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CHAPTER I 

 

INTRODUCTION 

 

Initiatives in the aerospace industry are continuously presenting engineers with 

challenges requiring the design, integration, and adaptation of systems to meet a wide 

variety of future missions.  Consider, for example, the 2004 U.S. Vision for Space 

Exploration, which sets goals for NASA to return to the Moon by 2020 in preparation for 

follow-on missions to Mars and beyond (NASA 2004).   In addition to achieving lofty 

goals for system performance, government and industry leaders as well as the general 

public demand the space program take substantial leaps to improve safety and reliability.      

After 40 years of experience in manned space exploration, there exists a considerable 

knowledge base to build upon.  However, the needed advancements in performance and 

reliability cannot be realized by making mere incremental changes to existing systems.  

The reliability track record for the Space Shuttle is a good case in point; the catastrophic 

failure rate is over 1%, more than anticipated during the shuttle design and much more 

than that desired for next generation systems.  (Prior to the 2004 Vision, NASA’s 

reliability goals for the next generation launch vehicle included a less than 1 in 10,000 

probability of crew loss. NASA 2000).  It is clear that a more effective means for 

designing for reliability is needed; program requirements must include reliability 

standards and design processes must incorporate methods for assessing and engineering 

to these requirements.     



 2

This research proposes methods to this end, namely the probabilistic1 (i.e., 

reliability-based) design of systems.     In particular, these methods address design 

problems with three common elements:  (1) reliability requirements given in probabilistic 

terms, (2) a mathematical ‘design’ formulation that ensures both performance and 

reliability requirements are met, and (3) some degree of system integration or analysis.   

The first element indicates that reliability requirements are given as standards for 

probability of success or failure.  Thus, assessing reliability ‘probabilistically’ 

necessitates that failure versus success be defined by a distinct boundary.   Furthermore, 

this assumes that a probability density function exists which describes the probability that 

system performance falls at any given point on either side of that boundary.    Although 

the definition of design can be quite broad, this research deals specifically with single-

objective optimization problems (i.e.,  problems having the second element), which can 

be mathematically formalized to minimize (or maximize) one particular performance 

attribute while satisfying constraints (requirements) on others.   Finally, the aim of this 

research is to address the probabilistic design of systems.   The key idea is that the system 

must be a “collection” of some components aimed at a “common objective” (Buede, 

2000).   This “collection” can take a number of forms, a few of which will be highlighted 

by example.  In general, however, the methods proposed address the communication of 

information (e.g., design information and/or probabilistic information) between the 

components of a system (i.e., lateral communication), and between components and the 

overall system (i.e., vertical communication).  The following sections present a review of 

the three elements as they build upon one another.  This review is followed by an outline 

                                                 
1 Although the term “probabilistic design” may suggest other connotations to readers in some fields, its use 
throughout this dissertation is synonymous with “reliability-based design” as described in this chapter.  
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of the proposed probabilistic system design methods and applications included in 

subsequent chapters. 

 

Reliability Assessment using Probabilistic Analysis  

Throughout this dissertation, the term reliability2 refers to the degree of certainty 

to which a system will perform successfully.  “Success” is defined as performance “as 

intended” which includes satisfying design requirements as well as avoiding catastrophic 

failure.  Uncertainty in system performance arises from numerous fronts.   Sources of 

uncertainty may be divided into two types: aleatory and epistemic (Oberkampf et. al., 

2004).  Aleatory uncertainty is irreducible.  Examples include phenomena that exhibit 

natural variation like environmental conditions (temperature, wind speed, etc.).  

Manufacturing variations due to limited precision in tools and processes also result in this 

type of uncertainty.  In contrast, epistemic uncertainty results from a lack of knowledge 

about the system, or due to approximations in the system behavior models; it can be 

reduced as more information about the system is obtained.  Epistemic uncertainty is 

introduced at several levels.   First, understanding a system’s behavior begins with a 

physical model based on laws of physics.  At this stage, assumptions are made (factors 

are neglected, ideal properties assumed, etc), introducing uncertainty.  The physics-based 

model is later reduced to a mathematical model which is in turn converted to a 

computational model (for example, computational algorithms developed to solve partial 

differential equations.)   At each step, model error is introduced which adds to the 

uncertainty associated with a predicted performance.  This epistemic uncertainty could be 

                                                 
2 Reliability is distinguished from robustness.  Reliability is a measure of probability of success, while 
robustness is a measure of the (in)variability in performance over a range of conditions. 
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reduced by increasing the accuracy of the computation algorithm (e.g., reducing step size, 

etc.), reducing the number of simplifying assumptions, and generally improving the 

knowledge of a system’s physics.  One special kind of epistemic uncertainty involves 

having limited data to properly define the distribution parameters of the random 

variables.   This type of uncertainty may be reduced by collecting more data. 

Assessing the reliability of large, complex systems can be extremely difficult.   

Historically, in engineering, a probabilistic perspective of reliability has been inherently 

linked to a frequentist perspective.  In other words, the predicted probability of future 

events was extrapolated from the historical frequency of past events.   However, 

translating this perspective to assess reliability for modern aerospace systems presents a 

special challenge since historical databases based on legacy systems are few, new 

systems continue to expand the horizon in terms of both their operational environments 

and performance requirements, and engineers continue to use novel materials in design.  

A common, pseudo-analytical approach to designing for reliability is to employ factors of 

safety.   Load and Reduction Factored (LRFD) steel design guidance, for example, 

specifies a combination of safety factors which reduce allowable strength from nominal 

material strength and increase required strength based on estimated loading conditions 

(AISC, 2006).   These factors are used to assure reliability but can only be related directly 

to a corresponding probability of success or failure if sufficient empirical data is 

available.  In other words, the degree of safety provided by the factor is only understood 

from the context of experience; a different factor would be appropriate for different kinds 

of systems under different operating conditions employing different materials.    For 

systems with which engineers lack sufficient experience, a more rigorous analytical 
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approach for assessing reliability is needed.  In general, probabilistic methods provide 

such rigor by defining the uncertainty associated with a system at a primitive level and 

propagating that uncertainty through the system performance analysis.    

The first step in probabilistic reliability analysis is to define probability density 

functions (pdfs) to describe input uncertainty.  This includes aleatory and epistemic 

variables.  (To capture epistemic uncertainty arising from a lack of accuracy or 

confidence in analysis methods, model error variables may be introduced.  This idea is 

treated in detail in Chapter VI.)   Input uncertainty is propagated through the system 

performance analysis model in order to characterize output uncertainty.  Probabilistic 

reliability analysis is based on the concept of a limit state that defines the boundary 

between success and failure for a system (Haldar and Mahadevan, 2000).  The limit state 

function, g, is derived from a system performance criterion and formulated such that g < 

0 indicates failure.   If the input parameters in the system analysis are uncertain, so will 

be the predicted value of g.  The probability of system failure P(g < 0) may be obtained 

from the volume integral under the joint probability density function of the input random 

variables over the failure domain, as shown in Eq. (1) and graphically in Fig. 1.   

1 1 2
0

( , ,..., )f X 2 n n
g

P ... f x x x dx dx ...dx
≤

= ∫ ∫                                 (1) 

In Eq. (1), Pf is the probability of failure, fX is the joint probability density of a random 

variable vector X with n elements; vector x represents a single realization of X.   Note 

that the integral is taken over the failure domain, or where g ≤ 0, so Pf  = P(g ≤0 ). 
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Figure 1.   Limit State Modeling 

 

Two types of methods have been used to evaluate this integral: (1) simulation 

methods and (2) analytical approximations.  The most elementary of the first type of 

methods, Monte Carlo simulation, tends to be accurate only with a large number of 

simulations, especially for high reliability systems.   Monte Carlo simulation is often 

impractical for real systems when a single analysis requires a significant amount of 

computational effort.   However, simulation does hold some key advantages over other 

probabilistic analysis techniques.  For one, basic simulation is not sequential and can 

therefore take maximum advantage of parallel processing.  Another benefit is that 

simulation does not require gradient information, which is often difficult to obtain for real 

systems.   Finally, the same set of simulation runs can be used to evaluate multiple limit 

states simultaneously, as opposed to analytical methods that construct approximations to 

one limit state at a time. 

Analytical methods include first-order and second-order approximation 

techniques, which are well documented in literature (for a review, see Haldar and 
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Mahadevan, 2000).   In first-order methods, a linear approximation of the limit state is 

used to estimate the failure probability from Eq. (1) as depicted by the dashed line in Fig. 

1.  The accuracy of the first-order method depends on the curvature of the limit state and 

the point from which the linear approximation is based.  The First Order Second Moment 

(FOSM) method (Ang and Amin, 1967), for example, is based on a first-order Taylor 

Series approximation of the mean and standard deviation of a limit state function: 

)( xg g µµ ≈                                                          (2) 

)Cov(
1 1

2
ji

j

n

i

n

j i
g x,x

x
g

x
g

∂
∂

∂
∂

≈ ∑∑
= =

σ  

where Cov is the covariance indicating the correlation between variables xi and xj.  

Assuming the limit state function g is linear, the cumulative distribution function (CDF) 

for the standard normal variable may be used to estimate the probability of failure, Pf: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ=<=

g

g
f gPP

σ
µ0

)0(                                            (3)                         

FOSM requires minimal computational effort but sacrifices accuracy for non-linear limit 

states or systems with non-normal input variables.   

The First Order Reliability Method (FORM), a more accurate analytical approach 

than FOSM, estimates the failure probability as Pf = Φ(-β,) where b is the minimum 

distance from the origin to the limit state in the uncorrelated reduced normal space 

(Hasofer and Lind, 1974).   The minimum distance point on the limit state is referred to 

as the most probable point or MPP, and β is referred to as the reliability index.  (A 

graphical representation of the FORM concept is given in Fig. 2). The FORM method is 

able to handle correlated, non-normal random variables and nonlinear limit states; 
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however, the probability estimate is based on a first-order approximation of the limit state 

at the MPP. 

 

Figure 2.  First - Order Reliability Method 

 

Finding the most probable point (MPP) is an optimization problem for which any of 

several optimization algorithms may be used: 

Minimize  ηβ  =                                                   (4) 

subject to 

 0)( =ηηg  

In Fig. 2 and Eq. (4), η is the vector of random variables in uncorrelated standard 

normal space and  η  denotes the norm of that vector.  In other words, the mean and 

standard deviation of η is zero and one, respectively.   In general, a set of random 

variables x may be non-normal and correlated, but these may be transformed to an 
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uncorrelated standard normal space via a transformation T, i.e η = T(x).  Rackwitz and 

Fiessler (1976), for example, propose a two-parameter transformation to equate the 

standard normal PDF and CDF values at a checking point to the respective PDF and CDF 

values of the original variable.   The transformations from correlated to uncorrelated 

space are also well established (for a review, see Haldar and Mahadevan, 2000).  The 

limit state function is also transformed to uncorrelated standard normal space so that 

 ))(()( 1 ηη −= Tggη .  The solution to Eq. (4) is denoted η* in standard normal space or x* 

in original space; it is commonly called the Most Probable Point (MPP).  The reliability 

index, β, then is the norm of η*  (Hasofer and Lind, 1974). 

 

Probabilistic Design using Reliability-based Optimization 

 Assessing reliability, in and of itself, is not useful for design.  Instead, the design 

process must ensure reliability requirements are met.  Reliability based design 

optimization (RBDO) is a useful means to accomplish this.   In general, optimization is a 

common method used to find some ‘best’ set of design variables while ensuring that 

performance requirements are met.   A standard optimization problem is given in Eq. (5) 

where d is a set of design variables.  The function, f(d) is the objective, and g(d) ≤ 0 and 

h(d) = 0 are inequality and equality constraints, respectively. 

Minimize f(d)                                                       (5) 

subject to 

g(d) ≤ 0 

h(d) = 0 

A wide variety of algorithms are available to solve Eq. (5).  (For a sample, see Nocedal 
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and Wright, 1999).  These algorithms provide either a local or global solution for the 

‘optimal’ vector of design variables d, denoted d*.   The local solution is the point, d* at 

which the objective function is smaller than at other points in its vicinity, while the global 

solution is the point at which the objective is smaller than at all other points in the design 

space.  While global solutions are ideal, they are generally impossible to find.  This 

dissertation uses local optimization methods.    

RBDO problems include random input variables to either the objective or 

constraint functions to account for uncertainty in the analysis.  They typically optimize a 

deterministic (i.e., non random) objective subject to probabilistic constraints, as shown in 

Eq. (6). 

Minimize f(d)                                                        (6) 

subject to 

P(gη(d, η) ≤ 0) ≤ Pacceptable 

hineq (d) ≤ 0 

heq(d) = 0 

Here, the vector of design variables, d can include both deterministic variables and 

parameters for random variables.  Parameters for random variables, for example, may 

include the mean value or standard deviation, indicating the variable can be controlled 

somewhat but uncertainty cannot be eliminated.    The variable η is a vector of standard 

normal variables transformed from a set of random variables.  The use of η in the 

formulation allows the effect of variability of a random variable to be isolated from the 

random distribution parameters (e.g., mean and standard deviation) which may be also be 

design variables so that in evaluating the limit state, gη(d, η), d and η may be treated as 



 11

independent variables.  The most important distinctive feature of RBDO problems is the 

probabilistic constraint, which is formulated to ensure an acceptable probability that some 

performance criterion is met (i.e., that the probability of failure is less than a maximum 

acceptable level).   Note that non-probabilistic inequality and equality constraints may 

also be included in an RBDO formulation, but must be functions of deterministic 

variables only.  Applications in this dissertation will include primarily probabilistic 

inequality constraints. 

Optimization algorithms are iterative.   They provide either gradient or non-

gradient based searches for an optimum solution based on values of the objective and 

constraints for successive guesses.  In the context of RBDO, since each probabilistic 

constraint must be evaluated several times, first order analytical approximations are the 

most common due to their efficiency.  Two options are available for reformulating the 

RBDO problem with approximate, first-order constraints.  The first uses a direct first-

order reliability method (FORM), often referred to in the literature as the Reliability 

Index Approach or RIA (Yu et al, 1997), which is given in Eq. (7).  

 

Minimize f(d)                                                       (7) 

subject to 

β ≥ βtarget 

Here d is the vector of design variables and the acceptable probability, Pacceptable is 

transformed to a target reliability index,  βtarget, using the inverse of the standard normal 

cumulative distribution, β 
target 

= − Φ-1 (Pacceptable 
) . The reliability index, β, is defined by 

Eq. (8).    
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Minimize β = η                         (8) 

s.t. gη(d, η) = 0 

Note that Eq. (8) is the same definition for reliability index given in Eq. (4) for reliability 

assessment, except that the design variable vector, d is shown explicitly to relate back to 

the optimization formulation given in Eq. (7).  As stated in the previous section, the 

solution to Eq. (8), η*, is called the MPP.    Thus, RBDO based on direct FORM is, in its 

basic form, a  nested optimization.  The outer optimization conducts a search for the 

optimal design, d, while calling an inner-loop which conducts an MPP search in order to 

evaluate probabilistic constraints (i.e., β  ≥ βtarget). 

 Alternatively, an inverse FORM method, also called the Performance Measure 

Approach (PMA, Tu et al, 1999) is often used for RBDO as given by Eq. (9).   

Minimize f (d)                                                       (9) 

s.t. g* ≥ 0  

where g* is defined by Eq. (10).  

Minimize g* = gη(d, η)                                                (10) 

s.t.  η  = βtarget 

The solution to Eq. (10) will be referred to as the PMA point, η′, to distinguish it from 

the MPP, η*, of the direct FORM method.   Figure 3 depicts graphically, for a two 

dimensional random variable vector, the equivalence of the direct and inverse FORM 

methods in ensuring that a probabilistic constraint is satisfied.  
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          Figure 3(a). Direct FORM             Figure 3(b). Inverse FORM 

   

As with the direct FORM method, the inverse FORM RBDO is a nested optimization, in 

this case with an ‘inner-loop’ PMA search nested inside the primary ‘outer-loop’ 

optimization.   This results in a multiplicative effect on the computational effort (i.e., the 

number of performance analyses required for optimization is multiplied by the number of 

analyses required for reliability assessment.)  For real design problems with significant 

computational effort for a single performance analysis, simple direct or inverse FORM 

RBDO could be intractable.  However, recent advances have led to significant 

improvements in the computational efficiency of RBDO methods (Tu et al, 1999, Royset 

et al, 2001, Wu et al, 2001, Zou et al, 2002, Du and Chen, 2003, Jiang and Mourelatos, 

2004).   These methods are described in more detail in Chapter III as they are 

incorporated specifically into reliability-based optimization methods for multidisciplinary 

systems. 
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Probabilistic Design of Systems 

 As stated earlier, the term system is used here to describe a collection of 

components aimed at a common objective.  Systems engineering typically begins with a 

top-down design and decomposition stage (to progress from high-level requirements to a 

detailed design of components sufficient for production) followed by a bottom-up 

integration and qualification stage (which verifies that components as assembled meet 

requirements, Forsberg and Mooz, 1992).  This process is associated with a set of 

hierarchical architectures.  Consider for example, the simplistic bi-level physical and 

discipline hierarchies for a flight vehicle in Fig. 4.   The physical architecture (Fig. 4(a)) 

is a product of top-down design decomposition.  Note that at the higher level, the scope is 

broad but detail is limited while at lower levels the scope decreases and detail increases.  

The disciplinary hierarchy, on the other hand, results from bottom-up integration.  

Engineering expertise and design and analysis tools have developed primarily along 

specific disciplinary lines; these tools must be intentionally combined in order to analyze 

system performance at the higher level.    System decomposition and integration has 

implications for reliability analysis as well as for reliability-based design.   This research 

specifically addresses the communication of probabilistic information across system 

architectures.   

 

Physical Architecture 
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Disciplinary Architecture 

 

Figure 4.  Launch Vehicle Physical and Disciplinary System Architectures  

  

There are many different models for a systems design process such as the System 

Engineering VEE, spiral, and waterfall models to name a few.  (For an overview, see 

Buede, 2000.)  All systems engineering processes share a progression from designs which 

are broad in scope and limited in detail to those of increasing detail and decreasing scope 

(for example, from conceptual design of a whole system to preliminary design of 

subsystems to detailed design of individual components).    In addition, all systems 

engineering models iterate between design levels.  A final critical characteristic of the 

systems design process is that it is highly dependent on the interfaces (or connections) 

between elements of a system. 

This research is motivated by the need to incorporate reliability requirements in 

system design and the conviction that probabilistic methods are particularly suitable for 

this purpose.   Probabilistic methods effectively translate reliability assessment into terms 

easily understood by managers, operators, and the general public.  They also provide 

more rigor than traditional methods for reliability-based design and build upon 

engineering analyses already needed to design for performance.   However, rather than a 

study of the formal systems engineering process, this dissertation has a narrower focus: 
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developing methods and exploring concepts associated with iterative probabilistic design 

and the flow of probabilistic information across system interfaces.   For example, the 

applications included here demonstrate the effectiveness of reliability-based optimization 

for design problems across disciplines, physical components, and design levels.   

 The goal of this dissertation is to develop and apply efficient methods for the 

probabilistic design of systems, considering system integration from two fronts.  The first 

front considers the integration of analyses at a single level (i.e., lateral integration across 

the system architecture).  The second front considers the synthesis of probabilistic design 

information from a system to component designs (i.e., vertical integration across the 

system architecture.)  Four objectives are pursued to this end: (1) the development and 

study of efficient algorithms for multidisciplinary reliability analysis; (2) the extension of 

these methods to reliability-based optimization of multidisciplinary systems; (3) the 

development of a method for integrating system and component designs using model 

error propagation; and (4) the demonstration of these methods to two real world 

applications, the design of a power system for an unmanned aerial vehicle and the 

integrated design of a reusable launch vehicle and component liquid hydrogen tank.    For 

the first objective, two methods are presented for the reliability analysis of 

multidisciplinary systems.  Next, twelve algorithms for reliability-based multidisciplinary 

optimization are developed by synthesizing these concepts with established reliability-

based design (RBDO) and multidisciplinary optimization (MDO) strategies.  These 

methods are applicable to both lateral and vertical integration in probabilistic system 

design; they provide a means to integrate analyses at a single level but may also be 

adapted for integration across levels.  To satisfy the third objective, model error 
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assessment and propagation is investigated as an alternative means for integrating system 

and component designs.  In accordance with the final objective, reliability-based 

multidisciplinary optimization methods are applied to the system design of an unmanned 

aerial vehicle, demonstrating system integration at a single level.  In addition, both 

reliability-based optimization and model error propagation strategies are applied as 

alternative methods for the system and component integration of a reusable launch 

vehicle and its liquid hydrogen fuel tank. 

 In Chapter II, reliability-based analysis methods and deterministic 

multidisciplinary optimization strategies are combined to develop two efficient 

computational algorithms for reliability analysis of multidisciplinary systems.   These 

concepts are extended to optimization in Chapter III, which introduces twelve algorithms 

using various multidisciplinary and reliability-based optimization techniques; each of the 

algorithms is demonstrated on 3 examples to test and compare accuracy and efficiency.  

In Chapter IV, these methods are applied to a real world application, the design of the 

power supply system for an unmanned aerial vehicle.    

 Chapters V and VI address the incorporation of reliability-based design across 

levels as demonstrated for the coupling of a reusable launch vehicle conceptual design for 

geometry and the structural sizing of a component tank.   As an alternative to fixed point 

iteration between the two designs, Chapter V integrates the two levels within a single 

reliability-based optimization.   In Chapter VI, the same problem is addressed from a 

different perspective.  In this case, the component design is used to aid in characterizing 

the model error in the vehicle optimization.  This chapter also considers the system 

sensitivity to model error as a valuable metric for selecting disciplinary models at various 
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stages of design.  The dissertation concludes with a summary and brief synopsis of future 

research needs. 
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CHAPTER II 

 

FIRST-ORDER RELIABILITY ANALYSIS FOR MULTIDISCIPLINARY SYSTEMS 

 

Introduction 

This chapter considers probabilistic analysis of multidisciplinary systems.   This is 

a critical first step in achieving reliability-based system design as it addresses how 

probabilistic information may be propagated across a system architecture (in this case, a 

disciplinary architecture).  According to most systems engineering models, integration 

comprises the second phase of design.  In practice, integration is required at the earliest 

stages of design as well.    During these earlier (i.e., conceptual) stages of design, the 

system is looked at as a whole, so the scope of performance analysis is the largest.  

However, engineering expertise and analysis tools are primarily developed along very 

specific disciplinary lines (e.g., aerodynamics, structural, propulsion, thermal, etc.) so 

that many conceptual design tools involve significant integration of these disciplinary 

analyses.  The resulting multidisciplinary analysis is a ‘bottom-up’ approach, but one that 

is applied during almost every phase of design.   In addition, the underlying process 

involved in integrating disciplinary design or analysis tools applies to integration along 

other system architectures.     

One emerging method for the design of aerospace systems is optimization.  

Several different formulations have been developed in the literature for multidisciplinary 

optimization (e.g., Cramer, et al, 1994; Braun and Kroo, 1996; Sobieszczanski-Sobieski 

et al, 2000; Renaud and Gabriele, 1994). The type of formulation adopted for 
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multidisciplinary analysis significantly affects the computational effort required for 

probabilistic analysis as well as optimization.  The accuracy of derivative approximations 

(usually found through finite differences in a black-box approach) is also a concern in 

both cases (Sobieszczanski-Sobieski, 2000), since many optimization algorithms and the 

more efficient reliability analysis methods such as the first-order reliability method 

(FORM) and the second-order reliability method (SORM) require them.   In addition, the 

synthesized global analysis may not be sufficiently differentiable to ensure convergence 

of these methods.  Therefore, it is valuable to investigate how MDO formulations may be 

extended to multidisciplinary reliability analysis. 

One specific challenge that surfaces for integrated multidisciplinary systems 

involves the computational expense of wrapping one iterative process (optimization) 

around another (multidisciplinary analysis).   In this case, iterative convergence loops are 

needed to ensure multidisciplinary feasibility (i.e., consistency of disciplinary responses 

throughout the system).  In a conventional or fully-integrated3 approach, the 

multidisciplinary analysis (MDA) convergence loops are nested inside the loops for 

probabilistic analysis and/or optimization.   The resulting computational effort is 

unacceptable for most high fidelity analyses.    Therefore, this work explores alternatives 

to the fully-integrated approach, using methods that exploit a distributed formulation of 

multidisciplinary analysis.  Distributed formulations for reliability analysis have already 

been proposed (Du and Chen, 2002) in the literature.  This chapter focuses on specific, 

efficient computational algorithms that solve these formulations.   

                                                 
3 The term “fully-integrated optimization” was adopted from Alexandrov and Lewis, 2000, indicating that 
multidisciplinary analysis is required for every optimization (or in this case probabilistic analysis) iteration.  
This conventional approach is given other names by other authors.    
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The following section introduces the background on the coupled nature of 

multidisciplinary analysis and the implications this has for limit state-based reliability 

analysis.  Next, distributed formulations commonly proposed in multidisciplinary 

optimization (MDO) research are discussed, highlighting their potential to improve 

multidisciplinary probabilistic analysis.   Then, two distributed algorithms for 

multidisciplinary systems are presented.  The first algorithm uses a first-order second 

moment (FOSM) method to characterize intermediate variables while applying more 

rigorous reliability analysis, such as Monte Carlo analysis or the first-order reliability 

method (FORM), to the system as a whole.  The second method proposes a specific 

algorithm to solve a decoupled optimization formulation for the first order reliability 

method.  Each method is demonstrated for a two-discipline mathematical example 

system.  Results are compared against otherwise equivalent coupled algorithms for 

accuracy and efficiency.   

 

Multidisciplinary System Analysis 

 Multidisciplinary analysis (MDA) involves integrating individual (or discipline- 

specific) analyses, which share input and output data.   A ‘feasible’ multidisciplinary 

system requires the simultaneous solution of all disciplinary analyses.  For analyses 

performed in a particular sequence, interdisciplinary coupling may be either a feed-

forward or feedback type.  For feed-forward coupling, the output of an earlier analysis 

feeds ‘forward’ as the input of a later analysis.  Feedback occurs when a coupled analysis 

must be performed prior to the analysis that determines its input.  For systems with 

feedback coupling, iteration is required to ensure consistency of discipline responses, 
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requiring multiple ‘runs’ of a single set of analyses.  Even strictly feed-forward MDA 

systems can be computationally expensive since performing analyses in sequence 

prevents the time-saving approach of parallel computing. 

 

 

Figure 1.  Example Two-Discipline Multidisciplinary System 

 

Fig. 1 depicts coupling in a two-discipline system.  Here x1 and x2 represent local 

input variables to analyses 1 and 2 respectively, while xs indicates input variables 

common to both analyses.  Variables u1,2 and u2,1 are disciplinary response variables that 

couple the two analyses (defined such that ui,j is an output of analysis i and an input to 

analysis j).  The system output variables are f, g1, and g2; in the context of optimization, f 

may represent a system objective while g1, and g2 may represent limit states for reliability 

analysis.   Multidisciplinary feasibility, then, may be found by simultaneously solving a 

set of non-linear equations represented disciplinary analyses as shown in Eq. (1).   

Ai(x, u(x)) = 0,  for each i = 1,.. number of disciplines in system            (1) 

It may be seen that, regardless which analysis is performed first, an unknown 

variable (either u1,2 or u2,1)  is needed, indicating a feedback condition.    Systems with 
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feedback coupling are typically solved with fixed-point iteration.   In this process, 

assumed values for the unknown variables are initially used, and then updated by 

performing the analyses from which they are derived.  The analyses are performed again 

with the updated values, and the process continues until convergence is reached.    Fixed 

point iteration has major drawbacks.  First, convergence is not guaranteed.    The 

effectiveness of fixed-point iteration is sensitive to the starting point, and many systems 

will exhibit a divergent pattern for some starting points.    Gradient-based algorithms for 

solving systems of equations can be more efficient.  However, with complex 

multidisciplinary systems, analytical gradients are rarely available.  Calculating 

numerical, finite difference-based gradients is another alternative but this requires 

additional system analyses. 

 

Implications for Reliability Analysis 

The purpose of multidisciplinary analysis is to predict the behavior of a complex, 

engineered system.  These predictions are made with a degree of uncertainty, and this 

measure of performance uncertainty characterizes the reliability of the system.    For 

coupled multidisciplinary systems, using fixed-point iteration for multidisciplinary 

analysis within probabilistic analysis algorithms may be inefficient.     This effect is 

depicted in Fig. 2, which shows FORM being applied to a two-discipline analysis.   

Another difficulty is in obtaining gradient information, usually required for the 

more efficient analytical approximation algorithms.  If a finite difference method were 

used, the fixed-point iteration process for convergence would need to be repeated for 

each variable.  Furthermore, one might select a less stringent convergence criterion to 
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avoid unnecessary fixed-point iterations, but this introduces ‘noise’ that can interfere with 

finite difference estimates for the gradient.  As a result, probabilistic analysis algorithms 

that simply use the system analysis as a black-box may not even converge in such 

situations.  Similar problems arise for optimization, and these problems become worse 

when probabilistic analysis and optimization are simultaneously attempted for 

multidisciplinary systems.  For example, Mahadevan and Gantt (1998) showed that a 

traditional probabilistic optimization approach for a coupled electronic packaging system 

did not converge for many starting points and required over 10,000 function  

evaluations for those starting points that did lead to convergence. 

 

 

Figure 2. Probabilistic Analysis for Systems with Feedback 

 

Distributed Analysis: A Strategy from Multidisciplinary Optimization (MDO) 

The difficulties encountered in applying first order reliability analysis to 

multidisciplinary systems mirror those in multidisciplinary optimization (MDO), since 

FORM is an optimization problem (see Eqs. (7)-(10) in Chapter I).  At a more basic level, 
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reliability analysis, like optimization, is an iterative process which multiplies the cost of a 

single multidisciplinary analysis and compounds the computational expense of fixed-

point convergence loops.  Thus distributed strategies used in MDO may also be 

applicable for probabilistic analysis.   

Consider the standard optimization problem formulated as follows: 

Minimize f(x)                                                           (1) 

Subject to h(x) = 0 and g(x) ¥ 0 

Both gradient-based and non gradient-based non-linear programming algorithms are 

available to solve problems of this type (for an overview, see Nocedal and Wright, 1999).   

Obviously, gradient-based methods require at a minimum that the objective function be 

differentiable.  When gradients cannot be obtained directly, approximation methods such 

as finite differencing are needed. 

The optimization problem is expanded to include response variables, u(x), 

representing the output of disciplinary analyses: 

Minimize f(x, u(x))                                                       (2) 

Subject to h(x, u(x)) = 0 and g(x, u(x)) ¥ 0 

The response variables, u(x) must satisfy the multidisciplinary feasibility requirement as 

given by the set of disciplinary analysis equations, A(x,u(x)) = 0.   A direct approach is to 

reduce the MDO formulation to the standard optimization problem through variable 

reduction.  In other words, the only independent optimization variables are the design 

variables x; and the disciplinary response variables, u(x) must be solved for at every 

iteration in the system optimization.  This is also known as the Multidisciplinary Feasible 

Method, or MDF (Cramer et al, 1994) or more generically as fully-integrated analysis 
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and optimization (Alexandrov and Lewis, 2000).    The limitation of this approach is that 

it can involve unnecessary computational expensive for some problems.   

A reduction in the overall computation time may be accomplished if disciplinary 

analyses can be done in parallel in some cases.  This approach requires an MDO problem 

formulation that decouples the disciplinary analyses from the multidisciplinary system 

optimization and from one another.  Cramer, et al (1994) provide a review and taxonomy 

of MDO methods.  More recently, Alexandrov and Lewis (2000) presented a review of 

MDO formulations from the perspective of the optimization algorithms used to solve 

them.  In distributed analysis and optimization (DAO), also referred to in the literature as 

the Individual Discipline Feasible (IDF) method, auxiliary variables representing 

interdisciplinary flow are used to achieve autonomy for disciplinary analyses.  

Multidisciplinary feasibility is maintained in the system optimization through 

compatibility constraints that must be satisfied at the final solution.   Other methods, such 

as Collaborative Optimization (Braun and Kroo, 1996) and Bi-Level Integrated System 

Synthesis, or BLISS, (Sobieszczanski-Sobieski et al, 2000) also use auxiliary variables 

but have optimizations at both the system and discipline levels.  The methods adapted 

herein build upon distributed analysis and optimization. 

 Distributed analysis is also an effective strategy for probabilistic analysis of 

multidisciplinary systems.  It enables probabilistic analysis without the fixed-point 

iteration convergence process required as an inner loop in the fully-integrated approach.   

In the following section, a distributed partial first-order second moment (FOSM) method 

is proposed and later in the chapter, an algorithm to extend FORM to multidisciplinary 
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reliability analysis is developed.  Both methods borrow from the DAO strategy used for 

multidisciplinary optimization.  

 

Characterizing Random Auxiliary or Coupling Variables Using FOSM 

From a probabilistic perspective, using auxiliary variables raises some interesting 

questions.   The variables they represent depend on random input variables and will thus 

be random variables themselves.   This begs the question, how does one select an 

appropriate probability density function for the auxiliary variables?   Also, if assumptions 

are made regarding the PDFs of the auxiliary variables, how will any errors propagate to 

the system output variables?   In other words, can the result be trusted? 

One approximate option for characterizing the auxiliary variables is to apply 

FOSM on the multidisciplinary system.   In this method, the integrated multidisciplinary 

analysis is considered estimating the mean, µg, and standard deviation, σg, of disciplinary 

response variables (see Eq. (2) of Chapter I).  Thus, Eq. (1) is solved to find a feasible 

multidisciplinary system at the mean input.  Then, using a finite difference process to 

calculate the gradient of g with respect to the random vector, x, at least n+1 evaluations 

of the multidisciplinary system are required, where n is the dimension of x.  This leads to 

(n+1)*D disciplinary function calls, where D is the number of disciplinary analyses 

required in the iterative process to find a feasible multidisciplinary system.   FOSM could 

be applied directly to system output variables (e.g., limit state functions) to determine the 

probability of failure according to Eq. (3).  

⎟
⎟
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⎜
⎝
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)0(                                         (3)                         
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The flow of probabilistic information for this direct, coupled FOSM method is depicted 

in Fig. 3.  However, as discussed in the previous chapter, FOSM has limited accuracy, 

although the computational effort is relatively light, especially for non-linear limit states 

and non-Gaussian input variables. 

 

 

Figure 3.  Direct, integrated FOSM for a multidisciplinary system 

 

A better option is to combine FOSM with more sophisticated probabilistic 

analysis techniques through a distributed approach.    Thus it is proposed in this chapter 

that FOSM be first applied to the coupled system to develop an initial statistical 

description of the auxiliary variables, and then a more accurate probabilistic analysis 

method be applied to the distributed system, treating the disciplinary analyses 

individually.  (This approach may be referred to as a partial FOSM approach, as opposed 

to the direct FOSM approach described above).  If a probability density function for u is 

assumed, then these variables can be easily incorporated in further probabilistic analysis 
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(e.g., Monte Carlo, FORM, etc.) to be applied at the discipline level.  The proposed 

algorithm is depicted in Fig. 4 with a corresponding pseudo code below.  

 

2

1 1

                          Pseudo code for Partial FOSM
1.  Find statistics of disciplinary responses using MDA to find ( ):

( )

Cov( )

2.  Conduct probabilistic analysis 
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Figure 4.  Partial FOSM Method (with Monte Carlo Analysis or FORM) 
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Note that the computational effort to calculate the mean, µu, and standard deviation, σu, 

of the intermediate variable vector is the same as that required in the direct FOSM 

method to calculate the mean and standard deviation of the response variable, µg, and σg.   

However, to improve accuracy, the partial FOSM approach conducts additional 

probability analysis for the discipline yielding the system response variable of interest, in 

this case discipline A1 for response g1.  During the latter step, multidisciplinary analysis 

is not performed, saving computational effort for fixed point iteration or other feasibility 

search algorithm. 

Both the direct FOSM and the partial FOSM approach rely on significant 

assumptions, namely that the first order approximation for the mean and standard 

deviation is adequate and that output and intermediate variables as well as input variables 

satisfy a normal (or other selected) distribution.   However, with the partial FOSM 

approach, these assumptions only apply to the intermediate variables so non-normal 

probability distributions for system inputs and non-linearity in the response function may 

still be captured by a more sophisticated probabilistic analysis method.  

In summary, the partial FOSM method combines FOSM (for characterization of 

intermediate variables) and more rigorous probabilistic analysis methods such as Monte 

Carlo Simulation or FORM.  This technique recaptures some of the accuracy, which 

would otherwise be forfeited with direct FOSM, while avoiding repeated 

multidisciplinary analysis loops during probabilistic analysis.  The advantages of the 

partial FOSM method are further illustrated via a numerical example at the end of this 

chapter.  
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Extension of FORM to Multidisciplinary Reliability Analysis 

 In the context of multidisciplinary systems, the First-Order Reliability Method 

can be given as an MDO formulation: 

Minimize  η = β                                                     (4) 

subject to 

 0))(( =ηuη ηη ,g  

As in the previous chapter, η denotes all the random input variables of the system in 

uncorrelated standard normal space.  Functions gη and uη are transformed functions such 

that gη(η) = g(T-1(x)) where T is the transformation function from original space, x, to 

standard normal space η.   Intermediate variables, uη(η), are additionally included in the 

limit state function to indicate a multidisciplinary system.  Though the end product is 

probabilistic information ( )()0( β−Φ=≤gP ), solving the FORM formulation is a 

deterministic MDO problem.  This is because the most probable point (MPP), η*, is a 

deterministic value; therefore, the disciplinary response variables at the MPP, uη(η), are 

also deterministic.  Given this fact, MDO methods may be used to find the solution.  In 

fact, Du and Chen (2002), propose the FORM formulation below:  

Minimize  η = β                                                    (5) 

subject to 

( ) 0 ˆg ,η η =η u  

)(ηuu η=ˆ  
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In this formulation, the limit state gη is a function of the input variables and auxiliary 

versions û of the intermediate variables uη(η).  To ensure multidisciplinary system 

compatibility, the additional constraint )(ηuu η=ˆ is needed. 

Optimization algorithms to solve Eq. (5) vary in efficiency, stability, and in the 

information needed, and their choice is often problem-dependent.    Rackwitz and 

Fiessler (1978) proposed a specific direct FORM algorithm (to solve Eqs. 7 and 8 in 

Chapter I) based on a quadratic objective, 2

2
1 η  and a linear approximation of the 

constraint g = 0:   

2
1 ( ) ( ) ( )  ( )
( )

t
k k k k  g g g

g
η η η

η

+ ⎡ ⎤= ∇ − ∇⎣ ⎦
∇

k 1η η η η η
η

                     (6) 

where ηk+1 is the standard normal MPP at the (k + 1)th  iteration, and ( )kgη∇ η  is the 

gradient vector (vector of derivatives of the limit state function with respect to each 

variable.)   Fig. 5 depicts the use of the Rackwitz-Fiessler algorithm for a 

multidisciplinary system and a pseudo code follows below.  Note that in order to 

calculate gη and ∇gη, as required for Eq. (6), multidisciplinary analysis is needed. 
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Figure 5.  Rackwitz-Fiessler FORM for multidisciplinary system 
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 Eq. (6) is usually quite efficient, but it may fail to converge for certain problems 

making alternative optimization algorithms necessary in those situations (Liu and 

DerKiureghian, 1991).  For example, standard SQP algorithms use a line search to 

control the step size and thus ensure convergence (Nocedal and Wright, 1999).  This line 

search requires additional analysis, however, and typically results in more computational 

effort than Eq. (6) for limit states that do converge.  Notice that the MPP search algorithm 

using Eq. (6) does not satisfy the constraint g = 0 at every iteration; it only does so at a 

solution, thus providing the basis for a distributed FORM strategy for multidisciplinary 

systems. 

Du and Chen (2002) demonstrate that the distributed FORM formulation of Eq. 

(5) provides an improvement in computational efficiency over the fully-integrated 

formulation using a standard SQP optimization algorithm.    However, additional 

efficiency may be gained by using a more tailored algorithm in the spirit of the 

Rackwitz–Fiessler method.  Note that Eq. (6) is only applicable to a single constraint 

problem, whereas the distributed formulation given in Eq. (5) has multiple constraints.  

Therefore, an algorithm is developed below to solve the multiple-constraint first-order 

reliability analysis formulation. 

The distributed FORM algorithm proposed here uses linear approximations of the 

constraints,  0=)ˆ,(g uη  and )(ηuu η=ˆ , and minimizes of the Lagrangian L as 

( ) ( )ubηbuaηaη uxux ˆbˆaL ++++++= ∑ 0201
2

2
1 λλ             (7) 

where η is the MPP vector, û is an auxiliary variable vector (in standard normal space), 

and λ1 and λ2 are Lagrange multipliers.  The coefficients a0, ax and au  come from a first-

order Taylor series approximation of the limit state g.  (Note that ax and au are vectors.) 
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Similarly, the coefficients, ux bb   and    0 ,,b come from the first-order approximation of the 

compatibility constraint (between two disciplinary analyses), uη(η)-û. 
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Differentiating the Lagrangian with respect to η and setting the derivative to zero gives: 

xx baη 21 λλ −−=                                                          (11) 

Differentiating with respect to, u, λ1 and λ2, substituting with Eq. (10), and setting the 

partial derivatives to zero results in the following matrix equation: 
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For linear systems, solving Eqs. (11) and (12) gives a critical point to the Lagrangian.  If 

this critical point is a minimum, the solution is the most probable point.  For non-linear 

systems, the solution may be used iteratively to update the MPP, η*, and the auxiliary 

variables u.    Eq. (12) may be considered an extension of Eq. (6), except that the solution 

of Eq. (12) accounts for the auxiliary variables, û, and the additional compatibility 

constraint, u(η)-û.   Fig. 6 demonstrates the multi-constraint FORM algorithm.  A pseudo 

code for the algorithm follows: 
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        = ( )  transform MPP candidate to standard normal space
        Find g (

T

η

β
β β

=

− ≥

i

x u

η x

1

2 0

1 0

ˆ ˆ ˆ ˆ), g ( , ),  ( ), ( )

        Find  and  (Eqs. 9 and 10)
0

ˆ        Solve Eq. 12 for , :
ˆ

i i i i i i i i

i

,

a
b

η

λ
λ

+

∇ ∇

⎡ ⎤ ⎧ ⎫⎧ ⎫
⎪ ⎪ ⎪⎢ ⎥− =⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥− ⎩ ⎭⎣ ⎦ ⎩

u u

i+1 x x x u

x x x u

η u η u u x ,u x ,u

a b
a        b         0

u λ a   a b   a
ua b   b    b

1 1 2

i+1 1

i i-1

i-1

        Solve Eq. 11 for 
        

        Check 
        1
END

(g<0) ( )

i

i

i i

P

λ λ
β

β β

β

+

+

⎪
⎬
⎪
⎭

= − −

=

−

= +

≈ Φ −

x xη a b
η

 

 

Note that this algorithm is distinguished from the Rackwitz-Fiessler method in that 

iterative, multidisciplinary analysis in not required.  Instead, auxiliary intermediate 

variables, û are used to evaluate each discipline. 

This method can be extended to include even more constraints by augmenting the 

Lagrangian in Eq. (11) and following the steps in Eqs. (8) to (12).  Thus it is referred to 

as multi-constraint FORM.  Multi-constraint FORM is a distributed method since the 

multidisciplinary feasibility conditions are simply added as constraints in the MPP search 

and only satisfied at convergence.   The potential computational advantage of this 

approach is demonstrated on a numerical example in the following section. 

 



 37

 

Figure 6.  Multi-constraint FORM for multidisciplinary system 

 

Numerical Example 

Each of the proposed decoupled probabilistic analysis algorithms: (1) partial 

FOSM, and (2) decoupled, multi-constraint FORM, are applied to the two-discipline 

example system in Fig. 1, taken from Du and Chen (2002).   In addition, as a baseline, the 

basic Monte Carlo method, fully-integrated FOSM (Fig. 3), and distributed FORM (using 

a standard sequential quadratic programming algorithm and the Rackwitz-Fiessler 

formula of Eq. 6) are applied to the same system to the integrated system.  The results are 

compared with respect to accuracy and computational efficiency. 

The functional relationships for the disciplinary analyses are as follows: 
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The limit state for the system is given by g1, so that the probability of failure, Pf, is given 

by Pf = P(g1 < 0). 

The system is undefined in a region for which u2,1 < 0 but is continuously 

differentiable over the region of interest.  Although this system may be solved 

algebraically by variable reduction, the comparison is based on using fixed-point iteration 

to find the feasible system.  (In other words, a trial value of u2,1 is selected, next u1,2 is 

computed from analysis 1, then u2,1 is computed from analysis 2; and the process is 

repeated with the new value for u2,1 until convergence.)  This is done to simulate the 

behavior of large multidisciplinary systems that may not have closed-form solutions.  For 

the same reason, finite differencing is used to approximate the gradients even though 

analytical derivatives could easily be derived for this particular example. 

 

Partial FOSM 

Partial FOSM techniques are employed on the example system, first combining 

FOSM with Monte Carlo Simulation and then with FORM using the Rackwitz-Fiessler 

algorithm in Eq. (6).  Both techniques use FOSM on the multidisciplinary system to 

estimate the mean and standard deviations of the intermediate variables, and assume that 

they variables follow a normal distribution.  The first method subsequently performs a 

Monte Carlo analysis on A1 to determine the probability of failure, Pf = P(g1 ≤ 0).  No 
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attempt is made to assure a feasible system, rather the auxiliary variables are simply 

treated as random input variables with a normal distribution and mean and standard 

deviation as calculated via FOSM.  The second method, alternatively, performs a 

Rackwitz-Fiessler (RF) FORM analysis to determine Pf.  (In this case, Eq. (6) is solved 

iteratively for A1 only, again treating intermediate variables as normally distributed 

random variables with the mean and standard deviation given by the previous FOSM 

analysis.  These methods are compared with Monte Carlo, integrated RF-FORM analysis, 

and direct, integrated FOSM analyses on the multidisciplinary system.  In other words, 

the system is considered a black box and multidisciplinary feasibility is required with 

each function call.  The results are shown in Table 1. 

As expected, the FOSM method, when applied directly on the coupled analysis of 

the system, is not very accurate.   The linear approximation of the limit state is taken at 

the mean value rather than the MPP, resulting in poor estimation for the tail end of the 

joint probability distribution which is where failure occurs.  However, using the partial 

FOSM method with RF-FORM increases the accuracy with very little additional 

computational effort.  When RF-FORM alone is applied to the multidisciplinary analysis, 

324 function calls are needed.  This is due to the fixed-point iteration in both the 

evaluation of the limit state and the gradient.  For the partial FOSM/R-F method, no 

system convergence loops are needed, resulting in significant computational savings.  

The same is true for Monte Carlo analysis.  Although ten thousand iterations are called 

for, each system analysis call requires 18 function calls (on average) in the convergence 

process.  This is not needed when the parameters of the coupling variable, u2,1, are 

approximated with FOSM; in this case, each Monte Carlo run calls for a single 
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disciplinary analysis.  Thus, using the partial FOSM may achieve significant 

computational savings in this example without significantly sacrificing accuracy.    

  

Table 1:  Comparison of Integrated Reliability Methods with Partial FOSM  

 
Method 

 
β 

 
Pf 

Number of 
disciplinary 
analyses*

 

Monte Carlo 
(integrated) 

 
5919.1)0557(.1 =Φ−  

 
.0557 

 
180,186 

Rackwitz-Fiessler (RF) 
FORM 

(integrated) 

 
1.6252 

 
.0521 

 
324 

FOSM 
(integrated) 6661.1

3001.
500.1 ==

ag

g

σ
µ  

.0478 
 

126 

FOSM with Monte Carlo  
5982.1)0550(.1 =Φ−  

 
.0550 

 
10,126 

FOSM with RF-FORM  
1.6251 

 
.0521 

 
148 

*The number of analyses includes finite difference runs to approximate the gradient in the case of FORM. 

 

Using FOSM as the initial step may be particularly valuable when the limit state 

function is an output of a fairly simple analysis but relies on input from a more 

computationally intensive analysis.  In this case, the difficult analysis need only be 

performed as a part of the FOSM process, while FORM or Monte Carlo can be used on 

the simpler analysis to improve accuracy.  If the limit state function is highly dependent 

on the intermediate variable, and an incorrect distribution is used, this will obviously 

affect the accuracy of the partial FOSM method. 
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Distributed Multi-Constraint FORM 

The proposed distributed, multi-constraint FORM algorithm is applied to the 

example system, and is compared with the integrated R-F algorithm as well as SQP for 

both integrated and distributed formulations.  Results are shown in Table 2.   

 

Table 2:  Comparison of Integrated vs. Distributed FORM Methods 

Formulation 
 

Method 
 

 
β 

 
Pf 

 
Number of disciplinary analyses*

 

 
Integrated 

(Eq. 6) 
 

 
FORM with 

R-F Algorithm 

 
1.6252

 
.0521

 
324 

 

 
Integrated 

 (Eq. 4) 
 

 
FORM with SQP 

 
 

 
1.6252

 
.0521

 
1840 

 
Distributed 
(Eqs. 11-12) 

 
Multi-constraint 

FORM 
 

 
1.6252

 
.0521

 
69 

 
Distributed 

 (Eq. 5) 

 
FORM with SQP 

 
 

 
1.6252

 
.0521

 
370 

*The number of analyses includes finite difference runs to approximate the gradient. 

 

From Table 2, it may be seen that all FORM algorithms produced the same result, 

regardless of whether it was applied to the integrated system (i.e., conventional approach) 

or the distributed system and regardless of which optimization algorithm was used.  

(Note, in addition to reaching the same reliability index, all methods converged to the 

identical most probable point, x’ = [2.3477, 1.9014, 0.9507, 0.0, 0.0].)   However, using the 

distributed formulation netted a five-fold reduction in the total number of function 
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evaluations over that of the integrated system.   Du and Chen (2002) produced similar 

results in evaluating the distributed vs. integrated formulations using SQP.  However, the 

proposed multi-constraint FORM algorithm is seen to result in another five-fold 

improvement in efficiency over the distributed SQP method as it does not implement a 

line search requiring several additional function evaluations for each iteration.  Thus, the 

proposed multi-constraint FORM-based technique appears promising for dramatic 

savings in computational effort in the reliability analysis for certain multidisciplinary 

systems.     

Of course, this example only points to the possibility of improvement.  Further 

study is needed to identify specific characteristics of the class of problems for which this 

algorithm is best suited.  At this point, one would anticipate poor performance of the 

algorithm in situations where the Newton-Raphson formula fails to find roots for either 

the (1) limit state or (2) disciplinary analysis equations.  In the first case, Haldar and 

Mahadevan (2000) review well known convergence problems associated with using the 

Rackwitz-Fiessler step such as divergence at an inflection point or oscillation on either 

side of the most probable point.  The multi-constraint FORM method is derived in the 

same way so one would expect similar limitations.  In many cases, this problem may be 

circumvented by selecting a different starting point.   In the second case, the multi-

constraint FORM algorithm presumes that a gradient-based step is an efficient means of 

satisfying disciplinary analyses compared to multidisciplinary analysis (such as fixed 

point iteration.)   Addition of a line search could also be implemented to facilitate 

convergence, but this would offset much of the savings in computational effort.   A 

similar modification would be to implement a hybrid algorithm that defers to SQP at the 



 43

first sign of divergence or oscillation with multi-constraint FORM.  (This strategy is 

employed in the following chapter).  Other areas which need to be explored include the 

effects of dimensionality of the vector of auxiliary variables (a measure of the ‘tightness’ 

of interdisciplinary coupling), the availability of analytical derivatives, the number of 

disciplines, and the dimension of the design variable vector.  

 

Conclusion 

This chapter developed two computational algorithms that take advantage of a 

distributed formulation to perform reliability analysis of multidisciplinary systems.    A 

Partial FOSM method may be most useful for multidisciplinary systems where (1) the 

limit state failure probability is relatively insensitive to intermediate disciplinary response 

variables and (2) the expense of a single disciplinary analysis yielding the system limit 

state is much less than that of multidisciplinary analysis.  In addition, the technique is 

particularly useful to marry with sampling methods to account for non-linearity in a 

system limit state with respect to random input variables.   A multi-constraint FORM was 

also presented.  In general, it is applicable for limit states and disciplinary analyses which 

are continuously differentiable; it also necessitates that a solution to the multidisciplinary 

system exists at the most probable point.    

Each of these ideas has promise but needs to be examined in more detail. First, 

many additional examples are needed to identify system characteristics required for the 

algorithms to be effective.  For the partial FOSM methods, this would ideally lead to a 

relative a priori prediction on accuracy based on failure sensitivity to auxiliary variables.  

The multi-constraint FORM method is expected to encounter convergence problems for 
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particular systems; it would be valuable to determine characteristics of such systems and 

to develop early exit criteria so that minimal effort is expended before resorting to 

alternative algorithms.    In addition, gradient approximations are a key factor when using 

either FORM or FOSM and usually dominate the computational effort.   Decoupling the 

analysis needs to be exploited to a greater extent in this regard.   It is obvious that first-

order reliability estimates are approximate; typically efficient Monte Carlo schemes, such 

as importance sampling (Haldar and Mahadeven, 2000), are used subsequently to 

improve the accuracy of the FORM estimates.  Future work needs to develop efficiency 

in important sampling in the context of multidisciplinary analysis. The techniques should 

also be evaluated for realistic multidisciplinary problems to evaluate their robustness.   

Finally, many multidisciplinary systems are not continuous presenting problems 

for multidisciplinary analysis let alone reliability analysis.  However, if the system limit 

state is differentiable in the vicinity of the MPP and the multidisciplinary system is 

feasible at the MPP, there is a solution to the FORM formulation.  Further modification 

of the multi-constraint FORM method would be required for the MPP search in this 

situation. 

The ultimate goal in sharing methodology between probabilistic multidisciplinary 

analysis and multidisciplinary optimization is to efficiently solve probabilistic 

multidisciplinary optimization problems or multidisciplinary optimization under 

uncertainty.  If probabilistic constraints are given for an MDO problem, an outer 

optimization loop needs to be added to Fig. 1, further compounding the computational 

effort.  The development of probabilistic MDO has been recently reported, by combining 

reliability-based design optimization (RBDO) and MDO methods, utilizing the 
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decoupling concept (Chiralaksanakul and Mahadevan, 2004). These methods can be 

further enhanced by incorporating the proposed multidisciplinary reliability analysis 

techniques.   To this end, the next chapter presents twelve algorithms for reliability-based 

optimization of multidisciplinary systems.  These algorithms build upon the ideas 

presented in this chapter by combining efficient reliability analysis of multidisciplinary 

systems with methods for multidisciplinary optimization and reliability-based 

optimization. 
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CHAPTER III 

 

RELIABILITY-BASED OPTIMIZATION OF MULTIDISCIPLINARY SYSTEMS 

 

Introduction 

 This chapter extends the strategies employed in first-order reliability analysis of 

multidisciplinary systems for the development and study of algorithms for reliability-

based optimization of multidisciplinary systems in accordance with the second research 

objective.    The significance of this extension is that optimization provides a means for 

design, specifically for designing systems that meet predetermined standards for 

reliability. However, this capability comes at the expense of significant additional 

computational effort.   The algorithms provided (referred to herein as MDO-RBDO 

methods) exploit efficiencies from existing deterministic multidisciplinary optimization 

(MDO) methods and single discipline reliability-based design optimization (RBDO) to 

mitigate the computational expense of probabilistic design of multidisciplinary systems. 

The performance of various RBDO-MDO algorithms is investigated with three 

simple example problems to gain insight into the relative consistency, accuracy, and 

efficiency of each method.  To this end, twelve basic algorithms are developed and tested 

on each example.  Each algorithm combines an RBDO strategy (nested, sequential, or 

single-loop) using either a direct or inverse first order reliability method (FORM) with 

two common MDO formulations (fully integrated analysis or simultaneous analysis and 

design).  The RBDO strategy uses first-order reliability analysis (FORM) to evaluate 

probabilistic constraints either directly or through an inverse formulation.  
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The following section reviews the concepts behind the twelve algorithms, 

providing a general formulation for the class of MDO-RBDO problems.  Then, a brief 

review of MDO and RBDO concepts is given leading to a classification of the MDO-

RBDO combination algorithms.  This is followed with a detailed methodology discussion 

of each algorithm.  The performance of the algorithms is then evaluated for three 

example problems. Comparative analysis of the algorithm’s performance is based on 

efficiency (analysis count), accuracy, and consistency (ability to converge to an optimum 

regardless of starting point.)  

 
MDO-RBDO Formulation  

The class of RBDO-MDO problems is formulated as in Eq. (1)  as defined in 

Chapter I. 

Minimize f (d) 

s.t. P{ gη(i) [d, η, u(d, η)] = 0} ≤  Pacceptable,  i = 1...mconstraints                (1) 

where Aη(j) [d, η, u(d, η)]  = 0,  j = 1...mdisciplines  

The most straight-forward approach to reliability-based optimization (RBDO) employs 

an ‘outer’ optimization loop with reliability analysis as an inner loop, multiplying the 

computational effort for each reliability constraint evaluation.   Thus, for 

multidisciplinary systems, conventional reliability-based optimization involves three 

nested loops: two optimization loops (one for reliability analysis and one for the system 

optimization itself) and a multidisciplinary analysis loop.  This effect is shown 

graphically in Fig. 1.    
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Figure 1.  Reliability-based Optimization of Multidisciplinary Systems 

 

 Fortunately, as demonstrated in the previous chapter, using distributed strategies 

from MDO may reduce this effort by combining the inner two loops.  At the same time, 

recent advances in RBDO have led to improvements in synthesizing the outer two loops.  

The algorithms presented in this chapter incorporate both of these techniques, aiming to 

provide alternatives for solving Eq. (1) most efficiently. 

 

MDO-RBDO Concepts and Classification 

Table 1: Synopsis of RBDO-MDO algorithms considered 

 MDO Strategy 

RBDO  
Strategy Fully-integrated Analysis Simultaneous Analysis and 

Design 
Nested  1. Direct 

FORM 
2. Inverse 

FORM 
7. Direct 
FORM 

8. Inverse 
FORM 

Sequential 3. Direct 
FORM 

4. Inverse 
FORM 

9. Direct 
FORM 

10. Inverse 
FORM 

Single-loop 5. Direct 
FORM 

6. Inverse 
FORM 

11. Direct 
FORM 

12. Inverse  
FORM 
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The algorithms employed in this chapter are classified in three ways yielding 

twelve combination algorithms as depicted in Fig. 1.  The first classification is according 

to their underlying formulation, specifically how the probabilistic constraint is evaluated.  

Chapter I provided an overview of reliability-based design optimization, discussing in 

some detail two primary means to ensure satisfaction of a first order probabilistic 

constraint:  a direct FORM method known as the reliability-index (RIA) approach, and 

the performance measure approach (PMA) based on an inverse formulation.    The direct 

first-order reliability-based optimization formulation given in Eq. (7) in Chapter I is 

restated here in Eq. (2). 

        Minimize f (d) s.t. β ≥ βtarget, i = 1...m                                                (2) 

where d is the vector of design variables and the acceptable probability, Pacceptable is 

transformed to a target reliability index,  βtarget using the inverse of the standard normal 

cumulative distribution, i.e., β 
target 

= − Φ-1 (Pacceptable 
) . The first-order reliability index, β is 

defined by Eq. (3).    

Minimize β = η                             (3) 

s.t. gη(d, η) = 0 

Alternatively, an “inverse” FORM method is often used for RBDO as given in Eq. (9) in 

Chapter I and restated here as Eq. (4).   

Minimize f (d)                                                       (4) 

s.t. g* ≥ 0  

where g* is defined by Eq. (5).  

Minimize g* = gη(d, η)                                                (5) 

s.t.  η  = βtarget 
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Thus, the RBDO algorithms used herein are distinguished first as either direct (i.e., based 

on Eqs. (2)-(3)) or inverse FORM methods (based on Eqs. (4)-(5)). 

The second criterion for classifying the MDO-RBDO algorithms is based on the 

method used to ensure multidisciplinary feasibility.  The first set of methods uses fully-

integrated analysis and optimization.  Consider again the optimization formulation as 

shown in Eq. (1).  Each disciplinary analysis depends on both system inputs (d) and 

responses (u) from the other disciplines.  A feasible system is defined as one in which 

inputs and discipline outputs simultaneously satisfy all disciplinary analysis equations, 

A[d,η,u(d,η)] = 0.  A single objective or constraint function evaluation involves solving a 

system of non-linear equations to ensure that shared response values are compatible 

across all disciplines and that there are no disciplinary analysis residuals.  This 

representation is trivially identical to the standard optimization formulation, but 

highlights the interdependency of disciplinary analyses on one another, the objective 

function, and the constraint functions.   For fully-integrated analysis, the set of 

disciplinary equations must be solved completely each time disciplinary responses are 

required for either reliability analysis (to determine the limit state) or optimization.   

However, as an alternative to fully-integrated analysis, one may opt for the 

simultaneous analysis and design approach, as employed in the context of the direct 

FORM algorithms for reliability analysis presented in Chapter II.  With SAND, auxiliary 

variables representing the discipline response variables are employed as independent 

design variables.  In other words, in the SAND formulation, both d and û are design 

variables, where û denotes the surrogate of the discipline response variables.  

Compatibility constraints are added to the optimization problem to ensure the disciplinary 
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analysis equations are satisfied.   For any feasible solution, these compatibility constraints 

also ensure that the surrogate response variables are the same as the true response 

variables (i.e., û = u(d)).  In this way, the system optimizer also ensures multidisciplinary 

compatibility but avoids spending significant effort to do so away from the optimal 

design point.  Note that although the previous chapter demonstrated the value of using 

SAND to improve the computational efficiency of direct first order reliability analysis, 

the same process may apply to an inverse FORM formulation.    

The third and final classification of MDO-RBDO algorithms is based on the 

technique for combining reliability analysis with optimization.  As mentioned briefly in 

Chapter I, researchers have developed several techniques to streamline reliability-based 

optimization of single discipline systems (Royset et al, 2001; Du and Chen, 2002; Liang 

and Mourelatos, 2004; Zou et al).  Based on these developments, RBDO algorithms can 

be generally classified by three fundamental approaches to combining optimization with 

reliability analysis (loops 2 and 3 from Fig. 1): nested, sequential, and single-loop.    

The most straightforward method for performing reliability-based design involves 

nested optimization, as shown by the combinations of optimizations in Eqs. 2 and 3 for 

direct FORM or Eqs. 4 and 5 for inverse FORM.  (Note: this would comprise the two 

outer loops of Fig. 1, i.e., loops 2 and 3).  However, in order to alleviate the ‘nested’ 

effect of RBDO, one can either decouple (i.e., separate) the reliability analysis from the 

primary optimization problem (Royset et al, 2001; Du and Chen, 2002; Zou et al, 2002), 

or combine them into a single loop.  The first approach borrows from a common 

optimization strategy, solving sequential subproblems.  For RBDO, the optimization 

subproblem uses deterministic constraints to approximate probabilistic constraints.  
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Reliability analysis then follows full optimization to update these constraints.  The 

process is repeated until convergence.   Du and Chen apply this technique with inverse 

FORM in their “Sequential Optimization and Reliability Analysis (SORA)” method.  

Alternatively, Zou et al. (2002) presents a sequential RBDO algorithm which uses a first 

order approximation of the probabilistic constraint, enabling any reliability analysis 

technique (e.g., direct or inverse FORM, as well as simulation methods) to update the 

deterministic subproblem.   The second strategy combines reliability analysis and 

optimization in a single-loop.   For example, Liang and Mourelatos (2004) demonstrate 

computational improvement through a single loop RBDO method which imposes the 

Karush-Kuhn-Tucker optimality conditions of the reliability ‘loop’ for the representative 

deterministic constraints.    In this case, each iteration includes both a step toward the 

optimal design, d and a step toward the MPP, η* for direct FORM or the PMA point,  η' 

for inverse FORM.  Thus, the final classification divides the RBDO methods into three 

groups according to how optimization and reliability analysis are combined: nested, 

sequential, and single-loop.   

The two RBDO formulations (direct and inverse FORM) combine with the two 

MDO approaches (fully-integrated and simultaneous analysis and design) and the three 

RBDO strategies for combining optimization with reliability analysis (nested, sequential, 

and single loop) to form twelve algorithms.  Table 1 provides a summary of the MDO 

and RBDO techniques comprising each method.    These 12 algorithms are founded upon 

the theory due to Chiralaksanakul and Mahadevan (2004) for integrating reliability-based 

design optimization (RBDO) with multidisciplinary optimization.  This methodology 

specifically addresses how multidisciplinary feasibility is assured and disciplinary 
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responses are tracked during both reliability analysis and optimization iterations as 

described in more detail in the following section.    

 

Methodology 

 
Method 1: Fully-integrated, Nested RBDO-MDO Using Direct FORM  

 Fully-integrated MDA: The first six methods are ‘fully-integrated’ with respect 

to the multidisciplinary analysis.  In other words, each time the limit state   gη(i)[d, η, u(d, 

η)] is to be evaluated, the system of multidisciplinary equations given by Aη[d, η, u(d, 

η)]=0 must first be solved for u(d, η).  For this study, these non-linear equations are 

solved using Newton’s method; analytical gradients (∇A) are calculated to avoid adding 

analysis evaluations for finite difference approximations.  In practice, multidisciplinary 

analysis is most often done by fixed point iteration.  However, since a gradient-based 

optimizer will be used to solve the system equations for the simultaneous analysis and 

design MDO methods, using Newton’s method to solve them for the fully-integrated 

analysis provides the more equitable basis for comparison.  

 

Nested RBDO: Fig. 2 outlines the pseudo code for nested optimization and 

reliability analysis as employed in Methods 1, 2, 7 and 8.  All nested methods use 

sequential quadratic programming (SQP) for the outer optimization loop in this study; in 

this context k tracks the outer loop iterations.  The inner loop algorithm is dependant on 

the reliability analysis technique employed.     For candidate design points, the algorithm 

must evaluate the objective and constraint functions and their gradients; then based on the 

results, select an appropriate descent direction and step size.  
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Figure 2. Pseudo Code for Nested Methods 

 
 

Direct FORM Reliability Analysis: The first method uses direct FORM for 

reliability analysis (i.e., MPP search as in Eq. (3)).  Since the reliability analysis is 

repeated for every optimization loop, the efficiency of this step is critical.  Here, the 

Rackwitz-Fiessler (R-F) Newton step given in Eq. (6) is applied iteratively until 

convergence as the ‘first choice’ MPP search algorithm; in this case, q tracks the inner 

loop or reliability analysis iterations.  Note that in order to evaluate the limit state gη or its 

gradient, the discipline response variables, u(d, ηq) are needed where ηq is the random 

variable vector in standard normal space for the qth iteration of Eq. (6). 
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ηq+1= 
ηg

1  [(∇ηg)Tηq - gη]∇ηg                                           (6) 

The R-F step will typically find the MPP in fewer than 10 (inner loop, reliability analysis) 

iterations if successful.  Unfortunately, however, this method may not converge for some 

limit states (Haldar and Mahadevan, 2000).  For this reason, SQP is invoked when the RF 

algorithm fails to converge after 10 iterations.  

Note from the pseudo code in Fig. 2 that the SQP optimizer requires gradients of 

all constraints, including probabilistic constraints.  The gradient for the probabilistic 

constraint is calculated as in Eq. (7):  

η

η

[ ( )]g

g

β
∂

∂ ∂=
∂ ∇

d,η*,u d,η*
d

d
                                            (7) 

where β is the reliability index, η* is the direct FORM MPP, and ∇ηg is the gradient of 

the limit state with respect to the MPP. 

  

Method 2: Fully-integrated,  Nested RBDO Using Inverse FORM  

 
Inverse FORM Reliability Analysis: The second method only differs from 

Method 1 in that it uses inverse FORM for reliability analysis (i.e., optimization as in Eq. 

(4) coupled with PMA point search as in Eq. (5)). To improve the efficiency of this step, 

Eq. (8) below is applied iteratively as the ‘first choice’ MPP search algorithm as it will 

often converge with significantly fewer function evaluations than generic optimization 

algorithms.    Sequential quadratic programming is invoked when Eq. (8) fails to 

converge after 10 iterations.  
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ηq+1 = 
g

g

η

η

∇

∇
βtarget                                                   (8) 

The gradient for the probabilistic constraint using inverse FORM (Eq. (4)) is simply the 

gradient of the limit state with respect to the design variable vector, d.   In other words 

( )g* g ,∂ ∂
=

∂ ∂
d η'

d d
. 

 
Method 3: Fully-integrated, Sequential RBDO Using Direct FORM  

 
Sequential Optimization and Direct FORM Reliability Analysis:   In 

sequential optimization and reliability analysis, deterministic subproblems are solved 

sequentially so as to decouple reliability analysis from optimization as depicted by the 

pseudo code given in Fig. 3.  Since the optimization subproblem is deterministic, 

reliability analysis is not required to evaluate the constraints.  Probabilistic analysis 

follows the optimization, updating the subproblem.  The entire sequence is then repeated 

iteratively but usually converges quickly.  The third method uses sequential deterministic 

optimization subproblems formed by linearizing the probabilistic constraint.  Equation 

(10) gives the general form of the subproblem given by Zou and Mahadevan (2004).    

Minimize f (d)                                                      (9) 

s.t.  acceptable( )k k k
f fP P P− ∇ − ≤d d d  

where k
fP is the current estimate of the failure probability, P(g ≤ 0).  The solution to the 

subproblem, Eq. (9), gives the next iteration for the design variable vector, dk+1.   Note 

that the linearization could just have easily been performed on the reliability index, β as 

in Eq. (2), given the FORM relationship )(-βΦ=fP .  However, Zou and Mahadevan’s 
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subproblem is more generic in that it can also accommodate reliability analysis methods 

other than FORM (e.g., Monte Carlo Simulation, second order methods) to evaluate Pf.   

In this method, direct FORM is used as outlined in Method 1.  In other words, the R-F 

step, Eq. (6), is applied iteratively to determine the most probable point, η* and the 

probability of failure is subsequently determined from the reliability index, β.  The chain 

rule of differentiation gives the probability gradient as in Eq. (10).  

k
fP ( ) βφ β ∂

∇ = − −
∂d d

                                                (10) 

 

where β∂
∂d

is given by Eq. (7) as described in the first method.  Note that in 

implementation, this method is very similar to Method 1 if SQP is used as the 

optimization algorithm since SQP will also linearize the probabilistic constraint.  

However, this method is unique in a two ways.  First, no representative model for the 

objective is given by Eq. (9); SQP uses a quadratic local model.  Second, any non-

probabilistic constraints would be included in Eq. (9) in their initial state.  (Non-

probabilistic constraints were excluded from Eq. (1) to simplify the MDO-RBDO 

formulation but could be present in many real applications.)  A final practical distinction 

is that SQP algorithms typically require multiple constraint evaluations for each iteration 

during a line search while this method does not conduct a line search.    
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Figure 3. Pseudo Code for Sequential Methods 

 

Method 4: Fully-integrated, Sequential RBDO Using Inverse FORM  

 
Sequential Optimization and Inverse FORM Reliability Analysis:   The 

fourth method employs sequential optimization with inverse reliability analysis.  In this 

case, the deterministic subproblem is formed by fixing the realization of the standard 

normal variable, ηk (representing the current solution of Eq. (4) for the PMA point, η′) 

for each constraint as in Eq. (11).  

Minimize f(d)                                                       (11) 

s.t. gη(i)[d,ηi
k,u(d,ηi

k)] ≥ 0 for i = 1…mconstraints 

Inverse FORM reliability analysis is performed as described in Method 2, i.e., by 

conducting an iterative search for the PMA point using Eq. (8).  This provides a new 

estimate of the MPP, ηk+1, which in turn is used in the next deterministic optimization 
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subproblem.  Note that each constraint is a limit state and thus will have its own PMA 

point. The process is repeated until convergence.  Sequential RBDO using inverse FORM 

is the basis of the SORA method (sequential optimization and reliability analysis) 

proposed by Du and Chen (2003).   However, the SORA method has several additional 

efficiency strategies.  Here only the basic concept of decoupling is adopted in order to 

compare all the methods on equal footing.  

 

Method 5: Fully-integrated,  Single Loop RBDO Using Direct FORM 

 
 Single-loop optimization and Reliability Analysis: The final two fully-

integrated MDO methods combine optimization and FORM in a single loop.   Using 

direct FORM, the optimization given in Eq. (12) follows.  In this approach, the design 

point, dk and the MPP estimate, ηk are updated simultaneously in the same loop.   The 

algorithm calculates a new MPP estimate ηk each time the optimizer calls on the 

constraint target
k β≥η , based on the last calculated value using the R-F step.    Both d 

and ηk must ultimately converge before a legitimate solution is reached. 

target

1

Minimize ( )

s.t. 

1where  

k

k T k

f

 

g g g
g

β

−

≥

⎡ ⎤= ∇ − ∇⎣ ⎦∇ η η η
η

d

η

η η

                              (12) 

Method 6: Fully-integrated,  Single Loop RBDO Using Inverse FORM  

 
Single-loop optimization and Reliability Analysis: The final fully-integrated 

MDO method combines optimization and inverse FORM in a single loop as given by Eq. 
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(13).  In this case, the PMA point estimate, ηk is updated each time the optimizer calls the 

constraint by enforcing the Karush-Kuhn Tucker solution of inverse FORM, Eq. (4).    

Just as with the previous method, the new estimate for the PMA point is based on the last 

calculated estimate and both d and ηk must ultimately converge for a final solution. 

Minimize ( )
s.t.  ( ( )) 0

( ( ))
where 

( ( ))

k k

k k
k

k k

f
g

g

g

− −

− −

≥

−∇
=

∇

η

1 1
η

1 1
η

d
d,η ,u d,η

d,η ,u d,η
 η

d,η ,u d,η

                                      (13) 

 

Method 7: SAND,  Nested RBDO Using Direct FORM  

 
Simultaneous Analysis and Design:  The second set of six methods use 

simultaneous analysis and design (SAND) in lieu of fully-integrated multidisciplinary 

analysis.  In other words, multidisciplinary analysis is not required for every optimization 

iteration or reliability analysis iteration; rather, multidisciplinary feasibility is enforced as 

a constraint.  For the initial design (d0) and reliability MPP estimate (η0), 

multidisciplinary analysis is performed to find the feasible response variables, u(d0, η0).  

From this point on, however, independent auxiliary variables, û, are used in lieu of 

disciplinary response variables. The limit state may then be evaluated without requiring 

multidisciplinary analysis, i.e., g(d, η, û).  To ensure the design is feasible, and that the 

reliability analysis is accurate, the multidisciplinary analysis equations, A(d, η, û) = 0, are 

added to the reliability analysis formulations (i.e., Eqs. (2) and (4) for direct and inverse 

FORM, respectively) as constraints.  For example, Eq. (14) gives a SAND translation of 

Eq. (3), direct FORM, to find the reliability index.   
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Minimize 
s.t.  ( ) 0

( ) 0

ˆg
ˆA

β =

=

=
η

η
d,η,u

d,η,u

                                              (14) 

 

Nested RBDO:  Method 7 employs nested RBDO in the same manner as Method 

1 (Fig. 2).  The distinction is that the MPP search uses the SAND reliability analysis as in 

Eq. (14) instead of the fully-integrated multidisciplinary analysis.  

 
Direct FORM Reliability Analysis: Computational efficiency of direct FORM 

relies heavily on the reliability analysis algorithm.  For example, the Rackwitz-Fiessler 

(R-F) Newton step given in Eq. (6) improves the efficiency of the fully-integrated 

methods described earlier.  The R-F Newton step is based on a specific solution to the 

Karush-Kuhn Tucker (KKT) conditions for a quadratic program approximation of the 

MPP search optimization problem (i.e., Eq. (3) with a first-order approximation for the 

limit state).  As demonstrated in Chapter II, the same technique may be applied to Eq. 

(14) to develop an efficient step for direct FORM using SAND. In other words, reliability 

analysis is performed by finding successive solutions to the quadratic subproblem given 

in Eq. (15).  

Minimize 

s.t.  ) 0

0

q

q

g g (

A A ( )

β =

+ ∇ − =

+ ∇ − =
η η

η η

η

η η

η η

                                         (15) 

If this generally more efficient algorithm fails to converge in 10 iterations, the MATLAB 

‘fmincon’ optimizer (which uses a line search to select the step size) is then applied.  One 

other nuance with the SAND method relates to gradient evaluation.   The gradient 

calculation for direct FORM is given in Eq. (7), which  
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requires 
( ( ))g∂

∂
η d,η*,u d,η*

d
 . To avoid multidisciplinary analysis, this derivative may be 

evaluated via the chain rule as in Eq. (16).  

( ( )) ( ) ( )( )ˆ ˆg g g* *
ˆ

η η∂ ∂ ∂∂
= +

∂ ∂ ∂ ∂
η d,η*,u d,η* d,η*,u d,η*,uu d,η

d d d u
            (16) 

where ( )*∂
∂

u d,η
d

is calculated by solving ( ( )) 0A *∇ =d d,η*,u d,η . 

 

Method 8: SAND,  Nested RBDO Using Inverse FORM  

 
Simultaneous Analysis and Design using Inverse FORM:  As with the 

previous method, Method 8 avoids multidisciplinary analysis each time the limit state is 

evaluated by using independent auxiliary response variables, û, and adding 

multidisciplinary compatibility constraints to reliability analysis.  For inverse FORM, this 

results in Eq. (17).   

target

Minimize ( ) 0

s.t. 

( ) 0

ˆg

 
ˆA

β

=

=

=

η d,η,u

η

d,η,u

                                                     (17) 

For this study, a standard sequential quadratic programming algorithm is used to solve 

Eq. (17).  This is in contrast to Method 2, which solves Eq. (8) iteratively as the first 

choice algorithm.   No obvious counterpart to Eq. (8) has been found to date for the 

SAND formulation for inverse FORM. 

 

Method 9: SAND,  Sequential RBDO Using Direct FORM  

Method 9 follows the same process as outlined in Fig. 3.  The distinction between 
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Method 9 and Method 3, its fully-integrated counterpart, is that direct FORM is 

implemented using SAND via Eq. (14).  

 
Method 10: SAND,  Sequential RBDO Using Inverse FORM  

Method 10 also follows the flow outlined in Fig. 3.  It is executed in the same 

manner as Method 4, its fully-integrated counterpart, except that inverse FORM is 

implemented using SAND via Eq. (17).  

 

Method 11: SAND, Single-loop RBDO Using Direct FORM  

Method 11 combines optimization and direct FORM via SAND in a single loop as 

given by Eq. (18).  

target

1

Minimize 

s.t.  

( ) 0
1where  ( ) ( )

( )

k

k

k T k

f ( )

ˆA

ˆ ˆg g g
ˆgη

β

− − −
−

≥

=
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k 1 k 1

η η ηk 1

d

η

d,η ,u

η d,η ,u η d,η ,u
d,η ,u

   (18) 

 

Method 12: SAND, Single-loop RBDO Using Inverse FORM  

The final method combines optimization and inverse FORM via SAND in a single 

loop as given by Eq. (19).  

Minimize ( )
s.t.  ( ) 0

( ) 0
( )

where  

k

k

k
k

k

f
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ˆA
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≥

=

−∇
=

∇

η

1
η

1
η

d
d,η ,u
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η
d,η ,u

                                   (19) 
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Numerical Examples 

 

Example 1:  

Each of the twelve RBDO-MDO algorithms was applied to three sample 

optimization problems.  The first numerical example was studied by Chiralaksanakul and 

Mahadevan (2004). It is presented here as well, as a proof of concept example.  

1

2

1 2 1 2

1 1 1 2 1

2

Maximize  ( )
s.t.  ( ( ( )) 0) 0013

( ( ( )) 0) 0013

where [ ],  [ (1  1)  (1  1)]
( ( )) ( ) 0 5 ( 1)
(

f
P g .

P g .
______________________________________

d ,d x ~ N , , x ~ N ,
g x u . * x d
g

=
≤ ≤

≤ ≤

= =
= − + +

2d d
d, x,u d, x

d, x,u d, x

d x
d, x,u d, x d, x
d, x, 2

1 2 1 2 1 2

2 1 1 2

( )) ( )

( ( )) 2 0
( ( )) 3 0

u
______________________________________
A x d d u u
A d u u

=

= + − + =
= − − =

u d, x d, x

d, x,u d, x
d, x,u d, x

                          (20) 

 

In this example, the vector, x consists of two random normal variables with a mean of 1 

and standard deviation of 1. In this case, there is no direct relationship between the design 

variable vector, d, and the random variable vector. In other words, the probability 

distribution for the random variable vector, x, is independent of d. For this reason, the 

first example is less complex than many RBDO problems.  Response variables, u(d, x), 

are determined by solving the disciplinary analysis equations, A(d, x, u(d, x)) = 0.  
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Table 2: Results for Example 1  

Multidisciplinary Analysis  Fully-Integrated  

RBDO Method  Solution  Disciplinary Evals  Stability Rating  

1. Direct FORM  [.3784 .3216]  76  Good  Nested  

2. Inverse FORM  [.3784 .3216]  88  Good  

3. Direct FORM  [.3784 .3216]  76  Good  Sequential  

4. Inverse FORM  [.3784 .3216]  80  Good  

5. Direct FORM  Does not converge  Poor  Single Loop  

6. Inverse FORM  [.3784 .3216]  39  Good  

Multidisciplinary Analysis  Simultaneous Analysis and Design  

RBDO Method  Solution  Disciplinary Evals  Stability Rating  

7. Direct FORM  [.3784 .3216]  55  Good  Nested  

8. Inverse FORM  [.3784 .3216]  331  Good  

9. Direct FORM  [.3784 .3216]  55  Good  Sequential  

10. Inverse FORM  [.3784 .3216]  107  Good  

11. Direct FORM  Does not converge  Poor  Single Loop  

10. Inverse FORM  [.3784 .3216]  15  Good  

 
 

Algorithm performance was compared using three metrics: accuracy, efficiency, 

and consistency.  Accuracy is defined as the ability to get a true local minimum.  For this 

measure, Method 1 gives the baseline solution.  The efficiency metric is the number of 

disciplinary analysis evaluations, A(d, ηk, u(d, ηk )) . The baseline point for this 

evaluation is the mean value optimum (i.e., the deterministic solution to the optimization 

if the random variable is fixed at its mean value.)  To ascertain consistency, three 

different starting points were used to determine if the algorithm is consistently able to 
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reach a local minimum: a lower bound, the mean value optimum, and an upper bound.  A 

rating of “good” indicates the algorithm converged to the local minimum for all three 

starting points.  A rating of “fair” indicates the algorithm converged to a local minimum 

using the mean value optimum as the starting point but did not converge for at least one 

other starting point.  A rating of “poor” indicates that the algorithm did not converge to a 

local minimum at the mean value optimum.  The results are given in Table 2.  

There are a few interesting observations from this example.  First, except for the 

single loop direct FORM method, all the fully-integrated methods (1-4 and 6) performed 

well.  In this study the single-loop direct FORM methods (5 and 11) failed to converge 

for any of the examples; thus they are not considered viable MDO-RBDO methods.  The 

single loop inverse FORM method was twice as efficient, which was expected since 

optimization and reliability analysis are conducted together.  Since the multidisciplinary 

analysis for this example is fairly simple (typically only 2-3 disciplinary analysis calls 

were required for every fully-integrated multidisciplinary analysis), one would not expect 

a significant efficiency savings from going to simultaneous analysis and design.  In fact, 

the direct FORM methods performed slightly better using SAND (e.g., methods 7 and 9 

performed better than methods 1 and 3) while the inverse methods were less efficient  

(e.g., methods 8 and 10 were less efficient than methods 2 and 4).  That the SAND 

nested, inverse FORM (Method 8) performed as inefficiently as it did (331 disciplinary 

evaluations), was somewhat surprising.  On closer examination, the SAND inverse 

FORM inner loop required only 2 outer optimization loops, but each loop needed over 

150 disciplinary analyses for the inverse FORM reliability analysis.  Apparently, adding 

the additional multidisciplinary compatibility constraint significantly complicated the 
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inverse FORM problem.    

 

Example 2:  

The second example, given by Eq. (21) was derived from a common example 

used to evaluate RBDO techniques (Liang and Mourelatos, 2004). The original problem 

did not require multidisciplinary analysis.  

1 2
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 The results for Example 2 are given in Table 3.   Again, a few interesting 

observations are found.  For the fully-integrated analysis, the single-loop, inverse FORM 

method performs most efficiently but is not as consistent as the nested direct FORM 

(Method 1) or sequential inverse FORM methods (Method 4). For direct FORM, the 

SAND approach shows roughly a two-fold improvement over the fully-integrated 

methods.  However, using SAND with the inverse FORM methods raises problems.  For 

the nested method, the inner reliability analysis loops do not converge during the earlier 

optimization iterations.   When this inner loop is truncated by imposing a maximum 

iteration limit, the algorithm does converge but not until a significant number of 
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disciplinary analyses are required.  The SAND, sequential inverse FORM (Method 10) 

performs much better.  Nevertheless, it is still less efficient than the fully-integrated 

version (Method 4) since Eq. (8) used for fully-integrated inverse FORM provides an 

exact solution to the KKT conditions which is not available when the multidisciplinary 

compatibility constraints are added.  Finally, we note that the most stable algorithms are 

the nested, direct FORM methods (method 1 and 7) and the sequential, inverse FORM 

methods (methods 4 and 10). 

 
Table 3: Results for Example 2  

Multidisciplinary Analysis  Fully-Integrated  

RBDO Method  Solution  Disciplinary Evals  Stability Rating  

1. Direct FORM  [3.4391 3.2866]  825  Good   

Nested  2. Inverse FORM  [3.4391 3.2866]  828  Fair  

3. Direct FORM  [3.4391 3.2866]  644  Fair   

Sequential  4. Inverse FORM  [3.4391 3.2866]  683  Good  

5. Direct FORM  Does not converge  Poor  
Single Loop  

6. Inverse FORM  [3.4391 3.2866]  261  Fair  

Multidisciplinary Analysis  Simultaneous Analysis and Design  

RBDO Method  Solution  Disciplinary Evals  Stability Rating  

7. Direct FORM  [3.4391 3.2866]  405  Good   

Nested  8. Inverse FORM  [3.4391 3.2866]  19345*  Fair  

9. Direct FORM  [3.4391 3.2866]  348  Fair  Sequential  

10. Inverse FORM  [3.4391 3.2866]  1554  Good  

11. Direct FORM  Does not converge  Poor  
Single Loop  

12. Inverse FORM  Does not converge  Poor  

* Results achieved by truncating inner reliability analyses that do not converge in a number of steps.  
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Example 3:  

The final example is a three-bar truss optimization problem shown in Fig. 4.  

 

Figure 4. Three Bar Truss  

 
The objective is to select appropriate cross-section areas for the three bars, in 

order to minimize the weight of the truss while sustaining loads under two load cases, F1 

and F2 within allowable stresses.  The bar areas, A, lengths, L, and the applied loads, F 

are all random normal variables with mean, µ and standard deviation, σ. The RBDO 

problem formulation is given by Eq. (22).  The design variables are the mean values of 

the bar areas. The optimization is constrained by the allowable stress.  Disciplinary 

analyses consist of static equilibrium equations and stress equations for each load case. 

Disciplinary response variables are the displacements, u, and member stresses, fi for each 

case. The results are given in Table 4.  
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For this problem, we note that inverse FORM was more efficient than direct 

FORM for the first six, fully-integrated methods.  However, as in the other two examples, 

we again see difficulty in combining inverse FORM with the SAND multidisciplinary 

optimization approach.  For the SAND, sequential inverse FORM algorithm (method 10), 

this issue was overcome by performing fully-integrated multidisciplinary analysis when 

the problem arose. The resulting, mixed fully-integrated/SAND method actually 

performed best of all for this example.  As in the other two examples, we find that the 

single-loop, inverse FORM method is most efficient when combined with fully-

integrated multidisciplinary analysis but does not do well with SAND. Again, the single-

loop, direct FORM methods do not converge at all.   
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Table 4: Results from Three-Bar Truss Example  

Multidisciplinary Analysis  Fully-Integrated   

RBDO Method Solution (µA) Disciplinary 
Evals  Stability Rating 

1. Direct FORM  [11.0392 12.2814 11.0392]  217183  Good  
Nested  

2. Inverse FORM  [11.0392 12.2814 11.0392]  66554  Good  

3. Direct FORM  [11.0392 12.2814 11.0392]  212821  Fair  
Sequential  

4. Inverse FORM  [11.0392 12.2814 11.0392]  59476  Good 
 

5. Direct FORM  Does not converge  
Poor 

 Single Loop  
6. Inverse FORM  [11.0392 12.2814 11.0392]  10738  Fair  

Multidisciplinary Analysis  Distributed  

RBDO Method  Solution (µA) Disciplinary 
Evals  Stability Rating 

7. Direct FORM  [11.0392 12.2814 11.0392]  9342  Good  
Nested  

8. Inverse FORM  Does not converge  Fair  

9. Direct FORM  [11.0437 12.2659 11.0437]**  9075  Fair  
Sequential  

10. Inverse FORM  [11.0392 12.2814 11.0392]  8476*  Good*  

11. Direct FORM  Does not converge  Poor  
Single Loop  

12. Inverse FORM  Does not converge  Poor  

 
*Method 10 did not converge using the original algorithm.  Reliability analysis for certain limit states failed 
in early stages; modified algorithm resorts to fully-integrated analysis when this occurred.   
**Method 9 converged to a slightly different optimum than the other methods but is well within 3 
significant digits which is acceptable for this application. 
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 Although the three example problems are much less complex than typical 

multidisciplinary design problems, these results present some interesting observations 

that bear further analysis.   Table 5 is provided to highlight the relative performance of 

each of the three components of the twelve algorithms: reliability analysis method, 

RBDO technique, and multidisciplinary analysis strategy.   

 
Table 5:  Summary of Results 

Best Reliability Analysis Method 
  Example 1 2 3 

Nested (N) Inv/Direct Inv/Direct Inverse 
Sequential (Sq) Inv/Direct Inv/Direct Inverse Fully-integrated 

(FI) 
Single Loop (SL) Inverse Inverse Inverse 

Nested Direct Direct Direct 
Sequential Direct Direct Direct SAND 
Single Loop Inverse X X 

          
Best RBDO Technique 

  Example 1 2 3 
Fully-Integrated N/ Sq Sq N/ Sq Direct FORM 

SAND N/ Sq N/ Sq N/ Sq 
Fully-Integrated SL SL SL Inverse FORM 

SAND SL Sq Sq 
          

Best MDA Strategy 
  Example 1 2 3 

Nested (N) SAND SAND SAND 
Sequential (Sq) SAND SAND SAND Direct FORM 
Single Loop (SL) X X X 

Nested FI FI FI 
Sequential FI FI FI Inverse FORM 
Single Loop FI FI FI 

 

First, with respect to the reliability analysis method, one can make a few early 

generalizations: (1) clearly SAND appears to be better coupled with direct than inverse 

FORM, (2) direct FORM single loop methods are not viable options as they fail for even 

the simplest examples, (3) for the lower dimensioned problems, there is little difference 
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in the performance of direct vs. inverse form with fully-integrated MDA but example 3 

suggests there may be an advantage to using inverse FORM for higher dimensioned 

problems.    Analysis of the inverse FORM plus SAND methods (8, 10, and 12) reveals 

some insight into the first observation.   For fully integrated methods (2, 4, and 6), Eq. (8) 

provides an exact solution to the KKT conditions at the performance measure approach 

(PMA) point; the PMA search uses it iteratively by calculating the gradient at successive 

guesses.  However, for the SAND methods, an additional constraint (multidisciplinary 

feasibility) is added to the PMA formulation and Eq. (8) no longer satisfies the KKT 

conditions.  Since no exact solution has been developed to date, a standard optimizer 

(SQP) was used for the PMA search.    Sequential quadratic programming uses first order 

approximations of the constraints but the target reliability constraint of the PMA search, 

targetη β= , is very non-linear (it is in fact a hypersphere) so the successive linear 

approximations are particularly susceptible to cycling.   In some cases (e.g., with Method 

10 on Example 3), truncating the PMA search at a maximum number of steps away from 

the design solution provided acceptable performance.  However, further work is needed 

to develop an inverse FORM, SAND algorithm.  One tactic would be to find a critical 

point to the Lagrangian based on a linear approximation of the disciplinary analysis 

equations but retaining the second order form of the target reliability constraint.  As for 

the second observation, one key difference is noted in the mechanism for the single loop, 

direct FORM algorithm and the inverse FORM counterpart.  The limit state provides the 

equality constraint for direct FORM instead of an inequality constraint as in inverse 

FORM.   This may hint to the reason single loop direct FORM encounters convergence 

problems more frequently, but further investigation is required to fully understand the 
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problem.   Although additional research may reveal a better approach, direct FORM with 

SAND is not recommended for any MDO-RBDO applications at this time.  Finally, 

additional examples are needed to evaluate the effect of dimensionality on the 

performance of direct versus inverse FORM with fully-integrated MDA. 

 A second set of observations can be made about the selection of RBDO 

technique:  (1) when they work, single loop methods (typically with inverse FORM and 

fully-integrated MDA) are particularly efficient and (2) there appears to be no 

computational advantage to using sequential methods over nested RBDO.   The reason 

for the first observation is obvious: single loop methods make a single reliability analysis 

calculation for each optimization iteration.  Of course, as discussed concerning direct 

FORM single loop methods, the fact that the candidate design variable is also changing 

introduces errors in the evaluation of the limit state and gradient.  However, the inverse 

FORM step only requires the gradient so this error would be insignificant for 

approximately linear limit states.  Performance on systems with non-linear limit states 

would be more dependent on starting point as the second and third example problems 

(which are both non-linear) reflect.    The second observation is less surprising when one 

takes an incremental look at where computational effort is required.  Let m be the number 

of optimization iterations required for nested methods and n be the average number of 

reliability analysis iterations.  Similarly for sequential methods, let m’ be the average 

number of deterministic optimization iterations, n’ be the average number of reliability 

analysis iterations, and p be the total number of sequential loops.  The computation effort 

for nested methods would then be of the order m*n while sequential methods would be of 

the order (p*m’ + p*n’).    Assuming m’≈ m and n’ ≈ n and that n is significantly smaller 
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than m (as is the case for all three examples), computational savings for sequential 

methods is possible if p < n.   However, FORM (direct or inverse) often converges in n = 

3 to 8 iterations while sequential methods need a minimum of three overall loops to 

ensure convergence and often require 4  to 5 (p = 3 to 5).  Thus, in many cases sequential 

methods will not offer computational savings.    It should be noted, nonetheless, that 

sequential methods have other benefits.  For one, in isolating the optimization from 

reliability analysis, it would be easier to diagnose the source of problems such as cycling 

or divergence. 

 Finally, a study of the multidisciplinary analysis and optimization strategy re-

iterates the observations of poor performance of SAND and inverse FORM for reasons 

already discussed. 

 

Conclusion 

 The intent of this chapter was to develop several combinations of RBDO and 

MDO methods and to exercise the methods on a few simple problems in an effort to gain 

a better understanding of their relative strengths and weaknesses.  With this in mind, a 

few conclusions may be drawn.  First, the sequential RBDO strategies may not provide 

significant savings when measured on a ‘level playing field’ with nested methods (i.e., 

less than 50% improvement in efficiency, similar accuracy, and similar stability).  One of 

the key elements in providing comparable nested RBDO algorithms is using the 

analytical gradient for the reliability and performance measure indices (β and g*) so that 

the optimizer does not require repetition of the reliability analysis loop in order to obtain 

finite difference derivatives.  The other key factor is using the most efficient MPP search 
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algorithms (i.e., Eqs. 7 and 9). If both of these techniques are used, nested methods can 

be comparably efficient to other methods.   The second significant finding is that using 

sequential quadratic programming to solve a SAND formulation of the inverse FORM 

problem, Eq. (18) frequently creates difficulty.  Research is needed to develop a step 

which satisfies KKT conditions for a distributed inverse FORM formulation similar to the 

multi-constraint (direct) FORM methods developed in Chapter II.  The fully-integrated 

single-loop, inverse FORM method performed very efficiently and appears suitable for 

nearly linear limit states.  Finally, using SAND with direct FORM provided improvement 

over the fully-integrated methods for all three cases.   Further research is needed to 

compare performance on a variety of problems to identify the effects of system 

characteristics such as dimensionality of the design variable vector, dimensionality of the 

random variable vector, degree of interdependence of disciplines, number of probabilistic 

constraints, presence of deterministic equality and inequality constraints, and 

conditioning of both limit states and disciplinary analyses.   At this point, one may be 

cautiously optimistic regarding the performance of direct FORM SAND methods (7 and 

9).  

As industries continue to demand more complex systems, and as society continues 

to raise the bar in terms of performance and reliability expectations, engineers will 

continue to look for methods to design for reliability.  Probabilistic analysis and 

reliability-based design optimization are promising approaches in this regard.  However, 

implementation of RBDO has been limited to small scale problems to date; its 

applicability to large multidisciplinary systems will be instrumental in achieving more 

widespread use. Studying the effectiveness of various RBDO-MDO algorithms is a first 
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step in this direction.   Further study is needed in order to (1) determine the applicability 

of these methods to large scale problems and (2) fully characterize the system properties 

suitable to particular methods.    However, based on the results to date, the top three 

methods include single-loop, inverse FORM with fully-integrated MDA (method 6); 

nested, direct FORM simultaneous analysis and design (method 7), and sequential, direct 

FORM SAND (method 9).  Method 6 is would appear most appropriate for problems for 

which the limit states are close to linear.   Method 9 (or its inverse FORM counterpart, 

method 10) shows promise for more complex systems where designers anticipate the 

need to diagnose problems by segregating the reliability analysis and optimization 

phases.   Methods 7 and 9 appears particularly suitable for multidisciplinary systems 

amenable to being solved with gradient-based optimizers.  (Additional research is needed 

to better define this caveat but one could test the system by comparing the effort required 

for multidisciplinary analysis using Newton’s method versus that required for fixed-point 

iteration.  If Newton’s method is effective and efficient, there is a possibility SAND 

methods will perform favorably.  The real world application treated in the following 

chapter provides an example where this is not the case.)    

Naturally, all the methods presented in this chapter, require a well defined system 

for which requirements and interdependencies among disciplines are known.    

Communication between disciplines is an integral component for MDO-RBDO, though 

the SAND methods (6-12) offer a little more flexibility in terms of when all must be 

satisfied (or, ‘come to agreement’).  If disciplinary integration is prohibitive, a 

completely different strategy is needed.  Chapter VI offers one alternative.   
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CHAPTER IV 

 
APPLICATION OF PROBABILISTIC SYSTEM DESIGN: 

UNMANNED AERIAL VEHICLE  

 

Introduction 

 This chapter investigates the reliability-based multidisciplinary optimization 

methods proposed in the previous chapter for the design of a solar power supply for a 

high altitude, long endurance (HALE) unmanned aerial vehicle (UAV).   This problem 

presents several issues of interest with regard to how simulation-based design is 

performed in practice, in addition to being a suitable real world application of reliability-

based MDO.   The problem is not multidisciplinary in the strictest sense since the UAV 

performance analysis is accomplished through a single code which, though involving 

both aerodynamic and propulsion analyses, offers no mechanism for decoupling them.   

However, when coupled with two custom algorithms which apply an iterative process in 

order to find a feasible design solution, the UAV design suggests an optimization 

formulation with the basic properties of traditional MDO problems.  In fact, as will be 

demonstrated, the optimization approach will offer much needed flexibility in achieving 

the desired design reliability.  A second important property of the UAV design, is that it 

is tightly coupled, a feature common to many practical multidisciplinary design 

problems.  Finally, gradient-based methods are ineffective for multidisciplinary analysis, 

leaving fixed-point iteration as the basic option for convergence algorithms.  (Newton’s 

method needed on average 30+ iterations for MDA while fixed point iteration typically 

converged in under 10). Thus, applying reliability-based MDO requires some 
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modifications of the methods in the previous chapter to take full advantage of the most 

effective analysis methodology.   Finally, to some extent, the UAV application blurs the 

distinction between design and analysis, a common feature for legacy algorithms for 

aerospace system design.    This presents a challenge in finding a suitable limit state in 

order to re-formulate the problem for reliability-based design optimization. 

 The following section begins with an overview of the original system analysis and 

deterministic design approach provided by researchers at NASA Langley.  This section 

explains the key input and output variables, describes the performance analysis and 

design algorithms, and shows how they are integrated in the original design process.  

Next, the design problem is reformulated, first as a deterministic optimization, to provide 

needed flexibility for reliability requirements that will follow.  This section provides a 

revised integrated analysis that has the same mathematical structure as multidisciplinary 

analysis discussed in the previous chapters.  Next, uncertainty is introduced in key 

variables and the final reliability-based design problem formulation is provided.  This is 

followed by a section entitled “Practical Implementation of Reliability-Based MDO,” 

which describes modifications to the twelve RBDO-MDO methods of Chapter 3 needed 

to take advantage of the fixed-point iteration strategy for multidisciplinary analysis.  

Finally, results are reported in terms of the effectiveness of each of the 12 methods in 

achieving a solution, and general conclusions are drawn.  

  

System Analysis and Deterministic Design 

This application is the design of a self-sustaining solar power supply for a high 

altitude, long endurance, unmanned aerial vehicle (UAV).  The design goal is for the 
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vehicle to accomplish reconnaissance independently over a long period of time (weeks or 

months).  In order to be self-sustaining, the vehicle must store enough energy to continue 

powering the vehicle during the hours of darkness.  During the day the solar cells power 

the vehicle and use extra capacity for electrolysis (i.e., to create electrical energy to break 

down H2O into hydrogen and oxygen).  At night, hydrogen and oxygen recombine in fuel 

cells creating energy to power the vehicle’s motor.  Key design variables include the 

number of solar cells, the number of electrolyzer cells (to break down water), the rated 

shaft power of the electric motors, the hydrogen storage capacity, the ‘zero fuel’ weight 

of the vehicle, and the wing area.  Other important parameters include the latitude and 

time of year as these have a significant affect on the sun elevation and number of daylight 

hours.   For this design, the latitude is fixed at 47 degrees North and the time of year is in 

the height of winter. 

The primary analysis is accomplished by a performance analysis (PA) algorithm 

(Nickol et al., 2007), which calculates a take-off weight, power storage requirements, and 

a final ‘state of charge’ at the end of each day.   At this stage we first begin to see a 

combination of analysis and design; key input variables to PA suggest a design (e.g., 

empty weight, rated motor power, number of fuel and electrolyzer cells, etc.), which the 

code analyzes, providing output that includes both new design information (e.g., required 

power output per fuel cell, remaining charge at the end of a cycle, etc) and revisions to 

the original input parameters (e.g., empty weight, rated motor power, and number of fuel 

and electrolyzer cells).  In other words, the PA algorithm is structured such that a single 

execution does not guarantee a feasible design.  Instead, it generates weight and power 

requirements that update initial design inputs.  For example, the code uses a user ‘guess’ 
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for zero fuel (i.e., empty vehicle) weight (zfw) as the basis for its calculations; however, 

the code subsequently calculates an updated value for zero fuel weight.  To ensure 

feasibility based on weight, the code must be run iteratively until the zfw input value 

equals the zfw output value.   This feature allows engineers to make adjustments outside 

the code to account for different assumptions.   For one, the PA calculations are based 

strictly on cruise conditions and empirical weight predictions from present day 

technologies.  Researchers at NASA Langley have linked the PA code to an external 

Power, Weight and Sizing (PWS) algorithm to (1) adjust weight predictions, (2) add a 

requirement to maintain a desired climb rate and (3) run PA iteratively to assure 

convergence of zero fuel weight.  PWS adjusts weight predictions based on assumptions 

about technological advancements and adjusts power requirements to add maneuver 

capability (i.e., for climbing versus cruise/loiter).  In addition, as current technology does 

not support a self-sustainable vehicle design for some missions, the PWS code allows for 

an input of external power, or power that must be added to that available from the 

regeneration cells.  Thus the power-generated-to-power-required fraction is a measure of 

infeasibility at the given design variables.  PWS runs the PA code iteratively to converge 

five key design variables: zero fuel (or empty) weight, motor rated shaft power, number 

of fuel cells, hydrogen storage capacity, and external power).   A third code, the 

Electrolyzer Sizer (ES) provides a revised estimate of the number of electrolyzer cells 

(na) needed to ensure there is enough energy to get the vehicle through the night before 

needing to recharge.   It also requires several iterations of PA, searching for the minimum 

number of electrolyzer cells to provide the required energy.  

 



 82

 

 



 83

 

 

Fig. 1 depicts the inputs and outputs of interest for each of the three disciplines.  

Input variables shared between two or more disciplines, s, include the required design 

climb rate and the power draw from avionics.  For the Performance Analysis discipline 

(PA), additional inputs include local variables, wing area, wing span, engine efficiency 

(eta) and parameters from the other two disciplines: the input zero fuel weight (zfw_in), 

the rated shaft power (MP), the number of fuel cells (nfc), the weight of hydrogen storage 

capacity (wh2),  the number of electrolyzer cells (na), and the external power adjustment 

(Padjust).  Outputs of interest include the calculated zero fuel weight (zfw_out), a weight 

distribution by component (W), loiter velocity and drag, the power required by the 

motors, the propulsion efficiency (eta_prop), the power supplied by each fuel cell, 

charge/discharge curves for the electrolyzer cells, and a state of charge deficit at the end 

of a night cycle (SOC).  The Power Weights and Sizing code (PWS) requires the same 

shared inputs, s, as well as local variables including the fraction of power supplied by the 

regeneration system (P_regen_fraction) and weight reduction factors for technological 

advancement assumptions (Ftech).  In addition, the PWS code requires inputs from the 

performance analysis as depicted if Fig. 1(b).   The Electrolyzer Sizer code (ES) simply 

optimizes the number of electrolyzer cells (na) by driving SOC to zero.    
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The relationship among the disciplines, as defined by the original design process, 

is depicted in Fig. 2.   

 

 

Figure 2. System Analysis and Deterministic Design 

 

Note that the notation, u, is used to represent disciplinary response variables that are 

outputs from one discipline and inputs to another.  Response variables from PA are 

denoted uPA1 and uPA2 to distinguish between those needed as inputs for PWS and ES 

respectively.    In this form, fixed point iteration (or some other convergence algorithm) 

is needed to find a single feasible design by solving a system of non-linear equations to 

find the disciplinary response variables (uPA1, uPA2, uPWS, uES) as in Eq. (1).   Note here 
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that u and l without the subscript represent the entire set of discipline response variables 

and local variables for all three analyses. 

0
0

0

PA

PWS

ES

PA( )
PWS( )

PWS( )

− =
− =

− =

u s,l ,u
u s,l,u
u s,l,u

                                                (1) 

There are some significant drawbacks to this approach.  Small changes in the 

system can lead to large changes in the design solution; in other words, it is not very 

robust.  The design solution provides no room for uncertainty since a small change will 

lead to an infeasible solution.  (A preferable formulation would have inequality 

constraints to allow sufficient ‘overdesign’ to account for uncertainty.)  In addition, the 

PWS and ES algorithms end up competing with one another to converge their 

disciplinary response variables, often failing to find a feasible solution to the integrated 

system even when one exists.  In preparation for a probabilistic design formulation which 

considers uncertainty, an optimization problem with inequality constraints is needed.  In 

the following section, an alternative deterministic optimization formulation is provided, 

which will be the basis for the reliability-based optimization problem to follow. 

 

Revised Deterministic Optimization Formulation 

 As discussed, in its original form, the UAV design does not involve true 

optimization.   Requirements that could be viewed as ‘design’ constraints are treated as 

equality constraints which have a unique solution; mathematically, they can be viewed as 

multidisciplinary feasibility criteria (in other words, the ‘design’ is found by solving the 

set of non-linear equations).  For one, the state of charge (SOC) constraint is driven to 

zero by solving the ES analysis when in reality any value of SOC less than zero would 
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provide a feasible design.  In preparation for a probabilistic design formulation which 

considers uncertainty, an optimization problem with inequality constraints is needed.  

This way the inequality constraint may represent a probabilistic limit state and we can 

assure satisfaction to a desired reliability level.  A revised, deterministic optimization is 

thus formulated as a bridge to probabilistic optimization. This formulation seeks to (1) 

establish a clear objective, (2) distinguish between optimization constraints and 

multidisciplinary feasibility requirements, and (3) provide inequality constraints as a 

basis for probabilistic limit states in the next step.  Fig. 3 depicts the revised analysis.    

 

 

Figure 3.  Revised Integrated Analysis 

 

One of the major differences in Figs. 2 and 3 is that the ES code has been 

eliminated in its entirety.   In the original design process, sizing of the electrolyzer cells 
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was treated as an equality constraint; the ES code assured a size ‘just enough’ to meet the 

charge requirements and no more.  The assumption was that this would provide an 

‘optimal’ design.  However, as already discussed, this methodology provides no room for 

uncertainty in the analysis and often interferes with the other analyses’ attempts to satisfy  

legitimate multidiscipline feasibility constraints.   Sizing of the electrolyzer cells is now 

accomplished through the optimization formulation where the number of cells (na) is a 

design variable and the state of charge (SOC) is an inequality constraint.  Similarly, 

sizing of the hydrogen storage is also now part of the optimization problem; wh2 is now a 

design variable and no longer an output of the PWS code.   

A baseline deterministic optimization formulation is given in Eq. (2) below.   

Here P_regen_fraction is the fraction of total energy needed to keep the UAV in the air 

under the given conditions that can be supplied by the regeneration system (i.e., solar 

energy, electrolyzer and hydrogen fuel cells).  This is necessary because under certain 

conditions, the current technology and design concept cannot provide a fully self-

sufficient system.  Thus, by maximizing P_regen_fraction, the infeasibility (in terms of 

design constraint satisfaction) of the system is minimized.    
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Probabilistic Optimization Formulation 

 Equation (2) presents the UAV design problem in a traditional multidisciplinary 

optimization form (deterministic).  From here, uncertainty in the analysis can be 

considered to provide reliability of performance to a desired level.  Since this design is 

concerned with the power supply system, performance reliability is contingent upon the 

uncertainty associated with the remaining charge (SOC) at the end of the cycle.  If SOC is 

greater than zero, the UAV will not be able to maintain operation through a complete 

daily cycle, indicated performance failure. 

 One of the most significant areas of uncertainty for this problem regards 

assumptions about technological advancement.  In the PWS code, designers may choose 
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factors to reduce the weight of various vehicle components (in other words, assume 

novel, light weight materials will become available during the design phase of the 

vehicle.)   Since the current state of technology provides an upper limit to the technical 

advancement factor (Ftech) of one, uncertainty for this variable may be modeled as a 

lognormal distribution.  Other potential sources include the engine efficiency (eta), wing 

span and wing area.  Finally, there is considerable uncertainty surrounding the charge 

calculations.  To account for this, a model error term (SOCerror) is added such that SOCtrue 

= SOCcalc + SOCerror where SOCcalc is the value coming from the PA analysis.   

Probabilistic distributions for each of these sources of uncertainty are presented in Eq. (3) 

below.   

rror

1 )~ (-1,.14)
0   0 05

2  0 01
(100 10)
100 25

i

e

( Ftech LN
SOC ~ N( , . )
eta ~ N(. , . )
wing span ~ N ,
wing area ~ N( , )

−

                                                 (3) 

The introduction of uncertainty naturally complicates the optimization 

formulation.  First, uncertainty may limit the engineer’s ability to control design 

variables.  In this problem, randomness in input parameters propagates through the 

analyses, resulting in output uncertainty.  This affects both optimization objective and 

constraint functions.   A reliability based design optimization (RBDO) formulation 

addresses these issues.   In the RBDO formulation below, Eq. (4), design variables 

include deterministic input variables (i.e., those without uncertainty including na, 

P_regen_fraction and wh2).    Additional uncertainty comes from random input variables 

not associated with design (e.g., Fi, SOCerror, eta, wingspan, and wingarea).  The RBDO 

objective is to minimize P_regen_fraction.  Finally, a probabilistic constraint accounts 
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for the uncertainty in the state of charge (SOC) by requiring a 99% certainty that SOC is 

greater than zero.  Due to the multidisciplinary nature of the problem, additional 

multidisciplinary constraints are also present.  For the RBDO formulation, disciplinary 

response variables, like other output are also stochastic.  They take on different values for 

every realization of random input parameters.   However, the multidisciplinary 

constraints must be satisfied for any determination of system outputs (e.g., SOC) to be 

valid.   (Note in the formulation, that lPA and lPWS now include random parameters.) 
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Practical Implementation of Reliability-Based MDO 

 In order to solve Eq. (4), the RBDO-MDO methods in the previous chapter may 

be applied.  Given the tight coupling of the UAV analyses and the fact that analytical 

gradients are not available, this problem presents a suitable real-world test of the 

methodology.   Recall that the methods are based on combining one of two MDO 

strategies (integrated and simultaneous analysis and design) for analysis, one of two first 

order-reliability formulations of the optimization (direct and inverse FORM), and one of 

three RBDO strategies (nested, sequential, and single loop).    

The twelve methods were discussed in detail in Chapter III; they are summarized 

in Chapter III, Table 1.   Recall that the odd numbered methods are based on using an 

equivalent direct FORM constraint in lieu of the probability constraint, P(SOC > 0) ≤ .01, 

as shown in Eq. (5).  Here the probabilistic constraint is replaced by the FORM 

constraint, β ≥ βtarget which is found by conducting a search for the most probable point, 

η* representing the random local (l) and shared(s) variables in standard normal space.  

Note that in order to evaluate the limit state (in this case, state of charge, SOC), the mean 

value of the local and shared variables (µs and µl, respectively) are needed as well as the 

MPP and the value of the disciplinary response variables (u) at the MPP.  
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Similarly for the even numbered methods, a deterministic equivalent constraint is used 

based on inverse FORM as given in Eq. (6). 
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 For the first six methods based on fully-integrated analysis, the procedure follows 

that given in the last chapter exactly.  The integrated analysis was adapted from the 

original design analysis provided; it is accomplished via Phoenix Integration’s model 

integration software, Model Center (Phoenix Integration, 2006).  Model Center executes 

the basic analyses and drives the iteration to satisfy the multidisciplinary feasibility 

constraints.   A MATLAB optimization algorithm (Mathworks, 2006) based on 
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sequential quadratic programming was chosen to perform the optimization.  MATLAB 

and Model Center are easily linked through the COM interface provided by Model 

Center.  Gradients for the integrated analysis are taken using a basic finite difference of 

each analysis; thus if an average of Z iterations are required to achieve multidisciplinary 

feasibility for the integrated system, a total of (3+1)Z function calls are required to get a 

gradient with respect to the design variables and (5+1)Z calls are required to get the 

gradient with respect to the random parameters. 

 Difficulty arises in trying to apply the last six methods involving simultaneous 

analysis and design.  Recall from the last chapter that these methods use auxiliary 

disciplinary response variables to evaluate the limit state (in this case, SOC) without 

iterations to assure multidisciplinary feasibility.  Instead, the multidisciplinary feasibility 

constraints are added to the probabilistic analysis formulation; this ensures that feasible 

discipline response variables are available for either the Most Probable Point (for direct 

form) or Performance Measure Approach Point (for inverse form) in order to evaluate the 

design optimization’s probabilistic constraint.  The problem arises from the nature of the 

integrated analysis, for which gradient based methods are ineffective in ensuring 

multidisciplinary feasibility.  In fact, this can be seen from attempting to find feasible 

discipline response variables for a given design point.   Using fixed point iteration, a 

feasible point is typically available within 5-7 iterations while a standard Newton 

approach takes well over 30.  With this kind of difference, there is no value in applying 

gradient-based SAND approaches for MDO-RBDO since any potential computational 

savings would be already have been forfeited to the more effective fixed point iteration 

with fully-integrated methods.   Rather, the last six methods are adapted to employ fixed 
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point iteration simultaneously with reliability analysis.  For the direct FORM methods 

(methods 7, 9, and 11), the Rackwitz-Fiessler FORM equation is employed on the 

distributed (i.e., uncoupled) system using the most recent estimate for the disciplinary 

response variables (u), updated the value for the disciplinary response variables with each 

iteration.  This process is described in Fig.  4.  

 

 

Figure 4.  UAV Distributed Reliability Analysis with Fixed Point Iteration 

 

For the inverse FORM methods, the process is similar, except that general step given by 

Eq. (9) in Chapter 3 is used to find the performance measure point.  Note that these 

methods are heuristic.  Fixed point iteration does not guarantee convergence even without 

the complications of probabilistic optimization.  However, in practice, it can be effective 

for highly coupled systems.   
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Table 1.  Design Results and Algorithm Performance 

Multidisciplinary Analysis  Fully-Integrated  

RBDO Method  Solution 
Design Point 

[na P_regen wh2(ft3)] 

Number 
Optimization 

Iterations 

Processing 
Time 

1. Direct FORM  [50.6 0.320 3.22 ] 9 2 hr 17 min Nested  

2. Inverse FORM  [50.2 0.324 3.24 ] 10 3 hr 33 min 

3. Direct FORM  [52.8 0.325 3.29 ]  8 33 min Sequential  

4. Inverse FORM  [50.2 0.318 3.20 ] 3 1 hr 3 min 

5. Direct FORM  [50.0 0.318 3.72] * 
*Best β=2.2 

10 Did not satisfy 
constraint Single Loop  

6. Inverse FORM  [50.8 0.320 3.22] 10 43 min 

Multidisciplinary Analysis  Simultaneous Analysis and Design  

RBDO Method  Solution 
Design Point 

[na P_regen wh2] 

Number 
Optimization 

Iterations 

Processing 
Time 

7. Direct FORM  [50.1 0.320 3.52]* 12 > 4 hours 
*Did not satisfy 
MD constraints 

Nested  

8. Inverse FORM  [50.3 0.320 3.20]* 10  > 3hours 
*Cycling evident 
with some start 

points 
9. Direct FORM  Did not converge Sequential  

10. Inverse FORM  Did not converge 

11. Direct FORM  Does not converge 

Single Loop  12. Inverse FORM  [50.3 0.323 3.17]* 
Best g*=-.02 

20 >3 hours 
Cycling during 

probabilistic 
analysis 

 

Results 

 Each of the 12 RBDO-MDO methods from the previous chapter was applied to 

the UAV design problem to solve Eqs. (5) or (6).  The best design solution and the 

processing time are recorded in Table 1.  The processing time is a rough measure of 
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computational effort which points to the relative efficiency of the methods (though this 

measure is obviously dependent on a number of other factors as well including processor 

speed).  Similar to the analysis provided for the mathematical examples in the last 

chapter, the UAV design results may be dissected into the three algorithm choices: 

reliability analysis method, RBDO technique, and multidisciplinary analysis and 

optimization strategy.  In this case, it is easiest to begin in reverse order.   The fully-

integrated methods worked much better than the SAND-based methods.  Considering the 

fairly low computational effort required for the fully-integrated analysis (5-7 iterations on 

average), this is not entirely surprising.   What is disconcerting, however, is that in most 

cases the SAND methods did not converge to any solution.  Cycling, a typical problem 

with bi-level methods, was observed during probabilistic analysis.  In other words, the 

candidate MPP or PMA point jumped from one extreme to the other rather than 

converging on a local optimum.  A reduction in the number of random variables helped in 

some cases, but not in others.  A few features of the UAV design hint toward the reason 

for this problem, though further analysis is needed to fully identify all the issues.  First, 

the disciplinary analyses are not continuously differentiable.  Discrete variables such as 

the number of fuel cells were modeled as continuous variables resulting in some noise in 

the analyses.  Larger finite difference steps ( .01( )x x∆ = ) were taken to attempt to 

compensate for this, but this could have had adverse effects on the optimization.  Even 

more importantly, pre-optimization testing revealed that gradient based methods were 

ineffective in achieving a simultaneous solution to the disciplinary analyses (recall 

Newton’s method required 30+ iterations just for multidisciplinary analysis).  If this is 

the case for multidisciplinary analysis, it is most certainly a significant problem when 
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reliability analysis is added.  Thus methods 7-12 were implemented with the heuristic 

modification given in Fig. 4.   A single fixed point iteration is used to estimate the 

auxiliary variables which is in turn used for the MPP (or PMA) search.  If the estimate of 

the auxiliary variable is poor, significant error is introduced into the evaluation of the 

limit state and its gradient, hindering the MPP search.  

 Next, for fully-integrated methods, the most efficient RBDO strategy appeared to 

be sequential, followed by single loop (inverse FORM only), and finally nested methods.  

The performance of the inverse, single loop method matched that which would be 

expected based on the examples of the previous chapter.  However, it is interesting to 

note that, unlike the mathematical examples of the last chapter, here sequential methods 

do offer a notable improvement over nested methods.  On possible reason could be that 

no analytical derivatives were available for the UAV application.  For this reason, a 

minimum of y (dimension of design variable vector) or z (dimension of random variable 

vector) disciplinary analyses were required for each iteration (optimization or reliability 

analysis respectively).   Thus even a small improvement in the number of optimization or 

reliability analysis iterations is significant.  Also, the lack of precise derivatives slowed 

down the MPP (or PMA) searches so that the number of complete sequential loops was in 

fact significantly smaller than the average number of reliability analysis iterations (i.e., p 

< n).  

  Finally, this application revealed slightly better performance using direct versus 

inverse FORM in terms of computational effort, though it is premature to draw definitive 

conclusions.  Though the system is much more complex than the mathematical examples 

of the last chapter in terms of the number of disciplinary responses, the dimensionality of 
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both the design variable vector and the random variable vector is still quite small (y = 3 

and z = 5).  Future work is still recommended to determine if inverse FORM methods 

may be superior for higher dimensioned problems.   

 One may also note that not all methods converged to the same optimal solution.  

However, given the noise in the system and the approximations used for finite difference 

gradients, the fact that the optimal power regeneration fractions were the same within 2 

significant digits is considered acceptable. 

 In addition to the optimal design, a sensitivity analysis was conducted for the six 

methods which converged to a feasible solution.  This sensitivity is a measure of the 

degree to which the uncertainty in the variable affects the uncertainty in the performance, 

in this case, state of charge SOC.   The sensitivity factor is found by simply normalizing 

the derivative of the limit state with respect to the variable at the MPP.  The most 

important revelation here was that the design was not sensitive to engine efficiency, eta, 

so this random variable could be eliminated from the optimization entirely.  The 

technological advancement factor, Ftech, which had a high degree of uncertainty, and the 

model error, SOCerror had the highest sensitivities, though wingarea and wingspan were 

not insignificant. 
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Sensitivity Analysis

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ftech wingspan- ft wingarea - sqft SOCerror

Variable

Se
ns

iti
vi

ty
Method 1
Method 2
Method 3
Method 4
Method 5
Method 6

Figure 5.  Sensitivity of Design to Random Variables 

 

Conclusion 

 The purpose of this chapter was to demonstrate the value of reliability-based 

design optimization for a realistic design problem involving integrated analyses and to 

test the RBDO-MDO methods of the previous chapter for a real world application.  The 

results show that reliability requirements can be accommodated for system design 

through multidisciplinary reliability-based design optimization.   However, the 

performance of the twelve RBDO-MDO algorithms clearly reveals the weakness of 

SAND for certain problems.  Furthermore, hybrid method provided by the algorithm 

given in Fig. 4 was not effective for this problem.   It is recommended that designers first 

evaluate the effectiveness of Newton’s method for solving the multidisciplinary analysis 

prior to attempting RBDO-MDO.  If   Newton’s method does not outperform fixed-point 



 100

iteration, only fully-integrated methods should be attempted.  Sequential, direct FORM 

methods continue to indicate promise for future applications. 

 As mentioned in the previous chapter, use of any MDO-RBDO method is 

contingent upon clear definition of the design problem as well as a precise understanding 

of the interdependence of disciplines.  In re-formulating the UAV design problem as an 

optimization, one of the integral steps was to clearly identify the design requirements, 

distinguishing legitimate equality constraints (e.g., for multidisciplinary feasibility) from 

performance requirements more appropriately treated as inequality constraints.    For the 

UAV design, the key performance requirement was the requirement to maintain some 

residual state of charge after a 24-hour operation.  In the optimization formulation, this 

was treated as an inequality constraint, while other equality constraints were maintained 

as analysis feasibility requirements (for example, requiring the input zero fuel weight 

from the performance analysis match the output calculation from the power, weights, and 

sizing analysis).   In this way, the optimization algorithm negotiates the design space in 

consideration of system objective without unnecessary restriction. In addition, the 

performance requirement can then be the basis for a probabilistic constraint to assure 

system reliability.  One can view this as distinguishing ‘design’ from ‘analysis.’  This is 

not a trivial point as many discipline codes merge design and analysis in a way that could 

impose undesired restrictions once integrated within a higher-level system design.    In 

the following chapter, reliability-based design optimization is undertaken for a different 

application, the bi-level design of a reusable launch vehicle.   This application will also 

demonstrate the importance of allowing system-level requirements to drive design at a 

subordinate (in this case at the component) level. 
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CHAPTER V 

 

REUSABLE LAUNCH VEHICLE APPLICATION: INTEGRATING SYSTEM-LEVEL 
AND COMPONENT-LEVEL DESIGNS UNDER UNCERTAINTY 

 

Introduction 

The previous three chapters focused on probabilistic design via reliability-based 

design optimization (RBDO) of multidisciplinary systems.   However, the applications 

have thus far required integration only at a single design level.   Chapters V and VI take 

reliability-based system design a step further by providing two alternative strategies for 

integrating multiple design levels.   These methods are applied to a bi-level design for a 

reusable launch vehicle which includes both the conceptual system-level design for 

vehicle geometry and the structural sizing of a component liquid hydrogen tank. 

Chapters II and III demonstrated the ‘triple loop’ nature of system design 

problems that combine reliability analysis and optimization with iterative 

multidisciplinary analysis (recall Fig. 1 of Chapter III); these chapters introduced specific 

algorithms to mitigate this effect in order to improve computational efficiency.   

Mathematically, three characteristics distinguish the RBDO-MDO problem: (1) they are 

formulated as optimizations, (2) they include one or more constraints given in 

probabilistic terms, and (3) they require integration (and often iterative) of two or more 

distinct ‘components’ for system analysis.  The formulation is blind, however, to the 

nature of the distinction between components needed for system analysis.  

Multidisciplinary analysis typically refers to the integration of distinct components based 

on developments in expertise along specific fields of study (e.g., structural, aerodynamic, 
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economic, etc.), but ‘field of study’ need not be the distinguishing characteristic of the 

‘disciplines’.  The unmanned aerial vehicle problem of the last chapter, for example, 

showed an even wider application, treating a single analysis code and an iterative design 

code as highly coupled ‘disciplines’ in order to formulate an RBDO-MDO problem.    

This chapter takes the same approach, namely formulating an RBDO-MDO problem, 

which in this case incorporates a component-level design as an additional ‘discipline’ to 

be integrated with the system-level.   

Systems engineering uses a design approach driven by top level requirements.  At 

the higher levels of design, more of the system is considered with less detail.  From this 

point a top-down design approach may be undertaken.    As the design process continues, 

smaller components are designed to a greater level of detail.  The highest (“system” or 

“conceptual”) level design provides the basis for design at the next level.   Considering 

only the effect of the system-design on the component, however, could result in 

prematurely ‘pigeon-holing’ a system based on the initial conceptual design.  This can be 

dangerous given that conceptual system assessment is typically quite approximate (i.e., 

low fidelity).  Using higher fidelity models at the conceptual level is an alternative under 

active investigation but is very difficult to achieve.  Thus, if the design process is to result 

in an efficient system, it must provide for integration between lower (e.g., component) 

and higher (e.g., system) level designs.  Various models for system design (e.g., the 

System Engineering Vee, waterfall, and spiral models) depict this common theme of 

iterative feedback between design levels (Buede, 2000).  Although the concept is 

prevalent in basic systems engineering theory, this inter-level communication is rarely 

automated and usually “ad hoc” at best.  For design problems defined via optimization 
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formulations, it is logical to use optimization to synthesize inter-level design levels as 

well.    Only in this way can one ensure optimality at the system-level as well as 

compatibility of designs at lower levels.   

This chapter develops a probabilistic optimization methodology for aerospace 

vehicle design that takes into account linkages between system-level and component-

level design requirements.  This methodology formalizes the inter-level iteration required 

by a systems engineering design approach.  The system design considered optimizes the 

geometry of a re-usable launch vehicle (RLV) for minimum weight while satisfying 

aerodynamic constraints.  The component design illustrated relates to the structural sizing 

of vehicle components, in this case a liquid hydrogen (LH2) tank.  The bi-level design is 

formulated as an RBDO-MDO problem, which is solved using sequential, inverse form 

reliability based design optimization with fully-integrated analysis (Method 4 from 

Chapter III).   

The chapter is organized into six remaining sections.  The first two sections set up 

an illustrative design problem, presenting the system-level and component-level 

reliability-based optimizations respectively.   The next section describes how the system 

and component levels are coupled; this is followed by an integrated reliability-based 

optimization formulation which takes into account both system and component 

constraints.  The final two sections discuss results and present conclusions.  

 

System Design (RLV Geometry) 

Establishing the rough geometry of the vehicle is a system-level analysis.  At this 

level, it is necessary to approximate component contributions to the design in a low-
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fidelity, or non-detailed manner.  In this “sample” case, weight-estimating relationships 

(WER) developed from vehicles already in the inventory are used for the conceptual 

sizing of new launch vehicles through the code, CONSIZ (Unal et al, 1998; Cerro et al, 

2002).  These WERs assess component contributions to the overall vehicle weight 

without getting into detailed analyses such as that required for assessing component 

structural performance.  This analysis of the vehicle weight distribution is input into an 

initial aerodynamic performance assessment.  In addition, it provides a conceptual 

starting point from which to base the more detailed design and analysis of components.  

The combination of weight prediction and aerodynamic performance assessment is the 

system-level design considered here.   

   Low fidelity second-order response surface models were developed for a 

deterministic sizing analysis of a wing-body, single stage-to-orbit vehicle (Unal et al, 

1998).   For this application, a launch vehicle is sized to deliver a 25,000 lb payload from 

the Kennedy Space Center to the International Space Station.   The vehicle geometry, for 

illustration purposes, is shown in Fig. 1, and has a slender, round fuselage and a clipped 

delta wing.  Elevons provide aerodynamic and pitch control.  Vertical tip fins provide 

directional control and body flaps provide additional pitch control.   

 

 

Figure 1. Illustrative Vehicle Geometry Concept 
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As a first step in the conceptual design, two analyses (weight prediction and 

aerodynamics) are considered in a constrained optimization problem.   A vehicle 

geometry that minimizes mean dry weight is expected to minimize overall cost, so this is 

chosen as the objective function.  For stability, the pitching moment (Cm) for the vehicle 

should be zero or extremely close to zero.  In addition, Cm should decrease as the angle of 

attack increases.  This is achieved by adjusting the control surfaces to trim the vehicle as 

the angle of attack is increased.  Thus the aerodynamic analysis for pitching moment 

constrains the optimization.  Additional constraints are placed on the lift-to-drag ratio for 

hypersonic flight (L/D), tail volume coefficient (tvc), and the ratio of landed weight to 

standard reference wing area and coefficient of lift (W/S/CL).   The hypersonic L/D is set 

to be greater than 1.2 to achieve a desired cross-range capability during entry.  W/S/CL 

constraint limits the landing speed (227 corresponds to a landing speed of around 200 

knots), and a maximum tvc value of 0.05 is set simply to limit the size of the tail fins. 

The optimal vehicle design is determined by six design variables:  fineness ratio 

(fuselage length / radius), wing area ratio (wing area  / radius2), tip fin area ratio (tip fin 

area / radius2), body flap area ratio (body flap area / radius2), ballast weight fraction 

(ballast weight/ vehicle weight), and mass ratio (gross lift-off weight/ burnout weight).   

For the aerodynamic part of the analysis, three additional variables are required to 

describe the adjustment of control surfaces in order to trim the vehicle: angle of attack, 

elevon deflection, and body flap deflection.   The pitching moment constraint must hold 

during all flight conditions; nine flight scenarios (constructed with three velocity levels 

and three angles of attack) are used as a representative sample.  The representative 
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velocities (Mach 0.3, Mach 2, and Mach 10) were selected as those originally used in 

Unal, et al (1998)  for which response surfaces were previously generated.   

System uncertainty comes from various sources, modeled through probability 

density functions.  For example, uncertainty in the geometry variables mentioned above 

may result from as-built conditions not matching with precision the design specifications 

made at this early conceptual level.  Furthermore, uncertainties in operational 

performance lead to randomness in the control surface deflection variables. Given this 

input uncertainty, the output parameters  such as empty weight; Wempty, pitching moment 

coefficients, Cm, and other significant aerodynamic ratios are also random variables.  In 

the problem formulation, the pitching moment requirement is therefore provided as a 

probabilistic constraint based on an upper and lower limit state for each of the nine flight 

scenarios.  The lower bound limit state is  

glower =  0.01+ Cm,                                                   (1) 

and the upper bound limit state is  

gupper = 0.01 – Cm                                                                             (2) 

The probability of failure is then defined as  

Pf  = P(Cm ≤ -0.01) + P(Cm ≥ 0.01)  

= P(glower ≤ 0 ) + P(gupper ≤ 0)                                         (3) 

Other constraints include first-order mean approximations for tail volume coefficient, 

hypersonic lift/drag and relative landed weight/lift constraints.  Thus the system-level 

design may be defined by the following RBDO-MDO formulation: 
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Minimize mean of Wempty                                                  (4) 

Subject to  9  to1  i 0.1,  0.01)  |(| )( =≤≤imCP  

mean of tvc ≤ 0.05 

mean of W/S/CL ≤ 227 

mean of L/D ≥ 1.2 

 

Component Design (LH2 Tank Structural Sizing) 

As mentioned in the previous section, the system-level design provides a basis for 

the more detailed design of individual components.  In this case, the weight distribution 

of the RLV system provides input for inertial loads required for the structural design of 

individual components (Cerro et al, 2002; Mahadevan and Smith, 2003). 

A launch vehicle is comprised of many components (Fig. 2).  Each component 

must be designed to successfully perform its individual function, but must also integrate 

or ‘fit’ into the system as a whole.  For the scope of this analysis, an LH2 tank is 

considered.  It is assumed to be a typical cylindrical tank with given end eccentricity, 

located at a fixed distance from the end of the vehicle.  The tank is to be sized such that it 

is as light as possible but strong enough to resist stresses induced by inertial loads, 

internal pressures, and other forces.   
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Figure 2.  Launch Vehicle Components 

 

 The design goal for the liquid hydrogen tank then is to minimize the weight of the 

tank while meeting the requirements for fuel capacity and structural integrity.  The fuel 

capacity requirement is determined by the system-level design (i.e., from weight 

estimating relationships used in the system-level weights analysis).  At the component 

level, the fuel capacity is maintained by choosing the appropriate tank geometry.   A 

deterministic optimization problem may be formulated to select the best design for the 

tank wall structure as 

Minimize Tank Weight = f(R)                                              (5) 

Subject to 

0<− SR or 0  1 - ≤
S
R (for all failure modes) 

where R is the tank resistance and S is the loading on the tank.  Here R and S are generic 

symbols for resistance and loading, and can be tailored for different failure modes. The 

left-hand side of the above constraint is referred to as a limit state function in reliability 
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analysis literature (Haldar and Mahadevan, 2000).  The problem is re-formulated to 

consider the uncertainties in R and S.   

 

Minimize ( ) )(f)(f ht  tank weigofmean RR Rf µ≈=                       (6) 

Subject to 

required )( PSRP <−  (for all failure modes) 

This optimization formulation recognizes that the objective (tank weight) and 

constraints (failure limit states) are random variables.  For well-defined optimization, 

objectives and constraints need to be selected from among the parameters that 

characterize the random distributions of these variables.   In this case, the parameter mean 

tank weight is selected as the objective, and the probability of system failure is chosen as 

the constraint.    

There are multiple modes of failure for the tank (i.e., Von Mises interaction 

failure, isotropic failure, panel buckling), multiple locations along the tank that could fail, 

and even multiple load cases (at various stages in the vehicle trajectory) that could cause 

failure.   Each of these failure cases may be represented by a corresponding limit state.  

However, the overall reliability measure for the tank is the system failure probability, 

which synthesizes all of these modes.  This system failure is represented by the union 

individual limit state failures.    Several methods are available for approximating the 

union or intersection of several events (Ditlevsen, 1979; Hohenbichler and Rackwitz., 

1983; Madsen et al, 1986; Gollwitzer and Rackwitz,, 1988; Xiao and Mahadevan, 1994). 

However, to simplify the optimization problem (for this “sample” problem), 

representative failure modes are given individual failure probability limits in lieu of a 
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system failure constraint.   Evaluating the structural failure criteria then involves four 

subtasks: (1) defining the system loading, S, based on information from the system-level 

analysis and the mission profile; (2) defining analytical models for various failure modes 

that incorporate the loading model and resistance, R, in terms of design variables; (3) 

quantifying the uncertainty in the inputs to the failure model; and (4) formulating and 

solving the resulting reliability-based design optimization. 

 For the first subtask, system load calculations are based on a simple beam model 

in this chapter, for the sake of illustration.  For the second subtask, a multi-mode failure 

model of the system is considered. This model synthesizes three failure modes for a 

honeycomb sandwich wall tank, consisting of 40 individually designed panels (Fig. 3). 

The honeycomb sandwich consists of top and bottom plates of Aluminum, AL2024 and 

Hexcell 1/8”-5052-.0015 for the sandwich material.  Design of the panels must specify 

the thickness of the plates and sandwich.  For the tank walls, the significant failure modes 

are: exceeding isotropic strength in the transverse direction, exceeding Von Mises 

strength, and honeycomb buckling.  Three limit state functions (gISO, gVM, and gHCB 

respectively) are defined such that gi < 0 indicates failure by a particular mode i.  To 

facilitate probabilistic optimization, response surfaces for each failure mode was 

developed from a design of experiments using commercial structural sizing software.    

 

 

Figure 3.  Segmented Honeycomb-Wall Tank 
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The third subtask requires modeling system uncertainty.  As seen from the first 

subtask, loading is a function of several variables.  Plate thickness (tplate) is the design 

variable, and honeycomb thickness (thc) is an additional resistance variable.   All of these 

have a degree of uncertainty that affect the structural integrity of the component (i.e., 

whether or not the LH2 tank satisfies the three failure criteria).    The variables are 

summarized in Table 1.  The first 6 variables in Table 1 are determined by the mission 

profile for the launch vehicle.  They vary along the flight trajectory and include two 

reaction locations (R1 and R2) representing support locations at lift-off, aerodynamic lift 

points during flight, or wheel locations during landing.    Other mission variables are the 

fuel percentage, horizontal and vertical components of acceleration, and the liquid 

oxygen to LH2 mixture ratio.  The system variables are relevant geometry parameters and 

component weight predictions obtained from the RLV system design. 

 

Table 1: LH2 Tank Sizing Variables 

Parameter Origin Mean Cov Description
R1 mission 350 0.1 Location of first reaction point
R2 mission 2000 0.1 Location of second reaction point

%_fuel mission 0.9 0.1 Percent of fuel remaining in tank
ax mission 1 0.1 axial acceleration
ay mission 1 0.1 normal acceleration

mixratio mission 0.2 0.1 ratio of lox weight to lh2 weight
radius system RLV & tank radius
fuel wt system total fuel weight (lh2 and lox)
t plate component design var 0.1 top and bottom plate thickness

t hc component 0.1 0.1 honeycomb sandwich thickness
oal system overall length

wstruct system distributed load along entire RLV
wwing system distributed load along wing  
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Finally, for the fourth task, the RBDO formulation below is given for the 

structural sizing problem.   

Minimize mean of tplate                                                      (7) 

Subject to 

P(gVM ≤ 0) ≤ PVM acceptable 

P(gISO ≤ 0) ≤ PISO acceptable 

P(gHCB ≤ 0) ≤ PHCB acceptable 

 

Data Coupling between System and Component 

 As apparent from Table 1, the component-level design relies on input from the 

system design.   For example, the tank geometry is constrained by the vehicle geometry 

(the tank radius must be smaller than the vehicle radius) and by the volume of fuel 

needed for the mission (i.e., propulsion weight).  The loads placed on the tank are a 

function of both vehicle geometry (radius and length) and weight distribution (modeled 

as uniform distributions for major components).  This data flow represents the 

decomposition phase of design.   

After component design is completed, a more accurate estimate of the tank weight 

is available from Eq. (8) as 

)**(* width)panel *length  (panel hchcplate
panels all

plate tt ρρ +∑ ,                         (8) 

where panel length and width are calculations performed during the structural sizing 

analysis.  The “refined” tank weight may be fed back into the system design to verify if 

the system-level requirements are still met.  Recall that the system design analysis 

initially accounts for the component weight contributions through the weight estimating 
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relationships (WER).  One option is to replace the LH2 WER with the weight from the 

component-level analysis as a constant.  However, we chose instead to adjust a reduction 

factor (included as part of the WER) so that the tank weight will adjust as system-level 

design changes are made.  This reduction factor is denoted rftank weight and is updated 

according to the following formula: 

 analysis  Weightsfromht  tank weigbaseline
sizing structural fromt tank weigh - 1 ttank weigh =rf                           (9)  

where the baseline tank weight is given by a response surface of the LH2 tank weight 

(prior to applying the reduction factor) from the software code CONSIZ (Unal et al, 

1998; Cerro et al, 2002).  

When desiring a true “optimal” design, a single pass of information from system 

to component and back is inadequate.  Instead an iterative process is needed to converge 

on optimal solutions for both the system and component designs.  Perhaps the most 

obvious iteration strategy is to use a brute force fixed-point iteration method; in other 

words to simply repeat the system–component–system design cycle and hope for ultimate 

convergence so that neither design changes in subsequent cycles.  This idea is depicted in 

Fig. 4.    

 

 

Figure 4. Fixed-point Iteration Between System and Component-level Optimizations 
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This bi-level optimization is a common strategy for design; it does not require inter-level 

data flow during optimization and preserves a degree of autonomy for component-level 

designers.   However, this strategy may not be able to find a converged solution to the bi-

level system with a reasonable amount of computational effort if at all.  As more 

components are added, finding a feasible solution will become even more difficult. 

An alternate approach is to integrate the two optimizations through an expanded 

MDO-RBDO formulation which treats the component design as an additional 

disciplinary analysis.   To understand how this may be done, it is helpful first to map out 

the data flow for each design level.  Figs. 5a and 5b provide such a mapping for the 

system and component level optimizations respectively. 

 

 

Figure 5a. System Design Optimization Data Flow 
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Figure 5b. LH2 Tank Design Optimization Data Flow 

 

(Note that in Fig. 5, design variables are denoted by X, while Y denotes other uncertain 

input variables.)  Figs. 5a and 5b reveal several issues.  First, from the two-discipline 

system analysis in Fig. 5a, we notice that the quantities of interest for the component tank 

analysis, T, come from the weights analysis, W; the aerodynamics analysis, A is needed 

only to evaluate the system-level constraints.   Similarly, during system updating, the 

tank weight is directly relevant only to the weights analysis, W, but affects the 

aerodynamics discipline through the centers of gravity passed as a state (or coupling) 

variable from W.  In addition, it is evident that to truly couple the system and component 

analyses, the weights analysis needs modification to make the LH2 tank weight reduction 

factor an explicit input.  This requires a new design of experiments to generate new 

weight response surfaces incorporating the additional input.  Finally, the 

multidisciplinary system of Fig. 6 for the system-component coupling is proposed.  Note 

in this figure that the tank design variables (XTankDesign) from Fig. 5b (plate thickness and 

honeycomb thickness) have been replaced by the tank weight reduction factor (rftank 

weight).  This exchange can easily be made since the reduction factor is uniquely 
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determined by the tank design (i.e., plate thickness for given honeycomb thickness) using 

Eqs. (8) and (9).     

 

 

Figure 6. Integrated Multidisciplinary System 

 

Probabilistic MDO Formulation of RLV System/Tank Design 

 The influences of uncertainty in the combined design have to be treated carefully.   

Uncertainty in the geometry propagates through the weights analysis to the other 

disciplines through the intermediate state variables (e.g., cg, the weight distribution, 

length, radius, and tank weight).  These uncertainties combine with uncertainty in the 

Aero Control and Mission variables resulting in uncertainty in the aerodynamic 

constraints as well as in the structural failure analysis.   With this uncertainty propagation 

in mind, an RBDO-MDO formulation for the system given in Fig. 6 follows: 

Minimize Mean of Wempty                                                     (10) 
                                       µXGeomery,  µrf, µXaeroControl 
 

subject to 

P(|Cm(i)| ≤ 0.01) ≤ Pacceptable for i = 1…9 
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P(gVM ≤ 0) ≤ Pacceptable 

P(gISO ≤ 0) ≤ Pacceptable 

P(gHCB ≤ 0) ≤ Pacceptable 

 mean of tvc ≤ 0.05 

mean of W/S/CL ≤ 227 

mean of L/D ≥ 1.2 

where Cm(i) = A(XGeometry, XAeroControl, uWA, YAeroControl), i = 1…9  

and    gj = T(uWT, YMission),  j = VM, ISO, HCB 

 The mean values (denoted by µ) of the input variables (XGeometry, XAeroControl, and 

rftank Weight) are the design variables.  The first order mean approximation for empty 

weight is the objective just as in the system-level analysis.  Probabilistic pitching moment 

constraints are also used as in the system-level analysis; they are functions of geometry 

inputs, aerodynamic control inputs, the coupling variable, uWA (i.e., center of gravity) 

from the weight analysis, and the random parameters (YAeroControl).   Similarly, first order 

mean values for tvc, W/S/CL, and L/D are given as constraints.   The probabilistic 

constraints for structural failure are the same as those given in Eq. (7), specifically the 

probability of three significant modes of failure dependent on output from the weights 

analysis (uWT) and the random parameter (YMission).  The structural sizing objective (i.e., 

minimize tank plate thickness) disappears from the formulation.   However, since the 

plate thickness directly affects the vehicle weight, minimizing the overall objective (i.e., 

vehicle empty weight) will also ensure minimal tank plate thickness. 

 Conveniently, the formulation in Eq. (10) does not have feedback coupling (the 

aerodynamic and structural analyses depend on data flow from the weights analysis, but 
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the weights analysis does not require input from the other disciplines.).  Thus, fully-

integrated multidisciplinary analysis may be achieved with a single evaluation of each of 

the disciplinary analyses therefore there is no benefit to a simultaneous analysis and 

design (SAND) approach.   (It is important to realize that the absence of multidisciplinary 

analysis iteration is only a feature of this particular problem, and may not necessarily be 

the case for system to component integration problems in general.)  Given that the 

formulation above includes twelve probabilistic constraints, the fully-integrated 

sequential RBDO method using inverse FORM (Method 4) was chosen as the solution 

algorithm based on this method’s stability and efficiency when tested on the example 

problems of Chapter III as well as when applied to the UAV design of Chapter IV. 

In accordance with MDO-RBDO Method 4, the deterministic optimization sub-

problem for Eq. (10) is given by Eq. (11); Eq. (12) provides an example of the inverse 

FORM reliability analysis for a single pitching moment constraint.  

Minimize Mean of Wempty º W(µXGeomery, µrf)                                 (11) 
                               µXGeomery,  µrf, µXaeroControl 
 

subject to 
1( )

( )| | ( , ) 0 1...9 fork i
m iC W A  iµ η −= − ≥ =  

1(10)( , ) 0k
VMg W T µ η −= − ≥  

1(11)( , ) 0k
ISOg W T µ η −= − ≥  

1(12)( , ) 0k
HCBg W T µ η −= − ≥  

mean of tvc ≤ 0.05 
mean of W/S/CL ≤ 227 

mean of L/D  ≥ 1.2 
 

 Min ),(  || )AeroContro(m(i) rf)lAeroContro()Geometry(
ηµ lY

kkk ,,µ,µµW-AC
XX

=                (12)  

                                       η 

subject to 
 

β = ||η ||2 = -Φ-1(0.1) 
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Here µ represents the mean values for all random variables 

(i.e., Geometry eroControl Mission AeroControland,  ,  ,     X XA rf Y Yµ µ µ µ µ ).  W-A represents the sequence of 

analyses, weights followed by aerodynamic analysis, while W-T represents weights 

analysis following by structural analysis.   The parametric constraints (mean of tvc, mean 

of W/S/CL, and mean of L/D) are already in deterministic form so appear exactly as in the 

original formulation.  Each of the probabilistic constraints has been replaced by a 

deterministic equivalent in accordance with sequential, inverse FORM RBDO.   These 

constraints are functions of the parametric design quantities (mean values of XGeometry, 

XAeroControl, and rftank Weight) and the stochastic components of all random variables, ηk.    

Following the optimization, an inverse FORM analysis is required for each 

probabilistic constraint to determine the PMA point, ηk(i).  Eq. (22) provides the search 

formulation for a single pitching moment constraint.  

 Min ),(  || )AeroContro(m(i) rf)lAeroContro()Geometry(
ηµ lY

kkk ,,µ,µµW-AC
XX

=                       (22)  

                                       η  

subject to 

β = ||η ||2 = -Φ-1(0.1) 

The resulting random realization η then becomes ηk(i) for the next optimization.  Note 

that each constraint is associated with its own ηk(i) since ηk(i) represents the current 

(kth)estimate of the PMA point for the particular constraint, i.   
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Results and Discussion 

 The optimization, Eq. (10), was solved using a Matlab routine which implements 

the reliability-based optimization (as outlined above) with a sequential quadratic 

programming algorithm from their Optimization Toolbox (Mathworks, 2003).  A 

converged solution was obtained in 4 iterations.  For comparison, RBDO-MDO Method 1 

(fully-integrated nested RBDO approach based on direct FORM) was attempted but was 

not able to converge to a solution.  The results are given in Table 2 for two different 

reliability constraints: a 10% probability of constraint failure and a 0.0013 probability of 

constraint failure (corresponding to target reliability indices of 1.28 and 3 respectively).   

 

Table 2:  Optimization Results 

Pf  
btarget  

0.10 
1.28 

0.0013 
3.00 

Bounds Optimal Design 
[0, 0.9] rftank weight .033 0.00 
[4, 7] fr 7.00 7.00 

[10, 20] war 15.99 16.839 
[.05, 3.0] tfar 0.50 0.96 

[0, 0] bfar 0.00 0.00 
[0, 0.4] bl 0.0033 0.0013 

[7.5, 8.25] mr 7.74 7.76 

 mEmpty Weight
(lb) 202,180 212,800 

Computational Effort 
Decoupled RBDO 

Iterations 4 4 

Optimization  
Function Evaluations 15,349 13,932 

Probabilistic Analysis 
Function Evaluations 10,772 10,358 

 

As expected, the higher reliability requirement results in a larger mean vehicle 

weight (about a 5% increase in mean weight for a slightly less than 100 fold 
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improvement in reliability).   For both reliability levels, the two active constraints are the 

ninth pitching moment constraint (corresponding to a maximum angle of attack at 

hypersonic speed) and the isotropic strength constraint.  A post-optimization sensitivity 

analysis (based on relative partial derivatives at the design point) reveals that the most 

significant variables for empty weight are the fineness and wing area ratios.  These two 

variables are also the most significant for the pitching moment constraints.  However, the 

upper bound constraint for the mean of the fineness ratio is also active, limiting its 

contribution to improve the optimal weight.  The probabilistic constraint for isotropic 

strength failure is dominated by the tank weight reduction factor (rftank weight).   

Note that the function evaluations for each RBDO phase (i.e., the optimization 

phase and the probabilistic analysis phase) include evaluations required for finite 

difference approximations of the gradient.  In the optimization phase, there are 15 

constraints and twenty-two design variables, so a minimum of 331 function evaluations 

are required to approximate the Jacobian during each iteration of the optimizer.  In this 

case, each optimization phase requires approximately 4000 function evaluations in an 

average of 12 iterations.  (Note that a deterministic safety-factor based formulation of the 

original problem would be also be expected to require about 4000 function evaluations 

using finite differences to approximate the gradient.)  In the probabilistic analysis phase, 

there are 38 random variables so a minimum of 39 function evaluations is required for 

every probabilistic analysis loop; this is required for each of the twelve probabilistic 

constraints.  The importance of derivative calculations in large-scale optimization 

problems is well documented and these results only reinforce their significance.  In this 

example, there would be considerable value in identifying inactive constraints so that 



 122

those calculations could be avoided.  This was not done, but in hindsight could have 

resulted more than seven-fold improvement in computational effort given that only two 

of the fifteen constraints were active at the optimum.  Even so, the total computational 

effort for the decoupled RBDO (e.g., 26,121 function evaluations for a 10% failure 

probability) is under seven times that for deterministic optimization (roughly 4000 

function evaluations).    

Another significant observation is that the total number of evaluations does not 

increase as the required failure probability is decreased.    This is an advantage of using 

an analytical approach (i.e., first order reliability analysis) to evaluating the probabilistic 

constraint as opposed to Monte Carlo simulation-based methods.   However, accuracy of 

the reliability estimate could be compromised, especially for highly non-linear 

constraints.  Therefore, the final design should be checked with Monte Carlo Simulation.  

 

Conclusion 

 Design by decomposition is a fairly common and practical strategy for complex 

engineering.  However, some degree of integration is required to ensure the multi-level 

designs are compatible.  This is a special challenge when the effects of uncertainty are 

considered.  The process outlined in this chapter presents a strategy for coupling design 

levels as a multidisciplinary optimization under uncertainty.    

The example application demonstrates some obvious advantages and drawbacks 

for this approach.  First, by using reliability based design optimization (RBDO), 

reliability requirements may be explicitly enforced during design.   A deterministic factor 

of safety design, on the other hand, does not provide a quantitative measure of reliability.   
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The RBDO approach also allows engineers to see the affects of varying reliability 

requirements on design optimality, which is extremely useful in making informed trade-

off decisions.  By using a multidisciplinary optimization to couple design levels, the 

uncertainty information also passes formally between system and component level 

designs.   This approach prevents low-fidelity system-level analyses from unduly 

restricting future component level design decisions.   The obvious drawback for the 

methodology is the increase in computational effort over deterministic methods.  

However, decoupled RBDO methods reduce this liability significantly.     

 Incorporating the design of additional components would require additional 

probabilistic constraints and additional design variables linking component requirements 

to the system-level objectives (e.g., reduction factors for weights from each component).  

The MDO problem complexity and the computational effort required to solve it will 

increase proportionally.  However, this approach is likely less difficult than attempting to 

integrate the individual component designs directly with one another on a single level.   

Another added complexity would be to consider additional component design variables 

(e.g., tank properties other than plate thickness).  In this case, it might not be possible to 

use a variable such as the tank weight reduction factor to link the system and component 

weight analyses.  Instead, a component-level optimization could be used for the structural 

sizing analysis of the tank.  Finally, the issue of how to handle system reliability 

constraints (such as a system failure defined by the union of several failures) in 

conjunction with efficient reliability-based optimization needs to be addressed. 

 In short, integrating system and component designs into an MDO-RBDO 

formulation is a promising design choice if (1) it is possible to clearly map interactions 
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between levels (2) the designer is willing to invest significant computational effort in 

achieving integration.  Further research is needed on larger problems to evaluate how 

quickly computational effort increases with design problem characteristics such as 

number of component analyses, dimension of design space, dimension of random space, 

and number of constraints. 



 125

CHAPTER VI 

 

REUSABLE LAUNCH VEHICLE APPLICATION: MODEL ERROR REFINEMENT 
FOR SYSTEM-LEVEL DESIGN 

 

Introduction 

In the previous chapter, reliability-based design for optimal geometry of a 

conceptual reusable launch vehicle (RLV) given aerodynamic constraints was integrated 

with a component-level design for a liquid hydrogen tank (constrained by structural 

integrity requirements).   The two design levels, that of the conceptual “system” (or 

overall geometry) and that of the component tank, were coupled through the tank weight 

and iteration was needed to integrate the two levels.  This is typical of a systems design 

process, which, as it progresses, moves from conceptual, lower-fidelity, less 

computationally intensive analysis to more detailed, higher fidelity, more intensive 

analyses.    In the last chapter, the tank design was treated as an additional discipline and 

multidisciplinary analysis methods were used to integrate it with the system design.   

In this chapter, the same application is studied from the perspective of model 

error; the system design includes a conceptual, low-fidelity weights analysis with 

significant model uncertainty, while the tank design provides a more rigorous analysis for 

the weight of one component with significantly less uncertainty.   Evaluating model error 

of disciplinary analyses as a metric for model uncertainty provides two important 

benefits.  The first is as a metric for selecting appropriate disciplinary models to integrate 

into multidisciplinary analysis at a given design stage.  The second benefit is as the basis 

for an alternative methodology for iterating between design levels; rather than fully 



 126

integrating the system and component analyses, this method uses model uncertainty to 

leverage the component design to refine the system analysis.  

As discussed in the previous chapter, a systems design process progresses from 

the top down.  At higher levels, design concepts are broad in scope (e.g., they encompass 

the entire physical system) and have limited detail; as the design progresses, detail 

increases and scope decreases (e.g., from system, sub-system, component, etc.).  Another 

important characteristic of this progression concerns the trade-off between model error 

and effort (or expense) of the analysis.   At the highest design level, since less detail is 

required, it is typical to achieve fast, inexpensive analysis at the expense of increased 

model error or uncertainty.  Conversely, as the design progresses, higher fidelity analyses 

are needed to assure accurate assessment of system performance.  This progression is 

evident in the RLV-tank application.  At the conceptual system level, a weights analysis 

for the entire vehicle is used (so the scope of the analysis is very broad), and the design 

detail achieved is limited (in this case just basic geometric parameters for the vehicle as a 

whole).    At the same time, the analysis is based on simple parametric equations 

developed from historical vehicles; it is fast but there is a great deal of uncertainty 

regarding its accuracy.  In other words, the conceptual system analysis has a high degree 

of model error.   As the design progresses to the liquid hydrogen tank, the scope is 

reduced (i.e., a single component versus the RLV as a whole) and design detail is 

increased (i.e., to specific tank dimensions, location, materials, etc).   Meanwhile, a more 

rigorous analysis is required (in this case, structural sizing), one for which there should be 

less uncertainty. 
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   One fundamental characteristic of the design process is that it requires iteration 

to ensure communication between levels in both directions.  Again considering the RLV-

tank progression, the tank design requires information from the system (e.g., an overall 

weight profile overall dimensions, etc.) while the system design must assume (initially) 

information about the tank (e.g., tank weight).   The tank design will likely invalidate the 

initial assumptions used in the system design so iteration is necessary to synthesize the 

two.  The most typical manner in which this bi-directional communication between 

design levels is accomplished is through fixed-point iteration.  For example, the RLV 

geometry/ tank-sizing design might be coupled as shown in Fig. 1. 

 

   

Figure 1.  Coupling of RLV System and Component Designs 

 

However, there are major drawbacks to this approach including significant 

computational effort (i.e., repeated optimizations) and the fact that fixed-point iteration 

may not yield a solution.  In the previous chapter, an alternative procedure was used to 

iterate between design levels.  This required re-mapping the data flow for a combined, 

multidisciplinary reliability-based optimization as depicted in Fig. 2.  Here two 

optimizations (system and component-level) merge into one by combining constraints 
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(aerodynamic and structural) and elevating a coupling variable, the tank weight.  (In this 

case the tank weight is uniquely mapped to a reduction factor, rfTank Weight that is an input 

into the conceptual weights model, W.)   The disadvantage to this approach is that the 

system optimization could easily become intractable as components (e.g., liquid oxygen 

tank, wings, thrust structure, etc.) and accompanying performance constraints are added.   

 

 

Figure 2.  Integrated System-Component Multidisciplinary Analysis 

 

This chapter proposes an alternative methodology for communicating information 

across design levels.  This method maintains autonomy between the system optimization 

and the component design but takes a sample of component designs in order to 

characterize the model error of the system analysis.   For the RLV application, the model 

error of concern results from the tank weight prediction in the conceptual weights 

analysis, W.  The component design of the tank provides a more accurate prediction of 

tank weight.   A comparison of the two predictions for a given system design provides the 

model error.  This error propagates through the system analysis and affects the overall 

assessment of system weight as well as aerodynamic performance.  Thus, model error is a 
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significant random parameter to be included in the system optimization and one that links 

the system and component designs.  In addition, the sensitivity of the system design 

constraints to the uncertainty associated with this error defines the effect of disciplinary 

model error on a multidisciplinary system and provides a useful metric for model 

selection.    

The following section introduces a brief background on model error assessment 

which has been significantly studied for the purpose of comparing experimental data with 

results from computational analysis.  This is followed by a more detailed description of 

how model error will be assessed and subsequently used to link design levels.   This 

methodology is then applied to the RLV geometry and tank design problem of the 

previous chapter with a discussion of results.  The chapter concludes with a summary and 

overall assessment of the methodology. 

 

Model Error Assessment 

  Computational models are prevalent throughout the design process as a means to 

predict system performance (in order to adjust the system design to assure desired 

performance).   As introduced in Chapter I, there exists some degree of uncertainty 

regarding how well these models predict true system behavior arising from a number of 

sources.  First, as a physical model is developed to represent the true physical system, 

uncertainty is introduced through assumptions regarding the system itself and its 

operating environment.  Eventually, the physical model is reduced to a mathematical 

model (most often a partial differential equation) which typically may only be solved 
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through a discretized computational model.   As these abstractions are made, further 

uncertainty is introduced.   

Collectively, the sources of uncertainties in the model predictions may be 

described as model error, or simply the difference between the model prediction and 

actual performance of the system.  For some performance measure, Y, Eq. (1) describes 

this relationship where εm represents the collective effect of all sources of model 

uncertainty: 

actual model mY Y ε= +                                                        (1) 

Since true performance (Yactual) is random (it is characterized by natural variability), 

model error (εm) is also a random variable.  Oberkampf et al. (2002) provide a detailed 

taxonomy of model errors based on their source of uncertainty.    Methods are available 

to quantify some sources of error.  Many techniques in the literature exist for quantifying 

discretization error, e.g., error arising from the choice in mesh size for finite element 

computational approximations (e.g., Richardson, 1977).  Errors associated with 

mathematical approximations (e.g., response surfaces) and probabilistic analysis methods 

(such as Monte Carlo analysis, FORM, etc.) are also well known.     

Much research has been directed at quantifying individual sources of uncertainty 

for the purpose of model refinement to reduce error or model selection in order to 

minimize error.  For a detailed review see Rebba, 2005 (Chapter IV).    Difficulty arises, 

however, from aggregating all types of model error which are not necessarily additive.   

Rebba, et al (2006a) provide a method for quantifying model error based on a sample of 

experimental results and established methods for determining numerical errors.  After 

characterizing the random model error variable εmf with a probability density function, 
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Mahadevan and Rebba (2006b) subsequently perform reliability-based design 

optimization using this variable as a source of uncertainty.     

 

Assessing Model Error  

This study uses established methods for quantifying model error and suggests this 

error term as a metric for disciplinary model selection.    In other words, model error 

provides a basis for selecting disciplinary models for integration within a 

multidisciplinary system analysis as well as a means to communicate design information 

across levels within the design process.  Mahadevan and Rebba (2006a) combine two 

relationships, one using experimental error and one using the combined effects of model 

error in order to obtain the relationship in Eq. (2).  (They distinguish between model form 

error - that arising from assumptions required to develop a mathematical model from the 

physical/conceptual model, and numerical error – errors arising from the progression 

from mathematical to computational model.)   

true obs exp model mf numY Y Yε ε ε= + = + +                                        (2) 

This results in an expression for obtaining model error from experimental data, where εobs 

is simply the difference between observed performance, Yobs and the model prediction, 

Ymodel. 

mf obs num expε ε ε ε= − +                                                  (3) 

Each of the errors on the right hand side of Eq. (3) are random variables.   A comparison 

of experimental and model results provides a sample εobs, extrapolation techniques are 

used to characterize εnum, and experimental results may be used find statistics of εexp.  

Equation (3) is then used to obtain a sample for εmf and a bootstrapping technique 
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developed by Efron and Tibshirani (1993) is used to interpolate a smooth probability 

density function for εmf.   

 Early in the design process, experimental data is not available.  However, there is 

typically an abundance of disciplinary model choices, each with varying degrees of 

model uncertainty (for a specific disciplinary analysis, for example).   Results from more 

detailed analysis with reduced total model error (including both model and numerical 

errors) may be used in lieu of experimentation to determine the model error for a less 

detailed, conceptual analysis as in Eq. (4) where εconcept and εdetail are model errors for the 

conceptual and detailed analyses respectively and Yconcept and Ydetail are the performance 

predictions from each model. 

true concept concept detail detail

concept detail concept detail

Y Y Y

Y Y

ε ε

ε ε

= + = +

∴ ≡ − +
                                                 (4) 

An initial probability density function for the model error for the detailed model, εdetail 

may be assumed.  In the absence of additional information (which would be revealed as 

the design progresses), a normal distribution with zero mean and small standard deviation 

is assumed.   A random sample of input variables for both models is selected in order to 

obtain a set of Yconcept and Ydetail; this is combined with a random sample for εdetail to 

obtain a sample of εconcept in accordance with Eq. (4).  Efron and Tibshirani’s 

bootstrapping technique is then used to provide a smooth probability density function.   

At this point the conceptual model error can be propagated through conceptual 

multidisciplinary analysis, optimization, and design.  In this way, the detailed (and 

computationally intensive) disciplinary analysis is used to calibrate the conceptual model 



 133

but need not be directly integrated with other disciplines or optimization (as in the 

previous chapter), which could be intractable due to the computational effort required.  

 

Model Selection using Sensitivity to Model Error 

During the top design level, conceptual analysis tools are common.  Analyses at 

this level would have a large uncertainty associated with model error, εconcept.  This 

uncertainty, once quantified, could play an important role in model selection and 

refinement during the various stages of design.   When the model uncertainty for a 

particular conceptual disciplinary analysis has a minor effect on the uncertainty of system 

performance, there is little cause to expend additional resources to upgrade to a more 

detailed analysis.  Conversely, if a system is very sensitive to the uncertainty of a given 

disciplinary model, increases in analysis detail and fidelity will significantly reduce the 

uncertainty of system performance.   For example, the equation below gives the 

sensitivity of failure probability to model error, ε.   
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Here g is a failure limit state, β is the first order reliability index, σε  is the standard 

deviation of the model error, xi are other random variables, and σi are their respective 

standard deviations.  (Note, this is the same sensitivity factor plotted in Fig. 5 of Chapter 

IV for the UAV application.  In that case, the state of charge error variable represented 

model error.)  In order to evaluate Eq. (5), statistics of model error, ε are needed; these 

statistics may be derived from the sample generated by the methodology described in the 

previous section.  
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Given recent advances in computational power and resources, there is a 

temptation to continually improve models when in fact this may have very little effect on 

the overall reliability of an analysis given other sources of uncertainty.  However, in 

comparing
mf

fP
ε∂

∂
 for various model choices, engineers can make an informed decision on 

when it is worthwhile to upgrade to more detailed models.   

 

Tank Weight Estimation Models 

 The previous chapter treated the integration of the reusable launch vehicle system 

geometry design and a component tank design.  The design progression moved from the 

conceptual system design to a more detailed, but reduced scope component design.    The 

two designs were coupled through the overall weight distribution and the tank weight.  In 

providing an alternative to fixed point iteration between the design levels, Chapter V 

combined the two in a single multidisciplinary optimization, treating the structural 

analysis of the component design as an additional discipline (Fig. 2).  However, this 

chapter treats the structural sizing of the LH2 tank not as a new discipline but as a more 

detailed analysis model for component weight estimation than that contained within the 

conceptual weights model, W.    W uses parametric equations to estimate component 

weights based on legacy vehicles with technology improvement assumptions.  These 

equations profile a weight distribution for the vehicle, enabling calculations for center of 

gravity as well as overall sizing measures such as length and radius.  The tank design 

provides a better estimate of the tank weight based on structural integrity requirements 

and material properties.  In fact, similar analyses for the other components could replace 

ALL the parametric weight calculations in W.   However, note that in order to accomplish 
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the tank design, the overall weight profile is needed to assess loads.   Without the 

conceptual information provided by W, this would require the tank design be directly 

coupled to the design of all component designs, which would make finding a solution 

intractable.   Instead, one may continue to use the conceptual design, an extremely 

efficient way to obtain an overall geometry and weight distribution, while leveraging the 

information from the tank design selectively. 

 

 

Figure 3.  Variable Fidelity Analysis 

 

 In Fig. 3, an analysis system for the RLV geometry/ tank sizing problem is given 

with two alternative models for tank weight estimation.   The original weights module, 

W, is decomposed into the conceptual calculation for the tank weight, Tconcept and the 

balance of the calculations in the module denoted W-.   Thus the conceptual design is the 

original optimization of the RLV geometry based on the conceptual weights model and 

aerodynamic analysis.   The detailed calculation for the tank weight, Tdetail, is the 

structural sizing analysis; it solves the optimization problem constrained by structural 
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failure probability (i.e., Eq. (7) of the previous chapter).  Note that a combined detailed 

analysis would result in feedback (i.e., tank weight is an output of Tdetail and an input to 

W- while the weight distribution, length and radius are outputs of W- and inputs to Tdetail) 

while the conceptual analysis does not, so solving the conceptual system optimization 

requires much less effort.   

 Both the conceptual and detailed component analyses for tank weight have model 

error.  A probability density for the conceptual model error, εtankWt, is obtained in 

accordance with the methodology for assessing model error presented earlier.   Both tank 

weight analyses (Tconcept and Tdetail) were implemented for a sample of 20 input values 

(Xtank and Xgeom).  Note that the structural sizing analysis, Tdetail includes a probabilistic 

optimization in itself (i.e., minimizing tank weight subject to an acceptable probability of 

structural failure) which accounts for random parameters Ytank associated only with the 

high fidelity analysis.   Thus there is no variability in tank weight predictions for a given 

set of input values (Xtank and Xgeom ) and model error for the high fidelity analysis is 

neglected.    The bootstrapping technique was used to generate a probability density for 

conceptual model error, εtankWt, given in Fig. 4.  
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Figure 4.  Probability Density for Low Fidelity Model Error, εtankWt 

 

 At this point, now that statistics for conceptual model error for tank weight are 

available, a sensitivity analysis for system failure probability is possible.  Recall from the 

previous chapter, that the conceptual RLV design problem is constrained primarily by 

pitching moment failure probability (i.e., Eq. (4) of Chapter V).    The sensitivity of 

pitching moment failure to tank weight model error is calculated according to Eq. (5) and 

normalized to compare with sensitivity to other sources of uncertainty.  Results are 

plotted in Fig. 5, giving relative sensitivities to pitching moment failure for the 

hypersonic, maximum angle of attack flight profile.   Although tank weight model error is 

significant, it is not the dominant source of uncertainty with respect to pitching moment 

failure probability. 
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Figure 5.  Comparison of Failure Sensitivity to Various Sources of Uncertainty: Pitching 
Moment for Hypersonic, Maximum Angle of Attack 

 

 As the design process progresses, an increase in level of detail should correspond 

to a decrease in the uncertainty of system performance.  Conveniently, an ‘upgrade’ in 

system analysis models often accomplishes both ends.  For example, transitioning from 

the conceptual parametric equation model for tank weight to the structural sizing model 

provides additional detail (i.e., tank geometry) and reduces the predicted probability of 

pitching moment failure.  However, considering a system of several disciplinary analysis 

models, the improvement in system reliability from improving a particular disciplinary 

analysis may not be significant to warrant the additional computational effort.    The 

system sensitivity to model error, Eq. (5), is therefore an obvious metric for selecting 

which disciplinary models to upgrade at a particular stage in design to achieve the desired 

reduction in performance uncertainty. 
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Reliability-based Design Optimization Including Model Error 

Reliability-based design optimization of the conceptual system, as formulated in 

Eq. (6) was performed using the fully-integrated, sequential, inverse form RBDO method 

(i.e., Method 4) as presented in previous chapters.   In this case, tank weight model error 

(characterized in Fig. 4) contributes to the uncertainty in pitching moment. 

Minimize mean of Wempty                                             (6) 

Subject to  9  to1  i 0.1,  0.01)  |(| )( =≤≤imCP  

mean of tvc ≤ 0.05 

mean of W/S/CL ≤ 227 

mean of L/D ≥ 1.2 

Here Wempty is the total empty weight of the RLV, Cm(i) is the pitching moment coefficient 

at one of the nine flight scenarios (subsonic, supersonic, and hypersonic flight at 

minimum, nominal, and maximum angles of attack), tvc if the tail volume coefficient, 

W/S/CL is the relative landed weight to coefficient of lift ratio,  and L/D is the ratio of lift 

to drag.  Also recall from the previous chapter that the six geometric design variables 

include mean values for the fuselage fineness ratio, fr, wing area ratio, war, tip fin area 

ratio, tfar, body flap area ratio, bfar, ballast fraction, bl, and mass ratio, mr.   

 Results are shown in Table 1.  The optimal empty weight of the vehicle is 198 

kips, similar to that obtained in the previous chapter (202 kips) though there are some 

differences in the optimal geometry.   Note that the total number of function evaluations 

is similar to that from the integrated design in the previous chapter (Chapter V, Table 2).  

However, only 20 evaluations were required for the detailed structural analysis in order to 

obtain 20 samples for the component design.    
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Table 1:  Optimization Results 

Pf  
btarget  

0.0013 
3.00 

Bounds Optimal Geometry 
[4, 7] fr 6.75 

[10, 20] war 15.58 
[.05, 3.0] tfar 0.5 

[0, 0] bfar 0.00 
[0, 0.4] bl 0.006 

[7.5, 8.25] mr 6.82 

 mEmpty Weight 
(lb) 192,400

RBDO 
Iterations 6 

Optimization  
Function Evaluations 17,462 

Probabilistic Analysis 
Function Evaluations 2106 

 

Integrating Model Errors from Multiple Disciplines 

 In the above analysis, the RLV component tank design uses a detailed disciplinary 

analysis model to characterize model error for a less detailed, conceptual model.  This 

model error variable may then be used, first to assess the importance of disciplinary 

model selection on the performance of a multidisciplinary system (through system 

sensitivity to model error), and secondly to calibrate the system design through 

reliability-based design optimization.   The real advantage to this approach is seen as the 

next level of design is expanded to include other disciplines.   Consider a design 

hierarchy for the RLV system as shown in Fig. 6.    
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Figure 6.  Multidisciplinary Design Hierarchy for Reusable Launch Vehicle 

 

The conceptual design presented in this and the preceding chapter integrates two 

primary disciplines: aerodynamics and structural analysis (i.e., weights and sizing).  

Further, as has been shown, as the design progresses and additional detail is needed, 

individual components may be analyzed separately.  Using the methodology shown in 

this chapter, a limited number of detailed disciplinary analyses may be performed 

independently (i.e., not in the context of the multidisciplinary system) in order to 

characterize model errors associated with each of the discipline/component analysis.  

This would yield for example, up to five model error terms for Fig. 5: εLH2_WT, εLOX_WT , 

εWING_WT,  εBODY_WT, and  εAERO.  A sensitivity analysis would reveal which of these 

errors have the greatest affect on system performance (i.e., probability of pitching 

moment failure).    This would enable engineers to assess the benefit to cost ratio for 

upgrading disciplinary models used in the system-level analysis as the design progresses.  
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For example, at the current conceptual level, the aerodynamic analysis is somewhat more 

rigorous (and thus reliable) than the weights analysis (based on empirical parametric 

equations); thus one would expect εAERO to have both a smaller mean and standard 

deviation than the other sources of disciplinary model error.  However, the pitching 

moment is also more sensitive to the aerodynamic analysis in general.  Assume for 

illustration purposes, that these two factors balance and that a probabilistic sensitivity 

analysis, Eq. (5), reveals that the probability of pitching moment failure is moderately 

sensitive to errors in aerodynamic analysis and the sizing of tanks and wings but is fairly 

insensitive to body weight errors.   However, the increase in computational effort that 

would result from choosing an aerodynamic analysis model to reduce εAERO is significant 

compared to alternative models available to improve the tank and wing weight 

predictions.  The next phase of design should therefore include more rigorous weights 

analysis, may not yet need the higher fidelity aerodynamic analysis, and would probably 

not require an upgrade to the body design until later in the design process. 

A quick study of Fig. 5 also reveals the advantages of not integrating higher 

fidelity disciplinary analyses for reliability-based design optimization.   The previous 

chapter demonstrated that the computational effort for MDO-RBDO for the bi-level 

design was not insignificant despite methods developed to improve efficiency.  With the 

addition of more component designs, the complexity of the optimization increases: there 

are more design variables, more random parameters, and additional constraints.   

However, RBDO incorporating disciplinary model errors provides an alternative 

methodology that, though it sacrifices full integration (of the detailed analyses) in order 
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to keep the system design tractable, provides for conceptual system integration calibrated 

with valuable information from the detailed design analyses.  

  

Conclusion 

 This chapter extends recent research in model error quantification and application 

to reliability-based design optimization for use in integrating multiple levels of design.   

Throughout the design process, engineers select models to analyze system performance, 

making trade-offs between effort and detail.    At higher, more conceptual design levels, 

the fidelity and detail of individual, disciplinary analyses are typically low.  However, the 

scope of system analysis at this stage is significant, involving the integration of multiple 

disciplinary models.  Once quantified, model error may be propagated through 

multidisciplinary analysis and optimization routines using probabilistic analysis.   

These concepts have been applied to the integration of a conceptual geometry 

design and component tank design.  In this case, the communication between component 

(detailed) design and system (conceptual) analysis is made through the updating of model 

error statistics.   Thus the communication between design levels is much less stringent 

than for MDO-RBDO as used in the previous chapter.  No agreement between levels is 

ever required.  In addition, this method maintains the advantage of using conceptual 

analysis at the system level, i.e., at reduced computational effort and complexity.      

Finally, assessing model error as a stochastic input provides an effective means for 

measuring the importance of disciplinary model error on the conceptual system design.   

This has significance for discipline model selection, pointing to areas where reducing 

uncertainty will have the greatest pay off in terms of the reliability of the system analysis.  
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There are, however, a few limitations to this approach.  First, the method presumes the 

‘higher fidelity’ detailed model is actually more accurate than the conceptual model.   It 

requires knowledge (or a good guess) about the model error associated with the detailed 

model.   In some situations, this may not be the case or else it may be unknown.  (One 

may see Rebba et al., 2006 for hypothesis testing based methods to compare model 

quality).   Second, the bootstrapping technique is an approximation of the true 

characterization of the conceptual model error; additional accuracy may be achieved but 

at the cost of additional detailed analysis.  In addition, the error is dependent on the 

design which is not known a priori.  Finally, this method only accounts for the presence 

of model error; it offers no means to reduce the error other than to incorporate the 

detailed analysis in the RBDO design formulation.  Thus a sensitivity analysis is 

recommended at the onset decide what level of fidelity is required for each disciplinary 

model during conceptual design 
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CHAPTER VII 

 

CONCLUSION 

 

 In providing reliable design of complex systems under uncertainty, it is critical 

that the design process incorporate methods to account for uncertainty and ensure 

meeting reliability goals throughout all stages of design.  In this dissertation, this 

communication of uncertainty has been addressed on two fronts.  The first is for the 

integration of multiple disciplinary analyses at a single level.  To this end, efficient 

methods were presented in order to address concerns about the computational effort 

required for reliability analysis and optimization of complex systems.  On the second 

front, two alternative strategies were developed for the communication of uncertainty 

across two design levels (as distinguished by the scope, detail, and fidelity of the 

performance analysis).   

 A first step in reliability-based system design is reliability-based analysis.  

Chapter II provided two specific algorithms for reliability-analysis of multidisciplinary 

systems.  The Partial FOSM method is a low effort, low fidelity method particularly 

suitable for problems for which the sensitivity of system failure to intermediate 

disciplinary response variables is small relative to other sources of uncertainty.  It is also 

ideal for systems for which the effort for a disciplinary analysis of interest is significantly 

lower than that required for multidisciplinary systems.  Communication between 

disciplines is required during the first (i.e., FOSM) phase of this methodology to achieve 

multidisciplinary feasibility, but only the mean (where interdisciplinary agreement is 
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more likely to be achieved).  Limitations to this method include the assumption that 

discipline responses are linear and normal; errors associated with these assumptions will 

propagate according to sensitivity of the failure probability to these discipline responses.   

An alternative algorithm, for distributed multi-constraint FORM was also provided.  This 

algorithm provides a step based on the distributed (MDO) formulation for FORM 

provided by Du and Chen (2002).  Multi-constraint FORM requires interdisciplinary 

communication more often that Partial FOSM and requires agreement at more extreme 

values (the most probable point).  However, its performance for a limited example 

demonstrates the potential to reduce overall computational effort over equivalent methods 

that employ either fully-integrated FORM or use SQP to solve the distributed 

formulation.  Limitations to this method include the assumption of a linear limit state and 

the fact that it is based on Newton-Raphson methods which do not have proven 

convergence but are known to either diverge or cycle for certain starting points.  

Furthermore, this algorithm will only provide an improvement over fully-integrated 

FORM methods if gradient-based methods are at least as effective as fixed point iteration 

in achieving multidisciplinary feasibility. It is recommended to employ this method as a 

first choice algorithm and defer to fully-integrated FORM with SQP if it does not 

converge after some minimal number of cycles (10, for example.) 

 In Chapters III and IV, multidisciplinary reliability analysis was extended to 

multidisciplinary optimization under uncertainty using algorithms developed by 

combining existing MDO and RBDO techniques using theory due to Chiralaksanakul, 

and Mahadevan (2005).    Further study is needed to fully define the classes of problems 

suitable to each method.  However, based on limited early results, a few inferences are 
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drawn.  First, fully-integrated, single loop, inverse FORM (Method 6) appears to be 

promising as a first attempt algorithm for systems with nearly linear limit states.  This 

method has the most potential for significant computational savings, although its success 

is highly dependent on starting point especially for non-linear limit states.  Second, 

sequential, fully-integrated, direct FORM (Method 7) appears promising as a solid 

overall algorithm which performs well in many situations (it was the best algorithm for 

the real world UAV application).   As with any fully-integrated algorithm, use of this 

method presumes that multidisciplinary integration is tractable.  Finally, for systems in 

which multidisciplinary integration is expensive and gradient-based methods are effective 

in achieving multidisciplinary feasibility, simultaneous analysis and design algorithms (7-

10) show promise in reducing the overall effort by requiring interdisciplinary ‘agreement’ 

only at the design solution. 

 In summary, the methods developed in the first part of this dissertation all require 

a clearly defined design problem with interdisciplinary relationships that are well defined.  

Both the UAV Power System design in chapter IV and the RLV/LH2 Tank design in 

Chapter V demonstrate that this is no trivial task.   However, methods differ in the 

conditions under which interdisciplinary agreement must be achieved.  Fully-integrated 

methods benefit from frequent agreement during both the design process (optimization) 

and reliability analysis while distributed methods postpone agreement until the design is 

finalized.   

 The second half of this work took a different direction, addressing the 

incorporation of design under uncertainty across design levels.   The ideas were 

motivated by the relationship between a conceptual reusable launch vehicle design and 
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that of one of its major components, a liquid hydrogen tank.  Two alternatives to fixed 

point iteration between designs were presented.  Chapter V integrated the two designs 

within a single reliability-based optimization.   In Chapter VI, the same problem was 

addressed from a different perspective.   There, the two designs were distinguished by 

their level of detail as well as by their respective disciplinary model errors.: A sample of 

designs at both levels provided a means to quantify model error for the RLV design, and 

the system sensitivity to model error was presented as a valuable metric for selecting 

disciplinary models at various stages of design.  Furthermore, this was incorporated into 

the reliability-based design optimization providing a conceptual design linked to the 

detailed design through the model error variables.   The integrated bi-level RBDO 

method of Chapter V appears promising for designs for which (1) close interaction 

between design levels is both possible and desired, (2) the design process can ‘afford’ the 

additional computational effort, and (3) the detailed design is needed to reduce otherwise 

unacceptable uncertainty associated with the conceptual design.    The model error 

propagation method might be more suitable for system-component integration when it is 

difficult or impossible to achieve inter-level agreement and close integration is not 

required. 

 

Future Research Needs 

 Short term research needs include deeper analysis into the performance of MDO-

RBDO algorithms in order to (1) determine the applicability of these methods to large 

scale problems and (2) fully characterize the system properties suitable to particular 

methods.    Characteristics to be studied could include the conditioning of the limit state 
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and/or disciplinary analyses (continuity, concavity, etc.), the effect of dimensionality of 

the design variable vector and random vector, the number of probabilistic constraints, and 

the number of disciplines.  In addition, a specific algorithm for combining inverse FORM 

and SAND is needed to improve performance of these methods.   

In the area of multidisciplinary analysis under uncertainty, this dissertation 

examined the two most basic strategies for optimization, fully-integrated optimization 

and analysis and simultaneous analysis and design with six reliability-based design 

optimization algorithms.  The methods proposed, though providing improvements in 

efficiency can nevertheless be computationally expensive as problem complexity 

increases.  Numerous other methods exist, particularly for multidisciplinary optimization, 

which could be exploited for using in design under uncertainty in the development of new 

algorithms. Another important direction for research regards incorporating discrete 

design variables.  Many real world applications have discrete design choices (material 

choice, for example).  Accommodation of discrete design variables would significantly 

expand the applicability of these methods.   Incorporating system reliability constraints 

would be yet another noteworthy addition. 

 This research examined the integration of a conceptual system design with the 

design of a single component under uncertainty.  It would be worthwhile to extend these 

concepts (from both chapters V and VI) to the coupling of a conceptual design to a 

number of component designs to examine the cumulative effect on computational effort 

required.    This would provide a better measure of which methods are truly viable for the 

design of real systems. 
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 Finally, this dissertation has presented concepts and methods for implementation 

of multidisciplinary RBDO within the design process.  However, it has focused on a 

relatively narrow area, namely design parameter optimization under uncertainty.   

Another important area worthy of future study would include a probabilistic approach for 

the requirements flow down of reliability goals.   Engineers would greatly benefit from 

future research to consolidate methods for incorporating stochastic uncertainty 

throughout the entire design cycle in a systematic manner that mirrors an accepted 

systems engineering model such as the Systems Engineering Vee Model (Forsberg and 

Mooz, 1992).  
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