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CHAPTER I

Introduction

Robotic systems have proven effective in many domains. Some robotic domains, such as mass casualty

response, require close coupling between the humans and robots that are able to adapt to the environment and

tasks for successful completion of a mission. The planning problem uses the task requirements and the team

members’ capabilities to determine a set of actions that will accomplish the task. However, planning problem

difficulty increases exponentially with the number of expressive features included in the mission description,

the number of agents, and the number of tasks. Each additional agent and task makes a problem more difficult

and the problem can quickly become intractable, especially for missions requiring rapid decisions.

A natural first step to address planning problem difficulty is assigning agents (humans or robots) to teams

based on each agent’s synergistic capabilities and the requirements of each task, a problem known as coalition

formation. However, coalition formation is also a difficult problem to solve and does not produce a plan for

completing the task. Once coalition formation allocates agents to tasks, the question that remains is how the

agents will complete their assigned tasks.

The research goal is to quickly find approximate solutions to the coalition formation problem and use the

results to focus the planning problem on individual tasks with coalitions of the available agents. Unfortu-

nately, there are no guarantees that planning will be able to derive a plan for each coalition-task allocation

produced by coalition formation, resulting in a nonexecutable coalition. Planning tools must be resilient to

nonexecutable coalitions; the tool must be able to use information from planning to intelligently augment

the generated coalitions in order to transition nonexecutable coalitions to executable coalitions with a plan to

accomplish their assigned task.

Planning for each coalition and task individually will greatly reduce problem difficulty at the cost of

being unable to consider the interactions between the plans for each task. Conversely, planning for multiple

tasks simultaneously allows the interactions of the tasks to be considered in the resulting plan, but increases

problem difficulty. Intelligently merging select tasks and coalitions that are likely to interact can balance

problem difficulty with the need to derive plans by considering possible agent and task interactions.

I.1 Research Outline

Coalition formation lacks the details concerning how a coalition will accomplish a task. Planning without the

higher level knowledge of which agents have the capabilities required to execute a task leads to large complex

problems. Coupling the two problems creates tractable problems for which solutions can be found quickly.
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Coupling coalition formation and planning can be accomplished with four tools: planning alone, coalition

formation then planning, relaxed plan coalition augmentation, and task fusion. Each tool is implemented and

evaluated. Planning alone produced plans, but requires large amounts of computational resources. Coalition

formation then planning reduces the computational resource requirements, but can fail to produce plans due

to nonexecutable coalitions. Relaxed plan coalition augmentation adds agents to nonexecutable coalitions

in order to produce executable coalitions. Task fusion combines similar task and coalition allocations in

order to maximally exploit the capabilities of each coalition during planning. Each tool is agnostic to the

underlying coalition formation algorithms and planning algorithms. Multiple coalition formation algorithms

and multiple planning algorithms are analyzed for use with the presented tools.

A set of four test domains and associated problems are presented to exploit the capabilities and reveal

the weaknesses of each new tool. Three of the domains are existing planning research domains, modified for

the purposes of this research. The Rovers domain demonstrates failures in coalition formation due to no plan

existing for the allocated coalition to complete the assigned task. The Blocks World domain demonstrates

coalition formation failures resulting from plans for previous tasks making a coalition nonexecutable. Zeno-

travel demonstrates the capabilities of task fusion by combining similar tasks. The fourth domain is First

Response, a representation of the problems this research aims to address, in the form of immediate response

to a natural disaster. Each domain includes heterogeneous agents and durative actions, with the last three

including hybrid boolean-continuous state spaces. The new tools will use existing coalition formation algo-

rithms and existing planning algorithms supporting the necessary expressive features of each domain. Plan

makespan, number of plan actions, plan derivation time, and planning tool memory requirements are used to

compare the performance of the tools for test cases in each domain.

I.2 Dissertation Roadmap

The subsequent chapters are organized as follows. Chapter II presents related prior research on task alloca-

tion, coalition formation, planning, and combinations of each field. A formal definition of the problem is

presented in Chapter III, along with four domains and how they map to the problem definition. Chapter IV

presents the tools developed to solve the problem: Planning Alone, Coalition Formation then Planning, Re-

laxed Plan Augmentation, and Task Fusion. Chapter V presents the experimental design used to analyze the

problems in the test domains. Chapter VI present the results for each of the four tools. Finally, Chapter VII

provides a conclusion and summarizes the dissertation contributions.
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CHAPTER II

Literature Review

Multi-agent systems research covers many different areas. Research problems of importance for this disserta-

tion include task allocation, coalition formation, and planning. Results from each of these problems interact

with one another when designing multi-agent systems for the real world.

II.1 Task Allocation

The task allocation problem attempts to determine which agents to assign to each task. Formally, the task

allocation problem assumes a set of n agents known as the grand coalition, Φ = {φ1, . . . , φn}, and a set of

m tasks, V = {v1, . . . , vm} and allocates agents to each task. Finding an optimal solution requires defining

a utility function mapping agent-task allocations to a real value, U : 2Φ × V → R.

Gerkey and Matarić (2004) proposed a taxonomy of multi-robot problems applicable to task allocations

along three axes. The first axis distinguishes between robots capable of executing only a single task at a time

versus those that are capable of executing multiple tasks at a time. The second axis distinguishes between

tasks requiring a single robot versus those that require multiple robots. The final axis distinguishes between

how the task allocation decision must be made: instantaneously or time-extended. Instantaneous assignment

problems permit only an instantaneous allocation of tasks to the robots, whereas time-extended allocation

problems have more information, such as the set of tasks that will need to be assigned after execution has

commenced or a model for how the tasks are expected to arrive for allocation. This taxonomy assumes that

tasks are independent, which is rarely the case in real world domains.

The iTax taxonomy extended the Gerkey and Matarić taxonomy to include varying levels of task de-

pendence (Korsah et al., 2013). Four levels of task dependence are used: no dependencies, in-schedule

dependencies, cross-schedule dependencies, and complex dependencies. In-schedule dependency tasks have

constraints on a single agent’s schedule. Cross-schedule dependency tasks have constraints across multiple

agent’s schedules, while complex dependency tasks have constraints across multiple agents’ schedules that

also depend on the plan an agent will execute to accomplish its task. Task dependency is also referred to as

task coupling.

The ALLIANCE architecture for fault tolerant multi-robot cooperation was a behavior-based system with

mathematically modeled motivations within each robot (Parker, 1998). Each robot had a set of behaviors

from which one was dynamically selected, based on how the environment and the other agents in the system

changed. The fully distributed system allowed robots to be added as desired by the system creators. Broadcast
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of Local Eligibility was another behavior-based architecture (Werger and Matarić, 2000), in which robots

communicate their eligibility for a task to other local robots. The robot with the highest eligibility for a

task claims it by assuming the behavior to execute the task and actively inhibiting the behavior on the other

robots. This approach is also fault-tolerant, because the inhibition is an active process; thus, other robots will

acknowledge the task as unallocated upon agent failure.

A similar approach to ALLIANCE, the Automated Synthesis of Multi-robot Task solutions through soft-

ware Reconfiguration (ASyMTRe) system represented robots as a set of schemas (Tang and Parker, 2005).

Robots were defined by their environmental sensors and three different schema categories: perceptual, mo-

tor, and communication. Tasks were represented as a set of motor schema requirements and task specific

parameters. An anytime algorithm connected robot schemas within and across robots to develop a joint

schema capable of accomplishing the assigned task. Information Quality based ASyMTRe (IQ-ASyMTRe)

addressed drawbacks of ASyMTRe and extended it to work with tightly-coupled tasks (Zhang and Parker,

2010). IQ-ASyMTRe considered both the quality and type of sensor information provided by a schema

and moved from a centralized architecture to a distributed architecture to improve fault-tolerance. A simi-

lar approach, the Remote Object Control Interface framework, considered each robot as a node with several

modules encapsulating specific functions, such as processing and sensing (Chaimowicz et al., 2003). Each

robot has a kernel that tracks the functionality exported by each module in the network and dynamically

connects modules to form a functioning application.

Social and biological systems have inspired task allocation algorithms as well. Vacancy chains are a so-

cial structure common in both human and animal groups. An example is a senior manager creating a vacancy

at a company by retiring and the position being filled by a junior employee creating another vacancy and so

on. Dahl et al. (2003) proposed a method of task allocation based on vacancy chains, focused on the subset of

problems where tasks can be completed indefinitely, such as assembly lines. Tasks are assigned a value and

the task completion rate is a function of the number of robots working on the task with diminishing returns.

Robots allocate themselves to the task where they provide the highest marginal utility. Other biologically in-

spired approaches include artificial bee colony (TSai et al., 2009; Liu et al., 2015) and ant colony optimization

(Pendharkar, 2015).

Market based approaches encourage individual robots to work towards the team goal by increasing their

share of the team revenue based on their share of the work towards a goal. Stentz and Dias (1999) developed

a distributed market-based approach in which robots use an ask-bid system to provide services. Cooperative

interaction provides services that no robot can provide on its own, such as a grasp-and-lift robot working

with a transport robot to provide a moving service. The other interaction mechanism is competitive, which

requires multiple robots provide the same service and must outbid each other to perform the service. The bid-
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ask system encodes all the information about availability of services and cost to perform those services in a

single number; thus, limiting the communication overhead to the ask and bid prices. Market based approaches

to task allocation have also been developed for optimal assignment in fault-tolerant networks (Liu and Shell,

2013), wireless sensor networks (Mezei et al., 2013; Haghighi, 2014), and sequentially interdependent tasks

in swarm robotics (Brutschy et al., 2014).

Task allocation covers a wide range of problems. The next section focuses on multi-task robots working

on multi-robot tasks, commonly referred to as coalition formation.

II.2 Coalition Formation

Coalition formation is a subclass of the task allocation problem without constraints on the number of agents

allocated to each task or the number of coalitions to which an agent is a member. Coalition formation is an

NP-complete problem (Sandholm et al., 1999) that is also difficult to approximate (Service and Adams, 2011).

The goal is to form teams of agents that are together more capable than the team’s individual agents and can

accomplish a set of assigned tasks, while optimizing an objective function (e.g., utility, cost, or number of

tasks completed). The general coalition formation problem assumes a set of n agents, Φ = {φ1, . . . , φn},

and a set ofm tasks, V = {v1, . . . , vm}. A solution to the problem is a mapping of tasks, v ∈ V , to coalitions

allocated to the task, Φv ⊆ Φ.

Two common models for coalition-task utility are the resource model and the service model. The resource

model treats each agent as a set of resources (e.g., chemical sensor, camera, laser) and each task as a set of

resource requirements. The resource vector for agents, Resφj , is defined as

Resφj ≥ 0 | φ ∈ Φ, 1 ≤ j ≤ nr, (II.1)

where nr is the number of types of resources defined for the problem and Resφj denotes the amount of

resource j available to agent φ. Tasks also have a resource vector, defined as

Resvj ≥ 0 | v ∈ V, 1 ≤ j ≤ nr, (II.2)

where Restj is the amount of resource j required to complete task v.

The service model is a more constrained version of the resource model and it treats each agent as a set

of functions that each agent can perform (e.g., box-pushing, mapping, sentry-duty). The service vector for

agents, Serφj , is defined as

Serφj ∈ {0, 1} | φ ∈ Φ, 1 ≤ j ≤ ns, (II.3)

5



where ns is the number of service types defined for the problem, Serφj = 0 if agent φ cannot perform service

j and 1 if agent φ can perform service j. Tasks have a service requirement vector defined as

Servj ≥ 0 | v ∈ V, 1 ≤ j ≤ ns, (II.4)

where Servj denotes the number of agents capable of performing service j, which is required to execute task

t.

Definition II.1 (Candidate Coalition). A coalition, Φv ⊆ Φ, is a candidate coalition for task v, if and only if

the sum of the services (or resources) that can be provided by the agents in the coalition is greater than the

services (or resources) required by the task:

∑
φ∈Φv

Serφj ≥ Ser
v
j | ∀j ∈ {1, . . . , ns},

∑
φ∈Φv

Resφj ≥ Res
v
j | ∀j ∈ {1, . . . , nr}.

The additional constraints in the service model allow a coalition formation algorithm using the service

model to make assumptions a resource model coalition formation algorithm cannot make (e.g., a candidate

coalition of size at least three is required for a service model task requiring three units of a service). Through-

out the remainder of this dissertation, the term capability model will be used to refer to a model applicable to

coalition formation, whether that is the resource model, the service model, or some future model.

There are many approximation-based algorithms, each with its own strengths and weaknesses. Greedy

algorithms can derive solutions quickly, but make no guarantees on the solution quality (Shehory and Kraus,

1998; Vig and Adams, 2006b; Ramchurn et al., 2010; Service and Adams, 2011; Sujit et al., 2014). Approxi-

mation algorithms provide solution quality guarantees, but suffer from poor worst-case run-time complexity,

which can render them inappropriate for real-time applications (Dang and Jennings, 2004; Rahwan et al.,

2009; Liemhetcharat and Veloso, 2014). Market-based techniques offer fault-tolerance for a distributed sys-

tem, but have high communication processing requirements (Dias, 2004; Dias et al., 2005; Vig and Adams,

2006a; Shiroma and Campos, 2009; Service et al., 2014). Biologically inspired ant colony optimization al-

gorithms have been applied to several NP-complete problems including coalition formation (Xia et al., 2004;

Ren et al., 2008; Sen and Adams, 2015).

No single algorithm is appropriate for all real world scenarios; thus, algorithm selection must be per-

formed intelligently to ensure the use of the best algorithm(s) for the situation. Using an algorithm that is

ill-suited for the mission will negatively affect the resulting solution quality, potentially resulting in a brittle
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Table II.1: Coalition Formation Algorithm Taxonomy

Category Taxonomic Feature Feature Domain Values

Agent

Agent Orientation Group-Rational, Self-Interested
Agent Type Homogeneous, Heterogeneous

Agent Capability Model Resource, Service
Agent Awareness Aware, Partially, Unaware
Agent Structure Social Network, Organization Hierarchy, None

Task

Inter-Task Constraints Yes, Prerequisite, No
Task Preemption Yes, No

Task Resource Model Resource, Service
Intra-Task Constraints Yes, No

Task Coupling Tightly, Loosely, Intermediate

Domain

Performance Criterion Maximize Utility, Minimize Cost, Maximize Tasks
Communication Overhead High, Low

Task Allocation Instantaneous, Time-Extended
Spatial Constraints Yes, No

Overlapping Coalitions Yes, No

Algorithm
Algorithm Technique Greedy, Auction-Based, Approximation

Implementation Centralized, Decentralized
Coalition Size Constraint Single, None, Fixed Upper Limit

team. The intelligent Coalition Formation for Humans and Robots framework (i-CiFHaR) uses mission sce-

nario criteria to select the best subset of coalition formation algorithms from a library of nineteen coalition

formation algorithms (Sen and Adams, 2013, 2015).

Each coalition formation algorithm in the i-CiFHaR library is classified using a taxonomy (see Table II.1)

(Service, 2010). A link analysis uses the feature-value pairs associated with the coalition formation algo-

rithms to compute base utility scores for each possible pair, which are incorporated into a utility table for

each possible combination of feature-value pairs. Feature extraction, using principal component analysis, re-

moves redundant or insignificant taxonomic features from the algorithm analysis. The remaining features are

used as chance nodes in an influence diagram. Missions are defined in terms of required feature-value pairs

that each have a probability value representing the confidence in the assignment. The probability values for

the mission are represented by the chance nodes in the influence diagram. The chance nodes feed into a single

decision node for selecting a coalition formation algorithm(s). The chance and decision nodes are used to

calculate a utility for the selected coalition formation algorithm(s). The utility value for an algorithm is higher

if the mission has matching feature-value pairs with the coalition formation algorithm and the feature-value

assignment has a high confidence.

i-CiFHaR can provide decision support to human mission planners. The human operators provide the

mission specifications, i-CiFHaR selects the coalition formation algorithm(s) and generates the coalition(s).

If a coalition value is above the acceptable threshold, the coalition is automatically deployed. Otherwise, the
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human is presented with the alternatives and can either select a coalition to deploy or modify the mission

criteria. Once a coalition is formed, planning is necessary to determine how the coalition will accomplish its

assigned task.

II.3 Planning

One of the first planning systems was the STanford Research Institute Problem Solver (STRIPS) (Fikes and

Nilsson, 1971). The STRIPS system produced a plan consisting of actions to achieve a goal when executed

sequentially from an initial state. A propositional STRIPS planning instance is defined by a tuple 〈S,A, I,G〉,

where:

• S is a finite set of ground atomic formulas describing the world state,

• A is a set of operators (or actions), where each operator has a set of preconditions, pre ⊆ S, an add

list, add ⊆ S, and a delete list, del ⊆ S,

• I ⊆ S is the initial world state, and

• G ⊆ S is the goal world state.

The STRIPS system produced total-ordered plans, in which the steps are ordered with respect to every other

step in the plan. Metrics for comparing plans include makespan, the number of actions in the plan, and cost,

the sum of the cost of the actions in the plan. A satisficing plan is one that achieves the goal when executed

from the initial state. Plans can be compared using their cost or makespan, among other metrics. An optimal

plan is the satisficing plan that maximizes an objective function.

The Nets of Action Hierarchies (NOAH) planning system avoided the strong ordering of actions produced

by total-ordered plans (Sacerdoti, 1975). The problem formulation is identical to the STRIPS formulation.

The NOAH system planned how to achieve each part of the goal state individually, before merging the plans

together into a single partial-order plan. Constraints between actions enforce a least commitment ordering

between the actions. For example, if action a produces a precondition for action b, then a is constrained

to occur before b. Partial-order plans can be transformed into total-order plans by identifying a step order

that satisfies the ordering constraints between the actions. Such a transformation is equivalent to the job-

shop scheduling problem (Graham, 1966). Total-order plans can be transformed into partial-order plans by

removing unnecessary orderings, which can be achieved in polynomial time (Bäckström, 1993).

STRIPS and NOAH both used state space search, which consists of nodes representing possible states

and edges representing actions. Graphplan introduced the plan graph data structure (Blum and Furst, 1997)

that has two types of nodes and two types of edges. The node types are proposition nodes and action nodes,
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while the edge types are precondition edges and effect edges. Precondition edges connect a proposition node

to a corresponding action node. Effect edges connect an action node to the produced proposition node. The

Graphplan algorithm iteratively extends the length of plans in the graph until a valid plan is produced and

outputs a partial-order plan.

Another popular technique in planning is boolean satisfiability. Plans are derived from the creation of

and solution to the satisfiability problem. If a solution is not found, then a plan with the constraints does not

exist. An example of satisfiability based planning is the SATPLAN classical planning algorithm (Kautz and

Selman, 1992, 2006). State space search, plan space search, constraint satisfaction, and plan graph search are

used extensively in planning algorithms and many algorithms combine techniques to take advantage of the

strengths of each.

STRIPS, NOAH, Graphplan, and SATPLAN all produce plans consisting of instantaneous actions for

a world modeled as a set of binary-valued fluents. Some domains will fit into these constraints, but many

real world domains require more expressive planners. The remainder of this section reviews four different

classifications of planning, how they expand the STRIPS formulation used in classical planning, and why

they are important for real world planning. Classical planning assumes that the world is fully observable

and that actions execute deterministically. Probabilistic planning addresses the uncertainty in real world

domains by removing one or both of those assumptions. Classical planning assumes that actions are executed

instantaneously. Temporal planning considers time by allowing durative actions with effects and conditions

that can occur before, during, and after execution. The STRIPS’ world model uses propositional variables that

only allow for true or false values. Continuous planning introduces variables necessary for representing world

model variables with continuous domains. Plans can be formed by distributed systems to accomplish their

task, but these individual task plans may not work when executed concurrently. Plan merging algorithms

address this problem and find coordination plans to accomplish the assigned tasks. Finally, multi-agent

planning extends STRIPS by explicitly considering multiple agents working together.

II.3.1 Probabilistic

The classical planning formulation assumes that all aspects of the environment are known and actions are

deterministic. Uncertainty arises from many different sources (e.g., noisy sensors, environment, action ex-

ecution). Probabilistic planning introduces uncertainty by incorporating probabilities into the action effects

and initial states. These problems are related to the Markov Decision Process (MDP), which is defined by a

tuple 〈S,A, T,R〉 where:

• S is a set of states,
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• A is a set of actions,

• T : S×A→ Pr(S) is a Markovian transition function giving the probability of transitioning from one

state to another when performing some action, and

• R : S ×A→ R is an real-valued immediate reward for taking an action in some state.

The function R is a reward function or a cost function, depending on the application (Kaelbling et al., 1998).

The first application of a MDP in planning used policy iteration to derive incrementally better plans

(Koenig, 1992, 1994). The probabilistic planning problem was defined by the tuple 〈S,A, T,C,B,G〉where:

• S is a finite set of states,

• A is a finite set of actions,

• T : S×A→ Pr(S) is a Markovian transition function giving the probability of transitioning from one

state to another when performing some action,

• C : S × S → R+ is a positive real-valued cost function for transitioning from one state to another

state,

• B : Pr(S) defines the probability distribution that a state is the initial state, and

• G ⊆ S defines the set of goal states.

Modifications to the theoretical MDP included the state space, S, and action space, A, being finite and

introduced the concept of an initial state and a goal state. Each goal state has an additional action, called the

stop action, which deterministically transitions to itself (i.e., T (s, a, s) = 1, where s ∈ G and a is the stop

action).

Several methods exist for identifying MDP policies, including value iteration, policy iteration, and linear

programming. Finding an exact solution through linear programming can be achieved in polynomial time

with respect to the size of the state space and action space; however, in practice the iterative methods are

generally more efficient and find good approximations (Littman et al., 1995b). Reducing the complexity of

finding a policy necessarily reduces the complexity of the planning problem.

Dean et al. (1993) simplified the MDP problem by removing states that are unlikely to be reached. Instead

of formulating a policy for the entire state space, one formulates a policy for the reachable states. States

included in the analysis are in the envelope and all states not included are considered to be a singleOUT state,

with high costs for reaching it. Policy quality and envelope size can be balanced based on time constraints.

A hill-climbing algorithm for expanding the envelope size has also been tested (Tash and Russell, 1994).
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Another issue with MDPs is the need for a transition probability for every state to every other state for each

action, requiring a table of size |S| × |A| × |S|. Specifying each of these values is prohibitive for all, but the

smallest problems. A Bayesian network can be used to specify the proposition independencies and calculate

each value in the transition table (Boutilier et al., 1995).

The MDP formulation assumes the entire world model is observable, which is not always the case. The

partially observable MDP (POMDP) introduces uncertainty (Kaelbling et al., 1998) and is represented as a

tuple 〈S,A, T,R,Ω, O〉 where:

• 〈S,A, T,R〉 describe a MDP,

• Ω is a finite set of world observations, and

• O : S × A → Pr(Ω) is the observation function, the probability of making an observation after

executing an action and transitioning to a state.

An agent must estimate the current world state given the observations and actions it has taken thus far.

POMDPs are computationally intractable; therefore, approximation methods, such as value iteration or policy

iteration are used (Hauskrecht, 2000).

Point-based POMDP solvers seek to reduce the size of the state space by only considering a subset of

the belief states (Hsu et al., 2008; Shani et al., 2007; Smith and Simmons, 2012; Spaan and Spaan, 2004).

Point-based value iteration (PBVI) algorithms use value iteration and belief state expansion in an anytime

algorithm to compute solutions (Pineau et al., 2003a). Each iteration performs value iteration and expands

the set of belief states. Each expansion step doubles the number of belief states by adding the reachable

belief states that are furthest from the current set. The reduction in the belief state size allowed PBVI to find

solutions for POMDPs that were orders of magnitude larger than the existing results (Littman et al., 1995a;

Brafman, 1997; Poon, 2001). PBVI can be further modified to only consider those belief states that can be

reached, while executing an optimal policy (Kurniawati et al., 2008). Knowing the states reachable from the

optimal policy entails knowing the optimal policy, so this set must be approximated. Concrete applications

of POMDP planning systems include health care (Pineau et al., 2003c; Hsiao et al., 2007; Hoey et al., 2010)

and robotic control (Pineau et al., 2003b; Pineau and Gordon, 2007; Kurniawati et al., 2011).

PGraphplan and TGraphplan represent two Graphplan extensions for probabilistic domains (Blum and

Langford, 2000). PGraphplan performs a forward chaining search to produce an optimal contingent plan, with

the plan graph used to prune the search. Contingent plans allow for unexpected outcomes by conditioning

future actions on the outcomes of past actions. TGraphplan performs a backward chaining search, exactly as

in Graphplan, but returns the optimal trajectory and the probability of achieving the goal state successfully.
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A trajectory is a sequence of actions and outcomes. An optimal trajectory is the trajectory with the highest

probability of reaching the goal state when executed from the initial state.

Another method, replanning executes a deterministic planner and generates a new plan based on observing

an unexpected action effect. Fast Forward is a forward state space search deterministic planning algorithm

that uses a relaxed Graphplan problem as a heuristic (Hoffmann and Nebel, 2001). Fast Forward Replan was

a probabilistic replanning algorithm that used Fast Forward as its deterministic planner (Yoon et al., 2007).

Input was compiled into a deterministic problem by selecting the most likely outcome from each action as the

deterministic effect for each action. If a less likely outcome occurred, then the system found a new plan using

the new initial state. The PRP planner also used determinization and replanning (Muise et al., 2012). Weak

plans, policies that when executed from an initial state reach a goal with non-zero probability, were developed

and combined to form a strong cyclic plan, a closed policy that when executed achieves the goal from every

reachable state. MDP-based replanning algorithms must replan based on observing an unexpected effect from

an action. Belief state can be used to determine when to replan in POMDP-based algorithms (Brafman et al.,

2014). When observations are made that are unexpected or provide a great deal of new information to the

belief state, replanning is performed.

The Upper Confidence bounds applied to Trees (UCT) algorithm selectively samples actions (Kocsis and

Szepesvri, 2006). UCT treats inner nodes of the search tree as separate multi-armed bandit problems, where

the arms correspond to actions and payoffs correspond to rewards from executing an action. It was proven

that the probability of optimal action selection converges to 1 given infinite samples. UCT was found to solve

much larger problems than either the Asynchronous Real Time Dynamic Programming system (Barto et al.,

1991) or PG-ID (Péret and Garcia, 2004), two anytime algorithms that perform selective action expansion.

The 2014 International Planning Competition (IPC) required participants to submit solutions that were

applied to a standard set of input domains and problems. The planners were given a limited amount of time

to select actions for each problem instance. The comparison metric was the sum reward for each problem in-

stance. The Discrete Probabilistic Planning Track was broken into MDP and POMDP subtracks. The PROST

algorithm won the MDP track (Keller and Eyerich, 2012; Keller and Helmert, 2013). PROST improved upon

UCT by using outcome determinization techniques to initialize heuristics and generate a two-step looka-

head. GOURMAND (Kolobov et al., 2012a,b) is based on the Labeled Real Time Dynamic Programming

approach (Bonet and Geffner, 2003) for solving MDP planning problems. No single planner dominated all

other planners.

The PODMP track was won by the Approximate POMDP Planning Toolkit (APPL). The APPL planner

combined the Regularized Determinized Sparse Partially Observable Tree algorithm (R-DESPOT) (Somani

et al., 2013), with a partially observable Monte Carlo planning (POMCP) (Silver and Veness, 2010). The

12



R-DESPOT algorithm used sparse scenario sampling to produce a policy that balances execution time with

optimal policy estimation accuracy. If R-DESPOT takes too long, then the APPL planner resorted to using

the POMCP algorithm, which used Monte Carlo sampling and a black box POMDP simulator to efficiently

solve large POMDPs. The Korean Advanced Institute of Science and Technology (KAIST) planner used

an approach similar to APPL, in that there is a primary algorithm that resorts to POMCP when necessary.

The KAIST planner primarily uses the symbolic heuristic search value iteration algorithm (Sim et al., 2008).

Heuristic search value iteration is a point-based value iteration algorithm that approximates the optimal value

function with an upper and lower bound. Symbolic heuristic search value iteration uses algebraic decision

diagrams (Bahar et al., 1997) to compute the upper and lower bounds of the value function without explicitly

enumerating the states and observations of the POMDP.

Uncertainty is inherent in real world domains due to noisy sensors, imperfect actuators, and an inability

to control or measure all aspects of the environment. Probabilistic planning approaches can produce plans

capable of executing in uncertain situations, but these approaches do not address executing actions in the real

world over an extended time interval.

II.3.2 Temporal

The classical planning formulation assumes that actions execute instantaneously. Temporal planning prob-

lems drop this assumption by adding durative actions. Durative actions occur over a time interval and may

have effects and conditions at any point during that interval. The Planning Domain Definition Language

(PDDL) introduced two durative actions in version 2.1: discretized and continuous (Fox and Long, 2003).

Discretized actions have effects at the start of the action, the end of the action, or both, while continuous

actions have effects throughout the action’s execution.

Temporal planning languages provide for much more expressive domains than STRIPS, but this expres-

siveness is not always necessary. Cushing et al. (2007a,b) introduced the notion of required concurrency.

The solution sets for problems with required concurrency include only plans requiring at least one pair of

concurrently executing actions. Problems lacking required concurrency can be reduced to a classical STRIPS

planning problem, solved using a classical planning algorithm, and transformed to a temporal plan. An ex-

ample of required concurrency is the single hard envelope problem. The single hard envelope problem arises

when there is a resource-producing action in which a resource is generated at the start of action execution

and is removed at the end of action execution (Coles et al., 2009b). An example of a single hard envelope is

using a match for light; light is produced in the world model at the start of the action and deleted from the

world model at the end of the action.

Temporal planning also changes the metrics when comparing plans. For example, makespan must be
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redefined. Using the classical definition of makespan, a plan with two actions executed sequentially has a

higher makespan than a plan with a single action. However, a single action plan can require a longer time to

execute than the two action plan; thus, plan makespan must be redefined to consider the concurrent actions

and action execution times in temporal planning. Makespan in temporal planning is a function of when each

action starts and how long each action takes. Given a temporal plan π, the makespan is

makespan(π) = max
a∈π

(start(a) + dur(a)), (II.5)

where start(a) is the start time of action a and dur(a) is the duration of action a.

Temporal planning encourages concurrent execution of actions when makespan is used as a metric. Tem-

poral constraints between actions are used to determine when actions can be executed concurrently and when

they must be executed sequentially. Plans can be total-ordered, with constraints placed on every pair of ac-

tions, or partial-ordered, with constraints between only some of the actions. Allen introduced seven primitive

relationships between time intervals over which actions can execute (Allen, 1984):

• DURING(t1, t2): time interval t1 is fully contained in t2,

• STARTS(t1, t2): time interval t1 has the same start point as t2, but ends before t1,

• FINISHES(t1, t2): time interval t1 has the same end point as t2, but begins after t2 begins,

• BEFORE(t1, t2): time interval t1 occurs prior to time interval t2, and they do not overlap,

• OVERLAP(t1, t2): time interval t1 starts before t2, and they overlap,

• MEETS(t1, t2): time interval t1 ends when t2 starts, and

• EQUAL(t1, t2): t1 and t2 are the same interval.

These relationships can be expressed as constraints between actions in a plan. Not all actions will follow one

of these relationships, because actions can have no temporal constraints between them.

One data structure common in planning is the plan space graph. A plan space graph consists of nodes

representing plans and edges representing modifications to the plan (e.g., adding actions, removing actions,

changing action temporal constraints). The Universal Conditional Partial Order Planner (UCPOP) used plan

space search and allowed conditional effects and universal quantification, but not durative actions (Penberthy

and Weld, 1992). The Versatile Heuristic Partial Order Planner (VHPOP) extended UCPOP to support du-

rative actions (Younes and Simmons, 2003). VHPOP modified plans by finding and fixing flaws in the plan.

A flaw in a plan is an action that makes the plan nonexecutable or an represents an inefficiency in the plan.
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VHPOP implemented novel flaw selection strategies (heuristics for selecting refinements to make a plan that

fixes a flaw) along with existing flaw selection strategies (Peot and Smith, 1993; Joslin and Pollack, 1994;

Schubert and Gerevini, 1995). Each of the flaw selection strategies had strengths and weaknesses, so all were

used concurrently. The additive heuristic (Bonet et al., 1997) was also adapted for use in VHPOP (Younes

and Simmons, 2002).

Extensions to Graphplan have also been applied in temporal planning. Temporal Graphplan (TGP) ex-

ploited the mutual exclusion structure used in Graphplan (Smith and Weld, 1999). TGP compressed the plan

graph structure to require a single proposition node for each proposition and extended the mutual exclu-

sions to work for durative actions with overlapping execution. LPG is an anytime algorithm using stochastic

local search over temporal action graphs, a variation of plan graphs (Gerevini and Serina, 2002; Gerevini

et al., 2003). Action nodes in temporal action graphs are marked with the estimated earliest time that the

corresponding action will terminate and have ordering constraints between them. Proposition nodes contain

estimates of the earliest time that the proposition will become true. Linear Programming and Graphplan

(LPGP) used Graphlan followed by linear programming to develop plans (Long and Fox, 2003b). Domains

were modified to use only instantaneous actions with durative actions compiled into a start action, an end ac-

tion, and a duration action. A linear program representing the duration of each action was built alongside the

plan graph. If the plan graph and the linear program both had solutions, then a plan for the original planning

problem was derived from the solutions.

Progression and regression planning through the state space are the most popular approaches in temporal

planning. TALPlanner used forward-chaining with temporal action logic to represent domain-dependent

knowledge for guiding the search (Kvarnström et al., 2000; Kvarnström and Doherty, 2000). Temporal action

logic is a language specification for reasoning over actions and state changes over time (Doherty et al.,

1998). The OPTIC (Optimizing Preferences and TIme-dependent Costs) planner performed forward search

and used mixed integer linear programming to accommodate soft constraints and preferences when plan

quality was not directly determined by makespan (Benton et al., 2012). FLAP performs forward search over

the plan space with multiple weighted heuristics (Sapena et al., 2013), while FLAP2 intelligently weighs the

heuristics based on the problem being solved (Sapena et al., 2014). TP4 performed heuristic regression search

to develop plans in domains with resources, while minimizing makespan (Haslum and Geffner, 2001). TP4

automatically derived an admissible heuristic from the problem instance.

Yet Another Heuristic Search Planner (YAHSP) was an influential progression state space planner (Vidal,

2004b,a) that used a relaxed plan based on a planning graph as a heuristic. YAHSP2 and YASHP3 (Vidal,

2011, 2014) used a critical path heuristic to build the relaxed plan and modified the heuristic state value to

use the additive heuristic. These changes increased the planner’s search efficiency at the cost of no longer
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being able to handle required concurrency.

The TEMPO algorithm was based on lifted temporal states and used heuristics from decision epoch plan-

ners (Cushing et al., 2007a). Lifted temporal states contain only temporal constraints between actions and

not exact start times, where the decision regarding when actions are to be executed is delayed until it is deter-

mined which actions are to be executed. Decision epoch planners eagerly make decisions concerning when

actions will execute. TP is a modified version of TEMPO that compiles some temporal actions into classical

planning actions (Jiménez et al., 2015). TPSHE takes the approach of TP a step further and compiles all tem-

poral actions into classical planning actions (Jiménez et al., 2015). TPSHE can handle required concurrency

in the form of single hard envelopes, whereas TP cannot.

Temporal domains can also include uncertainty. Some durative actions, such as movement, can have

durations not known during planning. Cimatti et al. (2015) developed a forward-chaining planner that can

guarantee plan execution in domains where action duration is only known within some bounds.

Factored planning approaches divide the planning problem into smaller individually solved problems

that are merged into a single solution (Brafman and Domshlak, 2006). SGPlan used a partition-and-resolve

strategy with progression planning to generate plans (Chen et al., 2006; Hsu et al., 2006a,b, 2007). The

partition-and-resolve strategy intelligently splits the problem goals and develops plans for each subproblem

independently before resolving global constraints between the subplans. SGPlan also supported all the PDDL

3.0 features. A similar approach is taken by the Divide-and-Evolve planner (Bibaı̈ et al., 2010a,b; Dréo et al.,

2011), that can embed any existing planner to use for planning each of the smaller problems.

The deterministic temporal track of the 2014 IPC included six planners and was won by YAHSP3, an

extension of YAHSP2 (Vidal, 2014). The Temporal Fast Downward planner (TFD) (Eyerich et al., 2012)

is based on the Fast Downward classical planner (Helmert, 2006) and finished in second. The only SAT-

based planner to participate was ITSAT (Rankooh and Ghassem-Sani, 2015) and it came in third. As with

the probabilistic track, the winner did not beat the second place planner for every tested domain. YAHSP3

beat TFD in domains that did not require concurrency. All planners failed to solve a problem in at least one

domain.

Real-world actions do not necessarily occur instantaneously as the classical planning model assumes.

Temporal planning considers time by modeling durative actions and concurrent action execution. Real-world

durative actions can also have effects throughout their execution, which requires continuous planning.

II.3.3 Continuous

The world state in the STRIPS planning formulation is based on boolean variables. Allowing variables to

only take values from a finite domain prevents describing many real world values, such as fuel level, energy,
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or distance. Continuous planning considers continuous fluents. The PDDL planning language (PDDL 2.1)

introduced numeric fluents and durative actions with continuous effects over the execution of an action (Fox

and Long, 2003). Examples of continuous effects include power usage, as provided by changing battery or

fuel tank levels. The PDDL+ extension allows more expressive continuous effects in the domain by both

agents and the environment (Fox and Long, 2006).

One of the first planners capable of handling continuous effects was Zeno, a plan space search least-

commitment planner that supported continuous change, deadline goals, metric preconditions, and metric

effects (Penberthy and Weld, 1994). At each step, a subgoal was selected and an action was either selected to

support or added to support the subgoal. A drawback of Zeno was its inability to handle concurrent continuous

change. Common real world actions, such as charging a battery through solar panels while simultaneously

draining the battery to move, cannot be executed concurrently in Zeno.

State space search is a popular technique in continuous planning. The COntinuous LINear process planner

(COLIN) (Coles et al., 2009a, 2012a) was based on CRIKEY3 (Halsey et al., 2004; Coles et al., 2008), a tem-

poral planner applicable to domains and problems that required concurrency. COLIN extended CRIKEY3

to handle continuous linear effects from durative actions. COLIN used a linear program to express both

temporal constraints and linear processes, whereas CRIKEY3 used a simple temporal network to express

temporal constraints. After COLIN came POPF, a progression state space planner that handled durative ac-

tions and continuous linear change (Coles et al., 2010). POPF used a partial order approach to limit the

commitments made early in the planning process; thus, reducing the need to backtrack due to reaching in-

consistent states. Actions affecting numerical fluents remained totally ordered in order to reduce the problem

complexity. POPF2 extended POPF by analyzing the problem structure for numerical behavior patterns to

exploit during search (Coles et al., 2011).

IxTeT extends constraint satisfaction based planning to handle continuous linear change (Laborie and

Ghallab, 1995; Lemai and Ingrand, 2004; Trinquart and Ghallab, 2014). A constraint satisfaction problem

developed along with a candidate plan is checked for consistency when the candidate plan is found to accom-

plish the goal. If the constraint satisfaction problem is valid, then the candidate plan is a valid plan, otherwise

the algorithm must backtrack, which can cause performance issues when the backtracking point is difficult to

determine. The satisfiability-based dReal planner compiles problems from PDDL+, an extension of PDDL,

into first-order logic (Bryce et al., 2015). dReal uses a boolean satisfiability solver to find literals satisfying

each boolean constraint followed by an Interval Constraint Propagation based branch-and-bound solver to re-

fine the intervals on the numeric constraints bounded by the chosen literals. A δ-satisfiability modulo theory

solver determines a δ-plan tube based on the intervals for the numeric constraints. δ-plan tubes specify a plan

in which action execution times can vary by as much as δ and remain valid (Fox et al., 2006b). Plan tubes
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allow for physical systems that cannot execute plans exactly as prescribed to accomplish their goal. Unlike

the other planners, dReal supports nonlinear continuous change to variables.

The combinations of planning techniques have resulted in continuous planning algorithms. Sapa was

a forward-chaining planner that used domain-independent heuristics and handled continuous resource con-

straints and deadline goals (Do and Kambhampati, 2001, 2003). Plan graph techniques supplemented forward-

chaining by generating heuristics for cost and makespan. After finding a plan, a linear time post processing

step was applied to increase plan flexibility by removing unnecessary constraints on action execution times.

Continuous planning introduces action effects over the action duration and variables in a continuous

domain. The expressiveness added to the planning language allows domains that more closely approximate

real world problems. All of the discussed planning techniques handle linear variable change, but algorithms

that handle nonlinear change are uncommon. The dReal planner is the only presented planner that supports

nonlinear change. The next section reviews merging multiple plans into a single global plan.

II.3.4 Plan Merging

The plan merging problem integrates multiple plans into a single coordination plan. The problem consists of

an initial state, I , a set of tasks, v ∈ V , and a set of plans to complete those tasks (Π = {π1, π2, . . . , π|V |}).

A solution to the problem is a coordination plan, πV , which completes all the tasks in V when executed from

I . An agent’s coordination plan does not interfere with the other agents’ coordination plans.

Merging plans allows agents to work together and benefit from the unused product of other agents’ ac-

tions, also called side products (de Weerdt et al., 2003). An example of a side product are the products

produced by petroleum refining. The refining process produces many products, some of which will not be

used by the agent performing the refining. Agents can also take advantage of products produced and used,

but not consumed by other agents (Foulser et al., 1992), which is common in domains requiring setup and

restore operations. An example is grocery shopping, where instead of driving from home to a store once for

each item, an intelligent agent drives to the store once and purchases all of the desired items. Agents sacrifice

independence in constructing plans that rely on side products or nonconsumed products, but gain efficiency

by reducing the number of actions required to complete a plan.

One approach to plan merging is to treat it as a plan space search problem in which incremental changes

are made to the plan until a valid plan is found (Cox and Durfee, 2005). The plan space search algorithm

merged each agent’s plan together and used a branch-and-bound search to resolve flaws and eliminate redun-

dant steps in the combined plan. The algorithm optimized the solution for the number of steps in the plan

shared by the agents. Performance increased with a decreasing degree of coupling between the agents and

tasks.
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Plan merging can also be interleaved with each agent’s planning and not as a distinct step. The Plan-

Merging Paradigm used a distributed global plan, where each agent only tracked its own coordination plan

(Alami et al., 1995). When assigned a task, an agent used their own coordination plan as a starting point

to develop a new plan to accomplish the newly assigned task, after which the agent requested permission

to perform a plan merge. Upon receiving permission, the agent determined if its plan interfered with the

coordination plans of the other agents and modified its plan, if needed, to ensure that the plan did not interfere

with any of the other agents’ plans. The new coordination plan replaced the existing plan for all robots.

Plan merging is necessary when distributed agents develop plans individually in order to ensure agents do

not interfere with one another. Distributed constraint optimization can be used for plan merging after all the

agents have developed their plan (Cox et al., 2005). A constraint satisfaction problem was created from the

plans to be merged. Merge flaws, identical steps in multiple plans, were represented by constraint variables

with a domain of ignore or merge. A value of ignore kept the identical steps in the plan, while a value of

merge eliminated all, but one of the identical steps. Constraint variables for causal link threats in the merged

plan had three possibilities in their domain: ignore, promote, and demote. Ignoring a causal link threat can

create an invalid plan, but the constraint variable representing the threat can be assigned the ignore value, if

the threat was eliminated by resolving a different threat or flaw.

Temporal fusion merges temporal plans and their associated temporal constraints (Allouche and Boukhtouta,

2010). Temporal plans were modeled as a simple temporal network with nodes for action start time points and

end time points, while edges represented the temporal constraints between the time points. Plans with shared

actions required temporal constraints be merged in the final plan. The merged constraint was the intersection

of the two original constraints. If the intersection of the constraints was empty, then the two plans were not

merged due to inconsistent constraints.

One of the benefits of performing plan merging is the independence of how the input plans are formed.

The Plan Merger by Reuse algorithm performs plan concatenation followed by analysis in order to merge the

plans into a single coordination plan (Luis and Borrajo, 2014). Agents are assigned goals and plan for their

goals individually. These individual plans are merged into a combined plan. If the tasks are loosely coupled,

then the combined plan is more likely to be a coordination plan, than if the tasks have tighter coupling. More

tightly coupled domains require a separate planner, LPG-ADAPT, to resolve the flaws in the invalid merged

plan (Fox et al., 2006a). Most of the relevant actions of the final coordination plan are present in the individual

plans, so that the necessary actions to complete the plan are already known.

Plan merging algorithms allow agents to use their own planning algorithm, while maintaining a global

coordination plan for the distributed system. The final section in planning for real world applications is

multi-agent planning.
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II.3.5 Multi-Agent

Classical planning does not consider agents that will execute a plan. Multi-agent planning considers the

agents that will execute the plan and the action execution constraints on the agents. Multi-agent systems have

several advantages over single agent systems, including redundancy and multiple action execution in different

locations; however, these advantages come at the cost of increased problem complexity. Multi-agent planners

must consider the interference, both negative and positive, that will occur when agents are executing the plan.

Multi-agent planning has applications in distributed sensor networks (Durfee and Lesser, 1991; Decker

and Lesser, 1992). Sensor data processing can be distributed throughout the network, so that each individual

processor is responsible for only a local area of sensors. Distributed sensor processors have advantages over

a single centralized processor, including limited raw data transmission distance and redundancy. Capitalizing

on these advantages requires collaboration and planning to determine the subset of data each agent will

process and the level of abstraction of the processed data that will be transmitted to other agents.

Planning for multiple agents requires cooperation between the agents when developing a plan. Agents in

cooperative refinement planning form a shared plan by iteratively performing local planning and global plan

refinement (Torreño et al., 2012, 2014a,b). Each agent develops a local plan by expanding upon a centralized

base plan. Each agent individually selects the most promising plan, based on their individual information

before the agents jointly select the plan to be used as the next base plan. The algorithm terminates when

every agent confirms that the centralized base plan accomplishes the assigned task.

Multi-agent planning can also be accomplished through constraint satisfaction techniques. Brafman and

Domshlak (2008) applied constraint satisfaction and factored planning to produce plans for multi-agent prob-

lems, which was extended to use distributed constraint satisfaction solvers (Nissim et al., 2010). Another sat-

isfiability based planner, µ-SATPLAN extended SATPLAN to multi-agent planning for two distinct classes

of problems: multi-agent coordinated actions and multi-agent assistance actions (Dimopoulos et al., 2012).

The multi-agent coordinated actions problem requires individual agents to coordinate their actions in order

to avoid negative interactions and promote positive interactions in their individual plans. This problem can

be solved individually, followed by plan merging to develop a single coordination plan to accomplish the

tasks. The multi-agent assistance actions problem involves required cooperation between agents to accom-

plish a task. This problem requires that the agents required to cooperate are considered simultaneously when

planning for the cooperative action.

Multi-agent planning can be approached from a game theory perspective. Non-cooperative planning treats

each agent as self-interested and each agent uses a single-agent planning algorithm (Jonsson and Rovatsos,

2011). A global plan is developed iteratively as each agent selects its own best-response action to the current
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plan. Agents are only limited in ensuring that other agents’ plans remain executable.

Factored planning splits goals into subgoals and plans for each subgoal independently. Multi-agent plan-

ning is a natural fit when the tasks are independent and the set of agents assigned to the tasks are disjoint.

Ephrati and Rosenschein (1993, 1994) proposed using sub-plans as heuristics for global planning. Agents

rely on an a priori division of the goal into subgoals, from which the agents make their own plans. A heuristic

function is derived from the subplans and is used in the global plan search.

Individual agents in multi-agent systems can have properties that they do not desire to broadcast to the

other agents. Agents in privacy-preserving algorithms only advertise the properties and actions they want

others to know. Nissim and Brafman (2014) apply distributed heuristic forward search techniques to privacy-

preserving multi-agent planning. Each agent searches the state space and sends state information to the agents

that have advertised actions executable from the state. An example application of this technique is supply

chain management in which companies advertise their prices for parts, but not their costs.

Combinations of techniques can be applied in one algorithm to take advantages of each technique. The

Threaded Forward-Chaining Partial Order Planner combines the performance of forward-chaining with the

flexibility of partial-order planning (Kvarnström, 2011). Partial ordering between actions by different agents

is more important for flexible execution than a partial ordering between actions executed by the same agent.

Each agent can execute only a single action at a time, so each agents’ set of actions can be totally ordered

within the set of actions with minimal loss of flexibility. Totally ordering the actions that each agent executes

allows for more descriptive states during planning.

Multi-agent planning considers how multiple agents will work together to accomplish goals. Redun-

dancy and increased execution performance can be achieved by using multiple agents to solve a problem, in

comparison to single agent problems.

II.3.6 Summary

Each of these planning categories represent an extension to the classical planning problem for application to

real world domains. Probabilistic planning addresses the uncertainty from noisy sensors and actuators inher-

ent in real world environments. Temporal planning introduces durative actions to the domain modeling, while

continuous planning expands the possible domain of state variables to include continuous values. Distributed

agents and coalitions can form their own plans to accomplish their goal and develop a coordination plan using

plan merging algorithms. Multi-agent planning considers the agents that will execute the plan actions and any

associated constraints. Planning systems must handle these attributes in order to be effective in real world

domains and problems.
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II.4 Task Allocation and Planning

Task allocation and planning are closely coupled problems, but current research into the interaction between

the two problems is minimal. Planning affects task allocation through the developed plans, as the plan con-

strains the set of agents available by requiring agents to perform actions at specific times. Task allocation

affects planning by determining which agents are available when developing a plan. If an agent is not allo-

cated to a task, then the planning algorithm will not use the agent to develop a plan.

Flexible coordination and communication is important for addressing uncertainty. Shell for TEAM-

work (STEAM) was a cooperative architecture based on joint intentions between the agents (Tambe, 1997).

STEAM builds a hierarchical structure of joint and individual intentions for the agents. The architecture

explicitly supports representation and reasoning with team goals, team plans, and team states. STEAM team

members monitor the team and individual performance to autonomously determine if the team needs to reor-

ganize. Teamcore was a successor to STEAM (Tambe et al., 2000) and focused on heterogeneous multi-agent

teams. Adaptive autonomy, adaptive execution, adaptive monitoring, and adaptive information delivery were

found to be crucial during execution for heterogeneous multi-agent systems.

Multi-agent Markov decision processes have been applied to heterogeneous agent task allocation in a grid

world (Claes et al., 2015). The derived policy provided guidance regarding the tasks and locations to which

each agent navigated. Mixed integer linear programs were applied to versions of the task allocation problem

extended to include path planning and scheduling (Flushing et al., 2016), and task temporal constraints (Koes

et al., 2005; Ramchurn et al., 2010). An agent did not contribute towards the task’s required workload until

it reached the task location. Aspects of planning considered by the algorithm included optimal travel time

between tasks and time required for the coalition to actually complete the task. None of these algorithms

conduct task planning from a traditional perspective. The tasks had a minimum required workload to be

fulfilled by the agents for the task to be considered complete. Agents capable of reaching a task location were

assumed to contribute to the task; thus, a sequence of actions to be executed by the agents for completing the

task was not developed.

Chance-constrained task allocation introduces uncertainty into the task allocation and planning problem

(Ponda et al., 2012). Agents develop plans for single agent tasks and estimate their plan execution duration.

Agent allocation utility is a function of the agent allocated to the task, when the agent will execute the task,

and a predefined model of problem uncertainty. Each agent solves their own version of the problem with their

own risk bounds and communicates with the other agents to ensure that system constraints are satisfied, such

as a single agent being allocated to each task. A similar probabilistic task allocation and planning problem

encodes the probability of an agent’s ability to apply a particular partial state transition (Zhang et al., 2015).
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The partial state transitions can be applied sequentially to determine the agent(s) most likely to be capable of

transitioning from the initial state to a desired partial state. The transitions can be used for coalition formation

and as heuristic landmarks during planning.

Auction style methods are popular in coalition formation, but typically grant exclusive ownership of

tasks. Exclusive task ownership can be detrimental when agents fail to complete their task and no method

for informing the other agents of this failure exists. A method based on that used by bounty hunters and

bail bondsmen allows for nonexclusive execution of tasks by agents (Wicke et al., 2015). Following the bail

analogy, agents are termed as bounty hunters and auctioneers as bail bondsmen. The bail bondsmen increase

the value of each task until it has been completed. Agents commit to a task and announce to the other agents

that they have committed to it. Agents can plan how they can complete each of the available tasks, but they

can only commit to a single task. Multiple agents may commit to a task, but they cannot collaborate. Agents

receive the task value only upon completing the task. If an agent fails to complete a task, then the system

easily adapts by incentivizing other agents to complete the task through increasing task value.

One combination that has been extensively studied in the literature is multi-robot task allocation and

path planning to the task location (Barrientos et al., 2011; Woosley and Dasgupta, 2013; Moon et al., 2013;

Turpin et al., 2013; Zhu et al., 2013; Turpin et al., 2014; Ma and Koenig, 2016). The task allocation and path

planning problem is for single-agent tasks executed by single-task robots. Simultaneously considering the

task allocation and the path to the task problem allows for collision-free trajectories to be developed more

efficiently than if the two problems were considered separately. One application incorporates two agents that

swap tasks when a collision is detected (Turpin et al., 2013, 2014). The two new trajectories for the agents

are guaranteed not to collide with one another. These approaches work well for problems with a one-to-one

mapping of agents to tasks, but multi-agent tasks will require more agents and more complex task allocation

and path planning schemes.

The online version of multi-robot task allocation and path planning has been studied using a search and

destroy problem with attack UAVs (Kim et al., 2014). A plan can be developed offline to determine an optimal

search pattern for the UAVs to find their mobile targets, but the location of the targets is unknown and the

decision of which UAVs will perform the attack must be made online. A distributed probabilistic approach

considered the path each UAV needed to take to reach the target, the attack capability of the UAV, and the

probability of destroying the target.

These algorithms and frameworks show that some aspects of task allocation and planning can be com-

bined. Coupling task allocation with domain independent planning will improve planning results by allowing

the two problems to inform each other.
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CHAPTER III

Formal Definition and Experimental Domains

This chapter presents the formal problem definition, followed by the four experimental domains and how they

map to the presented problem definition.

III.1 Formal Definition

The presented tools are for planning multi-task robot, multi-robot task, instantaneous allocation problems

(Gerkey and Matarić, 2004). This Hybrid Mission Planning with Coalition Formation (HMPCF) problem

couples coalition formation with planning to facilitate solving complex problem instances with heterogeneous

multi-task robots executing multi-robot tasks.

Definition III.1 (Hybrid Mission Planning with Coalition Formation). The hybrid mission planning with

coalition formation problem is defined as a tuple, 〈S, I,Φ, A, V, C〉, where:

• S is the state space,

• I is the initial state,

• Φ = {φ1, φ2, . . . , φn} is the grand coalition of agents,

• A = 2Φ → 2Act is the coalition-action mapping, where Act is the set of all possible actions,

• V = {v1, v2, . . . , vm} is the set of tasks, and

• C = 〈Cap,CΦ, CV 〉 is the capability vector, coalition capability mapping, and the task capability

mapping.

The hybrid state space, S, includes boolean, discrete, and continuous variables. A state, s, is an assignment

of each state variable to a value in its associated domain. The initial state, I , is the environment state at the

beginning of the mission.

The grand coalition, Φ, is the set of agents in the problem. A coalition, Φi ⊆ Φ, is any non-empty

set of agents. The coalition-action mapping, A, maps each possible coalition, Φ′ ⊆ Φ, to a set of actions,

{a1, a2, . . .}. An action is modeled as a tuple, 〈Φexec, eff , cond, dur〉, where:

• Φexec is the executor coalition, the set of agents executing the action,

• cond = 〈cond`, cond↔, conda〉 is the action state constraints that must be satisfied at the beginning,

during, and at the end of action execution, respectively, and
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• eff = 〈eff `, eff↔, eff a〉 is the action effects for state variable transitions applied to the state at the

beginning of, during, and at the end of action execution, respectively,

• dur is a constraint on the duration of the time interval over which the action can execute.

The executor coalition, Φexec, for an action, a, is the set of agents that execute a. If Φexec is a singleton

coalition consisting of a single agent, then a is a single-agent action. If Φexec includes more than one agent,

then a is a joint action executed by multiple agents. Action state constraints on boolean and discrete variables

specify the value the variable must hold, while constraints on continuous variables specify the interval to

which the variable’s value must belong. Each constraint must be a function of a single variable. Action

state constraints can be specified as applying at the beginning, during, or end of action execution, with

cond`(a), cond↔(a), and conda(a) being the set of all action state constraints that must be satisfied at

the beginning, during, and end of executing a, respectively. Action effects can be applied to the state at the

beginning of action execution, during action execution, or at the end of action execution. Instantaneous effects

(those at the beginning or end of action execution) on boolean or discrete variables specify the new value of

the variable, while instantaneous effects on continuous variables can specify a new value or an instantaneous

addition or multiplication of the value. Durative effects (during action execution) are on continuous variables

only and specify the linear change in variable value as a function of time. The sets of effects applied to

the state as a result of executing an action a at the beginning, during, and at the end of executing a are

eff `(a), eff↔(a), and eff a(a), respectively. The action duration constraint, dur, is the interval to which

action duration must belong, and must be positive.

The task set, V , is a set of tasks, all of which must be satisfied in a solution. Each task, v ∈ V , is modeled

as a set of goal state constraints, cond(v). A task, v, is satisfied in a state, s, if and only if all of v’s goal state

constraints are satisfied in s.

The capability vector, Cap = [Cap1 Cap2 . . . Capj ], is the vector of coalition formation capabilities

used in the problem. A capability is a high-level abstraction of the actions executable by agents and the

goal constraints required by tasks, and it can follow either the resource model or service model of coalition

formation, discussed previously in Chapter II.2. The coalition capability mapping, CΦ, is a mapping of

each agent to a capability available vector. The elements of a capabilities available vector are non-negative

values, with at least one non-zero element. Each agent, φ, has a capabilities available vector, Capφ. For

example, if Cap has five elements and φ has two of Cap3 and three of Cap5, then Capφ = [0 0 2 0 3],

where Capij is the amount of Capj that entity i (agent or coalition) has at its disposal. Each coalition, Φ, has

a capabilities available vector, CapΦ, equal to the sum of the capability available vectors of Φ’s constituent

agents, CapΦ =
∑
φ∈Φ Cap

φ. The capabilities are a function of the actions each coalition can execute. The
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task capability mapping, CapV , is a mapping of each task to a capability required vector. The elements of

a capability required vector are non-negative reals, with at least one non-zero element. For example, if Cap

has five elements and v requires one of Cap2 and two of Cap3, then Capv = [0 1 2 0 0], where Capij is the

amount of Capj required to satisfy i. The task capabilities required vectors are a function of I and cond(v).

A plan, π, is a set of action execution steps. An action execution step consists of an action, a start time to

begin executing the associated action, and the duration of the action. An executable plan is a plan for which

the action steps are executed validly. An action step is executed validly if all the associated action’s state

constraints are satisfied. Executing the action steps in an executable plan transitions the environment from

the initial state, I , to an end state, send, achieved after all action steps have completed execution. A solution

to the problem is a satisficing plan, a executable plan in which send satisfies the goal state constraints of each

task, v ∈ V . A coalition is an executable coalition if a satisficing plan has been derived for the coalition to

complete its task. A nonexecutable coalition is a coalition for which a satisficing plan has not been derived

that allows the allocated coalition to complete its task. A quality function, Q : Π→ R, provides an objective

indicator of plan quality. The two quality functions used in this dissertation are temporal makespan and

number of action executions, but any function mapping a plan to a real number can be used. Temporal

makespan is the time required to execute the plan:

makespan(π) = max
s∈π

(start(s) + dur(s)),

where π is a plan and s is an action execution step in π. The optimal plan for a problem is the satisficing plan

which maximizes Q.

III.2 Experimental Domains

Four experimental domains are presented. The first three, Rovers, Blocks World, and Zenotravel, are modi-

fied versions of existing popular planning domains. The fourth, First Response, is a novel domain presented

as an example of a real world problem this research seeks to address. Each domain is implemented in the

Multi-Agent Capabilities and Planning Domain Definition Language (MACPDDL), a new domain descrip-

tion language extending the PDDL 3.1 language and created specifically for this research. The features added

by MACPDDL support coalition formation, task allocation, and explicit agent handling, and are detailed in

Appendix A. The MACPDDL descriptions of each domain are presented in Appendix B.
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1 (:durative-action communicate-soil-data
2 :executor (?r - rover)
3 :parameters (?l - lander ?s - waypoint ?x - waypoint ?y - waypoint)
4 :duration (= ?duration 0.5)
5 :condition
6 (and
7 (over all (at_rover ?r ?x))
8 (over all (at_lander ?l ?y))
9 (over all (have_soil_analysis ?r ?s))

10 (over all (visible ?x ?y))
11 (at start (channel_free ?l))
12 )
13 :effect
14 (and
15 (at start (not (channel_free ?l)))
16 (at end (channel_free ?l))
17 (at end (communicated_soil_data ?s))
18 )
19 )

Figure III.1: MACPDDL action implementation for a rover to communicate soil data to the central lander.

III.2.1 Rovers

The Rovers domain has been used for several iterations of the IPC (Long and Fox, 2003a). The domain

models planetary rovers navigating between waypoints, collecting different classes of scientific data at a

subset of waypoints, and communicating the data back to the central lander. The five classes of scientific

data are soil analysis, rock analysis, high-resolution imagery, low-resolution imagery, and color imagery.

Each rover can independently navigate a subsection of the environment and collect a subset of the classes

of scientific data, but only one rover at a time can communicate data to the central lander. Rock analysis is

required at a subset of waypoints and soil analysis is required at a subset of waypoints. Rovers must be at a

waypoint in order to perform rock or soil analysis and must be equipped for the analysis. Up to three types

of imagery data can be collected at each waypoint. A rover must have the correct camera type and the target

waypoint must be visible in order for the rover to collect imagery data for the target waypoint.

The state space contains only boolean variables and describes waypoint connectivity, waypoint visibility,

rover scientific tools, data collection types and location, central lander location, and communication channel

capacity. Each action has a fixed duration. The domain’s capability model corresponds to the classes of sci-

entific data being collected. Each rover’s capabilities offered vector is a function of the tools available to the

rover. The goal is subdivided into a task for each class of scientific data, e.g., all the state constraints concern-

ing rock analysis are grouped into a single task. The capabilities required vector for each task corresponds to

the types of scientific data collected for the task.

An example action implementation for a rover communicating soil data is given in Figure III.1. The

action is executed by a single rover (line 2) and has four parameters (line 3): the lander receiving the data
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1 (:task soil_analysis
2 :services (
3 soil - 2
4 )
5 :goal (and
6 (communicated_soil_data waypoint5)
7 (communicated_soil_data waypoint44)
8 (communicated_soil_data waypoint54)
9 (communicated_soil_data waypoint29)

10 (communicated_soil_data waypoint45)
11 (communicated_soil_data waypoint18)
12 (communicated_soil_data waypoint67)
13 )
14 )

Figure III.2: MACPDDL description of a soil analysis task.

(?l), the waypoint from which the soil analysis was collected (?s), the rover’s current location (?x), and the

lander’s location (?y). The action duration is half of a time unit (line 4). Executing the action requires the

rover remain stationary during action execution (line 7), the lander is at the parameterized waypoint (line 8),

the rover has the required soil analysis data (line 9), the rover has line of sight from its current location to

the lander’s location (line 10), and the communications channel is free (line 11). The effects of the action are

that the communications channel is occupied for the action execution duration (line 15 is the rover occupying

the channel and line 16 is the rover releasing the channel) and the soil data is communicated to the lander

(line 17). An example task for soil analysis expressed in MACPDDL is presented in Figure III.2. The task

uses the service model of coalition formation and requires two rovers capable of soil analysis (lines 2-4). The

goal constraint requires soil data from different waypoints be communicated to the lander (lines 6-12). Each

communicated soil data variable becomes true by executing an appropriate soil communication action (see

line 17 in Figure III.1).

III.2.2 Blocks World

The modified blocks world domain requires that heterogeneous robotic arms manipulate stacks of heteroge-

neous blocks on a table of finite size. Each arm has a subset of available end effectors available and each block

requires a specific end effector. A block can be manipulated by an arm if and only if the arm has the block’s

required end effector. While blocks have the same dimensions, blocks can be either single- or double-weight.

Single-weight blocks can be manipulated by a single arm with the required end effector, while double-weight

blocks require two arms, each with the required end effector, in order to be manipulated. The block stacks

rest on a table with only enough space for a finite number of block stacks. The goal state is a rearrangement

of the blocks from the initial state into a specified set of block stacks.

The state space, S, includes both boolean and continuous variables. The boolean variables describe the
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(a) Initial state (b) Goal state

Figure III.3: Example states with the double-weight blocks shaded and required end effector for each block
in italics.

block stacks, each block’s required end effector type, which block each arm is holding, and each arm’s avail-

able end effectors. The continuous variables describe the height of each arm and block, the number of blocks

on the table, and the table capacity. The domain of the continuous variables is non-negative integers, which

is not continuous; however, modeling the variables as continuous simplifies the state model by not requir-

ing all possible values to be enumerated and ordered. The initial state, I , is an assignment of a value to

each variable in the state space. As a partial example, the middle stack in the example initial state in Fig-

ure III.3a is expressed by assigning the value true to the following variables: (onTable C), (onBlock D C),

(onBlock E D), (requires C encompass), (requires D magnetic), and (requires E friction). Each stack

of blocks in the goal state corresponds to a task. The example goal state in Figure III.3b is divided into three

tasks: vC , vE , and vF . vC is the stack with C on the bottom and the goal state constraints for vC are satisfied

when C is on the table and B is on C, i.e., when (onBlock B C) and (onTable C) are both true.

The grand coalition, Φ, is the set of arms executing actions. The actions are the up and down arm

movement and block manipulation. A coalition, Φi, can execute any actions that are part of its action set,

A(Φi). The action set is derived from the list of MACPDDL descriptions. An example MACPDDL action

implementation of arm a picking up a single-weight block b1 off of block b2 using end effector e is presented

in Figure III.4. An example element of a coalition action set derived from the MACPDDL description in

Figure III.4 is (pickupSingleBlockOnBlock arm1 blockB blockA magnetic). The action has a constant

duration of 1 time unit. Conditions and effects are derived by the actions and parameters. The conditions on

the start of the action, cond`, are that arm1 is empty, blockB is clear, blockB is on blockA, blockB requires

a magnetic end effector to move, and that arm1 has a magnetic end effector. The constraints during action

execution, cond↔, is that arm1 remains at the same height as blockB . No end of action constraints, conda,

are given. The action has three beginning of action effects, eff `, and they are that arm1 is no longer empty,

blockB is no longer clear, and blockB is no longer on blockA. No continuous effects are applied as a result
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1 (:durative-action pickup-single-block-on-block
2 :executor (?a - arm)
3 :parameters (?b_1 - single_block ?b_2 - block ?e - effector)
4 :duration (= ?duration 1)
5 :condition
6 (and
7 (at start (empty ?a))
8 (at start (clear ?b_1))
9 (at start (on_block ?b_1 ?b_2))

10 (at start (requires ?b_1 ?e))
11 (at start (has_effector ?a ?e))
12 (over all (= (arm_height ?a) (block_height ?b_1)))
13 )
14 :effect
15 (and
16 (at start (not (empty ?a)))
17 (at start (not (clear ?b_1)))
18 (at start (not (on_block ?b_1 ?b_2)))
19 (at end (clear ?b_2))
20 (at end (holding_single ?a ?b_1))
21 )
22 )

Figure III.4: MACPDDL action implementation for an arm to pick up a single-weight block off another
block.

1 (:services
2 arm_1 - encompass magnetic friction
3 arm_2 - friction
4 arm_3 - magnetic suction
5 arm_4 - encompass suction
6 )

Figure III.5: MACPDDL agent capabilities specification.

of executing the action. Two end of action effects, eff a, are specified, blockA is clear and arm1 is holding

blockB .

The capability vector for the blocks world domain corresponds to the end effector types: suction, friction,

magnetic, and encompass. The capabilities offered vector for each arm is a function of the end effectors

available to the arm. An example capability specification for agents is presented in Figure III.5. The example

includes four agents using the service model of coalition formation. Each agent is listed followed by the

services it offers. arm1 has a friction end effector, a magnetic end effector, and an encompass end effector,

corresponding to the capability vector [0 1 1 1].

Double-weight blocks require twice the capabilities of single-weight blocks, because manipulating double-

weight blocks requires two robotic arms. The capabilities for each stack are a function of two sets of blocks,

the blocks in the goal stack and the blocks that must be manipulated to access the blocks in the goal stack.

For example, the capabilities required vector for vE is a function of E and G, because they are the blocks

in the goal stack and there are no other blocks above E and G in the initial state. E requires two suction
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1 (:task v_C
2 :services (
3 friction - 2
4 magnetic - 1
5 encompass - 1
6 )
7 :length 4
8 :goal (and
9 (onTable C)

10 (onBlock B C)
11 )
12 )

Figure III.6: MACPDDL action description of blocks world task in example goal state.

1 0.000: (pickup-double-block-on-block arm1 arm2 blockE blockD friction) [2.000]
2 2.001: (place-double-block-on-block arm1 arm2 blockE blockG) [2.000]
3 2.001: (pickup-single-block-on-block arm3 blockD magnetic) [1.000]
4 4.002: (move-down arm1) [1.000]
5 5.003: (pickup-single-block-on-block arm1 blockB blockA encompass) [1.000]
6 6.004: (place-single-block-on-block arm1 blockB blockC) [1.000]

Figure III.7: Example satisficing plan for vC from example initial state.

capabilities and G requires the two friction capabilities; therefore, the capabilities required vector for vE is

[2 2 0 0]. The capabilities required vector for vC is a function of B and C, as they are in the goal stack, and

of D and E, because they are above C in the initial state. The capabilities required vector will be constructed

iteratively as an example. E requires two friction capabilities, thus, [0 2 0 0]. D adds a requirement for a

single magnetic capability, [0 2 1 0]. C adds a single encompass end effector, [0 2 1 1]. B requires a single

encompass end effector, but an encompass end effector is already part of the capabilities required vector;

therefore, the capabilities required vector is not modified. The final capabilities required vector for vC is

[0 2 1 1].

An example MACPDDL description of the task to construct stack C in Figure III.3b is presented in

Figure III.6. The services section implies that the task uses the service model of coalition formation. The

number of each service required by the task is given, with the task assumed to require 0 of any unlisted

services (the suction service in this example). The length is used by some coalition formation algorithms

and is equal to the number of blocks used in deriving the capability vector. The goal is equivalent to the

constraints on actions, but lacks temporal specifications. A task is complete in any state in which the task’s

goal constraint is satisfied.

The solution to the problem is a satisficing plan. An example plan to complete vc when executed from

the example initial state shown in Figure III.3a is given in Figure III.7. Each line corresponds to an action

execution step. The example plan includes six action executions. The first action execution in the plan is for

arm1 and arm2 to pickup E off of D using their friction end effectors. The action starts at t = 0.000 and
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requires 2.000 time units to execute.

III.2.3 Zenotravel

The Zenotravel domain was originally created for testing the Zeno planner (Penberthy and Weld, 1994) and

was augmented for this dissertation to include hub and spoke airports, passengers and cargo, and short-range

and long-range planes. Spoke airports are airports in smaller cities, with each spoke connected to a single

hub airport. Hub airports are located in larger cities and are connected to a set of spoke airports. Short-range

planes fly only between a hub and its connected spokes. The sets of spoke airports for each pair of hubs are

disjoint. All hubs are connected and only long-range planes can fly between them. Each plane has limited

passenger and cargo capacity. The goal is satisfied when all passengers and cargo are at their destinations.

The state space includes both boolean and continuous variables. The boolean variables describe the

location of each passenger, cargo, and plane. The continuous variables include the amount of passengers

and cargo on each plane, each plane’s passenger and cargo capacity, each plane’s fuel level and capacity,

and the distance between connected cities. The number of passengers, amount of cargo and their respective

capacities for each plane are not continuous variables; however, similar to blocks world, modeling the values

as continuous variables in PDDL facilitates the experiments and expression of the models by not requiring

all possible values to be enumerated. The actions to load and unload passengers and cargo from a plane have

fixed duration. Fuel use and the action duration for a plane to fly between two cities is a linear function of

the distance traveled. The time required to refuel a plane is a linear function of the fuel level at the start of

action execution and the fuel capacity. The capability model includes passenger and cargo capacity and the

hub cities. For example, a short-range plane based out of the hub airport of ATL in Atlanta, Georgia has a

capabilities offered vector corresponding to its passenger and cargo capacity and its ability to travel between

ATL and ATL’s spoke airports. A long-range plane has a capabilities offered vector corresponding to its

passenger and cargo capacity and its ability to travel between any two hub airports, such as ATL and LAX

in Los Angeles, California. The goal state is divided into tasks based on the origin and destination airports

of the passengers and cargo. All passengers and cargo originating in a city and traveling to the same city

are grouped into a single task. The capabilities required vector of each task is a function of the number of

passengers and cargo included in the task, the origin, and the destination.

An example action implementation for a plane to fly between two cities is presented in Figure III.8.

The action is executed by a single small plane and has two parameters: the origin city and destination city.

The action duration is a function of the distance between the cities and the speed at which the plane flies.

Executing the action requires that the plane start at the origin city and maintain a non-negative fuel level. The

effect of the action is that the plane is no longer at the origin at the start of action execution and the plane
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1 (:durative-action fly_small
2 :executor (?p - small_plane)
3 :parameters (?c_1 - city ?c_2 - city)
4 :duration (= ?duration (/ (distance ?c_1 ?c_2) (speed ?p)))
5 :condition
6 (and
7 (at start (plane_at_city ?p ?c_1))
8 (over all (>= (fuel ?p) 0))
9 )

10 :effect
11 (and
12 (at start (not (plane_at_city ?p ?c_1)))
13 (at end (plane_at_city ?p ?c_2))
14 (decrease (fuel ?p) (* #t (fuel_rate ?p)))
15 )
16 )

Figure III.8: MACPDDL action implementation for a small plane to fly between two cities.

1 (:task atl_regional
2 :resources (
3 small_cargo_atl - 4
4 small_pass_atl - 3
5 )
6 :length 1
7 :goal (and
8 (transportable_at_city pass_52 atl)
9 (transportable_at_city pass_53 atl)

10 (transportable_at_city pass_54 atl)
11 (transportable_at_city cargo_53 atl)
12 (transportable_at_city cargo_54 atl)
13 (transportable_at_city cargo_55 atl)
14 (transportable_at_city cargo_56 atl)
15 )
16 )

Figure III.9: MACPDDL description of a Zenotravel task to transport passengers and cargo near Atlanta.
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Figure III.10: Tuscaloosa, AL with selected locations

is at the destination at the end of action execution. The fuel level continuously decreases at the plane’s fuel

consumption rate throughout action execution. An example zenotravel task for transport around the Atlanta

region is given in Figure III.9. The task uses the resource model of coalition formation and requires four units

of cargo capacity from a small plane and three units of passenger capacity from a small plane. The goal is

satisfied when the task passengers and task cargo (transportables) are in Atlanta.

III.2.4 First Response

The First Response task is based on a local government’s immediate response to a tornado. Tuscaloosa,

Alabama was hit by an EF4 multiple-vertex tornado in the early evening of April 27, 2011. The tornado

passed within a half mile of The University of Alabama in Tuscaloosa (UA) and continued northeast to

Birmingham, Alabama before dissipating. Sixty-four people were killed and thousands were injured and left

without housing for weeks. UA and the surrounding area will be used as an example scenario.

A marked aerial view of Tuscaloosa is shown in Figure III.10. Businesses and houses were destroyed or

severely damaged within a quarter mile of the tornado path (outlined in purple). The businesses include a

pawn shop (green), two pharmacies (pink), and a gas station (red). The area roads were in good condition

before the tornado, but destroyed cars, utility poles, and power lines made some roads impassable. Major

roads are marked in black and rail lines in brown. Druid City Hospital (larger blue box) and the Student
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Group Agents
Police humans, quadrotors, ground robots
Fire humans, ground robots
EMS humans, ground robots

Table III.1: Agents in the First Response Domain

Task Group Description

Victim Support EMS
Police

Triage victims
Transport badly wounded victims to hospital
Lead walking wounded victims to hospital

Roads Fire Clear downed power lines and debris from major roads
Gas Leaks Fire Seal gas leaks
Pharmacy EMS Secure controlled substances in destroyed pharmacy

Pawn Shop Police Secure weapons and munitions in destroyed pawn shop

Table III.2: Tasks in the First Response Domain

Health Center (smaller blue box) were both unaffected by the tornado. UA cancelled the remaining two

weeks of the academic year, so the University Recreation Center (red) was available as a temporary shelter

for displaced students and community members.

The state space for the First Response domain contains boolean and continuous variables. The environ-

ment is divided using a grid. Roads connect adjacent grid cells and each road is either traversable or blocked

due to debris or power lines. Victims are located in a grid cell, as are human and robot first responders. Robot

first responders have a power level. Hospitals, mobile police bases, shelters, pharmacies, gas stations, and

pawn shops are located in a grid cell.

The agent model includes human and robotic first responders, summarized in Table III.1. All agents can

move between adjacent grid cells, but human and ground robots require a traversable road in order to move

to a new grid cell. Emergency Medical Services (EMS) responders include humans and ground robots. EMS

human agents can triage victims and ground robots can transport victims. Police responders include humans,

ground robots, and quadrotor aircraft. Police humans can search for victims, clear and secure pawn shops and

pharmacies of restricted items (e.g., firearms at pawn shops and narcotic prescription drugs at pharmacies),

and lead the walking wounded to hospitals or shelters. Police ground robots can transport restricted items to

secure locations for storage. Police quadrotors can search for victims from the air, monitor pawn shop and

pharmacy clearing operations, and lead victims to hospitals and shelters. The fire department personnel can

clear power lines from roads and search for victims. The robotic first responders from the fire department can

clear debris from roads.

Problems in the first response domain have goals subdivided into five task types, summarized in Ta-

ble III.2. The first task is victim support. EMS agents must triage each victim in the disaster area. Each
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1 (:durative-action bulldoze-edge-1
2 :executor (?f - firebot)
3 :parameters (?w_1 - waypoint ?w_2 -

waypoint)
4 :duration (= ?duration 2.0)
5 :condition
6 (and
7 (over all (powered ?f))
8 (over all (agent_at ?f ?w_1))
9 (over all (edge ?w_1 ?w_2))

10 (at start (debris ?w_1 ?w_2))
11 )
12 :effect
13 (and
14 (at start (not (debris ?w_1 ?w_2)))
15 (at end (not_blocked ?w_1 ?w_2))
16 )
17 )

Figure III.11: MACPDDL action implementation for a fire department robot to clear a blocked road.

1 (:task victim_triage
2 :services (
3 triage - 2
4 victim_support - 1
5 victim_transport - 1
6 victim_search - 2
7 )
8 :goal (and
9 (victim_at_hospital victim_1 dch)

10 (victim_at_hospital victim_2 dch)
11 (victim_at_hospital victim_3 dch)
12 (victim_at_shelter victim_10 dch)
13 (victim_at_shelter victim_11 dch)
14 (victim_at_shelter victim_12 dch)
15 (waypoint_searched waypoint_1)
16 (waypoint_searched waypoint_2)
17 (waypoint_searched waypoint_3)
18 )
19 )

Figure III.12: MACPDDL description of a First Response task to get victims to a hospital.

victim must be transported or directed to a hospital depending on the victim’s triage level and condition. Vic-

tim support is performed by EMS and Police responders. The second task is road clearing. Fire department

agents must clear the major roads of debris and power lines. The third task involves sealing gas leaks. Gas

leaks from gas stations and residential gas tanks must be sealed by the fire department. The fourth and fifth

tasks are controlled item storage, which involves recovering and securing controlled items, such as prescrip-

tion drugs and weapons located at the pharmacies and pawn shop, respectively. EMS are responsible for

clearing the pharmacy and Police are responsible for clearing the pawn shop.

An example action for a fire department robot to clear road debris is presented in Figure III.11. The

action duration is 2.0 time units. Executing the action requires the robot be powered, the robot be at the first
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waypoint, a road (edge) exist between the two waypoints, and debris to be resident on the road. The effect

of the action is that the road is cleared. An example victim triage task is presented in Figure III.12. The

task requires four classes of services. The triage service is offered by EMS human agents, the victim support

service is offered by police for leading victims to hospitals, the victim transport service is offered by the EMS

robots, and the victim search service is offered by police and fire department humans and quadrotor aircraft.

III.3 Summary

The HMPCF problem formalization combines aspects of coalition formation and multi-agent planning. Four

domains were presented: Rovers, Blocks World, Zenotravel, and First Response. Each domain was mapped

to the HMPCF problem and implemented in MACPDDL. The next chapter presents tools developed to solve

HMPCF problems, which balance computational resource requirements (time and memory) with the need to

derive high quality plans.
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CHAPTER IV

Planning Tools

Four centralized planning tools for solving HMPCF problems are presented: Planning Alone, Coalition For-

mation then Planning, Relaxed Plan Coalition Augmentation, and Task Fusion. Each tool is presented fol-

lowed by an analysis and the motivation for the following tool. Planning Alone uses existing planning al-

gorithms to solve HMCPF problems through a transformation to a single-agent planning problem. Coalition

Formation then Planning addresses the computational difficulty of Planning Alone by factoring the problem

along tasks and agents. Relaxed Plan Coalition Augmentation and Task Fusion address the nonexecutable

coalition and suboptimal solution shortcomings of Coalition Formation then Planning, respectively.

IV.1 Planning Alone

Planning Alone (PA) is theoretically the simplest of the tools, applying a transformation to a single-agent

planning problem and solving the resulting problem. The first transformation creates the set of actions that

will be used during planning (Crosby et al., 2014). The set of actions available for planning, Actions, is

a function of the agents in the grand coalition, A(Φ), shown in Line 1 of Algorithm IV.1. Assume a prob-

lem in the Blocks World domain and an action to pickup blockm from the table. The single-agent version

of the action is (pickupSingleBlockFromTable blockm). Solving a multi-agent planning problem with a

single-agent planner requires adding the executor coalition to the action. Let there be two agents, armi

and armj . The example actions for armi and armj to pickup a single-weight block from the table are

(pickupSingleBlockFromTable armi blockm) and (pickupSingleBlockFromTable armj blockm), respec-

tively. The second required transformation combines all task goals into a single goal constraint, G, in Line 2.

Let vi and vj be two tasks. The logical conjunction of the two tasks, vi∧vj , is a goal state constraint that is sat-

isfied if and only if both vi and vj are completed. All tasks, v ∈ V , are completed if and only ifG is satisfied.

Plan in Line 3 is a planning algorithm capable of reasoning over the action model, the state space (S), and the

goal (G). Finally, translating the solution plan from the single-agent algorithm to a multi-agent plan reverses

the action transformation used to derive the action set, i.e., the (pickupSingleBlockFromTable armi blockm)

action is converted to (pickupSingleBlockFromTable blockm) action and assigned to armi.

The PA tool considers all agents solving all tasks simultaneously. The manner in which the tasks are

divided has no effect on PA due to the tasks being combined into a single goal in the first step. All possible

satisficing plans that the grand coalition can execute to solve the original problem can be derived using this

method. Furthermore, the optimal plan to solve the problem must be among the plans that can be derived by
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Algorithm IV.1: Planning Alone
Input : S - state space, A - coalition action mapping, Φ - grand coalition, I - initial state, V - tasks
Output: π - plan to complete all tasks

1 Actions = A(Φ);
2 G = ∧

v∈V
cond(v);

3 π = Plan(S, I, Actions,G);

this tool.

The limitation of the planning alone tool is computational complexity. The problem difficulty increases

as the expressive features of the domain model, the number of agents, and the number of tasks increase. As

the number of agents increases, so too does the number of actions that can be executed in any given state

and the size of the state space. Increasing the number of actions increases the branching factor of the state

space search, while increasing the size of the state space increases the time to perform operations on the state.

Increasing the number of tasks decreases the number of satisficing plans by placing additional constraints on

goal states.

Being able to generate all possible plans does have a drawback. PA is computationally expensive, which

limits its applicability to real world problems with expressive domain models. The next tool, Coalition For-

mation then Planning, addresses computational complexity by considering subsets of agents to plan individual

tasks.

IV.2 Coalition Formation then Planning

The Coalition Formation then Planning tool (CFP) produces several smaller planning instances focused on

a subset of the goals, each using a subset of the agents to satisfy the goals. Algorithm IV.2 presents the

CFP algorithm, which begins with an empty plan and no goals, Lines 1 and 2, respectively. The capabilities

offered vector for each agent is identified using the capability mappings in Line 3. The capabilities required

vector for each task is identified using the capability mappings in Line 4. Coalition formation is applied in

Line 5 to allocate coalitions to tasks. Coalition formation’s result is an assignment of candidate coalition

to each task. The candidate coalitions can be overlapping, depending on the coalition formation algorithm

applied. A coalition is a candidate coalition for a task if and only if the coalition has at least as many of each

type of resource as required by task, i.e., Φi is a candidate coalition for vi if and only if ∀j, CapΦi
j ≥ Cap

vi
j .

The planning loop, Line 6-12, is executed after coalition formation. The goals for vi are combined with G

in order to form the goals to be solved in the current iteration, Line 7. Combining the previous constraints

with the current iteration constraints allows the iterative plan to break previous constraints in the course of

planning, as long as the constraints are satisfied at the end of the iterative planning. The initial state, Ii, for the
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Algorithm IV.2: Coalition Formation then Planning
Input : S - state space, A - coalition action mapping, Φ - grand coalition, I - initial state, V - tasks,

C - capability mappings
Output: π - plan to satisfy all tasks

1 π = ∅;
2 G = ∅;
3 {Capφ}φ∈Φ = C(Φ);
4 {Capv}v∈V = C(V );
5 {Φi, vi}|V |i=1 = CF ({Capφ}φ∈Φ, {Capv}v∈V );
6 foreach i ∈ {1, . . . , |V |} do
7 G = G ∧ cond(vi);
8 Ii = Simulate(I, π);
9 Actions = A(Φi);

10 πi = Plan(S, Ii, Actions,G);
11 π = PlanMerge(S, I, π, πi, G);
12 end

current iteration is the end state achieved after simulating the current plan, π, from the initial state, I , using

VAL, Line 8. The set of actions available, Actions, is a function of the coalition allocated to the current task,

Φi, Line 9. An appropriate planning algorithm, Plan, finds an iterative plan, πi, to satisfy G from the initial

state, Ii, using the actions of the available coalition, Actions, in Line 10. CFP relies on coalition formation

to produce executable coalitions. If Φi is a nonexecutable coalition, then CFP reports the problem as failed,

else the iterative plan must be merged. πi is merged with the current plan, π, to create a plan to satisfy G

when executed from I , Line 11. The planning problem solved during each iteration in Line 10 is analogous to

deriving a plan, executing the plan, and being given an additional planning goal to satisfy. The current goals,

G, have been satisfied in the current state, Ii, but additional goals are given, so G is augmented with the

additional goal constraints, G = G ∧ vi, and a plan must be derived to transition from Ii to a state satisfying

G. The plan merge step, Line 11, can be as simple as modifying the action execution steps in πi, such that

the action execution steps begin execution immediately when π ends; however, more complex scheduling can

occur. A greedy scheduling approach, in which each action execution step in πi is modified, one at a time in

increasing original start time order, to occur as early as possible in the resulting plan, is applied. The overall

approach is sound, if the underlying planning algorithm is sound, but is incomplete, even if the underlying

planning algorithm is complete, due to greedy iterative task planning.

Performing coalition formation affects the problem in two ways by providing: a weakly smaller set of goal

constraints to satisfy, and fewer agents with which to plan. First, the number of unsatisfied goal constraints

that must be planned for is weakly reduced. The original problem has a set of constraints, G, to be satisfied.

CFP partitions the constraints, G = {G1, G2, . . . Gn}, where n is the number of tasks. The ith planning loop

iteration starts planning from an initial state, Ii, already satisfying {G1, . . . , Gi−1}. The ith planning loop
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iteration needs to satisfy Gi. The previously satisfied goal constraints can be violated if necessary, but they

must be satisfied at at the end of executing πi. The worst case is when planning for the nth planning loop

iteration, the resulting plan has to temporarily violate the constraints in {G1, . . . , Gn−1} in order to satisfy

Gn. The number of goal constraints that must be satisfied in any one planning iteration is not reduced in

the worst case, but it is no greater than the number of goal constraints that must be satisfied during Planning

Alone. Assume the Blocks World example from Figure III.3b on page 29. The set of goal constraints for

PA addresses the seven blocks in the figure, whereas the goal constraints in CFP are divided into three sets of

goal constraints, two of which address the locations of two blocks and one of which addresses the location

of three blocks. Each of the stacks of blocks in the goal state description correspond to a task. When a

task is completed, the goal constraints for the task never has to be unsatisfied in order to achieve a goal for

subsequently planned tasks. Fewer incremental goal constraints must be satisfied during each CFP iteration

than the number of goal constraints satisfied during PA.

Furthermore, the number of agents is reduced; thus, the number of actions is reduced and the number of

variables in the state space is weakly reduced. Each of the agents in the experimental domains has a set of

variables associated with it. For example, state variables are associated with each rover for its location and

capabilities, the arms in Blocks World have a height above the table and a set of end effectors, and the planes

in Zenotravel have a location and fuel level. The variables associated with the agents not included in planning

are not part of the state space.

The composition and order of the task set affects the solution. A rearrangement of goal constraints among

an equal number of tasks will result in a different solution. Greedily planning for each task places constraints

on the subsequently planned tasks by affecting the iterative initial state; thus, the order in which the tasks

are planned can affect all aspects of tool performance, including plan quality, computational resource usage,

and whether or not a plan is found. The degree to which each task affects subsequent tasks is domain and

problem dependent. The tasks in the Blocksworld domain greatly affect each other due to moving blocks

from their initial state, possibly making coalitions nonexecutable. However, task planning in the Zenotravel

and Rovers domains can only affect plan quality. The location of each plane in the iterative initial state is a

function of prior task planning. Unlimited refueling allows each plane to get where it needs to go regardless

of prior planning decisions. Task planning in the Rovers domain only affects when the rovers can use the

single communications channel to transmit data to the central lander. Prior planning decisions affect the plan

merge step and can require the communication actions to be delayed to prevent multiple rovers from using

the single communications channel.

Reducing the number of actions creates a lower branching factor in the search tree. Every state, s, has a

set of actions, A, which are executable from s when planning with Φ. If planning is performed with Φi ⊂ Φ
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instead, then the actions inAwhich are only executable by agents in Φ\Φi can no longer be used to expand s.

Reducing the action set at each state can eliminate reachable states, including some goal states; thus, reducing

the search branching factor can force deeper searches to identify a goal state by increasing the minimum depth

of goal states. The effects of the reduced action set and reduced state space combine to increase the number

of states that can be searched per unit of computation time. Coalition formation identifies a coalitions to

allocate to each task. Each identified coalition is selected based on the coalition’s available capabilities and

the task’s required capabilities. If the grand coalition is not allocated to the task, then the action set and state

space are reduced.

The capabilities required for each task in coalition formation is an estimate of the capabilities required to

produce a satisficing plan for each task. Capvi is determined based on vi’s goals and the problem initial state,

but planning for vi proceeds from an iterative initial state derived from prior planning decisions. Therefore,

coalition formation makes decisions for coalitions and tasks using information that is likely to be inaccurate

by the time the decision is applied. The information used in coalition formation is accurate for the first task,

but the information used during coalition formation may have changed by the time the decisions are executed.

The correct Capvi derived from the iterative initial state and the task goals can deviate from the Capvi used

in coalition formation, such that additional capabilities are required and others are no longer needed. An

example from the experimental domains is Blocks World may require additional capabilities to complete a

task if blocks have moved. For example, the capabilities required for each task are a function of the blocks

that must be moved to build the tower described in the task goal constraints. If a new block requiring a

magnetic end effector is moved on top of one of the required blocks, then the coalition must have a magnetic

end effector to move the new block and access the required block. If the required additional capabilities (an

arm with a magnetic end effector in the example) are not included in the allocated coalition, then the coalition

will be nonexecutable.

CFP is reliant on coalition formation to produce executable coalitions that can be used for planning.

However, coalition formation can fail to produce executable coalitions. The next tool, Relaxed Plan Coalition

Augmentation, modifies the CFP algorithm to account for nonexecutable coalitions.

IV.3 Relaxed Plan Coalition Augmentation

The Coalition Formation then Planning with Relaxed Plan Coalition Augmentation (RPCA) tool addresses

the nonexecutable coalition limitation that arises with the CFP tool. RPCA adds logic to the planning loop

in CFP (see Lines 12-17 in Algorithm IV.3). Planning for relaxed domains creates plans from lower fidelity

models of the original domain, but the problem is easier; thus, relaxed plans are appropriate for use as a

heuristic or, in this case, augmenting coalitions. Planning is attempted as in CFP, Line 11. If planning fails,
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Algorithm IV.3: Coalition Formation then Planning with Relaxed Plan Coalition Augmentation
Input : S - state space, A - coalition action mapping, Φ - grand coalition, I - initial state, V - tasks,

C - capability mappings
Output: π - plan to satisfy all tasks

1 π = ∅;
2 G = ∅;
3 {Capφ}φ∈Φ = C(Φ);
4 {Capv}v∈V = C(V );
5 {Φi, vi}|V |i=1 = CF ({Capφ}φ∈Φ, {Capv}v∈V );
6 AllActions = A(Φ);
7 foreach i ∈ {1, . . . , |V |} do
8 G = G ∧ cond(vi);
9 Ii = Simulate(I, π);

10 Actions = A(Φi);
11 πi = Plan(S, Ii, Actions,G);
12 while Φi is nonexecutable do
13 πr = RelaxedP lan(S, Ii, AllActions,G);
14 Φi = Φi ∪RelaxedP lanCoalitionAugmentation(Φ,Φi, πr);
15 Actions = A(Φi);
16 πi = Plan(S, Ii, Actions,G);
17 end
18 π = PlanMerge(S, I, π, πi, G);
19 end

then the algorithm enters the relaxed plan loop (Lines 12-17). A nonexecutable coalition, Φi, is modified in

order to make it executable. Coalitions can be modified by adding agents, removing agents, or a combination

thereof; however, allowing any modifications introduces an exponential number of possible coalitions. The

tool is limited to adding agents in order to transform a nonexecutable coalition into an executable coalition.

Limiting the coalition augmentation step to only adding agents to the coalition ensures that the loop runs a

linear number of iterations, |Φ| − |Φi|, where Φi is the coalition originally allocated to the task. The set

of actions available when planning with Φ, AllActions, is used in relaxed planning in Line 13. The grand

coalition, Φ, the currently allocated coalition, Φi, and the generated relaxed plan, πr, are analyzed to select

additional agent(s) to allocate to the task, Line 14. Each action execution step in the relaxed plan is analyzed

in execution order. If the action in the step can be executed by an agent in Φi or a subcoalition of Φi, then

analysis continues to the next action execution step, otherwise, the agent or coalition assigned to the action

execution step is added to Φi and relaxed plan analysis stops. At least one agent must be added to Φi before

planning is attempted again, otherwise a nonexecutable coalition will be reported by the planning algorithm

again. If all steps of the relaxed plan are analyzed and no agent has been identified to be added to Φi, then

the agent, φ 6∈ Φi, allocated to the most action execution steps in πr is added to Φi. Planning is attempted

with the new coalition, Line 16, and the loop repeats if necessary.
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The relaxed plan loop (Lines 12-17) has two potential completions. Either an executable plan is derived

using the newly generated coalitions and planning attempts or the grand coalition is allocated to the task

and the algorithm is unable to identify a plan. The latter case is inconclusive, since the grand coalition can

be nonexecutable for multiple reasons. The grand coalition may be nonexecutable due to previous planning

decisions that make the task nonexecutable. An example can be created from a finite fuel modification to

Zenotravel. The version of Zenotravel used in this dissertation allows unlimited refueling, but if the amount of

fuel available is limited, then prior planning decisions using excessive amounts of fuel can create situations in

which no planes can reach their destination. The grand coalition may also be nonexecutable if the task cannot

actually be executed, in which case the problem is unsolvable by any tool. An example of a nonexecutable

grand coalition in the Blocks World domain is a grand coalition for which there are fewer than two arms

with access to a required end effector type, in which case double-weight blocks with the missing end effector

cannot be manipulated. If all the initially allocated coalitions are executable, then the relaxed plan loop

starting at Line 12 is never entered; thus, RPCA reduces to CFP when all coalitions are executable.

Applying coalition formation and solving tasks iteratively does have a drawback. CFP has a reduced set

of reachable states compared to PA. If all the goal states are eliminated, then the result is a nonexecutable

coalition for a task, v. Selecting an agent, φ, to augment an allocated coalition, Φi, results in a new coalition,

Φj = Φi ∪ φ. Planning for v with Φi is performed with A(Φi), the set of actions executable by the agents in

Φi. Planning for v with Φj is performed withA(Φj) = A(Φi)∪A(φ); thus, additional states are reachable. If

any one of the additional reachable states is a goal state, then RPCA succeeds in correcting the nonexecutable

coalition.

RPCA addresses the most important of the CFP drawbacks, nonexecutable coalitions. The remaining

problem is low quality plans as a result of pruning the set of derivable plans. The Task Fusion tool addresses

the low quality plans problem by selecting the pairs of tasks for which planning together maximizes marginal

plan quality over RPCA, while minimizing marginal computational resource requirements.

IV.4 Task Fusion

The Task Fusion (TF) modification to RPCA addresses the limited ability of CFP to reason over task and

agent interactions. Coalition formation is applied as in RPCA, Line 5 in Algorithm IV.4. Task Fusion reasons

over the tasks, the task capabilities required, the coalition structure, and the coalition capabilities offered

in order to predict which tasks and coalitions are most likely to benefit from joint planning, Line 6. Two

coalition-task pairs, 〈Φa, va〉 and 〈Φb, vb〉, are selected to be fused in order to create a single coalition-task

pair, 〈Φa ∪ Φb, va ∧ vb〉. Fusing two tasks into a single task permits more potential interactions between the

tasks to be considered during the planning step. Let Si be the set of goal states satisfying vi and Sj be the set
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Algorithm IV.4: Coalition Formation and Task Fusion followed by Planning with Relaxed Plan Coali-
tion Formation Augmentation

Input : S - state space, A - coalition action mapping, Φ - grand coalition, I - initial state, V - tasks,
C - capability mappings

Output: π - plan to satisfy all tasks
1 π = ∅;
2 G = ∅;
3 {Capφ}φ∈Φ = C(Φ);
4 {Capv}v∈V = C(V );
5 {Φi, vi}|V |i=1 = CF ({Capφ}φ∈Φ, {Capv}v∈V );

6 {Φj , vj}
|Vf |
j=1 = TaskFusion({Φi, vi}|V |i=1);

7 AllActions = A(Φ);
8 foreach j ∈ {1, . . . , |Vf |} do
9 G = G ∧ cond(vj);

10 Ij = Simulate(I, π);
11 Actions = A(Φj);
12 πj = Plan(S, Ij , Actions,G);
13 while Φj is nonexecutable do
14 πr = RelaxedP lan(S, Ij , AllActions,G);
15 Φj = Φj ∪RelaxedP lanCoalitionAugmentation(Φ,Φj , πr);
16 Actions = A(Φj);
17 πj = Plan(S, Ij , Actions,G);
18 end
19 π = PlanMerge(S, I, π, πj , G);
20 end

of goal states satisfying vj . Fusing vi and vj creates a new task with Si ∩ Sj as the set of goal states. While

the set of goal states is weakly smaller, the fusion allows the interactions between the tasks to be considered

during planning.

The first heuristic for TF is coalition assistance, which uses the coalition capability offerings and task

capability requirements to determine which tasks to fuse. The coalition assistance score is

∑
r∈req

Cap
Φi∪Φj
r

max(Cap
vi
r ,Cap

vj
r )

|req|
,

where vi and vj are tasks assigned to coalitions Φi and Φj , respectively, and req is the set of capability

vector indices for which either vi or vj have non-zero requirements. Coalitions with overlapping capabilities

are likely to be able to assist each other with their assigned tasks. If CapΦi∪Φj
r = CapΦi

r , then Φj cannot

assist Φi with the parts of vi requiring capr. Assume two coalitions, Φi and Φj assigned to tasks vi and vj ,

respectively. Let there be two capabilities, capm and capn, and each of the tasks require some amount of a

single capability, Capvim = a and Capvjn = b, where the other elements of the capabilities required vector

are 0. Φi and Φj must be candidate coalitions for vi and vj ; therefore, the capability vectors for the two
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coalitions must satisfy the following constraints:

CapΦi
m ≥ a,

CapΦj
m ≥ 0,

CapΦi
n ≥ 0,

CapΦj
n ≥ b.

If CapΦi
n = 0, then no agent in Φi offers capn; thus, Φi cannot assist Φj on vj . However, if CapΦi

n > 0, then

∃φ ∈ Φi, such that Capφn > 0. Combining Φi and Φj allows φ to offer capn to assist Φj with vj . A similar

argument as to whether or not Φj can assist Φi with vi can be made by swapping the coalitions and capability

indices in the appropriate locations. The drawback of this heuristic is that it assumes the coalition formation

capability model of each task is complete and accurate, which is difficult to assure. Iteratively planning

tasks and using a different initial state during planning than was used when deriving the capabilities required

vectors makes it especially difficult to ensure the capabilities required vectors are accurate, as discussed in

Chapter IV.2.

The second heuristic for TF is the Jaccard similarity coefficient, which is a function of the coalitions, but

not of the tasks each coalition is assigned to complete. The Jaccard similarity coefficient is

|Φi ∪ Φj |
|Φi ∩ Φj |

,

where Φi and Φj are coalitions allocated to vi and vj , respectively. The score is in [0, 1], where a score of

0 indicates no common agents between the coalitions and a score of 1 indicates identical coalitions. The

similarity heuristic attempts to combine the coalitions most likely to have spatial and temporal constraints on

their constituent agents. Planning with the two coalitions together allows the constraints to be considered.

Planning for a single coalition allocated to two tasks is guaranteed to have spatial or temporal interactions due

to the plans consisting of the same agents. Alternatively, with no common agents, an agent in one coalition

is less likely to have spatial and temporal constraints with a different agent in the other coalition. The most

interesting task fusion cases are those in which Φi ∩ Φj 6= ∅ and the similarity score is less than 1. Such

cases in real world problems are very likely to have spatial and temporal constraints on the actions each

agent can execute simultaneously, but the question remains if the gain in plan quality is worth the increase

in required computational resources. Assume the Zenotravel domain with an agent, φ ∈ Φi ∩ Φj , where vi

and vj originate from Atlanta and Chicago, respectively, and the destination for both tasks is Seattle. If φ

has enough cargo and passenger space for both vi and vj , then φ can fly from Atlanta to Chicago to Seattle,
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instead of Atlanta to Seattle to Chicago to Seattle. The RPCA tool requires the current task to be completed

before the next task can be considered, i.e., all passengers and cargo must be transported from Atlanta to

Seattle before planning considers the passengers and cargo traveling from Chicago to Seattle.

The application of TF is identical regardless of which heuristic is selected. A minimum heuristic value

for fusion is selected to prevent fusion of coalition-task pairs below a certain value. The heuristic value of

each pair of two coalition-task pairs is calculated. The pair of coalition-task pairs with the highest heuristic

value are fused if their heuristic value is greater than the minimum heuristic value. Each coalition-task pair

can be fused with at most one other coalition-task pair. Pairs of coalition-task pairs continue to be fused until

no more coalition-task pairs can be fused or the maximum heuristic value of a pair of coalition-task pairs is

below the required minimum value.

Task composition affects TF. Each task can be as small as a single goal constraint, but such a composition

constrains planning by totally ordering how the goals are satisfied. However, combining all the goals into a

single task reduces the tool to PA. Somewhere between the two extremes exists a task composition balanc-

ing planning constraints and planning difficulty. The TF tool, by fusing coalition-task pairs, transitions the

problems closer to the PA tool. However, the inverse operation, splitting coalition-task pairs is left as future

work.

Each coalition-task allocation fusion decreases the number of tasks by one, as two tasks are replaced by

a single task, but the average difficulty of the tasks is increased due to a single, much more difficult task

replacing two component tasks. The goal of Task Fusion is to select the coalition-task pairs to fuse for which

improved plan quality is worth the increase in computational resources.

IV.5 Summary

Four planning tools were presented: Planning Alone, Coalition Formation then Planning, Relaxed Plan Coali-

tion Augmentation, and Task Fusion. These tools allow problem designers to balance planning difficulty, in

terms of computational resource usage, with plan quality. The objective function for real world planning

problems is a combination of multiple factors, including plan quality and computational resource usage.

Solving real world problems requires finding quality plans, while considering the plan derivation time and

required memory. The next chapter presents the experimental design used to analyze each tool.
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CHAPTER V

Experimental Design

Each tool presented in Chapter IV was analyzed using the domains presented in Chapter III.2. This current

chapter presents the common features of the experimental analysis shared between each tool.

V.1 Random Problem Generation

Grand Coalitions and Missions were generated for each domain. A Grand Coalition consists of a set of

agents and their associated capabilities. A Mission consists of an initial state and a goal state description.

Each Grand Coalition in each domain was paired with each Mission in the same domain to create problems

to be solved. Ten Grand Coalitions and ten Missions were generated for each domain, for a total of 100

generated problems for each domain.

V.2 Metrics

A test case is a single problem attempted by a single planning tool. The dependent variables, as presented in

Table V.1, were recorded during each test case. Makespan is the amount of time required to execute a plan:

makespan(π) = max
s∈π

(start(s) + dur(s)),

where π is a plan and s is an action execution step in π. The number of action execution steps in the generated

plan was recorded. Memory usage was recorded using the Linux getrusage function. The getrusage

function returns resource usage measures of the current process, including the maximum resident set size,

which is an indicator of the amount of memory required by the planning tool. Reported memory values are

in gigabytes. Planning tool time is the time for the planning tool to produce a solution in seconds.

Four potential outcomes exist for each test case. First, a satisficing plan for the grand coalition to achieve

the goal is produced, in which case the metrics are reported. Second, no plan is produced due to a grand

coalition being nonexecutable for a mission, which happens when an allocated coalition is confirmed by the

Dependent Variable Units
Makespan time

Action Execution Steps number of actions executed
Memory Usage gigabytes

Planning Tool Time seconds

Table V.1: Dependent Variables
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planning tool as unable to complete the assigned task. If a coalition is unable to complete its task, then

the grand coalition cannot complete that mission. Third, the planning tool can exceed either the memory

or computation time limits. All planning problems were limited to 48 GB of memory. All problems were

limited to one hour of computation time, unless stated otherwise. Finally, a tool can fail to solve a problem

due to using an incomplete planning algorithm.

VAL, the plan validator for PDDL (Howey et al., 2004), was used to confirm that the produced plans were

satisficing. The experiments were run under Xubuntu 16.04 using an Intel Core i7-5820K CPU with 64 GB

RAM. All source code is written in C++ and compiled with g++ 5.2.1.

V.3 Coalition Formation and Planning Algorithms

Five planning algorithms and three coalition formation algorithms were used with the presented tools. ITSAT

(Rankooh and Ghassem-Sani, 2015), a SAT-based planner, and POPF2 (Coles et al., 2011) in enforced hill

climbing (EHC) mode, a state space planner, were selected for planning in the Rovers domain and a service

model approximation algorithm (Service and Adams, 2011) was selected for coalition formation. ITSAT

was selected due to being open source after the 2014 International Planning Competition and a desire to test

multiple classes of planning algorithms. POPF2 in EHC mode was selected due to being open source and

easy to extend for use in this research. EHC is a greedy approach to planning that requires expanded states

have monotonically decreasing heuristic values. The requirement can greatly improve search times, but

sacrifices completeness. The service model approximation algorithm provides solutions quickly and supports

the service model of coalition formation used in the Rovers domain. TFD (Eyerich et al., 2014), a state

space search planner using the context-enhanced additive heuristic modified for continuous state variables

and temporal planning, and COLIN (Coles et al., 2012a) in best-first search mode, a state space planner using

a relaxed planning graph heuristic, was selected for the Blocks World domain and a dynamic programming

coalition formation algorithm (Service and Adams, 2011) was selected for coalition formation. TFD was

selected due to being open source, performing well in the temporal track of the 2014 International Planning

Competition, and supporting the continuous state variables. COLIN was selected due to being open source

and easily extended for use in this research. The dynamic programming algorithm finds solutions for the

Blocks World problems quickly and works with either service or resource models. Coalition formation in

the Blocks World domain uses the service model. The Zenotravel domain planner is the EHC version of the

COLIN planner (Coles et al., 2012a) and was selected for its support of continuous linear effects. A greedy

algorithm (Shehory and Kraus, 1998) was selected for coalition formation in the Zenotravel domain, because

it works quickly by limiting potential coalition size. The same planner and coalition formation algorithm

used with Zenotravel was also used for the First Response domain.
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All three coalition formation algorithms can be applied to the Rovers, Blocks World, and First Response

domains, but the service model approximation algorithm cannot be applied in the Zenotravel domain due to

not supporting the resource model of coalition formation. Both versions of COLIN support all the necessary

features to plan problems in all four domains. TFD and POPF2 can be used to solve problems in the Rovers

and Blocks World domains, but do not support the continuous effects required for problems in the Zenotravel

and First Response domains. ITSAT does not support continuous variables, so it can only be used with the

Rovers domain.
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CHAPTER VI

Results

Each of the domains presented in Chapter III was evaluated using the planning tools presented in Chapter IV.

This chapter summarizes the results and provides a discussion, while the full results are presented in the cited

appendices. The notation “Problem i-j” will be used to indicate the problem generated by the combination

of Mission i and Grand Coalition j. The notation “X[Y]” will be used to indicate tool X with underlying

planner Y, for example, CFP[COLIN] indicates the CFP tool using COLIN as the underlying planner.

VI.1 Rovers

The Grand Coalitions included ten randomly generated rovers. Each rover was allocated tools allowing it to

collect an average of two of the five classes of scientific data, defined in Chapter III.2.1. The rovers were

generated by drawing from a binomial distribution (n = 5, p = 0.4), with zero values modified to have

a single random capability. The mission initial states included the connections between the waypoints, the

waypoints between which the rovers navigated, each rover’s starting location, scientific data source locations,

and the central lander’s location. The mission goal state description requires all the scientific data to be

communicated to the central lander. The missions were generated using the random problem generator used

in the IPC with the rover related variables removed. The goal state is divided into five tasks, with the goal for

each task consisting of collecting all the data of a specific type.

Summary capability data for the ten generated Grand Coalitions are presented in Table VI.1. Rovers can

have multiple capabilities; thus, the total capabilities for each Grand Coalition will be greater than the number

of rovers. Grand Coalition 1, for example, has five rovers capable of taking low-resolution images. Each

Grand Coalition Low-Res High-Res Color Rock Soil Total
1 5 3 3 6 2 19
2 6 3 2 6 4 21
3 3 4 3 2 6 18
4 4 3 4 6 4 21
5 6 3 3 5 5 22
6 6 5 8 2 4 25
7 5 3 5 3 3 19
8 3 3 3 3 3 15
9 4 4 3 4 7 22
10 6 5 5 6 6 28

Table VI.1: Number of rovers capable of each capability by Grand Coalition
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Mission Low-Res High-Res Color Rock Soil Total
1 8 23 14 46 25 116
2 6 16 9 28 42 101
3 18 23 8 22 21 92
4 16 15 14 30 34 109
5 20 19 23 24 29 115
6 7 11 8 42 29 97
7 13 7 4 44 26 94
8 18 19 12 40 28 117
9 22 13 21 28 38 112
10 20 17 24 35 39 135

Table VI.2: Objectives per data type by Mission

Grand Coalition averaged 4.2 rovers capable of collecting a given class of scientific data, with a minimum

of two rovers in each Grand Coalition capable of collecting each class of scientific data. Grand Coalition 8

has the lowest total capabilities at 15, with three rovers offering each of the five capabilities. Grand Coalition

10 is the most capable, with at least five rovers offering each capability, while Grand Coalitions 3 and 6 each

have two rovers capable of rock analysis and Grand Coalition 1 has two rovers capable of soil analysis. Rock

and soil analysis data are the most difficult to collect, because they require the rover to be at a waypoint to

collect data, while the three types of imaging analysis data only require that the rover be at one of several

waypoints with line of sight to the target waypoint in order to collect data. A rover can collect imaging data

for several waypoints without moving.

The ten generated Missions are summarized in Table VI.2. Each Mission had 100 waypoints, but each

waypoint can require multiple different analyses. Mission 7, for example, has seven waypoints requiring

high-resolution imaging. Each mission required collecting an average of 116.1 pieces of scientific data.

Mission 10 requires the most data, with a total of 135 data pieces required, and the second highest soil

analysis requirement, while Mission 3 requires the least data, with a total of 92 data pieces, and the fewest

soil and rock analysis requirements.

VI.1.1 Planning Alone

The first set of results demonstrate the complexity of planning for all tasks with all agents simultaneously in

Planning Alone (PA). PA[POPF] was unable to solve any of the generated Rovers problems due to exceeding

Planner Plans Found Time Fails
POPF 0 100
ITSAT 100 0

Table VI.3: Number of Rovers problems solved and failed with Planning Alone per planner
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Planner Makespan Action Executions Time (s) Memory (GB)
POPF N/A
ITSAT 1545.3 (396.8) 736.5 (135.2) 2261.8 (588.2) 17.32 (3.15)

Table VI.4: Descriptive statistics for makespan, action executions, time required, and memory required for
solved Rovers problem using Planning Alone with each planner.

Planner Mission Grand Coalition Makespan Action Executions Time (s) Memory (GB)

POPF

1 5 Time fail
3 10 Time fail
6 6 Time fail
10 3 Time fail

ITSAT

1 5 1369 697 2047.1 16.62
3 10 876 485 2016.8 16.74
6 6 1817 869 3723.0 25.69
10 3 1942 902 1928.9 17.49

Table VI.5: Makespan, action executions, time required, and memory required for four example Rovers
problems using Planning Alone

the one hour time limit, as shown in Table VI.3. Ten of the problems were selected to run without the time

limit, but all ten failed due to exceeding the 48 GB memory limit. PA[ITSAT] solved all 100 problems,

but required on average 38 minutes and 17.32 GB of memory to solve each problem. Detailed results for

the PA[ITSAT] are presented in Appendix C.1. The descriptive statistics for makespan, number of action

executions, time, and memory is presented in Table VI.4. The solutions produced using PA[ITSAT] had a

mean makespan of 1545.3 and 736.5 action executions.

The full results for a set of selected problems are provided in Table VI.5. These same problems will

be used for comparison across and discussions of the next three tools. Problem 1-5 was selected for being

representative of the trends seen in the results for the four tools. All the metrics collected for PA[ITSAT]

solving Problem 1-5 are above the averages (between 0.05 and 0.65 standard deviations). Problem 3-10 was

selected due to being created from the Mission requiring the least data and the Grand Coalition with the most

capable rovers. The derived plan for Problem 3-10 solved by PA[ITSAT] is the shortest plans derived using

this combination, as expected. The rovers of Grand Coalition 10 average more capabilities than the rovers in

other Grand Coalitions. The majority of the makespan in the Rovers domain is the result of rovers navigating

the environment. More capable rovers have more options regarding at which waypoints they can perform

analysis actions and contribute to the mission. Problem 6-6 was selected due to requiring a large amount of

rock data, but the Grand Coalition only includes two rovers capable of collecting rock data. However, the high

rock analysis requirement in this Mission is countered by a lower than average requirement for the other four

data types. Problem 10-3 is the combination of the Mission with the highest number of required data pieces

executed by a Grand Coalition with a below average number of rovers equipped for most of the capabilities.
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Planner Plans Found Total Failures Nonexecutable Coalition EHC
POPF 69 31 22 9
ITSAT 78 22 22 0

Table VI.6: Number of Rovers problems solved and failed with CFP per planner

Planner Makespan Action Executions Time (s) Memory (GB)
POPF 2915.8 (518.5) 741.8 (102.9) 297.8 (157.3) 7.96 (6.13)
ITSAT 1888.9 (336.4) 625.5 (72.6) 1653.6 (330.6) 1.69 (0.46)

Table VI.7: Descriptive statistics for makespan, action executions, time required, and memory required per
solved Rovers problem using CFP with each planner

All metrics collected while solving the problem (with the exception of number of action executions) were

less than a standard deviation above the average.

Planning Alone leaves much to be desired. The computational resources required to solve the problems

with PA are significant. PA[POPF] failed to find any plans due to exceeding available computational resources

and the memory required by PA[ITSAT] is high. If the problem size is increased (e.g., more agents, more

data to be collected, or more waypoints), then the memory required will increase. The problems generated

are solvable, but problems can be generated that PA[ITSAT] will be unable to solve due to exceeding the

available memory. The next set of results are for CFP, the tool developed to address the problem of large

computational resource requirements.

VI.1.2 Coalition Formation then Planning

Coalition Formation then Planning (CFP) resulted in a large improvement over Planning Alone in terms of

required computational resources to solve a problem. CFP[POPF] was able to solve 69 of the 100 problems,

while CFP[ITSAT] solved 78 of the 100 problems, as presented in Table VI.6. The 22 problems CFP[POPF]

failed to solve are the same 22 problems CFP[ITSAT] failed to solve, all of which were due to coalition

formation allocating nonexecutable coalitions. The nonexecutable coalition structures derived by coalition

formation are due to rovers being unable to reach a necessary waypoint, i.e., the coalition being nonexecutable

is independent of the plans derived for other tasks. CFP[POPF] failed to solve an additional nine problems

due to using the incomplete EHC algorithm. Detailed results for CFP[POPF] and CFP[ITSAT] are presented

in Appendices C.2 and C.3, respectively.

The makespan, action executions, and required derivation time and memory descriptive statistics are

presented in Table VI.7. CFP[POPF] required, on average, 297.8 seconds and 7.96 GB of memory to derive

plans with an average makespan of 2915.8 and 741.8 action executions, while CFP[ITSAT] required an

average of 1653.6 seconds and 1.69 GB of memory to derive plans with an average makespan of 1888.9
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Planner Problems Makespan Action Executions Time Memory
POPF 0 N/A
ITSAT 78 1.258 (0.306) 0.864 (0.108) 0.769 (0.175) 0.099 (0.020)

Table VI.8: Average (and standard deviation) ratio of CFP metric to PA metric for makespan, action execu-
tions, time required, and memory required for problems solved by both CFP and PA

Planner Mission Grand Coalition Makespan Action Executions Time (s) Memory (GB)

POPF

1 5 3372 775 645.1 27.51
3 10 2621 651 357.7 5.68
6 6 Nonexecutable Coalition
10 3 2962 852 378.4 5.13

ITSAT

1 5 2292 639 1770.5 1.66
3 10 1194 506 1227.8 1.33
6 6 Nonexecutable Coalition
10 3 1750 741 2102.4 1.41

Table VI.9: Makespan, action executions, time required, and memory required for four example Rovers
problems with each planner using CFP

and 625.5 action executions. CFP[POPF] required only 18% of the time that CFP[ITSAT] required to derive

plans, but CFP[ITSAT] required less memory, only 21% of that used by CFP[POPF].

The 78 problems solved by CFP[ITSAT] were also solved by PA[ITSAT]. Descriptive statistics of the

ratios of the results from the set of problems solved by both CFP[ITSAT] and PA[ITSAT] are presented in

Table VI.8. PA[POPF] did not solve any problems; therefore, no quantitative comparison with CFP[POPF]

is provided. The makespan of the problems solved by CFP[ITSAT] are 25.8% higher, on average, than

the makespan of the corresponding problems solved by PA[ITSAT], while the number of action execu-

tions was 13.6% lower. The key result is the large decrease in the computational resource requirements.

CFP[ITSAT] used on average 76.9% of the time and 9.9% of the memory required to solve the same prob-

lems as PA[ITSAT].

The detailed results for the four example problems are presented in Table VI.9. Problem 1-5 was solved

by both CFP[POPF] and CFP[ITSAT]. CFP[POPF] required 645.1 seconds and 27.51 GB of memory to de-

rive a plan that included 775 action executions and had a makespan of 3372. While the memory requirements

were high, it is much better to have a plan than no plan (as with PA[POPF]). CFP[ITSAT] derived a plan for

Problem 1-5 with a makespan of 2292 and 639 action executions, while using 1.66 GB of memory and 1770.5

seconds. The plan is 67.4% longer in terms of makespan, but requires 8.3% fewer action executions than the

plan derived using PA[ITSAT]. The most important difference is the difference in computational resources

required; CFP[ITSAT] required 86.5% of the time and 10.0% of the memory required by PA[ITSAT]. Solving

Problem 3-10 with CFP[POPF] produced a plan with a makespan of 2621 and 651 action executions, while

using 5.68 GB of memory and 357.7 seconds of computation time. CFP[ITSAT] required 1227.8 seconds and

55



1.33 GB of memory to solve Problem 3-10, reducing the time required by 39.1% and memory required by

92.1% over PA[ITSAT]. The plan derived by CFP[ITSAT] was 2.99 times longer in terms of makespan, but

6.6% shorter in terms of action executions. Neither CFP[POPF] nor CFP[ITSAT] solved Problem 6-6 due to

coalition formation allocating a nonexecutable coalition. Problem 10-3 was solved by both CFP[POPF] and

CFP[ITSAT]. CFP[POPF] required 378.4 seconds and 5.13 GB of memory to derive a plan with a makespan

of 2962 over 852 action executions. CFP[ITSAT] produced a plan with a makespan of 1750 and 741 ac-

tion executions, while using 2102.4 seconds of computation time and 1.41 GB of memory. Compared with

PA[ITSAT], solving Problem 10-3 with CFP[ITSAT] required 8.2% less time and 91.9% less memory to de-

rive a plan with a 9.9% shorter makespan. However, the plan produced by CFP[ITSAT] required 21.7% more

action executions than the plan produced by PA[ITSAT].

If coalition formation allocates a nonexecutable coalition to any of the tasks, then the CFP tool will fail due

to being unable to derive a plan for the task assigned to the nonexecutable coalition. Reachability of waypoints

is not considered in the capability model used in coalition formation, as such, coalition formation cannot

consider the subsets of waypoints each rover can reach. Adding the reachable waypoints to the capability

model guarantees coalition formation will allocate only executable coalitions, but doing so increases the

complexity of the coalition formation problem by requiring knowledge of which waypoints each rover can

reach. The next tool, RPCA, addresses the executable coalition structure problem.

VI.1.3 Relaxed Plan Coalition Augmentation

Relaxed Plan Coalition Augmentation (RPCA) increases the number of problems solved with each under-

lying planner over Coalition Formation then Planning, presented in Table VI.10. RPCA[POPF] solved

85 problems, versus CFP[POPF]’s 69 problems. The additional problems solved come exclusively from

CFP[POPF]’s nonexecutable coalition cases. RPCA[POPF] augmented the coalition structures of and solved

16 of the 22 nonexecutable problems. The remaining six problems were unsolvable due to EHC failures or

exceeding computational resource limits. Detailed results for RPCA[POPF] are presented in Appendix C.4.

CFP[ITSAT] solved 78 problems, while RPCA[ITSAT] solved 100 problems; thus, bringing the number of

problems solved by RPCA[ITSAT] up to the same level as PA[ITSAT]. Detailed results for RPCA[ITSAT]

are presented in Appendix C.5.

Planner Plans Found Total Failures Time Fails Memory Fails EHC
POPF 85 15 1 1 13
ITSAT 100 0 0 0 0

Table VI.10: Number of Rovers problems solved and failed with RPCA per planner
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Planner Makespan Action Executions Time (s) Memory (GB)
POPF 2919.8 (605.8) 736.2 (95.7) 348.3 (342.1) 8.47 (7.43)
ITSAT 1951.0 (390.7) 623.1 (68.4) 1610.3 (331.3) 1.85 (0.62)

Table VI.11: Descriptive statistics for makespan, action executions, time required, and memory required per
solved Rovers problem using RPCA with each planner. Standard deviations are in parentheses.

Planner Problems Makespan Action Executions Time Memory
POPF 0 N/A
ITSAT 100 1.322 (0.369) 0.862 (0.106) 0.739 (0.172) 0.107 (0.029)

Table VI.12: Average (and standard deviation) ratio of RPCA metric to PA metric for makespan, action
executions, time required, and memory required for problems solved by both RPCA and PA.

The descriptive statistics for makespan, action executions, and the computational resources required are

presented in Table VI.11. RPCA[POPF] produced plans with an average makespan of 2919.8 and 736.2

action executions, while using 348.3 seconds of computation time and 8.47 GB of memory. RPCA[ITSAT]

performed better in all metrics, with the exception of computation time. RPCA[ITSAT] derived plans with an

average makespan of 1951.0 and 623.1 action executions, while using 1610.3 seconds of computation time

and 1.85 GB of memory.

Both PA[ITSAT] and RPCA[ITSAT] solved all 100 problems; thus, a comparison of the metrics can be

performed. The average ratio of the metric value of RPCA[ITSAT] solving a problem versus PA[ITSAT]

solving the same problem is presented in Table VI.12. RPCA[POPF] is excluded due to PA[POPF] not

solving any problems. RPCA[ITSAT] averaged plans 32.2% longer in terms of makespan in comparison to

PA[ITSAT], while action executions were reduced by 13.8%, computation time was reduced by 73.9%, and

required memory was reduced by 89.3%.

Results for the four example problems are presented in Table VI.13. Problems 1-5, 3-10, and 10-3 were

solved by both CFP[POPF] and CFP[ITSAT], thus the RPCA results are the same. A nonexecutable coalition

structures was allocated for Problems 6-6 with the CFP tool, but RPCA[POPF] and RPCA[ITSAT] augmented

Planner Mission Grand Coalition Makespan Action Executions Time (s) Memory (GB)

POPF

1 5 3372 775 645.1 27.51
3 10 2621 651 357.7 5.68
6 6 4554 733 2666.1 31.89
10 3 2962 852 378.4 5.13

ITSAT

1 5 2292 639 1770.5 1.66
3 10 1194 506 1227.8 1.33
6 6 3269 622 1797.3 3.92
10 3 1750 741 2102.4 1.41

Table VI.13: Makespan, action executions, time required, and memory required for four example Rovers
problems solved with RPCA
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the coalitions in order to make them executable, which resulted in a solution. RPCA[POPF] derived a plan

with a makespan of 4554 using 733 action executions, while requiring 2666.1 seconds of computation time

and 31.89 GB of memory. The solution to Problem 6-6 derived by RPCA[ITSAT] had a makespan of 3269

using 622 action executions, while requiring 2102.4 seconds of computation time and only 1.41 GB of mem-

ory. RPCA[ITSAT]’s solution had a 79.9% higher makespan, but required 28.4% fewer action executions,

43.5% less computation time, and 94.5% less memory.

The key benefit to RPCA is its ability to use CFP and correct for nonexecutable coalitions, while main-

taining lower memory and time requirements when compared to Planning Alone. RPCA derived a relaxed

plan that was analyzed to select the rover(s) required for the coalition to collect the data for each task. A

relaxed plan is not a solution to the original problem, but it is much easier to derive and provides information

as to the agent(s) most likely to make the coalition executable when added to the coalition. The next set of

results are for the Task Fusion tool used to address the lower plan quality problem that arises as a result of

factoring the planning problem into tasks.

VI.1.4 Task Fusion

The coalition assistance score was used to select the tasks to fuse. Two eligible pairs of tasks with maximal

score were selected for fusion. Tasks pairs had to had a score of at least 1.5 to be eligible. As an example,

Φrock and Φsoil are disjoint coalitions, with two rovers each, assigned to vrock and vsoil, respectively. Both

agents in Φrock can perform rock analysis and both agents in Φsoil can perform soil analysis. Additionally, at

least one agent in Φrock can perform soil analysis and one agent in Φsoil can perform rock analysis. Fusing

the coalition-task allocation creates a new coalition, Φnew = Φrock ∪Φsoil, with at least three agents capable

of rock analysis and three agents capable of soil analysis. The task for Φnew is a combination of vrock∧vsoil,

to collect all of the soil and rock data.

The difficulty of planning for fused tasks is demonstrated by the TF[POPF] results, as shown in Ta-

ble VI.14. TF[POPF] solved only 19 of the problems, with 48 problems exceeding the time limit and 33

problems exceeding the memory limit. TF[ITSAT] performed much better by solving all the problems. De-

tailed results for TF[POPF] and TF[ITSAT] are presented in Appendices C.6 and C.7, respectively.

The descriptive statistics for makespan, action executions, and the required computational resources for

Planner Plans Found Total Failures Time Fails Memory Fails
POPF 19 81 48 33
ITSAT 100 0 0 0

Table VI.14: Number of Rovers problems solved and failed with TF per planner
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Planner Makespan Action Executions Time (s) Memory (GB)
POPF 2739.8 (579.3) 736.2 (90.2) 1114.6 (1064.2) 14.18 (11.70)
ITSAT 1886.8 (392.2) 636.1 (69.3) 1433.5 (307.6) 3.95 (1.42)

Table VI.15: Descriptive statistics for makespan, action executions, time required, and memory required per
solved Rovers problem using TF with each planner

Tool Planner Problems Makespan Action Executions Time Memory

PA POPF 0 N/A
ITSAT 100 1.279 (0.361) 0.883 (0.129) 0.651 (0.124) 0.229 (0.077)

RPCA POPF 18 1.007 (0.026) 0.992 (0.330) 4.686 (4.793) 3.538 (4.948)
ITSAT 100 0.980 (0.164) 1.022 (0.061) 0.900 (0.144) 2.203 (0.705)

Table VI.16: Average (and standard deviation) ratio of TF metric to PA and RPCA metrics for makespan,
action executions, time required, and memory required for problems solved by both tools.

both TF[POPF] and TF[ITSAT] are presented in Table VI.15. TF[POPF] averaged plans with a makespan

of 2739.8, 736.2 action executions, a computation time of 1114.6 seconds and memory usage of 14.18 GB.

The plans derived by TF[ITSAT] averaged a makespan of 1886.8 with 636.1 action executions, while using

1433.5 seconds of computation time and 3.95 GB of memory.

A comparison of TF to the other tools is presented in Table VI.16. The Tool and Planner column rep-

resent the configuration being compared. The RPCA[POPF] row, for example, compares the plans derived

by RPCA[POPF] and those derived by TF[POPF] for only those problems solved by both configurations.

The number of Problems considered in the comparison is given in the Problems column. RPCA[POPF] and

TF[POPF], for example, solved 18 Problems in common. TF[ITSAT] derived plans with a 28.9% longer

makespan than those derived by PA[ITSAT], but the number of action executions was 11.7% less, computa-

tion time was 34.9% less, and 77.1% less memory was used. TF[POPF] performed similarly to RPCA[POPF]

in terms of plan quality (0.7% higher makespan, but 0.8% fewer action executions), but performed much

worse in terms of computational resource requirements, requiring 367% more time and 254% more memory.

TF[ITSAT] produced 2.0% better plans by makespan than RPCA[ITSAT], but required 2.2% more action exe-

cutions. TF[ITSAT] reduced computation time by 10.0% compared to RPCA[ITSAT], but increased memory

usage by 120%.

Full results for the four example Problems are presented in Table VI.17. TF[POPF] failed to solve three

of the example problems due to exceeding the time limit and failed to solved the fourth due to exceeding the

memory limit, while TF[ITSAT] solved all the example Problems.

The plan TF[ITSAT] derived for Problem 1-5 had a makespan of 2051, used 680 action executions, while

using 1573.9 seconds of computation time, and 4.07 GB of memory. The plan quality and memory metrics

were midpoints between the solutions derived by PA[ITSAT] (33.3% lower makespan, 2.5% more action
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Planner Mission Grand Coalition Makespan Action Executions Time (s) Memory (GB)

POPF

1 5 Time failure
3 10 Time failure
6 6 Time failure
10 3 Memory failure

ITSAT

1 5 2051 680 1573.9 4.07
3 10 1844 540 1366.9 5.41
6 6 2885 645 1960.8 5.31
10 3 1633 700 1638.6 2.89

Table VI.17: Makespan, action executions, time required, and memory required for four example Rovers
problems solved with TF

executions, and 308% higher memory usage) and RPCA[ITSAT] (11.8% higher makespan and 6.0% fewer

action executions, and 59.2% less memory usage). The time required to solve Problem 1-5 with TF[ITSAT]

was 76.9% and 88.9% of that required by PA[ITSAT] and RPCA[ITSAT], respectively.

Plan makespan for Problem 3-10 solved by TF[ITSAT] was 211% and 154% of those plans derived by

PA[ITSAT] and RPCA[ITSAT], respectively. The number of action executions were also worse, 11.3% higher

compared to PA[ITSAT] and 6.7% higher compared to RPCA[ITSAT]. Both computational resource metrics

were midpoints, with PA[ITSAT] requiring 47.5% more time and 209% more memory, while RPCA[ITSAT]

required 10.2% less time and 75.4% less memory.

Problem 6-6 was a midpoint across all metrics. The makespan of the plan derived by TF[ITSAT] was

58.8% higher than that produced by PA[ITSAT], but 11.7% lower than that produced by RPCA[ITSAT]. The

number of action executions in the plan derived by TF[ITSAT] was 34.5% lower with PA[ITSAT], but 3.6%

higher than that produced by RPCA[ITSAT]. Computation time required by TF[ITSAT] was 52.7% that of

PA[ITSAT], but 109% that of RPCA[ITSAT]. Memory usage with TF[ITSAT] was 20.7% that required by

PA[ITSAT], but 135% that required by RPCA[ITSAT].

TF[ITSAT] performed the best in all metrics when solving Problem 10-3, with the exception of required

memory. Plan makespan was 84.1% and 93.3% of those derived by PA[ITSAT] and RPCA[ITSAT], respec-

tively, while the number of action executions was at 77.6% and 94.5%, respectively. Computation time was

84.9% and 77.9% of that required by PA[ITSAT] and RPCA[ITSAT], respectively, but memory usage was at

16.5% and 205%, respectively.

The results for TF were surprising in that the makespan was reduced by such a small value. Each rover

is capable of collecting multiple data types in most cases; however, CFP and RPCA limit each rover to

collecting a single data type, due to the goal constraints for a single task only addressing a single data type.

Applying TF allows rovers in fused tasks to collect multiple data types. For example, fusing the rock and soil

tasks allows a rover to collect both rock and soil data at a single waypoint. The majority of the plan makespan
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is used to navigate the environment; therefore, allowing the rovers to collect multiple pieces of data without

moving will reduce the navigation required to complete each task. The results for TF[ITSAT] show only a

small decrease in makespan over RPCA[ITSAT] and the results for TF[POPF] show a small increase, which

is likely due to using satisficing planners, rather than optimal planners. Satisficing planners do not consider

aspects of plan quality, such as makespan, and are only concerned with finding a plan to satisfy the goal

constraints.

VI.1.5 Discussion

The Rovers domain has been used for many years as a benchmark for planning algorithms. The domain

includes multiple heterogeneous agents and was easily adaptable to the HMPCF problem, making it an excel-

lent choice for testing the developed tools. Each of the rovers can operate independently for most of the plan

execution, the only exception being communication with the central lander. The mostly independent opera-

tion of the rovers simplifies the plan merge steps in CFP, RPCA, and TF. Furthermore, the tasks are mostly

independent; a plan for one task only affects the scheduling of the action executions in the plan for another

task. The only time at which two plans will negatively interact occurs when rovers need to communicate with

the lander.

Selecting the best option for the Rovers domain requires additional problem information. Rover energy

level is ignored in the domain model used in the experiments, so plan makespan is likely to be the most

important of the plan quality metrics. Changing the domain to include energy requirements will make action

executions more important if energy is a limited resource. Such a problem description may make it desirable

to sacrifice plan makespan to avoid additional action executions. A real world implementation of this domain

is likely to balance the two plan quality metrics. A short makespan is meaningless if the rovers do not have the

energy reserves to execute the plan. Computational resource requirements are also important. The most recent

Mars rover, Curiosity, has only 2 GB of memory. Even if three-quarters of the system memory is available

for autonomy (a poor assumption), many test problems will be unsolvable with the on-board memory.

The number of problems solved, average computation time for solved problems, and average required

memory for solved problems are presented in Figures VI.1, VI.2, and VI.3, respectively. Error bars are 25th

and 75th percentile of the respective data. The results demonstrate the complexity of PA, the benefits of CFP

to reduce the required computational resources, and the ability for RPCA to correct CFP’s nonexecutable

coalition problem. The results for TF were mixed. About half the problems benefitted from TF, while the

other half suffered. PA[ITSAT] was able to solve Rovers problems only with ITSAT as the underlying planner,

while CFP and RPCA were able to solve problems using both ITSAT and POPF. The results supported the

use of RPCA when plans must be developed quickly or by systems with limited memory, while PA[ITSAT]
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Figure VI.1: Total Number of Rovers Problems Solved by each Tool with each Planner

Figure VI.2: Average, 25th, and 75th Percentile Computation Time required for Solved Rovers Problems

Figure VI.3: Average, 25th, and 75th Percentile Memory required for Solved Rovers Problems
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is recommended when plan makespan is of higher importance than the amount of time and memory required

to derive the plan. Finally, PA[POPF] is a poor choice for problems of the size used in the experiments.

Applying TF to the problems averaged lower makespan plans, but higher average memory usage. Using two

different classes of planners supports the planner agnostic nature of the tools developed in this dissertation.

VI.2 Blocks World

The Grand Coalitions in the Blocks World domain were a randomly generated set of robotic arms. Four types

of end effectors were used: friction, suction, magnetic, and encompass. Each Grand Coalition had between

four and eight arms, with each arm averaging two end effectors. The Grand Coalitions required at least two

arms with each end effector to guarantee the ability to execute each mission. The generated Grand Coalitions

were manually validated as possessing the required end effectors. If a Grand Coalition was deficient, then the

least capable arm in the Grand Coalition was augmented with the missing end effector(s). Each mission’s goal

state description required a random rearrangement of the blocks from the initial block stacks into an equal

number of block stacks. The problems generated from the same mission differ in the number of arms and

the number and types of end effectors on the arms. The problems generated from the same Grand Coalition

differ in the number of blocks and the goal state description.

Summary capability data for the ten generated Grand Coalitions is presented in Table VI.18. Each robotic

arm can have multiple end effectors; thus, the total capabilities for each Grand Coalition will be greater

than the number of arms. The minimum capabilities required to guarantee a Grand Coalition can complete a

mission is two arms per end effector type. The Grand Coalitions ranged from 4 to 8 arms, with an average of

6.5 arms. Each arm averaged 2.6 end effectors. The utility of a Grand Coalition for any given Mission is hard

to predict, given that it is dependent on the distribution of the capabilities and the blocks to be manipulated.

Grand Coalition 5 may appear to be the least capable, because it has only one more capability (magnetic) than

Grand Coalition Number of Arms Friction Suction Encompass Magnetic Total
1 6 2 3 4 4 13
2 8 3 7 7 3 20
3 5 2 3 4 2 11
4 5 4 2 4 2 12
5 4 2 2 2 3 9
6 8 5 6 8 5 24
7 7 5 3 4 7 19
8 7 5 5 4 2 16
9 7 6 6 4 6 22

10 8 6 7 3 7 20

Table VI.18: Number of arms with each end effector per Grand Coalition
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Mission Friction Suction Encompass Magnetic Total Blocks
1 4 (3) 4 (2) 1 (0) 3 (1) 12 (6)
2 2 (0) 5 (1) 2 (1) 0 (0) 9 (2)
3 6 (2) 2 (1) 5 (0) 2 (1) 15 (4)
4 6 (3) 2 (2) 5 (3) 2 (1) 15 (9)
5 2 (0) 4 (1) 3 (1) 0 (0) 9 (2)
6 4 (1) 2 (0) 4 (1) 2 (1) 12 (3)
7 6 (1) 4 (1) 3 (0) 2 (0) 15 (2)
8 3 (2) 4 (2) 5 (1) 3 (2) 15 (7)
9 0 (0) 2 (0) 4 (2) 6 (2) 12 (4)
10 2 (1) 1 (1) 3 (0) 3 (1) 9 (3)

Table VI.19: Number of blocks requiring each type of end effector by Mission. The number of blocks that
are double-weight blocks are indicated in parentheses.

the minimum required capabilities, but this assumption is not valid in the general case. A Mission consisting

solely of blocks requiring magnetic end effectors will be easier for Grand Coalition 5, than Grand Coalitions

3, 4, and 9 due to having an additional arm with a magnetic end effector (Grand Coalition 5 has three arms

with a magnetic end effector, while the other three only have two).

The ten generated Missions are summarized in Table VI.19. The number of blocks by type are presented,

with the number of such blocks that are double-weight blocks in parentheses. Mission 1, for example, in-

cludes 12 blocks, six of which are double-weight blocks, and four of those 12 blocks require friction end

effectors, with three of those four being double-weight blocks. The Missions averaged 4.1 stacks of blocks in

the initial state. The Mission initial states included between three and five stacks of blocks, with each stack

having three blocks, for a total of nine to fifteen blocks.

VI.2.1 Planning Alone

Both PA[TFD] and PA[COLIN] solved some Blocks World problems, but failed to solve most of the prob-

lems, shown in Table VI.20. PA[TFD] solved 40 problems, with 32 problems exceeding the time limit and

28 problems exceeding the memory limit. PA[COLIN] solved 30 problems, while 17 problems failed due to

exceeding the time limit and 53 problems failed due to memory limitations. Both computational resource met-

rics were highly variable for both PA[TFD] and PA[COLIN]. Detailed results for PA[TFD] and PA[COLIN]

are shown in Appendices D.1 and D.2, respectively.

Planner Plans Found Total Failures Time Fails Memory Fails
TFD 40 60 32 28

COLIN 30 70 17 53

Table VI.20: Number of Blocks World problems solved and failed with Planning Alone per planner
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Planner Makespan Action Executions Time (s) Memory (GB)
TFD 35.0 (10.9) 71.3 (20.4) 342.9 (602.9) 5.37 (10.19)

COLIN 45.1 (11.3) 59.0 (13.2) 464.7 (533.4) 13.65 (11.88)

Table VI.21: Descriptive statistics for makespan, action executions, time required, and memory required per
solved Blocks World problem using Planning Alone with each planner.

Planner Mission Grand Coalition Makespan Action Executions Time (s) Memory (GB)

TFD

2 4 39 75 569.1 11.21
4 8 Time Failure
5 7 32 68 1666.7 23.33
8 6 Time Failure

COLIN

2 4 36 44 373.4 15.39
4 8 Memory Failure
5 7 Memory Failure
8 6 Time Failure

Table VI.22: Makespan, action executions, time required, and memory required for four example Blocks
World problems with Planning Alone

The makespan, action executions, and computational resources required descriptive statistics are pre-

sented in Table VI.21. PA[TFD] derived plans averaged a makespan of 35.0 and 71.3 action executions, and

required 342.9 seconds and 5.37 GB of memory to derive. The plans derived by PA[COLIN] had an average

makespan of 45.1 and 59.0 action executions, while requiring 464.7 seconds of computation time and 13.65

GB of memory. The computational resource requirements for both configurations had high variability.

Full results for four selected problems for each underlying planner are provided in Table VI.22. Problem

2-4 was selected for the matching capabilities of the Mission and Grand Coalition. Mission 2 has five blocks

requiring suction end effectors and Grand Coalition 4 has seven arms with access to magnetic end effectors.

Both PA[TFD] and PA[COLIN] solved Problems 2-4. PA[TFD] derived a plan with a makespan of 39,

required 569.1 seconds and 11.21 GB of memory, while PA[COLIN] derived a plan with a makespan of 36,

required 373.4 seconds and 15.39 GB of memory. Problem 4-8 is the combination of a Mission with the most

blocks and most double-weight blocks and a Grand Coalition with one fewer than the maximum number

of arms. PA[TFD] and PA[COLIN] failed to solve the problem due to exceeding time and memory limits,

respectively. Problem 5-7 was selected for opposing capabilities. Grand Coalition 7 has seven arms with

magnetic end effectors, but Mission 5 does not have any blocks requiring magnetic end effectors. PA[TFD]

solved the problem, requiring 1666.7 seconds and 23.33 GB of memory to produce a plan with a makespan

of 32, while PA[COLIN] exceeded the memory limit. Problem 8-6 is the combination of a large Mission

with the second highest number of double-weight blocks combined with the Grand Coalition with the most

arms and most capabilities. Both PA[TFD] and PA[COLIN] failed to solve the problem due to exceeding the

computation time constraint.
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Planner Plans Found Total Failures Nonexecutable Coalition Time Fails Memory Fails
TFD 27 73 58 15 0

COLIN 38 62 48 2 12

Table VI.23: Number of Blocks World problems solved and failed with CFP per planner

Planner Makespan Action Executions Time (s) Memory (GB)
TFD 50.2 (11.6) 71.3 (20.4) 490.0 (790.1) 6.32 (8.51)

COLIN 66.9 (30.9) 74.4 (23.2) 155.6 (407.7) 2.17 (3.63)

Table VI.24: Descriptive statistics for makespan, action executions, time required, and memory required per
solved Blocks World problem using CFP with each planner.

PA provides varied performance on the Blocks World problems. Less than half the problems were solved,

but some problems required large amounts of both time and memory. As with the Rovers Planning Alone

results, there is room for improvement, especially in terms of the number of problems solved.

VI.2.2 Coalition Formation then Planning

CFP[TFD] solved fewer problems than PA[TFD], but CFP[COLIN] solved more problems than PA[COLIN],

as presented in Table VI.23. Nonexecutable coalitions caused failures for many problems with both un-

derlying planners, 58 for CFP[TFD] and 48 for CFP[COLIN]. The nonexecutable coalitions are a result of

planning decisions made for prior tasks; thus, the set of nonexecutable tasks when using each underlying

planner are different. Time limits were exceeded for 15 of the problems using CFP[TFD] and for two prob-

lems using CFP[COLIN]. Twelve additional problems failed due to exceeding the memory limit while using

CFP[COLIN]. Detailed results for CFP[TFD] and CFP[COLIN] are presented in Appendices D.3 and D.4,

respectively.

The average makespan, action executions, and computational resource usage for the problems solved with

CFP are provided in Table VI.24. CFP[TFD] derived plans with an average makespan of 50.2 and 71.3 action

executions, while requiring 490.0 seconds of computation time and 6.32 GB of memory. The plans derived

by CFP[COLIN] averaged a makespan of 66.9, 74.4 action executions, and required a computation time of

155.6 seconds and 2.17 GB of memory. The computational resource requirements of both configurations

were highly variable.

Planner Problems Makespan Action Executions Time (s) Memory (GB)
TFD 17 1.374 (0.487) 1.041 (0.320) 5.066 (10.683) 12.557 (27.477)

COLIN 14 1.291 (0.681) 1.134 (0.466) 0.141 (0.181) 0.091 (0.140)

Table VI.25: Average (and standard deviation) ratio of CFP metric to PA metric for makespan, action execu-
tions, time required, and memory required for problems solved by both CFP and PA
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Planner Mission Grand Coalition Makespan Action Executions Time (s) Memory (GB)

TFD

2 4 62 89 415.5 8.66
4 8 Time Failure
5 7 Nonexecutable Coalition
8 6 Nonexecutable Coalition

COLIN

2 4 51 53 4.4 0.07
4 8 93 92 16.5 0.15
5 7 25 46 6.8 0.16
8 6 Nonexecutable Coalition

Table VI.26: Makespan, action executions, time required, and memory required for four example Blocks
World problems with CFP

PA[TFD] and CFP[TFD] solved 17 problems in common, while PA[COLIN] and CFP[COLIN] had 14

commonly solved problems. Descriptive statistics for the ratio of the plan metrics for corresponding plans are

presented in Table VI.25. The problems solved by CFP[TFD] averaged 37.4% longer makespan with 4.1%

more action executions, and required 406% more time and 1156% more memory than the same problem

solved by PA[TFD]. CFP[COLIN] had similar results in terms of plan quality, 29.1% higher makespan plans

and 13.4% more actions than the PA[COLIN] derived plans, but required only 14.1% of the memory and

9.1% of the time.

The results for the four example problems are presented in Table VI.26. CFP[TFD] solved one fewer

problem than PA[TFD]. The plan derived by CFP[TFD] for Problem 2-4 had a 59.0% higher makespan,

with 18.7% more action executions than the corresponding plan derived by PA[TFD], but used only 73.0%

of the computation time and 77.3% of the memory. Both PA[TFD] and CFP[TFD] failed to solve Prob-

lem 4-8 due to exceeding the time limit. Problems 5-7 and 8-6 failed due to coalition formation allocating

nonexecutable coalitions. CFP[COLIN] solved the same problem as PA[COLIN], as well as two additional

problems. Problem 2-4 solved with CFP[COLIN] derived a plan with 41.7% higher makespan and 20.5%

more action executions than the plan derived by PA[COLIN], but required only 1.2% of the time and 0.5% of

the memory. CFP[COLIN] was able to solve Problems 4-8 and 5-7 that were not solved by PA[COLIN] due

to memory limitations. Problem 8-6 was not solved by CFP[COLIN] due to a nonexecutable coalition. This

same problem was also not solved by PA[COLIN] due to exceeding the time limit.

The nonexecutable coalitions in the Blocks World problems are the result of the plans for previous tasks

transitioning the initial state used in planning that resulted in a nonexecutable coalition, which can be split into

two different cases. The first case is a result of the finite table, which can prevent arms from placing blocks

on the table and force arms to place blocks on top of other blocks. Let block a be placed on top of b as a result

of planning for earlier tasks and let the task being planned require moving b. If the coalition allocated to the

current task is incapable of moving a in order to access b, then the coalition is nonexecutable. The second case
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Planner Plans Found Total Failures Time Fails Memory Fails
TFD 74 26 26 0

COLIN 83 17 3 14

Table VI.27: Number of Blocks World problems solved and failed with RPCA per planner

Planner Makespan Action Executions Time (s) Memory (GB)
TFD 53.8 (19.5) 83.3 (23.2) 386.7 (650.3) 4.65 (7.53)

COLIN 59.1 (26.6) 68.5 (21.4) 137.8 (363.1) 1.70 (3.23)

Table VI.28: Descriptive statistics for makespan, action executions, time required, and memory required per
solved Blocks World problem using RPCA with each planner.

occurred due to arms holding blocks at the end of task planning. One option to avoid the second failure mode

is to require agents to satisfy “cleanup goals” before planning each task. Cleanup goals in the Blocks World

problems will require that all agents not hold any blocks at the end of each task planning loop. Requiring

agents to drop blocks between tasks can detrimentally affect plan quality by requiring subsequent planning to

pick up the block again. Correcting nonexecutable coalition failures in CFP requires an algorithmic change

to augment the coalition structure with the agents that will make it executable.

VI.2.3 Relaxed Plan Coalition Augmentation

Relaxed Plan Coalition Augmentation solved 85% and 176% more problems than PA[TFD] and PA[COLIN],

respectively, as shown in Table VI.27. RPCA[TFD] suffered 26 failures due to exceeding the time limit.

Detailed results for RPCA[TFD] are presented in Appendix D.5. Three problems failed due exceeding the

time limit with RPCA[COLIN] and fourteen failed due to exceeding the memory limit. See Appendix D.6

for detailed results.

The descriptive statistics for plan makespans, action executions, and the computational resources required

are presented in Table VI.28. Plans derived using RPCA[TFD] averaged a makespan of 53.8 and 83.3 action

executions, while requiring 386.7 seconds of computation time and 4.65 GB of memory. RPCA[COLIN]

derived plans with an average makespan of 59.1 and 68.5 action executions, and required 137.8 seconds of

computation time and 1.70 GB of memory to do so. As with the PA and CFP results, the computational

resources were highly variable.

Planner Problems Makespan Action Executions Time Memory
TFD 35 1.470 (0.502) 1.105 (0.297) 2.943 (7.664) 7.070 (19.767)

COLIN 28 1.145 (0.524) 1.086 (0.401) 0.383 (1.221) 0.286 (0.990)

Table VI.29: Average (and standard deviation) ratio of RPCA metric to PA metric for makespan, action
executions, time required, and memory required for problems solved by both RPCA and PA
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Planner Mission Grand Coalition Makespan Action Executions Time (s) Memory (GB)

TFD

2 4 62 89 415.5 8.66
4 8 Time Failure
5 7 45 83 1509.2 25.70
8 6 63 102 145.2 0.41

COLIN

2 4 51 53 4.4 0.07
4 8 93 92 16.5 0.15
5 7 25 46 6.8 0.16
8 6 51 68 186.4 1.35

Table VI.30: Makespan, action executions, time required, and memory required for four example Blocks
World problems with RPCA

A comparison of RPCA with the PA tool is presented in Table VI.29. A comparison of RPCA with CFP is

not provided because every problem solved by CFP is solved in an identical manner by RPCA. RPCA[TFD]

solved greater than 85% more problems than PA[TFD]. The problems solved by RPCA[TFD] averaged 47.0%

higher makespans, with 10.5% more action executions and required 194% more time and 607% more memory

than the same problem solved by PA[TFD]. RPCA[COLIN] solved 176% more problems than PA[COLIN].

RPCA[COLIN] also averaged worse plan quality (14.5% higher makespan and 8.6% more action executions),

than the corresponding PA configuration, but required only 38.3% of the time and 28.6% of the memory.

Results for the four example problems are presented in Table VI.30. Generally, RPCA[TFD] solved

three problems, including one problem PA[TFD] was unable to solve. CFP[TFD] derived a plan for Problem

2-4; thus, the RPCA[TFD] results are identical to CFP[TFD]. Problem 4-8 was not solved by PA[TFD],

CFP[TFD], or RPCA[TFD], due to exceeding the time limit. Problem 5-7 was solved by RPCA[TFD] and

PA[TFD]. RPCA[TFD] derived a plan with a makespan of 45 and 83 action executions, while requiring

1509.2 seconds of computation time and 25.70 GB of memory. The plan derived by PA[TFD] had a makespan

71.1% and action executions 81.9% that of RPCA[TFD], but required 10.4% more computation time and

90.8% the memory. The RPCA[TFD] derived plan for Problem 8-6 had a makespan of 63 and 102 action

executions, and required 145.2 seconds of computation time and 0.41 GB of memory. PA[TFD] was unable

to solve the problem.

RPCA[COLIN] was able to solve one more problem than CFP[COLIN]. Problem 6-8 was solved by

RPCA[COLIN] with a plan makespan of 51, 68 action executions, with a required computation time of 186.4

seconds and 1.35 GB of memory. PA[COLIN] and CFP[COLIN] failed to solve the problem due to exceeding

the time limit and a nonexecutable coalition, respectively.

RPCA[COLIN] demonstrated reduced computational resource usage comparable to PA[COLIN], but

RPCA[TFD] required more computational resources than PA[TFD]. However, RPCA[TFD] did perform bet-

ter than PA[TFD] in terms of total problems solved, by solving 85% more problems. RPCA[COLIN] solved
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Planner Plans Found Total Failures Time Fails Memory Fails
TFD 54 46 46 0

COLIN 80 20 2 18

Table VI.31: Number of Blocks World problems solved and failed with TF per planner

Planner Makespan Action Executions Time (s) Memory (GB)
TFD 54.8 (19.2) 80.7 (23.9) 402.0 (605.8) 5.43 (8.38)

COLIN 60.3 (21.3) 71.1 (18.7) 150.8 (331.8) 2.83 (5.71)

Table VI.32: Descriptive statistics for makespan, action executions, time required, and memory required per
solved Blocks World problem using TF with each planner.

more than twice as many problems as its PA counterpart. RPCA was able to exploit the factoring produced

by CFP, while correcting for nonexecutable coalitions. RPCA selected the additional agent(s) to augment

a coalition; thus, making it executable in both of the nonexecutable coalition cases. RPCA suffered from

lower average plan quality relative to Planning Alone, but solved more than twice as many problems, while

averaging less memory across all problems solved for both underlying planners and less time when using

COLIN.

VI.2.4 Task Fusion

Task Fusion in the Blocks World domain was performed using the coalition similarity score. Coalitions that

were executed by coalitions with the highest similarity were selected to merge. Merge candidates had to have

at least half of their agents in common in order to be selected.

Fewer problems were solved with TF than with RPCA when using both underlying planners, see Ta-

ble VI.31, with TF[TFD] resulting in the larger drop. TF[TFD] solved twenty fewer problems than RPCA[TFD]

(54 and 74, respectively), while TF[COLIN] solved three fewer problems than RPCA[COLIN] (80 and 83,

respectively). Detailed results for TF[TFD] and TF[COLIN] are presented in Appendices D.7 and D.8, re-

spectively.

Descriptive statistics for makespan, action executions, and the computational resources for the solved

problems are presented in Table VI.32. The plans derived by TF[TFD] averaged a makespan of 54.8 with

80.7 action executions and required 402.0 seconds of computation time and 5.43 GB of memory. TF[COLIN]

produced plans with an average makespan of 60.3 and 71.1 action executions, while requiring 150.8 seconds

of computation time and 2.83 GB of memory.

A comparison of TF to PA and RPCA is presented in Table VI.33. PA[TFD] solved 36 of the problems

also solved by TF[TFD], but TF[TFD] performed worse on those 36 problems by all metrics. TF[COLIN]

used 93.5% of the memory required by PA[COLIN] across the 29 problems, but performed worse in terms
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Tool Planner Problems Makespan Action Executions Time Memory

PA TFD 36 1.530 (0.572) 1.104 (0.323) 3.972 (8.883) 6.465 (12.875)
COLIN 29 1.274 (0.372) 1.187 (0.306) 1.164 (3.859) 0.935 (3.265)

RPCA TFD 48 1.078 (0.221) 1.027 (0.192) 4.061 (10.932) 8.469 (22.225)
COLIN 75 1.093 (0.290) 1.081 (0.247) 4.566 (14.132) 6.617 (15.131)

Table VI.33: Average (and standard deviation) ratio of TF metric to PA and RPCA metrics for makespan,
action executions, time required, and memory required for problems solved by both configurations.

Planner Mission Grand Coalition Makespan Action Executions Time (s) Memory (GB)

TFD

2 4 54 79 770.8 15.45
4 8 Time Failure
5 7 48 83 1809.9 25.70
8 6 99 142 159.3 0.47

COLIN

2 4 62 61 42.2 1.90
4 8 69 75 37.5 0.53
5 7 25 46 6.8 0.16
8 6 82 94 44.9 0.49

Table VI.34: Makespan, action executions, time required, and memory required for four example Blocks
World problems with TF

of all other metrics. TF[TFD] and RPCA[TFD] both produced solutions for 48 of the 100 problems, but

TF[TFD] performed worse by all metrics for all problems. TF[COLIN] and RPCA[COLIN] solved a common

set of 75 problems, with TF[COLIN] averaging worse performance than RPCA[COLIN] across all metrics.

Results for the four example problems are presented in Table VI.34. TF[TFD] solved three of the four

problems, while PA[TFD] solved only two of the problems. PA[TFD], CFP[TFD], and TF[TFD] all solved

Problem 2-4. TF[TFD] derived a plan with a makespan of 54 and 79 action executions (39 and 75 for

PA[TFD], 62 and 89 for CFP[TFD]), and required 770.8 seconds and 15.45 GB of memory (569.1 and 11.21

for PA[TFD], 415.8 and 8.66 for CFP[TFD]). Problem 4-8 was not solved by TF[TFD] due to exceeding the

time limit, as was the result with PA[TFD] and CFP[TFD]. The plan derived for Problem 5-7 by TF[TFD] had

a makespan of 48 and 83 action executions, while requiring 1809.9 seconds of computation time and 25.70

GB of memory. Both PA[TFD] and RPCA[TFD] derived lower makespan plans (32 and 45, respectively),

but only PA[TFD] derived a plan with fewer action executions (68). TF[TFD] required 8.6% more time and

10.2% more memory than PA[TFD] and 19.9% more time and the same amount of memory as RPCA[TFD].

TF[TFD] performed worse than RPCA[TFD] on Problem 8-6 across all metrics.

TF[COLIN] solved all four of the example problems. Plan quality for Problem 2-4 solved by TF[COLIN]

was worse by both metrics, but TF[COLIN] required 11.4% the time and 12.3% the memory of PA[COLIN].

Problem 4-8 solved by TF[COLIN] produced a plan with 74.2% the makespan and 81.5% the action execu-

tions, but required 155% more time and 253% more memory. Both CFP[COLIN] and TF[COLIN] required

less than 1 GB of memory to solve the problem, but PA[COLIN] was unable to solve it with 48 GB of mem-
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ory. TF[COLIN] solved Problem 5-7 with the same metric values as CFP[COLIN], due to not fusing any

tasks, as such, the problem was solved identically to CFP[COLIN]. TF[COLIN] solved Problem 8-6, but had

worse plan quality than the plan derived by RPCA[COLIN] (60.8% higher makespan and 38.2% more action

executions). However, TF[COLIN] solved the problem with 24.1% the time and 36.3% the memory required

by RPCA[COLIN].

As with the Rovers domain, the TF results for Blocks World are not promising. Also similar to the Rovers

domain, neither of the underlying planners are optimal, so the plans produced are not optimal. It is possible

that an optimal planner will produce better results when used with TF, by balancing the quick solutions of

RPCA with the higher plan quality of PA.

VI.2.5 Discussion

Blocks World in its classic form is a consistent benchmark for planning algorithms. The domain modifica-

tions to support this research include multiple heterogeneous agents. The tasks in Blocks World are highly

dependent upon each other, as are the agents. The dependency is clear from the CFP results, as each coali-

tion is executable from the problem’s initial state, but can become nonexecutable as other tasks are planned,

leaving blocks in arms or on other blocks.

Assume the Blocks World domain models a real world construction project. Plan makespan in the con-

struction metaphor measures the amount of time between project start and project finish. The number of

action executions roughly measures the number of worker-hours required to complete a project, although this

is an inexact measure, because each action has different durations. Companies are interested in minimizing

both project completion time and worker-hours. Computational resources are unlikely to be as important

as plan quality in this metaphor. Construction timelines can be planned months in advance; therefore, plan

computation time is not very constrained. Furthermore, computers with large amounts of memory can be

used, as such, allotted memory limits can be increased to limit the degree to which memory is a constraint.

The number of problems solved, average computation time for solved problems, and average required

memory for solved problems are presented in Figures VI.4, VI.5, and VI.6, respectively. Error bars are 25th

and 75th percentile of the respective data. The results from Blocks World are similar to Rovers. PA solves

some problems, but fails to solve with many of them. CFP solves problems quicker and with less memory

than PA, but suffers from nonexecutable coalitions. RPCA provides the best performance by building on CFP

and correcting the nonexecutable coalitions. As with Rovers, TF performs poorly with Blocks World.
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Figure VI.4: Total Number of Blocks World Problems Solved by each Tool with each Planner

Figure VI.5: Average, 25th, and 75th Percentile Computation Time required for Solved Blocks World Prob-
lems

Figure VI.6: Average, 25th, and 75th Percentile Memory required for Solved Blocks World Problems

73



Grand Coalition ATL LAX ORD DFW DEN SEA JFK Total
1 4 (2) 2 (1) 7 (3) 3 (1) 2 (2) 2 (2) 4 (3) 24 (14)
2 4 (3) 1 (1) 2 (1) 2 (1) 4 (2) 2 (1) 3 (3) 18 (12)
3 2 (1) 6 (3) 5 (3) 5 (3) 1 (1) 1 (1) 2 (1) 22 (13)
4 8 (3) 4 (3) 3 (3) 5 (3) 4 (3) 4 (3) 2 (2) 30 (20)
5 2 (1) 2 (1) 4 (2) 5 (3) 3 (3) 4 (3) 5 (3) 25 (16)
6 2 (2) 4 (2) 3 (2) 3 (1) 6 (3) 3 (2) 2 (2) 23 (14)
7 1 (1) 2 (1) 2 (2) 2 (2) 1 (1) 4 (2) 6 (3) 18 (12)
8 5 (3) 4 (2) 3 (3) 1 (1) 4 (2) 3 (2) 3 (2) 23 (15)
9 1 (1) 2 (1) 6 (2) 4 (3) 3 (2) 3 (2) 3 (2) 22 (13)
10 3 (3) 4 (3) 3 (1) 2 (2) 2 (2) 3 (3) 5 (3) 21 (16)

Table VI.35: Number of planes in each hub and its associated spokes in the initial state. Number which are
short-range planes is indicated in parentheses.

Mission Tasks Passengers Cargo Total
1 19 65 66 131
2 16 57 55 112
3 16 56 55 111
4 16 56 57 113
5 16 60 57 117
6 19 68 65 133
7 18 64 60 124
8 18 63 66 129
9 16 57 59 116

10 16 55 57 112

Table VI.36: Number of passengers and cargo to be transported for each task

VI.3 Zenotravel

The Grand Coalitions in the Zenotravel domain were a randomly generated set of long-range planes and

short-range planes. Each hub city had between one and three short-range planes and five to ten long-range

planes that were randomly distributed across the hubs in each mission’s initial state. The generated missions

use the same set of hubs and spokes, based on actual airports in the United States of America and the distances

between each. Seven hub airports and forty-two spoke airports were selected, with each hub having between

five and seven associated spokes. The short-range planes had a capacity of four passengers and four cargo

units, while the long-range planes had a capacity of eight passengers and eight cargo units.

Summary data for the ten generated Grand Coalitions is presented in Table VI.35. The table lists the

number of long-range planes in each hub and the total number of short-range planes in each hub or a spoke

connected to the hub in the initial state. Grand Coalition 3, for example, has a total of five planes, two of

which are short-range planes, at ORD in the initial state, with a total of 22 planes, thirteen of which are short-

range, distributed around the country. The Grand Coalitions ranged between 5 and 10 long-range planes and

between 12 and 20 short-range planes.
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Planner Plans Found EHC Fails
COLIN 87 13

Table VI.37: Number of Zenotravel problems solved and failed with CFP

Planner Makespan Action Executions Time (s) Memory (GB)
COLIN 1560.5 (451.7) 505.4 (49.2) 499.7 (219.9) 0.16 (0.02)

Table VI.38: Average (and standard deviation) makespan, action executions, time required, and memory
required for solved Zenotravel problem using CFP

The ten generated Missions are summarized in Table VI.36. Mission 8, for example, consists of 18

tasks transporting 63 passengers and 66 units of cargo. The missions ranged between a total of 111 and 133

passengers and cargo. The missions consisted of an average of 60.1 passengers and 59.7 units of cargo that

were spread over 17 tasks.

VI.3.1 Planning Alone

The computational complexity of PA is further demonstrated by attempting to solve the Zenotravel prob-

lems. PA[COLIN] was unable to solve any of the problems within the time limit. Ten of the problems were

attempted without a time limit, but all failed after about 90 minutes due to exceeding the memory limit.

VI.3.2 Coalition Formation then Planning

Thirteen of the 100 problems failed with CFP[COLIN] due to using the incomplete EHC-based version of

COLIN, while 87 problems were solved, as presented in Table VI.37. The makespan, action executions,

and the computational resources descriptive statistics are presented in Table VI.38. The plans derived by

CFP[COLIN] averaged makespans of 1560.5 with 505.4 action executions, and required 499.7 seconds of

computation time and 0.16 GB of memory. The low memory usage is a result of using an EHC-based

algorithm; however, the EHC-based algorithm is the root of the failures to solve thirteen problems. Detailed

results for CFP[COLIN] are presented in Appendix E.1.

The Zenotravel domain is the first domain for which no problems failed due to nonexecutable coalitions.

Every city is reachable from every other city and the tasks form a partition of the sets of all passengers and

cargo. The only way for a coalition to be nonexecutable is for an iterative task plan to transport a passenger

or cargo to a city that the coalition cannot reach. Such a case is highly unlikely in EHC-based COLIN, as

an action to transport a non-task cargo or passenger is likely to have the same or higher heuristic value as its

parent node; thus, it will never be expanded.
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Planner Plans Found EHC Fails
COLIN 85 15

Table VI.39: Number of Zenotravel problems solved and failed with TF

Planner Makespan Action Executions Time (s) Memory (GB)
COLIN 1472.6 (379.8) 505.3 (43.3) 319.4 (135.4) 0.17 (0.06)

Table VI.40: Average (and standard deviation) makespan, action executions, time required, and memory
required for solved Zenotravel problem using TF

VI.3.3 Relaxed Plan Coalition Augmentation

Relaxed Plan Coalition Augmentation is only beneficial when nonexecutable coalitions exist. Due to no

Zenotravel problems failing for that reason when using CFP[COLIN], no results are presented for RPCA, as

the results are identical to CFP.

VI.3.4 Task Fusion

Zenotravel used the coalition similarity score to select the tasks to fuse. Fusing tasks in the Zenotravel domain

maximizes the used capacity of each plane. For example, a coalition with a task to transport passengers

from ATL to LAX and from DEN to LAX can fly a route from ATL to DEN to LAX, assuming the plane

has the capacity to transport the required passengers and cargo. Fifteen problems failed due to using EHC

and plans were found for 85 problems, as presented in Table VI.39. The number of successes and failures

with TF[COLIN] is similar to the CFP[COLIN] results, with CFP[COLIN] solving two additional problems.

Detailed results for TF[COLIN] are presented in Appendix E.2.

The descriptive statistics for the makespan, action executions, and required computational resources are

shown in Table VI.40. TF[COLIN] derived plans with an average makespan of 1472.6 and 505.3 action

executions. Average time for TF[COLIN] to derive a plan was 319.4 seconds and required 0.17 GB, on

average.

TF[COLIN] solved 76 problems that were also solved by CFP[COLIN]. A comparison of the metrics

for those 76 problems is presented in Table VI.41. The plans derived by TF[COLIN] averaged 2.2% lower

makespan and had the same number of action executions, while requiring 32.1% less computation time and

5.1% more memory. Each Problem had at least 16 tasks, and reduced to as few as eight tasks after the fusion

Problems Makespan Action Executions Time Memory
76 0.978 (0.236) 1.000 (0.012) 0.679 (0.193) 1.051 (0.342)

Table VI.41: Average (and standard deviation) ratio of TF metric to CFP metric for makespan, action execu-
tions, time required, and memory required for problems solved by both TF and CFP
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Mission Grand Coalition Tool Makespan Action Executions Time (s) Memory (GB)

1 1 CFP 1110 451 255.3 0.18
TF 824 452 207.8 0.18

5 3 CFP 3673 532 502.8 0.15
TF 2190 521 388.6 0.15

8 8 CFP 1136 519 405.6 0.18
TF 1625 524 446.6 0.18

10 7 CFP 1227 439 344.8 0.14
TF 1420 438 207.5 0.14

Table VI.42: Comparison of four problems solved with CFP[COLIN] and TF[COLIN]

step. The reduced computation time is partially due to the lower number of tasks. The time required to plan

each individual task in the Zenotravel domain was much faster compared to the time required to merge the

plans and the overhead necessary to initialize each planning step (e.g., action grounding).

Two examples of TF producing lower makespan plans and two examples of TF producing higher makespan

plans are presented in Table VI.42. TF[COLIN] derived a plan for Problem 1-1 with 25.8% lower makespan

and one additional action execution compared to CFP[COLIN]. The memory usage was the same, but TF[CFP]

required 81.4% of the time required by CFP[COLIN]. Problem 5-3 was solved by TF[COLIN] with 59.6%

of the makespan and 97.9% of the action executions in the plan derived using CFP[COLIN], while reducing

computation time by 22.7%.

CFP[COLIN] derived a plan for Problem 8-8 with 69.9% of the makespan and 99.0% of the action

executions of the plan derived using TF[COLIN]. CFP[COLIN] required 90.8% of the time required by

TF[COLIN]. The plan CFP[COLIN] produced for Problem 10-7 had a 13.6% lower makespan and had one

more action execution, when compared to the plan produced by TF[COLIN]. However, TF[COLIN] required

60.2% of the computation time required by CFP[COLIN].

VI.3.5 Discussion

Data for average computation time and memory for CFP and TF to derive solutions are presented in Fig-

ures VI.7 and VI.8, respectively. Error bars are 25th and 75th percentile of the respective data. TF averaged

higher memory usage, but lower time requirements than CFP. Factoring the Zenotravel problems into tasks

and limiting the number of agents considered at any one time allows the EHC algorithm to use very low

amounts of memory when using both the TF and the CFP tool. The PA tool includes a much larger number

of agents and possible actions each agent can perform; therefore, the EHC algorithm can easily become stuck

in heuristic plateaus, as it did in attempting to solve each of the 100 problems.

The Zenotravel experiments were designed to model air travel in the US. While this is not the solution

employed by major airlines, it is an interesting experiment for domain-independent planning. Air travel is
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Figure VI.7: Average, 25th, and 75th Percentile Computation Time required for Solved Zenotravel Problems

Figure VI.8: Average, 25th, and 75th Percentile Memory required for Solved Zenotravel Problems

a big business, and very large amounts of computation time and memory can be dedicated to solving the

problem. Furthermore, plan schedules are created months ahead of time. Eliminating limited computational

resources as a constraint leaves plan quality as the determining factor in selecting a solution method. A low

makespan implies customers arrived at their destination faster. Fewer action executions imply fewer required

flights and; thus, lower financial costs.

VI.4 First Response

The First Response domain is unique in that there is a single Mission and Grand Coalition. The Problem

is based on the aftermath of the 2011 tornado in Tuscaloosa, AL. The Grand Coalition, summarized in Ta-

ble VI.43, consists of the Police, Fire, and EMS agents, their starting locations, and each groups’ bases of
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operations. Two EMS human responders and three EMS ground robots are deployed, starting from the hos-

pital. The Fire department includes two humans and a ground robot starting at the fire station. The Police

responders include two humans, two quadrotor UAVs, and a ground robot that are all positioned at a mobile

police command station setup immediately after the tornado cleared the area.

The Mission environment includes the location of ten victims, two gas leaks, four blocked roads (due to

debris or downed power lines), a destroyed pharmacy, and two pawn shops. The designed Mission is split into

seven tasks, summarized in Table VI.44. Two victim support tasks, each with five victims, must be completed

by EMS and Police agents. The victims were divided into tasks based on their initial location. Four adjacent

roadway sections must be cleared in one task. The two gas leaks are split into separate tasks due to being

spatially distant. Pharmaceutical drugs must be cleared from the pharmacy store debris and secured at the

local hospital in order to prevent the drugs from being looted. Finally, two pawn shops must be searched and

the retrieved controlled items (e.g., weapons and ammunition) must be secured at the police base.

VI.4.1 Planning Alone

Results from the previous domains indicate that PA will take a large amount of time and memory relative

to the other tools, and this result is valid in this domain. PA[COLIN] failed to solved the Problem due to

exceeding the memory limit after 90 minutes of computation time.

VI.4.2 Coalition Formation then Planning

CFP[COLIN] was also unable to solve the Problem, due to a nonexecutable coalition being allocated to one of

the victim support tasks. The victim support task was attempted by EMS and Police agents, but the Problem

includes a blocked road preventing agents from reaching one of the victims. EMS agents cannot triage the

victim and Police agents cannot lead the victim to the hospital unless they can reach the victim. The road

must be cleared for the agents to reach the victim. Only the Fire department agents can execute the action

that clears roads so that responders and ground robots can move about the environment, as such, the injured

victim was unreachable by EMS agents and planning for the task failed.

One of the tasks for the Fire department is ensuring that main roads are clear of debris and downed

power lines; clearing the side streets is intentionally not included. A real response to such a disaster will be

Group Agents
Police 2 humans, 2 quadrotors, 1 ground robot

Fire Department 2 humans, 1 ground robot
EMS 2 humans, 3 ground robots

Table VI.43: Grand Coalition in the First Response Problem
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Task Type Tasks in Problem Description
Victim Support 2 Ten victims, divided spatially into two tasks

Roads 1 Four adjacent blocked roadway sections in one task
Gas Leaks 2 Two spatially distant gas leaks
Pharmacy 1 One pharmacy with pharmaceutical drugs

Pawn Shop 1 Two spatially close pawn shops

Table VI.44: Tasks in the First Response Problem

concerned with victims incapable of helping themselves. Main roads are more likely to open up new or faster

routes to severely injured victims. Fire department agents can be included in the victim support task, but the

agents will be idle if no roads to victims are blocked; therefore, Fire department agents in the First Response

domain focus on clearing the main roads and sealing gas leaks to prevent another disaster.

VI.4.3 Relaxed Plan Coalition Augmentation

Not including Fire department capabilities in the required capabilities of the victim support task and inserting

blocked roads at specific side streets forced RPCA to be used. The relaxed plan generated for the task includes

a Fire department agent clearing a road for EMS agents and the action to clear roads is executable only by

Fire department agents. The clear roads action was recognized as one that the allocated coalition of EMS

and Police agents was unable to execute; therefore, a Fire department robot was allocated to the coalition in

order to execute the clear road action. Planning the victim support task was reattempted with the coalition

augmented with the Fire department robot, and a plan was derived. The solution produced by RPCA[COLIN]

had a makespan of 216.2, 186 action executions, required 23.2 seconds and 0.24 GB of memory.

VI.4.4 Task Fusion

The coalition assistance score was used to select tasks to fuse in First Response. Task Fusion selected four

tasks to combine into two tasks. The first two tasks selected were the two gas leak tasks. Both tasks require

Fire department humans to seal the leak. The coalition formation problem does not consider spatial con-

straints, but planning the two tasks together allows the planning algorithm to consider the distance each unit

must travel to reach the gas leaks. The second set of tasks fused is one of the victim support tasks with the

pharmacy clearing task. Both tasks require the EMS agents, but for different reasons. The victim support

task requires a human EMS agent to triage the victim, and possibly an EMS robot to transport the victim to

the hospital. The pharmacy clearing task requires a human EMS agent to identify the controlled prescrip-

tion drugs in the pharmacy building debris, place the drugs in the robot, and send the robot to the hospital

in order to store the drugs in a secure facility. Both tasks require EMS agents. When the triage portion of

the victim support task is complete, EMS human agents and EMS robots not transporting victims are free to
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immediately move on to the pharmacy clearing task, or vice-versa, and a higher quality plan.

The solution derived by TF[COLIN] had a makespan of 211.2, 187 action executions, and required 799.1

seconds and 4.90 GB of memory. The derived plan has a 2.3% lower makespan than RPCA[COLIN], but

requires one additional action execution. However, TF[COLIN] required 34.4 times the computation time and

20.7 times the memory when compared to RPCA[COLIN]. The computational resources required to derive a

plan with TF[COLIN] are within the computational resource limits of a laptop, or other portable computing

device, that can be carried into the disaster area.

VI.4.5 Discussion

Applying planning to First Response domains requires many considerations. A shorter plan makespan means

• EMS agents get to victims sooner, which may mean more victims survive,

• roads become traversable earlier, which increases the ability of all agents to get where they need to be,

• less gas is leaked into the environment, which reduces the possibility of an explosion, and

• criminals have a shorter time interval during which to loot controlled drugs and weapons from phar-

macies and pawn shops.

Additionally, fewer action executions can reduce the strain on the communications network, which is likely

to have been hastily established if existing cellular networks were overloaded or otherwise disabled.

Computational resources are also an important consideration. Mobile devices are unlikely to have the

memory and computing resources required to solve larger problems. Cellular networks, if available after a

mass casualty incident, can be used to communicate problems and plans. Solving plans remotely and com-

municating the plans will allow computers with the necessary computational resources to solve the problems.

A more important (and unique) metric in the First Response domain was not measured: number of victims

saved. Waiting to develop a better plan is meaningless if the victims are dead; however, quickly developing a

poor quality plan is also not good. The computation time and the number of victims saved must be balanced.

VI.5 Summary

The developed planning tools were evaluated with four domains. The PA tool averaged the highest quality

plans, but also consumed the highest amount of computational resources. Solving some of the problems

with PA required large amounts of memory, and solving most of the problems required more memory than

is readily available on mobile platforms. Applying PA for those problems requiring excessive amounts of

memory will require deriving plans remotely before communicating the results to the coalition. CFP was
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able to solve problems with much fewer computational resources than PA, but suffered from nonexecutable

coalitions, resulting in no solution being derived when a solution was known to exist. CFP also produced

plans of lower quality compared to those plans derived using PA. Two tools were designed to address the

nonexecutable coalition problem and the suboptimal plan quality problems. RPCA dominated CFP, in that

it performed identically to CFP in all the problems solved by CFP, but was also able to solve most of the

problems that failed with CFP due to a nonexecutable coalition. RPCA solved many more problems than

PA across all domains (with the exception of Zenotravel, for which RPCA was not required), all while using

fewer computational resources than PA.

The TF results were mixed, resulting in most of the TF derived plans being of worse quality than those

derived with PA or RPCA. Using satisficing planners, as opposed to optimal planners, is a possible explana-

tion for the worse performance for some of the problems. Optimal planners, however, do not exist for the

expressive domains used in this dissertation. Optimal planners do exist for classical planning problems and

may provide better results. Different heuristic functions for predicting the utility of fusing a pair of tasks

will provide differing results due to fusing different task pairs. Drawing from the results of RPCA, a relaxed

plan for each coalition to complete its task from the problem initial state can provide more information as to

whether or not a pair of coalitions will interact. Further analyses will be required to explore the effects of

optimal planners and different fusion prediction functions.
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CHAPTER VII

Conclusion

VII.1 Dissertation Summary

The novel Hybrid Mission Planning with Coalition Formation problem formalization combining aspects of

coalition formation, multi-agent planning, temporal planning, and continuous planning was developed. The

problem definition extends the coalition formation problem by introducing plans for how coalitions will

complete their allocated tasks and addresses planning problem complexity by considering different levels of

abstraction, from concrete actions and goal constraints to abstract capabilities. The more abstract results from

coalition formation can guide the planning problem by selecting an appropriate subset of agents for each task.

Four domains, Rovers, Blocks World, Zenotravel, and First Response were used to explore the aspects

of the HMPCF problem formalization and how they relate to one another. The Rovers, Blocks World and

Zenotravel domains used in this dissertation were modified versions of existing planning domains used ex-

tensively in planning literature. The First Response domain is a new domain inspired by the 2011 tornado

in Tuscaloosa, AL. Each domain includes expressive domain features (e.g., durative actions, continuous state

variables) and heterogeneous agents. Problems from each domain were randomly generated for use in an

extensive experimental analysis.

Four tools were developed to solve the HMPCF problem: Planning Alone, Coalition Formation then

Planning, Relaxed Plan Coalition Augmentation, and Task Fusion. Planning Alone performed a translation

from the HMPCF problem to a single-agent planning problem, the only known existing method for solv-

ing problems that have expressive domain models. The results produced by Planning Alone served as the

baseline comparison for the results produced by the new tools. Coalition Formation then Planning applied

coalition formation to the grand coalition, the task set, and the capability mappings in order to reduce the

computational complexity of finding a solution to the HMPCF problem. Generally, Coalition Formation then

Planning derived a plan with fewer computational resources than the corresponding problem solved by Plan-

ning Alone. However, Coalition Formation then Planning encountered numerous nonexecutable coalitions,

coalitions allocated to tasks that they cannot complete, which inspired the Relaxed Plan Coalition Augmen-

tation tool. Relaxed Plan Coalition Augmentation analyzed a relaxed plan for a failed task in order to select

agent(s) to augment the nonexecutable coalition and make the coalition executable. Relaxed Plan Coalition

Augmentation solved many more problems than Planning Alone, while requiring much lower computational

resources; however, Relaxed Plan Coalition Augmentation produced plans of worse quality than Planning
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Alone. The Task Fusion tool attempted to address the lower plan quality problem by selecting tasks to com-

bine in order to support joint planning. The results for Task Fusion were mixed, with Task Fusion producing

higher quality plans for some problems and lower quality plans for others. The computational resources

required when solving problems with Task Fusion were also mixed.

VII.2 Contributions

This dissertation results in several novel contributions in the field of multi-agent systems and planning. The

primary contributions are the Coalition Formation then Planning and the Relaxed Plan Coalition Augmenta-

tion tools. The secondary contributions include the Task Fusion tool, a new set of expressive test domains,

and the extensions to PDDL required to create MACPDDL.

VII.2.1 Coalition Formation then Planning Tool

The Coalition Formation then Planning tool presents a major step forward in multi-agent planning. Existing

research in multi-agent planning focuses on individual agents completing tasks or makes classical planning

assumptions. Real-world planning problems, especially as robots become more capable and work alongside

humans, will require humans and robots to cooperate on joint tasks to achieve their goals; restricting tasks

to only those that a single agent can complete is far too large of a constraint for many real world situations.

Existing multi-agent planners also make classical planning assumptions, including instantaneous actions and

boolean state spaces. Real-world actions execute over a time interval and accurate models of the world must

include continuous variables. The assumptions made by multi-agent planners greatly reduce the planning

problem complexity, but the decrease in complexity comes at the cost of lower fidelity domain models and;

thus, the plans are based on a low fidelity model of the environment and are more likely to fail when exe-

cuted. The reduction in computational complexity as a result of applying Coalition Formation then Planning

allows highly expressive domain models to be used in planning; thus, the derived plans are more likely to

successfully execute.

VII.2.2 Relaxed Plan Coalition Augmentation Tool

The Relaxed Plan Coalition Augmentation modification greatly improves the performance of the Coalition

Formation then Planning tool. Coalition Formation then Planning is reliant on coalition formation to produce

an executable coalition structure, but coalition formation cannot guarantee each coalition it allocates for a

task will be able to execute its assigned task. Relaxed planning is computationally simple relative to solving

the original problem and it provides an intermediate level of abstraction between coalition formation and

planning, allowing coalition formation to inform planning, and vice versa. A relaxed plan cannot be executed,
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but it provides clues as to the set of actions a successful coalition must be able to execute in a satisficing plan.

These clues inform how coalitions must be modified in order to produce a plan that is executable.

VII.2.3 Task Fusion Tool

Task Fusion can increase plan quality, while remaining within computational resource constraints. Coalition

Formation then Planning solves many problems, while using far less computational resources than are avail-

able, while Planning Alone often requires more computational resources than are available. Task Fusion,

applied properly, can use allotted computational resources to produce high quality plans. The fusion heuris-

tics use the coalition makeup and coalition capabilities to predict the coalition-task pairs most likely to benefit

from fusion. Coalition assistance attempts to maximize positive interactions by allowing coalition with simi-

lar capabilities to assist each other. Coalition similarity allows the planning algorithm to consider the spatial

and temporal constraints that come about as a result of coalition overlap. Further research is required in order

to provide automated guidance on when and how to apply Task Fusion.

VII.2.4 Planning Domains and Language Extensions

A challenge in this dissertation was identifying planning domains representative of the mission complexity

needed for real world domains, such as first response domains. The existing research planning domains have

been used for decades with little modification. The most popular domains are simple, which is excellent

for purposes of describing and understanding algorithms, but are low-fidelity representations and are poor

approximations of real world problems. The most egregious of their faults is the lack of heterogeneous

multi-agent domains. The Rovers domain was the only domain that include heterogeneous agents that was

applicable for analyzing the developed tools. Blocks World and Zenotravel were significantly modified as

part of this dissertation in order to add continuous state variables and heterogeneous agents. The new First

Response domain is the only known domain to represent the breadth of complexity that exists in this type of

real world problem domain. The First Response domain was developed to incorporate multiple heterogeneous

agents, durative actions, continuous state variables, continuous effects, and required concurrency. No existing

domain combines this set of expressive modeling features into a single domain.

VII.2.5 Multi-Agent Capabilities and Planning Domain Definition Language

A final contribution of this dissertation is a new domain description language, MACPDDL, which has been

designed to extend PDDL in order to support the features necessary to describe problems in the HMPCF for-

malization. MACPDDL extends PDDL to support an agent type hierarchy, agent capabilities, goals factored

into tasks, task capability requirements, and explicit action execution. The agent type hierarchy is implicitly

85



included in PDDL alongside the objects declaration. Partitioning the PDDL objects into passive objects in

the environment and active agents capable of changing the environment increases understanding of domain

models. Agent action executions in PDDL are typically denoted by including the executing agent in the ac-

tion’s parameter list. Moving the executor declaration from the parameters to a separate field makes explicit

which parameters are the agents executing the action and which parameters are the environment objects upon

which the agents are executing. Each of the new language features is necessary to describe HMPCF problems

and apply the newly developed tools to the problem.

VII.3 Future Work

This research can be extended along several directions.

VII.3.1 Prioritized Coalition Formation then Planning

Another modification to the tools framework is Prioritized Coalition Formation then Planning. Tasks are

placed in a priority queue based on their capability requirements, goal state constraints, deadline, and the

user defined task priority. While there are still tasks that have not been planned, the highest priority task

is popped from the queue. The task deadline and estimated plan makespan are used to estimate the latest

possible start time for the task. The agents available at the latest possible start time are used in coalition

formation to derive the coalition to be allocated to the task. An agent is considered available at a time t when

there are no actions for it to execute at or after t in the current plan. Planning continues as usual in Coalition

Formation then Planning, with iterative task planning and plan merging.

VII.3.2 Intelligent Planner Library

No planning algorithm completely dominates all other planning algorithms. For example, ITSAT produced

better plans than POPF, but POPF produced plans much faster. Different real world domains and missions

will have different constraints. Problems in First Response will require plans to be derived and executed over

hours, whereas problems in Zenotravel can take months to plan and hours to execute. This dissertation used

ITSAT, POPF, TFD, and COLIN as underlying planners, but many more planners exist that are well suited

for different domains. Knowing which planning algorithm to apply given a specific domain or constraints

within a domain is difficult. A breadth of planners can be composed into an accessible library and an intelli-

gent middleware level can be developed to decide which planner to apply, similar to the Intelligent Coalition

Formation for Humans and Robots framework previously developed to facilitate selecting applicable coali-

tion formation algorithms (Sen and Adams, 2015). The most obvious feature and easiest to consider when

selecting a planner is the required domain features. For example, a domain with durative actions will require
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a planner capable of reasoning with durative actions. Other features can be user defined, such as required

concurrency and estimated plan length. MACPDDL will require extensions to support expressing the user

defined features, whereas domain features can be extracted from the domain model.

VII.3.3 Uncertainty and Observability

Uncertainty and observability are two aspects of planning this dissertation did not address. Any reasonably

complex domain model of the real world must include nondeterministic actions and partial observability.

Acting in the real world is difficult (e.g., noisy sensors, broken actuators). The First Response domain used

in the analysis assumed the location of victims was known. Real world responses to natural disasters cannot

make such assumptions, as first responders must explore the environment to find victims. New underlying

planning algorithms and adapted tools will be required to support uncertainty and partial observability.

VII.3.4 Anytime Planning

Anytime planners continue planning even after producing an initial plan, continuing until the search space is

exhausted or computational resource limits are exceeded. Additional derived plans are output only if they are

better than the best current plan. Two approaches to transforming the presented tools into anytime planners

have been identified. First, order the tools in a prescribed manner and execute each tool, outputting a new

plan only if it is better than the best available plan. The second method is more complex. Anytime planning

produces successively better plans. Applying such a technique to the CFP, RPCA, and TF tools requires that

the iterative initial state used for planning subsequent tasks changes with each newly derived iterative plan.

Given that finding a new plan for a task requires replanning all subsequent tasks, the benefits from using the

newly derived plan are uncertain.

VII.3.5 Task Formation

The order and composition of the tasks greatly impacts the performance of the CFP, RPCA, and TF tools.

Investigating heuristics for ordering task planning and composition has the potential to significantly improve

the performance of each tool. The TF tool is especially affected by the task composition and ordering. The

TF tool proposed and evaluated in this dissertation was restricted to fusing each existing task with at most one

other task. A more general task formation problem can be created by lifting the TF constraints and permitting

splitting tasks into multiple tasks, fusing more than two tasks into a single task, and modifying the order in

which the tasks are planned. The task formation problem can be modeled as a search problem to find an

optimal task composition.
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VII.3.6 Extensive Analysis

The presented analysis makes excellent in roads to understanding the implications and usage of the devel-

oped tools, but additional analyses are required, particularly analyses that incorporate real robots. However,

there are additional near term analyses required as well. For example, the Task Fusion results were mixed,

possibly due to using a satisficing planning algorithm, rather than an optimal planning algorithm. Numerous

optimal planners exist for classical planning (Kissmann and Edelkamp, 2011; Barley et al., 2014; Torralba

et al., 2016); therefore, analysis with domains making classical planning assumptions can be performed to

investigate if Task Fusion can be expected to work reasonably with expressive domains. The Rovers domain

is an excellent candidate for additional Task Fusion analysis, as a version of the Rovers domain already exists

that can be used with the optimal planners.

Additional methods for estimating the utility of fusing a pair of tasks can be investigated. The two utility

estimation functions are similar to coalition formation, in that the heuristic functions consider the members of

the coalitions and the requirements for the tasks, but not how the coalitions will complete the tasks. Drawing

from the results of Relaxed Plan Coalition Augmentation, a relaxed plan for the coalition to execute its

assigned task can be derived easily and may provide information that will facilitate selecting the best pairs

of tasks to fuse. A relaxed plan can inform which parts of the state space a coalition may affect while

completing their task. If the affected parts of the state space overlap, then coalitions are likely to interact

during task execution.

It is also necessary to develop a deeper understanding of the effect of coalition formation on the planning

process. Factored planning reduces problem complexity by focusing on specific aspects of the problem,

one at a time. Another set of analyses can isolate the effect of problem factorization applied by coalition

formation. Factored planning is a popular method for addressing plan complexity. Relaxed Plan Coalition

Augmentation factors the planning problem along two dimensions, goals into tasks and grand coalitions into

coalitions. Relaxed Plan Coalition Augmentation can be run without coalition formation; instead of applying

coalition formation to allocate subsets of the grand coalition to each task, a grand coalition can be allocated

to every task. The effects of factoring the goal into tasks will be isolated from the effects of factoring the

grand coalition into smaller coalitions.
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Appendix A

MACPDDL

The most popular language for describing planning problems is PDDL. PDDL 3.1,1 the most recent version,

was created for IPC 2011 (Coles et al., 2012b). One aspect that PDDL does not handle well is agent-based

modelling. MAPL (Brenner, 2003) and MA-PDDL (Kovacs, 2012) represent attempts to explicitly incorpo-

rate multiple agents, but neither language handles all aspects of multi-agent systems required for this disser-

tation. PDDL also lacks support for the coalition formation requirements, such as the capability model. The

MACPDDL language was developed to explicitly handle agents, heterogeneous coalitions, agent capabilities,

tasks, and task requirements. Each extension is detailed in this appendix.

PDDL partitions planning problems into two files, Domain files and Problem files. This problem file par-

titioning is also used with MACPDDL. The Domain file lists the domain’s planning concept requirements,

object types, predicates, functions, constraints, and the actions the agents can execute. The concept require-

ments are the modeling concepts that must be supported by a planning algorithm. Examples of planning

concepts include durative actions and numeric fluents. The Problem file lists the problem domain, the objects

in the environment, the initial state of the environment, the goal descriptor for the problem, the constraints on

the environment, and the metric used to compare plans. The current PDDL specification implicitly handles

agents, but it is not enforced in the language grammar.

The agent type hierarchy is modeled in the MACPDDL Domain file. The agent type hierarchy is similar to

an inheritance hierarchy in object-oriented programming. The hierarchy allows a single definition of actions

for agents in the hierarchy. The agent type hierarchy can be translated to a PDDL object type hierarchy

to ensure compatibility with planners requiring standard PDDL input. The agent type hierarchy is declared

similarly to the object types declaration in PDDL. The agent hierarchy from the First Response domain is

presented in Figure A.1. The top level of the hierarchy, on Line 2, states that agents can be humans or

robots. The next three lines (Line 3-5) present the robot side of the hierarchy. Robots can be ground robots

or quadrotors, with three types of ground robots and one type of quadrotor. The human side of the hierarchy

is on Line 6, with human agents being Fire, Police, or EMS agents.

The action agent executor specification makes explicit the agent that is executing each action. The pow-

ered action from the First Response domain is presented in Figure A.2). The agent executing the action is

in Line 2, all agents of type robot or a type under robot in the hierarchy can execute the powered action.

1The full BNF grammar for PDDL 3.1 is presented in several unpublished papers by Daniel Kovacs, the most complete of which is
hosted on the IPC 2014 website (https://helios.hud.ac.uk/scommv/IPC-14/repository/kovacs-pddl-3.1-2011.pdf).
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1 (:agents
2 human robot - agent
3 ground quadrotor - robot
4 policebot firebot emsbot - ground
5 pquad - quadrotor
6 fire police ems - human
7 )
8

Figure A.1: Example agent types declaration in MACPDDL

1 (:durative-action powered
2 :executor (?r - robot)
3 :parameters ()
4 :duration (>= ?duration 0)
5 :condition
6 (and
7 (over all (>= (power ?r) 0))
8 )
9 :effect

10 (and
11 (at start (powered ?r))
12 (decrease (power ?r) #t)
13 (at end (not (powered ?r)))
14 )
15 )
16

Figure A.2: Example agent executor for actions in MACPDDL

The MACPDDL format is easily translated to the PDDL format by moving the parameterized agents in the

executor line to the parameters in Line 3 and removing the executor line.

Agents must be treated as special objects, because they act in the environment and can change the envi-

ronment, while objects are passive and do not act in the environment. Declaring the agents in the MACPDDL

Problem file is similarly to declaring objects in the PDDL Problem file, but the agents declaration will be sep-

arated from the objects declaration, as presented in Figure A.3. MACPDDL can be translated to the current

PDDL by moving the contents of the agents declaration to the objects declaration.

Agents have capabilities that must be considered for coalition formation. Declaring the services and

1 (:agents
2 pquad1 - pquad
3 pbot1 - policebot
4 emsbot1 emsbot2 emsbot3 emsbot4 emsbot5 emsbot6 - emsbot
5 ems1 ems2 - ems
6 firebot1 - firebot
7 fire1 fire2 - fire
8 police1 - police
9 )

10

Figure A.3: Agent declaration in MACPDDL
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1 (:resources
2 (pbot1 pawn_transport - 1)
3 (emsbot1 victim_transport - 1 pharm_transport - 1)
4 (emsbot2 victim_transport - 1 pharm_transport - 1)
5 (emsbot3 victim_transport - 1 pharm_transport - 1)
6 (ems1 triage - 1 pharm_filter - 1)
7 (ems2 triage - 1 pharm_filter - 1)
8 (firebot1 road_clear_debris - 1)
9 (fire1 road_clear_lines - 1 seal_leak - 1)

10 (fire2 road_clear_lines - 1 seal_leak - 1)
11 (police1 pawn_clear - 1)
12 )
13

Figure A.4: Agent capabilities in MACPDDL

1 (:task victims
2 :resources (
3 triage - 1
4 victim_transport - 2
5 )
6 :length 5
7 :goal
8 (and
9 (victim_at_hosp victim6 dch)

10 (victim_at_hosp victim7 dch)
11 (victim_at_hosp victim8 dch)
12 (victim_at_hosp victim9 dch)
13 (victim_at_hosp victim10 dch)
14 )
15 )
16

Figure A.5: Tasks in MACPDDL

resources offered by each agent occurs in the Problem file. All agents declared in the Problem file must also

be declared to offer a service or have a resource. Agent capabilities using the resource model is presented

in Figure A.4. Agent capabilities have no meaning in PDDL; thus, the capabilities section is removed when

translating to PDDL.

Tasks in coalition formation are modeled as the capabilities required to execute the task and in planning as

the goal constraints that must be satisfied for the task to be completed. Both capabilities and goal constraints

must be included in the task descriptions of the Problem file. An example task in the First Response domain

is presented in Figure A.5. Each task has a name, “victims” in this example, on Line 1. The capability model

used by the task is on Line 2, the resources model. The example task requires one triage resource and two

victim transport resources, Lines 3 and 4. The length, Line 6, is an estimate of the makespan of the plan

for the task, and is used by some coalition formation algorithms. The goal, Lines 7 - 14, are for planning;

satisfying the constraints completes the task. The tasks can be translated to PDDL by combining the goal

sections from all the tasks in a problem into the single goal statement used by PDDL.
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Most planning algorithms use PDDL for parsing input. The coalition formation library, i-CiFHaR, uses

XML. All the experiments in this dissertation used MACPDDL to generate the necessary PDDL for planning

and XML for coalition formation.
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Appendix B

Planning Domains

This appendix presents the MACPDDL version of each domain used in the experiments for this dissertation.

B.1 Rovers

1 (define (domain rover)

2 (:requirements :fluents :durative-actions :typing)

3 (:agents

4 rover - agent

5 )

6 (:types

7 waypoint store camera mode lander objective - object

8 )

9 (:predicates

10 (at_rover ?x - rover ?y - waypoint)

11 (at_lander ?x - lander ?y - waypoint)

12 (can_traverse ?r - rover ?x - waypoint ?y - waypoint)

13 (equipped_for_soil_analysis ?r - rover)

14 (equipped_for_rock_analysis ?r - rover)

15 (equipped_for_imaging ?r - rover)

16 (empty ?s - store)

17 (have_rock_analysis ?r - rover ?w - waypoint)

18 (have_soil_analysis ?r - rover ?w - waypoint)

19 (full ?s - store)

20 (camera_available ?c - camera ?r - rover)

21 (calibrated ?c - camera ?r - rover)

22 (supports ?c - camera ?m - mode)

23 (visible ?w - waypoint ?p - waypoint)

24 (have_image ?r - rover ?o - objective ?m - mode)

25 (communicated_soil_data ?w - waypoint)

26 (communicated_rock_data ?w - waypoint)

27 (communicated_image_data ?o - objective ?m - mode)

28 (at_soil_sample ?w - waypoint)

29 (at_rock_sample ?w - waypoint)

30 (visible_from ?o - objective ?w - waypoint)

31 (store_of ?s - store ?r - rover)

32 (calibration_target ?i - camera ?o - objective)
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33 (on_board ?i - camera ?r - rover)

34 (channel_free ?l - lander)

35 )

36 (:functions

37 )

38 (:durative-action navigate

39 :executor (?x - rover)

40 :parameters (?y - waypoint ?z - waypoint)

41 :duration (= ?duration 10)

42 :condition

43 (and

44 (over all (can_traverse ?x ?y ?z))

45 (at start (at_rover ?x ?y))

46 (over all (visible ?y ?z))

47 )

48 :effect

49 (and

50 (at start (not (at_rover ?x ?y)))

51 (at end (at_rover ?x ?z))

52 )

53 )

54 (:durative-action sample_soil

55 :executor (?x - rover)

56 :parameters (?s - store ?p - waypoint)

57 :duration (= ?duration 1)

58 :condition

59 (and

60 (over all (at_rover ?x ?p))

61 (at start (at_soil_sample ?p))

62 (over all (equipped_for_soil_analysis ?x))

63 (over all (store_of ?s ?x))

64 (at start (empty ?s))

65 )

66 :effect

67 (and

68 (at start (not (empty ?s)))

69 (at start (not (at_soil_sample ?p)))

70 (at end (full ?s))

71 (at end (have_soil_analysis ?x ?p))

72 )

73 )
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74 (:durative-action sample_rock

75 :executor (?x - rover)

76 :parameters (?s - store ?p - waypoint)

77 :duration (= ?duration 1)

78 :condition

79 (and

80 (over all (at_rover ?x ?p))

81 (at start (at_rock_sample ?p))

82 (at start (equipped_for_rock_analysis ?x))

83 (at start (store_of ?s ?x))

84 (at start (empty ?s))

85 )

86 :effect

87 (and

88 (at start (not (empty ?s)))

89 (at end (full ?s))

90 (at end (have_rock_analysis ?x ?p))

91 (at start (not (at_rock_sample ?p)))

92 )

93 )

94 (:durative-action drop

95 :executor (?x - rover)

96 :parameters (?y - store)

97 :duration (= ?duration 0.1)

98 :condition

99 (and

100 (at start (store_of ?y ?x))

101 (at start (full ?y))

102 )

103 :effect

104 (and

105 (at start (not (full ?y)))

106 (at end (empty ?y))

107 )

108 )

109 (:durative-action calibrate

110 :executor (?r - rover)

111 :parameters (?i - camera ?t - objective ?w - waypoint)

112 :duration (= ?duration 1)

113 :condition

114 (and
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115 (over all (equipped_for_imaging ?r))

116 (over all (calibration_target ?i ?t))

117 (over all (at_rover ?r ?w))

118 (over all (visible_from ?t ?w))

119 (over all (on_board ?i ?r))

120 (at start (camera_available ?i ?r))

121 )

122 :effect

123 (and

124 (at start (not (camera_available ?i ?r)))

125 (at start (not (calibrated ?i ?r)))

126 (at end (calibrated ?i ?r))

127 (at end (camera_available ?i ?r))

128 )

129 )

130 (:durative-action take_image

131 :executor (?r - rover)

132 :parameters (?p - waypoint ?o - objective ?i - camera ?m - mode)

133 :duration (= ?duration 0.1)

134 :condition

135 (and

136 (over all (calibrated ?i ?r))

137 (over all (on_board ?i ?r))

138 (over all (equipped_for_imaging ?r))

139 (over all (supports ?i ?m))

140 (over all (visible_from ?o ?p))

141 (over all (at_rover ?r ?p))

142 (at start (camera_available ?i ?r))

143 )

144 :effect

145 (and

146 (at start (not (camera_available ?i ?r)))

147 (at end (have_image ?r ?o ?m))

148 (at end (not (calibrated ?i ?r)))

149 (at end (camera_available ?i ?r))

150 )

151 )

152 (:durative-action communicate_soil_data

153 :executor (?r - rover)

154 :parameters (?l - lander ?p - waypoint ?x - waypoint ?y - waypoint)

155 :duration (= ?duration 0.5)
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156 :condition

157 (and

158 (over all (at_rover ?r ?x))

159 (at start (at_lander ?l ?y))

160 (at start (have_soil_analysis ?r ?p))

161 (at start (visible ?x ?y))

162 (at start (channel_free ?l))

163 )

164 :effect

165 (and

166 (at start (not (channel_free ?l)))

167 (at end (channel_free ?l))

168 (at end (communicated_soil_data ?p))

169 )

170 )

171 (:durative-action communicate_rock_data

172 :executor (?r - rover)

173 :parameters (?l - lander ?p - waypoint ?x - waypoint ?y - waypoint)

174 :duration (= ?duration 0.5)

175 :condition

176 (and

177 (over all (at_rover ?r ?x))

178 (at start (at_lander ?l ?y))

179 (at start (have_rock_analysis ?r ?p))

180 (at start (visible ?x ?y))

181 (at start (channel_free ?l))

182 )

183 :effect

184 (and

185 (at start (not (channel_free ?l)))

186 (at end (channel_free ?l))

187 (at end (communicated_rock_data ?p))

188 )

189 )

190 (:durative-action communicate_image_data

191 :executor (?r - rover)

192 :parameters (?l - lander ?o - objective ?m - mode ?x - waypoint ?y - waypoint)

193 :duration (= ?duration 0.5)

194 :condition

195 (and

196 (over all (at_rover ?r ?x))
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197 (over all (at_lander ?l ?y))

198 (at start (have_image ?r ?o ?m))

199 (at start (visible ?x ?y))

200 (at start (channel_free ?l))

201 )

202 :effect

203 (and

204 (at start (not (channel_free ?l)))

205 (at end (channel_free ?l))

206 (at end (communicated_image_data ?o ?m))

207 )

208 )

209 )
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B.2 Blocks World

1 (define (domain blocksworld)

2 (:requirements :fluents :durative-actions :typing)

3 (:agents

4 arm - agent

5 )

6 (:types

7 block effector - object

8 single_block double_block - block

9 )

10 (:predicates

11 (has_effector ?a - arm ?e - effector)

12 (empty ?a - arm)

13 (not_moving ?a - arm)

14

15 (requires ?b - block ?e - effector)

16

17 (clear ?b - block)

18 (on_block ?b_1 - block ?b_2 - block)

19 (on_table ?b - block)

20 (holding_single ?a - arm ?b - single_block)

21 (holding_double ?a_1 - arm ?a_2 - arm ?b - double_block)

22 )

23 (:functions

24 (block_height ?b - block)

25 (arm_height ?a - arm)

26 (arm_id ?a - arm)

27 (max_on_table)

28 (num_on_table)

29 )

30 (:durative-action move-up

31 :executor (?a - arm)

32 :parameters ()

33 :duration (= ?duration 1)

34 :condition

35 (and

36 (at start (not_moving ?a))

37 (over all (empty ?a))

38 )

39 :effect

40 (and
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41 (at start (not (not_moving ?a)))

42 (at end (not_moving ?a))

43 (at end (increase (arm_height ?a) 1))

44 )

45 )

46 (:durative-action move-down

47 :executor (?a - arm)

48 :parameters ()

49 :duration (= ?duration 1)

50 :condition

51 (and

52 (at start (not_moving ?a))

53 (over all (empty ?a))

54 (at start (> (arm_height ?a) 0))

55 )

56 :effect

57 (and

58 (at start (not (not_moving ?a)))

59 (at end (not_moving ?a))

60 (at end (decrease (arm_height ?a) 1))

61 )

62 )

63 (:durative-action move-up-with-single-block

64 :executor (?a - arm)

65 :parameters (?b - single_block)

66 :duration (= ?duration 1)

67 :condition

68 (and

69 (over all (holding_single ?a ?b))

70 (at start (not_moving ?a))

71 )

72 :effect

73 (and

74 (at start (not (not_moving ?a)))

75 (at end (not_moving ?a))

76 (at end (increase (arm_height ?a) 1))

77 (at end (increase (block_height ?b) 1))

78 )

79 )

80 (:durative-action move-down-with-single-block

81 :executor (?a - arm)
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82 :parameters (?b - single_block)

83 :duration (= ?duration 1)

84 :condition

85 (and

86 (over all (holding_single ?a ?b))

87 (at start (not_moving ?a))

88 (at start (> (arm_height ?a) 0))

89 )

90 :effect

91 (and

92 (at start (not (not_moving ?a)))

93 (at end (not_moving ?a))

94 (at end (decrease (arm_height ?a) 1))

95 (at end (decrease (block_height ?b) 1))

96 )

97 )

98 (:durative-action move-up-with-double-block

99 :executor (?a_1 - arm ?a_2 - arm)

100 :parameters (?b - double_block)

101 :duration (= ?duration 1)

102 :condition

103 (and

104 (over all (holding_double ?a_1 ?a_2 ?b))

105 (at start (not_moving ?a_1))

106 (at start (not_moving ?a_2))

107 )

108 :effect

109 (and

110 (at start (not (not_moving ?a_1)))

111 (at start (not (not_moving ?a_2)))

112 (at end (not_moving ?a_1))

113 (at end (not_moving ?a_2))

114 (at end (increase (arm_height ?a_1) 1))

115 (at end (increase (arm_height ?a_2) 1))

116 (at end (increase (block_height ?b) 1))

117 )

118 )

119 (:durative-action move-down-with-double-block

120 :executor (?a_1 - arm ?a_2 - arm)

121 :parameters (?b - double_block)

122 :duration (= ?duration 1)
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123 :condition

124 (and

125 (over all (holding_double ?a_1 ?a_2 ?b))

126 (at start (not_moving ?a_1))

127 (at start (not_moving ?a_2))

128 )

129 :effect

130 (and

131 (at start (not (not_moving ?a_1)))

132 (at start (not (not_moving ?a_2)))

133 (at end (not_moving ?a_1))

134 (at end (not_moving ?a_2))

135 (at end (decrease (arm_height ?a_1) 1))

136 (at end (decrease (arm_height ?a_2) 1))

137 (at end (decrease (block_height ?b) 1))

138 )

139 )

140 (:durative-action pick-single-block-on-block

141 :executor (?a - arm)

142 :parameters (?b_1 - single_block ?b_2 - block ?e - effector)

143 :duration (= ?duration 1)

144 :condition

145 (and

146 (at start (empty ?a))

147 (at start (= (arm_height ?a) (block_height ?b_1)))

148 (at start (clear ?b_1))

149 (at start (on_block ?b_1 ?b_2))

150 (at start (requires ?b_1 ?e))

151 (at start (has_effector ?a ?e))

152 )

153 :effect

154 (and

155 (at start (not (empty ?a)))

156 (at start (not (clear ?b_1)))

157 (at start (not (on_block ?b_1 ?b_2)))

158 (at end (clear ?b_2))

159 (at end (holding_single ?a ?b_1))

160 )

161 )

162 (:durative-action pick-single-block-on-table

163 :executor (?a - arm)
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164 :parameters (?b - single_block ?e - effector)

165 :duration (= ?duration 1)

166 :condition

167 (and

168 (at start (empty ?a))

169 (at start (= (arm_height ?a) 0))

170 (at start (clear ?b))

171 (at start (on_table ?b))

172 (at start (requires ?b ?e))

173 (at start (has_effector ?a ?e))

174 )

175 :effect

176 (and

177 (at start (not (empty ?a)))

178 (at start (not (clear ?b)))

179 (at end (not (on_table ?b)))

180 (at end (holding_single ?a ?b))

181 (at end (decrease (num_on_table) 1))

182 )

183 )

184 (:durative-action place-single-block-on-block

185 :executor (?a - arm)

186 :parameters (?b_1 - single_block ?b_2 - block)

187 :duration (= ?duration 1)

188 :condition

189 (and

190 (at start (= (arm_height ?a) (+ (block_height ?b_2) 1)))

191 (at start (clear ?b_2))

192 (at start (holding_single ?a ?b_1))

193 )

194 :effect

195 (and

196 (at start (not (clear ?b_2)))

197 (at end (clear ?b_1))

198 (at end (on_block ?b_1 ?b_2))

199 (at start (not (holding_single ?a ?b_1)))

200 (at end (empty ?a))

201 )

202 )

203 (:durative-action place-single-block-on-table

204 :executor (?a - arm)
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205 :parameters (?b - single_block)

206 :duration (= ?duration 1)

207 :condition

208 (and

209 (at start (= (arm_height ?a) 0))

210 (at start (holding_single ?a ?b))

211 (at start (< (num_on_table) (max_on_table)))

212 )

213 :effect

214 (and

215 (at end (clear ?b))

216 (at start (not (holding_single ?a ?b)))

217 (at end (empty ?a))

218 (at end (on_table ?b))

219 (at start (increase (num_on_table) 1))

220 )

221 )

222 (:durative-action pick-double-block-on-block

223 :executor (?a_1 - arm ?a_2 - arm)

224 :parameters (?b_1 - double_block ?b_2 - block ?e - effector)

225 :duration (= ?duration 2)

226 :condition

227 (and

228 (at start (empty ?a_1))

229 (at start (empty ?a_2))

230 (at start (= (arm_height ?a_1) (block_height ?b_1)))

231 (at start (= (arm_height ?a_2) (block_height ?b_1)))

232 (at start (clear ?b_1))

233 (at start (on_block ?b_1 ?b_2))

234 (at start (requires ?b_1 ?e))

235 (at start (has_effector ?a_1 ?e))

236 (at start (has_effector ?a_2 ?e))

237 (at start (> (arm_id ?a_1) (arm_id ?a_2)))

238 )

239 :effect

240 (and

241 (at start (not (empty ?a_1)))

242 (at start (not (empty ?a_2)))

243 (at start (not (clear ?b_1)))

244 (at start (not (on_block ?b_1 ?b_2)))

245 (at end (clear ?b_2))
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246 (at end (holding_double ?a_1 ?a_2 ?b_1))

247 )

248 )

249 (:durative-action pick-double-block-on-table

250 :executor (?a_1 - arm ?a_2 - arm)

251 :parameters (?b - double_block ?e - effector)

252 :duration (= ?duration 2)

253 :condition

254 (and

255 (at start (empty ?a_1))

256 (at start (empty ?a_2))

257 (at start (= (arm_height ?a_1) 0))

258 (at start (= (arm_height ?a_2) 0))

259 (at start (clear ?b))

260 (at start (on_table ?b))

261 (at start (requires ?b ?e))

262 (at start (has_effector ?a_1 ?e))

263 (at start (has_effector ?a_2 ?e))

264 (at start (> (arm_id ?a_1) (arm_id ?a_2)))

265 )

266 :effect

267 (and

268 (at start (not (empty ?a_1)))

269 (at start (not (empty ?a_2)))

270 (at start (not (clear ?b)))

271 (at end (not (on_table ?b)))

272 (at end (holding_double ?a_1 ?a_2 ?b))

273 (at end (decrease (num_on_table) 1))

274 )

275 )

276 (:durative-action place-double-block-on-block

277 :executor (?a_1 - arm ?a_2 - arm)

278 :parameters (?b_1 - double_block ?b_2 - block)

279 :duration (= ?duration 2)

280 :condition

281 (and

282 (at start (= (arm_height ?a_1) (+ (block_height ?b_2) 1)))

283 (at start (= (arm_height ?a_2) (+ (block_height ?b_2) 1)))

284 (at start (clear ?b_2))

285 (at start (holding_double ?a_1 ?a_2 ?b_1))

286 )
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287 :effect

288 (and

289 (at start (not (clear ?b_2)))

290 (at end (clear ?b_1))

291 (at start (not (holding_double ?a_1 ?a_2 ?b_1)))

292 (at end (on_block ?b_1 ?b_2))

293 (at end (empty ?a_1))

294 (at end (empty ?a_2))

295 )

296 )

297 (:durative-action place-double-block-on-table

298 :executor (?a_1 - arm ?a_2 - arm)

299 :parameters (?b - double_block)

300 :duration (= ?duration 2)

301 :condition

302 (and

303 (at start (= (arm_height ?a_1) 0))

304 (at start (= (arm_height ?a_2) 0))

305 (at start (holding_double ?a_1 ?a_2 ?b))

306 (at start (< (num_on_table) (max_on_table)))

307 )

308 :effect

309 (and

310 (at end (clear ?b))

311 (at start (not (holding_double ?a_1 ?a_2 ?b)))

312 (at end (on_table ?b))

313 (at end (empty ?a_1))

314 (at end (empty ?a_2))

315 (at start (increase (num_on_table) 1))

316 )

317 )

318 )
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B.3 Zenotravel

1 (define (domain zenotravel)

2 (:requirements :fluents :durative-actions :typing :action-costs)

3 (:agents

4 airplane - agent

5 large_plane small_plane - airplane

6 )

7 (:types

8 transportable city - object

9 passenger cargo - transportable

10 hub spoke - city

11 )

12 (:predicates

13 (transportable_at_city ?t - transportable ?c - city)

14 (transportable_on_plane ?t - transportable ?p - airplane)

15 (plane_at_city ?a - airplane ?c - city)

16 (not_managing_passenger ?a - airplane)

17 (not_managing_cargo ?a - airplane)

18 )

19 (:functions

20 (total-cost)

21 (fuel ?a - airplane)

22 (fuel_rate ?a - airplane)

23 (max_fuel ?a - airplane)

24 (speed ?a - airplane)

25 (distance ?c_1 - city ?c_2 - city)

26 (num_passengers ?a - airplane)

27 (max_passengers ?a - airplane)

28 (num_cargo ?a - airplane)

29 (max_cargo ?a - airplane)

30 )

31 (:durative-action refuel

32 :executor (?p - airplane)

33 :parameters (?c - city)

34 :duration (= ?duration (/ (- (max_fuel ?p) (fuel ?p)) (fuel_rate ?p)))

35 :condition

36 (and

37 (over all (plane_at_city ?p ?c))

38 )

39 :effect

40 (and
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41 (at end (assign (fuel ?p) (max_fuel ?p)))

42 )

43 )

44 (:durative-action fly_small_1

45 :executor (?p - small_plane)

46 :parameters (?c_1 - city ?c_2 - city)

47 :duration (= ?duration (/ (distance ?c_1 ?c_2) (speed ?p)))

48 :condition

49 (and

50 (at start (plane_at_city ?p ?c_1))

51 (at start (>= (fuel ?p) (distance ?c_1 ?c_2)))

52 )

53 :effect

54 (and

55 (at start (increase (total-cost) 1))

56 (at start (not (plane_at_city ?p ?c_1)))

57 (at end (plane_at_city ?p ?c_2))

58 (decrease (fuel ?p) (* #t (speed ?p)))

59 )

60 )

61 (:durative-action fly_small_2

62 :executor (?p - small_plane)

63 :parameters (?c_2 - city ?c_1 - city)

64 :duration (= ?duration (/ (distance ?c_1 ?c_2) (speed ?p)))

65 :condition

66 (and

67 (at start (plane_at_city ?p ?c_2))

68 (at start (>= (fuel ?p) (distance ?c_1 ?c_2)))

69 )

70 :effect

71 (and

72 (at start (increase (total-cost) 1))

73 (at start (not (plane_at_city ?p ?c_2)))

74 (at end (plane_at_city ?p ?c_1))

75 (decrease (fuel ?p) (* #t (speed ?p)))

76 )

77 )

78 (:durative-action fly_large_1

79 :executor (?p - large_plane)

80 :parameters (?c_1 - hub ?c_2 - hub)

81 :duration (= ?duration (/ (distance ?c_1 ?c_2) (speed ?p)))
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82 :condition

83 (and

84 (at start (plane_at_city ?p ?c_1))

85 (at start (>= (fuel ?p) (distance ?c_1 ?c_2)))

86 )

87 :effect

88 (and

89 (at start (increase (total-cost) 1))

90 (at start (not (plane_at_city ?p ?c_1)))

91 (at end (plane_at_city ?p ?c_2))

92 (decrease (fuel ?p) (* #t (speed ?p)))

93 )

94 )

95 (:durative-action fly_large_2

96 :executor (?p - large_plane)

97 :parameters (?c_2 - hub ?c_1 - hub)

98 :duration (= ?duration (/ (distance ?c_1 ?c_2) (speed ?p)))

99 :condition

100 (and

101 (at start (plane_at_city ?p ?c_2))

102 (at start (>= (fuel ?p) (distance ?c_1 ?c_2)))

103 )

104 :effect

105 (and

106 (at start (increase (total-cost) 1))

107 (at start (not (plane_at_city ?p ?c_2)))

108 (at end (plane_at_city ?p ?c_1))

109 (decrease (fuel ?p) (* #t (speed ?p)))

110 )

111 )

112 (:durative-action load_passenger

113 :executor (?a - airplane)

114 :parameters (?c - city ?t - passenger)

115 :duration (= ?duration 1)

116 :condition

117 (and

118 (at start (transportable_at_city ?t ?c))

119 (at start (< (num_passengers ?a) (max_passengers ?a)))

120 (at start (not_managing_passenger ?a))

121 (over all (plane_at_city ?a ?c))

122 )
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123 :effect

124 (and

125 (at start (not (not_managing_passenger ?a)))

126 (at start (not (transportable_at_city ?t ?c)))

127 (at start (increase (num_passengers ?a) 1))

128 (at end (transportable_on_plane ?t ?a))

129 (at end (not_managing_passenger ?a))

130 )

131 )

132 (:durative-action unload_passenger

133 :executor (?a - airplane)

134 :parameters (?c - city ?t - passenger)

135 :duration (= ?duration 1)

136 :condition

137 (and

138 (at start (transportable_on_plane ?t ?a))

139 (at start (not_managing_passenger ?a))

140 (over all (plane_at_city ?a ?c))

141 )

142 :effect

143 (and

144 (at start (not (not_managing_passenger ?a)))

145 (at start (not (transportable_on_plane ?t ?a)))

146 (at end (decrease (num_passengers ?a) 1))

147 (at end (transportable_at_city ?t ?c))

148 (at end (not_managing_passenger ?a))

149 )

150 )

151 (:durative-action load_cargo

152 :executor (?a - airplane)

153 :parameters (?c - city ?t - cargo)

154 :duration (= ?duration 1)

155 :condition

156 (and

157 (at start (transportable_at_city ?t ?c))

158 (at start (< (num_cargo ?a) (max_cargo ?a)))

159 (at start (not_managing_cargo ?a))

160 (over all (plane_at_city ?a ?c))

161 )

162 :effect

163 (and
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164 (at start (not (not_managing_cargo ?a)))

165 (at start (not (transportable_at_city ?t ?c)))

166 (at start (increase (num_cargo ?a) 1))

167 (at end (transportable_on_plane ?t ?a))

168 (at end (not_managing_cargo ?a))

169 )

170 )

171 (:durative-action unload_cargo

172 :executor (?a - airplane)

173 :parameters (?c - city ?t - cargo)

174 :duration (= ?duration 1)

175 :condition

176 (and

177 (at start (transportable_on_plane ?t ?a))

178 (at start (not_managing_cargo ?a))

179 (over all (plane_at_city ?a ?c))

180 )

181 :effect

182 (and

183 (at start (not (not_managing_cargo ?a)))

184 (at start (not (transportable_on_plane ?t ?a)))

185 (at end (decrease (num_cargo ?a) 1))

186 (at end (transportable_at_city ?t ?c))

187 (at end (not_managing_cargo ?a))

188 )

189 )

190 )
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B.4 First Response

1 (define (domain first_response)

2 (:requirements :fluents :durative-actions :typing :duration-inequalities)

3 (:agents

4 human robot - agent

5 ground quadrotor - robot

6 policebot firebot emsbot - ground

7 pquad - quadrotor

8 searching ems - human

9 fire police - searching

10 )

11 (:types

12 locatable waypoint - object

13 base hospital hazardous victim batts - locatable

14 pawn pharm - hazardous

15 )

16 (:predicates

17 (not_moving ?a - agent)

18 (victim_found ?v - victim)

19 (victim_at_hosp ?v - victim ?h - hospital)

20 (loc_at ?l - locatable ?w - waypoint)

21 (agent_at ?a - agent ?w - waypoint)

22

23 (carrying ?e - emsbot ?v - victim)

24 (empty ?e - ground)

25

26 (hazards_stored ?h - hazardous ?l - locatable)

27 (carrying_hazardous ?g - ground ?h - hazardous)

28

29 (not_blocked ?w_1 - waypoint ?w_2 - waypoint)

30 (debris ?w_1 - waypoint ?w_2 - waypoint)

31 (lines ?w_1 - waypoint ?w_2 - waypoint)

32

33 (powered ?r - robot)

34

35 (gas_leak ?w - waypoint)

36 (gas_cleared ?w - waypoint)

37

38 (edge ?w_1 - waypoint ?w_2 - waypoint)

39 (victim_triaged ?v - victim)

40 )
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41 (:functions

42 (power_max ?r - robot)

43 (power ?r - robot)

44 (victim_injury ?v - victim)

45 (victim_state ?v - victim)

46 )

47 (:durative-action change-battery

48 :executor (?r - robot)

49 :parameters (?b - batts ?w - waypoint)

50 :duration (= ?duration 2)

51 :condition

52 (and

53 (over all (agent_at ?r ?w))

54 (over all (loc_at ?b ?w))

55 )

56 :effect

57 (and

58 (at start (assign (power ?r) 0))

59 (at end (assign (power ?r) (power_max ?r)))

60 )

61 )

62 (:durative-action activate_robot

63 :executor (?r - robot)

64 :parameters ()

65 :duration (>= ?duration 0)

66 :condition

67 (and

68 (over all (>= (power ?r) 0))

69 )

70 :effect

71 (and

72 (at start (powered ?r))

73 (decrease (power ?r) #t)

74 (at end (not (powered ?r)))

75 )

76 )

77 (:durative-action quad-move-1

78 :executor (?q - quadrotor)

79 :parameters (?w_1 - waypoint ?w_2 - waypoint)

80 :duration (= ?duration 1.0)

81 :condition
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82 (and

83 (over all (powered ?q))

84 (at start (not_moving ?q))

85 (over all (edge ?w_1 ?w_2))

86 (at start (agent_at ?q ?w_1))

87 )

88 :effect

89 (and

90 (at start (not (not_moving ?q)))

91 (at start (not (agent_at ?q ?w_1)))

92 (at end (agent_at ?q ?w_2))

93 (at end (not_moving ?q))

94 )

95 )

96 (:durative-action quad-move-2

97 :executor (?q - quadrotor)

98 :parameters (?w_1 - waypoint ?w_2 - waypoint)

99 :duration (= ?duration 1.0)

100 :condition

101 (and

102 (over all (powered ?q))

103 (at start (not_moving ?q))

104 (over all (edge ?w_2 ?w_1))

105 (at start (agent_at ?q ?w_1))

106 )

107 :effect

108 (and

109 (at start (not (not_moving ?q)))

110 (at start (not (agent_at ?q ?w_1)))

111 (at end (agent_at ?q ?w_2))

112 (at end (not_moving ?q))

113 )

114 )

115 (:durative-action ground-move-1

116 :executor (?g - ground)

117 :parameters (?w_1 - waypoint ?w_2 - waypoint)

118 :duration (= ?duration 1.0)

119 :condition

120 (and

121 (over all (powered ?g))

122 (over all (edge ?w_1 ?w_2))
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123 (over all (not_blocked ?w_1 ?w_2))

124 (at start (not_moving ?g))

125 (at start (agent_at ?g ?w_1))

126 )

127 :effect

128 (and

129 (at start (not (not_moving ?g)))

130 (at start (not (agent_at ?g ?w_1)))

131 (at end (agent_at ?g ?w_2))

132 (at end (not_moving ?g))

133 )

134 )

135 (:durative-action ground-move-2

136 :executor (?g - ground)

137 :parameters (?w_1 - waypoint ?w_2 - waypoint)

138 :duration (= ?duration 1.0)

139 :condition

140 (and

141 (over all (powered ?g))

142 (over all (edge ?w_2 ?w_1))

143 (over all (not_blocked ?w_2 ?w_1))

144 (at start (not_moving ?g))

145 (at start (agent_at ?g ?w_1))

146 )

147 :effect

148 (and

149 (at start (not (not_moving ?g)))

150 (at start (not (agent_at ?g ?w_1)))

151 (at end (agent_at ?g ?w_2))

152 (at end (not_moving ?g))

153 )

154 )

155 (:durative-action human-move-1

156 :executor (?h - human)

157 :parameters (?w_1 - waypoint ?w_2 - waypoint)

158 :duration (= ?duration 1.0)

159 :condition

160 (and

161 (over all (edge ?w_1 ?w_2))

162 (over all (not_blocked ?w_1 ?w_2))

163 (at start (not_moving ?h))
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164 (at start (agent_at ?h ?w_1))

165 )

166 :effect

167 (and

168 (at start (not (not_moving ?h)))

169 (at start (not (agent_at ?h ?w_1)))

170 (at end (agent_at ?h ?w_2))

171 (at end (not_moving ?h))

172 )

173 )

174 (:durative-action human-move-2

175 :executor (?h - human)

176 :parameters (?w_1 - waypoint ?w_2 - waypoint)

177 :duration (= ?duration 1.0)

178 :condition

179 (and

180 (over all (edge ?w_2 ?w_1))

181 (over all (not_blocked ?w_2 ?w_1))

182 (at start (not_moving ?h))

183 (at start (agent_at ?h ?w_1))

184 )

185 :effect

186 (and

187 (at start (not (not_moving ?h)))

188 (at start (not (agent_at ?h ?w_1)))

189 (at end (agent_at ?h ?w_2))

190 (at end (not_moving ?h))

191 )

192 )

193 (:durative-action guide-victim-1

194 :executor (?q - pquad)

195 :parameters (?v - victim ?w_1 - waypoint ?w_2 - waypoint)

196 :duration (= ?duration 2.0)

197 :condition

198 (and

199 (over all (powered ?q))

200 (over all (edge ?w_1 ?w_2))

201 (over all (not_blocked ?w_1 ?w_2))

202 (at start (not_moving ?q))

203 (at start (loc_at ?v ?w_1))

204 (at start (agent_at ?q ?w_1))
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205 (over all (>= (victim_state ?v) 4))

206 )

207 :effect

208 (and

209 (at start (not (not_moving ?q)))

210 (at start (not (agent_at ?q ?w_1)))

211 (at start (not (loc_at ?v ?w_1)))

212 (at end (agent_at ?q ?w_2))

213 (at end (loc_at ?v ?w_2))

214 (at end (not_moving ?q))

215 )

216 )

217 (:durative-action guide-victim-2

218 :executor (?q - pquad)

219 :parameters (?v - victim ?w_1 - waypoint ?w_2 - waypoint)

220 :duration (= ?duration 2.0)

221 :condition

222 (and

223 (over all (powered ?q))

224 (over all (edge ?w_2 ?w_1))

225 (over all (not_blocked ?w_2 ?w_1))

226 (at start (not_moving ?q))

227 (at start (loc_at ?v ?w_1))

228 (at start (agent_at ?q ?w_1))

229 (over all (>= (victim_state ?v) 4))

230 )

231 :effect

232 (and

233 (at start (not (not_moving ?q)))

234 (at start (not (agent_at ?q ?w_1)))

235 (at start (not (loc_at ?v ?w_1)))

236 (at end (agent_at ?q ?w_2))

237 (at end (loc_at ?v ?w_2))

238 (at end (not_moving ?q))

239 )

240 )

241 (:durative-action guide-victim-to-hospital

242 :executor (?q - pquad)

243 :parameters (?v - victim ?h - hospital ?w - waypoint)

244 :duration (= ?duration 0.5)

245 :condition
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246 (and

247 (at start (loc_at ?v ?w))

248 (over all (powered ?q))

249 (over all (loc_at ?h ?w))

250 (over all (agent_at ?q ?w))

251 (over all (>= (victim_state ?v) 4))

252 )

253 :effect

254 (and

255 (at start (not (loc_at ?v ?w)))

256 (at end (victim_at_hosp ?v ?h))

257 )

258 )

259 (:durative-action bulldoze-edge-1

260 :executor (?f - firebot)

261 :parameters (?w_1 - waypoint ?w_2 - waypoint)

262 :duration (= ?duration 2.0)

263 :condition

264 (and

265 (over all (powered ?f))

266 (over all (agent_at ?f ?w_1))

267 (over all (edge ?w_1 ?w_2))

268 (at start (debris ?w_1 ?w_2))

269 )

270 :effect

271 (and

272 (at start (not (debris ?w_1 ?w_2)))

273 (at end (not_blocked ?w_1 ?w_2))

274 )

275 )

276 (:durative-action bulldoze-edge-2

277 :executor (?f - firebot)

278 :parameters (?w_1 - waypoint ?w_2 - waypoint)

279 :duration (= ?duration 2.0)

280 :condition

281 (and

282 (over all (powered ?f))

283 (over all (agent_at ?f ?w_1))

284 (over all (edge ?w_2 ?w_1))

285 (at start (debris ?w_2 ?w_1))

286 )
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287 :effect

288 (and

289 (at start (not (debris ?w_2 ?w_1)))

290 (at end (not_blocked ?w_2 ?w_1))

291 )

292 )

293 (:durative-action clear-lines-1

294 :executor (?f - firebot)

295 :parameters (?w_1 - waypoint ?w_2 - waypoint)

296 :duration (= ?duration 2.0)

297 :condition

298 (and

299 (over all (powered ?f))

300 (over all (agent_at ?f ?w_1))

301 (over all (edge ?w_1 ?w_2))

302 (at start (lines ?w_1 ?w_2))

303 )

304 :effect

305 (and

306 (at start (not (lines ?w_1 ?w_2)))

307 (at end (not_blocked ?w_1 ?w_2))

308 )

309 )

310 (:durative-action clear-lines-2

311 :executor (?f - firebot)

312 :parameters (?w_1 - waypoint ?w_2 - waypoint)

313 :duration (= ?duration 2.0)

314 :condition

315 (and

316 (over all (powered ?f))

317 (over all (agent_at ?f ?w_1))

318 (over all (edge ?w_2 ?w_1))

319 (at start (lines ?w_2 ?w_1))

320 )

321 :effect

322 (and

323 (at start (not (lines ?w_2 ?w_1)))

324 (at end (not_blocked ?w_2 ?w_1))

325 )

326 )

327
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328 (:durative-action seal-leak

329 :executor (?f - fire)

330 :parameters (?w - waypoint)

331 :duration (= ?duration 3.0)

332 :condition

333 (and

334 (over all (agent_at ?f ?w))

335 (at start (gas_leak ?w))

336 )

337 :effect

338 (and

339 (at start (not (gas_leak ?w)))

340 (at end (gas_cleared ?w))

341 )

342 )

343 (:durative-action triage-bad

344 :executor (?e - ems)

345 :parameters (?v - victim ?w - waypoint)

346 :duration (= ?duration 2.0)

347 :condition

348 (and

349 (at start (= (victim_state ?v) 0))

350 (over all (agent_at ?e ?w))

351 (over all (loc_at ?v ?w))

352 (over all (<= (victim_injury ?v) 4))

353 )

354 :effect

355 (and

356 (at end (assign (victim_state ?v) (victim_injury ?v)))

357 )

358 )

359 (:durative-action triage-good

360 :executor (?e - ems)

361 :parameters (?v - victim ?w - waypoint ?h - hospital)

362 :duration (= ?duration 1.0)

363 :condition

364 (and

365 (over all (agent_at ?e ?w))

366 (over all (loc_at ?v ?w))

367 (over all (= (victim_state ?v) 0))

368 (over all (= (victim_injury ?v) 5))
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369 )

370 :effect

371 (and

372 (at end (victim_at_hosp ?v ?h))

373 )

374 )

375 (:durative-action load-victim

376 :executor (?e - ems ?eb - emsbot)

377 :parameters (?v - victim ?w - waypoint)

378 :duration (= ?duration 2.0)

379 :condition

380 (and

381 (at start (loc_at ?v ?w))

382 (at start (empty ?eb))

383 (over all (powered ?eb))

384 (over all (agent_at ?e ?w))

385 (over all (agent_at ?eb ?w))

386 (over all (> (victim_state ?v) 0))

387 )

388 :effect

389 (and

390 (at start (not (loc_at ?v ?w)))

391 (at start (not (empty ?eb)))

392 (at end (carrying ?eb ?v))

393 )

394 )

395 (:durative-action unload-victim-at-hospital

396 :executor (?eb - emsbot)

397 :parameters (?v - victim ?w - waypoint ?h - hospital)

398 :duration (= ?duration 2.0)

399 :condition

400 (and

401 (at start (carrying ?eb ?v))

402 (over all (powered ?eb))

403 (over all (agent_at ?eb ?w))

404 (over all (loc_at ?h ?w))

405 )

406 :effect

407 (and

408 (at start (not (carrying ?eb ?v)))

409 (at end (victim_at_hosp ?v ?h))
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410 (at end (empty ?eb))

411 )

412 )

413 (:durative-action clear-pawn

414 :executor (?p - police ?pb - policebot)

415 :parameters (?pa - pawn ?w - waypoint)

416 :duration (= ?duration 5.0)

417 :condition

418 (and

419 (at start (empty ?pb))

420 (over all (powered ?pb))

421 (over all (agent_at ?p ?w))

422 (over all (agent_at ?pb ?w))

423 (over all (loc_at ?pa ?w))

424 )

425 :effect

426 (and

427 (at start (not (empty ?pb)))

428 (at end (carrying_hazardous ?pb ?pa))

429 )

430 )

431 (:durative-action drop-pawn-hazards

432 :executor (?pb - policebot)

433 :parameters (?p - pawn ?b - base ?w - waypoint)

434 :duration (= ?duration 1.0)

435 :condition

436 (and

437 (at start (carrying_hazardous ?pb ?p))

438 (over all (powered ?pb))

439 (over all (loc_at ?b ?w))

440 (over all (agent_at ?pb ?w))

441 )

442 :effect

443 (and

444 (at start (not (carrying_hazardous ?pb ?p)))

445 (at end (empty ?pb))

446 (at end (hazards_stored ?p ?b))

447 )

448 )

449 (:durative-action clear-pharm

450 :executor (?e - ems ?eb - emsbot)
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451 :parameters (?p - pharm ?w - waypoint)

452 :duration (= ?duration 5.0)

453 :condition

454 (and

455 (at start (empty ?eb))

456 (over all (powered ?eb))

457 (over all (agent_at ?e ?w))

458 (over all (agent_at ?eb ?w))

459 (over all (loc_at ?p ?w))

460 )

461 :effect

462 (and

463 (at start (not (empty ?eb)))

464 (at end (carrying_hazardous ?eb ?p))

465 )

466 )

467 (:durative-action drop-pharm-hazards

468 :executor (?eb - emsbot)

469 :parameters (?p - pharm ?h - hospital ?w - waypoint)

470 :duration (= ?duration 1.0)

471 :condition

472 (and

473 (at start (carrying_hazardous ?eb ?p))

474 (over all (powered ?eb))

475 (over all (loc_at ?h ?w))

476 (over all (agent_at ?eb ?w))

477 )

478 :effect

479 (and

480 (at start (not (carrying_hazardous ?eb ?p)))

481 (at end (empty ?eb))

482 (at end (hazards_stored ?p ?h))

483 )

484 )

485 )
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Appendix C

Detailed Rovers Results

This appendix presents the detailed results for the Rovers problems. Each table has a heatmap overlay,

ranging from better results in green (lower values for all metrics) to worse results in red (higher values for

all metrics). The range for each heatmap is identical for the same metrics (e.g., the makespan results for the

problems solved using PA[ITSAT] have the same heatmap range as the makespan results for problems solved

using RPCA[POPF]) to facilitate comparison across tool configurations, with specific range values presented

in Table C.1. The overlay for time results ranges from 0 seconds (green) to 3600 seconds (red), and the

overlay for the memory results ranges from 0 GB (green) to 48 GB (red). The range for action executions is

from 400 (green) to 1200 (red) and the range for makespan is from 800 (green) to 4600 (red).

Metric Green Red
Makespan 800 4600

Action Executions 400 1200
Time 0 seconds 3600 seconds

Memory 0 GB 48 GB

Table C.1: Heatmap ranges for each metric in the Rovers domain
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C.1 Detailed Results for PA[ITSAT] Applied to the Rovers Problems

Table C.2: Temporal makespan of derived plans using PA[ITSAT] for Rovers problems.

Table C.3: Action execution steps in derived plans using PA[ITSAT] for Rovers problems.

Table C.4: Computation time to derive plans using PA[ITSAT] for Rovers problems.

Table C.5: Memory required to derive plans using PA[ITSAT] for Rovers problems.
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C.2 Detailed Results for CFP[POPF] Applied to the Rovers Problems

Table C.6: Temporal makespan of derived plans using CFP[POPF] for Rovers problems.

Table C.7: Action execution steps in derived plans using CFP[POPF] for Rovers problems.

Table C.8: Computation time to derive plans using CFP[POPF] for Rovers problems.

Table C.9: Memory required to derive plans using CFP[POPF] for Rovers problems.

126



C.3 Detailed Results for CFP[ITSAT] Applied to the Rovers Problems

Table C.10: Temporal makespan of derived plans using CFP[ITSAT] for Rovers problems.

Table C.11: Action execution steps in derived plans using CFP[ITSAT] for Rovers problems.

Table C.12: Computation time to derive plans using CFP[ITSAT] for Rovers problems.

Table C.13: Memory required to derive plans using CFP[ITSAT] for Rovers problems.
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C.4 Detailed Results for RPCA[POPF] Applied to the Rovers Problems

Table C.14: Temporal makespan of derived plans using RPCA[POPF] for Rovers problems.

Table C.15: Action execution steps in derived plans using RPCA[POPF] for Rovers problems.

Table C.16: Computation time to derive plans using RPCA[POPF] for Rovers problems.

Table C.17: Memory required to derive plans using RPCA[POPF] for Rovers problems.

128



C.5 Detailed Results for RPCA[ITSAT] Applied to the Rovers Problems

Table C.18: Temporal makespan of derived plans using RPCA[ITSAT] for Rovers problems.

Table C.19: Action execution steps in derived plans using RPCA[ITSAT] for Rovers problems.

Table C.20: Computation time to derive plans using RPCA[ITSAT] for Rovers problems.

Table C.21: Memory required to derive plans using RPCA[ITSAT] for Rovers problems.
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C.6 Detailed Results for TF[POPF] Applied to the Rovers Problems

Table C.22: Temporal makespan of derived plans using TF[POPF] for Rovers problems.

Table C.23: Action execution steps in derived plans using TF[POPF] for Rovers problems.

Table C.24: Computation time to derive plans using TF[POPF] for Rovers problems.

Table C.25: Memory required to derive plans using TF[POPF] for Rovers problems.
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C.7 Detailed Results for TF[ITSAT] Applied to the Rovers Problems

Table C.26: Temporal makespan of derived plans using TF[ITSAT] for Rovers problems.

Table C.27: Action execution steps in derived plans using TF[ITSAT] for Rovers problems.

Table C.28: Computation time to derive plans using TF[ITSAT] for Rovers problems.

Table C.29: Memory required to derive plans using TF[ITSAT] for Rovers problems.
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Appendix D

Detailed Blocksworld Results

This appendix presents the detailed results for the Blocks World problems. Each table has a heatmap overlay,

ranging from better results in green (lower values for all metrics) to worse results in red (higher values for

all metrics). The range for each heatmap is identical for the same metrics (e.g., the makespan results for the

problems solved using PA[TFD] have the same heatmap range as the makespan results for problems solved

using RPCA[COLIN]) to facilitate comparison across tool configurations, with specific values for ranges

presented in Table D.1. The overlay for time results ranges from 0 seconds (green) to 3600 seconds (red), and

the overlay for the memory results ranges from 0 GB (green) to 48 GB (red). The range for action executions

is from 40 (green) to 170 (red) and for makespan is from 20 (green) to 170 (red).

Metric Green Red
Makespan 20 170

Action Executions 40 170
Time 0 seconds 3600 seconds

Memory 0 GB 48 GB

Table D.1: Heatmap ranges for each metric in the Blocks World domain
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D.1 Detailed Results for PA[TFD] Applied to the Blocks World Problems

Table D.2: Temporal makespan of derived plans using PA[TFD] for Blocks World problems.

Table D.3: Action execution steps in derived plans using PA[TFD] for Blocks World problems.

Table D.4: Computation time to derive plans using PA[TFD] for Blocks World problems.

Table D.5: Memory required to derive plans using PA[TFD] for Blocks World problems.
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D.2 Detailed Results for PA[COLIN] Applied to the Blocks World Problems

Table D.6: Temporal makespan of derived plans using PA[COLIN] for Blocks World problems.

Table D.7: Action execution steps in derived plans using PA[COLIN] for Blocks World problems.

Table D.8: Computation time to derive plans using PA[COLIN] for Blocks World problems.

Table D.9: Memory required to derive plans using PA[COLIN] for Blocks World problems.
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D.3 Detailed Results for CFP[TFD] Applied to the Blocks World Problems

Table D.10: Temporal makespan of derived plans using CFP[TFD] for Blocks World problems.

Table D.11: Action execution steps in derived plans using CFP[TFD] for Blocks World problems.

Table D.12: Computation time to derive plans using CFP[TFD] for Blocks World problems.

Table D.13: Memory required to derive plans using CFP[TFD] for Blocks World problems.
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D.4 Detailed Results for CFP[COLIN] Applied to the Blocks World Problems

Table D.14: Temporal makespan of derived plans using CFP[COLIN] for Blocks World problems.

Table D.15: Action execution steps in derived plans using CFP[COLIN] for Blocks World problems.

Table D.16: Computation time to derive plans using CFP[COLIN] for Blocks World problems.

Table D.17: Memory required to derive plans using CFP[COLIN] for Blocks World problems.
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D.5 Detailed Results for RPCA[TFD] Applied to the Blocks World Problems

Table D.18: Temporal makespan of derived plans using RPCA[TFD] for Blocks World problems.

Table D.19: Action execution steps in derived plans using RPCA[TFD] for Blocks World problems.

Table D.20: Computation time to derive plans using RPCA[TFD] for Blocks World problems.

Table D.21: Memory required to derive plans using RPCA[TFD] for Blocks World problems.
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D.6 Detailed Results for RPCA[COLIN] Applied to the Blocks World Problems

Table D.22: Temporal makespan of derived plans using RPCA[COLIN] for Blocks World problems.

Table D.23: Action execution steps in derived plans using RPCA[COLIN] for Blocks World problems.

Table D.24: Computation time to derive plans using RPCA[COLIN] for Blocks World problems.

Table D.25: Memory required to derive plans using RPCA[COLIN] for Blocks World problems.
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D.7 Detailed Results for TF[TFD] Applied to the Blocks World Problems

Table D.26: Temporal makespan of derived plans using TF[TFD] for Blocks World problems.

Table D.27: Action execution steps in derived plans using TF[TFD] for Blocks World problems.

Table D.28: Computation time to derive plans using TF[TFD] for Blocks World problems.

Table D.29: Memory required to derive plans using TF[TFD] for Blocks World problems.
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D.8 Detailed Results for TF[COLIN] Applied to the Blocks World Problems

Table D.30: Temporal makespan of derived plans using TF[COLIN] for Blocks World problems.

Table D.31: Action execution steps in derived plans using TF[COLIN] for Blocks World problems.

Table D.32: Computation time to derive plans using TF[COLIN] for Blocks World problems.

Table D.33: Memory required to derive plans using TF[COLIN] for Blocks World problems.
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Appendix E

Detailed Zenotravel Results

This appendix presents the full results for the Zenotravel domain. Each page of results presents a single

metric for the problems solved by each of the tools using a single underlying planning algorithm. The results

are ordered from top to bottom of the page: Planning Alone, Coalition Formation then Planning, Relaxed

Plan Coalition Augmentation, Task Fusion. Each table has a heatmap overlay, ranging from better results in

green (lower values for all metrics) to worse results in red (higher values for all metrics), with specific values

presented in Table E.1. The overlay for time results ranges from 0 seconds (green) to 3600 seconds (red), and

the overlay for the memory results ranges from 0 GB (green) to 48 GB (red). The range for action executions

is from 430 (green) to 630 (red) and for makespan is from 800 (green) to 3700 (red).

Metric Green Red
Makespan 800 3700

Action Executions 430 630
Time 0 seconds 3600 seconds

Memory 0 GB 48 GB

Table E.1: Heatmap ranges for each metric in the Zenotravel domain
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E.1 Detailed Results for CFP[COLIN] Applied to the Zenotravel Problems

Table E.2: Temporal makespan of derived plans using CFP[COLIN] for Zenotravel problems.

Table E.3: Action execution steps in derived plans using CFP[COLIN] for Zenotravel problems.

Table E.4: Computation time to derive plans using CFP[COLIN] for Zenotravel problems.

Table E.5: Memory required to derive plans using CFP[COLIN] for Zenotravel problems.
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E.2 Detailed Results for TF[COLIN] Applied to the Zenotravel Problems

Table E.6: Temporal makespan of derived plans using TF[COLIN] for Zenotravel problems.

Table E.7: Action execution steps in derived plans using TF[COLIN] for Zenotravel problems.

Table E.8: Computation time to derive plans using TF[COLIN] for Zenotravel problems.

Table E.9: Memory required to derive plans using TF[COLIN] for Zenotravel problems.
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Dréo, J., Savéant, P., Schoenauer, M., and Vidal, V. (2011). Divide-and-Evolve: the marriage of Descartes
and Darwin. Proceedings of the 7th International Planning Competition, pages 29–30.

Durfee, E. H. and Lesser, V. R. (1991). Partial global planning: a coordination framework for distributed
hypothesis formation. IEEE Transactions on Systems, Man and Cybernetics, 21(5):1167–1183.

146



Ephrati, E. and Rosenschein, J. S. (1993). Multi-agent planning as the process of merging distributed sub-
plans. In Proceedings of the 12th International Workshop on Distributed Artificial Intelligence, pages
115–129.

Ephrati, E. and Rosenschein, J. S. (1994). Divide and conquer in multi-agent planning. In Proceedings of the
12th National Conference on Artificial Intelligence, volume 1, pages 375–380.

Eyerich, P., Keller, T., Aldinger, J., and Dornhege, C. (2014). Preferring preferred operators in temporal fast
downward. In International Planning Competition, pages 121–126.
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