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chapter i

introduction

Sampling and reconstruction have been widely studied in recent decades, especially

within the setting of shift-invariant spaces
(
see [1] - [8], [14], [17]

)
. Signal recon-

struction from data affected by error has received less attention. In the following

chapters we provide error estimates for signals reconstructed from corrupt data. Two

different types of error are considered, and the questions answered in each case are

different. In Chapter II, we assume the data has additive noise with expected value

zero and variance σ2. We calculate var(fε(x) − f(x)), where fε is the reconstructed

function and f is the original signal from which the data originates, and we show

that oversampling leads to reduced variance of error. In Chapter III, we consider the

issue of jitter error, which results from not knowing precisely the sampling set. In

this case, we answer two questions. First, under what conditions on the jitter error is

our signal still uniquely and stably determined by the data? Second, how well does

our reconstructed function approximate the original function?

In this chapter, we begin with an overview of some of the major tools we use

to arrive at our results. In particular, Fourier analysis and frame theory play a

significant role in our ability to reconstruct approximations of signals from a countable

collection of data. Also included in this chapter is some background on sampling and

reconstruction. We provide a brief review of sampling theory, where we include some

of the important definitions and main ideas. We discuss shift-invariant spaces and

provide a characterization of the shift-invariant spaces from which our continuous

signals originate. We conclude this chapter with an explanation of weighted-average

sampling, an extension of the classical sampling setting.

The following two chapters present the work done with error as mentioned earlier.
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Chapter II consists of results by the author and collaborators Akram Aldroubi and

Qiyu Sun. Chapter III is a paper by the author and Akram Aldroubi that is scheduled

to appear in Sampling Theory in Signal and Image Processing. Finally, Chapter IV

includes some results relating shift-invariant spaces to general reproducing kernel

Hilbert spaces.

I.1 Fourier Analysis

Our analysis will heavily rely on the Fourier transform and its properties. We denote

the Fourier transform of a function f ∈ L2(Rd) by f̂ and define

f̂(ξ) =
∫

Rd
f(x)e−i2πx·ξ dx a.e. ξ ∈ Rd.

The function f̂ is also in L2(Rd), and ‖f‖L2(Rd) = ‖f̂‖L2(Rd). Similarly, we denote the

Fourier series of a sequence c ∈ l2(Zd) by ĉ and define

ĉ(ξ) =
∑

k∈Zd

c(k)e−i2πk·ξ a.e. ξ ∈ [0, 1]d.

The function ĉ is in L2([0, 1]d), and ‖c‖l2(Zd) = ‖ĉ‖L2([0,1]d) . The following properties

of the Fourier transform will frequently be used.

(i) τ̂yf(ξ) = e−i2πy·ξf̂(ξ) where τyf = f(· − y)

(ii)
ˆ̂
f = f∨ where f∨(x) = f(−x)

(iii) f̂∨ = f̂ if f is real-valued

(iv) f̂ ∗ g = f̂ ĝ

For vector functions F = (f 1, . . . , fn)T , the notation F̂ will represent the vector

(f̂ 1, . . . , f̂n)T .
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Another valuable tool from Fourier analysis is the Poisson Summation Formula.

If
∑

k∈Zd f(x+ k) ∈ L2([0, 1]d), and if
∑

k∈Zd

∣∣∣f̂(k)
∣∣∣2 <∞, then

∑
k∈Zd

f(x+ k) =
∑

k∈Zd

f̂(k)ei2πk·x a.e. x ∈ Rd. (I.1.1)

More often we will use the equivalent version

∑
k∈Zd

f̂(ξ + k) =
∑

k∈Zd

f(k)e−i2πk·ξ a.e. ξ. (I.1.2)

Notice the right-hand side of the equation is the Fourier series of the sequence whose

terms are samples of f on the integer lattice. A simple exercise shows also that (I.1.1)

implies ∑
k∈Zd

f(k − x)ei2πξ·(k−x) =
∑

k∈Zd

f̂(k − ξ)e−i2πx·k (I.1.3)

Please see [15] for an extensive review of the Fourier transform and its properties.

I.2 Frame Theory

Frames can be thought of as generalized orthonormal bases, in the sense that a frame

for a Hilbert space H is a spanning set for H. However the frame elements in general

are neither orthogonal to each other nor linearly independent. The properties of

frames illustrated below allow for the reconstruction of a function in a given Hilbert

space from a countable collection of coefficients. We begin with the definition of a

frame.
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Definition I.2.1. A countable collection {fj}j∈J of elements in a Hilbert space H is

called a frame for H if there exist positive constants α and β such that

α ‖f‖2 ≤
∑
j∈J

|〈f, fj〉|2 ≤ β ‖f‖2 for all f ∈ H. (I.2.4)

For a given frame {fj}j∈J for a Hilbert space H, the coefficient operator C : H →

l2(J) given by

Cf = {〈f, fj〉 : j ∈ J}

is bounded with closed range. The reconstruction operator D : l2(J) → H given by

Dc =
∑
j∈J

cjfj

is well-defined and bounded with ‖D‖ ≤
√
β. The operators C and D are adjoint to

each other; that is D = C∗. The frame operator S : H → H given by

Sf =
∑
j∈J

〈f, fj〉 fj

is a positive invertible operator satisfying αIH ≤ S ≤ βIH and 1
β
IH ≤ S−1 ≤ 1

α
IH.

Notice that S = C∗C = DD∗.

For a given frame {fj : j ∈ J} in a Hilbert space H, the collection {S−1fj : j ∈ J}

also forms a frame for H. We denote this so-called canonical dual frame with a tilde

(i.e. f̃j = S−1fj for all j ∈ J), and it satisfies the reconstruction formulas

f =
∑
j∈J

〈f, fj〉 f̃j =
∑
j∈J

〈
f, f̃j

〉
fj for all f ∈ H.

These consequences from frame theory provide much of the foundation for sam-

pling and reconstruction in shift-invariant spaces. Please see [9] and [15] for an

extensive review of frames and their properties.
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I.3 Sampling and Reconstruction

In the classical sampling problem, the objective is to recover a function f on Rd from

its samples {f(xj) : j ∈ J}, where J is a countable indexing set. This situation

arises when dealing with a function (e.g. a signal or image) stored on a computer or

in any digital format, which can be done only in a discretized form. For any given

sampling set X = {xj ∈ Rd : j ∈ J}, where J is countable, there can be infinitely

many functions on Rd which have the same sample values on X. Therefore, the

problem of recovering f from its sampled values makes sense only if we assume some

a priori conditions on f . We can reformulate the problem as follows: Given a class of

functions V on Rd, find conditions on sampling sets X = {xj ∈ Rd : j ∈ J}, where J

is a countable index set, under which a function f ∈ V can be reconstructed uniquely

and stably from its samples {f(xj) : j ∈ J} [3], and then recover the function f from

its samples at X. This problem has many applications, including medical imaging

and communication.

I.3.1 Some History

The most classical sampling theorem is due to J.M. Whittaker [29]: Let f ∈ L2(R)

be such that supp f̂ ⊂ [−1
2
, 1

2
]. Then f can be recovered exactly from its samples

{f(k) : k ∈ Z} by the formula

f(x) =
∑
k∈Z

f(k) sinc(x− k), (I.3.5)

where sinc(x) = sin πx
πx

. This result is often referred to as Shannon’s Sampling Theorem

because of Shannon’s well-known work building upon this result [24].
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To understand why this theorem holds, we begin with the Poisson summation

formula in equation (I.1.2). For ξ ∈ [−1
2
, 1

2
], we have

f̂(ξ) =
∑
k∈Z

f̂(ξ + k) =
∑
k∈Z

f(k)e−i2πk·ξ =
∑
k∈Z

f(k)e−i2πk·ξχ[− 1
2
, 1
2
](ξ)

for all f ∈ L2(R) satisfying supp f̂ ⊂ [−1
2
, 1

2
]. Recall that the Fourier transform of

the sinc function is the characteristic function on [−1
2
, 1

2
], which we denoted above by

χ[− 1
2
, 1
2
]. By property (i) of the Fourier transform, we have

f(x) =
∑
k∈Z

f(k) sinc(x− k).

This theorem is easily extended to sampling sets TZ for functions f ∈ L2(R)

such that suppf̂ ⊂ [−ω
2
, ω

2
], where ω = 1

T
. Notice that these sampling sets are

uniform, i.e. the sampling sets form a d-dimensional Cartesian grid, where in this

case d = 1. Function reconstruction from uniform sets of sampling is practical in

many applications. For example, a digital image is often acquired by sampling light

intensities on a uniform grid [3]. However, in many realistic situations, such as medical

imaging (CT and MRI), the samples do not lie on a uniform grid. Therefore, the need

also arises to reconstruct a function f from its samples {f(xj) : j ∈ J}, where J is

not necessarily uniformly distributed.

We call functions whose Fourier transforms have compact support bandlimited

functions, and a great deal of work was done in recent decades by Beurling, Lan-

dau, and others extending the above theorem to the reconstruction of bandlimited

functions sampled on nonuniform sets in R. Specifically, for the exact and stable

reconstruction of a one-dimensional bandlimited function from its samples {f(xj) :

xj ∈ X}, it is sufficient that the Beurling density

D(X) = lim
r→∞

inf
y∈R

#X ∩ (y + [0, r])

r

6



satisfies D(X) > 1. Conversely, if f is uniquely and stably determined by its samples

on X ⊂ R, then D(X) ≥ 1.

Much is known about sampling and function reconstruction for classes of band-

limited functions. However, because all bandlimited functions are analytic, they have

infinite support. This leads to inefficiency in numerical implementations. For in-

stance, in the pointwise evaluation

f 7→ f(x0) =
∑
k∈Z

ck sinc(x0 − k),

for any x0 /∈ Z, many coefficients ck will contribute to the value of f(x0) because of

the slow decay of the sinc function. Additionally, classes of images or signals may be

better modeled by other types of non-bandlimited function spaces. We come to the

conclusion that it would be advantageous to consider classes of functions which are

not bandlimited, to allow us to model more classes of signals and so that numerical

implementation becomes practical, yet which still retain some of the simplicity and

structure of bandlimited models [3].

I.4 Sampling in Shift-Invariant Spaces

A shift-invariant space is a space V of functions on Rd such that if f ∈ V , then

f(· − k) ∈ V for all k ∈ Zd. In particular, as is common in much of the current

research
(
see [1]-[7],[14], [17]

)
, our underlying space will be a shift-invariant space of

the form

V 2(Φ) =

∑
k∈Zd

C(k)T Φ(· − k) : C ∈ (l2)(r)

 (I.4.6)

for some real-valued vector function Φ = (φ1, . . . , φr)
T ∈

(
L2(Rd)

)(r)
, where C =

(c1, . . . , cr)T is a real-valued vector sequence such that ci := {ci(k)}k∈Zd ∈ l2, i.e.,

7



C ∈ (l2)(r). Thus
∑

k∈Zd C(k)T Φ(· − k) =
∑r

i=1

∑
k∈Zd ci(k)φi(· − k).

Notice that the space of functions {f ∈ L2(R) : supp f̂ ⊂ [−1
2
, 1

2
]} is the shift-

invariant space

V 2(sinc) =

∑
j∈Z

c(j)sinc(· − j) : c ∈ l2(Z)

 .
Also notice that a shift invariant space will be a space of bandlimited functions only if

its generators φi are bandlimited. Sampling in shift-invariant spaces whose generators

are not bandlimited works well in many applications, especially with an appropriate

choice of functions φi [3].

Toward the goal of recovering a function from its samples, we begin by defining our

underlying space V 2(Φ) more precisely. As mentioned before, shift-invariant spaces

are commonly used in sampling models. Moreover, it is common to consider continu-

ous shift-invariant spaces that are subspaces of L2(Rd) in order to take advantage of

reproducing kernel Hilbert space properties.

Let Φ = (φ1, . . . , φr)T , where φi : Rd → R is a function in L2(Rd), and assume Φ

is such that

GΦ(ξ) :=
∑

k∈Zd

Φ̂(ξ + k)Φ̂(ξ + k)
T

= I, a.e. ξ ∈ Rd, (I.4.7)

where I is the r × r identity matrix. Define the shift-invariant space

V 2(Φ) :=

∑
k∈Zd

C(k)T Φ(· − k) : C ∈ (l2)(r)

 .
Then V 2(Φ) is a Hilbert space, V 2(Φ) is a subspace of L2(Rd), and

{φi(· − k) : 1 ≤ i ≤ r, k ∈ Zd} forms an orthonormal basis for V 2(Φ) [1, 3]. Also

assume φi ∈ W 1
0 := W 1 ∩ C0 , where C0 is the set of continuous functions, and

W 1 =

f :
∑

k∈Zd

ess sup
x∈[0,1]d

{|f(x+ k)|} <∞

 .
Under this assumption, V 2(Φ) is a space of continuous functions [3]. Furthermore,
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with this assumption, for each x in Rd, the point evaluation map f 7→ f(x), from

V 2(Φ) to R, is bounded. To see this, denote the sequence ai
x(k) := φi(x − k), and

notice that for every x ∈ Rd, ‖ai
x‖l1(Zd) ≤ ‖φi‖W 1 . Let f =

∑r
i=1

∑
k∈Zd ci(k)φi(·−k) ∈

V 2(Φ). Then

|f(x)| ≤
r∑

i=1

∑
k∈Zd

∣∣∣ci(k)∣∣∣ ∣∣∣φi(x− k)
∣∣∣ = r∑

i=1

〈∣∣∣ci∣∣∣ , ∣∣∣ai
x

∣∣∣〉
l2

≤
r∑

i=1

∥∥∥ci∥∥∥
l2

∥∥∥ai
x

∥∥∥
l2
≤

r∑
i=1

∥∥∥ci∥∥∥
l2

∥∥∥ai
x

∥∥∥
l1
≤

r∑
i=1

∥∥∥ci∥∥∥
l2

∥∥∥φi
∥∥∥

W 1

≤
(

max
1≤i≤r

∥∥∥φi
∥∥∥

W 1

) r∑
i=1

∥∥∥ci∥∥∥
l2

=
(

max
1≤i≤r

∥∥∥φi
∥∥∥

W 1

)
‖f‖L2

We conclude that point evaluation is a bounded linear functional on V 2(Φ). Therefore,

by the Riesz Representation Theorem, for every x ∈ Rd, there exists a reproducing

kernel Kx ∈ V 2(Φ) satisfying 〈f,Kx〉 = f(x) for all f ∈ V 2(Φ).

Remark I.4.1. If Φ satisfies (I.4.7), and if φi ∈ W 1
0 for 1 ≤ i ≤ r, then the unique

reproducing kernels {Kx : x ∈ Rd} of the reproducing kernel Hilbert space V 2(Φ) are

of the form

Kx(y) =
r∑

i=1

∑
l∈Zd

φi(x− l)φi(y − l) (I.4.8)

where x, y ∈ Rd.

Proof: The equation (I.4.7) implies {φi(· − k) : 1 ≤ i ≤ r, k ∈ Zd} forms an or-

thonormal basis for V 2(Φ). Let f =
∑r

i=1

∑
k∈Zd cikφ

i(· − k) ∈ V 2(Φ). For x ∈ Rd, let

Kx =
∑r

i=1

∑
j∈Zd φi(x− j)φi(· − j). Then

〈f,Kx〉 =

〈
r∑

i=1

∑
k∈Zd

cikφ
i(· − k),

r∑
i′=1

∑
j∈Zd

φi′(x− j)φi′(· − j)

〉

=
r∑

i=1

r∑
i′=1

∑
k∈Zd

∑
j∈Zd

cikφ
i′(x− j)

〈
φi(· − k), φi′(· − j)

〉

=
r∑

i=1

∑
k∈Zd

cikφ
i(x− k) = f(x).

9
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Once the underlying space V 2(Φ) is fixed, the ability to recover a function f in

V 2(Φ) from its samples, {f(xj)}j∈J , depends on the sampling set X := {xj : j ∈ J}.

Let X be a countable subset of Rd.

Definition I.4.2. We say that X := {xj : j ∈ J} is a set of sampling for V 2(Φ) if

there exist positive constants α and β such that

α||f ||2L2 ≤ ||{f(xj)}j∈J ||2l2(J) ≤ β||f ||2L2 for all f ∈ V 2(Φ). (I.4.9)

Notice that if X is a set of sampling for the reproducing kernel Hilbert space

V 2(Φ), then the collection {Kxj
}j∈J forms a frame for V 2(Φ), which gives us the

following stable reconstruction formula for f ∈ V 2(Φ):

f =
∑
j∈J

〈
f,Kxj

〉
K̃xj

, (I.4.10)

where {K̃xj
}j∈J is the canonical dual frame associated to {Kxj

}j∈J . Namely, K̃xj
:=

S−1Kxj
, where S is the frame operator on V 2(Φ) associated to the frame {Kxj

}j∈J ,

i.e.

Sf =
∑
j∈J

〈
f,Kxj

〉
Kxj

. (I.4.11)
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I.5 Weighted-Average Sampling

In practice, the assumption that the samples {f(xj) : j ∈ J} can be measured exactly

is not realistic. A better assumption is that the sampled data are of the form

gi
xj

=
〈
f, ψi

xj

〉
=
∫

Rd
f(x)ψi

xj
(x)dx,

where {ψi
xj

: 1 ≤ i ≤ s, j ∈ J} is a set of functionals that act on the function f to

produce the data {gi
xj

: 1 ≤ i ≤ s, J ∈ J}. The functionals {ψi
xj

: 1 ≤ i ≤ s, j ∈ J}

may reflect the characteristics of the sampling devices [3].

Throughout this paper, in the case of weighted-average sampling, we assume the

averaging kernels ψi
xj

are shifts of the functions ψi, i.e., we assume ψi
xj

= ψi(·−xj) for

some real-valued vector function Ψ = (ψ1, . . . , ψs)T in
(
L2(Rd)

)(s)
. We also require

that the Gramian

GΨ(ξ) :=
∑

k∈Zd

Ψ̂(ξ + k)Ψ̂(ξ + k)
T

be bounded, i.e. there exists a positive number η such that GΨ(ξ) ≤ ηI, a.e. ξ ∈ Rd

[5].

We still assume our sampled function f comes from the shift-invariant space

V 2(Φ), with Φ ∈ (W 1
0 )(r) satisfying (I.4.7). In the case of weighted-average data,

the problem of recovering a function f ∈ V 2(Φ) from the countable collection of data

{gi
xj

: 1 ≤ i ≤ s, j ∈ J} is well-posed if

α‖f‖2
L2 ≤

s∑
i=1

∑
j∈J

∥∥∥〈f, ψi
xj

〉∥∥∥2
≤ β‖f‖2

L2 for all f ∈ V 2(Φ), (I.5.12)

where α and β are positive constants independent of f .

Notice that (I.5.12) appears to satisfy a frame condition. However, our functions

{ψi : 1 ≤ i ≤ s} are not necessarily in the space V 2(Φ). As in [1], consider the

11



orthogonal projection P from L2(Rd) onto V 2(Φ), and define θi
xj

:= Pψi
xj
. Then for

all f ∈ V 2(Φ), 〈
f, θi

xj

〉
=
〈
f, Pψi

xj

〉
=
〈
Pf, ψi

xj

〉
=
〈
f, ψi

xj

〉
.

Thus condition (I.5.12) implies that {θi
xj

: 1 ≤ i ≤ s, j ∈ J} forms a frame for V 2(Φ).

Furthermore, using the orthonormality of {φl(· − k)}, we can write

θi
xj

(x) =
r∑

l=1

∑
n∈Zd

〈
θi

xj
, φl(· − n)

〉
φl(x− n)

=
r∑

l=1

∑
n∈Zd

〈
ψi

xj
, φl(· − n)

〉
φl(x− n).

There exists a dual frame {θ̃i
xj

: 1 ≤ i ≤ s, j ∈ J}, defined by

θ̃i
xj

:= S−1θi
xj
,

where S is the frame operator on V 2(Φ) corresponding to the frame {θi
xj
}, i.e.

Sf =
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

〈
f, θi

xj

〉
θi

xj
. (I.5.13)

We have the following reconstruction formula for any function f ∈ V 2(Φ):

f =
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

〈
f, ψi

xj

〉
θ̃i

xj
(I.5.14)
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chapter ii

error analysis of frame reconstruction from
noisy samples

Sampling and function reconstruction have been widely studied in recent decades,

particularly within the setting of shift-invariant spaces
(
see [1] - [8], [14], [17]

)
. How-

ever, the problem of reconstructing a function from data corrupted by noise has not

been given as much attention. In [12], Eldar and Unser provide optimal results for

filtering noisy samples of signals from shift-invariant and bandlimited spaces. Smale

and Zhou reconstruct signals from noisy data in [25] and give error estimates for

the reconstructed signal. In [23], Rohde et al. show that reconstruction from noisy

data introduces spatial dependent artifacts that are undesirable for sub-pixel signal

processing. In this chapter, we provide error estimates for frame reconstruction of

a continuous function from a countable collection of sampled data that is corrupted

by noise. We show that oversampling reduces the variance of the error of the recon-

structed signal at each point x ∈ Rd, and we give an exact formula for the variance

as a function of the position x, of the oversampling factor m, and of the signal and

sampling models.

In particular, given data Y = {yj}j∈J of the form yj = f(xj) + εj, we analyze

the frame reconstruction algorithm that produces a continuous function fε from the

noisy samples Y = {yj}j∈J of a function f in a shift invariant space. We assume the

noise sequence {εj}j∈J to be a collection of i.i.d. random variables with E(εj) = 0

and var(εj) = σ2. We consider uniform sets of sampling of the form 1
m

Zd, where m is

a positive integer, and find precise estimates of var(fε(x)− f(x)) which is a function

of x.

We address this problem not only for exact sampling, but also for weighted average

13



sampling as in [1] and [5]. Specifically, instead of assuming the data {yj}j∈J arise from

exact samples of f , we assume the data are of the form yj = 〈f, ψ(· − xj)〉 + εj, or

even yi
j = 〈f, ψi(· − xj)〉+ εi

j, 1 ≤ i ≤ s, for some vector function Ψ = (ψ1, . . . , ψs)T .

In this case, the uncorrupted data can be interpreted as weighted averages of f at xj.

We begin this chapter with the case of exact sampling, and the main theorem is

stated. While the complete proof is saved for section II.3, the main ideas behind the

proof are illustrated by looking at the simpler case in section II.1.1. Then in section

II.2, we address the weighted-average sampling problem and state the main result

there. Once again, the complete proof is saved for section II.3, while we illustrate the

ideas through a simpler setting in II.2.1.

II.1 Exact Sampling

Here we sample on the lattice 1
m

Zd, i.e., we assume our data is of the form

{
yk+j/m = f(k +

1

m
j) + εk+j/m : k ∈ Zd, j ∈ Zd ∩ [0,m− 1]d

}

for some function f ∈ V 2(Φ). For the sake of simplicity, we denote the finite set

Ωd
m := Zd ∩ [0,m − 1]d, and we use the notation j/m for 1

m
j, where m is a positive

integer and j is a vector in Ωd
m. We also assume that for m ≥ 1, the lattice 1

m
Zd is a

set of sampling for V 2(Φ), i.e., there exist positive constants αm and βm satisfying

αm ‖f‖2
L2 ≤

∑
j∈Ωd

m

∑
k∈Zd

|f(k + j/m)|2 ≤ βm ‖f‖2
L2 for all f ∈ V 2(Φ) (II.1.1)

Thus the collection of reproducing kernels {Kk+j/m : k ∈ Zd, j ∈ Ωd
m} forms a frame

for V 2(Φ), and f ∈ V 2(Φ) is uniquely determined by its samples {f(k + 1
m
j) : k ∈

Zd, j ∈ Ωd
m}.

14



Remark II.1.1. It is reasonable to make the assumption that (II.1.1) holds. From

the results in [5], we know that there exists an M ∈ N such that positive αm and βm

satisfying (II.1.1) exist for all m ≥ M . Moreover, if positive α1 and β1 exist (i.e., if

Zd is a set of sampling for V 2(Φ)), then positive αm and βm exist for all m ∈ N.

Recall from the previous chapter that f can be recovered from its samples as

follows:

f =
∑

j∈Ωd
m

∑
k∈Zd

〈
f,Kk+j/m

〉
K̃k+j/m =

∑
j∈Ωd

m

∑
k∈Zd

f(k + j/m)K̃k+j/m.

Given data {yk+j/m = f(k + 1
m
j) + εk+j/m}, we define

fε :=
∑

j∈Ωd
m

∑
k∈Zd

yk+j/mK̃k+j/m.

The expected value and variance of the error between the frame reconstruction fε

and the exact function f is a function of the position x, the oversampling factor md,

and the noise variance σ2. The precise estimates and best constants are given by the

following theorem.

Theorem II.1.2. Let Φ = (φ1, . . . , φr)T satisfy GΦ(ξ) = I a.e. ξ, and φi ∈ W 1∩C0,

1 ≤ i ≤ r. For m ∈ N, let αm, βm > 0 satisfy (II.1.1). Assume, for all k ∈ Zd and

j ∈ Ωd
m, that yk+j/m = f(k+ j/m) + εk+j/m for some f ∈ V 2(Φ), where {εk+j/m} is a

collection of i.i.d. random variables satisfying E(εk+j/m) = 0 and var(εk+j/m) = σ2.

Then E(fε(x)− f(x)) = 0, and

var(fε(x)− f(x)) =
σ2

md
Cx(m),
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where Cx(m) is given by (II.3.22), and we have

Cx(m)
m→∞−→

r∑
i=1

∫
[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

ei2πk·xφ̂i(k − ξ)

∣∣∣∣∣∣
2

dξ.

Remark II.1.3. In section II.1.1 we show that we can also obtain slightly suboptimal

estimates that are independent of m or x. In particular, for any ε > 0, there exists

M ∈ N such that for all m ≥M

var(fε(x)− f(x)) ≤ (1 + ε)σ2

md

(
r∑

i=1

∥∥∥φi
∥∥∥2

W 1

)
for all x ∈ Rd.

Remark II.1.4. In the case of uniform exact sampling, we see that it is possible to

reduce the variance of the error of our reconstructed function simply by increasing

the rate at which we sample. Later, we see the result holds in the case of average

sampling as well, given certain conditions on the averaging functions.

II.1.1 Exact Sampling in V 2(φ)

Before presenting the proof of the theorem above, we illustrate the simpler case where

r = 1. In other words, our underlying shift-invariant space has only one generator,

φ. This will also serve to lay the groundwork for the proof of Theorem II.1.2.

Recall from Chapter I that the inequality (II.1.1) implies that the collection of

reproducing kernels {Kk+j/m : k ∈ Zd, j ∈ Ωd
m} is a frame for V 2(φ), where

Kk+j/m(x) =
∑
l∈Zd

φ(k + j/m− l)φ(x− l), (II.1.2)
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and f can be reconstructed from its samples on the lattice 1
m

Zd as shown.

f =
∑

j∈Ωd
m

∑
k∈Zd

〈
f,Kk+j/m

〉
K̃k+j/m =

∑
j∈Ωd

m

∑
k∈Zd

f(k + j/m)K̃k+j/m (II.1.3)

Because our sampling set is uniform, we can find K̃k+j/m = S−1
m Kk+j/m explicitly.

Recall, for any f ∈ V 2(φ),

(Smf)(x) =
∑

j∈Ωd
m

∑
k∈Zd

〈
f,Kk+j/m

〉
Kk+j/m(x). (II.1.4)

Notice that

Kk+j/m = Kj/m(· − k) for all k ∈ Zd.

We then apply the Fourier transform to (II.1.4), and get

(̂Smf)(ξ) =
∑

j∈Ωd
m

∑
k∈Zd

(
f ∗K∨

j/m

)
(k) e−i2πk·ξK̂j/m(ξ),

where K∨
j/m(x) = Kj/m(−x). Notice

∑
k∈Zd

(
f ∗K∨

j/m

)
(k) e−i2πk·ξ is the Fourier series

of the sequence whose terms are samples of the function f ∗K∨
j/m on the integer lattice.

Thus, by (I.1.2) and properties (iii) and (iv) of the Fourier transform, we have

(̂Smf)(ξ) =
∑

j∈Ωd
m

∑
k∈Zd

f̂(ξ + k)K̂j/m(ξ + k)

 K̂j/m(ξ).

For any f =
∑

l∈Zd c(l)φ(·− l) in V 2(φ), we can use the fact that convolution becomes

multiplication in the Fourier domain to express f̂(ξ) = ĉ(ξ)φ̂(ξ). Then we use (II.1.2)

and the fact that the Fourier series of a sequence is periodic with period 1 (i.e.,
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ĉ(ξ + k) = ĉ(ξ) for k ∈ Zd) to write

(̂Smf)(ξ) =
∑

j∈Ωd
m

ĉ(ξ)

∑
k∈Zd

φ̂(ξ + k)φ̂(ξ + k)

 ∣∣∣p̂j/m(ξ)
∣∣∣2 φ̂(ξ)

=

 ∑
j∈Ωd

m

∣∣∣p̂j/m(ξ)
∣∣∣2
 f̂(ξ) a.e. ξ,

where pj/m is the sequence whose lth term is pj/m(l) = φ(j/m− l). Thus, for any

f ∈ V 2(φ), we have

(̂S−1
m f)(ξ) =

 ∑
j∈Ωd

m

∣∣∣p̂j/m(ξ)
∣∣∣2
−1

f̂(ξ) (II.1.5)

Specifically, for fixed j ∈ Ωd
m,

̂(S−1
m Kj/m)(ξ) =

 ∑
j′∈Ωd

m

∣∣∣p̂j′/m(ξ)
∣∣∣2
−1

p̂j/m(ξ)φ̂(ξ). (II.1.6)

Using (II.1.5) and the fact that translation corresponds to modulation in the Fourier

domain, it can easily be verified that S−1
m Kk+j/m = (S−1

m Kj/m)(· − k).

Remark II.1.5. Using equation (II.1.1), one can verify that 0 < αm ≤ ∑
j∈Ωd

m

∣∣∣p̂j/m(ξ)
∣∣∣2

for all ξ, and hence that the formulas (II.1.5) and (II.1.6) are well defined. In the

proof of Theorem II.1.2, we will prove the stronger result that when m is large, there

is a positive lower bound for
∑

j∈Ωd
m

∣∣∣p̂j/m(ξ)
∣∣∣2 that does not depend on m.

Given data {yk+j/m = f(k + 1
m
j) + εk+j/m : k ∈ Zd, j ∈ Ωd

m}, we define

fε :=
∑

j∈Ωd
m

∑
k∈Zd

yk+j/mS
−1
m Kk+j/m =

∑
j∈Ωd

m

∑
k∈Zd

yk+j/m(S−1
m Kj/m)(· − k).

18



We assume that the error {εk+j/m} is a collection of i.i.d. random variables with mean

zero and variance σ2. A simple calculation shows that

E(fε(x)− f(x)) =
∑

j∈Ωd
m

∑
k∈Zd

E(εk+j/m)S−1
m Kk+j/m(x) = 0.

We can compute var(fε(x)− f(x)).

var(fε(x)− f(x)) = var

 ∑
j∈Ωd

m

∑
k∈Zd

εk+j/mS
−1
m Kk+j/m(x)


= σ2

∑
j∈Ωd

m

∑
k∈Zd

∣∣∣S−1
m Kj/m(x− k)

∣∣∣2

= σ2
∑

j∈Ωd
m

∫
[0,1]d

∣∣∣∣∣∣e−i2πx·ξ ∑
k∈Zd

ei2πx·k ̂S−1
m Kj/m(k − ξ)

∣∣∣∣∣∣
2

dξ

= σ2
∑

j∈Ωd
m

∫
[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

ei2πx·k ̂S−1
m Kj/m(k − ξ)

∣∣∣∣∣∣
2

dξ

= σ2
∑

j∈Ωd
m

∫
[0,1]d

∣∣∣∣∣∣∣
∑

k∈Zd

ei2πx·k p̂j/m(−ξ)φ̂(k − ξ)∑
j′∈Ωd

m

∣∣∣p̂j′/m(−ξ)
∣∣∣2
∣∣∣∣∣∣∣
2

dξ

= σ2
∫
[0,1]d

∑
j∈Ωd

m

∣∣∣p̂j/m(−ξ)
∣∣∣2 ∣∣∣∑k∈Zd ei2πx·kφ̂(k − ξ)

∣∣∣2∣∣∣∣∑j′∈Ωd
m

∣∣∣p̂j′/m(−ξ)
∣∣∣2∣∣∣∣2 dξ

=
σ2

md

∫
[0,1]d

∣∣∣∑k∈Zd ei2πx·kφ̂(k − ξ)
∣∣∣2

1
md

∑
j∈Ωd

m
|∑l∈Zd φ(j/m− l)ei2πl·ξ|2

dξ

=
σ2

md
Cx(m).

Consider the Zak transform of φ,

Zφ(t, ξ) =
∑
l∈Zd

φ(t− l)ei2πl·ξ. (II.1.7)
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Because φ ∈ W 1
0 , Zφ is a well-defined, continuous function on Rd×Rd [18]. Focusing

on the denominator in the above calculation, we notice

1

md

∑
j∈Ωd

m

∣∣∣∣∣∣
∑
l∈Zd

φ(j/m− l)ei2πl·ξ

∣∣∣∣∣∣
2

m→∞−→
∫
[0,1]d

|Zφ(t, ξ)|2 dt

for all ξ ∈ [0, 1]d.

Lemma II.1.6. For every ξ ∈ [0, 1]d,
∫
[0,1]d |Zφ(t, ξ)|2 dt = 1.

Now, for each positive integer m, define the function

gm(ξ) :=
1

md

∑
j∈Ωd

m

∣∣∣∣∣∣
∑
l∈Zd

φ(j/m− l)ei2πl·ξ

∣∣∣∣∣∣
2

ξ ∈ [0, 1]d.

Lemma II.1.6 tells us that gm(ξ) → 1 pointwise. In fact, it will be shown in the proof

of Theorem II.1.2 that gm converges uniformly to the constant function 1 on the unit

cube [0, 1]d.

Therefore, for any ε > 0, there exists a number M ∈ N such that for all m ≥ M ,

sampling on the lattice 1
m

Zd gives the estimate

var(fε(x)− f(x)) ≤ (1 + ε)σ2

md

∫
[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

ei2πx·kφ̂(k − ξ)

∣∣∣∣∣∣
2

dξ. (II.1.8)

Notice, by (I.1.3), that

∑
k∈Zd

ei2πx·kφ̂(k − ξ) =
∑

k∈Zd

φ(x+ k)ei2πξ·(x+k),

which implies that

∣∣∣∣∣∣
∑

k∈Zd

ei2πx·kφ̂(k − ξ)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑

k∈Zd

φ(x+ k)ei2πξ·k

∣∣∣∣∣∣
2
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Then the integral in equation (II.1.8) represents the square of the L2 norm of the

Fourier series of the sequence whose terms are {φ(x + k)}k∈Zd . By Plancherel, we

have ∫
[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

ei2πx·kφ̂(k − ξ)

∣∣∣∣∣∣
2

dξ =
∑

k∈Zd

|φ(x+ k)|2 (II.1.9)

Therefore, for large enough m, we have

var(fε(x)− f(x)) ≤ (1 + ε)σ2

md

∑
k∈Zd

|φ(x+ k)|2 for every x ∈ Rd.

In other words, we obtain the slightly suboptimal estimate that depends on x but

does not depend on m for large m. Also notice that var(fε(x)−f(x)) is periodic with

period 1. Then for any x ∈ [0, 1]d,

∑
k∈Zd

|φ(x+ k)|2 ≤

∑
k∈Zd

sup
x∈[0,1]d

|φ(x+ k)|

2

= ‖φ‖2
W 1 , (II.1.10)

giving a coarser estimate that does not depend on x or on m.

II.2 Average Sampling

Here we assume our data is of the form

{〈
f, ψi(· − (k + j/m))

〉
+ εi

k+j/m : k ∈ Zd, j ∈ Ωd
m, 1 ≤ i ≤ s

}

for some f ∈ V 2(Φ) and some real-valued vector function Ψ = (ψ1, . . . , ψs)T , where

Ψ ∈
[
L1(Rd) ∩ L2(Rd)

](s)
. We use the notation ψi

k+j/m to denote ψi(· − (k + j/m)).

We continue to assume Φ ∈
(
L2(Rd)

)(r)
satisfies (I.4.7) and that Φ ∈

(
W 1

0

)(r)
.
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In order to recover a function f in V 2(Φ) from its weighted averages using shifts

of the functions ψi, Ψ must satisfy certain conditions. We require that the Gramian

GΨ(ξ) :=
∑

k∈Zd

Ψ̂(ξ + k)Ψ̂(ξ + k)
T

be bounded, i.e. there exists a number η such that GΨ(ξ) ≤ ηI, a.e. ξ ∈ Rd [5].

Furthermore, we assume Ψ is such that, for each m ∈ N, there exist positive constants

αm and βm satisfying

αm ‖f‖2
2 ≤

s∑
i=1

∑
j∈Ωd

m

∑
k∈Zd

∣∣∣〈f, ψi
k+j/m

〉∣∣∣2 ≤ βm ‖f‖2
2 (II.2.11)

for all f in V 2(Φ). Finally, we also assume

lim
N→∞

sup
ξ∈[0,1]d

s∑
i=1

∑
|k|≥N

∣∣∣ψ̂i(ξ + k)
∣∣∣2 = 0 (II.2.12)

Condition (II.2.12) comes from [5] and serves to exclude pathological examples. Be-

cause condition (II.2.11) is satisfied, f ∈ V 2(Φ) is uniquely determined by, and can

be stably reconstructed from, the collection

{
〈
f, ψi(· − (k + j/m))

〉
: k ∈ Zd, j ∈ Ωd

m, 1 ≤ i ≤ s}.

Recall that ψi is not necessarily in V 2(Φ), so although (II.2.11) is satisfied, the collec-

tion {ψi
k+j/m} does not constitute a frame for V 2(Φ). As in [1], consider the orthogonal

projection P from L2(Rd) onto V 2(Φ), and define

θi
k+j/m := Pψi

k+j/m.
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Then for all f ∈ V 2(Φ),

〈
f, θi

k+j/m

〉
=
〈
f, Pψi

k+j/m

〉
=
〈
Pf, ψi

k+j/m

〉
=
〈
f, ψi

k+j/m

〉
.

Thus condition (II.2.11) implies that {θi
k+j/m : k ∈ Zd, j ∈ Ωd

m, 1 ≤ i ≤ s} forms a

frame for V 2(Φ). Furthermore, using the orthonormality of {φl(· − k)}, we can write

θi
k+j/m(x) =

r∑
l=1

∑
n∈Zd

〈
θi

k+j/m, φ
l(· − n)

〉
φl(x− n)

=
r∑

l=1

∑
n∈Zd

〈
ψi

k+j/m, φ
l(· − n)

〉
φl(x− n),

and we see that θi
k+j/m = θi

j/m(· − k). There exists a dual frame

{θ̃i
k+j/m : k ∈ Zd, j ∈ Ωd

m1 ≤ i ≤ s}, defined by

θ̃i
k+j/m := S−1

m θi
k+j/m,

where Sm is the frame operator on V 2(Φ) corresponding to the frame {θi
k+j/m}, i.e.

Smf =
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

〈
f, θi

k+j/m

〉
θi

k+j/m.

Then for any scalar-valued sequence {ai
k+j/m : k ∈ Zd, j ∈ Ωd

m, 1 ≤ i ≤ s} satisfying

s∑
i=1

∑
j∈Ωd

m

∑
k∈Zd

∣∣∣ai
k+j/m

∣∣∣2 <∞,

the function defined by
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

ai
k+j/m θ̃i

k+j/m
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is in V 2(Φ) [15]. Furthermore, we have the following reconstruction formula for any

function f ∈ V 2(Φ):

f =
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

〈
f, ψi

k+j/m

〉
θ̃i

k+j/m (II.2.13)

Given data

{
yi

k+j/m =
〈
f, ψi

k+j/m

〉
+ εi

k+j/m : k ∈ Zd, j ∈ Ωd
m, 1 ≤ i ≤ s

}
, (II.2.14)

we define

fε :=
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

yi
k+j/m θ̃i

k+j/m. (II.2.15)

In the case of average sampling, we arrive at results for var(fε(x)− f(x)) similar

to those of Theorem II.1.2. For ξ ∈ [0, 1]d, define the self-adjoint matrix

GΨ
Φ(ξ) :=

s∑
i=1

∑
k∈Zd

Φ̂(ξ + k)Φ̂(ξ + k)
T ∣∣∣ψ̂i(ξ + k)

∣∣∣2 .
and denote the r × 1 vector

ZΦ̂(−ξ,−x) =
∑

k∈Zd

Φ̂(k − ξ)ei2πk·x.

As in Theorem II.1.2, the expected value and variance of the error between the frame

reconstruction fε and the exact function f is a function of the position x, the oversam-

pling factor md, and the noise variance σ2. The precise estimates and best constants

are given by the following theorem.

Theorem II.2.1. Let Φ = (φ1, . . . , φr)T satisfy GΦ(ξ) = I a.e. ξ, and φi ∈ W 1∩C0,

1 ≤ i ≤ r. Assume GΨ(ξ) ≤ ηI, a.e. ξ ∈ Rd and also that equations (II.2.11) and

(II.2.12) are satisfied. Assume, for all k ∈ Zd, j ∈ Ωd
m, and 1 ≤ i ≤ s, the data

{yi
k+j/m} are of the form (II.2.14) for some f ∈ V 2(Φ), where {εi

k+j/m} is a collection

of i.i.d. random variables satisfying E(εi
k+j/m) = 0 and var(εi

k+j/m) = σ2. Then
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E(fε(x)− f(x)) = 0, and

var(fε(x)− f(x)) =
σ2

md
Dx(m),

where Dx(m) is given by (II.3.26), and

Dx(m)
m→∞−→

∫
[0,1]d

ZΦ̂(−ξ,−x)
T (
GΨ

Φ(ξ)
)−1

ZΦ̂(−ξ,−x) dξ.

Remark II.2.2. In [5] it is shown that (II.2.11) and (II.2.12) imply that there exists

a positive number δ0 such that δ0I ≤ GΨ
Φ(ξ) for all ξ. It follows from (II.1.10) that

there exists a number δ > 0 and a number M ∈ N such that for every m ≥ M , we

obtain the suboptimal but uniform estimate:

var(fε(x)− f(x)) ≤ σ2

md

(
1

δ

)( r∑
n=1

‖φn‖2
W 1

)
for all x ∈ Rd.

II.2.1 Average Sampling in V 2(φ)

Once again, before presenting the proof of the theorem above, we will lay the ground-

work for that proof by illustrating the simpler case where r = 1. In other words, our

underlying shift-invariant space has only one generator, φ.

As we did in the example in the previous section, in this uniform case, we can

find θ̃i
k+j/m = S−1

m θi
k+j/m, or at least its Fourier transform, explicitly. Let Sm be the

frame operator on V 2(φ) associated to the frame
{
θi

k+j/m : k ∈ Zd, j ∈ Ωd
m, 1 ≤ i ≤ s

}
.

Recall that

(Smf)(x) =
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

〈
f, ψi

k+j/m

〉
θi

k+j/m(x), (II.2.16)

θi
k+j/m(x) =

∑
l∈Zd

〈
ψi

k+j/m, φ(· − l)
〉
φ(x− l), (II.2.17)
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and also that θi
k+j/m = θi

j/m(·−k). For any f ∈ V 2(φ), we apply the Fourier transform

to (II.2.16) and rewrite the inner product as convolution, to get

(̂Smf)(ξ) =
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

(
f ∗ (ψi

j/m)∨
)

(k) e−i2πk·ξθ̂i
j/m(ξ),

where (ψi
j/m)∨(x) = ψi

j/m(−x). Notice
∑

k∈Zd

(
f ∗ (ψi

j/m)∨
)

(k) e−i2πk·ξ is the Fourier

series of the sequence whose terms are samples of the function f ∗ (ψi
j/m)∨ on the

integer lattice. Thus, by (I.1.2) and properties (iii) and (iv) of the Fourier transform,

we have

(̂Smf)(ξ) =
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

f̂(ξ + k)ψ̂i
j/m(ξ + k)

 θ̂i
j/m(ξ).

Similarly, we can use (II.2.17) to show that

θ̂i
j/m(ξ) =

∑
l∈Zd

ψ̂i
j/m(ξ + l)φ̂(ξ + l)

 φ̂(ξ).

Thus for any f =
∑

l∈Zd c(l)φ(· − l) in V 2(φ), we have

(̂Smf)(ξ) =
s∑

i=1

∑
j∈Ωd

m

ĉ(ξ)

∑
l∈Zd

φ̂(ξ + l)ψ̂i
j/m(ξ + l)

∑
l′∈Zd

φ̂(ξ + l′)ψ̂i
j/m(ξ + l′)

 φ̂(ξ)

=

 s∑
i=1

∑
j∈Ωd

m

∣∣∣∣∣∣
∑
l∈Zd

φ̂(ξ + l)ψ̂i
j/m(ξ + l)

∣∣∣∣∣∣
2
 f̂(ξ),

and therefore

(̂S−1
m f)(ξ) =

f̂(ξ)∑s
i=1

∑
j∈Ωd

m

∣∣∣∣∑l∈Zd φ̂(ξ + l)ψ̂i
j/m(ξ + l)

∣∣∣∣2 , (II.2.18)
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provided that the denominator is nonzero. Then for fixed i and j,

̂(S−1
m θi

j/m)(ξ) =

(∑
l′∈Zd φ̂(ξ + l′)ψ̂i

j/m(ξ + l′)
)
φ̂(ξ)

∑s
i′=1

∑
j′∈Ωd

m

∣∣∣∣∑l∈Zd φ̂(ξ + l)ψ̂i′
j′/m(ξ + l)

∣∣∣∣2 .

Using (II.2.18) and property (i) of the Fourier transform, it can be verified that

S−1
m θi

k+j/m =
(
S−1

m θi
j/m

)
(· − k). Now we can use (II.2.13) and (II.2.15) to begin com-

puting var(fε(x)− f(x)).

var(fε(x)− f(x))

= var

 s∑
i=1

∑
j∈Ωd

m

∑
k∈Zd

εi
k+j/mS

−1
m θi

k+j/m(x)


= σ2

s∑
i=1

∑
j∈Ωd

m

∑
k∈Zd

∣∣∣S−1
m θi

j/m(x− k)
∣∣∣2

= σ2
s∑

i=1

∑
j∈Ωd

m

∫
[0,1]d

∣∣∣∣∣∣ei2πx·ξ ∑
k∈Zd

ei2πx·k ̂S−1
m θi

j/m(ξ + k)

∣∣∣∣∣∣
2

dξ

= σ2
s∑

i=1

∑
j∈Ωd

m

∫
[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

ei2πx·k ̂S−1
m θi

j/m(ξ + k)

∣∣∣∣∣∣
2

dξ

= σ2
s∑

i=1

∑
j∈Ωd

m

∫
[0,1]d

∣∣∣∣∣∣∣∣∣
∑

k∈Zd

ei2πx·k

(∑
l′∈Zd φ̂(ξ + l′)ψ̂i

j/m(ξ + l′)
)
φ̂(ξ + k)

∑s
i′=1

∑
j′∈Ωd

m

∣∣∣∣∑l∈Zd φ̂(ξ + l)ψ̂i′
j′/m(ξ + l)

∣∣∣∣2
∣∣∣∣∣∣∣∣∣
2

dξ

= σ2
∫
[0,1]d

∑s
i=1

∑
j∈Ωd

m

∣∣∣∣∑l′∈Zd φ̂(ξ + l′)ψ̂i
j/m(ξ + l′)

∣∣∣∣2(∑s
i′=1

∑
j′∈Ωd

m

∣∣∣∣∑l∈Zd φ̂(ξ + l)ψ̂i′
j′/m(ξ + l)

∣∣∣∣2
)2

∣∣∣∣∣∣
∑

k∈Zd

ei2πx·kφ̂(ξ + k)

∣∣∣∣∣∣
2

dξ

=
σ2

md

∫
[0,1]d

∣∣∣∑k∈Zd ei2πx·kφ̂(ξ + k)
∣∣∣2∑s

i=1
1

md

∑
j∈Ωd

m

∣∣∣∣∑l∈Zd φ̂(ξ + l)ψ̂i
j/m(ξ + l)

∣∣∣∣2 dξ
=

σ2

md
Dx(m),
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where

Dx(m) =
∫
[0,1]d

∣∣∣∑k∈Zd ei2πx·kφ̂(ξ + k)
∣∣∣2∑s

i=1
1

md

∑
j∈Ωd

m

∣∣∣∣∑l∈Zd φ̂(ξ + l)ψ̂i
j/m(ξ + l)

∣∣∣∣2 dξ.
Notice from the denominator that

∑
l∈Zd

φ̂(ξ + l)ψ̂i
j/m(ξ + l) =

∑
l∈Zd

(φ∨ ∗ ψi
j/m)(l)e−i2πl·ξ

(
by (I.1.2)

)

=
∑
l∈Zd

(φ∨ ∗ ψi)(l − j/m)e−i2πl·ξ

=
∑
l∈Zd

(φ ∗ ψi∨)(j/m− l)e−i2πl·ξ.

Then we can see that

1

md

∑
j∈Ωd

m

∣∣∣∣∣∣
∑
l∈Zd

φ̂(ξ + l)ψ̂i
j/m(ξ + l)

∣∣∣∣∣∣
2

m→∞−→
∫
[0,1]d

∣∣∣Z(φ ∗ ψi∨)(t,−ξ)
∣∣∣2 dt

for each ξ, where Z represents the Zak transform as defined in (II.1.7). In the proof

of Theorem II.2.1, we will see that this convergence is uniform on [0, 1]d.

Lemma II.2.3. For every ξ ∈ [0, 1]d,

s∑
i=1

∫
[0,1]d

∣∣∣Z(φ ∗ ψi∨)(t,−ξ)
∣∣∣2 dt ≥ δ > 0.

Therefore, using this lemma and (II.1.10), we see that for any ε > 0 there exists

a number M ∈ N such that for all m ≥M , average sampling on 1
m

Zd gives

var(fε(x)− f(x)) ≤ σ2

md

(
1 + ε

δ

)
‖φ‖2

W 1 for all x ∈ Rd.
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II.3 Proofs

II.3.1 Proof of Theorem II.1.2

We wish to compute the variance of the error as in Section II.1.1. First we must find

S−1
m Kj/m explicitly. In section II.1.1 we showed that

(̂Smf)(ξ) =
∑

j∈Ωd
m

∑
k∈Zd

f̂(ξ + k)K̂j/m(ξ + k)

 K̂j/m(ξ).

For any f =
∑

l∈Zd C(l)T Φ(· − l) in V 2(Φ), we then get

(̂Smf)(ξ) = Ĉ(ξ)T

∑
k∈Zd

Φ̂(ξ + k)Φ̂(ξ + k)
T

 ∑
j∈Ωd

m

P̂j/m(ξ)P̂j/m(ξ)T

 Φ̂(ξ)

= Ĉ(ξ)T

 ∑
j∈Ωd

m

P̂j/m(ξ)P̂j/m(ξ)T

 Φ̂(ξ) a.e. ξ

where Pj/m is defined as the vector sequence with terms Pj/m(l) = Φ(j/m− l) for l ∈

Zd, and therefore P̂j/m(ξ) =
∑

l∈Zd Φ(j/m− l)e−i2πl·ξ. Notice in the equation above

that
∑

k∈Zd Φ̂(ξ+k)Φ̂(ξ + k)
T

= I for almost every ξ, and that
∑

j∈Ωd
m
P̂j/m(ξ)P̂j/m(ξ)T

is a self-adjoint r × r matrix. Define the matrix

Am(ξ) :=
∑

j∈Ωd
m

P̂j/m(ξ)P̂j/m(ξ)T .

Remark II.3.1. It can be shown that αmI ≤ Am(ξ) for all ξ, and hence the matrix

Am(ξ) is invertible. Instead, for large m we provide a stronger result in Lemma II.3.2

below. Still, it should be noted that the following formulas (II.3.19) and (II.3.20)

make sense as long as (II.1.1) holds.
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Therefore, we have

(̂S−1
m f)(ξ) = Ĉ(ξ)T (Am(ξ))−1 Φ̂(ξ) (II.3.19)

Finally, using (II.1.2) and (II.3.19), for any fixed j ∈ Ωd
m we have

̂(S−1
m Kj/m)(ξ) = P̂j/m(ξ)T (Am(ξ))−1 Φ̂(ξ) (II.3.20)

Using (II.3.19) and the fact that translation corresponds to modulation in the Fourier

domain, it can easily be verified that S−1
m Kk+j/m = (S−1

m Kj/m)(· − k).

We are now ready to compute the expected value and the variance of the error

(fε(x)− f(x)). A simple calculation shows that

E(fε(x)− f(x)) =
∑

j∈Ωd
m

∑
k∈Zd E(εk+j/m)S−1

m Kk+j/m = 0.

Also, we have

var(fε(x)− f(x))

= var

 ∑
j∈Ωd

m

∑
k∈Zd

εk+j/mS
−1
m Kk+j/m(x)


= σ2

∑
j∈Ωd

m

∑
k∈Zd

∣∣∣S−1
m Kj/m(x− k)

∣∣∣2

= σ2
∑

j∈Ωd
m

∫
[0,1]d

∣∣∣∣∣∣e−i2πx·ξ ∑
k∈Zd

̂S−1
m Kj/m(k − ξ)ei2πk·x

∣∣∣∣∣∣
2

dξ

= σ2
∑

j∈Ωd
m

∫
[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

̂S−1
m Kj/m(k − ξ)ei2πk·x

∣∣∣∣∣∣
2

dξ

= σ2
∫
[0,1]d

∑
j∈Ωd

m

∣∣∣∣∣∣P̂j/m(−ξ)T (Am(ξ))−1

∑
k∈Zd

ei2πk·xΦ̂(k − ξ)

∣∣∣∣∣∣
2

dξ

The matrix (Am(ξ))−1 is self-adjoint because it is the inverse of a self-adjoint matrix.

Next we use the fact that aTAb = bTAa for any vectors a and b and any self-adjoint
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matrix A, and hence

∣∣∣aTAb
∣∣∣2 = aTAbaTAb = b

T
AaaTAb. (II.3.21)

If
(
aaT

)−1
= A, then we have b

T
Ab. Now we have

var(fε(x)− f(x))

= σ2
∫
[0,1]d

∑
k∈Zd

e−i2πk·xΦ̂(k − ξ)

T

(Am(ξ))−1

 ∑
k′∈Zd

ei2πk′·xΦ̂(k′ − ξ)

 dξ

=
σ2

md

∫
[0,1]d

∑
k∈Zd

e−i2πk·xΦ̂(k − ξ)

T (
1

md
Am(ξ)

)−1
 ∑

k′∈Zd

ei2πk′·xΦ̂(k′ − ξ)

 dξ

Thus we have shown that

var(fε(x)− f(x)) =
σ2

md

∫
[0,1]d

ZΦ̂(−ξ,−x)
T
(

1

md
Am(ξ)

)−1

ZΦ̂(−ξ,−x) dξ

=
σ2

md
Cx(m),

(II.3.22)

where ZΦ̂(−ξ,−x) =
∑

k∈Zd ei2πk·xΦ̂(k − ξ).

Lemma II.3.2. For every ε > 0 there is a number M ∈ N such that for every m ≥M

(1− ε)I ≤ 1

md
Am(ξ) for all ξ ∈ [0, 1]d.

Using Lemma II.3.2, we conclude that there is a number M ∈ N such that for all

m ≥M , sampling on the set 1
m

Zd gives

var(fε(x)− f(x))

≤ (1 + ε)σ2

md

∫
[0,1]d

∑
k∈Zd

e−i2πk·xΦ̂(k − ξ)

T  ∑
k′∈Zd

ei2πk′·xΦ̂(k′ − ξ)

 dξ.

=
(1 + ε)σ2

md

∫
[0,1]d

r∑
i=1

∣∣∣∣∣∣
∑

k∈Zd

ei2πk·xφ̂i(k − ξ)

∣∣∣∣∣∣
2

dξ
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In section II.1.1, we saw that

∫
[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

ei2πx·kφ̂i(k − ξ)

∣∣∣∣∣∣
2

dξ =
∑

k∈Zd

∣∣∣φi(x+ k)
∣∣∣2 ≤ ∥∥∥φi

∥∥∥2

W 1

for all x ∈ Rd. Thus when m is large enough,

var(fε(x)− f(x)) ≤ (1 + ε)σ2

md

 r∑
i=1

∑
k∈Zd

∣∣∣φi(x+ k)
∣∣∣2


≤ (1 + ε)σ2

md

(
r∑

i=1

∥∥∥φi
∥∥∥2

W 1

)
for all x ∈ Rd.

�

II.3.2 Proof of Lemma II.3.2

Notice that, for 1 ≤ n, n′ ≤ r, the (n, n′)-entry of 1
mdAm(ξ) is[

1

md
Am(ξ)

]
(n,n′)

=
1

md

∑
j∈Ωd

m

∑
l∈Zd

φn(j/m− l)ei2πl·ξ

∑
l′∈Zd

φn′(j/m− l′)e−i2πl′·ξ


=

1

md

∑
j∈Ωd

m

∑
l∈Zd

∑
l′∈Zd

φn(j/m− l)φn′
(
j/m− l − (l′ − l)

)
e−i2π(l′−l)·ξ


=

1

md

∑
j∈Ωd

m

∑
l∈Zd

∑
k∈Zd

φn(j/m− l)φn′(j/m− l − k)e−i2πk·ξ


=
∑

k∈Zd

e−i2πk·ξ 1

md

∑
j∈Ωd

m

∑
l∈Zd

φn(j/m− l)φn′(j/m− l − k)


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Taking the limit as m goes to infinity, we have

lim
m→∞

[
1

md
Am(ξ)

]
(n,n′)

=
∑

k∈Zd

e−i2πk·ξ
∫

Rd
φn(x)φn′(x− k) dx = δn,n′

Thus the diagonal entries of the matrix converge to 1 and the off-diagonal entries of

the matrix converge to 0 for each ξ.

Now we will show the collection
{[

1
mdAm(·)

]
(n,n′)

: m ∈ N
}

is equicontinuous and

conclude that convergence is uniform on the unit cube [0, 1]d. Recall that a collection

G of continuous functions on [0, 1]d is equicontinuous if for every ε > 0 there is a

δ > 0 such that for all g ∈ G, |g(ξ1)− g(ξ2)| < ε for all ξ1, ξ2 ∈ [0, 1]d satisfying

|ξ1 − ξ2| < δ.

Let 1 ≤ n, n′ ≤ r. Let ε > 0. There exists a number N ∈ N such that

∑
|l|>N

sup
x∈[0,1]d

|φn(x− l)| < ε

6 ‖φn′‖W 1

.

Then there exists a number N ′ ∈ N such that

∑
|k|>N ′

sup
x∈[0,1]d

∣∣∣φn′(x− l − k)
∣∣∣ < ε

6 ‖φn‖W 1

for all l s.t. |l| ≤ N.

Then there exists a number δ > 0 such that whenever |ξ1 − ξ2| < δ,

∣∣∣e−i2πk·ξ1 − e−i2πk·ξ2
∣∣∣ < ε

3 ‖φn‖W 1 ‖φn′‖W 1

for every k s.t. |k| ≤ N ′.

Notice∣∣∣∣[ 1
mdAm(ξ1)

]
(n,n′)

−
[

1
mdAm(ξ2)

]
(n,n′)

∣∣∣∣
=
∣∣∣ 1
md

∑
j∈Ωd

m

∑
l∈Zd φn(j/m− l)

∑
k∈Zd φn′(j/m− l − k)

(
e−i2πk·ξ1 − e−i2πk·ξ2

)∣∣∣

≤ 1

md

∑
j∈Ωd

m

 ∑
|l|≤N

|φn(j/m− l)|

 ∑
|k|≤N ′

∣∣∣φn′(j/m− l − k)
∣∣∣ ∣∣∣e−i2πk·ξ1 − e−i2πk·ξ2

∣∣∣
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+
∑

|k|>N ′

∣∣∣φn′(j/m− l − k)
∣∣∣ ∣∣∣e−i2πk·ξ1 − e−i2πk·ξ2

∣∣∣


+
∑
|l|>N

|φn(j/m− l)|
∑

k∈Zd

∣∣∣φn′(j/m− l − k)
∣∣∣ ∣∣∣e−i2πk·ξ1 − e−i2πk·ξ2

∣∣∣


< 1
md

∑
j∈Ωd

m

(
ε
3

+ ε
3

+ ε
3

)
= ε

Thus the collection
{[

1
mdAm(·)

]
(n,n′)

: m ∈ N
}

is equicontinuous, and hence for each

pair (n, n′),
[

1
mdAm(·)

]
(n,n′)

→ δn,n′ uniformly on [0, 1]d.

Therefore, for any ε > 0, there is a number M ∈ N such that for all m ≥M

∥∥∥∥ 1

md
Am(ξ)− I

∥∥∥∥ < ε for all ξ ∈ [0, 1]d.

Hence our lemma is proved.

�

II.3.3 Proof of Lemma II.1.6

Our objective is to show that
∫
[0,1]d |Zφ(t, ξ)|2 dt = 1 for every ξ ∈ [0, 1]d.

∫
[0,1]d

|Zφ(t, ξ)|2 dt =
∫
[0,1]d

∣∣∣∣∣∣
∑
l∈Zd

φ(t− l)ei2πl·ξ

∣∣∣∣∣∣
2

dt

=
∫
[0,1]d

∣∣∣∣∣∣
∑
l∈Zd

φ̂(ξ + l)ei2πt·(ξ+l)

∣∣∣∣∣∣
2

dt
(
by (I.1.3)

)

=
∫
[0,1]d

∣∣∣∣∣∣ei2πt·ξ ∑
l∈Zd

φ̂(ξ + l)ei2πt·l

∣∣∣∣∣∣
2

dt

=
∫
[0,1]d

∣∣∣∣∣∣
∑
l∈Zd

φ̂(ξ + l)ei2πt·l

∣∣∣∣∣∣
2

dt

=
∑
l∈Zd

∣∣∣φ̂(ξ + l)
∣∣∣2

= 1 a.e. ξ
(
by (I.4.7)

)
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Because Zφ is continuous,
∫
[0,1]d |Zφ(t, ξ)|2 dt is a continuous function of ξ. There-

fore
∫
[0,1]d |Zφ(t, ξ)|2 dt = 1 for every ξ ∈ [0, 1]d.

�

II.3.4 Proof of Theorem II.2.1

Once again, our objective is to compute the expected value and the variance of(
fε(x)− f(x)

)
, where in this case

f =
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

〈
f, ψi

k+j/m

〉
θ̃i

k+j/m

and

fε :=
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

yi
k+j/m θ̃i

k+j/m.

A simple calculation shows

E
(
fε(x)− f(x)

)
=

s∑
i=1

∑
j∈Ωd

m

∑
k∈Zd

E
(
εi

k+j/m

)
θ̃i

k+j/m = 0.

To compute the variance, we first need to compute θ̃i
k+j/m = S−1

m θi
k+j/m explicitly. In

section II.2.1, we showed that

(̂Smf)(ξ) =
s∑

i=1

∑
j∈Ωd

m

∑
k∈Zd

f̂(ξ + k)ψ̂i
j/m(ξ + k)

 θ̂i
j/m(ξ), (II.3.23)

and

θ̂i
j/m(ξ) =

∑
l∈Zd

ψ̂i
j/m(ξ + l)Φ̂(ξ + l)

T

Φ̂(ξ). (II.3.24)
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Define the self-adjoint matrix

[Am]ΨΦ (ξ) :=
s∑

i=1

∑
j∈Ωd

m

∑
l∈Zd

Φ̂(ξ + l)ψ̂i
j/m(ξ + l)

∑
l′∈Zd

Φ̂(ξ + l′)ψ̂i
j/m(ξ + l′)

T

For any f =
∑

l∈Zd C(l)T Φ(· − l) in V 2(Φ), we see from (II.3.23) and (II.3.24) that

(̂Smf)(ξ) = Ĉ(ξ)T
(
[Am]ΨΦ (ξ)

)
Φ̂(ξ)

Define Bi
j to be the coefficient vector sequence for the function θi

j/m, i.e., Bi
j =(

(bij)
1, . . . , (bij)

r
)T

, where (bij)
n(l) =

〈
θi

j/m, φ
n(· − l)

〉
=
〈
ψi

j/m, φ
n(· − l)

〉
. Then

̂(Smθi
j/m)(ξ) = B̂i

j(ξ)
T
(
[Am]ΨΦ (ξ)

)
Φ̂(ξ) (II.3.25)

If [Am]ΨΦ (ξ) is invertible, then

̂S−1
m θi

j/m(ξ) = B̂i
j(ξ)

T
(
[Am]ΨΦ (ξ)

)−1
Φ̂(ξ).

Using property (i) of the Fourier transform, it can easily be verified that

S−1
m θi

k+j/m = (S−1
m θi

j/m)(· − k).

Remark II.3.3. It can be shown that αmI ≤ [Am]ΨΦ (ξ) for almost every ξ, where

αm is the positive lower bound in (II.2.11). Thus, for almost every ξ, [Am]ΨΦ (ξ) is

invertible for every m ≥ 1. However, for large enough m, we will show a stronger

result below, namely that there is a positive number δ (that does not depend on m)

such that δI ≤ 1
md [Am]ΨΦ (ξ) for every ξ.

We are now ready to compute var(fε(x)− f(x)).
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var(fε(x)− f(x))

= var

 s∑
i=1

∑
j∈Ωd

m

∑
k∈Zd

εi
k+j/mS

−1
m θi

k+j/m(x)


= σ2

s∑
i=1

∑
j∈Ωd

m

∑
k∈Zd

∣∣∣S−1
m θi

j/m(x− k)
∣∣∣2

= σ2
s∑

i=1

∑
j∈Ωd

m

∫
[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

̂S−1
m θi

j/m(k − ξ)ei2πx·(k−ξ)

∣∣∣∣∣∣
2

dξ

= σ2
s∑

i=1

∑
j∈Ωd

m

∫
[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

̂S−1
m θi

j/m(k − ξ)ei2πx·k

∣∣∣∣∣∣
2

dξ

= σ2
∫
[0,1]d

s∑
i=1

∑
j∈Ωd

m

∣∣∣∣∣∣B̂i
j(−ξ)T

(
[Am]ΨΦ (−ξ)

)−1

∑
k∈Zd

Φ̂(k − ξ)ei2πk·x

∣∣∣∣∣∣
2

dξ

We notice that the matrix
(
[Am]ΨΦ (−ξ)

)−1
is self-adjoint, and use the argument

(II.3.21) from the proof of Theorem II.1.2, along with the fact that

s∑
i=1

∑
j∈Ωd

m

B̂i
j(−ξ)B̂i

j(−ξ)
T

= [Am]ΨΦ (−ξ),

to get

var
(
fε(x)− f(x)

)

= σ2
∫
[0,1]d

∑
k∈Zd

Φ̂(k − ξ)e−i2πk·x

T (
[Am]ΨΦ (−ξ)

)−1

 ∑
k′∈Zd

Φ̂(k′ − ξ)ei2πk′·x

 dξ

=
σ2

md

∫
[0,1]d

∑
k∈Zd

Φ̂(k − ξ)e−i2πk·x

T (
1

md
[Am]ΨΦ (−ξ)

)−1
 ∑

k′∈Zd

Φ̂(k′ − ξ)ei2πk′·x

 dξ

Thus we have shown that

var(fε(x)− f(x)) =
σ2

md

∫
[0,1]d

ZΦ̂(−ξ, x)
T
(

1

md
[Am]ΨΦ (−ξ)

)−1

ZΦ̂(−ξ, x) dξ

=
σ2

md
Dx(m)

(II.3.26)
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Lemma II.3.4. There exist a number δ > 0 and a number M ∈ N such that for

every m ≥M ,

δI ≤ 1

md
[Am]ΨΦ (ξ) for all ξ ∈ [0, 1]d.

We will show that

Dx(m)
m→∞−→

∫
[0,1]d

ZΦ̂(−ξ,−x)
T (
GΨ

Φ(ξ)
)−1

ZΦ̂(−ξ,−x) dξ

in the proof of Lemma II.3.4 below. Furthermore, notice that for large enough m, we

have

var
(
fε(x)− f(x)

)

≤ σ2

md

(
1

δ

) ∫
[0,1]d

∑
k∈Zd

Φ̂(k − ξ)e−i2πk·x

T  ∑
k′∈Zd

Φ̂(k′ − ξ)ei2πk′·x

 dξ

≤ σ2

md

(
1

δ

) ∫
[0,1]d

r∑
n=1

∣∣∣∣∣∣
∑

k∈Zd

φ̂n(k − ξ)ei2πk·x

∣∣∣∣∣∣
2

dξ

=
σ2

md

(
1

δ

) r∑
i=1

∑
k∈Zd

∣∣∣φi(x+ k)
∣∣∣2


≤ σ2

md

(
1

δ

)( r∑
n=1

‖φn‖2
W 1

)
for all x ∈ Rd.

�

II.3.5 Proof of Lemma II.3.4

First, for ξ ∈ [0, 1]d, define the self-adjoint matrix

GΨ
Φ(ξ) :=

s∑
i=1

∑
k∈Zd

Φ̂(ξ + k)Φ̂(ξ + k)
T ∣∣∣ψ̂i(ξ + k)

∣∣∣2 .
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We will now show that

1

md
[Am]ΨΦ (ξ)

m→∞−→ GΨ
Φ(ξ) for every ξ ∈ [0, 1]d,

i.e., for each ξ ∈ [0, 1]d, each entry of the matrix 1
md [Am]ΨΦ (ξ) converges to the corre-

sponding entry of the matrix GΨ
Φ(ξ). For 1 ≤ n, n′ ≤ r, we look at the (n, n′)-entry

of the matrix 1
md [Am]ΨΦ (ξ).(

1

md
[Am]ΨΦ (ξ)

)
(n,n′)

=
s∑

i=1

1

md

∑
j∈Ωd

m

∑
k∈Zd

φ̂n(ξ + k)ψ̂i
j/m(ξ + k)

 ∑
k′∈Zd

φ̂n′(ξ + k′)ψ̂i
j/m(ξ + k′)


=

s∑
i=1

1

md

∑
j∈Ωd

m

∑
k∈Zd

q̂n,i
ξ (k)ei2π(j/m)·k

 ∑
k′∈Zd

q̂n′,i
ξ (k′)e−i2π(j/m)·k′


m→∞−→

s∑
i=1

∫
[0,1]d

∑
k∈Zd

q̂n,i
ξ (k)ei2πx·k

 ∑
k′∈Zd

q̂n′,i
ξ (k′)e−i2πx·k′

 dx

=
s∑

i=1

〈
qn,i
ξ , qn′,i

ξ

〉
L2([0,1]d)

where, for 1 ≤ l ≤ r, ql,i
ξ is the function on [0, 1]d whose Fourier coefficients q̂l,i

ξ (k) are

given by

q̂l,i
ξ (k) = φ̂l(ξ + k)ψ̂i(ξ + k).

Invoking Plancherel, we have

s∑
i=1

〈
qn,i
ξ , qn′,i

ξ

〉
L2([0,1]d)

=
s∑

i=1

〈
q̂n,i
ξ , q̂n′,i

ξ

〉
l2(Zd)

=
s∑

i=1

∑
k∈Zd

φ̂n(ξ + k)φ̂n′(ξ + k)
∣∣∣ψ̂i(ξ + k)

∣∣∣2
=
[
GΨ

Φ(ξ)
]
(n,n′)
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Thus 1
md [Am]ΨΦ (ξ)

m→∞−→ GΨ
Φ(ξ) for each ξ ∈ [0, 1]d. Now we claim, for fixed (n, n′),

the collection
{(

1
md [Am]ΨΦ (·)

)
(n,n′)

: m ∈ N
}

is equicontinuous, which implies that(
1

md [Am]ΨΦ (·)
)

(n,n′)
converges uniformly to

[
GΨ

Φ(·)
]
(n,n′)

on [0, 1]d.

In a manner similar to that in the proof of Lemma II.3.2, it can be verified that(
1

md
[Am]ΨΦ (ξ)

)
(n,n′)

=
s∑

i=1

1

md

∑
j∈Ωd

m

∑
l∈Zd

∑
k∈Zd

(φn ∗ ψi∨)(j/m+ l)(φn′ ∗ ψi∨)(j/m+ l + k)e−i2πξ·k

Because W 1 ∗L1 ⊂ W 1, we know that
(
φn ∗ ψi∨

)
∈ W 1, and therefore, the argument

from Lemma II.3.2 can be used to show the collection is equicontinuous.

In [5] it is shown that (II.2.11) and (II.2.12) imply that there exists a positive

number δ0 such that δ0I ≤ GΨ
Φ(ξ) for all ξ. Let δ = δ0

2
. Because

(
1

md [Am]ΨΦ (·)
)

(n,n′)

converges uniformly to
[
GΨ

Φ(·)
]
(n,n′)

on [0, 1]d, there exists a number M ∈ N such that

for all m ≥M

δI ≤ 1

md
[Am]ΨΦ (ξ) for all ξ.

�

II.3.6 Proof of Lemma II.2.3

Our objective is to show that for every ξ ∈ [0, 1]d,

s∑
i=1

∫
[0,1]d

∣∣∣Z(φ ∗ ψi∨)(t,−ξ)
∣∣∣2 dt ≥ δ > 0.
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Notice that

s∑
i=1

∫
[0,1]d

∣∣∣Z(φ ∗ ψi∨)(t,−ξ)
∣∣∣2 dt =

s∑
i=1

∫
[0,1]d

∣∣∣∣∣∣
∑
l∈Zd

(φ ∗ ψi∨)(t− l)e−i2πl·ξ

∣∣∣∣∣∣
2

dt

(I.1.3)
=

s∑
i=1

∫
[0,1]d

∣∣∣∣∣∣
∑
l∈Zd

φ̂(l − ξ)ψ̂i(l − ξ)ei2πt·(l−ξ)

∣∣∣∣∣∣
2

dt

=
s∑

i=1

∫
[0,1]d

∣∣∣∣∣∣e−i2πt·ξ ∑
l∈Zd

φ̂(l − ξ)ψ̂i(l − ξ)ei2πt·l

∣∣∣∣∣∣
2

dt

=
s∑

i=1

∫
[0,1]d

∣∣∣∣∣∣
∑
l∈Zd

φ̂(l − ξ)ψ̂i(l − ξ)ei2πt·l

∣∣∣∣∣∣
2

dt

=
s∑

i=1

∑
l∈Zd

∣∣∣φ̂(l − ξ)ψ̂i(l − ξ)
∣∣∣2

=
s∑

i=1

∑
l∈Zd

∣∣∣φ̂(l − ξ)
∣∣∣2 ∣∣∣ψ̂i(l − ξ)

∣∣∣2

This is equal to the 1 × 1 matrix GΨ
Φ(ξ), and thus as stated in the proof of Lemma

II.3.4, the lemma holds.

�
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chapter iii

reconstruction from sampling sets with
unknown jitter

Here we return to the original problem of sampling and function reconstruction.

Instead of additive noise, a different kind of error is considered. In practice the

sampling locations xj are not known precisely. Real-world sampling devices give data

of the form {f(xj+δj)}j∈J , where each δj represents some unknown perturbation from

the point xj [8, 21]. We refer to this as sampling jitter, and it occurs in applications

related to digital data processing of signals [20].

The issue of jitter error gives rise to two main questions. First, if X := {xj}j∈J is

a set of sampling for V 2(φ), under what conditions is the set X + ∆ := {xj + δj}j∈J

also a set of sampling for V 2(φ)? In other words, under what conditions is (I.4.9) still

satisfied if we replace X with X + ∆? The second question arises as we attempt to

recover f . In general, each δj is unknown. Possibly our samples are affected by jitter

error without our knowledge, or, even if we know that our samples are affected by

jitter error, the precise amount of perturbation at each sampling point xj is unknown.

If we attempt to recover f under the assumption that our data are samples of f at

X, when in actuality our data are samples of f at X + ∆, is the recovered function a

good approximation of f , and how does the error relate to the sequence ∆ := {δj}j∈J?

In this chapter, we provide answers to both these questions. First, we address these

questions more precisely.
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III.1 Notation and preliminaries

We begin with our underlying function space V 2(φ). In this chapter, we assume the

space has only one generator, φ. However, we relax the assumptions on φ by requiring

only that φ and its shifts form a Riesz basis for the space V 2(φ), and not necessarily

an orthonormal basis.

Let φ : R → R be a function in L2(R), and suppose there exist constants m and

M such that

0 < m ≤
∑
k∈Z

|φ̂(ξ + k)|2 ≤M <∞ a.e. ξ. (III.1.1)

Define the shift-invariant space

V 2(φ) :=

∑
k∈Z

ckφ(· − k) : c ∈ l2(Z)

 .
Then V 2(φ) is a Hilbert space, V 2(φ) is a subspace of L2(R), and

{φ(· − k)}k∈Z forms a Riesz basis for V 2(φ) [1, 3]. Also assume φ ∈ W 1
0 := W 1 ∩ C0,

where C0 is the set of continuous functions, and

W 1 =

f :
∑
k∈Z

ess sup
x∈[0,1]

{|f(x+ k)|} <∞

 .
Under this assumption, V 2(φ) is a space of continuous functions [3].

In this chapter, we also consider a more general set of sampling X. In Chapter II,

we required that X be uniform. In this chapter, we allow the countable set X to be

non-uniform, and only require that X satisfy (I.4.9). Our final theorem also requires

X to be a separated subset of R.
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III.2 Results

Because (III.1.1) holds, every f in V 2(φ) corresponds to a sequence c in l2(Z) so that

f =
∑

k∈Z ckφ(· − k). In order to see how c (and hence f) can be recovered from

samples, we will look at sampling operators. We define the sampling operator U on

l2(Z) that corresponds to the set X [14]. Let U be the linear operator on l2(Z) so

that Uc = f |X = (f(xj))j∈J . We can think of U as an infinite matrix whose j, k entry,

(U)j,k, is φ(xj − k), where j ∈ J and k ∈ Z. Notice then that X is a set of sampling

for V 2(φ) if and only if there exist positive constants α and β such that

α ‖c‖l2(Z) ≤ ‖Uc‖l2(J) ≤ β ‖c‖l2(Z) for all c ∈ l2(Z). (III.2.2)

We can also define the sampling operator on l2(Z) that corresponds to the set

X+∆. Let U∆ be the linear operator on l2(Z) so that U∆c = f |X+∆ = (f(xj + δj))j∈J .

We can think of U∆ as the infinite matrix whose j, k entry, (U∆)j,k, is φ(xj + δj − k),

where j ∈ J and k ∈ Z.

We now return to the first of our original questions. If X is a set of sampling for

V 2(φ), under what conditions is the perturbed set X + ∆ also a set of sampling for

V 2(φ)? We begin with the following lemma

Lemma III.2.1. Let X be a set of sampling for V 2(φ), and let α and β be the positive

constants satisfying (III.2.2). If ‖U − U∆‖ < α, then X + ∆ is a set of sampling for

V 2(φ).

Proof: Let c ∈ l2(Z). First, we show the upper bound.

‖U∆c‖l2(J) ≤ ‖(U∆ − U)c‖l2(J) + ‖Uc‖l2(J)

< (α+ β) ‖c‖l2(Z)
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To show the lower bound, we begin with the lower bound of (III.2.2).

α ‖c‖l2(Z) ≤ ‖Uc‖l2(J) ≤ ‖U − U∆‖ ‖c‖l2(Z) + ‖U∆c‖l2(J)

Thus

(α− ‖U − U∆‖) ‖c‖l2(Z) ≤ ‖U∆c‖l2(J) ,

and α− ‖U − U∆‖ > 0 if ‖U − U∆‖ < α.

Therefore

(α− ‖U − U∆‖) ‖c‖l2(Z) ≤ ‖U∆c‖l2(J) ≤ (α+ β) ‖c‖l2(Z) ,

and hence X + ∆ is a set of sampling for V 2(φ) if ‖U − U∆‖ < α.

�

Remark III.2.2. From the definitions of U and U∆ it is clear that ‖U − U∆‖ depends

on both the sequence ∆ and the function φ. The final theorem of the chapter provides

conditions on φ under which ‖U − U∆‖ → 0 as ‖∆‖∞ → 0. Thus, under certain

conditions on φ, for any α > 0 (i.e., for any set of sampling X), there exists a positive

number γ0 > 0 such that X + ∆ is a set of sampling whenever ‖∆‖∞ ≤ γ0.

Now, let b := Uc = f |X represent the samples of f at X, and let b∆ := U∆c =

f |X+∆ represent the samples of f at X + ∆. Notice that

c= (U∗U)−1 U∗b and (III.2.3)

c= (U∗
∆U∆)−1 U∗

∆b∆ (III.2.4)

provided that the inverses exist. If X is a set of sampling for V 2(φ), then the operator

(U∗U)−1 exists and is bounded, and c can be recovered as in (III.2.3).
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We return to the second of our original questions. Suppose we have b∆ as our

data, but we think we have b. If we reconstruct the function f using (U∗U)−1 U∗,

do we have a good approximation of our original function? Certainly this too would

require the set X + ∆ to be only a small perturbation of the set X. Our goal is to

determine under what conditions we have

∥∥∥(U∗U)−1 U∗ − (U∗
∆U∆)−1 U∗

∆

∥∥∥→ 0 as ‖∆‖∞ → 0 (III.2.5)

and to give estimates for
∥∥∥(U∗U)−1 U∗ − (U∗

∆U∆)−1 U∗
∆

∥∥∥, where the norm is the oper-

ator norm.

Throughout the rest of this chapter, assume X is a set of sampling for V 2(φ), and

let α and β be the positive constants that satisfy (III.2.2).

Theorem III.2.3. Let 0 < ε < −β +
√
β2 + α2, where α and β are the posi-

tive constants satisfying (III.2.2). Assume there exists a number γ0 > 0 such that

‖U − U∆‖ < ε whenever ‖∆‖∞ ≤ γ0, and define η := α−2ε(2β + ε). Then η < 1, and

∥∥∥(U∗U)−1 U∗ − (U∗
∆U∆)−1 U∗

∆

∥∥∥ < 1

α2
·
(
ε+

η(β + ε)

1− η

)

whenever ‖∆‖∞ ≤ γ0.

From the theorem, we see that (III.2.5) is satisfied as long as ‖U − U∆‖ → 0 as

‖∆‖∞ → 0. In other words, the reconstruction of f given data sampled with jitter

error is a good approximation of the original f ∈ V 2(φ). To prove the theorem, we

need the next two lemmas.

Lemma III.2.4. Let ε > 0. Assume there exists a number γ0 > 0 such that

‖U − U∆‖ < ε whenever ‖∆‖∞ ≤ γ0. Then ‖U∗U − U∗
∆U∆‖ < ε(2β + ε) whenever

‖∆‖∞ ≤ γ0.
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Proof: Notice ‖U‖ = ‖U∗‖ and ‖U∗ − U∗
∆‖ = ‖U − U∆‖. Let ε > 0. Assume ‖∆‖∞ ≤

γ0. Then

‖U∗U − U∗
∆U∆‖ = ‖U∗(U − U∆) + (U∗ − U∗

∆)U∆‖

≤ ‖U − U∆‖ (‖U‖+ ‖U∆‖)

< ε · (2β + ε)

�

Lemma III.2.5. Let 0 < ε < −β+
√
β2 + α2, where α and β are the positive constants

satisfying (III.2.2). Assume there exists a number γ0 > 0 such that ‖U − U∆‖ < ε

whenever ‖∆‖∞ ≤ γ0, and define η := α−2ε(2β + ε). Then η < 1, (U∗
∆U∆)−1 exists,

and ∥∥∥(U∗U)−1 − (U∗
∆U∆)−1

∥∥∥ < η

α2(1− η)

whenever ‖∆‖∞ ≤ γ0.

Proof: Recall that (U∗U)−1 exists because X is a set of sampling for V 2(φ). Then

U∗
∆U∆ = U∗U

(
I + (U∗U)−1 (U∗

∆U∆ − U∗U)
)
. (III.2.6)

Notice

1

β2
‖c‖ ≤

∥∥∥(U∗U)−1 c
∥∥∥ ≤ 1

α2
‖c‖ for all c ∈ l2(Z).

Let ‖∆‖∞ ≤ γ0. Then using Lemma III.2.4,
∥∥∥(U∗U)−1 (U∗

∆U∆ − U∗U)
∥∥∥ < 1. For the

sake of simplicity, define

A := U∗U, A∆ := U∗
∆U∆, and T := (U∗U)−1 (U∗

∆U∆ − U∗U).

Then (I + T )−1 exists, since ‖T‖ < 1, and is given by the Neuman series

(I + T )−1 = I − T + T 2 − T 3 + . . . . (III.2.7)
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From (III.2.6) we get

A−1
∆ = [A (I + T )]−1

= (I + T )−1A−1

(III.2.8)

Hence, A−1
∆ = (U∗

∆U∆)−1 exists whenever ‖∆‖∞ ≤ γ0.

Now we need to give the upper bound for
∥∥∥A−1 − A−1

∆

∥∥∥. Assume ‖∆‖∞ ≤ γ0.

Using (III.2.8) we get

A−1 − A−1
∆ = T (I + T )−1A−1. (III.2.9)

Then ∥∥∥A−1 − A−1
∆

∥∥∥ ≤ ‖T‖
∥∥∥(I + T )−1

∥∥∥ ∥∥∥A−1
∥∥∥

≤ ‖T‖
1− ‖T‖

· 1

α2

<
η

α2(1− η)

�

III.2.1 Proof of Theorem III.2.3

Let ‖∆‖∞ ≤ γ0. Using our notation from Lemmas III.2.4 and III.2.5 and the previous

proof,

∥∥∥(U∗U)−1 U∗ − (U∗
∆U∆)−1 U∗

∆

∥∥∥ =
∥∥∥A−1U∗ − A−1U∗

∆ + A−1U∗
∆ − A−1

∆ U∗
∆

∥∥∥
=
∥∥∥A−1(U∗ − U∗

∆) + (A−1 − A−1
∆ )U∗

∆

∥∥∥
≤
∥∥∥A−1

∥∥∥ ‖U∗ − U∗
∆‖+

∥∥∥A−1 − A−1
∆

∥∥∥ ‖U∗
∆‖

<
1

α2

(
ε+

η(β + ε)

1− η

)
,

where η is as defined in Theorem III.2.3.

�
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III.2.2 Concluding Results

In Remark III.2.2 it was mentioned that ‖U − U∆‖ will depend on φ, so we then ask

for what functions φ do we have ‖U − U∆‖ → 0 as ‖∆‖∞ → 0?

Theorem III.2.6. Let φ ∈ W 1
0 . Suppose X is a set of sampling for V 2(φ), with φ

satisfying (III.1.1), and suppose X is separated, with infxi 6=xj
|xi − xj| = λ > 0. Then

‖U − U∆‖ → 0 as ‖∆‖∞ → 0.

We now have answers, stated below in the corollary, to the two main questions

discussed in the introduction to jitter error. Define the reconstruction operator R :

l2(J) → V 2(φ) so that

R : d 7→
∑
k∈Z

[
(U∗U)−1 U∗d

]
k
φ(· − k).

Corollary III.2.7. Let φ ∈ W 1
0 . Suppose X is a set of sampling for V 2(φ), with φ

satisfying (III.1.1), and suppose X is separated, with infxi 6=xj
|xi − xj| = λ > 0. Then

(i) there exists a γ0 > 0 such that X+∆ is a set of sampling whenever ‖∆‖∞ ≤ γ0,

and

(ii) ‖Rf |X+∆ − f‖L2 → 0 as ‖∆‖∞ → 0.

III.2.3 Proof of Theorem III.2.6

First, for any number γ > 0, define the function oscγφ on R by

oscγφ(x) = sup
|∆x|<γ

|φ(x+ ∆x)− φ(x)| .
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The W 1-norm of a function f is given by

‖f‖W 1 =
∑
k∈Z

ess sup
x∈[0,1]

{|f(x+ k)|},

and from [3] we know that ‖ oscγφ ‖W 1 → 0 as γ → 0.

Define N := d1/λe + 1. Then for any l ∈ Z, there are at most N elements of X

in the interval Il := [l, l + 1). Define the sequence p indexed by the integers so that

p(l) := ess sup
x∈[0,1]

{∣∣∣osc‖∆‖∞φ(x+ l)
∣∣∣} , l ∈ Z.

Then ‖p‖l1(Z) = ‖ oscγφ ‖W 1 . Now we will use the facts above to show that ‖U − U∆‖ →

0 as ‖∆‖∞ → 0. Let c ∈ l2(Z), and define Xl := X ∩ Il.

‖(U − U∆)c‖2
l2(J) =

∑
xj∈X

∣∣∣∣∣∣
∑
k∈Z

ck (φ(xj − k)− φ(xj + δj − k))

∣∣∣∣∣∣
2

≤
∑

xj∈X

∣∣∣∣∣∣
∑
k∈Z

|ck|
∣∣∣osc‖∆‖∞φ(xj − k)

∣∣∣
∣∣∣∣∣∣
2

=
∑
l∈Z

∑
xj∈Xl

∣∣∣∣∣∣
∑
k∈Z

|ck|
∣∣∣osc‖∆‖∞φ(xj − k)

∣∣∣
∣∣∣∣∣∣
2

≤
∑
l∈Z

∑
xj∈Xl

∣∣∣∣∣∣
∑
k∈Z

|ck| |p(l − k)|

∣∣∣∣∣∣
2

≤ N
∑
l∈Z

∣∣∣∣∣∣
∑
k∈Z

|ck| |p(l − k)|

∣∣∣∣∣∣
2

= N ‖(|c| ∗ p)‖l2(Z)

≤ N ‖c‖l2(Z) ‖p‖l1(Z)

= N ‖c‖l2(Z)

∥∥∥osc‖∆‖∞φ
∥∥∥

W 1
.

Therefore ‖U − U∆‖ ≤ N
∥∥∥osc‖∆‖∞φ

∥∥∥
W 1

→ 0 as ‖∆‖∞ → 0.

�
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chapter iv

constructing shift-invariant reproducing
kernel hilbert spaces

In [25], Smale and Zhou construct reproducing kernel Hilbert spaces to serve as

the underlying signal space for sampling and reconstruction. They show how their

construction of an RKHS generalizes the setting of bandlimited functions in the classic

Shannon theorem. In this chapter, we show in fact that the construction in [25] can

be used to form the shift-invariant space V 2(φ). In [25], several hypotheses must be

satisfied in order for the theorems to hold. The results of this chapter give conditions

under which these hypotheses are satisfied. In other words, we remove the necessary

assumptions from [25] and give conditions under which they are true. We begin with

the construction of the reproducing kernel Hilbert spaces as illustrated in [25]. Then

we state our theorems and prove them.

IV.1 Construction of Reproducing Kernel Hilbert Spaces

Let K : Rd×Rd → R be a continuous, symmetric, positive semidefinite map. (We call

a symmetric map G : Rd×Rd → R positive semidefinite if for any finite set of distinct

points {x1, . . . , xm} ⊂ Rd, the matrix M =
(
G(xi, xj)

)m

i,j=1
is positive semidefinite,

i.e. aTMa ≥ 0 for all column vectors a ∈ Rm.) For x ∈ Rd, we define Kx : Rd → R

to be the continuous function on Rd given by Kx = K(x, ·).

Next we define a Hilbert space which will act as our representation space. Consider

the linear space of finite linear combinations of Kx, x ∈ Rd, denoted span{Kx : x ∈
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Rd}. An inner product on this space is defined by linear extension from

〈Kx, Ky〉K = K(x, y).

The RKHS HK associated to K is the completion of the linear space in the norm

induced by the inner product, i.e. HK = span{Kx : x ∈ Rd}K
. Now consider the

closed subspace HK,Zd of HK generated by {Kt : t ∈ Zd}. The space HK,Zd =

span{Kt : t ∈ Zd}K
will serve as our representation space.

Example IV.1.1. Let d = 1. Define φ : R → R to be the sinc function, i.e.

φ(x) = sinc(x) = sin πx
πx

. It is well known that {φ(· − k) : k ∈ Zd} is an orthonormal

basis for V 2(φ) ⊂ L2(R). Then we define, for x, y ∈ R,

K(x, y) =
∑
j∈Z

φ(x− j)φ(y − j),

and notice that since sinc(k) = δ0,k for all integers k, we have, for t ∈ Z,

Kt =
∑
j∈Z

φ(t− j)φ(· − j)

= φ(· − t)

In this case, our set of generators {Kt : t ∈ Z} for HK,Zd is the same set as our

orthonormal basis {φ(· − k) : k ∈ Z} for V 2(φ).
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We also show in this case that the inner product 〈·, ·〉K on HK,Zd is equal to the

standard L2 inner product which V 2(φ) inherits. For s, t ∈ Zd, we have

〈Ks, Kt〉L2 =
〈
K̂s, K̂t

〉
L2

=
∫

R
K̂s(x)K̂t(x) dx

=
∫

R
χ[− 1

2
, 1
2
]e
−i2πsxχ[− 1

2
, 1
2
]e

i2πtx dx

=
∫

R
χ[− 1

2
, 1
2
]e
−i2π(s−t)x dx

= χ̂[− 1
2
, 1
2
](s− t)

= φ(s− t) = K(s, t) = 〈Ks, Kt〉K .

Therefore we have HK,Zd = V 2(φ). Recall also, for this particular φ, that V 2(φ) is

the representation space {f ∈ L2(R) : supp f̂ ⊂ [−1
2
, 1

2
]} from the classical Shannon

Theorem due to Whittaker.

The above example was provided to show that there is overlap between the repro-

ducing kernel Hilbert spaces in [25] and the setting of shift-invariant spaces. While

the construction in [25] is more general, we will see more practical results in the

specific setting of a shift-invariant space.

We next use the kernel K to define a linear operator KZd on l2(Zd) as follows:

(
KZd a

)
s
=
∑
t∈Zd

K(s, t)at, s ∈ Zd, a ∈ l2(Zd).

Notice for a ∈ l2(Zd) that [KZd a] is also a sequence indexed by Zd. For now, as in

[25], we assume that KZd is well-defined, bounded and positive with positive inverse.

In section IV.2 we give conditions on K under which KZd satisfies this assumption.

Notice, if Zd is our sampling set as in our classic Shannon example, i.e. our data

are indexed by Zd, then KZd takes the place of our sampling operator SX (where

X = Zd in this case). Recall SX maps a function in our representation Hilbert space
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to its sampled values, a sequence indexed by X. If f ∈ HK,Zd can be expressed as

f =
∑

t∈Zd atKt, then for s ∈ Zd,

f(s) =
∑
t∈Zd

atKt(s) =
∑
t∈Zd

atK(s, t) =
(
KZd a

)
s
.

We have SXf = KZd a for f =
∑

t∈Zd atKt.

Often we cannot assume that Zd is our sampling set. We call our sampling set

X, and we assume X = {xj ∈ Rd : j ∈ J}, where J is a countable index set. We

now define the operator KX on l2(Zd) whose image is a sequence indexed by X. For

a ∈ l2(Zd) and xj ∈ X, define

(
KXa

)
xj

=
∑
t∈Zd

K(xj, t)at.

In this section (as in [25]) we assume that KX is bounded. In section IV.2 we give

conditions on K and X under which KX satisfies this assumption.

Once again, this time for a general sampling set X, KX takes the place of our

sampling operator SX . If f ∈ HK,Zd can be expressed as f =
∑

t∈Zd atKt, then for

xj ∈ X,

f(xj) =
∑
t∈Zd

atKt(xj) =
∑
t∈Zd

atK(xj, t) =
(
KXa

)
xj

.

We have SXf = KXa for f =
∑

t∈Zd atKt.

We denote by K∗
X the adjoint of KX . How does the adjoint K∗

X act on a sequence

in l2(X)? Let c ∈ l2(X). Then for all a ∈ l2(Zd), we have

〈a,K∗
Xc〉l2(Zd) = 〈KXa, c〉l2(X) =

∑
xj∈X

∑
t∈Zd

atK(t, xj)

 cxj

=
∑
t∈Zd

at

∑
xj∈X

cxj
K(xj, t) =

〈
a,
( ∑

xj∈X

cxj
Kxj

(t)
)

t

〉
l2(Zd)

.

Thus for t ∈ Zd,
(
K∗

Xc
)

t
=
∑

xj∈X cxj
Kxj

(t).
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IV.2 Results

Recall that in order to define HK and HK,Zd , we require that K : Rd × Rd → Rd is

continuous, symmetric, and positive semidefinite. Our first theorem constructs such

a K.

Theorem IV.2.1. Let φ be a continuous, real-valued function on Rd which satisfies

(i) φ ∈ W 1(Rd) =

f : Rd → R
∣∣∣∣ ∑

k∈Zd

ess sup
x∈[0,1]d

{|f(x+ k)|} <∞

 and

(ii)
∑
j∈Zd

|φ̂(ξ + j)|2 = 1 for almost every ξ ∈ Rd.

For x, y ∈ Rd, define K(x, y) =
∑
j∈Zd

φ(x − j)φ(y − j). Then K : Rd × Rd → Rd is

well-defined, continuous, symmetric, and positive semidefinite, and HK ⊂ V 2(φ) ⊂

L2(Rd).

Proof: We begin by showing that K, defined as above, is in fact a well-defined,

continuous, symmetric and positive semidefinite map. K is clearly symmetric. Notice

that for any fixed x, y ∈ Rd,

K(x, y) =
∑
j∈Zd

φ(x− j)φ(y − j) =
〈(
φ(x− j)

)
j
,
(
φ(y − j)

)
j

〉
l2(Zd)

is convergent because condition (i) and the fact that l1 ⊂ l2 imply that {φ(x −

j)}j∈Zd ∈ l2(Zd) for all x ∈ Rd.

Claim: K : Rd × Rd → R is continuous. First, define the function oscγφ on Rd by

oscγφ(x) = sup
|∆x|<δ

|φ(x+ ∆x)− φ(x)| .

Define the W 1 norm of a function f by

‖f‖W 1 =
∑

k∈Zd

ess sup
x∈[0,1]d

{|f(x+ k)|}.
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Claim: ‖ oscγφ ‖W 1 → 0 as δ → 0.

Let ε > 0. Because φ ∈ W 1, there exists a number N ∈ N such that

∑
|k|>N−1

ess sup
x∈[0,1]d

{|φ(x+ k)|} < ε

4 · 3d
.

Because φ is continuous on Rd, φ is uniformly continuous on compact sets. Therefore

there exists δ > 0 such that if |∆x| < δ then

|φ(x+ ∆x)− φ(x)| < ε

2(2N + 1)d
for all x ∈ [−N,N ]d. (IV.2.1)

Then

‖ oscγφ ‖W 1 =
∑
k≤N

ess sup
x∈[0,1]d

{
sup
|∆x|<δ

{|φ(x+ k + ∆x)− φ(x+ k)|}
}

+
∑
k>N

ess sup
x∈[0,1]d

{
sup
|∆x|<δ

{|φ(x+ k + ∆x)− φ(x+ k)|}
}
,

and by (IV.2.1) the left-hand summand is less than ε
2
. We now deal with the right-

hand summand. Without loss of generality, δ < 1. For any fixed k,

ess sup
x∈[0,1]d

{
sup
|∆x|<δ

{|φ(x+ k + ∆x)− φ(x+ k)|}
}
≤ 2 · ess sup

x∈[−1,2]d
{|φ(x+ k)|}.

Notice that [−1, 2]d consists of 3d unit intervals. Therefore we have

∑
k>N

ess sup
x∈[0,1]d

{
sup
|∆x|<δ

{|φ(x+ k + ∆x)− φ(x+ k)|}
}

≤ 2 · 3d
∑

k>N−1

ess sup
x∈[0,1]d

{|φ(x+ k)|}

<
ε

2
.

Thus ‖ oscγφ ‖W 1 → 0 as δ → 0.
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We now define the W 2 norm by

‖f‖2
W 2 =

∑
k∈Zd

ess sup
x∈[0,1]d

{|f(x+ k)|2}

for all functions f on Rd such that ‖f‖W 2 <∞.We remark that l1 ⊂ l2 andW 1 ⊂ W 2.

Notice that if ‖ oscγφ ‖W 1 → 0 as δ → 0, then ‖ oscγφ ‖W 2 → 0 as δ → 0. We are

ready to show that K is continuous.

Let (x, y) ∈ Rd × Rd and let {(xn, yn)}n∈N ⊂ Rd × Rd be a sequence such that

(xn, yn) converges to (x, y) (hence xn → x and yn → y in Rd). For convenience we

denote φ(· − j) by φj. For n ∈ N, we have

|K(xn, yn)−K(x, y)| =

∣∣∣∣∣∣
∑
j∈Zd

φj(xn)φj(yn)−
∑
j∈Zd

φj(x)φj(y)

∣∣∣∣∣∣ ,
and because each sum is convergent, we have

|K(xn, yn)−K(x, y)| =

∣∣∣∣∣∣
∑
j∈Zd

φj(xn)φj(yn)− φj(x)φj(y)

∣∣∣∣∣∣ .
Fix δ ∈ (0, 1). Let M ∈ N be such that |x− xn| < δ and |y − yn| < δ for all n ≥ M .

We then have, for n ≥M,
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|K(xn, yn)−K(x, y)|

≤
∑
j∈Zd

|φj(xn)φj(yn)− φj(x)φj(y)|

=
∑
j∈Zd

|φj(xn)φj(yn)− φj(xn)φj(y) + φj(xn)φj(y)− φj(x)φj(y)|

=
∑
j∈Zd

∣∣∣φj(xn)
(
φj(yn)− φj(y)

)
+ φj(y)

(
φj(xn)− φj(x)

)∣∣∣
≤
∑
j∈Zd

|φj(xn)| |φj(yn)− φj(y)|+ |φj(y)| |φj(xn)− φj(x)|

=
∑
j∈Zd

|φ(xn − j)| |φ(yn − j)− φ(y − j)|+ |φ(y − j)| |φ(xn − j)− φ(x− j)|

≤
∑
j∈Zd

|φ(xn − j)| |oscγφ(y − j)|+ |φ(y − j)| |oscγφ(x− j)|

=
∑
j∈Zd

|φ(xn − j)| |oscγφ(y − j)|+
∑
j∈Zd

|φ(y − j)| |oscγφ(x− j)|

=
〈(
|φ(xn − j)|

)
j
,
(
|oscγφ(y − j)|

)
j

〉
l2

+
〈(
|φ(y − j)|

)
j
,
(
|oscγφ(x− j)|

)
j

〉
l2

≤ ‖
(
φ(xn − j)

)
j
‖l2 · ‖

(
oscγφ(y − j)

)
j
‖l2 + ‖

(
φ(y − j)

)
j
‖l2 · ‖

(
oscγφ(x− j)

)
j
‖l2

≤ 2‖φ‖W 2 · ‖ oscγφ ‖W 2 → 0 as δ → 0.

Therefore K is continuous and hence K(x, y) makes sense for all pairs (x, y) ∈

Rd × Rd. Our next goal is to show that K is positive semidefinite. First, notice that

for any fixed x ∈ Rd, Kx =
∑

j∈Zd φ(x − j)φ(· − j) is a function in V 2(φ) because

condition (i) and the fact that l1 ⊂ l2 imply that {φ(x − j)}j∈Zd ∈ l2(Zd) for all

x ∈ Rd. Condition (ii) implies that V 2(φ) is a Hilbert space which is a subspace of

L2(Rd), and that {φj}j∈Zd is an orthonormal basis for V 2(φ). We remark that V 2(φ)

inherits the standard L2 inner product. Then it makes sense to consider 〈Kx, Ky〉L2

for fixed x, y ∈ Rd.
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Let x, y ∈ Rd. Then

〈Kx, Ky〉L2 =

〈∑
j∈Zd

φj(x)φj,
∑

k∈Zd

φk(y)φk

〉
L2

=
∑
j∈Zd

∑
k∈Zd

φj(x)φk(y) 〈φj, φk〉L2

=
∑
j∈Zd

φj(x)φj(y)

= K(x, y).

(IV.2.2)

Now that we have K(x, y) = 〈Kx, Ky〉L2 for all x, y ∈ Rd, we can show that K

is positive semidefinite. Let {x1, x2, . . . , xm} ⊂ Rd such that xi 6= xl for i 6= l. Let

a = (a1, a2, . . . , am) be a nonzero vector in Rm. Define M to be the m ×m matrix

whose i, l−entry is K(xi, xl). We need to show that aTMa > 0.

aTMa =
m∑

i=1

m∑
l=1

aialK(xi, xl)

=
m∑

i=1

m∑
l=1

aial 〈Kxi
, Kxl

〉L2

=

〈
m∑

i=1

aiKxi
,

m∑
l=1

alKxl

〉
L2

=
∥∥∥∥ m∑

i=1

aiKxi

∥∥∥∥2

L2
≥ 0.

Therefore K is positive semidefinite. Now that we know K is continuous, sym-

metric, and positive semidefinite, we can define HK as before. Consider the inner

product 〈·, ·〉K on HK . Fix x, y ∈ Rd. Then we have

〈Kx, Ky〉K = K(x, y)
(IV.2.2)

= 〈Kx, Ky〉L2 .

Notice now that HK is clearly a subspace of V 2(φ) because each of its generators

Kx ∈ V 2(φ) and 〈·, ·〉K = 〈·, ·〉L2 .

�
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Our next goal is to give conditions under which HK,Zd = V 2(φ). First, we need

the following lemma.

Lemma IV.2.2. If {φ(· − k) : k ∈ Zd} is an orthonormal basis for a Hilbert space V

of functions on Rd, and ψ is defined on Rd by

ψ(x) :=
∑
j∈Zd

p(j)φ(x− j),

then {ψ(· − k) : k ∈ Zd} is a Riesz basis for V if there exist constants m and M such

that

0 < m ≤ |p̂(ξ)|2 ≤M <∞ a.e. ξ.

Proof: Recall that a system is a Riesz basis of a Hilbert space V if it is the image of an

orthonormal basis of V under a bounded, invertible operator. Let {φ(·− k) : k ∈ Zd}

be an orthonormal basis for a Hilbert space V . For convenience we denote φ(· − k)

by φk. We define the operator T on the generators of the space V by

Tφk =
∑

j∈Zd p(j)φk(· − j) =
∑

j∈Zd p(j)φ(· − k − j) and extend T linearly to

span{φ(· − k) : k ∈ Zd} (finite linear combinations of the generators). Notice that

Tφ = Tφ0 =
∑

j∈Zd p(j)φ(· − j). Furthermore, notice that {ψ(· − k) : k ∈ Zd}, where

ψ(x) :=
∑

j∈Zd p(j)φ(x− j), is the image of the orthonormal basis {φ(· − k) : k ∈ Zd}

under the operator T , i.e., Tφk = ψk.

We must now show that T is bounded and invertible if there exist constants m

and M such that

0 < m ≤ |p̂(ξ)|2 ≤M <∞ a.e. ξ. (IV.2.3)
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Let f ∈ V . Then there exists a sequence c ∈ l2(Zd) such that f =
∑

j∈Zd cjφj, and

‖f‖V = ‖c‖l2(Zd). Then

‖Tf‖2
V =

∥∥∥∥∥∥
∑
j∈Zd

cjTφj

∥∥∥∥∥∥
2

V

=

∥∥∥∥∥∥
∑
j∈Zd

cj
∑

k∈Zd

p(k)φ(· − j − k)

∥∥∥∥∥∥
2

V

=

∥∥∥∥∥∥
∑
j∈Zd

cj
∑

m∈Zd

p(m− j)φ(· −m)

∥∥∥∥∥∥
2

V

=

∥∥∥∥∥∥
∑

m∈Zd

∑
j∈Zd

cjp(m− j)φ(· −m)

∥∥∥∥∥∥
2

V

=

∥∥∥∥∥∥
∑

j∈Zd

cjp(m− j)


m∈Zd

∥∥∥∥∥∥
2

l2

For each sequence a ∈ l2(Zd), there corresponds a function â in L2([0, 1]d) defined

by â(ξ) =
∑

k∈Zd a(k)e−i2πk·ξ, and ‖a‖l2(Zd) = ‖â‖L2([0,1]d . Therefore

‖Tf‖2
V =

∫
[0,1]d

∣∣∣∣∣∣
∑

m∈Zd

∑
j∈Zd

cjp(m− j)e−i2πm·ξ

∣∣∣∣∣∣
2

dξ

=
∫
[0,1]d

∣∣∣∣∣∣
∑
j∈Zd

cje
−i2πj·ξ ∑

m∈Zd

p(m− j)e−i2π(m−j)·ξ

∣∣∣∣∣∣
2

dξ

=
∫
[0,1]d

∣∣∣∣∣∣
∑
j∈Zd

cje
−i2πj·ξ

∣∣∣∣∣∣
2

|p̂(ξ)|2 dξ

Then we have

m
∫
[0,1]d

∣∣∣∣∣∣
∑
j∈Zd

cje
−i2πj·ξ

∣∣∣∣∣∣
2

dξ ≤ ‖Tf‖2
V ≤M

∫
[0,1]d

∣∣∣∣∣∣
∑
j∈Zd

cje
−i2πj·ξ

∣∣∣∣∣∣
2

dξ

and therefore

m‖c‖2
l2 ≤ ‖Tf‖2

V ≤M‖c‖2
l2
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if there exist constants m and M such that

0 < m ≤ |p̂(ξ)|2 ≤M <∞ a.e. ξ.

Because ‖c‖l2 = ‖f‖V , we have

m‖f‖2
V ≤ ‖Tf‖2

V ≤M‖f‖2
V for all f ∈ V

if (IV.2.3) holds. Hence T is bounded and invertible if (IV.2.3) holds.

�

Theorem IV.2.3. Let K(x, y) =
∑
j∈Zd

φ(x−j)φ(y−j), where φ satisfies the conditions

in Theorem IV.2.1. For k ∈ Zd, define p(k) := φ(−k). If there is no ξ ∈ [0, 1] such

that p̂(ξ) = 0 then HK,Zd = V 2(φ).

Proof: Assume the hypotheses above, and assume there is no ξ ∈ [0, 1] such that

p̂(ξ) = 0. Claim: There exist constants m and M such that

0 < m ≤ |p̂(ξ)|2 ≤M <∞ for all ξ ∈ [0, 1]. (IV.2.4)

First, φ ∈ W 1 implies that p ∈ l1(Zd). Then we know that p̂ is continuous and

p̂ ∈ L∞[0, 1]. Hence there exists M such that |p̂(ξ)|2 ≤ M < ∞ for all ξ ∈ [0, 1].

Furthermore, because p̂, and therefore |p̂|, is continuous on a compact set, it must

attain its minimum value, and since there is no ξ ∈ [0, 1] such that |p̂(ξ)| = 0, its

minimum value must be m > 0. Thus we have our claim.
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Next, notice that, for t ∈ Zd, Kt = K0(· − t):

Let t ∈ Zd, x ∈ Rd.

Kt(x) =
∑
j∈Zd

φ(t− j)φ(x− j)

=
∑
j∈Zd

φ(0− (j − t))φ(x− t− (j − t))

=
∑

k∈Zd

φ(−k)φ(x− t− k)

= K0(x− t).

So we have K0 : Rd → R defined by

K0(x) =
∑
j∈Zd

φ(−j)φ(x− j).

For j ∈ Zd, define p(j) = φ(−j). Then

K0(x) =
∑
j∈Zd

p(j)φ(x− j).

Because (IV.2.4) holds, Lemma IV.2.2 tells us that {K0(· − t) : t ∈ Zd} = {Kt :

t ∈ Zd} forms a Riesz basis for V 2(φ). Since we know from Theorem IV.2.1 that

HK,Zd ⊂ V 2(φ), and we now know that the generators of HK,Zd form a Riesz basis for

V 2(φ), we conclude that HK,Zd = V 2(φ).

�

In [25], several assumptions were made in order to obtain the results of the theo-

rems. Specifically, boundedness, positivity and invertibility of the operator KZd and

boundedness of the operator KX were assumed. We present the following results to

give specific conditions on K and X under which these assumptions hold. In section
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8 of [25], examples of such K and X are provided. The following results are more

general.

Theorem IV.2.4. Let K(x, y) =
∑
j∈Zd

φ(x−j)φ(y−j), where φ satisfies the conditions

in Theorem IV.2.1. For k ∈ Zd, define p(k) := φ(−k). If there is no ξ ∈ [0, 1]

such that p̂(ξ) = 0, then the operator KZd as defined above is bounded, positive and

invertible.

Proof: We first remark that under the hypotheses of this theorem, by the proof of

Theorem IV.2.3, there exist constants m and M such that

0 < m ≤ |p̂(ξ)|2 ≤M <∞ for all ξ ∈ [0, 1].

Let a ∈ l2(Zd). We use the fact that any sequence c ∈ l2(Zd) corresponds to

a function ĉ in L2([0, 1]d) defined by ĉ(ξ) =
∑

s∈Zd cse
−i2πs·ξ, and that ‖c‖l2(Zd) =

‖ĉ‖L2([0,1]d .

‖KZd a‖2
l2(Zd) =

∫
[0,1]d

∣∣∣∣∣∣
∑
s∈Zd

(
KZd a

)
s
e−i2πs·ξ

∣∣∣∣∣∣
2

dξ

=
∫
[0,1]d

∣∣∣∣∣∣
∑
s∈Zd

∑
t∈Zd

atKt(s)

 e−i2πs·ξ

∣∣∣∣∣∣
2

dξ

=
∫
[0,1]d

∣∣∣∣∣∣
∑
t∈Zd

at

∑
s∈Zd

Kt(s)e
−i2πs·ξ

∣∣∣∣∣∣
2

dξ.

For the moment we consider only
∣∣∣∑t∈Zd at

(∑
s∈Zd Kt(s)e

−i2πs·ξ
)∣∣∣.
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∣∣∣∣∣∣
∑
t∈Zd

at

∑
s∈Zd

Kt(s)e
−i2πs·ξ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
t∈Zd

at

∑
s∈Zd

∑
j∈Zd

φ(t− j)φ(s− j)e−i2πs·ξ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
t∈Zd

at

∑
j∈Zd

φ(t− j)
∑
s∈Zd

φ(s− j)e−i2π(s−j)·ξe−i2πj·ξ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
t∈Zd

at

∑
j∈Zd

φ(t− j)e−i2πj·ξ ∑
r∈Zd

φ(−r)e−i2πr·(−ξ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
t∈Zd

at

∑
j∈Zd

φ(t− j)e−i2π(j−t)·ξe−i2πt·ξ p̂(−ξ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
t∈Zd

ate
−i2πt·ξ

(
p̂(ξ)

)(
p̂(−ξ)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
t∈Zd

ate
−i2πt·ξ

∣∣∣∣∣∣ |p̂(ξ)| |p̂(−ξ)| .
Then we have

‖KZd a‖2
l2(Zd) =

∫
[0,1]d

∣∣∣∣∣∣
∑
t∈Zd

ate
−i2πt·ξ

∣∣∣∣∣∣
2

|p̂(ξ)|2 |p̂(−ξ)|2 dξ,

and therefore

∫
[0,1]d

∣∣∣∣ ∑
t∈Zd

ate
−i2πt·ξ

∣∣∣∣2 ·m2 dξ ≤ ‖KZd a‖2
l2(Zd) ≤

∫
[0,1]d

∣∣∣∣ ∑
t∈Zd

ate
−i2πt·ξ

∣∣∣∣2 ·M2 dξ,

which gives

m2
∫
[0,1]d

∣∣∣∣ ∑
t∈Zd

ate
−i2πt·ξ

∣∣∣∣2 dξ ≤ ‖KZd a‖2
l2(Zd) ≤M2

∫
[0,1]d

∣∣∣∣ ∑
t∈Zd

ate
−i2πt·ξ

∣∣∣∣2 dξ.

Finally we see that

m2‖a‖2
l2(Zd) ≤ ‖KZd a‖2

l2(Zd) ≤M2‖a‖2
l2(Zd).
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Next we show that KZd is positive. First, let a ∈ l2(Zd).

〈a,KZd a〉l2(Zd) =
∑
s∈Zd

as

(
KZd a

)
s

=
∑
s∈Zd

∑
t∈Zd

asatK(s, t)

=
∑
s∈Zd

∑
t∈Zd

asat 〈Ks, Kt〉K

=
∑
s∈Zd

∑
t∈Zd

asat 〈Ks, Kt〉L2

=

〈∑
s∈Zd

asKs,
∑
t∈Zd

atKt

〉
L2

.

Notice that for any sequence a ∈ l2(Zd), we have

〈a,KZd a〉l2(Zd) =

〈∑
s∈Zd

asKs,
∑
t∈Zd

atKt

〉
L2

=
∥∥∥∥ ∑

t∈Zd

atKt

∥∥∥∥2

L2
≥ 0,

implying that KZd is a positive operator.

�

In Chapter I we said X = {xj : j ∈ J} ⊂ Rd is a set of sampling for a Hilbert

space H ⊂ L2(Rd) if there exist constants c1 and c2 such that

c1‖f‖L2 ≤

 ∑
xj∈X

|f(xj)|2
1/2

≤ c2‖f‖L2 for all f ∈ H. (IV.2.5)

Recall that ifX is a set of sampling for a Hilbert spaceH ⊂ L2(Rd), then the sampling

operator SX is bounded and has a bounded inverse. Earlier in this chapter, we saw

that the operatorKX plays the role of SX in the sense that SXf = KXa = {f(xj)}xj∈X

for f =
∑

t∈Zd atKt. Under what conditions is the operator KX bounded with a

bounded inverse? In other words, when do there exist constants d1 and d2 such that

d1‖a‖l2(Zd) ≤ ‖KXa‖l2(X) ≤ d2‖a‖l2(Zd) (IV.2.6)
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for all a ∈ l2(Zd)? Below we give the result that if {Kt : t ∈ Zd} forms a Riesz basis

for V 2(φ), then (IV.2.5) holds if and only if (IV.2.6) holds.

Corollary IV.2.5. Let K(x, y) =
∑
j∈Zd

φ(x−j)φ(y−j), where φ satisfies the conditions

in Theorem IV.2.1. For k ∈ Zd, define p(k) = φ(−k). Assume there is no ξ ∈ [0, 1]

such that p̂(ξ) = 0. Then a given set X = {xj : j ∈ J} ⊂ Rd is a set of sampling for

V 2(φ) = HK,Zd if and only if there exist constants d1 and d2 such that

d1‖a‖l2(Zd) ≤ ‖KXa‖l2(X) ≤ d2‖a‖l2(Zd) for all a ∈ l2(Zd).

Proof: Once again we remark that under the hypotheses of this theorem, by the proof

of Theorem IV.2.3, there exist constants m and M such that

0 < m ≤ |p̂(ξ)|2 ≤M <∞ for all ξ ∈ [0, 1].

We need to show

c1‖f‖L2 ≤

 ∑
xj∈X

|f(xj)|2
1/2

≤ c2‖f‖L2 for all f ∈ V 2(φ) (IV.2.7)

⇐⇒

d1‖a‖l2(Zd) ≤ ‖KXa‖l2(X) ≤ d2‖a‖l2(Zd) for all a ∈ l2(Zd). (IV.2.8)

(Notice that
(∑

xj∈X |f(xj)|2
)1/2

= ‖KXa‖l2(X) for f =
∑

t∈Zd atKt.)

First, let f ∈ V 2(φ) = HK,Zd . Then we can write f as f =
∑

t∈Zd atKt for some

sequence a. We compute the norm of f :
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‖f‖2
L2 = 〈f, f〉 =

〈∑
s∈Zd

asKs,
∑
t∈Zd

atKt

〉
L2

=
∑
s∈Zd

∑
t∈Zd

asat 〈Ks, Kt〉L2

=
∑
s∈Zd

∑
t∈Zd

asat 〈Ks, Kt〉K

=
∑
s∈Zd

∑
t∈Zd

asatK(s, t)

=
∑
s∈Zd

as

(
KZd a

)
s

= 〈a,KZd a〉l2(Zd) .

Since KZd (which is bounded by the previous theorem) is a positive operator, we

know that its square root K
1/2

Zd exists as a positive, self-adjoint, bounded operator.

Hence

‖f‖2
L2 =

〈
K

1/2

Zd a,K
1/2

Zd a
〉

l2(Zd)
= ‖K1/2

Zd a‖2
l2(Zd) ≤ ‖K1/2

Zd ‖2‖a‖2
l2(Zd).

Also, using the results from the previous theorem, we have

m‖a‖l2(Zd) ≤ ‖KZd a‖l2(Zd) = ‖K1/2

Zd K
1/2

Zd a‖l2(Zd)

≤ ‖K1/2

Zd ‖ ‖K1/2

Zd a‖l2(Zd) = ‖K1/2

Zd ‖ ‖f‖L2 .

Therefore we have

m

‖K1/2

Zd ‖
‖a‖l2(Zd) ≤ ‖f‖L2 ≤ ‖K1/2

Zd ‖ ‖a‖l2(Zd)

and

1

‖K1/2

Zd ‖
‖f‖L2 ≤ ‖a‖l2(Zd) ≤

‖K1/2

Zd ‖
m

‖f‖L2 ,

and we can easily get (IV.2.7) if and only if (IV.2.8).

�
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In [25], it is shown that if K(x, y) = sinc(x − y), then 〈·, ·〉K = 〈·, ·〉L2 and

HK,Zd = {f : supp f̂ ⊂ [−1
2
, 1

2
]}. Furthermore, in [25], Smale and Zhou extend this

idea, and present results similar to Theorem IV.2.4. However, they define K(x, y) on

Rd × Rd so that K(x, y) = ψ(x− y) for some continuous, even function ψ ∈ L2(Rd).

Defining K as we have done in this section is not only more general, but also is still a

generalization of the classic Shannon example (see example IV.1.1). As we have just

seen, defining K in this more general manner still yields the desired boundedness of

operators and leads to a correspondence between the RKHS HK and a shift-invariant

space.
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