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 CHAPTER I 

 

1INTRODUCTION 

 

1.1 Overview 

Next generation flight vehicles will fly higher, faster, and for longer periods of time and will 

therefore be subjected to much more extreme and uncertain maneuvers and environments.  The 

application of non-destructive testing and evaluation methods for the inspection of these 

advanced flight structures contributes greatly to their safety and reliability; however, current 

forms of inspections significantly increase the operational expense, while rendering much of the 

fleet useless, due to the required labor-intensive dismantling of the flight vehicle.  Additionally, 

current methods are subjective and highly dependent on the condition of inspectors as well as the 

inspection environment.  Therefore in order to meet the demanding goals of increasing flight 

vehicle safety, reliability, and availability while reducing vehicle-operating costs, the technology 

development of structural health monitoring (SHM) systems is ongoing.  Health monitoring 

systems that report in real-time any adverse changes in the integrity of the flight vehicle in terms 

of loads, reactions, stresses, strains, and displacements are central to this development.1  Such 

sensing systems will minimize the requirement for costly inspections and focus maintenance to 

specific vehicle areas where damage was indicated and reported by the SHM system.2  

Condition-based instead of schedule-based, maintenance can then be performed, yielding faster 

turn-around times and much more efficient vehicle utilization.  Additional cost savings will be 

seen through the replacement of system components due to their impending failure, rather than 

due to a scheduled replacement.  Subjectivity will also be reduced due to the fact that 
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quantitative damage detection algorithms for SHM systems are more objective than human 

inspection procedures.3 

A generally implemented, global, online SHM system has the advantage of producing health 

reports not just for any one individual vehicle, but for the fleet as a whole and will allow owners, 

operators, and maintenance crews to move from forensics to diagnostics and onto prognostics.4  

Forensics allows the pilot to know the condition of the flight vehicle at the point in time the 

inspection was performed.  Since then critical maneuvers may have inflicted damage to the 

structure.  Diagnostics of the structure via an online SHM system provides the flight crew with a 

real-time update on the system's health status.  Prognostics takes this idea one step further, by 

generating forecasts of how many more flight hours, maneuvers, or missions the vehicle can 

endure.  The bottom line of an implemented comprehensive SHM system is improved safety, 

increased reliability, and a much more effective maintenance program through condition-based 

asset management.5 

Given these SHM system performance requirements and their impending benefits, it is easily 

seen that the SHM system must be the most reliable subsystem on board the flight structure and 

provide dependable and consistent inferences about the structural condition.  This requires that 

the SHM system be designed optimally not just in terms of minimizing the weight and impact 

that the SHM system has on the flight structure, but also in terms of maximizing the probability 

that the SHM system will be able to reliably detect damage before it turns critical with 

sufficiently low false alarm and missed detection error rates.  Due to the fact that the SHM 

systems are to be installed in next generation flight structures that are currently still in the 

developmental stage, finite element methods are utilized for their development via model-based 

design methodologies.  The inclusion of uncertainties associated with the geometry, loads, and 
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material properties within a probabilistic finite element analysis framework is vital towards the 

success of a robust optimal SHM system design.  The proposed methodology for optimal sensor 

placement of SHM systems includes design parameter uncertainty. 

 

1.2 Research Objectives 

Methodology development for optimizing the sensor layout design of SHM systems under 

uncertainty is the objective of this research.  The optimal placement of SHM system sensors in 

order to detect with high probability and reliability any damage before it becomes critical is the 

specific goal of this study.  In order to minimally affect the flight structure’s design via the 

addition of an SHM system, the number of sensors comprising the SHM system must be held 

small while simultaneously maximizing the probability of being able to detect any damage 

before it negatively affects the operation of the flight structure.  This study develops a 

methodology to address these issues, by integrating finite element analysis under various 

mechanical loading scenarios, uncertainty quantification methods for the inclusion of the 

stochastic nature of all model input parameters, damage detection methods and optimization 

algorithms.  Additional project objectives consist of addressing the sensitivity of the sensor 

system to environmental variations and validating the basic probabilistic finite element model as 

well as the sensor layout performance estimation method with experimental data.  The robustness 

of the methodology is critical towards its implementation into next generation flight vehicles; 

therefore, a thorough investigation of damage detection schemes used for SHM is included to 

identify the most robust/effective algorithm from a candidate pool of methods.  Thus the 

proposed objectives are: 
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1. Stochastic finite element analysis: Integrate uncertainty quantification methods with 

transient finite element analysis in order to estimate response variability.  Incorporate 

spatial variability of material and geometric parameters through random process and field 

simulation techniques. 

2. Damage detection: Integrate advanced signal processing, feature extraction, feature 

selection, and state classification schemes to distinguish damaged structures from healthy 

ones and classify them according to their damage state. 

3. Model validation: Quantitatively assess the validity of the basic stochastic finite element 

model (Objective 1) and the sensor layout performance prediction methodology 

(Objective 2) via several validation metrics, such as the modal assurance criterion, 

classical and Bayesian hypothesis tests, and the model reliability metric. 

4. Sensor placement optimization: Optimize under uncertainty the sensor configuration for a 

prototype thermal protection system component with respect to probabilistic performance 

measures. 

5. Sensitivity, reliability, and redundancy: Investigate the effects of issues, such as sensor 

sensitivity, reliability, and redundancy within the general SPO under uncertainty 

methodology. 

 

1.3 General Methodology 

The proposed methodology for optimal SHM sensor layout design under uncertainty includes the 

following components: (1) structural simulation, (2) probabilistic analyses, (3) damage detection, 

and (4) sensor placement optimization (SPO).  The proposed methodology integrates these 

individual disciplines with effectiveness and efficiency taken into account. 
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1.3.1 Structural Simulation and Probabilistic Analysis 

For most realistic structures, the response due to various loads cannot be determined via a 

closed-form function of the input variables. The response of the structure under consideration 

must be computed through numerical procedures such as a finite element method (FEM).  

Several finite element software packages are available; Ansys Release 9.06 is utilized in this 

study.  Care must be taken to assure that structural models and their corresponding simulations 

capture all physical phenomena and include all relevant input parameters.  The appropriate 

analysis may include linear, nonlinear, and/or coupled structural-thermal simulations.  A 

transient mode superposition analysis is used to evaluate the FEM simulations in this study. 

Structural model parameters such as distributed loads and material and geometric properties have 

temporal and spatial variability.  Probabilistic FEM analyses, of analytical models incorporate 

this uncertainty via the substitution of discretized simulated random processes and fields as 

model input parameters.  Random process/field simulation is a key step in probabilistic finite 

element analysis.  Once the model input parameters are randomly generated via the discretization 

of random processes/fields and applied as inputs to FEM models, repeated simulations of the 

stochastic finite element model (SFEM) at each realization are used to generate statistical and/or 

sensitivity information on model outputs.   

 

1.3.2 Stochastic Finite Element Model Validation 

Model calibration, verification, and validation are of extreme importance before employing the 

model results in subsequent procedures such as damage detection and sensor layout optimization.  

Validation of numerical models by comparison of model predictions against experimental 

observations has to account for errors and uncertainties in both the predictions and the measured 
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observations.  Several validation metrics are available to asses the predictive capability of 

models.  It should be noted that model calibration may be necessary to achieve good agreement 

between model predictions and experimental observations. 

 

1.3.3 Damage Detection 

From the calibrated and validated probabilistic FEM analysis the statistics of model outputs such 

as the stresses, strains, and deformations are calculated. Additional analysis is needed to estimate 

performance measures such as the probability of correctly identifying the structural state of a 

component for a given sensor layout. This can be accomplished via any appropriate diagnostics 

signal analysis procedure (i.e. damage detection algorithm).  Most structural damage detection 

methods and algorithms examine the changes in the measured structural vibration response and 

analyze the modal frequencies, mode shapes, and flexibility/stiffness coefficients of the 

structure.7  The signal analysis procedure employed in this study follows the general concepts of 

Duda, Hart, and Stork8 and utilizes the feature extraction and state classification methodologies 

defined by DeSimio, et al.9  Repeated analyses using different realizations of the random inputs 

to healthy and damaged structural FEM models and state classification of their respective 

outputs, allows the construction of a classification matrix.  Several probabilistic performance 

measures, such as the likelihood of correctly classifying a given realization of the SFEM output, 

can be estimated from the classification matrix for any given sensor layout.  Combining these 

concepts into one algorithm yields a sensor layout performance prediction methodology. 
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1.3.4 Sensor Layout Performance Prediction Validation 

Similar to the stochastic finite element model validation, an assessment of the predictive 

capabilities of the sensor layout performance prediction methodology is required prior to its 

utilization for sensor placement optimization.  Validation metrics such as the ones utilized for 

model validation of the SFEM are again utilized. 

 

1.3.5 Sensor Placement Optimization 

The underlying idea of sensor placement optimization (SPO) is to identify the sensor layout, 

which will optimize one or more of the probabilistic performance measures.  The Snobfit10 

(Stable Noisy Optimization by Branch and Fit) optimization scheme is applied for this purpose.  

The method is designed for bound-constrained optimization of noisy objective functions, which 

are costly to evaluate due to computational or experimental complexity.  Snobfit iteratively 

constructs several globally-distributed local quadratic response surfaces of the objective function 

from a number of sensor configurations and their corresponding probabilistic performance 

measures to identify the best sensor layout. 

 

1.4 Test Article 

For the purpose of illustration, the sensor placement optimization (SPO) under uncertainty 

methodology for SHM systems as previously defined in Section 1.3 is implemented using the 

following example problem relevant to hot aerospace structures.  The Air Force Research 

Laboratory's Air Vehicles Directorate at Wright-Patterson Air Force Base conducts research to 

implement integrated systems health management (ISHM) systems on future space vehicles, 

such as the space operations vehicle (SOV).  In concept the fuselage of an SOV is covered with a 



 

 8

thermal protection system (TPS) consisting of a network of mechanically attached panels.  If the 

fastening mechanism of any one such panel were to fail (e.g. lose one or more fastening bolts), 

the effectiveness of the SOV's fuselage TPS could become compromised, exposing the vehicle's 

entrails to the environment, thereby compromising vehicle integrity and ultimately jeopardizing 

mission safety and success.  Additionally, the TPS of an SOV is its first line of defense against 

exposure to space debris impact, and extreme thermal loads during re-entry.  Although the actual 

TPS concept is comprised of much more sophisticated components incorporating composite 

materials and highly advanced attachment mechanisms, the example problem discussed here 

provides a prototype SHM system to detect loose bolts on a simplified TPS component that is 

described in detail by Olson, et al.11 

The test article shown in Figure 1 consists of a heat-resistant, 0.25 inch thick aluminum panel, 12 

inches x 12 inches, held in place via four 0.25 inch diameter bolts located 0.50 inches from the 

edges of the panel.  Different structural conditions are obtained by loosening one bolt at a time 

from the panel.  The TPS panel or plate is considered healthy when all bolts are tightened to a 

nominal torque of 120 in-lbs.  A loose bolt condition corresponding to 25% of the nominal bolt 

torque (30 in-lbs) represents a damaged TPS structure.  There are four damaged structural states 

each corresponding to one of the four bolts being loose and one healthy structural state, where all 

four bolts are tightened to 100% nominal torque. 
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a) b)  
Figure 1. TPS test article; a) photograph11, b) schematic. 

 

Figure 1b shows a typical sensor layout, where piezoelectric sensor location 1, labeled as 

"Actuator," is the point of input excitation (for active SHM) and stationary, while sensor 

locations S2, S3, and S4 are the points of sensing and variable.  Also shown in Figure 1 are the 

locations of the 4 bolts, which hold the test structure in place and are the locations of damage.  

The hatched area in Figure 1b is the region where it is infeasible to place SHM sensors. 

Additionally, Derriso, Olson, and DeSimio12,13,14,15,16 have worked on testing and modeling other 

SHM system components as well as compiling different damage detection and state classification 

schemes.  Experimental work at Wright Patterson Air Force Base – where Derriso, Olson, and 

DeSimio are researchers – is substantially used for validation of the methods developed in this 

research study. 

 

1.5 Dissertation Outline 

The remainder of this dissertation follows the general structure of Section 1.3.  Each chapter of 

this dissertation covers one particular component of the methodology and provides background, 

specific details, and its implementation on a prototype thermal protection system component.  
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The test article is described in Section 1.4.  Chapter 2 discusses structural simulation and the 

stochastic finite element model (SFEM), while Chapter 3 provides calibration and a validation 

assessment thereof.  Chapter 4 covers the basics of structural health monitoring starting with 

sensors and architectures, and investigates different damage detection schemes to identify the 

most efficient algorithm for this particular application.  A prediction methodology for the 

performance of different sensor configurations is provided.  Chapter 5 assesses the predictive 

capability of the sensor layout performance prediction methodology.  Chapter 6 utilizes the 

performance predictions of different sensor layouts for optimization and optimizes probabilistic 

performance measures with respect to the location of the SHM sensors.  Sensor sensitivity, 

reliability, and redundancy are discussed generally in Chapter 7.  Chapter 8 concludes the 

dissertation with a brief summary and future research needs. 
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CHAPTER II 

 

2STRUCTURAL SIMULATION AND PROBABILISTIC ANALYSIS 

 

This chapter is related to research Objective 1.  Finite element modeling of the test article 

described in Section 1.4 and the inclusion of randomness in model input parameters through 

stochastic finite element analysis are discussed.  In addition, high performance computing is 

introduced as a solution to computationally intensive Monte Carlo simulations of finite element 

models. 

 

2.1 Finite Element Method 

For most realistic structures, the response due to various loads cannot be determined via a 

closed-form function of the input variables, but must be computed through numerical procedures 

such as a finite element method (FEM).  Models range from simple static analyses to complex 

investigations including transient analyses that incorporate dynamic thermal and mechanical 

loads.  Due to the computational power of today’s computers, high fidelity nonlinear models, 

which incorporate 106 or more degrees of freedom via elements with up to 20 nodes, are no 

longer considered infeasible.  Several commercially available finite element software packages 

are Patran/Nastran/Dytran,17,18 Ansys,6 and Abaqus19.  Open source codes, which can also be 

utilized, include CalculiX20 and Impact.21 

The structure under consideration as described in Section 1.4 is modeled using the commercial 

finite element software Ansys.6  A portion of the FEM model is shown in Figure 2.  Four-noded 

shell elements (Shell63) and two-noded spring elements (Combin14) are utilized to model the 
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aluminum plate and bolted boundary conditions.  Approximately 3,300 nodes and 2,800 

elements comprise the 19,836 degree of freedom (DOF) models.  Five FEM models are 

considered: one for each structural state.  In Figure 2, the four points located near the corners of 

the plate simulate the bolted boundary conditions via 48 spring elements per bolt location with 

varying stiffness coefficients.  Depending on which structural state a particular model assumed, 

damage was simulated analytically by altering the stiffness constants of the spring elements 

surrounding the particular bolt location considered to be damaged.  The point near the center of 

the upper left quadrant of the plate in Figure 2 simulates the piezoelectric actuator.   

 

 
Figure 2. Finite element model of TPS test article. 

 

The analysis is transient and includes a dynamic mechanical load consisting of a sinusoidal 

frequency sweep, exciting the structure from 0 to 1500 Hz over approximately 2.0 seconds.  This 

excitation represents the auxiliary input used with active damage detection algorithms.  This 

force excitation is applied via a simulated piezoelectric actuator at the location shown in Figure 

2.  The forces are in-plane and are applied radially as shown in Figure 3.  It is assumed that the 
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actuator induced moment has a negligible effect on the plate and therefore is not included in the 

simulation.  The sine sweep is defined as 




 ⋅⋅=∆ 22sin)( tTAt MAXπω , where A is the amplitude, 

MAXω  is the upper bound of the frequency sweep, and T is the time over which the sweep is to be 

completed.  The frequency increases linearly.  MAXω  is equal to 1,500Hz and T is set to 2.0 

seconds for this example implementation. 

 

 
Figure 3. Piezoelectric actuator with force excitation at nodes. 

 

Due to the high frequency of the excitation function, a mode superposition (MSP) transient 

analysis was used to evaluate the FEM model simulations.  MSP analysis sums factored mode 

shapes, obtained from a modal analysis, to calculate the dynamic response.6  MSP assumes that 

the structure behaves linearly.  The first 15 modes of vibration are included in the MSP and 

cover the natural modes of vibration of the plate up to approximately 2,200Hz, which is 

considered sufficient for an analysis with an excitation function in the 0-1,500Hz range. 
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2.2 Stochastic Finite Element Analysis 

Stochastic finite element analysis incorporates the uncertainty in model input parameters into the 

above described computational models to estimate the variability in the structural response.  The 

structural input parameters may also vary spatially or temporally; model parameters such as 

distributed loads, material properties and geometric inputs cannot be expressed as a single 

random variable but must be represented as a collection of several correlated random variables or 

more specifically, as random processes and random fields.22  Random process (temporal) and 

random field (spatial) simulation is a key step in this analysis and several methods are available.  

For example, the Karhunen-Loeve (K-L) expansion has been used to simulate random 

processes.23  This method represents a given covariance function as a K-L series expansion to 

efficiently simulate the stochastic process over a given time or space domain.  The Karhunen-

Loeve expansion method is quite general and not limited to any specific type of process 

(stationary, non-stationary; Gaussian, non-Gaussian).  It is also applicable to the generation of 

random fields.  The K-L expansion method receives its efficiency from the condensation of a 

significant amount of computational effort into an analytical pre-preprocessing step, which 

drastically reduces the subsequent computational effort while preserving accuracy.23  This is 

accomplished by determining the eigenvalues and eigenfunctions of the covariance function and 

utilizing them directly within the K-L series summation; however, this poses the difficulty of 

solving an integral equation, which usually requires numerical methods.24  The wavelet 

transform method is an extension of the Karhunen-Loeve simulation algorithm and is most 

applicable to non-stationary Gaussian random processes and fields.25 

An alternate Fourier series-based approach is the "spectral representation method.”26,27  

Shinozuka28,29 proposed the application of spectral representation for the simulation of multi-
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dimensional, multi-variate, and nonstationary random processes and fields.  Yang30,31 introduced 

the Fast Fourier Transform (FFT) technique and demonstrated that it could be utilized to 

significantly reduce the computational expense of the Fourier series-based algorithm.  Yang also 

proposed a formulation to simulate random envelope processes.  Shinozuka32 then extended the 

application of the FFT technique to multi-dimensional cases and Deodatis and Shinozuka33 

applied the resulting method to simulate stochastic waves.  Yamazaki and Shinozuka proposed 

an iterative procedure to simulate non-Gaussian stochastic fields34 and a method involving 

statistical preconditioning to reduce the sample size.35  Additionally, Shinozuka and Deodatis 

wrote two review papers on the subject of simulation using the spectral representation 

method.36,37  Other random process and random field generation sequences include the Pierson-

Moskowitz Wave Spectra or the JONSWAP spectra38 as well as Sakamoto’s Polynomial Chaos 

Decomposition39 and Deodatis and Micaletti’s formulation40 for highly skewed non-Gaussian 

stochastic processes. 

The one-dimensional Gaussian stochastic process in Figure 4 was generated using Shinozuka’s 

formulation,41 which can be simulated using the following series as N  goes to infinity.  

( ) ( ) ( )[ ]∑
−

=

+∆=
1

0
cos22,

N

k
kkkggo tStg φωωωφ , where N

uωω =∆ , ωω ∆= kk , and 

110 −= Nk ,...,, .  Here uω  is the upper cutoff frequency beyond which ( )ωggS  can be considered 

to be zero for all practical purposes.  ( )ωggS  is the two-sided power spectral density function of 

the random process that is to be generated and kφ  are the independent random phase angles 

uniformly distributed between 0 and π2  radians.40 
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Figure 4. A realization of a random process via Shinozuka’s formulation. 

 

For the example application, plate thickness, Young's modulus, Poison's ratio, and density are 

modeled as Gaussian random fields with independent, but equal correlation structures along 

orthogonal axes.  A two-dimensional stochastic process was generated for these model inputs 

using the spectral representation as defined in Equation (1) via Shinozuka’s formulation41 and 

the Wiener-Khinchine relations.42  The Gaussian random field ( )φ,, 21 xxgo  can be simulated by 

the following series as 1N  and 2N  approach infinity. 

 ( ) ( ) ( ) ( )[ ]∑∑
−

=

−

=

++∆∆=
1

1

1

1
,212121

1

1

2

2

212121
cos2,,

N

k

N

k
kkkkkko xxSSxxg φωωωωωωφ      (1) 

where 
i

u
i N

i
ω

ω =∆ , iik k
i

ωω ∆= , for 2,1=i .  Here 
iuω  is the upper cutoff frequency beyond 

which ( )
ikS ω  is considered zero.  ( )

ikS ω  is the two-sided power spectral density function of the 

random field in the i  direction and 
21 ,kkφ  an array containing the independent random phase 

angles uniformly distributed between 0 and π2  radians.  iN  defines the number of terms to be 

included in the dual summation in the i  direction.  All the random fields in this study utilize the 

following power spectral density functions: ( ) ( )
iii kikiik bbS ωωσω −⋅= exp4

1 232  for 2,1=i .  Here 
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iσ  is the standard deviation of the stochastic process in the i  direction and ib  its corresponding 

"correlation distance."40  An example of such a random field realization is provided in Figure 5. 

For the random fields considered as SFEM inputs to the models of the test article, 321 == bb  

and 121 ==σσ , where the magnitude of ( )φ,, 21 xxgo  is scaled after the fact to match the mean 

and coefficient of variation (COV) of the random field to be simulated.  πωω 5
21
== uu , while 

3521 == NN .  These values were chosen such that the simulated random fields were unique 

(i.e. non-repeating) over an area of 16 inches by 16 inches (sufficiently large for a test article of 

size 12 inches x 12 inches) and the computational effort was manageable.  Table 1 lists the 

means and COV used for each of the random fields simulated with Equation (1).  Random field 

parameters for panel thickness were obtained by measurement of the test structure, while the 

random field parameters for Young’s modulus, Poisson’s ratio, and density were assumed. 

 

 
Figure 5. Sample realization of random field for plate thickness. 
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Table 1. Mean and COV values used for random field simulation. 
Panel Thickness  

(in)
Young's Modulus  

(psi)
Poison's 

Ratio
Density       

(lb-mass/in^3)

Mean 0.2458 9.75E+06 0.3 2.59E-04
COV 0.02 0.02 0.02 0.02  

 

Temperature uncertainty was also included as a random variable uniformly distributed between 

65 and 75 degrees Fahrenheit.  These bounds reflect the approximate temperature variations of 

the laboratory environment at Wright Patterson Air Force Base, while the shape of the 

distribution was assumed.   The following temperature effect model was constructed via a 

quadratic regression analysis of data published by the North Atlantic Treaty Organization 

(NATO) Advisory Group for Aerospace Research and Development (AGARD):43 

        ( ) ( ) ( ) 00067.1 575775.2 6151525.1 2 +−+−−= tEtEtF      (2) 

where )(tF  is a scale factor for Young's modulus and t  is the plate temperature in degrees 

Fahrenheit. 

Repeatedly evaluating deterministic finite element analyses using realizations of the model 

inputs provides data for statistical analysis of the model responses.  For the example at hand, 500 

simulations using 500 realizations of the random inputs were executed; 100 simulations of the 

healthy model, 100 simulations of the model damaged at bolt 1, 100 simulations of the model 

damaged at bold 2, and so on, where a damaged bolt refers to a bolt at 25% nominal torque and 

is simulated as previously specified (see Section 2.1).  These 5 sets of simulations and their 

corresponding structural responses are used for damage detection. 

The Monte Carlo approach described in the previous paragraph yields an excessive 

computational burden of approximately 5 hours of processing time per simulation on a Dell 

Workstation PWS650 with a 2.40GHz Xeon CPU and 1.00GB of RAM.  The utilization of a 
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single personal computer, 24 hours per day, would require approximately 104 days of processing 

time, rendering the methodology infeasible.  Therefore high performance computing (HPC) via a 

parallel computing cluster is employed.  The Advanced Computing Center for Research and 

Education (ACCRE) at Vanderbilt University is an HPC facility available to researchers, 

scientists, engineers, and developers across many disciplines.  ACCRE's mission is to permit 

Vanderbilt researchers to refine, benefit from, and explore a great number of newly evolved 

computationally intense problems and their corresponding solutions. 

The above defined Monte Carlo analyses/simulations can be summarized into the following 

general problem, where many (100's, perhaps 1,000's) computationally intensive (hours, perhaps 

days) simulations, analyses, or function evaluations have to be performed using as inputs 

different parameter realizations.  This translates into the following.  For one, simulation input 

files, though unique, are essentially identical.  Only file names and input parameters such as the 

seeds to random number generators, material properties, and geometric parameters are distinct 

from one input file to another.  In addition each of the many analyses is performed using the 

same analysis/simulation tool (e.g. Ansys).  Second, simulation management is an encumbrance 

due to the fact that an individual may not be able to monitor the simulation process 24 hours on 

end.  Thus inefficiencies are introduced when a CPU only operates a limited number of hours per 

day.  Also, manually starting or “submitting” each simulation to a CPU introduces room for 

human error.  It is inefficient and impractical to manually supervise the analyses/simulations 

corresponding to 100’s of realizations of the random inputs.  A "job manager" (JM) is required to 

automatically initiate the simulations, organize the results, and report any malfunctions to the 

user.  Some requirements of such a job manger are as follows.  All simulation input files must be 

of the same format and stored in one directory on the high performance parallel computing 
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cluster.  In addition, an appropriate amount of storage space must be made available on the 

cluster for simulation results.  Once those requirements are met, the JM can be initiated on one 

processor of the cluster.  It will initially submit simulation input files as “jobs” to each of a user-

specified/identified n number of processors (i.e. cluster nodes).  Once each node is occupied with 

a unique simulation, the job manager waits for a response, which is initiated by a node once it 

has completed a simulation and sent the result file with a unique result file name to the 

designated storage space.  Upon receiving this response, the JM retrieves another input file and 

doles it to the node which became available.  This procedure continues until the JM no longer 

finds simulation input files in the designated input directory.  Once this is true, the job manager 

notifies each of the processors as they complete their assigned simulation.  An alternate version 

of the JM might run on the “gateway” computer of the parallel computing cluster and would 

submit portable batch system (PBS) files to the queue corresponding to unique simulation input 

files.  This type of job manager has the additional advantage of not requiring the continuous use 

of n user specified nodes on the cluster, but rather runs the simulations on as many nodes as are 

currently available (which could potentially be many times n).  In addition the applicability of 

this alternate version of the JM is increased through the submission of PBS files instead of 

simulation input files directly. 

This HPC solution provides the advantage of speed-up.  Using 15 nodes on ACCRE’s HPC 

system, the computational burden is reduced from 104 days to a feasible 7 days.  HPC improves 

the simulation process by decreasing the analysis time by the factor of nodes available to the user 

for parallel computing.  Applications that were previously prohibitively large can now be 

completed in a practical amount of time with the use of a JM on an HPC network, including the 

example application of this study. 
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The simulated structural response consists of time series data.  Nodal displacements along the 

three axial directions (rotational displacement is assumed to be negligible, as well as irrelevant, 

since the piezoelectric wafers utilized during laboratory experiments are likely unable to monitor 

the minute rotational displacement that might actually take place) are recorded for the duration of 

the input excitation (i.e. approximately 2.0 seconds) for each of the 2801 nodes that make up the 

structural components of the test article (i.e. shell elements).  Figure 6 shows a normalized (i.e. 

[ ]1,1−∈response  and ( ) 0.1max =response ) randomly selected structural response of a healthy 

test article, while Figure 7 illustrates a simulated response obtained from a model representing 

the damaged test article.  The plots show that in the time domain there is no significant 

observable difference between two realizations of the model output stemming from the same 

structural state and between different realizations of the output stemming from different 

structural states.   

 

 
Figure 6. Healthy simulated structural response for two realizations of the random model inputs. 
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Figure 7. Damaged simulated structural response for two realizations of the random model inputs. 

 

From the pool of simulation output of the probabilistic FEM analysis consisting of temporal 

displacement data along axial directions, an equivalenced von Mises stress, as defined in the 

Ansys Release 9.0 Documentation,6 is calculated via Equation (3) for each node. 

    222 3 xyyyxxvM τσσσσσ ++−=        (3) 

where xσ , yσ , and xyτ  are the in-plane stress components, which are estimated from the 

displacement records of the four nearest neighboring nodes.  Plane stress conditions are assumed.  

The equivalenced von Mises stresses of the pool of simulation output are then used directly for 

damage detection. 

The stochastic finite element models (SFEM), as defined in this chapter are utilized to generate 

many realizations of the structural response, which are necessary for damage detection and 

sensor layout performance prediction.  Prior to their utilization, it must be assured that the SFEM 

response predictions are of adequate accuracy.  A validation assessment is required.  This 

objective is pursued in the next chapter. 
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CHAPTER III 

 

3VALIDATION ASSESSMENT OF SFEM 

 

This chapter is related to research Objective 3 and is concerned with assessing the validity of the 

stochastic finite element analysis discussed in Chapter 2.  The second part of Objective 3 (i.e. the 

validation of the sensor layout performance prediction) will be addressed in Chapter 5.  Several 

validation metrics are defined, and calibration and validation assessments of the stochastic finite 

element analysis are conducted.  In order to calibrate and assess the accuracy of the models, 

experimental modal analyses (EMA) are performed and the resulting natural frequencies and 

mode shapes compared to analytical predictions, obtained via SFEM-based modal analysis. 

 

3.1 Introduction 

Systematic guidelines for model verification and validation, assessing the accuracy of models 

and computer simulations, and to build confidence and credibility in them, are under 

development in recent years.  Sources of model uncertainty include incorrect model form (e.g. a 

linear model is used when the actual behavior is nonlinear), omitted variables (either for sake of 

simplicity or due to lack of awareness of their impact), parameter variability, information 

uncertainty, and inadequate model fidelity.  All these sources of error need to be accounted for in 

assessing a model’s predictive capability and usefulness.  On the other hand, instrumentation and 

measurement errors, and variability of experimental conditions cloud experimental results.   

Thus – to address uncertainties and errors in both prediction and observation – model validation 

under uncertainty can be viewed as comparing two sets of uncertain quantities, and assessments 
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about their agreement can be made using qualitative methods, decision-theoretic methods, or 

statistical hypothesis testing methods.44  Several types of metrics have been proposed for the 

validation of analytical models in the areas of fluid dynamics,45 heat transfer,46 and structural 

dynamics47.  The validation metrics utilized in this study are introduced and discussed in Section 

3.2.   

A common method of comparison between predictions for the dynamic behavior of a structure 

and those actually observed in the field is modal testing.48  The qualitative formation of 

correlated mode pairs (CMP) followed by the quantitative assessment of modal frequencies and 

mode shapes via the modal assurance criterion (MAC) are well established methods of model 

validation48 and are further explained in Section 3.2.1.  A model reliability metric (MRM) was 

recently defined,44 and is an estimation of the probability of success of a model (i.e. the 

probability that the difference between predicted and observed measurements is within specified 

limits).  MRM is described in detail in Section 3.2.2.  Recently Bayesian statistics have been 

exploited for the validation of reliability prediction models49 and computational physics 

models50.  Bayesian methods have also been extended to the validation of more generalized 

model outputs, both univariate and multivariate.51  Bayesian hypothesis testing is presented in 

Section 3.2.3. 

The difference between model calibration and validation should be noted at this point.  The 

process associated with calibration involves “training” a model to generate output that is highly 

correlated and statistically equal to a set of experimentally observed measurements.  Generally 

this consists of systematically adjusting model input parameters, such as structural damping 

coefficients, stiffness constants, boundary conditions, and so on, until model predictions and 

experimental observations are sufficiently similar as assessed heuristically or via model 
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validation metrics.  This process is obviously highly subjective and constraints on model size, 

available computational power, and model output storage capacity, are usually most restrictive. 

Once the model is considered calibrated, model validation can be achieved by obtaining an 

independent set of experimental observations and utilizing the validations metrics of Section 3.2 

to quantitatively (and independently) assess the predictive capabilities of the model.  Section 3.4 

discusses the calibration of the stochastic finite element models (SFEM) of the TPS test article, 

while independent experimental observations are presented in Section 3.5 and model validation 

metrics are applied to assess the SFEM accuracy. 

 

3.2 Model Validation Metrics 

 

3.2.1 Modal Assurance Criterion 

Traditional model validation assessments in structural dynamics include a correlation analysis 

between model prediction and experimental observation.  A metric known as modal assurance 

criterion (MAC)48 has been commonly used for dynamic FEM model validation.  MAC provides 

a measure of the statistical correlation between model predictions and experimental observations.  

The strength of correlation is measured by the least-squares deviation or scatter of the data points 

from a straight line.  In this context, data points refer to the elements of the column vectors 

defining the experimentally measured mode shape { }XΨ  and the theoretically predicted mode 

shape { }AΨ .  MAC is defined as  

       
{ } { }

{ } { }( ){ } { }( )A
T

AX
T

X

A
T

X

Ψ⋅ΨΨ⋅Ψ

Ψ⋅Ψ
2

    (4) 



 

 26

and is a scalar quantity close to 1.0 if the experimental and theoretical mode shapes are in fact 

from the same mode. If the two mode shapes, which are being compared, actually relate to two 

different modes of vibration, a value close to 0.0 should be obtained.48  It should be noted that 

MAC is related to the correlation coefficient between two random variables given by 

( )
YX

YX
YXCov

σσ
ρ

•
=

,
, , where ( )YXCov ,  is the covariance of the two random variables X  and Y , 

and Xσ  and Yσ  their variances, respectively; however, MAC does not adjust for the means of 

the random variables. 

 

3.2.2 Model Reliability Metric 

Although a correlation assessment via MAC provides a means to evaluate a predictive model, it 

does not give any estimate on the confidence with which the model predictions can be accepted 

or rejected.  The probabilistic nature of and the uncertainty associated with model predictions 

and laboratory observations was not considered in the above comparison.  In addition, for a 

decision maker a quantitative measure of the validity or reliability of a model is of significant 

value.  Rebba and Mahadevan44 defined a reliability measure for the case of comparing a single-

valued model prediction with multiple experimental measurements taken for the same input.  

This model reliability is measured through a simple metric ( )εε <<−= DPr , i.e. the 

probability that the observed difference, D , between model prediction and experimental 

observation is within a small interval [ ]εε ,− .  Here ε  can be viewed as an allowable difference 

between prediction and observation.  The model reliability metric (MRM) is calculated as 
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where Θ  is the single-valued model prediction, while x  is the sample mean and s  the sample 

standard deviation of the experimentally observed measurements, which are assumed to follow a 

Gaussian distribution.  n  is the number of data points utilized to calculate x  and s .  The 

cumulative distribution function (CDF) of the standard normal distribution is denoted as [ ]⋅Φ . 

 

3.2.3 Classical and Bayesian Hypothesis Testing 

Rigorous statistical model validation approaches can also be based on hypothesis testing 

methods.52  Classical hypothesis testing is based on the multivariate Hotelling's T2 statistic, a 

multivariate generalization of Student's t2 statistic, which is applicable for one-sample as well as 

two-sample testing.  It tests whether a p-dimensional mean vector, µ , is element-wise equal to a 

prescribed vector, 0µ .  In case of high correlation among the p variables to be tested, a principal 

component analysis may be used to transpose the correlated variables into an uncorrelated, 

lower-dimensional variable space.  Multivariate hypothesis testing via Hotelling's T2 statistic is 

then available on the principal components.53   

One particular downside to traditional point null hypothesis tests is that they test whether the 

mean is exactly equal to a prescribed value.  As the sample size increases, the hypothesis will 

always be rejected, even if the mean deviates only slightly from 0µ .  This can prove to be 

problematic, since it may be acceptable to observe a small difference between model prediction 

and experimental observation.  Thus an interval hypothesis test formulation is also available.  

Finally, classical metrics include the calculation of power of the hypothesis test, which indicates 

the benefit of gathering additional data.  The power is the probability of rejecting the null 

hypothesis given that the alternative hypothesis is true.  It is an indication of the effectiveness of 

the test in discerning between the two competing hypotheses.  It should be noted that the power 
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of a hypothesis test is equal to ( )( )TypeIIP−1 , where ( )TypeIIP  is the probability of a Type II 

error, which occurs when one fails to reject a false null hypothesis.  Conversely, a Type I error 

occurs when one rejects a true null hypothesis. 

Additionally Bayesian hypothesis testing54 enables the estimation of relative support for two 

competing hypotheses given that the experimental observations, EO , were made.  Formally, the 

posterior probability ratio of the two competing hypotheses is calculated.51  The validation 

metric, Bayes' factor, is defined through a likelihood ratio as 

           
( )
( )1

0

HOP
HOP

B
E

E=      (6) 

and is used to assess which hypothesis the data supports more.  If 1=B , 0H  and 1H  are equally 

supported by the data.  If 1>B , the data supports 0H  more, and if 1<B , there is more support 

for 1H .  In addition, a confidence estimate, C , for 0H  is given by the ratio ( )1+BB , e.g. if 

1=B , the data gives equal support for both hypotheses and the confidence level for 0H  is 50%.  

The Bayes' factor is applicable for one-sample as well as two-sample testing and the 

corresponding power of the hypothesis test can also be calculated.  For multivariate data, as is 

normally the case for model validation, it is usually assumed that the data follow a multivariate 

normal distribution, in order to easily apply the Bayesian perspective to hypothesis testing.51  If 

this assumption does not hold, the use of a response surface approximation, such as polynomial 

chaos, may be employed to estimate the shape of the probability density functions.55 

 

3.3 Modal Analysis 

The model calibration and validation presented in this chapter is approached through modal 

analysis.  Two stochastic finite element models (SFEM) – one model to simulate the healthy 
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structure and one model to simulate one of the four damaged test articles – for structural 

dynamics analysis are evaluated, calibrated, and validated using data obtained from experimental 

observations.  SFEM incorporating the variability in input parameters are utilized to predict the 

statistics of the natural modes of vibration (i.e. frequencies and mode shapes) of the two test 

article conditions.  Experimental modal analyses (EMA) are performed on laboratory specimens 

of the TPS test article in the same two conditions to predict their natural modes of vibration and 

corresponding mode shapes.  Modal analysis results from predictions and observations are then 

compared. 

 

 
Figure 8. EMA test layout. 

 

Experimental modal analysis (EMA) was performed on the prototype TPS component described 

in Section 1.4, where the first eight modes of vibration (modal frequencies and mode shapes) 

were extracted (resolution limitations of EMA restricted the consideration to the first eight 

modes of vibration).  Figure 8 is a schematic showing the EMA measurement points as well as 

the impact locations.  EMA was performed on both healthy and damaged structures where the 
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plate was impacted with the instrumented hammer at location 26.  An additional EMA of the 

healthy plate was performed where the plate was impacted at location 7. 

EMA consists of impacting a test article with an instrumented hammer at carefully selected 

locations (locations 7 and 26 in Figure 8) and measuring the structural response of the test article 

via an array of accelerometers (locations 1 through 25 in Figure 8).  EMA utilizes the input 

signal (as measured with the instrumented hammer) and the response signal (as collected by the 

array of accelerometers) to establish frequency response functions (FRF) between each response 

location and the impact site.  FRF are defined as the ratio of the Fourier transforms of the 

response and the input.  The modal parameters are then identified by curve fitting the set of FRF 

as shown in Figure 9 for a simply supported vibrating beam.56 

 

 
Figure 9. Curve fitting FRF measurements.56 

 

Uncertainties associated with EMA include variability of accelerometer placement as well as 

variability of impact location of the instrumented hammer.  In addition, the operator’s 

subjectivity in accepting or rejecting a given impact and its corresponding response produces 
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uncertainty in EMA results.  Also, since the data acquisition system utilized for EMA is limited 

to four channels of input, multiple experiments were required to obtain the response of the plate 

for all 25 locations shown in Figure 8.  Other experimental variability also influences the results 

obtained via EMA.  The assumptions and approximations associated with the signal processing 

(such as transforming a finite discrete signal using a transformation that is theoretically derived 

for infinite continuous functions) required to establish FRF, add additional uncertainties to EMA 

results. 

The state classification problem defined in Section 1.4 considers four damage states (fastener 

damage at each of the four bolt locations simulated by a bolt with 25% nominal torque) and the 

healthy condition (all four fasteners at 100% nominal torque).  This requires the simulation of 

five different state models; however, due to symmetry of the test article (e.g. damage state 2, i.e. 

25% nominal torque at bolt location 2, is simply a 90° clockwise rotation of test article damage 

state 1, i.e. 25% nominal torque at bolt location 1, etc.) only two conditions were analyzed for 

validation purposes: 1) healthy structure, and 2) damaged structure with damage at bolt location 

4.  Two EMA were performed on the healthy test article; one EMA was performed on the 

damaged test article.  The results are presented in Table 2, Table 3, and Figure 10.  Due to 

resolution limitations of EMA, the mode shape vectors of a damaged test article could not be 

differentiated from the mode shape vectors of Table 3.  Therefore mean results are provided only 

for the healthy condition. 

 

Table 2. EMA modal frequency results (Hz). 
Mode of Vibration 1 2 3 4 5 6 7 8
1st EMA - Healthy 218.23 404.19 404.19 462.41 833.95 929.32 1010.00 1010.00
2nd EMA - Healthy 217.71 400.35 400.35 461.34 831.30 928.02 1010.00 1010.00

1st EMA - Damaged 213.48 394.68 394.68 454.43 826.63 919.27 953.42 953.42  
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Table 3. EMA-based mean mode shape vectors for healthy model. 

1 2 3 4 5 6 7 8
0.027 -0.023 -0.023 -0.008 0.041 -0.062 0.075 0.075

-0.270 0.518 0.518 -0.535 -0.537 0.720 0.630 -0.630
-0.535 0.970 0.970 -0.953 -1.000 -0.103 0.005 -0.005
-0.267 0.513 0.513 -0.530 -0.574 -0.836 1.000 1.000
0.023 -0.018 -0.018 -0.002 0.018 0.034 -0.033 -0.033

-0.279 -0.139 -0.139 0.503 -0.532 0.852 -0.114 0.114
-0.627 0.358 0.358 0.017 -0.045 0.937 0.552 -0.552
-0.874 0.563 0.563 -0.316 0.292 -0.003 0.006 -0.006
-0.612 0.428 0.428 0.030 -0.041 -0.825 -0.234 0.234
-0.248 0.112 0.112 0.541 -0.460 -0.646 -0.846 -0.846
-0.581 -0.231 -0.231 0.933 -0.995 0.048 -0.778 0.778
-0.855 -0.132 -0.132 0.297 0.202 0.013 0.180 -0.180
-1.000 0.003 0.003 -0.003 0.920 -0.008 0.013 -0.013
-0.856 0.137 0.137 0.346 0.249 -0.024 0.191 0.191
-0.491 0.223 0.223 1.000 -0.963 -0.059 -0.751 -0.751
-0.279 -0.132 -0.132 0.513 -0.585 -0.937 0.811 0.811
-0.656 -0.433 -0.433 -0.010 -0.051 -1.000 -0.248 -0.248
-0.831 -0.518 -0.518 -0.319 0.231 -0.031 0.005 0.005
-0.613 -0.346 -0.346 0.003 -0.049 0.878 0.531 0.531
-0.277 0.125 0.125 0.582 -0.612 0.741 0.170 -0.170
0.014 0.015 0.015 -0.003 0.038 0.022 0.017 0.017

-0.249 -0.499 -0.499 -0.496 -0.421 -0.741 -0.872 -0.872
-0.550 -1.000 -1.000 -0.960 -0.963 0.124 -0.035 -0.035
-0.251 -0.493 -0.493 -0.496 -0.503 0.878 0.617 0.617
0.029 0.018 0.018 0.000 0.026 -0.014 0.075 -0.075

Mode 
Shape 
Vectors

Mode Number

 

 

Mode shapes 1, 4, 5, and 6 are very well defined and have unique modal frequencies.  However, 

two sets of paired natural modes of vibration, modes 2 and 3, and modes 7 and 8, were not well 

defined due to resolution limitations.  EMA was unable to isolate distinctive natural frequencies 

or mode shapes for each of the contributing modes of the two mode pairs.  Figure 10 shows a 

single mode shape for each of these sets of paired modes where the mode shape includes 

contributions from each of the paired modes.  As becomes evident from the FEM-based modal 

analyses (see below), the paired mode shapes shown in Figure 10 are a result of superimposing 

mode shape 3 onto mode shape 2 and mode shape 8 onto mode shape 7.  It should also be noted 

that the mode shapes contributing to each coupled pair are approximately identical to each other, 

but rotated 90° in plane about the center of the plate with respect to each other.  In addition, the 
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mode shapes obtained via EMA of the damaged structure were very similar to those of the 

healthy panel:  small variations in the paired modes due to the loose bolt exist; however, EMA 

did not have sufficient resolution to discern these variations. 

 

 
Figure 10. EMA mode shape results. 

 

The FEM-based modal analysis consists of generating 100 random realizations of the model 

input quantities as discussed and demonstrated in Section 2.2, using 50 of them as inputs to the 

healthy model and the other 50 as inputs to the damaged model, performing a modal analysis for 

each realization, and extracting and expanding the first eight modes of vibration.  The Block 

Lanczos eigenvalue solver within the Ansys6 software package is used to determine the natural 

frequencies and corresponding mode shape vectors.  The block Lanczos algorithm is a variation 

of the classical Lanczos algorithm, where the Lanczos iterations are performed using a block of 

vectors, as opposed to a single vector. Additional theoretical details on the classical Lanczos 

method can be found in Rajakumar and Rogers.57  The Block Lanczos method, as employed by 

Ansys, uses a sparse matrix solver and is especially powerful when searching for 

eigenfrequencies in a given part of the eigenvalue spectrum of a system (i.e. 0-1500Hz in this 

Mode 1 

Mode 2/3 

Mode 4 

Mode 5 

Mode 6 

Mode 7/8 

Mode shape includes contributions 
from each of the paired modes 

Mode shape includes contributions 
from each of the paired modes 
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case).  Other benefits to using this extraction method are medium memory and low disk-space 

requirements.6  This FEM-based modal analysis approach yields two sets (healthy and damaged) 

of 50 mode shapes with corresponding modal frequencies corresponding to the two condition 

models.  Table 4 and Table 5 summarize the FEM-based modal analyses results of the calibrated 

models of a healthy and a damaged test article.  Calibration was achieved as described in Section 

3.4. 

 

Table 4. FEM-based modal analysis results. 

Mode Mean Modal 
Frequency (Hz)

Standard 
Deviation Mode Mean Modal 

Frequency (Hz)
Standard 
Deviation

1 222.68 1.10 1 208.23 0.74
2 406.00 1.69 2 382.81 3.30
3 408.76 1.84 3 388.97 1.80
4 461.22 2.23 4 460.37 3.56
5 798.00 3.32 5 816.52 4.40
6 929.22 2.14 6 924.51 3.29
7 1001.97 3.55 7 979.52 5.71
8 1006.80 3.43 8 1046.39 4.10

Healthy Model Damaged Model

 

 

Figure 11 shows the mode shapes corresponding to the modal frequencies of Table 5 for the 

model of the healthy test article.  As stated earlier, it is easily seen that the 3rd mode shape is 

simply a 90° rotation of the 2nd mode shape.  The same is true for mode shapes 7 and 8.  Also, 

superimposing mode shape 2 onto mode shape 3, and mode shape 7 onto mode shape 8, produces 

the plots in Figure 12, which are similar to the ones shown in Figure 10 labeled as paired modes. 
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Table 5. FEM-based mode shape vectors for healthy model. 

1 2 3 4 5 6 7 8
0.007 -0.005 -0.006 0.000 0.013 -0.032 0.008 0.007

-0.213 0.336 0.371 -0.499 -0.496 0.737 -0.294 -0.305
-0.470 0.666 0.738 -0.943 -0.975 0.001 0.330 0.199
-0.214 0.336 0.371 -0.499 -0.498 -0.737 0.625 0.504
0.007 -0.005 -0.005 0.000 0.013 0.032 -0.003 -0.003

-0.213 -0.010 0.018 0.501 -0.496 0.734 0.125 0.182
-0.599 0.218 0.266 0.001 -0.042 0.968 -0.466 -0.367
-0.815 0.380 0.421 -0.303 0.185 -0.001 -0.084 -0.056
-0.599 0.237 0.232 0.005 -0.044 -0.969 0.169 0.184
-0.213 0.015 -0.031 0.506 -0.499 -0.727 -0.569 -0.443
-0.469 -0.029 0.041 0.946 -0.975 -0.002 0.689 0.620
-0.815 -0.019 0.027 0.305 0.185 -0.001 -0.189 -0.163
-1.000 -0.002 0.000 0.000 0.814 -0.003 0.001 0.001
-0.815 0.013 -0.032 0.311 0.184 0.001 0.189 0.164
-0.468 0.022 -0.058 0.956 -0.977 0.010 -0.695 -0.622
-0.213 -0.018 0.021 0.501 -0.498 -0.735 0.564 0.438
-0.599 -0.239 -0.232 -0.005 -0.045 -0.968 -0.172 -0.189
-0.814 -0.382 -0.416 -0.314 0.183 0.000 0.086 0.057
-0.599 -0.221 -0.266 -0.002 -0.044 0.968 0.469 0.375
-0.212 0.006 -0.027 0.504 -0.496 0.736 -0.125 -0.179
0.007 0.005 0.005 0.000 0.013 0.032 0.003 0.003

-0.212 -0.333 -0.361 -0.507 -0.499 -0.726 -0.625 -0.508
-0.467 -0.661 -0.720 -0.960 -0.981 0.005 -0.330 -0.202
-0.211 -0.332 -0.361 -0.506 -0.498 0.730 0.294 0.307
0.007 0.005 0.006 0.000 0.013 -0.031 -0.008 -0.007

Mean 
Mode 
Shape 
Vectors

Mode Number
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Figure 11. Analytically determined mode shapes for healthy test article. 

 

 
Figure 12. Analytically determined and superimposed mode shapes for coupled modes. 

 

Figure 13 shows the mode shapes corresponding to the modal frequencies of Table 4 for the 

model of the damaged test article.  The mode shapes of the damaged test article model are 

similar to the ones extracted from the healthy plate model, with the exception of modes 2, 3, 7, 

and 8.  These coupled modes are highly affected by the loosened bolt in the lower left corner of 

the plate (i.e. bolt 4 in Figure 1b), creating a dominant and a recessive line of symmetry (LOS).  

The dominant LOS connects the lower left corner of the plate with the upper right corner, while 

Mode 1 

Mode 8 Mode 7Mode 6 

Mode 5Mode 4

Mode 3 Mode 2
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the recessive LOS connects the upper left corner with the lower right corner.  It is worth noting 

that for the healthy model these LOS also exist; however, they are of equal dominance, causing 

the plots in Figure 11 to appear much more symmetric than the ones in Figure 13. 

 

 
Figure 13. Analytically determined mode shapes for damaged test article. 

 

The dominant and recessive LOS may also help explain the rise in the FEM-based natural 

frequency of the 8th mode of vibration of the damaged structure.  Physics-based intuition 

indicates that damage (e.g. a loose bolt) should cause a reduction in structural stiffness and thus a 

decrease in natural frequency magnitudes.  As shown in Table 4 this is true for almost all modes 

except the 8th mode of vibration (the 5th mode of vibration also portrays this property; however, 

much less prevalently).  This coupled mode is achieved by rotating mode shape 7 by 90° about 

the center of the plate.  When doing so, the previously dominant LOS now coincides with the 
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Mode 5 Mode 4 
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recessive LOS.  To overcome this unsymmetrical condition created by the loosened bolt in the 

lower left corner of the plate, a higher modal frequency is required for the 8th mode of vibration. 

In addition it should be noted that modes of vibration 9 and higher do not have a one-to-one 

correspondence between the healthy panel and damaged panels (i.e. the mode shapes for modes 9 

and higher of the healthy state model do not correlate with those of the damaged state model). 

In general, it is concluded that analytical predictions of the natural frequencies and mode shapes 

of the test article, obtained via modal analysis of the SFEM, correspond very well to EMA 

results.  Significant discrepancies between prediction and observation are due to resolution 

limitations of EMA.  The above qualitative assessment therefore concludes that eight correlated 

mode pairs (CMP) exist. 

 

3.4 Model Calibration 

Calibration was performed via systematically altering certain inputs to the FEM model.  The 

model input parameter available for adjustment that was analyzed first was finite element mesh 

size.  Due to constraints associated with model size, available run time, and model output 

capacity, a mesh size of 0.25 inches was chosen as the nominal element size (i.e. average 

element size; elements surrounding the bolt locations, as well as elements making up the 

simulated actuator, have a smaller element size – as small as 0.025 inches).   

The finite element discretization error was estimated based on the Richardson extrapolation 

method58.  In this method, the estimated numerical solution error due to mesh size 1h  (coarse 

mesh) is calculated as defined in Equation (7). 

    pRichardson r
yy

−
−

=
1

12ε      (7) 
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where the mesh refinement ratio 12 hhr = , and 1y  and 2y  are the model outputs via a coarse 

and finer mesh, respectively.  The order of convergence, p , can be estimated as 

( ) ( )( ) ( )ryyyyp lnln 1223 −−= , where 3y  is the model output with the finest mesh size 

possible, and 2312 hhhhr == .  It should be noted that for a particular realization of the random 

model inputs, discretization error is by itself deterministic.  Also the estimated error will not be 

accurate if even the finest mesh used in an analysis is not fine enough and asymptotic 

convergence of the finite element solution when mesh size is reduced, is not observed (i.e. 1y , 

2y , and 3y  should either progressively decrease or increase).59 

 

Table 6. Model discretization error quantification. 

0.25 0.125 0.0625*
1 225.93 225.62 225.59 -0.34
2 413.45 412.88 412.82 -0.64
3 413.45 412.88 412.82 -0.64
4 467.93 467.12 467.06 -0.87
5 810.56 810.2 810.17 -0.39
6 943.42 942.54 942.43 -1.01
7 1019.9 1018.9 1018.8 -1.11
8 1019.9 1018.9 1018.8 -1.11
9 1361.9 1359.5 1359.3 -2.62

10 1488.9 1488.2 1488.2 -0.70
11 1488.9 1488.2 1488.2 -0.70
12 1843.1 1842.3 1842.2 -0.91
13 2033.9 2033.0 2032.9 -1.01
14 2202.5 2199.8 2199.6 -2.92
15 2202.7 2199.8 2199.6 -3.11

* Maximum number of nodes (128,000) supported by Ansys 9.0 
(University Advanced - Research License)

Nominal Element Size (inches)Mode of 
Vibration

Richardson 
Error

 

 

Table 6 shows the results of three modal analyses of the FEM model of the healthy test article 

corresponding to three different mesh sizes.  Note that these FEM analyses did not include the 

uncertainty of the model input parameters and were of an un-calibrated model.  Hence, the 
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results of Table 6 do not echo the results shown in Table 4.  A refinement ratio of 0.5 was 

applied twice to the model containing elements of nominal size 0.25 inches to obtain models 

with nominal mesh size 0.125 inches and 0.0625 inches.  In this context, “nominal size” refers to 

the average size of the majority of elements of the model (i.e. the model contains smaller 

elements, as well as elements where at least one side is greater than the nominal size – especially 

near the simulated bolt and actuator locations).  It should be noted that for the model with 

nominal mesh size 0.0625, the maximum number of nodes (128,000) for Ansys 9.0 (University 

Advanced – Research License) was surpassed and not all elements of the model received perfect 

mesh refinement of 0.5.  Therefore, the nominal mesh size of the finest model is only 

approximately 0.0625 inches. 

From Table 6 it was concluded that the discretization error of the FEM model was insignificant.  

The largest percent error occurred in predicting the 9th mode of vibration and was estimated as 

0.19%.  Therefore, a nominal mesh size of 0.25 inches is adequate given the restrictions on 

available analysis run time and model output storage capacity. 

Calibration was continued via systematically altering the boundary conditions of the SFEM.  A 

major contribution to calibration was obtained by investigating the effect of the stiffness 

constants of the spring elements that were used to simulate the bolted condition in each corner of 

the plate, as well as changing the number and configuration of those spring elements.  The final 

calibrated boundary conditions at each bolt location consisted of 48 spring elements arranged in 

two circles (24 spring elements per circle) of radii 0.1366 inches and 0.2 inches around the bolt 

hole center such that the spring force acts perpendicular to the TPS plate.  The area impacted by 

the spring elements approximately covers the area contacted by the bolt head and washer.  The 

calibrated spring constants are 100,000 pounds/inch for healthy bolt conditions and 52,000 
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pounds/inch for a damaged bolt condition.  All nodes contained within a 0.125 inch radius of 

each bolt hole center, are fixed in translation, while the nodes contained within 0.1134 inches of 

each bold hole center are additionally fixed in rotation. 

Systematic permutations were applied to the previously mentioned boundary conditions and 

modal analyses for both healthy and damaged test articles were performed via SFEM.  For each 

set of evaluations the model validation metrics of Section 3.2 were considered.  The results 

corresponding to the calibrated models are presented in the following sections. 

 

3.4.1 Modal Comparison 

This section presents the assessment of the calibrated FEM models via modal testing, which 

provides a quantitative comparison between the predicted dynamic behavior of the test article (in 

both healthy and damaged states) as estimated by the calibrated models and those actually 

observed in the laboratory.  The first step of this comparison consists of ordering the modes of 

vibration (mode shapes and corresponding natural frequencies) for both the predictor models as 

well as the observed experiments. See Figure 10, Figure 11, and Figure 13 and Table 2 through 

Table 5 .  From a visual comparison, as summarized in Section 3.3, it can be concluded that the 

modes as predicted by the FEM model, actually correspond to the observed modes of vibration 

and that 8 correlated mode pairs (CMP) exist. 

The next step is to quantitatively check how well the two sets of CMP are in fact correlated with 

one another.  This is first investigated by plotting the experimentally observed modal frequency 

value against the predicted one for each of the 8 modes included in the comparison.  The plots, 

along with trend lines and R2-values are shown in Figure 14. 
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Figure 14. Plots of correlated mode pairs (axes show frequency - Hz). 

 

Both plots in Figure 14 show that each set of points lies on a straight line with slope 

approximately equal to 1.0.  In addition the scatter as measured by the R2-values is minimal, 

leading to the conclusion that the model predictions for the natural frequencies of the test 

specimen are highly correlated with the experimental observations.  Natural frequency difference 

(NFD) diagrams have also been generated and are shown in Figure 15.  NFD diagrams plot the 

natural frequency difference between all possible combinations of experimental and analytical 

model modes, showing any discrepancies in the CMP set.  As can be seen from the plots in 

Figure 15, the difference between the predicted and observed is least for the given sets of CMP.48 
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Figure 15. Natural frequency difference diagrams. 

 

In addition to the above comparisons of natural frequencies, the mode shapes also need to be 

compared quantitatively.  Given a set of 8 experimental mode shapes and a set of 8 predicted 

mode shapes, the 8x8 MAC-matrix shown in Table 7 can be constructed. 

 

Table 7. MAC matrix for the healthy model. 

1 2 3 4 5 6 7 8
1 0.994 0.001 0.001 0.000 0.066 0.001 0.000 0.000
2 0.000 0.359 0.641 0.003 0.000 0.001 0.000 0.177
3 0.000 0.359 0.641 0.003 0.000 0.001 0.000 0.177
4 0.000 0.006 0.000 0.993 0.001 0.000 0.000 0.001
5 0.027 0.000 0.001 0.000 0.986 0.010 0.001 0.003
6 0.000 0.001 0.002 0.000 0.002 0.960 0.000 0.018
7 0.002 0.004 0.058 0.115 0.020 0.111 0.177 0.077
8 0.000 0.097 0.033 0.000 0.000 0.001 0.925 0.000

Predicted 
Mode 
Shape 

Number

Experimental Mode Shape Number

 

 

Generally speaking, a value in excess of 0.9 implies well correlated modes48.  Table 7 shows that 

modes of vibration 1, 4, 5, and 6 are very well correlated with MAC values greater than 0.95.  

The two sets of paired modes, modes 2 and 3, and modes 7 and 8, however, stand out as 

insufficiently correlated at best.  This is due to the fact that EMA does not clearly differentiate 
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the mode shapes of these paired modes.  Instead, EMA lumps coupled modes into a single 

combined mode shape, causing the experimental results to include contributions from both of the 

paired modes.  It is unwise to place much significance on the MAC values of these coupled 

modes.  Therefore, it can generally be inferred from the modal comparison that analytical 

predictions and experimental observations correspond very well with one another. 

 

3.4.2 Model Reliability Metric 

The model reliability metric (MRM) can be applied directly to data corresponding to the 

damaged test article.  In this case Θ  represents a single experimental observation, while x  and 

s  are the observed sample mean and sample standard deviation of the modal frequency 

predictions, respectively.  n  is the number of data points utilized to estimate x  and s . 

 

Table 8. MRM for modal frequencies of damaged test article. 

0.04*MF 0.03*MF 0.025*MF 0.02*MF 0.015*MF 0.01*MF
r r r r r r

1 1.000 1.000 0.353 0.000 0.000 0.000
2 1.000 0.206 0.000 0.000 0.000 0.000
3 1.000 1.000 1.000 1.000 0.689 0.000
4 1.000 1.000 1.000 1.000 0.972 0.004
5 1.000 1.000 1.000 1.000 1.000 0.001
6 1.000 1.000 1.000 1.000 1.000 1.000
7 1.000 1.000 1.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000

Epsilon
Mode #

 

 

Table 8 shows the results for the damaged test article, where ε  takes on values of 4%, 3%, 2.5%, 

2%, 1.5%, and 1% of each corresponding modal frequencies (MF).  Note that since it is unknown 

which of the two sets of measurements (observation and prediction) is indeed true, the MF for a 

given mode of vibration is the average of all predicted and observed measurements combined 

(i.e. the comparison is not biased towards model prediction nor towards experimental 
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observation).  However, it is also worth noting that utilizing a percent of MF for ε  does cause 

the results to be biased towards passing modes of vibration with high modal frequencies; 

however, due to the increased uncertainty associated with modes of vibration greater than 

approximately 900Hz (due to EMA’s decreased resolution at higher modes of vibration), 

utilizing a percent difference between observation and prediction is warranted.  The tendency of 

more easily passing modes of vibration with high modal frequencies, which is associated with 

using a percent difference, might also help explain the poor performance of the model with 

respect to MRM when evaluating the first mode of vibration (i.e. excluding the coupled modes of 

vibration, MRM passes each mode of vibration with increasing ease as the modal frequency 

increases). 

Table 8 shows that for the first seven modes of vibration the experimentally observed 

frequencies are within 4% of the corresponding predicted values with 100% probability (i.e. 

000.1=r ).  It also shows that as the allowable difference, ε , decreases from 4% to 1% of MF, 

the reliability measure, r , also decreases as is expected.  The results in Table 8 also show that 

the eighth mode of vibration as observed during experiments has zero probability of being within 

4% of its corresponding predicted modal frequency.  In fact, an allowable difference of 10% of 

MF is required to yield a MRM of 100% for the eighth mode of vibration.  These results are 

similar to the comparisons made with MAC in that they clearly identify the coupled EMA modes 

of vibration as insufficiently similar to FEM predictions.  In addition, the results show that MRM 

is a stricter and more discriminating measure for validation and better identifies differences 

between model predictions and laboratory observations than the previous correlation assessment. 

In order to apply MRM to data corresponding to the healthy test article, additional considerations 

must be made since multiple (two) experimental observations in addition to the (50) SFEM 
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prediction measurements are available.  First it is assumed that both the predicted modal 

frequencies and the experimentally observed modal frequencies are normally distributed. A 

simple normality test verifies this assumption for the predicted data sets; however, due to there 

being only two samples in the experimentally observed data sets, normality is difficult to verify 

for the experimental observations; however, due to the nature of experimental error (a major 

source of uncertainty in experimentally observed data) the assumption is reasonable.  The mean 

of the difference between predicted and observed modal frequencies is then defined as 

21 xxD −= , where 1x  is the observed sample mean and 2x  is the predicted sample mean.  If 
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σσ .  1n  and 2n  are the number of data points in the observed and predicted data 

sets, respectively.  MRM can then be estimated for the model of the healthy test article as 

follows: 
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where 1s  and 2s  are estimators of 1σ  and 2σ in Ds , respectively. 

Table 9 shows the MRM results for the healthy test article, where ε  takes on values of 5%, 4%, 

3%, 2%, 1%, and 0.5% of the corresponding modal frequencies, MF.  Table 9 indicates that the 

mean frequencies of all modes of vibration as observed through experimental measurements are 
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within 5% of the corresponding predicted modal frequencies with 100% probability.  The results 

in Table 9 are in agreement with previous comparisons. 

 

Table 9. MRM for modal frequencies of healthy test article. 

0.05*MF 0.04*MF 0.03*MF 0.02*MF 0.01*MF 0.005*MF
r r r r r r

1 1.000 1.000 1.000 0.197 0.000 0.000
2 1.000 1.000 1.000 0.988 0.568 0.189
3 1.000 1.000 0.999 0.808 0.108 0.011
4 1.000 1.000 1.000 1.000 1.000 0.996
5 1.000 0.030 0.000 0.000 0.000 0.000
6 1.000 1.000 1.000 1.000 1.000 1.000
7 1.000 1.000 1.000 1.000 1.000 0.000
8 1.000 1.000 1.000 1.000 1.000 1.000

Epsilon
Mode #

 

 

Applying MRM to mode shapes corresponding to the modal frequencies tested above requires a 

multivariate formulation of r  and the joint probability density functions describing the elements 

of each mode shape vector.  Rebba, et al,44 suggest 

( )mmDDDDPr εεεε <∩∩<∩<∩<= L332211*  for m  number of elements and using 

bootstrap or analytical approximations to estimate the joint probability density functions.  For the 

example at hand, bootstrapping is investigated and presented in Section 3.4.3.  As a simpler 

alternative, a minimum threshold approach is implemented here, where it is required that at least 

23 of the 25 elements (i.e. 92%) in each mode shape vector be within a defined ε  with a 

minimum confidence of minr .  Table 10 and Table 11 show the results for the healthy test article.  

This validation assessment was not carried out for the damaged test article since the EMA 

resolution was insufficient to distinguish between damaged and healthy mode shapes. 

The results in Table 10 were obtained, one mode shape vector at a time, by adjusting minr  until at 

least 23 of the 25 elements in { }AΨ  were within ε  of  { }XΨ , where ε  was fixed at 0.15 units.  
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From Table 10 it can be stated that all elements in { }AΨ  corresponding to the first mode of 

vibration are within 0.15 units of the elements in { }XΨ  with 100% confidence;  23 of 25 

elements in { }AΨ  corresponding to the second mode of vibration are within 0.15 units of the 

elements in { }XΨ  with 3.5% confidence; and so on.  Note that the mode shape vectors were 

normalized, such that the largest element in each mode shape vector is 1.0 unit in absolute 

magnitude.  Again it is apparent that elements in { }XΨ  corresponding to coupled mode sets, 

modes 2 and 3, and modes 7 and 8, do not match well with their counterparts in { }AΨ .  

However, { }XΨ  corresponding to modes 1, 4, 5, and 6 is in good agreement with { }AΨ , and not 

much significance should be placed on the MRM values of coupled modes. 

 

Table 10. MRM for mode shape vectors of healthy test article. 

Mode # Epsilon

Min. 
Model 

Reliability 
Metric

# of 
Passing 

Elements

1 0.15 1.000 25 of 25
2 0.15 0.035 23 of 25
3 0.15 0.028 23 of 25
4 0.15 1.000 25 of 25
5 0.15 1.000 25 of 25
6 0.15 0.983 23 of 25
7 0.15 1.E-11 21 of 25
8 0.15 9.E-09 23 of 25  

 

Table 11, similar to Table 10, shows the probability levels with which the difference between 

corresponding elements of { }AΨ  and { }XΨ  are expected to be less than ε  for the healthy test 

article.  The results in Table 11 were obtained, one mode shape vector at a time, by adjusting ε  

until at least 23 of the 25 elements in that mode shape vector were equal to or greater than minr , 

which was fixed at 0.9.  From Table 11 it can be stated that 23 of 25 elements in { }AΨ  



 

 49

corresponding to the first mode of vibration are within 0.0672 units of the elements in { }XΨ  

with 90% confidence;  23 of 25 elements in { }AΨ  corresponding to the second mode of vibration 

are within 0.3048 units of the elements in { }XΨ  also with 90% confidence; and so on.  As 

previously explained, the experimentally observed mode shape vectors for coupled mode sets, 

modes 2 and 3, and modes 7 and 8, do not compare well to their analytical counterparts and this 

is once again evident in the results obtained from the MRM analysis in Table 11.  Analytically 

predicted mode shape vectors 1, 4, 5, and 6 are very comparable to their experimentally observed 

counterparts. 

 

Table 11. MRM for mode shape vectors of healthy test article. 

Mode # Epsilon

Min. 
Model 

Reliability 
Metric

# of 
Passing 

Elements

1 0.0672 0.9 23 of 25
2 0.3048 0.9 23 of 25
3 0.3216 0.9 23 of 25
4 0.0395 0.9 23 of 25
5 0.1086 0.9 23 of 25
6 0.1474 0.9 23 of 25
7 0.9940 0.9 23 of 25
8 0.4279 0.9 23 of 25  

 

Table 10 and Table 11 provide probabilistic comparisons between { }XΨ  and { }AΨ  for the 8 

modes of vibration considered.  It is easily recognized that mode shape vectors corresponding to 

the 1st, 4th, 5th, and 6th mode of vibration compare very well and that the elements of { }AΨ  are 

well within 0.15 units of the elements of { }XΨ  corresponding to those modes of vibration.  At 

least 23 of 25 elements in { }AΨ  corresponding to these 4 modes of vibration are within 0.15 

units of the elements in { }XΨ  with greater than 98% confidence. 
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From the MRM assessment of the SFEM it can be concluded that given an allowable difference 

of approximately 5%, the model predictions can be accepted with respect to natural frequency 

predictions (a 10% allowable difference is needed for mode 8 of the damaged test article).  With 

respect to mode shapes, an allowable difference of approximately 15% is required to accept the 

model predictions with high confidence. 

 

3.4.3 Joint-MRM via Bootstrapping 

In the previous comparisons conflicting inferences were made for individual modes of vibration.  

In order to obtain an overall measure of how well the FEM models predict the modal properties 

of the test article, bootstrapping is used to estimate the joint probability density function required 

to calculate the joint MRM, *r .  Rebba and Mahadevan44 suggest 

( )mmDDDDPr εεεε <∩∩<∩<∩<= L332211* , where 1D  to mD  are the errors between 

observation and prediction of modal frequencies 1 to m , and 1ε  to mε  are the corresponding 

allowable differences.  Bootstrapping is a data-based simulation method for statistical 

inferences.60  Bn  number of bootstrap samples are generated from an original data set.  Each 

bootstrap sample has m  elements, generated by sampling with replacement m  times from the 

original data set.  Bootstrap replicates ( )1*xs , ( )2*xs , ..., ( )
Bnxs *  are obtained by calculating 

the value of the statistic ( )xs  (in this case, the mean modal frequencies and mean mode shape 

vectors) on each set of bootstrap samples.  Finally *r  is estimated by finding the ratio between 

the number of samples for which mmDDDD εεεε <∩∩<∩<∩< L332211  is true and Bn .  

Utilizing the bootstrap method in this way preserves the correlation structure inherently present 
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among modes of vibration and, perhaps more importantly, within each mode shape vector.  The 

results are shown in Figure 16 and Figure 17. 
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Figure 16. Bootstrap MRM for modal frequencies of damaged test article. 
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Figure 17. Bootstrap MRM for modal frequencies of healthy test article. 

 

The plots in Figure 16 and Figure 17 show the joint cumulative probability distributions (CDF) 

( )8877332211 εεεεε <∩<∩∩<∩<∩< DDDDDP K  of the modal frequencies for 

different values of iε  (i.e. joint-MRM).  For the damaged test article, the first eight modal 
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frequencies as observed experimentally fall well within 10% of the corresponding mean 

predicted modal frequencies with 100% probability.  The results shown in Figure 16 are in 

agreement with previous results.  For the healthy test article, the first eight modal frequencies as 

observed experimentally and sampled via bootstrapping fall well within 5% of the corresponding 

mean predicted modal frequencies with 100% confidence.  These results are also in good 

agreement with previous conclusions (i.e. an allowable difference of approximately 10% is 

needed to pass the model of the damaged test article, while the model of the healthy structure 

achieves an MRM value of 1.0 with an allowable difference of only 5%). 

Figure 18 and Figure 19 show the joint cumulative probability distributions 

( )εεεε <∩<∩∩<∩< 252421 ddddP K  of the elements in the mode shape vectors of the 

healthy test article for different values of ε  (i.e. joint-MRM) as determined via bootstrapping.  

Here, 1d  to 25d  are the errors between observation and prediction of the mode shape vector 

elements 1 to 25, and ε  the allowable difference.  23 of 25 elements of a given mode shape 

vector were required to have a MRM greater than or equal to a given value of ε .  As it is evident 

from the results shown (i.e. an allowable difference of approximately 15% is required to pass all 

uncoupled modes of vibrations simultaneously), including the correlation structure of mode 

shape vectors decreases the joint probability of corresponding mode shape vectors for a given ε .  

The results shown in Figure 18 and Figure 19 agree with previous observations in that they 

clearly identify the coupled EMA modes of vibration as insufficiently similar to FEM 

predictions.  In addition, the results also show that MRM is a stricter and more discriminating 

measure for validation and better specifies exact differences between model predictions and 

laboratory observations. 
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Figure 18. Bootstrap MRM for uncoupled mode shape vectors of healthy test article. 
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Figure 19. Bootstrap MRM for coupled mode shape vectors of healthy test article. 
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From the above investigations it is concluded that the calibrated analytical models produce 

results similar to experimentation.  Natural frequency predictions are generally within 5% of 

observations; however, mode shape predictions require an allowable difference of approximately 

15% in order to be considered equal to experimental observations.  Similar to the correlation 

analysis of Section 3.4.1, MRM easily identified the coupled modes of vibration as insufficiently 

similar. 

 

3.4.4 Classical and Bayesian Hypothesis Testing 

In addition to the conclusions drawn from the applications of MAC and MRM, the discrepancies 

between prediction and observation are found to be statistically significant, such that classical 

and Bayesian hypothesis testing required the rejection of the null hypothesis, 

nobservatiopredictionH µµ =:0 .  Table 12 shows the Bayes’ factors as well as the p-values 

corresponding to a one-sample t-test of the first eight natural frequencies of the test article, where 

50=n .   

 

Table 12. Hypothesis test results of calibrated model prediction-observation comparison. 

Healthy Damaged Healthy Damaged

1 1.39E-195 0.00E+00 1.10E-32 2.08E-44
2 1.63E-51 1.44E-137 8.36E-10 2.90E-30
3 2.01E-131 8.85E-107 5.79E-23 9.83E-28
4 8.66E-01 1.62E-29 4.26E-04 4.60E-16
5 0.00E+00 5.31E-56 1.74E-53 1.41E-21
6 1.37 7.18E-27 0.752 2.54E-15
7 3.03E-54 6.59E-222 2.75E-21 3.71E-35
8 3.88E-09 0.00E+00 2.56E-08 1.73E-69

Bayes' Factor p-ValueNatural 
Mode of 
Vibration
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It should be noted that due to the limited number of experimental measurements (i.e. two 

samples from healthy test articles, and one sample from a damaged test article), the mean of the 

observations of the natural frequencies of the experimental modal analysis is considered constant 

for the application of classical and Bayesian hypothesis testing.  Note that due to the limited 

number of experimental measurements, laboratory observations are considered to be constant for 

the application of classical and Bayesian hypothesis testing (hence a one-sample t-test). 

 

3.4.5 Conclusions 

Calibration via systematic perturbation of several model input parameters identified the 

previously defined models (of healthy and damaged test article) as best by assessment via the 

validation metrics of Section 3.2.  It can be concluded that the calibrated model predictions are 

highly correlated with experimental observations and within small allowable differences of 

experimental observations; however, model predictions and experimental observations are 

statistically different. 

A more highly refined mesh of the finite element model and a more detailed modeling of the 

bolted fastening mechanism of the test article might produce results in better agreement with 

experimental observations; however, model size, run time, and output storage capacity 

requirements were significant constraints with respect to the model’s consequent use.  These 

issues had to be taken into consideration when it was concluded that the stochastic FEM model 

produced results sufficiently similar to experimental observation, such that the models can be 

considered calibrated and one could proceed with model utilization in the next step: independent 

model validation. 
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3.5 Independent Model Validation 

Additional independent experimental modal analyses (EMA) were performed to obtain the 

experimental observations of Table 13.  Due to the restrictions associated with EMA resolution it 

proved prohibitive to obtain estimates for modal frequencies and corresponding mode shapes 

greater than approximately 900Hz.  Note that modes of vibration greater than 900Hz were 

previously obtained (Table 2); however, due to changes in laboratory equipment/conditions, the 

capability to detect modes of vibration higher than 900Hz was not available during independent 

EMA testing.  Therefore only the first six modes of vibration are included in the independent 

model validation.  It should also be noted that previously, no calibration comparisons were made 

in regard to a free-free suspended test article condition.  During independent EMA testing, 

natural frequencies of the test article in a free-free suspended state were extracted.  The natural 

frequencies corresponding to the healthy, damaged, and free-free suspended structural conditions 

are listed in Table 13 for two test article specimens.  The mean mode shape vectors 

corresponding to the healthy and damaged structural conditions are provided in Table 14.  These 

independent experimental observations are compared to the calibrated model predictions of 

Table 4 and Table 5. 

In addition, Table 15 provides the natural frequencies of the test article in healthy and free-free 

suspended states as defined by Blevins.61  Blevins’ formulations for the exact natural frequencies 

of rectangular plates are derived from the numerical results of Leissa62 and assume ideal 

material, geometric, and boundary conditions.  Therefore the results in Table 15 are provided 

here only for guidance, where the healthy condition is considered to be a point supported plate.  

A point support boundary condition applies translational constraints at the point of application, 

but places no restrictions on the rotation of the plate about that point.  The test article in the 
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healthy condition, however, is fully bolted to the optical table via bolts and washers, which 

certainly constrain the plate to some degree in both translation and rotation at each bolt location. 

 

Table 13. Independent EMA modal frequency results (Hz). 
Mode of Vibration 1 2 3 4 5 6

1st Independent EMA - Healthy 227.1 411.7 411.7 472.8 838.7 937.5
2nd Independent EMA - Healthy 226.7 410.9 410.9 471.2 840.8 939.7

1st Independent EMA - Damaged 225.7 410.3 410.3 470.8 837.5 934.1
2nd Independent EMA - Damaged 224.2 407.8 407.8 466.7 838.6 933.5

1st Independent EMA - Free 215.5 320.6 404.8 560.8 560.8
2nd Independent EMA - Free 214.5 319.1 406.1 559.5 559.5  

 

Table 14. Mean mode shape vectors of independent EMA of healthy and damaged test article. 

Mode 1 2 3 4 5 6 1 2 3 4 5 6
0.023 -0.015 -0.015 -0.003 0.021 -0.033 0.023 -0.016 -0.016 -0.003 0.020 -0.038

-0.262 0.526 0.526 -0.521 -0.533 0.926 -0.259 0.527 0.527 -0.519 -0.517 0.936
-0.522 0.987 0.987 -0.945 -0.983 -0.033 -0.520 1.000 1.000 -0.950 -0.970 -0.111
-0.266 0.554 0.554 -0.522 -0.520 -0.929 -0.272 0.554 0.554 -0.559 -0.563 -0.851
0.022 -0.009 -0.009 -0.002 0.015 0.041 0.039 -0.034 -0.034 -0.002 0.035 0.092

-0.245 -0.049 -0.049 0.509 -0.521 0.746 -0.243 -0.278 -0.278 0.560 -0.552 0.697
-0.628 0.306 0.306 0.007 -0.043 0.985 -0.621 0.258 0.258 0.025 -0.031 0.948
-0.849 0.566 0.566 -0.299 0.242 -0.009 -0.841 0.560 0.560 -0.295 0.254 -0.007
-0.637 0.407 0.407 0.012 -0.032 -1.000 -0.640 0.417 0.417 0.013 -0.050 -1.000
-0.257 0.085 0.085 0.565 -0.518 -0.813 -0.286 0.301 0.301 0.569 -0.564 -0.822
-0.501 -0.144 -0.144 0.965 -1.000 0.197 -0.491 -0.437 -0.437 1.000 -1.000 0.034
-0.823 -0.078 -0.078 0.311 0.221 0.008 -0.816 -0.269 -0.269 0.333 0.218 0.008
-1.000 0.009 0.009 -0.003 0.879 -0.003 -1.000 0.012 0.012 -0.001 0.883 -0.020
-0.832 0.031 0.031 0.328 0.224 -0.008 -0.838 0.292 0.292 0.286 0.237 -0.009
-0.510 0.063 0.063 1.000 -0.952 -0.110 -0.529 0.516 0.516 0.927 -0.940 -0.163
-0.242 -0.105 -0.105 0.503 -0.490 -0.822 -0.232 -0.234 -0.234 0.535 -0.511 -0.752
-0.621 -0.396 -0.396 -0.016 -0.036 -0.894 -0.613 -0.412 -0.412 -0.015 -0.039 -0.876
-0.833 -0.554 -0.554 -0.316 0.188 -0.016 -0.823 -0.547 -0.547 -0.331 0.197 -0.021
-0.634 -0.315 -0.315 0.007 -0.038 0.903 -0.627 -0.264 -0.264 0.031 -0.041 0.938
-0.249 0.016 0.016 0.529 -0.497 0.831 -0.253 0.272 0.272 0.521 -0.510 0.930
0.027 0.008 0.008 -0.003 0.041 0.022 0.030 0.001 0.001 -0.002 0.046 0.016

-0.256 -0.530 -0.530 -0.508 -0.459 -0.793 -0.250 -0.515 -0.515 -0.523 -0.503 -0.741
-0.529 -1.000 -1.000 -0.939 -0.945 0.047 -0.521 -0.966 -0.966 -0.962 -0.984 0.050
-0.263 -0.531 -0.531 -0.518 -0.526 0.781 -0.247 -0.505 -0.505 -0.532 -0.536 0.711
0.017 0.007 0.007 -0.001 0.022 -0.026 0.019 0.007 0.007 -0.002 0.025 -0.023

Damaged Test Article

Mean 
Mode 
Shape 
Vectors

Healthy Test Article

 

 

Table 15. Natural frequencies via Blevins' formulation (Hz). 
Mode of Vibration 1 2 3 4 5

Free-Free Boundary Condition 217.916 319.686 394.64 565.711 565.711
Point Supported Plate 208.224 318.071 318.071 387.21  
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The validation metrics of Section 3.2 are again utilized (now for actual model validation as 

oppose to model calibration/assessment), and the details of their implementation are provided 

below along with general discussions and conclusions regarding the predictive capabilities of the 

SFEM.   

Independent validation is first investigated by plotting the experimentally observed modal 

frequency value against the predicted one for each of the 6 modes included in the comparison.  

The plots, along with trend lines and R2-values are shown in Figure 20.  From the plots in Figure 

20 it can be concluded that the independent experimentally obtained natural frequencies of the 

test specimen are highly correlated with calibrated model predictions, similar to the results of 

Figure 14.  In addition, the 6x6 MAC-matrix in Table 16 is constructed to quantitatively compare 

the predicted and independently observed mode shapes of the healthy test article.  The results are 

strikingly similar to those shown in Table 7, where paired/coupled modes 2 and 3 again stand out 

as abnormal due to EMA’s inability to clearly differentiate the mode shapes of these paired 

modes.  EMA lumps coupled modes into a single combined mode shape, causing the 

experimental results to include contributions from both of the paired modes.  As stated 

previously, it is unwise to place much significance on the MAC values of coupled modes.  The 

MAC values of the remaining four modes of vibration – namely the first, fourth, fifth, and sixth – 

are all greater than 0.98 leading to conclude that the mode shapes extracted via independent 

EMA tests are highly correlated with calibrated analytical predictions. 
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Figure 20. Plots of correlated mode pairs for validation of SFEM (axes show frequency - Hz). 

 

Table 16. MAC matrix for the healthy model for validation of SFEMs. 

1 2 3 4 5 6
1 0.998 0.000 0.000 0.000 0.032 0.000
2 0.000 0.992 0.992 0.000 0.000 0.000
3 0.000 0.966 0.966 0.000 0.000 0.000
4 0.000 0.000 0.000 0.999 0.000 0.000
5 0.064 0.001 0.001 0.000 0.997 0.000
6 0.000 0.000 0.000 0.000 0.000 0.984

Experimental Mode Shape Number

Predicted 
Mode 
Shape 

Number

 

 

Applying the model reliability metric as defined in Equation (8) to the independently observed 

results of the test article in the healthy condition produces the results shown in Table 17.  Results 

are provided for ε  equal to 6%, 5%, 4%, 3%, 2%, and 1% of the corresponding modal 

frequencies, MF.  Table 17 indicates that the mean frequencies of all modes of vibration as 

observed through independent experimental measurements of the healthy test article are within 

6% of the corresponding predicted modal frequencies with 100% probability.  These results are 

in good agreement with previous calibration evaluations, where the first 6 modes of vibrations as 

observed via EMA are within 5% of the corresponding predicted modal frequencies with 100% 

probability. 
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Table 17. MRM for validation of modal frequencies of the healthy test article. 

0.06*MF 0.05*MF 0.04*MF 0.03*MF 0.02*MF 0.01*MF
r r r r r r

1 1.000 1.000 1.000 1.000 0.823 0.000
2 1.000 1.000 1.000 1.000 1.000 0.004
3 1.000 1.000 1.000 1.000 1.000 0.999
4 1.000 1.000 1.000 1.000 0.036 0.000
5 1.000 0.062 0.000 0.000 0.000 0.000
6 1.000 1.000 1.000 1.000 1.000 0.472

Epsilon
Mode #

 

 

Also applying MRM as defined in Equation (8) to the independently observed results of the 

damaged test article yields the results shown in Table 18, where ε  takes on values of 8%, 6%, 

5%, 4%, 3%, 2%, and 1% of the corresponding modal frequencies, MF.  It should be noted that 

an allowable difference of 10% of MF is required to yield a MRM of 100% for the first mode of 

vibration.  The results of Table 18 are similar to previous calibration comparisons, where also an 

allowable difference of 10% was required to yield an MRM of 1.00. 

 

Table 18. MRM for validation of modal frequencies of the damaged test article. 

0.08*MF 0.06*MF 0.05*MF 0.04*MF 0.03*MF 0.02*MF 0.01*MF
r r r r r r r

1 0.496 0.000 0.000 0.000 0.000 0.000 0.000
2 1.000 0.008 0.000 0.000 0.000 0.000 0.000
3 1.000 0.995 0.321 0.000 0.000 0.000 0.000
4 1.000 1.000 1.000 1.000 0.995 0.654 0.037
5 1.000 1.000 1.000 1.000 1.000 0.000 0.000
6 1.000 1.000 1.000 1.000 1.000 1.000 0.467

Mode #
Epsilon

 

 

In addition, the application of classical and Bayesian hypothesis testing on the natural 

frequencies of  both healthy and damaged test articles again results in the rejection of the null 

hypothesis, nobservatiopredictionH µµ =:0 , similar to previous calibration evaluations.  Table 19 

shows the Bayes’ factors as well as the p-values corresponding to a one-sample t-test of the first 
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six natural frequencies of the test articles, where 50=n .  It should again be pointed out that due 

to the limited number of experimental measurements (i.e. two samples from healthy test articles, 

two samples from damaged test articles), the mean of the independent observations of the natural 

frequencies of the experimental modal analysis is considered constant for the application of 

classical and Bayesian hypothesis testing. 

 

Table 19. Classical hypothesis test results for model validation. 

Healthy Damaged Healthy Damaged

1 2.55E-157 0.00E+00 1.26878E-31 2.22E-69
2 1.48E-104 0.00E+00 1.58606E-27 7.36E-47
3 4.08E-20 0.00E+00 3.72713E-13 4.10E-54
4 1.70E-249 7.35E-59 2.24682E-36 4.93E-22
5 0.00E+00 1.99E-254 1.03658E-56 1.40E-36
6 5.76E-205 6.34E-85 2.4592E-34 1.70E-25

Bayes' Factor p-ValueNatural 
Mode of 
Vibration

 

 

3.6 Validation Conclusions 

In general, the results of the independent model validation yield conclusions similar to those 

drawn from the model evaluation comparisons of Section 3.4.  The calibrated model predictions 

are highly correlated with independent experimental observations and within small “allowable” 

differences of independent experimental observations.  However, the difference between the 

calibrated model predictions and the independent experimental observations is statistically 

significant. 

The plots in Figure 21 and Figure 22 show the mean and 95% confidence bounds of the 

calibrated SFEM predictions (labeled “P”), the first set of EMA observations (labeled “1st”), 

which was utilized to calibrate the SFEM, and the second set of independent EMA observations 

(labeled “2nd”), which was utilized for validating the SFEM.  The first six modal frequencies of 
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the healthy and damaged test article are shown.  It can be seen that the SFEM of the healthy test 

article generally over-predicted the natural frequencies of the first set of observations (with a few 

exceptions), while consistently under-predicting the modes of vibration of the second 

independent set of observations.  For the SFEM of the damaged test article, these trends are not 

as pronounced:  generally the model consistently under-predicts the natural frequencies of both 

sets of observations with very few exceptions.   

 

 
Figure 21. General comparison of predictions (P), first set of observations (1st), and second set of observations 

(2nd) for modes of vibration 1, 2, and 3.  Natural frequencies are shown along the vertical axis in Hz. 

 



 

 63

Note that confidence bounds for the damaged test article of the first set of experimental 

observations were constructed utilizing the EMA resolution limit of 0.625Hz as the standard 

deviation. 

 

 
Figure 22. General comparison of predictions (P), first set of observations (1st), and second set of observations 

(2nd) for modes of vibration 4, 5, and 6.  Natural frequencies are shown along the vertical axis in Hz. 

 

It cannot be concluded that the models are validated; however, due to the high correlation that 

exists between the predicted modes of vibration (modal frequencies and mode shapes) and EMA 

results, as well as the consideration of modeling constraints (model size, run time, and output 
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storage capacity), the SFEM analyses do have some level of predictive capability.  Later chapters 

of this dissertation show that this level of predictive capability is insufficient for the subsequent 

use of the SFEM; however, for sake of demonstration and developing the general methodology 

of SPO under uncertainty, the SFEM as defined in this chapter and in Chapter 2 will be utilized. 
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 CHAPTER IV 

 

4SHM SENSORS AND DAMAGE DETECTION 

 

This chapter relates to Objective 2 and focuses on identifying a damage detection method most 

effective for the example application.  Section 4.1 introduces the SHM sensors utilized during 

the experimental work of this study, while Section 4.2 reviews damage detection methods.  

Section 4.3 defines several sensor layout performance measures, which are utilized for 

evaluating different damage detection methods.  Section 4.4 introduces the three components of 

damage detection – feature extraction, features selection, and state classification – and 

investigates different combinations for use with the example application.  The most effective 

damage detection methodology is identified in Section 4.5 based on the performance measures 

defined in Section. 4.3. 

 

4.1 Sensors 

Several candidate sensor technologies for the use in SHM systems have been developed.  

Besides traditional strain gages, thermocouples, and accelerometers, these include fiber-optic 

sensors,63 active and passive ultrasonic sensing methods, and some remote wireless technologies 

and non-contact sensing architectures.64  In addition, in-situ sensor systems for high temperature 

applications have been developed.65  Currently in wide use and utilized in the laboratory 

experiments of this study, surface-bonded piezoelectric sensors are applied extensively in 

experimental settings and are well defined in regard to performance characteristics, operability, 

durability, and survivability under widely varying environmental conditions.66,67,68  The 
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popularity of piezoelectric sensor technology is directly related to a set of inherent advantages. 

The high modulus of elasticity of many piezoelectric materials is comparable to that of many 

metals and, although piezoelectric sensors are electromechanical systems that react on 

compression, the sensing elements show almost zero deflection. This is the reason why 

piezoelectric sensors are robust, have an extremely high natural frequency, and an excellent 

linearity over a wide amplitude range. Additionally, piezoelectric technology is insensitive to 

electromagnetic fields and radiation, enabling measurements under harsh conditions. Some 

piezoelectric materials such as galliumphosphate or tourmaline are extremely stable over a large 

temperature range enabling sensors to have a working range of 1000°C.  The single disadvantage 

of piezoelectric sensors is that they cannot be used for true static measurements. A static force 

will result in a fixed amount of charges on the piezoelectric material. Working with conventional 

electronics, which include imperfect insulating materials, a reduction in internal sensor resistance 

will result in a constant loss of electrons, yielding an inaccurate signal. Elevated temperatures 

cause an additional drop in internal resistance; therefore, at higher temperatures, piezoelectric 

materials that maintain a high internal resistance must be used; however, there are numerous 

applications that show quasi-static measurements while there are other applications that go to 

temperatures far beyond 500°C.69 

In addition to sensors, a major component of SHM systems is the data analysis and 

signal/information processing of the structural responses collected via SHM sensors.  Algorithms 

that process the data/signals retrieved by SHM sensor networks are generally known as damage 

detection methods.  The remainder of this chapter deals with damage detection and develops a 

method for sensor layout performance prediction, which is subsequently used for sensor 

placement optimization (SPO). 
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4.2 Damage Detection 

Damage detection and location identification algorithms include wavelet-based approaches70, 

two-stage modal frequency analysis71, and methods for eddy-current-based damage detection72.  

Also, several methods for structural damage detection use energy dissipative devices, which 

guarantee closed-loop stability73.  Property matrix updating, nonlinear response analysis, and 

damage detection using neural networks are all methods used to manipulate the information 

gathered by the SHM sensor system for decision making.7  A comprehensive review of state-of-

the-art damage detection and location identification algorithms is provided by Doebling, et al.7 

Most of the structural damage detection methods and algorithms found in the literature examine 

the changes in the measured structural vibration response and analyze the modal frequencies, 

mode shapes, and flexibility coefficients of the structure.  This examination of a structure's 

vibration characteristics can be done actively or passively.  During active investigation the 

structure is excited, usually using one or more piezoelectric actuators and the vibration response 

is recorded via several, usually piezoelectric, sensors.  When the structure is examined passively, 

sensors are used to record the structure's response due to its own operational excitation from 

propulsion systems, aerodynamic excitations, or other vibrations.3 

The signal analysis procedure employed in this study follows the general concepts of Duda, Hart, 

and Stork8 and utilizes the feature extraction and state classification methodologies defined by 

DeSimio, et al.9  A statistical pattern recognition methodology is employed, where the process 

begins by simulation via finite element models an applied vibration signal on the test article, 

such is the case in active SHM approaches.  The structural responses from a probabilistic FEM 

analysis are recorded, such that the statistics of the model outputs are quantified for all SFEM 
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locations for the damage conditions of interest, and are stored with corresponding structural state 

information.   

Structural response analysis is needed to estimate probabilistic sensor layout performance 

measures such as the probability of correctly classifying the structural state of a component or 

system for a given sensor layout, x (i.e. ( ) ) is state structural | as structureclassify ( iiPCCP ωω= ).  

This can be accomplished via any appropriate diagnostics signal analysis procedure (i.e. damage 

detection algorithm).  For the damage detection approach utilized in this study, a set of 

measurements or features are computed from the responses and associated with the 

corresponding structural state.  The resultant information provides labeled data for classifier 

design, which involves the specification of discriminant functions estimated from the statistics of 

the features corresponding to the structural states of interest.  The responses utilized for classifier 

design are known as the “training data set.”  The performance of the designed classifier is 

estimated by applying repeated analyses using different realizations, known as the “testing data 

set,” of the random inputs to healthy and damaged structural SFEM and their respective state 

classification to construct a classification matrix from which several probabilistic performance 

measures, such as ( )CCP , can be estimated.  Section 4.3 outlines the method for estimating 

sensor layout performance. 

 

4.3 Sensor Layout Performance Measures 

An appropriate damage detection algorithm (as will be defined in Section 4.5 for the example 

application considered in this study) is applied to sets of independent testing data corresponding 

to the previously identified structural states of interest: one healthy and four loose bolt conditions 

of the test article.  This yields a classification matrix corresponding to a given sensor layout, x, 
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from which several performance measures may be estimated.  The general form of a 

classification matrix corresponding to a particular sensor configuration is shown in Table 20. 

 

Table 20. Sample classification matrix for a given sensor layout. 

Damaged 
1

Damaged 
2

Damaged 
3

Damaged 
4 Healthy

Damaged 
1 CM11 CM12 CM13 CM14 CM15

Damaged 
2 CM21 CM22 CM23 CM24 CM25

Damaged 
3 CM31 CM32 CM33 CM34 CM35

Damaged 
4 CM41 CM42 CM43 CM44 CM45

Healthy CM51 CM52 CM53 CM54 CM55

True 
States

Classified States

 

 

Using the information contained in the classification matrix, one can estimate the probability of 

false alarm (Type I Error), the probability of missed detection (Type II Error), the probability of 

correct classification (Accuracy), and the probability of misdetection (1-Accuracy).74  

( )Alarm FalseP  is defined as the likelihood that the damage detection algorithm classifies a 

healthy structure as damaged.  ( )Detection MissedP  is the probability that the damage detection 

method classifies a damaged structure as healthy.  Accuracy is measured via 

( )tionClassificaCorrect P , which is defined as the probability that the damage detection method 

will classify a given structure correctly into its proper structural state (i.e. 

( )ii ωωP  is state structural | as structureclassify ).  The complement of ( )tionClassificaCorrect P  

is ( )onMisdetectiP .  These probabilities can be used to evaluate a given sensor array.  The 

performance measures are defined as follows. 
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( ) ( )TypeIPP ==
CMof5Rowin ElementsAllofSum

CM of 5 Rowin  Elements 4First  of SumAlarm False  (9) 

    ( ) ( )TypeIIPP ==
CMof5Column in ElementsAllofSum
CM of 5Column  Elements 4First  of SumDetection Missed  (10) 

  ( ) ( )CCPP ==
CMofElementsAllofSum

CM of Elements Diagonal of SumtionClassificaCorrect  (11) 

   ( ) ( )DetectionCorrect 1onMisdetecti PP −=     (12) 

These performance measures can be used to evaluate and assess a given damage detection 

method, where ( )CCP  should be maximized, while ( )TypeIP  and ( )TypeIIP  should be 

minimized.  In order to construct a classification matrix, a particular sensor configuration, x , 

must be specified.  Each sensor layout, x , is uniquely defined by the six coordinates that identify 

the location of sensors S2, S3, and S4 in Figure 1b.  That is ( )yxyxyx SSSSSSx 4,4,3,3,2,2= . 

In order to objectively evaluate the different damage detection methods that are presented in this 

chapter, the performance measures of Equations (9) through (11) are evaluated for multiple 

sensor configurations (i.e. investigating damage detection methods via the above defined 

performance measures for several sensor configurations provides a thorough evaluation of the 

damage detection methods in general, and not just with respect to one particular sensor layout).  

Figure 23 and Table 21 provide five randomly selected sensor configurations for the 

investigation of damage detection methods. 
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Figure 23. Five randomly selected sensor layouts. 

 

Table 21. Randomly selected sensor layouts shown in Figure 23. 

S2 S3 S4
SL1 (9.0, 9.0) (9.0, 3.0) (3.0, 3.0)
SL2 (10.5, 10.5) (10.5, 1.5) (1.5, 1.5)
SL3 (6.5, 11.0) (11.5, 5.5) (4.5, 5.5)
SL4 (6.5, 7.5) (6.5, 0.5) (1.0, 5.5)
SL5 (8.0, 10.0) (8.0, 4.0) (2.0, 4.0)

Sensor 
Layout

Coordinates of Sensors w/r to bottom, left 
corner of plate

 

   

Section 4.4 introduces the basic components of damage detection and discusses different damage 

detection methods.  Section 4.4.5 implements several of these damage detection algorithms and 

assesses their efficiency with respect to the probabilistic performance measures defined in this 

section in order to identify the most appropriate damage detection method for the example 

application of the test article.  The most effective signal processing method is specified in great 

detail in Section 4.5, where the damage detection algorithm specific parameters are provided. 
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4.4 Signal Analysis, Feature Extraction, and State Classification 

Generally, there are three components that make up damage detection methods (DDM): (1) 

feature extraction, (2) feature selection, and (3) state classification.  This section of Chapter 4 

introduces these components and supplementary signal processing techniques and strategies, 

which aid in implementing the three basic DDM operations.  Different combinations of these 

operations are evaluated using the probabilistic performance measures of Equations (9) through 

(11). 

 

4.4.1 Introduction to Feature Extraction 

The basic objective of feature extraction is to find a transformation, which transforms n-

dimensional observations into smaller m-dimensional features, which retain (and perhaps clarify) 

the information required for state classification.  Although many such transformations are 

problem specific and are often suggested by the physics involved in obtaining a particular 

observation, several “automatic” methods for determining features include principal component 

analysis (PCA), Fisher criterion minimization, entropy maximization or minimization, 

divergence analyses, as well as Bhattacharya distance analysis.75,76  These linear transformations 

use certain ‘optimal’ properties of the eigenvalues and eigenvectors of the correlation matrices of 

observed response signals to describe their sufficient statistics or features.  While reducing the 

dimension of the observation space, these optimal properties ensure that there is no increase in 

the minimum probability of error (i.e. probability of misclassification).75  That is to say, an 

optimal feature set contains all the information present in the observation space that is relevant to 

pattern recognition and state classification. 



 

 73

Nonlinear feature extraction methods are divided into two general groups: 1) computationally 

intensive iterative algorithms75, and 2) efficient but less accurate noniterative mapping methods. 

Noniterative, nonlinear mapping feature extraction methods have been proposed by Sammon77 

and by Koontz and Fukunaga.78  These methods attempt to identify the inherent structure of the 

data in n dimensions and find a nonlinear transformation to a m-dimensional feature set ( )nm <  

that ‘more-or-less’ preserves that structure.75 

Other, less automatic, but perhaps with a clearer physical interpretation, feature extraction 

methods are derived from power spectral density functions, auto- and cross- correlation 

functions, transfer functions, or probability density estimations.  Several of these methods are 

described in the following sub-sections. 

4.4.1.1 Auto- and Cross-Correlation Based Features 

Auto- and cross-correlation based features are established in the time-domain and are derived 

from the auto-correlation and cross-correlation functions of the measured response signal of the 

structure.  Assuming, for example, that the response time histories from three locations are being 

used (such as the case in the example application of this study), three auto-correlation and three 

cross-correlation functions may be computed.  The envelopes of these functions are computed, 

where the envelope, ( )tA , of a function, ( )tx , is defined as a pair of smoothly varying curves 

such that ( ) ( )txtA ≥  for all t  and ( ) ( )txtA =  at, or very nearly at, the peaks of ( )tx .79  

DeSimio, et al,9 for example, then estimate the second through fifth central moments of the 

envelopes of the auto-correlation and cross-correlation functions providing a total of 24 features.  

The first central moment is purposely omitted since it will assume a value of zero for auto- and 

cross- correlation functions.  In addition, central moments of order higher than five lack physical 

interpretation and are also omitted. 
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4.4.1.2 Frequency Domain-Based Features 

Features based in the frequency-domain are extracted from the power spectral density (PSD), 

( )ωS , of a given signal ( )tx .  ( )ωS  is the discrete time Fourier transform (DTFT) of the 

autocorrelation function ( )kR :80 

( ) ( )∑
∞

−∞=

−=
k

kTiekRTS πωω 2     (13) 

Sampling frequency and sampling interval, T , are important and require careful selection when 

analyzing a signal and extracting features in the frequency domain.  In addition, to obtain a more 

representative PSD estimate, the signal ( )tx  may be divided into bins of size bn  with a specified 

overlap (usually, but not necessarily, 50%).  Each bin is windowed (for example, with a 

Hamming window) and modified periodograms are computed and averaged.  This method of 

estimating the PSD is the well-known Welch method and provides a smoothed spectral density 

estimate.81  It is also a clever way to reduce the number of measurements, which is always a 

desired goal of feature extraction algorithms.  Depending on the length of the PSD (i.e. bn ), the 

measurements may be used directly as features.  Should the length of the PSD be considerable, 

an additional dimensionality reduction may be required. 

Extensions to the frequency domain based features defined above are coherence function based 

features, which may be obtained by taking measurements at discrete values of ω  of the 

following modified coherence function (MCF): 

              ( ) ( )
( ) ( )ωω

ω
ωγ

YYXX

XY

GG
G

⋅
=

2
2 ,    (14) 

where X  is the input signal, Y  is the response signal, and ( )ωIJG  is the cross-spectral density of 

signals I  and J .  When JI = , ( )ωIJG  is the auto-spectral density function.  Values of MCF are 
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calculated from each possible combination of two responses at a time from observed structural 

responses as signals X  and Y .  Assuming that the response time histories from three sensors are 

being used, this signal analysis feature extraction procedure yields six unique MCF.  Calculating 

the first few central moments of these coherence functions may also be another way to reduce the 

number of features and capture general properties of the MCF. 

4.4.1.3 Time Domain-Based Features 

In this method, the response signals are discretized in the time domain into bins containing 

perhaps 100 to 300 data points.  The standard deviation is calculated for each bin and is directly 

used as a feature.  Depending on how many data points make up the response signal (i.e. at 

which frequency data is observed and for how long), this procedure will yield a feature vector 

with a dimension anywhere between 100 and 500 or higher.  This would certainly cause the 

“curse of dimensionality,” which refers to the problems associated with multivariate data 

analysis as the dimensionality of the feature space increases,82 to take effect and a feature 

selection process or dimensionality reduction routine such as principle component analysis 

(PCA) must be implemented.  

The above procedure is based on the following idea.  Due to the often-used linear frequency 

sweep excitation function, the temporal response signal will have a large standard deviation for 

time intervals (bins) during which the structure is excited at a frequency that closely resembles 

one of its modal frequencies.  Due to the fact that the damaged structure will have different 

modal frequencies, the response of a damaged structure will have large standard deviations in 

different bins.  In addition to being physics based, this signal analysis procedure and feature 

extraction method is much less computationally intensive.  Also note that other energy based 

descriptors may be calculated for each bin of the discretized response signals. 
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4.4.1.4 Transfer Function-Based Features 

The transfer function of a system is defined as the ratio between the discrete time Fourier 

transforms (DTFT) of an output signal, ( )tx , and its corresponding input signal, ( )ty :80 

      ( ) ( )
( )fY

fXfH =      (15) 

where ( )fX  and ( )fY  are the DTFT of ( )tx  and ( )ty , respectively.  The coefficients of an 

autoregressive model of ( )fH  could then be used as features.  Other transfer function 

approaches utilize the parameter changes of interval models.83  Alternatively, calculating the first 

few moments of transfer functions, or perhaps the central moments of the envelopes of transfer 

functions, obtained from one input signal and several output signals, may represent desirable 

features. 

 

4.4.2 Introduction to Feature Selection 

In addition to feature extraction, further signal processing defined as feature selection can be 

beneficial.  Feature selection provides a subset of optN  features from the m-dimensional feature 

pool most effective for state classification.  In general, the fewer features used in a classifier, the 

more likely the training set performance will be representative of test set performance.9  This is 

directly related to the “curse of dimensionality.”82  Optimal methods such as an exhaustive 

search or the Branch-and-Bound method, which is restricted by the monotonous criteria, are 

computationally cumbersome for problems of large dimensions.  Therefore, more efficient 

feature selection methods such as sequential backward selection and its counterpart sequential 

forward selection methods, and Plus-l-Minus-r84 search may be utilized.  It has been shown that 

the most effective known suboptimal methods are currently the sequential floating search 
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methods.85  Feature selection utilized in this research is performed with sequential forward 

selection. 

4.4.2.1 Sequential Floating Forward Feature Selection 

A brief description of the sequential floating forward selection method is provided here.  See 

References 84 and 85 for more detailed derivations.  The selection process is initialized by 

setting the current optimal feature set to the empty set.  A ‘best’ feature is added to the optimal 

feature set by determining the feature which provides the highest quality metric.  A quality 

metric, usually related to classification accuracy, must be chosen.  The current optimal feature 

set and its corresponding quality metric are saved for comparison in the subsequent step, which 

is initiated by determining the ‘worst’ feature.  The ‘worst’ feature is defined as the one, which 

when removed from the current optimal feature set, provides the greatest increase in the quality 

metric.  The optimal feature set and its corresponding quality metric set from this step are also 

saved.  The quality metrics of the candidate feature sets obtained by adding the ‘best’ and 

removing the ‘worst’ features are compared.  The feature set that provides the largest quality 

metric is chosen.  The feature selection continues until a stopping criterion is reached, which 

typically is an upper bound on the number of features to be used, or until the quality metric stops 

increasing.9  The resulting optN  features are used in state classification. 

A key element of any feature selection method is the quality metric.  Since the ability to classify 

signals from practical applications, which are not available during the training phase of the 

damage detection method (DDM) is critical to its performance, the following approach is 

generally utilized.  First, the training data set is randomly partitioned into two subsets with equal 

number of signals in each state.  For a given current optimal feature set, the classifier is trained 

using one of the two subsets and tested on the other, and vice versa.  A quality metric or 
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performance measure, such as the ones defined in Section 4.3, may then be calculated and 

averaged over both subsets and utilized for feature selection.  This kind of cross validation 

during the feature selection training phase appears to increase the robustness of the optN features 

in applications to practical situations.9 

 

4.4.3 Introduction to State Classification 

State classification or pattern recognition deals with the assigning of a response signal obtained 

from a structure to a given state via feature measurements.  The goal of the classifier is to assign 

the signal to a state or category such that feature measurements for signals in the same category 

are sufficiently similar and appropriately different for signals in different categories.8  Bayesian 

decision theory is the fundamental statistical approach to state classification and provides 

optimal performance.8  That is to say, Bayes decision rule minimizes the probability of 

misclassification (i.e. ( )xerrorP |  is minimized, where 

( ) ( )
( )




=
kj

jk

statexstateP
statexstateP

xerrorP
 as classified if  |
 as classified if  |

|  for all jk ≠ , and x  is a vector containing the 

features extracted from a given signal).  Several discriminant functions or decision rules that 

hold their origin in Bayesian decision theory include the Euclidean norm (minimum distance 

classifier), the Mahalanobis distance, classifiers based on Parzen-window estimation, and 

nearest-neighbor classifiers.8  In Section 4.4.3.1 and Section 4.4.3.2 of this chapter, Bayesian 

decision schemes and Fisher linear discriminants and multiple discriminant analysis are 

generalized.  The Mahalanobis distance (MD) is implemented and evaluated in conjunction with 

different feature extraction and selection approaches in Section 4.4.5. 
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4.4.3.1 Bayesian Decision Theory 

The most basic and perhaps the most frequently used set of discriminant functions is derived 

from Bayesian decision theory.  The Bayes formula can be written as 

        ( ) ( ) ( )
( )xp

Pxp
xP ii

i
ωω

ω
|

| = ,    (16) 

where ( )iP ω  is the prior probability of the structural state iω , x  is the feature vector, ( )xp  can 

simply be viewed as a scale factor assuring that the posterior probabilities, ( )xP i |ω , sum to one.  

( )ixp ω|  is the conditional probability density function for x  given that the structural state is 

iω .  Thus for a classification problem of k  structural states, Equation (16) yields k  discriminant 

functions.  The decision rule then becomes: "Choose iω , if ( ) ( )xPxP ji || ωω >  for all ji ≠  and 

kji K1, = ."  It can be shown that Bayes decision rule minimizes the probability of error (i.e. the 

probability of misclassification) in the classification process.8 

Obviously one difficulty in using the Bayes formula is the determination of the prior 

probabilities as well as the conditional densities.  The quantity ( )xp  is of little importance and 

may be ignored since it is only a scale factor.  For the example application at hand, in order to 

calculate the state-conditional probability density functions, ( )ixp ω| , the multivariate PDF of 

the m-dimensional feature vector x  must be known for each structural state.  Assuming that the 

feature vector ( )xxNx Σ,~ µ , the conditional densities can be evaluated using estimates of xµ  

and xΣ , which can be obtained from the training data set.  Taking advantage of this information 

allows for several simplifications of Equation (16) and the derivation of the following set of 

discriminant functions: 

( ) ( ) ( ) ( )iiii
t

ii P
m

xxxg ωµµ lnln1
2
1 1 +Σ−−Σ−−= −    (17) 
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where the Bayesian decision rule is defined as: If ( ) ( )xgxg ji >  for all ji ≠ , then x  is classified 

into state iω  with minimum probability of error. 8 

In Equation (17), the prior probabilities, ( )iP ω , can be difficult to determine.  It is reasonable to 

assume initially, in the absence of any observations, that each structural state has an equal 

likelihood of occurring.  In practice one might adjust the prior probabilities based on observed 

experience.  However, assuming equal prior probabilities eliminates the bias that would be 

caused by allowing one structural state to be more likely to occur than another.  For example, it 

may seem to be reasonable to set ( )HEALTHYP ω  greater than ( )DAMAGEDP ω , since the probability of 

structural damage occurrence should certainly be low for any structure.  Allowing this, however, 

would cause the Bayesian decision rule to be biased towards classifying the structure as healthy 

and much more reluctant to identify it as damaged even when it is indeed damaged.  Therefore it 

can and should be assumed that each structural state has an equal likelihood of occurring.  This 

assumption further simplifies Equation (17) as 

( ) ( ) ( ) iii
t

ii m
xxxg Σ−−Σ−−= − ln1

2
1 1 µµ    (18) 

where ( ) ( )ii
t

i xx µµ −Σ− −1  is known as the Mahalanobis distance and each parameter can be 

estimated from the training data sets.  This shall be the basic form of all discriminant functions 

(i.e. classifiers) used in the following investigations.  Several additional assumptions may further 

reduce Equation (18).  However, generally speaking this is the classifier proven (mathematically) 

to work best (optimally) and will therefore be the foundation of all other applied/derived 

classifiers in this study. 
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4.4.3.2 Fisher Linear Discriminant 

The Fisher linear discriminant is based on discriminant analysis.  Whereas principle component 

analysis (PCA) finds directions that are ideal for representation, a discriminant analysis attempts 

to isolate those directions that are efficient for discrimination.  For a problem with k  structural 

states, it has been shown8 that a transformation matrix, W , that maximizes the ratio of between-

class scatter, BS , and within-class scatter, WS , projects m-dimensional observations into a 

( )1−k -dimensional subspace and simultaneously constructs ( )1−k  discriminant functions that 

allow state classification.  Scatter matrices are defined as: 

        ∑
=

=
k

i
W i

SS
1

ω , where ( )( )∑
∈

−−=
i

iii
xall

tmxmxS
ω

ωωω
 

   (19) 

            ( )( )∑
=

−−=
k

i

t
B mmmmS

ii
1

ωω     (20) 

where 
i

mω  is the within-class mean of class iω , m  is the total mean of all observations, and x  is 

the m-dimensional feature vector corresponding to a given observation.  The columns of an 

optimal W are the eigenvectors that correspond to the largest eigenvalues of BW SS 1− .  It should be 

noted that in general the solution for W  is not unique.  The W -induced transformation allows 

for rotation and scaling of the axes in various ways.  These are all linear transformations from a 

( )1−k -dimensional space to a ( )1−k -dimensional space and do not change the fact that W  

maximizes the ratio between BS  and WS .  It should also be pointed out that the Fisher 

discriminant only yields a straightforward decision rule for a two-class problem.  For a problem 

with k  states, the Fisher linear discriminant yields ( )1−k  discriminant functions for which it 

remains to find ( )1−k  thresholds, that is, points in the resulting ( )1−k -dimensional subspace 

separating the projected classes.  Searching for these thresholds may prove to be more difficult 
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than simply using the ( )1−k  values as features with Bayes classifiers.  Regardless, if anything, 

the Fisher linear discriminant analysis provides another way of reducing the dimensionality of 

the problem.8   

 

4.4.4 Additional Signal Processing 

There are several signal processing methods that can be used to normalize, clean (noise 

reduction), or otherwise transform (simplify) temporal data prior to application of feature 

extraction and selection methods.  With regards to temporal data, there are three fundamental 

types of signal processing schemes: (1) time history analysis, (2) frequency spectrum analysis, 

and (3) time-frequency distribution analysis.  Time history methods do not require a signal 

transformation and are therefore good for minimizing digital signal processing errors introduced 

by such procedures as the DTFT.  On the other hand, raw temporal data is usually only 

conducive for structural state identification when the signal contains relatively few principal 

components.  Otherwise frequency and time-frequency schemes are more appropriate.  Linear 

signal averaging, RMS signal averaging, average time, temporal variance, auto- and cross-

correlation, analytic signal, Hilbert transforms, and Poincare sections are all time history signal 

processing schemes.3  Discrete Fourier Transforms, auto- and cross- power spectra, and 

bispectrum are frequency domain analysis methods.3  Wavelet decomposition and wavelet 

mapping are two examples of time-frequency distributions,3 which allow a time dependent 

frequency analysis to be made.  Issues that must be considered when trying to perform any of 

these signal analysis methods deal with analog to digital signal conversion and discretization in 

time and frequency.  Other fundamental limitations in signal processing are that data is acquired 

at a finite sampling rate as well as for a finite period of time.  Frequency aliasing due to improper 
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sampling and data leakage due to signal truncation may result.  Signal processing techniques 

such as utilizing the Nyquist sampling rate and windowing may partially solve these problems. 

The above review indicates significant overlap between signal processing, feature extraction, 

feature selection, and state classification methods.  These techniques ultimately are used to 

extract key pieces of information (features) from recorded data, which, in combination with one 

or more discriminant functions, are used to classify a sampled signal into one of two or more 

states.8  There are no clear rules on what kind of features and classifiers are to be derived and 

combined for different problems and applications; only general guidance with some physical 

meaning and mathematical proof are available.8,75,76,80  The following sections of this chapter 

will investigate in detail some of these general methods and modify them to produce unique 

feature extraction and selection methods.  These methods are combined with one another to 

generate different damage detection algorithms, which are then evaluated on data obtained from 

the simplified test article via SFEM simulations described in previous chapters. 

 

4.4.5 Evaluation of Damage Detection Methods 

The probabilistic performance measures of Equations (9) though (12), which will used to 

evaluate different sensor arrays in Chapter 6, can also be used to evaluate a given combination of 

feature extraction, feature selection, and state classification methods and compare its 

performance to the performances of other combinations.  Due to the nature of this problem, it has 

been observed that these performance measures are highly dependent on where the structural 

response is measured.  Therefore, in order to identify the most robust combination of feature 

extractor and state classifier with respect to the location of the sensors, the sensor arrays of 

Figure 23 and Table 21 are considered and investigated. 
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In addition to sensor location, it should be noted that the performance measures are highly 

sensitive to the amount of uncertainty included in the model input parameters.  Initial 

investigations considered a coefficient of variation (COV) of five percent, which yielded 

classification matrices that appeared to have been constructed at random, regardless of the which 

combination of feature extraction, feature selection, and state classification algorithms are 

implemented.  On the other hand, a COV of one percent provides a nearly perfect classification 

matrix with non-zero values only along the diagonal for most of the combinations evaluated.  In 

order to better differentiate between different combinations of feature extraction, selection, and 

state classification methods, a less than perfect confusion matrix is beneficial.  Therefore a COV 

of two percent was used to perform the probabilistic finite element analyses and subsequent 

damage detection method evaluation.  This produced classification matrices that distinguished 

very well between different damage detection methods, rendering some as good and others as ill-

behaved at best.  The results are explained in the following sections, where several combinations 

of feature extraction, feature selection, and state classification algorithms are implemented.  The 

following combinations of feature extraction and selection methods and state classification 

algorithms were implemented and evaluated along the criteria defined in Equations (9) through 

(11).  Table 22 summarizes the combinations detailed in Section 4.4.5.1 through Section 4.4.5.5 

of this paper.  The results are provided in Table 23 through Table 25. 

4.4.5.1 DDM 1 

Power spectral density (PSD) functions are estimated for each of the structural responses 

observed by the three piezoelectric sensors according to the modified Welch method as 

previously described with a bin size, bn , of 30 data points and an overlap of 15 data points.  This 

produced ( )163×  measurements, yielding a 48-D feature vector whose dimension was reduced 
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to 10 via PCA.  The Mahalanobis distance was used for classification.  This combination is 

called DDM 1a. 

An additional implementation (DDM 1b) using the PSD functions of the responses as observed 

by the three piezoelectric sensors was performed, where instead of reducing the dimensions of 

the 48-D feature vector using PCA, 10 optimal features were selected via the sequential forward 

selection (SFS) process, where the performance criterion is ( )tionClassificaCorrect P  as defined 

by Equation (11).  This implementation is called DDM 1b. 

A third implementation (DDM 1c) using PSD-based features is applied to the sample data, where 

the modified Welch method used to estimate the PSD functions does so with 60=bn  data points 

and an overlap of 30 data points.  This increases the feature vector’s dimension from 48 to 93.  

The SFS process is used to reduce this feature space to 10-D.  The Mahalanobis distance is used 

for state classification in DDM 1b and DDM 1c. 

Utilizing sequential forward selection to identify the best 25 features from the feature pool of 93 

features, produces combination DDM 1d, which also utilizes the Mahalanobis distance as the 

classifier.  Three more variations, DDM 1e, DDM 1f, and DDM 1g, whose parameters are 

defined in Table 22, produce varying results shown in Table 23 through Table 25. 

4.4.5.2 DDM 2 

This damage detection method attempts to fully capitalize on the capabilities of PCA.  A 

dimensionality reduction is performed on the response signal in the time domain reducing the 

nearly 1000-D observational space to a 10-D feature domain for each sensor independently, 

resulting in a total of 30 features, which are used directly with the Mahalanobis distance for 

classification.  This combination is called DDM 2a. 

 



 

 86

Table 22. Summary of DDM definitions and combinations. 
PR 

Model

nb Overlap Norder

1a PCA 10

1b 10

1c 10

1d 25

1e 25

1f 30

1g 150 75 25

2a None 30

2b 10

2c 25

2d 30

2e 25

3a None 24

3b SFS 10

3c PCA 10

4a 4 15

4b 7 24

4c 10 33

4d 2nd-5th CM 12

4e PCA 30

4f PCA & SFS 10

5a 2nd-5th CM 12

5b 10 33

5c 5 18

5d SFS 10 10

5e None 2nd-5th CM n/a 12

Number of 
Features Used 
in Classification

Name of 
Combination 

DDM__

Feature 
Extraction

Feature 
Selection Features

Transfer 
Function

None
n/a

PSD      
Parameters

0

n/a

n/a

Coefficients of 
PR Model

As Is

Modified 
Coherence 
Functions 

(MCF)

None
Coefficients of 

PR Model

256

Power 
Spectral 
Density 
(PSD)

As Is

30 15

Auto- and 
Cross- 

Correlation
2nd-5th CM

Principal 
Component 

Analysis 
(PCA) n/a

SFS

SFS
60 30

100 50

 

 

A second implementation (DDM 2b) of this general methodology was employed where the 

nearly 1000-D observational space was projected to a 35-D feature space via PCA of each 

sensor’s response.  This yields a total of 105 features from which an optimal 10 were selected 

using the sequential forward selection process.  This 10-D feature vector, in combination with 

the Mahalanobis distance yields the damage detection method DDM 2b.  Utilizing sequential 

forward selection to identify the best 25 features from the feature pool of 105 features produced 

implementation DDM 2c.  Two more variations, DDM 2d and DDM 2e, are produced by various 
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parameter changes as indicated in Table 22, yielding different performances as shown in Table 

23 through Table 25. 

 

Table 23. Probability of false alarm for various DDM for sensor layouts of Table 21. 

SL1 SL2 SL3 SL4 SL5

1a 0.15 0.18 0.13 0.10 0.09
1b 0.13 0.11 0.07 0.09 0.10
1c 0.13 0.11 0.12 0.09 0.05
1d 0.12 0.09 0.12 0.10 0.14
1e 0.12 0.07 0.11 0.06 0.11
1f 0.13 0.08 0.10 0.09 0.12
1g 0.12 0.07 0.17 0.09 0.09
2a 0.19 0.14 0.21 0.18 0.16
2b 0.12 0.12 0.08 0.04 0.08
2c 0.12 0.09 0.16 0.05 0.14
2d 0.12 0.08 0.12 0.12 0.10
2e 0.11 0.11 0.11 0.08 0.08
3a 0.25 0.29 0.29 0.27 0.24
3b 0.17 0.15 0.10 0.10 0.16
3c 0.19 0.22 0.18 0.19 0.14
4a 0.57 0.45 0.47 0.70 0.55
4b 0.61 0.48 0.66 0.51 0.52
4c 0.41 0.30 0.61 0.50 0.59
4d 0.56 0.40 0.60 0.53 0.78
4e 0.92 0.72 0.76 0.95 0.92
4f 0.37 0.28 0.40 0.24 0.48
5a 0.75 0.52 0.68 0.62 0.67
5b 0.32 0.47 0.30 0.46 0.43
5c 0.47 0.51 0.55 0.65 0.50
5d 0.37 0.31 0.23 0.38 0.29
5e 0.65 0.37 0.69 0.62 0.62

Name of 
Combination 

DDM__

Sensor Layouts

 

 

4.4.5.3 DDM 3 

This combination of damage detection algorithms utilizes an auto- and cross- correlation based 

feature extraction method.  The auto- and cross- correlation functions of each sensor’s recorded 

response are estimated.  With three sensors, this approach generates a total of six functions (three 

auto- and three cross- correlation functions).  The envelopes of these functions are estimated and 
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their second through fifth moments are approximated and used directly as features for state 

classification.  A 24-D feature vector is employed in combination with the Mahalanobis distance 

for state identification purpose.  This combination is called DDM 3a. 

A second implementation of the auto- and cross- correlation based feature extraction method 

(DDM 3b) utilizes the SFS process to reduce the 24-D feature vector to 10-D.  This optimal 

feature set, in combination with the Mahalanobis distance is used for state classification.  

An additional implementation of this general methodology uses PCA instead of SFS to reduce 

the number of features from 24 to 10.  Combining this 10-D feature vector with the Mahalanobis 

distance provides the combination called DDM 3c.  No further variations of DDM 3a, DDM 3b, 

or DDM 3c were implemented due to their general initial poor performance. 

4.4.5.4 DDM 4 

Coherence function-based feature extraction is exploited in this DDM combination.  The 

modified coherence function (MCF) as defined in Equation (14) is estimated for all combinations 

of two responses at a time.  This yields three MCF with 128 measurements each (due to the 

utilization of the unmodified Welch method to estimate the auto- and cross- spectral densities 

with bin size of 256 data points and an overlap of zero), for which polynomial regression models 

of order orderN  are constructed.  The ( )13 +× orderN  coefficients of these models are used as 

features in conjunction with the Mahalanobis distance for state classification.  This 

implementation is called DDM 4a.  Variations DDM 4b and DDM 4c were performed, where the 

order orderN  of the polynomial regression models assumes different values.  The implementation 

specifications are detailed in Table 22.  The results are shown in Table 23 through Table 25. 

An additional implementation is performed (DDM 4d) that utilizes as features the second 

through fifth central moments of the MCF as estimated by Equation (14), where the PSD 
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functions are estimated with the unmodified Welch method.  This approach yields a 12-D feature 

vector that is used with the Mahalanobis distance for state classifications.  This combination is 

called DDM 4d. 

 

Table 24. Probability of missed detection for various DDM for sensor layouts of Table 21. 

SL1 SL2 SL3 SL4 SL5

1a 0.003 0.000 0.005 0.018 0.033
1b 0.023 0.005 0.013 0.023 0.013
1c 0.035 0.005 0.008 0.018 0.010
1d 0.008 0.003 0.005 0.010 0.005
1e 0.010 0.000 0.003 0.013 0.003
1f 0.005 0.003 0.000 0.005 0.003
1g 0.013 0.000 0.003 0.010 0.010
2a 0.003 0.000 0.000 0.005 0.000
2b 0.030 0.003 0.018 0.028 0.030
2c 0.008 0.000 0.000 0.005 0.000
2d 0.008 0.005 0.000 0.003 0.005
2e 0.010 0.003 0.003 0.005 0.008
3a 0.000 0.000 0.000 0.015 0.000
3b 0.015 0.000 0.015 0.030 0.005
3c 0.018 0.003 0.015 0.013 0.005
4a 0.095 0.180 0.248 0.058 0.133
4b 0.078 0.120 0.275 0.125 0.135
4c 0.243 0.450 0.170 0.225 0.220
4d 0.318 0.520 0.425 0.448 0.085
4e 0.000 0.015 0.010 0.000 0.003
4f 0.120 0.300 0.090 0.193 0.063
5a 0.197 0.423 0.256 0.358 0.303
5b 0.095 0.133 0.175 0.145 0.165
5c 0.080 0.160 0.053 0.088 0.153
5d 0.198 0.185 0.263 0.213 0.378
5e 0.265 0.553 0.256 0.360 0.332

Name of 
Combination 

DDM__

Sensor Layouts

 

 

A fourth approach using coherence function based features is implemented (DDM 4e), where 

PCA is employed to reduce the feature space dimension from ( ) 3841283 =×  to 10.  This 

reduced feature vector is used with the Mahalanobis distance for state identification.  The 

implementation is called DDM 4e. 
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A fifth and final implementation of the coherence function based feature extraction method is 

carried out (DDM 4f), where PCA reduces the number of features from 384 to 105.  In addition, 

SFS is applied to further reduce the feature space to a manageable 10 optimal features.  The 

Mahalanobis distance is used as the classifier. 

 

Table 25. Probability of correct classification for various DDM for sensor layouts of Table 21. 

SL1 SL2 SL3 SL4 SL5

1a 0.696 0.650 0.610 0.666 0.654
1b 0.744 0.726 0.680 0.760 0.780
1c 0.748 0.746 0.704 0.742 0.810
1d 0.880 0.834 0.812 0.868 0.832
1e 0.904 0.862 0.826 0.884 0.858
1f 0.914 0.856 0.814 0.884 0.860
1g 0.888 0.868 0.836 0.884 0.860
2a 0.784 0.754 0.706 0.770 0.732
2b 0.818 0.782 0.794 0.804 0.848
2c 0.888 0.822 0.826 0.874 0.874
2d 0.916 0.860 0.866 0.894 0.872
2e 0.908 0.846 0.830 0.876 0.882
3a 0.680 0.618 0.580 0.716 0.584
3b 0.644 0.618 0.626 0.648 0.712
3c 0.594 0.542 0.582 0.576 0.606
4a 0.414 0.366 0.348 0.400 0.376
4b 0.386 0.374 0.254 0.460 0.374
4c 0.400 0.320 0.362 0.382 0.352
4d 0.344 0.267 0.254 0.257 0.292
4e 0.280 0.422 0.282 0.460 0.266
4f 0.484 0.452 0.440 0.460 0.428
5a 0.314 0.254 0.263 0.201 0.212
5b 0.574 0.402 0.508 0.424 0.462
5c 0.520 0.382 0.476 0.368 0.452
5d 0.542 0.442 0.530 0.394 0.430
5e 0.280 0.241 0.261 0.202 0.209

Name of 
Combination 

DDM__

Sensor Layouts

 

 

4.4.5.5 DDM 5 

This combination is called DDM 5a and utilizes transfer function based features.  Equation (15) 

is used to estimate the transfer functions for all combinations of two responses at a time.  This 
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approach yields three transfer functions, whose second through fifth central moments are directly 

used as features in state classification.  The resulting 12-D feature vector is used in combination 

with the Mahalanobis distance. 

Two additional implementations (DDM 5b, DDM 5c), which utilize transfer functions, 

constructs polynomial regression models of order orderN  about them.  The ( )13 +× orderN  

coefficients of these models are used as features in conjunction with the Mahalanobis distance 

for state classification.  DDM 5b and DDM 5c are evaluated for 5=orderN  and 10=orderN , 

respectively, to yield the results shown in Table 23 through Table 25. 

Another approach to implementing transfer function based features is defined as constructing 

polynomial regression models of order orderN  about the transfer functions, and selecting an optN  

number of their coefficients to be utilized as features.  The SFS process is used to reduce the 

( )13 +× orderN  number of coefficients by selecting an optimal set of 10=optN  features.  The 

Mahalanobis distance is used for state classification.  This implementation is called DDM 5d and 

10=orderN . 

The last and final implementation (DDM 5e) is performed utilizing the second through fifth 

central moments of the envelopes of the transfer functions as features.  This produces a 12-D 

feature vector which is used directly with the Mahalanobis distance for state classification.  This 

combination is called DDM 5e.  No further variations of this general DDM were evaluated due 

to their initial poor performance. 

4.4.5.6 General Observations and Interpretations of Results 

From Table 23 through Table 25, it is clearly evident that different combinations of feature 

extraction, feature selection, and state classification methods, yield significantly different results.  
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In addition, sensor layout plays an important role and this investigation reiterates the need for 

sensor placement optimization (SPO), which is addressed in Chapter 6. 

With respect to the above implementations, the signal processing scheme that seems to provide 

the greatest improvement to any DDM regardless of how the features are initially extracted is the 

concept of identifying optimal features via feature selection.  Sequential forward selection 

determines the optimal combination of optN  features from a m -dimensional feature pool, where 

mNopt << , such that some performance measure is maximized.  In this investigation the chosen 

quality metric is ( )tionClassificaCorrect P  as defined by Equation (11).  m  is specified by the 

feature extraction method and may vary from as little as 10 to as much as 500 and more.  This 

leaves optN  to be specified by the user.  The following investigation attempts to identify an 

optimal value of optN . 

A feature pool of 28 independent and normally distributed features with N  samples per 

structural state was randomly generated, where 1000 500, 300, 200, 150, 100, 70, 40, 20, 10,=N .  

The SFS process was used to select the optN  optimal features which would maximize 

( )tionClassificaCorrect P , where 14 ..., 2, 1,=optN .  The results are shown in Figure 24. 
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Figure 24. Optimal number of features to search for via SFS vs. DDM performance. 

 

It is easily identified that the curse of dimensionality sets in rather quickly for problems with 

small sets of training data (i.e. when N is small).  However, even when N is relatively large 

(greater than 100), there is an optimal number of features that 

maximizes ( )tionClassificaCorrect P .  From the plot in Figure 24 it appears that this number is 

between 6 and 10.  Even when the training data set is large (i.e. 1000=N ), utilizing more than 

10 features causes a reduction in ( )tionClassificaCorrect P .  These observations instigated the 

investigation of an optimal number (or range) of features to be used with the test article and 

DDM described in the previous sections.  For the problem at hand 100=N .  Figure 25 shows 

the result obtained for DDM 2b and is a good example of the general trend observed with other 

DDM.  Therefore, whenever the sequential forward selection process is utilized to identify an 

optimal subset of features, 25=optN  should be used, unless the initial feature pool is of 

dimension less than 25.  This observation is also seen in Table 25 for combinations DDM 1e, 

DDM 1f, DDM 1g, and DDM 2c, DDM 2d, DDM 2e, which perform significantly better than 

other similar combinations with fewer numbers of optimal features utilized.  It should be noted 

here that the reason for observing this trend only in Table 25 is due to ( )tionClassificaCorrect P  
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being the performance measure employed during the SFS process.  It would be wise to utilize a 

multi-objective measure to include all probabilistic performance measures within SFS. 

 

 
Figure 25. Nopt vs. P(Correct Classification) for DDM 3a. 

 

An additional investigation that was conducted while implementing the different combinations of 

DDM considers the role and importance of orderN , the order of the polynomial regression 

models, whose ( )1+orderN  coefficients were used as features.  Similar to the SFS process 

analysis, a feature pool of 28 independent and normally distributed features was randomly 

generated with 100 samples per structural state.  Polynomial regression models of order 1 

through 10 were constructed and their coefficients used in classification via the Mahalanobis 

distance.  The results are shown in Figure 26. 
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Figure 26. Order of regression model vs. performance criteria. 

 

From Figure 26 it is evident that regression models of orders six to 10 adequately capture the set 

of useful features and allow for appropriate state classification.  It should also be noted that using 

a regression model with less than seven coefficients (i.e. 6<orderN ) does not provide sufficient 

detail about the feature space.   

 

 
Figure 27. Norder vs. performance metrics for DDM 5b. 

 



 

 96

A similar investigation was performed on data obtained from the test article and the DDM 

described above.  The results for DDM 5b are shown in Figure 27 and reflect the observations 

made for the analysis of the randomly generated features as well as the general trends observed 

for other DDM.  Therefore implementations which utilize coefficients of a regression model 

should be performed with a polynomial regression model of order six or higher. 

Table 23 through Table 25 demonstrate that more complex signal analysis and processing tools 

do not always yield more efficient or “better” results.  It is easily seen that simple PSD-based 

features, which are easily extracted, are much more effective than their more complex 

counterparts such as coherence function and transfer function based features.  In addition, as 

stated above, the single most important component of the implemented DDM appears to be 

feature selection via the SFS process.  Switching from PCA to SFS in the implementation of 

PSD-based features, caused an average increase of 12.7% in ( )tionClassificaCorrect P .  In 

addition, making the switch from PCA to SFS and increasing the feature pool from which to 

select the optimal feature set to be used for classification, caused an average increase of 14.6%.  

Similarly, a 39.4% increase in ( )tionClassificaCorrect P  was obtained when SFS was added to 

the DDM utilizing coherence function based features (i.e. DDM 4e vs. DDM 4f).  Similar trends 

of improvement are observed for other performance criteria when SFS is utilized. 

Two methods that generally do not work well for this particular problem are those 

implementations that utilize coherence function and transfer function based features.  Generally 

speaking, these DDM (DDM 4a through DDM 4f, and DDM 5a through DDM 5e) do not 

identify the test article’s state well.  Even when combining these methods with PCA or SFS, do 

they not correctly classify the structure more than 50% of the time.  ( )Alarm FalseP  and other 
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performance measures provide convincing proof that these approaches are ill behaved for this 

particular test application. 

In general, it was observed that PSD-based features in combination with PCA or the SFS process 

yield the best results with respect to several performance measures.  In addition it was shown 

that transfer function based features and coherence function based features generally performed 

poorly for the given example problem.  Overall, feature selection methods provide the greatest 

increase in performance and are a worthy computational expense, regardless of the type of 

features utilized. 

 

4.5 Applied Damage Detection Methodology 

The SHM methodology utilized in this study employs an active vibration sensing scheme which 

includes the excitation of the structure via a chirp input signal and the examination of the 

structure's response via pattern recognition and state classification methods.  This methodology 

compares a feature vector, extracted from the response signals of a structure in a given state, to 

several base line feature vectors and classifies the examined structure into the class whose base 

line feature vector most closely resembles the examined structure's feature vector.  Classification 

can be done using several different discriminant functions. 

From the estimated von Mises stress records of the SFEM analyses at sensor locations S2, S3, 

and S4 (Figure 1b and Equation (3)), a set of features is extracted. Features are characteristics 

unique to a signal generated under a given set of parameters.  The set of features utilized for this 

example problem is based in the frequency-domain and is extracted via the well-known Welch 

method81,86,87,88 from the power spectral densities (PSD) of the signals.  With a bin size of 

100=bn  measurements and an overlap of 50%, the Welch method produces 51 features each 
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from the signals obtained at piezoelectric sensor locations S2, S3, and S4 by dividing each signal 

into bins of specified size, bn , windowing each bin with a Hamming window of the same length, 

estimating the PSD utilizing the FFT technique with a specified length of N  for each bin, and 

averaging the periodograms over all bins.  In this study N  is equal to the bin size, bn .  This 

generates a 153-dimensional feature vector. 

Dimensionality reduction is achieved via feature selection.  Feature selection provides a subset of 

optN  features from the m-dimensional feature pool most effective for state classification.  In 

general, the fewer features used in a classifier, the more likely the training set performance will 

be representative of test set performance.9  A sequential forward search algorithm84,85 is used to 

identify 25 optimal features from the original 153-dimensional feature pool. 

The above defined feature vector is then used for state classification.  The state classifier utilized 

in this study is derived from Bayes decision theory and minimizes the probability of 

classification error.8  The discriminant functions, one for each structural state ("healthy", 

"damaged at bolt 1", "damaged at bolt 2", etc.), are the Mahalanobis distances as given in 

Equation (21). 

     )()()( 1
jj

t
jj xxxd µµ −Σ−= −     (21)  

where j indexes the structural state, x is a feature vector to be classified, and jµ  and jΣ  are the 

mean feature vector and covariance matrix of the learning data set of structural state j.  The 

training data set consists of the first 50 simulations of each structural state as obtained via the 

stochastic FEM procedure in Chapter 2.  Since the Mahalanobis distance requires the 

determination of the inverse of jΣ  it is necessary that the feature covariance matrix be non-

singular.  State classification is continued by evaluating each discriminant function for each 
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simulation of the testing data set, consisting of the second 50 simulations of each structural state, 

and assigning the state according to the discriminant function with the smallest value.  This 

procedure yields a classification matrix as shown in Table 20, from which probabilistic 

performance measures may be estimated. 

Applying this damage detection method to the five randomly selected sensor configurations of 

Table 21 and Figure 23 yields the performance measures shown in Table 26.  Note that for the 

five sensor layouts presented, the “best” sensor configuration varies depending on which 

performance measure is utilized for evaluation.  A multi-objective evaluation measure of the 

form shown in Equation (22) may be more appropriate. 

           ( ) ( ) ( ) ( )TypeIIPTypeIPCCPxf ⋅+⋅+⋅= γβα    (22) 

This however generates the additional problem of assigning values to constants α , β , and γ , 

which may prove to be difficult and depending on what values are chosen may cause the optimal 

solution to vary significantly.  Regardless, Table 26 reiterates the necessity of sensor placement 

optimization (SPO), which is addressed further in Chapter 6. 

 

Table 26. Performance measures corresponding to randomly selected sensor layouts of Table 21. 

SL1 0.916 0.12 0.0075
SL2 0.860 0.08 0.0050
SL3 0.866 0.12 0
SL4 0.894 0.11 0.0025
SL5 0.872 0.10 0.0075

Sensor 
Layout P(Type II)P(Type I)P(CD)

 

 

Guratzsch and Mahadevan89 have shown that the above damage detection algorithm works most 

efficiently in comparison with damage detection algorithms which utilize other feature types, 

feature extraction methods, dimensionality reduction schemes, and feature selection algorithms.  
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Therefore, this method as defined here is used for the remainder of this study – namely for sensor 

placement optimization (SPO), which was shown to be a necessity.  However, prior to 

optimizing the performance measures defined in Section 4.3 with respect to the location of 

sensor S2, S3, and S4, a validation assessment of the damage detection method, or sensor layout 

performance prediction methodology, must be undertaken.  Chapter 5 utilizes the validation 

metrics defined in Section 3.2, to assess the accuracy and usefulness of the sensor layout 

performance prediction methodology identified here.  Chapter 6 proceeds with sensor placement 

optimization. 
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 CHAPTER V 

 

5VALIDATION ASSESSMENT OF SENSOR LAYOUT PERFORMANCE PREDICTION 

 

This chapter is related to research Objective 2 and assesses the accuracy of the damage detection.  

The sensor layout performance predictions computed via the damage detection method of 

Section 4.5 are compared with performance measures obtained directly from experimental 

observations.  Section 5.1 provides an introduction, while Section 5.2 details the experimental 

procedure used to obtain laboratory observations for the validation assessment of Section 5.3. 

 

5.1 Introduction 

Similar to assessing the credibility of the SFEM, the prediction model for estimating the sensor 

layout performance measures requires validation assessment.  In fact, the general SPO 

methodology consists of three hierarchical components that require validation: 1) stochastic 

finite element model for dynamic structural analysis, 2) damage detection and sensor layout 

performance prediction, and 3) optimum sensor configuration design.  Figure 28 shows the 

hierarchical propagation of error through the general SPO methodology, where the uncertain 

inputs to each component, in addition to the modeling error associated with each component’s 

process, compound and produce uncertain outputs with increasing error and variability.  The 

validation of each component’s output prior to initiating subsequent components is critical in 

regard to maintaining control with respect to error and uncertainty of the overall SPO 

methodology output. 
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Validation assessment of the first component (SFEM models) was reported in Chapter 3.  The 

second stage of the SPO under uncertainty methodology (i.e. the sensor layout performance 

prediction method) as defined in Chapter 4, is being assessed in this chapter.  In order to assess 

the validity of the performance prediction method, several sensor layouts are tested 

experimentally.  Damage detection and sensor layout performance measures, as predicted by the 

analytical methodology and as observed in the laboratory are compared in order to validate the 

performance measure prediction method.  Several validation metrics – the modal assurance 

criterion (MAC), classical and Bayesian hypothesis tests, and the model reliability metric 

(MRM) – are again investigated.  Results are presented in Section 5.3. 

 

 
Figure 28. Propagation of error and uncertainty through general SPO methodology. 

 

During implementation of the sensor layout performance prediction methodology, information is 

lost at various points (e.g. where discrete signals receive a reduction in dimensionality), while 

modeling and processing errors enter the procedure (e.g. where continuous transformations are 

applied to discrete signals).  Figure 29 graphically shows each step of the prediction 
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methodology and isolates critical locations, where care must be taken to maintain control of the 

process. 

 

 
Figure 29. Sensor layout performance prediction methodology. 

 

Although the stochastic finite element model was validated (Chapter 3), the validation was 

performed on the natural modes of vibration, while the model is subsequently used for the 

prediction of the structure’s response to a sine sweep excitation.  Also, the SFEM output (i.e. the 

structural response realization) is in the form of a time-series displacement of the FEM nodes of 

the model in three axial directions.  An equivalent von Mises stress is estimated and utilized with 

the damage detection algorithm (Equation (3)).  In addition, MSP is used for transient analysis of 

the SFEM.  Modeling and processing errors are associated with this utilization of the validated 

stochastic FEM model. 

Feature extraction and feature selection provide two levels of data reduction and transformation.  

Feature extraction, by definition, assesses the most descriptive characteristics of a signal and 

discards the remainder, causing information loss.  In addition, the signal processing that takes 
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place to transform a finite, discrete, signal from the time domain into the frequency domain adds 

processing error and uncertainty.  Similarly, feature selection identifies the n most useful features 

for classification and discards the remaining information.  Subjectivity (and therefore 

uncertainty) is associated with choosing n.  While state classification via Bayesian decision 

theory minimizes the probability of classification error, an inherent amount of error remains.  

Uncertainty is associated with choosing the training data set of appropriate size.  Finally, 

probabilistic sensor layout performance measures are based on a discrete and finite number of 

samples within the classification matrix.  As will be pointed out in Section 5.3.2, the 

performance measures can only take on a finite number of discrete values, which certainly 

introduces error into the performance measure prediction.  The above identified locations of 

information loss and error introduction are shown graphically in Figure 29 and are by no means 

absolute and complete; other modeling and processing errors may exist and information may be 

generalized/discarded/lost at any step of the probabilistic sensor layout performance measure 

prediction methodology, and such errors should be accounted for in the analysis. 

 

5.2 Experimental Observations 

An important step is the validation of the sensor layout performance prediction method with 

experimental data.  This section provides a description of the laboratory setup and the procedures 

followed during laboratory testing.  Figure 30 shows the experimental SHM and data acquisition 

system as it is applied to the TPS test article described in Section 1.4 (Figure 1). 

The sensor layout performance prediction process of Chapter 4 was carried out for the seven 

sensor configurations listed in Table 27.  The coordinates are with respect to the bolt-4-corner of 
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the test article (i.e. bottom left corner of test article shown in Figure 1b) and the corresponding 

predicted sensor layout performances are shown in Table 27. 

 

 
Figure 30. Experimental SHM and data acquisition systems as applied to test article. 

 

Table 27. Results: predicted performance measures corresponding to seven different sensor layouts. 

S2 S3 S4 P(CC) P(FA) P(MD)
1 8.5, 8.5 8.5, 3.5 3.5, 3.5 0.898 0.13 0.0050
2 8.75, 6.75 6.0, 3.5 3.5, 0.75 0.944 0.13 0.0075
3 7.0, 8.5 11.73, 0.27 5.75, 1.25 0.916 0.01 0.0000
4 6.75, 8.75 9.25, 2.25 5.0, 5.0 0.896 0.10 0.0075
5 11.0, 11.0 11.0, 1.0 1.0, 1.0 0.874 0.08 0.0000
6 11.0, 7.0 6.5, 5.0 1.0, 5.0 0.898 0.08 0.0050
7 7.0, 11.0 7.5, 1.0 1.75, 1.0 0.878 0.08 0.0025

Coordinates of SensorSensor 
Array

Analytically Predicted 

 

 

The SHM actuation signals (i.e. sine sweep from 0 to 1,500Hz) are generated and recorded using 

a Labview version 6.1 software GUI and a National Instruments PXI 6052E data acquisition 

card.  A Fluke PM5193 Programmable Synthesizer/Function Generator produces a 1.5V, peak-

to-peak, swept frequency sinusoid, 0 to 1500Hz in approximately 2.0 seconds as the broadband 

excitation signal.  The excitation function is amplified with a Krohn-Hite 7500 amplifier by a 

factor of 100 and applied to the test article via a 0.25 inches in diameter piezoelectric disk 
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transducer (i.e. a surface-bonded piezoelectric actuator as discussed in Section 4.1) at sensor 

location S1 (labeled “Actuator” in Figure 30).  Structural responses are collected via 

piezoelectric sensors S2, S3, and S4 at a frequency of 10kHz and a 16-bit analog to digital 

conversion. 

Experimental structural response data from healthy and damaged states are collected in rounds.  

Each round of SHM testing and data collection consists of the following steps.  Prior to each 

round, all bolts are loosened entirely to simulate a detached TPS panel. 

• Bolt j is tightened to 25% nominal torque to simulate damage state j, while all other bolts 

are tightened to 100% nominal torque. 

• Four stimuli in the form of the above defined sinusoid are applied via the actuator. 

• Four corresponding responses are collected via piezoelectric sensors S2, S3, and S4 and 

recorded in the data storage device. 

• Bolt j is tightened to 100% nominal torque to simulate the healthy condition. 

• Four sine sweeps are applied via the actuator. 

• Four corresponding responses are collected and recorded. 

These steps are repeated for 41K=j , making up one round of data collection.  A total of 50 

rounds of experimental test data were collected per sensor array.  The SHM damage detection 

algorithm as defined in Section 4.5 is applied to each sensor array’s data set.  Classifiers are 

trained on the first 25 rounds, and tested on the remaining 25 rounds of each data set.  Training 

and testing data sets are reversed to achieve higher fidelity within the classification matrix.  It 

should be noted that the data recorded during experimental testing consists of time-series voltage 

signals captured by sensors S2, S3, and S4.  The signal applied via the actuator is also recorded 

and may be utilized for normalization purposes; however, this is not required for the damage 
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detection method applied in this study, which is directly implemented on the voltage signals (i.e. 

the voltage time-series measurements are not transformed into equivalent von Mises stress 

measurement).  Discrepancies between performance predictions and observations are certainly 

introduced; however, it is assumed (blindly) that these discrepancies are negligible. 

The experimentally observed performance measures corresponding to the seven sensor 

configurations of Table 27 are shown in Table 28.  Note, that neither Table 27 nor Table 28 

presents any expected values or variances of these variables, but simply shows the performance 

measures as obtained by applying the SHM damage detection procedure outlined in Chapter 4. 

 

Table 28. Performance measures corresponding to sensor arrays of Table 27. 

P(CC) P(FA) P(MD)
1 0.9688 0.0200 0.0238
2 0.9231 0.1163 0.0013
3 0.9912 0.0000 0.0037
4 0.9181 0.0100 0.0625
5 0.9950 0.0000 0.0063
6 0.9087 0.0125 0.1250
7 0.9500 0.0100 0.0775

Observed Laboratory Test 
Performance MeasuresPlate

 

 

5.3 Methodology Validation 

This section considers the application of the model validation metrics defined in Section 3.2 to 

evaluate and assess the usefulness of the sensor layout performance measure prediction 

methodology.  The modal assurance criterion (MAC), the model reliability metric (MRM), 

classical and Bayesian hypothesis tests, and multivariate validation are investigated. 
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5.3.1 Comparison and Correlation 

This section considers validation of the prediction methodology via the metrics discussed in 

Section 3.2.1 and Section 3.4.1.  The performance measures are sorted in order of ( )CCP , 

( )FAP , and ( )MDP , to examine the correlation between prediction and observation.  This is first 

investigated by plotting the experimentally observed performance measures against the predicted 

ones.  Trend line coefficients, R2-values, and correlation coefficients are provided in Table 29. 

 

Table 29. Trend lines and coefficient of determination. 

Slope Intercept R^2
1 1.1206 -0.0483 0.9824 0.9912
2 0.9868 -0.0088 1.0000 1.0000
3 1.0859 -0.0035 0.9998 0.9999
4 1.0325 -0.0152 0.9787 0.9893
5 1.1752 -0.0415 0.9922 0.9961
6 0.9676 0.0317 0.9639 0.9818
7 1.0706 0.0031 0.9793 0.9896

Trend LinesSensor 
Array

Correlation 
Coefficient

 

 

The data in Table 29 shows that the analytical predictions for the performance measures of the 

sensor arrays are highly correlated with their experimental counterparts.  Additionally, MAC, as 

described in Section 3.2.1, is applied.  Given a set of seven experimentally observed sensor array 

performance measures and a set of seven analytically predicted performance measures, the seven 

MAC values of Table 30 can be calculated. 

 

Table 30. MAC values for seven sets of performance measures. 

1 2 3 4 5 6 7
0.9846 0.9998 0.9999 0.9865 0.9917 0.9841 0.9894

Plate Number
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Generally speaking, a value in excess of 0.9 implies well correlated modes.48  Table 30 shows 

that all sets are very well correlated, with MAC values greater than 0.98.  Note that even though 

MAC has traditionally been applied to structural modal analysis model validation, it can be used 

to compare any two vectors with respect to correlation assessment.  Since correlation can be 

viewed as a measure of the angle between two vectors, another logical extension to comparing 

two vectors is the investigation of the distance between them.  The geometric distance given by 

{ } { }( ) { } { }( )AX
T

AX Ψ−Ψ⋅Ψ−Ψ  is a good measure of how close two vectors are to one another 

when only one measurement of each vector exists.  Otherwise the Mahalanobis distance, 

{ } { }( ) { } { }( )AX
T

AX Ψ−ΨΣΨ−Ψ −1 , where Σ  is the covariance matrix of either multiple analytical 

predictions or experimental observations, can be utilized.  It should be noted that the distance 

between two vectors alone does not provide an assessment of how well predictions correspond to 

observations; a measure of the angle between the two vectors must also be considered (i.e. 

correlation coefficients - Table 29; MAC values - Table 30; etc.).  Table 31 provides the 

geometric distance between the predicted sensor layout performance measurements of Table 27 

and the experimentally observed ones of Table 28.  As can be seen in Table 31, the distances, 

though small, are significant considering that the magnitude of the elements of each vector are 

limited to the range [0, 1]. 

 

Table 31. Geometric distance between seven performance measure vectors. 

1 2 3 4 5 6 7
0.132 0.026 0.076 0.108 0.141 0.138 0.125

Plate Number

 

 

The correlation analysis shows that the sensor layout performance prediction is well correlated 

with the observed performance.  However, the geometric distances between the prediction and 
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observation vectors, indicate that differences may exist, which is indeed the case as will be 

shown in the following sections of this chapter. 

 

5.3.2 Model Reliability Metric 

The model reliability metric (MRM) cannot be applied directly to the data of Table 27 and Table 

28, since only one measurement exists for all analytically predicted and experimentally observed 

performance measures.  Multiple measurements of the performance measures must first be 

obtained.  A random partitioning scheme of the analytically predicted data into training and 

testing sets may be applied to gather the stochastic properties of the performance measures with 

respect to the SHM damage detection process.  Previously, partitioning was performed via an 

ordered 50-50 split.  During random partitioning the data is grouped into equal size training and 

testing sets by random permutation of the data set, followed by a 50-50 split.  Applying this 

process 100 times yields 100 unique sets of performance measure estimates for each given sensor 

array.  The results of this random partitioning scheme as applied to the analytical predictions are 

summarized in Table 32. 

 

Table 32. Results of random partitioning of analytically predicted data set. 

Plate Mean StDev Mean StDev Mean StDev
1 0.892 0.013 0.1144 0.021 0.004 0.0025
2 0.942 0.0097 0.0887 0.0227 0.0041 0.0025
3 0.9126 0.013 0.0459 0.02 0.0035 0.0029
4 0.8904 0.0125 0.1018 0.0246 0.0039 0.0031
5 0.8455 0.017 0.1244 0.0264 0.0024 0.0029
6 0.8952 0.0151 0.0806 0.023 0.0072 0.0042
7 0.8741 0.0175 0.0895 0.0243 0.0015 0.0021

P(CC)  P(FA) P(MD)
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MRM is then applied directly as defined in Equation (5), where Θ  is a single experimental 

observation given in Table 28, while x  and s  are the observed sample mean and sample 

standard deviation of the performance measure prediction, respectively, shown in Table 32.  

100=n .  Figure 31, Figure 32, and Figure 33 show the results graphically as a function of ε , 

which can be interpreted as an allowable difference between performance prediction and 

observation. 
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Figure 31. MRM vs. ε for P(CC) performance measure. 

 

Figure 31 shows that for all seven sensor arrays, the experimentally observed ( )CCP  is within 

15 percentage points of the prediction with 100% probability (i.e. 000.1=r ).  Figure 31 also 

shows that sensor configuration 5 is likely an outlier.  In fact, all sensor layouts, except sensor 

array 5, produce MRM scores greater than 90% (i.e. 900.0=r ) for 08.0=ε .  These results 

show that MRM is a stricter and more discriminating measure for validation and better identifies 
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discrepancies between performance prediction and observation than the comparisons made in 

Section 5.3.1.  Where MAC concluded that performance measure predictions are approximately 

equally highly correlated to the experimentally observed ones for all sensor arrays, MRM clearly 

shows significant differences between analytical prediction and experimental observation.  

MRM, as defined by Equation (5), considers each performance measure individually; therefore 

differences that are not observable with MAC and trend line comparisons (slopes, y-intercepts, 

and R2-values), which consider the three performance measures simultaneously, can be detected 

with MRM. 
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Figure 32. MRM vs. ε for P(FA) performance measure. 

 

Figure 32 shows that the experimentally observed ( )FAP  is within 13.5 percentage points of the 

prediction with 100% probability for all sensor arrays.  Figure 32 also shows that sensor 

configuration 5 is likely an outlier.   
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Similarly, Figure 33 demonstrates that for all sensor layouts, the experimentally observed 

( )MDP  is within 12 percentage points of the corresponding predicted sensor layout performance 

with 100% probability.  All sensor layouts, except arrays 4, 6, and 7 produce MRM values 

greater than 90% (i.e. 900.0=r ) for 0202.0=ε , which corresponds to 2.02 percentage points of 

the performance measures.  Test plate 5 does not appear to be outlier for this particular 

performance measure.  Generally, the results shown in Figure 33 demonstrate good correlation; 

however, they contradict the MRM evaluations of ( )CCP  and ( )FAP  (e.g. MRM for ( )CCP  

and ( )FAP  conclude that the predictions for sensor layout 5 has the greatest deviation from the 

experimental observation; however, MRM of ( )MDP  shows that prediction and observation for 

sensor array 5 deviate by less than 0.5 percentage points with 100% confidence). 
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Figure 33. MRM vs. ε for P(MD) performance measure. 
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Applying MRM similarly to data corresponding to the experimentally observed performance 

measures (i.e. where Θ  is a single analytically derived performance measure, while x  and s  are 

the estimated sample mean and standard deviation of the experimental performance observations, 

respectively) yielded erroneous results.  Random partitioning of the experimentally observed 

training and testing data sets caused the performance measures to improve drastically in 

comparison to results obtained from an ordered 50-50 split.  Temporal trends within the features 

used for classification were found (i.e. the feature space was not stationary in time presumably 

due to small wear and tear changes in the plate, washers, and bolts, that were observed at each 

fastener location).  This obviously put strain on the classifier when testing data derived from a 

chronologically ordered 50-50 partitioning, while drastically simplifying classification when the 

data set is randomly permutated and then partitioned.  Therefore, MRM was not applied in this 

fashion. 

It should also be noted that the assumption of Normality does not hold for all performance 

measures due to several reasons.  First, the performance measures are probabilistic and are 

limited to the range [0, 1].  Second, the particular performance measures considered in this study 

are either very close to zero or very close to 1.0 causing significant skewness in the distributions.  

Thirdly, due to the finite number of samples that are used to construct the classification matrices, 

the performance measures can only take on a finite number of discrete values (e.g. 

( )








∈
j
j

jj
CCP ,,2,1

K , where j is the number of samples used to construct the classification 

matrix, i.e. 500).  It might be argued that due to the central limit theorem, as j increases and 

becomes large, the performance measures approximately follow a Gaussian distribution; 

however, the data set utilized in this work does not illustrate this and the use of Equation (5) is 

loosely applicable at best. 
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In general, the application of the model reliability metric showed that sensor configuration 5 is 

likely an outlier.  MRM also indicated that an allowable difference of 15 percentage points is 

needed to consider the predicted performance measures as equal to the observed performance 

measures.  It should be noted that due to the violation of a major assumption of Equation (5), this 

MRM application may be invalid; however, as will be seen in the subsequent section, the results 

are consistent with other probabilistic validation assessments. 

 

5.3.3 Classical and Bayesian Hypothesis Tests and Confidence Bounds 

Paralleling classical hypothesis tests, confidence bounds may be constructed for the sensor 

layout performance measures via the binomial distribution, if each attempt at classifying a 

recorded set of signals from the group of testing data is considered an independent and 

identically distributed event that can have only one of two outcomes: classified correctly or 

misclassified.  Clearly, the probability, P, that l of these n events fall into one of those groups is 

given by the binomial law, ( ) lnl
l PP

l
nP −−





= 1 , where the expected value for l is nP  and n

l  is 

the estimate for the probability P.  Upper and lower confidence bounds can then be constructed 

for any given confidence level, α , by following Johnson, et al.90  The results are presented 

graphically in Figure 34, Figure 35, and Figure 36, where upper and lower 95% confidence 

bounds for both experimentally observed and analytically derived performance measures were 

determined. 

As can be seen from the interval plots, there is significant overlap of the confidence intervals 

corresponding to sensor arrays 2 and 3, while for sensor configurations 1, 4, 5, 6, and 7 little to 

no overlap exists.  It should be noted that this type of comparison is analogous to constructing 2-

sample hypothesis tests without the requirement of multiple independent samples from a 
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Gaussian distribution.  The evidence supports the rejection of XAOH µµ =:  at the 5% 

confidence level, if there is no overlap of the confidence bounds corresponding to the two 

performance measures considered. 
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Figure 34. Graphical comparison of confidence bounds corresponding to P(CC). 
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Figure 35. Graphical comparison of confidence bounds corresponding to P(FA). 
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In Figure 34, Figure 35, and Figure 36, a “plate label” is given to each sensor layout performance 

measure, where “A” represents analytical prediction and “X” represents experimental 

observation (e.g. the confidence interval labeled “3-A” corresponds to the analytical prediction 

of sensor configuration 3). 
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Figure 36. Graphical comparison of confidence bounds corresponding to P(MD). 

 

Similar to the comparisons made with MRM, the results in Figure 34, Figure 35, and Figure 36 

are more critical of the differences between prediction and observation than correlation analyses.  

Only sensor array 2 shows overlap with respect to all three performance measures.  Conversely, 

only sensor configuration 7 contains no overlap with respect to all three performance measures, 

while all other sensor configurations show mixed results.  Therefore it is difficult to draw a 

significant conclusion from these comparisons; at best one can say that although some prediction 
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capability exists, there is significant room for improvement of the performance measure 

prediction methodology. 

In addition to this graphical comparison, Table 33 shows the p-values for the hypothesis tests 

constructed via Student’s 1-sample t-statistic.  Only one test has a p-value greater than 5%.  This 

leads to the conclusion that the analytically predicted performance measures are statistically 

different from the experimentally observed ones. 

 

Table 33. Results: hypothesis test via Student's t-statistic. 

Plate t-statistic p-value t-statistic p-value t-statistic p-value

1 59.08 5.2631E-79 44.95 1.1127E-67 79.20 2.3981E-91
2 19.48 1.1896E-35 12.16 2.3531E-21 11.20 2.6947E-19
3 60.46 5.6463E-80 22.95 2.0107E-41 0.69 0.49202447
4 22.16 3.6849E-40 37.32 4.0393E-60 189.03 1.782E-128
5 85.29 1.731E-94 47.12 1.2885E-69 13.45 4.5308E-24
6 8.94 2.2329E-14 29.61 5.4842E-51 280.48 2.082E-145
7 43.37 3.2514E-66 32.72 6.9617E-55 361.90 2.344E-156

P(FA) P(MD)P(CC)

 

 

The Bayesian hypothesis testing results via the definitions of Section 3.2.3 are given in Table 34 

and agree well with the results of classical hypothesis testing due to identical assumptions (i.e. 

the performance measures are normally distributed) and statistical strictness.  All but one 

Bayesian hypothesis test require the rejection of the null hypothesis.  Similarly to the results of 

classical hypothesis testing, only ( )MDP  of sensor configuration 3 accepts 0H  with a 

confidence of 88.2%. 
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Table 34. Results: Bayes' Factor. 
Plate P(CC) P(FA) P(MD)

1 0 0 0
2 3.1810E-81 2.5499E-31 1.5297E-26
3 0 6.5595E-113 7.4762
4 9.5909E-106 2.6947E-299 0
5 0 0 1.1130E-39
6 4.0803E-17 3.1208E-188 0
7 0 5.3836E-229 0  

 

The results of classical and Bayesian hypothesis tests provide evidence for the rejection of the 

null hypothesis test.  However due to the underlying assumption of normality for both test 

statistics (p-value and Bayes’ factor), it is beneficial to also consider the results of the graphical 

confidence intervals, which parallel two-sample hypothesis tests without the assumption of 

normality.  The results of this graphical analysis are mixed and inferring a precise conclusion is 

difficult.  Although correlation exists between analytical performance prediction and 

experimental observation, considerable improvement of the performance measure prediction 

methodology is necessary. 

 

5.3.4 Multivariate Validation via Bootstrapping 

In the previous comparisons conflicting inferences were made due to the inconsistent behavior of 

the validation metrics with respect to the three sensor layout performance measures and seven 

sensor configurations.  In order to obtain an overall measure of how well the prediction 

methodology performs for different sensor arrays, a multivariate comparison that includes 

( )CCP , ( )FAP , and ( )MDP  all at once must be made for each of the seven sensor 

configurations.  Therefore, applying MRM to all three performance measures simultaneously 

requires a multivariate formulation of r  and the joint probability density functions describing the 

distribution of the performance measure vector.  Similar to Section 3.4.3, it is suggested that 
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( )mmDDDPr εεε <∩∩<∩<= L2211*  for comparing m  number of elements 

simultaneously and using bootstrap to estimate the joint probability density function.  Here 1D  to 

mD  are the differences between the m  sensor layout performance observations and predictions 

and 1ε  to mε  are the corresponding allowable discrepancies.  *r  is estimated by finding the 

ratio between the number of bootstrap samples for which 

mmDDDD εεεε <∩∩<∩<∩< L332211  is true and Bn .  Utilizing the bootstrap method 

in this way preserves the correlation structure inherently present among the three performance 

measures.  Figure 37 shows the joint MRM (or ( )332211 εεε <∩<∩< DDDP ) of the three 

performance measures, ( )CCP , ( )FAP , and ( )MDP , for the seven sensor configuration, where 

200=Bn , 3=m , 100=k , and 321 εεε == . 
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Figure 37. MRM vs. ε for joint MRM of performance measures. 
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As is clearly evident from the plots, a joint MRM of 1.0 for all sensor configurations 

simultaneously is possible only for an allowable difference between prediction and observation 

of approximately 15.6 percentage points (i.e. 156.0321 === εεε ).  However, if test plate 5 is 

considered an outlier, as it was in previous comparisons, the allowable difference needed to 

obtain an MRM of 1.0 is reduced to approximately 11.9 percentage points (i.e. 

119.0321 === εεε ).  These results are in agreement with previous MRM conclusions.  It 

should be noted here that although the small value of ε  required to obtain a MRM of 1.0 for 

sensor layout 2 seems favorable, it is likely that the result for this sensor array is also an outlier.  

Therefore considering only test plates 1, 3, 4, 6, and 7, an allowable difference between 

performance prediction and laboratory observation of approximately 9.25 percentage points (i.e. 

0925.0321 === εεε  on average) can be expected to obtain a joint probability MRM of 100%. 

Due to the correlation between performance measures (see Table 35), the joint cumulative 

probability curves in Figure 37 closely follow the MRM curves corresponding to the 

performance measure with the smallest MRM  (i.e. the joint MRM is most similar to the MRM 

corresponding to the performance measure that requires the largest ε  to achieve 100% 

confidence) for a given sensor configuration.  For example, ( )332211 εεε <∩<∩< DDDP  of 

the performance measures for sensor configuration 6 most closely resembles the MRM curve for 

( )MDP  (see Figure 33). 

 

Table 35. Correlation coefficients of performance measures. 
P(CC) P(FA) P(MD)

P(CC) 1 0.25 - 0.44 0.10 - 0.28

P(FA) 0.25 - 0.44 1 0.07 - 0.32

P(MD) 0.10 - 0.28 0.07 - 0.32 1  
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From the multivariate validation assessment, it can be concluded that in order to accept all three 

performance measure predictions with high confidence, a significant allowable difference 

between predictions and observations must be available.  Therefore it is concluded that the 

difference between prediction and observation is significant, such that the prediction 

methodology cannot be considered validated with high confidence. 

 

5.3.5 Validation Assessment Inferences 

In this section, the methodology for SHM sensor layout performance prediction was applied to 7 

different sensor configurations and evaluated with results compared to experimentally observed 

performance measures for the same sensor configurations.  The analytically determined results 

were found to be correlated to experimental observations via the correlation and trend line 

comparisons, while significant differences between prediction and observation were found with 

MRM, confidence interval, and classical and Bayesian hypothesis testing.  Significant 

improvements need to be made to the prediction method in order to reduce the discrepancies 

between prediction and observation corresponding to different sensor configurations (see Table 

28 and Table 32). 

One important insight gained regarding the hierarchical propagation of error through the SPO 

methodology is that second stage validation requires that the first stage is validated to a 

significantly high degree – much higher than previously assumed adequate.  See Figure 28 and 

Figure 29.  Seemingly insignificant discrepancies between prediction and observation at the 

FEM level will propagate through subsequent procedures and processes and compound with 

modeling and processing errors to yield substantial differences between prediction and reality at 

the damage detection (probabilistic performance measure) level.  In Chapter 3 the stochastic 
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finite element model was validated based on the natural modes of vibration, whereas the model’s 

subsequent use was to predict the structure’s response to a sine sweep excitation.  In addition, to 

reduce simulation runtime by decreasing the number of degrees of freedom of the analysis, 

modal superposition (MSP) is utilized for transient analysis of the SFEM.  Modeling and 

processing errors that reduce the accuracy of the SFEM output are associated with this use of the 

validated stochastic FEM model.  The following section provides a comparison of the predicted 

structural response to the sine sweep excitation and the experimentally observed response 

obtained via the procedure defined in Section 5.2. 

 

5.4 Comparison of Predicted and Observed Displacement Response 

In order to compare the predicted signal (displacement) to the observed signal (voltage), they 

must be made comparable.  The piezoelectric sensors utilized in the experimental phase of this 

study are used as transducers in a radial expansion mode, where a voltage is applied (actuator) or 

measured (sensor) across the thickness of the piezoelectric material and a strain is created or 

sensed in the radial direction.  The amount of electric field generated due to an imposed strain 

can be calculated based on the properties of the piezoelectric material.  The sensors and actuators 

utilized in this study are made of APC 850 piezoelectric material with a piezoelectric constant, 

121075.1 −×−=materialC  meter/Volt, which relates the radial strain to the electric field as follows. 

          
( )
( )t
V

d
d

Cmaterial

∆
=      (23) 

where d∆  is the change in the diameter of the sensor/actuator (to be compared to the predicted 

displacement response), d  the unstrained diameter of the sensor/actuator, V  the voltage 

measured, and t  the thickness of the sensor/actuator.  For the sensors/actuators utilized in this 
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study, 41054.2 −×=t  meter and 31035.6 −×=d  meter.  Applying Equation (23) to the 

experimentally observed voltage signals shown in Figure 38 and utilizing the displacement time 

histories of the SFEM analysis shown in Figure 39, the following comparisons may be made. 

 

 
Figure 38. Healthy observed structural response for two measurements. 

 

 
Figure 39. Healthy simulated structural response for two realizations of the random model inputs. 

 

Figure 38 and Figure 39 show the predicted and observed structural response signals, 

respectively, where the predicted displacement response is obtained by averaging the relative 

displacement between the FEM node at a given location and its four nearest neighboring nodes.  
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This provides an averaged relative displacement comparable to d∆ .  Discrepancies between the 

signals shown in Figure 38 and Figure 39 are visually noticeable.   

In order to compare the features of these signals, the autocorrelation functions and power 

spectral densities (PSD) were estimated and are shown in Figure 40 and Figure 41, respectively.  

Discrepancies are easily noted.  It should be pointed out that the large spike at around 100 Hz in 

the PSD of the experimental observation likely consists of higher order frequency content folded 

into the lower frequency spectrum due to aliasing errors.  The Shannon Sampling Theorem80 was 

violated by utilizing a sampling rate not equal to twice the highest frequency at which the signal 

has energy thereby aliasing higher order frequency content.  That is the sampling frequency of 

500 Hz is much less than the Nyquist sampling rate of 3,000 Hz, which is twice the maximum 

input frequency of 1,500 Hz.80  However, this still does not warrant the large discrepancies 

between the predicted and observed PSD’s, since identical input excitation functions and 

sampling rates were utilized during simulation and experimentation, and one should also expect 

such a spike in the PSD of the simulated structural response.  In addition, to quantitatively 

compare model predictions and experimental observations, Table 36 lists the first five central 

moments of the autocorrelation and PSD functions of the experimentally observed and 

analytically predicted structural response signals. 
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Figure 40. Autocorrelation of analytical prediction and experimental observation. 

 

 
Figure 41. PSD of analytical prediction and experimental observation. 

 

Table 36. Central moments of autocorrelation and PSD. 
Moments 1 2 3 4 5

Experimental Autocorrelation 0.001071 0.00716 0.000158 0.001979 0.000465
Predicted Autocorrelation 0.000595 0.00652 0.000568 0.000822 0.000520

Experimental PSD 0.9996 12.295 261.46 6635.1 178857
Predicted PSD 0.9983 6.299 121.42 2667.3 61034  

 

From the plots shown in Figure 38, Figure 39, Figure 40, and Figure 41, it is easily seen that the 

model predictions of the structural response of the test article to a sine sweep input excitation 

does not agree with the experimentally observed measurements of the same signal.  The 
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discrepancies between the moments of the autocorrelation and PSD functions of the signals in 

Table 36 further show the model’s inadequacy.  These differences between prediction and 

observation at the FEM level obviously affect the accuracy with which the sensor layout 

performance prediction may be estimated. 

Due to the utilization of the SFEM for predicting the response of the test article to a sine sweep 

excitation, model validation via modal testing is inadequate.  Model calibration with respect to 

the response time histories is required before further analysis/design.  The experimental data 

obtained during the laboratory test of the seven sensor configurations may be utilized for 

calibration and subsequent validation of the SFEM using a leave-one-out cross-validation 

approach.  The model may be calibrated to different combinations of six out of the seven sensor 

layouts and their respective structural response time histories, while the remaining seventh 

sensor layout and its structural response time histories may be used for validation.   

Several simulation parameters that may lend themselves to calibration efforts are structural and 

material damping constants, integration time step size, as well as boundary conditions.  Ansys6 

notes that even small discrepancies between the model’s damping constants and real damping 

coefficients can lead to incorrect results.  Stiffness-weighted and mass-weighted damping may 

be defined, where generally stiffness proportional or beta damping is effective for oscillatory 

motion at high frequencies, while mass proportional or alpha damping is effective for low 

frequencies and will damp out rigid body motion.  These parameters (alpha and beta) may be 

candidates for calibration.  For the current SFEM analyses a constant damping ratio of 0.03 is 

utilized.  Secondly, the integration time step of the transient dynamic analysis is critical with 

respect to solution accuracy.  Several different approaches to selecting time stepping include 

time step bisection, response eigenvalue, response frequency, creep time increment, and 
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plasticity time increment.6  Time step size, which significantly impacts the simulation time 

required, may also provide calibration ability.  For the current SFEM analyses automatic time 

stepping is used within Ansys, where the load step factor is equal to 1.0 and the largest possible 

time step is specified as 0.002 seconds.  Thirdly, boundary conditions such as stiffness constants 

and nodal constraints are also available for calibration.  Model improvements such as better 

simulation of the bolted boundary conditions, as well as improved modeling of the actuator, may 

produce more agreeable results. 

Model calibration can be achieved via manual or systematic alteration and adjustment of model 

input parameters.  In some cases Bayesian updating may prove to be appropriate; however, for 

the problem at hand of matching the features of the predicted and observed time history 

responses (e.g. moments of their corresponding autocorrelation and PSD functions), the Bayesian 

perspective may not be easy to implement.  A least squares optimization approach may have 

potential, where the model input parameters are the optimization variables and minimizing the 

sum of squares of the errors is the objective. 

 

5.5 Conclusions 

This chapter investigated the validation assessment of the sensor layout performance prediction.  

It was shown that although highly correlated, the analytical predictions were different from 

experimental observations.  The discrepancy between prediction and observation was statistically 

significant. 

With respect to the different types of validation metrics used in this assessment, it is observed 

that comparisons based on correlation (i.e. MAC, trend lines, etc.) produce much more favorable 

results than stricter, more discriminating validation metrics such as the MRM, and classical and 
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Bayesian hypothesis tests.  Utilizing statistical validation metrics (i.e. metrics that include the 

uncertainty of the variables being compared) allows for a much more detailed and quantitative 

comparison. 

Additionally, the need for validating the time history responses to the sine sweep input 

excitation, in addition to the natural modes of vibrations, of the SFEM was demonstrated.  This 

will help reduce the compounding effect of error propagation within the sensor layout 

performance prediction process.  Calibration of the SFEM with respect to the structural response 

to excitation may produce more accurate damage detection and sensor layout performance 

prediction. 

For the sake of demonstrating the sensor placement optimization methodology developed in 

Chapter 6, the FEM model of Chapter 2 is utilized without any further calibration.  Realistic 

application of the proposed optimization methodology requires the calibration and validation of 

the model as discussed above before use in optimization. 
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 CHAPTER VI 

 

6SENSOR PLACEMENT OPTIMIZATION 

 

This chapter addresses sensor placement optimization (SPO), research Objective 4.  Section 6.1 

presents a brief literature review of sensor/actuator placement optimization and outlines the 

general approach utilized in this study is outlined.  Section 6.2 investigates the search domain 

with respect to the variability of the performance measures.  The Snobit10 approach is utilized to 

perform the actual SPO and is presented in detail in Section 6.3.  SPO results with respect to the 

example application are presented in Section 6.5. 

 

6.1 Introduction 

Several studies have explored methods for sensor placement optimization during recent years.  

Hiramoto, et al,91 as well as Abdullah, et al,92 have addressed the need to place actuators in an 

optimal way to control the behavior of dynamic structures.  The former uses the explicit solution 

of the algebraic Riccati equation, and the latter utilizes genetic algorithms, to solve the 

optimization.  Genetic algorithms (GA) have also been employed to search for optimal locations 

of actuators in active vibration control.93,94,95,96  With respect to SHM, Guo, et al,97 use a GA 

approach and a sensor placement optimization performance index based on damage detection to 

search for an optimal sensor array, and Spanache, et al,98 use GA and account for economic/cost 

issues in the design of a cost optimal sensor system.  Gao and Rose99 use GA in combination 

with evolutionary computation to develop an SPO for SHM framework.  However, GA-based 

sensor/actuator placement optimization methods often generate invalid strings during the 
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evolution process and require a predefined number of discrete sensor configurations, which do 

not guarantee global optima. 

Related more closely to SPO of SHM systems of next generation flight vehicles, Li, et al,100 

proposed an algorithm that aims to identify a sensor configuration that recognizes different 

modal frequencies and mode shapes most efficiently, as well as increases the signal to noise 

ratio.  However, it is not shown that a sensor array that best identifies modal frequencies and 

mode shapes optimizes more traditional SHM performance measures such as the probability of 

correct classification.  Gao and Rose101 define a probabilistic SPO approach, where a 

probabilistic damage detection model that describes detection probabilities over a confident 

monitoring region with radius R  is defined for each sensor of a given sensor set.  The 

effectiveness of the sensor network with respect to a given damage location is then assumed to 

be the joint effectiveness of all sensors.  It is estimated as the union of the individual sensor 

detection probabilities for all sensors in the network.  A covariance matrix adaptation evolution 

strategy is used to search the decision variable domain.  Major shortcomings of this approach 

include oversimplified probabilistic damage detection models and unspecified types and sources 

of uncertainty.  A similar SPO framework that addresses imprecise detection probabilities as well 

as uncertain search domain properties is proposed by Dhillon, et al.102 

Additionally, recent studies by Lim103, Padula and Kincaid104,105,106, and Raich and Liszkai107 

have provided the following insight into the problems and issues involved in SPO.  Integer and 

combinatorial optimization methods were used extensively in their studies to optimize the 

placement of actuators for vibration control and noise attenuation.  In general, most of the 

approaches identified in the literature can be summarized as: “given a set of n candidate 

locations, find the subset of a locations, where a << n which provides the best possible 
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performance.”  This has the obvious requirement of having to select a priori the number and 

positions of possible sensor locations.  Choosing values of n and a, as well as potential sensor 

locations, is a subjective task and, as Padula and Kincaid104 point out, can cause significant 

variation of the optimal solution. 

Additional discussions by Padula and Kincaid,104,106 and Raich and Liszkai107 point out that the 

performance measure can be quite different from problem to problem and may prove to be very 

complex.  In general, however, the performance function is linear and can easily be optimized.  

Most often the cumbersome component of these optimizations is to satisfy all of the constraints.  

The optimization method must be able to balance the expected performance over all conditions.  

A chosen optimization approach may need to impose heuristic constraints, to satisfy operational 

as well as geometric constraints. 

In addition to optimal sensor placement, the underlying goals of Raich and Liszkai107 include the 

minimization of the number of sensors placed on a structure while simultaneously increasing the 

amount of information gathered by the sensors, making this optimization approach multi-

objective.  Raich and Liszkai use an information measure that is based on the sensitivities of the 

frequency response function with respect to damage indicators.  This optimization method, as 

well as most others found in the literature, is deterministic.   

Conversely, multivariate stochastic approximation using simultaneous perturbation gradient 

approximation allows for the inclusion of noise in function evaluations or experimental 

measurements and shows to be very efficient for large-dimensional problems.108  A significant 

drawback of this particular methodology, however, is its gradient approximation, which, as all 

other gradient-based optimization methods, does not guarantee a global optimum. 
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In addition to the approaches briefly presented above, Tabu search109 is a heuristic optimization 

scheme that uses short and longer term memory as well as critical event memory to identify 

feasible solutions that are well-distributed across the search domain and global in terms of 

optimum.  Unfortunately Tabu search does not guarantee an optimum solution (neither locally, 

nor globally) and is quite computationally intensive due to its “brute force” nature. 

It should be noted that “design under uncertainty,” has been well established within the context 

of reliability-based optimization (RBO).  In RBO the objective function is usually linked to 

weight or cost and the uncertainties of the input variables is addressed and included via 

reliability requirements as the constraints.  These types of problems are usually solved via two 

loops; one loop performs the reliability calculations, while the second loop performs the 

optimization algorithm.  Coupled and decoupled approaches have been proposed in the 

literature110 in an attempt to make efficient use of computational efforts. 

The literature reviewed above addresses optimization of sensors or actuators placement only in a 

deterministic fashion, and general optimization methods that do include uncertainty are gradient-

based and do not guarantee global optimum – especially for applications with noisy objective 

functions.  This study develops a method for SPO under uncertainty, which – although gradient-

based – does search the feasible space in such a way as to produce global optima in the presence 

of uncertainty (i.e. noise).  This is achieved via the application of Snobfit10 to SPO. 

 

6.2 Investigation of Performance Measure Variability 

In this section, a sensitivity analysis of the performance measures (as estimated via the sensor 

layout performance prediction method of Chapter 4) with respect to each of the coordinates 

defining a given sensor configuration is investigated.  Given that there are three sensors (S2, S3, 
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and S4) monitoring and recording the structural response of the test article from which the 

probabilistic performance measures are derived, six coordinates exist that describe each sensor 

configuration uniquely and each sensor array can be investigated with respect to each one of the 

six coordinates defining it.  Figure 42 shows contour plots of the performance measures with 

respect to the location of SHM sensor S2.  In the plot of ( )CCP , which should be maximized, 

red areas are favorable; whereas in the plots of ( )FAP  and ( )MDP , which should be minimized, 

blue areas are favorable.  Cubic interpolation was used to generate these plots from several 

hundred evaluations of the performance measures at various locations on the test article.  The 

plots show that although optimal regions for sensor placement exist, the response surface is quite 

variable.  In Figure 42 the position of sensor S3 and S4 were held constant at locations (8.5, 3.5) 

and (3.5, 3.5), respectively, while the coordinates of sensor S2 took values in the ranges [6.0, 

11.75] and [6.0, 11.75] for coordinates xS2  and yS2 , respectively.  It should again be noted that 

all coordinates are given with respect to the bottom left corner of the plate as shown in Figure 1b 

and are specified in inches.  From Figure 42 it is clearly evident that location (8.5, 8.5), as 

specified for sensor layout 1 in Table 27, is not the “best” location for sensor S2 with respect to 

all three performance measures.  Considering the variability and magnitude of ( )CCP , as well as 

the constraint that each sensor must remain within its quadrant, location (6.0, 6.0) appears to be a 

good location to place sensor S2.  Under the same constraints, location (10.0, 10.0) would be a 

good placement for sensor S2 considering ( )FAP , and location (7.0, 6.0) or location (10.0, 11.0) 

considering ( )MDP .  Figure 42 reiterates the need for SPO. 
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Figure 42. Performance measures versus sensor S2 location (X1, X2). 

 

The above subjective qualitative analysis also supports the necessity of a more quantitative 

multi-objective assessment of the performance measures such as provided by Equation (22).  

Figure 43 plots the contour maps of the multi-objective performance functions listed in Table 37 
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(i.e. the fourth and fifth objective functions as defined in Section 6.5), which should be 

minimized.  Blue regions are favorable.  Considering the plots of Figure 43, location (6.0, 6.0) 

appears optimal and robust.  Further investigation and analysis of these plots need to take place 

in a quantitative manner before conclusions can be drawn. 

 

 
Figure 43.  Multi-objective performance measures versus sensor S2 location (X1, X2). 

 

In addition to showing that there are “optimal” regions on the test structure for placing SHM 

sensors, Figure 42 and Figure 43 show that the performance measures are quite noisy with 

respect to sensor location.  This is exceptionally evident in the plots of ( )CCP  and ( )FAP  in 
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Figure 42, where the performance measures are shown to vary by as much as 240% over a 

distance of less than 1.0 inch.  Therefore it is concluded that quantitative sensor optimization 

(perhaps multi-objective) is necessary and that an optimization scheme specifically designed for 

noisy objective functions is needed.  As will be shown in the next section, Snobfit10 is a good 

choice for this example application. 

 

6.3 Snobfit Method 

An appropriate approach to SPO that includes uncertainty is to employ Snobfit10 (Stable Noisy 

Optimization by Branch and Fit), an optimization scheme that is designed for bound-constrained 

optimization of noisy objective functions, which are costly to evaluate due to computational or 

experimental complexity.  A major advantage of using Snobfit is that the algorithm does not 

require a previously determined set of candidate sensor locations, but rather considers the 

following optimization problem. 

             
],[  ..

)( min
vuxts

xf
∈

        (24) 

where x is continuous and [u,v] is a bounded box in nℜ  with a nonempty interior.10  The Snobfit 

algorithm (programmed in Matlab111) as developed by Huyer and Neumaier10 is used to solve the 

optimization formulation given by Equation (24) iteratively.  Snobfit is designed specifically to 

handle the following difficulties that arise during the application of SPO on the test article. 

• The function values are expensive to evaluate (i.e. obtaining the performance measures 

for a given sensor layout is computationally intensive). 

• Instead of a function value requested at a point x, only a function value at some nearby 

point x~  is returned (the finite mesh size of the FEM models restricts that “sense-able” 
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responses required by the damage detection algorithm to estimate the performance 

measures are available only at nodal locations). 

• The function values are noisy (due to the finite number of simulations utilized to 

construct the confusion matrix, there is a finite precision/resolution with which the 

performance measures can be estimated). 

• The objective function may have several local minima (as shown in Section 6.2, the 

performance measures are ill behaved with many local optima). 

• Gradient information is not readily available. 

Snobfit initiates each iteration by partitioning of the search domain and constructs local quadratic 

models of the response function.  Snobfit combines local and global searches and allows the user 

to determine which of these searches is to be emphasized.  It also produces a user-specified 

number of suggested evaluation points during each iteration of the optimization to inform the 

user of areas in the search domain that require additional information on the objective function. 

The algorithm as developed by Huyer and Neumaier10 within Matlab111 searches for a solution to 

the problem in Equation (24) by repeated “calls” to a Snobfit function.  In each call to Snobfit, a 

set of K  distinct points 2 and ,,...,1for   , ≥= KKkxk  (i.e. a set of K  different sensor 

configurations), their corresponding objective function evaluations, kf  (i.e. their corresponding 

performance measures), the resolution of these function evaluations, kf∆  (i.e. the precision with 

which the performance measures were estimated), a natural number, regn , which specifies how 

many suggested evaluation points Snobfit should provide at the end of this iteration (i.e. Snobfit 

function call), two n-dimensional vectors u and v, where ii vu ≤ , which specify the dimensions 

of the search domain, and a number ]1,0[∈p , which allows the user to emphasize local (i.e. p  is 
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close to 0.0) or global (i.e. p  is close to 1.0) search, are required as inputs to the Snobfit 

function call.10 

Snobfit initiates by splitting the search domain ],[ vu  into K sub-domains, where each sub-

domain contains exactly one point.  When 2>K , the following procedure is applied. 

 while there is a subspace containing more than one point 

  choose the subspace containing the highest number of points 

  choose i such that the variance of 
ii

i

uv
x
−

 is maximal, where the variance 

  is taken over all the points in that particular subspace; 

  sort the points such that ...21 ≤≤ ii xx  

  split the subspace in the coordinate i at 1)1( +−+= j
i

j
ii xxz λλ , where 

  ( )j
i

j
i xxj −= +1maxarg  and ρλ =  if ( ) ( )1+≤ jj xfxf  and 

ρλ −= 1  otherwise; where ( )15
2
1

−=ρ  (i.e. the golden section number) 

 end while10 

When 2=K , Snobfit chooses i such that 
ii

ii

uv

xx

−

− 21

 is maximal and continues as specified above.  

The K subspaces [ ]**,vu  are assigned smallness factors defined as 

∑ 

















−
−

−=
ii

ii

uv
uvroundS **log2 , which are used to identify subspaces that are not yet well 

sampled (i.e. subspaces that are still relatively large with respect to other subspaces).10 

To construct the quadratic models, a Hessian fit around the best point, bestx  corresponding to the 

minimum objective function value, bestf , is computed by minimizing the sum of errors squared 
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defined as ∑ 2
kε , where ( ) ( ) kTk

k
kTkkT

bestk HssGsssgff ε++=−
2
1 , bestkk xxs −= , and 

( )( ) 1−

∑=
Tll ssH .  G  and g  are determined by minimizing ∑ 2

kε .  In order to speed up this 

process, the Snobfit algorithm actually performs an economy size QR-factorization 

( ) QRss TK =,...,1 , with an orthogonal matrix nKQ ×ℜ∈  and a square upper triangular matrix 

nnR ×ℜ∈ .  Here nK >  (i.e. Snobfit cannot start constructing quadratic models until there are 

more distinct sample points than dimension in the search domain).  Then ( ) 1−
= RRH T  and 

( ) 2kTkTk sRHss −= , for Kk ,...,1= .10 

Local quadratic fits around an arbitrary point x are determined similarly – utilizing only point x 

and its 5+n  nearest neighbors – where a suitable multiple, G γ , of the Hessian matrix G 

estimated above is utilized and the model error kε  is defined by 

( ) 222

2 kGkk
kTkkT

k fGsssgff βσεγ
+∆+++= , where ( ) 2bestk

k xxL −=β  and xxs kk −= .  

The parameters f, ℜ∈γ , and ng ℜ∈  are determined by the minimization of ∑ 2
kε .  The factor 

222
kGkf βσ+∆  automatically adjusts, such that for points with inaccurate function values (i.e. a 

large kf∆ ) and which are far away from bestx  (i.e. a large kβ ), a larger error in the fit is 

permitted.10 

Then by minimizing the quadratic fit around the best point, bestx , and around all other points, x, 

in each subspace, Snobfit returns the current best point, the current best function value, a 

measure of the accuracy of the quadratic model at the best point, and regn  suggested future 

evaluation points that are within the global search domain, ],[ vu .  The idea of the Snobfit 
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algorithm is to use these suggested points and their corresponding objective function values as 

the input of the next iteration of/call to Snobfit.10 

The methods used to generate the regn  points are grouped into five categories and proceed as 

follows.  For group number 1, a single point is suggested by minimizing the quadratic model 

around, bestx , over [ ( ) ( )vdxudx bestbest ,min  ,,max +− ], where d is a trust region radius.  A 

second suggested point, of group number 2, is obtained by minimizing the quadratic model 

around bestx  over [ ( ) ( )vdxudx bestbest ,min  ,,max ρρ +− ], where ρ  is the golden section number 

( ) 62.015
2
1

≈− .  For group number 1 and 2, if the suggested point of group 1 is not on the 

boundary of the specified search region, d is reduced such that the point falls on the new 

boundary and then used to specify the suggested point of group 2.   

The next group of suggested points is generated by minimizing the quadratic models 

corresponding to points x from each of the subspaces [ ]**,vu .  This generates 1−K  points, y, 

with corresponding model function values yf .  If for a given subspace ( )**05.0 vuyx −<− , 

the new suggested point y is considered to be too close to x and must be replaced by 

( ) ( )( ) ( )

( )





−−

<−−≤−+>−+
=′

                                                                                       otherwise **05.0
                               

*,**05.0or  ***05.0 and  if **05.0

vux

uvuxuvuxxyvux
y

i

iiiii

i  to yield 

a new suggested point and corresponding model value.  A checking procedure is used to assure 

that these new suggested points are not copies or nearly copies of each other.   

Additional points, grouped into group number 4, are taken from unexplored regions.  For a 

subspace [ ]**,vu  with corresponding point x, the point z is defined as 
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=

                  otherwise      *
2
1

** if       *
2
1

ii

iiiiii

i

vx

xvuxxu
z .  Points z are then selected in order of increasing 

smallness of their corresponding subspace, where ties are broken by preferring points coming 

from subspaces corresponding to small function values )(xf .  The fifth and final group of 

suggested points is essentially generated at random to assure that Snobfit returns a total of regn  

suggested points.10 

The coordinates of all these points are rounded to integral multiples of the resolution vector, x∆ , 

which is user specified, and a point is only accepted if it differs from all of the already sampled 

points by at least ix∆  in at least one coordinate direction.  This has the effect that some calls to 

Snobfit may not return any points of group number 1 and/or group number 2.10 

The objective function may then be evaluated at these suggested points and/or other locations for 

further Snobfit iterations.  A stopping criterion must be defined by the user and may be 

heuristically applied. 

 

6.4 Sensor Placement Optimization Method 

The above defined Snobfit optimization algorithm was carried out for the example application.  

As discussed in Section 4.5 and again in Section 6.2, the variability of the performance measures 

with respect to sensor location, and the varying inferences as to which sensor array is optimum 

with respect to different performance measures, are best addressed via multi-objective 

optimization.  Therefore Equation (22) is utilized in addition to three individual optimizations 

aiming to maximize ( )CCP , and minimize ( )FAP  and ( )MDP , respectively. 
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SPO was initiated by applying the sensor layout performance prediction method of Section 4.5 

on several randomly selected sensor configurations.  The resulting performance measures 

(Equations (9) through (11)) and multi-objective evaluation measure (Equation (22)) are inputs, 

( )xf , to the Snobfit function (programmed in Matlab111).  A separate Snobfit optimization was 

initiated for each of the individual performance measures and multi-objective performance 

functions.  Along with )(xf , the coordinates of the corresponding sensor configuration, 

( )yxyxyx SSSSSSx 4,4,3,3,2,2= , 500
1)( =∆ xf , the resolution of the classification matrix as 

discussed in Section 5.3.2, and regn , the number of suggested evaluation points to be specified by 

Snobfit (chosen to equal 15 for all Snobfit iterations), are specified.  Additionally, in the first 

function call to Snobfit for a given optimization, the dimensions of the search domain, ],[ vu , the 

resolution vector, x∆ , and the global-versus-local search weight factor, p, must be specified.  For 

the example application ( )25.0  ,25.0  ,25.0  ,0.6  ,0.6  ,0.6=u  and 

( ).06  ,.06  ,.06  ,1.751  ,1.751  ,75.11=v , which confine sensors S2, S3, and S4 to their respective 

quadrants of the TPS component.  ( )126.0  ,126.0  ,126.0  ,126.0  ,126.0  ,126.0=∆x , which was 

required due to the fact that the structural FEM model described in Chapter 2 has a finite fidelity 

and the temporal structural responses are only available at the FEM model nodes.  The points, 

which Snobfit suggests, are substituted with the nearest neighboring nodal locations.  Therefore, 

in order not to specify the same point (i.e. set of nodal locations) more than once for a finite 

element mesh of nominal size 0.25 (see Section 3.4) a separation of 0.126 (i.e. just slightly 

greater than 0.125) is required.  In addition, for the example application 5.0=p , which proved 

to be a reasonable balance of the computational effort between global and local searches. 
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At the end of each iteration (i.e. function call to Snobfit), the algorithm produces 15 suggested 

sensor configurations for utilization with the subsequent iteration.  The damage detection and 

state classification procedure described in Section 4.5 is performed for the suggested/requested 

sensor configurations to obtain the corresponding performance measures as objective function 

evaluations to the next iteration of/call to Snobfit.  Again it is noted that the objective functions 

(i.e. the sensor layout performance measures) can be evaluated at these points and/or other 

locations since Snobfit is flexible with respect to new information; it simply applies the branch 

and fit procedure described in Section 6.3 to identify the current optimum, and to suggest 

additional objective function evaluation points.  It is up to the user to decide whether or not to 

provide Snobfit with the information it suggested/requested, or to supply other new information. 

A natural stopping criterion is to stop exploration if for a number of iterations no new bestx  is 

generated, and the error corresponding to bestx  as predicted by Snobfit converges to a reasonably 

small value.  This approach was followed for the example application, where a stopping criterion 

was heuristically applied. 

 

6.5 SPO Results 

The above defined Snobfit sensor placement optimization approach was carried out for the 

objective functions listed in the first column of Table 37.  The first three objective functions are 

single-objective.  The fourth and fifth objective functions are of the form shown in Equation 

(22), where 5.0−=α , 25.0=β , and 25.0=γ  for the fourth objective function and 5.0−=α , 

25.0=β , and 0.5=γ  for the fifth objective function.  In addition, the compliment of ( )CDP ,  

( )[ ]CDP−1  (i.e. ( )onMisdetectiP ), is utilized in combination with α  as the first term of the fifth  

objective function to adjust the relative importance of each of the three performance measures to 
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a ratio of approximately 1:1:2 .  This brings the three individual objectives to a comparable scale 

without impacting the optimal solution (i.e. simply adding/subtracting a constant does not affect 

the objective function with respect to the design variables).  The approximate ratio of relative 

importance of the three performance measures for the fourth objective function is 1:20:360 .  

Other ratios of relative importance may be achieved by adjusting α , β , and γ , and via the use 

of other normalization schemes for standardizing the performance measures. 

 

Table 37. Results: optimal sensor arrays for various objective functions. 

S2 S3 S4 P(CD) P(Type I) P(Type II)

- P(CD) 71 258 8.75, 6.75 6.0, 3.5 3.5, 0.75 0.0104 0.944 0.13 0.0075

P(Type I) 12 58 7.0, 8.5 11.73, 0.27 5.75, 1.25 0.0426 0.916 0.01 0

P(Type II) n/a n/a 7.0, 8.5 11.73, 0.27 5.75, 1.25 n/a 0.916 0.01 0

Function 4 55 268 6.75, 8.75 11.60, 0.40 5.75, 1.25 0.0208 0.932 0.03 0.0025

Function 5 44 196 7.0, 8.5 11.73, 0.27 5.75, 1.25 0.0375 0.916 0.01 0
  Function 4 = -0.5 P(CD)+0.25 P(Type I)+0.25 P(Type II)

  Function 5 = 0.5(1 - P(CD))+0.25 P(Type I)+5.0 P(Type II)

Corresponding Performance 
MeasuresE

Objective 
Function     

f(x) =
Nite Nobj

Optimal Solution Coordinates for Sensors

 

 

The results corresponding to objective functions 1 through 5 are also shown in Table 37, where 

Nite  is the number of Snobfit iterations, Nobj  is the number of objective function evaluations, 

and E is the measure of accuracy of the quadratic model at the optimal solution as estimated by 

Snobfit (i.e. ( ) ( )( )xqxfE −= max , where the maximum is taken over the best point and its 

5+n  nearest neighbors and ( )xq  is the quadratic model).  The coordinates given are with 

respect to the bottom left corner of the plate in Figure 1b.  The results are visually presented in 

Figure 44. 

From Table 37 and Figure 44 it can be concluded that although the solution varies for different 

objective functions, the optimal sensor arrays corresponding to objective functions 2 through 5 
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are virtually identical.  Additionally, it was observed during the Snobfit iterations that the 

optimal solutions to objective functions 2 through 5 was robust and insensitive to small changes 

in the independent variables (i.e. shifting sensors S2, S3, and/or S4 by less than 0.25 inches in 

any direction, did not significantly alter the performance measures).  However, the solution with 

respect to  the first objective function, ( ) ( )CDPxf −= , was very sensitive to small changes in 

the independent variables (i.e. shifting sensors S2, S3, and/or S4 by less than 0.25 inches in any 

direction, significantly degraded the performance measures). 

 

 
Figure 44. Optimal sensor arrays corresponding to different objective functions. 
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Difficulties were observed while optimizing the third objective function, ( ) ( )TypeIIPxf −= .  

Several sensor configurations produced probabilities of missed detection of zero percent, 

creating many global optimal solutions, since a probability of missed detection less than zero 

percent is not possible.  Using the additional information gathered during the optimization of 

objective functions 2, 4, and 5, it appears that  

( ) ( )25.1 ,75.5 ,27.0 ,73.11 ,5.8 ,0.74 ,4 ,3 ,3 ,2 ,2 =yxyxyx SSSSSS  is also the optimal solution for 

the third objective function. 

Chapter 6 utilized the sensor layout performance prediction methodology of Chapter 4 in 

combination with Snobfit to optimize the probabilistic performance measures (Section 4.3) and 

multi-objective evaluation functions thereof (Equation (22)).  The variability analysis of the 

performance measures with respect to sensor location showed the presence of significant noise as 

well as significantly differing inferences with respect to optimum locations depending on which 

performance measure was utilized.  The SPO methodology revealed one particular solution that 

appeared to optimize most of the objective functions considered. 
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CHAPTER VII 

 

7SENSOR SENSITIVITY, RELIABILITY, REDUNDANCY 

 

Sensor sensitivity with respect to changes in the environment and sensor reliability in general are 

key issues that must be considered.  This chapter addresses concerns related to research objective 

5.  There are upper and lower thresholds of temperature and moisture where even state of the art 

sensors begin to record measurements improperly due to nonlinearity or stop working altogether.  

Additionally, the sensitivity of the data analysis methods with regard to small changes in the 

structural response due to environmental variability must be taken into account.  For example, if 

the structural state has not changed, but an increase in temperature is observed that ultimately 

causes the response of the structure or the response as recorded by the sensor to change, the data 

analysis method and signal processing algorithm must be insensitive to that variability and still 

classify the structure into the correct structural state as identified prior.  Another issue that needs 

to be addressed is sensor redundancy.  In order to have a reliable and robust system, there needs 

to be redundancy. 

Ongoing research at Wright Patterson Air Force Base66,67,68 has attempted to characterize the 

performance of piezoelectric wafers utilized as actuators as well as sensors, with respect to 

operability, durability, and survivability under widely varying environmental conditions.  

Surface-bonded piezoelectric sensors were studied under accelerated exposure conditions 

typically found in operational aircraft environments.  From these experiments, evidence of both 

gradual and abrupt sensor performance degradation was observed.  Blackshire, et al,112 

constructed models to understand and explain the aforementioned degradation due to undesired 
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load transfer processes between the aircraft and the sensor.  Critical material parameters related 

to bond and piezoelectric material types were identified. 112  In addition, a quantitative evaluation 

of the degradation due to temperature cycling was investigated.67  A general reduction and 

quadratic trend in out-of-plane displacement energy levels from approximately 36 nm peak 

displacement for 0 freeze-thaw cycles, to about 20 nm of displacement after 40 repeated freeze-

thaw exposures is observed.  This represents approximately 1.8% reduction in vibration level for 

each consecutive freeze-thaw cycle, with an apparent leveling-off at about 20 nm peak 

displacement after approximately 35 cycles.  An elevated temperature exposure cycling 

experiment was also considered, where a reduction and quadratic trend in performance with 

additional heat exposures was found.  A leveling-off in performance reduction from roughly 35 

nm to about 17 nm peak vibration amplitude was observed after approximately 20 heat cycles.  

This represents a reduction in vibration level for each consecutive heat cycle of approximately 

4.7%.  Accelerated electrochemical exposure did not seem to affect the sensor performance.67 

Considering the aforementioned observed sensor characteristics, it is necessary that damage 

detection classifiers be taught and calibrated using data obtained from sensors, which have 

experienced adequate numbers of freeze-thaw and elevated temperature cycles.  Significant 

reductions in detection performance of any sensor configuration should otherwise be expected 

after just a short time of operation, since the signals that will be recorded after several freeze-

thaw and elevated temperature cycles will certainly be different (even if only in magnitude 

leading to a decreased signal to noise ratio) than those signals that were utilized to teach the 

damage detection/state classification algorithm.  It should be noted that the sensor performance 

degradation does not affect or influence sensor placement optimization (SPO), due to the fact 

that the aforementioned sensor degradation is independent of sensor location.  All locations on a 
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TPS component of approximate size 12 inches x 12 inches are assumed to experience equal 

number of freeze-thaw and elevated temperature cycles, justifying the previous statement. 

Additionally of interest is the detection of cracked and disbonded piezoelectric sensors and 

actuators.  Blackshire, et al,66 utilized a novel displacement-field imaging approach to understand 

the vibration characteristics of “piezo wafer active sensor” (PWAS).  Crack and disbonding 

events were identified with relative ease and a high degree of precision and resolution.  

Disbonding of PWAS shows lobe intensified regions, where the disbonded actuator is permitted 

to vibrate at its own natural frequency.  In addition, the displacement-field imaging technique 

intensifies the out-of-plane displacement of the sensor caused by cracks and other sharp, free-

boundary anomalies, making their detection quite easy.67  This allows for nondestructive testing 

of the sensor system prior to operation of the SHM system, as well as during general 

maintenance of the aircraft and its subsystems. 

In addition, while there are several studies113,114,115 that attempt to identify the performance of a 

piezoelectric sensor/actuator with a known level of disbond, only a limited number of studies 

investigated how to assess unknown bond quality online.116,117,118  The proposed methods utilize 

small shifts in the natural frequency of the piezoelectric sensor/actuator to identify the amount of 

disbond present.  However, the issue associated with how to differentiate the “sensed” frequency 

shift caused by structural damage from that of sensor/actuator disbonding are only addressed by 

Park, et al,119 who proposes an efficient sensor self-diagnostic procedure for SHM processes, 

based on tracking the changes in the imaginary part of the electrical admittance of piezoelectric 

sensors/actuators.  The degradation of a sensor/actuator (either cracks or disbonding) produces 

distinct changes in its measured admittance.  Park, et al,119 showed that the slope of the 

imaginary part of a sensor/actuator’s admittance is not sensitive to structural damage, while it is 
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sensitive to cracking (downward shift in slope) and disbonding (upward shift in slope).  Park, et 

al,119 noted that the method is only efficient at lower frequency ranges (i.e. up to several kHz) 

and that the method is sensitive enough (at those lower frequencies) to detect cracking and 

disbonding sensor/actuator damage on piezoelectric patches that were still able to produce 

sufficient sensing and actuation capabilities.   

The above leads to the following approach:  since the self-diagnostic procedure proposed by 

Park, et al,119 identifies even low level sensor/actuator damage, the onset of a malfunctioning 

sensor/actuator can easily be determined.  Therefore, the errors in the measured signal of a 

sensor, due to the onset of cracking or disbonding, which traditionally lead to bias and trend 

characteristics in the measured signal, may be addressed.  A normalization procedure, such as the 

one employed by DeSimio, et al,120 is appropriate.  Additionally, it is possible to detrend the 

measured signal (removing trend) and to center the mean on zero (removing bias) prior to its 

utilization within an SHM process.  The amount of trend and bias removed from the signal might 

indicate the level of sensor/actuator malfunction.  No analytical or experimental research work 

has been done to verify this hypothesis and further investigation is needed. 

The issues discussed in the previous paragraphs cover sensor/actuator performance degradation; 

however, they do not encompass the robustness (with respect to environmental variability) of the 

SHM/damage detection/signal processing methods employed to classify the structure into its 

corresponding structural states.  Olson, et al,121 have developed a method to normalize the 

frequency scale of the measured data as a function of temperature.  This method is based on 

analytical and experimental modal analyses across a given range of temperatures.  This 

compensation process accounts for environmental variability with respect to temperature.  

Similarly, a normalization method to compensate for moisture/humidity variability may be 
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developed.  These additional signal processing schemes can account for the stochastic nature of 

environmental parameters such as temperature and humidity (or similar) and add robustness to 

SHM. 

The following scheme may be explored to add redundancy to the SHM system with respect to 

sensors/actuators.  An additional sensor is placed on the structure such that it optimally monitors 

the response of the remaining sensors/actuators.  After teaching this additional sensor the 

expected measured response of each of the remaining sensors, its response may be used by a 

prediction model to estimate the response of the remaining sensors/actuator.  Any discrepancies 

between the model predictions and true sensor measurements and actuation input may then be 

linked with structural damage and actuator malfunction, respectively.  A minimum/maximum 

threshold approach may be implemented, such that when the difference between model 

prediction and true sensor measurement reaches/surpasses a specified value/threshold, damage is 

declared.  This approach can be generalized by constructing a prediction model for each of the 

applied sensors (i.e. each sensor keeps the remaining sensors in check).  Prediction models may 

consist of simple autoregressive processes or consider complex time series models for spectral 

density.80  Simple models require less training, while more complex models are needed to predict 

sophisticated signals. 

The above procedures, methods, and processes encompass sensor sensitivity, reliability, and add 

robustness to SHM with respect to sensing capabilities.  Additional research is required to 

implement these concepts within the proposed SPO for SHM under uncertainty methodology. 
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CHAPTER VIII 

 

8SUMMARY, CONCLUSIONS, AND FUTURE WORK 

 

This research developed a methodology for the probabilistic analysis and optimization of 

structural health monitoring (SHM) systems for hot aerospace structures such as next generation 

flight vehicles known as space operations vehicles (SOV's).  Specifically, the study focused on 

the sensor placement optimization (SPO) under uncertainty for the SHM system of a thermal 

protection system (TPS) component.  In concept, the fuselage of an SOV would be protected by 

a TPS consisting of mechanically attached panels made from heat resistant materials such as 

carbon-carbon composites.  A simple prototype test article consisting of a 12 inch square 

aluminum plate fastened via four 0.25 inch bolts to an optical table was considered as an 

example application to help develop the design methodology, which included the uncertainties of 

design inputs such as thermal and mechanical loads, and geometric and material properties. 

An effective design optimization approach has been proposed via a methodology that integrates 

advances in various individual disciplines to strive for an optimum design of SHM sensor layouts 

under uncertainty. The proposed method includes the following steps: (1) structural simulation, 

(2) probabilistic analyses, (3) damage detection, and (4) sensor placement optimization (SPO).  

For most realistic structures, the response due to various loads cannot be determined via a 

closed-form function of the input variables, but must be computed through numerical procedures 

such as a finite element method (FEM).  The probabilistic FEM analysis of analytical models 

incorporates uncertainty via the utilization of discretized random fields and processes as model 

input parameters to generate stochastic finite element models (SFEM).  From a stochastic FEM 
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analysis the statistics of model outputs such as stresses, strains, and deformations are known and 

a damage detection method is applied to numerous realizations of the SFEM output to construct 

a classification matrix and estimate probabilistic performance measures such as the likelihood of 

correctly identifying the structural state of a component for a given sensor layout.  SPO then 

identifies the sensor configuration for which the performance measures are optimized.  Multi-

objective optimization formulations are of particular interest.  Figure 45 graphically summarizes 

the proposed SPO under uncertainty for SHM systems methodology. 

 

 
Figure 45. Graphical presentation of SPO under uncertainty for SHM systems methodology. 
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In addition to the SPO under uncertainty methodology for SHM systems, this study addressed 

model and methodology validation.  A hierarchical validation assessment was introduced and 

applied to individual components of the SPO for SHM under uncertainty methodology.  Section 

8.1 of this chapter summarizes general insights gathered during the development of the proposed 

methodology and the conclusions of this dissertation.  Section 8.2 discusses possible future work 

and research topics. 

 

8.1 Conclusions 

During the development and implementation of the SPO for SHM under uncertainty 

methodology on the example application, valuable insights are gained.  Generally the 

methodology is very computationally intense, rendering it currently infeasible for realistic design 

applications.  Computational expense is mainly derived from analytical modeling of the SFEM, 

but can also be attributed to the signal processing required to estimate the probabilistic 

performance measures.  Due to the high excitation frequency of the input function required for 

active SHM, the time step of transient dynamic analyses is reduced to near zero values.  Mode 

superposition (MSP) transient analysis may aid in reducing the degrees of freedom of the 

analytical simulation, thereby reducing the computational time required per time step; however, 

MSP does not reduce the total number of time steps of the transient analysis.  Additionally, 

realistic structures are likely to require an active SHM excitation input with frequency content at 

least one magnitude greater than is used in the example application of this study, compounding 

the problem of excessive computational requirements of analytical analyses. 

Computational expense associated with the sensor layout performance prediction methodology is 

also significant.  Due to the large amount of data generated during the probabilistic FEM 
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analysis, which yields a strain on data storage requirements in itself, damage detection methods 

used to predict the probabilistic performance measures of a given sensor array are burdened with 

significant amounts of signal processing.  A major portion of the approximately 12 minutes it 

takes to estimate the probabilistic performance measures corresponding to a given sensor 

configuration of the example test article is utilized for I/O operations.  Accessing the hard drive, 

which contains approximately 90GB of FEM output, and reading/loading the necessary data files 

corresponding to a given sensor layout, is most time consuming.  Although technology is 

advancing rapidly and faster computing machines will be available in the future, it may not offset 

the computational effort required to manage the additional FEM output that will be generated by 

more complex models, which are inevitably needed for the simulation of realistic TPS 

components.   

Also, a significant signal processing time is necessary to perform the state classification of the 

500 realizations of the model responses (100 per structural state).  The application of this 

methodology to more realistic structures would certainly include more damage states than the 

test article application (four damage states, each corresponding to a loose bolt condition of 25% 

nominal torque) and would therefore require more FEM simulations/analyses.  Also, 100 

realizations of the SFEM outputs per structural state may not be sufficient for applications where 

several 10’s of structural states must be identified and the featurs space is more complex (higher 

dimensions).  An additional burden that came to light during the implementation of the SPO 

under uncertainty methodology via Snobfit is the transformation of a continuous optimization 

problem (Equation (24)) into one that considers discrete design variables.  Due to the finite 

fidelity of the FEM model, the structural response is readily available only at discrete locations – 

namely the nodal locations of the FEM model.  Therefore, when Snobfit requests the evaluation 
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of the objective function at a location that does not correspond to a nodal location of the FEM 

mesh, the nearest neighboring node is instead substituted; the discretization of the search domain 

is inevitable.  The trivial solution of utilizing an infinitely fine FEM mesh is infeasible due to the 

issues discussed above.  Design variable fidelity and computational expense must be objectively 

evaluated.  All of these requirements associated with the application of the proposed 

methodology on realistic design problems compound the computational expense currently 

rendering it infeasible for practical application. 

Additional insight was gathered with respect to model and methodology validation.  Assessing 

the accuracy of analytical models and prediction methodologies is complex and highly dependent 

on the subsequent utilization of the model and/or prediction methodology.  Hierarchical 

utilization of models and prediction methodologies brings an additional degree of difficulty by 

compounding modeling errors and input uncertainties.  This topic is addressed graphically in 

Figure 28 and Figure 29 in Chapter 5.  In general it can be concluded that small allowable 

differences between prediction and observation at a low level within a hierarchical methodology 

can produce unacceptably large discrepancies between prediction and observation at higher 

levels.  What may seem an allowable difference at the finite element analysis level, can yield 

undesirable results at the sensor layout performance prediction level.  The sensitivity of each 

component’s output with respect to the uncertainty of the inputs and its effects on subsequent 

utilization are currently not well defined; however, their significance with respect to accuracy 

has been established within this study. 
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8.2 Future Work 

Future related research work needs to investigate computationally efficient methods to 

implement the SPO under uncertainty methodology for SHM.  In addition, an investigation into 

model validation and the degree of accuracy required for FEM models and sensor layout 

performance prediction methodologies to be of use in subsequent employment is necessary. 

Future implementations of the methodology should investigate efficient analytical modeling 

techniques, such as the utilization of boundary element models122 and surrogate modeling.  

Efficient structuring and perhaps compression of the model outputs may yield an additional 

computational saving, which may have been sacrificed in this study.  More efficient data 

organization and storage may also yield more effective I/O utilization and cut down the signal 

processing time to estimate the probabilistic performance measures, a large part of which was 

consumed by I/O processes in the test article implementation of this study.  Reducing the 

computational effort of estimating the performance measures for a given sensor configuration 

will also add to the efficiency of SPO, making a more thorough search of the design variable 

domain feasible. 

Future work should also investigate the significance of the degree to which the finite element 

model was validated and to what level small discrepancies between finite element and 

experimental modal analysis compound to yield large discrepancies between the results of 

subsequent applications of the FEM model and corresponding experimental observations.  This 

may require a stricter validation assessment of the SFEM, as well as an evaluation of the 

components of the sensor layout performance prediction methodology.  Additional validation 

assessments might be required between each of the components shown in Figure 29.  Future 

research should also consider the tradeoffs between the number of steps of a methodology that 
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are validated (i.e. time and effort required) versus the accuracy of the final methodology results 

(i.e. discrepancies between prediction and reality). 

Future research topics also need to include the investigation of methods to account for the 

degradation and variability of the system over extended periods of time and their appropriate 

inclusion into the methodology.  Other future related research work might include the 

investigation of a more complex/realistic structural test article.  A structure that might be 

considered in future research is a more convincing prototype component of a thermal protection 

system (TPS) and consists of a carbon-carbon heat resistant panel that is attached to a titanium 

backing structure (which simulates the structural frame of a flight vehicle) via 15 silicon carbon-

carbon brackets and 45 bolts (three bolts per bracket).  An experimental setup of this TPS 

component already exists at AFRL in Dayton, Ohio, and is shown in Figure 46.  It is currently 

undergoing testing.9  In Figure 46, bracket locations 1 through 15 are shown dark gray, while 

sensor locations 1 through 4 are shown yellow. 

 

a)  b)  
Figure 46. Laboratory setup of realistic TPS panel and sensor layout. a) schematic; b) photograph9. 
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A portion of the already existing FEM model is shown in Figure 47. The FEM model is 

constructed in Ansys and consists of approximately 54,000 Shell-43 (carbon-carbon panel) and 

Shell-63 (steel backing structure) 4-noded shell elements.  The analysis is transient and includes 

a dynamic mechanical load consisting of a sinusoidal swept frequency deformation, exciting the 

structure from 0 to 7,000 Hz in approximately 3.0 seconds.  This is identical to the excitation 

used in the laboratory at WPAFB.  Internal stresses due to transient temperature differentials 

within the TPS plate are included in the FEM analysis. 

 

 
Figure 47. Realistic TPS component model. 

 

Other aspects of the structural modeling and analyses that require future investigation and 

research are the methods used to model the connections between the TPS plate and brackets, as 

well as between the brackets and the steel backing structure.  Methods under consideration are 

nodal equivalencing and the insertion of massless and dimensionless springs in combination with 

contact elements.  This test article is much more comprehensive and complex in the sense that it 

considers a structure that has stiffening ribs, attachment brackets, and is manufactured from 

composite materials.  A backing structure that simulates the structural frame of the flight vehicle 
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is also included in the test setup and FEM models.  Damage detection of this TPS component 

considers a 16 state classification problem (15 brackets where damage can occur and the healthy 

condition), rather than the five state classification problem considered in this research.  Also the 

excitation frequency for this component is much higher.  All these issues drive up the 

computational expense and a way to deal with these issues must first be identified before 

attempts to implement this methodology on such a testing structure are initiated. 
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