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CHAPTERI

INTRODUCTION

Traditional animation can be described as creating the illusion of a moving sisémg a sequence
of hand drawn images. A typical animation is composed of twenty-four fraraesmpe second
of animation. Other forms of animation have become increasingly prevalesit, asicomputer
generated animation, dynamic simulation, and motion capture. This dissertatmmcerieed with
traditional animation, specifically how to re-use existing cartoons.

Even with many other forms of animation available, traditional animation is still alpojput
form. However, hand drawn animation remains a very tedious and timesoimguask despite
many advances in technology that have improved the speed of produtiaditeonal animation.
For a typical animated television series, artists bring life to familiar cartooracteas for every
episode, yet no method exists that would allow them to re-use their drawings/at situations.
Clearly a character running away could be used again for future egs@bftware packages such
as Toon Boom Technologies, [Fekete et al. 1995], can create simplisvedres based on vector
animation. Although an animator could re-use the original models of the ¢hesathe basic
animation still has to be created, and these animations tend to lack the exgmessivof familiar
styles, such as the distinctive style of animations by Chuck Jones (créatfiecE. Coyoti

The same issues arise when creating three-dimensional models for cadréwanters and
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toon-
rendering” them. “Toon-rendering” is a technique that can rendexetitimensional scenes in
styles that approximate the look of a traditionally animated film; it is often called'slwding.”
Aside from some of the issues already mentioned, 'toon-renderingmsas@any of its own chal-
lenges in creating a three-dimensional character that looks hand didwen the three-dimensional
character moves, issues such as where to draw edge lines, how thicketheHiould be, how they
appear and disappear, etc., if not handled properly, are tell-tale segrthéhcharacter does not have
the same style as if it was hand drawn.

.1 Research Goalsand Contribution

The goal of this research is to create novel animations from a librarytabase of existing cartoon
data. Many of the tools and techniques developed in computer animation sagaetk to allow
animators to obtain the expressiveness of traditional animation more easil\jLasseter 1987;
Fekete et al. 1995; Rademacher 1999; Kowalski et al. 1999]. Separabody of work exists to
allow animators to re-use motion capture data to create new animations, e.g h§GEI98; Rose
et al. 1998; Kovar et al. 2002; Lee et al. 2002; Arikan and Forsy@2p0dn contrast, there has not
been much study of the problem of re-using traditional animation to creatamievation [Bregler
etal. 2002; de Juan and Bodenheimer 2004]. Part of the difficulty itystgdhis problem is that the
forms in which traditional animation are available make it difficult to devise mettwdapture and
manipulate it. This dissertation presents several methods that allow the irettwpaf traditional



(a) Original Image (b) Image Mask (c) Segmented Image

Figure 1.1: On the leftis the original image, the center shows the desired imasje on the right is
the segmented image. The final segmented image has the character on it tmstackground,
a neutral color that does not appear in the character itself, and is easilyfiable for processing
only the characteMile E. Coyotés ™& (©Warner Bros. Entertainment Inc.

animation into a motion library for re-use.

A primary challenge in building large libraries of cartoon character data isitahe charac-
ters into a form in which the character is nicely separated from the baskdraSegmentation is
necessary if the character is to be placed into a new environment or with bawkground. Much
older cartoon data suffers from noise due to changes in lighting as ttamicehtions were trans-
ferred to film, contamination of the cel from one use to another as it was filamelddlegradation of
the animation before being transferred to an archival format. Thes@s$anake the segmentation
problem guite challenging, as we discuss in Chapters I, 1ll, and IV.

One goal is to develop a method for semi-automatically segmenting the chalacteesating
an image mask. The masks are then applied to the original images to place tlva cévdoacter
on a neutral, or known, background. Figure I.1 shows an example ofigimal image, an ideal
image mask, and the final segmented cartoon character on a neutralcaaekgl hree approaches
will be presented, along with the benefits and drawbacks of each metheudt laoc method using
the probability of a pixel color being the character, level sets definingeadsfunction based on
intensity and color information, and applying machine learning using Supeator Machines
[Chang and Lin 2001] to train and classify color pixels as being part dfaaacter or part of the
background.

Once the segmentation problem is solved, we can begin to address the ghalfene-using
the animation. A true re-usable library of animation is closest in spirit to themydigcussed in
Chapter V. Drawing inspiration from the idea of video textures f#ittet al. 2000], sequences
of similar-looking cartoon data are combined into a user directed sequ&heeprimary goal of
re-using the cartoons is to re-sequence cartoon data to create new maticthé original data that
retains the same characteristics and exposes similar or new behavionsufber of new behav-
iors that can be re-sequenced is restricted by the amount of data in @uy libr each character.
Starting with a small amount of segmented cartoon data, we use an unsegdeaming method
for manifold learning to discover a lower-dimensional structure of the ditta.user selects a de-



sired start and end frame and the system traverses this lower-dimensianiébld to re-sequence
the data into a new animation. Our method is model-free, i.e., no a priori knogvtddlye drawing

or character is required. The user does not need the ability to animategwrkhat an acceptable
inbetweenis (defined below), since the data is already provided. The system tact ehen a
transition is abrupt, allowing the user to inspect the new animation and deternaimg didditional
source material is needed. Minimal user input is required to generatemmatéons, and the sys-
tem requires much less data than the video textures method for re-segueflso, because the
new animation is created from re-sequencing existing hand drawn anintagamew sequence will
retain some of th@rinciples of animatior(discussed in Chapter Il) since the images were already
drawn with those principles in mind.

However, one of the limitations of the system described in Chapter V is the indbiliggnerate
new images when a visual discontinuity is detected in a re-sequenced animittieoretically, a
visual discontinuity occurs because the manifold is not sampled denselgleby the data for its
structure to be parameterized. Hand-drawn cartoon art is always gadirgsjoarse, thus represent-
ing a fundamental obstacle for manifold learning techniques. Therefeneegd to explore other
techniques to overcome this limitation.

When a visual discontinuity is encountered in re-sequencing and it isnuietd that more
source material is needed, the problem becomes oitdefweening Inbetweening is the process
of drawing intermediate images that fill in the space between a pair of keydralnantroduction to
the principles of animation and definitions of terminology used in traditional animatigiven in
Chapter Il. Addressing this issue of discontinuity returns one to the twordiimeal inbetweening
problem presented in [Catmull 1978] and discussed in Chapters II.1.2 aakthough the problem
we address in this dissertation is more limited in that it suffices to generate irdretlwetween two
images that are somewhat similar, not two keyframes. Our work on this pnableresented in
Chapter VI.

The inbetweening research goal is a model-free, image-based methgehfenating an inbe-
tween frame semi-automatically. By using radial basis functions (RBFshpeomformation can
be interpolated between two keyframes. To deal with occlusion, the ¢baraill be partitioned
into layers (such as head, arm, body, etc.) manually, and each layemiatetpseparately. The
layers are reassembled automatically. Using RBF interpolation of keyfrantewrs, the goal of
inbetweening is to employ a method for filling in the inbetween contour with the pppte tex-
ture and color information taken from the two keyframes. Using a pararfregsraon-rigid elastic
registration algorithm [Wirtz et al. 2004; Li et al. 2006] on the two keyfraibe resulting regis-
tration provides the texture information for an intermediate image. Image registpovides an
improvement for texture filling over current methods that require the costoube parameterized
as polygons with their interiors then triangulated compatibly to preserve thedextiormation
(Chapter 111.1.4).

The most desirable qualities of traditional animation are the nuances an @assioeeach char-
acter, giving that character personality and style. The high-levelafdhis work is to enable these



abilities in an artist, so our techniques use an animator as a guide in both buildireyyand using
it. A fully automatic method for inbetweening would alleviate some of the tedium adsdowith
creating a traditionally animated film. However, semi-automatic methods for inbetvggamovide
a more interactive environment for the artist, allowing for modifications dufiegcreation of the
inbetweens, while still improving and speeding up the process. Ensurinthéhartist remains in-
volved in the inbetweening process, albeit minimally, should provide a higigrdéquality in the
resulting animations.

1.2 Overview

The remainder of this dissertation is organized as follows. Chapter Il intesdthe main concepts
in traditional animation and applications to animation. Chapter Il discussegdelasearch in
two-dimensional animation, re-sequencing motion, and dimension reductibitsaapplication to
animation. Chapter IV describes how existing cartoon data is segmentedrepaequ for use in re-
sequencing. The contribution of this chapter is a robust and semi-automahicdrier segmenting
cartoon images. Chapter V presents the methods used in re-sequentig @imation. Two
main contributions of this chapter are the successful use of manifold lgaapplied to cartoon data
for re-use and in identifying an appropriate distance metric for computingrtiksty of cartoon
images. Chapter VI describes generating new images, or inbetweerngeting more visually
compelling re-sequenced animations. Some of the challenges of inbetweeaingercome, and
the contribution of this chapter is providing a semi-automatic method for inbetwgengair of
cartoon images. Chapter VIl summarizes this work and the research coioin#to the field of
computer animation, and discusses future directions.



CHAPTER 11

ANIMATION BACKGROUND

In addition to traditional hand drawn animation, several other forms of animatitst, and have
become more prevalent in film and television. Unlike traditional hand drawnadion, computer
generated animation can be either two-dimensional or three-dimensional, l#itdr being most
common. A three-dimensional model of a character is created using congoft@are and an
animation is created by playing a sequence of still images the computer rdératarthe three-
dimensional models. Procedural animation methods such as dynamic simulatd® @nimation
from carefully specified physics-based control systems that spemifyobjects or articulated char-
acters should move in and interact with a virtual environment. Dynamic simulatioseisl for
modeling mechanical events or complex fluid flow, but also requires a |éesdpertise in the do-
main to accurately model the internal physics, and typically lacks the creatt/expressive nature
of hand drawn animation. Motion capture involves sensing, digitizing, acardeng a subject’s
motion from markers placed on the subject. The recorded motion is procesbe applied to a
three-dimensional model of an articulated character, thus driving its mawsrfrem the actor’s
motion. Motion capture is used extensively in film and video games, and examipbynamic
simulation can be seen in film special effects like smoke, fluids and fire, parlic in animated
films. Stop-motion animation, like traditional animation, is extremely time consuming.ddupe
a stop-motion animation, the characters are static objects, typically modelleticday,cand made
to have the illusion of motion. A camera films one frame, stops to move the charagtarsmall
amount, then the camera proceeds to film the next frame. This continueseaioh 24 frames per
second. When the film is run, the static objects appear to have fluid motionnitgn is almost
as old as film-making itself, dating back to 1898 with a film calldte Humpty Dumpty Circus
by Albert E. Smith and James Stuart Blackton. Stop-motion animation has a qudlkg any
other form of animation, and spans a variety of films like the 1888y KongandJason and the
Argonautsn 1964, to more the more recéallace and Gromitilms andTim Burton’s The Night-
mare Before Christmaslraditional animation dates back to the early 1900’s. Historically, the first
short animated film wallumorous Phases of Funny Fageteased in April of 1906, once again by
newspaper cartoonist J. Stuart Blackton, who pioneered “stop fransbp-motion animation. In
Funny FacesBlackton uses both stop-motion and hand drawn faces on a chalkiwarslor Mc-
Cay is considered by many as the first animator to produce popular dramatéions such akittle
Nemoin 1911 andGertie the Dinosauin 1914. ForLittle Nemq Mr. McCay drew and colored all
4,000 frames himself. In 1928, Walt Disney was the first to incorporatetsgnized sound with the
animation inSteamboat WillieThese are only three of many contributors to the early developments
and technological advancements made in traditional animation.

Creating a traditional animation involves a great deal of time while skilled artisis dvery
frame. The traditional animation pipeline begins with a lead animator, or artistjrmgyeeach char-
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Figure I.1: Example model sheets and character sheets sh@®iniegn various poses and expres-
sions.Dino is "™& ©Warner Bros. Entertainment Inc.

acter that will appear in the animation. The lead animator will dravdel sheetfor each character
that shows what the character should look like in a neutral pose framugariewpoints Character
sheetsare also drawn for each character, which show the character in exgreses. The model
and character sheets are used bydlean-up artistsandinbetween animatorsacting as a recipe
for how that character should be drawn. Figure 1.1 shows example®dél and character sheets.
After the director approves the model sheets, the lead animator will begiindréhe keyframes
for a particular shot or scene. Depending on the level of detail ndedagarticular scene, the lead
animator may draw all of the frames or only certain keyframes. Thesedtagh then go on to the
clean-up artists to clean the lines of the keyframes. After, the frames goitthisteveen artists who
draw the missing frames. At this stage in the pipeline, the animation consists ofdwends for
each scene. Then, the line art must be colored frame by frame. Finalégltred art is composited
with a background plate and any additional effects are added. This pnbicess is repeated for
each film or cartoon television series episode. Figure 1.2 shows an éxaif@ character as line
art, colored art, and finally composited into the background.

The idea of re-using existing cartoon animation to speed up the processatihg a new two-



(a) Line Art (b) Colored Art (c) Final Composite

Figure 11.2: Here is an example cartoon character at various stageg ofaifitional animation
process. On the left is the line art, in the center is the character after gplarkhand paint), and
on the right is the final scene with the character composited with the bacidjimage. Woody
Woodpeckeis ™& ©Universal Studios.

dimensional animation is novel. A number of issues must be addressedde castoon animations,

such as how to compare the images to determine similarity, which frames cardlia sgecession,
and how to preserve the characteristics defining the character thatthet@nhas drawn into each

image. Thus far, a general overview of the process of creating a traaittmimation has been
described. In Chapter 1.1, the animation pipeline is broken down furtiteccamparisons are made
between traditional and computer-generated animation, highlighting the Hiégthat arise with
two-dimensional animation. The importancepoinciples of animatiorare discussed, and the two-
dimensional inbetweening problem is defined. In Chapter 1.2, sevethlu for interpolation are
introduced.

.1

Animation Pipeline

Examining the traditional animation pipeline in more detail, we describe the aspélctsmpeline

that have changed over the years, and the differences betweeimwosibnal and three-dimensional

animation. The classic two-dimensional animation process is a sequential @ipélinpainting of
the background images going on in parallel. The steps are:

1.
2.

0o N o O b~

Story is written
Visual development and Character development —the look of the filnsidedtE artists design
the characters producing model sheets and character sheets.

. Layout a storyboard — the pace of the film is set, the script is dividedstgnes with dialog

and music, timing of all the scenes are set up, and emotional ups and dexrecked.

. Record a sound track

. Animate the keyframes

. Assistant animator draws some inbetweens

. Inbetweener draws remaining frames

. Film the drawings from paper for a video pencil test



9. Xerox copy or ink trace the drawings onto acetate cels
10. Ink and paint —fill in the color and final ink lines for the characteracetate cels
11. Check for errors
12. Final film from acetate cels and backgrounds
13. Edit film

A modern animation pipeline changes only after step seven. Most studiosdeitinethe keyframes
and inbetweens digitally, or the pencil drawings (line art) are scanned te edigital pencil test.
Real acetate cels are no longer used, and the “ink and paint” is also iitadyd with many studios
using software to fill the line art semi-automatically. The film is composited anddeditgtally.
The background images are sometimes painted and scanned to make digés) atthough it is
also possible to generate the background images using imaging software.

For a three-dimensional computer animated film, the pipeline differs by stepifothat the
keyframes are not drawn by an animator. Rather, the animator positiorseadimensional model
of the character at key times using three-dimensional animation softwaee motiement of the
character is generated by interpolating in three-dimensions, usually ygingss and inbetweens
are generated by sampling and rendering at appropriate intervalsqiiivalent of a “pencil test” is
a quick rendering of the animation without any effects such as texture drtohtig The equivalent
of “ink and paint” can be viewed as the final rendering with all texturestilighand special effects
in place.

The introduction of computers in the traditional animation pipeline has improvadtomated
several aspects of the pipeline. These improvements have focusedmuotasks as texture mapping
the cels (or frames) [Ccga et al. 1998], creating shadows [Petrovic et al. 2000], or retagyttin
motion of one character onto another character [Bregler et al. 20G&]. nYany other aspects of
the pipeline remain challenging problems. The most difficult problem is still howhetween a
two-dimensional hand drawn character.

I1.1.1 Principlesof Animation

Despite the differences between traditional hand drawn animation anddimeasional computer
generated animation, the art of animation consists of principles that shoufdtdr@orated into
both art forms that help create the illusion of life. Frank Thomas and OllieslohriThomas and
Johnston 1981], two of the original Disney animators from the 1940%;ril#ed these fundamental
principles of traditional animation as:

1. SQUASH AND STRETCH— The most important principle was the discovery that objects com-
posed of flesh or soft tissue distort their shape during an action, whilgairdig the same
volume whether crouched or elongated.

2. ANTICIPATION — Preparing the audience for the next action before it occurs by ¢irera
major action with a specific motion that anticipates what is about to happenasweinding
up before running.



10.

11.

12.

. STAGING — Dating back to classical theater, staging is presenting an idea so thatihis co

pletely and unmistakably clear. For animation, examples of staging are izabgnper-
sonalities, clearly visible expressions, and presenting a mood that affectgewer, thereby
communicating completely with the audience.

. STRAIGHT AHEAD ACTION AND POSETo-Pose- Two different approaches to creating the

animation: in the first, the animator works from the first frame straight throodghe last in
the scene; in the second, the animator creates each keyframe, plannitagjdhehroughout
the scene and refining each key pose. Both have advantages, withrttez Epontaneity, the
latter clarity and strength.

. FoLLow THROUGH AND OVERLAPPING ACTION — The completion of one action and es-

tablishing its relationship to the next action by extending the end of the firshagtib some
parts of the character coming to rest at different times.

. SLow IN AND OUT — Spacing the inbetween frames close to each extreme keyframe with

only one or two half way between the keys, to achieve subtlety of timing anohgtag

. ARCs — The path of motion to create natural looking movement. This principle is one of

the most difficult to apply accurately, since drawing an inbetween halfweayden the two
keyframes linearly is easier than on an arc.

. SECONDARY ACTION — Any action that results from the main action (e.g., clothing moving

as a result of the character moving), and that should support the main.actio

. TIMING — Spacing actions to distinguish the personality of characters, and thd syeght,

and size of objects.

EXAGGERATION — Accentuating the essence of an idea, emotion, or movement by distorting
the drawing to the point of extreme realism (like a caricature of reality).

SOLID DRAWING — Important for two-dimensional animation, describes the shape of the
object being animated such that it has volume and flexibility, strength withaddityigand is
pliable.

APPEAL — Anything that makes the viewer enjoy looking at the drawing, a cute animal with
large eyes, a dramatic villain, etc.

Lasseter [Lasseter 1987] discusses in detail eleven of these prinaipdetheir importance for
producing high quality three-dimensional animation. Regardless of the mediammation used,
applying these principles has the same meaning for the motion or action. Cresdtian for
traditional hand drawn animation is achieved by drawing a sequence ditmensional images.
Generating motion for a three-dimensional computer animation is achievedHry aigsomputer
model in three-dimensional space and positioning the model in key posksyfoames), allowing
the computer to generate the inbetween frames. Lasseter describes hmwdti@es of timing,
anticipation, staging, follow-through, overlap, exaggeration, andrgtzny action can be applied
in the same way for both two-dimensional and three-dimensional animation exgowapplying
the remaining principles changes because of the differences in the animattiom used. For



example, for three-dimensional animation, squash and stretch must bedapplteeforming the
model of the character. If the model is articulated with rigid limbs, distorting itpel&not trivial
and can cause self intersection or pinching problems in the mesh. Howeguash and stretch
in hand drawn animation is applied by drawing the character accordingly. rdeent examples
of applying extreme deformation to a three-dimensional model can be se®oraitin Blue Sky
Studio’sice Ageand onElastigirl from Pixar'sThe IncrediblesBoth of these films showcase some
of the most challenging aspects of animation and the time and complexity involveshitng these
expressive characters.

The principles of animation became the foundation of how to create lifelike amgelling
animated characters, which was important for training new animators in th@deels that distin-
guished the animations produced at the Disney studios in the early 194@mps and Johnston
1981]. While an artist can understand and learn these principles andohapply them to their
drawings, expressing these principles in a form that a computer cagnieeais not trivial. By
automating many of the processes of creating an animation using computearsofiw interesting
research question becomes how can these principles that act as iotm$trahow the artist can
draw the character be formulated as mathematical constraints to be usectbynihter. One chal-
lenge in our work of re-using existing cartoons is to preserve thesagigathat were drawn by the
animator. Being able to represent these concepts as mathematical conistegiritaportant step in
preserving the style of the existing cartoons when they are re-useddogaraew animations.

11.1.2 2D Inbetweening Problem

The most challenging aspect of automating the traditional animation pipeline tsvirdr@ing. This
problem arises because each two-dimensional drawing is really an adgEsentation of a three-
dimensional character. Thus, trying to create an inbetween from a gaioafimensional drawings
automatically is difficult. The motion depicted by the drawings can be classifietlotoategories:
(1) transformations in the image plane or drawing canvas (the x-y plane)23 transformations
outside the image or drawing plane. In the first category, typical tramstions are rotations
around the z-axis and translations within a plane parallel to the x-y planeseTiansformations
are usually easy to deal with, and the success of inbetweening themddepethe representation
of the image and the interpolation method used. In the second category, rikfortnaations are
typically rotations around the x- or y-axis. These transformations aresthdiKiculty for automat-
ing the two-dimensional inbetweening process because these are thHertreti®ns that indicate
that the drawing is really a three-dimensional object that is representediditmensions. Two
aspects of these transformations that cause the most problems in two-dina¢itdietweening are
self-occlusion, for example if the character’s arm crosses over kg, lmd silhouette changes or
correspondence information being lost, for example when the chasabead rotates from facing
the camera to a profile view. The silhouette changes such that the intesihakfe of the face are
now part of the exterior contour. In a profile view of a character, ttistanay draw the face anatom-
ically incorrectly, for example with both eyes visible, emphasizing some esipresr action that

10
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Figure 11.3: The pair of images on the left shows an example of the selfisioa problem for
two-dimensional inbetweening. The character’'s arm covers part dateein the first frame, but
uncovers the face in the second frame. The pair of images on the right stro example of a
silhouette change. In the first frame, the character’s face is towardsthera and the nose is in
the center of the face, while in the second frame, the character’s fadarn&d to be in profile and
the nose is now part of the silhouette. Images from [Blair, 1994].

is to follow. Figure 1.3 shows typical examples of self-occlusion and sii@changes.

Inbetweening for three-dimensional animation is not a problem because i®ies of self-
occlusion and silhouette changes are “defined” away. It is inherentimddfinition of a three-
dimensional model that all frame to frame correspondence is known. oksraéntioned, creating
the motion for a three-dimensional animation begins with an artist positioning autemmpodel
at key poses (keyframes). The model is represented in three-dimahsjpate, so there is no loss
of information by losing one dimension. A typical model for a three-dimensioharacter has
a skeletal structure made up of limbs and joints, and usually has inverse kicemrizains that
define and restrict the motion of the model. The limbs are usually a fixed lengtigtirallowing
for the incorporation of the principles of animation such as squash ardrstweuld indicate that
some of the limbs do not have to remain of a fixed length. Depending on the cdtpmtthe
model, the limbs and joints may have a muscle layer followed by several skirsldaliee external
representation of the model is typically a polygonal mesh. The movement dfrthe and joints
will drive the muscles and cause deformations to appear on the skin ladyieh deform the external
mesh. All of the three-dimensional information, from the position and oriemtafithe joints to the
position and orientation of each vertex on the external mesh, are knowwey keyframe the artist
positions. Computer modeling and animation software allows the artist to simply &gyo#ition
of the model at specific time intervals, and the software will interpolate betéeckey poses to
generate the inbetweens automatically. The method of interpolation, whichop#nes model get
interpolated, and the timing of the interpolation are all tunable parameters affthese generating
the inbetween frames. For example, creating the slow-in/slow-out timing isayomdjusting timing
curves for each key pose. There is no literature on three-dimensitrehiaening because it is just
interpolation between identical shapes with all information known about tyeesh

With so much control over the three-dimensional model, and the fact thatiaebring is done
for free, one may ask why not create the animation with the three-dimensiardd! then 'toon-
render it as a two-dimensional scene. Adding a great deal of deforméikie squash and stretch
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or incorporating other principles of animation to a three-dimensional modektbfracter is often
challenging, requiring the skills of a talented artist. Even when 'toon-mémgla three-dimensional
character, one cannot expect it to look like the traditionally hand dré&ive E. Coyotegetting
flattened or stretched in a visually extreme manner. Another problem with-ferwering is the
aforementioned silhouette changes, since the renderer can only pradturate images from the
geometry of the model. Take the head turning example again, as previouglpmeeh an artist may
draw a character in profile anatomically incorrectly, and in the case of a-tlireensional model
it would be geometrically incorrect. The 'toon-rendered version of theahwdl be geometrically
correct, therefore lacking the expressiveness of a hand drawaatba

1.2 Interpolation

In this section, we give an introduction to the many uses of interpolation fopater animation
and the terminology of the field. Many of the methods discussed here acecbasepts taught in
computer graphics and animation courses, and more details can be fountsisueh as [Foley
et al. 1990]. This section provides the reader with a short primer on oitgipn methods typically
used in computer animation.

A variety of algorithms have been applied to the inbetweening problem, sgdgificethods of
interpolation. Interpolation is a key issue for computer generated animakionsexample, in three-
dimensional keyframe animation, where an animator positions a charactereaidimensional
space at key times, the remaining frames are automatically generated bylattagpthe positions
and orientations of the character’s joints. Interpolation determines the tthéhcharacter will
take based on a curve that passes through a given set of control, oithtis case the character’s
joints as positioned by the animator. The control points do not always have jmint positions
and orientations, they can be any list of values associated with a givametar at the specific
keyframe. The method of interpolation used depends on the propertighetadgsired path should
have, such as an arc (one of the principles of animation), whether this gbiould be interpolated
exactly or approximated, and global or local control of the method. Whilethee many methods
for interpolation, this section discusses those that are most applicable théted@ening problem.
That is, the interpolation methods described here have been applied to iordgesdrawings, as
opposed to a set of joint positions and orientations of a three-dimensiweralater.

1.21 Contour-Based

Interpolation of contours can be accomplished using linear interpolatioplioklesinterpolation.
Linear interpolation is the simplest, most popular and widely used. Linear dl&ign in one
dimension is simply connecting a pair of points with a straight line. Specifically,deta number
(or time interval) between 0 and 1, then the linearly interpolated value for tiedviglen poinfp(t)
is:

p(t)=(1-t)-pr+t-p2 (11.1)
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Figure I.4: Creating inbetweens for a pendulum swinging causes it teaagp shrink as it ap-
proaches the middle, then grow as it continues to the last keyframe (lefé.cdinect motion is
illustrated on the right. Images modified from Tony White’s internet animationittor

where p; and p, are the two keyframe points. To apply this to a pair of contours, the contours
can be sampled as sets of data points, and each corresponding pwminhé&dirst contour will be
linearly interpolated to the second contour. The inbetween contour is theinod data points at
any intermediate value between the two input contours. However, calculabatyveens using a
linear interpolation of Cartesian coordinates does not preserve sbapesportions; for example,
if a pendulum rotates in the plane by°9@he path that the end of the pendulum would take if it
were linearly interpolated would be a straight line. The pendulum appeabsitk, then grow as it
reaches the second keyframe. The desired path of the end is an aie,reduires other methods
for interpolation other than linear. Figure 11.4 illustrates the problem with lime@rpolation of
inbetweens.

Splines are a mathematical means of representing a curve, by specifyéngaa points at
intervals along the curve and defining a function that allows additional pwitiién an interval to
be calculated [Foley et al. 1990]. The function to approximate a curveagaished by means of
a series of polynomials over the adjacent intervals along the curve archigivorder continuity.
Continuity is a mathematical measure of smoothness, i.e., the number of contidermatives of
the curve equation. Zero-order continui6’f ensures a positional continuity at a point along the
curve. First-order continuityd®) ensures positional and tangential continuity at some point along
the curve. Second-order continuit@%) ensures positional, tangential, and curvature continuity
(the instantaneous rate of change of the tangent vector) at some pdin¢ earve. Continuity
is of concern for interpolation when a series of piecewise curves areddoyether to define the
path of animation. There are three major types of cunidstmite which are defined by a pair
of endpoints and the tangent vectors for those endpoBésier, which are defined by a pair of
endpoints and two other points that control the tangent vectors at theiatgjand several other
splinesdefined by four control points, where the splines have eiftesr C? continuity, but do not
interpolate the control points. We describe three commonly used spline funtdiceppproximating
a curve: Catmull-Rom splines,&ier curves, and B-splines. For all three, we use a parametric
representation to mathematically define each spline such that the curve s€yimgiven by three
cubic polynomial functions, y, andz, over the parametér with the curve segment equation being
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Qt) = [ x(t) y(t) zt) |. Each of the polynomial functions have the form:

X(t) = ayt3 + bet? + it + dy,
y(t) = at3+byt? +ct +dy, (11.2)
Z(t) == azt3 + bztz + Czt + dz,

and the parameteris restricted to an interval from 0 to 1 for each curve segment. The deetfc
of Q(t) in equation 1.2 can depend on four constraints, allowing for a compagtevexpress the
polynomial functions. First, write the parametasT = [ t3 t2 t1 1 } and the coefficients of
the three polynomial functions in a 4 x 4 matrix. We will define the matrix of caefiis for each
type of spline below. We can then re-write the parametric cQtt¢ as the product of:

QU= | x(t) yt) zt) 1]=T-M-G (11.3)

whereM is the 4 x 4 basis matrix of polynomial coefficients, defined for each spdygilie of
spline, ands™ = [ G Gy Gz Gy },istraditionally called thgeometry matrixG specifies the
geometric constraints that define the curve. Itis a matrix of point vectaitsgach row inG being
either an end point, tangent vector, or other control point, dependirtheotype of curve being
modelled.G is also a 4 x 4 matrix.

Catmull-Rom splines are cubic polynomials defined by four control pointsyfalthich are
interpolated by the curve. Tangents at interior control points are autofhatiemerated, but the
tangents at the endpoints must be specified. Some features of the CatmusipRoenare that the
spline isC! continuous, so there are no discontinuities in the tangents, and it has dotadldif a
control point is moved, it only affects the curve locally). Each point irtited by the spline will
have a tangent direction parallel to the line between the two adjacent poi@atndull-Rom spline
has the basis matrix:

-1 3 -3 1
2 5 4 -1

Mcr = 1.4

Tl 10 1 0 -
0 2 0 o0

The geometric constraints (& are the endpoints and tangent vectors that define the curve.

Bézier curves are defined by four control points, two endpoints thaintegolated and two
points that determine the tangent vectors at the endpoints but are not oortlee Those four
control points are the constraints represented in the geometry r@tﬁx[ PP B P ] A
Bézier curve has the basis matrix:

1 3 -3 1
3 -6 3 0

Mg — 5

71 -3 3 0 o0 (11-5)
1 0 0 0
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Figure 11.5: On the left is an example of &Bier curve with the endpoints indicatedRsandPy,
and the control points for the tangents at the endpoints indicatBgasdP;. On the right are the
Bernsteinpolynomials, which are the blending functions foeZ&er curves. Notice that at= 0.0
only theB; polynomial is nonzero, meaning that the curve interpolates only one ppirithe same
is true for theB,4 polynomial att = 1.0, which interpolates poirf.

The produc(t) = T - Mg - Gg has the following form:
Qt) = (1—t)3PL+3t(1—t)°P + 3t3(1—t) P + t3Py, (11.6)

which are known as thBernstein polynomialg-igure 1.5 shows an example of @Ber curve and
the Bernsteinpolynomials defining the blending functions. Some of the features ofézeBcurve
are the convex hull property (all of the control points define a conudixclontaining the resulting
curve), that it is very easy to subdivide G8 continuous, can be ma@?* continuous. Subdividing
a curve into smaller segments may be required for some applications, in esslticg to the
number of control points on the curve to provide more local control amorehbility in smaller
areas. Bzier curves are very easy to subdivide, where opedd segment with four control points
becomes two Bzier segments with seven control points (sharing one control point s¢#me), and
the resulting curve will be identical in shape to the original segment until &thyeccontrol points
are moved. The de Casteljau subdivision method is typically used [Foleyl€to)].

B-splines are defined by four control points, but the curve in gemgr@$ not interpolate any
of the points. These splines a8 continuous everywhere. Cubic B-Splines approximate series of
m-+ 1 control points, but the curve consists of omy- 2 segments. A B-spline has the basis matrix:

-1 3 -3 1
1{ 3 -6 3 O
Mg, = = .7
Bs 6 _3 0 3 0 ( )
1 4 1 0

The blending functions for this basis are shown in Figure 11.6. Thereseweral versions of B-
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Figure 11.6: The B-Spline blending functions. Notice thattat 0.0 andt = 1.0, three of the
polynomial functions are nonzero, unlike thé&er blending functions, therefore no control points
will be interpolated.

splines: uniform (equal spacing between knots) versus nonunifordraional (meaning each of
the polynomial functions are defined as a ratio of two cubic polynomialsysarsnrational. The
“B” refers to curve being represented by weighted sums of polynomsas iianctions. Some of the
features of the B-spline representation are that they satisfy the conllgdperty and they ar€?
continuous. However, subdividing becomes more challenging.

One of the advantages of using splines to interpolate is that a spline canxinpgie the desir-
able arc for the path of the animation. However, compared to linear interpulaptnes are more
difficult and expensive to implement. Splines can be used to represeraritaucs of a line draw-
ing of a character, and used for interpolation given correspondiligesgpresentations of a pair
of keyframes. However, converting the artwork into a spline representtnat has corresponding
features is not a trivial problem. Defining a spline that captures subtldsdatal sharp edges or
tufts of hair or fur can be challenging. Assuming one does choose a spfinesentation, once the
line drawing is converted into a spline (or several splines to include intezagufes), the path of
interpolation should also be defined to achieve desirable inbetweens. d&k whavoid having to
define corresponding splines for line drawings, and instead work withdrbaged representations
of our images. One advantage is that we can analyze colored drawingsatfds information for
coloring any automatically generated inbetweens, which would not be posggth a strict spline
representation of cartoon characters.

1.2.2 Image-Based

Interpolation can also be performed on images, and is referred to asrigenarping, or morph-
ing. The simplest form of blending is called a cross-dissolve. Two imageblanded by linearly
interpolating between pixel colors in first image to pixel colors in second insagetime. Fig-
ure 11.7 illustrates a cross-dissolve between a pair of images. This methodpk sand flexible
but often appears unrealistic. For example, because the two ovals ireFiguare identical but
perpendicular to each other, the intermediate shape is no longer oval.chdss;dissolve is most
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Figure 11.7: Example of a cross-dissolve between two images. The lefiginishow the source and
destination images. The middle is the blend at exactly half way between the smddestination.

often used for linking two shots in a film, so we are used to seeing the eftgatob for creating
intermediate frames that resemble what we expect an inbetween to look like.

Image warping is a method for mapping one image onto a second image in antingevesy.
Once a mapping is known, the source image can be transformed to match tihatadesimage.
Figure 1.8 illustrates a warp between two simple ovals, with the intermediate Sedpga circle.
The mapping can be created as a forward map or an inverse map, whiohstefjeometric trans-
formation that determines the relationship between pixels in the two images. Witivardomap,
each pixel in the source image is mapped to an appropriate location in the tlestineage. The
forward transformation uses the centers of the pixels in the source imdgaas them to loca-
tions in the destination image. However, the mapping may not fall at pixel senttre destination
image. To correctly distribute the value of a source pixel to one or sedessihation pixels, some
method of filtering must be used, which essentially computes a weighted aweragmpute the
destination pixel’s intensity. For example, if the pixels are regarded asesquand the fraction
of the area of the source pixel that covers the destination pixel will be ase weighting factor
for filling the destination pixel. In this way, no holes will exist in the destination ienag/ith an
inverse map, every pixel in the destination is mapped to an appropriate loratiensource image,
leaving no holes in the destination image since the image is scanned pixel byLjjoeghe forward
mapping, the inverse transformation uses the centers of the pixels in theatiegtimage mapped
to locations in the source image that may not be pixel centers. Again, somedhodinterpolation
is used, but in this case pixels in the source image are interpolated. In eagesriow the pixels
should be mapped must be specified, which determines how the pixels moweehedtve two im-
ages. For example, specifying a set of important pixels in the two imagesifa®igoints, lines,
or curves), then extrapolating information about the control pixels to méterthe motion of the
rest of the pixels. Or, we can map the images onto a regular shape suptaas ar sphere. Then
we know how to warp the images from source to destination by using the majppmghe source
to the regular shape, followed by the inverse mapping from the regulpedbdhe destination.

Image morphing is a technique that combines warping with cross-dissolubgwydl990]. The
images are first warped to each other or some regular shape usingdaswaverse mapping.
During the morph, the intermediate shapes created from the warp arediseskred with each
other produce the final intermediate shapes. Figure 1.9 illustrates theptooica morph.

Analyzing a series of images to determine the difference between the imagesiday a char-
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Figure 11.8: Example of a warp between two images. The left and right shevgource and des-
tination images. The middle is the warped image produced by either warping uheedo the
destination or vice versa.

—
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Figure 11.9: Example of a morph between two images. The top left and bottdmh sigpw the
source and destination images. The middle is the morph, which is the warpedsithagere
cross-dissolved for the final result.

acter’'s or object’'s motion can be useful for producing an intermediateefraOptical flow is a
method of computing the velocity field from the motion of an object in an image segquelhe
velocity of every pixel in the image is calculated, which indicates how quickiyetbing crossed
that pixel and which direction it moved. The velocity field can be used to wagpimage onto
another, assuming the two images are very similar. However, estimating opieas lypically not
a robust procedure, will fail with fast moving objects, and is sensitiveoteen Many assumptions
are made when calculating optical flow, for example, for most pixels in an inthgeeighboring
pixels will have approximately the same brightness. Another problem is thienasisn that only
a single motion is present in the image sequence. There is extensive litexatwrieoptical flow
and many extensions for improving robustness, which is beyond the sttipie dissertation. As
an example of applying the optical flow to a pair of cartoon images, we uségihétlam of [Lucas
and Kanade 1981] to compute the velocity field. The result is shown in Figie Even though
the images are fairly similar, the flow vectors do not capture all of the motioibiésth by the char-
acter. In particular, the character’s left hand is occluded in the firstemihgn extends out and is
visible in the second image. Also, small details of the mouth opening are lost amemggneral
flow vectors.
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Figure 11.10: An example of optical flow computed from a pair of cartoon iesa@affy Duckis
™g& ©Warner Bros. Entertainment Inc.

[1.2.3 Mode-based
In addition to the methods already described for blending between shsipgscontours (splines)
and images, there are several methods for transforming shapes dsfinetdodel representation.
The simplest way to transform one object into another is when both obje@sia same vertex-
edge topology. The correspondence between the objects is establigshstape transformation
proceeds by interpolating the vertex positions using any interpolation me#sied. Suppose we
wish to represent a pair of cartoon images (either line art or full colopogyonal models, then
generate the inbetweens by transforming one polygonal representatidhérdecond. Assuming
two-dimensional models, the geometry could be defined as the triangulatioa odiours (poly-
gons) of each cartoon character. Triangulation is the division of aseidr plane polygon into a
set of triangles, usually with the restriction that each triangle side is entirahgdloy two adjacent
triangles. One of the most common methods of triangulating a polygon is calledriagl&iangu-
lation [O’'Rourke 1994]. Delaunay triangulation is the dual of the Voraliagram. The Voronoi
diagram is a subdivision of the plane containing a number of points into ggolggons such that
each polygon contains exactly one point, and every point of a polygonssrcto its generating
point than to any other on the Voronoi diagram. Figure I1.11 illustrates theigision of a plane of
points into the Voronoi diagram. If one draws a line between any two points&Xoronoi domains
touch, a set of triangles is obtained, these triangles are the Delaunaytatog. Generally, this
triangulation is unique. Figure 11.12 shows the Delaunay triangulation andaisvbronoi diagram.
Once we have the two-dimensional polygonal models of a pair of cartoamacters created
with a Delaunay triangulation, we would like to continue with the shape transfammadowever,
in general the models will not have the same topology. Ensuring the samegggotdoth polyg-
onal models is the problem of generating compatible triangulations from afgailygons. One
would begin with a pair of polygons that already have correspondinticesr then a compatible
triangulation can be created. Compatible triangulation for both two- and thineensional models
is an active area of research in computational geometry [Etzion and Papd®97], and there is
extensive literature describing the many techniques, which is beyonddpe stthis dissertation.
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Figure I1.11: On the left is the input plane with a number of points. On the igtite resulting
Voronoi diagram.

Figure 11.12: An example of Delaunay triangulation. The thick lines are tHaubay triangles, the
dashed lines represent the Voronoi diagram.

Therefore, representing cartoon images as two-dimensional polygwu#ls for shape transfor-
mation requires a great deal of manual effort that we wish to avoid. &pth 111.1.4, we show
an application of the interpolation method described by [Alexa et al. 2000 ts&o-dimensional
polygonal models of a pair of cartoon characters and the limitations of soathaod.

Shape transformation can also be accomplished using implicit functionse$eegping a model
as an implicit surface eliminates the need for a compatible triangulation. Conespce does
not need to be specified to generate a transformation between a pair of iraptfaites. Given
two implicit surfaces specified bf/(x,y) = 0 andg(x,y) = O that are defined with a common sign
convention (i.e., positive on the inside, negative on the outside), then dpe stansformation to
define a blend of the two shapes is simply- g = 0, which represents the intersection of the two
surfaces. A good reference book for implicit surfaces is [Bloomerit®8¥]. As with representing
a cartoon image with a polygonal model, defining the cartoon image as an implicél reidd
requires some effort. We can create an implicit function that represeatsomn image by defining
the function to be equal to 0 at the cartoon character’s contour, thepantyinside the character
has a positive value while any point outside the character has a negalire \Whese definitions
are illustrated in Figure 11.13. Given a pair of cartoon keyframes remtesl as implicit models,
shape transformation is then accomplished by interpolating between the two infypticiions.
We will discuss further details regarding shape transformation using implicdtions further in
Chapter I11.1.4.
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Figure 11.13: An example of defining an implicit function to represent a caricharacter from an
image. The blue points (densely sampled) are the zero set, the green peimt&dor points, the
red are exterior points. To facilitate viewing these points, the cartoonateasssilhouette is shown
instead of the full color frame.

11.2.4 Model-based vs M odel-free Representation
Using an underlying model to represent the characters in the images madepa great deal of
control over the interpolation between keyframes. One can create adimeasional computer
model of a character based on the model sheet and character sheddf@mn the computer model
to match a set of keyframes. Then generating any number of inbetweamshfe computer models
of the keyframes is straightforward. However, the task of creating theskels requires a great deal
of manual effort, whether they are two-dimensional polygonal reptatens or three-dimensional
computer representations matching the images. Therefore, simply hanthgitie inbetweens
would be faster. Also, there are issues in how to transform two-dimengiolygonal models in that
they must have compatible triangulations and the paths that the vertices taig tdamsformation
must be constrained such that no triangles flip, causing a degeneragempoly

The methods presented in this dissertation for re-using existing cartoontamiraee model-
free. As such, semi-automatic and automatic methods are used to analyze the imidgput a
priori knowledge of the character. Once a data set for a particulaactes has been processed,
the system can create new animations very quickly. A user who wishesdie @eew animation
by re-sequencing existing data needs only to select sets of keyfratagsa(ed end poses) for an
initial animation to be created by the system. However, by not including anrlyimde model,
some limitations exist. For example, a model of the character may be useful imdeig image
similarity for designing a distance metric. We believe that the advantages ofa-fined method, in
particular only requiring a small amount of user input, outweigh the more timgucoimg methods
of developing model-based representations. By requiring a small ambusgioinput, refinements
can be made where the model-free representation reaches its limits.
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CHAPTER 111

RELATED WORK

In this chapter, we break the literature related to work in this dissertation ineyaddopics and
sub-topics: work on 2D animation, including spline-based, template-baséamh-based, and shape
transformation methods for inbetweening; work on re-sequencing animadianrepresented as
video and motion data; and work on dimension reduction.

I11.1  Inbetweening for 2D Animation

Inbetweening is a studied but unsolved problem in two-dimensional animatioimbetween is a
figure drawn by a person or computer program based on two extreras pba character. Catmull
[Catmull 1978] describes the main issues in dealing with the inbetweening proafel discusses
the principal difficulty being that the drawings are really two-dimensionajegtions of three-
dimensional characters as visualized by a skilled artist. Because of thiesatedgal of information
is lost, and problems of self-occlusion and correspondence ariseealovith self-occlusion, [Cat-
mull 1978] suggests breaking the character into separate layers peboessing with a computer
program. For the correspondence problem, he suggests the progesatar specify the correspon-
dence of the lines and hidden lines. Even with human intervention, the probfemaslusion and
correspondence are still difficult to overcome.

111.1.1 Spline-Based

Reeves [Reeves 1981] presents a method for creating inbetweeria@pynaving-point constraints.
A moving-point is a curve in space and time that provides a constraint oratheapd speed of a
specific point on the keyframe for a character. The moving points paragdigt the center of this
method for inbetweening. Other points on keyframes that are not direcibtreaned by a moving
point are constrained by a “smooth blending” of their neighboring movingtpoCorrespondence
is established “automatically,” in that the intersection of two curves in diftdteyframes with the
same moving point determines the correspondence. Multiple moving pointooaoldhe inter-
polation, therefore it is not linear interpolation on a path. The user mustedafpair of keyframes
for the start and end poses, manually select the moving points, and thosggrpoints must be
defined to constrain the motion of the ends of all the curves in the keyfrafnpatch network is
defined as a data structure of sets of keyframes and moving points. &agheted patch network
is subdivided. To generate an inbetween, the patches are evaluatednétranediate time step
using one of three interpolation methods described by the author. Miuradtaéon (defined by
the author) is similar to linear interpolation, but causes a lot of contortiondiandntinuities along
patch boundaries. Coons patch interpolation (defined by the authdrplsaine normal derivatives
at patch boundaries and uses two blending functions. Contortions irtetloe patch rarely occur,
and can be remedied with adding constraints. Finally, the cubic metric spaqmlaten method,
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as described by the author, is a method of interpolation defined by cubati@us Contortions
occur when there are regions of high curvature in its cubic basis cufvieiée this method provides
control in creating a new animated sequence by generating the inbetvaagamatically,” a great
deal of manual effort is involved.

Di Fiore et al. [Di Fiore et al. 2001] present a multi-level method for inlesming computer-
assisted 2D animation by including 3D information as a high-level deformatidn @od 2.5D
information as modeling structures. They address the inbetweening issael-occlusion and
silhouette changes. The multi-level method is “2.5D” for modeling and animatiitig feur levels
described: (1) the basic building primitives such as sets of 2D subdivigiores in level 0, (2)
all 2.5D modeling information is in level 1, (3) 3D skeletons are used to coBizeyformation in
level 2, and (4) high-level deformation tools are in level 3. The key to thithatkis in the 2.5D
modeling level, where the animator defines sets of depth ordered primitivedision curves)
with respect to both x-axis and y-axis rotations of the character at expes®s or camera angles,
while drawing order for each of the primitives is also stored. Correspacalinformation stored in
level 0 is defined manually, and those curves are interpolated linearlyndtien of 3D skeletons
incorporated in level 2 simply define a local coordinate system that pregidegion of the charac-
ter (represented as sets of control points on 2D curves) that will beidfed by a particular bone
and any transformation it may cause. The high-level deformation tools eif 3eare applied to the
control points of the 2D curves or the position of the 3D skeleton. While thisodedddresses the
difficulties of 2D inbetweening, the user or animator still has to manipulate rtaitive control
points for the underlying spline representation of the curves, and gpheitorrespondence infor-
mation manually. The skeleton information included in level 2 also requiresfisp¢ion of the
region of influence over the underlying curves, and is only a marginalawgmnent over the 2.5D
information for the extreme poses from level 1, which the animator must gpeciiell.

[Kort 2002] introduced a method for integrating vector-based inbetimgento an animation
system that requires the user to draw the keyframes and identify the tfyemsh key image. The
layers are included to overcome the occlusion problem in 2D animation. Eaelng is analyzed
and classified into components called strokes, chains of strokes andrrelagitveen them. A set
of rules is used to match parts of different drawings and specify allowaidages between the
relations associated with each drawing. Their method assumes: (1) aizedtsiroke is defined
as the path specified by the movement of the input pen, (2) stroke chaistractures consisting
of one or more strokes, (3) a stroke chain may or may not have a condigyy stroke chain in
another key drawing, (4) animation paths that specify the correspoesi&mtween stroke chains
and the interpolation between them. Each vectorized stroke is repressrdadgaier curve. The
inbetweens are generated by interpolating the strokes using a Coongrpasfbrmation. Although
the results are promising, the method still requires the animator to draw the ytrhiees directly
into their system. The system is also restricted in the type of animation that cabdieéened in
this fashion, such as those animations in which the layering order of the a@laimnt.
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Figure 111.1: A hand drawn image with the reference skeleton and relediwedinate system. Image
from [Burtnyk and Wein, 1976].

[11.1.2 Template-Based

Burtnyk and Wein [Burtnyk and Wein 1976] describe an inbetweening ndefiiokeyframe ani-
mation in which the animator traces key drawings into a computer program ascgunsinderlying
skeleton to drive the motion for the interpolation phase. By drawing the &ends into the com-
puter, the system keeps track of the order of the strokes for strokeoke stratching. The order of
the strokes in each image determines how the interpolation will generate an éslneitwage, also
keeping track of separate layers for later determination of hidden linesskeieton used to rep-
resent the image data defines a coordinate space within each image. Elatbns#lefines an axis
and a boundary of influence over a region of the image, which is essemtiaigsh. Figure I11.1
shows an example of a drawn image, the reference skeleton for the imdgheaoordinate system
derived. Each region of influence from the skeleton will cause a distdrtitre image that is used
for interpolation, and any image region that is not covered by a skeletonerithin unaffected by
the distortion. The interpolation method used is linear interpolation of the skelefmsmooth
any discontinuities that result from linear interpolation, a parametric methoareé fitting is used,
producing a smooth path for each interpolated point. One limitation of this systéuat idefining a
skeleton to control the interpolation of every part of an animation sequeniglel be extremely time
consuming. The authors note that they envision their system being usetiveyeover previously
created sequences of animation to improve the motion dynamics.

[11.1.3 Vision-Based

Seah etal. [Seah and Lu 2001] discuss using a modified hierarchatatdebased matching method
for motion estimation to generate inbetween line drawings from a pair of inputitegings. The
authors modify the hierarchical feature-based matching algorithm froem§)/ét al. 1993]. Some
of the features are intensity, edgeness (magnitude of gradient), sessefinstantaneous rate of
change in the gradient direction along an edge), displacement orient@idmagnitude smooth-
ness. These features are used to compute motion vectors between drpages, and is structured
as an optimization problem solved by using the least squared error. Thedristhierarchical to
overcome the initial value problem, so the feature-based matching is appliadritage pyramid

24



for each image pair from a low resolution to a high resolution, and passéssea of matched
features to the next resolution level. The authors modified the algorithm efdvet al. 1993] to
normalize all of the features and apply different weights to each feafithreir modified feature-
based matching is applied to the pair of keyframes; however, the inbetwege geaerated is just a
linear interpolation of the matched features, and some artifacts are intcbdudag interpolation.
Also, this method will fail in the case of silhouette changes when new feadpesar and have no
corresponding features to match to, while other matched features will @isapp

Wang et al. [Wang et al. 2004] developed a technique for applyingomaterealistic effects to
video, giving the video a cartoon-like look. Their method applies a modifiedhrabit segmenta-
tion to the video to construct volumes of contiguous pixels with similar color. Thenrséift seg-
mentation uses an anisotropic kernel to account for spatio-temporahiafion in the video. Once
the segmentation volume is generated, the user outlines semantic regionsim leyieames in
the video, indicating which low-level segments should be merged, whichpapgated to all frames
thereby maintaining interframe correspondence. The video is then egpedsas three-dimensional
polyhedral regions. Two-dimensional style effects are applied alongutace of regions and
within regions by taking slices of the volume along the time axis. The slices yield aaas and
curves along edges that may be rendered according to the desiredffagts. eTheir method of
building a three-dimensional volume from video may be applied to the inbetwgepnilem, and
might work for contour data. However, there is a fair amount of usertirgguired to define the
semantic regions and the method is fairly complex to be used on a single payfadrkes that
require an inbetween.

I11.1.4 Shapelnterpolation

Beier and Neely [Beier and Neely 1992] discuss how to create a morplpaif @f images that is
a combination of a cross dissolve and an image warp. A warp is calculatedti®source to the
destination image, and likewise for the destination to the source. The warpithganased is a
reverse mapping, where the destination image is scanned pixel by pixéiedrrect pixel from
the source image is sampled. Their morphing method is based on fields of a&flaemounding
two-dimensional control primitives. To deform the images, sets of fea{dinexted line segments)
are defined for both source and destination images. A coordinate syskerit isased on the line
segments and a distortion field. Figure IIl.2 shows a source and destimatage with sets of
features and the resulting morph. Once the warping function is definezhébrimage, the morph
proceeds as a cross dissolve with the start image being the unwarped soage, the image half
way between is a combination of the source image half way warped and tiveaties image half
way warped, and the final image is the destination image unwarped. Anyainaigion based on
a single pair of lines is affine. Any transformation with multiple pairs of lines heights assigned
to each line, and is usually non-affine. While this method produces nice irdeta@nages during
the morph, it suffers from two disadvantages, speed and control.uBedhe features are globally
defined the line segments need to be referenced for every pixel. Alse, adifacts can appear as
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Figure I1.2: The left and right images are the source and destination snaigie sets of features
indicated as directed line segments. The center image the resulting morph, witdveaid lines
from the source and destination. Images are from [Beier and Neel].199

unexpected interpolations of pixels that are far away from the line segments

Sederberg and Greenwood [Sederberg and Greenwood 199#cshamiv to smoothly blend
between a pair of two-dimensional polygonal shapes. By modeling the shppes as being com-
posed of thin wires, the shape transformation is achieved by minimizing eqgsiaifonork for
deforming the wire from one shape to another. The user can specigjgahgttributes of the wire,
thereby controlling the ease or difficulty of bending or stretching it to aonfsom one shape to
another. To prevent the shape from self-intersecting, a penalty isldddany deformation that
crosses a zero degree angle, which implies the shape has intersected iteadieformation work
eqguations are separated into stretching work and bending work, this fipgtlied to adjacent vertex
pairs, the second is applied to sets of three adjacent vertices. Thasadde problem of vertex
correspondences by specifying a small number of initial correspondiitg pairs on the input
shapes, and can add vertices based on some heuristics. The polyepsalies do not have to
have the same number of vertices, but every vertex in each shape meist tarrespondence to the
other shape. While their results show nice shape blending, the shapelsenpatygonal, therefore
using existing animations would require polygonalizing every image. Thaiitseslso depend on
the initial manual placement of the corresponding vertex pairs. All of thestoamations, while
constrained by the work equations for bending wires, still suffer uralde effects, such as an arm
shortening, because the corresponding vertices are linearly integholate

Turk and O'Brien [Turk and O'Brien 1999] present a method for ghiapnsformation using im-
plicit functions for both representing and interpolating the shapes. Théfratieelies on scattered
data interpolation, produces smooth intermediate shapes, and will workdpe gransformation
in any number of dimensions. Each shape is defined implicitly in a higher dimertbiereby
combining the representation and interpolation of the shapes into one stape Rig3 shows a
visualization of a transformation between a pair of two-dimensional shapsiag implicit func-
tions to interpolate between a pair of shapes is similar to the technigue we disingsadial basis
functions (RBFs) for interpolation. However, their method requiresigpeg interior and exterior
points for the shapes being transformed, and assume a specific gtayrsage from which to de-
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Figure 111.3: A visualization of two-dimensional shape transformation betwan X shape and an O
shape. The translucent surface indicates the isosurface of thedilhmeasional variational implicit
function created from the two-dimensional shapes represented by thaddpttom planes. Image
from [Turk and O’Brien, 1999].

fine the interior, exterior, and boundary points. White regions reptékerinterior of the shape,
black regions represent the exterior of the shape, and intermediateadimayg define the boundary of
the shape. This gray-scale image representation allows for creating ¢hsshape from the image,
while defining the boundary and normal constraints by looking at the peighbors and the gradi-
ent, respectively. Figure Ill.4 shows an example of the implicit functioateafrom a gray-scale
image with boundary and normal constraints. While the variational implicit strapsformation
method would work with cartoon images, the user would have to prepardrage to work with
this representation by either manually specifying the interior, exterior, anddary points with
normal constraints, or by modifying each image to be in the same gray-scale asatpscribed.
We experimented with the variational implicit shape transformation on a pair etlimensional
cartoon contours. Figure I11.5 shows the result. Interior and extedimtgwere specified manually
for each contour (48 interior and exterior for the first contour, 44 ioteand 53 exterior for the
second contour), and all points along the contour were used. Nospordence information was
specified. While the result is able to generate a surface between the tworcaontours, the sur-
face between the contours loses a great deal of small detail, smootresibf the larger details
around the feet, and extrapolates out beyond both contours. As weewilh<Chapter V1.4.2, our
method of using radial basis functions (RBFs) for generating an implidaseibetween a pair of
contours performs better, smoothing still occurs on fine details, but ldegails around the head
and feet are preserved.

Alexa et al. [Alexa et al. 2000] describe a method for generating nomlstegpe transforma-
tions from a pair of two- or three-dimensional input shapes, while maintaimiggnal textures
and features during the morph. Unlike [Beier and Neely 1992], this toamsition is performed
in object-space, that is, the representation of the two- or three-dimehslagzes are polygons or
polyhedra respectively. In dealing with objects rather than images, thehingrprocess requires
generating a correspondence between the geometric features (\arespondence) and interpo-
lating the boundaries of the shapes (vertex path). The authors peesemiphing technigue that
blends the interior of the shapes rather than their boundaries to achieveedtate shapes that are
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Figure 111.4: An example of the boundary and normal constraints indichyedircles and plus
marks on the left, an intensity image showing the implicit function on the right. Inage fTurk

and O’Brien, 1999].

Figure II.5: A visualization of two-dimensional shape transformation betwe pair of cartoon
contours. On the left and middle are the two cartoon input shapes shovenspegtive and over-
layed on the mesh. On the right, the two input cartoon shapes are ovettayattier, and the
translucent surface indicates the isosurface of the three-dimensiamatianal implicit function
created from the two-dimensional shapes. Notice on the isosurfacesthisdround the head and
feet are smoothed and lost because the isosurface balloons out tamnfahe input shapedaffy

is T™M& ©Warner Bros. Entertainment Inc.

28



locally least-distorting. Their method assumes that correspondence badyabbeen determined
for the boundary vertices before applying their algorithm for generatiogmpatible triangulation
into triangles or tetrahedra (in two- and three-dimensions respectivety)thE two-dimensional
case, the compatible triangulations are generated with a Delaunay triangulénrvertex posi-
tions are optimized based on maximizing the minimum interior angle to help eliminate lomy skin
triangles. This mesh smoothing step must be done on both triangulations te #dresithey remain
compatible. The general overview of their morphing algorithm is to first deter an optimal least-
distorting transformation between source and target, which is locally as simiassible between
each pair of corresponding triangulations. An affine transformationteyméned for every pair of
source-target triangles in the triangulation. The transformation is dec@u jpus a rotational com-
ponent (rigid) and a scale-skew component (non-rigid), both of whiehinterpolated separately.
Each transformation is decomposed using singular value decomposition) (§\sBparate into a
rotation matrix and a scale-shear matrix. The rotation is represented aseangaand interpo-
lated using spherical-linear interpolation. The scale-shear componetgrigatated linearly. Now
an optimal transformation is known for each pair of source-target trianptmvever, these cannot
simply be applied as the shape will come apart because shared verticeawsilllifferent optimal
paths to follow. The paths the vertices take are expressed as a verfigucation that minimizes
the quadratic error between the actual transformation matrices and theddesirsformation matri-
ces. Their method produces nice shape interpolation for a single pairutfshapes, and preserves
interior details very well for all of their examples. However, this method leeeral limitations.
Corresponding vertices on the pair of input polygons must be manualtyfigoe We implemented
this method and found that it cannot be easily applied to the two-dimensiorehiebning prob-
lem. It cannot handle occlusions or out-of-plane rotations, which aréatbhenain problems for
two-dimensional inbetweening. Generating good compatible triangulationdicutijfand while
Delaunay triangulation tends to create long, skinny triangles, the optimizatjpdeés not always
remove all defective triangles, resulting in numerical problems. Most impitytdhere is no con-
straint in the method that prevents triangles from flipping during shapddramation. The authors
state “In all our examples no simplex changed orientation (i.e. flipped),Vesywee have not been
able to prove this to be a property of our approach.” Figure 111.6 shbersesult of applying [Alexa
et al. 2000] to a pair of cartoon keyframes. The character was manggihgented into layers to
overcome the self-occlusion problem, and each pair of shapes hadlipwapeaified boundary ver-
tex correspondence. Compatible triangulations were generated, thoogh be seen in the figure,
some could not be optimized to remove the defective triangles. Even with atgandulation
of the right arm, the shape transformation produced undesirable resuttseefinbetween shapes.
Examining the arm closer reveals that the triangles changed orientatiomn dloeitransformation.
Figure 111.7 shows a close up view of only three triangles extracted fraratim, and the paths
that the vertices followed during the transformation. Yet, other parts ofitamcter produced very
reasonable inbetween shapes. Due to the unpredictable nature of sifliggeng during shape
transformation, we abandoned this method for generating inbetweens.
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(a) Keyframe 1 (b) Inbetween (c) Inbetween (d) Inbetween (e) Keyframe 2

() Keyframe 1 (g) Inbetween (h) Inbetween (i) Inbetween () Keyframe 2

Figure 111.6: We tested the method of [Alexa et al., 2000] on a pair of cark@yframes. The char-
acter was segmented into layers, then the shape transformation was apphet tayer separately.
The top row shows the result of the transformation. The bottom row is the sansformation with

the triangulation visible at each step.

Figure I1.7: A close up view of three triangles from the right arm of thareleter in Figure III.6.
Clearly, the vertex paths indicate that the triangles flipped during shapsdraration.
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[11.1.5 Other Techniquesfor 2D Animation

Fekete et al. [Fekete et al. 1995] present a complete 2D animation systeetfor-based sketch-
ing and painting. Their software is designed to support a paperlessigiation pipeline. In doing
so, several technical issues are addressed. To draw the keyfdimeesdy into the system, strokes
are captured and vectorized from a pen-tablet input device. Thervamsed strokes are internally
represented asé&ier curves, which are created by a quick curve fitting algorithm to therdra
brush stroke. Painting the keyframes requires gap filling (making surdrtiiees are closed) and
a planar map applied to the planar topology that is defined by a seézi&Bpaths. Rendering
breaks down the strokes into shaded polygons and scan-convertsAhelmtheir method presents
an approach to the entire animation process as vector-based sketcbinglst discuss the ad-
vantages and disadvantages of automatic inbetweening. The advantdgds mreduction of the
number of hand-drawn inbetweens and the possibility for procedurdéreng or texture mapping.
One disadvantage mentioned is that automation changes the nature of inbhegis®d limits its
complexity. Both template based systems [Burtnyk and Wein 1976] and exmlicéspondence
systems [Sederberg and Greenwood 1992] would be restricted to faingad drawings. One of
the features described as future work when this paper was publisisadaeaporating automatic in-
betweening of simple objects such as a bouncing ball or falling snow. Timeent software system
(by Toon Boom Technologies) can create simple inbetweens from ther\agtoation. However,
this technique requires the basic animation from which to produce the inbedyaed an artist is
still required to draw the keyframes.

Corréa et al. [Corea et al. 1998] developed a method for applying complex textures to hand-
drawn animation. For every shot in the animation, the camera parametersoave &nd fixed per
shot, their system uses a silhouette detection scheme and a warping algoritioditp a three-
dimensional model of the character to match to the hand-drawn line art. Feowattped model,
the texture is rendered and composited with the line art for the final resudtu3ér must create a
three-dimensional model that approximates the shape of the hand-dnavacter, and help guide
the correspondence of edges and curves in the line art that cancepthose features in the three-
dimensional model. Each curve is represented as a uniform cubic B-splimalculate the control
points of the spline, an overdetermined linear system is solved using lesstsclata fitting to
minimize the root mean squared error. The system is overdetermined bdbausurves to be
fitted are hundreds of pixels in the curve of the line art. The warping algontkes a forward
mapping, in contrast to the inverse mapping of [Beier and Neely 1992]kdvisuare specified on
both the model and drawing, and used to define a coordinate systemtfomoalel space and
drawing space. Each marker has a slightly different coordinate systeewgighted average is
used for each marker pair. Two parameters control the smoothnesseaisign of the warp, and
how much influence a certain marker contributes to its neighbors. The autisouss several ways
of tweaking the results by adding more markers, adjusting the ordinate dir@gttbe coordinate
system for the warp, and reparameterizing the texture, allowing even markvel control of
the process. While their results achieve the goal of applying a complexdeixtar hand-drawn
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character, the entire process is still quite labor intensive. Also, therseasgal types of line art
for which their system will not work. The authors describe four clas$dise art that their system
would fail to texture: (1) a character with tufts of fur that are suggestedharp wiggles, (2)
characters that would be difficult to approximate with a three-dimensionatinsach as clothing,
(3) characters that have no reasonable three-dimensional refateserand (4)complex shapes that
could not be represented with a single B-spline patch. Because of thanédrwsive process of this
system and its limitations, this method would not be well suited for transferritigreeiaformation
from a keyframe to an inbetween generated by our proposed system.

Petrovic et al. [Petrovic et al. 2000] inflate a 3D figure based on haardart to produce
shadows for cel animation. Their method is not fully automatic, the user mastfggamera
position, ground plane, background objects, depth for charactéligints. To create shadows, they
use three types of shadow mattes: (1) tone mattes, these are self shadewsegother shadows on
the character; (2) contact shadow mattes, these are shadows castdmatacter onto the ground,
and in contact with the character at all times; (3) cast shadow mattesyehtmi the character casts
onto the background. Constructing the background requires the assnropa fixed field of view
and aspect ratio for the camera and an upright camera roll and gréauma pitch. Next, the user
defines several parameters: (1) the pitch of the camera, obtained byethdrawing two parallel
lines in the ground plane; (2) a coordinate system, defined such thatigive isrthe center of the
image plane; (3) a ground intersection line, specified by the user so thatwest be perpendicular
to the ground. More complex objects like stairs require more user input,agupblylines on the
object starting with the contact points with the ground plane. The inflation méshethree step
process. First, the line art is converted into character mattes. Thesigidezidnto multiple layers
to give depth information. The inflation method is based on “teddy” by findiegtiordal axis of a
closed curve, lifting it out of the plane, and lofting a surface betweenuhgeand axis. Next, the
shape is adjusted for a perspective camera. Although this method psaticegesults for casting
shadows in cel animation, this technique can be considered a postguycgsecial effect in the
traditional animation pipeline, and does not help in the actual creation of thraton itself.

Bregler et al. [Bregler et al. 2002] proposed a method for re-usingpaarmotion data by
capturing the motion of one character and retargeting it onto a new cateoaicter. Their system
can be broken down into two steps: capturing and retargeting. In thereggiase, a set of key-
shapes are identified in the source cartoon. Each key-shape is paraaokete capture the motion.
An affine transformation describes the coarse motion (the general tianstatation, and scale) of
the character. To capture the nonlinear motion, such as the extreme dist@divoon characters
typically undergo, key-shape deformations are defined by selectingttbélsey-shapes that include
all possible extreme deformations. To reduce the number of key-shapesd¢h must select, the
cartoon shape space defined by the key-shapes is extended by lineapyplating the key-shapes.
Since linear interpolation cannot accurately produce good inbetweg@eshtae linear key-shape
set is first preprocessed and extended using [Alexa et al. 2000]PBA4 is applied to the extended
shape space that has been biased by seeding with the inbetweenbdpeg-Biasing the extended
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P-disn. Shape Space

Figure 111.8: An example of the shape space with the additional inbetwdearyedhapes that would
fall along the green line, thereby biasing the extended shape space tawey&om invalid shapes
shown in red. Image from [Bregler et al., 2002].

shape space before applying PCA helps to constrain the number of invafidsthat occur with just
extending the shape space by linear interpolation. Figure 111.8 showssampte of the shape space
with the additional inbetweened key-shapes that would fall along the tjreethereby biasing the
extended shape space to move away from invalid shapes shown in redh&\ieky-shapes selected
and the cartoon shape space defined, a warp from one key-shapetherais calculated. The
retargeting step requires the user to define a set of correspondirgh&pgs on the target cartoon
character. The warping functions calculated from the source kegyeshare applied to the target
key-shapes to create the animation for a new character from the motiorifeosource character.
Figure I11.9 shows an overview of the capture and retargeting stegsibed. While this approach
produces interesting results for applying the motion of one character aotbex character, this
approach does not generate a new cartoon motion. Their system eeggireat deal of expert user
intervention to train the system and a talented artist to draw all the key-shBpeh of the key-
shapes must be manually specified for the source and target chaaiadtpgrameterized by hand to
find the affine deformations that the source key-shapes undergeeladiplying them to the target
key-shapes. Their work provides a method for re-using the overall motithve cartoon data, but it
does not look at the structure of the data itself and therefore cansetresnce the data to expose
meaningful new behaviors.

I11.2 Re-sequencing Animation Data

[11.2.1 Video

We are motivated by the work of Sgtil et al. [Sclddl et al. 2000] on video textures to retain
the original images in motion sequences but play them back in nhon-repetitdars of arbitrary
length. A video texture is derived from video by changing the order in kvttie original frames of
the video are played. The video frames are played out of the originai ordly at specific places that
are most unnoticeable to the viewer. This re-sequencing then prodscesaghly playing infinite
video from the finite duration input clip. Video textures is most similar to our gbe#-sequencing
cartoon images. To determine when to transition from one frame to anothdr; ttlistance is
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Figure 111.9: A general overview of the capture and retargeting ec€&he source and target key-
shapes are selected by the user, the key weights are determined by fimeliwgrping function
required to move from one key-shape to another in the source shage Jjpeese are applied to the
target key-shapes in the retargeting step. Image from [Bregler et @2].20

used to compute the differences between frames for building the videduseud hese distances
are used to produce a matrix of probabilities, where each entry in the matrie @robability of
transitioning from one frame to the next. If the Histance between a pair of images is small,
then the probability of transitioning between those images is high. The probabdityx is further
refined to take into account the dynamics of the motion. A filter is used oveiidtende matrix by
using a weighted diagonal matrix to take into account the similarity of temporallgemjdrames.
In other words, the similarity computation can be said to match subsequenitames instead of
individual frames. Figure 111.10 shows examples of the distance aruhpitity matrices before and
after filtering. To further improve the transition points to make them more unrdieemorphing
and blending techniques are used. We want to compare the differegtgeseln frames in a similar
fashion to analyze the traditional animation data for re-sequencing.ofibet al. 2000] assume
a large data set with incremental changes between frames. Their methods extend well to
cartoon data, which is inherently sparse and contains exaggeratehdaéms between temporally
adjacent frames.

In their follow-up work [Sclddl and Essa 2002], they create new character animations with user-
directed video sprites. The authors describe video sprites as “animatested by rearranging
recorded video frames of a moving object.” As has been described #nera number of ways
of generating motion for animation. Video textures rearranges recoided frames, but to direct
the video sprites, the authors developed a cost function to define thedlasition of the sprites.
The sprites are captured from video footage of the desired charactecanstant background. The
video is processed to extract the sprite from the background, anectdor perspective effects of
the character moving closer and farther from the camera. Unlike tltistance that was used to
compute the similarity of images in [S@tll et al. 2000], transition costs are defined by training a
linear classifier, learning from 1000 pairs of good or bad transitionsatetnanually classified.
The cost function used sums the costs of all constraints and time steps,lesarhpome of the
constraints are location, path, and anti-collision. The cost function is optimiiag a hill-climbing
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Figure 111.10: The distance and transition probability matrices before @eff)after (right) filtering.
These matrices are generated from analyzing video of a clock pendulaticeNhe probability
matrix after filtering matches only forward swings of the pendulum. Image f®chddl et al.,
2000].

method over the entire sequence as a whole, and determines transitions mticwdgparder. The
results are generated by specifying constraints for the desired animétiomxample, to make
a character walk around in a circle, a path constraint is used. Howswegll motions can be
animated, and there is no guarantee that there will be useful motions addrgositions captured.
The examples shown require a vast amount of video data: 30 minutes offeimtage for a hamster
yielding 15,000 sprite frames (30,000 after mirroring). In our work, thgdsr cartoon data set we
use has 2,000 frames, yet we still achieve good results with sparseif &&@ foames.

[11.2.2 Maotion
Recently, other researchers have found inspiration from video texdma:have applied it to motion
capture data. Sidenbladh et al. [Sidenbladh et al. 2002] employ a plistiabearch method to find
the next pose in a motion stream and obtain it from a motion database. Ariddfoesyth [Arikan
and Forsyth 2002] construct a hierarchy of graphs connecting a nddtabase and use randomized
search to extract motion satisfying specified constraints. Lee et al. flate2902] model motion
as a first-order Markov process and also construct a graph of mofibey demonstrate three
interfaces for controlling the traversal of their graph. Kovar et al.viaet al. 2002] use a similar
idea to construct a directed graph of motion that can be traversed toatgmifferent styles of
motion. In our work, once the structure of the data is learned, the manifdideghiesents the data
can be traversed to re-sequence the data.

With the recent research efforts in re-using video data §8tkt al. 2000; Sabdl and Essa
2002] and motion data [Sidenbladh et al. 2002; Arikan and Forsyth 2082gt al. 2002; Kovar
et al. 2002; Kovar and Gleicher 2004], research questions arise hbw to re-use the data in novel
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ways. Given a corpus of video or motion data, how can the data be detmseeate new motions
not previously seen in the database? The goal of our work is to rexissmg traditional animation
to create new motions, representing the data in a lower-dimensional graptustr(manifold) and
re-sequencing the images by traversing the graph from a given sthetrmhpose. Using a graph
structure to represent the motion data is not a new idea.0fB@t al. 2000] also use image-based
motion for creating infinitely long smoothly playing video from short video clifisovar et al.
2002] use motion capture data for synthesizing new motion paths.

Looking specifically at Motion Graphs, [Kovar et al. 2002] present g&hogt for creating di-
rectable motion given a database of motion capture data. Motion Graphsaimework for gener-
ating different styles of locomotion along arbitrary paths through the motiptucadatabase. The
system automatically constructs a directed graph (the motion graph) ofa@meein the database
of motion capture data. The idea is to automatically add the transitions betweewfcimsion
within the motion database. The transitions are segments of two motion clips thdéaded (in-
terpolated). The completed motion graph then has original motion capturesdatdlas the syn-
thesized transitions. Each edge in the graph represents the motion cliprasists of the position
of the root joint and quaternions representing the orientation of eacte gbithts in the character.
Nodes in the graph represent the transition points. A “walk” of the grapheisiew synthesized
motion. By representing clips of motion capture data as a motion graph a usdireet a new mo-
tion by defining several functions specifying the goal of the motion, allowliegsystem to search
through the motion graph to build a “walk” (i.e. traverse the graph). The eme also specify a
path that the character should follow, and using an error function dtiddheriteria, the system can
find the pieces of motion that best represents the path supplied by the user.

To build a motion graph, each clip of motion capture data is annotated with ciohgtfarma-
tion (e.g. foot plant constraints) and a descriptive label (e.g. sneakihgn the goal is to find the
best transition points for each motion clip. Transition points are found fenygeair of motions in
the database. To find the transitions, a distance metric is defined; the @hkareds the sum of
squared distances of point clouds. The distance between two framesiotion A and motion B is
calculated by using a window of 10 frames around each frame in motions B.ahide window of
frames for each motion is converted into point clouds around the joints. diheghouds are aligned
using a linear transformation applied to one of the motion window s, and finallsuitmeof squared
distances is calculated using the point clouds. This calculation is donedoyr pair of frames in
motions A and B, and for every pair of motions in the database, resulting inandéematrix for
each pair of motions in the database. Once a distance matrix is computed, theitooe points
are extracted using a pre-defined threshold. The threshold is defjnibe liser on a per-motion
basis, since the motions being compared will vary and have differentittidssfor different types
of motions. The next step is to create the synthesized transitions betweenttbeanthese transi-
tions are added to the motion graph as edges. The final graph is pruregddee any dead ends by
saving only the strongly connected components of the graph.

Synthesizing new motions requires a traversal of the motion graph. Therauthll this a
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“walk,” which is cast as an optimization problem to search the motion graphk. uskr defines a
cost function for adding edges to the synthesized motion, a legality funaratetermining which

clips are legal to add to the synthesized motion based on constraints andrsdiahhalting function.

An incremental search then builds the “walk.” Path synthesis requirgsysnig a desired path, an
error function a nd halting function. The system measures the actual pagtied by the character
during a graph walk and measures the difference to the user-supplied pa

One of the difficulties with the motion graphs approach is that the user musifyspecost
function that does not over specify the goal of the new motion. That iseitifer simply restricts
the beginning and ending constraints of the motion, the out come will most likélyena desirable
motion. The cost function should guide the entire motion. Another issue is $iag just the
transition points from the distance matrices alone is not sufficient for syizthg new motion. The
transition points are used for determining which sections of motions need ferdek to then be
able to use the transition from one motion to another.

Our work for re-sequencing cartoon images to create new motions is similaatia guitable
distance metric must be identified for the results of the re-sequencing to pigldmiate new mo-
tions. A question that can be asked is, once a suitable distance metric is idergifiethe distance
matrix that is calculated enough to generate new motions, like with the motion grapddigm?
A distance matrix alone is not sufficient to produce new motions; the distantcixmél help in
determining the transition points only, but will not solve our problem of igisacing to create new
animations. Comparing images is not a trivial problem, and the quality of thegwesced motions
depends on the quality of the distance metric. Using nonlinear dimensiorticeguee create a
manifold structure of the data then use this lower-dimensional graph seuciure-sequencing.
The graph does not need to be pruned, rather, the entire graph imglgitonnected component,
the nodes represent the images and the edges represent the transitiocas tietaken. The user
only needs to specify a start and end pose to create the new motion; the tiew imthen created
by traversing the graph and playing back the frames in the sequencenoietdrby the traversal.
By representing the image-based motion data in a lower-dimensional strueigan also use
the structure of the manifold to generate new images. A distance metric aloldencprovide
enough information to generate inbetweens. In this respect, the paratligotion graphs is not
appropriate for re-using cartoon motion. If image-based cartoon datuwsed to create a motion
graph, the distance metric would provide the transition points, but there isagaonsynthesize
blended transitions that are intelligible from blending the images. Also, weeasequencing the
order of the motion clips so to speak (re-sequencing the order of thedrfnore the cartoon data)
for creating new motions, not just playing back segments of motion pieceth&ygey blended
segments. Another issue is temporal coherence. In creating a lowersiimaistructure, temporal
information from the original motion can be easily preserved.

37



11.3 Dimension reduction

An alternate way of thinking about the problem of re-using and inbetwgeanimation data and
how to represent the data mathematically is by using dimension reduction. £artmoation data
can be viewed as requiring a high-dimensional space to represenstsiblgovariations or degrees
of freedom. Methods for learning low-dimensional models from this high-dsiomal data have
been recently used in animation systems [Kovar et al. 2002; Jenkins and®2®03]. Using a low-
dimensional representation of the data may provide insights into the struétilne data and how
best to re-use it. The goal of dimension reduction is to represent the datler-dimensional
space in such a way as to preserve certain properties of the data asllfaitisf possible. The
measure of how well the data are approximated by the lower-dimensional ispaterred to as the
residual error. There are linear and nonlinear methods of dimensiaotied, and we discuss the
most common and relevant methods here.

Principle Component Analysis (PCA) [Jolliffe 1986] is a linear projectioragubspace of the
original data that best preserves the variance in the data. PCA usesgadigedecomposition on the
covariance matrix of the data to produce a subset of eigenvectors pheseat the principle varia-
tions in the data. These eigenvectors form a linear subspace foreapngsthe data, generating a
mean image and eigenvectors that span the principle shape variations in tecsipagg. However,
PCA assumes that the structure of the data are linear, and that the inpateaidependent. We
know that animation data are temporally correlated, with a specific sequentél dhus, PCA is
probably not be the best choice for cartoon data.

Independent Component Analysis (ICA) is a statistical method that gepate independent
components in a multivariate signal by maximizing the statistical independence ektimated
components. For example, ICA of a random vectaonsists of finding a linear transformation
s =Wxsuch that the componenssare as independent as possible, in the sense of maximizing
some functiorF that measures independence. There are both linear and nonlinearofolG.
However, we do not expect statistically independent components to giaeyadvantage over the
nonlinear method we chose (Isomap).

Multidimensional Scaling (MDS) [Kruskal and Wish 1978] is a nonlinearrapph to dimen-
sion reduction that preserves pairwise distances to uncover the stroftilme data. MDS allows
for the visualization of how near data points are to each other for many &frdistance or dissim-
ilarity measures and produces a representation of the data in a lower dimekE)& is a generic
term that includes many different types, which can be classified acgoraiwhether the data are
guantitative (metric MDS) or qualitative (nonmetric MDS). The variants of mg&isus nonmetric
MDS differ in their cost functions and optimization algorithms. With metric MDS, & éunction
measures the distance between pairwise data. With nonmetric MDS, the wo$briuranks the
dissimilarity of the data.

There are several methods of unsupervised learning that use eigemuigsition to obtain a
lower-dimensional embedding of data lying on a nonlinear manifold. The twareveost interested
in are Local Linear Embedding (LLE) [Roweis and Saul 2000] and Ispjfi@nenbaum et al. 2000].
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We briefly discuss the two methods, and defer a more detailed look at IsartibGhapter V.

LLE looks for a lower-dimensional embedding that preserves the loaahgey of a small
neighborhood for each data point. It is assumed that the data lies on a ltamfb that each
data point and its local neighborhood are approximately a linear subspaiedly, the algorithm
approximates the data with many linear patches. The patches are assembtbdrtog a low-
dimensional subspace such that the relationships between patchesssmevgd. The assembly of
the patches is achieved by global optimization.

Isomap generalizes MDS to nonlinear manifolds. Instead of using Eucldisi@mces between
pairwise data, Isomap approximates the geodesic distances on the masidabeplworks well for
nonlinear data, it preserves the global data structure, and it optimizeallglokhe basic algorithm
begins by constructing a neighborhood graph for each data point,ipaidistances are computed,
then MDS is used to reduce the dimensionality.

However, neither LLE nor Isomap account for temporal structure itooardata. A modi-
fied version of Isomap, called Spatio-Temporal Isomap (ST-Isomapkifie and Matad 2003;
Jenkins and Matati2004], can account for the temporal dependencies between siedjyeat-
jacent frames. We borrow the idea of extending Isomap using temporalboeigiods, and use
ST-Isomap for dimension reduction of cartoon data to maintain the temporeiwseun the em-
bedding. [Jenkins and MatarR003] focuses on synthesizing humanoid motions from a motion
database by automatically learning motion vocabularies. Starting with manuatheaggd motion
capture data, ST-Isomap is applied to the motion segments in two passes, dlorudustering
techniques for each of the resulting sets of embeddings. Motion primitiebetmaviors are then
extracted and used for motion synthesis. This type of analysis and sigrdl®srequires more data
than is typically available for cartoon synthesis. Thus, we adapt the meathpliskins and Matati
2003] to use images as input, and use only one pass of ST-Isomapdtingrhe embedding used
for re-sequencing.

Pless [Pless 2003] has investigated using Isomap for exploring andzengalydeo sequences
as a trajectory through large image spaces. The idea is to have automatiotaoislfyzing video
by representing the video as a trajectory through the image space in a lomevsibn. The au-
thor defines a video trajectory as a representation of changes in a @daence based upon the
nonlinear dimension reduction method of Isomap. The analysis of the videottndes through
the lower-dimensional spaces reveals five categories describing thessbithe trajectories: (1)
cyclic, which are repetitive video sequences, (2) helical, a periodicracioved by a moving cam-
era, (3) knotted, non-periodic or dynamic motions such as fountains,esranll flames, (4) linear,
smoothly changing but not repetitive motions such as a slow pan acrossey aod (5) combina-
tions of the four categories with distinct transitions between each type. @plieaion of these
video trajectories is to segment video based on which category the trajéaiisrinto, such as a
transition from a bird in flight to a bird gliding. While this method is similar to our workrieating
a lower-dimensional image space for video using Isomap, their work iséabon using the embed-
ding space to analyze the video for such purposes as segmentationsificziign of the motion
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portrayed in the video. Our work is concerned with re-using the vide@kseguencing based on
traversing the embedding space.

Recentwork in dimension reduction/manifold learning include Manifold ChgfBnand 2003],
Maximum Variance Unfolding (MVU) [Weinberger and Saul 2004], arddian locally linear em-
bedding (hLLE) [Donoho and Grimes 2003]. [Brand 2003] recoge@artesian coordinate system
for a manifold of sampled data by constructing a nonlinear mapping from adangénsional sample
space to a low-dimensional vector space. [Weinberger and Saul 2864emidefinite program-
ming to do unsupervised learning of image manifolds and formulate the manifotdriggroblem
by defining a set of constraints that are optimized to “unfold” a manifold. Ehid.a modification
of the LLE method designed to produce linear embedding functions thatlyeracover a hidden
parametrization for data lying on a manifold that is locally isometric to an openecteth subset of
Euclidean space. All are more computationally expensive and accausitdcture in the data set
that we do not expect, for example, non-convexity.
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CHAPTER IV

PREPARING TRADITIONAL ANIMATION FOR RE-SEQUENCING

As mentioned in Chapter I, a primary challenge in building large libraries edcarcharacter data
is to put the characters into a form in which the character is nicely sepdratedhe background.
Segmentation is necessary if the character is to be placed into a new envitormvath a new
background. Much older cartoon data suffers from noise due togesaim lighting as the cel
animations were transferred to film, contamination of the cel from one useothenas it was
filmed, and degradation of the animation before being transferred to aivaréormat. These
factors make the segmentation problem quite challenging. Segmentation isargtedacilitate the
image comparison method, discussed in the next chapter, and to createimati@ns that can be
taken from various episodes with differing backgrounds. This chax@mines three methods for
semi-automatic segmentation of cartoon images in preparation for use in thguenrsing method.

IV.1 PreProcessing Cartoon Data

All data used in this dissertation comes from two-dimensional animated viddoar-fendered
motion capture. As such, the video must be pre-processed to removedkgrdaand and align
the character relative to a fixed location throughout the sequence, ajldarirasy calculation of
image similarity later. There are a number of video-based tracking techrtigptesan be used for
background subtraction or segmentation. Three segmentation methodseesvegplied to the
cartoon data and are described in this chapter. When the methods danmqpetay segment the
character, a small amount of manual clean up of the images is requireé.tBéepresentation of
the data is model-free, identification of specific regions of the charactetjmbés or joints, is not
necessary, so it does not matter that the characters may undergmaidor. The alignment of the
character in image space is done using the centroid of the character iffaaaeland repositioning
it to the center of the image, facilitating the computation of a distance matrix, whigdsited in
Chapter V.2.

Six cartoon sequences with different characters are used throutimutork, agremlin Bugs
Bunny Wile E. CoyoteDaffy Duck Michigan J. Frog and theGrinch. Table IV.1 shows the num-
ber of images used in each data set, the size of the original images andghectar scaled image
size used for re-sequencing. The only synthetic data set grétmelin, which is created using three
clips of motion capture of free-style dancing performed by the same suajetts played through
a gremlin model that is 'toon-rendered on a constant white backgrourman-:rendering motion
capture data onto thgremlin allows for creating a large data set of images that are already seg-
mented and aligned, providing the proof of concept for re-sequemairigon-like images to create
new animations. Of the hand drawn cartoon examplesCthgtedata set is composed of frames
from three different cartoons, called Coyote-1, Coyote-2, and @e§o The others are composed
of frames from only one cartoon, but have breaks where the sceaage. Th&ugs Bunnymages

41



Table IV.1: Details of traditional animation data sets. * Indicates that the dataasereduced in
size by removal of duplicate frames.

Data Set Number of Images Original Image Size Modified Image Size
Bugs Bunny 553* 720 x 480 360 x 240
Wile E. Coyote 527* 720 x 480 360 x 240
Daffy Duck 560 720 x 480 310x 238
Michigan J. Frog 146 640 x 480 320 x 240
Grinch 295 640 x 480 320 x 240
Gremlin 2000 320 x 240 150 x 180

are from the 1946 short “Slick Hare” directed by Isadore “Friz” feag. The Coyote-1 images are
from the 1953 short “Stop! Look! Hasten!,” the Coyote-2 images amnfthe 1954 short “Ready..
Set.. Zoom!,” and the Coyote-3 images are from the 1955 short “Guidestielti TheDaffy Duck
images are from the 1953 short “Duck Amuck,” thechigan J. Frogimages are from the 1955
short “One Froggy Evening,” and tli&rinchimages are from the 1966 film “How the Grinch Stole
Christmas.” All of these cartoons were directed by Chuck Jones. Flgureshows examples of
the frames from the original data along with the corresponding segmenteésmadis chapter
focuses on théugs BunnyandWile E. Coyotedata sets for segmentation, as the other data sets
were processed manually at an earlier time.

IV.2 Segmentation of Color Images
In analyzing objects in images, it is essential that we distinguish between jbetobf interest
and “the rest” of the image. The objects of interest are referred to a®tbgréund, while “the
rest” is referred to as the background. Techniques used to find obfeicterest are referred to as
segmentation techniques, i.e., segmenting the foreground from backg®egmentation involves
understanding that objects of interest, in this case cartoon charactins, §ome specific form or
have some known properties. For instance, we know cartoon characteusually easily identi-
fiable, and often made up of a few solid coloBaffy Duckis mostly black with some orange).
Creating a library of animation data that includes a variety of cartoon deasaequires extensive
pre-processing time, particularly if it is done manually. To generate gesdgaenced animations,
there must be a way to compute the similarity of the character in the images. Asssgafenting
and aligning the character is a vital step in our process, particularly withiskende metrics we
describe in Chapter V.2. Segmentation is the most time consuming aspect afipgegxisting
cartoon data for discovering the structure of the data via manifold learnitigpate

Image segmentation is fundamental to image processing [Gonzalez and R@ftidsShapiro
and Stockman 2001]. We examined three techniques for potential usedpstem: ad hoc method
using simple probability of color distribution, level sets [Osher 2003], amgbert vector ma-
chines [Vapnik 1998] (SVMs). Some of the more common techniques sutfresholding or
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Figure IV.1: The top row shows a frame from the synthegtiemlindata set before and after pro-
cessing (the images are cropped). The second row shows an origiheleaned up frame from the
Bugs Bunnylata. An example frame from th¥ile E. Coyotalata in the third rowDaffy Duckin the
fourth row, Michigan J. Frogin the fifth row, and finallyGrinch in the last row. The segmentation
results forBugsand Coyoteare generated using methods described in this chapteys Coyote
Daffy, andM.J. FrogTM& (©Warner Bros. Entertainment Indsrinch (© Turner Entertainment Co.
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Figure IV.2: The deviation from the mean color value for each color cklainom a single back-
ground pixel is shown as data points around a mean value line. The cdler déta corresponds to
the color channel.

edge detection work well for certain types of images. With thresholdingcanesegment based
on intensity of a grayscale image, or use a histogram to find the region to seghh@vever, in
color cartoon images, using only the intensity of the images loses a greaifdefdrmation, and
often more than one threshold level is required to define the object of sht&%th edge detection,
gradient methods can find edges of objects, but are sensitive to nosseeAtioned previously,
the problem of segmenting traditional animation is difficult. Because the sotithe cartoon data
used throughout this dissertation comes from DVDs, there is noise in thetamsi&tom both im-
age compression artifacts and color variations in the 50 year-old carteees without MPEG-2
compression artifacts on a DVD, the original cels also have noise andcttifae to changes in
lighting as the cels were transferred to film and other degradation isstm® lixeing archived.
Simple thresholding is not robust enough to deal with the noisy images. Asamée, Figure IV.2
shows deviations from the mean of a pixel in the background fr@ugs Bunnwnimation, a frame
of which is shown in Figure IV.1. This pixel is not atypical, and any segntemtdechnique will
have to deal with noisy pixels in both the foreground and backgrouncedatiget images.

IV.3 AdHocMethod

The first method we describe for segmenting color cartoon images is ancaddibod that uses
the probability of color values and some thresholding for cleaning up the imagks. For each
character data set, the user selects several example pixels (colorgptiegent the character to be
segmented stored Iﬁﬂgb, along with one pixel (for every frame) containing they) coordinates
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in image space where a part of the character is located, storgf},inRf,,, is ann x 3 vector

of RGB values representingreference colors of a character, dﬁ@ is anm x 2 vector of(x,y)

pixel coordinates fom frames in the sequence. Selecting R{)’gb andR, points is a small task

for the user, taking less than 10 minutes for bothBlugsand Coyotedata sets. Basically, this ad
hoc method finds regions of connected pixels whose colors are within a&detlerancetol, of
reference colonggb. The tolerance is a scalar value set by the user. A mask for each image in the
sequencanask,, is initialized to be the same size as the input image to be segmented with all pixels
set to a value omaslk, = false The value at each element wfask, is compared to the sum of
squared color differences, i.e., if the differences are withirtdlilg thenmask(i, j) v 1 otherwise
masl(i, j) vV 0. The logicalv operator is equal to 1 unless both elements are 0. Becnask, is
initialized to false or all zeros, only the sum of squared differences between thentynisel color

and the reference pixel colﬂggab that fall within thetol? are included in the mask. The first step

in the image mask calculation can be summarized in the following equation:

mask, = mask, V (Cr — R')?>+ (Cg— Rg)?+ (Cp — Ry)?) < tol? (IV.1)

whereC;,Cy,Cp, are the current RGB colors for image andR;, Ry, R, are the RGB colors from
Ry, for each color sample.

Next, the number of regions imaslk, with a value of 1 that have 8-neighbor connected compo-
nents are labelled as potential character objects. If one of those objedaps with the reference
pixel erf‘y for imagem, that object is included in the output mask, otherwise it is removed. Finally,
morphological close is used to clean up the resulting image mask. Figure & sin example
of a successful segmentation Gbyote Notice that in the middle image there is a region in the
center ofCoyote’shead that has a hole. Any similar areas in the resulting masks are either filled
semi-automatically by the user selecting one point in the region to be flood filég, wsing mor-
phological operators. However, there are some problems with this ad ttbodrnef segmentation.
Figure 1V.4 shows that part of the background was included ®itgs Because the flower in the
background is a similar color ugs it is included as part of the foreground. Adjusting the only
parameter, théol, to exclude the background flower results in losing parts of the charagtezn
dealing with similarly colored foreground and background elements, the@chkthod reaches its
limit and fails to segment the character from the background.

IV.4 Level Setsfor Segmentation

The second method used for cartoon segmentation is a level set algoritiefoptsl by [Cao and
Dawant 2005], adapted to both grayscale and color images. There isangoimg research using
level sets from applications in medical image segmentation to fluid model animatsmaie and
fire. First, a brief introduction to level sets: this is a numerical method that imipdepagating sur-
faces with time-varying, curvature-dependent speeds, introducédhgr and Sethian [Osher and
Sethian 1988; Osher 2003]. The surfaces are viewed as a spee#ficetof a higher-dimensional
function. In two dimensions, the level set method represents a closegllcitve interface bound-
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Figure IV.3: On the left is the original image, the center shows the maskajedarsing the ad hoc
method, on the right is the cleaned up magkle E. Coyotdés "™M& ©Warner Bros. Entertainment
Inc.

Figure IV.4: On the left is the original image, on the right is the segmented imagjstibws when
the ad hoc method fail88ugs Bunnys ™& ©Warner Bros. Entertainment Inc.
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Figure IV.5: On the leftis the red curve representingn the right is the level set functigmshown
as a cone in blue-green. The blue-green surface is called the leyahsgbn, because it accepts
as input any point in the plane and hands back its height as output. THreneds called the zero
level set, because it is the collection of all points that are at height zero.

ary) as being embedded into a 3D functipnin other words, the curvg is defined as a function of
time as the zero level set, i.e., byt) = {(x,y)|@(x,y,t) = O}, whereg (the embedding function) is
usually chosen as a signed distance function. For this type of fungtispositive on the exterior
of the region bounded by, and negative on the interior 6f A useful property of this representa-
tion is that the level set functiop remains a valid function while the embedded curwean change
topology.

Figure IV.5 illustrates the relationship betwdemand@. The level set approach takes the initial
position of the curvd™ (the red curve on the left in figure IV.5), and embeds it into a higher-
dimensional surface (the blue-green cone on the right in figure IVt done-shaped surface has
a great property in that it intersects thgplane exactly where the curve sits. Orices embedded
into a higher-dimension, the evolution of the embedding funafiean be linked to the propagation
of the curve through a time-dependent initial value problem. The evolutitmedével set function
is determined by a user-defined speed funckonThen the evolution equation, an initial-value
partial differential equation (PDE), for the level set functiphas the form:@ + F|Og| = 0, given
@(x,t =0). Here,p is the embedding function arkeis the speed function, i.e., the speed of a point
on the curve along its normal direction. With these equations, the method cambearized as
follows: the curvd is in a plane propagating in a direction normal to itself with a certain speed
so that at tim& we can solve for the position of the curlét) using the initial-value PDE.

IV.4.1 Leve Sets: Method and Results

Knowing the structures of interest can be used for evolving an initialectowards the boundaries
of the structure, thereby helping understand what needs to be segmBmeddterface between the
object of interest and other parts of the image is the zero level set. Tegitkdnnterface using level
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Figure IV.6: Starting on the left and moving right: the synthetic test image, tiraesgtation mask
with color = RED, the segmentation mask witlolor = GRN, the segmentation mask witlolor =
BLU, and finally the segmentation mask with the color stopping criteria eqURED, GRN, BLU].
Images obtained courtesy of Dr. Zhujiang Cao.

sets allows the front to move in either a positive or negative direction fromittaliplacement.
Typical level set methods rely on careful placement of the initial curvedocessful segmentation,
and use gradient-based speed functions. The level set method weasserses many of these
problems as it is a region-based algorithm that combines regional statistidhavithrve evolution.
The speed functiok is defined by the curve evolution derived to minimize the total energy. The
image is modelled as either a two-class or three-class case, and statistiag€amensities) for
each region are used to derive the energy function. In the two-clasd,raciegle curve is evolved

for any number of features (grayscale or color images). In the tHass-anodel, two curves are
used, and are coupled to each other to maintain a global segmentation.

As such, the level set method we use works with both grayscale and colgesnf@ao and
Dawant 2005]. An initial proof of concept test using the three-classaiafdhe level set algorithm
was applied to a simple synthetic image of a gray background with three redarigure red, pure
green, and pure blue. The simple image is size 200 x 200, and was usisdesdfution for process-
ing. When given the stopping criteria oblor = RED, whereRED = [2550,0], GRN= [0, 255,0],
andBLU = [0, 0,255, only the red square was segmented. Likewise for the green rectainigiéuen
square. When all three colors were given as stopping criteoi@a(= [RED,GRN, BLU]), all three
colors were correctly segmented. The time to segment the test image was fotesnigigure V.6
shows the test image used along with the segmentation results.

We applied the two-class model to an imag®affy Duckto evaluate the segmentation, with the
assumption thaDaffy can be easily identified using features in only one color channel. Figure IV
shows the segmentation results on the red channel dD#fiy image. While this method works
fairly well on a simple character such Bsffy, who is mostly black with a little orange, and proved
easily identifiable in the red color channel, there are more challenges to rs&ggnthe Coyote
andBugscharacters. Figure IV.8 shows the original coyote image and the segmeraigd mask
generated from applying the two-class model to the luminance of the imageeifiaénder of this
section describes the results of the two-class and three-class modelgrfargation applied to two
cartoon characters.

While the two-class model level set method worked fairly well@affy Duckby using either
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Figure IV.7: On the left is the original image, the center shows the maskaedeuxsing level sets,
on the right is the segmented image. Images obtained courtesy of Dr. Zh@amgThisDaffy
image is from the 1951 short “Rabbit Fire” directed by Chuck JoBesfy Duckis ™& ©Warner
Bros. Entertainment Inc.

Figure IV.8: On the left is the original image, the right shows the mask getersing only the
luminance. Images obtained courtesy of Dr. Zhujiang Ghilile E. Coyotds "™& (©Warner Bros.
Entertainment Inc.

a single color channel or the luminance of the image,Gbgoteand Bugs Bunnycharacters are
more complicated. In particular, some of the colors in both characters ar¢halsame as some
background elements. Also, there is some color variation due to noise feoagéhof the cartoons
as well as DVD compression artifacts. Two of the th@as/otesequences suffer from a fair amount
of compression artifacts, as shown in figure 1IV.9. When segmemandy using all three color
channels and the three-model method, the character was either onerded or the segmentation
failed. The three-model method also failed on @®yotecolor images. The resulting three-model
color segmentation foBugsonly picked up small parts of the character, with a few pixels in the
background on the flower that is the same color as the character. Theagraented result of one
Bugs Bunnymage at%1 resolution took sixteen minutes. Even the segmentation results using one
color channel oDaffywith the two-class model, using an image alsé asolution, averaged about
five minutes per frame.

We believe that there is sufficient variation in the pixel values for the cartbaracters due
to compression artifacts as well as film degradation from digitization of 5@+ gle cartoons, that
even with a small amount of tolerance for variation in the colors selected atofhy@ng criteria, the
character will either be over-segmented or the algorithm will produce eregigns and run into
numerical instability. The other issue with this method is the amount of computationdoneed
to segment one image étresolution. The time to segment one cartoon image is between five to
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Figure 1V.9: OriginalCoyoteimages from two different cartoons with compression artifacts, seen

as blocks in the background skyile E. Coyotés ™& ©Warner Bros. Entertainment Inc.

sixteen minutes. Assuming the worst case scenario of sixteen minutes pet initga total of
1,080 images to be segmented (82dyoteand 553Bug9, the time to segment all images would
take about 288 hours, or twelve days. In comparison with the simple ad lbodsegmentation
on a full size image requires only twelve seconds per image.

IV.5 Support Vector Machines
The third method applied to segmenting color cartoon images is the use of S\pptor Ma-
chines (SVMs). A support vector machine is a supervised learningitigobased on the concept
of a hyperplane that defines a boundary separating sets of objectsatmatlifferent class mem-
berships [Vapnik 1998]. It is a supervised algorithm because the dgarnmthe training data are
input/output pairs, where each pair is an example input object with its assthaiass label. The
SVM algorithm operates by mapping the given training set into a high-dimesidiesture space
and finding in that space a plane that separates the data into the approlpsas (two classes in
the case of a binary SVM). Any consistently labelled training data set canalole separable. To
avoid over-fitting the data by finding trivial solutions, SVMs choose the maximmargin sepa-
rating hyperplane from among the many hyperplanes that can separatathples in the feature
space. For example, given training examples labelled either “yes” drdmoaximum-margin hy-
perplane is found that splits “yes” examples from the “no” examples in awedly that the distance
between the hyperplane and the closest example (called the margin) is maximized

Figure 1V.10 presents an overview of the SVM algorithm, mapping the inputesiea feature
space, finding the hyperplane separating clusters of data to fall on eitteeof the plane, and
the margin (distance between separating line and closest data points to theTleepoints that
constrain the width of the margin are the support vectors. Using a sofinradlgws some training
examples to fall on the wrong side of the hyperplane, therefore makinglgbethm robust to
mislabelled examples. The feature space can be defined by vectors in thesjigme and dot
products in the feature space, so the SVM can find the separating fypemithout the need for
representing the feature space explicitly by defining a kernel functiers(fcalled “kernel-trick”).
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Input Spac

Figure IV.10: An illustration of the SVM algorithm. Two classes of data areasgnted as red
and blue points, the input space is shown before and after proceisgngyperplane is the line
separating the red and blue points in the lower right. In the feature spacmattyin is shown in
green, the vectors (data points) that constrain the width of the margin asagbert vectors.

There are a number of reasonable kernel functions that can be uS&dirmodels, such as linear,
polynomial, radial basis function, and sigmoid. In fact, if given a way ahpating the inner
product between a test point and training point in the feature spacdlylissca function of the
original input points, it can be used as a kernel function. The goaleoS¥M model is to predict
labels of data instances in a testing set given only attributes. To constrogtiaal hyperplane,
the SVM is an iterative algorithm used to minimize an error function. Dependinbeform of the
error function, SVM models are classified into four groupsSVM classificationC-SVC), v-SVM
classification ¢-SVC), e-SVM regression£-SVR), andv-SVM regression -SVR) [Chang and

Lin 2001]. For classification, the difference betw&eSVC andv-SVC is in the penalty term of the
error function. WithC-SVC, the penalty parameter of the error function (equation IV.2 below), is
the constant > 0, which determines the trade-off of allowing training err&@grovides an upper
bound on outliers and limits the influence of those potential outliers. WIBYVC, theC parameter

in the error function is replaced by a paramatet [0, 1] that determines the lower bound on the
number of examples that are support vectors, and the upper bound omuithber of examples
that are allowed to lie on the wrong side of the hyperplane (outliers). kgpession.s-SVR is
analogous to th€-SVC for classification and has a similar error function. The model prediby
£-SVR depends on a subset of the training examples and ignores anylezamithin a threshold

of € to the model prediction, similar to the upper bound provide€byinally, v-SVR is similar

to v-SVC in that it uses the parameteto control the number of support vectors, and replaces the
parametek of e-SVR.
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In this work, we are training a binary SVM with ti&SVM classification. Regression models
are not appropriate for our problem of segmentation. Given a trainingf sstribute-label pairs
(%,¥i), wherei = 1...1, training vectors; € RN and labelsy; {+1,—l}',C-SVM minimizes the
following error function:

1 4 L
min 3w W+Ci;€. (IV.2)
subject to the constraint
(W' @(%)+b) >1-§&. (IV.3)

The training vectors; are mapped to a higher dimension by the kernel funafio@ is the penalty
parameter of the error function, which controls the tradeoff between iaiptwaining errors and
forcing rigid margins. Increasin@ increases the cost of misclassifying points and forces the cre-
ation of a more accurate model that may not generalize well. The wedsaa vector of coefficients,

b is a constant, and; are variables for handling non-separable input ddtare called theslack
variables and allow for the possibility of data examples violating the constraint giveiV.i |
should the inequality not have tl§eon the right hand side. Essentially, theaake into account any
noise in the data that would otherwise prevent the hyperplane in the fepiaice from separating
the differently labelled examples. We chose to use an RBF kernel thatenting = e VIx—xill*,
wherey > 0, and the indicesand j run over the training set, i.€.,j = 1...l. We are trying to find

a separating hyperplane that will classify the data as having a label of1.0As such, the RBF
kernel can be viewed as a similarity measure that will divide the input slatg ) into one of those
two classes. Using the RBF kernel withSVM is the most popular mainly because it requires the
user to set only two parametef3,andy. The other variablesa(, b, &) are solved for when mini-
mizing the error function given in equation IV.2. In our work, we use thBIVM library [Chang
and Lin 2001] with the RBF kernel to train tli2SVM model.

Because the accuracy of the SVM model largely depends on the selettrmmodel param-
eters, a grid search is used to find the opti@aindy parameters for the RBF kernel. Using cross-
validation, pairs oC andy are tried over a specified grid and the pair with the best cross-validation
accuracy is picked. For a specified valugCodndy, the cross-validation accuracy is computed as
follows: train an SVM model using a subset of examples) of attribute-label pairs, one example
is left out, and the model predicts the label for the unseen example. Thmagof that prediction
is calculated for all examples in turn leaving one out, and the average wisayoon predicting the
sets is the cross-validation accuracy. We define a(gnith) using exponentially growing sequences
of C andy, such thaC = 2°™1 andy = 22"~ mc [-2,...,8], andn € [-7,...3]. We chose these
values for our grid search based on examples provided by [Changiar2D01]. Although other
methods exist to find the best accuracy for a pair of inputs, a grid seavelny simple and can be
easily sped up, if necessary, by parallel processing since(€aghpair is independent. ThHe and
y with highest cross-validation accuracy, in our experience typically@B6%o, is selected.
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IV.5.1 Training SYM Model on Cartoon | mages

To segment cartoon images, we first train an SVM model by selecting the@ie attribute-
label examples. Several features can be identified in the charactecsuthia¢ used as samples for
training and classifying. The most natural choice of a feature is the cbtbeaharacter, since for
example Coyotewill always be two shades of brown with yellow eyes. Another choice afuie
is using the optical flow. Many times the character will be on a stationary bagikd, and one
unique characteristic of hand-drawn cartoons is that there are raihghar lighting changes in the
images, so the optical flow may be useful in locating the character. We ose#driations on the
color and optical flow features for setting up the data. One way is to havastiteselect several
pixels from a reference image, label each point as part of the chatatt part of the background
(—1). Here, only RGB values are used as the samples. A second way to settupining data is
to have the user select one scanline from a reference image, havedalgzish color value applied
automatically by looking up the appropriate label from a correspondingggenented (manually)
mask, and once again, use only RGB values as the samples. A third variatiohasge all RGB
values from one reference image as samples, and have labels appliethticdadly by looking
up the appropriate label from a corresponding pre-segmented (manuabk. Finally, the user
can select several pixels from a reference image, as in the firstagbprout RGB values and
optical flow vector magnitudes are used as the samples. The optical fleéar veagnitudes are
pre-computed using [Lucas and Kanade 1981] from the temporally adjaeenes in the cartoon
image sequences. The main reason for using optical flow is to identify mowgitkggtound pixels
in the Coyote-1 and Coyote-2 data sets. Using the location of the refeperads selected by the
user, the corresponding optical flow vector magnitudes are includeahgdes and given the same
labels as the reference pixels. The method used to select the featuragiiog an SVM model for
each particular character is noted in the results section. Also, with anysa Wagiations for setting
up the data, multiple reference images can be used. One important note i R@Bavalues are
scaled to be ir0, 1] range.

IV.5.2 SVM Segmentation Results

Segmentation of cartoon images uses the classified SVM model (one focleactter) on each
image in the data set. The SVM output of the predicted labels is the resulting rsegihmeask.
Figure 1V.11 shows the result of using 81 RGB samples and optical flow ituags for training the
SVM model. The top row of figure V.12 shows the result of using onelgwof a blurred image
for training the SVM model, and the bottom row uses 68 RGB samples for traimngVM model.
The best segmentation result achieved onBhgs Bunnydata set is this last example where only
68 color samples from three images in the data set were used to train the SVl rAogt more
samples or additional information resulted in over-classification, seen aslmackground pixels
and noise in the segmentation masks (compare results in figures IV.11 an®). I¥dr instance,
including the optical flow vector magnitudes in tBags Bunnyata set essentially picks up more
of the background pixels, in particular the gray ones. The reasonadubecthe gray pixels ddugs
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Figure IV.11: The top row shows the input image and the resulting segmentaéisk, this was
generated using 81 RGB samples and the corresponding optical flow nuegmab those pixel
locations. The samples came from three images in the Bugs Bunny sequiemnedottom row

shows the optical flow vectors and one of the images used for the RGB sanile red circles
indicate the pixels selected for the sampBsgs Bunnys ™& ©Warner Bros. Entertainment Inc.

Bunnytypically have small optical flow vectors, which is also true of the gray bamkud pixels.

Figure IV.13 shows the results of an SVM trained on 108 RGB samples withabfities vector
magnitudes, applied to the Coyote-1 data set. Figure 1V.14 is the Coyote-2adatssing an SVM
trained on 179 RGB samples with optical flow vector magnitudes. The resuttesf@oyote-3 data
set can be seen in figure V.15, using an SVM trained on 140 RGB samjttesptical flow vector
magnitudes. Compare these results to the ad hoc segmentation method disc@smotén 1V.3.
One of the difficulties with these particular cartoon examples is that the ¢dbaragvalking across
a moving background in the Coyote-1 and Coyote-2 data sets. Becatlss, dfiere are new color
samples revealed throughout the sequences that may not be accauntethé SVM model. Itis
also easy to see some of the compression artifacts in the segmented imageshtivosp as small
regions of blocks in and around the background elements.

In all of the examples, there are some pixels that the SVM model erronedaskijfies as part
of the character. To further improve the segmentation masks, simple morablogerations are
performed. The segmentation mask is a binary image with regions either equal fo First, each
8-connected region in the mask is labelled with a number. For each regiod,fthe area (total
number of pixels) of that region is calculated and stored. The region witlathest area, or larger
than a preset value (i.e., 10,000 pixels), is likely to be the character angtimkbe mask, all others
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Figure 1V.12: Here is the same image from the Bugs Bunny sequence. toghew, the image
was first blurred using a gaussian filter and the model was trained usegarizontal scanline
from one image-mask pair. In the bottom row, the model was trained usingg8riRGB samples
from three images. Of all of the segmentation results using SVMs, this lasipdeahows the best
classification of the cartoon charactBugs Bunnys ™& ©Warner Bros. Entertainment Inc.
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Figure IV.13: The top row shows the input image and the resulting segmentatek, this was
generated using 108 RGB samples and the corresponding optical flowtnusgnat those pixel
locations. The samples came from three images in the Coyote-1 sequerdeotidm row shows
one of the images used for the samples and the optical flow vectors for thg.iffilae blue circles
indicate the pixels selected for the sampMéle E. Coyotds ™& ©Warner Bros. Entertainment
Inc.
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Figure IV.14: The top row shows the input image and the resulting segmentatek, this was
generated using 179 RGB samples and the corresponding optical flowtnusgnat those pixel
locations. The samples came from three images in the Coyote-2 sequerdeotidm row shows
one of the images used for the samples and the optical flow vectors for thg.iffilae blue circles
indicate the pixels selected for the sampMéle E. Coyotds ™& ©Warner Bros. Entertainment
Inc.
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Figure IV.15: The top row shows the input image and the resulting segmentasek, this was
generated using 140 RGB samples and the corresponding optical flowtnusgnat those pixel
locations. The samples came from three images in the Coyote-3 sequerdeotidm row shows
one of the images used for the samples and the optical flow vectors for thg.iffilae blue circles
indicate the pixels selected for the sampMéle E. Coyotds ™& ©Warner Bros. Entertainment
Inc.
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Figure IV.16: On the left is the segmentation resultBugs Bunnysing the 68 RGB sample SVM
model. On the right is the result of applying morphological operations to cipahe segmentation
mask.

are discarded. Finally, any remaining small holes are automatically filled. &-1§k6 shows the
results of applying this method to one of the SVM segmentation masks. Any regainay pixels
are easily cleaned up manually.

IV.6 Summary

The segmentation methods presented in this chapter, in particular the stgapgorimachine method,
are robust and work well on all examples we have tried them on. Thigehaesents the first nec-
essary component of a system for building re-usable motion libraries difior@al animation: a
method for semi-automatic segmentation of the images. Minimal user interventiquisad and
is essentially a guide for the animator in building the motion library. The SVM tecienigprks
well for classifying cartoon characters, exploiting the strong color imédion that make up each
character, despite any noise or artifacts in the images. We rejected usshgdeybecause the time

for segmentation ofé resolution image was too slow, averaging ten minutes per image on a 1 GHz

pentium. Both the ad hoc and SVM methods were very fast, with the ad hoc nestoaknting full
size images at a rate of ten seconds per image, and the SVM method segmdhsizg images
at a rate of about three seconds per image. We believe the robustmsssdi/ing cartoon images
using support vector machines provides a reliable and intuitive segmentatibiod.
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CHAPTER YV

DIMENSION REDUCTION FOR RE-SEQUENCING ANIMATION

Once a library of character data has been assembled using the tectofitheeprevious chapter, a
method such as that described in this chapter can be used to generdtenoences. We describe
the re-sequencing process without generating new frames. The tiypesanotions that can be
re-sequenced are restricted by the amount of data in the library forobachcter. This method
is model-free, requiring no a priori knowledge of the cartoon charaétest, the cartoon data is
pre-processed, as described in the previous chapter, creating trg lbrdata for each character.
Next, nonlinear dimension reduction is used to learn the structure of thewdaitzh requires a
metric for comparing the similarity of the images in the data sets. Sometimes these teshangu
others [Jenkins and Mat&rR004; Roweis and Saul 2000] are collectively called manifold learning
techniques. However, in this dissertation we apply the older terminologyllysibg selecting a
start and end frame from an original data set, the data is re-sequermedt® a new motion.

V.1 Dimension Reduction

Nonlinear dimension reduction finds an embedding of the data into a lower-siomahspace. We
use a simplified version of ST-Isomap [Jenkins and Mé&ta€i04] to perform the manifold-based
nonlinear dimension reduction. Like standard Isomap, ST-Isomap pessire intrinsic geometry
of the data as captured in the geodesic manifold distances between allfpdata points. It also
retains the notion of temporal coherence, which is critical to the resultingibfapcartoon data.
We are using segmented cartoon images to learn the lower-dimensional mératgdrameterizes
all of the images of a particular cartoon character. Each segmented imageadbon character
represents one data point, and a manifold is learned for each chag&lclsomap uses an algorithm
similar to Isomap; here we summarize a simplified version of ST-Isomap andtihefeeader to
[Jenkins and Matati2004] for more details:

1. Compute the local neighborhoods based on the distdheg@sj) between all-pairs of points
i, j inthe input spacX based on a chosen distance metric (described below).

2. AdjustDx(i, j) to account for temporal neighbors.

3. Estimate the geodesic distances into a full distance mBigixi, j) by computing all-pairs
shortest paths froy, which contains the pairwise distances.

4. Apply Multi-dimensional Scaling (MDS) [Kruskal and Wish 1978] to cioust ad-dimensional
embedding of the data.

The difference between Isomap and ST-Isomap is in step 2, where thersdrdppendencies are
accounted for. Here, we simply force the temporal neighbors to remaiarasfgthe matrixDy
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whether or not those neighbors fall within tkespatial neighborhood that is specifiddlg, are the
approximate geodesic distances based on calculating the shortest pgatberbeall pairs of data
points, whileDy is simply the distances between all pairs of data points using some distance metric.

One issue with Isomap is determining the size of the spatial neighborhodltls.dfta is suffi-
ciently dense, Isomap can form a single connected component, which istéampior representing
the data as a single manifold structure. The connected components ohagpagsent the distinct
pieces of the graph. Two data points (nodes in the graph) are in the samected component if
and only if there exists some path between them.

Our experimental results found that varying the size of the neighborfsted 1) will ensure
that a single connected component is formed (one manifold) regardldhe gparseness of the
data. However, depending on the distance metric used and the spareéiies data, the spatial
neighborhoods would need to be increased to a point such that no miedusimgcture will be
found. This issue arises with Isomap since its main objective is in presenangjdbal structure
and preserving the geodesic distances of the manifold. ST-Isomap,lbgling adjacent temporal
neighbors, remedies this deficiency, allowing a smaller spatial neighbddine while forming a
single connected component. Having all of the data points in the same embeddagirable for
re-sequencing. Using from one to three temporal neighbors and a gl ;meighborhood results
in a meaningful structure that is usable for re-sequencing.

V.2 Distance Metrics

The key to creating a good lower-dimensional embedding of our data is ttemcismetric used

to create the input to Isomap. When computing the local neighborhoo@farj), we examined
three different distance metrics: the distance, the cross-correlation between pairs of images, and
an approximation to the Hausdorff distance [Huttenlocher et al. 1993méstioned previously,
video textures uses the ldistance for computing the similarity between video frames. Although
this works well for densely sampled video, it is insufficient for dealing witarse cartoon data.

V.21 L, Distance
The first distance metric is theldistance between all-pairs of images. Given two input images
andlj:

dua(linl) = /2 + (12— 25 (1) (V1)

Only the luminance of the images is used for thedistance. The distance matiX (i, j) is
created such that

Dro(i, j) = dia(li, 1) (V.2)

This metric is simple and works well for large data sets with incremental chdregegen frames,
but is unable to handle cartoon data, which is inherently sparse and coexaiggerated deforma-
tions between frames.
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V.22 Cross-Correlation Distance
The second distance metric is based on the cross-correlation betweem&ipages. This metric
also uses only the luminance of the images. Given two input imiagesl| j:

o S 3l = 1) (e = 1) va
Y6 7% S [N TG P (T3 V-3

wherel; and IT are the mean values gfandl; respectively. This equation gives us a scalar value
c,j for the correlation coefficient between imagand imagd; in the rangg—1.0,1.0]. However,

we want the correlation-based distance metric to Befér highly correlated images andQifor
anti-correlated images. Therefore the correlation-based distance metisigen imageg andl; is
Deorr(i, ) = (1.0—c¢j j)/2.0.

V.2.3 Hausdorff Distance

The third distance metric is an approximation to the Hausdorff distance. Thikmsés an edge
map and a distance map of each image. The edgeHnispcomputed using a standard Canny
edge detector [Canny 1986]. The distance Xap the distance transform calculated fr&@nand
represents the pixel distance to the nearest eddge fior each pixel inX. Then, the Hausdorff
distance between a pair of imadeandl; is:

Y (xy)eEi=1 X (X.Y)
> xy)eE=1Ei(X.y)

DHaus(ia J) = (\/-4)

whereE; is the edge map of image, X; is the distance map of imade, and(x,y) denote the

corresponding pixel coordinates for each image. Figure V.1 showsaanme of the edge map and
distance map for a single image, note that the distance computation is betwéeofarpages and

is done for all pairs of images in the data set.

(a) Original image (b) Edge map (c) Distance map

Figure V.1: An edge map in the center, and distance map on the right, for oge fnaan theDaffy
Duckdata set. The edges on the edge map have been enhanced for easigy. vidvese images
represent only a single image in the data set. The edge map and distanceencamputed for
every image in the sequend®& ©Warner Bros. Entertainment Inc.
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Figure V.2 shows an example of the,lcorrelation-based distance and the Hausdorff distance
matrices for thdaffy data set. Each distance matrix has been normalized to have values in the range
of zero to 255 for visual comparison, while the color map assigns blue toazet red to 255. A
value of zero corresponds to similar images, while a value of 255 comdspo dissimilar images.
Note that the diagonal is zero as expected, and the banding indicataargtinghe data. It is that
structure that will become important when generating the lower-dimensiomeafotusfor each data
set. Since the geodesic distances are estimated by computing the shottgsttitebetween all
pairs of points, identifying the distance metric that best characterizes thergiynilithe images
is important. By using the each of the different distance metrics, generativeg-ttimensional
manifolds of each data set, and creating a few example re-sequencedamsmae found that the
Hausdorff distance metric works best for all data sets. Figure V.3 shweveesulting Hausdorff
distance matrices for all data sets. The important thing to note from thesediguthat while
there is much similarity in the structure of the motion when considered as a funétioa distance
metric, there are important differences too.

V.3 Embedding

Once the distance matrix for a data set is computed, we apply ST-Isomap to thistdower-
dimensional embedding of a manifold that parameterizes the cartoon datadiribesionality
of the manifold must be determined. Choosing a dimensionality too low or too hightsdn
incoherent re-sequencing.

Estimating the true dimension of the data using ST-Isomap is different than wRhIR@CA,
picking the dimension of a reduced data set can be done automatically stutfetipaoportion of
variance (shape variations) retained by mapping downdimensions can be found as the normal-
ized sum of then-largest eigenvalues. This residual variance is typically chosen todagegrthan
80% (usually 90%), while the remaining variance is assumed to be noise. &kA ®© maximize
the principal shape variations in the data, while minimizing the error associatedeshstruct-
ing the data from the lower-dimensional representation. The intrinsic dinrelgjoof the data
estimates the lower-dimensional subspace where the high-dimensionateitydlives.”

In ST-Isomap, the residual variance is computed using the intrinsic maniftddethces, which
take into account possible nonlinear folding or twisting. Restated, the edsidriance is the cor-
relation coefficient between the embedded distances (the distanceshdat@@oints on the man-
ifold) and the estimated geodesic distances. We pre-select the number ofidingeim which to
embed the data, from one to ten dimensions, and the residual varianceauiategldor each dimen-
sion. The true dimensionality of the data can be estimated from the decreasédimat variance
error as the dimension of the manifold is increased. We select the “kndbé&afurve by simply
eye-balling the curve. There are statistical methods for selecting the Kkriee ocurve similar to
ones used for PCA [Jolliffe 1986], but we believe that simply eye-balliegctirve gives us an ap-
propriate lower-dimensional manifold with which to traverse for re-segugn Figures V.4 to V.9
show the residual variances and the two-dimensional or three-dimehgrojections of the neigh-
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Figure V.2: L,, Correlation-based and Hausdorff distance matrices foDihify data set. Each
distance matrix has been normalized to the range of zero to 255 only fot emwparison. The

colormap is shown on the right.
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Figure V.3: Hausdorff distance matrices for all cartoon data sets. Hatdnde matrix has been
normalized to the range of zero to 255 only for visual comparison. Theroajpis shown on the
right.
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borhood graphs for all the data sets. The neighborhood graphesesyirthe manifold structure of
the data. Notice that thgremlin, Bugs andDaffy data sets are reduced to about four or five dimen-
sions (figure V.9, figure V.4, figure V.5, and figure V.6 respectivedy) indicated by the variance
plots. TheCoyoteandGrinch data sets can be reduced down to a three-dimensional manifold (fig-
ure V.8). TheFrog data set is very sparse, and can at best be reduced to a five-dinanséonifold.
It is difficult to see structure in the four- and five-dimensional manifolds lia&e been projected
down to a three-dimensional graph. However, the three-dimensiorjacpom of theGrinch data
(figure V.8) gives a good representation of what the true three-dimsalsinanifold looks like.
Examining the data more closely, there are three scene cuts i@rtheh data. The large loop
structure on the left in figure V.8(b) depicts the first scene wiiach rotates his head around
36, the small loop on the top and the branch to the right of the loops represamthtwo scenes
where theGrinchis speaking and making exaggerated facial gestures. This kind ofiggpbased
on the scenes the images come from is hot uncommon. I€tlyetemanifold, represented by a
three-dimensional projection of the three-dimensional manifold, the clugtefiimages from the
same scenes remains. The cluster on the lower right side of the manifoldrie ¥idi(b) are images
predominantly from the Coyote-1 segment where@ogoteis crawling then sitting and eating a
fly. The lower cluster in the center is tkyoteclimbing on a rock, the loop on the right represents
the cyclical motion of the&Coyotewalking, and has images from both Coyote-1 and Coyote-2 data
sets. The upper cluster in the center represents images in the Coyotesgtdateere the character
is standing scratching his head and making facial expressions. Wet ¢asse these loops when
the motion is a cyclical motion such as walking or running. In figure V.4(b), atthathe four-
dimensional manifold is represented as a three-dimensional projectiomnatilt see similar loop
structures of cyclical motion. The large loop on the left represents thaitigp and cyclic motion
of Bugs Bunnyerforming a samba dance.

For all of the manifolds shown in figures V.4 to V.9, the number of temporahtits is noted
in the figures. Most of the data sets use a spatial neighborhood of, seitlerthe exception of the
Coyotedata set, which uses only three spatial neighbors. Varying the numbpatidiseighbors
changes how many similar looking images are clustered together, but caaffalstathe manifold
negatively if the number is too high. In that case, images that are not weitgrscould be grouped
into the same spatial neighborhood because of the fixed neighborhaod Sétting the spatial
neighborhood too small may cause more than one connected componenéttbbdded. This
means that the data is split among two or more manifolds, and re-sequentiregbehe different
manifolds becomes another problem. To simplify the re-sequencing, weeegsingle embedded
manifold from which to traverse and generate new animations.

V.4 Re-sequencing New Animations

To generate a new animation, the user selects a start frame and an endainantiee system tra-
verses the manifold to find the shortest cost path. In traversing the marstmite temporal in-
formation has been preserved, but cyclical data such as walkingpgnnilar images together.
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Figure V.4: Results showing the residual variance and three-dimengiosjettion of the neigh-

borhood graph generated with ST-Isomap using the Hausdorff distaatrex on theBugs Bunny
data set.
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Figure V.5: Results showing the residual variance and three-dimengiajattion of the neighbor-
hood graph generated with ST-Isomap using the Hausdorff distance roattheWile E. Coyote
data set.
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Figure V.6: Results showing the residual variance and three-dimengiosjattion of the neigh-
borhood graph generated with ST-Isomap using the Hausdorff distaatiéx on theDaffy Duck
data set.
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Figure V.7: Results showing the residual variance and three-dimengimojattion of the neigh-
borhood graph generated with ST-Isomap using the Hausdorff distaatrex on theMichigan J.
Frog data set.
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Figure V.8: Results showing the residual variance and three-dimengimojattion of the neigh-
borhood graph generated with ST-Isomap using the Hausdorff distaatrex on theGrinch data
set.
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Figure V.9: Results showing the residual variance and two-dimensioojaigtion of the neighbor-
hood graph generated ST-Isomap using the Hausdorff distance mathe gremlindata set.
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Also, similar images from different cartoon animations (like @&yotedata set) tend to be near
each other on the manifold. The traversal path gives the indices of the snoggd for the new
animation, which is created by re-sequencing the original, unregisterecsmadp new images
are generated, only the order of the original images is changed, andsimegecome from differ-
ent cartoons. Dijkstra’s algorithm [Sedgewick 2002] is used to find toeta$t cost path through
the manifold. The dimension of the manifold used for re-sequencing vanesath data set. The
Daffy data set and thErog data set use a five-dimensional manifold, gremlin data set uses a
four-dimensional manifold, and th@rinch data set uses a three-dimensional manifold.

V.4.1 Post-Processing

To ensure the smoothest looking re-sequenced animations, we add a smalitaof automatic
post-processing. Only the start and end keyframes for each rerssggisegment are specified, but
currently there are no restrictions on the number of inbetweens that thehgaild have. As such,
the shortest cost path may not visit all temporally adjacent frames in the dtanifmimprove the
re-sequenced animation, we process the frames specified from thespaghithe following auto-
matic techniques. First, any missing sequentially adjacent frames within eaghedrare inserted,
helping to smooth some of the choppiness associated with skipping the missimesfr&equen-
tially adjacent frames are those that are adjacent in the original sequé&oceexample, if the
re-sequenced path selected is [20 24 60 70] before inserting thensiadiyeadjacent frames, the
resulting path becomes [20 21 22 23 24 60 70]. Using up to eight sequerijfigent frames
does not significantly change the overall re-sequenced path sincerthertdly adjacent frames are
usually near each other in the manifold.

After adding these frames, we further improve the smoothness of thejuerseed animations
by matching the velocity of the centroid of each character from frame to fiathe new path. The
new sequence was found based on the Hausdorff distance metric banmagter aligned images, as
described in Chapter IV.1. The aligned images thus no longer possesdfsetyof the character
within the frame. In post-processing, the original images are used. [Ebraainal image in
the data set, the character’s centroid is calculated and stored. Thercayvedztor is computed
based on each frame’s previous and next temporal neighbor in theadrigot aligned) sequence.
When given a path for re-sequencing, the position and velocity of thiecserfor the character
in every frame are known. The position of the character is adjusted frierframe to the next
in the new sequence based on the projected position indicated by thedim&'srvelocity vector
from the original sequence. Figure V.10 illustrates the repositioning ofttheacter in image space
using the pre-computed velocity vector. This adjustment is done whenevg@ath jumps from
one single frame or subsequence in the path to another. Subsequetieepath are handled such
that the first frame in the subsequence has its character repositiorestidrathe previous frame'’s
projected position, while the remaining frames in that subsequence aréeadjoishe first frame’s
new position.

Finally, if the character translates along the z-axis then the figure oftergeban size within
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Figure V.10: lllustration of applying a pre-computed velocity vector fronoeginal sequence to
a re-sequenced frame. Top left shows a frame in a re-sequencedianirbattom left shows the
next frame in the re-sequenced animation. Top right illustrates the veloatgrveomputed for
the frame in the top left. Bottom right shows the realignment of the character thhe second
re-sequenced fram®affyis "™& ©Warner Bros. Entertainment Inc.
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Figure V.11: lllustration of applying a scale fac®to a pair of re-sequenced frames. The top row
shows the original frames that appear in a re-sequenced animationiffEnente in their scale is
apparent. The bottom row shows the same frames after the scale factpliesiapaffy is "™&
(©OWarner Bros. Entertainment Inc.

the frame. The final re-sequenced frames are adjusted using a $tatdfsed on the average pixel
area in the sequence. By pixel area, we mean the total number of pixelsisimgphe character.

The scale factosis defined as
Aave
Aseq

whereAqe is the average pixel area in the entire path, Agg s the average pixel area of a subse-
guence (or just the pixel area of a single frame). ToErapplied to each frame of the subsequence
(or single frame) in the path. Figure V.11 illustrates the scale fextpplied to a re-sequenced
frame.

S=

(V.5)

V.5 Threshold Detection

In re-sequencing cartoon data, the transitions from the shortestatbstriay result in visual dis-
continuities. A small cost (embedded distances on the manifold) indicatesiargosition, while

a large cost indicates a bad transition. The system can automatically idengfy thé cost of a
transition is too large. A threshold is determined for each data set, and ntidieser of abrupt
transitions in the re-sequenced animation. The threshold is currently dedgrmamually for each
data set by examining the manifold and all associated transition costs. Notifieditiavs the user
to decide if additional source material is needed to produce a more visuailyatiing sequence.
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V.6 Re-sequencing Results

After testing all of the data sets by generating lower-dimensional manifoldsfdh and varying the
number of temporal neighbors, using two temporal neighbors yielded ghedisequencing results.
Thegremlindata set is well populated with only a few large jumps at the transitions betwe@nmo
capture clips, but the Hausdorff distance metric is an improvement overtldéestance. For the
Bugs Daffy, andCoyotedata sets, there are also a few large jumps in the original data resulting from
scene cuts and images from different cartoons. The Hausdorff déstaetric works significantly
better than the ¢, and reasonable paths are found through the lower-dimensional maoifedch

data set.

We are able to re-sequence tremlindata into a short motion clip that retains the same char-
acteristics of the original dance motion, but shows a new dance beha@iisrresult was achieved
by selecting six keyframes (sets of start and end frames) and applyirsp8iap with two temporal
neighbors, and post processed as described in Chapter V.4.1. silfieisea sequence with a total
of 57 frames.

We also re-sequence tli2affy data into two short motion clips, each retaining the original
characteristics of the gesturing motion, but showing a new gesturing ioehakvhe clips were
created by selecting six and seven keyframes and applying ST-Isomapwyittmporal neighbors.
The first clip was minimally post-processed, only the missing temporally adjacame$ were
inserted, and resulted in a sequence with a total of 59 frames. The sdigpnds post-processed
by including any missing temporally adjacent frames and velocity-matching theais, resulting
in a sequence with a total of 98 frames.

Table V.1: Examples of the distance values between pairs of frames usibtatiselorff distance
metric on theDaffy data set. Adjacent frames in the original data set may not always have a low
distance value, as shown in the table. The transition from frame 98 to 99 israptdransition
according to the distance metric.

Daffy | 246 — 235 | 0.413511| good
Daffy | 326— 77 | 6.173898| bad
Daffy | 99— 243 | 3.010666| accept
Daffy | 235— 236 | 0.094055| good
Daffy | 98— 99 | 7.270829| bad

After generating several re-sequenced animations for a particulaséiatae inspect the cost
values associated with the transitions and determine a threshold valuedpt tthnsitions. Those
cost values come from the embedded distances in each lower-dimensiaritdldhaepresented
here adDemp Once the threshold is determined, the system can use threshold detectioicadteind
to the user when a large transition cost has occurred. As an examplethisiDgffy data set, our
findings indicate that a threshold valueldf, < 2.2 represents a good transition whidgy, > 3.9
represents an abrupt transition. Table V.6 shows some of the distanes easociated with the
transitions for a re-sequenced animation, while Figure V.12 shows the dresferred to in the
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frame 246 frame 235
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frame 326 frame 77

frame 99 frame 243

frame 235 frame 236

frame 98 frame 99

Figure V.12: An example of good, bad, and acceptable transitions f@affg data set from a path
generated using ST-Isomap with two temporal neighbors. The pairsroefahown correspond
with the values shown in Table V.Qaffyis "™& ©Warner Bros. Entertainment Inc.



frame 326 frame 325 frame 324 frame 77 frame 51 frame 98

frame 326 frame 77 frame 51 frame 98

Figure V.13: A filmstrip of two paths without any post-processing. The bottmmshows the path

generated from th®affy data set with three frames removed. The top row shows the same path

with inbetweens inserted at the point of highest transition cost, in this casedreframes 326 and
77.™& ©Warner Bros. Entertainment Inc.

table. The transition from frame 99 to 243 has a valliZe2Demp < 3.9, representing a region that
should be inspected by the animator before accepting or rejecting. In g@stdéa accepted.

To test the system'’s ability to detect a large transition, an example is geneittd¢drae images
from the Daffy data set removed. ST-Isomap is applied using two temporal neighborsesnl s
spatial neighbors. In the path generated from the data set with missingsfrédmdransition cost
exceeded the pre-set threshold and resulted in a sequence with \ist@itohuities. Inserting
inbetween frames at the point of highest transition cost generates arvedmequence. Figure V.13
shows the two paths without any post-processing. The sequencatgh&om the data set with
missing images differs from the other sequence only in the transition fronr¢hé&dime 326 to the
second frame 77, which is where the inbetweens were added.

The Michigan J. Frogdata set illustrates the challenges in re-sequencing cartoon data. This

data set has 146 frames, of which only 73 are unique. Although ST-[scarareduce the data to
approximately five dimensions, traversing the resulting five-dimensional aldifdir re-sequencing
yields jumpy motion. A transition threshold can still be found even though theséata so sparse.

A threshold valueemp < 0.58 represents a good transition. Figure V.14 shows examples of good

and bad transitions for theérog, and the corresponding transition costs, for a path generated using

ST-Isomap with three temporal neighbors to create the manifold.

V.7 Summary

We foresee that this system of re-sequencing, and specifically the abildgntfy visual discon-

tinuities automatically, will be useful as an aid to artists charged with generatigweens in

traditional animation. If a sufficient body of prior animation is available, theiween artist could
use the system to match keyframes in a new animation and generate inbetwegnsifting data.

Only if the keyframes were sufficiently novel or the transition cost too highld/the inbetween
artist be required to generate new art. By providing a method for re-uaitigan images through
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frame 22 frame 27 frame 12 frame 109

Figure V.14: An example of good and bad transitions forfreg data set. The first pair of images
demonstrates a good transition from frame 22 to 27 with a cost of 0.198182sd@cond pair of
images demonstrates a bad transition from frame 12 to 109 with a cost of @%0Y& ©Warner
Bros. Entertainment Inc.

the use of manifold learning, this chapter presents the second necasdamost important com-
ponent of a system for building re-usable motion libraries of traditional animatio

Thus far, we have implemented and discussed two research goals: gematic segmentation
of existing cartoon images (in Chapter 1V), and how to re-sequenceocati@a to create new an-
imations that retain the characteristics of the original motion. Our methods are+fneed, i.e., no
a priori knowledge of the drawing or cartoon character is require@ KBys to the re-sequencing
method are the identification of a suitable metric to characterize the differancagoon images
and the use of a nonlinear dimension reduction and embedding techniglsarsdp. The system
can characterize when a novel re-sequencing requires additiarrabsmaterial to produce a visu-
ally compelling animation. The methods and results discussed in Chapter V deneghblished
[de Juan and Bodenheimer 2004]. In the next chapter, we addreisstigeof generating new im-
ages in the cases of high transition costs, extending the re-sequengéaiglities to go beyond just
the existing library of cartoon data.
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CHAPTER VI
INBETWEENING A MOTION LIBRARY OF RE-SEQUENCED ANIMATIONS

Several avenues exist for expanding and building upon the re-seiggecartoon animation work
described thus far. One of the largest limitations of the re-sequencitensgs described in Chap-
ter V is the inability to generate new images when a visual discontinuity is deteced-isequenced
animation. Addressing the issue of synthesizing new data leads us backwmthdanensional in-
betweening problem introduced in Chapter I1.1.2. In this case, the prablesstricted in that we
must generate transitions by blending or interpolating of a pair of imagesdm@sequenced path,
not a series of keyframes. We refer to those pairs of images as “key sihiageis chapter.

One of the most challenging aspects of automating the traditional animation piselive-
tweening. In this chapter, we develop methods that allow for the semi-autonest@ragion of
inbetweens for re-sequenced traditional animations. Recall that thepadimifficulty with two-
dimensional inbetweening is that the drawings are actually two-dimensioojacions of three-
dimensional characters as visualized by skilled artists, discussed in Chidgtewhich results
in problems of self-occlusion and lack of correspondences. To d#éalseif-occlusion, [Catmull
1978] suggests partitioning the character into separate layers befmesping with a computer
program. For the correspondence problem, he suggests the progeaatos specify the correspon-
dence of the lines and hidden lines of the character from frame to franvee\téo, even with human
intervention, the problems of occlusion and correspondence are stitudlifio overcome.

V1.1 Character Partitioning and Re-assembly

To overcome the self-occlusion problem, a pair of key images to be inbeddeea first partitioned
into separate character layers. Partitioning the character into layerseswhmually, and a semi-
automatic inbetweening method (Chapter VI.4) is then applied to each layerloddton and
scale of each layer is “lost” in the inbetweening process, so the layereaseembled after the
intermediate images are generated. The layer reassembly is done automasicallthe original
silhouettes and inbetweened results (contours) as references fdatialg the translation and scale
factor for each layer. To determine the translation, we use the average oénitroid positions of
each character layer from the original key images. The scale factomiputed using the average
pixel area of the key images defined as

| Aave
= V1.1
> Atween (VI.1)

whereAgye is the average pixel area from the key images Apdenis the pixel area of the inbe-
tweened result. By area, we mean the total number of pixels belonging todhectdr layer. We
are using the contour (Chapter VI.4.2) for computigeen As such, the contour is filled in to be

a silhouette. Figure VI.1 shows a character and the four layers usetb&weening.

80



Figure VI.1: Moving from left to right: the first image is an example key imagéwhihbe used for

inbetweening, the second image is the body layer, the third image is the headHayeurth image
is the left arm layer, and finally the last image is the right arm layer. Theacte&rwas partitioned
into layers manuallyBugs Bunnys ™& ©Warner Bros. Entertainment Inc.

V1.2 Shapeand Color Interpolation

There is a well known algorithm that would provide the best approximation toketween, and is
a natural choice for shape and color deformation or interpolation. Theoshetimage metamor-
phosis by [Beier and Neely 1992], discussed in Chapter 111.1.4, regaifair amount of user input
and tweaking to generate a reasonable looking inbetween. Figure V& she two key images
of Bugs Bunny’ead layer with nine user selected feature lines. Figure VI.3 shows thk oés
the morphing at intervals of.5, 05, and 075. The morphing algorithm generates these results
in minutes, but the selection of appropriate feature lines can be more timentiagsspecifically
in determining how many are necessary and which features should be htghlign the examples
shown, determining the feature lines and selecting them for each image vitesative process
that took approximately 25 minutes. Further tweaking results in improved intéateechages, as
shown in figure VI.4, but the time spent deciding on which features to safetimaking small
refinements exceeds the time it would take to manually draw an inbetween imagddition to
the time spent tweaking the results, the algorithm is not intuitive to use. Howelseimportant to
note that the results presented here serve as a baseline for the moretedtorathods we present
later in this chapter.

VI.3 Semi-Automatic I nbetweening

Our approach to the inbetweening problem is similar to the shape interpolapoveapes of [Beier
and Neely 1992; Sederberg and Greenwood 1992; Alexa et al. 2Bl@ever, it employs radial
basis functions to generate implicit models as presented by Turk and O’Briek and O'Brien
1999] and refined by Carr et al. [Carr et al. 2003]. In our expesensing implicit surfaces presents
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Key image 1 Key image 2

Figure VI.2: Example of nine feature lines selected for image morphing betaveain of key image
head layersBugs Bunnys ™& ©Warner Bros. Entertainment Inc.

Key image 1 Interval 0.25 Interval 0.5 Interval 0.75 Key image 2

Figure VI.3: Example of image morphing of the head layer between key imagéehiedeft and key
image 2 on the rightBugs Bunnys ™& @©Warner Bros. Entertainment Inc.
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Key image 1 Interval 0.25 Interval 0.5 Interval 0.75 Key image 2

Key image 1 Interval 0.25 Interval 0.5 Interval 0.75 Key image 2

Figure VI.4: Example of image morphing of the head layer between key imagétedeft and key
image 2 on the right, with further refinement of the feature lines. The top hows results using
24 feature lines, the bottom row shows results using 30 feature Baggs Bunnys ™& ©Warner
Bros. Entertainment Inc.

a superior technique than vertex-based approaches [Sederlie@yeanwood 1992; Alexa et al.
2000], since vertex interpolation often leads to unacceptable deformati¢ims contours, such as
arm shortening. To alleviate the problem of self-occlusion, we employ thiéigaing and layering
strategy mentioned above. Although the techniques presented herd ardyramutomatic, they do
not require the intervention of a skilled animator for quality results. We usmtwhinery of [Carr
et al. 2003] to generate an implicit model using radial basis functions (RBEsve have found
it produces better results and is faster than the related methods in [Tu@®'Bridn 1999], which
provided the inspiration for our technique.

We describe a method that is a combination of two techniques, RBF interpolatioroa-rigid
image deformation, for creating inbetween images from the existing key imadgasaipter V1.4.
The key images used for inbetweening are any pair of images that are efbasfihaving a large
transition cost, or visual discontinuity, in the re-sequenced animation. ddldérggenerating new
images will be to maintain the model-free representation of the charactersibbatgeened, as
has been discussed throughout this dissertation. Also, the methodshosddiremain simple with
little to no user input required. Aside from partitioning the character into tagemually, very little
user input is necessary to achieve the inbetweening results preserged he

The system for re-using cartoon images described in Chapter V rerssegianimated images
by parameterizing the input images with a lower-dimensional manifold and theerdnag that
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manifold to produce original animation, given start and end data. Examiningethdesic distance
determines if additional source material needs to be provided in the formiabatween. In this
chapter, we extend the re-sequencing method: given a geodesic djstenmompute an inbetween.
Once the re-sequenced animation is created and the visual discontinwtidemtified, the inter-
polation to correct the discontinuities are restricted to a pair of images, instahd traditional
animation problem of having a series of keyframes that require a largearushinbetweens. In
practice, typically only one or two intermediate frames will be required for $hiog the visual
discontinuity in the re-sequenced animation.

VI.4 Shapelnterpolation using RBFs

Before describing the details of our method of shape interpolation usingl faakis functions
(RBFs), a brief overview of the algorithm is presented. RBFs are uséudmpolate the outer
contours of the character in the images. A mesh is created from the two cenémd slices of
that mesh are extracted and becomes the intermediate contours used tdhereabetween. In
our experience, using implicit surfaces presents a superior technignedhtex-based approaches
[Sederberg and Greenwood 1992; Alexa et al. 2000], since vertespoiation often leads to un-
acceptable deformations in the contours, such as arm shortening. @nicave an intermediate
contour, that contour must be filled in with color information. Using the two keygesaas ref-
erences for the intermediate contour, the images are registered and areititde color image is
generated. That intermediate image is used to fill in the contour, completing thigvedn. The
rest of this section describes the details of the inbetweening algorithm.

V1.4.1 Overview of Radial Basis Functions
We begin with a brief introduction to RBFs and the fast evaluation method$opeeby [Carr et al.
2003]. Radial basis functions are techniques used for interpolation inltadimensional space.
RBFs offer a compact functional representation of a set of data paetsto define a surface. The
functions also have a distance criterion with respect to a center usedaloiagon. That makes
RBFs useful for interpolation, extrapolation, and smoothing data. RBfbeavaluated anywhere
on the surface to produce a mesh of any specified resolution. An olgedése is defined implicitly
as the zero set of RBFs fitted to the given surface data points. The maiibatan of [Carr et al.
2003] is in the fast evaluation methods that are able to model large data ssistiog of millions
of points with a single function that is continuous and differentiable. Their otkeitvolves three
steps to fit RBFs to 3D data sets without restrictions on surface topologyst€ps are (1) construct
a signed-distance function, (2) fit RBFs to the distance function, aridd3urface the fitted RBFs.
Essentially, given a set of zero-valued surface points and nonedesurface points, fitting the
RBFs is a scattered data interpolation problem. These methods are commencdipla as a
toolbox for Matlab, known as FastRBF.

The general functional form of the RBFs over a seNaflata points is given bg(x) = p(x) +
ZiNzl/\i ©(|Jx—x|) wherepis a polynomial of low degreeg is a basis function (a radially symmetric
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real valued function off0,«), andx; are the centers of the RBFs. There are several functions that
can be used as the basis functipnsuch as the thin-plate spline, a Gaussian, biharmonic, and
triharmonic splines. [Carr et al. 2003] chose the biharmonic spline fungiion= r, which can be
rewritten ass*(x) = p(x) + YN, Ai|x— x| for the RBFs, wherg is a linear polynomialj; are real
numbers, and| is the Euclidean norm oR3. The biharmonic spline requires that data points be
not co-planar, and there are constraints on the coeffickemssuring that the function is second-
order differentiable. We also chose the biharmonic spline as the bast®fisim our interpolation
work described below. The authors claim that non-compactly supposisd functions are better
for extrapolation and interpolation of non-uniformly sampled data. Bectugskiharmonic spline

is not compactly supported, direct evaluation of the RBFs using a biharnbasis function is
unreliable and extremely time consuming. Their fast evaluation method allowksdarse of the
biharmonic spline on data sets consisting of tens of thousands of data pbimg.use the Fast
Multipole Method (FMM), originally developed for the fast evaluation of gaymonic splines in
two and three dimensions. The idea behind the FMM is best described by fitang et al. 2003]:
“The FMM makes use of the simple fact that when computations are perfoimniimite precision is
neither required nor expected. Once this is realized, the use of apptmdsare allowed.” In the
evaluation of RBFs, thapproximationsare defined as two parameters, one for fitting accuracy and
one for evaluation accuracy. Basically, this provides a boundarylierato evaluate the RBFs, and
if the RBF centers are far from an evaluation point then an approximabeatiea is satisfactory.
Typically all the input data points are used as RBF centers, and as niddeesrpolation. The fitting
accuracy specifies the amount of deviation from a data point to the fittedvBBE, and can be
specified for each data point. The evaluation accuracy determines tisigmefor evaluating the
fitted RBFs, and acts as a boundary to the actual evaluated function.ekimoibrovement to speed
the evaluation is to reduce the number of RBF centers. Basically, a stiltsetioterpolation nodes
are selected, the residual error of the approximation is computed, andésideal error is smaller
than the fitting accuracy, the RBFs are fitted. By using this method iteratiVéslgugh not essential
for the fast evaluation method, the surfaces are approximated to withineb#isg@ accuracy. The
more centers used in the fitting of the RBF, the more closely the zero setesagaroximates the
entire set of input data points. Once the RBFs are fitted to a set of data, gbaén®BFs define an
implicit model of an object. An explicit representation, such as a triangulanhces be extracted
using iso-surfacing algorithms like marching cubes.

Having a compact functional representation of a surface, which alsthieaability to interpo-
late and extrapolate, make using RBFs appealing for interpolating betw@srnop#ey images.
The points used as input data to be fitted with the RBFs can be the outer coatdbe cartoon
characters, or all of the pixels of a character, including color valué® fast evaluation method
developed by [Carr et al. 2003] provides a simple framework in the fdrentoolbox in Matlab,
allowing for ease of use and accessibility to test the representation oboataba with RBFs.
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Figure VI.5: An example of the automatically generated contour and nornvatkpghich serve as
the input to the implicit surface generation step.

V1.4.2 Interpolating Contoursusing RBFs

To continue the discussion of using RBFs for inbetweening, we begin wittagtkeof interpolating
the outer contours of a pair of images of cartoon characters. Givehdagaifrom the previous seg-
mentation and layering operations, the RBF contour inbetweening algoritheeguis as follows.
First, silhouettes are created automatically from the input data. The colog baitkground pixels
is known, so every pixel not equal to the background color is set tklalad all background pixels
are set to white. The silhouettes are then used to create contours defimisigathes to be inbe-
tweened. The contours are generated from the silhouette images by stimpixel on the edge
of the silhouette and tracing around the silhouette in clockwise order. THitewromage is just a

clockwise ordered list ofx,y) pixel positions. Next, using the ordered list of contour points, a set

of normals are computed. These normals (shown in Figure VI1.5) definetdr@imand the exterior
of the contour for the RBF interpolation algorithm. The set of contour poimisrermals are then
given az coordinate, placing them in 3D space, and these point sets are usedib®itipe RBF
method, which generates an implicit surface interpolating the contour pointaaréhing cubes
algorithm then creates a mesh describing the implicit surface, and the meshkdsadlintermediate
points to create the intermediate contours. This process is quite fast antbtesmp approximately
one minute on a 1GHz Pentium.

If the intermediate contour needs further refinement, the following stepsectaiken: (1) the in-
dividual layers can be aligned, (2) constraint points can be addedddBF contour interpolation,
or (3) all methods can be used in conjunction. The alignment of layerseaore simply using
the centroid of the character layer (for example the centroids of the fieatte head layer), or a
more complicated transformation can be applied using an iterative closesrggistration algo-
rithm [Besl and McKay 1992]. Constraint points can be used to improvimteemediate contours.
The user can select desired constraint points on the previous intermeatitd@r image to serve as
extra data points that must be interpolated by the RBFs. Alternatively or inipatidn with the
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(a) Partitioned Layers

gt

(b) Partitioned Contours

Figure VI.6: The top row shows an original key image on the left, the partididagers on the
right. Notice that the head has been registered to the key image in Figure)VT8g bottom row
shows an example of the contours used for creating the RBF solmaffyis "™& ©Warner Bros.
Entertainment Inc.

above, the user can select desired constraint points on each of timabc@ntour images. Normals
are calculated for the selected constraint points, and are passed onendttigiimal contour points
and normals into the RBF contour interpolation routine. Next we describe Bfeifterpolation
results, and note when any of the additional refinement methods are used.

The first example we describe uses two key imageBaify Duckand both techniques for in-
termediate contour refinement. The character is partitioned into three laydrsth key images: a
head layer, an arm layer, and a body layer, as described in ChaplerMe head layers are reg-
istered using the iterative closest point method with 12 control points fdr ies&ge. Figure V1.6
shows the partitioned layers and final contours for one key image. Oadwetd images are reg-
istered, the contours are generated and the RBF interpolation method is ethpleyo additional
constraint points are included with the contour points on the head layeich ate inserted at a
value half way between the two key images. These constraint points atécusestrict the fitting
of the RBFs around the lower part Diaffy’s beak. The arm layers are registered, but required no
further contour refinement. The body layers did not require any conéfinement. Figures VI.7(a)
and VI.7(b) show the RBF interpolation results for affy head and body layers, respectively.
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(b) Body Layer RBF

Figure VI.7: The top image is the RBF solution for tBaffy Duckhead layer. The head images
were registered and two additional constraints were used. The bottom isrthgeRBF solution for
the Daffy Duckbody layer.

88



(a) Key image 1 (b) Inbetween Contours  (c) Final Inbetween (d) Key image 2

Figure VI.8: The final inbetween frame generated using RBF interpolaticghadewith layering
and constraints. The key images are shown on the left and rigatfy is "™& ©Warner Bros.
Entertainment Inc.

Figure V1.8 shows the final inbetween for tBaffy example described above. The intermediate
contour for each layer is reassembled after using the RBF contour iteggmomethod. The color
information is filled in manually for this example, and an automatic method will be disduater.

Two more examples of the RBF contour interpolation method are describBddsrBunnyand
the Coyote Figure V1.9 shows the inbetweening results Burgs Bunny For this exampleBugs
was partitioned into four layers: head, body, left and right arms. Theawmtour refinement used
aligning the heads in the head layer using the centroids. Figure VI.10 isaanpéx inbetween
generated fowile E. Coyote TheCoyotewas patrtitioned into four layers: head, left arm, right arm,
and body. The head and arm layers were aligned using their centrdgidsRBF solution for each
of the Coyotelayers did not require any additional contour refinement. All of the exasrgiilewn
in this section have the color information for the intermediate contours filled in atignu

VI.5 Texturing or Re-coloring the Intermediate Contours
The final step in creating an inbetween is filling in the color and texture informatée have the
color and texture information for the original key images available, from wiie generated the
intermediate contour, and the issue is how to best transfer this informatioblemd it into the
intermediate contour. In a production studio, a similar process is done wadingtart is scanned
in and goes to the next step of ink and paint. Traditionally, the ink and padceps was all done
manually. Some studios now use a simple flood fill for each region of closgdwe in the line
art. But an artist is still required to ensure that all contours are closslthee flood fill would fail.
While some of the color information can be passed along from one frame t@kteam artist is
still required to touch up many frames before they are finalized.

We use the two key images to fill the inbetween contour by registering the keyesrayl
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(a) Key image 1 (b) Inbetween Contours  (c) Final Inbetween (d) Key image 2

Figure VI.9: The final inbetween frame generated using RBF contourpioiteion method with
layering. The key images are shown on the left and rigdiigs Bunnyis ™& ©Warner Bros.
Entertainment Inc.

(a) Key image 1 (b) Final Inbetween (c) Keyimage 2

Figure VI.10: The final inbetween frame generated using RBF contoupoitgion method with
layering and aligning the head and arm layers. The key images are sihdwa left and rightWile
E. Coyotdas ™& ©Warner Bros. Entertainment Inc.
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Figure VI.11: Moving from left to right: the first image is a close up of thetfi@y image head
layer, the second image is this key image after using an affine transformati@rpgdhe image to
match the inbetween contour, the third image is the automatically generated inbetbveeur, the
last image is an overlay showing the transformed key image atop the inbetargtenicDaffy Duck
is TM& ©Warner Bros. Entertainment Inc.

generating an intermediate image based on the registration. As a proofaafptdest, we first try
a simple affine transformation to register the two key images. Figure VI.11lsshovexample of
applying an affine transformation (done manually in Adobe Photoshop)dd&keynimage to align
it with the intermediate contour. As is clearly visible, a better registration of tlyeirkage to

the intermediate contour is necessary for improving the result. There iditeagture on image
registration in the medical imaging community, where we looked for inspiratior. miéthod we
employ to register a pair of key images is non-rigid elastic image deformatioelagp®d by [Wirtz

et al. 2004], and recently adapted by [Li et al. 2006]. The next sedireefly summarizes the
original method, followed by the results of the image registration.

VI1.51 Summary of Elastic Registration
Although the method of the fast non-rigid elastic registration by [Wirtz et @42Wvas developed
for the purpose of producing a high resolution three-dimensional recatisn of a rat brain from
a series of images (slices of the brain) in a short amount of time, the techaigyts very well
for the purposes of registration and deformation of cartoon images. tithera chose to use elas-
tic registration due to the distortions introduced in slicing and digitization of areahband cite
several methods of elastic registration. They also use a fast implementatiood@tla system of
nonlinear equations based on the work of [Fischer and Modersitz€],188d a Gaussian pyramid
for evaluation of downsampled images to build up to a high-resolution finaltres

A preprocessing step is performed to compensate for any artifacts dogtiom or translation
before the elastic registration proceeds. The authors briefly descelpedbess of elastic registra-
tion, which is paraphrased here. We refer the reader to the referprméded in [Wirtz et al. 2004]
for more details. Each image, or digitized brain slice, requires finding aftnanation based on
displacement fields for each slice. A minimization of a functional consistingdi$tance metric
and smoother (the elastic potential energy) becomes the main objectiveistdiecd metric is the
sum of squared intensity differences of each image after undergoiagsfdrmation (given by the
displacement field). Two parametedsandu, are Lan&’s material constantsu governs how far
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the material will stretch and is defined as the stress divided by the ag@aerns how fast the ma-
terial will stretch, and is dependent pn Minimizing the series of images and displacement fields
results in a system of nonlinear partial differential equations, or the Raai@é (NLE) equation,
given by

p?w+ A +w)0(0-T)+f(T)=0 (VI.2)

where T is the displacement field that tries to minimize the sum of squared intensity diffssen
of the images,f(ﬁ) is the derivative of the distance metric, the second term imposes a restriction
that the entire image (or surface material) is as “stretchable” everywineteecsurface, while the
first term enforces a constraint on how far the material will stretch. Simplytpe NLE equation
describes the elastic deformation of an object subject to a force, whidWiitz[et al. 2004] is
simply the derivative of the distance metric. The object is deformed until aitiium is reached
between the forces. The system of equations for the three-dimenségistration differs slightly
from that of a system for a pure two-dimensional registration, so the eutise the solution from
[Fischer and Modersitzki 1999]. Setting the material constaraad u of the object are important
for ensuring a good registration. Large material constants make the ofpeetrigid, while small
material constants are more susceptible to noise effects but allow for tefpgmation.

In the multi-resolution step, the images are analyzed and registered at |ds/dévesolution
before proceeding to higher levels. The authors use a Gaussian pyrAntite lower levels, the
number of iterations are restricted. After each level of deformation, tee feinction is recomputed
before performing registration at a higher level of resolution. Multi-ggm registration is both
computationally less expensive than trying to deform the whole series of gmatpeplace all at
once and more likely to result in a satisfactory convergence.

VI1.5.2 Resultsof Re-coloring Contours
Once a deformation is known for registering the key images, the transfomwtiobe applied to
generate an intermediate image and used as a preliminary texture for the inétencedtour. We
extended the algorithm for elastic registration of grayscale images [Li 20@6] to color images.
Basically the deformation is computed on the luminance of the two key images and.sfthis
deformation is then applied to each color channel separately, resulting fin#héntermediate
color image to use for filling the inbetween contour. In our experience, theriabparameters
¢ andA need only be set once, as the amount of deformation allowed for theediffeartoon
characters was the same. By using the color information in the intermediate imagepf the
contour will be filled, requiring only a small amount of touch up, similar to the fimach up done
in a production studio pipeline. Our method requires only one step for thétartisuch up after
generating the intermediate texture, as opposed to the three steps for clmsiogrs, filling, then
the final touching up, thereby speeding up the process. Also, betteuseethod is model-free, no
user input is required to generate the results, just the two input images.

The intermediate contours that were previously computed (Chapter VI 2)sad with the
elastic registration results in two ways. First, the contour is used to automatiezdlsemble the
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Key image 1 Contour Deformation 1 Deformation 2 Key image 2

Figure VI1.12: A comparison of results using elastic deformation for g¢ingrinbetweens on the
Bugs Bunnyhead layer. On the left and right are the original key images. The imagteldbe
“Contour” is the RBF contour interpolation result. “Deformation 1” is the hegaing from key
image 1to key image 2while “Deformation 2” is the result going frokey image 20 key image 1
Bugs Bunnys ™& ©Warner Bros. Entertainment Inc.

Table VI.1: Evaluating the similarity of the elastic deformation result to the interrteed@ntour
from the RBF contour interpolation step.

Images | Hausdorff Distance
CtoER 2.0545
CtoER 2.3324

character layers quickly, as described in Chapter VI.1. Second, arelimportantly, the contour

is used to determine the correct direction that the elastic deformation is appttesl key images.
For example, the amount of force required to deform imageto imageB will be different than

the amount of force required to deform imagénto imageA. We defineER; as elastic deforma-
tion result usingkey image las the source arkky image 2as the destinationER; is the elastic
deformation result usingey image s the source arlcey image Js the destination. Figure VI.12
shows the two key images, the intermediate con@and the results R, andER,. We can see
thatERy is visually better thafER,. To determine which deformation result more closely matches
the contoulC, we use the Hausdorff distance described in Chapter V.2.3 to compute theigymila
of Cto ER; andC to ER,. The results are shown in Table VI.5.2. As we expected, the deformation
ER; is a better match t€@, which is used in the final inbetween.

We compare the results of elastic registration to the manually filled in results pt€&ha.4.2.
The same characters and pairs of key images are used. Figure VI8 alubose up of th®affy
head layer with the two key images, the intermediate texture generated usitastieregistration,
an overlay of the intermediate texture on the inbetween contour, and thedsudd after a small
amount of manual touch up. Figures VI.14, VI.15, and VI.16 show thée fegults on the three
characters. A comparison is also be made between the image morphing reQiitgpbdér VI.2 and
those here. Figure VI.17 shows a close up ofBlags Bunnyead layer with the results of the image
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Figure VI.13: Moving from left to right: the first image is a close up of thet fkmy image head
layer, the second image is a close up of the second key image head layiydhenage is the
automatically generated inbetween texture, the fourth image is an overlainghtw intermediate
texture overlayed on the inbetween contour, and the fifth image is the firetliabn for the head
layer. Daffy Duckis ™& (@©Warner Bros. Entertainment Inc.

Key image 1 Final Inbetween Key image 2

Figure VI.14: The final inbetween frame generated using RBF contoupoitgion method with
elastic registration providing the color and texture information. The key imageshown on the
left and right.Daffy Duckis "™& ©Warner Bros. Entertainment Inc.
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Key image 1 Final Inbetween Key image 2

Figure VI.15: The final inbetween frame generated using RBF contoupoitgion method with
elastic registration providing the color and texture information. The key imageshown on the
left and right.Bugs Bunnys ™& @©Warner Bros. Entertainment Inc.

Key image 1 Final Inbetween Key image 2

Figure VI.16: The final inbetween frame generated using RBF contoupoitgion method with
elastic registration providing the color and texture information. The key imageshown on the
left and right.Wile E. Coyotas "™& (©Warner Bros. Entertainment Inc.

95



Key image 1 Image Morph Deformation 1 Deformation 2 Key image 2

Figure VI1.17: A comparison of results using image morphing and elasticrdetan for generating
inbetweens on thBugs Bunnyhead layer. On the left and right are the original key images. The
image labeled “image morph” is the result of using 30 feature lines and is halbetaveen the two
key images. The images labeled “deformation 1" and “deformation 2” showethdts of using
the elastic registration. “Deformation 1” is the raw result, while “DeformatiofiszZhe manually
touched up result. A small amount of correction was required on onerelyea. Bugs Bunnys
™¢& ©Warner Bros. Entertainment Inc.

morphing side by side with the elastic deformation. Using the semi-automatic elastimmd&on
algorithm produces inbetweens of comparable quality, yet with no signifimaden placed upon
the user.

VI.6 Summary

The results in this chapter show that using implicit surfaces together with etieftiemation is

a viable and robust technique for generating inbetweens for cartdoragon. It works well on

three cartoon characters, each of which exhibit differences in coldrshape. By providing a
semi-automatic method for inbetweening, this chapter presents a third mycasgdaimportant

component of a system for building re-usable motion libraries of traditianiadation.

Including the artist or animator in the process of creating the inbetweensesritie quality of
the resulting images, and the methods presented here require only minimalrtiterfer touching
up novel sequences of animation. The processes described hexiel @arimators in the process of
generating inbetweens, as it provides a strong template for a finishedgbro@onsidering the
minimal amount of user interaction involved, we believe that this method yields lngtetweens
for two-dimensional animation than has previously been reported.
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CHAPTER VII

SUMMARY AND FUTURE DIRECTIONS

VII.1 Summary of Contributions

In this dissertation, we have presented the components of a system topdexedting cartoon
animation into motion libraries and novel animation sequences. Traditional aniniaten art

form everyone is familiar with, but successfully merging it with computer animagohniques has
historically been one of the most challenging areas of research in congmimeation. Traditional

animation for film and television has become very expensive and time consumépite of the

many technological advances in computer animation. The components delvbEngeaccomplish
three necessary tasks of any re-use system: segmentation, re<saguand inbetweening.

This research makes technical inroads into the problem of re-using treditinimation, and is
focused on the three key tasks of building a re-usable cartoon motionylibtast, we developed
a fast and robust method for segmenting cartoon images requiring very §tteinput. Second,
we determined that manifold learning techniques allow for a parameterizatlargefamounts of
cartoon data, providing a simple way of re-using existing cartoons. Thigdshowed that implicit
surface techniques along with an elastic deformation technique can bessfwdly applied to the
inbetweening problem, creating a semi-automatic and interactive method foatiegénbetweens.
All of these technigues can be successfully modified and applied to aid irdb&em of merging
traditional animation methods with computer animation. We believe the utility of theseigeds
will open new avenues of research in two-dimensional animation and maydeacesurgence in
interest to cartoon animation.

Isolating the characters from completed animations and creating a chditaeter is the first
necessary step in re-using cartoon data. We explored three technaquasl hoc method based
on the probability of encountering certain pre-selected color values,ea dev method with the
speed function defined by either gray-level intensity or color valuas$ chassifying the color and
optical flow magnitudes using support vector machines (SVMs). We ddratet$ the success
of classifying cartoon data using SVMs, requiring minimal user interventiod, applied simple
morphological operations to clean up any incorrectly classified regiotiseofnages. The same
morphological operations can be used to clean up results from the ad hbodres well. The
support vector machine technique outperformed the ad hoc and levsdgaentation techniques
that we tried, which could not effectively deal with the amount of noise irtlimations. The SVM
technique also proved to be the fastest at segmenting full images.

Once the characters are segmented, the second step for re-usim ckata is how to access
and re-sequence the data itself. An appropriate distance metric for doggae similarity of the
images is crucial, and we showed that an approximate Hausdorff distatme waes superior to the

more common bk and cross-correlation metrics. We also demonstrated that the use of aldhanifo

learning algorithm, in particular ST-Isomap, could successfully create dotthof sparse data such
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as those found in hand-drawn cartoons. The key to building a good rithrefaresenting the data
was in the identification of an appropriate distance metric. A simple travertiag ahanifold based
on the shortest-cost path results in a sequence of image indices useeséauencing the frames
to create novel animations. A cost is associated with each edge taken aamgsbquenced path,
and that value is a useful measure of the visual discontinuity betweendrairttee new animation.
Theoretically, the discontinuity exists because the manifold is not sampledigemough by the
data for its structure to be parameterized. Hand-drawn cartoon datarenitigesparse, representing
a fundamental obstacle for manifold learning techniques.

Because of this sparsity, we developed a semi-automatic method of genénathgeens to
make the available data more dense and provide increased smoothness tmarstreams. Our
procedure involves three steps. In the first step, the character is peatitiato several layers
such as head and torso. In the second step, intermediate shape caméogenerated for each
layer using an RBF-based technique, and in the final step the cartoanocdexture is fit to the
intermediate shape using an elastic deformation technique. All of these stppeersome user
intervention; however having a semi-automatic method for generating new snisge important
factor in quality control. Including the animator or artist in various aspectsudéiing a motion
library and re-using the cartoon data becomes necessary to ensuileethasults maintain some
nuances of cartoon animation that give it the characteristics we find mosakpg.

Creating and re-using three-dimensional computer models for animatiomasirarfd easy to
manipulate, and many studios have turned to these as their preferred meambahation, particu-
larly in film production. Animated films have gained much popularity in recentsyeéa particular
three-dimensional computer animations, which can be seen in the dramatasmaianimated
films being released today. Many of the television cartoon series use rémolering of three-
dimensional computer models to help reduce production costs. Yet, s@%értoons are still
hand-drawn (likeThe Simpsons but now use computers instead of actual cels. Since [Catmull
1978], there have only been a handful of contributions to two-dimenisammation, and it has
been one of the most interesting challenges since the dawn of computeicgrdpis sad to see the
traditionally animated TV cartoon or film be lost simply because of productistscdMany of us
grew up watching théooney TuneandMickey Mouseartoons on Saturday mornings, and mar-
velled at the expressiveness and exaggerated motions the charabibite@. Much of that charm
is lost today in favor of more simplistic motion from 'toon-rendered models arektdimensional
cartoons. Providing a means of re-using existing cartoon data can hglpediag up the produc-
tion time of creating new hand-drawn animations. In particular, the artistgetiavith generating
inbetweens could use a system like the one proposed here to match keyfamstart and end
poses, while the system generates the inbetween frames either by esx@eguor creating new
images. The idea of re-using cartoon data by re-sequencing is a m®/edimd may revive interest
in traditional animation as a viable form of art, thereby encouraging moreosttarevisit creating
traditional animations.
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VII.2 FutureDirections

This research, while answering several important questions abasing-traditional animation,
gives rise to other interesting questions and potential topics of furtheands To make re-using
cartoons economically viable, the first step would be to build a complete systrdiimg a graphi-
cal user interface (GUI) that would encapsulate all of the componeasepted in this dissertation.
Building such a GUI should take into account the needs of both the animaddharproduction
studio environment. For studios still working on traditional animations, the anisatiuld add
new source material to the motion library as they draw new characterscaadsaexisting draw-
ings easily. Having a user friendly GUI would make re-using traditional atimanuch more
accessible.

VI1.21 Threshold Detection Revisited

Another aspect of the GUI would be to automate the selection of a threshoklfeadetermining a
visual discontinuity (discussed in Chapters V.5 and V.6). Statistical analysiee cost of transitions
might reveal a good threshold value. For example, withDh#y data set, there are a total of 559
transitions with an average transition cost 0883, a minimum transition cost of @1, and a
maximum transition cost of 2087. There are three scene cuts with a cost of the transition at the
scene borders greater than1,5which is expected since the character may not be facing the same
direction in one scene to another. Figure VII.1 shows two original imagessaene cut. Our
manually selected threshold value of good transitions being less than d 2datepresents 76%

of all transitions, a bad transition with a cost of greater th&vr8presents 19% of all transitions,

with the remaining 1%% of transitions falling between those threshold values. Determining the
threshold value of good transitions can be automatically set based on sgekbetioost value that
represents approximately 75% or more of the total transitions.

VI1.2.2 Segmenting Black and White Cartoons

In addition to building a GUI, there are other technological innovations thalddmprove such a
system. One challenge is how to improve the segmentation methods to handle kldrdaghite
cartoons. Although we found the SVM technique superior to the other§\iv technique may
fail if it were applied to very early animation from the 1920's and 19308iclv contain significant
amounts of noise, and no color information. It is likely that other automatic mi-aatomatic
segmentation techniques would fail as well. Figure VII.2 shows an exampélafck and white
cartoon from 1936 that exhibits lighting changes and a bright white spotdrséguential frames.
Noise and artifacts like these are common throughout the entire cartoonestypiaal of the earlier
animations.

VI1.2.3 Incorporating Principles of Animation

While some of the principles of animation [Thomas and Johnston 1981] may bé&imathby re-
sequencing existing traditional animation, others such as “timing” and “slowwn gut” cannot
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Figure VII.1: Two pairs of images at scene cuts fromEiadfy data set, illustrating that these images
would result in a high transition cost because of the dissimilarity of the ctariadhe images. The
top row is the first scene cut, the bottom row is the second scen®afiy. Duckis ™& ©Warner

Bros. Entertainment Inc.

Figure VI1.2: Two sequential images from the 1936 animated short “PoRgad Race,” produced
by Leon Schlesinger. Notice the lighting changesRamky'’s face and the large white spot that
appears in the second frame behind the car. Also, orfeoéy’s dimples is missing in the first
frame.Porky Pigis ™& ©Warner Bros. Entertainment Inc.
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be maintained by simply traversing a low-dimensional manifold of the data usihgréest-cost
method. Finding a traversal method that incorporates timing information woudah lieteresting
future direction. Another approach would be to incorporate high-levetimation from the anima-
tion principles into the distance metric, for example to keep certain frames clgsthéo if they
exhibit “squash and stretch” or “anticipation.” To accomplish that woutfuire a fair amount of
user intervention in annotating the cartoon images with which principles of anmetoexhibited
in each of the frames.

VII.24 Inbetweening Revisited

We developed a method for producing inbetweens for traditional animatidrptbduced good
results. An alternative method for generating inbetweens would be to e@aésh with the color
information from the key images as the texture on the mesh. A volumetric textutbefanesh

can be generated and used for slicing, and a slice of that mesh would bestiigng inbetween
image. We recently examined a method for creating and slicing a mesh to extespblated color

or texture information: Mean Value Coordinates (MVC) by [Ju et al. 2008]e MVC method

shows promise as a future direction in inbetweening, specifically in creatilgharesolution mesh
where each vertex represents a pixel in the key images, and using thafonekicing. By using a

mesh to represent the character layers entirely (color and shape ititortogether), the remaining
issue of silhouette changes can be addressed.

The idea behind MVC is to find a function that can interpolate a set of vatube &ertices of a
mesh smoothly into its interior. MVCs have been used for closed 2D polygadshe work by [Ju
et al. 2005] generalizes the method to closed triangular meshes, leadingéstingg applications
such as our interest in volumetric textures. Since mean value coordinatkwarbitrary data
associated with each mesh vertex, MVC can take either color information toréesoordinates.
What the algorithm provides is an interpolation of color or texture coorditeati® to the interior of
the mesh volume, creating a volumetric texture.

Here we present results showing the viability of using the MVC method fotivdening. The
first step in using MVC is to create the mesh. Creating a mesh manually is a diffiaditime
consuming task, usually left to expert modelers or animators. To redudmitien on the user of
creating a mesh, we modify the RBF interpolation method described in Chapte? Vinstead of
creating a mesh from a pair of contours, we use all of the color informatidiotin key images.
Essentially the two color images are on parallel planes separated by a sraaltdisand the idea
is to find a plane between the parallel ones with the interpolated color valdassarthat result as
an inbetween image. Setting up the images to create a mesh is done as followselzamage
is viewed as a slice of planar data points, with each point hagnyg) pixel position data and
their associate® G, B color values. Two “slices” (on parallel planes) are separated along the
axis by some small amount. The input to the FastRBF toolbox aréxtlyg pixel coordinates that
represent the character, and their associ&e8l B values for each image, which are now in 3D
space since each plane of pixel coordinates and color values hagea@uaded coordinate value.
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Key image 1 Key image 2 Normals

Mesh view 1 Mesh view 2 Mesh view 3 Mesh view 4

Figure VII.3: An example of how to set up a mesh for use with the MVC slicing ptktiOn the

top row the two input images and the normals for the data points, red pointstendivaimage and
green points indicate the second image. On the bottom row, the resulting moesh §bm four

viewpoints.Bugs Bunnys ™& ©Warner Bros. Entertainment Inc.

One requirement is that the key images used are already segmentedt#@imhpdrinto layers. As
such, none of the background pixels are used, i.e., if a pixed, g has color equal to the known
background color, it is excluded from the input data used to create thie. @rmals for each
data point are calculated using a pre-defined FastRBF function, arattishic basis functions
are used for the RBFs. Both pixel locations and color data are interpdisitdee RBFs to create
an isosurface. Finally, a mesh is created by using a fast marching-algmeghm, and the color
values for each point are interpolated across the surface of the medvértex in the mesh has an
associated color value, allowing for easy interpolation of color when thé meticed using MVC.
Figure VI1.3 shows the steps involved in creating the mesh using RBF intéigpuola

Nine slices are generated atl0..,0.9 distance between the top and bottom slice of the mesh
from figure VI1.3. For proof-of-concept, they are created at a legofution 128 x 128. Figure V1.4
shows the results of slicing the RBF mesh. There are several interpolatfeatsl such as the
blurring of color features in the middle, for example, at the 8licing plane. This blurring is
inevitable because we are doing interpolation on the colors. The ovemlinagiality is a result
of several interpolation steps, including the RBF interpolation of color taterthe mesh, down-
sampling the mesh to run efficiently using MVC, and also the MVC interpolation.it3&lé run-
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0.1 slice 0.2 slice 0.3 slice 0.4 slice 0.5 slice

0.6 slice 0.7 slice 0.8 slice 0.9 slice

Figure VII.4: Slices of the mesh generated using RBF interpolation of pixettilen and colors.

In the top row, the slices at.D distance to ® distance from the top and bottom planes, and in
the bottom row, the slices at®distance to @ distance from the top and bottom planes. Images
obtained courtesy of Dr. Tao JBugs Bunnys "™& ©Warner Bros. Entertainment Inc.

time of the MVC algorithm isNverts« N points whereNvertsis the number of vertices in the
mesh, andN pointsis the number of points to be evaluated. The interpolation example shown in
figure VII.4 took approximately 10 minutes for each slice. Each slice hax 128 points, and the
color at each point is interpolated from 18,622 mesh vertices. With nine glitescted, the total
time to generate the slicing results took 90 minutes. However, since in manycrdgese or two
slices would be required for the inbetweens, the run-time of this algorithnragonmable on small
meshes.

To yield the best results and eliminate losses in quality due to RBF interpolatiaggh-ghality
mesh would have to be generated manually. Figure VII.5 shows an examplenesh created
manually with the texture information on each large surface plane applieddrpantitioned key
image layer. The idea is to generate an interpolation between two texture insggslices of a
volumetric texture. Although all of the color information is preserved withowtlass of detail, the
MVC method can only use one texture applied to a closed mesh. Using the tvim&ggs as one
texture will result in an interpolation across the texture coordinates angradtice a meaningful
inbetween. One alternative to using two textures is to create a high resolutstnwite each vertex
assigned a color value, similar to the RBF mesh discussed above. If it ibledssassociate every
mesh vertex with a specific color and not lose any detail from the image, teemelsh would
have an extremely high vertex count, resulting in an unreasonable compatdtioe to extract
an intermediate slice. Another idea for improving the results is to have a porr@gence between
features on the two planes, and use MVC on smaller meshes segmented égdhesponding
points. The difficulty with any of these improvements is that the generation ofiésé is no longer
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Top plane view Rotated view Rotated view Bottom plane view

Figure VII.5: Several viewpoints of the manually created mesh. The tofppatidm planes are the
two key images. The bottom row shows the same mesh with the underlying \wiesfrighlighted.
Bugs Bunnys ™& ©Warner Bros. Entertainment Inc.

automatic, and if correspondences need to be determined betweendesttine two image planes,
the burden of both of these tasks is placed back with the user.

Although the major limitations of using MVC on a high-resolution mesh lie in the custaite
of technology, we believe that the MVC technique will become a viable resoumice computing
power increases. While we do not claim to have solved the two-dimensidreliaening problem,
we have overcome some of the hurdles that require large amounts dfteseention. We provided
a method of inbetweening that is model-free, and may have reached the limistofreethods.
It may be possible to apply techniques such as view-dependent geoRattgrhacher 1999] to
achieve improved texture filling on inbetweened contours by using a thmeerdional model of the
character. Assuming one can extract a three-dimensional model froor twore images, the view-
dependent geometry method may help when the character partitioning ints isyesufficient in
resolving the self-occlusion problem (discussed in Chapter 11.1.2). Boee layering alone will
not solve the occlusion problem, and having a three-dimensional repaéise of the character may
resolve any remaining issues, in particular the silhouette changes.

Another interesting avenue of research is in generating a high-qualityneatonesh from a pair
of keyframe images, or extending the method of MVC to be able to interpoladssaanultiple
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textures on a mesh. The mesh shown in figure VII.3 is generated using. RBHS represents
an interesting first step towards automatic mesh generation, but suffenddss of detail in the
image due to interpolation across the mesh when fitting the RBF and then agairslidireg the
mesh using MVC. Once again, incorporating ideas from [Rademach&j &8t implicit surface
representations, such as RBF interpolation, could provide a reasonableautomatically. Having
a model sheet (defined in Chapter Il) of a character would help in tteticneof a mesh of that
character in a neutral pose.

VI1.25 Stop-Motion Animation

Although this dissertation has focused on traditional hand-drawn animaitbh@v to best merge
it with computer animation techniques, another form of animation has not béeenoed much by
computational technology. Stop-motion animation is an extremely laboriousgs,aoere so than
hand-drawn animation, and is an interesting form of art that is still popufdria today. Some re-
search has been done on stop-motion animation, in particular how to add mlotigBriostow and
Essa 2001]. Like traditional animation, stop-motion does not exhibit any mbtisrbecause both
are series of still images that when played back create the illusion of a maéng.sMotion blur
occurs when objects move while a camera shutter is open. Stop-motion aninsatiogtimes re-
ferred to as clay animation or “claymation” because of the pliable materialauclay oPlasticine
used to create the characters, has a unique look that is not easily simulaedimputer. It would
be interesting to apply the methods of this dissertation to clay animation chaldatéiallaceand
Gromit, figure VII.6, and build a motion library out of clay characters insteadamfdhdrawn ones.
One new challenge for re-using clay characters that does not arise hmatid-drawn ones, is in
re-lighting the clay characters in a re-sequenced animation. Becaudayheharacters are actual
three-dimensional models on a set with real lights, re-sequencing frdrttesse characters would
exhibit changes in the shadows and lights that appear on them. Some oftiagkevs can be seen
in figure VII.6 onGromit
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Figure VII.6: Examples of a stop-motion animation charaGesmit, from the film “The Wrong
Trousers,” exhibiting changing lighting condition®Aardman / Wallace and Gromit Ltd. 1993.
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