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In robotics, we need robots which have the ability to understand what a human wants and

can respond accordingly.  On the other hand, robot should be able to provide information that is

easy for a human to understand.  Therefore, we developed the robot Self Agent to provide these

abilities.  The main purpose of the Self Agent is to be the center of the robot.  It provides every

basic need that a robot should have.  For example, translating high-level command into basic

commands so that a robot can understand and execute them; Self-monitoring of the robot’s

performance; and having an intelligent action selection that will make good decisions.

Since we needed to have a good decision mechanism, we created a new approach which

consists of two algorithms.  The first algorithm is Spreading Activation Network (SAN) that

provides the basis for selecting appropriate behaviors (Action Selection) for completing a given task.

To perform well, parameters of the Spreading Activation Network must be manually tuned.  The

second algorithm is the Reinforcement Learning (RL) technique that enables a robot to

automatically learn multiple policies.  This research will show we trained an ATRV-Jr robot, called

Scooter to learn policies and automatically adapt to unexpected variables.
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 CHAPTER I

INTRODUCTION

Overview

This work investigates a Multi Agent System for mobile robots.  Although many mobile

robots today are capable of completing tasks in predictable environments, they still have problems

when dealing with new unpredictable environments or unexpected events.  Currently robots have

limited sensing of their surroundings and they are only able to deal with situations that they have

already experienced.  The difficulty of building an autonomous robot is making a robot learn and

believe in some policies in an unpredictable environment.

If we think about what makes humans behave intelligently, then we may realize that

intelligence has many levels [1].  Many animals are intelligent to some degree, including the ability to

act within their environments.  How do animals act within their environments? Intelligence provides

animals with the computational power and knowledge to sense, decide, and act in a complex and

changing environment.

The development of agent-based technologies was initiated in the 1990s within a field called

Distributed Artificial Intelligence (DAI) [2].  An agent is an autonomous entity that tries to fulfill a

set of different goals in achieving tasks in complex and dynamically changing environments.  An

actuated agent can sense the environment through its sensors and act upon the environment using

its actuators.  This kind of action can be represented as a behavior.  The robot can perform multiple

behaviors to achieve its tasks.  Each behavior may consist of one agent or many agents in the

system.  A system composed of a number of agents being able to interact, and differing from each

other in their skill and their knowledge about the environment, is called a Multi-Agent System

(MAS).  There are many different frameworks that provide the architecture to implement multi-

agent systems.  The Intelligent Machine Architecture (IMA), an agent-based software system for

robot control, bas been developed in the Center for Intelligent Systems at Vanderbilt University [3].

The Self Agent is a compound cognitive agent that activates and maintains the activities of

the robot itself.  It receives high-level commands from the Commander Agent and decomposes

them into a set of executable commands.  The Self Agent also monitors the system performance,
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translates high-level commands into low-level commands that robot can understand, and reports

significant errors back to the commander Agent.

We propose a new approach to select the low-level commands, called SAN-RL.  It combines

two techniques, a Spreading Activation Network (SAN) and Reinforcement learning (RL) together.

The Spreading Activation Network (SAN) allows the robot to pick plans to achieve goals.  However,

setting these parameters for the network could be difficult and require a lot of experiment time.

Therefore, we integrated Spreading Activation Networks (SAN) with a Reinforcement Learning

(RL) technique that can learn the appropriate parameters, dependant upon a reward, which the robot

gets when it completes its tasks.
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Outline of the thesis

The remainder of this dissertation is divided as follows:

Chapter II: Background:

This chapter briefly describes the development of our Multi Agent System.  The Schema

theory is summarized.  Several architectures that relate to intelligent robot control are reviewed.  We

focus on behavior-based approaches and agent-based systems.  The Intelligent Machine Architecture

(IMA) is introduced.  Illustrative examples of work that have been implemented in IMA are

reviewed.

Chapter III The robot Self Agent:

The main objective of this work is to create the core (or brain) of the robot.  The robot

needs to have the abilities to understand what the user wants to do and to execute this.  Therefore,

we developed the robot Self Agent to provide these abilities.  The robot Self Agent is composed of:

Command I/O Agent, Action Selection Agent, Performance Agent, Info Agent, Description Agent

and Path Planning Agent.

Chapter IV Spreading Activation Network with Reinforcement Learning:

In the robot Self Agent, we need to perform an action selection for selecting the best

possible action to complete a given task.  We propose a Spreading Activation Network as the action

selection mechanism.  To perform well, the parameters of the Spreading Activation Network must

be manually tuned which is time-consuming.  Reinforcement learning techniques will help the robot

learn policies, and thus these parameters automatically.

Chapter V Experimental Results and Discussion:

This chapter demonstrates a practical application of mobile robot navigation and learning.

Many basic behaviors are combined and implemented in an outdoor scenario.  The results show the

ability of the robot to move around the environment and to finish the tasks.  The experiments are

setup for three different sets of policies.  The results from all experiments are given and discussed in

detail.
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Chapter VI Conclusions and Future Research:

This chapter summarizes and discusses the significance of the results and gives an overview

for the future research.
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CHAPTER II

BACKGROUND

Agent-Base System

An agent-based system provides a way to combine intelligent behaviors.  The concept is

used, not only as a model for computer programming, but also in applications in robotics research.

Many people ask why we should use an Agent-Based System.  There are several answers that

bay be given in response to this question.  One of them is the current robotics research is becoming

more and more complex with numerous functionalities and interactions with several users.  Also an

Agent-Based System requires appropriate for a large-scale project, such as one distributed across a

network, which requires many computers to work together to accomplish the overall objective.

Each agent needs to solve the task that it is able to do and the others will take care of the rest.

Together they do what is necessary to make the system function.

The Multi-Agent Systems (MAS)

Multi-Agent Systems (MAS) are becoming an important paradigm in intelligent mobile robot

research.  In MAS agents need to communicate with each other to complete a given task.  Although

an atomic agent can solve some particular problems, a complex problem typically requires multiple

agents.  MAS can provide distributed information, flexibility, fault-tolerance, and reusability.

The choice to use the MAS can therefore be explained by the following:

•  Problems are physically distributed: Some complex problems require that

computation be distributed over several locations.  For example, airplane traffic

management.  We need to have agents connected together at airports around the

country.

•  Problems are widely distributed and heterogeneous in functional terms: It’s hard to

find one person who can solve every problem.  Even if you find that person, he or

she could not possibly be knowledgeable enough and have enough time to finish

such a system on his or her own.  For instance, in car racing we need to have a

driver, engineer, specialists in engines, tires, etc.  Everyone will put his or her

knowledge together to try to make the best possible car.
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•  Networks force us to take a distributed view: In the current real world, much of the

data processing power is distributed over the network.  MAS can thus be seen as an

appropriate candidate for the construction of open, distributed, heterogeneous and

flexible architectures, capable of offering high-quality service for collective work, and

also without changing any prior structure.

•  The complexity of problems dictates a local point of view: When the problem is too

big and complicated, there is no way to solve it by looking at the whole system.  It

must be decomposed into local approaches.

•  Systems must be able to adapt to changes in the processing structure or in the

environment: There is no need to spend a lot of time changing the entire system

structure when there are only small changes or growth in the future.  MAS allows for

the integration and the appearance or disappearance of agents even while the system

is functioning.  It’s especially suitable for making the growing adaptations necessary

for the functioning of a growing system.

Figure 1:  An agent interacting with its environment and other agents

The Intelligent Machine Architecture (IMA).

At Vanderbilt’s Intelligent Robotic Lab (IRL), we developed a framework for building the

intelligent software called the Intelligent Machine Architecture (IMA) to be used as the framework

[4][5].  It was initially designed for a humanoid robot system called ISAC (Intelligent SoftArm

Control) [6][7][8].  We are applying IMA to the mobile robot problem to test the robustness and

flexibility of the software architecture across different types of robotic applications and operating
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system platforms.  Our design process within the IMA is to decompose the system into a set of

atomic agents.  Within IMA, an atomic agent is an element in the system that is independent and is

capable of acting in an environment, much like the concept of an object in object-oriented systems.

To complete the concept described above, IMA provides a two-level software framework

for developing intelligent software:

•  The robot-environment level: describes the system structure in terms of a group of

atomic agents connected by a set of agent representations.  At the robot-

environment level, IMA defines several classes of atomic agents and describes their

primary functions in terms of environmental models, behaviors or tasks.

•  The agent-object level: describes each of the atomic agents and agent representations

as a network of software modules called components.

Another benefit of IMA is ease of integration of new algorithms into the current system.

Moreover, different systems and architectures can be implemented parallel with different agents so

that the overall system can be fast interacting with their own environment.  The communication

among agents within different architectures is easier because the internal structures are independent.

The difference between IMA and traditional software systems has two aspects.

1. The IMA uses a system-level model that is based on atomic agents.  Thus, each agent

task or domain element is modeled in software as a primitive agent.

2. The IMA uses the Distributed Component Object Model (DCOM) [9] for

communicating between components under Windows NT/2000.  DCOM is a

service of MS Windows, which allows remote objects to be controlled when they

were registered.

Taxonomy of IMA Agents

In the IMA framework, the objects are arranged in a hierarchy.  This taxonomy has also

been described in [1][2]

Component

Components are reusable software objects developed under the Distributed Component

Object Model (DCOM).  Components can be created by any high-level language that supports

DCOM.
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Atomic Agent

There are four basic types of atomic agents, and a special type that combines more than one

type together.

1.  Hardware/Resource Agent: This is an agent that is used to interface with the actual

hardware.  This agent is on the lowest level of the hierarchy.  Its duty is to provide raw data from

hardware to other atomic agents with regular updates.  Those agents could provide other services

such as a control loop, rearranging data or filtering data for other agents.

2.  Behavior/Skill Agent: Encapsulate basic behaviors or skills: This agent is a higher level

than the Hardware/Resource agent.  It consists of behaviors or primitive skills needed for the robot

to perform some tasks.  For example avoid-obstacle, tracking-object, wander and move-to-goal, etc.

3.  Environment Agent: Provides an abstraction for dealing with objects in the robot’s

environment such as cone, ball, or other robots.  This abstraction includes operations that the robot

can perform on the object, e.g., “look at.” or “move to”.

4.  Sequencer Agent: A sequencer agent provides a sequence of actions, which may interact

with one or more other atomic agents.  Sequencer agents may call other sequencer agents.

5.  Multi-Type Agent: Combines the functionality of at least two of the atomic agent types.

It provides a complicated agent that can combine the resource, behavior, environment and

sequencer agents into a single agent.
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Figure 2: Examples of atomic agents that were built for the HelpMate robot

Compound Agent

An IMA Compound Agent is a group of atomic agents that are coordinated or sequenced by

one or more sequencer agents.  The highest-level sequencer agent can be envisioned as the root

node of a tree with connections and dependencies on other agents or branches.
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Figure 3 IMA agents and the Self Agent

The Commander Agent

The Commander Agent is an agent that is a communication gateway between the robot and

user.  The Commander Agent concept has been developed to ease communication and allow the

user to access the robot’s abilities.  The Commander Agent not only receives commands from the

user, but also gathers the status of progression of the robot’s task and sends it back to the user.

Sensory EgoSphere

The Sensory EgoSphere (SES) is a short-term memory structure that enables a user to view

the current sensory information in the view of a geodesic dome [10].  We define the SES as a

database, a 2-D spherical data structure, centered on the coordinate frame of the robot.  Its implicit

topological structure is that of a geodesic dome, each vertex of which is a pointer to a distinct data

structure.  The sensory information includes visual imagery, sonar and laser signals, gyroscopic
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vestibular data, speed of each motor, compass heading, GPS position, camera pan and tilt angles,

and odometery.  The concept of an Egosphere for a robot was first proposed by Albus [11].

Figure 4: The Sensory EgoSphere of the mobile robot.

Basic Behaviors

A Behavior is a fundamental building block of natural intelligence.  It is a mapping of

sensory inputs to a pattern of motor actions, which are used to achieve a given task.  There are many

definitions of a basic behavior:

•  Behavior is relatively simple, incrementally added to the system, and not executed in

a serial fashion (Mataric)[AB.12]

•  A Behavior can be represented as a generated response to a given stimulus computed

by a specific behavior (Arkin Stimulus-Response Diagrams) {AB.1]

•  Each behavior can take inputs from the robot’s sensors (e.g., camera, ultrasound,

infra-red, tactile) and/or from other behaviors in the system, and send outputs to the

robot’s effectors (e.g, wheels, grippers, arm, speech) and/or to other behaviors.

Thus, a behavior-based controller is a structured network of such interacting

behaviors (Mataric[12])

Behavior can be divided into three broad categories.
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1. Reflexive behaviors are stimulus-response (S-R) behaviors, such as when your knee is

tapped, it jerks upward.  Essentially, reflexive behaviors are “hardwired”.  Neural

circuits ensure that the stimulus is directly connected to the response in order to

produce the fastest response time.

2. Reactive behaviors are learned, and then consolidated to where they can be executed

without conscious thought.  Any behavior that involves what is referred to in sports

as “muscle memory”, is usually a reactive behavior (e.g., riding a bike or skiing).

Reactive behaviors can also be changed by conscious thought (e.g., a bicyclist riding

over a very narrow bridge might “pay attention” to all the movements).

3. Conscious behaviors are deliberative (assembling a robot kit, stringing together

previously developed behaviors, etc.)

Figure 5: A structure of a simple behavior

Schema Theory

Schema theory provides a helpful way of casting some of the action to the object-oriented

programming format.  An overview of Schema Theory is:

•  Another behavior architecture approach, motivated by the biological sciences.

•  Michael Arbib is the first person who first brought this to the serious attention of AI

robotists while at the University of Massachusetts.

•  Later used extensively by Arkin and Murphy for mobile robotics.

•  Consist both of the knowledge of how to act and / or perceive (knowledge, data

structures, models) as well as the computational process (the algorithm).

•  It is also a generic template for doing some activity, like riding a bicycle.

•  It is a template because a person can ride different types of bicycles without needing

to learn how to ride again.
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The behavior schemas are composed of Motor Schemas and Perceptual Schemas.

•  A Motor Schema represents the template for the physical activity.

•  A Perceptual Schema provides the environmental information specific (sensor) for

that particular behavior.

In advanced applications, the agent may have a choice of either perceptual or motor schemas

to tailor its behavior.  For example, a person usually uses vision (perceptual schema) to navigate out

of a room (motor schema).  But if the power is off, the person can use touch (an alternate

perceptual schema) to feel their way out of a dark room.  In this case the schema uses perceptual

schemas differently for different environmental conditions.

Figure 6: Behaviors decomposed into perceptual and motor schemas

Schemas have some basis in biology.  For instance, the Rana Computatrix model explained

what occasionally happens when a toad sees two flies at once.

A toad can be characterized as responding visually to either

•  small, moving objects (Feeding Behavior).

•  large, moving objects (Fleeing Behavior).

In the case that the toad see two flies (two vectors), the Rana computatrix model sums the

two vectors, resulting in a third vector.
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Figure 7 Shows the Feeding Behavior.

Schema theory for autonomous robotics.

Many different motor schemas have been defined, including.

•  Move-ahead: move in a particular compass direction.

•  Move-to-goal: move towards a detected goal object.

•  Avoid-static-obstacle: move away from barriers.

•  Dodge: sidestep an approaching ballistic projectile.

•  Escape (Hiding): move away from an approaching predator.

•  Stay-on-path: move toward the center of a path, road or hallway.

•  Noise (Wander): move in a random direction for a certain amount of time.

•  Follow-the-leader: move to a particular location displaced somewhat from a possibly

moving object.

•  Probe: move toward open areas.

•  Dock: approach an object from a particular direction.

•  Avoid-past: move away from areas recently visited.

•  Move-up, move-down, maintain-altitude: move upward or downward or follow an

isocontour in rough terrain.

•  Teleautomony: allows a human operator to provide internal bias to the control

system at the same level as another schema.
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Figure 8: Example of the avoid Behavior in animals

Vision based Navigation

Vision based positioning or localization uses the same basic principles of landmark-based

and map-based positioning but relies on video sensors rather than ultrasound, dead-reckoning and

inertial sensors.

Many techniques have been suggested for localization using vision information, the main

components of which are listed below:

•  Representations of the environment.

•  Sensing models.

•  Localization algorithms.

The environment is perceived in the form of geometric information such as landmarks,

object models and maps in two or three dimensions.  Localization then depends on the following

two inter-related considerations:

•  A vision sensor (or multiple vision sensors) should capture image features or regions

that match the landmarks or maps.

•  Landmarks, object models and maps should provide necessary spatial information

that is easy to be sensed.

The primary techniques used in vision-based positioning to date are:

•  Landmark-Based Positioning

•  Model-Based Approaches
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•  Feature-Based Visual Map Building

Although it seems to be a good idea to combine vision-based techniques with methods using

dead reckoning, ultrasonic and laser-based sensors, applications in realistic conditions are still

difficult.

Clearly, vision-based positioning is directly related to most computer vision methods,

especially object recognition.  So as research in this area progresses, the results can be applied to

vision-based positioning.

Real world applications in most research demands very detailed sensor information to

provide the robot with good environment capabilities.  Visual sensing can provide the robot with an

incredible amount of information about its environment.  Visual sensors are potentially the most

powerful source of information among all the sensors used on robots to date.  Hence, at present, it

seems that high-resolution optical sensors provide the greatest information for mobile robot

positioning and navigation.  So that it is the sensor that we want to use.

Summary

This chapter introduced us to the intelligent robotics system.  We have briefly described the

architecture of an agent-based system and inter-agent communications.  The intelligent robot

control system in this study will use a behavior-based approach.

Since we are concentrating on a mobile robot, schema theory has been presented.  It is

important for implementation to have basic behavior schema.  The intelligent machine architecture

(IMA), an agent-based software system for robot development, was also presented.  The IMA has

been used in several examples systems that have been successfully implemented in the past several

years.  The basic behaviors, which will be used in mobile robot navigation, will be discussed in the

next chapter.

The basic idea is to help the robot become more intelligent, therefore we have tried to find

algorithms that enables the robot to think and learn in some way similar to a human.  That is why

we developed a robot self agent.  It is a compound agent that has the ability to learn, make decisions,

and communicate with humans and other robots.

Many of the basic behaviors that we developed and tested were the vision based behaviors.

Although, the vision sensor is very noisy and requires a lot of processing time, it is also perhaps the

best sensor that a human has and mainly uses.
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CHAPTER III

CONCEPT OF THE ROBOT SELF AGENT

Introduction

In the real world, we need robots which have the ability to understand what a human says.

Additionally, robots should be able to provide information that is easy for a human to understand.

This includes status, performance, error, etc.  Therefore we developed the robot Self-Agent to

provide these abilities.  The Self-Agent is a compound agent, which is designed for a multi-agent

software system under Intelligent Machine Architecture (IMA).  The main purpose of this agent is to

be the center of the robot.  It provides the basic information that a robot can give to a human (or

other robots) such as translating high-level communications to basic commands that robots can

understand; asking an atomic agent inside the robot to activate or deactivate; and monitoring the

performance of the robot itself; etc.  The Self-Agent is composed of six atomic agents that are listed

below:

1. Command I/O Agent

2. Activator Agent

3. Affect Agent

4. Info Agent

5. Description Agent

6. Path planning Agent

Each of these agents and their functions will be described in more detail in the next section.

Since in this research we will emphasize the mobile robot, we also add a Path planning agent into the

self-agent.  Path planning is an essential function that every mobile robot needs to have.
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Figure 9: Data flow among the agents, with an emphasis on communication with the Self Agent.

The Command I/O and Status Agents communicate with the Commander Agent.  After

receiving a high-level command, the Command I/O and Status Agents translate the command into

executable commands.  The Activator Agent sends the command to activate the necessary atomic

agents.  Finally, the Affect Agent gets status information from the atomic agents in the robot, and

then sends their status to the Description Agent to collect and provide this information for feedback

to the human.

What is the Self-agent?

The Self-Agent is a compound agent that is used to activate and monitor the atomic agents

until the goal is achieved.  The Self-agent also contains what might be called the “brain” of the
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robot.  It is responsible for high level planning and reasoning.  It contains the basic information of

the robot.  This includes long-term and short-term information such as the information about an

atomic agent inside the robot; status and performance of an atomic agent; the collection of

functionalities of the robot; etc.  It also provides the interface for the user or other robots to

communicate with an atomic agent inside the robot.

Furthermore, the robot Self-Agent acts as part of the deliberative architecture.  In this issue,

the Self-Agent must be able to receive commands from the user then select actions.  In other words,

the user determines the goals and the Self-Agent will activate the proper agents to satisfy those

goals.  The Self-Agent can provide feedback to the human when the robot faces a problem or

cannot achieve its goals.  Hence, it requires the ability to detect problems, and to send feedback and

a description of the state of the robot to the user.

The Parts of the Self Agent.

The Self Agent consists of six parts:

•  Command I/O agent: Communicates with the commander and other agents.

•  Activator Agent: Selects the appropriate atomic agent depending on the situation.

•  Affect Agent: Detects failure of atomic agent and report to commander agent.

•  Info Agent: Stores information about all atomic agents that are used by the robot.

•  Description Agent: Provides the current status of the robot’s atomic agents.

•  Path Planning agent: Generates the best path for the robot.
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Figure 10 Shows part of the robot Self Agent

Command I/O Agent

Action Selection
Agent

Command I/O Agent

Interpretor
(From Look-up

Table)

Commander
Agent

Peer Agent

Command/Feedback

Command/Feedback

Command

Figure 11 shows communication between command I/O agent and others
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The command I/O agent gets input command from an external agent such as the

Commander Agent, Peer agent or directly from the user (via a Representation manager), etc.  It then

processes the command and sends the commands to the Activator Agent in order to command the

robot to follow the given tasks.  If the receiving command needs to be translated, it will search from

a look-up table.  In the case that it cannot interpret the command, it will send feedback to the

external agent that there is something wrong.

Interpretor
(From Look-up

Table)

Input
Text Representation

Command Info
Vector Signal

High-level
Command
Information

Look-up

C
om

m
an

d
C

om
m

an
d

Output
Text Representation

Alert M
essage

Figure 12 shows detail of the Command I/O agent

After the Command I/O agent gets the command from user (using the Text representation).

It searches for the given command in a look-up table in the Info agent.  Then it sends the lower

level interpreted commands to the Activator Agent.  There are two outputs from this agent, to the

Activator Agent (using Vector Signal) and to the user (Text Representation).
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Activator Agent

Figure 13 Shows the communication between the Activator Agent and others

The Activator Agent provides the abilities to control the robot from the given command.

The Activator Agent selects action, choosing the atomic agent having the highest activation in the

spreading activation network.  The details of how the Spreading Activation Network works will be

described in the next chapter.

The functions of Activator Agent are listed below:

•  Use a Spreading Activation network (SAN) to select the next action for the robot

using Patties Mae’s approach.

•  After the action has been completed, then its post condition in the spreading

activation network will become true.

•  Select goal of the command by setting their priorities.

•  Add the reinforcement learning into Spreading Activation Network to allow learning

a policy.

•  Store network information into a DBAM.

There is an agent called the Activator link.  It consists of two vector single agents, Input

Link agent and Output Link agent.  The activator link is an interface between the Atomic agent and

the Self agent to update the status of their agent and then select the best possible behavior to

complete a given task.



23

Affect Agent

Figure 14: Communication between the Affect Agent and others

System Status Evaluation (SSE)

•  If an agent is unable to meet its goals or is experiencing abnormal communication

with another agent, this will indicate a problem

•  An agent’s failure to meet its goals will cause abnormal communication to propagate

upward in the hierarchy of Atomic agent.

•  The detection of abnormal communication with another agents is based on

communication timing patterns

•  Using the data from a histogram of the timing patterns, each agent will classify the

status of its communication with other agents as normal or abnormal

Performance Evaluation (PE)

For basic Performance Evaluation (P.E.) this system will use a timer to determine the

performance in a very simple way.  After the time is up, the performance measure of the agent will

decrease by a specific value (5% is the default).  On the other hand, if the agent does not time out,

the performance value will also increase by the same value .

The following is an expression that shows how to calculate PE.

{

if time is up then

P.E.  = P.E.(old value) – Step; If not less than 0
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Else

P.E.  = P.E.  (Old value) + Step; If not more than 100

End if

}

Info Agent

Figure 15: Communication between the Info Agent and other agents.

This agent is responsible for collecting long-term information of the robot and sharing this

information with other agents.  For instance, the Agent Name and Id (for referencing the agent), the

information of the agents that can be used by the robot, the Agent path address (for activating the

agent) and the history of the robot performance are a few examples.
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Description Agent
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Figure 16: The description agent.

The Description Agent is responsible for creating the descriptions for the user.  This

description is based on information that registers with the Self-Agent.  The Description Agent

returns the status of the agents such as active or inactive; ready or not ready to execute; in progress,

success or failure; etc.  The Description Agent produces text representations containing the names

and descriptions of all atomic agents, which are registered, and then sends it back to the requester

agent.
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Figure 17: The Description agent

There is a description link agent that allows the atomic agents to contribute information

such as its name, a description of its purpose, its status, etc.  These texts will be used to provide the

description for the users.

Path Planning Agent

One of the most well-studied mobile robot tasks is Path Planning.  Path planning is

important for a mobile robot.  Finding the safest, shortest, and most efficient paths in the presence

of obstacles and other robots can be difficult.  The Path planning cost is dependent upon

considerations suck as the path length, number of abrupt trajectory turns, and safety costs.

Path planning is provided for autonomous or semi-autonomous robots operating in either

an indoor or outdoor environment.  We propose the way to ensure optimality is by a preprocessing

analysis of the terrain before sending the robot out.  This approach uses pre-processing maps that

show the characteristics of the terrain in the region.  The Pre-processing map assigns descriptions to
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every point in that region.  The descriptions should be simple enough that the optimal direction at

any point can be quickly calculated in real time.  Then, a robot needs only to determine where it is

periodically, and look up this position in the map.  Then this algorithm gives a planning path

through areas of terrain, allowing a robot to explore optimal paths safely.

Path Planning Agent
ERA Action-Model

Learner

Map Data
Path Planner Manager

Receiver/Sender VS

Figure 18 Path Planning Agent

The Path Planning Agent will get the start and target positions from other agents.  Then it

returns the set of way-points that the robot should follow.  Before we can use it we need to have a -

map of the area.
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CHAPTER IV

SPREADING ACTIVATION NETWORK WITH REINFORCEMENT LEARNING

Introduction

Our approach consists of two algorithms.  The first algorithm is the Spreading Activation

Network (SAN) that provides the basis for selecting appropriate behaviors (i.e., action selection) for

completing a given task.  To perform well, the parameters of the Spreading Activation Network

must be manually tuned.  The second algorithm is a Reinforcement Learning (RL) technique that

enables a robot to learn a policy automatically.

A Spreading Activation Network attempts to achieve a number of goals in a complex

dynamic environment [12], which is too complicated to be predictable and the agent has limited

computational and time resources.  We need to have action selection that will make a good decision.

It not only favors actions that contribute to several goals at once, but also contributes to following

the plans that are given by the user or by other agents.  Additionally it provides the capability of

both deliberative and reactive planning.

In the real world we always have different preferences in how a robot should finish its tasks.

An example could be a robot that has to explore Mars and collect samples of rocks along the way.

Under normal situations, the robot will collect rock while it is moving along the given path.

However, if it is in a hazardous situation, our preferences will need to be changed.  We may want the

robot to come back to the mission base as soon as it can and neglect its rock collecting duty.

In this approach which is called SAN-RL, it enables the learning of different configurable

behaviors.  We want it to learn behaviors from the current preferences for completing a given task.

Our solution is to combine two techniques a Spreading Activation Network (SAN) and

Reinforcement learning (RL).  The Spreading Activation Network (SAN) allows the robot to select

plans to achieve goals.  However, setting these parameters for the network could be difficult and

require a lot of experiment time.  Therefore, we integrate the Spreading Activation Network (SAN)

with a Reinforcement Learning (RL) technique that can learn the appropriate parameters, dependant

upon the reward, which the robot gets when it completes its tasks.

Reinforcement learning techniques have been successful in allowing an agent to learn a

policy for achieving tasks.  The overall behavior of the agent can be controlled with an appropriate
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reward function that it receives based on the sequence of actions that it takes.  The objective of the

learner is to find the best policy that will maximize the expected reward.

Spreading Activation Network

What is SAN?

A Spreading Activation Network (SAN) is a technique that is derived from the learning

processes that take place to form learning networks [13].  The origins of the Spreading Activation

Network can be traced back to the work on associative memory in the late nineteenth century.

Artificial Intelligence researchers have emulated this process many ways, and then applied it over the

network to solve problems such as in the field of robotics.

In this approach we use a Spreading Activation Network as an action selection mechanism.

A Spreading Activation Network consists of competency modules.  Each competency module is

linked to the condition (Pre-condition) that must be satisfied before the module can be executed.

There are conditions that become true after the competency modules have successfully completed.

These conditions are called Post-condition.  If a competency module has all of its pre-conditions

satisfied by the current state, then it is executable.  In the case that there is more than one executable

competency module, the algorithm selects the executable competency module with the highest

activation.  If its activation is above the threshold, then it is selected.  Otherwise, the threshold is

reduced by a pre-determined amount (e.g, -10%) and then the process repeats.
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Figure 19 An example of Spreading Activation Network (Boxes are Actions.  Circles are
Conditions.)

Why SAN?

As robotics and automation application researchers tend to put robots in uncertain

environments, we need to have an action selection method that is robust, able to execute a plan and

makes a good decision.  A good action selection behavior should have the following characteristics:

•  Favor actions that contribute to more than one goal at the same time

•  Is able to react to the current situation and is highly adaptive to unpredictable and

dynamic environments

•  Contributes to the plan (unless another action has higher priority).  For example, it

should keep working towards the same goal unless there is a good reason to switch

to a different goal.

•  It should look ahead (i.e.  it should try to avoid hazardous situations).

•  It is robust (recovers itself when certain components fail).

•  It should be Reactive and fast.
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Algorithm

A competency module is executable at time t when all of its preconditions are true.  If an

executable competency module is selected, it will perform a real action.  A competency module

could be described by (ci,ai,di,αi).  ci is a list of preconditions.  ai and di represent an  add list and a

delete list of a competency module.  The competency module also has a level of activation that we

call α i.

Every competency module is linked in the network through three types of links: Successor

links, Predecessor links, and Conflicter links.  The description of each link is shown below:

Successor link

If the competency module x (cx,ax,dx,αx) has the competency module y (xy,ay,dy,αy) as its

successor, for every proposition p that is a member of the add list of x is also a member of the

precondition list of y.  We can define this as:

For every proposition p∈  ax ∩ cy

Figure 20 Successor Link
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Predecessor link

If the competency module x (cx,ax,dx,αx) has the competency module y (xy,ay,dy,αy)  as its

predecessor, then every proposition p that is a member of the precondition of x is also member of

the add list of y.  We can define this as:

For every proposition p∈  cx ∩ ay

Figure 21 Predecessor link

Conflicter link

If the competency module x (cx,ax,dx,αx) conflicts with the competency module y (xy,ay,dy,αy)

then every proposition p that is a member of the delete list of y is a member of the precondition list

of x.  We can define this as:

For every proposition p∈  cx ∩ dy
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Figure 22 Conflicter link

Since competency modules use these links to activate and inhibit each other, sometimes the

activation energy accumulates from the current situation (Input from state) and goals (Input from

goal).  Once the module is executable only acts if it has highest activation.

Competency modules get their activation value from determining the current state of the

environment and the current global goals shown below:

Activation = Input_from_state + Input_from_goal + taken_away_by_protected_goal +

SpreadBackward + SpreadForward + From_Value_.Function                        (1)

The four global parameters can be used to change the spreading activation network

dynamically, and the action selection behavior of the robot:

1. Threshold (θ) If its activation is above the θ, then it is selected.  Otherwise, the

threshold is reduced 10% each time that none of the competency modules are able

to be selected.  It is reset to its initial value when a module is selected.

2. The amount of activation energy a proposition (φ) that is observed to be true injects

into the network

3. The amount of activation energy a goal injects into the network.  (γ)

4. The amount of activation energy a protected goal takes away from the network.  (δ)
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5. These parameters also determine the amount of activation that the modules spread

forward, backward or take away.  These parameters were chosen carefully because

the internal spreading of activation will be affected by appropriate tuning.

Activation by the State

There is input activation coming from the state of the environment towards modules that

match the current state.  A competency module matches the current state if at least one of its

preconditions is observed to be true.  The activation express is shown below:

Input_from_state(x,t) = 
cxjMj #
1

)(#
1 •� φ        (2)

where φ is the amount of activation energy injected by the state per true proposition and

M(j) returns the set of modules that match proposition j (condition).

Activation by the Goal

Activation energy is determined by the global goals of the agent.  They increase the

activation level of modules that achieve one of the global goals.  A competency module is used to

achieve the global goals if one of the goal is a member of the add list of the competency module.

Note that there are two types of goals: first, a goal that has to be achieved only once, which is called

a “permanent goal.” ,and second, a goal that has to be achieved continuously.  An example of the

first goal is the ‘Reached Target’, an example of the second goal is “Obstacle is clear”.  The

expression for how to calculate the activation by goals is shown below:

Input_from_goal(x,t) = 
axjAj #
1

)(#
1 •� γ         (3)

where γ is the amount of activation energy injected by the goals per goal and A(j) returns the

set of modules that achieve proposition j.
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Inhibition from the protected Goals.

The activation should be reduced if it is trying to remove the global goals that have already

been achieved.  Because these goals should be protected, these ‘protected goals’ remove some of the

activation from the modules that would undo them.  The expression is shown below:

Taken_away_by_protected_goal(x,t) = 
dxjUj #
1

)(#
1 •� δ         (4)

where δ is the amount of activation energy taken away by the protected goals per protected

goal.  And U(j) returns the set of modules that undo proposition j.

Activation of Successors

Every “executable” competency module x (cx,ax,dx,αx) spreads activation forward.  It

increases the activation level of those successors y for which the shared proposition p∈  ax ∩ cy is

not true.  We want these successor modules to become more activated because they are “almost

executable”.  The expression is shown below:

SpreadBackward(x,y,t) = 
axja

t
j x #

1
)(#

1)1( •−� α  if executable(x,t) = 0

                                 O = 0 if executable(x,t) = 1         (5)

where αx is the amount of activation energy that spreads from the non-executable module to

its predecessors and A(j) returns the set of modules that achieve proposition j.

Activation of Predecessors

A competency module x (cx,ax,dx,αx) that is not executable spreads activation backward.  It

increases the activation level of predecessor y for which the shared proposition p∈  cx ∩ ay is not

true.  Competency module x spreads backward through those predecessor links for which the

proposition p∈  cx is false.  The expression is shown below:
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SpreadForward(x,y,t) = 
cyjM

t
j x #

1
)(#

1)1( ••−� γ
φα  if executable(x,t) = 0

                                    Or = 0 if executable(x,t) = 1          (6)

Where αx is the amount of activation energy that spreads from a non-executable module to

its predecessors and M(j) returns the set of modules that match proposition j (condition).

Inhibition of conflicter

A competency module x (cx,ax,dx,αx) decreases the activation level of its conflicter y for

which the shared proposition p∈  cx ∩ dy is true.  We do not allow a module to inhibit itself.

Competency module x takes away activation energy through all of its conflicter links for which the

proposition that defines then p∈  cx is true, except those links for which there exists an inverse

conflicter link that is stronger.  The expression will be shown below:

Takes-away(x,y,t) = 0 if ( ))(())1()1(( xyyx dctSitt ∩∩∈∃∧−<− αα

 Or = max{
))1(,

#
1

)(#
1)1( −••−� t

dyjU
t yj x α

γ
φα

} otherwise        (7)

where αx is the amount of activation energy that spreads from a non-executable module to

its predecessors ,U(j) returns the set of modules that undo proposition j and S(t) returns the

propositions that are observed to be true at time t.
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Figure 23 Another example of a spreading Activation Network

For Example, in Figure 5, if condition C6 is a goal, then competency module CM1 would

receive activation (Activation by the Goals).  A competency module receives activation from the

current state for each of its pre-condition nodes that are true in the current state.  Thus, if condition

C2 is true in the current state, then both competency modules CM1 and CM2 would receive

activation from the state.

In every loop there are four steps that are repeated continually to keep the system running.

These four steps are shown below:

1. Compute the impact of the state goals and protected goals on the activation level of a

competency module.

2. Recompute the activation level of the competency modules that are related through its

successor links, predecessor links and conflicter links.

3. A decay function ensures that the overall activation level remains constant.

4. The competency module that fulfills the following three conditions become active:

•  It has to be executable

•  Its activation has to be higher then a certain threshold

•  It must have a higher activation than all other competency modules.
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When the competency module that fulfills these conditions is chosen, the activation level of

the competency module that has become active is reset to 0.  If none of the modules fulfill these

conditions then the threshold is lowered by 10%

Figure 24 Spreading Activation Network User Interface in IMA Environment

Reinforcement Learning

Reinforcement Learning enables an agent to learn in an interactive environment, typically

through a reward system that it receives based on the sequence of actions that it takes and/or the

states through which it travels.  The objective of the learner is to find a policy that will maximize the

expected reward.

Combining spreading activation network with Reinforcement learning

Our objective is to combine spreading activation networks with reinforcement learning to

allow a robot to learn a policy for selecting among its competency modules to achieve its goals and

to allow a robot to adapt its behavior when priorities among goals are changed without requiring

retraining.  To achieve this goal we modified the spreading activation network technique to allow a
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value function to be learned during execution.  We also modified the spreading activation algorithm

to include activation from the value function and to allow a priority to be associated with each goal.

Modification of the spreading activation algorithm

We need to modify the spreading activation algorithm to include activation from the value

function and to allow a priority to be associated with each goal.  The modifications are listed below:

Goal Priorities

Goal priorities allow a user to select preferences on how he wants the robot to complete its

task.  Our objective is that, the robot should try to find a sequence of actions that will maximize the

number of the goal priorities that will be achieved through those actions.  We modified this by

including a weight for each goal.  The modification of the algorithm is shown follows:

Input_from_goal(x,t) = 
axjAj j #
1

)(#
1 •� γω        (8)

where jω  is a weight for each goal which is added into the original.

Value function

The original Spreading Activation Network selects the winner from the executable

competency module with the highest activation level that exceeds the threshold.  Since we want this

system to explore the possible actions, we modified this algorithm with an e-greedy policy.  With

probability 1-e the winning module is activated.  Otherwise some other executable action model is

selected at random.  This will enable this system to activate the modules that may never be selected

otherwise.

We modified the expression by including the weight ωj into the original value function.  The

original algorithm has constants to indicate how much activation a module can receive from the

state, from the goals and from other modules.  Therefore we added a new constant that is the

amount of activation can be received from the value function.

Input_from_value_function(x,t) = ω Q(s,x)        (9)
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Learning a policy

Before the robot can learn the new policy, we need to provide a reward function.  The

reward function will be given to the sequence of actions that the robot chooses.  The higher the

reward, the higher the weight that will apply to its actions.

The reward function that we used was:

HealthReward = max(-1,0-health)

TimeReward = max(-1,1- 
time

time
min

 )

Reward = 0.5*healthReward + 0.5*TimeReward (in equal priority)      (10)

Where health is a robot’s health at the end of the episode, time is the time in milliseconds

that it took to reach the target.

In the next chapter we will discuss more about the implementation of SAN-RL on a mobile

robot.
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CHAPTER V

EXPERIMENTAL RESULTS AND DISCUSSION

Objective of Experiment

This chapter describes the testing of the Spreading Activation Network with reinforcement

learning.  These experiments demonstrate the effectiveness of the technique in selecting the best

possible action that is applied to the mobile robot.  In these experiments, we used the mobile robot

called Scooter (ATRV-Jr robot) to be our developing model.

We will show that the Spreading Activation Network will select the action with the highest

activation. The robot will learn a policy for selecting among its competency modules to achieve its

new goals, and adapt its behavior when priorities among goals are changed, without needing

retraining.

The experimental tasks can be divided into three main tasks: the initial task, learning task,

and run-time task.  Firstly, in the initial task, we design the network and setup all parameters and

atomic agents.  Secondly, in the learning task, the robot will be trained until it knows how to get the

highest reward.  Finally, in the run-time task we run the demo and change its goal priorities.

Aside from testing the Spreading Activation Network, we are also testing the robot Self-

Agent.  The user will send his or her command from the Commander Agent and then it will send

the command to the Self-Agent.  We also show failures can be detected, and how this information

can be used to generate feedback to the user about the state of the robot.
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Experiment Test bed

The experiments were conducted using the ATRV-Jr mobile robot called “Scooter”.  It was

develop by IS Robotics, Inc.  It came with an onboard CPU, Laser and Sonar sensors, Compass,

Drive Motors Unit (DMU), and a wireless Ethernet [14] added the Camera and pan/till head,

DGPS, and a laptop.

Figure 25 Show Atrv-Jr mobile robot "Scooter "

In the experiments, the user gives commands to the Self Agent by using the commander

agent.  Then the Self Agent translates and sends them to the Spreading Activation Network.

Scooter’s main task is to move to a given target location.  Figure 26 shows the atomic agents in the

system and the interconnections among them.  We will describe each atomic agent later.
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Figure 26 Atomic agents for the Test bed

Table 1 This is a list of the agents that we plan to work with SAN-RL.

Atomic Agents Sensors Type

Commander Agent - Common Agent

Avoid obstacle Sonar + Lidar Behavior/Skill Agent

(On Scooter site)

Heading Compass + DMU Behavior/Skill Agent

(Using compass instead of Odo)

Find enemy Lidar Behavior/Skill Agent

(Detect Big object as Enemy)
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Avoid enemy Vision, Lidar Behavior/Skill Agent

(Using Lidar to detect enemy)

See road Vision Behavior/Skill Agent

(In good light condition)

See Target Vision Behavior/Skill Agent

(Detect orange cone.)

On road Vision Behavior/Skill Agent

(In good light condition)

Move to road Vision Behavior/Skill Agent

(There is a pre-program that the

robot will turn 90 degree when

reach the road)

Follow road Vision Behavior/Skill Agent

(Using Vision sensor)

Move to target Vision Behavior/Skill Agent

(Detect orange cone.)

COMMANDER AGENT: is an agent that the user uses to send the command to the robot.

The commander agent that we used for this project was designed for this testing only.  It does not

have the full capability to command the robot.  This agent will connect to the Command I/O agent

in the Self Agent.  Figure 3 Shows the GUI of the commander Agent.
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Figure 27 Shows commander agent
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Figure 28 Experiment Data flow diagram

Experimental Setup

We evaluated the performance of the approach by applying it to a navigation task.  The

equipment for this experiment includes:

•  A mobile robot (the Atrv-Jr “Scooter”)

•  An Enemy (the paper “brick wall”)

•  The target (Orange cone)

•  The open outdoor area that is a road in that area
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Figure 29 Experimental setup

The human commander will connect to the robot via the commander agent.  The

Commander Agent will be responsible for displaying the current status of the task to the user and

receiving instructions from the commander to send to the robot.
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Learning task

Before we let the robot do the experiment, we need to let the robot learn the initial policies.

In this task, we set their priorities equally.  After training the network in this way, we will change

their priorities to see how our systems adapt.  The procedure for learning new policies is given

below.

1. Pick the action, having the highest activation value, and keep track of the previous

action and state in which it was select.

2. After the action completes, record the reward that we get for updating their weight.

3. Wait for the next round, and then pick the next action.

4. Update the Q function for previous action/ state.

5. Make new state and action become the old state and old action.

Figure 30 shows how the system learns and updates the weight values.  The system starts

from add the goal (with priories) into the network, loads the initial weight of every node in the

network then waiting for user to start the process.  After the system start, find winner function will

be activated.  The system selects the winner, which has highest activation value and is higher than

the system’s threshold.  If the winner’s activation value is below the system’s threshold, no behavior

will be activated and the threshold value will be reduced by 10%.  Then it will search for a winner

again.

After the system activates the winner behavior, the next step is to update the Q function of

the previous action and state that robot entered.  Finally, we check if the system has achieved its

goal.  If it has, we calculate the reward, record what behavior that the robot used and then update

the reward function.
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Figure 30 Show how system learning and selecting behavior

Update State Weight

Update Value = (ValueFunction(w) + alpha * (r-w))

Where alpha is the learning rate in this system, we set it to 0.1; w is the weight of the action;

r is the reward value.

Q Update

Update = ValueFunction(s) + alpha * (r + gamma * maxQValue - ValueFunction(s))

Where alpha is the learning rate (in our system we set it to 0.1).

Gamma is the amount of energy injected by a goal (in our system we set it to 45).

MaxQValue is the highest value in given state.
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ValueFunction is either from the initial state or from the previous action update it into its

record (in Database).

Figure 31 shows the learning simulation program that was used to evaluate the system.  This

task includes only the avoid enemy and move-to-target behaviors.  The robot must get to the target

location without being killed by the enemy.  The enemy is stationary and fires at the robot at 2-

second intervals whenever the robot is within range.

Figure 31 Shows a navigation learning task.

The robot begins with a health of 1 and decreases by 0.1 when it is hit.  If the robot’s health

falls below 0 then it is dead and the episode ends.

Scenario

This demonstration will place the robot at a start position (See Figure 29) with a given target

(Orange cone).  The robot’s mission is to follow the path to the target in the shortest amount of

time and have the highest health value.  If the robot is taking too much time to reach the goal,

getting lost or is hit, then the robot will adapt the policy.

Our reward function depends on two functions: HealthRewardFunction and

TimeRewardFunction, and be formulated as:
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Reward  =  0.5*HealthReward + 0.5*TimeReward      (11)

In our test bed, we train the robot in simulation under an equal goal priority condition, then

we test the robot under different goal priorities such as the following:

•  Reach a target safely as well as avoid enemies.

•  Reach a target safely.

•  Accomplish a task using the shortest time.

How the robot reacts will depend on its priority.  For instance, if we emphasize taking the

shortest time, the robot will go directly to the goal.

Figure 32 SAN for the demonstration

Experiment Results

We tested 3 different priority scenarios.  As shown in the table below:
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Table 2: The priority table of experiments

Scenario Name Follow the Path Away from

Enemy

Reach Target

Reach a target safely as well as avoid

enemies.

0.5 0.5 0.5

Reach a target safely. 0.5 0.9 0.5

Accomplish a task using the shortest time 0.1 0.1 0.9

Scenario 1: Reach a target safely as well as avoid enemies and following the path.

Experiment Setup

•  The robot (scooter) is connected to a computer through a wireless network.  This

computer is a remote operating console using an application called Reflection X.

•  A second computer is for the spreading activation network application and atomic

agents which will handle the interaction between the user and system.

•  The third computer is preparing for setup the client program that connected to the

server site in robot site for transferring data.

•  The maximum activation threshold is set to 200.  In addition, the minimum threshold is

set to 15.

•  Equal priorities: ωReach target  =0.5 , ωFollowing Path  =0.5, and ωAvoid enemy  =0.5.
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Figure 33 Simulation of the equal priority demo

Discussion of Experiment 1

For the first 30 seconds, robot tried to move to the path.  After the robot reached the path,

its activation was dramatically reduced.  The Follow Path competency module is activated after that.

The main reason that the Follow path competency module had a high activation value is due to the

input-from-goal from the goal condition called Following the Path.  At 41 seconds, the robot

detected the enemy.  However, in that time the activation of the Run Away is lower than that of

Follow Path.  The system will continue to select Follow Path until at 45 seconds, Run Away

competency module has the highest activation value.  At this point, the system activated run away

behavior.  After the robot moves past the enemy, the activation of Follow Path will be higher than

Run Away again and the robot will be following the Path.  Finally, the robot finds the target, causing

the system to switch to Move to target (at 55 seconds).
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Avoid Obstacle

Heading

Figure 34 Graph of the result of Scenario 1
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Table 3 Numerical results of Scenario 1 (Equal priority)

Scenario 2: Reach the target safely.

Experiment Setup

•  The hardware and software setup is the same for scenario 1.

•  The maximum activation threshold is set to 200.  In addition, the minimum threshold is

set to 15.

•  Priorities: ωReach target  =0.5 , ωFollowing Path  =0.5, and ωAvoid enemy  =0.9.

Figure 35: Simulation of the demo that emphasizes avoid enemies

Discussion of Experiment 2

For this scenario the system was set to give the avoid enemy condition high priority.  What

will happen is whenever the robot finds its enemy, the activation of the Run Away competency will

grow very fast and dominated the whole network until it pass the enemy.  From Figure 36 we see

the Run Away competency was activated very soon (compared to experiment 1) and uses more time

to avoid the enemy.  Thus, the robot tried to be far from the enemy as much as possible.  Then it
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will continue Follow Path and search for the target.  In this scenario the reward function will give a

reward, because it spends much more time than in the basic situation of scenario 1.
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Move To Target
Run away
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Heading

Figure 36 Graph of the result of Scenario 2

Table 4 Numerical results of Scenario 2 (Emphasize on avoid enemy)

Scenario 3: Accomplish a task using the shortest time.

Experiment Setup

•  The hardware and software setup is the same for scenarios 1 and 2.

•  The maximum activation threshold is set to 200.  In addition, the minimum threshold is

set to 15.

•  Priorities: ωReach target  =0.9, ωFollowing Path  =0.1, and ωAvoid enemy  =0.1.



56

Figure 37 Simulation of the demo that emphasized shortest time

Discussion of Experiment 3

In this scenario the system priority for the Reach Target condition is set very high and

consequently to ignore the other goal condition.  The robot will start from Move to Path.

Whenever robot cannot see the path, it will switch to the Heading competency module without

caring about anything else.  According to Figure 38 at time 35-59 second the robot can detect the

enemy.  However, the activation of the Heading is still higher than Run Away competency.  The

system will thus select Heading instead of Run Away.  At the end of the episode the scenario may

get the highest reward, if it survives.  On the other hand, the robot may be destroyed and can’t move

anymore (health value =0)
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Figure 38: Graph of the result of Scenario 3
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Table 5: Numerical result of Scenario 3 (Shortest time)

The main difficulty that we faced when implementing this experiment is that we used the

vision sensor for our main sensor.  The vision sensor is sensitive to lighting conditions.  For

instance, the “If-see-target” agent can detect the target, but if the light condition changes, this agent

may not be able to see the target and the episode may fail or give a bad result.
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Communication between SAN-RL and Agents

Before we can use agents in the SAN-RL program we need to add two VectorSignals to

communicate with the SAN-RL program.  We call Input command and the Output command

VectorSignal.  There is a structure for sending information to SAN-RL, which is shown below:

Table 6 Input Command VectorSignal

Column Name Description Example

1 Node_Id Node Id that is corresponding to

the Spreading Activation Network

which we create.  (Drag mouse

over its graphic.  Then there is a

message to tell what its Node_id is.

In our network “Move to road”

behavior is 9.

2 Status Telling the current status of the

node that is selected.

0 is false, 1 is true.

For competency module:

1 means the task was successful.

0 means the task was unsuccessful

3-n Data Some behavior provides additional

information.

Heading behavior will send the

current head direction of the robot

back to SAN-RL program.
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Table 7 Output Command VectorSignal

Column Name Description Example

1 Node_Id Node Id that is corresponding to

the Spreading Activation Network

which we create.  (Drag mouse

over its graphic.  Then there is a

message to tell what its Node_id is.

In our network “Move to road”

behavior is 9.

2 Status Telling Competency module to

activate or deactivate.

0 means “Deactivate”, 1 means

“Activate”.

3-n Data Some behavior provides additional

information.

Heading behavior will need

direction for SAN.

Heading Behavior

For this behavior, we have two options to set the angle of the robot.  One is from the

Compass sensor that is good for outdoor navigational use.  On the other hand, if we use a compass

sensor in an indoor environment where there is much magnetic interference then the compass

sensor gives us very noisy data.  Using the DMU is the better option in an indoor environment.  For

this demonstration, we will use the compass sensor.
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Figure 39 Show the UI of the Heading application

IMA TCP/IP Client manager for SAN-RL

Since we needed to communicate with the Scooter, which is using Linux as its operation

system, we decided to use the TCP/IP protocol to be our solution.  All of our TCP/IP servers are

on the Linux site, and we already have the client for our basic component.  But for the SAN-RL, we

needed to have special commands that did not exist in the client that we currently had developed.

Thus, we created a new client to have a connection with the SAN-RL program, and could talk to the

server manager on the Linux site.



61

Figure 40 Show communication application UI (client).

To use this program, we needed to set the NodeId parameter and the link to the SAN

Input/Output command.  We also needed to set a type of node that would be selected from either

the condition node or the Competency module.

See Enemy and Avoid Enemy Behavior

These agents use only Lidar to detect the enemy (by size).  We could set the size of the

enemy and the distance between the enemy and the robot.  If it were further than what we set, the

robot would not respond to the enemy.



62

Figure 41 The UI of the See and Avoid Enemy application
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CHAPTER VI

CONCLUSIONS AND FUGGESTIONS FOR FUTURE WORK

The development of intelligent control techniques for mobile robots was discussed in this

thesis including a Multi Agent System for mobile robot navigation.  Basic behaviors were created as

building blocks for mobile robot navigation and separated into multiple agents depending on the

purposes of each task.  A Spreading Activation Network was used as the action selection mechanism

for the robot self-agent system.  Reinforcement learning techniqueswere also used to allow the robot

to automatically learn policies.  These were combined to design an intelligent control technique for

mobile robot navigation.

The experiments relate to outdoor navigation using basic behaviors as described in chapter

V.  Most of the sensory components that we had tried to use are for vision-base behaviors.  The

system is also divided into two levels.  The low-level control system consists of hardware interfaces

that are represented as resource agents.  The high-level control system  is comprised of the behavior

agents and other atomic agents that are linked to the resource agents.  Together, the IMA plays an

important role to integrate these agents.  This makes the control system implementation more

feasible.  This shows the beauty of an agent-based system using the IMA framework and its ability to

simplify the implementation process.

This chapter summarizes the contributions of this research and suggests directions for future

work.

Contributions

This thesis contributes in the followings ways:

•  The robot Self Agent architecture for a mobile robot is based on a multi-agent-based

approach.  The system provides an interface with the atomic agents based on

Intelligent Machine Architecture.

•  Performance Evaluation of the agent’s failures in a multi-agent system.

•  A Spreading Activation Network is used as an action selection mechanism for a

mobile robot.

•  Reinforcement learning allows the robot to learn policies.
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•  A basic command translation system.

Recommendation for future work

As discussed throughout this dissertation, the robot’s Self Agent and Spreading Activation

Network with Reinforcement Learning have been addressed.  Future research directions include the

following issues: adding a more efficient method for Performance Evaluation, creating a better

commander agent for communicating with the robot self agent, exchanging data between the SES

and LES, adding more information data in the Info agent, adding better abilities to translate

commands from the user.
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Adding a more efficient method for Performance Evaluation:

Since we used the timer to be our only rule to determine how good the agent performance

was, it did not satisfy requirement for each agent.  For example, if we want to measure the

performance of the “Avoid enemy behavior” agent, we needed to determine if the robot was at a

safe distance from the enemy.  Instead of using a timer, it would have been better if we had used the

distance to determine how good the agent performance was.

Creating a better Commander Agent for communicating with the robot self agent

While I was trying to test and debug this system, I needed to create a prototype of the

Commander agent that could understand the commands that the user sent to and received from the

robot Self Agent.  Since it was not the main purpose of this thesis, it did not have much

functionality in helping the user.  Therefore, there should be a Commander Agent that not only has

every essential command to control a mobile robot, but also can adapt its GUI.

Exchanging data between the SES and LES

When I was working on this project, we were not able to integrate these two systems within

the Self Agent.  It will be very interesting if we can work and share information between the SES

and LES in the future.

Add more information data in the Info agent

Since the Self Agent is the center or brain of the robot, it should provide all information that

the user needs to know about the robot.  In the future, it may be a good idea to add the SES and

LES into this agent too.

Adding better abilities to translate commands from the user

We could possibly get the commands from the user by some other sensor than the text

representation.  It would be very interesting to see if a robot could get the command from the user

by visual signals or by microphone.
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