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ABSTRACT

The increased signal-to-noise ratio (SNR) that accompanies the use of stronger

static fields in magnetic resonance imaging (MRI) has driven the use of increasingly

higher fields ever since the technology’s inception over thirty years ago. Currently,

the potential clinical use of 7 Tesla (7 T) MRI scanners is under investigation. At such

high fields, a number of complications prohibit practical realization of the potential

gains in SNR and reduce image quality. One major problem is the inhomogeneity

of radio frequency (RF) fields that originates when transmitted RF wavelengths are

comparable to the dimensions of the human body. When this condition is fulfilled,

significant RF attenuation and interference result, leading to spatially varying MR

signal intensities.

This thesis addresses the challenge of nonuniform RF fields through the design of

RF pulses that induced magnetization responses largely independent of underlying

RF field variations. The advantages of this approach are that pulse designs are not

patient-specific and can even be implemented across a range of static field strengths.

Drawbacks to such strategies involve the limited degree to which uniform magnetiza-

tion responses can be achieved given the practical restrictions of RF pulse power and

duration. Pulse designs rely upon numerical optimization of RF modulation patterns

composed of series of discrete sub-pulses. Such composite pulses have been designed

for excitation, inversion, refocusing, and saturation and largely tolerate the field vari-

ations observed in the human brain at 7T. In all cases, appropriate comparisons are
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made with established field-insensitive pulse designs, and performance as a function

of pulse power and duration is considered in detail. Results indicate that use of nu-

merically optimized composite pulses can greatly reduce the effects of nonuniform RF

fields in almost any pulse sequence employed in the human brain at 7T. In addition

to field-insensitive composite pulses, this thesis includes an evaluation of RF field

mapping protocols, the numerical optimization of adiabatic pulses, and the design

of frequency-selective composite pulses for a number of applications at both low and

high field strengths.
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PREFACE

My time as a graduate student has been characterized by cycles of excitement

and disappointment. At times I was full of enthusiasm for the experiments I was

conducting or the knowledge I was acquiring, and, at other times, I thought I was

not going to make it and that everything was pointless. On countless occasions,

I thought I had discovered a new way of doing things only to learn that someone

else had come across the same idea 10 or 100 years ago. Also, there were many

times I had worked very hard in programming MR scanners to perform certain tasks,

and the results seemed to indicate that everything was functioning properly. Time

and time again I would learn that the reason everything seemed to be working so

well was because it was not working in the way I had intended. Many times I had

oversimplified the problem and was overlooking something fundamental. At first, I

would feel so depressed when these roadblocks would surface. Sometimes I felt that

there was no hope for me—that I was just too stupid to succeed. After some time,

I would inevitably regain excitement about what I was working on and would start

to get ideas about how to do it differently, but, invariably, I would discover another

pitfall. Eventually, after witnessing this cycle enough times, I began to realize that

it really was just a cycle, and, moreover, it was the process by which I was learning.

I also began to understand that science can be a very tedious process, but, with

patience and determination, progress can really be made, even if in the smallest of

steps.
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I remember as a young boy reading my dad’s copy of the book Cosmos by Carl

Sagan (69). On the first page, in reference to mankind’s discoveries over the last few

millennia, Sagan writes,

Those explorations required skepticism and imagination both. Imagina-
tion will often carry us to worlds that never were. But without it, we go
nowhere. Skepticism enables us to distinguish fancy from fact, to test our
speculations. The Cosmos is rich beyond measure—in elegant facts, in
exquisite interrelationships, in the subtle machinery of awe.

It makes sense to me now that the cycles of exuberance and discouragement that I

experience closely parallel the scientific process. They are my emotional responses to

the process of discovery. As described in Cosmos, Johannes Kepler also was familiar

with similar states of despair and euphoria. In recalling his excitement of investigating

the relationship of planetary orbits to the five Euclidean solids, Kepler wrote,

I shunned no calculation no matter how difficult. Days and nights I spent
in mathematical labors, until I could see whether my hypothesis would
agree with the orbits of Copernicus or whether my joy would vanish into
thin air.

Kepler was heartbroken upon his realization that planetary orbits were not circles,

but ellipses. Although he initially felt he had been left with “only a single cartful of

dung,” he later rejoiced in his own perils of discovery writing,

The truth of nature, which I had rejected and chased away, returned by
stealth through the back door, disguising itself to be accepted. . . Ah, what
a foolish bird I have been!

Today, I strive to embrace the scientific process in the manner of Kepler rather than

to fear it as I once did. I now know that to learn anything new, I will first likely
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be surprised or disappointed or both. Making mistakes is an integral part of the

scientific mechanism and not a part that should hamper one’s courage to seek the

truth. These perhaps most important lessons of graduate school can be consolidated

in a single thought—never be afraid of feeling stupid.

Besides Carl Sagan and Johannes Kepler, many people have helped me realize

that science is worth the trouble and have helped to make my time in graduate

school rewarding. I have a long list of people whose help and support I wish to

acknowledge. Firstly, I’d like to thank my adviser, John Gore, for giving me an

opportunity. I walked into his office in 2006 and professed my interest in trying

my hand at MRI research. Up until that time, my graduate school research had

been focused on attempting to digest the workings of high-energy physics, and I was

more than a little discouraged with my abilities to do so. John did not want to

see a curriculum vitae or letters of reference. He had no idea who I was or what I

was capable of, but he opened his doors to me and shared with me his hard-earned

resources without hesitation. This attitude struck me as remarkable. Today, I see it

as a hallmark of John’s success—an open mind and a willingness to explore new ideas

and new opportunities, often times with total disregard for the prevailing consensus.

Over the last five years, John has been a very busy person. Nevertheless, he has

found a way to make time for me and to help steer me away from dead-end streets.

He has also given me complete freedom to explore the facets of MR science that

most interest me. He seems to understand that new insights can be discovered in

unpredictable contexts and that every question (well, most questions) deserve an
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answer—thus, he recognizes value in almost any investigation. I am indebted to John

not only for his open-mindedness, his kind and patient support, and his sharing with

me the opportunity to conduct research on state-of-the-art instruments but for his

demonstration of how it is possible to be a successful scientist and administrator while

still embracing one’s own values. He has shown me a way to maintain uniqueness and

courage in the face of a corporate machine.

Thank you to the other members of my Ph.D. committee for giving their valuable

time to help direct me and give useful feedback to my studies. I thank Adam Anderson

for finding time to answer my questions despite the myriad of other students vying

for his attention and for his clear explanations to someone who knew nothing about

magnetic resonance. When I returned from the 7T MR scanner for the first time,

with images that were mostly noise, he patiently went through the list of sequence

parameters describing the many things I had done wrong. This must be an example

of why so many students flock to him—because he really is so helpful, so kind, and

so patient. I think Adam has not forgotten what it is like to be a student, a fact that

makes him an excellent teacher. It makes perfect sense that he is heavily sought as an

advisor and a mentor. I thank Volker Oberacker for being without question the most

outstanding physics teacher I have ever taken a class from. He too has not forgotten

the plight of the graduate student and has a true gift for decomposing daunting

theories into a collection of comprehensible ideas such that true understanding is

possible. I believe his ability to do this is critically important in instilling physics

students will the self-confidence they need to succeed. The subject of physics can
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seem intimidating and discouraging when presented in a complicated way; however,

when the teacher makes priorities out of clarify and simplicity, the subject can seem

manageable and inspiring. I appreciate the willingness of Cynthia Paschal to remain

on this committee despite her new responsibilities as a dean. I would like to thank

her for supervising the writing of my first scientific paper, for teaching me so many

basics of MR science, and for being such an approachable and caring mentor. I also

wish to thank Todd Peterson for lending his physics expertise to the review of this

thesis and for his willingness to spend time digesting research that is largely unrelated

to his own. This is another example of how he patiently tolerates an MR dominated

workplace in order to achieve a greater good.

I would like to thank Marcin Jankiewicz for being a friend through most of my

graduate school days. Our daily conversations about RF pulses over the course of

several years have led to and refined many of the ideas presented in this thesis. The

way we feel comfortable admitting ignorance to each other has proved invaluable

in gaining understanding of a subject we knew nothing about five years ago. This

process has shown me that realizing how little you know is sometimes necessary in

order to learn anything more.

I would like to thank Medford Webster for mentioning to me back toward the

beginning of graduate school that “The things John Gore is doing in imaging science

are nothing short of astounding.” Med, thank you also for demonstrating to me the

way that the subject of physics can bring fulfillment and fascination to someone over

the course of an entire lifetime. Your enthusiasm and determination are inspiring.
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I want to acknowledge support of those who worked for Philips Healthcare during

the majority of my time in graduate school. Brian Welch has been most helpful in

keeping me up-to-date with respect to Philips software releases and virtual machines

and source code repositories. His willingness to answer never-ending droves of ques-

tions about Philips programming, ExamCards, and MR scan parameters has been

invaluable. Engineer Chuck Nockowski has made himself available at a moment’s no-

tice to investigate the various misfirings of a complicated and experimental machine.

I am indebted to him for the long hours spent in making sure the scanner and the

godforsaken couch were functional. I would also like to acknowledge the helpful advice

of Stefan Fisher concerning RF pulse implementation on the Philips 7 T system.

The team of MR technicians has been indispensable in ensuring the smooth daily

operation in the VUIIS Center for Human Imaging. Thanks to Donna Butler, Robin

Avison, Debbie Boner, Leslie McIntosh, and Dave Pennell for always being there to

help.

Kevin Waddell has been a very supportive friend over the last two years. I have

very much enjoyed our conversations about things such as Thomas the Tank Engine

and the native trees of Tennessee. I also appreciate Kevin coming to me with his ideas

about low-field RF pulse applications and introducing me to this area of research, and

I thank Raul Colón for spending so much time at the workbench trying to turn these

pulse designs into something tangible. Including Sasidhar Tadanki, the four of us

have made what I think is exciting progress in this arena.

I am grateful to Subechhya Pradhan for taking time out to reflect on life with me.
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I believe we are kindred spirits, and your friendship is comforting. Thanks to Martha

Holmes for appreciating the good and not-so-good moments of graduate school with

me. It would be hard to make it out alive without embracing the humor in otherwise

frustrating circumstances. I would like to thank Jim Joers and Indrajit Saha for

attempting to bestow on me some of their knowledge of spectroscopy. Thanks to

Don Nolting and Jason Buck for showing me around the chemistry lab. I appreciate

conversations with Richard Dortch and Mark Does for mentioning the Version-S pulse

during the VUIIS retreat of 2010. It it were not for them, I might have thought I had

done something interesting for even longer.

Both literally and figuratively, I would not be here without my parents, Gayle

and Paul Moore. Together, they have worked tirelessly to ensure that that my life

is full of opportunity and potential and in doing so have shown me unconditional

love. My mom has taken great care to instill in me self-confidence and has never let

down her guard in making sure I feel loved and appreciated. My dad is characterized

by selflessness, understanding, compassion, and creativity and has demonstrated the

importance of these qualities to me. Everyday, thoughts of my dad motivate me in

trying to make this world a better place, but not with anticipation of acknowledge-
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49. Signal intensities in the phantom (top row) and brain (bottom row) ac-
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52. Comparison of two 20ms hyperbolic secant inversion pulses, one with
modulation functions suggest by MR literature (72; 73) (denoted by
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of transverse magnetization (middle left) on a grid of B+

1 /B
+
1,nom mag-

nitudes (horizontal axis) and frequency offsets (vertical axis); transverse
magnetization as a function of frequency offset for selected B+

1 /B
+
1,nom

values (middle right); transverse magnetization phase (bottom left) on
the grid of B+

1 /B
+
1,nom and frequency offset values; and within-slice trans-

verse magnetization phase as a function of frequency offset for selected
B+

1 /B
+
1,nom values (bottom right). As compared to the sinc pulse of

Figure 64, this pulse achieves a high level of B+
1 -insensitivity and has
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1 /B
+
1,nom magnitudes (horizontal axis) and

frequency offsets (vertical axis); transverse magnetization as a function
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1 /B
+
1,nom values (middle right); trans-

verse magnetization phase (bottom left) on the grid of B+
1 /B

+
1,nom and

frequency offset values; and within-slice transverse magnetization phase
as a function of frequency offset for selected B+

1 /B
+
1,nom values (bottom

right). Results for this sinc pulse are shown as a reference indicating
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CHAPTER I

INTRODUCTION: THE ROLES AND CHALLENGES OF RADIO FREQUENCY

PULSES IN HIGH-FIELD MAGNETIC RESONANCE

1.1 Historical Perspective

The research on radio frequency (RF) pulses presented in this thesis can not be

properly motivated without a brief account of the history of nuclear magnetic res-

onance (NMR) and its application to medical imaging. Although certainly reliant

upon early 20th century discoveries in the field of quantum mechanics by pioneers

such as Stern, Gerlach, Pauli, and Bohr, the discovery of NMR can be traced to

Isidor Rabi who, in 1938, first observed an electrical signal arising from the preces-

sion of nuclear magnetic moments in an external magnetic field (64). While Rabi’s

observations were in the context of molecular beams, Felix Bloch and Edward Purcell

independently observed the same phenomenon in condensed matter in 1946 (6; 63).

The detection of nuclear precession was possible since rotation of a nuclear magnetic

moment gives rise to a changing magnetic flux which can then induce an electrical

current in a conducting coil—a phenomenon described by Faraday’s Law of classical

electrodynamics†. Such experiments as the ones of Bloch and Purcell relied upon the

continuous transmission of radio waves with the frequency being varied until signal

was detected from a sample. By this method, known today as continuous-wave NMR,

†A more detailed description of the physical origin of NMR is provided in Appendix A, the
intention of which is to bridge the knowledge of a typical physics student to the realm of NMR.
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the radio frequency to which a certain nuclear species responded could be determined

and thus the resonant frequency identified. The relationship between this resonant

frequency (ω0) and the ambient magnetic field strength (B0) is characterized by the

nuclear gyromagnetic ratio (γ) such that

ω0 = γB0 . (1.1.1)

Continuous-wave NMR experiments performed with a known chemical sample can be

used to determine the unique value of γ for any atomic nucleus. Once these γ values

have been determined for the nuclei of interest, similar experiments can be used to

acquire the spectra of the various resonant frequencies associated with an array of

nuclear species in a complex chemical sample—a process known as NMR spectroscopy

(MRS).

In the early 1970’s, a major breakthrough in the application of NMR came when

Paul Lauterbur, at New York’s Stony Brook University, developed a technique for de-

termining the originating location of an NMR signal (41). Lauterbur’s method used

spatially varying magnetic fields (now referred to as field gradients) to encode an NMR

signal such that the spatial location of the signal’s origin could be determined (41).

Thus, images in which intensity reflects the NMR signal originating from a given

spatial region or voxel were producible. This advance signified the birth of mag-

netic resonance imaging (MRI). While Lauterbur’s image reconstruction technique

involved projection of the imaging volume along various directions (as is the case in
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X-ray computed tomography, or CT), Peter Mansfield and others at the University

of Nottingham later employed two-dimensional (2-D) Fourier transform operations

to form images from NMR signals (47), thereby establishing the basic method of im-

age reconstruction still in use today. Allen Garroway, working with Mansfield at the

University of Nottingham, pioneered the use of magnetic field gradients during the

application of radio frequency pulses to restrict the NMR signal to a planar volume

(22), a process now widely used to produce MR images of prescribed slices through

the imaging volume. Raymond Damadian was also an instrumental figure in the early

days of MRI. In 1971, while at the State University of New York (SUNY) Downstate

Medical Center, he investigated the differences in nuclear magnetic properties of can-

cerous and healthy tissues as means for differentiating pathologies (18). In 1972, he

filed a patent for an NMR scanning technique for use in diagnosing cancer and thus

is sometimes also recognized as the co-discoverer of MRI. Damadian also produced

in vivo NMR images as early as 1976 (17) and was the first to do so in the human

body in 1977 (19). In the same year, Waldo Hinshaw and Raymond Andrew at Not-

tingham imaged the in vivo human wrist (29). Following the success of these first

human MRI scans, the technology was quickly embraced by researchers at Hammer-

smith Hospital in London† (working with EMI, Ltd.) and the University of California

San Diego (UCSF). Within only a few years, MRI technology had proven useful for

clinical applications and was poised for commercial proliferation.

†John Gore was a medical physicist undertaking research in diagnostic imaging at Hammersmith
Hospital when the first MRI system was constructed there in 1978. He led the research developments
at this facility until moving to Yale University in 1982.
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1.2 High-field MRI

While Lauterbur’s imaging study of 1973 was conducted at 1.4Tesla (1.4T) and

the human wrist study of Hinshaw was performed at half that field strength†, the

first whole-body human MRI scanners, such as those at Nottingham, Hammersmith,

and UCSF, operated between 0.10 and 0.35T. Since the early 1980’s, technological

refinement of large-scale superconducting magnets has allowed for the use of increas-

ingly higher static field strengths in human scanners. A major step forward occurred

in 1986 with General Electric’s introduction of a 1.5T clinical system. Today, 1.5T

is still commonplace for clinical use with 3.0T systems becoming more widespread.

About 40 research sites worldwide now have 7.0T human scanners, with a few 9.4T

systems in operation. Figure 1 exhibits a timeline of the static field strengths used

in clinical and research MRI since 1978.

The driving motivation for higher field strength is an increased NMR signal asso-

ciated with the larger induced bulk magnetization (i.e., the macroscopic sum of indi-

vidual nuclear magnetic moments) in the imaging volume. The bulk magnetization

at equilibrium, typically symbolized as M0, can be shown to be directly proportional

to the static field strength, typically denoted by B0 (see Appendix A). However, the

electro-motive force that allows for detection of NMR signal depends on the rate of

†Hinshaw’s experiment used a smaller solenoid that could accommodate a human arm. Con-
struction of whole-body magnets is considerably more challenging and typically relies upon super-
conductivity to achieve fields greater than 0.1T.
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Figure 1: Highest field strengths of research and clinical human MRI scanners since
the first whole-body systems in 1978. The 1.5T fields first introduced in 1986 are
still the worldwide clinical standard some twenty-five years later. Graphic courtesy
of John Gore.

change of magnetic flux through the receiver coil and is expressible as

emf =

∮

line

E · ds = −dΦB

dt
, (1.2.1)

with E being the electric field in the conducting coil, ds being the line element along

the coil, and ΦB being the magnetic flux through the coil. ΦB depends on both the

magnitude of the transverse component of magnetization (MT ) resulting from appli-

cation of radio frequency radiation and the rate of precession of this magnetization

as dictated by the nuclear resonant frequency (ω0), so the NMR signal (S) can be
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written in terms of the static field strength via the following series of relations:

S ∝ emf = −dΦB

dt
∝ ω0MT ∝ ω0M0 ∝ B2

0 . (1.2.2)

Thus, the signal is found to increase with the square of the static field.

The field-strength dependence of various noise contributions must also be con-

sidered to determine gains in the signal-to-noise ratio (SNR) and, thus, the actual

practical advantage of higher B0. Noise sources include thermal noise (σT ) from ran-

dom motions of molecules in the imaging volume, so-called physiological noise (σP )

arising from such biological processes as tissue perfusion and the cardiac and respi-

ratory cycles, and scanner Johnson noise (σS) originating in hardware such as the

transmission/reception coils, pre-amplifiers, and associated electronics. The collec-

tive noise (σ) from these contributions can then be described through a typical error

propagation relationship such that

σ =
√

σ2
T + σ2

P + σ2
S . (1.2.3)

To relate this collective noise to B0, the dependence on static field strength of each

noise component must be considered. σT scales with the size of the object and B0. It

has been demonstrated that σP depends directly onB0 while σS largely depends on the

frequency of the transmitted and received radiation (ω0). Combining all contributions,
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noise can then be written in terms of ω0 using Equation 1.2.3:

σ ∝
√

a2cω
1/2
0 + a5sω

2
0 ∝ ω0 ∝ B0 , (1.2.4)

where ac and as characterize the dimensions of the coil and the object, respectively.

Combining this result with Equation 1.3.6 gives the field-strength dependence of SNR

to be

SNR =
S

σ
∝ B2

0

B0
= B0. (1.2.5)

Thus, for large objects such as the human body, SNR is found to be directly propor-

tional to the strength of the static field.

Higher SNR in MRI can be beneficial in two main ways—higher resolution images

or shorter scan times. In the first case, higher SNR allows for the collection of

images with higher spatial resolution such that the signal arising from individual

voxels remains well above the background noise. Without higher SNR, such a high

resolution image could be obtained but might appear “noisy” or “grainy” if acquired

in the same amount of time. Only if scan time were lengthened could the same image

quality be achieved at lower field strength. For example, a 2-fold increase in SNR

could either be used to achieve voxel volumes of half the previous size or to reduce

scan time by 75%.

High SNR is useful in MRS for similar reasons, but MRS at high field further

benefits from a larger separation of resonant frequencies for different chemical species

(i.e., a larger chemical shift). This allows for separation of NMR signals arising from
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two species with very similar resonant frequencies. For example, hydrogen protons

in the molecule glutamate (a prominent neurotransmitter) have a slightly different

resonant frequency than in the structurally similar molecule glutamine. The differ-

ence, due to interactions between hydrogen protons and the specific electromagnetic

fields arising from other components of the given molecule, is always about 0.1 ppm

(with respect to B0). Thus, the 1H NMR signals from glutamate and glutamine are

separated by ∼ 6Hz (γ1H×B0×0.1×10−6) at a field strength of 1.5T but by ∼ 30Hz

at 7T.

There exist significant technical challenges that accompany the push to higher field

strength. Perhaps the most consequential of these challenges are the attenuation and

interference of radio waves and the increased energy absorption of radiation in tissue,

both of which arise from the linear dependence of ω0 on field strength (Equation

1.1.1). As ω0 increases, so too must the frequency of the transmitted RF radiation

in order to maintain nuclear resonance. The degree of RF attenuation in a dielectric

medium such as the human body depends directly on the frequency of the radiation.

The depth of RF penetration therefore becomes increasingly problematic at higher

field strengths since, ideally, radiation would permeate the entire imaging volume with

equal intensity. RF interference becomes important when the wavelength of radiation

in the dielectric medium (λRF) is near or below the physical dimensions of the imaging

volume. When this condition is satisfied, standing waves with prominent nodes and

anti-nodes can arise in the sample, thereby causing the effective RF amplitude to

vary with spatial location. For 1H, λRF in biological tissues is roughly 50 cm at 1.5T
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(ω0 = 64MHz)†‡, and standing wave effects are not necessarily troublesome when

imaging the human torso and are even less worrisome when imaging the brain; at

3.0T (ω0 = 128MHz), λRF is reduced to 25 cm, and standing wave effects become

pronounced in the human torso; at 7.0T (ω0 = 128MHz), λRF shrinks to almost

10 cm, and standing wave effects become prominent in volumes as small as the human

brain (70). A graphical depiction of these relationships is presented in Figure 2. Both

the phenomena of RF attenuation and RF interference result in spatially dependent

RF fields that translates to MR images with pronounced regions of bright and dark

(83). The clinical usefulness of such images is thus severely compromised, and the

SNR advantage of higher field strength is limited to spatial locations at which these

RF effects happen to be minimal. The primary purpose of the RF designs presented

in this thesis is to mitigate such undesirable RF effects that arise when imaging the

human body at high field.

The higher RF frequencies used at high field also result in more effective absorption

of the radiation in tissue for the same physical reason that RF penetration depth is

reduced. More RF absorption means more heating of tissue—an effect that becomes

a safety issue at high enough amplitude or frequency. Safety regulation of the U.S.

Food and Drug Administration (FDA) call for specific absorption rates (SAR) of

†In the context of physics, ω generally refers to an angular frequency; however, in NMR, ω is
commonly adopted to symbolize any frequency regardless of the units of Hz or rad/s.

‡While λRF = c/ω = 1/
(

ω
√
ǫ0µ0

)

for electromagnetic radiation in a vacuum,
√
ǫ0µ0 is replaced

by
√
ǫµ when considering radiation in a “poorly” conducting medium such as biological tissue (33),

with c being the speed of light, ǫ the electrical permittivity, and µ the magnetic permeability. It is
primarily the deviation of ǫ from ǫ0 that is responsible for the reduction in wavelength that occurs
when radiation travels from air to the human body.
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Figure 2: The relative RF wavelengths used in 1H MRI at the given field strengths
in relation to typical axial cross-sections of the human head and torso. When the RF
wavelength is near or below the size of the imaging volume, standing wave patterns
can arise that lead to significant variations in MR image intensity. The effect becomes
quite severe in the torso at 3.0T and in both the head and torso at 7.0T.

radiation to not exceed 3W/kg in the head, 4W/kg in the body, and 8W/kg in the

extremities (13). At high field, compliance with these regulations often necessitates

the lengthening of MRI scan times if the duration and amplitude of RF transmissions

can not be adjusted accordingly. In practice, SAR restrictions thus complicate the

design of RF waveforms for use at high field; therefore, SAR (or, equivalently, RF

power) figures prominently in the practicality of the RF waveform designs presented

in this thesis.

1.3 Manipulating Magnetization with RF Pulses

Central to any magnetic resonance experiment is the application of RF radiation

that allows for control of the orientation of bulk magnetization. Without application

of RF energy, bulk magnetization would remain aligned with the static magnetic field.

Only when this magnetization is rotated into the transverse plane (i.e., perpendicular
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to the static field) by RF radiation does the orientation of the magnetization vector

become time dependent and thus detectable with a receiver coil via Faraday induction.

This section begins with a brief description of the response of magnetization to RF

radiation as described by the Bloch equation and then proceeds with a discussion

of various ways RF radiation can be transmitted to manipulate the orientation of

magnetization and thus the NMR signal.

1.3.1 The Bloch equation

If the main field is oriented along the ẑ direction, the behavior of a bulk magne-

tization vector M = (Mx,My,Mz) in an external field can be described in terms of

the magnitude of the static field (B0), the transmitted RF field (B+
1 )

†, the magnitude

of M at equilibrium (M0), and the decay constants T1 and T ∗
2 through the empirical

relationship

dM

dt
= γM×

(

∆B0ẑ +B
+
1

)

+
1

T1
(M0 −Mz) ẑ −

1

T ∗
2

(Mxx̂+My ŷ) (1.3.1)

known as the Bloch equation. It is evident through the cross product in Equation 1.3.1

that application of an RF field will result in rotation of the magnetization. Time con-

stants T1 and T
∗
2 then characterize the return to equilibrium of a perturbed magnetiza-

tion along the ẑ and transverse directions, respectively, a process known as relaxation.

The transverse magnetization components, Mx and My, undergo the same changes

†
B

−
1 usually denotes the RF field associated with the receiver.
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due to T ∗
2 relaxation and are often referred to collectively as the transverse magnetiza-

tion (MT ) with a magnitude MT =
√

M2
x +M2

y and a phase φM = arctan (My/Mx).

Equation 1.3.1 is expressed in a frame of reference that rotates with respect to the

laboratory frame with an angular frequency equal to the nuclear resonance frequency

ω0. In the laboratory frame, ∆B0—representing static field offsets with respect to the

field strength for which the given nucleus in on-resonance—would be replaced by B0

in Equation 1.3.1 . Further details of the Bloch equation and the formulations used

for the numerical modeling results presented in this thesis are provided in Appendix

B.

1.3.2 Radio frequency pulses

In the original NMR experiments described in Section 1.1, signals were obtained

using continuous transmission of RF radiation; however, the application of short

bursts of RF energy (known as RF pulses and pioneered by Erwin Hahn at the Uni-

versity of Illinois around 1950 (25; 26)) allows for far greater control of the bulk

magnetization response†. While the rotation angle (or flip angle) of the bulk mag-

netization is controllable through the amplitude and duration of the RF pulse alone

(defining a rectangular or block-shaped amplitude modulation), more sophisticated

RF modulation patterns allow for targeting specific frequency bandwidths in NMR

spectroscopy. For example, an amplitude modulation defined by the sinc function

results in a rectangularly shaped frequency spectrum, as this is the one-dimensional

†Such RF pulses were employed in the original imaging experiments of the 1970’s and are utilized
by virtually all modern MR imagers and spectrometers.
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Figure 3: The basic elements of an NMR experiment. A static magnetic field (B0)
represented by North and South poles establishes a net magnetization (M0) in a
sample. Application of an RF pulse rotates the magnetization perpendicular to the
static field according to Equation 1.3.1. The precession of the magnetization about
the direction of the static field (also described by Equation 1.3.1) induces a time-
varying magnetic flux through a conducting receiver coil which in turn produces a
voltage as described by Equation 1.2.1. The observation of such voltages constitute
the NMR signal.

(1-D) Fourier transform of the waveform (see Appendix A). In the context of MRI,

such a sinc pulse can be transmitted in the presence of a linear magnetic field gradi-

ent applied across the imaging sample such that magnetization is affected only within

a 3-D planar volume or imaging slice. The thickness of the imaging slice (∆z) can

be controlled by the bandwidth of the RF pulse (BW) and the strength of the linear

field gradient (Gz). The relationship between these quantities is given by

∆z =
BW

γGz

. (1.3.2)

This approach to slice-selective MRI is the basic technique first employed by Gar-
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roway and Mansfield in 1974 (Section 1.1) (22).

RF pulses have been described thus far in the context of excitation—the rotation

of magnetization from its equilibrium so as to introduce a transverse component and

thus a detectable NMR signal. However, RF pulses can be employed to manipulate

the orientation and magnitude of the magnetization vector in a myriad of other ways.

Two other broad categories of RF pulses to be discussed below are defined by the

goals of magnetization inversion and refocusing.

Inversion pulses change the sign of Mz. The simplest example of this is analogous

to an excitation pulse but with a flip-angle of 180◦, thus rotating the vector M =

M0ẑ to −M. In MRI, inversion pulses are typically used to generate image contrast

among different tissue types. This effect is achieved by the application of an inversion

pulse followed by a time delay. Due to the recovery of the disturbed magnetization

toward equilibrium, which in this case is solely described by the longitudinal time

constant T1 in Equation 1.3.1, the magnitude of M depends on this time delay.

Moreover, since T1 is dictated by energy exchange with neighboring molecules and

therefore the local magnetic environment, T1 values, and therefore M magnitudes,

may differ significantly from one tissue to another depending on tissue composition

and structure. For example, T1 values for white and grey matter in the human brain

at a field strength of 7 T have been reported to be 1.22 s and 2.13 s, respectively

(66). The contrasting magnitudes of M0 occurring in different tissues after a given

time delay can then be translated into MR signal contrast through application of an

excitation pulse that rotates longitudinal (i.e., ẑ) magnetization into the transverse
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Figure 4: Examples of rotations induced by excitation, inversion, and refocusing
pulses. In all examples, the direction of the B+

1 field is the same—along the +y axis.
In the excitation example, initial magnetization (M0) is in the +z direction with
B

+
1 inducing a 90◦ rotation of the magnetization. In this case, all magnetization has

been rotated into the transverse plane as indicated by the final magnetization vector
(MF ). The inversion example is identical to the excitation example except that the
magnitude of B+

1 is twice as large, thus inducing twice the flip angle. The result is
a change in the direction of the z component of magnetization. For the refocusing
example, M0 lies in the x-y plane with a phase +φ relative to the +y axis. B

+
1 is

identical to that of the inversion example, again inducing a 180◦ flip angle about the
+y axis; however, due to the different orientation of M0, it is the x component of
magnetization (or, equivalently, the transverse phase) that is reversed. The dashed
circle is to aid in the visual perception of M0 and MF both lying in the x-y plane.

plane. This ordering of RF pulses and time delays is referred to as an inversion

recovery sequence and is a widely employed method of generating T1 tissue contrast

in MRI. Additionally, an inversion recovery sequence can be used to null unwanted

signal contributions based on the T1 of the targeted tissue. To achieve this effect, a

delay time is chosen such that M = 0 for the tissue to be nulled. Such delay times

can be analytically determined by solving the Bloch equation (Equation 1.3.1) for

the case when ∆B0,
∣

∣B
+
1

∣

∣, and T ∗
2 are all zero. RF pulses applied for the purpose of

canceling signal from specific chemical species are known as saturation pulses.
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It is the role of refocusing pulses to reverse the phase of transverse magnetization so

as to partially avoid signal losses arising from the decay of transverse magnetization.

The transverse decay constant T ∗
2 in Equation 1.3.1 can be characterized by the sum

of reversible (T ′
2) and irreversible (T2) components such that

1

T ∗
2

=
1

T2
+

1

T ′
2

. (1.3.3)

Coherent magnetization dephasing related to the time constant T ′
2 (i.e., the dephasing

of transverse magnetization due to local variations in B0) can thereby be recouped

through application of a refocusing pulse such that contributions to the total trans-

verse magnetization are again in phase at a time after the excitation pulse known

as the echo time (TE). Loss of transverse magnetization due to random processes

involving exchange of energy with neighboring spins (i.e., T2 decay) is not recoverable

via application of RF pulses.

1.3.3 MR signal

In the simplest sense, MR signal is a function of the magnitude of the equilibrium

magnetization (M0), the magnitude of the RF field associated with the receiving coil

(B−
1 ), and the effects of one or more RF pulses. When considering a pulse sequence

in which the only RF pulse is an excitation pulse (such as in a gradient-recalled echo

or GRE sequence†), the actual flip angle (α ) of the magnetization is determined by

†A GRE sequence brings transverse magnetization to a coherent phase, thus maximizing signal,
through application of linear gradients that reverse phase dispersion induced by slice-selection and
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the time integral of the product of the RF amplitude modulation function A(t) and

the relative magnitude of the B+
1 field such that

α = γ

∫ ∆T

0

A(t)
B+

1

B+
1,nom

dt , (1.3.4)

where ∆T is the RF pulse duration and B+
1,nom is the nominal B+

1 field strength. If

B+
1 is not time-dependent, the associated term may be removed from the integration

resulting in the expression

α =

(

γ

∫ ∆T

0

A(t) dt

)

· B+
1

B+
1,nom

= α0
B+

1

B+
1,nom

, (1.3.5)

where α0, the product of gamma and the integrated RF amplitude of the pulse,

is referred to as the nominal flip angle. MT is the component of magnetization

responsible for producing MR signal, so α can be related to signal (S) through the

relationship S ∝ |sinα|. Thus, considering the effects of M0 and B−
1 , the MR signal

can be written as

S =M0B
−
1

∣

∣

∣

∣

sin

(

α0
B+

1

B+
1,nom

)∣

∣

∣

∣

. (1.3.6)

Together, equations 1.3.5 and 1.3.6 demonstrate an example of the relationship be-

tween MR signal, the transmitted RF field, the received RF field, and an RF modu-

lation (in this case an amplitude modulation), thus setting the stage for a discussion

of the ways modulation patterns can be designed to counteract variations in B+
1 .

read-out gradients.
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Figure 5: Effects of nonuniform RF fields on MRI signal intensity. The RF field maps
at left and right are measurements of B+

1 and M0B
−
1 distributions in an axial slice

of the human brain at 7T. As described by Equation 1.3.6, MRI signal intensity
(center) depends on both of these fields such that regions of reduced field strength
give rise to low image intensity. The color scale for field maps is such field strength
increases from blue to red.

1.4 Existing RF Pulse Designs that Address B+
1 Inhomogeneity

As described in Section 1.2, undesirable variations in the B+
1 and B−

1 fields† can

arise in the human body at high B0 due to increased levels of RF attenuation and

interference. While the range of variations in B−
1 is typically similar to that in B+

1

(since both are dictated by λRF, ǫ, and the dimensions of the imaging volume), the

B−
1 field relevant to MR signal arises after application of RF radiation and, therefore,

does not affect the performance of RF pulses. It is the B+
1 field that forms during

the transmission of radiation, and variations in this field are responsible for spatially

inhomogeneous responses of the magnetization. Nevertheless, through the use of

RF amplitude, phase, and/or frequency modulations, it is possible to design RF

pulses that achieve a spatially uniform magnetization response, despite the presence

†While B
+
1 and B

−
1 represent vector fields, the magnitudes B+

1 and B−
1 are referred to from this

point on since the direction of the fields are not particularly relevant to the work presented in this
thesis.

18



of spatial variations in the B+
1 field†. Such pulses can be divided into two major

classes: (1) B+
1 -insensitive pulses and (2) spectral-spatial pulses.

1.4.1 Existing B+
1 -insensitive pulse designs

B+
1 -insensitive pulses are designed to produce similar magnetization responses over

certain ranges of B+
1 variations. Such pulses can be designed for excitation, inversion,

or refocusing. Over time, two main strategies have emerged for achieving the desired

field-insensitive effects. The first strategy involves series of short RF pulses with

varying phase and amplitude known as composite pulses. The second strategy relies

upon RF modulations of slowly varying phase or frequency at high amplitude known

as adiabatic pulses.

Composite pulses

RF pulses with some degree of immunity to variations in the B+
1 field have been

investigated extensively over the last 30 years. Malcolm Levitt and Ray Freeman were

two of the first to explore such possibilities. Their studies of the early 1980’s focused

on the use of series of RF sub-pulses to collectively achieve a desired rotation while

tolerating a certain level of B+
1 inhomogeneity (44; 42; 43; 15). The authors referred

to this class of RF pulses as composite pulses. An example of such a pulse still widely

used today can be described by the notation Rx(π/2)Ry(α0)Rx(π/2) where each R

†It is a common misconception that RF pulses can be designed to change the B+
1 field. In fact,

for a given transmission coil configuration, imaging volume, and resonant frequency, the B+
1 field is

always the same. RF pulses that mitigate inhomogeneous B+
1 effects are designed to produce the

desired magnetization response in the presence of the given B+
1 field.

19



represents a sub-pulse (i.e., rotation), the subscripts indicate the axes of rotation,

and the rotation angles are given in parentheses (44; 42). Thus, Levitt and Freeman

discovered that the desired flip angle α0 could be achieved despite ∼ 10% fluctuations

in the B+
1 field as long as the nominal pulse was bracketed by two π/2 rotations with

a 90◦ phase difference relative to the original pulse. This is an example of using

amplitude and phase modulation to attain B+
1 -insensitivity..

While early composite pulse designs were based on the analytic theory of rotation

operators, faster computer processing allowed for the investigation of numerical algo-

rithms as an efficient means for determining suitable modulation patterns in the early

1990’s. Such designs were pioneered by Michael Poon and Mark Henkelmann in the

context of refocusing pulses (60; 61). Their work revealed the power of numerically

optimized composite pulses to achieve prescribed degrees of insensitivity to variations

in both the B+
1 and B0 fields. Like the analytically designed composite pulses of the

1980’s, the main drawback to these numerically designed pulses is a noisy frequency

spectrum outside the bandwidth of interest, thus making the pulses unsuitable for

slice-selective imaging.

This thesis focuses on the development of numerically optimized composite pulses

insensitive to the field variations observed in the human brain at 7T, and, while the

targeted B0 is higher and the field inhomogeneities more pronounced than those con-

sidered by Poon and Henkelmann, some of the adopted strategies draw heavily upon

these earlier efforts. Even the designs of Levitt and Freeman have proven highly rele-

vant to high-field applications. For example, their Rx(π/2)Ry(α0)Rx(π/2) refocusing
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design is examined extensively in Chapter V and exhibits noteworthy performance

given the challenging context of 7 T imaging.

Adiabatic pulses

One of the first pulse designs to demonstrate B+
1 -insensitivity was the hyperbolic

secant waveform proposed by Michael Silver, R. Joseph, and David Hoult in 1984.

The pulse, which originates from an analytic solution to a relaxation-free formulation

of the Bloch equation known as the Bloch-Riccati equation, is defined by a hyper-

bolic tangent amplitude modulation and a hyperbolic secant frequency modulation.

The combination of these amplitude and frequency waveforms ensures magnetization

inversion within a bandwidth dictated by the range of the frequency modulation.

Moreover, as long as the magnitude of the effective field (Beff = B
+
1 + ∆B0) far

exceeds the rate of change in the direction of Beff, a requirement known as the adi-

abatic condition, the same magnetization response can be expected. This behavior

implies B+
1 -insensitivity given a certain minimum amplitude threshold in relation to

the rate of change of RF frequency (dω/dt). While hyperbolic secant pulses are still

in mainstream MRI use today, they do suffer in their utility in that B+
1 -insensitivity

can only be achieved for inversion. Additionally, given the requirement of a minimum

amplitude threshold with respect to dω/dt, the adiabatic condition can be difficult

to satisfy when large B+
1 variations are present unless the waveform is extended sig-

nificantly in time—a process that can then introduce prohibitive SAR levels at high

field.
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Significant work has been undertaken since the inception of the hyperbolic secant

pulse to adjust the modulation functions for improved performance with respect to

field variations in specific contexts. These efforts have been spearheaded by Michael

Garwood, Kâmil Uǧurbil, and their colleagues and include methods of time-stretching

modulations for targeting wider bandwidths (40; 78), investigations into the phe-

nomenon of offset-independent adiabaticity (OIA) to improve off-resonance perfor-

mance (39; 79), and modulation function determination from numerical optimization

methods (NOM) to customize B+
1 -insensitivity (82; 36).

Uǧurbil’s work in the late 1980’s proved instrumental in synthesizing composite

and adiabatic pulse strategies. Through the use of 2- and 3-part composites of am-

plitude and frequency modulated sub-pulses, he was able to achieve B+
1 -insensitive

excitation. The modulation waveforms were defined in terms of the sin and cos

functions and were capable of producing uniform 90◦ excitations despite the presence

of RF field inhomogeneities (81). These B+
1 -insensitive rotations are known as BIR-1

and BIR-2. In 1990, Scott Staewen, with Garwood and others, published a related

4-part pulse design (BIR-4) reliant upon tanh and tan modulation functions (76).

Being capable of arbitrary flip angles, the BIR-4 pulse signified a notable advance in

adiabatic pulse design. The year after BIR-4’s introduction, Garwood demonstrated

the generalization of the BIR-1 and BIR-2 pulses such that arbitrary flip angles could

be attained through the proper adjustment of phase changes in these waveforms as

well (23); however, the BIR-4 pulse has proven more practical due to a higher toler-

ance for B0 variations and is still widely used today. While BIR pulses are extremely
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flexible in allowing for excitation, inversion, and refocusing, frequency spectra exhibit

erratic behavior thus making the pulses unsuitable for slice-selective imaging. Very

recently, a group at Stanford University headed by John Pauli found that using the

BIR-4 modulation patterns as an envelope for a series of spectrally selective sub-

pulses can result in a slice-selective waveform with similar B+
1 -insensitive properties

to those of the parent BIR-4 (1). This formulation will certainly prove practical in

many contexts, with the main drawback being the requisite fulfillment of the adia-

batic condition. As mentioned previously, this requirement can prove prohibitive in

high-field human applications.

In this thesis, work is presented in which hyperbolic secant and BIR-4 waveforms

are numerically optimized to produce the desired insensitivities to field variations

(Chapter VI). These efforts differ from those previously described in that the resulting

magnetization flip angle is the subject of optimizations rather than fulfillment of the

adiabatic condition. Additionally, Appendix C describes adiabatic pulses in more

detail than is presented above, including the specific forms of the hyperbolic secant

and BIR-4 modulation functions.

1.4.2 Existing spectral-spatial pulse designs

Spectral-spatial pulses are capable of depositing RF energy as a function of spa-

tial location while also maintaining a desired spectral (i.e., frequency) response. In

general, the potential of these pulses are realized in one of two arenas—either with

a transmission coil for which all elements are driven with the same RF waveforms
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(i.e., with a single amplifier) or with a transmission coil for which individual ele-

ments are driven independently. The latter technology is typically referred to as

parallel transmission or multi-transmit and has emerged in the last five years as the

industry-adopted standard by which RF field inhomogeneities are addressed on high-

field human scanners.

Single-channel transmission

Spectral-spatial RF pulses typically employ a series of sub-pulses in tandem with

an oscillating gradient waveform. Early such designs relied upon the timing of sub-

pulses relative to the oscillating gradient lobes to produce frequency selectivity, with

spatial selectivity arising in the usual manner of finite bandwidth waveforms executed

in the presence of a linear field gradient (57). These original studies were oriented

toward targeting specific resonance frequencies in the context of a slice-selective imag-

ing. For example, pulses were designed to excite fat within the imaging slice while

minimizing signal from water or vice versa (50; 27). The incorporation of transverse

gradients (i.e., field gradients imposed perpendicularly to the direction of slice selec-

tion) during or between the applied RF sub-pulses allowed for a focused magnetization

response within predetermined regions of the imaging slice (65; 67). Eventually, these

capabilities were recognized as a means of achieving uniform flip angles in the presence

of B+
1 inhomogeneities (68). This task can be accomplished through magnetization

response being spatially allotted in accordance with the spatial distribution of the B+
1

field. Spectral-spatial pulses in which relatively few discrete sub-pulses are interleaved
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with transverse field gradients have come to be known as sparse spokes (or simply

spokes) designs, and it is this form of spectral-spatial pulses that is most commonly

employed to address issues of RF field nonuniformity. Figure 6 illustrates the capa-

bility of a spokes design in compensating for the B+
1 field variations observed in the

human brain at 7T. Clearly, the strategy is effective. Another application of spokes

pulses involves limiting magnetization response to a confined region of the imaging

field of view so as to allow for reduced scan times or practical, high-resolution imag-

ing of specific anatomy. Regardless of the objective, spokes pulses are implementable

on single-channel transmission systems with the potential disadvantage of long total

pulse durations (with respect to T2 and T ∗
2 ) which may be required to achieve the

desired effects. Additionally, the time-consuming subject-specific field mapping and

RF calibrations that must be performed prior to implementation of spokes pulses for

B+
1 mitigation may prove prohibitive, especially in a clinical setting.

Parallel transmission

On a parallel transmission system, independent RF modulations can be executed

simultaneously on each RF coil element. Knowledge of the B+
1 fields associated with

each coil element can be exploited through the design of channel-specific RF wave-

forms to counteract the unwanted effects of RF field variations. These RF strategies

typically involve numerical optimization of the phase and amplitudes (and sometimes

frequency) modulations to be transmitted on each channel. When only the physical

separation of the coil elements (along with the optimized RF modulations) is em-
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Figure 6: Simulation of a spokes experiment at 7T showing an actual B+
1 field mea-

surement (left), the designed excitation pattern from a 25-spoke pulse (middle), and
the net excitation pattern when the spokes pulse is executed in the presence of the
nonuniform RF field (right). With a traditional RF pulse, the magnetization response
would scale with the B+

1 field such that a map of the resulting flip angles would reflect
inhomogeneities in the B+

1 distribution. Spokes pulses can be designed to circumvent
this problem by concentrating RF effects in a pattern determined by the inverse of
the B+

1 field. Images reproduced with the permission of Marcin Jankiewicz (34).

ployed to achieve a spatially-varying magnetization response, the process is referred

to as RF shimming (37; 48; 84; 49). With this technique, a single pulse is executed on

each channel, and, most commonly, all pulses have the same form (e.g., Gaussian or

sinc) with only constant phase and amplitude offsets. RF shimming has been shown

effective in moderating B+
1 -related variations in magnetization phase and flip-angle,

with efficacy generally corresponding to the number of RF channels. In practice, the

number of independent channels is limited, and the performance of RF shimming is

restricted due to the fixed locations of the transceiver elements.

When the spatially varying magnetization responses from RF shimming are inad-

equate, spokes pulses may be implemented for parallel transmission. The advantage

of a parallel implementation of spokes pulses (as opposed to a single-channel imple-

mentation) is that fewer sub-pulses are necessary on each channel, thus resulting in
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total pulse duration times that are ∼ N times shorter where N is the number of

channels. This increased efficiency relative to the single-channel implementation is

due to an optimization in which the spatial separation of the transmitting elements is

advantageous. Almost complete mitigation of B+
1 inhomogeneities has been demon-

strated in the human brain at 7T using as few as 3 sub-pulses on each channel of an

8-channel system (71; 89).

MR systems equipped with multiple independent transmission channels are be-

coming increasingly widespread. The primary motivation is the same as for the use of

single-channel spokes pulses—to produce uniform flip angles in the presence of severe

B+
1 variations. Multi-transmit pulse designs, however, are capable of achieving the

desired magnetization responses in far less time, a critical factor given the shorter T ∗
2

values observed at high field. Despite the impressive performance of multi-transmit

systems, there are some inherent limitations. Firstly, the requisite RF amplifiers

are expensive, and compromise must be made between the number of channels and

accepted performance levels. Also, while B+
1 -mitigation performance increases with

the number of channels, so does the time needed to make the necessary field mea-

surements, as separate field maps are required for each channel. Furthermore, the

interactions of RF waves from independent coil elements can produce locally high SAR

values in the imaging volume. These effects are a function of the coil geometry, the

geometry of the imaging volume, and the set of RF waveforms (the latter two of which

vary from subject to subject and from slice to slice), so SAR levels can potentially

vary greatly from scan to scan, raising the question of whether subject-specific SAR
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modeling should be integrated with the pulse optimization process. Such measures,

although perhaps justified, would add another step to an increasingly complicated

subject-specific workflow—a factor that is not insurmountable but one that will have

to be reconciled with clinical practicality in the face of rising healthcare costs.

As described in Section 1.4.1, the pulse designs presented in this thesis fall into

the category of B+
1 -insensitive designs, rather than spectral-spatial designs, and are,

in their current forms, intended for single-channel transmission.

1.5 Purpose and Overview

The inhomogeneous B+
1 fields observed in the human brain at high field and

the consequential nonuniform magnetization responses to applied RF fields form the

motivation for the work presented in this thesis. The underlying purpose is, therefore,

to explore the limits of RF pulse designs to counteract such ill-effects so as to better

realize the full potential of high-field MRI. The studies of this thesis are focused on

applications using a single-channel transmission system. This choice was motivated in

part by the fact that no multi-transmit system was available on which to perform such

research at the time of my graduate studies, and the pursuit of the implementation of

such hardware and the subsequent application of new RF strategies in that context

was perhaps beyond the scope of a graduate thesis project. An equally important

factor was the acknowledgement that only by establishing the boundaries of existing

technologies can we define the true benefits of new ones. Furthermore, the majority

of pulse designs appearing in this work rely upon numerical optimization methods

as applied to composite pulses. Through this approach, the power and efficiency of
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modern computing can be brought to bear upon a new challenge (i.e., the extreme

RF inhomogeneities observed at high field) such that the appropriate limitations of

previously proposed pulse structures can be established in this contemporary arena.

The decision to largely pursue composite pulse designs rather than adiabatic ones has

centered on the observation that the adiabatic condition is generally difficult to fulfill

at 7 T given the observed range of field variations and the constraint that pulses can

not be lengthened indefinitely due to SAR and relaxation effects.

Other related objectives surfaced while pursuing the design of B+
1 -insensitive

pulses and have been included in the scope of this thesis. Most notably, perhaps,

is the comparison of various methods of RF field mapping. To design B+
1 -insensitive

pulses, a targeted range of field variations over which pulses are required to function

must be established. To accomplish this, measurements of RF field magnitudes (RF

field maps) can be made within the volume of interest. Initial findings suggested

that widely adopted RF field mapping strategies differ dramatically in their resulting

estimates of field strength and prompted a systematic evaluation of these differences.

This objective turns out to be highly relevant to parallel transmission methods for

mitigation of B+
1 effects in which case the desired spatially varying magnetization

response is determined by the inverse of the relevant B+
1 map.

As colleagues became interested in the potential of composite pulse designs, other

applications for these methods were brought to my attention. These include the opti-

mization of adiabatic pulses for performance at 7T, the incorporation of SAR limits in

the optimization of composite pulses, and the design of frequency-selective composite
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pulses for an array of different applications. I ended up pursuing these projects con-

currently with my main research objectives pursued, and relevant preliminary results

are also presented in this thesis.

Following is a chapter-by-chapter summary of the work encompassed by this dis-

sertation. Included are motivations and overviews of the major findings of each

project.

RF field mapping (Chapter II)

This chapter describes studies to experimentally determine the variations in

transmitted RF fields that are present in dielectric phantoms and the human

brain at 7T. Four leading RF mapping protocols are compared in the same con-

text, with major discrepancies being identified amongst these strategies. Despite

these differences, the general range of B+
1 variations is established so as to iden-

tify the range of field variations to be targeted in the design of B+
1 -insensitive

pulses. However, results are important to spectral-spatial B+
1 mitigation strate-

gies and suggest much work is warranted in the area of RF field mapping such

that scan times can be shortened without significantly compromising the accu-

racy of measurements. This observation motivates an investigation into the use

of one promisingly accurate mapping method in conjunction with fast, single-

shot†, echo-planar imaging (EPI). Results of this study suggest that use of

single-shot EPI can provide very similar field maps while greatly accelerating

†All image data for a single slice is acquired after a single RF excitation, rather than over the
course of multiple RF excitations. The penalty is loss of SNR and image distortion. The advantage
is acquisition speed.
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the data acquisition.

B+
1 -insensitive volume excitation (Chapter III)

In this chapter, a new class of composite RF pulses that perform well in the pres-

ence of specific ranges of B0 and B+
1 inhomogeneities is presented. This work

was previously published in the Journal of Magnetic Resonance (56). Pulses

are designed specifically for volume (non-selective) excitation in high-field MRI.

The pulses consist of numerous (∼ 100) short (∼ 10µs) block-shaped sub-pulses

each with different phases and amplitudes derived from numerical optimization.

Optimized pulses are designed to be effective over a specific range of frequency

offsets and transmit field variations and are thus implementable regardless of

field strength, transmit coil configuration, or the subject-specific spatial distri-

bution of the static and RF fields. In the context of 7 T human brain imaging,

both simulations and phantom experiments indicate that optimized pulses re-

sult in similar on-resonance flip-angle uniformity as BIR-4 pulses but with the

advantages of superior off-resonance stability and significantly reduced aver-

age power. The pulse design techniques presented here are thus well-suited for

practical application in ultra-high field human MRI.

B+
1 -insensitive slice-selective excitation (Chapter IV)

This work involves spatially selective excitation pulses designed to produce uni-

form flip angles in the presence of the RF and static field inhomogeneities ob-

served in the human brain at 7T. Pulse designs are based upon non-selective,

composite pulses numerically optimized for the desired performance over pre-
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scribed ranges of field inhomogeneities. Non-selective pulses are subsequently

transformed into spatially selective pulses with the same field-insensitive prop-

erties through modification of the spectral composition of the individual sub-

pulses which are then executed in conjunction with an oscillating gradient wave-

form. An in-depth performance analysis of the resulting class of RF pulses is

presented in terms of total pulse durations, slice profiles, linearity of in-slice

magnetization phase, sensitivity to RF and static field variations, and signal

loss due to T ∗
2 effects. Analysis involves both simulations and measurements

in phantoms and the in vivo human brain for nominal flip angles of 45◦ and

90◦ and relies upon the performance of a single Gaussian pulse as a basis for

evaluation. Target slice thickness in all cases is 2mm and is achieved despite

the hardware limitations of a commercial 7 T MRI system. Results indicate

that the described class of field-insensitive RF pulses is capable of improving

flip-angle uniformity in the context of 7 T human brain imaging. There appears

to be a subset of pulses with durations . 10ms for which non-linearities in

the magnetization phase are minimal and signal loss due to T ∗
2 decay is not

prohibitive. Such pulses represent practical solutions for achieving uniform flip

angles in the presence of the large field inhomogeneities common to high-field

human imaging and help to better establish the performance limits of high-field

imaging systems in the regime of single-channel transmission.

Evaluation of refocusing pulses (Chapter V)

There is a continuing need for improved RF pulses that achieve proper refo-
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cusing in the context of ultra-high field (≥ 7T) human MRI. Simple block or

sinc pulses are highly susceptible to RF field inhomogeneities, while adiabatic

pulses are generally considered too SAR intensive for practical use at 7T, but

the performance of the array of pulses falling between these extremes has not

been systematically evaluated. The aim of this work was to compare the per-

formances of 16 different previously suggested non-selective refocusing pulses

ranging in duration from ∼ 1-13ms. The evaluation includes measurements

in both a phantom and in vivo human brain at 7T. Tested designs included

block, composite block, BIR-4, and numerically optimized refocusing pulses.

These pulses were divided into three classes based on SAR, and practical rec-

ommendations on usage based on performance are made within each category.

All evaluated pulses were found to produce greater volume-averaged signals rel-

ative to a 180◦ block pulse, and some pulses increased signal by more than a

factor of three in localized areas. Through both simulation and experiment, this

work demonstrates the signal gains and losses realizable with single-channel re-

focusing pulse designs and should assist in the selection of suitable refocusing

pulses for practical 3-D spin-echo imaging at 7T. It further establishes a refer-

ence against which future pulses and multi-channel designs can be compared.

Related pulse designs and applications (Chapter VI)

This chapter contains a sample of other applications for numerically optimized

RF pulses. The first section describes findings related to the customizations

of adiabatic pulses (specifically, hyperbolic secant and BIR-4 pulses) to the
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demands of 7 T imaging. Foremost, this investigation establishes appropriate

bandwidths for hyperbolic secant inversion pulses used in the brain at 7T—

thus, maximizing the available B+
1 -insensitivity of these RF modulations. Fur-

thermore, numerical optimization of BIR-4 waveforms is shown to significantly

improve 7T performance over that of the previously presented modulations.

The second section of this chapter describes incorporation of SAR constraints

in the optimization of non-selective composite pulses similar to those presented

in Chapter III. Results indicate that pulse sequence repetition times as low as

200ms can be accommodated with almost no loss in B+
1 -insensitivity and that

significant immunity to field variations can still be achieved at repetition times

of 50ms. In the third section, studies of frequency selective, B+
1 -insensitive

composite pulses are presented with particular focus on achieving slice selection

in the presence of a linear field gradient. Results indicate that such pulse de-

signs for saturation appear feasible but that maintaining a linear magnetization

phase through the imaging slice is challenging when also requiring a high degree

of B+
1 -insensitivity. The next section focuses on frequency selective composite

pulses for B+
1 -insensitive saturation of lipids and water. Simulations of these

endeavors have been successful thus far and initial experiments encouraging.

Lastly, composite pulse designs relevant to single-channel polarization transfer

at low-field are presented. In this context, RF field inhomogeneities are not

considered, thus providing an arena in which other capabilities of composite

pulses can be tested. While transmitting at a central frequency, RF pulses are
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designed for precise control of magnetization in prescribed off-resonance fre-

quency bands. Designs include single- and dual-band excitation and refocusing.

These novel pulses circumvent the need for an independent amplifier operating

at each targeted frequency.

Appendices

Five appendices are included. Appendix A provides MR physics background

and is written to help students relate a classroom understanding of physics to

the discipline of NMR. Appendix B gives a detailed description of the methods

employed in this thesis for the numerical simulation the Bloch equation, and may

be helpful in assisting future students do the same. In Appendix C, modulation

functions for hyperbolic secant and BIR-4 waveforms are provided along with

identification of the parameters subject to numerical optimization in Chapter

VI. Appendix D supplies additional simulation data relevant to Chapter III, and

Appendix E describes the optimal control algorithm employed for the low-field,

frequency-selective pulse designs discussed in Chapter VI.
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CHAPTER II

RF FIELD MAPPING

2.1 Introduction

Accurate field mapping is integral to the success of ultra-high field MRI. Knowl-

edge of the spatial variations in transmitted RF fields (B+
1 ) allows for the calibration

of RF pulse amplitude, guides the design of adiabatic and other B+
1 -insensitive pulses,

and enables real-time pulse designs that capitalize on parallel transmission technolo-

gies (e.g., spectral-spatial excitations and RF shimming). Maps of the receive field

(B−
1 ) permit post-processing image intensity corrections and facilitate the design of

RF coils for high-field applications. Static field variation (∆B0) maps are used in an

array of applications from RF pulse calibration to post-processing image distortion

correction.

One of the challenges currently facing high-field MRI research is the fast acquisi-

tion and calculation of RF (B+
1 and B−

1 ) field maps without sacrificing the accuracy

of measurements. Development of new RF field-mapping techniques for this purpose

is an area of active research. Presently, a handful of such methods are in common use;

however, a systematic study has not been undertaken in which field maps resulting

from the use of these protocols at high field are compared. Such a comparative study

performed in the context of human brain imaging at 7T is the focus of this chap-

ter. Results of this study will aide in the selection of mapping protocols for specific
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tasks through providing knowledge of potential errors associated with each method.

Since it is relatively straightforward to infer the B−
1 distribution from a measured B+

1

distribution given that corresponding low flip-angle, gradient recalled echo (GRE)

images are attained, the RF mapping evaluation of the present study focuses on the

measurement of the B+
1 field.

The methods evaluated in this study are a 2-D double-angle (DA) technique (77),

a 3-D pulsed steady-state (PSS) sequence† (87), a 3-D PSS technique with optimized

gradient and RF spoiling (PSS+) (88), and a 2-D multi flip-angle approach relying

upon voxel-by-voxel data fitting (abbreviated as GEs for gradient-echo series) (30).

Additionally, the latter method is performed with a single-shot EPI read-out (GEs-

ssEPI), thus allowing for a much shorter acquisition time. This single-shot approach

apparently has not been investigated before and thus represents a novel approach to

high-speed RF field mapping.

2.2 Methods

The five RF field mapping protocols evaluated in this study (DA, PSS, PSS+,

GEs, and GEs-ssEPI) are summarized in this section, and the way in which each

was implemented is described. Following these explanations is a description of the

comparative analyses. In the first analysis, the results from the DA, PSS, PSS+, and

GEs protocols are compared. In the second analysis, results from the GEs and GEs-

ssEPI protocols are compared. All data in this study was collected using a Philips 7 T

whole-body MR scanner (Philips Healthcare, Best, The Netherlands) with a single-

†The pulsed steady-state method of Vasily Yarnykh has also become known as actual flip-angle
imaging, or AFI.
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channel volume head coil (Nova Medical, Wilmington, MA, USA) for RF transmission

and reception.

2.2.1 DA technique

The DA approach to RF field mapping, like the PSS and PSS+ protocols, results

in an estimation of the distribution of actual flip angles experienced by the magneti-

zation. It is then typically assumed that the excitation pulses employed in mapping

sequences result in actual flip angles that are determined by the integral of the am-

plitude modulation function in the presence of a constant relative B+
1 (B+

1 /B
+
1,nom)

magnitude (See Equation 1.3.4). Under these circumstances, the flip angle (α) can

be assumed proportional to the relative B+
1 magnitude at a given spatial location, so

that resulting flip-angle maps reflect the spatial distribution of the B+
1 field†.

The DA method relies on the ratio of two MR signals for calculation of the actual

flip angle. For a gradient-recalled echo sequence with a long repetition time (TR) and

a short echo time such that TR ≫ T1 and TE ≪ T ∗
2 , the MR signal (S) can be written

as

S =M0B
−
1 |sinα| , (2.2.1a)

which is similar to Equation 1.3.6 but with α representing the actual flip angle. If two

such signals (S1 and S2) are acquired with nominal flip angles α0 and 2α0, respectively,

†It is somewhat of a misnomer to refer to these techniques as B+
1 -mapping techniques as is

commonly done—they are really flip-angle mapping techniques. On the other hand, it can be
argued that the GEs method results in measurements of B+

1 /B
+
1,nom, as this quantity is one of the

fitting parameters. However, even in this case, the real measurement is an MR signal which depends
on the magnitude of transverse magnetization as described by the flip angle.
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the signal ratio is given by

S2

S1

=
sin 2α

sinα
, (2.2.1b)

with α again representing the actual rather than nominal flip angle. If a double-angle

trigonometric identity is used to expand the denominator of the right-hand side, this

expression becomes

S2

S1

=
2 sinα cosα

sinα
= 2 cosα , (2.2.1c)

which can be solved for α:

α = arccos

(

S2

2S1

)

. (2.2.1d)

Thus, two GRE images acquired under the given conditions can be used to determine

the actual flip angle for each voxel in the image corresponding to S1.

In this study, such images were acquired for the central axial slice of a 17 cm

spherical dielectric phantom (Functional Biomedical Information Research Network,

FBIRN) and the human brain using α0 = 60◦, TR = 5 s, and TE = 3ms with an

in-plane imaging resolution of 3×3mm and a slice thickness of 5mm. Total required

scan time was 13min 20 s for a 240× 240mm field of view.

2.2.2 PSS technique

The PSS method also relies on the ratio of two MR signals but in a somewhat

more complex way due to the use of a steady-state signal acquisition. The primary

motivation for this approach is the reduced acquisition time resulting from a shorter

TR. In the steady-state scenario, TR may be on the order of T1 such that longitudinal
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relaxation can no longer be ignored. Furthermore, the PSS method does not employ

two different flip angles like the DA method but rather uses a single flip angle but

two different TR values. These TR’s are interleaved with S1 being associated with

the acquisition during TR,1 and S2 arising from acquisition during TR,2. If the Bloch

equation is solved under these conditions, the two signals can be expressed as

S1 =M0

1− e−TR,2/T1 +
(

1− e−TR,1/T1

)

e−TR,2/T1 cosα

1− e−(TR,1+TR,2)/T1 cos2 α
e−TE/T ∗

2 sinα (2.2.2a)

and

S2 =M0

1− e−TR,1/T1 +
(

1− e−TR,2/T1

)

e−TR,1/T1 cosα

1− e−(TR,1+TR,2)/T1 cos2 α
e−TE/T ∗

2 sinα . (2.2.2b)

The ratio of these signal expressions can then be taken and α solved for in a way

analogous to that demonstrated for the DA technique. The resulting expression for

the actual flip angle is

α ≈ arccos

[

(S2/S1) (TR,1/TR,2)− 1

(TR,1/TR,2)− (S2/S1)

]

. (2.2.2c)

The PSS method was implemented, and flip-angle maps were acquired for the

central axial slice of a 17 cm dielectric phantom and the human brain using α0 = 60◦,

TR,1 = 20ms, TR,2 = 100ms, and TE = 5ms with an in-plane imaging resolution of

3 × 3mm and a slice thickness of 5mm. As is typical for a steady-state sequence,

signal was acquired over a contiguous 3-D volume that encompassed the entire phan-
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tom/brain. Total required scan time was 2min 44 s for a 240× 240× 85mm field of

view.

2.2.3 PSS+ technique

Steady-state sequences often employ strong field gradients following each period

of signal acquisition in order to dephase the transverse magnetization. The purpose

of these gradients is to prevent formation of magnetization coherencies that form as

a function of local T ∗
2 values, thus lending T ∗

2 weighting to the resulting signal. For

the same reason, the phase of transmitted radio waves is typically incremented from

pulse to pulse. The former technique is known as gradient spoiling and the latter as

RF spoiling. In 2010, Vasily Yarnykh, the inventor of the PSS method, published his

findings related to the influence of incomplete magnetization dephasing and improper

RF phase increments on the accuracy of PSS flip-angle measurements. Yarnykh’s

studies suggest: use of the largest possible spoiling gradients† (given practical limi-

tations) is critical; the ratio of the spoiling gradient areas associated with signals S1

and S2 (i.e., AG,1 and AG,2, respectively) is chosen such that the condition

TR,2

TR,1
=
AG,2

AG,1
(2.2.3)

is maintained; the RF phase increment that most effectively prohibits the development

of RF phase coherencies depends on the size of the spoiling gradients; a flip-angle of

†In this case, a large gradient means a gradient waveform with a large integrated area.
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60◦ results in the most accurate flip-angle measurements.

PSS+ experiments were carried out in the same way as for the PSS protocol, with

the recommended adjustments being made. Spoiling gradient areas of AG,1/AG,2 =

280/1400mT · ms/m were employed along with an RF phase increment of 34◦ as

recommended by Yarnykh. All other sequence parameters were the same as in the

PSS case, and measurements were again obtained in both the phantom and human

brain.

2.2.4 GEs technique

In the GEs approach, RF field mapping is based upon a voxel-by-voxel, least-

squares fitting of signal intensity from a multi flip-angle series of GRE images—a

method previously adopted to generate B+
1 maps for sparse spokes RF pulse designs

(89; 34). Given a GRE signal intensity represented by

Si = β |sin (λα0i)| , (2.2.4)

with β representing the product of the received RF field (B−
1 ) and the initial magne-

tization (M0) and λ indicating the ratio of the actual transmitted RF field magnitude

(B+
1 ) to the corresponding field magnitude (B+

1,nom) associated with the nominal flip

angle α0i of the i-th image in the series, a least-squares fit of the parameters β and

λ to the S vs. α0 curve for each voxel in the imaging slice results in a measure of λ

(i.e., the relative magnitude of the B+
1 field) (89; 30). This method is believed to be
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the most accurate of the four major techniques evaluated in this study due to (1) the

use of long TR values that minimize the potential for magnetization coherencies and

(2) the increased number of measurement points for each voxel. Additionally, this

technique has the benefit of returning an estimate of the collective quantity M0B
−
1

as one of the fitting parameters.

The GEs technique was implemented with the same scan protocol as was used

for the DA technique. The flip-angle was varied from 10◦ to 210◦ in 20◦ steps for

a total of 11 scans, and the voxel-by-voxel, least-squares fitting of the parameters β

and λ was performed using custom written Matlab code (The MathWorks, Natick,

MA, USA). An EPI factor of 3 was employed such that the total scan duration could

be limited to 19min 30 s.

2.2.5 GEs-ssEPI technique

The main disadvantage of the GEs approach to measuring B+
1 and M0B

−
1 is the

lengthy scan duration required to accommodate ≥ 10 dynamics with varying flip

angles while keeping TR long enough that the resulting signal is independent of T1

relaxation. To overcome this limitation, the GEs-ssEPI approach employs a single-

shot EPI read-out. Given the B0 variations in the brain at 7T, dramatic distortions

result from the use of single-shot EPI; however, acquisition of a ∆B0 can readily be

used to make the necessary EPI distortion corrections (35).

In the GEs-ssEPI protocol, ∆B0 is first measured using a 3-D GRE scan (3×3×5

mm resolution, 33 axial slices, TR = 4.0 ms, α = 10◦) with a double echo acquisition
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(TE,1 = 1.6ms, TE,2 = 2.6ms) and second order static field shimming. Total scan time

is 16 s. ∆B0 is calculated from the phase difference of the two acquisitions and the

known ∆TE of 1 ms. Sequence parameters were the same as for the GEs scan except

for the single-shot read-out and a multi-slice acquisition allowing for near whole-brain

coverage. Also, the GEs scan was repeated with the same multi-slice acquisition such

that whole-brain field distributions obtained with and without single-shot EPI could

be compared. After data collection, distortion correction and the least-squares fitting

were performed in Matlab, taking approximately 60 s. Whole-brain RF mapping

data was acquired in 65 s for a total scan+processing time of ∼ 2.5min. Thus, the

necessary time to perform RF mapping was reduced by a factor of ∼ 8 with respect

to the GEs protocol with an EPI factor of 3.

2.3 Results and Discussion

As described in Section 2.2.4, there are fundamental reasons why the GEs method

is thought to result in accurate RF field measurements. Thus, this method was

selected as the standard for comparison, and DA, PSS, and PSS+ maps were divided

on a voxel-by-voxel basis by the corresponding GEs map so as to highlight differences

among the various measurements. In the event that GEs measurements are the

most accurate, these ratios represent an estimate of the error associated with each

technique. GEs-ssEPI results were collected on a different human subject (along

with a corresponding set of GEs measurements) and are, therefore, only compared to

GEs results. In this case, no voxel-by-voxel division is performed. Rather, RF field

measurements are reported in conjunction with the ∆B0 measurements in the form of
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∆B0-B
+
1 voxel-density grids. Such grids are a graphical representation of the overall

distributions of the B0 and B+
1 fields.

2.3.1 Existing techniques

Actual flip-angle/B+
1 maps in the central axial slice of the phantom as measured

by the DA, PSS, PSS+, and GEs protocols are presented in Figure 7. Line profiles

reflect flip-angle measurements along the indicated left-right lines. Also included in

this figure are the calculated ratios of flip-angle measurements of the given method

to those acquired with the GEs method. Differences among the results of the four

techniques are striking. For example, in low B+
1 regions, DA measurements differ

from GEs measurements by up to 50%. The PSS map systematically overestimates

flip angles by ∼ 25% as compared to the GEs results, suggesting that errors associated

with the method are not spatially dependent. Error in the PSS+ map is significantly

reduced with respect to that in the PSS map, thus insinuating that incomplete spoiling

is greatly affecting the PSS results. Furthermore, the PSS+ errors don’t correlate with

regions of high and low B+
1 as do the DA errors and, to a lesser degree, those of the

PSS method; therefore, the PSS+ method appears to correctly determine the RF

field geometry (assuming the GEs measurements are more or less correct), and only a

modest offset between PSS+ and GEs methods is left unaccounted for. Results from

all four protocols are somewhat consistent in confirming that B+
1 field strength in the

phantom spans a range equivalent to ∼ 70% of the nominal value. GEs measurements

indicate that actual B+
1 values range from ∼ 0.4–1.1 in units of the nominal field
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strength.

Field maps in the brain, shown in Figure 8, largely echo the phantom results;

however, one noteworthy difference is a reduction in the total dynamic range of B+
1

as compared to the phantom (at least for this particular slice). While this range was

∼ 70% in the phantom, it is closer to ∼ 50% in the brain. Moreover, the central “hot

spot” is not as exaggerated in the brain, an effect that is likely due to the higher degree

of geometric symmetry in the phantom and the conduciveness of that symmetry to RF

standing wave patterns. Another noticeable difference between phantom and brain

results are the larger PSS errors (i.e., values of ratios with respect to GEs maps) in the

latter. These deviations appear to correlate with ripple artifacts in the PSS maps of

the brian and could be indicative of the sensitivity of the PSS method to B0 variations.

These artifacts may not have surfaced in the phantom data due to the superior level

of B0 shimming that is possible in this volume. Another possible explanation of

these artifacts is the fact that the PSS and PSS+ sequences employ a block-shaped

excitation pulse whereas the DA and GEs sequences use sinc pulses. RF excitation

occurring outside the imaging slab due to the non-selective characteristics of the

block-pulse’s frequency profile can be aliased back into the actual, thus producing

artifact such as those exhibited by the PSS brain maps. Inspection of the GEs brain

map reveals what appears to be subtle T1 weighting of the RF field measurements.

Since B+
1 is not expected to vary according to tissue type in the brain (i.e., dielectric

constants of grey and white matter are very similar), the presence of T1 weighting

indicates that the TR of 5 s is insufficient to allow full magnetization recovery in long
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Figure 7: Axial flip-angle maps acquired via four different protocols in a 17 cm di-
electric phantom at 7T (first row); the ratio of those flip-angle maps to the GEs map
(middle row); and line profiles across the maps at the indicated positions (bottom).
These maps indicate a total dynamic range in the B+

1 field of ∼ 70% relative to the
nominal RF field strength. Measurements differences are significant among protocols,
with the DA technique resulting in ∼ 50% variations in low B+

1 regions as compared
to the GEs map. The optimized spoiling scheme of the PSS+ technique appears to
bring measurements from that protocol closer to those of the GEs method; however,
a modest offset in the measured fields persists.
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T1 tissues, particularly the cerebrospinal fluid. For more accurate and non-tissue-

dependent measurements, the TR should be increased.

2.3.2 GEs-ssEPI technique

A sample of axial slices from all field maps—including ∆B0, B
+
1 , and M0B

−
1 —is

presented in Figure 9. Values of ∆B0 largely fall in the ±150Hz range with the

largest deviations occurring near the frontal sinuses and the ear canals. Single-shot

EPI B+
1 maps are qualitatively similar to those acquired with the low EPI factor;

however, small-scale variations are apparent in regions of maximum ∆B0 and likely

reflect imperfections in the EPI distortion correction. Measurements of M0B
−
1 differ

more noticeably between the single- and multi-shot scans, but, again, variations occur

mostly on a small spatial scale. The highly localized nature of these differences

suggests that single-shot RF field maps may benefit from the application of a 2D low-

pass filter. Overall, the estimated geometry of both B+
1 andM0B

−
1 maps is preserved

under single-shot acceleration despite a ∼ 20-fold reduction in scan time. This fact is

reflected in the 2D voxel histograms of Figure 10 which show the distributions of ∆B0

and B+
1 throughout the brain to be quite similar. Thus, the GEs-ssEPI technique

presented here appears to be a practical tool given the existing demands for fast and

accurate field mapping.

2.4 Conclusions

This RF field-mapping survey indicates that significant discrepancies exist among

four major RF mapping techniques. Depending on the given application of RF field
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Figure 8: Axial flip-angle maps acquired via four different protocols in the human
brain at 7T (first row); the ratio of those flip-angle maps to the GEs map (middle
row); and line profiles across the maps at the indicated positions (bottom). As with
the phantom results, there exist significant discrepancies among results of the four
mapping protocols. Maps indicate a total dynamic range in the B+

1 field of ∼ 50%,
somewhat lower than than observed in the phantom. PSS and PSS+ techniques result
in a ripple artifact suggesting possible sensitivity to B0 offsets. GEs results reveal the
presence of subtle T1 weighting indicating an insufficiently long TR.
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Figure 9: In-vivo field maps for 5 representative axial slices through the brain: (a)
∆B0 maps (in units of Hz) used in EPI distortion correction; (b) and (c) B+

1 /B
+
1,nominal

maps calculated from multi-shot and single-shot EPI data, respectively; (d) and (e)
M0B

−
1 maps (in arbitrary units) calculated from multi-shot and single-shot EPI data,

respectively. High-frequency spatial noise apparent in (c) and (e) is due to the lower
SNR of single-shot EPI as well as errors in the B0 distortion corrections.
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Figure 10: Relative voxel density of the 3-D B+
1 -∆B0 in-vivo data, acquired with

multi-shot (left) and single-shot (right) EPI read-outs. The qualitative differences in
the distributions are subtle, suggesting that single-shot EPI, while leading to some
noticeable differences in localized field measurements, can be used to determine gross
RF field characteristics (e.g., mean and standard deviation) without much loss of
accuracy.

maps, such differences (i.e., potential errors) may lead to drastically improper calibra-

tions of RF pulses or grossly incorrect post-processing intensity corrections. Further

studies to better determine accuracy (as opposed to relative differences) are war-

ranted. While this study has adopted the stance that the GEs method is likely the

most accurate of the four protocols, confirmation of this assumption is needed and

could be attained, at least in part, through numerical modeling of Maxwell’s equa-

tions (i.e., FDTD modeling) for a prescribed phantom geometry and composition.

The newly proposed single-shot GEs variant appears promising as a way to speed up

the prohibitively time consuming GEs method; however, a multi-shot approach with

a high EPI factor may be worthy of a similar investigation, as this adjustment might
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allow for more accurate EPI distortion corrections and therefore more accurate RF

field estimates. Regardless of the conflicting results of the different techniques tested

in this study, the work has established the approximate ranges of B+
1 field variations

in the human brain at 7T. As opposed to the accurate RF maps needed for the

design of spectral-spatial pulses for B+
1 mitigation, these approximate ranges are all

that are necessary for the effective design of the B+
1 -insensitive composite pulses that

are the focus of subsequent chapters of this thesis.
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CHAPTER III

COMPOSITE RF PULSES FOR B+
1 -INSENSITIVE VOLUME EXCITATION

3.1 Introduction

The problem of inhomogeneous transmitted RF (B+
1 ) fields in ultra-high field MRI

(83) has previously been addressed by various RF pulse designs (e.g., spectral-spatial

excitations (89) and adiabatic pulses (72; 76; 23)) and hardware modifications (e.g.,

parallel transmit coils (86) and traveling-wave antennae (12)). Such techniques have

practical limitations in that field maps must be acquired for a specific imaging slice

prior to the design of the RF pulse, specific absorption rate (SAR) requirements

hinder implementation at ultra-high field, pulse durations are impractical, or non-

standard hardware configurations must be implemented. New methods that improve

flip-angle uniformity in the presence of large B+
1 inhomogeneities while simultaneously

addressing or avoiding such shortcomings are therefore of interest.

The design scheme introduced here can be used to generate composite pulses

for volume (non-selective) excitation that are executable on commercial quadrature

transmit coils within the practical limits of maximum RF amplitude and pulse du-

ration of current ultra-high field human MRI. Using numerical techniques, pulses

are optimized to produce uniform flip angles over a range of B+
1 and static (B0) field

variations designated during the design process. When such field inhomogeneities can

be estimated to lie within a given range, pre-designed composite pulses can be used
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without the time-consuming acquisition of B+
1 and B0 field maps and the subsequent

design of a tailored RF pulse.

The main objectives of this study were (1) to determine relevant B+
1 and ∆B0

ranges to be targeted for 7T volume excitation of the human brain and a dielec-

tric phantom of similar size; (2) to design optimized pulses as series of block-shaped

sub-pulses with amplitudes and phases determined by numerical optimization; (3)

to investigate the dependence of the performance of optimized composite pulses on

such factors as average power, pulse duration, sub-pulse duration, and the number

of component sub-pulses; (4) to compare the performance of selected optimized com-

posite pulses to that of suitable block-shaped and adiabatic counterparts by way of

simulations based on phantom and in vivo data acquired at 7T; and (5) to vali-

date the efficacy of optimized composite pulses in improving flip-angle homogeneity

in phantom experiments at 7T. Simulations and experiments demonstrate that this

approach to pulse design is suitable for immediate practical application. Similar B+
1 -

and ∆B0-insensitive composite RF designs have been reported (43; 74; 38; 9; 10)

but differ from this study in available RF time resolutions, maximum RF amplitude

limits, and optimization methodologies. The present study therefore introduces new

strategies for the design of B+
1 - and ∆B0-insensitive pulses specifically for use in

ultra-high field human imaging.

3.2 Methods

The design process for generation of the composite pulses in this study is summa-

rized in the following steps:
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1. perform experiments to determine the distribution of static and RF field mag-

nitudes in volumes of interest (Section 3.2.1)

2. choose ranges of B+
1 and ∆B0 values for which pulses are targeted to perform

(Section 3.2.2)

3. choose number and duration of component sub-pulses (Section 3.2.3)

4. optimize sub-pulse phases and amplitudes via a minimization algorithm (Section

3.2.4)

5. determine average power (P ) and minimum repetition time (TR,min) for each

optimized pulse (Section 3.2.7)

Also in this section are descriptions of the block-shaped and adiabatic pulses used for

performance comparisons (Sections 3.2.5 and 3.2.6) and details of methods used for

simulation of the Bloch equations (Section 3.2.8). Lastly, the experimental procedures

used for validation of optimized pulses are presented (Section 3.2.9).

3.2.1 Field mapping

A key design aim is the tailoring of pulses for a specific range of field inhomo-

geneities found in practice. Prior to determination of suitable ranges of B+
1 and

∆B0 values for which pulses are to be optimized, measurements were made of typical

variations in these fields throughout particular volumes of interest—a 17 cm spheri-

cal dielectric phantom (Function Biomedical Information Research Network, FBIRN)

and the human brain. Two volunteer subjects were recruited from the community,
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and written informed consent was obtained according to the guidelines of the local In-

stitutional Review Board. All experimental data were acquired with a single-channel,

volume quadrature transmit/receive head coil (Nova Medical, Wilmington, MA, USA)

and a 7T MR scanner (Philips Healthcare, Best, The Netherlands).

Protocols for estimating B+
1 distributions were 1) a 3D spoiled steady-state actual

flip-angle imaging (AFI) sequence (87) (referred to as PSS in Chapter II) and 2) a

series of 11 single-slice gradient recalled echo (GRE) images acquired at flip angles

ranging from 10◦ to 210◦ in 20◦ increments (referred to as GEs in Chapter II). Due

to its superior data collection efficiency, the former technique was used to estimate

the B+
1 field throughout the 3D volume, while the latter technique was used to give

a more accurate measure of the same quantity in a single imaging slice (55). The

AFI data were referenced in choosing the range of B+
1 values to be targeted by the

optimized pulses as well as for multi-slice simulations, and the GRE series data were

used for single-slice phantom and in vivo simulations.

Data for B+
1 and ∆B0 scans were acquired in 3mm isotropic voxels within a

240× 192mm axial field of view, with the 3D scan spanning 153mm in the cephalo-

caudal direction. Both sequences also used identical second-order volume shimming

with a targeted shim volume corresponding roughly to the largest cubic volume that

could be inscribed within the imaging volume. The AFI sequence employs interleaved

acquisitions with alternating TR values of 20ms and 100ms, an echo time (TE) of

1.70ms, and a nominal flip angle (α0) of 60◦. The voxel-by-voxel ratio of signals

acquired at the different values of TR can be related to the actual flip angle (α) at

56



a given spatial location. The value of α/α0 then gives an estimate of the relative

magnitude of the B+
1 field. The series of GRE images was acquired for a single slice

corresponding to the central axial slice of the 3D AFI scan, thus placing the slice

location for the in vivo scans just superior of the corpus callosum. Imaging geometry

was identical to that of the AFI sequence, with TR and TE respectively set to 5000ms

and 2.7ms. Given a GRE signal intensity represented by

Si = β |sin (λα0i)| , (3.2.1)

with β representing the product of the received RF field (B−
1 ) and the initial magne-

tization (M0) and λ indicating the ratio of the actual transmitted RF field magnitude

(B+
1 ) to the corresponding field magnitude (B+

1,nom) associated with the nominal flip

angle α0i of the i-th image in the series, a least-squares fit of the parameters β and

λ to the S vs. α0 curve for each voxel in the imaging slice results in a measure of λ

(i.e., the relative magnitude of the B+
1 field) (89; 30). Axial B+

1 maps obtained with

this technique are shown in Figure 11b.

Static field variations (∆B0) were mapped via a 3D spoiled GRE sequence with

a double-echo acquisition (∆TE = 0.5ms). Frequency offsets for all voxels were

then calculated from the difference in magnetization phase at the two echo times

(∆B0 = ∆φ/(2π∆TE)). The value of ∆TE was chosen short enough that no phase

wrapping existed in the phase difference data and that T2 effects were minimized

but long enough that phase differences remained large compared to the noise in the
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Figure 11: ∆B0 (row a) and B+
1 (row b) maps for the central axial slice of a phantom

and the human brain at 7T. ∆B0 values are reported in Hz while B+
1 magnitude is

indicated as a ratio to that of B+
1,nom. B

+
1 maps are those obtained with the multi

flip-angle technique (Equation 3.2.1).

phase images. Although the respective TR and α0 values of 5.3ms and 10◦ resulted

in considerable T1-weighting in the magnitude images, the phase data, and therefore

the ∆B0 measurements, did not reflect tissue boundaries (see Figure 11a). Geomet-

ric imaging parameters were set identically to those of the AFI sequence such that

corresponding measurements of ∆B0 and α/α0 were collected for all voxels in the 3D

volume. Figure 12 shows ∆B0 and corresponding AFI measurements throughout the

spherical phantom and throughout the volume of the brain approximately superior

to the red nucleus. Regions inferior to the midbrain are not included in Figure 12

since reduced coil sensitivity in the area significantly undermines the accuracy of AFI

measurements. Central axial slices of phantom and in vivo ∆B0 maps are presented
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Figure 12: ∆B0 values (y-axis) and corresponding actual flip-angle measurements
(x-axis, given as the ratio of the actual flip angle α to the nominal flip angle α0)
throughout the volume of (a) a 17 cm dielectric spherical phantom and (b) the in

vivo human cerebrum at 7T. Each point represents a single imaging voxel and the
entire distribution is plotted on the same coordinate system in which the composite
pulses of this study are optimized. These data were used in selecting the ranges of B+

1

and ∆B0 values (indicated by dashed boxes) to be targeted by the optimized pulses.
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in Figure 11a above the corresponding multi flip-angle B+
1 data.

3.2.2 B+
1 -∆B0 grids

The next step in pulse design is the designation of a parameter space representing

the ranges of the possible combinations of the B+
1 and ∆B0 values for which pulses

are to be optimized (74; 60; 16). A target flip-angle map is generated by specifying

the desired flip angle at each point in the B+
1 -∆B0 space. In the subsequent opti-

mizations of this study, uniform flip angles of 30◦, 60◦, 90◦, and 180◦ were targeted

over the entire parameter space. For all examples presented in this work, respec-

tive B+
1 /B

+
1,nom and ∆B0 ranges of 0.35–1.30 and ±250Hz were selected to represent

typical variations throughout the human cerebrum and the spherical phantom at 7T

(Figure 12). Selected ranges reflect only an approximation to the total field variations

of the brain and phantom but include the large majority of data points. B+
1 and ∆B0

ranges were respectively discretized into 20 and 21 evenly-spaced values, resulting

in a grid of 420 points, a B+
1 /B

+
1,nom step size of 5%, and a ∆B0 step size of 25Hz.

An odd number of ∆B0 steps was selected so that the on-resonance response of the

pulse could be specifically monitored. The chosen level of B+
1 and ∆B0 discretization

reflects a compromise between the desired response of the pulse and the computing

time associated with the optimization, and the practical validation of a given B+
1 -∆B0

grid comes with evaluating the experimental performance of the resulting optimized

pulse.
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3.2.3 Anatomy of optimized composite pulses

Prior to optimization, the basic structure of the amplitude and phase modulation

waveforms must be defined. All pulses considered here are a composite of block-

shaped sub-pulses executed in immediate succession with the amplitude and phase of

each sub-pulse being subject to numerical optimization. Designations of the number

(Ns) and duration (∆ts) of sub-pulses, as well as the maximum and minimum allowed

RF amplitudes, are prerequisites to pulse optimization. These choices effectively fix

the number of free parameters and their constraints for the numerical optimization.

Composite pulses with Ns = 16, 32, 48, 64, 80, 96, 112, and 128 were generated.

In each case, ∆ts values were fixed to 6.4, 12.8, 19.2, 32.0, 64.0, 128.0, 192.0 and

320.0µs, thus yielding a total of 64 optimized pulses for each target flip angle. The

time increment of 6.4µs, of which all sub-pulse durations are common multiples,

reflects a typical electronics dwell time on commercial human MR scanners (i.e., the

smallest time increment by which the output of the RF amplifier can be updated).

Maximum and minimum parameter constraints were respectively set to 0 and 15 µT

for sub-pulse amplitude and ±π for sub-pulse phase. The maximum amplitude of 15

µT was chosen in accordance with typical performance limits on commercial RF coils

in practical imagers.

3.2.4 Optimization of composite pulses

Routines were written in Matlab to optimize the sub-pulse amplitudes A =

{A1, A2, . . . , Ak} and phases φ = {φ1, φ2, . . . , φk} of composite pulses via minimiza-
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tion of the function

δα(A,φ) =
1

mn

m,n
∑

i,j=1

∣

∣

∣

∣

∣

αS
i,j(A,φ)− αT

i,j

αT
i,j

∣

∣

∣

∣

∣

, (3.2.2)

where i is the B+
1 index on the B+

1 -∆B0 grid, j is the ∆B0 index on the B+
1 -∆B0 grid,

and α is the flip angle given by cos−1 (Mz/M0) with S and T denoting simulated and

target values. The value of function δα represents the average deviation of simulated

flip angles from the target flip angle over the entire B+
1 -∆B0 grid and is expressed as

a fraction of the target flip angle. With the goal of finding a minimum of Equation

3.2.2, the non-linear constrained minimization algorithm (46; 62) (Matlab function

fmincon) iteratively calculates a quasi-Newtonian estimate of the Hessian of the La-

grangian defined by the second partial derivatives of Equation 3.2.2 with respect to

the k amplitudes and k phases of the RF waveform. The algorithm is seeded by a

composite pulse in which the k amplitudes and phases conform to an even probabil-

ity distribution within the prescribed limits of 0–15µT and ±π rad, respectively. A

termination condition is satisfied if the minimization algorithm fails to decrease the

value of δα by at least a factor of 10−6 over the course of a single iteration. The

phase of the magnetization is not considered in the cost function, since phase is not

crucial to pulse performance. In the context of volume excitation, phase must only

be a smoothly and slowly varying function of B+
1 and ∆B0 so as to avoid intravoxel

dephasing. After the pulse design process, variations in phase were examined across

the B+
1 -∆B0 grid to ensure minimal impact on the resulting signal.
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Although the indices of αT
i,j signify that composite pulses for which target flip-

angles vary across the B+
1 -∆B0 grid could be designed without modification of the

cost function (Equation 3.2.2), each of the pulse compositions described in Section

3.2.3 was optimized with target flip angles on the B+
1 -∆B0 grid uniformly set to 30◦,

60◦, 90◦, and 180◦ as described in Section 3.2.2. A subset of four optimized pulses

(see Figure 16) was selected for explicit comparison with block-shaped and adiabatic

pulses with equivalent nominal flip angles.

3.2.5 Maximum-bandwidth block pulses

The central lobe of the frequency spectrum of a block-shaped pulse has a band-

width inversely proportional to the pulse duration; therefore, block pulses can affect

a range of ∆B0 offsets limited only by the minimum possible pulse duration. The

flip-angle (α) of a block pulse is determined solely by the pulse amplitude (A) and

duration (∆T ) such that

α = 2πγ

∫ ∆T

0

∣

∣B+
1

∣

∣ dt = 2πγA∆T , (3.2.3)

with γ = 42.57MHz/T (for hydrogen), hence a block pulse with the largest possible

bandwidth can be determined by choosing the shortest ∆T given the maximum al-

lowed value of A (Amax = 15µT) and the desired flip-angle (α0). Parameters for all

block pulses in this study were chosen according to this condition of maximum band-

width while simultaneously requiring ∆T to be an integer multiple of the electronics
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dwell time (d = 6.4µs). The integer number of dwell times (Nd) in a maximum-

bandwidth block pulse is then uniquely given by

Nd = ceil

(

α0

2πγAmaxd

)

, (3.2.4a)

where ceil denotes the operation of rounding to the next highest integer. Actual

values of A and ∆T were then defined via the relations

∆Tactual = Ndd (3.2.4b)

and

Aactual =
α0

2πγ∆Tactual
. (3.2.4c)

Using this protocol, block pulses serving as metrics for the performance of optimized

pulses were generated for α0 values of 30◦, 60◦, 90◦, and 180◦.

3.2.6 B+
1 -insensitive adiabatic pulses

Four-part B+
1 -insensitive rotations (BIR-4) are composites of four adiabatic pulse

segments. Complete BIR-4 modulation functions can be found in Appendix C. These

pulses are capable of producing arbitrary flip angles and have been shown to improve

flip-angle uniformity in the context of volume (non-selective) excitation (76; 23);

therefore, BIR-4 pulses provide a suitable basis for comparison when evaluating the

performance of the optimized composite pulses produced in this study. Flip-angle
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maps for 4.096ms BIR-4 pulses with nominal flip angles of 30◦, 60◦, 90◦, and 180◦ were

simulated for specific comparison with the subset of four 4.096ms optimized pulses

subject to additional analysis in Section 3.3.2. Simulation of the Bloch equations

(Section 3.2.8) was carried out in an identical manner to that of optimized pulses;

however, BIR-4 pulses were divided into as many d = 6.4µs block-shaped sub-pulses as

possible (n = 640) given the total pulse duration (∆T = 4.096ms). This reflects the

typical way pulses with continuous waveforms are executed digitally on an amplifier

for which d = 6.4µs. BIR-4 amplitude and frequency modulations were designated

according to Staewen et al. (76), with Amax = 15µT and a frequency sweep of

±250Hz.

3.2.7 Average power and minimum TR

The specific context in which a given RF pulse is implemented usually dictates the

optimal value of TR, thus providing a restriction on the average power (P ) of the RF

excitation. To maintain generality, P was therefore not directly incorporated into the

design of the optimized pulses; however, P was indirectly limited by the maximum

allowed (hardware restricted ) RF amplitude and fixed duration of each pulse. With

average power calculated as

P =
1

∆T

∫ ∆T

0

|A(t)|2 dt (3.2.5a)
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for an amplitude modulation A(t) of length ∆T , practical limitations associated with

RF power of each pulse were quantified by calculation of a minimum value of TR via

the relationship

TR,min =
C P ∆T

SARmax
, (3.2.5b)

where C = 1.41W/kg/µT2 is a coil-specific constant representing the rate of energy

dissipation of 298MHz radiation in human brain tissue, SARmax is set to the value

of 3W/kg corresponding to the SAR threshold for significant risk in the human head

according to the Food and Drug Administration (FDA) (13), and ∆T is the time

duration of the given RF pulse. TR,min therefore represents the minimum repetition

time for a pulse sequence in which the optimized excitation is the only RF component

(such as in a GRE imaging experiment or a pulse-and-acquire spectroscopy experi-

ment). Values are unique to both the magnitude of the static field and the specific

volume head coil used in this study but may serve as useful guidelines when using

similar coil configurations at 7T.

3.2.8 Simulation of the Bloch equation

Magnetization response to a composite of k sub-pulses with constant phase and

amplitude was modeled as a series of rotations (Rj , where j = 1, . . . , k), each repre-

senting the operation due to a relaxation-independent form of the Bloch equation (3).

With each rotation corresponding to one of the k individual sub-pulses, the collective
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operation of all components of a composite pulse is described by

M
f = RkRk−1Rk−2 . . . R1M

0 , (3.2.6)

where M
0 is the magnetization vector preceding the pulse and M

f is the magnetiza-

tion vector following the pulse. For all cases in this study, the initial magnetization

was taken to be in the z-direction such that the components of M0 were given by

(M0
x ,M

0
y ,M

0
z ) = (0, 0, 1). A more detailed description of strategies for simulating the

Bloch equation is presented in Appendix B.

3.2.9 Phantom experiments

A spoiled, 3D, echo-planar, GRE sequence (TR = 500ms, TE = 5ms, 3mm

isotropic voxels, EPI factor 3) was used to image the entire volume of the 17 cm

FBIRN phantom with the same hardware configuration described in Section 3.2.1.

This experiment was carried out with the 4.096ms excitation pulses shown in the first

row of Figure 16: a 30◦ maximum-bandwidth block pulse, a 30◦ BIR-4 pulse, and a

30◦ optimized composite pulse. For each excitation pulse, data were acquired both

for the case of second-order static field volume shimming and the case in which all

static field shimming gradients were turned off. Respectively, these ∆B0 shimming

scenarios allowed for the evaluation of excitation pulse performance when (1) in-slice

static field variations were similar to those found in the well-shimmed human brain at

7T (e.g., compare the in vivo ∆B0 map of Figure 11a with the unshimmed phantom
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∆B0 map of Figure 22) and when (2) in-slice static field variations were minimal.

Data for calculation of the parameter β (Equation 3.2.1) in a 2D axial slice corre-

sponding to the central slice of the 3D volume were obtained according to the protocol

described in Section 3.2.1. Since the steady-state signal (Sss) can be expressed as a

product of B−
1 - and B

+
1 -dependent factors β and F such that

Sss = βF , (3.2.7a)

with F being explicitly given by

F (λ, T1, T
∗
2 ;α0, TR, TE) =

|sin (λα0)|
(

1− e−TR/T1

)

e−TE/T ∗
2

1− |cos (λα0)| e−TR/T1

, (3.2.7b)

and

λ = B+
1 /B

+
1,nom , (3.2.7c)

central-slice images from the 3D acquisitions were divided by the calculated map of

β. This procedure resulted in six maps of F (three excitation pulses with two static

field shimming schemes) which were then compared in terms of uniformity. To avoid

signal scale discrepancies arising from the fact that Sss values were acquired with a

3D sequence while β values were calculated from 2D sequence data, Sss and β were

normalized prior to the calculation of F such that Sss = β = 1 for voxels with λ = 1.
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3.3 Results

3.3.1 Optimized pulses

The 4 flip angles (30◦, 60◦, 90◦, 180◦), 8 Ns values (16, 32, 48, 64, 80, 96, 112,

128), and 8 ∆ts values (6.4, 12.8, 19.2, 32.0, 64.0, 128.0, 192.0, 320.0µs) for which

composite pulses were optimized resulted in a total of 256 composite pulses produced

for this study. Actual cost function values are presented in Appendix D as a function

of the parameters Ns and ∆ts, but the dependence of δα on total pulse duration in

emphasized in the present chapter. In Figure 13, δα values (Equation 3.2.2) for each

of these pulses are plotted as a function of total pulse duration (∆T ) for all values

of Ns. In Figure 14, the same information is presented but organized according

to pulses with a given ∆ts. While these data collectively indicate the sensitivity

of pulse performance to the design parameters Ns and ∆ts, they firstly illustrate the

radical improvement in flip-angle uniformity that is possible with optimized composite

pulses as compared to maximum-bandwidth block pulses (the performance of which

is indicated by a ‘×’ symbol in each sub-plot of Figures 13 and 14). In general,

composite pulse performance clearly increases (i.e., δα decreases) with increasing ∆T .

One obvious exception to this trend occurs for 30◦ pulses with ∆T & 5ms. For most

values of Ns in Figure 13, δα clearly reaches a minimum value when ∆T is between

2 and 10 ms. Smaller Ns values lead to δα minima at the lower end of this range

while larger Ns values lead to δα minima at the upper end of this range. Similar

behavior in the ∆T -dependence of δα can be seen to a lesser degree as α0 increases.
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Examination of δα vs. ∆T in light of ∆ts (Figure 14) reveals that shorter ∆ts pulses

rather consistently provide increased performance when ∆T is long (& 5ms). For

shorter ∆T , ∆ts appears to make little difference in pulse performance.

Absolute minimum values of δα are found at the following combinations of Ns and

∆ts, respectively: 128 and 64µs for 30◦, 60◦, and 90◦ pulses; 128 and 128µs for 180◦

pulses. By this measure alone, performance of pulses appears limited simply by Ns,

while the ideal value of ∆ts depends on both the optimal bandwidth of the component

sub-pulses and the available RF power for the entire composite pulse. From this, it

can be inferred, given the objective of the optimization, that the ideal composite

pulse would have the maximum value of Ns within the limits of the optimization

algorithm and the shortest value of ∆ts as long as ∆T is sufficiently long. While

these findings are consistent with the optimal control studies of Skinner et al. (75),

further interpretation of the Ns, ∆ts, and ∆T dependencies of δα are saved for the

discussion section.

Based on a 2D linear interpolation of the data in Figures 13 and 14, Figure 15

provides a visual representation of pulse performance in the near-continuous param-

eter space of Ns vs. ∆ts. Using a linearly weighted average of the four nearest data

points, both δα and TR,min data for each of the four flip angles were interpolated from

an 8 × 8 (Ns × ∆ts) grid to a 128 × 3136 grid resulting in respective interpolated

parameter step sizes of 1 sub-pulse and 0.1µs. The value of composite pulses is again

obvious given that all colors other than the darkest red in Figure 15 signify an im-

provement in flip-angle uniformity as compared to maximum-bandwidth block pulses.
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Figure 13: Cost function value (δα, Equation 3.2.2) as a function of overall pulse
duration (∆T ), with each sub-plot corresponding to a different target flip angle as in-
dicated in the upper right corner. Line colors indicate optimized pulses with different
numbers of sub-pulses (Ns). The ‘×’ symbol indicates performance of maximum-
bandwidth block pulses for each flip angle. For short pulse durations, optimization
tends to result in similar pulse performance for the various values of Ns due to the
limited available RF power. Longer pulses tend to result in better pulse performance
but with δα depending more noticeably on the value of Ns.
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Figure 14: Cost function value dependence on ∆T as in Figure 13 but with line
colors corresponding to optimized pulses with different sub-pulse durations (∆ts). As
in Figure 13, the performance of shorter pulses is similar for the various values of ∆ts
due to the limited available RF power. Longer pulses tend to result in better pulse
performance with δα often being lower for smaller values of ∆ts. This likely reflects
the reduced bandwidth associated with longer ∆ts values.
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Figure 15: Results of composite pulse optimizations interpolated across the 2D pa-
rameter space of sub-pulse duration (∆ts) and the number of sub-pulses (Ns) with
sub-figures (a), (b), (c), and (d) corresponding respectively to α0 values of 30◦, 60◦,
90◦, and 180◦. Color scale indicates the minimized function value (δα); black contours
give corresponding minimum repetition times (TR,min) in milliseconds; solid, dashed,
and dotted white lines are isocontours of total pulse duration (∆T ) at 5, 10, and
20ms, respectively. Black asterisks indicate the values of Ns and ∆ts for the opti-
mized pulses specifically compared to block and BIR-4 pulses in Figures 16, 17, and
18 and Table 3.3.1. Data indicate that the lowest values of δα migrate toward the
top right corner of the parameter space with increasing α0—thus reflecting increased
power requirements. At lower α0, δα minima tend to be found in the upper left,
suggesting that the maximum number of short-duration sub-pulses yields the best
performance given that a certain power threshold is satisfied.
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In the context of Figure 15, the strong correlation between values of δα (colors), TR,min

(black contours), and ∆T (white lines) also becomes apparent. These relationships

emphasize that little improvement in flip-angle uniformity can be achieved when the

available RF power is too limited. Such a power threshold is, however, noticeably

reduced for smaller α0. For example, 30◦ composite pulses can drastically improve

flip-angle uniformity for TR values less than 200ms while 180◦ pulses offer significantly

reduced benefits under the same restriction. Conversely, the regions in which pulses

perform the best don’t necessarily correlate well with regions of high P (i.e., highest

TR,min values). This effect is most easily observable for the lower α0 pulses (i.e., 30◦

and 60◦). For example, the lowest δα values for 30◦ pulses occur in the TR,min range

of 200− 400ms. Similarly, there is no significant advantage to be gained in selecting

60◦ pulses with TR,min > 400ms, and, in fact, many such pulses perform significantly

worse than their lower P counterparts.
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Figure 16: The ratio of actual to nominal flip angle (α/α0) as simulated on the 20× 21 B+
1 -∆B0 optimization grid (color )

along with RF amplitude and phase modulation waveforms (columns 2, 4, and 6). Columns 1 and 2 are maximum-bandwidth
block pulses; columns 3 and 4 are BIR-4 pulses (∆T = 4.096ms); columns 5 and 6 are select optimized composite pulses
(∆T = 4.096ms); rows correspond to different nominal flip angles (indicated at left). Maps reflect the on-resonance B+

1 -
insensitivity of BIR-4 and optimized pulses while optimized pulses result in significantly improved off-resonance behavior.
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3.3.2 General performance comparison of select optimized pulses to

maximum-bandwidth block pulse and BIR-4 counterparts

In order to facilitate comparison of optimized composite pulses to block and BIR-

4 pulses of the same α0, a subset of four optimized pulses was identified according

to the practical criterion of ∆T = 4.096ms. Given this total duration, the com-

posite pulse with the lowest δα value was selected for each α0. The respective Ns

and ∆ts values for these pulses are 128 and 32µs for 30◦, 64 and 64µs for 90◦, and

32 and 128µs for both 60◦ and 180◦ and are indicated by asterisks in Figure 15.

Simulated flip angles on the B+
1 -∆B0 optimization grid are shown in Figure 16 for

these four selected composite pulses along with the optimized amplitude and phase

modulation waveforms. Also given in this figure are the corresponding simulated re-

sults for maximum-bandwidth block pulses and 4.096ms BIR-4 pulses. Upon visual

inspection of Figure 16, optimized composite pulses appear to outperform the other

pulse types in terms of flip-angle uniformity but also quantitatively demonstrate their

increased performance when normalized mean (α/α0), mean-normalized standard de-

viation (σα/α), and coefficient of variations (cv = σα/α) are compared (Table 3.3.1).

Depending on the nominal flip angle, composite pulses show a ∼ 4-fold reduction

in δα values as compared to block pulses. Block pulses exhibit the expected linear

relationship between actual flip angles and B+
1 field strength (Equation 3.2.3) while

BIR-4 pulses demonstrate strong B+
1 -insensitivity for static field strengths very close

to resonance. It is in areas of off-resonance, especially at low B+
1 field strengths, that

composite pulses designed in the manner of this study offer a distinct advantage over
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their adiabatic counterparts. Although the colors in Figure 16 are thresholded at

δα = 1.3, BIR-4 pulses actually result in δα values as high as 5.0 (i.e., α is 500% of

α0) for α0 = 30◦. This fact is reflected in the large standard deviation for this BIR-4

pulse as simulated on the B+
1 -∆B0 grid (Table 3.3.1).

Optimized pulse phase modulations in Figure 16 have been unwrapped from the

±π rad constraints of the optimization according to the Matlab function unwrap

in order to emphasize the tendency of optimized modulation functions to be charac-

terized by a frequency sweep coupled with a near-constant amplitude. A frequency

sweep can be described in general terms of phase modulation as a smoothly vary-

ing and cyclic function. Such behavior in the amplitude and phase modulation is

evidence of the quasi-adiabatic nature of the optimized composite pulses. In other

words, pulses appear to be largely functioning by way of a gradual change in the di-

rection of the effective field ( ~Beff = ~B+
1 + ~∆B0) and a simultaneous spin-lock achieved

through a high RF amplitude, although the adiabatic condition is, in general, not

satisfied throughout the pulse. Similar phase modulation in the context of compos-

ite pulses has been previously reported (38) while the strongly modulated pulses of

Boulant et al. (9; 10) appear to implicitly incorporate similar behavior into their

design.
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Table 3.3.1: Quantitative comparison of pulses featured in Figures 16 and 17. Nominal flip angle (α0) and pulse type are
indicated in columns 1 and 2. Columns 3–5 show the mean flip angle (normalized to α0), standard deviation (normalized to
the mean), and coefficient of variation for three contexts in which pulse performance was evaluated: the B+

1 -∆B0 optimization
grid, the central axial slice through a spherical phantom, and the central axial slice of the human brain. Column 6 gives the
minimum repetition time (TR,min), while columns 7 and 8 respectively show the average power (P ) and the ratio of P to the
average power of the corresponding block pulse (PBLK) with the same α0.

α0 pulse grid phantom brain TR,min (ms) P (µT2) P/PBLK

30◦
BLK 0.82± 0.28(±35%) 0.67± 0.17(±26%) 0.62± 0.11(±18%) 13 7 1.0
BIR-4 1.31± 0.86(±66%) 0.94± 0.03(±4%) 0.93± 0.08(±8%) 382 198 29.4
OPT 0.98± 0.07(±8%) 1.00± 0.03(±3%) 0.99± 0.05(±5%) 274 142 21.1

60◦
BLK 0.82± 0.28(±35%) 0.67± 0.17(±26%) 0.62± 0.11(±18%) 27 14 1.0
BIR-4 1.01± 0.31(±30%) 0.95± 0.03(±3%) 0.92± 0.07(±7%) 382 198 14.1
OPT 0.98± 0.08(±8%) 1.00± 0.03(±3%) 1.01± 0.05(±5%) 261 136 9.7

90◦
BLK 0.82± 0.28(±35%) 0.67± 0.17(±26%) 0.62± 0.11(±18%) 40 21 1.0
BIR-4 0.92± 0.16(±17%) 0.95± 0.03(±3%) 0.92± 0.07(±8%) 382 198 9.6
OPT 0.97± 0.10(±10%) 1.01± 0.07(±7%) 0.96± 0.09(±10%) 256 132 6.4

180◦
BLK 0.82± 0.28(±35%) 0.67± 0.17(±26%) 0.62± 0.11(±18%) 80 42 1.0
BIR-4 0.75± 0.13(±18%) 0.92± 0.03(±4%) 0.86± 0.10(±12%) 382 198 4.8
OPT 0.92± 0.10(±11%) 0.93± 0.05(±5%) 0.93± 0.06(±6%) 344 179 4.3
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Figure 17: Flip-angle maps (expressed as a ratio of actual to nominal values) simulated
in the central axial slice of a 17 cm phantom (left side) and the human brain (right
side) for block (BLK), BIR-4, and optimized composite (OPT) pulses. Simulations
are based on multi flip-angle B+

1 and 3D ∆B0 maps acquired at 7T. Colors denote
flip angles normalized to the nominal values indicated at the beginning of each row.
Optimized and BIR-4 pulses show superior flip-angle uniformity to that of block pulses
while in vivo simulations highlight the increased susceptibility of BIR-4 pulses to off-
resonances. Optimized pulses appear to combine desirable features of the other pulse
types—the high effective bandwidth of the block pulses and the B+

1 -insensitivity of
BIR-4 pulses.
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Figure 18: Flip-angle maps simulated in eight axial slices of the brain for the 30◦ block, BIR-4, and optimized composite
pulses shown in Figure 16. Simulations are based on 3D ∆B0 and AFI maps acquired at 7T. Results indicate improved
on-resonance flip-angle uniformity but lower effective bandwidth of BIR-4 and optimized pulses as compared to block pulses.
Relative to optimized pulses, increased sensitivity of BIR-4 pulses to variations in the static field is apparent in all slices.
Below each sub-figure are the nomalized mean, the mean-normalized standard deviation, and the coefficient of variation for
the simulated flip-angle distributions in the given slice.

80



3.3.3 Phantom and in vivo simulations of maximum-bandwidth block, BIR-4, and

optimized composite pulses

Simulated flip-angle maps (normalized to α0) are shown in Figure 17 for the sin-

gle axial slices of both the spherical phantom and the in vivo human brain. These

simulations are based on the 7T multi flip-angle B+
1 maps and the corresponding

slices of the 3D ∆B0 maps described in Section 3.2.1. Flip-angle maps for maximum-

bandwidth block pulses are characterized by a central hot spot due to the combination

of attenuation and constructive interference of the B+
1 field and the flip angle’s linear

dependence on the time-integrated magnitude of this field (83). This effect is some-

what reduced in vivo due to geometrical asymmetry and the resulting incoherences

in the transmitted field. BIR-4 pulses do not rely on a linear relationship between flip

angle and
∫

B+
1 dt but instead on the process of adiabatic spin-locking. The resulting

improvement in flip-angle uniformity is dramatic when compared to that of the block

pulse. In the phantom, static field shimming appears sufficient such that the unde-

sirable off-resonance behavior of BIR-4 pulses seen on the B+
1 -∆B0 grid (Figure 16)

does not effect flip angles in the central axial slice. In this context, performance of

BIR-4 and optimized composite pulses is remarkably similar, with BIR-4 pulses even

outperforming optimized pulses in terms of flip-angle cv values at 90
◦ and 180◦ (Table

3.3.1). In vivo simulation, however, begins to emphasize the significant advantage of

the optimized pulses. In the in vivo case, with B0 shimming being more challenging,

BIR-4 pulses result in much reduced flip-angle uniformity as compared to the phan-

tom. In particular, it is the low-B+
1 off-resonance areas (roughly corresponding to
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the right side and upper left of the axial brain slice) in which flip-angles deviate the

most (compare column 5 of Figure 17 to column 2 of Figure 11). Although optimized

pulse performance also suffers somewhat in the lowest B+
1 regions, these pulses are

not as susceptible to variations in the static field. The in vivo results of Table 3.3.1

indicate significant improvements in flip-angle mean and cv for optimized pulses, with

the lone exception being cv for the 90◦ pulse. It is noteworthy that such increases

in performance as compared to BIR-4 pulses can be attained while simultaneously

reducing P (or equivalently, TR,min) values by an average of 23% (Table 3.3.1).

Although B+
1 field maps may be less accurate than the multi flip-angle data set

used in Figure 17, 3D AFI data were used to simulate flip-angle response to 30◦ block,

BIR-4, and optimized composite pulses in eight adjacent axial slices in the brain

(Figure 18). These results are convincing in their illustration of the improvements

possible with optimized pulses. Inferior slices in this stack are proximal to many

air-tissue interfaces (such as the frontal sinus) with magnetic susceptibility changes

giving rise to sharp variations in B0. As expected due to its large effective bandwidth,

the block pulse appears least affected by these off-resonances but nonetheless suffers

from dramatic B+
1 -induced flip-angle variations. The BIR-4 pulse drastically improves

flip-angle uniformity in the superior slices and the central regions of inferior slices;

however, undesirable off-resonance effects are obvious in most slices and especially

so in the inferior-most regions. In fact, the outline of the shim volume (a cuboid)

is visibly recognizable in the central slices (Figure 18, row 2, columns 1–5), again

emphasizing that the BIR-4 pulse performs well only under an ideal B0 shimming
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scenario. The optimized composite pulse is considerably more resilient to static field

variations than the BIR-4 pulse, with undesirable flip angles appearing in much more

confined regions of the inferior-most slices. In fact, the optimized pulse decidedly

outperforms the block and BIR-4 pulses in terms of flip-angle uniformity across all

ten slices presented in Figure 18 (compare statistical measures beneath each sub-plot).

3.3.4 Time-evolution and off-resonance simulations of BIR-4 and optimized pulses

In addition to simulated flip-angle maps following the execution of the pulse, the

performances of 30◦ BIR-4 and optimized pulses were investigated by simulating the

time evolution of the magnetization throughout the pulse duration as well as the

off-resonance behavior out to ±5 kHz. Plots of α vs. time are shown for BIR-4 and

optimized pulses in Figure 19 for different combinations of B+
1 and ∆B0. Although

the amplitude of fluctuations in α(t) are considerably larger for the BIR-4 pulse, the

oscillatory behavior of α(t) shows some resemblances between the two pulse types. For

example, local minima are apparent in the neighborhood of t = −1, 0, and +1ms.

Such similarities may be indicative of the quasi-adiabatic nature of the optimized

pulse. The analytical design of BIR-4 pulses, relying on adiabatic manipulation of

the magnetization, results in smooth and predictable changes in the magnetization

with time. The optimized composite pulses were designed to produce uniform flip

angles at the conclusion of the pulses with no regard for what happens along the way.

For this reason, optimized pulses are free to take advantage of adiabatic spin-locking

but only to the extent that best satisfies the minimization condition (Equation 3.2.2).
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The α(t) curves of Figure 19 are suggestive of such quasi-adiabatic behavior. This

figure also clearly demonstrates the way in which magnetization vectors for BIR-4 and

optimized pulses converge to the target flip angle at the end of the pulse, regardless

of the B+
1 and B0 offsets. The one exception to this behavior is for the BIR-4 pulse

when off-resonance at low B+
1 . This serves as a good example of the loss of adiabatic

behavior responsible for the undesirable off-resonance effects illustrated in Figures 16,

17, and 18.

Terminal flip-angle values for the same BIR-4 and composite pulses of Figure 16

are shown in Figure 20 for ±5 kHz and nominal B+
1 . These data indicate qualitative

similarities in the magnetization response to both BIR-4 and optimized pulses, again

suggesting the quasi-adiabatic nature of the latter. Off-resonance data also emphasize

that both pulse types (in their current form) are truly limited to volume excitations

since large flip angles are produced very far from the target bandwidth.

3.3.5 Phantom experiments

Results from phantom experiments using 30◦ excitation pulses in a 3D gradient

echo sequence are shown in Figure 21 with line profiles given in Figure 22 and rele-

vant statistical measures presented in Table 3.3.2. In the case of second-order static

field shimming (first row of Figure 21), the calculated maps of the B+
1 -dependent

factor F (Equation 3.2.7b) are consistent with the phantom flip-angle map simula-

tions presented in Figure 17, thus lending further credibility to the other simulated

results presented in this work. In experiment, both BIR-4 and optimized composite
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Figure 19: Flip angle as a function of time simulated for the 30◦ BIR-4 (a) and
optimized composite (b) pulses of Figure 16. Solid, dashed, dotted, and dash-dotted
lines indicate flip-angle behavior at the (B+

1 /B
+
1,nom,∆B0) coordinates respectively

given by (0.5,+150Hz), (0.5, 0Hz), (1.2, 0Hz), and (1.2,+150Hz). At the end time
of the pulse, the four trajectories would ideally converge at the target flip-angle value
of 30◦. The objective of the optimization in this study is to design a composite pulse
that simultaneously forces such behavior for all 420 points on the B+

1 -∆B0 grid. The
lower effective bandwidth of BIR-4 pulses relative to optimized pulses is evident in
the solid line of (a) which terminates at a flip angle more than twice the target value.
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Figure 20: Nominal B+
1 , off-resonance behavior out to ±5 kHz for the (a) 30◦, (b)

60◦, (c) 90◦, and (d) 180◦ BIR-4 (dashed lines) and optimized composite (solid lines)
pulses of Figure 16. Vertical dashed lines denote the ±250Hz optimization region.
At nominal B+

1 , both pulses show remarkably similar off-resonance behavior and are
obviously unsuitable for slice-selection.
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pulses perform very well in terms of the uniformity of F when static field shimming

is applied. In contrast, the maximum-bandwidth block pulse results in highly B+
1 -

dependent values of F , as anticipated. In the case that the static field shimming

gradients are turned off, the F maps in Figure 21 indicate the sensitivity of the BIR-

4 pulse to off-resonance effects and the insensitivity of both the maximum-bandwidth

block pulse and the optimized pulse to the same changes in B0. Thus, the optimized

composite pulse combines the desirable qualities of the maximum-bandwidth block

pulse and the BIR-4 pulse in that the resulting excitation is highly insensitive to vari-

ations in the both the static field and the transmitted RF field. Vertical line profiles

for the images and F maps of Figure 21 are given in Figure 22 and provide a different

perspective on the same results. The intensity profiles in Figure 22a reflect the fact

that B+
1 -insensitive pulses still result in images with considerable intensity variations

due to the inhomogeneous B−
1 field associated with the receiving coil while Figure

22b shows the component of the signal dependent on B+
1 (i.e., F ). A comparison of

solid and dotted lines allows for an evaluation of off-resonance sensitivity for a given

pulse type. In Table 3.3.2, the distributions of F values for each combinations of

pulse type and B0-shimming scheme are described quantitatively. When comparing

cv values, the optimized pulse can be seen to perform roughly twice as well as the

BIR-4 pulse when B0 shimming is applied and about four times better in the case of

no B0 shimming. The latter case more closely reflects anticipated performance in the

human brain at 7T.
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Figure 21: Phantom signal intensity (S) from experiment and calculated steady-state
B+

1 -dependent factor (F in Equation 3.2.7b) values for the cases of second-order static
field shimming (first row) and no static field shimming (second row). Static field maps
are shown in column 1, and S and F maps for the three pulse types are indicated at
the top of the other columns. When static field shimming is active, the BIR-4 and
optimized composite pulses result in significant improvement in flip-angle uniformity
as compared to the block pulse. When no static field shimming is present (and B0

variations are similar in range to that of the human brain at 7T), the BIR-4 pulse
results in much reduced flip-angle uniformity while optimized pulse performance is
similar to the case when static field shimming is applied.
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Figure 22: Central, vertical line profiles through the images (a) and F maps (b) found
in Figure 21. Voxels are numbered from top to bottom, corresponding to the direction
in which the static field predominantly increases (see field maps in Figure 11). The
case of static field shimming (SH) is indicated by solid lines while the case of no static
field shimming (NS) is indicated by dashed lines. Comparison of solid and dashed lines
of a given color reveals the superior off-resonance stability of maximum-bandwidth
block (black) and optimized composite (red) pulses as compared to the BIR-4 pulse
(blue). Of the three pulses, the optimized composite pulse is closest to producing the
ideal combination of B0- and B+

1 -insensitivity, which would be characterized in (b)
by both solid and dashed lines having the constant value F (α) = 1 .
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Table 3.3.2: Distribution statistics for the experimental phantom maps of the B+
1 -

dependent factor F found on the right side of Figure 21. The mean of F , standard
deviation of F , and the scv value are given for 30◦, 4.096ms maximum-bandwidth
block (BLK), BIR-4, and optimized composite (OPT) pulses. In terms of the width
of the distribution of F , the optimized pulse performs slightly better that BIR-4 pulse
when ∆B0 variations are minimal. When no B0 shimming is applied, the optimized
pulse demonstrates superior flip-angle uniformity.

∆B0 BLK BIR-4 OPT

SHIM 0.69± 0.16(±23%) 1.00± 0.09(±9%) 1.03± 0.05(±5%)
NO SHIM 0.69± 0.16(±23%) 0.83± 0.20(±24%) 1.04± 0.06(±6%)

3.4 Discussion

The results of this feasibility study into the applicability of numerically optimized

composite pulses for 7 T demonstrate the possibility of marked gains in flip-angle

uniformity as compared to block and BIR-4 pulses. Simulations and phantom ex-

periments straightforwardly signify improved off-resonance behavior of the optimized

pulses relative to BIR-4 pulses and dramatically improved excitation homogeneity

relative to block pulses. The optimized waveforms in their current form are imple-

mentable for volume excitation on commercial human MR systems and, although

designed specifically for a volume head coil at 7 T, can directly be used at other

field strengths and for other coil/field configurations for which the B+
1 field is highly

inhomogeneous (e.g., surface coils or 3 T torso imaging).

The optimized pulses of this study are specifically designed for arbitrary flip-angle

volume excitation within the practical limits dictated by a commercial 7 T MR im-

ager. Comparisons of flip-angle uniformity between RF pulse classes (e.g., block,
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adiabatic, and optimized composite pulses) are complicated by the array of intended

applications. For example, although emphasis in this analysis has been placed on com-

parison with BIR-4 pulses, it should be noted that the optimized composite pulses

presented here do not in general result in plane rotations as achieved by BIR-4 pulses

and, therefore, cannot be used for refocusing. For this application, composite pulses

would have to be specifically designed by changing the minimization condition of

Equation 3.2.2 to include the reversal of one or both orthogonal transverse magneti-

zation components. For the purposes of excitation and inversion, it would be useful

for future studies to compare the flip-angle uniformity of optimized composite pulses

to that of other B+
1 -insensitive waveforms such as hyperbolic secant (72) and chirp

(7) pulses within the context of 7 T human imaging. Of particular interest would

be a direct comparison with the offset-independent adiabaticity (OIA) representa-

tion of such pulses (78; 45). While some such pulses offer the advantages of high

bandwidth and sharp frequency profiles thus making them potentially more suitable

for spectroscopy and slice-selective imaging, composite pulses could be optimized via

the methods of this study with slice-selection or high bandwidth being the primary

objective. The performance of such pulse designs is presently unknown.

While the phase of the transverse magnetization is unconstrained in the optimiza-

tion in order to increase the resulting flip-angle uniformity, phase should in general

be monitored such that variations with respect to B+
1 and ∆B0 do not result in sig-

nal loss from intravoxel dephasing. While the experiments in this study (with 3mm

isotropic voxels) did not appear affected by magnetization phase variations, use of
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optimized composite pulses could potentially result in signal intensity fluctuations

in regions where the static field changes rapidly with respect to voxel dimensions.

Examples of scenarios that might lead to such conditions are the use of larger vox-

els, the presence of extreme magnetic susceptibility fluctuations, or the use of strong

gradients for suppression of signal arising from beyond the imaging volume. In such

scenarios, variations in the phase of transverse magnetization produced by optimized

composite pulses may warrant further scrutiny.

In addition to demonstrating notable excitation uniformity in the context of 7 T

human brain imaging, data from the present study illuminate several ways in which

the design process for composite pulses could be altered to produce further improve-

ments for in vivo applications. The remainder of this discussion addresses the po-

tential of data-driven alterations to composite pulse anatomy, the optimization grid,

incorporation of SAR limits into the optimization algorithm, utilization of competing

minimization strategies, and hardware modifications.

The performance of the optimized composite pulses relies on the combination of

pulse parameters ∆T , Ns, and ∆ts in ways that are not always obvious. Perhaps the

most straightforward dependence is the general trend of improved performance with

increasing ∆T . Since optimized pulses tend to be characterized by high amplitudes

sustained for large fractions of the pulse length, the dependence of performance on

∆T can be interpreted as a need for high average power of the total RF waveform.

This idea is consistent with the adiabatic interpretation of magnetization behavior

since adiabatic pulses utilize high RF amplitudes to maintain spin-locking conditions
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so that the direction of the effective magnetic field may be slowly varied by way of a

phase or frequency sweep. As ∆T values increase, pulse performance also generally

becomes more dependent on the parameters Ns and ∆ts, suggesting that a power

threshold necessary for adiabatic behavior is satisfied. This effect does appear to be

somewhat dependent on the target flip angle given that the minimum δα values in

Figures 13 and 14 favor higher ∆T values as the target flip angle is increased. When

the influence of Ns is visible in the data, it is usually the case that higher Ns lead

to increased pulse performance for a given ∆T , although individual exceptions can

certainly be found. The value of ∆ts appears to have a more subtle influence on

pulse performance, but shorter ∆ts does appear somewhat favorable when comparing

pulses of a given length. The effects of ∆ts are likely related to the bandwidth of the

individual sub-pulses and may influence results only slightly since all ∆ts investigated

in this study correspond to bandwidths much larger than the target range of ∆B0

values (e.g., the bandwidth of a 320µs sub-pulse is ∼ 3.1 kHz). Lastly, the bandwidth

associated with the total pulse length ∆T may be an additional factor affecting pulse

performance. For example, the eventual reduction in performance at large ∆T seen

in lower flip-angle data of Figure 13 could be fostered by the fact that the bandwidth

associated with the overall pulse length is actually narrower than the target ∆B0 range

of ±250Hz (e.g., the effective bandwidth of a 10ms block pulse is ±100Hz). Such

an effect would certainly seem relevant in the case that the amplitude modulation

waveform approximates a that of a block pulse with the same duration.

Although the distribution of in vivo B+
1 -∆B0 values of Figure 12b are represen-
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tative of only a single subject, the data are suggestive that there are large regions

of the chosen optimization grid that are not relevant to 7T volume excitation of the

human brain. Furthermore, areas in which in vivo pulse performance is worst (e.g.,

Figure 18, near the frontal sinus) have resonance offsets of as much as ±700Hz, again

suggesting that the optimization region for composite pulses could be defined more

suitably for uniform volume excitation of the brain. Instead of simply choosing limits

for the B+
1 -∆B0 grid based on the maxima and minima of both phantom and brain

data, only the relevant combinations of in vivo B+
1 and ∆B0 values could be identi-

fied. Ideally, such an analysis would be based on data from multiple subjects with

differing head sizes and geometries. Such a customized optimization grid could result

in better pulse performance at low B+
1 values or at large resonant offsets.

Consistency of simulated flip-angle maps across the contexts of optimization grids

(Figure 16) and phantom/brain data (Figure 17) indicates that discretization of the

grids is sufficient to represent true variations in the underlying fields. Thus, the be-

havior of the magnetization for a given combination of B+
1 and ∆B0 is sufficiently rep-

resented by the corresponding values of neighboring points on the grid. Consequently,

there appears to be no need for further discretization while reduced discretization may

be possible for the sole purpose of saving computational time.

Since specific applications were not targeted in this study, P constraints were not

incorporated into the optimization algorithm. The disadvantage of this approach is

that a given pulse with a certain TR,min is not necessarily the best pulse for a specific

target application—that is, there may be a different combination of Ns and ∆ts that
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results in the same P but with a lower value of δα. A specific P limit could easily

be incorporated in the optimization scheme by calculating P at every iteration and

comparing that value to the prescribed constraint.

Solutions to optimization problems like the one investigated in this study are only

as good as the underlying minimization technique. Given that subsequent optimiza-

tions for a pulse with particular Ns and ∆ts result in different waveforms due to

the differing random initial conditions, it can be concluded that the minimization

algorithm utilized here (Section 3.2.4) is not in general successful at finding a global

minimum—thus, resulting pulses may not be the best possible ones given the design

criteria. It is unknown if optimal control theory as implemented by Skinner et al. (74)

is better suited for finding a global minimum. The condition of a uniquely defined

phase for the final magnetization vector in that work would need to be relaxed to facil-

itate a comparison of optimization methods given that the lone condition of flip-angle

uniformity in the present study does not constrain the phase of the magnetization;

however, the relaxation of this phase condition does not appear straightforward. In

a future study, the two algorithms (optimal control and fmincon) could be directly

compared in the context of RF pulse design given that the final phase of the magne-

tization is specified. This would at least allow for a general performance comparison

and an analysis of the sensitivity to initial conditions inherent in both methods. Pre-

liminary results of a similar analysis are presented in Appendix E. In the context

of the same minimization problem, optimal control theory has the advantage of effi-

ciently handling very large numbers of free parameters, thus allowing for the design
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of composite pulses with arbitrarily short ∆ts. Indeed, the present study (Section

3.3.1) and others (75) have shown that pulses with short ∆ts are more likely to pro-

duce superior results. In light of these comments on the efficacy of minimization

algorithms, it is worth stating that the primary objective of this work is to design

a pulse that provides a practical solution to the given optimization problem, and,

although algorithms with improved efficiency and performance are always preferable,

determination of a global minimum is not a priority.

As alluded to in Section 3.3.3, potential for numerically optimized composite

pulses should be re-evaluated in light of any relevant hardware advancements. Since

sensitivity to off-resonance is apparently a relevant design issue for optimized com-

posite and BIR-4 pulses alike, it is a noteworthy conclusion of this work that both

pulse types would potentially benefit greatly from improved B0 shimming schemes

such as dynamic shimming (5) due to the corresponding reduction in the minimum

required RF bandwidth (i.e., the range of ∆B0 represented on the optimization grid).

Not only would better B0 shimming result in enhanced performance of both existing

BIR-4 and optimized composite pulses but would also likely reduce the power require-

ments for the latter class—thus, increasing optimized pulse performance for short-TR

applications. This observation serves to emphasize the interconnected relevance of

inhomogeneities in the static and RF fields. As for transmission coil technology, com-

posite pulses should be re-designed to ensure the best possible performance if maxi-

mum RF amplifier outputs above 15µT are available. Indications from this study are

that limited RF amplitude is a significant inhibitory factor in pulse performance given
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that many optimized amplitude modulation functions utilize the maximum available

amplitude for a large fraction of the pulse duration (see Figure 16).

3.5 Conclusion

An optimization algorithm for producing composite excitation pulses with B+
1 -

insensitivity has been investigated in the context of human brain imaging at 7T.

In addition to demonstrating significant improvements of optimized pulses over block

and BIR-4 pulses, this study has documented the performance of these existing meth-

ods of volume excitation. When compared to block-shaped pulses, optimized com-

posite pulses are capable of dramatic enhancement of flip-angle uniformity at the

costs of increased power, duration, and susceptibility to static field variations. Given

the measured distribution of ∆B0 values and estimated SAR values at 7T, these

drawbacks seem manageable, especially if applications are identified for which pulse

sequence repetition times are sufficiently long (& 100ms). When compared to BIR-4

pulses of the same duration, optimized composite pulses also show compelling gains

in flip-angle uniformity, primarily with respect to off-resonance sensitivity, and do

so with reduced power requirements. Further customization to the optimization grid

and direct incorporation of power constraints into the optimization algorithm may

result in pulses with better in vivo performance and suitability to short-TR applica-

tions. Despite such possible improvements, the pulses generated for this study already

demonstrate the convincing way in which B+
1 inhomogeneity problems at high field

can be addressed through the numerical optimization of composite RF waveforms for

a single channel transmitter.
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CHAPTER IV

SLICE-SELECTIVE EXCITATION WITH B+
1 -INSENSITIVE COMPOSITE

PULSES

4.1 Introduction

The problem of spatially-dependent signal fluctuations arising from variations in

the strength of the transmitted radio frequency field (B+
1 ) (83) has received much

attention over the last decade due to the proliferation of high-field (≥3 T) magnets

for human MR imaging and spectroscopy. The challenge of mitigating such signal

variations in order to more fully realize the potential of high-field imaging systems

has sparked a renewed interest in the design of RF pulses that invoke a magnetization

response insensitive to the B+
1 field strength (76; 23; 60; 78; 45; 9; 1; 10; 56). Due

to rough frequency profiles and non-linear transverse magnetization phase in the

through-slice direction, many such pulses are limited in application to whole-volume

acquisitions. Related pulse designs that could provide the B+
1 -insensitivity needed for

high-field applications while additionally permitting slice-selective imaging by way of

a gradient-recalled echo (GRE) are therefore of interest. Design criteria for such

a class of pulses are extensive and include: (1) durations short enough to avoid

significant T ∗
2 signal loss at 7T; (2) bandwidths low enough to allow for imaging of

thin (. 5mm) slices but high enough to avoid slice profile distortions due to in-plane

B0 variations; (3) linear (or quasi-linear) through-slice magnetization phase profiles
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that allow for proper rephasing (i.e., GRE); (4) slice profiles comparable to those

attained with Gaussian or apodized sinc pulses; (5) peak amplitudes consistent with

the performance limits of typical RF amplifiers used by clinical scanner manufacturers;

and (6) average RF power levels that permit safe scanning of human subjects given

the currently accepted limits on specific absorption rates (SAR . 3W/kg in the brain

(13)).

Although the above requirements for B+
1 -insensitive slice-selection are certainly

daunting, progress has been made recently in the development of such pulses. In

1998, a gradient modulation technique was demonstrated as a means for maintaining

spatial selectivity for composite excitation pulses (27). The technique relied upon

a series of gradient lobes of alternating polarity—each of which was responsible for

allowing the spatial selectivity of a given sub-pulse in the composite waveform while

simultaneously rephasing the magnetization produced by the prior sub-pulse. Today,

this approach is widely adopted in the design of sparse spokes pulses used for flip-angle

inhomogeneity corrections (68; 89) but has proven adaptable to other pulse types. In

2008, Balchandani et al. (1) utilized such oscillating selection gradients to transform a

non-selective BIR-4 excitation pulse with a 90◦ flip angle into a spatially selective pulse

with similar B+
1 -insensitive properties. In this technique, BIR-4 phase and amplitude

modulation patterns served as envelopes defining the phases and amplitudes of a

train of spectrally selective sub-pulses formed from the central lobes of sinc functions

(hereafter referred to as a sinc modulation). In the context of a GRE sequence with

a 90◦ excitation, the study showed improvements in flip-angle uniformity for 10mm

99



slice thicknesses in a phantom and the in vivo human brain at 3 T and represents a

significant step in advancing the limits of practical single-channel pulse designs.

The work presented here uses the same spatial selectivity strategy as that discussed

above but in conjunction with composite pulses numerically optimized to produce

uniform flip angles over specified ranges of B0 and B+
1 field variations (56). The

optimization procedure results in a non-selective pulse that is then endowed with

spectral selectivity via the replacement of block-shaped sub-pulses with Gaussian

(hereafter referred to as gau) or sinc sub-pulses. Due to a cost function involving

only the flip angle, the resulting class of excitation pulses does not rely explicitly on

adiabatic spin-locking to achieve immunity to B+
1 variations. This characteristic is

potentially advantageous given that the pulse durations and high RF power needed

for adiabaticity are not always attainable in the human brain at 7T due to the

combination of large B+
1 variations, RF amplifiers with limited peak amplitudes,

SAR restrictions, and relatively short T ∗
2 values. Furthermore, the design protocol

incorporates prescribed B0 variations into the optimization problem, thus resulting

in slice profiles that are generally stable within the specified range of static field

offsets. In addition to the described optimization procedures, we expand on the

work of Balchandani et al. to investigate (1) the use of higher gradient strengths for

achieving imaging slice thicknesses of ∼ 2mm, (2) the slice profile variations resulting

from different sub-pulse amplitude modulations (i.e., gau and sinc), (3) the use of a

wide range of total pulse durations (∼ 2−20ms) so as to explore the potential trade-off

between pulse performance (i.e., insensitivity to B+
1 and B0 variations) and relaxation

100



effects (i.e., T ∗
2 and T2,ρ (52; 51)), and (4) the exploration of pulse performance at

arbitrary flip angles (results for nominal flip angles of both 45◦ and 90◦ are presented).

Given the above objectives, it is the underlying motive of the present study to

further test the limitations of single-channel, slice-selective pulse designs for practical

use at 7T. While multi-transmit technologies promise to meet many of the same

needs, single-channel pulse designs are very much of interest given that all scanners are

not yet equipped with multi-transmit hardware and that the SAR demands of multi-

transmit systems have not been fully established. Furthermore, exploring the limits

of single-channel designs helps to determine the true advantages of multi-transmit

techniques and to establish the contexts in which such techniques are most suitable.

Such pulses as the ones of this study may also find a role in clinical scanning at

lower field strengths since the field variations observed in those contexts may not

always warrant the expense of additional transmission channels. Regardless of field

strength, the pulses of this study have an inherent advantage over current multi-

transmit methods in that subject-specific field maps and subsequent pulse calibrations

do not have to be made—pulses are designed with the goal of delivering the required

performance despite subject-specific differences in B0 and B
+
1 field geometries. While

this feature is certainly attractive in terms of practicality, the true pros and cons of

this class of pulses (as well as its proper place in the context of MRI) will only be

better understood in time.
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4.2 Methods

The description of methods is presented in three main parts: pulse designs, sim-

luations, and experiments.

4.2.1 Pulse designs

This section begins with a review of the previously described protocol (56) for

the optimization of non-selective exitation pulses, including adjustments that have

been made for the current slice-selective application (Section 4.2.1). The procedure

used to translate these non-selective pulses into their slice-selective counterparts is

then described. Lastly, a preliminary analysis of various gradient and amplitude

modulation shapes for achieving slice-selective excitation (including the effects of

these choices on resulting slice profiles) is presented. These simulations justify the

gradient and amplitude modulations selected for implementation in this study.

Structure and optimization of non-selective composite pulses

To generate non-selective composite pulses with inherent insensitivity to variations

in the B0 and B
+
1 fields, a discrete grid comprised of pairs of ∆B0 and B

+
1 values was

established. The included ranges of ∆B0 and B+
1 values correspond to the ranges

of field variations over which the resulting pulse is required to perform and were

determined from our previous study that reported such variations within the human

brain at 7T (56). An appropriate ∆B0 range for a central axial slice was determined

to be ±150Hz, while the corresponding B+
1 range was found to be [0.25, 1.00] in
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units of the nominal B+
1 field strength (B+

1,nom). These ranges were discretized into

31 steps in the ∆B0 direction (resulting in steps of 10Hz) and 16 steps in the B+
1

direction (resulting in steps equivalent to 5% increments of B+
1,nom). This B+

1 -∆B0

grid provided a visualization tool when magnetization response to a given RF pulse

was simulated and also served as a context in which a numerical optimization problem

was formulated.

While still series of block-shaped sub-pulses (i.e., each sub-pulse had constant

phase and amplitude values), composite pulses for the present study differed from

those designed previously (56) in that (1) sub-pulse duration was significantly length-

ened to accommodate the substitution of gau and sinc modulations needed for slice

selection and (2) peak RF amplitudes were further limited such that necessary ampli-

tude adjustments for the slice-selective sub-pulses could be made without exceeding

the amplifier limit of 15µT. These constraints resulted in sub-pulse durations of

665.6µs and 1062.4µs (integer multiples of the digital RF amplifier’s dwell time of

6.4µs) and maximum amplitudes of 8.8µT and 5.0µT for the sinc and gau formats,

respectively. Motivation for these particular duration and amplitude values is further

described later on in this section.

With these sub-pulse durations and maximum amplitude values established, the

k phases (φ = {φ1, φ2, . . . , φk}) and k actual amplitudes (A = {A1, A2, . . . , Ak}) of a

given sequence of block-shaped sub-pulses were determined through minimization of

the cost function

δα(A,φ) =
1

mn

m,n
∑

i,j=1

∣

∣

∣

∣

∣

αS
i,j(A,φ)− αT

i,j

αT
i,j

∣

∣

∣

∣

∣

, (4.2.1)
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where i is the B+
1 index on the B+

1 -∆B0 grid, j is the ∆B0 index on the B+
1 -∆B0 grid,

and α is the flip angle given by cos−1 (Mz/M0) with S and T denoting simulated and

target values. In this study, αT
i,j values were set to either 45◦ or 90◦ over the entire op-

timization grid, thus prescribing uniform flip angles over the specified ranges of field

variations. The value of function δα represents the average deviation of simulated flip

angles from the target flip angle over the entire B+
1 -∆B0 grid and is expressed as a

fraction of the target flip angle. Solutions to the minimization problem were found

using the fmincon function in Matlab (The MathWorks, Natick, MA, USA) with the

interior-point algorithm. In summary, this constrained minimization technique

involves numerical approximations to the Hessian of the LaGrangian of δα in combi-

nation with a series of linear and conjugate-gradient steps. Initial conditions for all

performed optimizations were defined by randomly assigned phase and amplitude val-

ues for each sub-pulse (within the constraints of −π ≤ φk ≤ +π and 0 ≤ Ak ≤ 15µT)

while the intial magnetization vector was given by M0 = (Mx,My,Mz) = (0, 0, 1).

The numerical optimization was carried out for four categories of pulses corresponding

to the two target flip angles (45◦ and 90◦) and the two amplitude/duration formats

(gau and sinc) described above. Within each pulse category, composite pulses were

generated with k = 1, 2, . . . , 19 sub-pulses, thus reflecting the desired range of total

pulse durations to be investigated, i.e., ∆T ∼ 1-20ms.

Despite the relatively low number of free parameters in the optimization problem

(the maximum number is 40 in the case of 20 sub-pulses), the minimization algorithm

was found to be rather sensitive to initial conditions. To ensure avoidance of outlying
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Figure 23: Optimization performance (δα, Equation 4.2.1) as a function of run number
for a 13-element composite pulse with a target flip angle of 45◦ and a maximum ampli-
tude of 8.8µT, as is the case for sinc pulse format. Runs represent identical optimiza-
tions with different random initial conditions (i.e., random initial sub-pulse phases
and amplitudes). The arrow indicates the run with lowest δα which was selected to
represent pulses of the given composition. Although the majority of runs converge to
δα ∼ 10, this minimization problem with 26 free-parameters clearly demonstrates a
sensitivity to initial conditions that warrants repeating the optimization to check for
the possibility of a more favorable starting point.
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local minima, the optimization was repeated 100 times for each pulse as defined

by a unique combination of target flip angle (αT ), total duration (∆T ), sub-pulse

duration, and maximum sub-pulse amplitude values. Only phase and amplitude sets

resulting in the lowest value of δα for a given pulse structure were considered in the

subsequent analysis of pulse performance. An example of the observed sensitivity to

initial conditions for one pulse structure is shown in Figure 23 and helps to justify

the repetition of optimizations.

Construction of slice-selective pulses

Once all optimizations had been performed, the resulting non-selective composite

pulses were translated into slice-selective pulses via a two-step process. Firstly, the

block-shaped amplitude modulations were replaced by either gau or sinc waveforms

of the same duration. The peak amplitude of each gau/sinc sub-pulse was adjusted

such that the integrated amplitude (or, equivalently, flip angle as given by
∫

γAkdt)

was left unchanged relative to that of the corresponding block-shaped sub-pulse. Sub-

pulse phases were not adjusted in the translation from non-selective to slice-selective

pulses. Secondly, the phase and amplitude modulations of the composite pulse were

synchronized with an oscillating gradient in the slice-selection direction. Because of

limited gradient slew rates (166T/m/s in this case), an appropriate inter-sub-pulse

delay was chosen to avoid ill effects on the resulting slice profile. This was not a

straightforward choice given the subjectivity of characterizing an acceptable slice

profile. Thus, the remainder of this subsection is devoted to a preliminary analysis of
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the slice profiles resulting from the chosen gau and sinc modulations in conjunction

with selection gradients of varying length. This analysis leads to the choice of selection

gradient durations adopted for subsequent simulations and experiments.

Preliminary analysis of slice profiles

The target slice thickness for this study was established at 2mm. Given this

desired slice thickness and a maximum gradient strength of 33mT/m, the relationship

∆z = BW/ (γ ·G) , (4.2.2)

where ∆z is slice thickness, BW is the bandwidth of the RF pulse, G is the gradient

strength, and γ = 42.57MHz/T is the gyromagnetic ratio for 1H, necessitates RF

bandwidths of ∼ 2800Hz. According to slice profile criteria described previously (4),

the standard deviation of the gau sub-pulses in this study was fixed to 13.5% of

the total sub-pulse duration. The sinc sub-pulses were determined using the firls

function in Matlab according to Balchandani et al. (1). The target bandwidth in

conjunction with these particular amplitude modulations led to the choice of the

665.6µs and 1062.4µs durations for the sinc and gau sub-pulses, respectively, as

mentioned in Section 4.2.1.

The Bloch equation was simulated according to the methods of Section 4.2.2 to

determine slice profiles for individual gau and sinc sub-pulses when executed in the

presence of different slice selection gradient waveforms. In the first gradient scheme,
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gradient amplitude was constant for the duration of the sub-pulse. This case affords

optimal slice-profiles but leads to additional time (beyond the duration of the RF sub-

pulse) to accommodate the slew of the gradient up to and down from its maximum

strength—a transition time that takes ∼ 200µs. In the second gradient scheme, the

RF sub-pulse and the entire trapezoidal gradient waveform had identical durations

such that RF amplitude is non-zero during the slew of the gradient. The advantage

with this scheme over the first is that additional time is not required to accommodate

the slew periods.

Figure 24 shows the resulting slice profile simulations along with the relevant

amplitude and gradient waveforms. These results demonstrate that the sinc pulses

result in slice profiles with prominent side lobes when the RF waveform overlaps with

the gradient slew period. With the ultimate goal in this study being high-resolution

imaging of thin slices, such profiles were deemed unacceptable; therefore, all sinc

pulses in this study were executed such that gradients are slewed only when the RF

amplitude is zero. Conversely, gau pulses result in smooth and almost identical slice

profiles for both gradient schemes; therefore, the gradient was allowed to slew during

the execution of gau pulses so as to reduced the total pulse duration. The fact that

gau pulses are relatively immune to variations in gradient shape near the beginning

and end of the RF waveform is not surprising given that a gau pulse deposits a larger

fraction of its power in the middle of the pulse duration as compared to a sinc pulse.
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Figure 24: A comparison of simulated slice profiles for Gaussian (top) and central-
sinc lobe (bottom) amplitude modulation waveforms of the same bandwidth executed
in the presence of various slice-selection gradients. Dashed/solid profiles in the right
column result from the given amplitude modulation in the presence of the correspond-
ing dashed/solid gradient in the left column. Gradients indicated with the dashed
lines are equal in total duration to the corresponding RF waveforms. Gradients desig-
nated by solid lines allow the entire RF waveform to be executed during the gradient
plateau. While these two gradient schemes result in very similar slice profiles for the
Gaussian pulse, the shorter gradient results in much amplified side-lobes in the case
of the sinc pulse.
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4.2.2 Simulations

Magnetization response to the non-selective composites of k sub-pulses with con-

stant phase and amplitude were modeled as a series of rotations (Rj , where j =

1, . . . , k), each representing the operation due to a relaxation-independent form of

the Bloch equation (3). Such strategies for simulation the Bloch equation are the

subject of Appendix B. With each rotation corresponding to one of the k individual

sub-pulses, the collective operation of all components of a composite pulse is described

by

M = RkRk−1Rk−2 . . . R1M0 , (4.2.3)

where M0 is the magnetization vector preceding the pulse and M is the magnetiza-

tion vector following the pulse. For all cases in this study, the initial magnetization

was taken to be in the z-direction such that the components of M0 were given by

(M0
x ,M

0
y ,M

0
z ) = (0, 0, 1). For optimization of non-selective pulses, magnetization re-

sponse was simulated over the B+
1 -∆B0 grids of the dimensions described in Section

4.2.1; however, simulation data presented in this manuscript was calculated over grids

with much higher resolution (i.e., 1% and 1Hz increments in the B+
1 /B

+
1,nom and ∆B0

directions, respectively).

Simulations of the Bloch equation for slice-selective composite pulses were ac-

cording to the same methods as for non-selective pulses except that each of the k

sub-pulses was further discretized into l parts (with l being the number of 6.4µs

intervals within the sub-pulse) over which RF amplitude, RF phase, and gradient
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strength were considered constant. Thus, an entire composite pulse required k × l

rotation operators, such that each Rk in Equation 4.2.3 is expressible as

Rk = Rk,lRk,l−1Rk,l−2 . . . Rk,1 . (4.2.4)

Such simulations resulted in magnetization responses that were illustrated on high-

resolution B+
1 -z grids, with z denoting position along the slice-selection direction.

Magnetization was calculated in this way over a range of ±5mm, thus well beyond

the target slice thickness. The large number of rotation operaters was not prohibitive

in this case since all optimizations were performed using non-selective pulses.

To evaluate the dependence of magnetization on the decay constant T ∗
2 during

application of a given RF pulse, the Bloch equation was simulated such that relaxation

effects were considered (see Appendix B), as was not the case with the rotation

operations previously employed. For this purpose, a finite difference method was

adopted for which the iterative cycle is 100 times shorter than the 6.4µs intervals

used for relaxation-free simulations. Such short increments were necessary to ensure

realistic behavior of the simulated magnetization response when the Bloch equation

is modeled in this way.

To help establish practical limitations, a set of values reflecting SAR and echo

time constraints were calculated for each pulse. These values include the integral of

the square of the amplitude (a quantity directly proportional to SAR), the minimum

allowed repetition time given the SAR constraint of 3W/kg (TR,min), and the mini-
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mum possible echo time (TE,min). The first of these is a straightforward calculation

involving the amplitude modulation of the slice-selective version of each pulse. The

second value, TR,min, is determined from inverting the relationship

SAR =
C

TR

∫ ∆T

0

|A(t)|2 dt , (4.2.5)

in which A(t) is the amplitude modulation function and C is a coil specific constant

describing the rate of energy dissipation of 298MHz radiation in human brain tissue,

in order to determine the TR that corresponds to a SAR value of 3W/kg. The value

TE,min is determined by taking half of the total pulse duration and adding the time

needed for a rephasing gradient of the same duration as a single sub-pulse. This

reflects the way minimum echo times are typically calculated by commercial MR

scanner software.

4.2.3 Experiments

All experiments were conducted on a 7T Philips Achieva whole body scanner

(Philips Healthcare, Best, the Netherlands) based on a Magnex (Varian Medical Sys-

tems, Palo Alto, CA) 90 cm magnet. RF transmission and reception was carried out

with a single-channel, quadrature volume head coil from Nova Medical (Wilmington,

MA). All phantom experiments were based on a 17 cm spherical dielectric phantom

from FBIRN (Function Biomedical Information Research Network) with relaxation

constants of T1/T
∗
2 = 1150/42ms as measured at 7T. For in vivo experiments, one
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healthy volunteer was recruited from the community, and written informed consent

was obtained according to the guidelines of the local Institutional Review Board.

Static field maps were obtained in the phantom and human subject using a 2D

GRE sequence with a double-echo acquisition (∆TE = 1ms), a repetition time (TR)

of 5ms, and a flip angle of 10◦. Slice orientation was axial, and scan resolution was

3×3mm within a 240×192 field of field in the anterior-posterior, right-left directions,

respectively. Slice thickness was 2mm, corresponding to the target slice thickness of

the pulses in this study. B+
1 /B

+
1,nom maps were calculated via a voxel-by-voxel fitting

of signal intensities from a multi-flip-angle, multi-slice, multi-shot (3 lines of k-space

per shot) GRE-EPI scan with a TR of 5 s (89; 30). The in-plane resolution, slice

thickness, and field of view matched those of the B0 scan. Projection-based, second-

order volume B0 shim currents were used during collection of all data. Shim currents

and the RF drive scale remained unchanged for the series of experiments in the same

imaging volume. B0 maps were used to perform EPI distortion corrections of the

B+
1 -mapping data (35) which were minimal in this case due to the low EPI factor.

Given that the signal resulting from a long-TR, short-TE GRE sequence is expressible

as

S = βF = β |sinλα0| , (4.2.6)

where β represents the product of the equilibrium magnetization (M0) and the relative

intensity of the RF field associated with the receiver coil (B−
1 ), λ represents the

relative strength of the transmitted RF field (B+
1 /B

+
1,nom) and α0 is the nominal flip
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angle, the fitting procedure of the B+
1 measurement technique results in estimates of

both β and λ. While λ gives a measure of actual variations in B+
1 , the parameter

β can be used for evaluating the uniformity of excitations produced by various RF

pulses as described below.

Imaging experiments for evaluating pulse performance employed the same 2D

GRE sequence as used for B+
1 mapping. In order to reflect the practical limitations

associated with pulses of different duration, echo time (TE) was set to the shortest

possible value for a given excitation pulse. This resulted in signal acquisitions that

began ∼ 1ms after the end of any given RF excitation, thus allowing time for the

rephasing gradient which was in all cases the same duration but half the strength as

the individual gradient lobes used during application of the RF pulse. Imaging exper-

iments were performed for only a small sample of the 80 pulses derived in this work.

In addition to a single Gaussian pulse, only the pulses circled in Figure 25—namely,

the gau and sinc pulses with 5 and 8 components (hereafter referred to using the

abbreviations 5-gau, 8-gau, 5-sinc, and 8-sinc)—were implemented on the scanner.

While all of these pulses were tested on the phantom, only the single Gaussian and

5-sinc pulses were tested in the brain. In all cases, both 45◦ and 90◦ versions of

pulses were used. As a measure of the flip-angle uniformity produced by each pulse,

both phantom and in vivo images (comprising S in Equation 4.2.6) were divided

on a voxel-by-voxel basis by the corresponding map of β derived from B+
1 -mapping

procedures—thus producing maps of the flip-angle dependent function F in Equation

4.2.6. Prior to division, both images and β maps were normalized to their respective

114



values at locations for which B+
1 /B

+
1,nom = 1. This normalization step compensates

for the fact that the slice profiles attained with a given RF pulse are slightly different

from those produced during the B+
1 -mapping sequence upon which the determination

of β is based. Considering these slice-profile variations, division of the unnormalized

intensities could result in unfeasible values of F , i.e., values that imply the sin func-

tion in Equation 4.2.6 has a value > 1. An alternative approach would be to adjust

signal intensities based on the slice-profile measurements described below; however,

this procedure was avoided since it would rely upon additional measurements that

incorporate additional sources of error.

To verify target slice thickness, slice profiles were measured in the same phantom

for all pulses used in the previously described imaging experiments. For this purpose,

the phase-encoding of the read-out was oriented along the slice-selection direction

in a 2D GRE sequence. All other scan parameters were the same as those of the

2D GRE sequence adopted for imaging experiments, with the only exception being a

1mm acquisition resolution in the phase-encoding direction.

4.3 Results

Similarly to the Methods section, results are presented in three parts. Firstly, the

results of all non-selective pulse optimizations are given in Section 4.3.1. Secondly,

simulations of pulse performances for both non-selective and slice-selective pulses are

presented in Section 4.3.2. Lastly, in Section 4.3.3, the results of phantom and in vivo

brain experiments are described, including measurements of slice profiles.
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4.3.1 Optimizations

The results of non-selective pulse optimizations are presented in Figure 25. The

final cost function values (Equation 4.2.1) for all pulses (not including optimization

repetitions for the same pulse structure) are given as a function of total pulse duration.

This data contains several noteworthy features. Firstly, regardless of the type of

pulse (i.e., 45◦ or 90◦, gau or sinc), cost function values decrease dramatically as

a function of total pulse duration out to ∼ 10ms. Beyond this point, improvements

in the cost function become increasingly small. Secondly, the sinc pulses result in

better performance at any given duration beyond 3ms. Thirdly, the 90◦ pulses largely

perform better than their 45◦ counterparts.

Entries encircled by dashed lines in Figure 25 indicate the pulses selected for in-

depth analysis. All other results presented in this manuscript pertain to one or more

of these eight pulses or to one of the single-Gaussian pulses referred to in Section 4.2.3.

It should be noted that, although these selected pulses represent practical options in

terms of duration and performance, they do not reflect the maximum B+
1 -insensitivity

(as measured by the cost function) of pulses produced in this study. Reductions in

δα of ∼ 50% are possible when considering longer pulses (e.g., compare the 90◦ sinc

pulses of 8.5ms and 20.2ms durations in Figure 25).

4.3.2 Simulations

Simulated magnetization responses to both non-selective and slice-selective ver-

sions of the designated sub-set of pulses are shown in Figure 26 for αT = 45◦ and in
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Figure 25: Cost function values (δα, Equation 4.2.1) for non-selective composite pulses
as a function of total pulse duration. Each data point represents a unique composite
pulse with the different combinations of sub-pulse shape (gau or sinc) and target flip
angle (45◦ or 90◦) indicated by different colors. Dashed ellipses indicate the pulses
chosen for in-depth analysis via simulation and experiment. In all cases, the largest
degree of cost function improvement is achievable with pulse durations < 10ms,
with longer durations only leading to modest performance gains. sinc composites
systematically outperform gau pulses of the same structure while higher flip angles
(i.e., 90◦) lead to improved cost function values especially for pulse durations > 10ms.
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Figure 27 for αT = 90◦. In addition to the magnitude of the transverse magnetization

(|MT |), these figures display the non-selective and slice-selective RF waveforms, the

slice-selective gradients and, in the case of slice-selection, the phase of the transverse

magnetization (φMT ). Magnetization uniformity within the optimization regions on

the B+
1 -∆B0 grids is greatly improved (with respect to the single-Gaussian pulses)

through the use of optimized composite pulses, and, indeed, the degree of uniformity

appears to correlate with the cost function values reported in Figure 25. Moreover,

the simulations of slice-selective pulses exhibit similar B+
1 -insensitivity to their non-

selective counterparts—thus validating, in part, the methods adopted by this study

for the generation of B+
1 -insensitive, slice-selective pulses.

While the composite pulses largely reflect the desired degree of B+
1 -insensitivity,

there are some complications with such pulses that become apparent through the

simulated magnetization responses. Perhaps most significant is the introduction of

non-linear through-slice phase. This effect is most prominent in the waveforms with

the highest integrated amplitudes and at the highest B+
1 /B

+
1,nom values (see the 90◦

8-sinc pulse in Figure 27 for an obvious example). The detriment of non-linear phase

is the potential signal loss resulting from residual incoherencies in φMT following

application of a linear rephasing gradient. Due to this phenomenon, pulses with the

lowest cost function values may not always result in the largest signal gains. Given

the relative importance of linear phase for maximizing signal produced by excitation

pulses, details of the simulated through-slice phase following the application of a

rephasing gradient are presented in Figure 28. In this representation, phase is shown
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for only a few B+
1 /B

+
1,nom values and for only the central 2mm of the slice. The range

of data in the slice-selection direction is limited to reflect the region from which the

majority of signal arises. These simulations indicate that total phase dispersion is

≤ π/3 radians in all cases except that of the 90◦ 8-sinc pulse for which the dispersion

is approximately twice as large. The maximum phase dispersion for a particular

pulse always occurs at the highest value of B+
1 , while dispersion at lower B+

1 values is

significantly less. Also noteworthy is the observation that the single-Gaussian pulses

do not result in perfectly linear through slice phase either, although the level of

dispersion is significantly less. For all pulses, the non-linear phase is more prominent

at higher flip angle.

Figures 26 and 27 also illuminate differences in slice profiles resulting from the

various pulses. While sinc pulses generally exhibit the greatest B+
1 insensitivity and

a more sharply defined central excitation region, the anticipated side lobes associated

with the use of sinc-center pulses (Figure 24) are apparent in the composite pulse

simulations. Additionally, some subtle asymmetries in slice profiles can be seen for

the 45◦ pulses. These features are most prominent for the 5-gau and 8-gau pulses

and appear to correlate with the degree of asymmetry along the ∆B0 direction in the

magnetization plots for the corresponding non-selective pulses.
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Figure 26: Amplitude, phase, and gradient modulation waveforms (top row, non-selective in red, slice-selective in black) for
45◦ pulses circled in Figure 25 and a single-Gaussian pulse (far left). Simulated magnetization responses for non-selective and
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Figure 27: RF and gradient waveforms and magnetization plots as shown in Figure 26 but for selected 90◦ pulses. As for
the corresponding 45◦ pulses, the sinc composites exhibit better immunity to field variations than do the gau composites
but at the expense of prominent lobes in the sidebands of the slice profiles. 90◦ pulses tend to result in more pronounced
non-linear phase variations in the through-slice direction when compared to the corresponding 45◦ pulses of Figure 26.
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examples, only the non-linearities exhibited by the 90◦ 8-sinc pulse are likely to become a serious performance issue in terms
of signal loss, and, even in this case, the troublesome phase dispersions are confined to B+

1 /B
+
1,nom ≥ 0.5.
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Results of simulations for a ±200Hz range of off-resonance values are presented in

Figures 29 and 30, which show |MT | and φMT , respectively. For the sake of brevity,

results are only given for the 90◦ 5-gau pulse. In Figure 29, |MT | appears largely sta-

ble out to the prescribed limits of ±150Hz. At and beyond this range, the slice profile

deteriorates significantly, mirroring non-uniformities in |MT | beyond the optimization

region for the corresponding non-selective pulse as presented in Figure 27. This obser-

vation further validates the proposed methods for slice-selective, B+
1 -insensitive pulse

design in that the ∆B0 range targeted in the optimization of non-selective pulses

translates to a slice-profile stability for the corresponding slice-selective pulses. The

simulations of Figure 30 indicate that through-slice phase within the ±150Hz opti-

mization region remains highly linear at lower values of B+
1 . At higher B+

1 values

there exist some noticeable deviations from linearity such as at −50Hz and −100Hz;

however, the largest deviations from linearity are confined to off-resonance values be-

yond the optimization range, suggesting that the optimization in some way promotes

the desired behavior.

Another simulation result involves the effects of T ∗
2 decay on |MT | during execu-

tion of a given excitation pulse and are presented in Figure 31. Values of |MT | are

calculated for a T ∗
2 value of 30ms—which reflects an approximate whole-brain mean

value at 7T (59)—and are reported as ratios to the same quantities as calculated for

T ∗
2 = ∞. For the single-Gaussian pulses, this ratio is ∼ 98% due to the short duration

(∼ 1ms) and is found to be independent of B+
1 intensity. For the 5-gau and 8-gau

pulses the ratio decreases to ∼ 90−95% and ∼ 80−90%, respectively, with |MT | loss

123



p
o

s
it
io

n
 (

m
m

)

−4

−2

0

+2

+4

 

 

p
o

s
it
io

n
 (

m
m

)

−4

−2

0

+2

+4

B
1

+
/B

1,nom

+

p
o

s
it
io

n
 (

m
m

)

.2 .4 .6 .8 1 1.2

−4

−2

0

+2

+4

B
1

+
/B

1,nom

+

.2 .4 .6 .8 1 1.2

B
1

+
/B

1,nom

+

.2 .4 .6 .8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
T
/M

0

−100 Hz−150 Hz−200 Hz

−50 Hz 0 Hz +50 Hz

+100 Hz +150 Hz +200 Hz

Figure 29: The slice profile of the 90◦ 5-gau pulse as simulated for a ±200Hz range
of frequency offsets. The profile is largely unchanged within the optimization region
of ±150Hz at and beyond which significant deterioration is noticeable. This behavior
echoes the magnetization response for the corresponding non-selective pulse as shown
in Figure 27.
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being noticeably greater for the 90◦ pulses. While additional loss of |MT | is expected

for the 8-gau pulses relative to the 5-gau pulses due to the extended duration, the

same effect is not necessarily expected to depend on αT . Furthermore, sinc pulses

appear to be less susceptible to T ∗
2 decay as compared to their gau counterparts with

|MT | being reduced to ∼ 93% for the 5-sinc pulses and to the the range of ∼ 90−98%

for the 8-sinc pulses. Again, the 45◦ pulses appear to suffer from less |MT | losses as

compared to the 90◦ pulses, although the difference is quite subtle in the case of 5-

sinc pulses. For all composite pulses, |MT | loss depends to some degree on B+
1 , with

the greatest losses generally occurring at high values of B+
1 . Possible explanations

and implications of the above T ∗
2 -related phenomena are left for the discussion.

The final results not originating from experiment take the form of Table 4.3.1 in

which values related to practical implementation of the pulses highlighted in Figures

26 and 27 are reported. Given here are the quantities described at the end of Section

4.2.2, namely,
∫

|A|2 dt, TR,min, and TE,min. These numbers imply that composite

pulses result in significantly (anywhere from ∼ 5 to 25 times) higher SAR values

for a given TR and minimal possible echo times that are approximately doubled as

compared to the single-Gaussian pulses of the nominal same flip angle.
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Figure 31: Simulations of T ∗
2 -related transverse magnetization losses for the same 45◦ (top row) and 90◦ (bottom row) pulses

highlighted in Figures 26 and 27, respectively. The ratio of transverse magnetization as calculated for a T ∗
2 value of 30ms

to that calculated for infinite T ∗
2 is shown for each pulse. Simulations are performed for the slice-selective versions of each

pulse and reflect transverse magnetization loss as a function of both position in the slice-selection direction and relative B+
1

magnitude. Results indicate that loss of transverse magnetization due to T ∗
2 decay is not a simple function of total pulse

duration, particularly in the case of sinc waveforms. Moreover, T ∗
2 effects are dependent on the target flip angle and suggest

that the ordering of sub-pulses with different amplitudes strongly affects the susceptibility of composite pulses to transverse
magnetization decay.
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Table 4.3.1: Various quantities pertaining to the practical limitations of selected
pulses. Included are the integral of the square of the amplitude modulation (a value
directly proportional to SAR, Equation 4.2.5), the minimum possible TR value given
a SAR constraint of 3W/kg, and the minimum possible TE value as described in
Section 4.2.2. SAR levels of composite pulses are as much as 25 times greater than
single-Gaussian excitations of the same flip angle, a characteristic that is one of the
greatest drawbacks to the proposed pulse designs.

αT pulse
∫

|A|2 dt (µT2 · s) TR,min (ms) TE,min (ms)

45◦

1-gau 0.017 10 1.6
5-gau 0.221 135 2.7
8-gau 0.392 239 3.7
5-sinc 0.324 197 2.7
8-sinc 0.421 257 3.7

90◦

1-gau 0.068 42 1.6
5-gau 0.283 173 2.7
8-gau 0.445 271 3.7
5-sinc 0.335 204 2.7
8-sinc 0.536 327 3.7

4.3.3 Experiments

Maps of ∆B0, B
+
1 , and B

−
1 are given in Figure 32 for the same axial slices through

the phantom and the brain for which all other experimental results were obtained.

Phantom results for the same 10 pulses highlighted in Figures 26 and 27 are pre-

sented in Figure 33. Included are both normalized signal intensities and calculated

values of the flip-angle dependent function F as described in Section 4.2.3. While

signal intensity variations are visibly reduced through the use of B+
1 -insensitive com-

posite pulses (relative to those of the single-Gaussian pulses), it should be noted that

even the most uniform excitation would still result in large signal variations due to

inhomogeneities in the B−
1 field. Signal intensity remains useful for judging the ulti-
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Figure 32: Measured maps of the static field (left, in units of Hz), the transmitted RF
field (middle, in units of the nominal field strength), and the received RF field (right,
including any M0 contributions and given in arbitrary units) are shown for central
axial slices through a spherical phantom (top) and the human brain (bottom). The
static and transmitted RF field measurements were used to determine the relevant
ranges of field inhomogeneities to be targeted by composite pulse optimizations while
the received RF field measurements were used in calculations to determine flip-angle
uniformity.
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mate effects of excitation pulses, but calculated maps of F are a more direct indication

of pulse performance. By this latter measure, all tested composite pulses result in

improved excitation uniformity with respect to single-Gaussian pulses; however, in

accordance with simulations, results do vary significantly depending on pulse compo-

sition and target flip angle. For example, F maps for 90◦ pulses generally display less

variation than those for 45◦ pulses. This observation is partially explainable by the

fact that the sin function upon which F depends has a small first derivative with

respect to its argument in the vicinity of 90◦—thus, a given range of actual flip angles

translates to a smaller range of F values around 90◦ than it does at lower angles. This

property of the sin function is responsible for the fact that the 90◦ single-Gaussian

pulse exhibits less variation in F than does its 45◦ counterpart and demands that

the most meaningful comparisons of F maps can be made only for pulses of a given

target flip angle.
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Figure 33: Experimental results in the phantom at 7T for the same 45◦ (top two rows) and 90◦ (bottom two rows) pulses
highlighted in Figures 26 and 27, respectively. Normalized signal intensity is shown in the first and third rows and the
flip-angle dependent function F (Equation 4.2.6) in the second and fourth rows. Pulse compositions are indicated at the
bottom of each column. Line profiles reflect values along the position indicated by dashed lines in the far left column.
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When comparing pulse performance for a given flip angle, the sinc pulses are

found to produce more uniform excitations at 45◦ than do the gau pulses—a result

predicted by simulations. While all composite excitations are fairly uniform in the

90◦ case, the degree of performance variations anticipated from cost function values

for the corresponding pulses are not observed. This effect could be caused by a

combination of increased levels of non-linear through-slice phase for the sinc pulses

and the fact that cost function values reflect performance at a wider range of ∆B0

values than actually occurs in the phantom. In at least two cases—namely the 45◦

5-sinc and 90◦ 8-sinc pulses—prominent “holes” can be seen in the center of the F

maps. These features are likely due to non-linear phase at high B+
1 in the latter case

and a combination of non-linear phase and slice profile deterioration in the former

case. While such magnetization responses are certainly undesirable in the context of

slice-selective excitation, it should be noted that the B+
1 values reached in the center

of the phantom (Figure 32) are beyond the corresponding optimization limits.

Slice profiles as measured in the phantom are presented in Figure 34 for the same

10 pulses detailed previously. Results are consistent with the simulated slice profiles

shown in Figures 26 and 27. As expected, the composite gau pulses produce slice

profiles comparable to those of the single-Gaussian pulses. Broadening at the base

of the sinc profiles likely results from the presence of the side-lobes indicated in the

simulations—a feature becoming more prominent at the higher flip angle. In general,

results indicate that the targeted slice thickness of 2mm is achieved in all cases and

that highly selective excitation is possible with the proposed composite pulse designs.
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Figure 34: Slice profiles measured in the phantom for the same 45◦ (top row) and 90◦ (bottom row) pulses highlighted in
Figures 26 and 27, respectively. Pulse names are given at the top of each column. In all cases, slice thicknesses of ∼ 2mm
are attained. In agreement with the simulations of Figures 26 and 27, gau composites produce cleaner slice profiles than
sinc composites, with the latter resulting in a widening of the slice profile base which is likely due to the presence of the
side lobes evident in Figures 26 and 27 for the corresponding pulses.
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In vivo results for the 45◦ and 90◦ 5-sinc pulse including normalized signal inten-

sities and calculated F maps are shown in Figure 35. Both composite pulses result

in improved signal and flip-angle uniformity. To some degree, these improvement in

excitation uniformity, while significant, do not appear as dramatic as they do in the

phantom results. This is at least partially due to the range of B+
1 variations in the

featured slice of the brain being smaller than that in the central slice of the phantom

(see Figure 32). Indeed, imaging volumes with reduced B+
1 inhomogeneities are less

susceptible to the benefits of B+
1 -insensitive pulse designs. Nevertheless, the compos-

ite pulses appear to be functioning as designed to improve flip-angle uniformity in the

low-B+
1 regions of the brain. Moreover, the resulting excitations appear to be stable

with respect to the range of B0 variations existing in the brain—an observation that

helps establish the validity of enforcing ∆B0-stability through the proposed pulse

design protocol.

4.4 Discussion

Simulations and experiments have both validated the proposed pulse design meth-

ods as means for the construction of slice-selective composite pulses with inherent

insensitivity to the field variations observed in the human brain at 7T within the

relevant hardware limitations. While the pulses selected for in-depth analysis in this

study are suitable for immediate practical application, the results of the study are illu-

minating as to the potential of future designs with a similar objective. To be discussed

in this section are considerations for the shape of individual sub-pulses followed by

interpretations and implications of the observed non-linear phase, T ∗
2 susceptibility,
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Figure 35: Normalized signal (top set) and the flip-angle dependent values F (bottom
set) for a central axial slice of the brain at 7T. Results are shown for the single-
Gaussian pulses (left) and the 5-sinc composite pulses (right) with nominal flip angles
of 45◦ and 90◦, as indicated. Line profiles (black for single-Gaussian and red for 5-
sinc pulses) reflect values along the dashed lines found in the same row. As with
the corresponding phantom results (Figure 33), signal intensities for composite pulses
remain considerably inhomogeneous due largely to variations in the B−

1 field; however,
F values indicate a significantly more uniform excitation in the case of the optimized
pulses. The more modest improvements in flip-angle uniformity as compared to that
observed in the phantom for the same composite pulses are likely a result of the
relatively smaller range of B+

1 values occurring in the given slice (see Figure 32).
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and SAR limitations. Finally, a discussion of the context of this work and relevance

to other studies with similar objectives is presented.

Results indicate that composite pulses constructed from sinc sub-pulses outper-

form their gau counterparts in terms of insensitivity to field variations. This inherent

advantage of the sinc sub-pulses designed for this study arises from a ∼ 10% larger in-

tegrated amplitude that such waveforms have when compared to gau sub-pulses with

the same peak amplitude and bandwidth. The larger integrated amplitude translates

to higher allowed amplitudes in the constrained optimization of non-selective pulses

and, thus, improved performance in terms of the cost function of the optimization.

Drawbacks associated with the use of sinc pulses include the existence of side lobes in

the slice profiles and the required dead time during gradient slew period. Such char-

acteristics of sinc sub-pulses raise the question of how to re-design sub-pulses such

that the integrated amplitude is maintained while the slice profile is sharpened with-

out considerable increase in duration. Many strategies such as the Shinnar-Le Roux

(SLR) algorithm (58) and frequency modulation could potentially be employed to cus-

tomize the frequency profiles of sub-pulse waveforms. Furthermore, time-dependent

gradient modulation techniques (14) could allow for incorporation of the gradient

slew period in the design of RF sub-pulse modulations. Interesting future work might

involve an analysis of the advantages of such alternative RF strategies in the context

of designing sub-pulses for use in composite waveforms. Findings would certainly be

relevant to single- and multi-channel sparse spokes pulses, as are the results of the

present study.
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Regardless of the intended shape of sub-pulses, the target flip angle has been shown

to affect the optimization performance for the pulses presented in this study for total

pulse durations & 10ms , with lower flip angles proving more challenging (Figure 25).

The fact that this trend is most prominent at longer durations points to the initial

conditions of the optimization as a possible culprit. If random amplitudes are assigned

to each sub-pulse prior to the optimization, pulses that require higher integrated

amplitude for best performance might be intrinsically favored. Thus, restricting the

peak amplitude of the random initial conditions for pulses with long durations and low

αT values could potentially result in better optimization performance. While this is a

possible explanation for the observed optimization results, it is also noteworthy that

|MT | values as plotted in Figures 26 and 27 will always appear biased to αT values

near 90◦. This effect is due to both the symmetry and slope of the sin function (and

thus the transverse magnetization given the relationship |MT | = |sinα|) around 90◦

and is independent of the actual cost function values given that cost is defined in

terms of flip angle and not transverse magnetization. This observation suggests that

the cost function would possibly be more suitably defined in terms of |MT | rather

than α.

Other results of this study also suggest that alterations to the optimization proto-

col could result in improved insensitivity to variations in B+
1 and ∆B0. For example,

the fact that optimized sub-pulse amplitudes are usually near the maximum allowed

values suggests that fixing amplitudes and only using sub-pulse phases in the mini-

mization problem might ease the demands on the optimization algorithm and result
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in better performance, or at least performance that is less sensitive to initial condi-

tions. The use of peak amplitudes higher than 15µT, as is currently supported by

the coil/amplifier combinations of some human scanner manufacturers, would cer-

tainly result in improved optimization performance, although it appears from the

results of this study that non-linear phase might become more of an issue in that

scenario. Higher gradient slew rates (> 166T/m/s) are also currently available on

human scanners and will only serve to shorten the duration of the sinc version of

proposed composite pulses, thereby making pulses less susceptible to T ∗
2 effects. The

possible detriments of higher slew rates are generation of image artifacts caused by

gradient-induced eddy currents and an increased likelihood of peripheral nerve stim-

ulation (24).

Yet another change to the optimization protocol that might prove advantageous

is a customization of the B+
1 -∆B0 optimization grid to include only combinations of

those values that are actually observed in the brain at 7T. The optimization grid

could be guided by either subject-specific field maps or by field map data collected

for multiple subjects. In the latter case, the resulting optimized pulses would retain

the desirable quality of being applicable to any subject without the need for subject-

specific field mapping. In either case, the performance of composite pulses would

likely be improved due to the reduced number of unique B+
1 -∆B0 combinations being

considered in the optimization (56).

The levels of non-linear phase reported in Figure 28 are not prohibitive in terms

of signal loss; however, the fact that non-linear phase increases with the number of
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sub-pulses suggests that the effect may become a more serious limitation for pulses

of longer duration (e.g., > 10ms). Since the largest phase dispersions for a given

pulse are always observed at the highest B+
1 values, the objective of this study to

increase signal in low-B+
1 regions is inherently less susceptible to this undesirable

effect, albeit the gain of signal in low-B+
1 regions does come with a price of signal

loss in the highest-B+
1 regions in some cases. While some phantom results appear to

exhibit signal losses due to non-linear phase in the highest-B+
1 regions (Figure 33),

the same is not evident for in vivo results (Figure 35). This discrepancy is due to

the higher peak B+
1 values observed in the phantom (Figure 32) and suggests that

signal loss from non-linear phase is not a major concern for practical human brain

imaging—at least for the < 10ms pulses subjected to detailed analysis in this study.

Nevertheless, the level of non-linear phase in this class of composite pulses might be

controllable through alteration of the cost function and may be relevant to future

studies. For example, it is possible, yet untested, that enforcing zero phase dispersion

in the cost function (as is done in the optimizations of Skinner et al., e.g., (74; 75))

could favorably affect the degree of non-linear phase in the resulting slice-selective

pulses or at least improve the ∆B0 stability of phase linearity (Figure 30). Another

potential approach would be to address non-linear phase at the level of sub-pulse

modulation designs, e.g., through the use of the SLR algorithm. Non-linear phase is

clearly present in the Gaussian sub-pulses employed in this study (Figure 28), so it

is no surprise that composites of such waveforms result in amplified phase dispersion.

Improving phase response of sub-pulse modulations would certainly improve the phase
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response the composite waveforms. Furthermore, with regard to a slightly different

imaging application, it is noteworthy that, if the pulse designs of this study were

implemented in a 3D imaging sequence for which slab selection was accomplished

through a reduction in selection gradient strength, the practical requirements on the

degree of phase linearity would be greatly reduced since intra-voxel dephasing, rather

than intra-slice dephasing, would be the limiting factor. To make such an application

practical, however, SAR limitations would have to be incorporated into the cost

function, a scenario for which performance is yet to be verified.

The signal losses due to T ∗
2 decay reported in Figure 31 offer insights into the

advantages of certain pulse constructions. Clearly, sinc pulses result in reduced |MT |

losses with respect to comparable gau pulses. This observation also holds true with

respect to gau pulses of shorter total duration (e.g., compare the 8-sinc pulses to

5-gau pulses in Figure 31). Thus, while sinc composites may incur the penalties

of additional non-linear phase and higher SAR, the use of this sub-pulse modulation

has the considerable advantage of reduced susceptibility to T ∗
2 effects. The reduced

T ∗
2 loss of sinc pulses is likely accomplished through the higher average amplitude

(with respect to gau pulses) during application of the pulse. Thus, the composite

pulse is better capable of exploiting the spin-locking behavior permitted by the Bloch

equation such that transverse phase dispersion is reduced. Such effects have been

previously documented in the context of adiabatic pulses, with the resulting decay of

|MT | being characterized by the time constant T2,ρ (52; 51).

The observation that 45◦ composite pulses are less susceptible to collective T2
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effects than are comparable 90◦ pulses (Figure 31), suggests that the amplitudes of

sub-pulses at the beginning of the composite pulse are critical in determining the

amount of T ∗
2 decay that is possible. As evidenced by the 8-sinc pulses in Figures

26 and 27, the reduced amplitude of the first two sub-pulses of the 45◦ pulse (with

respect to the 90◦ pulse) appears to translate to the reduced |MT | loss exhibited

by the corresponding pulses in Figure 31. This explanation is plausible given that

small amplitude sub-pulses produce less transverse magnetization thus limiting the

amount of decay that is possible through T2 mechanisms. In future composite pulse

designs, attention could be given to this process so as to limit the susceptibility of

the resulting pulses to T2 effects, with relevant constraints even being incorporated

into the optimization. Such design considerations are relevant not only to other B+
1 -

insensitive composite pulses (e.g., (10; 56; 61; 54)) but also to sparse spokes pulses

designed for either single or multiple transmission channels (89).

For long-TR GRE imaging applications at 7T, the SAR levels associated with the

composite pulses of the present study will not likely be prohibitive, with the most

likely compromise being a reduction of the number of slices in a multi-slice acquisition.

Even in the case of the 45◦ pulses, which would likely be utilized in a steady-state

sequence with shorter TR, an Ernst angle of 45◦ and a T1 of 1.5 s (as is typical for the

brain at 7T (66)) imply an ideal TR of ∼ 500ms, a value greater than the highest

TR,min values reported in Table 4.3.1. Thus, all of the 45◦ pulses presented in Table

4.3.1 are immediately implementable in such a single-slice GRE imaging sequence

without the need for SAR-related adjustments. Sequences used at 7T with shorter
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TR values would demand lower αT values, and, at some point, SAR constraints would

need to be enforced in the optimization to ensure the practicality of composite pulses

for such applications. Of course, SAR constraints are likely to adversely affect pulse

performance; however, the severity of this trade-off and the degree to which it affects

the usefulness of the resulting composite pulses has not yet been investigated.

While discussion up to this point has focused on an explanation of results and the

future design considerations motivated by these results, the remainder of the discus-

sion is devoted to establishing the relevance of this work in the context of other studies.

The presented pulse design scheme does provide a significant advantage over some

existing field-insensitive designs in that selective excitation of thin slices is achieved

in tandem with prescribed degrees of B+
1 - and ∆B0-insensitivity. Furthermore, pulses

can be designed and implemented for use on any subject or slice orientation without

the need for subject-specific field mapping, as is the case for multi-transmit RF shim-

ming and sparse spokes designs. Additionally, the pulse design protocol allows for

designation of arbitrary flip angles and, in most cases, results in only small deviations

from a linear through-slice phase of the transverse magnetization. There exist pulse

designs for addressing these needs individually, but the strength and usefulness of the

proposed design is the incorporation of all such requirements into a single protocol.

For example, the SLR algorithm can be used for generating slice-selective waveforms

but has not been incorporated into a design scheme addressing the need for both B+
1 -

and ∆B0-insensitivity. Adiabatic pulses have been used for achieving immunity to

B+
1 variations for more than 20 years but either lack the capacity for linear phase
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and arbitrary flip angles (e.g., hyperbolic secant pulses (72; 73)) or are not suitable

for slice selection (e.g., BIR-4 pulses (76)). Also, adiabatic pulses are designed in a

very different way—ensuring B+
1 -insensitivity for RF amplitudes above a certain value

that fulfills the adiabatic condition—whereas the pulses of this study were designed

for B+
1 -insensitivity within a particular RF amplitude range, without concern for the

adiabatic condition (i.e., the cost function involves only the net flip angle produced by

the pulse). Thus, improvements in flip-angle uniformity may be realized even when

design constraints make the adiabatic condition impossible to satisfy.

As mentioned in Section 4.1, Balchandani et al. (1) recently provided a means

for transforming non-selective adiabatic pulses such as BIR-4 into spatially selective

pulses with similar B+
1 -insensitivity. While this design can presumably be extended

to arbitrary flip-angle excitation, there may exist significant differences in the perfor-

mance limitations of such pulses as compared to those produced in the present study.

For example, Balchandani et al. have not yet reported on the success of arbitrary

flip-angle excitation or on complications due to any non-linear phase resulting from

their design. Furthermore, the design was demonstrated at 3T rather than 7T and

for a slice thickness of 10mm as opposed to the slice thickness of 2mm achieved in

the present study, thus its suitability for thin slice excitation at higher field strengths

has not yet been demonstrated. In theory, thinner slices can be produced by simply

increasing the gradient strength; however, this increases the total pulse duration in

order to accommodate the extended gradient slew periods and may increase the ef-

fects of T ∗
2 decay. While the present study has demonstrated that similar results in
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terms of B+
1 -insensitivity (at least for 90◦ pulses) can be accomplished in less than

half the time, for a greater ∆B0 range, and for thinner slices, the similar motivations

of the two pulse designs calls for a future study in which both can be compared in

the same context. Only in this way can the true advantages of the two designs be

fairly illuminated.

While the adiabatic pulses of Balchandani et al. were perhaps the most similar

design to that of that present study at the onset of this investigation, a more re-

cent publication by Boulant et al. (8) describes what appears to be a more closely

related class of spatially selective, B+
1 -insensitive pulses. Although derived from dif-

ferent principles and in the context of different hardware limitations, the two classes

of pulse designs share the common goal of producing field-insensitive, slice-selective

excitations for practical high-field imaging sequences. Moreover, the two methods

employ numerically optimized composite pulses rather than adiabatic pulses. Such

similarities in design demand direct future comparisons such that the pros and cons

of the varying strategies can be better understood. Also, during preparation of the

present manuscript, Balchandani et al. published their findings on designs involving

adiabatic pulses produced in conjunction with the Shinnar-Le Roux algorithm (2).

This scheme allows for control over non-linear phase and slice profiles while enforcing

B+
1 -insensitivity through the adiabatic condition. While this appears to be another

promising design for producing slice-selective, B+
1 -insensitive pulses, further compar-

isons of the pulse designs of Balchandani et al., Boulant et al., and the present study

are left as the subject of future research. The quantity of recent work toward the
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same goal, however, does indicate a rising interest in such pulse designs and justifies

the continued investigation of these varied approaches to producing B+
1 -insensitive

excitation pulses for use with a single transmission channel.

4.5 Conclusion

The results of this study indicate that construction of composite slice-selective

pulses via the described techniques can be used to significantly improve flip-angle

uniformity in the human brain at 7T. The desired levels of B+
1 - and ∆B0-insensitivity

are specified in the design process, thus making the resulting pulses suitable for use

without the need for subject-specific field mapping and RF calibrations. Composite

pulses with the desired characteristics can be used to achieve slice thicknesses of

∼ 2mm in as little as ∼ 5ms when operating within the hardware limitations of a

commercial 7 T human scanner. While performance in terms of insensitivity to field

variations tends to increase with pulse duration, non-linearities in the through-slice

magnetization phase were also found to become larger with duration and may limit

the usefulness of longer composite pulses. The study also demonstrated how pulse

performance depends on the structure of the component sub-pulses, with central

sinc-lobe waveforms offering stronger immunity to field variations and T ∗
2 effects

but rougher slice profiles as compared to Gaussian modulations. The proposed pulse

designs may prove useful in many contexts in which insensitivity to field variations is

desired in conjunction with selective excitation.
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CHAPTER V

DESIGN AND EVALUATION OF NON-SELECTIVE REFOCUSING PULSES

5.1 Introduction

Imaging protocols reliant upon the non-selective refocusing of transverse magne-

tization (e.g., 3D versions of spin-echo (SE), turbo spin-echo (TSE), and gradient

spin-echo (GraSE) (21) sequences) usually employ either block- or sinc-shaped refo-

cusing pulses resulting in flip angles that scale with the integral of the transmitted RF

(B+
1 ) field intensity. Adiabatic pulses such as BIR-4 (76) and hyperbolic secant com-

posites (31) provide refocusing options that are somewhat insensitive to B+
1 variations

but are largely avoided in ultra-high field (≥ 7T) human imaging due to off-resonance

performance issues and high specific absorption rates (SAR). Although comparisons

of refocusing pulses have been presented previously (e.g., by Poon and Henkelman

(61)), the performance and SAR limitations of a wide range of applicable refocusing

pulses remain untested in the context of 7 T human brain imaging. In response to the

need for practical, B+
1 -insensitive refocusing pulses for use in ultra-high field human

imaging, the present study was undertaken with the goals of (1) identifying pulse

designs that could potentially improve refocusing performance at 7T within practical

limits of SAR, (2) modifying or redesigning such pulses to achieve performance that is

specifically focused on 7T brain imaging, (3) simulating the refocusing characteristics

of chosen pulses given actual measurements of static (B0) and B
+
1 field distributions
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at 7T, and (4) measuring the signal gains obtainable with the selected pulses. The

results of this work will assist in the selection of suitable refocusing pulses for given

applications as well as form a basis for establishing the performance limits of practical

refocusing pulses executed on a single transmission channel.

To ensure a degree of practicality, we limited our studies to refocusing pulses with

relatively short durations and low SAR levels. Considered pulse designs include: a

180◦ block pulse; a block pulse with nominal flip-angle tuned for 7T; a three-part

composite of block pulses (44) and its 7 T-tuned counterpart; BIR-4 pulses (76) of

various duration (∆T . 5ms); numerically optimized BIR-4 pulses (53) of the same

durations; composites of block pulses numerically optimized for both generalized and

subject-specific field inhomogeneities (54); and a rendition of the version-S pulse (60).

With the exception of the single block design, all pulses included in the study incor-

porate some level of B+
1 -insensitivity and are thus particularly relevant to high-field

applications. Theoretical pulse performances were evaluated by simulating magneti-

zation response over generic grids of B0 and B+
1 variations as well as throughout the

given imaging volumes by using field maps obtained experimentally. The actual mea-

sured signal gains resulting from each pulse are reported relative to the signal obtained

using a 180◦ block pulse in the context of a 3D SE sequence with a single-shot, echo-

planar imaging (EPI) readout in a 17 cm spherical phantom at 7T. Selected pulses

were also evaluated by the same means in the human brain at 7T. In all cases, the

excitation pulse was the same—a Gaussian-modulated sinc pulse with a 90◦ nominal

flip angle. For analysis, pulses were grouped into short, moderate, and long duration
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categories so as to facilitate both the comparison between pulses with similar SAR

values and the selection of pulses best suited for particular applications. In addi-

tion to in-depth performance comparisons, this study used measured field maps to

establish the theoretical maximum signal gains (again, relative to a 180◦ block pulse)

achievable in a phantom and the brain for a SE sequence at 7T. Furthermore, this

study served to investigate the numerical optimization of refocusing pulses through

a cost function defined in terms of the principal components of magnetization and

applied this strategy to both BIR-4 and block-composite waveforms.

At the lowest SAR levels, adjusting the nominal flip angle of a single block refo-

cusing pulse was found to result in significant signal gains as averaged over the whole

imaging volume and represents a simple yet effective way to improve refocusing per-

formance at 7T. While numerical optimization of BIR-4 waveforms provides the

most notable improvements over status quo BIR-4 implementations when pulse du-

ration is shortest, it was at intermediate duration (∆T ∼ 2.5ms) that BIR-4 pulses

outperformed all others. Numerically optimized block-composite pulses, although

competitive regardless of duration, provided the greatest performance boost when

duration was long and SAR levels the highest. The cost function investigated in this

study appears to perform similarly to the one used previously by Poon and Henkelman

(60; 61). Furthermore, the practice of restricting optimization to subject-specific field

values provided minimal benefit over the use of more generic ranges of the anticipated

field inhomogeneities. While the novel pulse designs exhibited in this work do not

provide the best refocusing solutions in all contexts, it should be emphasized that the
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driving force behind this study was not to provide new designs promising improved

performance but to illuminate and catalog the actual performance variations among

the many relevant and competing pulse designs currently available.

5.2 Theory

Following an excitation pulse of arbitrary phase, an RF pulse with a 180◦ flip angle

and arbitrary phase will result in complete refocusing of transverse magnetization lost

to T ′
2 decay. Underlying this statement are the assumptions that the refocusing pulse

is executed at a time TE/2 halfway between the excitation and signal acquisition and

that B+
1 field inhomogeneity does not alter the effective flip angle of the pulse. When

variations in the B+
1 field are present, a refocusing pulse with a nominal flip angle

(β0) of 180
◦ will result in in an actual rotation angle given by β0 · B+

1 /B
+
1,nom, where

B+
1,nom is the nominal, unaffected RF field strength. In these terms, on-resonance

signal intensity for a SE sequence with repetition time TR can be expressed as

SSE =M0B
−
1

∣

∣

∣

∣

sin

(

α0B
+
1

B+
1,nom

)∣

∣

∣

∣

sin2

(

β0B
+
1

2B+
1,nom

)

(

1− e−TR/T1

)

e−TE/T2 , (5.2.1)

where M0 is the equilibrium magnetization, B−
1 is the relative intensity of the RF

field associated with reception, α0 is the nominal flip angle of the RF pulse used

for excitation, T1 is the time constant of longitudinal relaxation, and T2 is the time

constant of transverse relaxation due to non-reversible mechanisms. This relationship

implies that, for a given value of B+
1 /B

+
1,nom and a fixed value of α0, the maximum

achievable signal occurs in the event that β0 ·B+
1 /B

+
1,nom = π radians (i.e., the actual
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flip angle of the refocusing pulse is 180◦).

When comparing signal intensities resulting from sequences with the same exci-

tation pulse, the same TE , and the same TR but different refocusing pulses (as is

the case in the present study), all factors in Equation 5.2.1 are common with the

exception of the β-dependent argument of the sin2 function. Thus, the ratio of two

such signals SSE,1 and SSE,2 is expressible as

SSE,1

SSE,2

=
sin2

(

β0,1B
+
1 /(2B

+
1,nom)

)

sin2
(

β0,2B
+
1 /(2B

+
1,nom)

) . (5.2.2)

The ratio of the signal from an ideal refocusing pulse (for which β0 ·B+
1 /B

+
1,nom = π)

to that of any other refocusing pulse is then given by

SSE,ideal

SSE,BLK
=

1

sin2
(

β0B
+
1 /(2B

+
1,nom)

) . (5.2.3)

In the present study, we use Equation 5.2.3 along with measurements of B+
1 /B

+
1,nom

to calculate 3D maps of the largest possible signal gains achievable in reference to a

block-shaped pulse with a 180◦ nominal flip angle. Signal ratios (again in reference

to the block-shaped pulse with β0 = 180◦) for all pulses evaluated in this study are

determined through experiment but reflect the value expressed in Equation 5.2.1 with

SSE,2 representing the signal of the β0 = 180◦ pulse.

For the purposes of performance simulation and numerical optimization, we adopt

a three-dimensional magnetization space (Mx,My,Mz) in which reversal of the trans-

verse magnetization phase implies a change in direction of one of the transverse mag-
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netization components, e.g., (Mx,My,Mz) is changed to either (Mx,−My,±Mz) or

(−Mx,My,±Mz). Such phase reversal can be achieved either by reflection or rotation

operators. The (Mx,−My,Mz) and (−Mx,My,Mz) phase reversals are achieved by

reflection across the (MxMz) and (MyMz) planes, correspondingly. Phase reversals

(Mx,−My,−Mz) and (−Mx,My,−Mz) can be accomplished through the action of ro-

tation operators—specifically by 180◦ rotations about the x and y axes, respectively.

Due to the proclivity of the Bloch equation for rotation rather than reflection oper-

ations, we chose to express refocusing in this study in terms of the (Mx,−My,−Mz)

phase reversal, as the other rotation is equivalent. In addition to the completeness

of this rotation operation, we evaluated simulated pulse performance in terms of the

phase of the transverse magnetization as given by

φM = arctan
(

Mfinal
y /Mfinal

x

)

, (5.2.4)

with the subscript M denoting a magnetization phase rather than an RF phase (φRF)

and final indicating magnetization resulting from the action of a refocusing pulse

on given initial magnetization components. Thus, for the ideal refocusing pulse,

φM = −π/4 when the initial transverse magnetization components are given by

(M init
x ,M init

y ) = ( 1√
2
, 1√

2
). Although a reversal of φM is equivalent to a 180◦ rotation

about the x axis, the two measures for evaluating refocusing performance illuminate

different imperfections of a given RF pulse and therefore serve as complementary

analytic tools.
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5.3 Methods

5.3.1 Pulse designs

The refocusing pulses chosen for evaluation in this study can be divided into three

major classes that we refer to as (1) designs that have been previously established in

the MR literature, (2) modified designs, and (3) numerically optimized designs.

Established designs

These widely implemented pulses have been established in the MR literature for

achieving non-selective refocusing.

BLK This is the shortest duration 180◦ block-shaped pulse given a peak RF am-

plitude of 15µT, thus resulting in a duration of 0.7ms. The choice of peak

amplitude (minimum duration) maximizes the pulse bandwidth, thus making

performance less susceptible to B0 variations.

COMP3 This is the three-part composite rotation (90◦x−180◦y−90◦x, with subscripts

indicating the axis of rotation) described in (44). The amplitude of each block-

shaped component is again set to the maximum RF amplitude of 15µT for

maximum bandwidth and a total pulse duration of 1.4ms.

BIR-4 These pulses are 4-part, B1-insensitive rotations with 180◦ nominal flip angles

(∆φRF = 3
2
π) defined according to the RF modulation function in reference (76).

We chose to implement these pulses at three different durations: 1.5ms, 2.5ms,

and 5.1ms. In all cases, the maximum RF amplitude was set to 15µT.
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Modified designs

These pulses were modified from existing designs simply by increasing the flip-

angle of the individual RF components.

BLKb This pulse is identical to BLK but with a flip angle of 270◦. The 50% in-

crease in duration allows for a 180◦ rotation for the B+
1 /B

+
1,nom value (0.67)

corresponding to the approximate mean of the B+
1 /B

+
1,nom distribution in the

human brain at 7T.

COMP3b This pulse is similar to the BLKb pulse in that nominal flip angles of the

components were increased by 50% relative to the COMP3 pulse, resulting in a

135◦x − 270◦y − 135◦x rotation.

VSb This pulse is the 16-component 5.4π composite pulse (version-S) by Poon and

Henkelman (60) following modification by means of increasing the flip angle

of each component by 50%. The duration of each component (806.4µs) was

determined by setting the RF amplitude of the highest flip-angle sub-pulse to

15µT resulting in a total duration of 12.9ms.

Numerically optimized designs

The third class of pulses considered in this study consists of waveforms derived

from in-house numerical optimization procedures. We applied these techniques to (1)

composites of block-shaped pulses (similarly to (60) but with a different cost function)

and (2) the BIR-4 waveforms described above. In the first case, it is the individual

phases and amplitudes of the sub-pulses that are the subject of the optimization
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while, in the second case, parameters determining the overall amplitude, phase, and

frequency modulation patterns are optimized. Optimization routines were written

in Matlab (The MathWorks, Natick, MA) and employ the fmincon minimization

function and the interior-point algorithm (a gradient-descent method) to handle

minimization of the expression:

1

nm

n,m
∑

i,j=1

Wij ·
(∣

∣M init
x,ij −Mfinal

x,ij

∣

∣+
∣

∣M init
y,ij +Mfinal

y,ij

∣

∣

)

, (5.3.1)

where i and j are indices on the B+
1 -∆B0 (n × m dimensional) optimization grid

on which the magnetization responses were simulated, and M init
x and M init

y corre-

spond to the initial values of the initial transverse components of magnetization to

be refocused. Optimizations were performed on the orthogonal basis of transverse

magnetization vectors: M
init = (M init

x ,M init
y ,M init

z ) = (1, 0, 0) and M
init = (0, 1, 0).

Pulses optimized using this set of initial magnetizations will perform on any (allowed)

linear combination of basis vectors, i.e., any initial magnetization vector. The com-

ponents of Mfinal = (Mfinal
x ,Mfinal

y ,Mfinal
z ) were found through simulation of the Bloch

equation for the refocusing pulse under consideration.

We considered two choices of the weighting matrix W . In the first case, which we

refer to as the low-B+
1 scheme, (W )ij =

(

B+
1 /B

+
1nom

)−1

ij
such that pulse performance at

low B+
1 values was favored over that at high values. In the second case, which we refer

to as the subject-specific scheme, W corresponds to a binary mask determined from

a relative-density threshold of 0.015 applied to the actual 2D B+
1 -∆B0 histograms

shown in Figure 36. Measurements of these field variations (further described below
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Figure 36: 2D histograms of relative voxel density over a grid of B+
1 and ∆B0 values

as measured in an FBIRN phantom (left, static-field shimming off) and the human
brain (right, static-field shimming on). These histograms are based on the field map
data presented in Figure 37 but, collectively, for all slices in the imaging volumes. For
both phantom and human, the field variations can be described roughly by ranges of
[0.3-1.0] and ±150Hz in the B+

1 and ∆B0 directions, respectively.

in Section 5.3.3) were performed in the same scan session during which all refocusing

pulses were evaluated. For phantom scans, all static field shim currents were set to

zero, such that B0 variations across the phantom more resembled those anticipated

in the human brain. For in-vivo human scans, second-order, projection-based static

field shimming was used.

OPT100 These 16-part composites of constant-amplitude/constant-phase sub-pulses

resulted from the optimization problem described in Equation 5.3.1 (16 phases +

16 amplitudes = 32 free parameters) with the low-B+
1 weighting scheme. The

B+
1 -∆B0 optimization grid covered the field ranges of [0.2 1.0] and ±100Hz

(thus the subscript of 100) in the respective B+
1 /B

+
1,nom and ∆B0 directions as

justified by field values measured in human brain at 7 T (Figure 36). Sub-pulse
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durations were fixed to either 96, 160, or 320µs resulting in total pulse durations

of 1.54, 2.56, 5.12ms, respectively. Sub-pulse amplitudes were allowed to range

from 0 to 15µT while phase was free to vary over the entire range of ±π radians.

OPTcust These composite pulses were designed in an identical fashion as the OPT100

pulses but using the subject-specific, customized weighting scheme.

OPTBIR-4 Numerical optimization of the 6 parameters determining the amplitude,

phase, and frequency modulation of the BIR-4 waveforms (76) was performed on

the same B+
1 -∆B0 grid as used for the OPT100 pulses with the low-B+

1 weighting

scheme. Three BIR-4 pulses of varying length (1.54, 2.56, and 5.12ms) and

maximum amplitude of 15µT were designed in this way.

5.3.2 Simulation methods

All simulations of magnetization response to RF pulses in this study were based

on a rotation matrix formulation of a relaxation-independent form of the Bloch equa-

tion (3). Details are provided in Appendix B. Pulses constructed from constant-

phase/constant-amplitude sub-pulses (such are the majority of pulses in this study)

naturally lend themselves to such calculations. Pulses with continuously varying mod-

ulations (i.e., the BIR-4 and OPTBIR-4 pulses) were divided into discrete, 6.4µs steps

over which the phase and amplitude were considered to be constant. This step length

is the electronics dwell time of our digital RF amplifier, and the discretization accu-

rately reflects the way in which continuous waveforms are executed on such hardware.

For all pulses, magnetization response to the appropriate composite of k sub-pulses,
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each with constant phase and amplitude, was modeled as a series of rotations (Rj ,

where j = 1, . . . , k). With each rotation corresponding to one of the k individual

sub-pulses, the collective operation of all such components of a pulse is described by

M
final = RkRk−1Rk−2 . . . R1M

init . (5.3.2)

The final magnetization resulting from each of the refocusing pulses was calculated

on a grid of B+
1 -∆B0 values with ranges of ±250Hz and [0.2, 1.2] in the ∆B0 and

B+
1 /B

+
1nom directions, respectively. This was done for two different initial conditions

corresponding to the orthogonal components of transverse magnetization: M
init =

(1, 0, 0) and M
init = (0, 1, 0).

5.3.3 Imaging protocols

All experiments were conducted on a 7T Philips Achieva whole body scanner

(Philips Healthcare, Best, the Netherlands) based on a Magnex (Varian Medical Sys-

tems, Palo Alto, CA) 90cm magnet. RF transmission and reception was carried out

with a single-channel, quadrature volume head coil from Nova Medical (Wilming-

ton, MA). All phantom experiments used a 17 cm dielectric phantom from FBIRN

(Function Biomedical Information Research Network) with relaxation constants of

T1/T
∗
2 = 1150/42ms as measured at 7T. For in vivo experiments, one person (male,

33 y.o.) was recruited from the community, and written informed consent was ob-

tained according to the guidelines of the local Institutional Review Board.
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Static field maps were obtained in the phantom and human subject using a 3D

GRE sequence with a double-echo acquisition (∆TE = 1ms). Scan resolution was

3 × 3 × 5mm within a 240 × 192 × 135 field of field in the anterior-posterior, right-

left, and foot-head directions, respectively. B+
1 /B

+
1,nom maps were calculated via a

voxel-by-voxel fitting of signal intensities from a multi-flip-angle, multi-slice, single-

shot GRE-EPI scan (TR = 5000ms) (30; 89). Slices were oriented in the transverse

plane with a 5mm thickness and a 5mm gap between slices. The in-plane axial

resolution and field of view matched those of the B0 scan. The same projection-

based, second-order volume B0 shim currents were used during collection of all in

vivo data. For phantom experiments, B0 shim currents were set to zero so that

susceptibility of the various refocusing pulses to off-resonance effects could be more

clearly determined. Shim currents and the RF drive scale remained unchanged for

the series of experiments in the same imaging volume. B0 maps were used to perform

EPI distortion corrections of the B+
1 -mapping data (35).

Imaging experiments for evaluating refocusing pulse performance employed a SE-

EPI sequence composed of an excitation pulse, a refocusing pulse, and a slice-by-

slice, single-shot EPI acquisition. The excitation waveform—a Gaussian-modulated

sinc pulse with a nominal flip angle of 90◦—was executed in the presence of a weak

selection gradient so as to reduce signal from outside the designated imaging volume.

Refocusing pulses were executed such that the center of the waveform corresponded

to the sequence time TE/2 = 25ms. Echo and repetition times were fixed to TE/TR =

50/5000ms with only the RF waveform of the refocusing pulse being modified between
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subsequent experiments. As a simple indication of SAR, the minimum TR allowed by

the scanner was recorded when using each refocusing pulse. These values are listed

in Table 5.4.1.

5.4 Results and Discussion

Results with integrated discussion are presented in three parts: 1) a short descrip-

tion of the phantom and human brain static and RF field maps with a discussion of

the ways these measurements facilitate interpretation of experimental results; 2) pre-

sentation of the simulation data for all considered refocusing pulses with a discussion

of the utility and practical limitation of such simulations; 3) presentation of phan-

tom and in vivo experimental results exhibiting the varying degree of improvement

in signal intensity observed for the refocusing pulses under consideration.

5.4.1 B+
1 and B0 field measurements

The distributions of B+
1 and ∆B0 field measurements throughout the fBIRN phan-

tom and the human brain are shown in Figure 36, and actual field maps are shown

in Figure 37. Major differences between phantom and human B+
1 and ∆B0 field

distributions can be summarized as follows: for the phantom, B+
1 /B

+
1nom values are

concentrated slightly lower (mean ∼ 0.4) than for the human head (mean ∼ 0.6) with

much wider distribution in this direction, i.e., [0.2,1.2] for the phantom and [0.3,1.0]

for the human head; the distribution of ∆B0 values for the phantom is wider, i.e., [-200

Hz,+200 Hz] vs. [-100 Hz,+100 Hz], respectively. These two facts tend to suggest that

the performance limits are pushed further in the case of the phantom experiments.
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Figure 37: Maps of the B+
1 and ∆B0 fields as measured in the phantom (top) and the

human brain (bottom). Phantom measurements are obtained with static-field shim
currents set to zero such that the overall range of B0 variations is more similar to that
encountered when imaging the human brain. Shown here are field maps for a sample
of axial slices in each imaging volume with offset from the central slice indicated at
the top of each column in terms of slice number. Slices are 5mm thick such that an
offset of +2 slices is equivalent to +10mm along the z-direction in the magnet.

Specifically, refocusing performance at values of B+
1 /B

+
1nom > 1 in the phantom may

not be relevant to the human subjects while the same is true for |∆B0| & 100Hz.

According to Equation 5.2.3, maps of the B+
1 field were used to calculate the

maximum possible signal gains in reference to the case in which a BLK pulse is used

for refocusing. These results are shown for multiple slices of the phantom and the

brain in Figure 38 and indicate that average signal gains of ∼ 150% (∼ 100%) are
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Figure 38: Theoretical maximum-signal ratios as calculated from Equation 5.2.3 given
the B+

1 maps appearing in Figure 37. These results indicate that adjustment of
refocusing pulses in a spin-echo sequences at 7T can result in localized signal gains
(with respect to the signal obtained via a 180◦ block or sinc pulse) of no more than
∼ 200% (brain) or ∼ 300% (phantom). Slice-wise averages are given above each ratio
map with the whole-volume averages given at left. Slice numbering is the same as
in Figure 37. Maximum-signal ratios serve as a basis for evaluating refocusing pulse
performance by allowing for the comparison of measured signal gains to an ideal.
Values are relevant to refocusing pulses transmitted on single or multiple channels.

possible in the phantom (brain). Potential local signal gains in regions of the lowest

measured B+
1 values are roughly twice as large.

5.4.2 Simulations

Waveforms of all of the discussed pulses are shown in Figures 39-42 together with

maps of the transverse components of refocused magnetization on the B+
1 -∆B0 grid.

The binary mask obtained from the relative-density map in the phantom (Figure 36)

was overlaid on each of the magnetization maps to show the most relevant regions on

the B+
1 -∆B0 grid. Moreover, we have included histogram distributions of the compo-
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nents of refocused magnetization (Mfinal
x and Mfinal

y ) within the mask. The histogram

data were weighted by the contributions of B+
1 -∆B0 points extracted from the rel-

ative density distribution of 3D B+
1 -∆B0 data for the fBIRN phantom (Figure 36)

with static field shim currents set to zero. Finally, maps and histogram distributions

of phase of the refocused magnetization are shown for all of the pulses. While the

ideal refocusing pulse will reverse the direction of My and leave Mx undisturbed, the

relationship between these transverse componets (i.e., φ) is also relevant in evaluating

pulse performance. Specifically, the ideal refocusing pulse will result in φ = −π/4

given the initial simulation conditions of M init
x =M init

y = 1. In order to visualize per-

formance in terms of the transverse phase, the value is shown on the grid in Figures

39-42 along with corresponding histograms. Furthermore, the percent deviation of φ

from the ideal value of −π/4 is reported in Table 5.4.1.

In general, comparison of simulatedMfinal
x ,Mfinal

y , and φ distributions for all pulses

indicates that modified and optimized pulse designs result in improved refocusing

performance relative to the established designs. This confirms that the modification

and optimization procedures we have chosen to implement are successful in producing

improved refocusing pulses. However, from this simulated data alone, it is difficult

to predict refocusing performance beyond stating that pulses perform increasingly

well with pulse duration. While simulations are certainly useful in the design and

preliminary evaluation of performance, the resulting increase in signal remains the

most practical indicator of improvement.
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Figure 39: Amplitude and phase modulation waveforms (alternating in the first column) for the BLK and BLKb pulses of the
short family (names indicated at far left) together with corresponding components of the refocused transverse magnetization
for initial conditions (Mx,My,Mz) = (1, 0, 0) (second and fourth columns) and (Mx,My,Mz) = (0, 1, 0) (third and fifth
columns). The maps in the second and third columns display magnetization as simulated over a grid of B+

1 and ∆B0

values with the extent of the field variations measured in the phantom indicated by a lighter shading (see Figure 36).
Magnetization values from within these shaded region are shown in the form of histograms in the fourth and fifth columns.
The ideal refocusing pulse would result in Mfinal

x = 1 and Mfinal
y = −1. Maps of the transverse magnetization phase (φ in

Equation 5.2.4) over the same B+
1 -∆B0 grid are displayed in the sixth column with corresponding histograms for the shaded

phantom region appearing in the last column. Transverse phase, although not used in our optimizations, serves as another
indication of proper refocusing, with the optimal final phase of −π/4 radians for the given initial conditions.
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Figure 40: Amplitude and phase modulation waveforms with simulated magnetization responses for the COMP3b, OPT100,
OPTcust, BIR-4, and OPTBIR-4 pulses of the short family (names indicated at far left). See Figure 39 caption for details.
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Figure 41: Amplitude and phase modulation waveforms with simulated magnetization responses for the moderate family of
pulses (names indicated at far left). See Figure 39 caption for details.
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Figure 42: Amplitude and phase modulation waveforms with simulated magnetization responses for the long family of pulses
(names indicated at far left). See Figure 39 caption for details.
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5.4.3 Experiments

In addition to B+
1 and ∆B0 maps for 7 axial slices of the phantom, Figures 43,

45, 47 show 3D SE-EPI signal intensities (relative to those of the BLK pulse) for all

16 refocusing pulses. Similar ratios and field maps for the human data are shown

in Figures 44, 46, and 48. Mean values of the signal intensity ratios (averaged over

the entire 3D volume and for specific slices) were calculated for all pulses for both

phantom and human data and are given in the relevant figures. Pulse performance

observed in the brain correlates closely with that observed in the phantom. This fact is

expected given that the ranges of B+
1 and ∆B0 values in the phantom encompass those

observed in vivo (see Section 5.4.1) and, furthermore, validates the use of phantom

signal as a means of comparing pulse performance. Table 5.4.1 summarizes the results

of simulations (mean transverse components of the refocused magnetization (Mfinal
x

and Mfinal
y ) and deviation of refocused magnetization phase (φ)) and lists values of

mean signal ratios for both phantom and in-vivo experiments. Additionally, this table

provides the total duration, equivalent flip angle, and minimum possible repetition

time for the 3D SE sequence (as determined by maximum SAR limits) for all pulses.

Finally, as examples of how the use of improved refocusing pulses effects image quality,

raw signal intensities of axial slices in the phantom and human brain obtained using

BLK, BLKb, and VSb pulses are shown in Figure 49. For further comparison of pulse

performance and detailed discussion, we have divided pulses into three families based

on total pulse duration: short (∆T < 2ms); moderate (2ms < ∆T < 3ms); and long

(∆T > 5ms).
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Short family

Perhaps the most striking improvement among the short family of pulses comes

from the BLKb pulse which results in overall signal gains of ∼ 50% in both the

phantom and in vivo with signal gains of more than ∼ 100% in localized areas. Such

large improvement in local regions was expected in this case because, by design, the

pulse was adjusted to perform best at low B+
1 . The main drawback to this design is

that the resulting increase in signal in areas of low B+
1 comes at the price of signal

loss in areas of high B+
1 . This effect is obvious in both the phantom and brain signal

ratio data where a decrease of ∼ 100% and ∼ 40%, respectively, is observed at the

center of the imaging volumes. However, as the mean signal ratios for both volumes

imply, this decrease in signal is more than compensated by the increase in signal

elsewhere. This fact is simply a reflection of the distribution of B+
1 values found in

the phantom and in the brain. In comparison to the BLKb pulse, the COMP3 pulse

is desirable due to avoidance of signal loss in high B+
1 regions; however, this pulse

results in relatively low signal increase in other regions. The 1.56 ms BIR-4 pulse

results in dramatically less signal as compared to the COMP3 pulse. We interpret

this fact as an indication that the pulse is too short (and, therefore, frequency sweeps

are too fast) for the adiabatic condition to be satisfied. As a result of the numerical

optimization, the OPTBIR-4 pulse has a reduced frequency sweep range (and a reduced

bandwidth) such that the adiabatic condition is satisfied to a higher degree. This

explains why the OPTBIR-4 pulse performs significantly better than its non-optimized

counterpart. However, there appears to be no advantage in using this optimized
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pulse over the COMP3 pulse. The OPT100 pulse performs similarly to the COMP3

pulse with slightly less signal in high B+
1 regions and slightly more signal in low B+

1

regions. The OPTcust pulse produces such similar results to the BLKb pulse that the

former, in light of the necessary but time-consuming field mapping and optimization,

provides no tangible advantage over the latter. To summarize the performance of

this short family of pulses, the BLKb pulse represents the simplest way to achieve

dramatic signal gains from refocusing. If the resulting signal loss at high B+
1 is

undesirable in practice, the COMP3 pulse represents an attractive compromise. While

this conclusion may seem obvious, the fact that adiabatic and numerically optimized

pulses do not provide significant advantages given a ∼ 1.5ms pulse length has not

been previously established in the context of 7 T human imaging.

Moderate family

Within the moderate family of pulses, the COMP3b pulse results in the greatest

overall mean signal increase but suffers from similar high-B+
1 signal loss as the BLKb

pulse. However, relative to the BLKb pulse, the COMP3b pulse has the advantage of

significantly larger signal gains (& 150%) in low-B+
1 regions. Thus, the COMP3b pulse

represents a more attractive refocusing option as compared to the BLKb pulse given

that the two-fold increase in both pulse duration and SAR can be accommodated in

practice. Unlike in the short family of pulses, the other members of the moderate

family (2.54 ms BIR-4, 2.54 ms OPTBIR-4, 2.56 ms OPT100, and 2.56 ms OPTcust)

provide refocusing solutions that maintain the low-B+
1 signal gains of the COMP3b
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Figure 43: Ratio of signal from a 3D SE-EPI experiment with the short family of
refocusing pulses (names given at right) to the signal from the same experiment with
the BLK refocusing pulse. Mean signal ratios averaged slice-wise and over the entire
volume are shown above each slice and at the far left of each row, respectively. The
BLKb and OPTcust pulses are most effective in producing high signal gains in the
lowest-B+

1 regions while the COMP3 and OPT100 pulses avoids signal loss in high-
B+

1 regions. Although the OPTBIR-4 pulse results in much higher signal than its
unoptimized counterpart (BIR-4), it appears more susceptible to B0 offsets.
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Figure 44: Ratios of SE-EPI signal for a subset of the short family of pulses to that for
the BLK pulse as measured in the in vivo human brain. Results correlate well with
the corresponding phantom measurements presented in Figure 43 and thus validate
the use of phantom measurements in establishing the performance of refocusing pulses
for brain imaging.
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pulse while avoiding high-B+
1 signal loss. With the exception of the 2.54 ms BIR-4

pulse (which was not tested in vivo), these other pulses do introduce some undesirable

∆B0-related problems. This effect is most noticeable in the off-center slices in the

phantom and near the frontal sinuses in the brain. While this observations suggests

that the BIR-4 pulse may be the best choice from this family, the ∆B0 problems for

the three optimized pulses might be easily remedied through slight adjustments to

the optimization regions on the B+
1 -∆B0 grid.

Long family

If longer pulse durations and higher SAR values are acceptable given a particular

application, the long family of pulses provides many viable options for improved

refocusing performance. Results for this family of pulses are given in Figure 47

(phantom) and Figure 48 (brain). Phantom experiments reveal the 5.15 ms BIR-4 and

OPTBIR-4 pulses to suffer from more ∆B0-related signal loss than the other members

of the family. This appears to be the primary reason that mean whole-volume signal

ratios are relatively low for these two pulses. On the other hand, it is fair to say that

the performance of the other members of this family (the 5.12 ms OPT100, 5.12 ms

OPTcust, and 12.90 ms VSb pulses) exceeds that of all other pulses considered in this

study. In the phantom, these three pulses result in signal increases . 150% in low-B+
1

regions and ∼ 10% in high-B+
1 regions while exhibiting minimal ∆B0-related signal

loss. In the brain, however, the VSb pulse results in slightly larger low-B+
1 signal gain

as compared to the OPT100 and OPTcust pulses while introducing a slight signal loss
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Figure 45: Ratio of signal from a 3D SE-EPI experiment with the moderate family of
refocusing pulses (names given at right) to the signal from the same experiment with
the BLK refocusing pulse. Mean signal ratios averaged slice-wise and over the entire
volume are shown above each slice and at the far left of each row, respectively. All
pulses result in relatively similar performance, with the most notable exception being
for the COMPb pulse in high-B+

1 regions. Contrary to findings for the short family of
pulses, OPT100 and OPTcust pulses in the moderate family appear more susceptible
to B0 variations than do the BIR-4 and OPTBIR-4 pulses. The color scale is truncated
at a value of 2.0 so as to better illuminate signal differences across the entire volume.
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Figure 46: Ratios of SE-EPI signal for a subset of the moderate family of pulses to
that for the BLK pulse as measured in the in vivo human brain. Values correlate
well with those measured in the phantom (Figure 45). While the two OPT pulses
highlighted here produce significant signal gains at low-B+

1 , they do not outperform
the 1.56ms OPTcust of the short family. The sensitivity to B0 that is apparent near
the frontal sinuses can likely be remedied by adjustment of the range of ∆B0

in high-∆B0 areas (e.g., near the frontal sinuses) that is not observed for the OPTcust

pulse. Despite the slight ∆B0-related signal loss observed in the phantom for the

OPTcust pulse, the OPTcust pulse designed for the brain performs well with respect to

the relevant B0 offsets. This likely reflects dependence of the numerical optimization

on the target ∆B0 range in conjunction with the fact that this range is significantly

larger in the phantom than in the brain. Moreover, ∆B0 signal loss in the phantom

(specifically at high ∆B0 and low-B+
1 values) is a performance feature common to

all OPTcust pulses. This observation suggests that ∆B0-performance of the OPTcust

pulse may be improved (at least for the phantom) by reducing the density threshold

used to create the binary mask designating the optimization region on the B+
1 -∆B0

grid (see Section 5.3.1 and Figure 36).
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Figure 47: Ratio of signal from a 3D SE-EPI experiment with the long family of
refocusing pulses (names given at right) to the signal from the same experiment with
the BLK refocusing pulse. Mean signal ratios averaged slice-wise and over the entire
volume are shown above each slice and at the far left of each row, respectively. Within
this family of pulses, the OPT100 and VSb pulses outperform the others in terms of
both B+

1 insensitivity and B0 susceptibility.
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Figure 48: Ratios of SE-EPI signal for a subset of the long family of pulses to that
for the BLK pulse as measured in the human brain. Performance among these three
pulses is nearly indistinguishable, although the VSb pulse does appear more sensitive
to the large (& 100Hz) B0 offsets encountered near the frontal sinuses. Noteworthy
is the observation that all three of these pulses achieve whole-brain average signal
gains that are approximately two thirds of the theoretical maximum values presented
in Figure 38.
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Figure 49: Signal intensities in the phantom (top row) and brain (bottom row) ac-
quired with the 3D SE-EPI sequence used in this study for evaluating refocusing
performance. Results are shown for the BLK (first column), BLKb (second column),
and VSb (third column) refocusing pulses. Differences in image brightness may ap-
pear subtle in the case of in vivo images, but line profiles in the last column reveal
the actual signal gains at some locations to be & 100% when comparing the VSb or
BLKb pulses to the BLK pulse. Regardless of the efficacy of a given refocusing pulse,
signal intensities vary greatly within images due to the B+

1 -sensitivity of the 90◦ sinc
excitation as well as the imhomogeneity of the recieve field (B−

1 ). To illuminate the
signal contributions arising from the refocusing pulse alone, most results in this study
are presented in terms of signal ratios.
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Considerations of pulse duration and SAR

Although the VSb pulse performs exceptionally well under the given phantom

and in vivo testing conditions, its lengthy duration poses a potential drawback since

refocusing pulse duration directly restricts the minimum possible echo time (TE) in

a SE pulse sequence. Added duration may be costly in imaging scenarios involving

chemical species with short T2 values since this component of T ∗
2 is not recoverable

via RF refocusing or other means. The 5.12 ms OPT100 and OPTcust pulses, with

similar performance to the VSb pulse, are almost 8 ms shorter and therefore represent

more attractive refocusing options for short-T2 applications. Of course, depending on

the T2 values under consideration, such an argument can be extended as being reason

to consider pulses from the moderate and short families.

In addition to pulse duration, relative SAR sets a practical limit on the appli-

cability of a given pulse. As an indirect measure of SAR, the minimum repetition

time Tmin
R for the given 3D SE sequence was extracted from the scanner prior to

each scan (Table 5.4.1). In general, longer pulse durations imply longer Tmin
R values,

hence longer scan times will be necessary in order to maintain the condition that

SAR < 3W/kg. As can be seen in Table 5.4.1, the short, moderate, and long families

of pulses result in total scan times that are, respectively, . 2, . 3, and . 5 times

longer than when using the BLK pulse. These factors include SAR contribution from

the 90◦ excitation pulse that is necessary for the given 3D SE sequence. Thus, the

factors serve as a guide in selecting suitable pulses for a given time constraint.
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Table 5.4.1: Selected attributes and performance metrics for all pulses in this study. Included are: total pulse duration (∆T );
minimum repetition time (Tmin

R ) given the 3D SE-EPI protocol used for experimental performance evaluation; equivalent flip
angle (α) as calculated from

∫

γA dt; the mean of x and y components (Mx and My) of simulated magnetization responses
reported in the fourth and fifth columns of Figures 39, 40, 41, and 42; the percent deviation of the simulated transverse
magnetization phase (reported in the last column of the same figures) from the ideal value of −π/4; mean experimental
signal ratios (SI/SIBLK) with respect to signal obtained with the BLK pulse for the entire phantom and human brain—thus
reflecting the results presented in Figures 43, 45, 47, 44, 46, 48. Pulses are listed in order of increasing ∆T while grouping
reflects the short, moderate, and long families described in the text.

pulse name ∆T [ms] Tmin
R [ms] α [rad/π] Mx My φ dev [%] SI/SIBLK SI/SIBLK

phantom brain

BLK 0.7 136 1.00 0.89 -0.53 39 1 1

BLKb 1.20 186 1.50 0.89 -0.55 33 1.53 1.51
OPT100 1.54 234 1.96 0.89 -0.68 20 1.45 1.43
OPTcust 1.54 234 1.96 0.88 -0.65 22 1.51 1.55
BIR-4 1.56 227 1.86 0.30 -0.13 26 1.13
OPTBIR-4 1.56 233 1.92 0.87 -0.69 18 1.39
COMP3 1.60 235 2.00 0.66 -0.52 35 1.36 1.43

COMP3b 2.40 335 3.00 0.64 -0.54 28 1.66
OPT100 2.56 366 3.27 0.82 -0.90 -7 1.60 1.56
OPTcust 2.56 366 3.27 0.85 -0.91 -1 1.55 1.54
BIR-4 2.59 352 3.07 0.18 -0.26 20 1.53
OPTBIR-4 2.59 361 3.19 0.73 -0.86 13 1.56

OPT100 5.12 695 5.66 0.91 -0.94 -2 1.75 1.64
OPTcust 5.12 653 6.30 0.94 -0.94 0 1.71 1.63
BIR-4 5.15 664 6.12 0.59 -0.74 20 1.58
OPTBIR-4 5.15 681 6.34 0.70 -0.86 10 1.62
VSb 12.90 553 8.14 0.65 -0.71 8 1.80 1.66
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5.5 Conclusion

5.5.1 Summary

Using a 3D SE-EPI sequence, this work has investigated the performance of an

array of non-selective refocusing pulses in the context of 7 T human brain imaging.

As a means of comparison, pulses were divided into short, moderate, and long families

based on total pulse duration—a grouping that correlates with increasing SAR levels.

Identification of the pulses in each family with the best performance depends not

only on the given application but also on the compromises deemed acceptable by

researchers and clinicians. In light of such performance characteristics that are not

necessarily quantifiable in terms of a cost function, we have attempted to outline the

major pros and cons of the various pulses included in this study so as to facilitate

this decision making process. This analysis has resulted in our identification of a few

outstanding pulses in each of the duration families.

Within the short family (∆T < 2ms), the BLKb pulse, with a 270◦ nominal flip

angle, provides a simple way to dramatically increase signal in low-B+
1 regions with

the sacrifice of signal in high-B+
1 regions; however, with the choice of a 270◦ flip angle,

signal loss is limited to a small region at the center of the brain, thus making the pulse

an attractive option given the ease of implementation. Moreover, the flip angle can be

adjusted to achieve a desired compromise between the areas of signal loss and signal

gain. The COMP3 pulse avoids high-B+
1 signal loss but with reduced gain at low-B+

1

and represents an appealing compromise between these elements of performance.
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Within the moderate family (2ms < ∆T < 3ms), the COMP3b pulse performs

outstandingly with regard to low-B+
1 signal gain and reduces the extent of the signal

loss region when compared to the BLKb pulse. The 2.59ms BIR-4 pulse, however,

eliminates high-B+
1 signal loss at the cost of a slight reduction in low-B+

1 gain and,

therefore, should be of high consideration. Optimization strategies for moderate fam-

ily pulses tend not to produce pulses that outperform BIR-4.

Within the long family (∆T > 5ms), the OPT100, OPTcust, and VSb pulses result

in similar signal gains with slightly different sensitivities to ∆B0. Although these three

pulses outperform all other pulses evaluated in this study, utilization of these designs

requires the largest increase in scan time due to higher average power (
∫

A2dt/∆T ).

While VSb has the lowest average power of the three pulses, its lengthier duration

poses a restriction of the minimum possible TE value that is often selected in practice

in order to minimize T2 signal loss.

In addition to ranking a large sample of refocusing pulses according to perfor-

mance, this study provides a framework for evaluating pulse performance that relies

on comparison of signal ratios for set values of TR and TE . Furthermore, the study

has established the approximate maximum signal gains achievable with any refocusing

pulse design in the human brain at 7T and thus constitutes a metric for comparing

future pulse designs whether for single or multiple transmission channels.
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5.5.2 Future Work

The pulses considered in this study are exclusively non-selective, limiting use to

3D sequences in most cases. This fact immediately begs that a similar comparison be

performed for slice-selective refocusing pulses. The composite pulses in this study may

prove translatable to slice-selective forms by changing component pulse shapes from

blocks to sincs or Gaussians while incorporating an oscillating slice-selection gradient

in a manner similar to spokes pulses (89). In the event that such slice-selective pulse

variants are designed, conclusions in terms of relative pulse performances and SAR

limitations would likely remain unchanged. Furthermore, the strategy of increasing

nominal flip angles in accordance with the mean of the measured B+
1 distribution will

be directly applicable to slice-selective pulses. For example, the results of this study

imply that adjustment of the nominal flip angle of a sinc refocusing pulse from 180◦

to 270◦ will result in significant signal gains at most regions in the brain.

In the context of further exploration of non-selective refocusing pulses, the success

of the VSb pulse in this study suggests that incorporation of a SAR constraint in the

optimization algorithm (rather than indirectly limiting SAR through restrictions on

pulse duration) may result in an improved balance of SAR and performance given

that longer TE values can be accommodated. The potential in such designs relies

on the fact that pulses with longer duration have lower average power for a given

equivalent flip angle.

In conclusion, this study lays a firm basis for comparison of other techniques

for achieving uniform refocusing in the presence the field inhomogeneities observed
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in the human brain at 7T. The work provides a much-needed guide to selecting

refocusing pulses given various SAR and time constraints and provides pulse designers

with a reference for the advantages and limitations of existing refocusing pulses.

Furthermore, the work more properly establishes the performance limits of single-

channel refocusing pulses such that the advantages of future multi-channel refocusing

designs can be better understood.
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CHAPTER VI

RELATED PULSE DESIGNS AND APPLICATIONS

In this chapter, an array of other possible uses for numerically optimized pulses are

presented along with preliminary results. In most cases, composite pulses remain the

tool of choice, the context is 7 T, and B+
1 -insensitivity is still an objective; however,

for some applications these design criteria differ. For example, in Section 6.1 opti-

mizations of continuously varying (non-composite) modulation functions are explored.

Additionally, low-field polarization transfer applications are described in Section 6.5.

Section 6.2 extends upon the investigations of Chapter III with an investigation of

the impact of SAR-limited optimizations on non-selective composite pulses. Addi-

tionally, the potential of employing composite pulse designs for frequency selective

excitation is evaluated, with applications to slice-selective imaging (Sections 6.3) and

MR spectroscopic imaging (Section 6.4). The motivation for inclusion of this chapter

in the thesis is to demonstrate the applicability of the pulse design methods proposed

thus far to other current NMR research. Moreover, this chapter allows for exhibition

of some capabilities of these pulse design strategies that were not demonstrated in

the preceding chapters. In this case, potential applications are only, at this point,

hypothesized.
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6.1 Numerical Optimization of Adiabatic Pulses

Adiabatic pulses achieve a spin lock of the available longitudinal magnetization

by satisfying the adiabatic condition, a loosely defined criterium fulfilled if the rate

of nuclear precession is much greater than the rate with which the effective magnetic

field changes in time. As long as this condition is satisfied, adiabatic pulses can

achieve uniform flip angles regardless of inhomogeneities in the transmitted RF field.

In order to satisfy the adiabatic condition, an adiabatic pulse requires sufficient

RF amplitude and duration. Due to RF hardware-restricted amplitudes (15µT for

the Philips 7 T) and the large-scale B+
1 inhomogeneities produced at high field, adi-

abatic pulses designed for low field strengths will not in general satisfy the adiabatic

condition at all spatial locations in a sample imaged at high field, thereby corrupt-

ing resulting image with spatial varying signal intensity. Furthermore, MR literature

apparently does not present systematic methods for choosing optimal values of the

various adiabatic pulse parameters as a function of field strength. The investigation

described here employs numerical optimization methods to select pulse parameters

for 180◦ hyperbolic secant (SECH) pulses (72; 73) and 90◦, 4-part B+
1 -insensitive

rotations (BIR-4) (76) over a range of bandwidths (0.2–2.0 kHz) and a range of B+
1

variations representative of those observed within the human brain at 7T.

For both SECH and BIR-4 pulses, parameter optimization is determined according

to the following methods. Desired flip angles are specified for a grid of appropriate

B+
1 and ∆B0 values. For the examples presented here, a B+

1 /B
+
1,nom range of 0.35-1.30

was selected to represent typical variations throughout the human head at 7T, and a

185



uniform flip angle of 180◦ (SECH) or 90◦ (BIR-4) was targeted over the entire B+
1 -∆B0

optimization grid. For a given optimization, the range of ∆B0 values represented on

the parameter grid corresponds to the targeted bandwidth of the given pulse. Using

custom algorithms written in C++ / Matlab (The Mathworks, Natick, MA, USA),

RF waveform parameters are optimized via minimization of the functions

σ(A0, β, µ) =
1

mn

m
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n
∑

j=1
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and

σ(A0, β, λ,∆φ1,∆φ2) =
1
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, (6.1.2)

where i and j are the respective B+
1 and ∆B0 indices on the corresponding parameter

space grid, αS is the flip angle according to Bloch equation simulation, and αT is the

designated target flip angle. The amplitude and phase (or frequency) modulations

for the SECH pulse are described by the parameters A0, β ,and µ, and the BIR-4

modulations are described by the parameters A0, β, λ, ∆φ1, and ∆φ2. The role

of each parameter in determining the modulation patterns can be inferred from the

modulation functions and associated discussion provided in Appendix C.

Parameter values resulting from each optimization are presented in Figures 50

and 51 for the SECH and BIR-4 pulses, respectively. These figures can be used as

look-up tables for the appropriate parameter values given a desired pulse bandwidth.

As anticipated, amplitudes of both adiabatic pulse types should be maximized. As
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functions of optimization bandwidth, optimized SECH parameters change smoothly

and predictably. For a given bandwidth, optimized SECH pulses show marked im-

provements over traditionally designed SECH pulses, especially in low-B+
1 regions;

the most significant penalty may be the smoothness of the slice profile. Optimized

BIR-4 phase changes (∆φ1 and ∆φ2) deviate very little from the respective theoret-

ical values of π + α/2 and 0 (where α is the nominal flip angle). Optimized BIR-4

parameters β and λ apparently do not change in a systematic way. This result may

highlight an area in which the numerical optimizations are particularly useful since

the corresponding ideal waveform adjustments may not be analytically derivable. For

both SECH and BIR-4 pulses, large gains in flip-angle uniformity may be realized

simply by choosing the lowest acceptable bandwidth for a given application.

In addition to the actual optimized parameter values, pre- and post-optimization

waveforms are compared by example in three contexts: amplitude and phase modula-

tion waveforms, simulated slice profiles, and flip-angle values as simulated on ∆B0-B
+
1

grids relevant to 7T human brain imaging. These results are presented in Figures 52

and 53.

Plots of σ vs. bandwidth emphasize that flip-angle uniformity is a linear function

of the desired bandwidth for both SECH and BIR-4 pulses. As previously men-

tioned, this implies that pulse bandwidth should be chosen as low as possible for a

given application in order to ensure an adequate level of B+
1 -insensitivity. Figure 54

demonstrates the power of such an appropriate bandwidth selection in the context

of SECH pulses used for T1 weighting at 7T. Reported in the figure are simulated
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Figure 50: Parameter values resulting from numerical optimization of hyperbolic
secant pulses for magnetization inversion in the human brain at 7T. These parameter
values are plotted as a function of the pulse bandwidth targeted in the optimization.
The value of the cost function (Equation 6.3.1) is indicated by σ (upper left) and
was found to depend linearly on the optimization bandwidth. All parameter values
change with bandwidth in somewhat predictable ways with amplitude always at the
maximum allowed value (upper right), β decreasing linearly with bandwidth, and µ
increasing with bandwidth in a somewhat exponential fashion. Colors indicate the
various pulse durations investigated (from 5–50ms in this case).
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Figure 51: Parameter values resulting from numerical optimization of BIR-4 pulses to
achieve 90◦ excitation over a ranges of field variations observed in human brain at 7T.
These parameter values are plotted as a function of the pulse bandwidth targeted in
the optimization. The value of the cost function (Equation 6.3.3) is indicated by σ
(upper left) and was found to depend linearly on the optimization bandwidth, just as
in the case of hyperbolic secant pulses (Figure 50). While amplitude (top right) and
phase-shift parameters (bottom row) were found to be largely constant as a function
of bandwidth, values of the parameters β and λ vary with bandwidth in unpredictable
ways. Colors indicate the various pulse durations investigated (from 2–50ms in this
case).
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Figure 52: Comparison of two 20ms hyperbolic secant inversion pulses, one with mod-
ulation functions suggest by MR literature (72; 73) (denoted by dflt) and the other
with numerically optimized modulation functions (indicated by opt). Included in
the comparison are amplitude and phase modulation patterns (upper left), simulated
slice profiles for a range of relative B+

1 magnitudes, and flip angles as simulated on
grids of ∆B0 and B+

1 values relevant to field variations observed in the human brain
at 7T. The bottom right grid corresponds to the dflt pulse and the bottom right
to the opt pulse. Significant differences can be seen in the magnetization response
to the pulses, with the optimized pulse most notably extending B+

1 -insensitivity to
lower B+

1 values.
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Figure 53: Comparison of two 20ms, 90◦ BIR-4 excitation pulses, one with mod-
ulation functions suggest by MR literature (76) (denoted by dflt) and the other
with numerically optimized modulation functions (indicated by opt). Included in
the comparison are amplitude and phase modulation patterns (upper left), simulated
slice profiles for a range of relative B+

1 magnitudes, and flip angles as simulated on
grids of ∆B0 and B+

1 values relevant to field variations observed in the human brain
at 7T. The bottom right grid corresponds to the dflt pulse and the bottom right
to the opt pulse. Significant differences can be seen in the magnetization response to
the pulses, with the optimized pulse most notably extending B+

1 -insensitivity over a
wider bandwidth.
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Figure 54: Slice profile simulations and T1 weighted images acquired at 7T for a
manufacturer-implemented SECH inversion pulse (top row) and a numerically op-
timized SECH pulse (bottom row). When using the optimized pulse, whole-brain
averaged grey/white matter contrast-to-noise measurements were found to increase
by ∼ 30% due to improved inversion efficiency in the face of severe B+

1 inhomo-
geneities. In this case, improved inversion efficiency is largely due to the appropriate
choice of a narrower pulse bandwidth in order to maximize B+

1 insensitivity.

slice profiles and T1-weighted images for which different SECH inversion pre-pulses

were used. Use of the optimized pulse results in significantly more T1 contrast, the

production of which is the goal of the given inversion recovery sequence.
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6.2 SAR-limited optimization of composite pulses for short-TR applications

The volume excitation pulses presented in Chapter III would perhaps most com-

monly be utilized in conjunction with a 3-D, steady-state signal acquisition. Such

an imaging sequence relies upon short repetition times so as to make the acquisition

time across a large 3-D volume practical. At high field, scan times for these sequences

are likely limited by SAR restrictions. Thus, due to their high power, many of the

pulsed resulting from the study of Chapter III, may not prove practical for use with

such sequences. A potential strategy of improving the practicality of these pulses is to

incorporate power constraints directly into the optimization procedure. The purpose

of this investigation was to test the efficacy of such an approach and evaluate the

effects of this additional optimization constraint on pulse performance.

In practice, SAR constraints were included in optimizations in the form of min-

imum repetition times (TR,min) as described by Equations 3.2.5a and 3.2.5b. For a

given optimization, a maximum acceptable TR value (TR,max) was designated and the

minimization of the cost function performed subject to the constraint TR,min ≤ TR,max.

In addition to the use of this TR constraint, the pulses considered in this investiga-

tion differ from those presented in Chapter III in that the target flip angle (αT ) for

a given optimization was determined by considering the designated TR,max and an

approximate mean T1 value for the brain at 7T. The latter was taken to be 1650ms

as suggested by the MR literature (66). Together, TR,max and T1 define a flip angle,

known as the Ernst angle, for which the transverse component of the steady-state

magnetization is maximized. The Ernst angle (αE) is given in these terms by the
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expression

αE = arccos
(

e−TR,max/T1

)

. (6.2.1)

Given these optimization constraints, five non-selective, B+
1 -insensitive composite

pulses were generated with TR,max values of 50, 100, 200, 300, and 400ms. The opti-

mization grids spanned respective B+
1 /B

+
1,nom and ∆B0 ranges of 0.3–1.0 and ±250Hz.

In accordance with the results of Chapter III, the largest number of sub-pulses that

could be confidently employed without detrimentally affecting the efficacy of the op-

timization were used. In this case, 200 sub-pulses were chosen. Sub-pulse durations

were varied such that the 200 sub-pulses resulted in total pulse durations of approx-

imately 1–10ms in 1ms increments for a total of 10 pulses for each TR,max value (50

optimized pulses total). The pulses in each TR,max class with the best performance

as measured by the minimization cost function are presented in Figures 55–57 along

with a block pulse of the same nominal flip angle as the TR,max = 50ms pulse.

The simulation results in Figures 55–57 indicate that the optimization is fairly

robust even for TR values as low as 100ms. At and below this point, the performance

of resulting pulses suffers, particularly at the lowest B+
1 values. However, even at

TR of 50ms a high degree of B+
1 -insensitivity is still present. Thus, there is promise

that the use of power constrained optimizations can result in composite pulses that

exhibit B+
1 -insensitivity while conforming to the practical demands of 3-D steady

state imaging sequences.

The five optimized pulses presented in Figures 55–57 and a sinc pulse with simi-
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Figure 55: A power-limited volume excitation pulse with TR,max = 50ms (b) and
a block pulse with the same nominal flip angle (a). For each pulse, amplitude and
phase modulation waveforms are show at left and simulated flip angles over a grid of
∆B0 and B+

1 values are shown at right. Flip-angle values have been normalized to
the target flip angle (which is a function of TR,max) of each pulse. The block pulse
is not optimized and thus is assigned a value of TR,min rather than a value of TR,max.
Results indicate that a significant degree of B+

1 -insensitivity is attainable even at
TR,max values as low as 50ms
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Figure 56: Power-limited volume excitation pulses for the given values of TR,max. For
each pulse, amplitude and phase modulation waveforms are show at left and simulated
flip angles over a grid of ∆B0 and B+

1 values are shown at right. Flip-angle values
have been normalized to the target flip angle (which is a function of TR,max) of each
pulse.
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Figure 57: Power-limited volume excitation pulses for the given values of TR,max. For
each pulse, amplitude and phase modulation waveforms are show at left and simulated
flip angles over a grid of ∆B0 and B+

1 values are shown at right. Flip-angle values
have been normalized to the target flip angle (which is a function of TR,max) of each
pulse.
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lar field-sensitive properties to those of the block pulse shown in Figure 55 were also

implemented for human scanning at 7T. In order to accommodate whole-brain scan-

ning with the longer TR values necessitated by some of the pulses, voxel dimensions

were somewhat coarse at 3 × 3 × 5mm. Axial images through the 3-D volume are

shown in Figure 58 for each of the pulses highlighted in Figures 55–57 as well as for

a sinc pulse. In the latter case, a TR value of 50ms was chosen and the nominal

flip angle was set to the same value as that of the corresponding optimized pulse. In

vivo results indicate that power-limited composite pulse optimizations are successful

in producing pulses with B+
1 -insensitivity as can be inferred from the increased MR

signal uniformity. These desired effects are most noticeable in the cerebellum, a loca-

tion at which the the B+
1 field is especially weak; however, the center brightening (or,

equivalently, signal reduction on the periphery) observed for the sinc pulse is also

notably reduced in the central slices of all scans performed with optimized pulses. In

some case, optimized pulses do result in potentially undesirable effects. For example,

there exists some banding artifacts in the uppermost slices, particularly for the longer

TR pulses. This may be indicative of signal aliasing from outside the imaging field of

view and thus reflects on the non-selective nature of the composite excitations. The

sinc pulse on the other hand results in no such artifacts, presumably because of the

sharp frequency profile that allows for excitation only within the limited field of view.

Additionally, optimized pulses, in some cases, result in pronounced T ∗
2 weighting.

These effects appear to correlate somewhat with the amplitude and duration of the

pulses such that T ∗
2 weighting is strongest when durations are long but amplitudes
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(really, integrated amplitudes) are low. The TR = 100ms pulse is a good example of

this.

Future explorations of power-limited pulses could include several different objec-

tives. One goal would be to attempt to better understand the origin of the observed

T ∗
2 weighting and determine pulse design strategies that could be used to control such

tissue weighting. Additionally, improved B0 shimming approaches could be utilized to

reduce the necessary ∆B0 range targeted in pulse optimizations, thereby potentially

improving B+
1 -insensitivity for low TR,max values.
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(a) sinc

(b) TR,max = 50ms

Figure 58: In vivo results for a sinc pulse (a) and the power-limited, volume excita-
tion pulse with TR,max = 50ms (b). The optimized pulse result in improved excitation
uniformity with respect to the sinc pulse as evidenced by reduced center brightening
and signal gains in low-B+

1 regions such as the cerebellum. The optimized pulse ex-
hibits T ∗

2 weighting as well as banding artifacts that may be indicative of excitation
beyond the imaging field of view.
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(a) TR,max = 100ms

(b) TR,max = 200ms

Figure 59: In vivo results for power-limited, volume excitation pulses with the indi-
cated TR,max values. Both optimized pulses result in improved excitation uniformity
with respect to the sinc pulse as evidenced by reduced center brightening and signal
gains in low-B+

1 regions such as the cerebellum. Optimized pulses exhibit varying de-
grees of T ∗

2 weighting as well as banding artifacts that may be indicative of excitation
beyond the imaging field of view.
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(a) TR,max = 300ms

(b) TR,max = 400ms

Figure 60: In vivo results for power-limited, volume excitation pulses with the indi-
cated TR,max values. Both optimized pulses result in improved excitation uniformity
with respect to the sinc pulse as evidenced by reduced center brightening and signal
gains in low-B+

1 regions such as the cerebellum. Optimized pulses exhibit varying de-
grees of T ∗

2 weighting as well as banding artifacts that may be indicative of excitation
beyond the imaging field of view.
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6.3 Composite RF Pulses for Frequency-selective, B+
1 -insensitive Excitation

The goal of this investigation was to determine the feasibility of producing frequency-

selective excitation from composites of block-shaped sub-pulses. All pulse designs

share the aims of generating B+
1 -insensitive, frequency-selective, 90

◦ excitations suit-

able for use in the human brain at 7T. If successful, these pulses could be used in

conjunction with a linear field gradient to provide an alternative to the pulse de-

signs presented in Chapter IV or be used as slab-selective variants of those presented

in Chapter III. Additionally, there would likely be applications in high-field NMR

spectroscopy for such B+
1 -insensitive pulses with sharp frequency profiles.

Amplitudes and phases for 128 block-shaped sub-pulses, each with 64 µs duration

(total pulse duration = 8.2 ms), were numerically optimized with two conditions being

simultaneously imposed on the magnetization response:

1. the transverse magnetization should be maximized within a specified frequency

bandwidth (chosen for these preliminary studies to be ±0.5 kHz) and for a range

of relative B+
1 magnitudes characteristic of the human brain at 7T.

2. the transverse magnetization in a frequency band outside the target bandwidth

(e.g., from 2.5 to 0.5 kHz and from +0.5 to +2.5 kHz) should be minimized for

the same range of relative B+
1 magnitudes.

Optimization of the composite amplitude and phase modulations was performed

by minimizing the average value of a cost function across a grid of B+
1 and ∆ω

values†, and cost functions involved a difference between actual magnetization and

†The symbol ω appears here rather than B0 only to emphasize that it is the frequency profile of
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that of specified target values. Three different conditions on the phase of transverse

magnetization were independently explored with the goal of producing pulses for three

separate potential applications: slice-selective saturation, slice-selective excitation

for imaging with a linear rephasing gradient, and slice-selective excitation with zero

through-slice phase. The three corresponding optimization schemes are described as

follows:

Optimization Scheme I: target flip angle

In this case, only target flip angles were specified (i.e., no information related to

the final magnetization phase is considered in the optimization problem). The

cost function is given by

δα(A,φ) =
λ

mn

m,n
∑

σ,ρ=1

∣

∣

∣

∣

∣

αS
σ,ρ(A,φ)− αT

σ,ρ

αT
σ,ρ

∣

∣

∣

∣

∣

+
(1− λ)

p q

p,q
∑

µ,ν=1

∣

∣

∣

∣

∣

αS
µ,ν(A,φ)− αT

µ,ν

αT
µ,ν

∣

∣

∣

∣

∣

,

(6.3.1)

where σ and ρ are indices of B+
1 /B

+
1,nom and ∆B0 in the targeted frequency band

of the optimization grid, µ and ν are the corresponding indices for the portion

of the optimization grid outside the targeted frequency band, αT is the target

flip angle, αS is the simulated flip angle, A and φ are the vectors of composite

pulse amplitudes and phases, and λ is used to achieve relative weighting of

the targeted and untargeted frequency bands. In this study, target flip angles

were set to 90◦ in the target bandwidth and 0◦ everywhere outside this region,

the pulse that is subject to optimization rather that the sensitivity of the pulse to B0 offsets.
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and λ was set to 0.5 to denote equal weighting of the two frequency domains.

Since the magnetization phase resulting from minimization of this cost function

may vary erratically within the targeted frequency band, this approach may be

conducive to slice-selective or slab-selective saturation. In these applications,

incoherent transverse phase is advantageous since this state of magnetization

(typically produced by dephasing/spoiling field gradients) is required to achieve

signal cancellation.

Optimization Scheme II: magnetization dot product with linear phase

In this scheme, a target linear phase along the ∆ω-direction of the optimization

grid was specified. In order to enforce this target phase in the optimization, a

cost function was formulated in terms of the dot product between the target and

simulated magnetization vectors (MT and M
S, respectively). If φT

BW represents

the phase of MT at the edge of the targeted bandwidth such that the phase of

M
T as a function of ∆ω is given by

φT
M
(∆ω) =

∆ω

∆ωBW
φT
BW , (6.3.2)

where ∆ωBW corresponds to the value of ∆ω at the edge of the slice-selection

region of the optimization grid, a cost function in which the value φBW is one
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of the optimization parameters can be written as

δdot(A,φ, φ
T
M
) =

λ

mn

m,n
∑

σ,ρ=1

(

1−M
S
σ,ρ(A,φ) ·MT

σ,ρ(φ
T
M
)
)

+
(1− λ)

p q

p,q
∑

µ,ν=1

(

1−M
S
µ,ν(A,φ) ·MT

µ,ν(φ
T
M
)
)

,

(6.3.3)

with all indices being the same as in Equation 6.3.1. Thus, the ideal amount

of linear phase through the slice is determined by the optimization, thus elim-

inating the need to anticipate this quantity prior to minimization. Again, the

parameter λ was set at 0.5. This optimization scenario is relevant to slice-

selective gradient echo imaging since a linear rephasing gradient could be used

to provide a coherent signal.

Optimization Scheme III: magnetization dot product with zero phase

This scheme is identical to Scheme II in all respects except that the target

magnetization is specified with φT
M

= 0 at all points on the optimization grid.

For consistency and clarity, the cost function is given again with this subtle

modification:

δdot(A,φ) =
λ

mn

m,n
∑

σ,ρ=1

(

1−M
S
σ,ρ(A,φ) ·MT

σ,ρ

)

+
(1− λ)

p q

p,q
∑

µ,ν=1

(

1−M
S
µ,ν(A,φ) ·MT

µ,ν

)

.

(6.3.4)

Thus, the phase of the target magnetization is not considered in the optimiza-

tion. Pulses resulting from this optimization scheme could potentially be used

206



for imaging without the need to rephase the transverse magnetization, which

is typically accomplished via application of a field gradient after execution of

a linear-phase excitation pulse. The advantage of eliminating this rephasing

gradient is a potential reduction in TE which is valuable for maximizing signal

when imaging short-T ∗
2 chemical species.

Results of composite pulse optimizations conducted according to these three opti-

mization schemes indicate varying degrees of success with respect to different desired

pulse attributes. Simulation results are presented in Figures 61, 62, and 63. For com-

parison of these results to those of a B+
1 -sensitive frequency-selective pulse, identical

simulations were performed using a 90◦ Gaussian-modulated sinc excitation with a

1 kHz bandwidth (Figure 64). In general, optimized pulses exhibit sharp frequency

profiles corresponding to the targeted 1 kHz bandwidth, so thus were successful in

selecting a targeted frequency band. While the Scheme III pulse has the most ragged

frequency profile of the three, the Scheme I and II pulses have sharper frequency

profiles than the sinc pulse (i.e., the transition band is narrower, although Scheme II

shows increased side lobes). The B+
1 -insensitivity of the Scheme I pulses is generally

excellent, with the only undesirable feature of this pulse being the imperfect in-slice

frequency profile at low-B+
1 . On the other hand, the B+

1 -insensitivity of the Scheme

II pulse is not as impressive and may not differ significantly from the response of the

sinc pulse with a ∼ 50% increase in amplitude. The Scheme III pulse fulfills the

zero-phase and B+
1 -insensitivity conditions rather well but at the expense of a com-

promised frequency profile. In this case, the correct frequency band is successfully
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affected but the overall frequency envelope is significantly noisier than for any of the

other pulses. Perhaps these characteristics can be improved upon in future studies

through modification of the λ parameter. Other possible future adjustments that are

relevant to all design schemes include the designation of transition frequency bands

to be ignored in the optimization (thus possibly allowing for control of the sharpness

of the frequency profile) and the use of Scheme I for the untargeted frequencies in

conjunction with Schemes II or III for the in-slice frequencies. The latter adjustment

might prove to ease constraint on the optimization so as to enhance in-slice perfor-

mance, with the assumption that the phase in the untargeted region is inconsequen-

tial. Another potential optimization scheme involves maximization/minimization of

the signal inside/outside the targeted bandwidth such that the complex sum of mag-

netization values in these regions is maximized/minimized, for example. Finally, it

is worth reiterating the fact that transverse magnetization outside the ±2.5 kHz op-

timization region was not constrained in any of the examples presented here, and, in

general, magnetization response in this area is significant and nonuniform. Such char-

acteristics of the magnetization response are only an issue in imaging if the frequency

domains fall within the imaging volume and the sensitivity area of the coil and are

even less problematic in certain spectroscopic applications. In any event, unwanted

magnetization response can be suppressed by expansion of the optimization grid in

the ∆ω-direction, albeit at the potential detriment to the optimization performance.
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Figure 61: Simulations of an Optimization Scheme I (Equation 6.3.1) composite pulse
with αT = 90◦ and a target bandwidth of 1 kHz including: amplitude modulation (top
left); phase modulation (top right); magnitude of transverse magnetization (middle
left) on a grid of B+

1 /B
+
1,nom magnitudes (horizontal axis) and frequency offsets (ver-

tical axis); transverse magnetization as a function of frequency offset for selected
B+

1 /B
+
1,nom values (middle right); transverse magnetization phase (bottom left) on

the grid of B+
1 /B

+
1,nom and frequency offset values; and within-slice transverse magne-

tization phase as a function of frequency offset for selected B+
1 /B

+
1,nom values (bottom

right). As compared to the sinc pulse of Figure 64, this pulse achieves a high level
of B+

1 -insensitivity and has somewhat of a sharper frequency profile. The non-linear
phase makes the pulse conducive to saturation.

209



0 2 4 6 8
0

2

4

6

8

10

12

14

16

time (ms)

a
m
p
l
i
t
u
d
e
 
(
µ
T
)

RF amplitude modulation

0 2 4 6 8
−3

−2

−1

0

1

2

3

p
h
a
s
e
 
(
r
a
d
)

time (ms)

RF phase modulation

B
1

+
/B

1,nominal

+

∆
ω
 
(
k
H
z
)

M
T
/M

0

 

 

0.50 0.75 1.00

−2

−1

0

+1

+2

0

0.2

0.4

0.6

0.8

1

∆
ω
 
(
k
H
z
)

B
1

+
/B

1,nominal

+

φ
MT

 

 

0.50 0.75 1.00

−2

−1

0

+1

+2

−3

−2

−1

0

1

2

3

−2 −1 0 +1 +2
0

0.2

0.4

0.6

0.8

1

∆ω (kHz)

M
T
/
M
0

slice−profiles

 

 

−0.50 −0.25 0 +0.25 +0.50
−14

−12

−10

−8

−6

−4

−2

0

∆ω (kHz)

φ
M
T
 
(
r
a
d
)

in−slice φ
MT
 (unwrapped)

 

 

B1
+
=1.00

B1
+
=0.75

B1
+
=0.50

B1
+
=1.00

B1
+
=0.75

B1
+
=0.50

rad

Figure 62: Simulations of an Optimization Scheme II (Equation 6.3.3) composite
pulse with αT = 90◦ and a target bandwidth of 1 kHz including: amplitude modula-
tion (top left); phase modulation (top right); magnitude of transverse magnetization
(middle left) on a grid of B+

1 /B
+
1,nom magnitudes (horizontal axis) and frequency off-

sets (vertical axis); transverse magnetization as a function of frequency offset for
selected B+

1 /B
+
1,nom values (middle right); transverse magnetization phase (bottom

left) on the grid of B+
1 /B

+
1,nom and frequency offset values; and within-slice transverse

magnetization phase as a function of frequency offset for selected B+
1 /B

+
1,nom values

(bottom right). The level of B+
1 -insensitivity achieved by this pulse is rather weak;

however, the frequency and phase profiles are conducive of slice-selective imaging.
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Figure 63: Simulations of an Optimization Scheme III (zero phase) composite pulse
with αT = 90◦ and a target bandwidth of 1 kHz including: amplitude modulation (top
left); phase modulation (top right); magnitude of transverse magnetization (middle
left) on a grid of B+

1 /B
+
1,nom magnitudes (horizontal axis) and frequency offsets (ver-

tical axis); transverse magnetization as a function of frequency offset for selected
B+

1 /B
+
1,nom values (middle right); transverse magnetization phase (bottom left) on

the grid of B+
1 /B

+
1,nom and frequency offset values; and within-slice transverse magne-

tization phase as a function of frequency offset for selected B+
1 /B

+
1,nom values (bottom

right). The B+
1 -insensitivity achieved by this pulse is apparent, and the zero-phase

condition is met with some success. The frequency profile, however, is quite rough,
certainty limiting the usefulness of the pulse.
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Figure 64: Simulations of an asymmetric Gaussian-modulated sinc pulse with
αT = 90◦ and a bandwidth of 1 kHz including: amplitude modulation (top left); phase
modulation (top right); magnitude of transverse magnetization (middle left) on a grid
of B+

1 /B
+
1,nom magnitudes (horizontal axis) and frequency offsets (vertical axis); trans-

verse magnetization as a function of frequency offset for selected B+
1 /B

+
1,nom values

(middle right); transverse magnetization phase (bottom left) on the grid of B+
1 /B

+
1,nom

and frequency offset values; and within-slice transverse magnetization phase as a func-
tion of frequency offset for selected B+

1 /B
+
1,nom values (bottom right). Results for this

sinc pulse are shown as a reference indicating performance typical of frequency se-
lective pulses without B+

1 -insensitivity.
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6.4 Frequency-selective Pulse Designs for Water and Lipid Suppression in MR

Spectroscopy

Proton MR spectroscopic imaging (MRSI) at 7T offers potential for gains in the

SNR, increased chemical shift, and higher spectral resolution for mapping of a number

of brain metabolites (32; 28). However, MRSI at 7T is also challenged because of the

short T2 relaxation times of metabolites, as well as by B0 and B+
1 inhomogeneities,

and the need for higher bandwidth pulses (32; 28). Preliminary MRSI results at 7 T

show promises of quantifying the distributions of metabolites like NAAG, Glu, Gln,

myo-Inositol in addition to the more commonly studied metabolites NAA, Creatine

and Choline. However, spectral deterioration near the skull due to infiltration of skull-

lipid signals has been consistently observed. In addition to prominent lipid signals in

voxels closest to the skull, the use of SENSE-accelerated MRSI acquisitions results

in lipid signals folding-over (SENSE-aliasing) into deeper regions of the brain. To

address this issue, B+
1 -insensitive composite pulses that target the specific frequency

band of lipids have been designed and implemented according to the methods of

Section 6.3. The lipid-suppression strategy is to produce lipid saturation using a 90◦

B+
1 -insensitive excitation at the lipid resonance followed by appropriate dephasing

gradients. The appropriate RF attributes for this composite pulse are shown in

Figure 65. The pulse was inserted into a SENSE-accelerated 2D STEAM MRSI

sequence along with appropriate dephasing gradients. The resulting MRSI spectrum

obtained at 7T (Figure 65) demonstrates promise to overcome the SENSE-aliasing

artifact in the regions near the brain midline. Furthermore, the quality of lipid signal
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suppression was observed to be consistent across the MRSI matrix, including voxels

near the scalp.

These lipid suppression results in the context of MRSI are certainly preliminary.

The next step for evaluating the efficacy of such pulses is to compare results with

those obtained using an excitation pulse that in not B+
1 -insensitive (such as a sinc

pulse). Furthermore, using a phantom with the relevant metabolites, the frequency

offset of the composite excitation could be verified and further calibrated so as to

maximize lipid suppression while minimizing the effect of neighboring metabolites

such as NAA.

In addition to this lipid-suppression pulse, a dual-band, B+
1 -insensitive composite

pulse has been designed using the same methods as described in Section 6.3. The pur-

pose of this particular design is the simultaneous saturation of water and lipid—both

of which produce large NMR signals that plague the identification and quantification

of MRS metabolite signals in human brain. The pulse design is presented in Figure

67 but is yet to be used experimentally.
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Figure 65: Suppression of the lipid signal with a spectrally-selective composite pulse
that targets a ±200 Hz window for a 90◦ excitation while minimally effecting metabo-
lites of interest and water which have resonances up to +1200 Hz with respect to the
central lipid resonance. As reflected in the ∆ω labels on the plot ofMT/M0 (bottom),
the pulse is designed to be executed with a carrier frequency corresponding to the
center of the lipid resonance. Amplitude and phase modulations are shown at top
and middle, respectively.
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Figure 66: (a) Representative SENSE-accelerated 2-D STEAM MRSI spectrum at 7T
obtained (from the yellow voxel in the scout image) without fat-suppression pulse-
trains; and (b) with the lipid-suppressing composite pulse shown in Figure 65. Clearly,
the lipid suppression pulse is effective. What remains to be investigated is how much
the B+

1 -insensitive characteristics of the pulse contribute to its efficacy.
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Figure 67: Simultaneous suppression of the lipid and water signals with a spectrally-
selective composite pulse that targets ±163 Hz windows for a 90◦ excitation while
minimally effecting metabolites of interest which have resonances between the two
suppression bands. As reflected in the ∆ω labels on the plot ofMT/M0 (bottom), the
pulse is designed to be executed with a carrier frequency corresponding to the mean
of the lipid and water resonances. Amplitude and phase modulations are shown at
top and middle, respectively.
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6.5 Phase Modulation Waveforms for Harmonic Spectroscopy: Application to

Polarization Transfer at a Single Transmission Frequency

The use of in vivo MRS in biomedicine for the detection of abnormal metabolism

has increased recently in parallel with improvements in technology for increasing

polarization toward the theoretical limit. These methods are often referred to as

hyperpolarization and, for application to metabolism, aim to polarize spin-states

principally by either of two techniques - utilizing nuclear interaction with electrons

(DNP) or parahydrogen (PASADENA and SABRE) (85; 11). To the extent that po-

larization is achieved on protons where longitudinal relaxation times are on the order

of a few seconds in favorable cases, additional techniques are necessary to transfer

magnetization to a reservoir with more favorable relaxation properties. While the

details for achieving this transfer depend on J-couplings and initial spin-states, an

essential ingredient is application of coincident radio frequency pulses applied to the

coupled partners.

Clinical MR spectrometers and portable (typically low-field) scanners are usually

not equipped with multiple channels but generally are capable of producing amplitude

and phase-modulated waveform. Moreover, adding additional phase-coherent trans-

mitters ad hoc would likely be a considerable distraction for most research labs and

particularly those equipped with commercial instruments. To circumvent this limi-

tation, we have developed phase and amplitude modulation schemes to manipulate

heteronuclear coherences at a single applied frequency.

The creation of these harmonics for spectroscopy (referred to here as HARMONY)
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is ideally suited to low-field applications and can readily be tailored for simultane-

ous, phase-specific transformations using numerical optimizations of composite pulses.

The RF pulses for HARMONY have been designed using an optimal control algo-

rithm based upon a technique originally developed to produce wide-band RF pulses

for mono-nuclear spectroscopy at ultra-high field (19T) (74; 75). We propose mod-

ifications of the cost function and intrinsic hardware limitations of this numerical

minimization method so as to produce dual-band pulses capable of multi-nuclear ex-

citation at low field (12mT), thus enabling polarization transfer experiments with a

single-channel transmission coil.

The optimal control algorithm (summarized here and detailed in Appendix E)

iteratively determines adjustments to a composite amplitude and phase modulated

waveform seeded with random initial amplitudes and zero phases by determining the

difference in the physical paths associated with 1) the forward RF-induced propa-

gation of the magnetization MF (t) from the given initial conditions M0 and 2) the

propagation of the magnetizationMR(t) due to the time-reversed RF waveform start-

ing with the target magnetization state M target. The difference in these two spatial

trajectories ∆ω(t) is quantified by the vector cross product of the magnetization states

at each time point in the composite RF waveform such that

∆ω(t) =MF (t)×MR(t) . (6.5.1)
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The composite pulse for the next computational iteration is determined by

∆Ã(t) = λ |∆ω(t)| , (6.5.2)

with A(t) being the complex amplitude such that the physical amplitude is given by

A(t) = ℜ(∆Ã(t)) and the phase by ∆φ(t) = ℑ(∆Ã(t)). In our implementation of this

procedure, the parameter λ is determined by a secondary least-squares minimization

procedure such that improvement in the cost function is maximized for the given

iteration. Calculation of magnetization trajectories MF (t) and MR(t) is achieved

using an analytic solution of a relaxation-free form of the Bloch equation (3). For the

proposed low-field polarization transfer experiments, we propose the modified cost

function of the minimization procedure to be given by

δ(Ã) =
κ

m

m
∑

i=1

(

1−MF
i (t) ·M target

i

)

+
1− κ

n

m
∑

j=1

(

1−MF
j (t) ·M target

j

)

, (6.5.3)

where the indices i and j indicate the step number through the lower and upper

frequency bands, respectively. In these targeted frequency bands, the dot product

between the final magnetization state for a given set of complex amplitudes (as de-

termined by simulation of the Bloch equations) and the target end magnetization state

specified by the user serves as a metric of pulse performance. The parameter κ acts

as a Lagrange multiplier in weighting the importance of the two specified frequency

bands. As opposed to the formulation in (74), we opt to neglect homogeneities in the

transmitted RF field intensity due to the small volumes and large wavelengths under
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consideration at low field. To generate pulses for HARMONY, the carrier frequency

is chosen at the mean nuclear resonant frequency of the chemical species of interest.

In practice, this choice is reflected in the effective value of the gyromagnetic ratio γeff

used in simulation of the Bloch equations. For dual excitation of 1H and 13C,

γeff =
1

2
(γ1H + γ13C) = 167.39 rad/s/T , (6.5.4)

implying a carrier frequency ω0 = 319.69 kHz for a field strength of 12mT. The 12mT

resonant frequencies of 1H and 13C being 510.91 kHz and 128.46 kHz, respectively,

the resonant offsets for the center of the targeted frequency bands are defined to be

±191.22 kHz. In our preliminary pulse designs, the target bandwidth of excitation re-

gions is set to 2 kHz in order to accommodate the expected level of field inhomogeneity

in our low-field spectrometer, but preliminary results suggest that larger bandwidths

are feasible. In compliance with the hardware limitations of our single-channel RF

amplifier, amplitude and phase modulations are optimized at 2.1µT intervals result-

ing in 3000 free parameters for a 3.15ms pulse. RF amplitude is limited to 100µT

and enforced during the optimization according to established methods (75).

Presented here are five pulse designs generated with the given optimal control

algorithm for use in excitation of 1H and 13C at 12mT using a single, centrally-

located carrier frequency (ω0 = 319.69 kHz). The goal of the first design (Figure 1)

is the simultaneous but out-of-phase excitation of both nuclear species. Simulations

of resulting magnetization states (Figure 1) indicate a high degree of convergence of
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the numerical algorithm. Thus, such an excitation appears attainable with the given

single-channel hardware configuration. Note that the excitation bands observable in

the vicinity of ±100 kHz (as well as the on-resonance band) are not a condition of the

optimization but are rather a side effect of the optimal solution.

The six pulse designs presented here (Figures 68–70) demonstrate the effectiveness

of the numerical algorithm in generating off-resonance excitation in a single band

and are directly applicable to polarization transfer experiments such as PASEDENA

and SABRE (85; 11). Figure 68 exhibits pulses resulting in 90◦ excitations about

either the +x- or +y-axes for the 13C band. Likewise, Figure 68 shows that such

rotations are equally possible in the 1H band. For these four single-band pulses,

magnetization in the region of the untargeted nucleus is minimally disturbed without

the need to specify such a condition in the pulse optimization. Examples of dual-band

pulses for both excitation and refocusing are shown in Figure 70. All figures include

amplitude modulation (top row) and phase modulation (2nd row) for 3.15ms RF

pulses designed for execution with a carrier frequency of 319.69 kHz such that the 13C

and 1H resonances lie at −191.22 kHz and +191.22 kHz, respectively. The simulated

magnetization response shown via the components Mx (3rd row), My (4th row), and

total transverse magnetization MT (last row) demonstrate the impressive extent to

which the conditions of the optimization are fulfilled. In all cases, a 2 kHz bandwidth

is targeted at each resonance. For the examples presented here, 3000 free parameters

(1500 complex amplitudes) are optimized within constraints dictated by RF amplifier

limitations, namely a 2.1µs dwell with a maximum amplitude of 100µT.
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(a) 90◦ rotation about the y axis.
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(b) 90◦ rotation about the x axis.

Figure 68: Excitation of 13C at 128 kHz while transmitting at 319 kHz and suppressing
signal from 1H at 510 kHz. The excitation band has a width of 3 kHz and control of
the magnetization is demonstrated in (a) vs. (b).
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(b) 90◦ rotation about the x axis.

Figure 69: Excitation of 1H at 510 kHz while transmitting at 319 kHz and suppressing
signal from 13C at 128 kHz. The excitation band has a width of 3 kHz and control of
the magnetization is demonstrated in (a) vs. (b).
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(a) Dual-band excitation.
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(b) Dual-band refocusing.

Figure 70: Simultaneous excitation (a) and refocusing (b) of 1H at 510 kHz and 13C
at 128 kHz while transmitting at 319 kHz. Each excitation band has a width of 3 kHz.

225



CHAPTER VII

CONCLUSION

Conclusions and potential future studies have, to some degree, been already pro-

vided within the preceding chapters; however, those comments are in most cases quite

specific to particular studies. Thus, the purpose of this final chapter is to provide a

summary of this thesis in its entirety and a more global perspective of the potential

for related future investigations.

7.1 Summary

The demands for different RF pulse attributes are almost as many as there are

applications of MRI. Thus, the investigations of this thesis are necessarily limited.

The work has spanned a range of basic RF objectives, including excitation, inversion,

refocusing, and saturation with the idea that, due to the fundamental nature of these

pulse designs as the basic building blocks of an MRI pulse sequence, the stated designs

may be fine-tuned for use in specific contexts. In some sense, the collection of pulse

design strategies presented in this thesis therefore can be viewed as a complete, single-

channel solution to challenges related to inhomogeneous transmission of RF pulses at

high field. This statement is, of course, made with the assumption that the required

increases in pulse duration and power can be accommodated.

Results have demonstrated the extreme flexibility of composite pulses to provide

the levels of B+
1 - and ∆B0-insensitivity demanded by human brain imaging at 7T.
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Thus, the investigated pulse designs work to better realize the SNR gains that provide

the primary motivation to pursue MRI at high field. Composite pulses for volume

excitation with arbitrary flip angles (Chapter III) have been shown to outperform

the existing and competing solution of BIR-4 pulses in terms of insensitivity to field

variations and associated SAR levels. Such pulses have been shown to be translatable

to slice-selective forms while maintaining the desired field-insensitive characteristics

(Chapter IV). The evaluation of refocusing pulses has revealed the significant sig-

nal gains that are possible when using composite designs in spin-echo sequences at

7T. Slice-selective variants of these refocusing designs should prove attainable via

the same methods employed to achieve slice-selection for composite excitation pulses,

thus significantly broadening the contexts in which they prove useful. Applications de-

manding non-selective inversion may benefit from either composite excitation pulses

with 180◦ flip angles (Chapter III) or the optimized hyperbolic secant and BIR-4

pulses (Chapter VI), while hyperbolic secant pulses appear to be the best alterna-

tive when highly selective, field-insensitive inversions are required. B+
1 -insensitive

saturation can potentially be accomplished through the use of either 90◦ compos-

ite excitations in conjunction with appropriate dephasing field gradients or inversion

pulses with the appropriate choice of a delay time preceding the ensuing excitation.

With this wide array of B+
1 -insensitive RF tools available, a large number of

imaging sequences can be readily modified so as to limit undesirable B+
1 -related ef-

fects arising at high field. While resulting improvements may not be in all cases as

pronounced as when spectral-spatial designs are implemented for multiple-channel
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transmission, the B+
1 -insensitive pulse approach thus represents a suitable alternative

to multi-transmit technologies when the latter are not available or prove impractical.

Furthermore, while multi-transmit technology appears to be here to stay in at least

some capacity, the pulse designs presented in this thesis carry the notable advantage

of requiring no subject-specific field mapping or RF calibrations and can be imple-

mented on almost any existing coil, in any imaging volume, and over a broad range

of field strengths at little or no cost. It is primarily for the reasons of flexibility and

cost that these designs may eventually prove useful in clinical practice. For example,

in some cases, the additional scan time required for multi-transmit calibrations may

prove cumbersome both practically and monetarily, whereas B+
1 -insensitive pulses

avoid such issues almost entirely. Moreover, it is likely that such reasons to adopt

B+
1 -insensitive pulse strategies will be more compelling at lower field strengths given

that both RF field variations and the relative impact of addressing related issues are

significantly reduced in this context.

The prevailing limitations of the pulse designs presented in the work involve in-

creased pulse power and duration as compared to typical B+
1 -sensitive pulses. These

pulse characteristics translate to lengthened scan times (so as to avoid violation

of SAR restrictions) and possible signal losses due to T ∗
2 relaxation. While multi-

transmit technologies certainly provide for relatively short total pulse durations and

superior (or at least matching) B+
1 -mitigating capabilities, a comparison of the re-

quired alterations to total scan duration as required by multi-transmit and B+
1 -

insensitive composite pulse approaches is presently difficult since multi-transmit pulse
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calibration techniques and SAR evaluations are still under active investigation. It may

very well prove true that multi-transmit calibrations can be carried out in a matter

of a few minutes with resulting pulse designs suffering little in terms of increased

power. In this case, the main advantage of composite pulse designs would be the re-

duced hardware-related costs. However, very few MR research sites (and even fewer

clinical sites) currently have multi-channel transmission capabilities. Thus, there ex-

ists a window of time in the immediate future for which B+
1 -insensitive pulses could

be used to take better advantage of existing hardware before more attractive alter-

natives become widely available. Furthermore, composite pulses have been shown

capable of avoiding expected levels of T ∗
2 signal loss due to spin-locking (see Section

4.3.2 and Figure 31), and preliminary studies on limiting pulse power of composite

pulse in specific contexts (see Section 6.2) are promising. Clearly, the true potential

for adapting composite pulses to specific duration and SAR constraints has not been

established, thereby indicating that comparisons of multi-transmit and B+
1 -insensitive

pulse design approaches to high field inhomogeneity issues are at this point largely

speculative.

In addition to investigations into numerical optimization strategies forB+
1 -insensitive

excitation, inversion, saturation, and refocusing, the present work has revealed the

applicability of similar methods for producing frequency-selective composite pulses

as presented in Chapter VI (Sections 6.4, and 6.5). While applications to alterna-

tive methods of slice-selective images (Section 6.3) may be somewhat of a long shot,

the general technique proves most useful for translating the non-selective pulses of
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Chapter III to more useful slab-selective variants. On the other hand, frequency se-

lective pulses for lipid suppression have already been implemented with promising

results. A dual-band version for simultaneous lipid and water suppression has not

been put to use but appears functional in simulations. The successful design of com-

posite pulses for low-field polarization transfer has revealed the extreme capabilities

of composite pulses for frequency-selective manipulation of magnetization responses

in the case that B+
1 inhomogeneities can be largely ignored. The success at this level

opens many doors for future applications of similarly designed composite pulses in

NMR and emphasizes how the pulse designs of this thesis may have been motivated

by high-field applications but their utility is not confined to that context.

Finally, the work on RF field mapping presented in Chapter II can not be over-

looked in its significance. The conclusion that various mapping techniques result in

such varied measurements of the B+
1 field is particularly relevant to multi-transmit

spectral-spatial pulse designs. It is for these pulses (and their single-channel spokes

counterparts) that accurate RF field measurements are required under stringent time

constraints. The observation that the fastest mapping methods (such as PSS) are sub-

ject to significant potential errors motivates the need to either develop new techniques

or modify more accurate existing techniques so as speed up acquisition. Presently, it

appears that use of a moderate EPI factor in conjunction with a multi-slice, multi-

flip-angle mapping technique (GEs) may be one route of reaching an acceptable com-

promise between speed and accuracy.
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7.2 Future Work

Presently, the potential for future investigations related to the findings of this

thesis appear almost limitless, due largely to the broad array of possible applications.

The impacts of using B+
1 -insensitive composite pulses have not been evaluated in any

specific context such as arterial spin labeling (ASL), functional MRI (fMRI), diffusion

tensor imaging (DTI), fluid-attenuated inversion recovery (FLAIR), or multi-nuclear

imaging, just to name a few. Perhaps of most immediate importance to the eventual

pursuit of such studies is an investigation into slice-selective variants of the most

promising B+
1 -insensitive refocusing pulses of Chapter V. With the performance

constraints of these pulses established, non-selective and slice-selective versions of B+
1 -

insensitive pulses for excitation, inversion, refocusing, and saturation will be ready for

deployment, making replacement of almost all existing B+
1 -sensitive pulses possible

in a wide range of pulse sequences. As presented in this thesis, pulses are evaluated

individually as should be the case initially; however, the simultaneous use of B+
1 -

insensitive pulses for different purposes in the same sequence should only work to

exaggerate the kinds of signal gains that have been so far witnessed. The simplest

example of this procedure might be in the context of a spin-echo sequence such as

the one employed in Chapter V. If the excitation pulse in this sequence is replaced

by a composite pulse from Chapter III and the refocusing pulse by one of the many

B+
1 -insensitive options, signal gains will likely be significantly larger than when only

one pulse is substituted at a time. SNR improvements may continue to become

increasingly obvious in more complex scenarios such as a spin-echo inversion recovery
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sequence as is often employed in FLAIR experiments. After evaluating resulting

SNR improvements when using such pulse combinations, initial applications could

be identified based on either the simplicity of the sequence (in which case it may be

easiest to quantify sources of error and the influence of given pulses to increased SNR)

or sequences that might benefit the greatest from B+
1 -insensitivity.

The idea of evaluating the collective effect of multiple B+
1 -insensitive pulses in

a pulse sequence together with the observation of large overall signal gains possi-

ble through simple RF amplitude adjustments (such as was the case for the BLKb,

COMP3b, and VSb refocusing pulses of Chapter V) suggests that power optimization

for all pulses in a given sequence is a topic worthy of future 7T studies. Typically,

commercial MR scanners calibrate the power of RF transmission based on signal

maximization within the imaging volume. Presently, these methods result in cor-

rect power calibration for the highest B+
1 regions. RF field maps and associated

histograms presented in this thesis (e.g., Figure 10) suggest that a more appropri-

ate power calibration would result in maximizing the mean signal through the entire

imaging volume. Since the mean of the B+
1 /B

+
1,nom field distribution in any given

human brain at 7T is consistently measured to be ∼ 0.7, an ad hoc power adjust-

ment of +40% (1.0/0.7 = 1.4) could simply be used in conjunction with existing

power optimization methods to increase RF pulse efficacy in the majority of regions

of the brain. It seems that a proper evaluation of any technique for combating signal

variations due to B+
1 inhomogeneities (whether it be B+

1 -insensitive pulses or multi-

transmit techniques) should be performed in reference to the performance of typical
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B+
1 -sensitive RF waveforms under the condition of an optimal power calibration.

Another arena of future studies certainly involves the explorations of power-limited

optimizations. Power constraints will become increasingly important to the practical-

ity of B+
1 -insensitive pulses when multiple such pulses are utilized in the same pulse

sequence. RF power limits have already been successfully integrated into the design

of volume excitation pulses as reported in Section 6.2, and SAR limitations were con-

sidered heavily in the analysis of refocusing pulses in Chapter V. The next step with

regard to this facet of pulse design is to extend power-constrained optimization to

the low flip-angle, slice-selective pulses presented in Chapter IV. These pulses could

prove useful for slab-selection excitation in the context of a 3-D steady state imaging

sequence; however, the utility of such a sequence relies on short TR values that are

not possible if RF pulse power is too high.

The pulse designs of this thesis have largely incorporated insensitivity to the range

of B0 variations observed in the brain at 7T. These ∆B0 ranges were determined using

similar pencil-beam volume static field shimming approaches. While such shimming

strategies are successful in limiting static field variations in the brain to plus or minus

a few hundred Hertz, other shimming methods, such a global imaged-based shimming,

may prove more efficacious. The value to optimized composite pulses of reducing the

range of ∆B0 values in the imaging volume is that optimization requirements are

less stringent, generally resulting in lower attainable cost function values. As for the

design of pulses for use at high field, a restricted ∆B0 range would likely translate

to either greater B+
1 -insensitivity or reduced power requirements. Thus, in future
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studies, the best possible static field shimming scenarios should be investigated and

composite pulses optimized accordingly. As developing technologies continue to allow

for improved static field shimming, the performance and utility of B+
1 -insensitive

pulses will also improve. Such is an example of the ways in which design and control

of the RF and static fields are often complementary.

In addition to sharing a common target range of ∆B0 values, most of the pulse

designs of this thesis are designed for use with a volume head coil at 7 T. It is the RF

inhomogeneities associated with this combination of coil and anatomy that determine

the range of B+
1 values to be targeted in the pulse design process. The use of different

transmission coils is certain to result in changes to pulse design criteria, as is the

imaging of different regions of the body. For example, a surface coil used to image

the spine at 7T will likely define a very different set of ∆B0 and B+
1 values than

for a volume head coil. RF and static field maps will need to be obtained for any

such scenario, and composite pulses will need to be redesigned to ensure maximum

efficacy. The possible applicability of previously optimized composite pulses will, of

course, depend on the new coil/anatomy combinations, but investigation into the

design of B+
1 -insensitive pulses for use in such contexts is certainly warranted.

While the RF shimming and spokes pulse strategies described in Section 1.4.2

have proven efficacious in producing uniform excitations on multi-channel systems

at high field, the incorporation of composite/arbitrary waveforms in this context

has not been thoroughly explored. Investigation of such methods certainly appears

worthwhile given the potential advantages, particularly with respect to maximizing
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the capability of a limited number of transmission channels. As previously noted,

the expense of RF amplifiers and the time-consuming RF field mapping necessary for

multi-transmit applications motivate the use of as few channels as necessary. Such

constraints put more demand on pulse designs to achieve the desired effects with

fewer degrees of freedom. The optimization of composite waveforms (such as those

of Chapter III) for use on separate transmission channels is a way to introduce addi-

tional degrees of freedom in the optimization problem when the number of channels

are limited. The methods for doing this in the context of volume (non-selective) ex-

citation are somewhat straightforward and analogous to the design of multi-transmit

spokes pulses. After measurement of the RF field associated with each coil element,

optimization of composite waveforms would be performed in tandem so as to induce

uniform effects on the magnetization throughout the imaging volume. Unlike, the

optimizations presented in this thesis, such pulse designs would rely on the spatial

distribution of the B+
1 field, and subject-specific field mapping would be necessary.

Perhaps a simpler strategy for marrying the technologies of B+
1 -insensitive composite

pulses and multi-channel transmission is analogous to RF shimming. In this case,

a single B+
1 -insensitive composite pulse would be selected for use based on loose

knowledge of the expected field inhomogeneities associated with each coil element.

Subject-specific optimization of constant amplitude and phase offsets to be applied to

this composite pulse as executed on each channel would then be performed. Presently,

it is unknown whether such an optimization would result in anything but zero am-

plitude and phase offsets for each channel, but straightforward simulations should be
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able to shed light on the subject with relative ease. Slice selective versions of compos-

ite pulses for multi-transmit are also worthy of investigation; however, as presented

in Chapter IV, such composite waveforms already closely parallel spokes pulses in

their design. The main difference is the utilization by spokes pulses of transverse field

gradients to allow for spectral-spatial excitations. Since these gradients are typically

executed in very short times, the advantage in eliminating them may not outweigh the

benefits of the alternative method; however, sensitivity of spokes pulses to RF phase

instabilities has been reported. It may be that such sensitivities are less pronounced

when transverse gradients are not present.
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APPENDIX A

OVERVIEW OF MAGNETIC RESONANCE IMAGING PHYSICS

This appendix provides an overview of the physical foundations of magnetic reso-

nance imaging (MRI). An explanation of nuclear magnetic resonance (NMR) is first

presented along with classical and quantum mechanical descriptions of the nuclear

magnetic moment, its various energy states in a magnetic field, nuclear interactions

involving spin transitions, and Larmor precession. Following is a discussion of how

nuclear spins can be manipulated via radio frequency (RF) electromagnetic radiation

and the processes by which such a disturbed system returns to equilibrium. The basic

approaches used in producing images from NMR signals and the hardware necessary

to carry out such a task are also described.

1.1 Electromagnetism and the Magnetic Moment

At the heart of any classical interpretation of electromagnetic phenomenon are

Maxwell’s equations, which describe the origins and interrelations of electric and

magnetic fields. These equations explicitly show how electric fields originate from

electric current and time-dependent magnetic fields and how magnetic fields origi-

nate from electric current and time-dependent electric fields. Maxwell’s equations are

typically written in the differential and corresponding integral forms found in Table

1.1. Particularly relevant to the following discussion of the magnetic moment are

Gauss’s Law for electricity and Ampere’s Law, while Faraday’s law is crucial to mag-
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netic resonance signal detection (Section 1.2). Firstly, using Maxwell’s equations as

a starting point, let us develop an expression for what is known as the electric dipole

moment of a localized charge distribution. Through analogy, the magnetic moment of

a current distribution is then more easily understood. Since the curl of the gradient

of any scalar field is equal to zero, Faraday’s Law permits the definition of a scalar

potential, V , such that

E = −∇V , (A.1)

as long as there exists no time-dependent magnetic field (∂B/∂t = 0). With this

definition made, Gauss’s Law for electricity can be written in terms of the scalar

potential as

∇ · E = ∇ · (−∇V ) =
ρ

ǫ0
(A.2)

or

∇2V = − ρ

ǫ0
. (A.3)

This relationship between the scalar potential and the charge distribution is known as

Poisson’s equation. For the case that the charge distribution is localized (i.e. ρ → 0

as r → inf), Poisson’s equation has the solution

V (r) =
1

4πǫ0

∫

ρ

|r− r′| dr
′ , (A.4)

which is equivalent to the Helmholtz theorem for the special case of ∇× E = 0 and

∇ · E = ρ/ǫ0. If the observation point is well outside the charge distribution, the

238



electric potential can be binomially expanded such that

V (r) =
1

4πǫ0

∞
∑

n=0

1

rn+1

∫

(r′)nPn(cos θ)ρ dr
′ , (A.5)

with Pn(cos θ) being the Legendre polynomials. The leading term in this series is the

monopole term, the second the dipole term, the third the quadrupole, etc. It is the

dipole term (n = 1) that is most relevant to a derivation of the magnetic moment.

This term has the specific form

Vdipole(r) =
1

4πǫ0r2

∫

r′ cos(θ)ρ dr′ =
1

4πǫ0r2
r̂ ·

∫

r
′ρ dr′ . (A.6)

The integral in the last expression is defined as the electric dipole moment, P, of the

charge distribution such that

P =

∫

r
′ρ dr′ (A.7)

and

Vdipole(r) =
r̂ ·P
4πǫ0r2

. (A.8)

Being representative of the size and shape of the charge distribution and simul-

taneously independent of the point of observation, the electric dipole moment, just

as with its counterparts in other terms of the potential’s series expansion, is a par-

ticularly useful vector to define. It is worth noting as an example that a single point

charge has no dipole moment while oppositely charged point particles separated by a
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Table A.1: Maxwell’s equations of classical electrodynamics in free space describe the
interrelations of magnetic fields, electric fields, electric charge, and electric current.
In the given representation, E is the electric field, B is the magnetic field, ρ is the
electric charge density, J is the electric current density, Qenclosed is the electric charge
within a closed surface, ΦB is the magnetic flux, I is the electric current passing
through a closed loop, µ0 = 4π × 10−7N/A2 is the permeability of free space, and
ǫ0 = 8.85× 10−12C2/N ·m2 is the permittivity of free space.

law differential form integral form

Gauss’s Law for Electricity ∇ ·E =
ρ

ǫ0

∮

surf

E · da =
Qenclosed

ǫ0

Faraday’s Law ∇×E = −∂B

∂t

∮

line

E · ds = −dΦB

dt

Gauss’s Law for Magnetism ∇ ·B = 0

∮

surf

B · da = 0

Ampere’s Law
∇×B =

∮

line

B · ds =

µ0J+ µ0ǫ0
∂E

∂t
µ0I + µ0ǫ0

∂

∂t

∫

surf

E · da

240



distance vector d have a dipole moment of qd.

Just as an electric dipole moment arises from a spatial distribution of electric

charge, a magnetic dipole moment arises from a spatial distribution of electric current.

In both cases, the dipole moment is related to the dipole term of the multipole

expansion of the appropriate potential—the scalar potential, V , for the electric dipole

and the vector potential, A, for the magnetic dipole.

Since the divergence of the curl of any vector field is zero, Gauss’s Law for mag-

netism permits the definition of a vector potential A such that

B = ∇×A . (A.9)

Inserting this representation of B into Ampere’s Law in differential form yields

∇× (∇×A) = µ0J , (A.10)

which, with the use of a common vector identity, can be written as

∇(∇ ·A)−∇2
A = µ0J . (A.11)

The condition of ∇ ·A = 0 can then be placed on the vector potential with no effect

on Maxwell’s equations such that Ampere’s Law reads

∇2
A = −µ0J . (A.12)
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This relationship has the form of Poisson’s equation and can once again be solved

according to the Helmholtz theorem such that

A(r) =
µ0

4π

∫

J

|r− r′| dr
′ , (A.13)

as long as there exists no time-dependent electric field (i.e., ∂E/∂t = 0). In order to

put this vector equation in a manageable form for a series expansion, the special case

of a current loop with current I = I dl will be considered. In this representation, the

line element dl lies along the loop and points in the direction of the electric current.

For this case, the vector potential takes the form

A(r) =
µ0I

4π

∮

1

|r− r′| dl (A.14)

and can be expanded in terms of Legendre polynomials just as the scalar potential

was before such that

A(r) =
µ0I

4π

∞
∑

n=0

1

rn+1

∮

(r′)nPn(cos θ) dl . (A.15)

The second term (n = 1) of this series,

Adipole(r) =
µ0I

4πr2

∮

r′ cos θ dl =
µ0I

4πr2

∮

(r̂ · r′) cos θ dl , (A.16)
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is the magnetic dipole term and can be manipulated such that

Adipole(r) =
µ0I

4πr2

(

−1

2
r̂×

∮

(r′ × dl)

)

. (A.17)

If the magnetic dipole moment, µ, is defined as

µ =
I

2

∮

(r′ × dI) , (A.18)

the dipole term can be written as

Adipole =
µ0

4πr2
(µ× r̂) . (A.19)

With this definition of the magnetic dipole moment (or simply the magnetic moment)

established, it follows that a loop of current lying in a single plane has a magnetic

moment of Ia where a is a vector with magnitude equal to the area of the loop and

direction given by the dominant direction of r′ × dl.

1.2 Quantum Mechanics and Spin

A few fundamental quantum mechanical concepts need to be introduced at this

point in order to provide a more accurate description of nuclear magnetic reso-

nance. Just as Maxwell’s equations lie at the heart of classical electromagnetism,

the Schrödinger equation provides the foundation for quantum mechanics. For a
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particle of mass m moving in a potential V , the Schrödinger equation takes the form

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + V ψ(r, t) , (A.1)

where ψ(r, t) is the particle’s space and time dependent wave function and ~ =

h/(2π) = 1.05457× 10−34 J · s with h being Planck’s constant. Solutions of this wave-

like relation are quantized just as are the possible modes of a vibrating string. It is

in this way that the Schrödinger equation’s wave description of matter explains the

observable quantization of fundamental particle properties.

One such fundamental property is angular momentum. A particle can possess or-

bital angular momentum (e.g., due to rotational motion in a central potential) and/or

intrinsic angular momentum known as spin. Spin (commonly denoted by S) can be

thought of as the angular momentum associated with a massive particle rotating on

its axis, but spin is actually a far more fundamental property in that point particles

such as the electron and massless particles such as the photon also possess a mea-

surable nonzero intrinsic angular momentum. Both types of angular momentum are

fundamentally quantized according to the Schrödinger equation. While the possible

orbital angular momentum states of a particle can vary with the complexity of the

potential experienced by that particle, a particle’s spin takes on a range of quantized

values independent of the environment. For protons, neutrons, and electrons, the

only possible measurable spin values ±~/2 making these particles spin-1/2 particles†.

†Such behavior was first observed in the Stern-Gerlach experiment of 1922.
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Such particles that possess spin with half-integer multiples of ~ define a class of par-

ticles known as fermions, while particles with spin equal to whole-integer multiples of

~ are known as bosons. All known particles are either bosons or fermions. The possi-

ble spin states of spin-1/2 particles along the three orthogonal Cartesian directions,

which will be useful in upcoming calculations, can written in terms of the Pauli spin

matrices as

Sx =
~

2









0 1

1 0









Sy =
~

2









0 −i

i 0









Sz =
~

2









1 0

0 −1









. (A.2)

1.3 The Nuclear Magnetic Moment

The previously mentioned case of a simple current loop is highly relevant to a

discussion of the magnetic moment of an atomic nucleus, since a nucleus is composed

of protons and neutrons‡ each possessing spin angular momentum. In this way, nucle-

ons can be thought of as a small loop of electric current with an associated magnetic

moment. The experimentally determined relationship between a particle’s spin and

the associated magnetic moment, µ, is

µ = γS , (A.1)

where the proportionality factor γ is the gyromagnetic ratio. For the proton, γ =

2.675 × 108 rad/s/T, but different particles have different gyromagnetic ratios de-

‡Although the neutron has a net charge of zero, its component quarks each have nonzero charge
and contribute to the nucleon’s overall magnetic moment.
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pending on their mass, charge, and internal structure. For example, the electron’s

gyromagnetic ratio is 658 times that of the proton due partly to the electron’s dras-

tically smaller mass and partly due to its lack of structure in the form of component

quarks.

The spin angular momentum of an atomic nucleus is simply the vector sum of the

spin angular momenta of the component nucleons. In this way, the nuclear magnetic

moment is related to the component spins through the expression

µN = γN
∑

i

Si . (A.2)

Thus, only nuclei with nonzero spin have a nonzero magnetic moment. Since nucleons

in the ground state tend to pair by type (proton or neutron) and by opposite spin

states (according to the Pauli exclusion principle†), it is only nuclei with an odd

number of protons and/or an odd number of neutrons that have a nonzero magnetic

moment. Only these nuclei (e.g. 1H, 17O, 19F, 23Na, 31P) are capable of participating

in the phenomenon of nuclear magnetic resonance.

1.4 A Magnetic Dipole in an External Magnetic Field

The energy of a magnetic dipole in an external magnetic field is determined by

the strength of the magnetic moment, the magnitude of the external field, and the

orientation of the magnetic dipole with respect to the external field. Since the mag-

†The Pauli exclusion principle states that no two identical particles in a given system can have
the exact same set of quantum numbers. Since nuclear energy states are degenerate in the number
of available spin states, ground state nucleons in the same energy level tend to occupy opposite spin
states.
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netic moment tends to line up with the external field direction just like the needle of

a compass, this configuration represents the lowest energy state. The highest energy

state occurs when the magnetic moment is anti-parallel to the field. In general, the

energy of a magnetic moment in an external field is given by

E = µ ·Bext . (A.1)

Expressing this potential energy in terms of a particle’s spin gives

E = −γS ·Bext . (A.2)

If, for example, the external field is in the z direction such that Bext = B0ẑ, this

expression becomes

E = −γS · B0ẑ = −γB0Sz . (A.3)

Given only two possible values of Sz for spin-1/2 particles, there are only two

possible potential energy states for protons, neutrons and electrons subject only to

an external magnetic field:

E± = ∓γB0~

2
. (A.4)

For such a system, the solution to the Schrödinger equation can be written in a matrix

representation as

ψ(t) =









cos(α/2)e+iγB0t/2

sin(α/2)e−iγB0t/2









, (A.5)
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where the coefficients are written in terms of α, an angle with physical significance

to be discussed shortly. Given this wave function, the expectation value of the z

component of spin is then calculable as follows:

〈Sz〉 = (ψ′(t))
∗
Szψ(t)

=

[

cos(α/2)e−iγB0t/2 sin(α/2)e+iγB0t/2

]

~

2









1 0

0 −1

















cos(α/2)e+iγB0t/2

sin(α/2)e−iγB0t/2









=
~

2
cos(α) ,

(A.6)

with (ψ′(t))∗ denoting the transposed complex conjugate of ψ(t). Similarly, the spin

expectation values in the x and y directions are

〈Sx〉 = (ψ′(t))
∗
Sxψ(t) =

~

2
sin(α) cos(γB0t) (A.7)

and

〈Sy〉 = (ψ′(t))
∗
Syψ(t) = −~

2
sin(α) sin(γB0t) . (A.8)

The physical interpretation of these expectation values is that the particle’s net spin

vector is tilted at a constant angle relative to the z axis and precesses about the z

axis with a constant angular frequency

ω0 = γB0 . (A.9)
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This frequency is known as the Larmor frequency, and the general phenomenon of a

particle’s magnetic moment precessing about the ambient magnetic field direction is

known as Larmor precession—both named after the Irish physicist Joseph Larmor who

experimented with the effects of a magnetic field on radiation in the late nineteenth

century.

In terms of physical forces, Larmor precession is the result of torque applied to

the magnetic moment by the external magnetic field:

τ = µ×Bext . (A.10)

The classical equation of motion for the magnetic moment can be derived from this

relationship along with the knowledge that torque is equivalent to the time derivative

of the angular momentum vector. Formulating the torque equation in terms of angular

momentum, generically written as J, results in

dJ

dt
= γJ×Bext . (A.11)

Noting that J = µ/γ, this relationship can be written in terms of the magnetic

moment vector as

1

γ

dµ

dt
= γ

1

γ
µ×Bext = µ×Bext (A.12)

or

dµ

dt
= γµ×Bext . (A.13)
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This equation of motion for the magnetic moment implies a precession about the di-

rection of Bext just as the quantum mechanical expectation values of spin components

did before. If the external field is in the z direction, then

dµ

dt
= γBext(µ× ẑ) , (A.14)

and the three components of this vector equation are

dµx

dt
= γBextµy

dµy

dt
= −γBextµx

dµz

dt
= 0 . (A.15)

In agreement with the quantum mechanical results, µz is a constant while µx and µy

imply a circular motion of the transverse magnetic moment where

µtransverse = µ⊥ =
√

µ2
x + µ2

y . (A.16)

With the Larmor frequency ω0 having been defined, the two possible energy levels

of spin-1/2 particles in an external magnetic field can be expressed as

E± = ∓ω0~

2
. (A.17)

The energy difference between the two states is then

∆E = γB0~ = ω0~ , (A.18)
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Figure A.1: Energy levels of a nuclear spin in an external magnetic field.

implying that a particle may absorb a photon of frequency ω0 to transition from the

E+ (spin-aligned) state to the E− (spin-anti-aligned) state and may emit an identical

photon to undergo the opposite transition†. A schematic diagram of energy levels is

shown in Figure A.1.

1.5 Nuclear Magnetic Resonance

The single electron in the neutral hydrogen atom experiences a magnetic field

originating from the magnetic moment of the proton. The presence of this magnetic

field causes the division of each electron energy level into two levels with slightly

different energies a higher energy state in which the electron magnetic moment is

parallel to that of the proton and a lower energy state in which the two magnetic

moments are anti-parallel. This division of atomic energy levels due to spin-spin

†If the photon frequency is ω, the photon energy is ~ω.
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interaction gives rise to the hyperfine structure of the atomic hydrogen spectrum.

The electron can be excited to the higher energy state through means such as thermal

collisions with neighboring particles and can return to the lower energy state via the

emission of a radio frequency photon with a 21 cm wavelength†. The associated

photon energy of 5.9× 10−6 eV corresponds to the energy difference between the two

hyperfine states within the electronic ground state of neutral hydrogen.

The hydrogen proton can theoretically undergo a similar spin-flip transition to

the electron, but it is exceedingly rare that the proton would be the particle excited

by atomic collisions. Since the gyromagnetic ratio of the proton is 658 times less than

that of the electron, the photon from the proton undergoing a spin-flip would have

a proportionally longer wavelength, i.e., 138m. Needless to say, this radiation would

be difficult to detect from an astronomical source, but, in a controlled laboratory

setting with the proton subjected to a much higher magnetic field strength, stimulated

excitation and radiation detection of the proton’s magnetic dipole transitions are quite

possible. Such manipulations of the nuclear spin state in fact form the basis of nuclear

magnetic resonance.

Suppose a hydrogen nucleus (proton) is subject to an external magnetic field (Bext)

of 1 T in the z direction. The proton’s magnetic moment then precesses about the

field direction at the Larmor frequency dictated by the field strength and the proton

†The corresponding 21 cm spectral line is commonly observed in radio astronomy as such radiation
is emitted from cool neutral hydrogen regions in interstellar space.
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gyromagnetic ratio:

ω0 = γ |Bext| = (2.675× 108 rad/s)(1 T) = 2.675× 108 rad/s

= 2.675× 108 rad/s
1 cycle

2π rad
= 42.57MHz .

(A.1)

Since the Larmor frequency is directly proportional to the field strength, the quantity

γ/(2π) is useful for computing the Larmor frequency in Hz for a given field strength:

( γ

2π

)

proton
= 42.57MHz/T . (A.2)

Thus, for a 7T field, ω0 for a proton is simply 7T× 42.57MHz/T or 298.0MHz.

If atomic hydrogen in a 1T field is subject to radiation of frequency 42.57MHz,

the nucleus will readily absorb a photon and transition to the excited state in which

the nuclear magnetic moment and the external field direction are anti-aligned. This

phenomenon of a nucleus in a magnetic field absorbing energy from radiation at the

resonant (Larmor) frequency is known as nuclear magnetic resonance (NMR). Since

each type of nucleus has a unique gyromagnetic ratio, different types of nuclei have

different Larmor frequencies at a given magnetic field strength. For this reason,

nuclei of only a certain type in a sample can be selectively excited by stimulation

with radiation at the Larmor frequency. The precessing magnetization vector of the

excited nuclei can then be detected by means of the changing magnetic flux through a

radio frequency coil (Faraday’s Law). Such tactics can be employed to determine the

identity of atoms in an unknown sample by way of probing the resonant frequencies of
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the sample. This process of identifying elements by their unique Larmor frequencies

is known as NMR spectroscopy.

1.6 Bulk Magnetization and the Bloch Equation

For a material in an external magnetic field, the bulk magnetization M is simply

the volume density of magnetic moments such that

M =
1

V

∑

i

µi . (A.1)

This net magnetization vector follows an equation of motion analogous that of a single

spin:

dM

dt
= γM×Bext . (A.2)

Breaking this relation into longitudinal (parallel to the field direction) and transverse

(perpendicular to the field direction) components results in

dMz

dt
= 0

dM⊥

dt
= γM⊥ ×Bext . (A.3)

This is one representation of the Bloch equation, the relation that govern the behavior

of the bulk magnetization vector in an external field. The equation for Mz holds true

only if nuclear spins are not allowed to exchange energy with their surroundings. If

spins do interact with the lattice of surrounding particles, Mz will eventually return
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to its equilibrium value M0 such that

dMz

dt
=

1

T1
(M0 −Mz) , (A.4)

where T1 is the time constant of the longitudinal magnetization recovery. The solution

to this equation can be written in terms of an initial time t0 as

Mz(t) =Mz(t0)e
−(t−t0)/T1 +M0

(

1− e−(t−t0)/T1

)

. (A.5)

While the longitudinal magnetization recovers to equilibrium, the transverse compo-

nent of magnetization will simply precess about the applied field direction with fre-

quency ω0 as long as all spins in the material experience the same magnetic field. In

reality, different spins have different local magnetic environments due to 1) the mag-

netic fields of neighboring particles, 2) additional applied external magnetic fields,

and 3) external field heterogeneities. Such variations in the net applied field cause

the precession frequencies to vary for different spins. The existence of a range of ω0

values leads to a dephasing and thus reduction of the transverse magnetization that is

independent of the effects of longitudinal recovery. The overall rate of M⊥ dephasing

is typically characterized by the time constant T ∗
2 such that in a frame of reference

rotating at the mean Larmor frequency of the material (in this frame, the effective

magnetic field is zero) the transverse magnetization follows the relationship

dM⊥

dt
= − 1

T ∗
2

M⊥ , (A.6)
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which has the solution

M⊥(t) = M⊥(t0)e
−t/T ∗

2 . (A.7)

Contributions to dephasing from external field heterogeneities are often thought of

separately and characterized by a time constant T ′
2 while dephasing effects due to

the local magnetic environment are characterized by the time constant T2. The re-

lationship between these three transverse magnetization dephasing time constants is

then

1

T ∗
2

=
1

T ′
2

+
1

T2
. (A.8)

The time constant T1 and the various T2’s can be measured in material and thus

provide information about the magnetic properties of the material, its composition,

and the local magnetic environment.

1.7 Spin Tipping and NMR Signal Detection

The equations of motion for bulk magnetization in material having been estab-

lished, the intimate relationship between the direction of the applied field and the

direction of the net magnetization vector is obvious. Application of a secondary field

B1 (in the form of a radio frequency (RF) pulse) in addition to the main field B0 will

cause the magnetization vector to precess about a different direction determined by

the vector sum of the applied fields. In a frame of reference rotating with the Larmor

frequency associated with the B0 field such that the effective B0 field is zero, the

magnetization vector will precess about the B1 direction with a frequency ω1 = γ|B1|

dependent on the amplitude of the RF field. The angle through which the magneti-
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zation vector rotates, called the flip angle, is then determined by the time integral of

the ω1 precession frequency such that

θflip =

∫ ∆T

0

ω1(t) dt = γ

∫ ∆T

0

B1(t) dt , (A.1)

where the integration limit ∆T corresponds to the duration of the RF pulse. Thus,

by controlling the magnitude of the field and the duration of its application, a given

flip angle can be experimentally selected. Such manipulations of the magnetization

vector are crucial to detecting an NMR signal since only the transverse component

of magnetization is detectable.

In the equilibrium state (M =M0ẑ), the transverse components of magnetization

cancel since the phases of individual spins are arbitrary. If the magnetization vector

is tipped via an RF pulse so that it has a transverse component, Larmor precession

then results in a changing magnetic field at a given point in space. By virtue of

Faraday’s Law, this changing magnetic field leads to a changing magnetic flux through

a strategically positioned RF coil that in turn is subject to a detectable voltage or

electromotive force (emf). The size and shape of this detected voltage constitute the

NMR signal. In terms of the magnetization vector, which may certainly vary in space,

the NMR signal is given by

S =

∫

|M⊥(r)| dr =
∫

ρM (r)eiφ(r) dr , (A.2)

where ρM represents the magnitude of the transverse magnetization and φ represents
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its phase in the complex (i.e., x-y) plane.

1.8 Magnetic Field Gradients and Slice Selection

With the goal of forming 2-D images from the NMR signal, it is requisite to

have a method for obtaining signal from only a particular region/slice of space. In

magnetic resonance imaging (MRI), this slice selection is accomplished by use of linear

magnetic field gradients. Such gradients are typically produced by electrical coils that

are mounted on the inside of the bore of the main field magnet. Via Ampere’s Law,

currents in these coils produce additional magnetic fields that can be engineered to

vary linearly in space such that

Bgradient = r ·G , (A.1)

with G being the field gradient. Because of the presence of such a gradient, the

spins are subject to different Larmor frequencies at different positions in space. In

the aforementioned rotating frame, the procession frequency in terms of the field

gradient is given by

ω(r, t) = −γ(r ·G(t)) . (A.2)

Since the phase is simply the time integral of the precession frequency, the phase can

be written as

φ(r, t) = −γr ·
∫

G(t) dt . (A.3)

258



Thus, the phase of magnetization in material can be selected via the amplitude and

duration of the applied gradient field.

To selectively excite the magnetization of a slice of material in a given x-y plane,

a gradient can be applied in the z direction such that

Bz(z, t) = B0 + zGz(t) . (A.4)

Each z coordinate then experiences a unique magnetic field and a unique Larmor

frequency. An RF pulse modulated by a (sin x)/x waveform (known as a textttsinc

waveform) can then be used to excite spins within a finite range of precession fre-

quencies. The sinc function is ideal for this purpose since its Fourier transform is a

square-shaped function in frequency space. That is to say if

B1(ω) =

∫ +∞

−∞
B1(t)e

−iωt dt =

∫ +∞

−∞

sin t

t
e−iωt dt , (A.5)

then

B1(ω) =



















1 if ω0 −∆ω ≤ ω ≤ ω0 +∆ω

0 otherwise

, (A.6)

where ω0 represents the central precession frequency of the target slice and 2∆ω is the

thickness of the excited slice. The selected slice cannot be perfectly thin because the

RF frequency can not be pure if only applied for a finite duration. Within the selected

slice the magnetization is uniformly tipped into the transverse plane; however, the
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phase across the slice because of the inherent range of Larmor frequencies introduced

by the presence of the field gradient. This issue can be corrected simply by applying

an equal but opposite field gradient for the same duration as the first but with no

RF pulse. This effectively rephrases the magnetization within the selected slice.

1.9 MRI: the Spatial Encoding of the NMR Signal

To form images from NMR signals, field gradients are used to produce a correlation

between spatial position and the precession frequency of the local magnetization.

This process begins with the slice selection outlined in the preceding section and then

continues with spatial encoding in the x and y directions.

If a gradient pulse is produced along the x direction, the phase of transverse

magnetization in this same direction is given by

φ(x) = −γ
∫ ∆T

0

Gx(t) dt · x = kxx , (A.1)

where kx defines the rate at which spin phase changes with position and thus is known

as the spatial frequency. Given that the magnitude of the transverse magnetization

can be found from the Fourier transform of the NMR signal:

ρM =
1

2π

∫ +∞

−∞
S(kx)e

ikxx dkx . (A.2)

Sampling S at different values of kx allows for a calculation of magnetization as a

function of the x coordinate. Sampling kx values over a wider range will eventually

lead to more image detail in the x direction.
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There exist two common schemes for sampling a given range of kx values: phase

encoding and frequency encoding. In the phase encoding scheme, a certain gradient

is applied for a finite duration in the x direction. The signal is sampled and then the

magnetization is allowed to return to equilibrium. This process is then repeated for

various gradients, one for each kx value. It is possible to sample k-space in this way

since kx is related to the time integral of the applied gradient. Thus, changing the

duration or intensity of the gradient changes the kx value. This technique is known

as phase encoding because the position of a given magnetization element is encoded

in the phase of the transverse magnetization. Frequency encoding is fundamentally

not much different from phase encoding. The technique prepares the sample through

the initial application of a large negative field gradient. Immediately afterward, a

relatively small positive gradient is applied and maintained while the magnetization

is sampled at a given time interval. Since the kx value is constantly changing due

to the continuously applied positive gradient, each sample of the NMR signal occurs

at a unique kx value. Thus, frequency encoding is an efficient way of collecting the

spatially encoded NMR signal. The name of frequency encoding originates from the

fact that sampling the magnetization over a set of ever-changing phases amounts to

sampling the magnetization over a set of unique frequencies, each x position being

associated with a unique Larmor frequency.

If, following slice selection in the z direction, the phase encoding technique is

used along the y direction and the frequency encoding technique is used along the

x direction, then each position within the imaging slice has successfully been spatial
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encoded. This rudimentary method of forming tomographic images from NMR signals

is known as 2-D Fourier MRI and is only one of a multitude of techniques for sampling

k-space. Different techniques introduce different trade-offs involving sampling speed

and image quality and must be selected according to the specific application.
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APPENDIX B

SIMULATION OF THE BLOCH EQUATION

Calculation the final simulated state of the magnetization vector (MS) during

every iteration of the optimization exploits an analytic solution to a relaxation-

independent form of the Bloch equations. Given Bloch equations in the form

Ṁx(t) = ∆ωMy(t)− γB1yMz(t)

Ṁy(t) = −∆ωMx(t) + γB1yMz(t)

Ṁz(t) = γ(B1yMx(t)− B1xMx(t))

(B.3)

and an RF field described by

B1x = constant = Aeff cosφ

B1y = constant = Aeff sin φ

B1z = ∆ω/γ

ωeff =
√

∆ω2 + γ2(B2
1x +B2

1y)

, (B.4)

with Aeff representing the RF amplitude of the kth sub-pulse subject as weighted by

B+
1 such that Aeff = AkB

+
1 /B

+
1,nom, the analytic solution M

f = (Mf
x ,M

f
y ,M

f
z ) for a
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single block-shaped pulse can be written as

Mf
x = ω−2

eff [γB1x(1− cosωefft)×

×(∆ωM0
z + γB1yM

0
y + γB1xM

0
x)

+ω2
effM

0
x cosωefft

+ωeff(∆ωM
0
y − γB1yM

0
z ) sinωefft]

Mf
y = ω−2

eff [γB1y(1− cosωefft)×

×(∆ωM0
z + γB1yM

0
y + γB1xM

0
x)+

+ω2
effM

0
y cosωefft−

−ωeff(∆ωM
0
x − γB1xM

0
z ) sinωefft]

Mf
z = ω−2

eff [∆ω(1− cosωefft)×

×(∆ωM0
z + γB1yM

0
y + γB1xM

0
x)+

+ω2
effM

0
z cosωefft−

−γωeff(B1xM
0
y − B1yM

0
x) sinωefft]

, (B.5)

where the initial state is described byM
0 = (M0

x ,M
0
y ,M

0
z ). This solution is equivalent

to the Cartesian rotation matrix R̃ that transforms M0 to M
f in the presence of an

RF pulse with constant amplitude A and constant phase φ = tan−1 (B1y/B1x) (3)

such that

M
f = R̃M0 (B.6a)
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or equivalently
















Mf
x

Mf
y

Mf
z

















=

















R11 R12 R13

R21 R22 R23

R31 R32 R33

































M0
x

M0
y

M0
z

















. (B.6b)

Given the additional definitions

β = tan−1





∆ω

γ
√

B2
1x +B2

1y



 (B.7a)

and

θ = ωeff∆T , (B.7b)

the matrix elements of R̃ can be written as

R11 = sin2 φ cos θ + cos2 φ
(

cos2 β + sin2 β cos θ
)

R12 = sin β sin θ − sin(2φ) cos2 β sin2(θ/2)

R13 = sinφ cos β sin θ + cos φ sin(2β) sin2(θ/2)

R21 = − sin β sin θ − sin(2φ) cos2 β sin2(θ/2)

R22 = cos2 φ cos θ + sin2 φ
(

cos2 β + sin2 β cos θ
)

R23 = cosφ cosβ sin θ − sinφ sin(2β) sin2(θ/2)

R31 = − sinφ cos β sin θ + cosφ sin(2β) sin2(θ/2)

R32 = − cosφ cosβ sin θ − sinφ sin(2β) sin2(θ/2)

R33 = sin2 β + cos2 β cos θ

. (B.8)
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Using this rotation representation of the analytic solution, the magnetization response

to a composite of constant amplitude sub-pulses can be modeled simply by a series

of rotations, each corresponding to one of the k individual sub-pulses such that

M
S = R̃kR̃k−1R̃k−2 . . . R̃1M

0 . (B.9)

The rotation operator for each sub-pulse in Eq. (B.9) can equivalently be replaced

by a calculation of the magnetization components via Eq. (B.5) given that the ini-

tial conditions M
0
k for the k-th sub-pulse correspond to the final state M

f
k−1 of the

magnetization following the previous sub-pulse.

Use of an analytic solution means that computational time is independent of the

total duration of the an RF pulse—it is only the number of sub-pulses and the size

of the B+
1 -∆B0 grid that are relevant. Matlab-based performance comparisons be-

tween the two formulations of the analytic solution (Eqs. (B.5) and (B.6b)) indicated

that use of Eq. (B.5) results in computations that are considerably (∼ 10 times)

faster. Given that the two methods give identical results, the more time-efficient

approach was employed for all simulations in this study with computational times

for optimization ranging from several minutes (16 sub-pulses) to several days (128

sub-pulses) per pulse on a 2.0GHz desktop computer. Simulation of the Bloch equa-

tions via analytic solution (either Eq. (B.5) or Eq. (B.6b)) has been found to save

considerable computational time as compared to a typical finite difference approach
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for which the time steps must be sufficiently small. Use of an analytic solution means

that computational time is independent of the total duration of the an RF pulse—it

is only the number of sub-pulses and the size of the B+
1 -∆B0 grid that are relevant.

For the RF pulses presented in this work, the analytic solution of Eq. (B.5) was

utilized, and computational time for optimization ranged from several minutes (16

sub-pulses) to several days (128 sub-pulses) per pulse on a 2.0GHz desktop computer.

These times would increase by a factor proportional to the number of dwell times per

sub-pulse if a typical finite difference simulation were used. Furthermore, Matlab-

based performance comparisons between the two formulations of the analytic solution

(Eqs. (B.5) and (B.6b)) indicated that use of Eq. (B.5) results in computations that

are considerably (∼ 10 times) faster. Given that the two methods give identical re-

sults, the more time-efficient approach was employed for all simulations in this study.

After optimization, composite pulses were analysized for susceptibility to relaxation

of the transverse magnetization. Since an analytic solution to the Bloch equations

exists only for the special case in which longitudinal and transverse relaxation time

constants are infinite (i.e., T1 = T2 = ∞), a finite time difference simulation was em-

ployed for this purpose. Specifically, the change in magnetization components during
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the i -th time step were calculated via

∆M i
x = [2πγ

(

M i−1
y Bi

1z −M i−1
z Bi

1y

)

−

M i−1
x /T2]∆t

∆M i
y = [2πγ (M i−1

z Bi
1x −M i−1

z Bi
1z)−

M i−1
y /T2]∆t

∆M i
z = [2πγ

(

M i−1
x Bi

1y −M i−1
y Bi

1x

)

−

M i−1
z /T1]∆t

, (B.10)

where ∆T is the length of the time step. As previously mentioned, this approach

proved much slower than when using an analytic method, especially given that ∆T

must be on the order of 0.1µs to achieve reasonable accuracy for composite pulses

with wildly varying phases and amplitudes. Each optimized pulse, however, need

only be simulated once for each T2 value, as opposed to the multitude of times a

simulation must be carried out in the numerical optimization process. All optimized

pulses were evaluated in this way for T2 values of 5, 10, 15, 20, 30, and 50ms, while T1

values were always assumed to be infinite. For each pulse, δα (Equation (3.2.2)) and

δM (Equation (3.2.2)) were calculated and values compared to those found without

consideration for T2.
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APPENDIX C

MODULATION FUNCTIONS FOR ADIABATIC PULSES

Provided here are explicit forms of the hyperbolic secant and BIR-4 amplitude,

phase, and frequency modulations as employed at various places in this thesis. Also

included are a few details on how modulations are determined and strategies used for

simulations in this thesis.

3.1 Hyperbolic Secant Modulations

In the absence of relaxation effects, the Bloch equations can be written as

d

dt
M̃⊥ + i∆ωM̃⊥ +MzB̃1(t) = 0

d

dt
Mz − 1

2
i
(

M̃⊥B̃
∗
1(t)− M̃∗

⊥B̃1(t)
)

= 0

, (C.1)

with Mz being the longitudinal magnetization and M̃⊥ the complex transverse mag-

netization. In terms of the equilibrium magnetization, M0, and the substitution

ξ = M̃⊥/ (M0 +Mz), Equation 1.3.1 can be written in what’s commonly known as

the Riccati form:

d

dt
ξ + i∆ωξ − 1

2
i
(

B̃∗
1(t)ξ

2 + B̃1(t)
)

= 0 . (C.2)

Although this Bloch-Riccati equation has no general analytic solution, a solution

characterized by population inversion within a certain bandwidth (∆ω0) is possible if
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the B̃1(t) field is described by a hyperbolic secant function (72) such that

B̃1(t) = (A0 sech(β t))
1+iµ . (C.3)

The parameters A0, β, and µ define the amplitude modulation (AM) and phase

modulation (PM) (or, equivalently, frequency modulation (FM)) waveforms which

are specifically given by (73)

AM(t) =
∣

∣

∣
B̃1

∣

∣

∣
=

√

B̃1B̃∗
1 = A0 sech(βt)

PM(t) = φB̃1
= µ ln (sech(βt))

FM(t) =
d

dt
φB̃1

= −µβ tanh(βt)

. (C.4)

Thus, A0 represents the maximum value of the AM waveform, while β is a frequency

describing the width of the PM and FM waveforms. The unitless constant µ may

best be interpreted as scaling the range of the frequency sweep or, equivalently, fixing

the maximum value of the RF phase. Together, µ and β determine the excitation

bandwidth (72) such that

∆ω0 = ±µβ . (C.5)

3.2 BIR-4 Modulations

Four-part B+
1 -insensitive rotations (BIR-4) are composites of four adiabatic pulse

segments. These pulses are capable of producing arbitrary flip angles and have been

shown to improve flip-angle uniformity in the context of volume (non-selective) exci-

tation (76; 23); therefore, BIR-4 pulses provide a suitable basis for comparison when

270



evaluating the performance of the optimized composite pulses produced in this study.

Flip-angle maps for 4.096ms BIR-4 pulses with flip angles of 30◦, 60◦, 90◦, and 180◦

were simulated for specific comparison with the subset of four 4.096ms optimized

pulses subject to additional analysis in Section 3.3.2. Simulation of the Bloch equa-

tions (Section 3.2.8) was carried out in an identical manner to that of optimized

pulses; however, BIR-4 pulses were divided into as many 6.4µs block-shaped sub-

pulses as possible (n = 640) given the total pulse duration (∆T = 4.096ms). This

reflects the typical way pulses with continuous waveforms are executed digitally on

an amplifier for which the dwell time is 6.4µs.

The components of a BIR-4 pulse are defined by hyperbolic tangent amplitude

modulation and tangential frequency sweep in the following form:

A(t) =



























































A0tanh[λ(1− 4t
∆T

)]

A0tanh[λ(
4t
∆T

− 1)]

A0tanh[λ(3− 4t
∆T

)]

A0tanh[λ(
4t
∆T

− 3)]

(C.1a)

ν(t) =
ν0

tanβ
·



























































tan[ 4βt
∆T

]

tan[2β( 2t
∆T

− 1)]

tan[2β( 2t
∆T

− 1)]

tan[4β( t
∆T

− 1)]

, (C.1b)

271



φ(t) =



























































∫ t

0
ν(t)dt

∫ t

0
ν(t)dt+∆φ1

∫ t

0
ν(t)dt+∆φ1

∫ t

0
ν(t)dt+∆φ1 +∆φ2

(C.1c)

where each piece corresponds respectively to the four equal time intervals given by

∆T1 : 0 ≤ t < ∆T/4

∆T2 : ∆T/4 ≤ t < ∆T/2

∆T3 : ∆T/2 ≤ t < 3∆T/4

∆T4 : 3∆T/4 ≤ t ≤ ∆T

. (C.2)

The constants A0, λ, and β control the shape of the modulation functions and there-

fore determine the extent to which adiabatic conditions are maintained. The constants

∆φ1 and ∆φ2 describe phase shifts at the beginning of the second and fourth pulse

segments and are related to the target flip angle. For simulation, A0 was set to 15µT

to maximize adiabatic performance within the prescribed hardware limits while λ

and β are assigned respective values of 10 rad and 1.47 rad, as suggested in (76). The

constant ν0 was given a value of 1.5× 104 rad/s such that the range of the frequency

sweep, determined by ν0/ tanβ, was 50% larger than the range of ∆B0 values on the

composite pulse optimization grid. This choice ensured that any undesirable effects

from including contributions from the shoulder of the central lobe of the slice profile

were minimized. The desired flip angle α0 constrained the selection of the first phase
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shift via ∆φ1 = π + α0/2 while the efficiency of pulses was maximized by the choice

of ∆φ2 = −∆φ1 (76).
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APPENDIX D

COMPLETE OPTIMIZATION DATA FOR VOLUME EXCITATION PULSES

Given here are the complete optimization results for all composite pulses gen-

erated for the work described in Chapter III and for the hyperbolic secant pulses

optimizations reported in Section 6.1.

The non-selective composite pulse optimization data is potentially useful in that

specific cost function and minimum TR values are accessible in Tables D.1 and D.2,

the former of which reports information for composites of 16–64 sub-pulses and the

latter of which gives the same information for composites of 80–128 sub-pulses. Fur-

thermore, Figure D.1 displays this information such that pulse performance as a

function of sub-pulse duration (∆ts) and the number of sub-pulses (Ns). The corre-

sponding data is presented in Chapter III but as a function of total pulse duration

only. Thus, the presentation in this appendix provides some additional insight into

factors affecting pulse performance. In general in can be concluded that pulse per-

formance as measured by the cost function improves with increases in both ∆ts and

Ns, presumably due to the increased allotted power associated with each trend.

The hyperbolic secant optimization data is presented in Tables D.3 and D.4 and

allows for access to the optimal values of parameters µ and β for pulses with target

bandwidths ranging from 100–1000Hz.
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Table D.1: Dependence of pulse performance on design parameters: groups of rows represent pulses designed with different
numbers of component sub-pulses; columns represent different sub-pulse durations. Given for each combination of sub-pulse
number and duration are 1) the total pulse duration (∆T ), 2) the normalized average deviations of the simulated flip-angles
from the target values of 30◦, 60◦, 90◦, and 180◦ (denoted respectively by δ30◦ , δ60◦ , δ90◦ , and δ180◦) over the B

+
1 -∆B0 grid, and

3) corresponding SAR-limited minimum repetition times (TR,min as determined via Equation (3.2.5b)) shown as subscripts
and rounded to the nearest millisecond). δα values correspond to the quantity subject to minimization in the optimization
process and explicitly described by Equation (3.2.2).

sub-pulses attribute 6.4µs 12.8µs 19.2µs 32.0µs 64.0µs 128.0µs 192.0µs 320.0µs

16

∆T (ms) 0.1024 0.2048 0.3072 0.5120 1.0240 2.0480 3.0720 5.1200
δ30◦ 0.393310 0.278314 0.275718 0.270721 0.278529 0.115415 0.094842 0.073911
δ60◦ 0.73719 0.595713 0.394018 0.273522 0.181026 0.083453 0.121133 0.084870
δ90◦ 0.81139 0.730413 0.596018 0.282422 0.228626 0.163151 0.118439 0.058661
δ180◦ 0.91249 0.865213 0.798018 0.565622 0.326626 0.266740 0.102639 0.049842

32

∆T (ms) 0.2048 0.4096 0.6144 1.0240 2.0480 4.0960 6.1440 10.2400
δ30◦ 0.278917 0.271532 0.240455 0.143267 0.0861105 0.0696114 0.0837101 0.2084130
δ60◦ 0.615913 0.282526 0.261041 0.196042 0.097342 0.051957 0.046057 0.051745
δ90◦ 0.743913 0.408629 0.282436 0.250271 0.118588 0.088785 0.049383 0.1097111
δ180◦ 0.872013 0.704329 0.618134 0.348343 0.278551 0.077271 0.060978 0.050572

48

∆T (ms) 0.3072 0.6144 0.9216 1.5360 3.0720 6.1440 9.2160 15.3600
δ30◦ 0.276422 0.246157 0.223967 0.0998109 0.0653111 0.0818134 0.0705203 0.1229191
δ60◦ 0.454520 0.264647 0.251163 0.2449101 0.0512142 0.0444109 0.0503189 0.0903113
δ90◦ 0.636320 0.305639 0.250273 0.2114103 0.0909107 0.0314152 0.0604124 0.0408114
δ180◦ 0.818220 0.651138 0.445755 0.323271 0.168687 0.146373 0.048891 0.041877

64

∆T (ms) 0.4096 0.8192 1.2288 2.0480 4.0960 8.1920 12.2880 20.4800
δ30◦ 0.275830 0.234892 0.1381138 0.1108128 0.0488201 0.0483228 0.0495237 0.1543274
δ60◦ 0.339646 0.265995 0.199769 0.0898181 0.0968245 0.0494260 0.0368312 0.1050132
δ90◦ 0.555839 0.247963 0.2116105 0.1072172 0.0691168 0.0381114 0.0509211 0.0304148
δ180◦ 0.777943 0.559169 0.341086 0.321386 0.099496 0.0762194 0.0380188 0.0487132
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Table D.2: Dependence of pulse performance on design parameters: groups of rows represent pulses designed with different
numbers of component sub-pulses; columns represent different sub-pulse durations. Given for each combination of sub-pulse
number and duration are 1) the total pulse duration (∆T ), 2) the normalized average deviations of the simulated flip-angles
from the target values of 30◦, 60◦, 90◦, and 180◦ (denoted respectively by δ30◦ , δ60◦ , δ90◦ , and δ180◦) over the B

+
1 -∆B0 grid, and

3) corresponding SAR-limited minimum repetition times (TR,min as determined via Equation (3.2.5b)) shown as subscripts
and rounded to the nearest millisecond). δα values correspond to the quantity subject to minimization in the optimization
process and explicitly described by Equation (3.2.2).

sub-pulses attribute 6.4µs 12.8µs 19.2µs 32.0µs 64.0µs 128.0µs 192.0µs 320.0µs

80

∆T (ms) 0.5120 1.0240 1.5360 2.5600 5.1200 10.240 15.3600 25.6000
δ30◦ 0.274214 0.1193149 0.1177199 0.0671245 0.0525245 0.1162298 0.1127319 0.0980312
δ60◦ 0.282599 0.2683165 0.1133273 0.0627358 0.0432351 0.0420346 0.0738630 0.0825391
δ90◦ 0.462086 0.2348158 0.2039191 0.1101256 0.0486433 0.0296497 0.0358403 0.0329480
δ180◦ 0.731079 0.4825119 0.3194184 0.3133283 0.0788481 0.0348369 0.0341178 0.0444303

96

∆T (ms) 0.6144 1.2288 1.8432 3.0720 6.1440 12.2880 18.4320 30.7200
δ30◦ 0.2785113 0.1150166 0.1000153 0.0569211 0.0396701 0.1014691 0.1030193 0.1808778
δ60◦ 0.2676181 0.2627261 0.1707274 0.0573532 0.0339659 0.0432651 0.0538720 0.0913580
δ90◦ 0.2675197 0.2415292 0.1380456 0.2029504 0.0427640 0.0596265 0.0218648 0.0364439
δ180◦ 0.5983145 0.3410344 0.3352211 0.1721559 0.1160798 0.0349715 0.0345941 0.0376900

112

∆T (ms) 0.7168 1.4336 2.1504 3.5840 7.1680 14.3360 21.5040 35.8400
δ30◦ 0.2695106 0.1816119 0.0651146 0.0553175 0.0418733 0.0419769 0.0712802 0.14451002
δ60◦ 0.2726209 0.2594289 0.0858491 0.0491438 0.0544484 0.0386694 0.0473860 0.1213861
δ90◦ 0.2845158 0.2414451 0.1791560 0.1012503 0.0484792 0.0430751 0.0270568 0.0587716
δ180◦ 0.6049276 0.3275569 0.3178663 0.1713824 0.1738927 0.0333889 0.0319930 0.0371984

128

∆T (ms) 0.8192 1.6384 2.4576 4.0960 8.1920 16.3840 24.5760 40.9600
δ30◦ 0.3250133 0.1089541 0.0715143 0.0450624 0.0301693 0.0623668 0.0600522 0.17041210
δ60◦ 0.2429154 0.2635350 0.1659347 0.1244466 0.0249473 0.0705706 0.0298548 0.1220301
δ90◦ 0.2734296 0.2257388 0.1848446 0.1385661 0.0212412 0.0457562 0.0344573 0.0390670
δ180◦ 0.5787419 0.3370655 0.3281710 0.2746848 0.1336793 0.0302876 0.0343841 0.03471066
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Figure D.1: Optimization results for all 256 composite pulses designed in this study
with one row of sub-figures for each nominal flip angle. Minimized function values (δα)
which are related to flip-angle uniformity (Eq. (3.2.2)) and minimum repetition times
(TR,min) which are reflective of SAR (Eq. (3.2.5b)) are given as functions of sub-pulse
duration (∆ts) in the two left columns and as functions of the number of composite
elements (Ns) in the right two columns. Colors in the former case denote constant
values of Ns and in the latter case denote constant ∆ts. Dotted black lines designate
corresponding values of the relevant block pulses described in Fig. 16. In general, data
show that reduction in δα corresponds to lengthening of TR,min. Relative to maximum
bandwidth block pulses, the majority of composite pulses result in increased flip-angle
uniformity as measured in the context of the B+

1 -∆B0 optimization grid.
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Table D.3: Dependence of low-bandwidth hyperbolic secant pulse performance on
design parameters. Rows represent pulses with the given optimization bandwidth
(∆ωopt), and columns correspond to different pulse durations. For each pulse, the av-
erage deviation of the flip-angle from the target value of 180◦ over the entire UPS (σ),
the parameter β, the parameter µ, the time-averaged RF power (P =

∫

A2 dt/∆T ),
and the ratio (P ratio) of P to the corresponding value for a block pulse with equivalent
duration and flip angle are given.

∆ωopt atribute units 5ms 10ms 15ms 20ms 30ms 50ms

±100Hz

σ – 0.102 0.047 0.030 0.017 0.007 0.002

β rad/s 1240 743 631 514 390 290

µ – 2.06 2.56 3.32 3.82 4.40 5.57

∆ωact Hz ±407 ±303 ±333 ±313 ±273 ±258

P µT2 71.4 59.7 46.9 43.1 38.0 30.6

P ratio – 12.9 43.3 76.5 125.1 247.9 554.1

±200Hz

σ – 0.117 0.061 0.037 0.026 0.012 0.004

β rad/s 1191 765 573 488 374 275

µ – 2.35 3.00 3.79 4.80 5.93 7.61

∆ωact Hz ±446 ±365 ±346 ±372 ±353 ±333

P µT2 74.2 57.9 51.6 45.5 39.5 32.3

P ratio – 13.4 42.0 84.2 132.0 258.1 584.8

±300Hz

σ – 0.146 0.072 0.047 0.032 0.018 0.007

β rad/s 1173 731 555 448 356 252

µ – 2.65 3.92 4.88 5.94 7.70 10.19

∆ωact Hz ±495 ±456 ±431 ±424 ±436 ±409

P µT2 75.3 60.6 53.2 49.6 41.6 35.2

P ratio – 13.6 44.0 86.9 143.8 271.3 638.3

±400Hz

σ – 0.156 0.088 0.058 0.041 0.024 0.010

β rad/s 1015 684 533 438 328 238

µ – 4.13 5.16 6.13 7.28 9.42 13.33

∆ωact Hz ±667 ±562 ±521 ±508 ±492 ±504

P µT2 86.5 64.8 55.5 50.6 45.1 37.4

P ratio – 15.7 47.0 90.5 146.8 294.1 677.4

±500Hz

σ – 0.169 0.102 0.069 0.050 0.030 0.014

β rad/s 1004 671 512 420 314 225

µ – 4.40 6.08 7.65 9.02 11.73 16.53

∆ωact Hz ±703 ±649 ±623 ±602 ±586 ±593

P µT2 87.3 66.0 57.7 52.9 47.1 39.4

P ratio – 15.8 47.9 94.3 153.4 307.6 714.1
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Table D.4: Dependence of high-bandwidth hyperbolic secant pulse performance on
design parameters. Rows represent pulses with the given optimization bandwidth
(∆ωopt), and columns correspond to different pulse durations. For each pulse, the av-
erage deviation of the flip-angle from the target value of 180◦ over the entire UPS (σ),
the parameter β, the parameter µ, the time-averaged RF power (P =

∫

A2 dt/∆T ),
and the ratio (P ratio) of P to the corresponding value for a block pulse with equivalent
duration and flip angle are given.

∆ωopt attribute units 5ms 10ms 15ms 20ms 30ms 50ms

±600Hz

σ – 0.191 0.114 0.079 0.058 0.036 0.017

β rad/s 769 629 483 403 302 211

µ – 7.87 7.44 9.44 10.90 14.23 19.72

∆ωact Hz ±964 ±745 ±726 ±700 ±685 ±662

P µT2 110.6 70.3 61.1 55.0 48.9 42.1

P ratio – 20.0 51.0 99.8 159.5 319.3 762.4

±700Hz

σ – 0.195 0.125 0.088 0.067 0.042 0.021

β rad/s 782 565 453 381 290 204

µ – 7.97 9.58 11.50 13.22 16.87 23.46

∆ωact Hz ±992 ±862 ±828 ±801 ±779 ±761

P µT2 109.1 780.3 65.2 58.3 51.0 43.6

P ratio – 19.8 56.6 106.5 169.0 332.7 789.8

±800Hz

σ – 0.207 0.135 0.097 0.074 0.048 0.025

β rad/s 735 534 426 361 278 197

µ – 9.09 11.33 13.70 15.69 19.86 27.42

∆ωact Hz ±1064 ±963 ±928 ±902 ±878 ±859

P µT2 114.9 82.3 69.2 61.4 53.2 45.1

P ratio – 20.8 59.7 113.0 178.0 347.5 818.0

±900Hz

σ – 0.219 0.143 0.104 0.081 0.054 0.028

β rad/s 564 506 399 340 264 189

µ – 15.30 13.21 16.27 18.48 23.41 31.82

∆ωact Hz ±1378 ±1065 ±1032 ±1001 ±984 ±957

P µT2 139.7 86.6 73.8 65.10 56.0 47.0

P ratio – 25.3 62.8 120.6 188.8 365.6 851.3

±1000Hz

σ – 0.221 0.150 0.113 0.088 0.059 0.032

β rad/s 523 449 331 292 234 172

µ – 18.80 16.88 24.20 25.94 30.50 39.99

∆ωact Hz ±1561 ±1206 ±1274 ±1206 ±1140 ±1096

P µT2 146.7 96.6 88.3 75.6 63.0 51.6

P ratio – 26.6 70.1 144.1 219.1 411.4 934.5
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APPENDIX E

COMPARISON OF DERIVATIVE-BASED AND OPTIMAL CONTROL

MINIMIZATION ALGORITHMS

In this appendix, a comparison of the efficacy of derivative-based and optimal

control algorithms is presented in the context of composite pulse optimizations. Three

different optimization schemes were explored in this study:

I. minimization of deviations between simulated and target flip-angles via the

fmincon function in Matlab

II. maximization of the dot product between simulated and target magnetization

vectors using the same Matlab function

III. maximization of the dot product between simulated and target magnetization

vectors using an optimal control algorithm modeled after previous studies (74).

For each optimization scheme, target flip angles over the entire B+
1 -∆B0 grid were

set to a single value as described in Section 3.2.2. Each minimization scheme was

tested for composite pulses with three differing sets of initial conditions: maximum

amplitudes and zero phases; random amplitudes and zero phases; random amplitudes

and random phases.
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In Scheme I, the sub-pulse amplitudes A = {A1, A2, . . . , Ak} and phases φ =

{φ1, φ2, . . . , φk} of composite pulses are optimized via minimization of the function

σα(A,φ) =
1

mn

m,n
∑

i,j=1

∣

∣

∣

∣

∣

αf
i,j(A,φ)− αT

i,j

αT
i,j

∣

∣

∣

∣

∣

, (E.3)

where i is the B+
1 index on the B+

1 -∆B0 grid, j is the ∆B0 index on the B+
1 -∆B0 grid,

and α is the flip angle given by cos−1 (Mz/M0) with the simulated and target values

denoted respectively by the superscripts f and T . The function value σα represents

the average deviation of simulated flip angles from the target flip angle over the

entire B+
1 -∆B0 grid and is expressed as a fraction of the target flip angle. Seeking the

global minimum of Equation E.3, the non-linear constrained minimization algorithm

(46; 62) (Matlab function fmincon) iteratively calculates a numerical estimation of

the Hessian matrix defined by the second partial derivatives of Equation E.3 with

respect to the k amplitudes and k phases of the RF waveform. The algorithm is

seeded via a stochastic pulse in which the k amplitudes and phases conform to an

even probability distribution within the prescribed limits of 0–15µT and ±π rad,

respectively. A termination condition is satisfied if the minimization algorithm fails

to decrease the value of σα by at least a factor of 10−6 over the course of a single

iteration.

In Scheme II, σα is replaced by

σM(A,φ) =
1

mn

m,n
∑

i,j=1

(

1−M
f
i,j(A,φ) ·MT

i,j

)

, (E.4)
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with M representing the magnetization vector (Mx,My,Mz). Definitions of i, j,

f , and T are carried over from Equation E.3. The function σM is minimized via

the fmincon function, thereby effectively maximizing the dot product between the

simulated and target magnetization vectors over the entire B+
1 -∆B0 grid. The seeding

of the amplitude and phase modulation waveforms as well as the termination criteria

for the optimization are identical to those of Scheme I.

Scheme III differs from Scheme II primarily in the minimization algorithm. Instead

of using fmincon, an optimal control algorithm presented in publications from Skinner

et. al. (74; 75) was used to minimize σM as defined in Equation E.4. In summary, the

initial magnetization vector MI = (0, 0, 1) was propagated forward in time according

to the Bloch equations (Section ??) in the presence of an initial composite RF pulse

(i.e. a set of amplitudes Ak and phases φk). This procedure resulted in a final

simulated magnetization vector M
F
i,j for every i-j point on the B+

1 -∆B0 grid. The

cross product

M
×
i,j = M

F
i,j ×M

T
i,j (E.5)

was then propagated backward in time for the same composite pulse, resulting in

M
×
i,j,k (i.e., a M

×
i,j vector for each of the k time points of the composite pulse). The

projection ofM×
i,j,k onto the transverse plane, denoted byM

×
⊥,i,j,k, was averaged across

the B+
1 -∆B0 grid for each k. This step removed the dependence of M×

⊥,i,j,k on the i-j

grid indices leaving

M
×
⊥,k = A

×
⊥,k e

i φ
×

⊥,k . (E.6)
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With p used to index the iterations of this algorithm, new composite pulse amplitudes

(Ap+1
k ) and phases (φp+1

k ) were then computed from the previous values (Ap
k and φp

k)

via the relations

Ap+1
k = Ap

k + ǫA
×
⊥,k (E.7a)

and

φp+1
k = φp

k + ǫ φ
×
⊥,k , (E.7b)

where the parameter ǫ was chosen to maximize the decrease in σM during each itera-

tion. The iterative process was repeated until the termination criterium of Scheme II

was satisfied. Because of susceptibility of the optimal control algorithm to the choice

of initial Ak and φk, all A
I
k were set to the maximum allowed value (15µT) and all

φI
k were set to 0. This choice was found to give results comparable to the best results

when Ak and φk were seeded with random values but without the relatively high level

of variability.

A fourth optimization scheme in which σα is minimized via the same optimal

control algorithm may seem logical; however, application of the optimal control algo-

rithm in this context does not appear straightforward given that the lone condition of

flip-angle uniformity does not specify a unique end state for the magnetization vector.

This problem may warrant future study.

According to Schemes II and III, the schemes for which a head-to-head comparison

between fmincon and optimal control algorithms is possible, stability measurements

of the fmincon and optimal control minimization algorithms were made by repeat-

283



ing optimizations for a 30◦ composite pulse consisting of 32 sub-pulses each with a

0.1024ms duration. One hundred repetitions were made for each of the two schemes,

with different random initial sub-pulse amplitudes for each repetition. Mean and

standard deviations for the resulting distributions of σM were calculated.
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Table E.1: Performance of fmincon and optimal control algorithms seeded with max-
imum amplitudes and zero phases. In this case, only the final cost function values are
reported. There are no other statistical measures since repetition of the optimization
with the same initial amplitude and phase values results in the same composite pulse.
The second and third columns give results for Optimization Scheme II. The fourth
and fifth columns give results for Optimization Scheme III.

metric fmincon (σα) optimal control (σα) fmincon (σM) optimal control (σM)

min 2.81× 101 2.01× 101 1.55× 10−2 1.67× 10−2

Table E.2: Performance reproducibility of fmincon and optimal control algorithms
seeded with random amplitudes and zero phases. The second and third columns
give results for Optimization Scheme II. The fourth and fifth columns give results for
Optimization Scheme III.

metric fmincon (σα) optimal control (σα) fmincon (σM) optimal control (σM)

mean 2.78× 101 4.03× 101 1.67× 10−2 9.56× 10−2

SD 1.98× 100 1.69× 101 4.50× 10−3 7.45× 10−2

RD 7.12× 10−2 4.19× 10−1 2.55× 10−1 7.79× 10−1

min 1.46× 101 1.08× 101 6.40× 10−3 3.71× 10−3

Table E.3: Performance reproducibility of fmincon and optimal control algorithms
seeded with random amplitudes and random phases. The second and third columns
give results for Optimization Scheme II. The fourth and fifth columns give results for
Optimization Scheme III.

metric fmincon (σα) optimal control (σα) fmincon (σM) optimal control (σM)

mean 2.37× 101 2.93× 101 1.44× 10−2 1.92× 10−2

SD 6.55× 100 3.40× 100 1.78× 10−2 8.90× 10−3

RD 2.76× 10−1 1.16× 10−1 1.24× 100 4.64× 10−1

min 1.20× 101 1.77× 101 4.19× 10−3 8.90× 10−3
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Moortele. Local B+

1 shimming for prostate imaging with transceiver arrays at 7T
based on subject-dependent transmit phase measurements. Magnetic Resonance

in Medicine, 59:396–409, 2008.

[50] C. Meyer, J. Pauly, A. Macovski, and D. Nishimura. Simultaneous spatial and
spectral selective excitation. Magnetic Resonance in Medicine, 15:287–304, 1990.

[51] S. Michaeli, H. Grohn, O. Grohn, D. J. Sorce, R. Kauppinen, and C. S.
Springer Jr. Exchange-influenced T2ρ contrast in human brain images measured
with adiabatic radio frequency pulses. Magnetic Resonance in Medicine, 53:
823–829, 2005.

[52] S. Michaeli, D. J. Sorce, I. D, and M. Garwood. Transverse relaxation in the
rotating frame induced by chemical exchange. Journal of Magnetic Resonance,
169:293–299, 2004.

[53] J. Moore, M. Jankiewicz, A. Anderson, and J. Gore. Hyperbolic secant parameter
optimization for non-selective inversion at 7 T. Proceedings of the International

Society of Magnetic Resonance in Medicine, 18:2858, 2010.

[54] J. Moore, M. Jankiewicz, A. Anderson, and J. Gore. An optimized composite
refocusing pulse for ultra-high field MRI. Proceedings of the International Society
of Magnetic Resonance in Medicine, 18:2859, 2010.

[55] J. Moore, M. Jankiewicz, H. Zeng, A. Anderson, M. Avison, E. Welch, and
J. Gore. Quantitative comparison of B+

1 mapping methods for 7 T human imag-
ing. Proceedings of the International Society of Magnetic Resonance in Medicine,
17:372, 2009.

[56] J. Moore, M. Jankiewicz, H. Zeng, A. W. Anderson, and J. C. Gore. Composite
RF pulses for B+

1 -insensitive volume excitation at 7 Tesla. Journal of Magnetic

Resonance, 205:50–62, 2010.

[57] J. Pauly et al. A k-space analysis of small-tip-angle excitation. Journal of

Magnetic Resonance, 81:43, 1989.

[58] J. Pauly, P. Le Roux, D. Nishimura, and A. Macovski. Parameter relations for the
shinnar-le roux selective excitation pulse design algorithm. IEEE Transactions

on Medical Imaging, 10:53–65, 1991.

[59] A. Peters, M. Brookes, F. Hoogenraad, P. Gowland, S. Francis, P. Morris, and
R. Bowtell. T ∗

2 measurements in human brain at 1.5, 3 and 7 T. Magnetic

Resonance Imaging, 25:748, 2007.

289



[60] C. S. Poon and R. M. Henkelman. 180◦ refocusing pulses which are insensitive to
static and radiofrequency field inhomogeneity. Journal of Magnetic Resonance,
99:45–55, 1992.

[61] C. S. Poon and R. M. Henkelman. Robust refocusing pulses of limited power.
Journal of Magnetic Resonance, 116:161–180, 1995.

[62] M. Powell. Nonlinear Programming 3, chapter The convergence of variable metric
methods for nonlinearly constrained optimization calculations. In Mangasarian
et al. (46), 1978.

[63] E. Purcell, H. Torrey, and R. Pound. Resonance absorption by nuclear magnetic
moments in solids. Physical Review, 69:37–38, 1946.

[64] I. Rabi, J. Zacharias, S. Millman, and P. Kusch. A new method of measuring
nuclear magnetic moment. Physical Review, 53:318, 1938.

[65] S. Rieseberg, J. Frahm, and J. Finsterbusch. Two-dimensional spatially-selective
RF excitation pulses in echo-planar imaging. Magnetic Resonance in Medicine,
47:1186–1193, 2002.

[66] W. D. Rooney, G. Johnson, X. Li, E. R. Cohen, S.-G. Kim, K. Uǧurbil, and C. S.
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[81] K. Uǧurbil, M. Garwood, and M. Bendall. Amplitude- and frequency-modulated
pulses to achieve 90◦ plane rotations with inhomogeneous B1 fields. Journal of

Magnetic Resonance, 72:177–185, 1987.
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