Actin.  (A) 
Representative blot showing 3 samples of each genotype-exposure group.  (B) 
Quantification of protein expression graphed normalized to actin as a percent of the 
untreated by wild-type control (± SEM), averages represent independent samples n=7.  
Tables show statistical analysis from a two-way univariate ANOVA for each protein.  
Significant effects of genotype, exposure, or two-way interaction of genotype by 
exposure are designated by red numbering.  * Significant difference in expression levels 
between genotypes at indicated exposure.   Significant difference of Mn exposure on 
protein expression level within wild-type genotype (p<0.05 post-hoc t-test assuming 
unequal variance). 

 

Saturating Levels of Fe have No Significant Effect on the HTT-Mn Interaction. 

To address more closely the role of the Fe transport and its potential contribution 

to the HTT-Mn gene-environment interaction, we examined the toxicity of Mn in the 

presence of saturating levels of Fe3+, 600M (Figure IV.7.).  We reasoned that at high 

levels of Fe3+, the TfR pathway would be saturated, limiting the transport of other metals 

through this pathway.  Thus, we expected that high levels of Fe3+ would decrease the 

toxicity of Mn that is taken up by this Fe-saturable transport system, but would have a 

minimal effect on Mn toxicity driven by Fe3+-independent uptake systems.  Furthermore, 
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if changes in the activity of the Fe transport pathway substantially contributed to the 

changes in net Mn uptake in HD, then we would expect saturating levels of Fe3+ to 

diminish the HTT-Mn interaction.  We found that saturating amounts of Fe diminish Mn 

toxicity in both cell lines (Figure IV.7.A.).  A three-way univariate ANOVA of the data 

found a significant effect of genotype, Mn exposure, and a two-way interaction between 

genotype and Mn-exposure, recapitulating the gene-environment interaction (Figures II.4. 

and II.6.) (Williams et al. 2009).  The ANOVA revealed no significant effect of Fe-

exposure, or a two-way interaction for Fe-exposure by genotype, indicating no 

differential sensitivity to Fe3+ between the two cell lines.  However, a two-way 

interaction between Fe-exposure by Mn-exposure was observed, demonstrating that Fe 

exposure reduces Mn toxicity.  Importantly, the ANOVA found no significant three-way 

interaction of genotype by Mn-exposure by Fe-exposure.  This indicates that while Fe 

reduced Mn toxicity, it did so equally between wild-type and mutant cells (Figure IV.7.).  

The equal response of the two cell lines in the presence of Fe can be seen when the data 

is regraphed to normalize out the toxicity of Fe (Figure IV.7.B.).  Taken together these 

analyses strongly argue that defects in Fe3+-saturable transport pathways are not 

sufficient to explain the HD-Mn disease-toxicant interaction. 
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Figure IV.6.  Fe Transport is Not Sufficient to Explain Mn Changes in the Presence 
of Mutant HTT.  Measurement of total intracellular Fe levels in (Blue) STHdhQ7/Q7or 
(Red) STHdhQ111/Q111 cell lines after application of indicated concentrations of (A) Mn(II) 
chloride or (B) Fe(III) chloride for 30 hours.  (C) Summary of data in Figure IV.1.  and 
IV.6.B. expressed as the fold change normalized to mutant intracellular metal levels.  n=5 
independent experiments Error bars indicated the sum of normalized SEM for wild-type 
and mutant.  * Significant difference in net metal uptake (p<0.5 posthoc t-test assuming 
unequal variance) between wild-type and mutant cells 



92 

 

 

Figure IV.7.  Saturating Levels of Fe Transport Reduce Mn Toxicity in Both Cell 
Lines.  Measurement of cell survival in (Blue) STHdhQ7/Q7or (Red) STHdhQ111/Q111 cell 
lines after application of indicated concentrations of Mn(II) chloride (A) in the presence 
or absence of 600M Fe(III) chloride.  The average absorbance relative to the untreated 
control is graphed as percent untreated.  (B) Survival Data normalized to control for Fe 
toxicity.  All data points contain 100µM Mn (Note parallel lines).  n=3 independent 
experiments with 4 independent wells each (± SEM).  Table summarizes a three-way 
univariate ANOVA of this data.  Significant effects for individual factors, two-way, or 
three-way interactions are designated by red numbering.   
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A High Level of Ni Does Not Affect the HD-Mn Interaction 

The metal Ni can alter multiple pathways that are reported to transport Mn.  Ni for 

example can block various calcium channels that allow Mn into the cell (Shibuya et al. 

1992; Zamponi et al. 1996).  Additionally, multiple divalent metals are transported by 

DMT1, including Mn, Cd and Ni (Gunshin et al. 1997).  Our previous results 

demonstrated that Mn and Cd have opposite effects on cell survival in the presence of the 

HTT mutation (Figures II.3 and II.4.) (Williams et al. 2009).  However, to explore the 

role of DMT1 and Ni blockable calcium channels in more detail we have analyzed the 

ability of Ni, which is also transported by DMT1 and has similar toxicity in both StHdh 

cell lines, to alter Mn toxicity in the HD clonal cell line.  We report that Ni does not alter 

Mn toxicity.  Statistical analysis by ANOVA found significant effect of genotype, Mn, 

and Ni on the STHdh cell survival indicating that each of these factors alone alters the 

viability of the cells (Figure IV.8.A. and B.).  Additionally, the analysis detected the 

HTT-Mn gene-environment interaction and a Mn-Ni interaction because of the ability of 

Ni to influence the toxicity of Mn.  However, a three-way interaction was not  reported, 

as Ni alters the sensitivity of both the cells to Mn (Figure IV.8.).  The lack of significant 

effect of Ni and genotype is represented in the regraphed data normalized for the toxicity 

of Ni (Figure IV.8.B.).  Taken together this data suggests that Ni does not influence the 

toxicity of the mutant cell lines differently than wild-type, limiting the Mn toxicity in 

both lines but more so in the mutant STHdhQ111/Q111 line.   
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Figure IV.8.  High Levels of Ni Reduces Mn Toxicity in Equally in Both Cell Lines.  
Measurement of cell survival in (Blue) STHdhQ7/Q7or (Red) STHdhQ111/Q111 cell lines after 
application of indicated concentrations of Mn(II) chloride (A) in the presence or absence 
of ~350M Ni(II) chloride.  The average absorbance relative to the untreated control is 
graphed as percent untreated.  (B) Survival Data normalized to control for Ni toxicity.  
All data points contain 100µM Mn (Note parallel lines).  n=3 independent experiments 
with 4 independent wells each (± SEM).  Table summarizes a three-way univariate 
ANOVA of this data.  Significant effects for individual factors, two-way, or three-way 
interactions are designated by red numbering. 

 

Discussion 

The significant decrease in net Mn accumulation in the mutant cells justifies the 

strong Mn(II) resistance phenotype, and suggests a Mn homeostatic defect due to mutant 

HTT.  Of particular note, a comparison of cell survival and total Mn accumulation reveals 

that wild-type cells exposed to 40 µM Mn(II) have statistically indistinguishable cell 
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survival and total Mn levels relative to mutant cells exposed at 100 µM Mn(II) (Figures 

II.4. versus IV.1.).  These data strongly suggest that impairment in Mn accumulation may 

contribute, at least in part, to the Mn(II) resistance phenotype of STHdhQ111/Q111 cells.  

Furthermore, the cellular disease-toxicant interaction accurately predicted a defect in Mn 

accumulation in the striatum of the YAC128Q HD mouse model.  Indeed, the in vivo 

study showed a Mn-accumulation deficit in the very brain region most vulnerable in HD 

(Figure IV.4.). 

Wild-type HTT function has been linked to TfR, a known Mn3+ transporter 

(Metzler et al. 2000; Lumsden et al. 2007).  HD patient data have also shown important 

alterations in Fe signaling where both Fe levels and ferritin levels are altered (Dexter et 

al. 1991; Bartzokis et al. 1999).  Only one study has examined Mn levels in HD brains, 

reporting no significant alterations in Mn levels; the study examined only four HD striatal 

samples and therefore is statistically under-powered to detect small effects (Dexter et al. 

1991). Our study reported decreased Mn uptake after injection of the YAC128 mouse 

model of HD specifically in the striatum (Figure IV.4.) (Williams et al. 2009).  

We report no significant changes in protein levels of the TfR in the mutant cell 

line after Mn exposure (Figure IV.5.).  Additionally, examination of the fold changes in 

net metal accumulation between wild-type and mutant StHdh cells after exposure to Fe, 

display a maximal two-fold increase in net Fe uptake in wild-type cells relative to mutant 

HTT cells (Figure IV.6.A.).  The two-fold change is much less than the almost ten-fold 

increase in net Mn uptake in wild-type cells relative to mutant HTT cells after Mn 

exposure we reported previously (Figure IV.6.B.)  (Williams et al. 2009).  Finally, 

exposure to Mn in the presence of saturating levels of Fe shows no significant effects on 
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the mutant HTT mediated Mn resistance phenotype (Figure IV.6.C.).  We observed small 

alterations in Fe uptake in HD mutant cells (Williams et al. 2009). However, given that 

TfR has a higher affinity for Fe than Mn (Moos et al. 2000; Takeda et al. 2000), and the 

inability of Fe to block the HD-Mn interaction (Figure IV.7.).  Our data suggest a minor 

role for Fe transport pathways in this interaction.  We conclude that the Fe-saturable TfR 

pathway plays a limited role in the resistance to Mn toxicity caused by the HD mutation 

phenotype we reported previously.  

Additionally, we examined the ability of Ni to alter Mn toxicity and found it does 

not block the toxicity more in the mutant line (Figure IV.8.).  Therefore, the data suggests 

that a Ni blockable mechanism is not responsible for the HD-Mn phenotype we have 

found.  Other Mn transport systems such as zip8, various calcium channels, as well as the 

ionotrophic glutamate receptors are other possible mechanisms of Mn entry that could be 

aberrant in HD (Au et al. 2008).  Additionally, we have not explored the roles of storage 

or export in the reported reduction in Mn toxicity.   
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CHAPTER V 
 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

It is clear that HD is a monogenetic disorder caused by an expansion of CAG tract 

within the HTT gene (Cowan et al. 2006; Imarisio et al. 2008).  However, it has also 

become evident that the length of the polyglutamine repeat alone cannot account for all of 

the variability seen in disease progression, severity or the age of onset (Wexler et al. 

1987; Wexler et al. 2004).  Monozygotic twin studies have shown that even with the 

same genetic history, patients can present with different symptoms and at different ages 

emphasizing the role of the environment (Georgiou et al. 1999; Gomez-Esteban et al. 

2007; Panas et al. 2008).  For example, Friedman et al. found a potential role for both 

cigarettes and exposure to industrial toxins as a potential cause of discordance for HD in 

one twin study (Friedman et al. 2005).  Environmental modifiers, such as exposure to 

drugs and pesticides, have been shown to lead to the progressive loss of the dopaminergic 

neurons of the substantia nigra and cause PD (Langston et al. 1999; McCormack et al. 

2002).  Exposures to metals such as copper are also considered a risk factor in the 

development of PD (Gorell et al. 1999).  Additionally, Mn exposure is considered a risk 

factor for PD and the accumulation of the metal in the brain can lead to a PD-like 

disorder (Mergler et al. 1994; Gorell et al. 1999).  The damage caused by metal exposure 

that increases the risk to neurodegenerative disease is associated with increases in 
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oxidative stress.  Metals can increase lipid peroxidation and reduce the activity of 

antioxidant enzymes (Gaeta et al. 2005). 

Interestingly, the first models of HD display the importance of gene-environment 

interactions, as the toxicant, 3NPA, a mitochondrial complex II inhibitor, was used to 

induce a striatal specific neurodegeneration creating a HD-like phenotype (Beal et al. 

1993).  The 3NPA model continues to be used today in the study of HD and has been 

shown to cause mitochondrial dysfunction, oxidative stress, and excitotoxicity; and alter 

metal homeostasis pathways.  Each of these pathways has been shown to be changed due 

the HD mutation and is implicated as a primary insult in the pathology of HD (Dexter et 

al. 1991; Beal et al. 1993; Imarisio et al. 2008).  Based upon this toxicant interaction with 

HD, we proposed the following hypothesis:  That neurotoxicants sharing primary 

common pathophysiological targets with mutant HTT will display gene-environment 

interactions.  The use of the toxicant as a tool to identify cellular functions of the HD 

mutation is novel.  It is not necessary that HD patients would be exposed to these 

toxicants as a part of normal disease progression for us to exploit their ability to modify 

the disease.   

Toxicants should influence the known biology of the disease to test our 

hypothesis.  A hallmark of HD biology is the selective degeneration of the basal ganglia, 

which leads to the characteristic HD chorea.  Metal toxicity can also produce regional 

cell loss in the brain.  In the case of Mn, the globus pallidus accumulates the metal 

leading to a hypokinetic disorder similar to PD (Yamada et al. 1986; Olanow et al. 1996; 

Olanow 2004; Fitsanakis et al. 2006).  Additionally, like 3NPA and HD, Mn 
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overexposure has been shown to alter mitochondrial function, increase reactive oxygen 

species, excitotoxicity, and alter the levels of Fe within the brain (Aschner et al. 1990; 

Gavin et al. 1990; Gavin et al. 1999; Zhang et al. 2004; Garcia et al. 2007; Milatovic et 

al. 2007).   

Using metals for our novel screen, we discovered two previously unreported 

interactions with the HD mutation.  First, sensitivity to Cd toxicity is increased in the 

presence of the polyglutamine expanded form of HTT.  Secondly, sensitivity to Mn 

toxicity is reduced in the presence of mutant HTT.  This surprising result is the first 

reported where full length HTT polyglutamine expanded improves the viability under any 

condition, while many stressors have been shown to increase cell death.  Some exon 1 

HTT constructs have been shown to limit excitotoxicity, an activity ascribed to the 

proline rich domain of HTT.  The neuroprotective effect is hypothesized to occur only in 

these short HTT constructs because normal folding of the protein may block these 

interactions (Zuchner et al. 2008).  The STHdhQ111/Q111 cells have increased cell death 

when exposed to 3NPA; under conditions that increase excitotoxicity; or when extra-

mitochondrial energy or mitochondrial energy is altered (Trettel et al. 2000; Gines et al. 

2003; Gines et al. 2003; Seong et al. 2005; Milakovic et al. 2006; Oliveira et al. 2006; 

Lee et al. 2007). 

The Phenotype Differences of the STHdh Cell Lines in the Absence of Mn 

The mutant and wild-type mouse STHdh cell lines were made from a wild-type or 

knockin mouse model of HD (Cattaneo et al. 1998; Trettel et al. 2000).  Because these 

cells were created from different animals, it was possible that differences related to Mn 
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we observed were due to inherent differences in the lines not directly related to the 

expression of the mutation (Figure II.4-6.).  We found differences in cell division rate, 

cellular LDH activity, and Akt phosphorylation in the absence of Mn exposure, 

characteristics of these cells which have also been published by others (Figure II.1, 2, 8, 

and 9.) (Trettel et al. 2000; Gines et al. 2003).  The reduced cell division rate exhibited by 

the mutant line has been attributed to the ‘immortalization’ of the cells by forced 

expression of SV40 large T antigen.  The SV40 large T antigen blocks the activities of 

p53.  Levels of this key regulator of cellular stress and apoptosis are also reduced in the 

mutant STHdh cell line (Trettel et al. 2000).  Basal levels of the serine/threonine protein 

kinase B or Akt are elevated in the STHdhQ111/Q111 line when compared to wild-type 

(Gines et al. 2003).  Akt is a key regulator of neuronal survival and its phosphorylation at 

S-473 can be increased by exposure to Mn and other metals (Bae et al. 2006).  Closer 

examination of the Akt pathway in the STHdh cells showed that Akt was responding to 

increased calcium flow via the NMDAR (Gines et al. 2003).   

HTT is directly phosphorylated by Akt and the phosphorylation can improve cell 

viability in models of HD that over express the N-terminus of HTT (Saudou et al. 1998; 

Humbert et al. 2002).  The effect of Akt phosphorylation on survival in a full-length HTT 

model is still unknown.  However, it is difficult to know the role of these differences in 

the HD-Mn interaction by comparing only these two cell lines.  Therefore, we have 

examined the HD-Mn interaction using both transfection and primary culture models.  

We found that the mutant HD protein limits Mn toxicity in every system we tested 

(Figure II.2-6, III.3, 6, and IV.3.).  Our data also indicates that over-expression of the 

mutation in cells already containing wild-type HTT can confer the resistance to Mn, 
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suggesting that a novel gain of function effect on the mutation may be the source of the 

phenotype (Figure III.3.).   

 

High Levels of Mn Increases Aggregation Rates of Ataxin 1 

One hallmark of multiple neurodegenerative diseases is the formation of protein 

aggregates in patients.  Aggregates form in HD patients and in some mouse HD models 

(Ross et al. 2004).  Full-length HTT will not readily aggregate in a cell culture model.  

Therefore, we used a different polyglutamine expanded protein, Ataxin 1, to analyze the 

role of Mn in polyglutamine-dependent aggregate formation, this adds to the complexity, 

as the survival and aggregate data cannot be correlated.  Ideally, this study should be 

repeated in a polyglutamine model that displays both aggregates and the gene-

environment interaction.  Importantly, similarities do exist between Ataxin and HTT.  

Both of these polyglutamine expanded proteins are believed to undergo a similar process 

of aggregation (Uversky et al. 2001; Masino et al. 2002; Ross et al. 2004; Bhattacharyya 

et al. 2005).  Our experiment did address the ability of Mn to induce microscopically 

visible aggregates.  We discovered that Mn increases the aggregation or Ataxin 1 (Figure 

II.8.).  Currently the implication of visible aggregates is debatable.  Soluble HTT 

aggregates are now emphasized as a toxic species, as some believe that these late stage 

visible aggregates have a protective role in the cell (Kuemmerle et al. 1999).  Regardless, 

the levels of Mn necessary for us to see a significant effect on protein aggregation are 

much higher (500 µM) than the levels necessary to see effects on survival (40 µM) 

(Figure III.8.).  It is possible that lower levels of Mn are affecting aggregates not detected 
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under these conditions but could affect cell survival.  The difference in these 

concentrations suggests that the formation of visible aggregates is not directly related to 

the cell survival differences. 

 

The HTT Alters Sensitivity to Mn in Multiple Models of HD 

Our transfection studies not only allowed confirmation of the interaction between 

Mn and HTT in a single cell line, but they also allowed us to define the interaction 

further.  Our data indicates that the first third of the HTT protein, which contains the 

polyglutamine domain, is sufficient to reduce Mn toxicity.  The first third of HTT is still 

a very large segment of the protein, containing approximately 1200 amino acids.  

Additional studies will allow us to determine the essential regions of HTT needed for this 

interaction.  The polyglutamine region may not be the only region essential for the 

phenotype.  Expansion of the glutamine tract could lead to a conformational change in 

the protein and interfere with protein interactions that occur in another region of HTT.  

For example, near the polyglutamine domain of HTT there is a proline rich domain, 

which is thought to add in protein solubility (Dehay et al. 2006).  The proline rich domain 

is also believed to mediate cell survival after excitotoxic insults in exon 1 models of HTT 

(Zuchner et al. 2008).  Discovery of the minimal regions of HTT required for the 

alterations in Mn uptake will be important future studies.  Identification of the minimal 

region will allow us to determine if HTT and the transporter directly interact for example.  

Determining the region of HTT required for the phenotype would be paramount to 
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understanding if the interaction is caused or lost by the glutamine expansion indicating a 

possible a gain of function or loss of function mutation. 

The primary culture experiments were crucial in determining that the phenotype 

existed in other models of HD and in these cells, we see the ability of HTT to limit Mn 

toxicity (Figure III.6.).  Our primary culture data is largely from cerebellar cultures.  

Granule neurons are the predominate cell type in the cerebellum and these cells are 

GABAergic.  Given that medium spiny neurons of the striatum are also GABAergic, 

these cultures are highly relevant.  The NMDAR has been implicated in the striatal 

specific death associated with HD (Beal et al. 1986; Greene et al. 1993) and the medium 

spiny neurons express both the NR1A and NR2B subunits of the NMDAR 

(Landwehrmeyer et al. 1995; Kuppenbender et al. 1999).  Cerebellar granular neurons 

express NR2B neurons in culture and in vivo initially before maturing (Vallano et al. 

1996; Kovacs et al. 2001).  Additionally, the NMDAR has been linked to Mn toxicity 

(Brouillet et al. 1993).  Therefore, the persistence of the Mn phenotype in these cultures 

may implicate the role of this receptor.  In both HD and Mn overexposure, the NMDAR 

is associated with excitotoxicity.  HD models show increased sensitivity to excitotoxic 

stressors and but not to Mn implicating another pathway in the HD cell loss (Figure II.4-

6.).  Additional studies in a neuronal model that does not express the NR2B subunit, 

perhaps cerebellar cultures from older animals, would shed more light on the role of this 

receptor subunit on the phenotype.  Future studies could also directly inhibit the NMDAR 

to examine its role in the Mn resistance phenotype. 
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 To date, striatal cultures have proven challenging and this has limited the number 

of questions we were able to answer.  We utilized a culture from the YAC128 animal that 

was created using a yeast artificial chromosome expressing the HD mutation.  We 

cultured cells from each animal separately because of the lack of a rapid genotyping 

procedure.  Plating a small number of cells in each dish can limit the viability of primary 

cultures.  To improve these cultures, we propose two methods (1) use homozygote HTT 

knock-in mice crossed to wild-type animals so that cultures could be combined without 

genotyping or (2) try embryonic cultures that are reported to increase viability.   

 

Role of Cell Type in HTT-Mn Interaction 

One of the most important questions we could ask utilizing the primarily culture 

model is the role of different cell types in the HD-Mn interaction.  Our current data 

suggests that neurons may be more sensitive but staining of these cultures must be done 

to determine the types of cells present before any conclusions can be made (Figure III.6. 

and 7.).  The variability of the brain environment is complex consisting of multiple 

regions and cells each with diverse connections and signaling molecules.  Understanding 

the role that different cell types and perhaps regions play in this interaction will be 

necessary to understand the process of selective degeneration. 

We report a reduction in cell viability at concentrations of Mn as low as 40 µM in 

the wild-type cells (Williams et al. 2009) (Figure II.4. and 6.).  Another group reported 

similar levels of toxicity in neuronal cultures (Malecki 2001).  Astrocytes, however, have 
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a greater resistance to Mn induced toxicity with significant levels of cell death at 250 µM 

(Lee et al. 2009).  The reduced toxicity of Mn in astrocytes reflects their ability to 

accumulate large quantities of Mn both in the brain and in culture.  These cells 

accumulate 10-50 fold more Mn than neurons.  Mn is needed to ensure proper function of 

the astrocytic enzyme GS (Wedler et al. 1984).   

Human brain levels of Mn are approximately between 0.5-4.0 µg/g-wet tissue 

weight depending on the region (Yukawa et al. 1980; Bonilla et al. 1982; Bush et al. 

1995; Tracqui et al. 1995).  After exposure to Mn, striatal Mn levels can increase up to 12 

fold and the levels in the globus pallidus 9-fold in the monkey (Suzuki et al. 1975).  Mn 

levels in the brain are also altered due to the levels of other metals.  Decreased Fe levels 

specifically have been shown to increase Mn uptake (Erikson et al. 2006).  Alternatively, 

Ca influx has been shown to reduce cellular levels of Mn in glia and astrocytes (Wedler 

et al. 1994).  

 Energy state of the brain can also alter the levels of various metals because some 

metal transporters (e.g. Cu-ATPase) require energy for proper function (Bush 2000).  

Both reduced energy homeostasis and increased levels of Fe in the striatum are associated 

with HD and may play an essential role in the uptake deficit before and after exposure to 

Mn.  Due to the effects that other metals have on Mn accumulation, it is important to note 

the concentrations in our culture media.  Only the levels of Ca+2, Mg+2, Fe+3, potassium, 

and  sodium are in significant levels in the DMEM we use for cell culture.  The inorganic 

salt in highest concentration is sodium (~167mM).  Ca and Fe concentrations are 2.4mM 
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and 0.2 µM respectively.  Because both cell lines are cultured in the same media, this 

cannot explain the difference between the mutant and wild-type cell lines.   

 
Mn Transport Deficiency in HD Models 

The inability of Mn to induce Akt phosphorylation in the STHdhQ111/Q111 cells led 

us to the discovery of the Mn accumulation deficit (Figure III.8, 9, and IV.2.).  Most 

importantly, upon exposure to Mn there is a deficit in Mn accumulation in the YAC128 

animal model and validates our initial hypothesis:  A toxicant sharing pathophysiological 

mechanisms with HD exhibits disease-toxicant interactions (Figure IV.  3.).  We have yet 

to elucidate the mechanisms of toxicity reflected in this interaction through our transport 

studies but analysis of these pathways has indicated that both DMT1 and the TfR 

pathway are not the source of the interaction (Figure II. 4, and  IV.4.-6).  Cells cultured 

from the Belgrade rats that have a mutation in DMT1 transfected with mutant HTT could 

help elucidate the role of this Mn transporter in the phenotype (Fleming et al. 1998).  A 

pilot study suggests that Ni block able calcium channels do not play a role in the HD-Mn 

phenotype (Figure IV.8.).  Unfortunately, because Ni also is toxic to the cells the 

interpretation of the data is extremely complex; use of specific channel inhibitors if 

available would allow us to precisely examine the roles of these channels.  Additional 

studies will focus on other transport mechanisms such as the Zip8 family and calcium 

channels.  Finally, other mechanisms that would alter cellular Mn levels such as export 

and storage must be examined.   
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Akt Signaling in HD 

Akt phosphorylation at S473 is associated with neuroprotection and cell viability.  

In our cell model, phosphorylation at this residue is increased in the mutant cells without 

the addition of Mn (Figure III.8. and 9.)  (Trettel et al. 2000; Gines et al. 2003; Williams 

et al. 2009).  The elevated Akt activity in the presence of mutant HTT is downstream of 

the NMDA receptor, which is linked to the heightened excitotoxicity seen in these cells 

and the mitochondrial defects (Gines et al. 2003).  Interestingly, we discovered an 

inability of the mutant cells to respond to Mn via Akt phosphorylation while they 

robustly respond to Cd (Figure III.8.).  Currently, Akt activation by metals is thought to 

be via the creation of ROS (Lopez et al. 2006; Liao et al. 2007).  Concentrations of Mn 

above 100 µM in the STHdhQ111/Q111 cells may be activating Akt in a similar manner to 

Cd exposures perhaps via ROS.  However, both cell survival and Akt response is very 

different at low exposures of Mn (40 µM and below) indicate a separate pathway of 

activity (Figure II. 6, III.8. and 9.)  (Williams et al. 2009).  Akt can also be activated by 

phosphorylation at threonine 305, which increases its activity.  Currently, it is not known 

how mutant HTT or Mn alters the phosphorylation of Akt at Threonine 305.  

Examination of the phosphorylation site may reveal multiple levels of Akt activity and 

explain the different responsiveness of the STHdhQ111/Q111 cells to various Mn 

concentrations.   
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HD Mutation Alters Mn Accumulation 

Our data also indicates a deficiency in Mn in the STHdhQ111/Q111, which is 

reflected in the apparent increased survival at low concentrations of Mn (Figure II.7. and 

IV.2.).  Although we did not detect Mn deficiency in the presymptomatic HD mouse 

model, it is possible such a deficiency would arise with disease progression (Figure 

III.3.).  The YAC128 model used in this study were injected at 3 months and the first 

symptoms do not appear until 9 months.  It is also possible that a Mn deficiency would be 

limited to one cell type limiting detection in the dissected brain regions.  For example, 

Mn accumulates in astrocytes predominately which play a critical role in neuronal 

survival by providing neurons with both glutamine and lactate for energy.  Astrocytes, 

which accumulate the majority of Mn, could be deficient in Mn leading to a reduction in 

energy provided to the neurons.  Surviving neurons could then mask any deficiency in 

Mn until late in disease after they have perished due to the reduced energetic substrates.  

Examination of energy and mitochondrial respiration in the StHdh lines reported that 

respiration was similar in both cell lines.  However, ATP levels were reduced when 

glycolysis is inhibited suggestive of an energy defect upstream of the mitochondria 

(Milakovic et al. 2005) 

There are few reports on the molecular consequences of Mn deficiency in adult 

animals, but Mn is required for the proper function of many enzymes key to brain 

function (e.g. glutamine synthetase (GS), pyruvate decarboxylase, superoxide dismutase 

2 (SOD2), arginase, and serine/ threonine protein phosphatase) (Applebury et al. 1970; 
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Greger 1999; Ensunsa et al. 2004; Eid et al. 2008).  Menke’s disease is associated with a 

deficiency in the metal Cu (Bertini et al. 2008).  Cu, like Mn, is essential and incorporates 

into multiple metalloenzymes.  Cu dependent enzymes (e.g. dopamine β-hydroxylase, 

cytochrome c oxidase, and ceruloplasmin) have reduced activities in Menke’s disease 

(Kodama et al. 1999).  The current treatment for this disorder is intravenous 

supplementation of Cu though its success is limited (Kaler et al. 2008).   

Several Mn-dependent enzymes have direct links to HD.  The activity of GS, 

which metabolizes glutamate, an excitatory neurotransmitter, to glutamine, is decreased 

in the corpus striatum of HD patients (Carter 1981; Butterworth 1986).  GS is 

predominately expressed in astrocytes.  Importantly, other glial-specific activities are 

elevated in HD, suggesting that GS activity is not lost due to general glial cell loss 

(Butterworth 1986). A reduction in GS activity is also associated with increased 

excitotoxicity, an established mechanism for HD-mediated cell death (Zeron et al. 2001; 

Fernandes et al. 2007).  Expression of mutant HTT has been reported to increase 

sensitivity of astrocytes to excitotoxicity (Shin et al. 2005).  Additionally, cells 

expressing the HD mutation show increased sensitivity to 3NPA (Figure II.3.) 

(Andreassen et al. 2001; Ruan et al. 2004).  Deficiencies in SOD2 that is essential to 

limiting oxidative stress within the cell have been shown to lead to an increased 

sensitivity to 3NPA, a toxicant that has been used to model HD (Beal et al. 1993; 

Andreassen et al. 2001).   

Altered energy metabolism has been reported in the STHdhQ111/Q111 cell line.  

Interestingly, decreased energy metabolism is also reported in the HD patient.  HD 

patients often suffer from diabetes and low body weight, directly linked to a decrease in 
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insulin production (Ye et al. 2009).  Dietary restriction has even been shown to improve 

symptoms in an HD mouse model (Duan et al. 2003).  It is intriguing that Mn has been 

reported to increase the activity of insulin degrading enzyme, which leads to improved 

insulin secretion (Baly et al. 1984).  It is also important to note that insulin signaling in 

brown adipose tissue regulated by the protein Akt, where Akt stimulates the uptake of 

glucose (Hernandez et al. 2001).  The urea cycle is deficient in HD patients and HD 

mouse models.  Arginase regulates the final step of the urea cycle (Stoy et al. 2005; 

Chiang et al. 2007).  Arginase activity has been linked to neuron survival by the 

reduction of nitric oxide signaling (Estevez et al. 2006).  In symptomatic HD animal 

models, nitric oxide activity is increased, specifically in the striatum (Deckel et al. 2002).  

Thus, alterations in Mn levels have the potential to affect many different enzymes, which 

could explain the diversity of pathophysiological effects seen in HD.  Importantly, 

improvement in the function of these enzymes could increase the survival of cells 

expressing the HTT mutations and we do see increased survival at low concentrations of 

Mn.  We therefore must examine the function of these and other Mn-dependent enzymes 

in various models of HTT.   

The primary neuronal cultures were done from cerebellum of postnatal day 0 to 1 

pups and mutant cell display the resistance to Mn when compared to wild-type cells 

(Figure III.6.).  However, we do not detect a deficiency in Mn accumulation in this brain 

area in our animal injection studies (Figure IV.3.).  The data strongly indicates the role 

for brain environment and emphasizes that metals do not accumulate equally throughout 

the brain.  Perhaps the striatum accumulates metals because of an intrinsic need of the 

region.  Mn overexposure alters protein expression of various Mn transporters in the 
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brain but no studies indicate the effect of a deficiency (Garcia et al. 2006).  TfR levels are 

altered in the STHdhQ111/Q111 (Trettel et al. 2000; Williams et al. 2009).  We do not know 

about the levels of other Mn transporters.   

Given the potential for defects in Mn homeostasis to contribute to HD, 

modulation of Mn exposure has potential clinical importance for the HD patient.  In the 

STHdhQ111/Q111 cells, we see improved cell survival with low levels of Mn exposure 

(Figure II.7.).  Our in vivo data show a specific effect on striatal Mn accumulation, 

indicating a possible role for altered metal accumulation in creating the selective 

degeneration pattern found in HD (Figure IV.3.).  However, effective treatment of metal 

homeostasis disorders is especially complex, as indicated by the tightly regulated 

relationship between Fe and Mn, as well as the challenges in treating other metal 

disorders such as Menke’s and Wilson’s diseases (Chua et al. 1996; Madsen et al. 2007; 

Fitsanakis et al. 2008).  These diseases result from mutations in two related genes, 

ATP7A and ATP7B respectively, which both encode copper transporters.  In Wilson’s 

disease, ATP7B mutations leads to an accumulation of copper while in Menke's there is a 

deficiency in Cu uptake due to changes in ATP7A (Ala et al. 2007; Bertini et al. 2008).  

The impact of mutant HTT may be both regional (striatal vs. cerebellar) and cell type-

specific (neuronal vs. glial).  General supplementation may increase Mn levels in areas 

that are not deficient, leading to toxicity without reaching therapeutic level where needed.  

Thus, future studies are needed to determine the mechanisms of the Mn transport 

deficiency and its potential role in selective pathology before we can understand the 

therapeutic potential of metal supplementation in HD. Collectively, these findings 

identify a novel environmental agent that may influence HD.  Our data also shed light on 
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previously unexplained published work finding deficits in Mn dependent enzymes in HD 

patients and animal models.   
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