
COLLABORATIVE EDUCATIONAL ENVIRONMENT DESIGN

FOR ACCESSIBLE DISTRIBUTED COMPUTING

By

Brian Broll

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

May 11, 2018

Nashville, Tennessee

Approved:

Akos Ledeczi, Ph.D.

Gautam Biswas, Ph.D.

Jules White, Ph.D.

Aniruddha Gokhale, Ph.D.

Corey Brady, Ph.D

Acknowledgements

First, I would like to thank my advisor, Professor Ákos Lédeczi. I am grateful that he

took a chance and accepted a student with a mathematics major and only a few classes in

Computer Science. Ákos has often provided guidance, constructive criticism, and unadorned

feedback on my writing which has improved the quality of my research. I would also like to

thank my Ph.D. Committee, Professors Biswas, White, Gokhale, and Brady. Their valuable

feedback and questions regarding my research has been very helpful both for the dissertation

and potential future work.

I would also like to thank my frequent co-authors, Péter Völgyesi, Miklós Maróti, and

János Sallai. Each of them have been willing to provide valuable feedback and insight when

I would wander into their office while working on some research problem. As these questions

were sometimes asked in broken Hungarian, I am also quite thankful for their patience.

Finally, I am especially thankful for my wife, Cassie. She has been very supportive

throughout the entire graduate program. This has included busy travel schedules, late

nights (and early mornings) working on research and class work, and learning much more

about NetsBlox and educational environments than she probably ever thought she would.

This work was made possible through Vanderbilt University’s Trans-institutional Pro-

grams (TIPs). This material is also based in part upon work supported by the National

Science Foundation under grants CNS-1644848 and DRL-1640199. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the NSF.

ii

Table of Contents

Acknowledgements . ii

List of Figures . vi

I Introduction . 1

1.1 Computer Science Education . 1

1.2 Educational Visual Programming Languages 1

1.3 Networking and Distributed Computing 2

1.4 Problem Statement . 3

1.5 Contributions of this Dissertation . 4

1.6 Organization . 5

II Distributed Programming Abstractions 7

2.1 Background and Related Work . 7

2.1.1 Educational Programming Languages 7

2.1.2 Educational Visual Programming Languages 8

2.1.3 Networking . 18

2.1.4 Networking and Visual Programming 22

2.2 Approach . 27

2.2.1 Messages . 27

2.2.2 Rooms . 30

2.2.3 Remote Procedure Calls . 32

2.2.4 Services . 32

2.2.5 Invoking Remote Procedure Calls 33

2.2.6 Error Handling . 35

2.2.7 User-Defined Procedures . 36

2.3 Debugging Distributed Applications . 36

2.3.1 Room Debugger . 37

2.4 Illustrative Examples . 38

2.4.1 Basic Distributed Applications 39

2.4.2 Advanced Distributed Applications 42

III Remote Block Execution . 47

3.1 Background and Related Work . 47

3.1.1 Converting Blocks to Text . 47

3.1.2 Combined Visual and Textual Environments 50

iii

3.2 Compiler Design . 51

3.2.1 Con�gurable Block Behavior . 51

3.2.2 Concurrency Model . 53

3.2.3 Closures and Function Portability 57

3.2.4 Security Concerns . 59

3.3 Execution RPC . 60

3.3.1 Execution Semantics . 60

3.3.2 Modi�ed Block Implementations 62

IV Collaborative Editing . 64

4.1 Background and Related Work . 64

4.2 Challenges . 70

4.2.1 Conceptual Challenges . 70

4.2.2 Technical Challenges . 73

4.3 Approach . 73

V Novice-Friendly Version Control 78

5.1 Background and related work . 78

5.1.1 Version Control in the Classroom 78

5.1.2 Simpli�ed Version Control and Visual Programming 80

5.2 Approach . 81

5.2.1 Fine-grained Reversion . 83

VI Empirical Support . 86

6.1 Background and Related Work . 86

6.1.1 E�ectiveness of Educational Programming Environments 86

6.2 NetsBlox . 88

6.3 Case Studies . 88

6.3.1 SSMV Summer Camp . 88

6.3.2 Budapest Summer Camp . 90

6.3.3 Fifth Grade Science Classroom 91

6.4 Discussion . 95

VII Conclusion and Future Work . 97

7.1 Contributions . 97

7.2 Future Work . 99

iv

Appendices

A Sample Generated JavaScript Code 101

A.1 Sample Input Block Scripts . 101

A.2 Generated JavaScript output . 102

B Case Study Assessment . 107

C Fifth Grade Science Study Short Answer 122

C.1 Categorized Student Responses . 122

C.1.1 Distributed Programming Abstractions 122

C.1.2 Perceived Self-E�cacy . 123

C.1.3 Miscellaneous . 123

References . 125

v

List of Figures

Figure Page

1 Modeling Mold Aggregation in StarLogo [107] 8

2 Sample Program in LogoBlocks . 9

3 The Scratch Environment . 10

4 A Simple Script in Scratch . 10

5 An Anonymous Function for Drawing a Square in Snap! 11

6 An Introduction to Recursion using Anonymous Functions and Lists . . . 12

7 Creating a 3D Staircase in BeetleBlocks [112] 13

8 An Example Project in Alice3 . 14

9 Programming in Kodu . 15

10 Programming in CodeBlocks [144] . 16

11 Branching in CodeBlocks . 17

12 Designing Components of a Mobile App using the Designer [103] 17

13 Programming App Behavior using the Blocks Editor [103] 17

14 The Omnet++ Development Environment [133] 19

15 De�ning a BitTorrent Network in PADS [8] 20

16 Overview of SPLAY [109] . 21

17 Visualization of the Java Toolkit [115] . 22

18 Requesting a weather forecast using the OpenWeatherMap API 23

19 Multiplayer Movement with Cloud Data 24

20 Sending a List using the Mesh . 25

vi

21 Receiving a List using the Mesh . 25

22 Accessing Weather Data with the Scratch Extension 26

23 Accessing International Space Station Data with the Scratch Extension . . 27

24 Event Example in Snap! . 27

25 Receiving and Asynchronous Sending of Messages 28

26 Synchronous Messaging . 29

27 Message Type Creation . 29

28 Tic-Tac-Toe Message Handler Block . 29

29 Viewing and Editing the Room . 31

30 Sending a message within a Room . 32

31 RPCs for Coordinate Transformation . 33

32 Dynamic Blocks for invoking RPCs . 33

33 Initiating the Sending of Earthquake Messages 34

34 Receiving Earthquake Messages . 35

35 RPC Error Handling . 35

36 Simple User-De�ned Procedure . 36

37 Replaying Messages in a Room . 39

38 Sending Chat Message . 40

39 Receiving Chat Message . 40

40 Sending Mesh Message . 41

41 Receiving Mesh Message . 42

42 Publish-Subscribe Broker . 43

vii

43 Example Publish-Subscribe Client . 44

44 Storing Data in MapReduce . 44

45 Submitting MapReduce Job . 45

46 Distributing Data To Worker Nodes . 46

47 Executing Map Step on Worker Nodes . 46

48 De�ning a Code Mapping from Snap! to C 48

49 Generating Code From Blocks in Snap! 48

50 Generated Code From Figure 49 . 49

51 Editing Blocks and Text Together in Trinket 51

52 Environment-Independent Block Compiler Design 52

53 Simple Example Script . 52

54 Generated Code for Figure 53 . 52

55 Lambda Expressions . 54

56 Generated Code for Lambda Expression in Figure 55 55

57 Generated Code for Figure 55 . 56

58 Basic Lambda Expression . 57

59 Basic Closure . 57

60 Closure with Other Script Dependencies 58

61 Fibonacci Generator . 59

62 Batching RPC Requests . 61

63 Setting Variable During Remote Block Execution 61

64 Converting Point from Polar to Cartesian 62

viii

65 Simpli�ed Example of Operational Transformations 65

66 Concurrent Directed Acyclic Graph Edits Require Global State Information 66

67 Overview of Di�erential Synchronization [42] 67

68 Architecture of emfCollab [38] . 68

69 Block Execution in Lively Environment 71

70 Collaboration in a Distributed Application 72

71 Changing a Block's Type . 75

72 Viewing Project in Replay Mode . 82

73 Operation Requiring Multiple Inverse Operations 83

74 Dependent Operations in User-Based Operation Queues 85

75 Interactive Weather Application . 92

ix

Chapter I

Introduction

1.1 Computer Science Education

Software has become a ubiquitous part of everyday life and its presence only continues to

grow. Smartphones, wearables, and the Internet of Things have been increasing the preva-

lence of electronic devices, providing new platforms for software innovation and reinforcing

the importance of software development. Occupations in information technology have drasti-

cally increased over the past 50 years. In 1970, there were approximately 450,000 individuals

working in information technology in the United States; in 2014, this number reached 4.6

million [13]. This growth has also been projected to continue through 2022, increasing the

number of jobs by 18% [108].

This rise in technology employment and use in everyday life has emphasized the impor-

tance of computer science and STEM education [68]. There have been a number of e�orts

worldwide to introduce children to computer programming such as Computing At School and

CSForAll. Additionally, there are many organizations supporting this same goal including

Khan Academy, Code.org, Girls Who Code, and the Raspberry PI Foundation. Visual pro-

gramming languages have played a very prominent role in this e�ort and have been used to

teach programming [83, 139, 114] as well as science and computational modeling [135, 124].

1.2 Educational Visual Programming Languages

The educational literature on learning computing is �lled with observations about chal-

lenges faced by beginner programmers. When �rst learning to program, students must learn

both the syntax and semantics of the given language. As languages consist of a limited

number of elements which can be composed in many ways, students must learn the seman-

tic results of combining the given language elements in a variety of ways. Furthermore,

the students also need to learn how they can compose the given language elements in a

way in which the semantic result performs the desired function. As students are learning

to solve these semantic challenges, they often get confused with syntactic intricacies of the

language [125, 102]. Reducing the syntactic complexities of a language allows the students

to focus on the semantic challenges [54].

Many visual programming languages, like Scratch, simplify the syntactic complexity of

the language by providing blocks representing the language elements which can be composed

1

using a simple drag-and-drop interface. The shape determines how the blocks can be com-

posed; incompatible blocks cannot be connected together resulting in the inability for users

to create syntactically invalid code. As a beginner programming language, it allows novices

to simply focus on the semantic challenges of learning the language rather than struggling

with syntactic intricacies.

1.3 Networking and Distributed Computing

Existing educational visual programming tools focus only on the computer and disregard

the network, an equally important concept. Networking is a key component to many com-

monly used software applications. Examples of networking are everywhere and include the

web, Amazon, Google, Twitter, Facebook, YouTube, autonomous vehicles, mobile phones,

and online gaming. Networking enables the development of distributed applications where

multiple applications communicate over the network to coordinate and perform some de-

sired function. Distributed computing is another important concept and is present in all the

previously mentioned networking examples.

The ubiquity of networking, especially among common daily activities, makes it a nec-

essary part of computer literacy. Many common applications not only use networking but

require it to function. Without introducing networking concepts to young learners, the key

elements of these types of applications cannot be e�ectively understood. If they cannot

understand the key elements of this fundamental technology, computer literacy will be a

challenge.

Introducing networking concepts to young learners provides a pedagogical opportunity.

The pervasiveness of networking, especially in many popular social applications, makes pro-

gramming these types of network enabled applications particularly relevant to students and

provides excellent motivation. Incorporating networking capabilities into early educational

programming tools could enable users to access network resources and build their own dis-

tributed applications. This can enable users to incorporate relevant, real-world data making

programming more relevant as well as engaging to a variety of di�erent student interests.

Building distributed applications provides an opportunity to make programming a more

social activity as students can develop distributed applications together.

Networking and distributed computing are important computer science concepts and

should be introduced in the K12 curriculum. Concepts such as asynchronous and syn-

chronous communication, reliable and unreliable protocols, and the need for concurrency in

operating systems are advocated by the ACM/IEEE computer science curriculum starting

at the college level. The premise of this work is that through a carefully designed interface

2

and the use of natural, intuitive abstractions, distributed concepts could be introduced as

part of the high school computer science curriculum.

1.4 Problem Statement

The primary focus of our work is to make distributed computing accessible to high

school students with little programming experience. By building on the success of visual

programming languages for making programming accessible to novice programmers, we be-

lieve that developing abstractions within the blocks-based programming paradigm can make

distributed computing accessible even to users with little programming experience. En-

abling students to develop distributed applications would provide concrete examples and

experiences from which they can learn distributed computing concepts. However, providing

capabilities for developing distributed applications also adds complexity to student projects.

As the complexity of user applications grows, it is important to provide additional sup-

portive capabilities to enable the users to manage increasingly complex applications. We

have identi�ed a number of challenges in making distributed computing accessible to high

school students. The �rst two problems pertain to enabling novices to develop distributed

applications; the remaining problems are related to the management of complex applications.

� Distributed Programming Abstractions. Designing the appropriate abstrac-

tions supporting the development of distributed applications is important for enabling

novices to work with them e�ectively. The abstractions must hide unnecessary com-

plexities and have a low threshold to developing basic distributed applications. At the

same time, they must also have a high ceiling to support the creation of more sophisti-

cated distributed applications demonstrating concepts like messaging patterns or data

processing paradigms. Access to the network, a fundamental component of distributed

applications, provides an opportunity for accessing internet resources as well.

� Remote Block Execution. Developing distributed applications introduces addi-

tional design considerations such as network latency and data locality. That is, under-

standing the strengths and limitations of speci�c execution environments can be used

to inform design decisions when developing a distributed application. To expose stu-

dents to these concepts, we propose allowing them to execute custom block functions

on remote computing resources outside of the blocks-based programming environment.

The execution of custom block functions outside of the blocks-based programming en-

vironment is a non-trivial task. Di�erent execution environments may have di�erent

capabilities from the original programming environment. Consequently, the behavior

3

of the individual blocks may require modi�cation to perform as expected when exe-

cuting in the new environment. Although the behavior of the individual blocks may

change, it is important that the semantics of the code remains unchanged and behaves

as expected. This includes conforming the concurrency model used by the original

environment as well as supporting closures and functional capabilities of the original

language. Additionally, security concerns resulting from executing arbitrary code on

shared, distributed resources are also an important design consideration.

� Collaborative Editing. Collaboration is an essential part of solving challenging

problems and developing complex applications. Collaborative editing in lively, blocks-

based programming environments introduces a number of unique challenges. \Lively"

programming environments do not provide distinct development and execution stages;

the program is always responsive and automatically updates according to user mod-

i�cations. Although this promotes student exploration and feedback, it introduces

challenges when considering collaboration in these types of environments. Speci�cally,

what should be synchronized in these environments? Subsequently, exactly which

actions or behaviors should be synchronized and how should we support this synchro-

nization?

� Novice-Friendly Version Control. Version control is commonly used in large soft-

ware projects and provides a powerful way to recover from mistakes as well as gather

insight into the history of a given project. Perhaps as a result of the powerful capa-

bilities of version control, they are often very complex and not accessible to novice

programmers. Most version control tools operate on text �les and cannot provide

meaningful information about changes made in other types of �les.

Regardless, version control capabilities could be very e�ective in assisting novice pro-

grammers in managing more complex applications. This introduces unique challenges.

The version control capabilities should be intuitive and understandable to students

with little or no direct instruction. Project modi�cations should also be represented

meaningfully to the students. Standard approaches to displaying di�erences in version

control tools are designed for text data and are inadequate in the given setting.

1.5 Contributions of this Dissertation

In this work, We present abstractions designed to make distributed computing accessi-

ble to novice programmers. These abstractions have a low threshold while simultaneously

supporting the development of even sophisticated distributed applications. Additionally,

4

We demonstrate the capabilities of these abstractions through examples that contain both

simple and complex distributed applications to illustrate the low threshold and advanced

capabilities of the provided abstractions.

We also present a technique for executing blocks in alternative execution environments

with di�erent capabilities. This includes designing a cross-compiler from the source block

language supporting the con�guration of the underlying primitive block implementations.

The compiler design also addresses adherence to the original concurrency model and safety

concerns when compiling arbitrary code for execution on potentially shared resources. Fur-

thermore, we present supportive capabilities including collaborative editing in a lively, blocks-

based environment and novice-friendly version control support.

Finally, we have designed a sophisticated environment supporting these abstractions (in-

cluding the collaboration and version control capabilities) called NetsBlox. We provide three

case studies using NetsBlox to evaluate the following hypotheses about the provided contri-

butions:

� The networking abstractions enable novices to develop distributed applications.

� Building distributed applications with these abstractions enables users to develop a

better understanding of important distributed computing concepts.

� Providing access to additional resources and making programming more social improve

student interest and engagement.

1.6 Organization

This dissertation is structured as follows. Chapter 2 presents the distributed program-

ming abstractions. This includes an overview of the related work and a presentation of the

proposed approach in Section 2.1 and Section 2.2, respectively. Section 2.3 presents con-

cepts and interfaces for debugging distributed applications. Examples demonstrating the

simplicity and expressiveness of the abstractions are outlined in Section 2.4.

Chapter 3 discusses the approach for execution blocks in alternative environments. Sec-

tion 3.1 presents related work for generating code from block-based programs as well as

hybrid visual and textual programming environments. The design of the block compiler is

speci�ed in Section 3.2. In Section 3.3, the use of the compiler to execute blocks in a server

environment is described.

Collaborative editing capabilities are discussed in Chapter 4 including an overview of re-

lated work. Conceptual and technical challenges are examined in Section 4.1 and Section 4.2,

respectively. Our approach is then presented in Section 4.3.

5

Similarly, novice-friendly version control is discussed in Chapter 5. Background and re-

lated work is provided in Section 5.1 including both teaching version control in the classroom

and approaches to simplify version control. Finally, we present my approach in Section 5.2.

Chapter 6 investigates empirical support for the presented abstractions and designs.

Related work evaluating educational programming environments is shown in Section 6.1.

NetsBlox, a prototype environment of the presented work is described in Section 6.2 and

three case studies using NetsBlox to evaluate the presented concepts and abstractions are

discussed in Section 6.3. Finally, we conclude the dissertation with a discussion of the

advantages, limitations and areas for future work in Chapter 7.

6

Chapter II

Distributed Programming Abstractions

2.1 Background and Related Work

2.1.1 Educational Programming Languages

Logo

One of the earliest educational programming environments is LOGO. This is a pro-

gramming language designed to teach students computer programming by enabling them to

control a \turtle" which moves and draws to create graphical e�ects. By simplifying the lan-

guage syntax, LOGO made programming more accessible to novices and made it an e�ective

tool in the classroom [93, 63, 99, 24]. Although LOGO generates a graphical output, it is

a powerful list-processing language which supports a number of advanced features including

subprocedures and recursion [82].

LOGO proved an e�ective resource in the classroom. As a result, it provided inspiration

for many subsequent educational programming languages. These new languages build upon

LOGO to make it applicable for various other applications including modeling complex

systems [107, 135, 97, 130], learning object-oriented programming [36, 91], and even audio

programming [53]. LOGO also provided the inspiration for a number of other languages and

environments which may have a less obvious resemblance but still extend the principles and

vision of LOGO [59, 78, 87, 75].

NetLogo and StarLogo

Two notable LOGO derivatives are NetLogo [130] and StarLogo [107]. These environ-

ments are both targeted toward modeling complex systems and require the user to program

in a \decentralized manner." Users program the behavior of individual agents and then ex-

plore the outcomes of the entire system. This enables users to view complex systems as the

result of many individual, independent behaviors rather than a simple centralized mindset.

One example of such a simulation can be found in mold aggregation behavior (provided

in [107]) and is shown in Figure 1. In this example, mold cells are represented by white

pixels on a black background. The user programs the behavior of the mold cells to emit a

chemical pheromone and follow the gradient of the surrounding pheromone. The background

\patches" can be programmed to allow the current pheromone on the given patch to slowly

evaporate. When the behaviors of the mold cells and the background are combined, the

7

Figure 1: Modeling Mold Aggregation in StarLogo [107]

mold cells will begin to form clusters shortly after running the simulation. Although this is

a simple example, it captures the essence of the emergent behavior in decentralized systems

and their ability to be modeled in environments such as StarLogo and NetLogo.

2.1.2 Educational Visual Programming Languages

LogoBlocks

LogoBlocks was the �rst blocks-based programming language. It was designed for pro-

gramming on the Programmable Brick [14]. Building on top of Brick Logo, LogoBlocks

merged the visual programming techniques of the time with the syntax and functionality

of Brick Logo [82]. Although LogoBlocks was limited in its functionality (it did not have

support for functions or branching [14]), its user interface introduced some concepts and

visual cues still used in popular blocks-based languages today. These include the rounded

rectangles used for statements and input slots for input arguments. The sample program is

shown in Figure 2 [14].

Scratch

The most well-known blocks-based programming environment is Scratch [78]. Scratch

enables users to build interactive applications ranging from greeting cards to simulations.

Drawing inspiration from Etoys, StarLOGO, and LOGO, Scratch provides a simple respon-

sive environment to make programming accessible to novices [59, 107]. It also runs in the web

browser and requires no additional software to be installed on the computer, contributing

to its ease of adoption. Unlike many other educational programming environments, such as

Alice, Greenfoot, and Snap! [27, 64, 87], it targets younger users (the most common starting

age for a \Scratcher" is 12 [116]).

Scratch provides a carefully designed interface and simple abstractions to enable novices

to begin programming. Users are given a \stage" where the output of the program can be

viewed along with multiple \sprites" or entities interacting on the stage. Both the stage and

8

Figure 2: Sample Program in LogoBlocks

the sprites are programmable and can also easily incorporate their own media by adding

either \costumes" (images) or \sounds" to the given entity. This environment is shown in

Figure 3.

Lego-like blocks are connected to create programs and the shape of the blocks provides

the user information about how it can be used. The color and text provide insight into

what the block might do. For example, statements (or \command blocks") are represented

using rounded rectangles with indents on the top and bottom which imply that they can

be connected in sequence. Blocks that only have a connection indent on the bottom listen

for events and are used to start scripts. Expressions (or \reporters") are rounded and have

no top and bottom indents and cannot be connected in sequence but rather can be placed

inside of other blocks that contain a similarly shaped input slot.

The script in Figure 4 is executed when the green
ag is clicked (as the top block states).

It results in the corresponding sprite to bounce around the screen and say \You got me!"

if the mouse touches it. In this script we can see that the blocks are designed to be simple

and user-friendly. Block shapes restrict them from being used in invalid contexts; \forever"

and \if" blocks can only be connected after another statement and could not be used in an

input slot of another block. The \touching" block's diamond shape indicates that it returns

a boolean value. The empty \if" block's input �eld is also a diamond shape indicating

that it expects a boolean input as opposed to other input slots like in the \move" or the

\say" blocks. By carefully designing the shapes and colors of each of the blocks, Scratch is

9

Figure 3: The Scratch Environment

Figure 4: A Simple Script in Scratch

able to prevent the user from creating syntactically erroneous scripts and visualize implicit

constraints between blocks to promote creating meaningful scripts and programs.

The Scratch team provides support for experimental extensions to Scratch on their

ScratchX website. These extensions allow users to add extra functionality to Scratch in-

cluding access to temperature data, Twitter, Spotify, and arduino support [32]. However,

10

these extensions are not managed or endorsed by the Scratch team. Projects created on the

ScratchX website are not able to be shared on the Scratch website.

Snap!

Snap! is a conceptual extension of Scratch developed at UC Berkeley. It was designed

to raise the ceiling of Scratch by providing more advanced functionality including �rst class

functions and lists [87]. Drawing heavily from Scratch, Snap! provides a seamless transition

for Scratchers. Snap! and Scratch both provide open-ended, exploratory spaces in which

the users can develop their programs.

Figure 5: An Anonymous Function for Drawing a Square in Snap!

Figure 5 provides an example of an anonymous function in Snap!. As Snap! also supports

�rst class lists, these functions can be placed in lists and dynamically selected and run at

runtime. This high degree of
exibility makes Snap! a powerful tool for teaching advanced

programming concepts and has lead to its success as part of the Beauty and Joy of Com-

puting [12] curriculum. An example using both �rst class lists and �rst class functions to

introduce recursion is provided as a sample project in Snap! called \vee" shown in Figure 6.

In this program, a sprite has a list variable called \shapes" which is �lled with functions

for drawing squares, hexagons, and stars as well as a function called \vee." \Vee" selects two

functions out of the list to call randomly. When the application starts, the \vee" function

executes and results in the sprite drawing two shapes from the ones in the list. This is a

simple example but can become even more interesting as pressing the \up arrow" will result

in adding the \vee" function itself to the list. This results in the program becoming non-

deterministic as the function now may recurse and select two more shapes to draw from the

list. A screenshot of this application (including the implementation of the \vee" function)

is given in Figure 6.

Along with raising the ceiling of Scratch, Snap! is implemented in JavaScript (as opposed

to ActionScript as in Scratch v2.0) and made its source code openly available under the

AGPL license. These subtle technical decisions allowed it to become the starting point for a

number of extensions which pushed the boundaries of block-based programming and applied

it to a number of di�erent domains.

11

Figure 6: An Introduction to Recursion using Anonymous Functions and Lists

One such extension is BeetleBlocks which replaces the iconic LOGO turtle with a beetle

which can not only \walk" around a two-dimensional plane but also
y in a three-dimensional

environment. In this environment, users can construct three-dimensional objects and explore

three-dimensional geometry [66] (which can later be exported and printed on a 3D printer).

Figure 7 shows an example project in BeetleBlocks constructing a three-dimensional

staircase with the code displayed on the left and the output of the execution on the right. In

this example, the program is creating two sides of a step in the nested loop where the depth

of the stair is � 50 and the length is given by the variablea. The inner loop is executed

twice which results in the construction of all 4 sides of the three-dimensional stair. The code

following the nested loop decreases the size ofa (shortening the width of the subsequent

stairs), draws the vertical section between stairs, and updates the hue. This outer loop is

performed 10 times resulting in the creation of a staircase with 10 stairs of di�erent colors.

The example in Figure 7 demonstrates the complexity of thinking in 3 dimensions and

how relatively simple code can result in complex and intriguing structures. BeetleBlocks

also supports exporting projects to a 3D printer which enables code to become even more

tangible and relevant for users as their projects are no longer simply an abstract entity on the

screen. There are also many other Snap! derivatives targeting a number of other domains

including robotics, APIs, database queries, graph algorithms, and parallel computing [120,

4, 47, 40, 29].

12

Figure 7: Creating a 3D Staircase in BeetleBlocks [112]

Three-Dimensional Environments

Although BeetleBlocks provides a very powerful platform for creating programs with a

three-dimensional output, there have been a number of other projects providing di�erent

approaches [27, 60, 31, 135, 75, 95]. Some noteworthy alternatives include Alice [27], and

Kodu [75].

Alice3 is an educational programming environment which provides users with a three-

dimensional world in which they can see their projects come to life. Although early versions

(Alice and Alice2), provided a textual programming interface [27], Alice3 provides users with

a visual blocks-based language [60, 31]. This environment provides three interfaces: a scene

editor, a code editor, and a runtime display.

Figure 8 shows an example project in Alice3 [31]. In this example, the user has created

a scene with a number of di�erent entities shown in the interface on the top left. These

entities include obvious ones, such as people and objects, to the less apparent ones such as

the ground and the camera. The code for the scene is shown in the code editor given in the

top right panel. In this scene, the code de�nes the behavior of the scene when it runs; in

this case, Joe will run \callEveryoneOver" and Susan will run the method \lookAroundPara-

noically" simultaneously. The output of this scene is currently visible in the runtime display

shown at the bottom of the window. This display shows the \Joe" avatar is raising his

hands and looking around (\calling everyone over") and the \Susan" avatar looking around

\paranoically."

13

	Acknowledgements
	List of Figures
	Introduction
	Computer Science Education
	Educational Visual Programming Languages
	Networking and Distributed Computing
	Problem Statement
	Contributions of this Dissertation
	Organization

	Distributed Programming Abstractions
	Background and Related Work
	Educational Programming Languages
	Educational Visual Programming Languages
	Networking
	Networking and Visual Programming

	Approach
	Messages
	Rooms
	Remote Procedure Calls
	Services
	Invoking Remote Procedure Calls
	Error Handling
	User-Defined Procedures

	Debugging Distributed Applications
	Room Debugger

	Illustrative Examples
	Basic Distributed Applications
	Advanced Distributed Applications

	Remote Block Execution
	Background and Related Work
	Converting Blocks to Text
	Combined Visual and Textual Environments

	Compiler Design
	Configurable Block Behavior
	Concurrency Model
	Closures and Function Portability
	Security Concerns

	Execution RPC
	Execution Semantics
	Modified Block Implementations

	Collaborative Editing
	Background and Related Work
	Challenges
	Conceptual Challenges
	Technical Challenges

	Approach

	Novice-Friendly Version Control
	Background and related work
	Version Control in the Classroom
	Simplified Version Control and Visual Programming

	Approach
	Fine-grained Reversion

	Empirical Support
	Background and Related Work
	Effectiveness of Educational Programming Environments

	NetsBlox
	Case Studies
	SSMV Summer Camp
	Budapest Summer Camp
	Fifth Grade Science Classroom

	Discussion

	Conclusion and Future Work
	Contributions
	Future Work

	Sample Generated JavaScript Code
	Sample Input Block Scripts
	Generated JavaScript output

	Case Study Assessment
	Fifth Grade Science Study Short Answer
	Categorized Student Responses
	Distributed Programming Abstractions
	Perceived Self-Efficacy
	Miscellaneous

	References

