
DESIGN OF THE PEER AGENT FOR MULTI-ROBOT COMMUNICATION IN AN

AGENT-BASED ROBOT CONTROL ARCHITECTURE

By

Anak Bijayendrayodhin

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2002

Nashville, Tennessee

Approved By

Kazuhiko Kawamura, Professor

D. Mitch Wilkes, Professor

ii

ACKNOWLEDGEMENTS

I would like to thank Dr. Kazuhiko Kawamura for the privilege of working in the Intelligent

Robotics Laboratory. This opportunity has allowed me to learn a great deal as well as participate in

many exciting research projects. I thank Dr. Mitch Wilkes for his guidance and support throughout

this research.

I thank everybody in the Intelligent Robotics Laboratory especially in the Mobile Robots

Group, Kanok, Chai, Siripun, Surachai, Palis, Jian, Bugra, Carlotta, Imtiaz, and Kelly for their

valuable supports and knowledge. Without them, I would not have been here today.

Thank you Flo, without you my thesis would not have looked this good.

I thank my very special friend, Mitsara, whose encouragements mean more than anything in

the world to me.

Finally I thank my family for always be there to support me through many tough times.

iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ..ii

LIST OF FIGURES ...v

LIST OF TABLES...viii

Chapter

I. INTRODUCTION...1

II. RELATED WORK...3

Multi-Agent Robotics Systems ... 3
Evolution of Communication.. 3
Cooperative Communication and Knowledge Sharing..................................... 4

III. BACKGROUND ..6

The Intelligent Machine Architecture ... 6
Self Agent.. 9
The Commander Interface Agent.. 10
Sensory EgoSphere ... 10
Mobile Robots ... 12

IV. CONCEPTS OF PEER AGENT.. 23

Overview ... 23
Peer Agent Architecture .. 25
Peer Agent Manager.. 28
Peer Agent Client .. 30
Peer Agent Manager and Peer Agent Client Interactions 32
Applications of the Peer Agent ... 33

V. KNOWLEDGE SHARING USING PEER AGENTS ... 35

Objective of Experiment ... 35
Experiment Setup .. 35

VI. CONCLUSIONS .. 61

Appendices

A. AGENTS USED IN THIS EXPERIMENT... 64

IMA Agents for Skeeter .. 64
IMA Agents for Scooter.. 65

iv

IMA Agent for Human Commander ... 65
B. DETAIL OF AGENTS... 66

The Peer Agent Manager... 66
The Peer Agent Client ... 68
The SAN Manager .. 70
SAN Nodes on Skeeter.. 72
SAN Nodes for Scooter... 76
Commander Interface Agent ... 79

C. TEST RUN DATA... 81

REFFERENCES ... 83

v

LIST OF FIGURES

 Figure Page

1. IMA Agents Overall Architecture... 8

2. Interaction between Self Agent and other agents.. 9

3. Sensory EgoSphere of the robot.. 12

4. Pioneer 2-AT robot from ActivMedia Robot, Inc... 13

5. Basic Body Structure of the robot ... 14

6. Front Sonar array of robot ... 15

7. (a) Front view of the head, (b) Back view of the head.. 15

8. Modified version of the robot.. 16

9: Sonar and LASER ranging sensors on Scooter... 18

10. (a) Scooter with factory setup, (b) With our modifications 20

11. IMA Agent-based HRI Approach ... 21

12. Communication within a mobile robot group ... 22

13. Robot group consisting of robots, Commander Interface Agent and Users.............. 24

14. Peer Agent Architecture .. 26

15. Multi-Agents Peer connection... 27

16. Special communication channel between Peer Managers and Commander Interface

Agent ... 28

17. Communication channels within Peer Agents... 29

18. Peer Manager User Interface... 30

19. Peer Agent Client’s User Interface (Unconnected Version) 31

20. Peer Agent Client’s User Interface (Connected Version) ... 32

21. Applications of the Peer Agent ... 33

22. Many ways to setup the environment for knowledge sharing demonstration, which

results in the same SES data.. 36

23. Scenario for Knowledge Sharing Demonstration.. 38

24. A SES agent on Skeeter... 39

25. SES data flow between Skeeter and Scooter... 40

26. Heading calculation for Scooter .. 41

vi

27. Evaluation setup for system performance analysis ... 43

28. Three different Scooter position, (a) at 45, (b) at 90, (c) at 135 degrees 44

29. Graphs plot from performance index at 45 degrees .. 47

30. Scooter’s trajectory from inside the SES circle... 48

31. Scooter’s trajectory when located around the perimeter of the SES circle 48

32. Scooter’s trajectory when located outside the SES circle ... 49

33. Graphs plot from performance index at 90 degrees .. 50

34. Scooter’s trajectory when located inside the SES circle ... 51

35. Scooter’s trajectory when located around the perimeter ... 51

36. Scooter’s trajectory when located outside the perimeter... 52

37. Graphs plot from performance index at 45 degrees .. 53

38. Scooter’s trajectories when, (a) Larger distance between Skeeter-target, and (b) Smaller

distance between Skeeter-target .. 54

39. The heading calculation agent... 55

40. Commander Interface Agent Window .. 56

41. Data flow within the robot group .. 57

42. Skeeter’s SAN Network .. 58

43. Scooter’s SAN Network.. 59

44. Layout of the communication network ... 60

45. Source addresses page ... 66

46. Setup page ... 67

47. Links page ... 67

48. The Peer Agent Client status page .. 68

49. Broadcast channel page ... 68

50. Path page of the Peer Agent Client ... 69

51. Manager page of the Peer Agent Client .. 69

52. Status page... 70

53. SAN Manager.. 71

54. SAN Manager for Skeeter ... 71

55. SAN Manager for Scooter... 72

56. TimeOut Node’s interface ... 73

vii

57. Detect Node interface.. 73

58. Mission Accomplished Module interface.. 74

59. Mission Failed Module interface... 74

60. Changing between nodes... 75

61. Scan Node example on Skeeter ... 76

62. Agent that communicate with Scooter’ processor via TCP/IP.................................. 77

63. The Heading Agent graphical interface... 78

64. Heading Calculation Agent user interface... 79

65. The Commander Interface Agent .. 80

viii

LIST OF TABLES

 Table Page

1. Performance index at angle of 45 degrees... 46

2. Performance index at angle of 90 degrees... 49

3. Performance index at angle of 135 degrees... 53

4. Data at 45 degrees angle.. 81

5. Data at 90 degrees angle.. 81

6. Data at 135 degrees angle.. 82

1

CHAPTER I

INTRODUCTION

The role of communication among mobile robots remains one of the most important

research issues in multi-agent robotics system design. There have been many research groups that

studied the cooperation among robots [1,6,9,20,31]. When a task requires cooperation, there is a

need for some form of communication between the participating agents. Cooperation work requires

communication whenever one agent’s actions depend critically on knowledge that is accessible only

from other agents.

What kind of information robots should share with each other will depend on the task to be

performed. Raw sensory data such as sonar or LIDAR data can be shared, but with a group of

heterogeneous robots, raw information will have to be translated and modified into a syntax that

other robots can readily understand. Otherwise, this information is not going to be very useful to

achieve the task. A more practical way of sharing sensory information is to transform raw sensory

data into abstract data that each robot in the group can easily understand. This thesis will focus on

sharing the Sensory EgoSphere (SES) or the Landmark EgoSphere (LES) that will be describe in

details in Chapter III.

From the software side, states, intentions and behaviors of robots can be shared among the

group. This has many advantages, if each member of the group is able to sense other members’

states, intentions or behaviors, it can modify its own behavior to adapt with the current situation.

This can increase the group’s performance in achieving group task.

In the Intelligent Robotics Laboratory (IRL) at Vanderbilt University, we are currently

developing a method for mobile robots to communicate and share knowledge. We have developed

the concept of the Peer Agent that will enable robots to exchange information, raw sensory data,

abstract sensory data such as SES or LES and the robot’s state information. between one another.

This Peer Agent will manage all the communications in and out of the robot and also monitor the

condition of each existing communication channel. We will show in chapter V that knowledge can

be shared between robots via the Peer Agent and this will help a robot group to achieve its given

task more efficiently.

Related work in the multi-robots field and multi-agent communication will be presented in

Chapter II. In Chapter III, the background of the thesis such as the Sensory EgoSphere concept and

2

the Spreading Activation Network concept will be presented. Chapter IV will introduce the concept

of Peer Agent, how it works and what kind of tasks can be used with it. An experiment involving the

Peer Agent in a multi-robot knowledge-sharing scenario will be described in detail in Chapter V.

Finally, Chapter VI will present the conclusions.

3

CHAPTER II

RELATED WORK

This chapter describes related work in multi-robotic field and what other researchers are

currently experimenting involving the multi-robot communication.

Multi-Agent Robotics Systems

Multi-agent robotics systems constitute a large area of current robotic research. Fukuda [2]

was among the first to study multi-agent robotic systems. His work is mainly concerned with a

group of heterogeneous robots. Cao et. al. [3] described the communication structure for inter-agent

interaction and characterized several major types of interactions that can be supported. Gage [4]

discussed communication issues relevant to a system consisting of an arbitrary large number of

autonomous robots. Mataric et. al. [5, 6, 7], proposed a behavior-based architecture for synthesis of

collective behaviors such as flocking, foraging, and docking, based on the direct and temporal

composition of primitive basic behaviors. Also, the method for automatically constructing

composite behavior based on reinforcement learning was proposed. She also introduced her

Broadcast of Local Eligibility (BLE) approach to multi-robot coordination. The BLE mechanism,

involving a comparison of locally determined eligibility with the best eligibility calculated by a peer

behavior on another robot, allows heterogeneous robots to efficiently allocate themselves to an

appropriate task without the need for any explicit communication or global knowledge of particular

abilities.

Evolution of Communication

In the field of Evolution of Communication, MacLennan [8] studied the evolution of

communication in synthetic agents and concluded that communication can evolve in a society of

simple robotic agents. Yanco [9] investigated the evolution of simple communication protocol

among nonverbal agents engaging in cooperative tasks. Her research robots, Ernie and Bert, have

limited vocabulary that is self-organized over time to improve the performance of the tasks.

Cangelosi [10] described different types of models for the evolution of communication and language

and showed how evolutionary computation techniques such as artificial life can be used to study the

4

emergence of syntax and symbols from simple communication signals. Saunders and Pollack [11]

implemented a multi-agent system that evolved a communication scheme to solve a given task

without a priori native structure in place by simulating a tracker task (e.g., ants searching for food)

and proved that communications between agents can influence the agents’ behavior.

Cooperative Communication and Knowledge Sharing

For cooperative communication and knowledge sharing, Grabowski et al. [12] stated that

communication is essential in a coordinated team. Without explicit communication, a robot can only

interact with team members using sensors such as sonar, vision, or motion sensor, however more

sophisticated collaborative tasks require exchanging detailed and abstract information that cannot be

easily conveyed implicitly. Dudek et. al. [13] explored a follow-a-leader scenario in which one robot

leads and another follows and compared the robustness and efficiency of the convoy with and

without communication between each robot. Wang [14] compared a sign-board model with message

passing, then introduced the condition of zero signal propagation delay under the sign-board and

showed that sometime we should take this into account when transmitting signals through certain

communication media. He also showed ways to implement a sign-board based on various techniques

such as message passing, broadcasting, etc., while neglecting the effect of non-zero signal

propagation delay. Morita et al. [15] proposed the expression format of necessary knowledge and

knowledge transmission method for the robot to teach other robots through a form of questions

and answers. The teacher robot teaches the worker robots by transmitting string data using the

Conceptual Dependency theory expression[16], with the presumption that both teacher and student

robots possess the same format of knowledge. When dealing with a large-scale robot group, some

researchers stated that the idea of global knowledge or global communication within the group of

robots could cause many problems and communication should only be needed between agents that

are nearest to each other, therefore they prefer to use the local communication instead. Ohkawa et

al. [17] proposed a way to solve the local communication problems by using an operator to conduct

a group of robots in task-sharing and tested the effectiveness of the method. Duarte and Werger

[18] introduced a Common Control Language (CCL) using the Port-Arbitrated Behavior-Based

Control (PAB) technique to establish a standard interface from one agent to another for exchange of

information and task delegation. By using the PAB technique, the user can set the robot’s behavior

and communication channel at run time with easy language syntax. Mataric [19] demonstrated a

5

cooperative transportation task in a group of simulated mobile robots that communicate by leaving

landmarks in shared localization space. The method is shown to be robust with respect to significant

localization error. Arai [20] analyzed the information diffusion by local communication among

mobile robots by employing a probabilistic model to represent the robot motion. This logistic

function model makes it possible to evaluate the time so that information is diffused to the required

number of robots. Fujii et al. [21] proposed a new strategy for indirectly sharing knowledge between

robots in local communication by using a device called the Intelligent Data Carrier (IDC) and placed

it wherever a robot wants to share information with others. Other robots in the group can also

rewrite new information into these IDC devices.

6

CHAPTER III

BACKGROUND

This chapter introduces concept of The Intelligent Machine Architecture, The Sensory

EgoSphere, and The Self Agent etc. We will show in a later chapter how everything related to each

other.

The Intelligent Machine Architecture

The Intelligent Machine Architecture (IMA) is an agent-based robot control architecture

[22]. It was initially designed for a humanoid robot system called ISAC [23, 24, 25]. We are applying

IMA to the mobile robot navigation problem in order to test the robustness of the software

architecture across different types of robot applications. IMA has sufficient generality to permit the

simultaneous deployment of several robot architectures. For example, we use variants of Arkin’s

motor schema [26]. Other IMA behaviors use variants of the subsumption architecture [27]. Our

design process within the IMA is to decompose the system into a set of atomic agents. We use the

term “atomic” to mean a fundamental building block and to distinguish IMA atomic agents from the

more common use of “agent” or “cognitive agent” as an autonomous, intelligent entity be it

machine, software, or biological. Within the context of IMA, an atomic agent is one element of a

domain-level system description that tightly encapsulates all aspects of that element, much like the

concept in object-oriented systems. The atomic agent serves as a superstructure for everything the

software system knows or does relating to an element of the robot, a task, or the environment. IMA

runs under Windows NT 4.0 or higher. Communication between atomic agents is handled

transparently by the Distributed Component Object Model (DCOM). This is a service of Windows,

which allows remote objects to be treated as if they were local. IMA agents communicate through

message passing and have flat connectivity – any agent can, in principle, communicate with any

other. Implicit hierarchies are formed, however, since all but the lowest-level IMA agents employ

other agents to complete their tasks or to achieve or to maintain their goals. It can be used to

implement almost any logical control architecture.

7

Taxonomy of IMA Agents

A brief description of two kinds of IMA agents are given below.

1. Atomic Agents: There are four basic types of atomic agents, plus an additional type of

agent that exists as a concession to realistic implementation considerations.

• Hardware/Resource Agent: Interface to sensor or actuator hardware. Those interfacing

to sensors can provide other atomic agents with regular updates of sensor data.

Those interfacing to actuators accept command and provide updates of current

states to other atomic agents

• Behavior/Skill Agent: Encapsulate basic behaviors or skills

• Environment Agent: Provides an abstraction for dealing with objects in the robot’s

environment, including operations that the robot performs on an object, e.g., “look

at”

• Sequencer Agent: Performs a sequence of operations; often interacting with one or

more environment atomic agents or activating and deactivating one or more atomic

agents. Sequencer agents may call other sequencer agents, but there should be an

identifiable highest-level sequencer agent

• Multi-Type Agent: Combines the functionality of at least two of the first four agent

types. For example, in the interest of efficiency of the implementation it may be

advantageous to combine the hardware and behavior types into a single multi-type

agent

2. Compound Agents: An IMA Compound Agent is an interacting group of atomic agents

that are coordinated or sequenced by one or more sequencer agents. The highest-level

sequencer agent can be envisioned as the root node of a tree with connections and

dependencies on other agents on branches.

The decomposition of an agent-based system into compound and atomic agents is not

unique; it depends on the context of the problem and on the choice of robot architecture for the

particular task or behavior.

Inter-Agent Communications

Usually, a single atomic agent is not able to perform useful activity by itself, thus collections

of agents must communicate and interact to achieve any task. Although IMA does not place

8

restrictions on the ways in which atomic agents must communicate, most inter-agent

communications are usually either: 1) one way data flow, 2) command-in/position-out, or 3)

master/slave. Atomic agents that control sensors commonly use one-way data flow. A single sensory

atomic agent acts as a data server by providing periodic data updates to one or more client agents.

Actuator atomic agents most commonly use command-in/position-out communication. A single

actuator atomic agent acts as a server by accepting commands from one or more clients. This

actuation server performs a type of command arbitration, e.g., vector sum as in Arkin [26] or

subsumption as in Brooks [27]. The server also provides clients with information about its current

state, e.g., actuator position. Sequencer agents and environmental agents usually use master/slave

communication to activate the slave agent. When the slave finishes, it informs the atomic agent that

activated it.

Figure 1 shows the overall architecture of the Intelligent Machine Architecture (IMA). There

is a Commander Interface Agent that works with the Sensory EgoSphere, Landmark EgoSphere,

Self Agent, Peer Agent and other Atomic Agents. We are testing the robustness of this architecture

in mobile robot applications.

Figure 1 : IMA Agents Overall Architecture

9

Self Agent

The Self Agent is a compound cognitive agent that activates and maintains the activities of

the robot itself. It receives high-level commands from the Commander Interface Agent and

decomposes them into a set of executable commands. The Self Agent also monitors the system

performance and reports significant errors back to the Commander Interface Agent. The Self Agent

consists of:

1. Command I/O and Status Agents: Communicates directly with the Commander Interface

Agent. It accepts commands from and reports the status back to the Commander

Interface Agent

2. Description Agent: Provides information about other agents in the system, i.e., agent name

& job description, active/inactive and success/error/ not executed

3. Performance Agent: Monitors other agents and reports significant errors to the Commander

Interface Agent

4. Activator Agent: Activates the set of agents necessary for a specific goal or task

5. Interpreter Agent: Decomposes high-level commands into a set of executable commands.

Figure 2 illustrates the Self Agent interactions with the Peer Agent, the Commander

Interface Agent and other agents.

Env. & Atomic Agents

Sensor
EvaluationLidar

Sonar

Base
Resource

Agents

Sequencer Atomic Agents

Localization

Goto
Via Points

Commander & GUI Agent

User
Identification

Agents

GUI
AgentsCommander

Agents

Interpreter
Agent

Performance
Agent

Description
Agent

Activator
Agent

Command I/O
and Status

Agent

Self Agent

Command

Activate & Deactivate

Status Information

St
at

us
 In

fo
rm

at
io

n

Activate & Deactivate

Figure 2 : Interaction between Self Agent and other agents

10

The Commander Interface Agent

Because Humans and robots communicate very differently from each other, the

Commander Interface Agent concept has been developed to ease the communication difficulty and

allow human operator to exploit the robot’s abilities as much as possible.

The Commander Interface Agent will accept commands from the human operator and

translate them into commands that robots can understand and implement. The Commander

Interface Agent will also gather status and states from the robots and notify the human about

current task progress.

Sensory EgoSphere

To facilitate remote control of a robot, a supervisory control system should enable a user to

view the current sensory information. Efficient and accurate remote control of a robot would be

facilitated by an intuitively understandable display of the robot’s current multi-modal sensory

information in the context of significant events in its recent past. Perhaps the most natural remote

control environment is a virtual one that puts the user inside the robot as if she or he were operating

it. Within such an environment, if sensory information is displayed in a temporal sequence in the

direction from which it comes, the human operator can discern which sensory events belong

together in space and time. A directional, egocentric display takes advantage of the person’s natural

patterns of recognition abilities to combine sensory modalities rather than the typical disconnected

numerical or graphical displays of sensory data. To enable such display and memory, we are using a

data structure, called the Sensory EgoSphere (SES) [28].

Spherical Map

We define SES as a databass, a 2-D spherical data structure, centered on the coordinate

frame of the robot, spatially indexed by azimuth and elevation. Its implicit topological structure is

that of a geodesic dome, each vertex of which is a pointer to a distinct data structure. The SES is a

sparse map of the world that contains pointers to descriptors of objects or events that have been

detected recently by the robot. As the robot operates within its environment, both external and

internal events stimulate the robot’s sensors. Upon receiving a stimulus, the associated sensory

processing module writes its output data to the SES at the node that is closest to the direction from

which the stimulus arrived. Since the robot’s sensory processing modules are independent and

11

concurrent, multiple sensors stimulated by the same event will register the event to the SES at about

the same time. If the event is directional, the different modules will write their data at the same

location on the SES. Hence, sensory data of different modalities coming from similar directions at

similar times will register close to each other on the SES.

Geodesic Dome Topology

Given that sensors on a robot are discrete, there is nothing to be gained by defining the SES

to be a continuous structure. Moreover, the computational complexity of using the SES increases

with its size, which is, in turn, dependent on its density (number of points on its surface). We use a

(virtual) geodesic dome structure for the SES since it provides a uniform tessellation of vertices such

that each vertex is equidistant (along geodesics) to six neighbors. The tessellation frequency is

determined by the angular resolution of the sonar array. The SES is a multiple-linked list of pointers

to data structures. There is one pointer for each vertex on the dome. Each pointer record has seven

links, one to each of its six nearest neighbors and one to a tagged-format data structure. The latter

comprises a terminated list of alphanumeric tags each followed by a time stamp and another pointer.

A tag indicates that a specific type of sensory data is stored at the vertex. The corresponding time

stamp indicates when the data was stored. The pointer associated with the tag points to the location

of a data object that contains the sensory data and any function specifications (such as links to other

agents) associated with it. The type and number of tags on any vertex of the dome is completely

variable. The SES is not a complete geodesic dome, instead, it is restricted to only those vertices that

fall within the directional sensory field of the robot. Since the camera is mounted on a pan-tilt head,

imagery or image features can be stored at the vertex closest to the direction of the camera. Sonar

and laser work only in the equatorial plane of our robot and so their data is restricted to the vertices

near the dome’s equator. Figure 3 shows an example of the SES.

12

Figure 3 : Sensory EgoSphere of the robot

Mobile Robots

Skeeter

Skeeter is a Pioneer 2-AT robot [29] developed by Activmedia Robotics, Inc. Pioneer

robots are, “plug and play” mobile robots, containing basic components for sensing and navigation

in a real-world environment, including battery power, drive motors and wheels, position/speed

encoders, and integrated sensors and accessories. They are managed via onboard microcontrollers

and mobile-robot server software. Figure 4 shows a picture of Pioneer 2-AT robot with the factory

default setup.

13

Figure 4 : Pioneer 2-AT robot from ActivMedia Robot, Inc.

The Pioneer 2-AT also has a variety of expansion power and I/O ports for attachment and

close integration of additional sensors and other accessories. These include an addressable I/O bus

for up to 16 devices, two RS-232 serial ports, eight digital I/O ports, five A/D ports, PSU

controllers (an Integrate circuit chip that regulates output voltage) and more, all accessible through a

common application interface to the robot server software, P2OS.

Hardware Specification of Pioneer 2-AT

This specification is the factory default from ActivMedia Robot, Inc.

Body

Pioneer 2-AT has a sturdy, but lightweight aluminum body which houses the robot's

batteries, drive motors, electronics, and other standard components, including the forward and rear

sonar arrays. The body also has sufficient room, with power and signal connectors, to support a

variety of robotics accessories inside, including an A/V Wireless surveillance system, radio modems

and Ethernet, onboard computer. Figure 5 shows the basic body structure of the Pioneer 2-AT.

14

Figure 5 : Basic Body Structure of the robot

Motors and Position Encoders

The Pioneer 2’s drive system uses high-speed, high-torque, reversible-DC motors. Each

front-drive motor includes a high-resolution optical quadrature shaft encoder that provides 9,850

ticks per wheel revolution (19 ticks per millimeter) for precise position and speed sensing and

advanced dead-reckoning.

Sonar Arrays

The Pioneer 2 supports both front and rear sonar arrays, each with eight transducers that

provide object detection and range information for features recognition, as well as navigation

around obstacles. The positions of the sensors are fixed: one on each side, and six facing outward at

20-degree intervals, together providing 360 degrees of sensing. The sonar-firing rate for each array is

25 Hz (40 milliseconds per sonar per array) and sensitivity ranges from ten cm (six inches) to more

than five meters (16 feet). The front Sonar Array is given in Figure 6. The back Sonar Array is

identical to the front.

15

Figure 6 : Front Sonar array of robot

Further modification

Since the factory default configuration was not sufficient for our research task, we modified

the robot to meet our specific needs.

Tower and Omni-view Camera Head

Since our work is based heavily on vision, we built a front tower (20” tall) on top of the

robot’s panel, and placed an omni-directional camera head, as shown in Figure 7. The camera head

consists of 7 NTSC CCD cameras and a video multiplexer, on top of the tower. This gave the robot

the ability to scan the surrounding environment in less than 4 seconds.

 (a) (b)

Figure 7 : (a) Front view of the head, (b) Back view of the head

16

Processing Unit

The process of images from the omni-directional camera head involves intensive

calculations. Therefore, we installed a laptop computer on the panel beside the tower for additional

computing power.

Software

We wrote software that can communicate directly with the robot without using the factory

default software. This gave us total control of the robot.

Wireless Network

We installed a wireless local area network connection on the robot to enable connection to

connect to an outside computer network.

The modified version of the robot is shown in Figure 8. We covered the tower that holds

the camera head with a T-shirt for purely cosmetic reasons. The laptop is located behind the tower.

Figure 8 : Modified version of the robot

17

Scooter

Scooter, an All-Terrain Mobile Robot, model ATRV-Jr, was developed by IS Robotics, Inc.

and includes four-wheel drive, differential steering, pneumatic knobby tires, a weather-resistant

enclosure and many sensors.

Hardware specification of the robot

Below is the default setup from the Factory. [30]

Onboard CPU

Intel® Pentium III™ computer systems in a custom enclosure with specially shock-

mounted hard-drives, integrated inside the robot.

• Single Pentium III™ CPU with 128MB SDRAM

• ATX motherboard mounted in a special aluminum enclosure (motherboard dual-

processor ready)

• 18 Gigabytes/IDE hard drive, specially shock-mounted

• 1.44 MB, 3.5" double-density floppy-disk drive

• Video accelerator with 1 MB RAM

• Intelligent high speed multi-port serial card (8 ports)

• PCI Ethernet

• Linux operating system

• Mobility Robot Integration Software

Laser and Sonar ranging sensors

Scooter has a SICK Laser Measurement System, which comes with the following

description,

• Pulsed IR

• 492'(150m) range

18

• 180-degrees coverage

• 0.5% angle resolution

• +/- 50 mm dist. measurement resolution

For sonar sensors, Scooter has a front sonar ring unit, two units on each side

and two units on the back of the robot for obstacle avoidance, as shown in Figure 9.

LaserLaser

0 16

1

15
142

87 9 10
11

6

12
13

5

4
3

GPS

camera

10.0°17

16

15

14

13

12
11

10 9 8 7
6

5

4

3

2

1

0

200.00

200.00cm.

500.00

Dmax

Figure 9: Sonar and LASER ranging sensors on Scooter

Compass

• Single-axis heading sensor with 0.5 degree accuracy

• RS-232 communication port

• Auto-calibration compensates for field effects of other on-board equipment

Drive Motors Unit (DMU)

In the Scooter Drive Unit, gyros are used for increased accuracy

19

• 3-axis pitch/roll/yaw gyros

• 3-axis pitch/roll/yaw accelerometers

• 150 degrees per second gyro rate

• 10Hz gyro bandwidth

• 100Hz accelerometer bandwidth

• RS-232 communications interface

• Low power consumption

Camera and Accessories

There is a camera mounted on top of Scooter that consists of,

• 2 PCI Frame Grabbers

• Pan-Tilt Head

• 2 XC999 Color CCD cameras with 6mm lenses (NTSC or PAL)

• Custom adjustable stereo camera mounting bar

• Synchronization electronics

• Power, signal and control cabling

Communications

Scooter is equipped with BreezeNet Wireless Ethernet having a maximum bandwidth of 10

Mbps.

Figure 10 (a) shows the original ATRV-Jr robot produced by IS Robotics. The modified one

is shown in Figure 10 (b).

20

 (a) (b)

Figure 10 : (a) Scooter with factory setup, (b) With our modifications

Communication within mobile robots group

The Commander Interface Agent [31] is responsible for presenting the system status and

sensory data to the human commander (via the GUI). Each robot will have its own Self Agent

representing the robot’s individual information, and will have Peer Agents representing the other

robots’ information. For example, if the team consists of Scooter (ATRV-Jr) and two Pioneer 2-AT

robots (Skeeter1 and Skeeter2), then Scooter will have its own Self Agent and two Peer Agents

representing each Pioneer Self Agent. Since the robots in the squad are connected to each other by

an Ethernet network, the commander will be able to easily observe the information the robots are

sharing. Additionally, by using the IMA Agent-based Human-Robot Interaction (HRI) approach, we

should be able to integrate communications and operations of tasks for the desired goal in an

efficient and productive manner, as shown in Figure 11.

21

Figure 11 : IMA Agent-based HRI Approach

Jung and Zelinsky [32] offered an interesting approach to communication between robots

using a layering solution. Their protocol is robust when dealing with an uncertain environment, but

it becomes more complex with increasing layers. Our approach is based on a flat, one-layered

communication protocol to avoid some of the complexity in a layered protocol. When a robot

senses an object and needs to share the information, it will generate its own SES and send back the

symbolic description of the object (i.e., a red ball, a green cone, etc.) and the direction with respect

to itself to the other robots through its Peer Agent. The other robots will then be able to process the

new SES data and update their map, as illustrated in Figure 12.

22

Robot n-1

SelfAgent n

Peer
A

Peer
B

Peer k

Robot 2

Self Agent 2

Peer 1Peer n

Robot n

Self Agent n

Peer 1

Peer 2

Commander & GUI Agents

User
Identificatio

n Agent
GUI

AgentCommand
er Agent

Peer n Peer 2

Robot 1

IMA Agents

Env. & Atomic Agents

Sensor
Evaluatio

n

Lidar

Sonar
Base

Resourc
e Agents

Sequencer Atomic
Agents

Localization

Goto

Via Points

Self Agent 1

Performan
ce Agent

Activation
Agent

Descriptio
n Agent

Command
I/O and
Status
Agents

Wireless Ethernet

Wireless Ethernet

Wireless EthernetSoftware Part

Hardware Part

Figure 12 : Communication within a mobile robot group

23

CHAPTER IV

CONCEPTS OF PEER AGENT

In this chapter, we introduce the concepts of Peer Agent and how Peer Agents can be used

for multi-robot communication.

Overview

Within the robot group, each robot has its own group of agents that represent the individual

robot such as the Self Agent which represents the robot’s thinking/planning mechanism, the Peer

Agent which represents the robot’s means of communication, and many other agents, which have

their specific applications, (e.g., a SES agent that represents the robot’s perceived environment).

In order for each robot in the multi-robot group to communicate with each other, the

concept of the Peer Agent has been developed. The Peer Agent is an agent that handles all the

communication coming in and going out of a robot and also represents one robot’s Self Agent to

the other robots in the group. The Peer Agent dependently couples with the robot’s Self Agent.

Since Self Agents cannot communicate with one another directly, all the communications

(information and commands) between the robots will be sent through each robot’s Peer Agent.

A Peer Agents consists of two parts: 1) The Peer Client, which will be attached to an agent

within a robot that requires data from another robot, and 2) The Peer Manager, which is attached to

the Self Agent of the robot that acts as an information server for the other robots in the group.

There may be as many Peer Clients as possible within one robot, but there may be only one Peer

Manager per robot.

The Peer Client specifically is used to obtain data from one agent and then send that data to

the agent that the client is attached to. We can state that the Peer Client encapsulates the

communication channel between two remotely separated agents within a robot group. Thus, a Peer

Client that is connected to an agent will monitor the availability of the exiting communication

channel and will close the communication channel immediately if the channel is lost, damaged or

closed by the information source. Because of this, the components/agents that are connected to

each other will not be damaged or malfunction when something happens to the communication

channel.

24

Imagine what would happen if you have many Peer Clients connecting all kinds of

components/agents between a group of robots; you would not be able to manage all the

communications that are going on within the robot group. That is why the Peer Manager was

developed. The Peer Manager, which is attached to the Self Agent, will establish a communication

channel for any Peer Client that needs some information from a particular robot. Each Peer Client

will have to register itself and request the data (or the address of a source data container) through

the Peer Manager of the robot. Therefore, the Peer Manager, which has the knowledge of the

whereabouts of all the data/information within the robot, will send back the address of the source

agent to the requested Peer Client.

Figure 13 illustrates how components, the Peer Agent, users, and the Commander Interface

Agent interact with each other. The Commander Interface Agent will also have an ability to retrieve

information from robot by creating the Peer Agent Client and register it to the Peer Agent Manager

on the robot.

C

C

C

C

C

C

Self Agent

Robot 1
Peer

Manager

Robot 3

Robot 2

Commander
Interface

Agent

PC

PC

PC

Robot 1's
Users

= Peer Client

C = Component

PC

Figure 13 : Robot group consisting of robots, Commander Interface Agent and Users

25

Furthermore, the Peer Manager will be able to determine the priority of each request, thus it

will be able to sort all requests and respond to the more important task-related requests in priority

order. There are three kinds of priority settings in the Peer Manager as follows:

1. Priority of the agent/robot making a request: Some robots, e.g., the leader robot, will

have a higher priority than other robots

2. Priority of the request itself: Each request may have a different priority depending on

the task specifications

3. Priority of the Source robot’s task: If the task on the source robot has a higher

priority than the request’s priority, the Peer Manager will not grant the request until

the request priority is higher than the source robot’s task priority

Each Peer Manager will have a special broadcast channel to communicate with other Peer

Managers. This channel will be used to broadcast emergency information and to provide the status

of the robot’s Self Agent. The Commander Interface Agent will be able to monitor this channel and

use it to determine suitable task-related decisions/commands.

Peer Agent Architecture

Inside the Peer Agent as shown in Figure 14, there will be two communication modules; one

will be used to communicate with the attached Self Agent and another will communicate between a

Peer Manager/Peer Client Agent. The Interface module will be used for displaying useful

information about its own status or states to the user. Finally, Index Module will be used as a

database that contains the known information sources within the robot.

26

Command I/O

Description
Agent

Activator Agent

Performance
Agent

Peer-Peer
Communication

Module

Information
Index

Module

Peer Manager
Interface
Module

Self-Peer
Communication

Module

Self Agent 1
(Host)

Peer Agent
(Manager)

Description
Agent

Activator Agent

Performance
Agent

Command I/O

Self Agent 2
(Client)

Peer Agent
(Client)

Peer-Peer
Communication

Module

Peer Client
Interface
Module

Self-Peer
Communication

Module

Request Info.

Data

Communication Channel

Request Info.

Data

Figure 14 : Peer Agent Architecture

Figure 15 shows a network of robots communicating with each other using Peer Agents. In

this situation, Robot 1 is the source of information to the other robots in the group. Each robot,

which needs to retrieve information from Robot 1, will create its own Peer Agent Client and

connect it to Robot 1’s Peer Agent Manager. The information flow will begin with Robot 1’s Self

Agent into the Peer Agent Manager and is sent across the robot network into the Peer Agent Client

where it will finally flow to another robot’s Self Agent.

27

Self Agent 1

(Host)

Self Agent 5 Self Agent 4

Self Agent 3

Self Agent 2

Peer Agent 1
(Host)

Peer 1
(Client)

Peer 1
(Client)

Peer 1
(Client)

Peer 1
(Client)

R
eq

ue
st

s
Fl

ow

Data
 F

low

Peer 2
(Client)

Peer 5
(Client) Peer 4

(Client)

Figure 15 : Multi-Agents Peer connection

Between each Peer Agent Manager, there is a special communication channel created for

broadcasting some very important status information or the task-related emergency information of

each robot. This way, every Peer Agent Manager and The Commander Interface Agent will be able

to notify or check any robot’s status in the robot group, as depicted in Figure 16.

28

Self
Agent 1

PM 1PCs of
PM2

PCs of
PM 3

Self
Agent 3

PM 3

PCs of
PM 1

Pcs of
PM 3

Self
Agent 2

PM 2

PCs of
PM 1

PCs of
PM 3

Robot 1

Robot 3

Robot 2

Broadcast Channel

Commander
Interface

Agent

Figure 16 : Special communication channel between Peer Managers and Commander
Interface Agent

Peer Agent Manager

The Peer Agent Manager will act as a communication and data server for the robot. There

are four communication channels within the Peer Agent Manager as follows:

1. Normal Input Channel (Request Channel): Accepts a request from Peer Agent Clients

2. Normal Output Channel (Reply Channel): Answers (grants or denies request) back to

Peer Agent Clients

3. Broadcast Channel: Communicates with other Peer Agent Managers and the

Commander Interface Agent

4. Self Agent Interaction Channel: Interfaces with the Self Agent.

The operations of the Peer Agent Manager consist of,

1. Scan the robot for all available data sources

2. Update the data source during specified time intervals and inform the Peer Agent

Clients of the update sources

29

3. Monitor all requests from Peer Clients

4. Reply to requests made by Peer Clients

5. Set priorities for all requests made by Peer Agent Clients

6. Inform the Self Agent of incoming requests and priority levels

7. Broadcast emergency signals (current behavior and status) through a special channel,

which is monitored by other Peer Managers and the Commander Interface Agent

Figure 17 shows the communication channels between the Peer Agent Client and Peer

Agent Manager including the Special Broadcast Channel, which the Peer Agent Managers use to

communicate with each other.

Peer Agent
Client 1

Peer Agent Manager

Emergency
Channel

between Peer
Managers

To other managers

Request Channel

Reply Channel

Peer Agent
Client 2

Peer Agent
Client 3

Within Robot

Figure 17 : Communication channels within Peer Agents

Parts of the Peer Agent Manager are shown in Figure 18. Figure 18(a) shows a list of data

source’s addresses known to the Peer Agent Manager that can be sent to a Peer Agent Client if

requested. Figure 18(b) shows a list of Peer Agent Clients that are registered with the Peer Manager.

30

 (a) (b)

Figure 18 : Peer Manager User Interface

Peer Agent Client

The Peer Agent Clients encapsulates communication channels. Each agent requiring

information from another robot must have a Peer Agent Client registered with the Peer Agent

Manager. When the Peer Agent Client has been initialized and registered to a specific Manager, that

agent will be able to request data from the source robot via the Peer Agent Client.

Peer Agent Client operations will consist of the following:

1. Initialize and register itself to Peer Agent Manager

2. Connect to any source components without knowing which type of components

they are and across any machine in the network

3. Monitor the status of the channel; if the connection is lost, the Peer Client will

disconnect the channel without damaging other agents

4. Share and keep track of data between the two components/agents.

In a Peer Agent Client, there are two kinds of communication channels:

1. Interaction channels with the Peer Agent Manager: Consists of an input channel and

an output channel. The Peer Agent Client will send requests via the input channel

and receive the Peer Agent Manager response via output channel

31

2. Data Transfer channels: Consists of two channels; one will connect to the data

source agent and the other will connect to the target agent. The data flow will begin

from the source agent and continue into the target agent.

When the Peer Agent Client successfully establishes a link between itself and the Peer Agent

Manager, it will generate an ID number and initialize itself with the Peer Agent Manager. If the ID

number is not unique, or has been used by another Peer Agent Client, the Peer Agent Manager will

decline the initialization and require the particular Peer Agent Client to generate a new ID number.

After the initialization has completed, the Peer Agent Manager will send out a package

containing all the known data sources within the robot to the Peer Agent Client and the Peer Agent

Client can use this information to request specific information from the Peer Agent Manager.

Figure 19 and Figure 20 show a user interface of a Peer Agent Client in an unconnected state

and connected state, respectively.

Figure 19 : Peer Agent Client’s User Interface (Unconnected Version)

32

Figure 20 : Peer Agent Client’s User Interface (Connected Version)

Peer Agent Manager and Peer Agent Client Interactions

Between the Peer Agent Client and the Peer Agent Manager, there is an interaction channel

that used by the Peer Agent Client to register itself or request information to the Peer Agent

Manager. The Peer Agent Manager also uses this channel to reply the request from the Peer Agent

Client or send some information to the registered Peer Agent Clients.

There are four interaction procedures used by the Peer Agent Client as follows,

1. Register: The Peer Agent Client uses this procedure to register itself to the Peer

Agent Manager for information retrieving. The Peer Agent Manager, if accepts

the register by the Peer Agent Client, will grant the register back to the Peer

Agent Client and send a list of known data source within the robot to the Peer

Agent Client.

2. Unregister: The Peer Agent Client uses this procedure to unregister itself from

the particular Peer Agent Manager. The Peer Agent Manager then will stop

monitoring the activity of this Peer Agent Client.

3. Request: The Peer Agent Client uses this procedure to request data retrieval from

the Peer Agent Manager. If the Peer Agent Manager grants this request, it will

send an address of the data source requested to the Peer Agent Client.

4. Disconnect: The Peer Agent Client uses this procedure to inform the Peer Agent

Manager that it will stop retrieving data from the information source.

33

Applications of the Peer Agent

The main application of the Peer Agent is to share knowledge between robots within the

group. Additionally, the Peer Agent can also broadcast the status of a robot or it’s behavior to other

robots’ Self Agent and uses this method to trigger a collective behavioral change within the group to

improve performance in order to achieve the final task/goal.

Figure 21 illustrates various applications of the Peer Agent. The word “raw data” means all

the sensory data that the robot can perceive, e.g., Sonar data, Laser ranging data, and visual data

from the camera.

Self

SelfSelf

SelfSelf

SelfPeer
(C)

Peer
(M)

Peer
(C)

Peer
(C)

Peer
(M)

Peer
(M)

Request
Agent

Source
Agent

Request

Request

Request

Notify

Request

Request

Req
ue

st Activate

Display

SES data

Data

Data

Data

Request Sensory Data

SES

Request SES Data

Activate Agent

SES

Rep

Encoded SES data

Activ
ate

SES Data

Rep

Acknowledge

Acknowledge

Acknowledge Acknowledge
Acknowledge

Agent

Ac
tiv

at
e

Figure 21 : Applications of the Peer Agent

Sharing information between robots involves two primary methods or means, as described

in the following:

1. Sharing raw sensory data between mobile robots:

Sharing sensory data between robots is nothing neither new nor very interesting in

mobile robot research, but it is still very important for a robot within the same group to be

34

able to sense what other robots sense and/or see what other robots see, in order to be able

to complete tasks.

2. Sharing Sensory EgoSphere (SES) between mobile robots:

Usually raw sensory data does not make a lot of sense to other robots with different

configurations. It is easier and more practical to combine the sensory data into an abstract

data structure that every robot will understand and interpret correctly.

The SES is one such practical and easy method to combine data into abstract data.

SES is the combination of ranging data and visual data. When a robot makes a SES, the final

abstract data will consist of a series of the types of objects and angles of that object relative

to the center of the robot. This data is a string of text and can be shared easily with other

robots.

3. Broadcast behaviors within the robot collective:

The Peer Agents allow one robot to share its’ states or current behavior within the

group through a broadcasting channel. Each Self Agent will monitor this channel and change

the robot behavior to adapt to the rest of the group to improve the group’s performance and

robustness of the collective. The Commander Interface Agent can also monitor this channel

and notify the Human Commander of the current situation within the robot group.

35

CHAPTER V

KNOWLEDGE SHARING USING PEER AGENTS

In this chapter, we showed how SES data are created and how robot shared them with

others. We also propose an algorithm that used the shared SES data to calculate new heading for

robot. The agents that used in this experiment are also described later in the chapter. At the end of

the chapter, we propose a method to test the performance of the algorithm and we analyze the

algorithm’s performance at different scenarios.

Objective of Experiment

The objective of this experiment is to show how to share knowledge among robots using the

Peer Agent. Two mobile robots, Skeeter (Pioneer-2 AT robot) and Scooter (ATRV-Jr robot) were

used. They will have their own Self Agent, Peer Agent Manager, and Peer Agent Clients. The Self

Agent will act as the decision-making part of the robot. The Peer Agent Manager will manage all

communication channels between robots and also, when the robot wants to retrieve data from other

robots, it will create Peer Agent Clients to connect to other robot’s Peer Agent Manager to request

the data.

We will show that knowledge sharing between robots can lead to a more stable, robust and

efficient system within a group of robots. Additionally, when a robot broadcasts its’ current behavior

to the group, other robots in that group will adapt their own behaviors (when necessary) to a more

suitable one, and allow the group to achieve its given task more efficiently.

Aside from sharing knowledge between robots within the group, the human commander can

also tap into the robots’ communication channels and receive important task-related information for

better understanding of the current situation.

Experiment Setup

There are two mobile robots involved in this experiment. Skeeter, which has an omni-

directional camera head, stands in the middle of the scene and is surrounded by six to eight objects

with different colors (e.g., red, green, blue, pink). Scooter waits around the perimeter for further

instructions from the human commander.

36

Skeeter

Scooter

Unknown ObjectUnknown Object

Unknown Object

Unknown Object

Unknown Object

Unknown Object

Unknown ObjectUnknown Object

?

?
?

?

?

??

?

Skeeter

Scooter

Unknown ObjectUnknown Object

Unknown ObjectUnknown ObjectUnknown Object

Unknown Object

Unknown ObjectUnknown Object

?

?? ?

?

??

?

Skeeter

Scooter

Unknown Object

Unknown Object

Unknown Object

Unknown Object

Unknown Object

Unknown Object

Unknown ObjectUnknown Object

?

??

?

?

??

?

Figure 22 : Many ways to setup the environment for knowledge sharing demonstration,
which results in the same SES data

As shown in Figure 22, since the Sensory EgoSphere data may or may not contain distance

information, and is independent from the shape of the environment, we can setup the environment

into any configuration we desired, such as contour or rectangular or any irregular shape, and still get

the same SES data from each configuration (as long as they contain the same objects at the same

angle). So, for the simplicity of this experiment, we projected each object onto the circular shape

(called SES Circle) and let the algorithm treats each object as having equal distance.

The human commander, located outside of the perimeter, will be connected to the robots

via the Commander Interface Agent. The Commander Interface Agent will be responsible for

displaying the current status of the task to the human commander and receiving instructions from

the commander to send to the robots.

In this experiment, the Self Agent is a compound agent that receives from the human

commander instructions which it interprets then sends to the Spreading Activation Network (SAN)

[33, 34], which provides the Action-Selection scheme to select an appropriate action for the robots

37

to achieve the goal implied by the commander. This SAN is a set of connected nodes and consists

of Condition Nodes and Competency Module Nodes, which act as a decision-making mechanism

that will select the action that is most suitable for the robots current situation.

In this setup, Skeeter acts as the observing post and uses its camera head to scan the

surrounding environment for interested objects. In the meantime, Scooter acts as a scout robot that

moves towards the interested objects provided by the human commander and observes them. The

specification of the interested object will be given by the human commander via the Commander

Interface Agent. Skeeter then scans the surrounding area to create a Sensory EgoSphere (SES). If it

finds the object that matches the commander’s specification, it sends this knowledge (i.e. the SES

data that contains the object’s angle and Scooter’s angle) to Scooter. At that point, Scooter calculates

its new heading from the SES data Skeeter provided and heads in the direction of the target object.

Test Bed Demonstration

First, the human commander sends instructions to the robots through the Commander

Interface Agent, such as “Find red object”. When the instruction arrives at Skeeter, the Spreading

Activation Network (SAN) initiates the creation of the Sensory EgoSphere (SES) of the surrounding

area and search for the particular object. If the object is present within the vision range, then Skeeter

will send this SES data to Scooter via the Peer Agent. When Scooter receives the SES data, it

calculates its new heading and navigates towards target direction.

During Scooter navigation towards the target, some conditions may occur and alter the state

of the robot, such as Scooter encounters obstacles along the way, Scooter’s SAN network will switch

from Move-to-target behavior to Avoid-obstacle behavior until the robot has a clear path then it will

switch back to Move-to-target.

This process will go on until Scooter detects the desired target and moves to a close range of

the target. Scooter’s SAN will then send a signal to Skeeter that the target has been reached and

request the next target.

Figure 23(a) shows a scenario for searching and knowledge sharing for a target. When the

human commander sends the instruction to the robots, e.g., “Find red object”, Skeeter scans the

environment for that target. Figure 23(b) shows where Skeeter has found the target and sends SES

data to Scooter, thus Scooter calculates a new heading and moves toward the target.

38

 (a) (b)

?

??

??

?

?

?

Commander: Find Red Object

?

??

??

?

?

?

SES data

Figure 23 : Scenario for Knowledge Sharing Demonstration

Creation of the Sensory EgoSphere

Creating SES data is very important for this demonstration to be able to succeed efficiently

and effectively. When Skeeter receives commands from the Commander Interface Agent, it will start

scanning the surrounding environment using its omni-directional camera head. In each camera,

Skeeter will capture the image and analyze it for the particular colors of interest, which stored in

Skeeter’s database, then store the data in a syntax that can be understood by other robots. After each

scan session, Skeeter will send this data out for other robots and the Commander Interface Agent to

retrieve.

A SES data is a short-term database structure, which is indexed by an azimuth, elevation and

time. Directional sensory processing modules write information on the SES at the location

corresponding to the source object’s direction [35]. Each module calls SES agent with location, a

tag, a time, and a pointer to its data. Other agent that used to display data or to perform data analysis

can read from or write to any section on the SES.

Figure 24 shows an SES agent, which is used to create SES data for Skeeter in this

experiment. A more detail descriptions of this agent are provided in Appendix B section.

39

Figure 24 : A SES agent on Skeeter

Sharing the SES data

As we stated earlier in the chapter, Skeeter is responsible for scanning the environment to

create the SES data and share it with Scooter. When Scooter receives a new SES data from Skeeter,

it will use that SES data to calculate a new heading and try to navigate its way towards the target. For

Scooter to be able to retrieve SES data from Skeeter, it will need to create a Peer Agent Client and

request SES data from Skeeter, as shown in Figure 25.

40

SES
Data

Skeeter

Peer
Manager

Scooter
Client

SES
Agent

SES Data Flow

Figure 25 : SES data flow between Skeeter and Scooter

Heading Calculations

For Scooter to be able to move towards the target, specified by the human commander, the

heading calculation algorithm is very important. The heading calculation (Figure 26) has two main

assumptions as follows:

1. Since SES data may or may not provides distance information, each object will be

projected onto the perimeter of the “SES Circle” and assumed to have equal

distance,

2. The initial heading of Skeeter and Scooter should be the same.

3. Skeeter has to be able to perceive both Scooter and target.

Definition of parameters

The parameters in this algorithm are defined as follows:

0θ : The initial heading of the robots

1θ : The angle from Skeeter to Scooter relative to initial heading

2θ : The angle from Skeeter to target relative to initial heading

3θ : The angle between Scooter to Skeeter and Scooter to target

dθ : The desired heading for Scooter

41

hθ : The current heading for Scooter

a, b : The distance from Skeeter to Scooter and the distance from Skeeter to the target,

respectively.

0θ

2θ
1θ

a

b

21 θθ −

hθ

dθ

3θ

3θ

Skeeter

Scooter

Target Object

cA

B

C
SES Circle

Figure 26 : Heading calculation for Scooter

Algorithm

From 1θ and 2θ , we can say that the angle between Scooter and the target with respect to

Skeeter, is equal 21 θθ − degree. Because we assumed that each object always locate at the

perimeter of the circle, the distance from Skeeter to Scooter (a) and distance from Skeeter to the

target (b) will have the same length, and by that the three objects (Scooter, Skeeter and target) form

an Isoceles Triangle (∆ABC), which has two equal sides and two equal angle (3θ). We then can

calculate the desired heading for Scooter to move towards the target using 3θ .

42

Mathematical Prove of the Algorithm

If: side a = side b,

Then: ∆ABC is an Isoceles Triangle, which has angle CBA
^

and ACB
^

 equal to

each other,

And:
2

180 21
3

θθ
θ

−−
= = CBA

^
 = ACB

^

From 3θ , we can calculate the desired heading for Scooter as follows:

31180 θθθ ++=d

or: Turn angle for Scooter = hd θθθθ −++= 31180

System Performance Evaluation

In this section, we will evaluate the performance of the algorithm by setting up different

object configuration scenarios to test run Scooter and calculate the performance of the algorithm

and evaluate how the algorithm reacts to different scenario configurations.

Evaluation Setup

Since the algorithm only concerns with one target at a time, we setup the control

environment that consisted of only one target, Scooter and Skeeter. There are three variables that

can be varied, which are the angle between the Scooter-target (θ), a distance between the Skeeter-

target (etTd arg) and a distance between the Skeeter-Scooter (Scooterd). By varying the Skeeter-

Scooter’s distance and Skeeter-target’s distance, will result in changing distance between Scooter-

target. And by increasing the angle between Scooter-target will cause Scooter to navigate its way

deeper into the SES circle and result in more error in the calculation. If we draw a straight line

between Scooter and the target, we will get the minimum distance between Scooter and the target

and that line will reflect the best potential path form Scooter to the target (mind). If there is an

obstacle on the minimum path, the minimum path will be a curve line that shows the best possible

path for the robot to navigate around the obstacle. But since this is a control environment, we

assume that there is no obstacle between Scooter and the target and Scooter will has a clear path

towards the target as shown in Figure 27. We let Scooter to navigate its way towards the target with

constant speed and measured the time that Scooter took to reach the target.

43

We setup the environment in such a way that three cases will occur in each angle scenario:

1. Set Skeeter-Scooter’s distance to be smaller than Skeeter-target’s distance, then

measure the performance when Scooter started within the SES circle.

2. Set Skeeter-Scooter’s distance to be equal to Skeeter-target’s distance, then

measures the system performance.

3. Set Skeeter-Scooter’s distance to be larger than Skeeter-target’s distance, then

measure the performance when Scooter started outside the SES circle.
Target

90

θ

ettd arg

scooterd

mind

Figure 27 : Evaluation setup for system performance analysis

In this experiment, we varied Skeeter-Scooter’s distance and Skeeter-target’s distance from

two to five meters. The reason we chose these two numbers is because the Skeeter’s maximum

visual range is five meters. The minimum of two meters is the minimum distance between Skeeter

and the target for Scooter to navigate between them. We selected three values of angle between

Scooter-target (θ) to be 45, 90, and 135 degrees respectively, and at each angle, we varied the

Skeeter-Scooter distance to force Scooter to start at inside, around, and outside the SES circle

perimeter as illustrates in Figure 28.

44

Target

90

o45

dtarget

dscooter

dmin

Target

90

o90

dtarget

dscooter

dmin

(a) (b)

 (c)

Target

90

o135

dtarget

dscooter

dmin

Figure 28 : Three different Scooter position, (a) at 45, (b) at 90, (c) at 135 degrees

Performance Index

We defined a value (f), that reflects how well the algorithm performed, as follows,

�
�

�
�
�

�
=

actualactual t
t

d
d

f minmin *

45

and

v
d

t min
min =

where

f is the performance index

mind is the minimum distance from Scooter to the target

actuald is the actual distance that Scooter took to reach the target

actualt is the actual time that Scooter took to reach the target

mint is a time constant that reflects the minimum travel time if Scooter follows the

minimum path.

v is a constant that reflects Scooter’s speed.

Value of f reflects the overall performance of the algorithm. Higher f value means better

performance and vise versa. The f value will range from 0 to 1, if f equal to one, it means Scooter

has taken the minimum path towards the target and this is the best performance, if f is almost zero,

it tells that Scooter may have lost its way during the experiment or there are a lot of errors produced

by the algorithm resulting in Scooter taken a longer than minimum path towards the target.

Test Runs

As stated earlier, there are three scenarios. First scenario assumed Scooter and the target are

located close to each other and have the angle between Scooter-target equal 45 degree. In second

scenario, we increased the angle between Scooter-target to be 90 degree to test how the algorithm

performed for mid-range distance. Finally, in the third scenario, we increased the angle to be 135

degree. In each scenario, we varied the distance between Skeeter-Scooter and Skeeter-target from

two to five meters and test run each configuration and measure required parameters.

The results of each test run are provided in tables in Appendix C.

46

Performance Analysis

In this section, performance analysis is performed, Note that we have to keep in mind the

factors that can affect the performance index, such as errors due to Scooter’s base drive unit, or a

delay due to Skeeter’s complete scan, these factors can cause variations in the trajectory and affect

the performance index of each run. Also note that, when Scooter moves closer towards the center

of the circle, the algorithm will produce an error in the heading calculation, and this degeneration of

the algorithm can cause variations in the performance index as well. We divided this section into

three parts as follows,

1). At angle 45 degrees different

We calculated the performance index and show in Table 1. The first column provides a

distance between Skeeter-target, the first row provides the distance between Skeeter-Scooter and

each cell provides the performance index at each distance configuration.

Dt Ds 2 3 4 5
2 0.729483 0.733106 0.788253 0.404853
3 0.297896 0.689179 0.681902 0.479115
4 0.289033 0.39475 0.755004 0.921081
5 0.20513 0.367257 0.518931 0.84914

Table 1 : Performance index at angle of 45 degrees

An easier method to illustrate these numbers is to plot them into graph as shown in Figure

29.

47

Scooterd

etTd arg

Scooterd

etTd arg

Figure 29 : Graphs plot from performance index at 45 degrees

From the data and graphs, we can see that the algorithm performed better at the

configurations where distance between Skeeter-Scooter (Scooterd) and distance between Skeeter-

target (etTd arg) are nearly equal to each other than when the Skeeter-Scooter’s distance and the

Skeeter-target’s distance have large different. That means this algorithm performed well at the angle

of 45 degrees when Scooter started around the perimeter of the circle and the algorithm degenerated

when Scooter started further from the circle’s perimeter.

From observing the trajectories of Scooter, we can summarized them into three cases:

• When Scooter started inside the circle, it moved pass the target position then turn

back towards it as shown in Figure 30. This due to the degeneration of the algorithm

when Scooter is located inside the circle.

48

Target

90

o45

dtarget

dscooter

dtarget > dscooter

Figure 30 : Scooter’s trajectory from inside the SES circle

• When Scooter stared from around the perimeter of the circle, it headed directory

towards the target position as illustrates in Figure 31.

Target

90

o45

dtarget

dscooter

dtarget = dscooter

Figure 31 : Scooter’s trajectory when located around the perimeter of the SES circle

49

• When Scooter started outside the circle, it moved pass the target position then turn

back towards it as shown in Figure 32. This also due to the degeneration of the

algorithm when Scooter is not located on the perimeter of the circle.

Target

90

o45

dtarget

dscooter

dtarget < dscooter

Figure 32 : Scooter’s trajectory when located outside the SES circle

From the trajectories, we concluded that the algorithm will give the best performance when

Scooter is locate around the circle’s perimeter, which also supported by the graphs.

2). At angle 90 degrees different

The performance index is shown in Table 2and the graphs are illustrates in Figure 33.

Dt Ds 2 3 4 5
2 0.282636 0.223505 0.822602 0.898502
3 0.27606 0.279666 0.376614 0.805208
4 0.356431 0.344196 0.343091 0.740687
5 0.215914 0.33804 0.377414 0.387746

Table 2 : Performance index at angle of 90 degrees

50

Scooterd

etTd arg

Scooterd

etTd arg

Figure 33 : Graphs plot from performance index at 90 degrees

From the graphs, we see that the performance peaked when the distance between Skeeter-

Scooter is large and the distance between Skeeter-target is small and the performance is the lower

when the distance between Skeeter-Scooter is small and the distance from Skeeter-target is large.

From observing the Scooter’s trajectories, we can also summarized the trajectories into three

categories as follows,

• When Scooter started inside the circle, the degeneration of the algorithm caused

ripples in Scooter’s trajectory as illustrates in Figure 34.

51

Target

90

o90

dtarget

dscooter

dtarget > dscooter

Figure 34 : Scooter’s trajectory when located inside the SES circle

• When Scooter started around the perimeter of the circle, the degeneration of the

algorithm still caused little ripple in the trajectory as shown in Figure 35.

Target

90

o90

dtarget

dscooter

dtarget = dscooter

Figure 35 : Scooter’s trajectory when located around the perimeter

• When Scooter started outside the circle, there is no ripple in the trajectory as

illustrates in Figure 36, Scooter headed directory towards the target.

52

Target

90

o90

dtarget

dscooter

dtarget < dscooter

Figure 36 : Scooter’s trajectory when located outside the perimeter

Again that the data from the graphs and from observing Scooter’s trajectories leaded to the

same conclusion, but in this time, the best performance occurred when Scooter is located outside

the circle, not on the perimeter of the circle. One hypothesis for this event is that, when the angle

between Scooter and the target became larger, Scooter will tend to move into the circle deeper than

when the angle is small, that result in higher error and longer trajectory which finally reflex into

lower performance. But this larger angle is compensated by larger between Skeeter-Scooter and the

larger the distance, the better compensation to the degeneration of the algorithm.

As we stated earlier, one factor that can cause variations in the trajectories is the scanning

delay of Skeeter’s camera. It takes around five seconds for Skeeter to complete one 360 degrees scan

and update the SES data to Scooter. Figure 34 and Figure 35 showed a good example of how this

delay can cause the trajectory variation. In Figure 34, Scooter located closer to Skeeter than in Figure

35, and when Scooter navigated at the constant speed, the updates SES data will give larger error in

Scooter’s position when it moved closer to Skeeter than when it move further away from Skeeter.

This error caused more ripple in the trajectory when Scooter located closer to Skeeter.

3). At angle 135 degrees different

We increased the angle to 135 degrees, the performance index is as shown in Table 3. The

graphs that corresponded to the table is shown in

53

Dt Ds 2 3 4 5
2 0.305562 0.304619 0.369825 0.277377
3 0.244471 0.261687 0.367509 0.383805
4 0.24602 0.379345 0.324108 0.337755
5 0.168069 0.34867 0.348815 0.336308

Table 3 : Performance index at angle of 135 degrees

Scooterd

etTd arg
etTd arg

Scooterd

Figure 37 : Graphs plot from performance index at 45 degrees

From the graphs, we see that the performance index only average about 0.3. The algorithm

performed well when the distance from Skeeter-Scooter is large then the performance become worst

at smaller distance between Skeeter-Scooter. The lowest point is when the distance between Skeeter-

Scooter is two meters and the distance between Skeeter-target is five meters.

The Scooter’s trajectories in this scenario are almost the same in every configuration. The

only different is that the trajectory will contain more ripples when the distance between Skeeter-

target becomes larger. Two types of trajectories are shown in Figure 38, smaller distance between

Skeeter-targer resulted in fewer ripples.

54

 (a) (b)
Target

90

dtarget

dscooter

dtarget > dscooter

135 o

Target

90

dtarget

dscooter

dtarget < dscooter

135 o

Figure 38 : Scooter’s trajectories when, (a) Larger distance between Skeeter-target, and (b)
Smaller distance between Skeeter-target

As seen from the graphs and described in the trajectories observation, the algorithm

performance for this scenario is low due to larger angle between Scoter-target that forced Scooter to

move into the circle and resulted in larger error in the calculation.

Evaluation Conclusions

From three scenarios described earlier, we can conclude that the algorithm performed better

in a scenario where angle between Scooter and the target is small. And if the angle between the

Scooter and the target become larger, the algorithm performed better when there is a compensation

in Skeeter-Scooter’s distance. We listed the advantages and disadvantages of this algorithm as

follows,

Advantages of the algorithm

• Since this algorithm uses SES data (which may or may not include range) in the

calculation, precise distance is not needed in this algorithm.

• The algorithm adapts quickly to error in the calculation and corrects it.

• Simple calculation and consumes little computational resources.

55

Disadvantages of the algorithm

• Scalability issue: the key to the algorithm is the range of the camera on Skeeter. The

limitation of this algorithm is that it can only be applied when Skeeter can see both target

and Scooter.

• Distance has an effect on precision of the algorithm’s calculation. If Scooter is not located

around the perimeter of the circle, algorithm produces an error in the calculation.

The Heading Calculation Agent

In an experiment, we will have an agent that will take care of calculating the heading for

Scooter running inside the robot’s processor as shown Figure 39. In this figure, the eye in the middle

of the circle shows Skeeter’s position, the cart shows the position of Scooter, the balloon shows the

position of the target and the dotted line shows the new heading from Scooter toward the target.

Figure 39 : The heading calculation agent

Commander Interface Agent

The Commander Interface Agent role is to receive commands from a human commander

and interpret them into instructions that each robot will understand, and then send them to the

56

robot. On the other hand, when a robot broadcasts something to the group, the Commander

Interface Agent, which is tapped into the robot’s broadcasting channel, will receive the data and

notify the human commander about the situation of the robots.

The Commander Interface Agent allows the human commander to choose a series of color

of the targets before sending them to the robots and shows the progress of the task in real time as

shown in the interface window in Figure 40.

Figure 40 : Commander Interface Agent Window

Knowledge Sharing/ Data Flow between Agents

Figure 41 illustrates the communication flow between the robots and the Commander

Interface Agent. The Commander Interface Agent will send out the mission objective, which is the

color of the target, and will receive the status (conditions) and behavioral data from each robot.

Skeeter will be responsible for creating the SES data and determining new headings for Scooter.

Scooter will provide its’ headings to Skeeter and will notify Skeeter when it has reaches the target.

57

Commander Interface
Agent

Scooter

Obje
cti

ve
/R

eq
ue

st
Con

dit
ion

s

Objective/Request

Conditions
SES data/Conditions

Heading/Conditions

Skeeter

Figure 41 : Data flow within the robot group

One of the most interesting parts is when the robot broadcasts its’ own conditions to the

group, and other robots sense the change and try to also change or adapt their own behaviors to

allow the group to achieve the given task. One example of this behavioral change is when Skeeter

scans the area and cannot locate Scooter, it will broadcast a stress call to the group that Scooter has

been lost. When Scooter receives this call, it will change its behavior to a Move-to-home behavior. It

will head back towards the center of the circle and try to go back to Skeeter to be within Skeeter’s

scanning range.

Skeeter’s SAN Network

Skeeter’s SAN Network is the combination of condition nodes and competency module

nodes that are connected together to make a planning/decision-making module of the robot. The

circle-shape figures are the condition nodes and the rectangle-shape figures are the competency

module nodes. If the figure is in a shaded rectangular area, it means that the particular figure is

connected to other robots or the Commander Interface Agent and it can pass/receive the activation

flow to/from other robots or the Commander Interface Agent using the Peer Agents. The arrow

shows the order of the activation flow between each node in the network. Figure 42 illustrates the

SAN Network process for Skeeter.

We can describe the functionalities of this SAN Network as follows:

58

• If Scooter requests a heading, then send current heading data

• If Skeeter loses visual contact with Scooter, then call Scooter back

• If Skeeter cannot see the target, then ask Scooter if it can see the target and if

Scooter cannot see the target, then notify mission failure to the Commander

Interface Agent

• If timeout (uses more time than estimated), then notify mission failure to the

Commander Interface Agent

• If Scooter reaches the target, then notify mission accomplished to the Commander

Interface Agent.

Scan/Pass
Heading

Call Scooter
Back

Notify Mission
Acomplished

(To User)

Ask Scooter
If See
Target

Scooter
Request
Heading

 Didn't
See

Scooter

Didn't
See

Target

Time Out

Mission
Acomplished/

Failed
(Goal)

Notify Mission Failed
(To User)

Scooter
didn't see

target

To/From other robots

To Commander
Interface Agent

Scooter
reach
target

Figure 42 : Skeeter’s SAN Network

Scooter’s SAN Network

The SAN Network of Scooter, as shown in Figure 43, has similar concepts but contains

different condition nodes and the competency module nodes.

The functionalities of Scooter’s SAN Network are as follows:

59

• If lost then, request a new heading from Skeeter and upon receiving a new heading,

moves towards the new heading

• If sees target, then go towards target

• If Skeeter calls it back, then return to Skeeter

• If Skeeter asks if it see the target, then reply to Skeeter

• If it sees an obstacle, then try to avoid it until the path is clear and continue towards

the heading

• If target is found, then notify Skeeter.

Avoid
Obstacle

Request
Heading

From Skeeter

Go to
Skeeter

Heading

Go To
Target

See
Target

See
Obstacle

Lost
(Timer)

Target
Found
(Goal)

Path Clear

Know
Heading

Skeeter
Call

Scooter
Back

From Peer Agent

Answer
Skeeter

Skeeter
Ask if See

Target

Figure 43 : Scooter’s SAN Network

Network Layout

Figure 44 shows the communication network between the Skeeter, the Scooter and the

Commander Interface Agent. Within each robot, there is a Spreading Activation Network (SAN)

that acts as a decision-making agent of the robot and tells what should be done in a sequence,

especially when particular conditions occur. Each robot will have the Peer Agent Manager to

monitor and manage the communication between other robots and the Commander Interface

60

Agent. Peer Agent Clients will be created whenever the robot or the Commander needs to connect

and gather data or information from other robots.

Between each Peer Agent Manager there is a broadcast channel that is used to share some

behavioral and status data within the Peer Agent Managers. The human commander can tap into

this channel using the Commander Interface Agent and monitor the performance of each robot.

SES data will be created by SES agent on Skeeter and stored within the robot. The

Commander Interface Agent and other robots will create the Peer Agent Clients and connect to

Skeeter’s Peer Agent Manager if they require this data.

Skeeter Scooter

Commander Interface Agent

Commander
Interface

Peer Manager Peer Manager

cm

c

cm

c

cm

c

cm

c

SAN

cm

Peer
Client

Peer
Client

Peer
Client

Peer
Client

cm

c

cm

c

cm

c

cm

c

SAN

cm

Ac
tiv

ati
on Activation

SES
Manager

SES
Agent

Communication Communication

C
om

m
unicationC

om
m

un
ic

at
io

n

Broadcast Channel

Figure 44 : Layout of the communication network

61

CHAPTER VI

CONCLUSIONS

In this thesis, the concept of the Peer Agent has been developed to use in robot

communication. The Peer Agent consists of two parts: 1) the Peer Agent Manager, which attached

itself to the robot’s Self Agent and acts as an information server to other robots, and 2) the Peer

Agent Client, which is created when other robots require the information. It acts as a

communication channel that connects the information source and retrieves the data. When

retrieving information, the Peer Agent will monitor the stability of the channel and will close the

communication channel if it is damaged or terminated.

Between the robots, there can be two types of communication channels:

1. Channels between the Peer Agent Managers and the Peer Agent Clients: This

channel is used for sending typical information, e.g., sensory information or SES

information, etc., between robots in the group.

2. Channel between each Peer Agent Manager: This channel is used to broadcast some

task-related information between the Self Agent of the robots, e.g., current behavior

or current state of the robot, etc. The Commander Interface Agent will be able to

monitor this channel and use this information to determine next tactic for the

group.

Each channel has a different purpose and should not conflict with one another. This will

enhance the performance of the communication within the robot group.

Every request made by the Peer Agent Client to the Peer Agent Manager will be tagged with

a priority value. The priority value is calculated from the priority of the requested robot, type of

request and source robot’s task. The Peer Agent Manager will list and sort the entire current request

by priority and will execute the request that has the highest priority first.

In our experiment, we used two heterogeneous all-terrain mobile robots, Skeeter and

Scooter, and proved that sharing information can occur between these robots. Skeeter will create the

SES and shared the data with Scooter. In the meantime, Scooter will use the information to calculate

its’ new heading that can lead it towards the target. The human commander will be able to monitor

each robot state by tapping into the broadcast channel between the robots’ Peer Agent Managers.

62

Another interesting issue is when we use the broadcast channel between the Peer Agent

Managers to share robots’ behavior with the group. Each robot’s SAN network, which acts as a

robot brain, can detect changing in other robots’ behavior and will try to adapt to a more suitable

state and force the behavioral change within the robot itself. In the experiment, we showed that the

change in condition of one robot can stimulate the condition change within another robot e.g., if

Skeeter loses track of Scooter, it will panic and try to call Scooter back, then Scooter, when sensing

that Skeeter is panicking, will try return to its’ home position.

We assumed many assumptions to be able to produce an algorithm that roughly calculates

Scooter’s heading. These assumptions were not met all the time and the algorithm produced an error

but we proved that it still robust enough to be able to produce acceptable results.

We proved that communication between robots could be used to solve tasks, which may be

too difficult for only one robot to achieve and it leads to a more efficient group performance.

Recommendation for Future Work

As discussed throughout this thesis, future research direction included the following issues,

1. Replace Skeeter’s camera head with human commander or more sophisticate devices

to increase scalability and speed of the algorithm.

• We can replace Skeeter with a human equipped with a Personal Digital

Assistance (PDA) such as Pocket PC or Palm Pilot and then he can tell

Scooter where the target is instead of Skeeter. And Scooter can accept

command directly from the human commander.

• Instead of using Skeeter’ camera to scan the environment from a horizontal

view, we can use other kind of devices, such as airplane’s camera (pointing

down) or satellite’s camera to scan in an vertical view. This can increase the

visual range and the algorithm can be applied in a larger scale.

2. Improve the performance of the algorithm.

As described in Experiment Chapter, the performance of the algorithm

varied with the distance between Skeeter, Scooter and the target. If we are able to

correlate distance information from ranging sensors, such as Sonar or LIDAR, with

63

information from SES, we should be able to greatly improve the performance of the

algorithm.

3. Integrate the algorithm with Perception-based Navigation

Instead of using SES data to calculate the heading, we can replace SES with

LES from Perception-based Navigation and apply the algorithm; we should be able

to expand the working area of the algorithm.

4. Improve object avoidance behavior

Sometimes when the robot moves close to an object, the object avoidance

behavior is activated resulted in robot moving back and forth in a “jerking” motion.

If we can improve the object avoidance behavior to make robot run smoother, it will

improve the performance of the algorithm.

64

APPENDIX A

AGENTS USED IN THIS EXPERIMENT

In this thesis, the IMA agents used in the experiment can be categorized into four groups,

IMA Agents for Skeeter, Scooter, Human Commander and Peer Agents, as follows:

IMA Agents for Skeeter

1. SAN Manager for Skeeter: This is a graphical interface agent that is used to create SAN

Network for robots and monitor the status of each node in the network.

2. SAN Node Agents for Skeeter: These are the agents that represent each condition node

or competency module in the robot’s SAN Network:

• Timeout Node: This agent will keep track of the time in a robot’s task, if the task

takes more time than user had specified, this agent will alert the SAN by become

true.

• Find Scooter Node: This agent will monitor the position of Scooter from the

SES data. If it cannot find Scooter, its state will become false.

• Find Target Node: This agent will monitor the position of the target from the

SES data. If it cannot find Scooter, its state will become false.

• Mission Accomplished Module: If the SAN activates this module, it will send an

event to the Commander Interface Agent that the mission has been

accomplished.

• Mission Failed Module: If the SAN activates this module, it will send an event to

the Commander Interface Agent that the mission has failed.

• Scan Module: This agent is responsible for generating the SES data for Skeeter

using the omni-directional camera head.

3. Peer Agents: Skeeter will have one Peer Agent Manager to manage the communication

channels.

65

IMA Agents for Scooter

1. SAN Manager for Scooter: This is a graphical interface agent that is used to create a

SAN Network for robots and monitor the status of each node in the network.

2. SAN Node Agents for Scooter: These are the agents that represent each condition node

or competency module in the robot’s SAN Network:

• See Obstacle Node: This agent will become true when the robot senses that

there is an obstacle in its path.

• Lost Node: This agent will become true when Scooter feels that it is lost,

usually we use a timer to make a simple lost behavior.

• See Target Node: If Scooter sees the target, this agent will become true.

• Target Found Node: This is a goal node for Scooter.

• Heading Module: This agent is used to control Scooter to head into a

desirable direction.

• Goto Skeeter Module: Scooter will use this agent to navigate its way back

to Skeeter (home position).

• Avoid Obstacle Module: This agent will help Scooter to navigate its way

around the obstacle.

• Goto Target Module: This agent is used to control Scooter to head towards

the target direction.

3. Peer Agent: Scooter will have one Peer Agent Manager and one Peer Agent Client that

are used to retrieve SES data from Skeeter.

IMA Agent for Human Commander

1. Commander Interface Agent: This is a user interface agent that accepts a series of targets

from the user and sends them to the robots.

2. SES Manager Agent: This agent will gather SES data from Skeeter and display them on a

graphical interface for the user.

3. Peer Agent: Commander Interface Agent will have one Peer Agent Client that is used to

gather SES data from Skeeter.

66

APPENDIX B

DETAIL OF AGENTS

This section will provide a detailed description of each agent used within the scope of this

thesis and show how each agent interacts with each other.

The Peer Agent Manager

The Peer Agent Manager has five pages in its interface as follows:

1. Data Page: This page is for the user to label the address for the sensors information

or other sources of information within the robot. When the Peer Agent Client connects and register

itself to the Peer Agent Manager, the Peer Agent Manager will encode all the addresses into a string

(called “Competency String”) and send it to the Peer Agent Client. The Peer Agent Client then will

know what kind of information can be retrieved from this robot. The user can add node addresses,

delete them, or save them into file and retrieve them back for later use. Figure 45 shows the graphic

interface of this page.

Figure 45 : Source addresses page

2. Setup Page: The second page contains the tool that is used for finding the sources of

information within the robot. Thus, one robot can be the combination of many computers working

with each other. Users can find the address of information within the robot domain by adding every

67

computer that locate within the robot domain and execute a search for address of information. After

the computers in the robot domain have been added and the search has been executed, every

sources of information will be displayed in the left window and the user can add them to the Data

page (First page) for further uses. Figure 46 shows the setup page.

Figure 46 : Setup page

3. Links page: The third page contains links that the Peer Agent Manager uses to

connect to the Peer Agent Client and with other Peer Agent Managers. This is the first page that

should be setup. There are a total of five links: two links communicate with the Peer Agent Clients,

two links connect with the Self Agent, and the fifth link broadcasts task-related information within

the group of connected Peer Agent Managers. This links page is shown in Figure 47.

Figure 47 : Links page

68

4. Clients page: This page is the monitor page that will display the current status of the

connected Peer Agent Clients. It will display the ID, address and the status of each client. Figure 48

shows the interface of this page.

Figure 48 : The Peer Agent Client status page

5. Broadcast channel page: The last page is used to display the broadcast channel

information that between each Peer Agent Manager. It will contain the name and message of the

source robot as shown in Figure 49

Figure 49 : Broadcast channel page

The Peer Agent Client

The Peer Agent Client has three pages in its interactive window.

69

1. Path page: This page contains the path of the source of information and the

target destination of the information. When the user clicks connect, the Peer Agent Client will

automatically connect both source and target together and start retrieving the data from source and

put it in the target destination. Figure 50 shows the graphic interface of this page.

Figure 50 : Path page of the Peer Agent Client

2. Manager page: This page contains the links with the Peer Agent Manager. When

the user clicks connect, the Peer Agent Client will try to connect with the Peer Agent Manager. After

the connection has been established, the Peer Agent Manager will send the “Competency string” to

the client to display them for the user on the bottom of the page as illustrated in Figure 51.

Figure 51 : Manager page of the Peer Agent Client

3. Status page: This page displays the current status of the Peer Agent Client by

showing the name of the source and target, the address, and also the type, as shown in Figure 52. If

the Peer Agent Client is also linked with the Peer Agent Manager, this page will show the name of

70

the robot that this client is connecting with and the relationship between the Peer Agent Client and

the Peer Agent Manager.

Figure 52 : Status page

The SAN Manager

The SAN Manager is a graphical user interface for the user to create a SAN Network for

robots. The network consists of the condition nodes, competency modules and links between each

node in the network. The user will be able to drag-drop each node into the designing area and create

links between nodes to generate the action selection network in the robots as illustrated in Figure 53.

The user will also be able to specify each node’s weight, which the SAN network uses to

determine the sequence of the action flow. The higher the node’s weight, the higher the node’s

priorities to SAN network, which will execute the higher priority node first if there are more than

one node activated at the same time.

71

Figure 53 : SAN Manager

As described in Chapter V, we can construct the SAN network of Skeeter and Scooter as

shown in Figure 54 and Figure 55, respectively. The circle shape with the letter “C” inside represents

a condition node, and a square shape with the letters “CM” inside represents a competency module.

Figure 54 : SAN Manager for Skeeter

72

Figure 55 : SAN Manager for Scooter

The SAN Manager is a display and sequencing agent that shows the user which node has

been activated and which node has not. The real agent used to connect the robot’s hardware or to

calculate the data will run separately outside this SAN Manager within each robot, the SAN Manager

will has a input and output channel that communicate with these agents and monitor their states.

SAN Nodes on Skeeter

Since Skeeter has only microprocessor on board the robot, every agent used in this

experiment are running on board the laptop’s processor.

Timeout Node

The Timeout Node counts down the time that robots are allow to work on the task. If the

time runs out, this agent’s state will become true and notify the SAN Manager. Figure 56 shows the

interface of the Timeout Node in which the user can input the specific time the robots need on a

given task and monitor how much time is left. The user also able to program this agent to stop or

loop back and start counting again after time has run out.

73

Figure 56 : TimeOut Node’s interface

Detect Node

The Detect Node accepts SES data from the Scan node and searches for a specific object,

e.g. Scooter, blue objects, or green objects, within the SES data. If the object is found within the

SES data, its state will become true and notify the SAN Manager. Figure 57 shows the graphical

interface of this agent.

Figure 57 : Detect Node interface

74

Mission Accomplished Module

The SAN Manager will activate the Mission Accomplished Module when the robot wants to

notify the human commander, via The Commander Interface Agent, that the given task has

succeeded. Figure 58 illustrates the interface for Mission Accomplished Module.

Figure 58 : Mission Accomplished Module interface

Mission Failed Module

The SAN Manager will activate the Failed Module when the robot wants to notify the

human commander, via The Commander Interface Agent, that the given task has failed. Figure 58

illustrates the interface for the Mission Accomplished Module.

Figure 59 : Mission Failed Module interface

75

The user can change between each node/module by right-click of the mouse on the title of

the node and select the desirable node (except Scan Node) as illustrated in Figure 60.

Figure 60 : Changing between nodes

Scan Node

Scan Node is an agent that runs on Skeeter and is responsible for using the omni-directional

camera head to create SES data. In each camera, it will capture a frame and compare it with the

database of colors, which have been predefined by the user. If the image contains objects that match

the specific colors, this agent will post those objects on a screen with an angle relative to Skeeter. In

Figure 61(a) shows a scan agent’s graphical interface. Figure 61(b) shows a post screen from the

agent.

76

(a) (b)

Figure 61 : Scan Node example on Skeeter

Before the user can use this agent, the user must initialize the multiplexer that connects to

the camera-head first, then load a database into the agent. From Figure 61(a), the top left-most

frame shows a real time image captured from the camera and the middle frame shows the debugging

frame used by user.

SAN Nodes for Scooter

Almost all of Scooter’s agents are running onboard Scooter’s processor, e.g. Avoid-Obstacle

Agent, Detect-Target Agent, Goto Target Agent. We use a laptop to connect to Scooter’s processor

via TCP/IP protocol, as shown in Figure 62. This agent will communicate with agents that running

inside Scooter’ processor and retrieve the data out to show to the user. The data that communicate

between the agents is the state of the condition, which is either true or false.

77

Figure 62 : Agent that communicate with Scooter’ processor via TCP/IP

The reason we are conducting the experiment in this manner is because Scooter’s processor

uses the Unix Operating System while the laptop uses Microsoft Window Operating System. The

easiest way to communicate across the network for Scooter is to use the TCP/IP protocol.

In addition to the agents that are running on the Scooter’ processor, a few agents are

running on the laptop’s processor such as Heading Agent and Lost Node, which are described in the

following sections.

Heading Node

The Heading Agent is the agent that controls the heading of the robot using either a

Compass or Odometry (by counting the encoded data on the robot’s motors). Figure 63 shows the

graphical interface of the Heading Agent. The user has the ability to change the Linear, Angular and

Avoid-Obstacle velocity of the robot and has a choice between using the robot’s compass or DMU

(Drive Motor Unit) or Odometry for heading reference. This agent connects directly with the

Heading Calculation Agent and accepts a new heading data from it.

78

Figure 63 : The Heading Agent graphical interface

Heading Calculation Agent

The Heading Calculation Agent is the agent that calculates a new heading for Scooter to be

able to navigate itself towards the target. This agent accepts SES data from the SES-making Agent

that is running in Skeeter and calculates a new heading from Scooter to the target. In Figure 64, the

eye represents Skeeter, the cart represents Scooter and the balloons represent the target. The lines

represent the angle from Skeeter to Scooter and from Skeeter to the target. The dotted line

represents a new heading for Scooter. Calculation happen every time SES data is updated.

79

Figure 64 : Heading Calculation Agent user interface

Commander Interface Agent

The Commander Interface Agent, explained previously in Chapter V, interacts with the

human commander and displays some task-related information to the human. The human will be

able to select the color of the target and monitor the progress of the given mission. First, the user

has to setup the links between the Commander Interface Agent and the robots. Then, the user can

select a series of colors from the left part of the window and stack them together before sending

them to the robots. If the target has been found, it will be labeled as “Done”, or if the robots are

still trying to find the particular target, it will label the target as “Processing…”, etc. At the top of the

window, the user can specify a number of objects, which can be in a series before sending them to

the robots. Figure 65 shows the graphical interface of the Commander Interface Agent.

80

Figure 65 : The Commander Interface Agent

81

APPENDIX C

TEST RUN DATA

This section provides all the data gathered during the performance evaluation test run. Table

4, Table 5, and Table 6 represent data gathered from each scenario, which are 45, 90, and 135

degrees respectively.

Within the chart,

Ds is the distance (meter) between Skeeter and Scooter,

Dt is the distance between (meter) Skeeter and the target,

Dmin is the optimal distance (meter) that Scooter should take to approach the target,

Tmin is the optimal time (second) that Scooter should take to approach the target,

Dact is the actual distance (meter) that Scooter took to approach the target,

Tact is the actual time (second) that Scooter took to approach the target

Table 4 : Data at 45 degrees angle

Table 5 : Data at 90 degrees angle

82

Table 6 : Data at 135 degrees angle

83

REFFERENCES

[1] L. E. Parker, “Current State of the Art in Distributed Autonomous Mobile Robotics”, In
Proceedings of the fifth international symposium on distributed autonomous robotic systems,
2000.

[2] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss, “Structure Decision for Self Organizing
Robot-based of Cellular Structure – CEBOT”, IEEE International Conference on Robotic
and Automation, Scottsdale, AZ, pp. 695-700, 1989.

[3] Y. U. Cao, A. S. Fukunaga and A. B. Kahng, “Cooperative Mobile Robotics:
Antecedents and Directions”, Proceedings for IEEE/RSJ IROS Conference, Japan,
1995.

[4] D. W. Gage, “How to Communicate with Zillions of Robots”, Proceedings of SPIE
Mobile Robots VIII, Boston, Vol. 2058, pp. 250-257, September 1993.

[5] M. J. Mataric, “Designing and Understanding Adaptive Group Behavior”, Volen
Center for Complex Systems, Computer Science Department, Brandeis University,
Waltham, MA, September 1995.

[6] M. J. Mataric and B. B. Werger, “From Insect to Internet: Situated Control for
Networked Robot Teams”, Interaction Laboratory, Robotics Research Labs, Department
of Computer Science, University of Southern California, Los Angeles, July 2000.

[7] D. Goldberg, and M. J. Mataric, “Robust Behavior-Based Control for Distributed
Multi-Robot Collection Tasks”, Interaction Laboratory, Robotics Research Labs,
Department of Computer Science University of Southern California, Los Angeles, July,
2000.

[8] B. MacLennan, “Evolution of Communication in a Population of Simple Machines”,
Technical Report CS-90-99, University of Tennessee, Knoxville, TN, January 1990.

[9] H. Yanco, L. Stein, “An Adaptive Communication Protocol for Cooperating Mobile Robot”,
in J.-A. Meyer, H. Roitblat & S. Wilson, eds, From Animals to Animats: International
Conference on Simulation of Adaptive Behavior, MIT Press, pp. 478--485.

[10] A. Cangelosi, “Evolution of Communication and Language Using Signals, Symbols,
and Words”, IEEE Transactions on Evolutionary Computation, Vol. 5, No. 2, April
2001.

[11] G. M. Saunders and J. B. Pollack, “The Evolution of Communication Schemes over
Continuous Channels”, Proceedings of the SAB Conference on the Simulation of
Adaptive Behavior, 1996.

84

[12] R. Grabowski, L. E. Navarro-Serment, C. J. J. Paredis and P. K. Khosla, “Heterogeneous
Teams of Modular Robots for Mapping and Exploration”, Autonomous Robots, Vol. 8, No.
3, pp. 293-308, 2000.

[13] G. Dudek, M. Jenkin, E. Milios and D. Wilkes, “Experiments in Sensing and Communication
for Robot Convoy Navigation”, Proceedings for IEEE/RSJ International Conference
Intelligent Robots and Systems Human Robot Interaction and Cooperative Robots, 1995.

[14] J. Wang, “On Sign-board Based Inter-Robot Communication in Distribute Robotic System”,
Proceedings for IEEE International Conference on Robotics and Automation, pp. 1045 -1050
vol.2, 1994.

[15] T. Morita, S. Aramaki, S. Kurono and K. Kagekawa, “A Knowledge Representation for the
Communication Between Robots”, IEEE International Workshop on Robot and Human
Communication, 1993.

[16] R.Schank "Conceptual Dependency: A theory of natural language understanding, " Cognitive
Psychology 3, 552—631, 1992.

[17] K. Ohkawa, T. Shibata and K. Tanie, “Method for Generating of Global Cooperation Based
on Local Communication”, Proceedings for IEEE/RSJ International conference on Intelligent
Robots and Systems, 1998.

[18] C. N. Duarte and B. B. Werger, “Defining a Common Control Language for Multiple
Autonomous Vehicle Operation”, Proceedings for IEEE Ocean 2000 Conference, 2000.

[19] M. J. Mataric, R. T. Vaughan, K. Stoy and G. S. Sukhetme, “Whistling in the Dark:
Cooperative trail following in uncertain localization space”, Proceedings for 4th
International Conference on Autonomous Agents, June 2000

[20] T. Arai, E. Yoshida and J. Ota, “Information Diffusion by Local Communication of
Multiple Mobile Robots”, Proceedings for IEEE Conference on Systems, Man and
Cybernetics, pp. 535 - 540, 1993.

[21] T. Fujii, H. Asama, T. Fujita, Y. Asakawa, H. Kaetsu, A. Matsumoto and I. Endo,
“Knowledge Sharing Among Multiple Autonomous Mobile Robots Through Indirect
Communication using Intelligent Data Carriers”, Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vol. 3, pp. 1466 –1471,
1996.

[22] R. T. Pack, et al, “A Software Architecture for Integrated Service Robot Development”, 1997
IEEE Conf. on Systems, Man, and Cybernetics, Orlando, pp.3774-3779, September 1997.

[23] K. Kawamura, et al, “Intelligent Robotic Systems in Service of the Disabled”, IEEE
Transactions on Rehabilitation Engineering, Vol.3, pp.14-21, 1995.

[24] K. Kawamura, et al, “Design Philosophy for Service Robots”, Robotics and Autonomous
Systems, Vol.18, pp.109-116, 1996.

85

[25] D. M. Wilkes, et al, “Designing for Human-Robot Symbiosis”, Industrial Robot, Vol.6, No. 1,
pp.49-58, 1999.

[26]R. A. Arkin, Behavior-Based Robotics, MIT Press, Cambridge, MA, 1998.

[27] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot”, IEEE of
Robotics and Automation, Vol. 2, No. 1, pp.14-23, 1986.

[28] K. Kawamura, R. A. Peters II, C. Johnson, P. Nilas and S. Thongchai, “Supervisory Control of
Mobile Robots using Sensory EgoSphere”, 2001 IEEE International Symposium on
Computational Intelligence in Robotics and Automation, CIRA 2001, July 29-August 1 2001,
Banff, Alberta, Canada. Page 531-537.

[29] ActivMedia Robotics, “Pioneer 2 Mobile Robots -- Operation Manual”, May, 2000.

[30] Real World Interface, Inc. http://www.irobot.com/rwi.

[31] K. Kawamura, D. M. Wilkes, S. Suksakulchai, A. Bijayendrayodhin,
K. Kusumalnukool, “Agent-Based Control and Communication of a Robot Convoy”,
International Conference on Mechatronics Technology, Singapore, June 2001.

[32] D. Jung, and A. Zelinsky, “Ground Symbolic Communication between Heterogeneous
Cooperating Robots”, Autonomous Robots, Vol. 8, pp. 269-292, 2000.

[33] P. Maes, "A Spreading Activation Network for Action Selection", in Intelligent
Autonomous Systems, Vol. 2, pp. 875--885, 1989.

[34] D. M. Gaines, “SAN-RL: Combining spreading activation networks and
reinforcement learning to learn configurable behaviors”, SPIE Conference, Boston, MA,
October, 2001.

[35] K. Kawamura, R. A. Peters II, D. M. Wilkes, A. B. Koku and A. Sekmen, “Toward
Perception-Based Navigation Using EgoSphere”, Proceedings for SPIE Conference, Boston,
MA, October, 2001.

