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CHAPTER 1 
 
 

INTRODUCTION AND SPECIFIC AIMS 
 
 

Risk prediction models are ubiquitous across clinical specialties and domains1-7 These 
models estimate patient risk for diagnostic or prognostic outcomes based on clinical, 
demographic, social, and genomic risk factors.5, 8-10 These models may support patient and 
provider decision-making,11-13 assist in resource allocation,14 and adjust quality metrics for 
acuity.1, 5, 15 Use of predictive analytics for these tasks requires models that consistently deliver 
high quality predictions. With the increasingly widespread adoption of electronic health records 
and use of advanced modeling methods,1, 16-20 the role of clinical prediction models and our 
understanding of the challenges presented by the incorporation of predictive analytics into 
clinical care are rapidly evolving. One such challenge is deteriorating model performance, 
particularly in terms of calibration, as patient populations shift over time.6, 7, 21-24 In this study, we 
focus on understanding whether and how modeling methods affect the tendency of model 
calibration to deteriorate over time, with the goal of informing methodological recommendations, 
developing automated modeling surveillance frameworks, and future research. 

 
 

Motivation 
 
Predictive Analytics: An Evolving Role in Clinical Care 
 

Clinical prediction models have been developed for a broad set of clinical outcomes, 
including models for the prognosis and diagnosis of acute and chronic diseases,3, 25-28 hospital 
mortality,2 response to medical interventions,29-31 survival after cancer diagnosis,29, 32 hospital 
length of stay,33 and hospital readmission.4, 34 Applied prospectively, risk prediction models may 
support medical decision-making, quality benchmarking, and alignment of health systems with 
the Triple Aim framework by improving patient outcomes, reducing costs, and increasing patient 
satisfaction.1, 5, 7, 19, 35 Impact assessments using comparative study designs are necessary to 
determine whether the implementation of accurate prediction models result in such 
improvements for patients and healthcare organizations.5-7, 36, 37 Although such impact 
assessments are rare,5-7, 36, 37 the use of prediction models has been linked with reductions in 
antibiotic use;11 reductions in readmissions in patients with heart failure;14 increased prescription 
of antihypertensive and cholesterol-lowering medications among patients at high risk of 
cardiovascular disease;12 increased uptake of chemotherapy among patients with higher 
predicted benefit;13 and reduced disability, improved quality of life, and reduced costs among 
patients with low back pain.38, 39  

Historically, risk models relied on relatively few pieces of information, simple algorithms, 
and manual calculation.18, 35 However, as clinical data warehouses continue to expand with the 
adoption of electronic health records (EHRs), models are increasingly synthesizing a broad set 
of demographic, clinical, and, most recently, genetic risk factors.5, 9, 10, 19 When sufficient sample 
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sizes are available for model development,40-43 incorporating a wider array of risk factors that 
are in fact associated with the outcome of interest can enable modern prediction models to 
better characterize associations in the data by capturing more information, explaining more 
variability in the data, and avoiding some degree of omitted variable and misspecification bias.40 
Although additional predictors may not always offer additional explanatory power beyond 
existing predictors,9, 40 when such predictors do improve model fit, model users benefit more 
accurate predictions.  
 In addition to making available a broader set risk factors, the data warehouses 
underlying EHRs are increasing the volume of observations (e.g., patients and admissions) 
available for use in model development and validation. Larger samples sizes support the 
inclusion of more predictors, allow for more complex modeling approaches, and provide for 
more stable estimation.40, 41, 43-45 Some modeling techniques may require over 200 events per 
predictor for model development, while others fewer than 20.44 Substantial sample sizes may 
also be required to ensure sufficient information content for stable model validation, with 
simulations suggesting at least 10 events per variable be required.46 For complex models with 
many predictors and for models of rare outcomes, these recommendations can large sample 
sizes and necessitate the use of EHR data warehouses with their substantial data volumes.  

Thus a new generation of clinical prediction models are being developed that both 
incorporate a broader set of risk factors and leverage large EHR-based datasets to improve 
predictive accuracy. These models can provide personalized estimates of risk for individual 
patients that can be delivered in real-time within the EHR.1, 5, 18, 19, 21 Through the application of 
such models, clinical decision support (CDS) is evolving from rule-based to personalized, 
probability-based tools. These CDS tools support medical decision-making by synthesizing 
multi-dimensional data into risk estimates that providers can incorporate with their clinical 
experience.1, 5 Yet despite these growing opportunities for the development and deployment of 
advanced clinical prediction models, few clinical prediction models have been deployed to 
provide real-time risk prediction at the point-of-care.1, 5, 7, 36 Recognizing the disparity between 
model development and implementation efforts, Amarasingham et al1 proposed electronic 
health predictive analytics (e-HPA) systems. These information systems would access EHR 
data to develop, validate, and apply prediction models to enhance clinical care through real-time 
risk prediction. Ideally, such systems would automate much of the necessary data and model 
management in order to minimize requirements of analytical staffing resources. While technical, 
policy, and methodological challenges remain, e-HPA systems hold great promise to promote 
quality care by integrating risk prediction into clinical practice.  
 
 
Modeling Methods: Increasing Utilization of Machine Learning Models 
 

Risk modeling research has developed in two parallel fields, with biostatisticians tending 
to focus on classical regression methods and computer scientists and biomedical informaticists 
tending to advance machine learning methods.47, 48 Classical statistical regression techniques, 
such as logistic and Cox regression, have been widely used for clinical prediction.47-49 These 
parametric or semiparametric data modeling methods leverage subject matter knowledge to a 
priori select predictors and identify interactions, as well as determine the form of the relationship 
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between predictors and the outcome.17, 47, 49 While parametric methods are familiar, provide 
human-interpretable models, and may be applied to relatively small cohorts, misspecification of 
predictor effects may bias risk estimates and limit predictive performance.17, 47 Machine learning 
methods, on the other hand, use model-free algorithm-based approaches to learn relationships 
between variables and develop predictions without the need to pre-specify the form of predictor-
outcome associations or interactions between predictors. These computer science motivated 
modeling approaches may provide improved predictive accuracy by leveraging information 
within complex associations that are difficult to include in parametric models.16, 47, 49 However, 
while avoiding the problem of pre-specification, machine learning methods require careful 
decisions regarding model structure, potentially complicated tuning of multiple, are 
computationally complex, require large sample sizes (potentially 10x more events per variable 
than some regression models44), and are not directly interpretable (i.e., “black boxes”).17, 47, 50 
The computational and sample size limitations of machine learning methods can be readily 
overcome with modern computing resources and the availability of modeling cohorts from large 
EHR-based data warehouses. Similarly, while health care providers may raise concerns over 
predictions provided without explanatory information (such as that afforded by effect estimates 
from regression models), new methods such as such as locally interpretable model-agnostic 
explanations (LIME)51 are enabling the interpretation of machine learning models.51-55  

Overall, both regression and machine learning techniques have benefits and limitations 
for their use in clinical prediction modeling (see Table 1). Although machine learning 
approaches often report improved performance compared to model-based regression 
methods,56-58 both approaches may produce valid predictions47, 48, 59 and machine learning  
 
 
Table 1. General advantages and limitations of regression and machine learning models  
Issue Regression Machine Learning 

Model tuning Not required (generally)a Required, but complexity  
varies by method 

Pre-specification of effects Required Not required 

Complex interactions Only included if  
pre-specified  

Automatically incorporated, 
including high order interactions 

Sample size requirements Relatively small  
sample sizes required 

Data hungry, require  
larger sample sizes 

Computational complexity Simple, fast Complex, possibly  
time-consuming 

Familiarity Familiar Less familiar, although 
increasingly common 

Interpretability Easily interpreted 
coefficients characterizing 

associations 

Not innately interpretable,  
some additional steps  

may allow interpretation 
a Penalized regressions require some degree of tuning  
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methods do not provide superior performance in all cases.60-64 Thus, no single approach will 
provide superior performance and utility in all circumstances.47, 52 EHR-integrated predictive 
analytics enables the use of both regression and machine learning approaches by both 
providing high-dimensional datasets for model development and automating calculation of risk 
predictions from complex models.1, 16-19 As both regression and machine learning methods may 
provide valid, clinically useful risk estimates, model developers must weigh the advantages and 
limitations of available approaches when determining which technique is most appropriate for a 
given risk prediction problem.47 Thus, recommendations for the development and 
implementation of e-HPA systems must address models constructed through either approach 
and provide guidance on how modeling methods may impact system design. 
 
 
Model Performance: The Importance of Calibration and Concern of Performance Drift 
 

There are two aspects of model performance – discrimination (i.e., the ability to separate 
populations with and without the outcome or to correctly rank-order observations by risk) and 
calibration (i.e., the agreement between individual predicted and true probabilities).65 While 
discrimination focuses on how commonly models assign higher probabilities to observations 
with the outcome than observations without the outcome, it does not consider whether those 
probabilities are well-aligned with observed outcome rates (i.e., calibrated). Thus, a model may 
perform well based on discrimination measures, while suffering substantial miscalibration. For 
example, predictions of 10% and 50% for a patient who does not go on to experience an 
outcome and one that does, respectively, are discriminative but not well-calibrated if the 
observed outcome rates among similar patients are 1% and 5%, respectively. Although both 
discrimination and calibration are important facets of model performance, they may not be 
equally important in all contexts.23, 66 Prediction models with inferior calibration but high 
discriminatory ability may be sufficient for applications aiming to dichotomize patients into high 
and low riskgroups. However, model calibration is at least as important as discrimination when 
individual risk predictions are needed, as is frequently the case in risk-adjusted quality profiling 
and some types of clinical decision support tools. At the bedside, using predictions for patient-
level decision-making requires well-calibrated models that provide individualized predicted 
probabilities of an outcome that are well-aligned with the true probability the patient will 
experience the outcome.1, 2, 7, 21, 23, 66  

Use cases presenting personalized predicted probabilities in support of decision-making 
depend critically upon model exhibiting and maintaining high levels of calibration.1, 2, 7, 21, 23, 66 
Misleading patient-level risk estimates produced by miscalibrated models may lead to over-
confidence, inappropriately alter treatment choices, or misappropriate resources.1, 23, 67, 68 
Although current recommendations emphasize the importance of calibration,22, 65, 67, 68 validation 
studies often focus on discrimination and neglect to report calibration.32, 69, 70 Recent advances 
in methods for characterizing model calibration further emphasize the clinical importance of 
aligning predicted probabilities with true risk across the range of patient risk.71, 72 Decision-
analysis of models adhering to stringent measures of calibration have shown such models to 
have a net benefit greater than or equal to default treat-all or treat-none approaches. Less 
stringently calibrated models did not provide the same assurance. Thus, strict calibration 
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assessments can ensure a model will not be harmful to decision-making, although such well-
calibrated models are not necessarily helpful either.71  

In addition to requiring special emphasis on calibration, the implementation of 
probability-based CDS tools is complicated by the tendency of model performance, particularly 
in terms to calibration, to drift over time.5, 6, 21-23, 66 Performance drift results from differences that 
arise over time between the population on which the model was developed and the population 
on which the model is applied. Referred to as data shift, changes in the population may take the 
form of shifts in the underlying outcome rate, patient case mix, or associations between 
predictors and outcomes.6, 7, 23, 73 These shifts can be the result of changes in a health care 
system’s patient population, treatment and diagnosis patterns, or variable measurement 
methods.5, 6, 21 As clinical prediction models become incorporated into CDS tools and e-HPA 
systems, understanding how model accuracy changes over time is essential for interpreting risk 
estimates and developing and maintaining user confidence.  
 
 
Model Updating: Limited Guidance for Efficient Recalibration 
 

Inadequate performance of clinical prediction models commonly prompts researchers to 
develop entirely new models.7, 21 As a result, many prediction models are published for the 
same outcome.6 There are over 80 and 100 models of prognosis after stroke and neurological 
trauma, respectively.7 Numerous competing models complicate broad implementation and 
impact assessment of prediction models. Additionally, this approach neglects information from 
previous model development efforts and commonly utilizes smaller datasets than the original 
model.6, 7, 21 Model updating, on the other hand, preserves and extends knowledge by 
incorporating new data into an existing model.7, 21 Updating methods vary from intercept 
correction to adjustment of coefficients and inclusion of new predictors.6, 7, 21 These methods 
vary in complexity, data requirements, and analytical staffing resource demand. The frequency 
of new model development rather than model updating may be partially due to a lack of clear 
recommendations regarding model updating, including selection between competing updating 
approaches under varying circumstances and modeling frameworks.1, 21, 22  

In order for personalized predicted probabilities to be useful in clinical care, e-HPA 
systems must provide accurate, reliable risk estimates. e-HPA systems must thus enable model 
updating in response to data shifts that result performance drift beyond acceptable levels. 
Current model updating protocols often call for regularly scheduled model revision on an annual 
or biannual basis, with little or no attention to model performance between scheduled 
maintenance periods. Despite increasing use of machine learning methods, there may not be 
sufficient evidence regarding whether models developed using regression and machine learning 
methods are differentially susceptible or robust to various forms of data shift.74 A deeper 
understanding the impact of data shifts on model performance and whether modeling methods 
affect this relationship would support the development of efficient and effective model 
maintenance components within e-HPA systems.  
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Central Objective and Specific Aims 
 

Our central objective is to support the adoption of clinical risk prediction and e-HPA 
systems by advancing research into how performance drift, particularly in terms of calibration, is 
influenced by modeling methods. The success and broad adoption of probability-based CDS 
and e-HPA systems will require delivery of consistently high quality risk predictions. 
Acknowledging the continued importance of both regression and machine learning approaches 
in clinical prediction, we seek to understand whether modeling methods impact the long-term 
accuracy and consistency of clinical prediction models implemented in evolving clinical 
environments and changing patient populations. Our findings may advise e-HPA developers 
and managers as they select modeling approaches and plan model updating strategies tailored 
to each model’s strengths and limitations. This understanding will lay the ground work for the 
design of automated EHR-embedded model performance surveillance tools that support 
sustained model performance and impact on patient and health system outcomes. We will 
pursue the following specific aims. 
 
 
Aim 1: Characterize existing knowledge of performance drift in clinical settings 
 

We will conduct a literature review to characterize the state of understanding 
surrounding prediction model performance over time for models based on regression and 
machine learning techniques. With particular emphasis on temporal calibration drift, this review 
will synthesize the available evidence and highlight gaps in the knowledge needed to inform 
model updating recommendations. 

 
 
Aim 2: Compare temporal performance of prediction models for clinical outcomes using 
common regression and machine learning methods 
 

We will model two binary clinical outcomes using ordinary logistic regression, penalized 
logistic regression (i.e., L-1, L-2, and L-1/L-2 penalized regression), and common machine 
learning methods (i.e., random forests, neural networks, and naïve Bayes). We will assess each 
model’s accuracy, discrimination, and calibration over the seven to nine years after model 
development, comparing temporal performance trajectories across methods.  

 
 
Aim 3: Link temporal shifts in patient populations with performance drift to identify 
drivers of performance drift across models 
 
 To inform modeling and recalibration best practices in this domain, we will study how 
patient and hospital-level characteristics shift over time to influence model performance. We will 
characterize the forms and extents of data shifts occurring in the same patient populations on 
which we observed temporal model performance under Specific Aim 2. Using multiple 
approaches, we will explore event rate, case mix, and predictor-outcome association shifts, 
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linking each with patterns in model accuracy, discrimination, and calibration to compare the 
susceptibility of modeling methods to each form of data shift. 
 
 

While we expect all models to experience performance drift in the presence of 
substantial data shifts in the patient population, in cases of less dramatic data shifts, modeling 
methods can be expected to react to variable degrees. As machine learning methods may more 
fully characterize the complex relationships within clinical data than regression methods by 
capturing flexible associations and complex interactions,16, 17, 47, 49 these methods may be less 
susceptible to performance drift and certain forms of data shift. We anticipate that models with 
intercepts will immediately systematically over or underpredict as prevalence of an outcome 
changes in the population (i.e., event rate shift occurs). However, since random forest models 
do not rely on an initial intercept but instead generate a prediction based on the data in leaf 
nodes particular to the observation of interest, prevalence changes at the population-level may 
not impact the accuracy of all observations to the same degree and thereby retain model 
performance under some degree of event rate shift. As regression models require pre-specified 
associations, these models likely begin with some level of misspecified associations, so we 
would may expect shifting predictor-outcome associations to exacerbate these errors and 
regression models to be particularly susceptible to this form of data shift. Similarly, 
oversimplified predictor effects or omitted key interactions in regression models may result in 
clusters of patients for whom these models do not perform especially well, and case mix shift 
may have a larger impact on their performance compared to machine learning models which are 
able to learn complex associations specific to many patient clusters. Therefore, we hypothesize 
that models based on machine learning techniques will retain performance or experience a 
smaller magnitude of deterioration in performance compared to models based on regression 
technique. Further, we hypothesize that differences in performance drift by modeling method will 
result from each form of data shift, with event rate having a smaller influence on random forest 
models, and machine learning methods in general being less susceptible than regression 
methods to case mix and predictor-outcome association shifts.
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CHAPTER 2 
 
 

LITERATURE REVIEW 
 
 

In order to characterize the current evidence, we conducted a systematic review of the 
literature documenting the performance of clinical prediction models over time, with an 
emphasis on model calibration. Our aim was to characterize observed patterns in temporal 
calibration of clinical prediction models; evaluate the types and extents of data shift documented 
in the literature and its impact on model performance; and synthesize evidence regarding 
whether different modeling methods are equally robust or susceptible to data shifts. 
 
 

Search Strategy and Evidence Assessment Methods 
 
Data Sources and Searches 

 
Using both MeSH terms and keywords, we identified potentially relevant articles in the 

Embase 1974 through May 20, 2015 and MEDLINE In-Process & Other Non-Indexed Citations 
through May 22, 2015 databases. Our search strategy captured all citations with key concepts 
in the title or abstract, including terms describing prediction modeling, modeling methods, model 
performance, and temporal validation. We required all citations to mention calibration or 
recalibration in the title or abstract, as model calibration is particularly important for clinical risk 
estimation. We subsequently excluded animal studies and non-English language publications, 
as well as undesirable publication formats (e.g., case reports and commentaries) and studies in 
domains outside the scope of this review that were frequently captured in our inclusion searches 
(e.g., environmental monitoring and analytical chemistry). A detailed description our search 
protocol is provided in Table 2. We also reviewed the reference lists of eligible studies for 
relevant studies. 
 

 
Study Selection 

 
We included original research studies that conducted repeated temporal validations of 

clinical risk prediction models within a single study cohort. We required studies to include at 
least 500 patients or cases presenting over at least 2 years. For studies developing a new 
prediction model, we required the training and validation datasets to be temporally split and 
applied the sample size and timeframe restrictions to the validation dataset only. As we are 
interested in model performance over time, we included articles assessing model validation in at 
least two non-overlapping time periods (e.g., annually or quarterly). Studies reporting only 
discrimination in each temporal validation cohort were excluded, and thus all included studies 
reported model calibration or recalibrated model coefficients for sequential validation cohorts. 
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We did not limit our search by clinical domain, modeling methods, or particular discrimination 
and calibration metrics. 

Two reviewers independently assessed the abstracts of all publications identified from 
Embase and MEDLINE for eligibility. We retrieved full-text articles for publications meeting the 
inclusion/exclusion criteria based on either reviewer’s determination. Two independent 
reviewers evaluated each full text article against the inclusion/exclusion criteria and discussed 
any disagreements until consensus was reached.  

 
 

Table 2. Detailed literature review search strings 
Query 
number Search string 

1 

exp Multivariate Analysis/ or exp Models, Statistical/ or exp Data Mining/ or exp 
Survival Analysis/ or exp Regression Analysis/ or exp Artificial Intelligence/ or exp 
"Neural Networks (Computer)"/ or exp Support Vector Machines/ or 
multivariate.ti,ab. or univariate.ti,ab. or logistic.ti,ab. or regression.ti,ab. or 
"machine learning".ti,ab. or "statistical learning".ti,ab. or "supervised learning".ti,ab. 
or "random forest*".ti,ab. or "naive bayes".ti,ab. or "support vector machine*".ti,ab. 
or "artificial neural network*".ti,ab. or "decision tree*".ti,ab. or "prognostic 
model*".ti,ab or "predictive analy*".ti,ab. or prediction.ti,ab. or "decision 
curve*".ti,ab. or "nomogram*".ti,ab. 

2 

exp Prognosis/ or "prognostic".ti,ab. or "prediction rule*".ti,ab. or "clinical 
prediction*".ti,ab. or "predicti* factor*".ti,ab. or "clinical predictor*".ti,ab. or 
predictive.ti,ab. or "risk prediction*".ti,ab. or discrimination.ti,ab. or calibrat*.ti,ab. or 
recalibrat*.ti,ab. or "model updating".ti,ab. or validation.ti,ab. or "case mix".ti,ab. or 
"case-mix".ti,ab. 

3 "calibrat*".ti,ab. or "recalibrat*".ti,ab. 

4 
prospective.ti,ab or "external* validat*".ti,ab or temporal.ti,ab or "repeated 
validation".ti,ab or "repeated recalibration".ti,ab or updating.ti,ab or "calibration 
drift".ti,ab or "local calibration".ti,ab or "over time".ti,ab. 

5 1 and 2 and 3 and 4 
6 exp animal/ 
7 exp human/ 
8 6 not 7 

9 
"Biophysics, Bioengineering and Medical Instrumentation".ec. or chemistry.sh. or 
chemometric.ti,ab. or "instrumentation".sh. or "environmental monitoring".sh. or 
"Clinical and Experimental Biochemistry".ec. or "land use".sh. 

10 
(case reports or letter or comment or editorial or practice guideline or historical 
article or news or newspaper article or legal cases).pt. 

11 8 or 9 or 10 
12 5 not 11 
13 12 and English.la 
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Data Extraction and Quality Assessment 
 

We extracted key information on the clinical population, modeling and validation 
approaches, and temporal validation results. Information was extracted from studies included in 
the review and any associated publications describing original model development. For both the 
derivation and temporal validation cohorts, we collected information on sample size, clinical 
setting, geographic setting, timeframe of enrollment, variable definitions, patient population 
characteristics, and inclusion/exclusion criteria. In terms of methodology, we extracted 
information on variable selection, modeling approach, internal validation strategy, and model 
updating techniques. All repeatedly measured discrimination metrics, calibration metrics, and 
recalibrated model coefficients were recorded. In addition, we recorded original performance 
metrics for each model. When key information was presented graphically, we requested more 
detailed information from study authors and estimated values from figures if the authors were 
unable to provide supplemental information. 

Comparing the performance of a prediction model in different populations can be 
complicated by differences in data definitions. Since disparate definitions may impact model 
performance systematically or interact with data shifts, any discrepancies between the 
development cohorts and the temporal validation studies included in our review may limit our 
ability to interpret linkages between data and performance drift over time. We therefore focus 
our quality assessment of each temporal validation study based on how well variable definitions 
and inclusions/exclusion criteria coordinated with those used to define the derivation cohort.  
 
 
Data Synthesis and Analysis 
 

We synthesized findings across studies graphically and narratively. For each study, we 
calculated the time elapsed from the end of the enrollment period in the models’ development or 
local-update cohort to the end of the enrollment period in each validation time step. This 
provided a common basis for assessing temporal performance across studies.  

We focused our graphical analysis on performance metrics reported in the majority of 
studies. Discrimination assesses the ability of a model to distinguish events from non-events or 
correctly rank-order observations by risk. We focused our assessment of temporal model 
discrimination on the area under the receiver operating characteristics curve (AUC). AUC 
provides an assessment of the probability that an observation with the outcome is assigned a 
higher risk estimate than an observation without the outcome. AUC ranges from 0 to 1, with 0.5 
indicating an uninformative model and 1.0 indicating perfect discrimination.75 Calibration, the 
agreement between observed and predicted probabilities, is summarized by the observed to 
expected ratio (O:E), a generalization of the standardized mortality ratio constructed by 
comparing the overall outcome rate with the mean predicted probability. O:E ratio values of 1 
indicate good calibration, with perfect agreement between observed probability and mean 
predicted probability. Values less than 1 indicate overprediction of risk and values greater than 1 
indicate underprediction.24 Where available, we plotted O:E ratios for both original and 
recalibrated models to assess the effect of repeated model updating.  
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We narratively evaluated the connection between data shift and temporal model 
performance as most studies did not provide detailed information characterizing the clinical 
population at each validation time step.  
 
 

Review Results 
 
Selected Literature 
 

Our search returned 1,671 references, with 35 additional references extracted from 
references of eligible studies. Figure 1 details each references’ disposition. Excluding 173 
duplicates, 1,534 references were available for abstract review, during which 879 were 
excluded. We reviewed full texts for the remaining 655 references, of which 16 met all inclusion 
criteria. An overview of the 16 studies eligible for review is presented in Table 3.  

 
 

Figure 1. Flow chart of article disposition 
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Table 3. Characteristics of studies selected for literature review 
      Temporal validation sample 

Study Model 
Local 

updating Outcome Setting Timeframe N 

Time since  
derivation/ 

update  
Temporal 
splitting 

Cook 
(2002) 76 

APACHE-III  
77 

Proprietary 
adjustments  

Hospital 
mortality among 
ICU admissions 

Brisbane, 
Queensland, 
Australia; 1 
hospital 

Jan. 1, 1995  
to Jan. 1, 
2000 

5,278 5.2 - 10.2 yrs 
* 

1-yr 
periods  

Harrison 
(2006) 78 

APACHE-III; 
APACHE-II 
79; SAPS-II 
80; MPM-II 81 

Refit on data 
from Dec. 
1995 – Dec. 
1999 
(n=65,427) 

Hospital 
mortality among 
ICU admissions 

England, 
Wales, and 
Northern 
Ireland; 163 
ICUs 

Jan. 2000 to 
Aug. 2003 

75,679 0 – 3.6 yrs Two 1-yr 
periods 
and one 
1.6-yr 
period 

Harrison 
(2014) 82 

APACHE-II 
79 

n/a Hospital 
mortality among 
ICU admissions 

Scotland; 24 
ICUs 

Jan. 1, 2007 
to Dec. 31, 
2009 

22,700 25 – 27 yrs 1-yr 
periods 

Hekmat 
(2005) 83 

APACHE-II; 
MODS 84; 
CASUS 83 

n/a 30-day mortality 
among ICU 
admissions of 
cardiac surgery 
patients 
undergoing 
CPB 

Cologne, 
Germany; 1 
ICU 

APACHE-II 
and MODS: 
Apr. 1999 to 
May 2001; 
CASUS: May 
2000 to May 
2001 and 
Feb. 2002 to 
Feb. 2003 

APACHE-
II and 
MODS: 
1,441; 
CASUS: 
2,161 

APACHE-II: 
16.3 - 18.3 
yrs; MODS: 
10.1 - 12.2 
yrs; CASUS: 
0 - 2.7 yrs 

1-yr 
periods 

Hekmat 
(2010) 85 

APACHE-II; 
MODS; † 
CASUS 

n/a 30-day mortality 
among ICU 
admissions of 
cardiac surgery 
patients 
undergoing 
CPB 

Cologne, 
Germany; 1 
ICU 

CASUS: May 
2000 to May 
2001 and 
Feb. 2002 to 
Oct. 2005 

CASUS: 
4,858 

CASUS: 0 - 
5.4 yrs 

CASUS: 1-
yr period 
and 3.5-yr 
period 

Hickey 
(2013a) 86 

Logistic 
EuroSCORE 
87 

Multiple 
repeated 
updating 
methods  

Hospital 
mortality after 
cardiac surgery 

England and 
Wales; 37 
hospitals 

Apr.1, 2001 
to Mar. 31, 
2011 

316,632 5.3 - 15.3 yrs Varying  
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Table 3. (continued) Characteristics of studies selected for literature review 
   Temporal validation sample 

Study Model 
Local 

updating Outcome Setting Timeframe N 

Time since  
derivation/ 

update 
Temporal 
splitting 

Hickey 
(2013b) 23 

Logistic 
EuroSCORE 

n/a Hospital 
mortality after 
cardiac surgery 

England and 
Wales; 37 
hospitals 

Apr. 1, 2001 
– Mar. 31, 
2011 

317,292 5.3 - 15.3 yrs 3-mth 
periods 

Madan 
(2011) 88 

study-
specific 
model 

n/a Mortality within 
30 days of 
surgery or 
within the same 
hospital 
admission after 
cardiac surgery 
with CPB 

Houston, 
Texas, United 
States (single 
center) 

Jan. 1, 2000 
to Aug. 27, 
2007 

7,160 0 - 7.6 yrs One 5-yr 
period and 
one 2.6-yr 
period 

McCormick 
(2012) 89 

study-
specific 
model 

Dynamic 
logistic 
regression 
and dynamic 
model 
averaging 

Laparoscopic 
appendectomy 
among pediatric 
patients 

United States; 
2,449 
hospitals 

1996-2002 72,189 No elapsed 
time 

1-mth 
periods 

Mikkelsen 
(2012) 90 

Logistic 
EuroSCORE 

n/a 30-day mortality 
after cardiac 
surgery 

Denmark; 4 
cardiac 
centers 

Jan. 1, 1999 
to Mar. 31, 
2010 

21,664 3.1 - 14.3 yrs 2-yr 
periods 

Minne 
(2012a) 24 

rSAPS-II 
(logistic) 91 

Original and 
updated 
each time 
step ‡ 

Hospital 
mortality among 
elderly ICU 
admissions 

The 
Netherlands; 
21 ICUs 

Jan. 2004 to 
July 2009 

12,143 0 - 5.6 yrs 30 time 
steps of 
equal 
sample 
size 

Minne 
(2012b) 92 

rSAPS-II 
(tree) 91 

Original and 
updated 
each time 
step ‡ 

Hospital 
mortality among 
elderly ICU 
admissions 

The 
Netherlands 

Jan. 2004 to 
July 2009 

12,143 0 - 5.6 yrs 30 time 
steps of 
equal 
sample 
size 
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Table 3. (continued) Characteristics of studies selected for literature review 
   Temporal validation sample 

Study Model 
Local 

updating Outcome Setting Timeframe N 

Time since  
derivation/ 

update 
Temporal 
splitting 

Osswald 
(2009) 93 

Logistic and 
additive 
EuroSCORE
87, 94 

n/a 30-day mortality 
after aortic 
valve 
replacement 

Heidelberg, 
Germany; 1 
hospital 

Jan. 1, 1994 
to Mar. 31, 
2006 

1,545 1.9 - 10.3 yrs 4-yr 
periods 

Paul (2012) 
95 

APACHE-III 
(version j) 

n/a Hospital 
mortality among 
ICU admissions 

Austrialia and 
New Zealand 

Jan. 1, 2000 
to Dec. 31, 
2009 

558,585 10.2 - 20.2 
yrs * 

2-yr 
periods 

Rogers 
(2012) 96 

TRISS 97 n/a Hospital 
mortality after 
admission with 
traumatic injury 

Pennsylvania, 
United States 

1990-2010 408,489 2 - 23 yrs 1-yr 
periods 

Siregar 
(2014) § 46 

Logistic 
EuroSCORE 

Multiple 
repeated 
updating 
methods  

Hospital 
mortality after 
cardiac surgery 

The 
Netherlands 

2007-2012 95,240 11 - 17 yrs Varying 
time 
windows 

* Time since end of APACHE-III development dataset since timing of updating dataset unknown. 
† APACHE-II and MODS validations are identical to those reported in Hekmat (2005) 
‡ First-level recalibration of logistic models involves fitting a new logistic model with original model's log odds as the only predictor. 
First-level recalibration for the tree-based model utilized the same tree structure, but adjusted the mortality prediction at each leaf 
based on outcomes of all patients in each leaf in the updating cohort. 
§ Abstract only 
Abbreviations: CPB – cardiopulmonary bypass; ICU – intensive care unit 
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Mortality after cardiac surgery or ICU admission were the most common clinical 
outcomes predicted, considered in eight and six studies, respectively. Mortality after traumatic 
injury and type of appendectomy were the outcome in one study each. Two studies developed 
and temporally validated new models; 13 studies temporally validated an existing model or 
locally-updated version of an existing model (one study took both approaches). Derivation 
details for the original models are included in Table 4, and local model updating, if applicable, is 
noted in Table 3. Four studies reported the performance of multiple models within the same 
validation dataset. 

We identified studies in European, North American, and Australian hospitals. Five 
studies (two of which were related) collected data at a single institution, whereas the remaining 
studies leveraged regional, national, or international datasets. The smallest dataset included 
1,441 observations and the largest 558,585.  

We identified several related studies. Two articles by Minne et al24, 92 utilized the same 
validation cohort to explore temporal performance of parallel models based on different 
development methods. Two articles from Hickey et al23, 86 relied on the same dataset to support 
different approaches to understanding temporal performance. Overlapping validations of the 
APACHE-II and MODS models were presented in two articles by Hekmat et al.83, 85 We thus 
considered the results presented in their 2005 article for these models, and extracted results for 
the CASUS model from both studies. 

 
 

Quality Assessment 
 

In addition to the temporal validation details presented in Table 3, model development 
details are presented in Table 4. Four studies evaluated temporal performance in cohorts 
directly linked to the model development data.  In these cases, data definitions (both outcome 
and covariate), missing value processing, and inclusion/exclusion criteria were identical in 
derivation and validation cohorts. We assessed the remaining eleven studies for quality based 
on coordination of variable definitions and inclusion/exclusion criteria with those used to define 
the derivation cohort. 
Although few studies provided detailed definitions of model covariates, data collection methods 
suggested definitions corresponded with those used during model development.  Eight studies 
utilized registry data on which the relevant published risk scores are routinely calculated. The 
four studies using study-specific data to validate existing models noted adherence to variable 
definitions reported in the original publication.  Consistent with methods used for model 
development, missing covariate data was generally assumed to be normal. Rogers et al 96 
utilized complete case analysis; we were unable to determine whether this strategy was used 
for TRISS development. 

The outcome definitions in our reviewed studies were not always consistent with those 
used for model development. Two studies applied original outcome definitions. Hekmat et al 83, 

85 assessed the ability of the APACHE-II and MODS models to predict 30-day mortality among 
ICU admissions after cardiac surgery, whereas the models were originally developed for 
hospital and ICU mortality, respectively, without the 30-day limit.79, 84 The EuroSCORE predicts 
mortality within 30-days post-cardiac surgery or within the same hospital stay.94 In their 
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Table 4. Modeling methods and derivation/internal validation cohort characteristics for risk prediction models assessed in studies 
included in literature review 
          

 
Development methods 

Model 
Original 
article Outcome Setting Timeframe N Model 

Variable 
selection 

Internal 
validation 

APACHE-II Knaus et al. 
1985 79  

Hospital mortality 
among ICU 
admissions 

United States; 
19 ICUs from 
13 hospitals 

1982 (one 
hospital 1979-
1981) 

5030 Logistic 
regression 

Domain 
knowledge 

No formal 
validation 

APACHE-III Knaus et al. 
1991 77 

Hospital mortality 
among ICU 
admissions 

United States; 
42 ICUs from 
40 hospitals 

May 1988 to 
November 
1989 

15680 
(7840/ 
7840) 

Logistic 
regression  

Domain 
knowledge 

Random 
50:50 data 
splitting 

CASUS Hekmat et 
al. 2005 83 

30-day mortality 
after cardiac 
surgery with CPB 

Cologne, 
Germany; 1 
ICU 

April 1999 to 
April 2000 

384 Logistic 
regression 

Filtering 
based on 
univariate 
tests 

Temporal 
data-splittinga 

EuroSCORE 
(additive and 
logistic 
versions) 

Nashef et 
al. 1999 94 
and Roques 
et al. 2003 
87 

Mortality within 30 
days of surgery or 
within the same 
hospital stay after 
cardiac surgery 
with CPB 

8 European 
countries; 128 
medical 
centers 

September-
November 
1995 

14799 
(13302 / 

1497) 

Logistic 
regression  

Filtering 
based on 
univariate 
tests followed 
by backward 
selection 

Random 
90:10 data-
splitting 

MODS Marshall et 
al 1995 84 

ICU mortality Halifax, NS, 
Canada; 1 
ICU 

May 1988 to 
February 1990 

692 (336 
/ 356) 

Logistic 
regression 

Literature 
review 

Temporal 
data-splitting 
(internal 
validation: 
March 1989-
February 
1990) 
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Table 4. (continued) Modeling methods and derivation/internal validation cohort characteristics for risk prediction models assessed 
in studies included in literature review 
          

 
Development methods 

Model 
Original 
article Outcome Setting Timeframe N Model 

Variable 
selection 

Internal 
validation 

MPM-II Lemeshow 
et al. 1993 
81 

Hospital mortality 
among ICU 
admissions 

Europe, North 
America; 143 
ICUs 

Dataset I: April 
17, 1989 to 
May 10, 1991; 
Dataset II: 
September 30, 
1991 to 
December 27, 
1991 

19124 
(12610 / 

6514) 

Logistic 
regression 

Filtering 
based on 
univariate 
tests followed 
by backward 
selection 

Temporal 
data-splitting 
for dataset I 
(September 
1990-May 
1991 reserved 
for validation) 
and random 
65:35 data-
splitting for 
dataset II 

rSAPS-II - 
logistic 

de Rooji et 
al. 2007 91 

Hospital mortality 
among eldery ICU 
admissions 

The 
Netherlands; 
21 hosptials 

January 1997 
to December 
2003 

6867 
(4578 / 
2289) 

Logistic 
regression 
(refit SAPS-II 
model in 
elderly 
subpopulatio
n) 

All SAPS-II 
variables 
included 

Random 
66:33 data-
splitting 

rSAPS-II - tree de Rooji et 
al. 2007 91 

Hospital mortality 
among eldery ICU 
admissions 

The 
Netherlands; 
21 hosptials 

January 1997 
to December 
2003 

6867 
(4578 / 
2289) 

Recursive 
partitioning 
analysis 

All SAPS-II 
variables 
included; Tree 
pruned with 
10-fold cross-
validation 

Random 
66:33 data-
splitting 

SAPS-II Le Gall et 
al. 1993 80 

Hospital mortality 
among ICU 
admissions 

Europe, North 
America; 137 
ICUs 

September 30, 
1991 to 
December 27, 
1991 

12997 
(8369 / 
4628) 

Logistic 
regression 

Filtering 
based on 
univariate 
tests 

Random 
65:35 data-
splitting 
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Table 4. (continued) Modeling methods and derivation/internal validation cohort characteristics for risk prediction models assessed 
in studies included in literature review 
          

 
Development methods 

Model 
Original 
article Outcome Setting Timeframe N Model 

Variable 
selection 

Internal 
validation 

TRISS Champion 
et al. 1995 
97 

Hospital mortality 
after traumatic 
injury 

United States 
and Canada; 
51 institutions 

October 1982-
1987 

23177 Logistic 
regression 

unknown unknown 

Madan 2011 - 
study-specific 
model 

Madan et al. 
2011 88 

Mortality within 30 
days of surgery or 
within the same 
hospital stay after 
cardiac surgery 
with 
cardiopulmonary 
bypass 

Houston, 
Texas, United 
States (single 
center) 

January 1, 
1993 to 
December 31, 
1999 

8959 Logistic 
regression 

Forward 
selection 

Temporal 
splitting * 

Model for 
pediatric 
appendectomy 
type  

Hagendorf 
et al. 2007 
98 

Laproscopic rather 
than open 
appendectomy 
among pediatric 
patients 

United States 1996 – 2002 72,189 Logistic 
regression 

Backward 
selection 

N/A 

* Temporal splitting for initial model validation included data used for the repeated temporal validation cohorts considered in our 
review. In these cases, the time frame and sample size of the derivation cohort only is reported here. 

Abbreviations: CPB – cardiopulmonary bypass; ICU – intensive care unit 
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validations of the EuroSCORE, Mikkelsen et al 90 and Osswald et al 93 defined the outcome as 
mortality within 30 days (eliminating deaths occurring during the hospital stay but more than 30-
days after surgery), whilst Hickey et al 23, 86 and Siregar et al 46 defined the outcome as hospital 
mortality (eliminating deaths occurring within 30-days but after discharge).  

Detailed inclusion/exclusion criteria for each study and the development cohorts of 
existing models are provided in Table 5. Data restrictions generally followed similar patterns to 
those applied during model development. Osswald et al restricted their analysis to patients 
receiving primary isolated aortic valve replacement,93 in contrast to the EuroSCORE which was 
developed for all cardiac surgeries with cardiopulmonary bypass.94 Hekmat et al 83, 85 restricted 
to ICU admissions after cardiac surgery rather to the general ICU admissions on which the 
APACHE-II and MODS models were developed.79, 84 
 
 
Table 5. Comparison of population exclusion criteria between model development and temporal 
validation studies in literature review 
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APACHE-II 79  X     X   16  8     
Hekmat 
(2005, 2010) 
83, 85 

  X       18    
   

Harrison 
(2006) 78 X X     X X  16  4  X X 

Missing outcome, APACHE score, 
admission type, or ventilation 
information for PaO2/fraction of 
inspired oxygen ratio 

Harrison 
(2014) 82       X   16  4  X  

Flagged as “Excluded from 
severity of illness scoring”; Missing 
outcome, age, admission reason 
or location. 

APACHE-III 77  X    X X X  16  4     
Cook (2002) 
76 X     X X   16  4  X   

Harrison 
(2006) 78 X X     X X  16  4  X X 

Missing outcome, APACHE score, 
admission type, or ventilation 
information for PaO2/fraction of 
inspired oxygen ratio 

Paul (2012) 95 

         16  4  X X 

Missing APACHE-III score or 
outcome; CABG cases prior to 
2007 
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Table 5. (continued) Comparison of population exclusion criteria between model development 
and temporal validation studies in literature review 
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Other 
CASUS 83   X       18  24     
Hekmat 
(2005, 2010) 
83, 85   X       18      

 

EuroSCORE 
94   X             

Excluded at center-level if >99% 
missing (4 centers excluded) 

Hickey 
(2013a) 86   X             

Missing procedure date, missing 
outcome, and within admission re-
do procedures 

Mikkelsen 
(2012) 90   X             Missing EuroSCORE 

Siregar 
(2014) 46   X              

Hickey 
(2013b) 23 

  X    X         

Missing procedure date, missing 
outcome, and within admission re-
do procedures.  Traumas and 
ventilator assisted device 
procedures. 

Osswald 
(2009) 93   X      X       

 

MODS 84            24     
Hekmat 
(2005, 2010) 
83, 85 

  X       18      
 

MPM-II 81 X    X X X   18    X   
Harrison 
(2006) 78 X X     X X  16  4  X X 

Missing outcome, APACHE score, 
admission type, or ventilation 
information for PaO2/fraction of 
inspired oxygen ratio 

rSAPS-II 91          80      Missing admission type or SAPS-II 
score 

Minne 
(2012a, 
2012b) 24, 92 

         80      
Missing admission type or SAPS-II 
score 

SAPS-II 80 

X    X X X   18      

Missing admission type or 
ventilation information for 
PaO2/fraction of inspired oxygen 
ratio 

Harrison 
(2006) 78 X X     X X  16  4  X X 

Missing outcome, APACHE score, 
admission type, or ventilation 
information for PaO2/fraction of 
inspired oxygen ratio 
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Table 5. (continued) Comparison of population exclusion criteria between model development 
and temporal validation studies in literature review 
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Other 
TRISS 97 

         15      
Other than penetrating or blunt 
trauma 

Rogers 
(2012) 96 

         16   X   

Other than penetrating or blunt 
trauma; Patients who received 
paralytic agents and were 
recorded as having a respiratory 
rate of zero 

Madan (2011) 
88 X                

McCormick 
(2012) 89           15     Appendectomy patients only. 

Note: Grey rows for Madan (2011)88 and McCormick (2012)89 represent both development and 
validation studies due to evaluation of study-specific models. 

Abbreviations: AVR=aortic valve replacement; CABG=coronary artery bypass graft 
  
 
Temporal Model Discrimination 
 

Although not the focus of this review, we assessed discrimination when it appeared in 
our selected studies. Eleven studies reported discrimination, excluding the TRISS and tree-
based rSAPS-II models from assessment of temporal discrimination. Models exhibited good to 
excellent discrimination at development, with AUCs between 0.75 and 0.90. Figure 2 illustrates 
AUC over time by model and study. Discrimination was maintained over time, with AUCs 
generally between 0.70 – 0.92. Several temporal validation studies observed AUC values above 
those reported during model development.23, 24, 83, 85, 90, 93 The logistic EuroSCORE and rSAPS-II 
models exhibited improved discrimination from baseline but no temporal pattern across the 
validation time period in studies by Minne et al 24 or Hickey et al.23 In a Danish cohort, Mikkelsen 
et al observed an increase in AUC from 0.76 to 0.81 over the first six years of validation, 
followed by stability over the next seven years.90 Small temporal improvements in AUC were 
reported for APACHE-II by Paul et al,95 as well as locally-updated versions of APACHE-II, 
APACHE-III, MPM-II, and SAPS-II by Harrison et al.78 We observed large declines in 
discrimination for APACHE-II in Hekmat et al,83 the logistic EuroSCORE in Osswald et al,93 and 
the study-specific model developed by Madan et al.88 Over two time steps, increases in AUC 
were observed for CASUS and MODS.83, 85  
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Figure 2. Discrimination over time by reviewed prediction model and study. Models updated as 
a component of the study prior to temporal validation are distinguished with dashed lines 
connecting validation time steps. Performance at the time of model development is indicated by 
horizontal gray reference line. 
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Temporal Model Calibration 
 

Fourteen studies reported model calibration in multiple, sequential validation cohorts. 
These cohorts were collected from immediately after the end of the development or update 
period up to 27 years later, with most studies falling within 10-15 years after model 
development/update. We were not able to establish the timeframe of the update cohorts for the 
versions of APACHE-III validated by Cook et al76 and Paul et al,95 thus we measured elapsed 
time from development and acknowledge these times are overestimates. Studies reported 
model calibration in 2 to 40 time steps ranging in length from 3 months to 5 years.  

Twelve studies contained sufficient detail for graphical analysis. The study by Siregar et 
al46 has only been published in abstract form and detailed results were not available.  

Figure 3 illustrates temporal patterns in calibration for the ten studies reporting O:E 
ratios. In general, calibration deteriorated over time, with O:E ratios declining, an indication of 
increasing overprediction. Substantial changes in calibration were reported for the APACHE-
III,76, 95 logistic EuroSCORE,23, 90 TRISS,96 and logistic rSAPS-II24 models. Within 3.5 years after 
local model updating, Harrison et al78 observed small declines in calibration for all four models 
assessed. Minne et al24 observed degraded calibration of the logistic rSAPS-II model within the 
same timeframe. Although O:E ratios were not reported, deteriorated calibration was observed 
for the model developed and validated by Madan et al88 and for APACHE-II and MODS 
validated in Hekmat et al’s cohort.83 We encountered some exceptions to this general pattern: 
the EuroSCORE in the cohort evaluated by Osswald et al93 and the tree-based rSAPS-II model 
assessed by Minne et al24, 92 showed no deterioration.  
 
 
Observed Data Shifts 
 

We evaluated three forms of data shift: outcome rate shift (a change in the baseline rate 
of the outcome within the population), case mix shift (a change in the distribution of risk factors 
within the population), and predictor-outcome association shift (a change in relationships 
between predictors and risk of the outcome). Outcome rate shift was the most commonly 
assessed form. Four studies documented stable outcome rates, and four documented declining 
rates. In the cohort evaluated by Hekmat et al, there was no clear pattern in the outcome rate 
across three temporal cohorts.83, 85 

Changes in case mix were generally reported narratively without detailed information for 
each time step. Hickey et al,23 Mikkelsen et al,90 and Madan et al88 observed increasing patient 
severity, while Osswald et al93 observed no trends in patient severity. Hickey et al23 provided the 
most detailed exploration of case mix shift, observing linear and nonlinear trends in numerous 
predictor distributions. The authors, however, noted the observed changes in most risk factors 
were small.23 

Through repeated model updating and a focus on model coefficients, two studies 
explored shifts in predictor-outcome associations. McCormick et al89 and Hickey et al86 observed 
complex, co-occurring forms of predictor-outcome association shift. Some associations were 
stable throughout the study, some increased or decreased in strength, and some exhibited both 
periods of stability and shifting strength. For still other predictors, association shifts in one 
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Figure 3. Calibration over time by reviewed prediction model and study. Models updated as a 
component of the study prior to temporal validation are distinguished with dashed lines 
connecting validation time steps. O:E ratio at development or the ideal value (1.0) is indicated 
by horizontal gray reference lines. 
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direction were reversed in subsequent years. Associations also drifted in and out of the range of 
statistical significance. 
 
 
Susceptibility of Different Modeling Methods to Performance Drift 
 

Two coordinated studies by Minne et al support direct comparison of the temporal 
performance of a logistic regression model24 and a recursive partitioning, classification tree 
model.92 These models were derived on the same cohort using the same covariates and were 
subsequently temporally validated on the same dataset. These studies employed statistical 
process control to determine whether model performance was acceptable at each validation 
time step. Discrimination was maintained over the 6-year validation period by both models. The 
tree-based model maintained calibration, but the logistic model began significantly 
overpredicting risk within four years (See Figure 4). With repeated first-level recalibration after 
each time step, the O:E ratio for the logistic model was restored to acceptable levels and similar 
to the performance of the original tree-based model.24, 92 Repeated recalibration had a small 
effect on the tree-based model and was not considered necessary.92 
 
 
Figure 4. Temporal calibration of corresponding logistic and tree-based rSAPS-II models 
(extracted from studies by Minne et al 24, 92). 
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Discussion 
 

Incorporating high-dimensional clinical, genomic, and demographic factors, predictive 
analytics leverage rich EHR data to provide clinical decision support at the point of care. Such 
applications require well-calibrated models consistently delivering accurate individualized risk 
estimates. Our review of the literature documenting temporal performance of clinical prediction 
models provided consistent evidence of deteriorating calibration over time. On the other hand, 
discrimination was stable for extended periods in our selected studies. Despite flexible 
screening criteria, we found existing evidence focused almost exclusively on models predicting 
mortality and developed with logistic regression. 

Discrimination was stable over time within study populations, even more than 20 years 
after model development. Since we limited our search to studies considering calibration, a larger 
body of literature on temporal patterns of discrimination was excluded from our review. 
However, two studies evaluating discrimination but not calibration in sequential validation 
cohorts were captured by our search and reported similar findings.99, 100 Studies exhibiting 
temporal instability in AUC83, 85, 88, 93 relied on substantially smaller datasets than the other 
studies reviewed. These AUC changes may be related to less stable estimates rather than true 
differences or to variation in data restrictions between time steps. In several cases, validation 
AUCs were consistently higher than those reported at model development.23, 24, 83, 85, 90, 93 Such 
improvements in discrimination may result from more heterogeneous case mixes in the 
validation versus development cohorts22 or an increasing proportion of patients in subgroups 
with higher discrimination.78 

Calibration deteriorated over time, usually in the direction of overprediction, and in most 
cases within five years of model development. Clearly, poor calibration can lead to poor 
decision-making. Patients may be dissuaded from pursing potentially effective treatments when 
presented with elevated estimates of complication risk or may elect to undergo difficult 
treatments when presented with inflated estimates of negative disease prognosis.23, 67 
Increasing miscalibration over time may also adversely influence quality assessments utilizing 
prediction models to risk-adjust quality metrics for differences in patient mix and severity 
between hospitals or care units.  Minne et al found calibration drift of the rSAPS-II logistic model 
resulted in overly optimistic quality assessments. Fifteen percent of hospitals were identified as 
underperforming by the model affected by calibration drift, while 35% of the hospitals were 
identified as underperforming when the model was recalibrated to correct for overprediction.24 

Few studies provided detailed assessments of observed data shifts and the impact of 
data shifts on model performance; however, temporal trends in calibration were attributed to 
both outcome rate shift and case mix shift. In Cook et al,76 three years of declining outcome 
rates followed by a period of stability paralleled trends observed in the O:E ratio which indicated 
increasing and then stable overprediction. Osswald et al93 observed no change in patient 
severity and no trend in O:E ratios, while three studies documented increasing patient severity 
with corresponding declines in O:E ratios.23, 88, 90 Combining the two studies by Hickey et al23, 86 
provided the most comprehensive evidence linking temporal model performance and data shifts. 
Within a cohort spanning 10 years, these studies documented co-occurring outcome rate, case 
mix, and predictor-outcome association shift. Despite multifaceted data shifts, the 
EuroSCORE’s discrimination was stable. Calibration, on the other hand, decayed across the 
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entire study period as the EuroSCORE increasingly overpredicted risk.23 A steadily declining 
intercept during repeated model updating underscored a declining mortality rate as a key 
component of data shift affecting calibration.23, 86 Analysis exploring the contribution of case mix 
shift to deterioration of calibration indicated numerous and complex trends in predictor 
distributions over time. The authors noted, however, that observed changes in risk factors were 
small, and thus declines in O:E ratios were likely either unrelated to case mix or associated with 
complex interactive effects among risk factors.23 With repeated model updating, trends in 
coefficients identified complex fluctuations in predictor-outcome associations, including periods 
of stability and both monotonic and non-monotonic trends in predictor strength.86 These studies 
highlight the robustness of model discrimination; vulnerability of model calibration; and 
challenges of attributing patterns in model performance to specific components of data shift. 

We designed our search strategy and screening criteria to capture broad evidence of 
calibration drift and data shifts in the clinical literature; however, we found the available 
evidence in the literature to be limited. Among 16 studies reviewed, 14 assessed mortality 
prediction models. While these models focused on mortality within different populations (i.e., 
cardiac surgery patients, ICU admissions, and traumatic injury patients), the limitation of the 
available literature to mortality prediction restricts generalizability of the evidence. In addition, 
although we did not design our search to exclude models for continuous, time-to-event, or 
multinomial outcomes, all 16 studies modeled binary outcomes. Research exploring the 
performance of prediction models across a variety of clinical domains is needed to allow for 
generalizable conclusions regarding the impact of temporal model performance and data shifts 
on clinical prediction tool development and implementation.  

There was also little variation in modeling methods among the prediction models 
evaluated (See Table 4). With the exception of one study, models were fit using logistic 
regression. Minne et al24, 92 provided direct comparisons between the temporal performance of a 
logistic regression and a tree-based version of the rSAPS-II model. In both cases, discrimination 
was maintained. Within four years, the logistic regression model began overestimating mortality 
risk at a level deemed significant and unacceptable, whereas the tree-based model maintained 
calibration across the study period. Minne et al suggest these findings may relate to the 
dichotomization of predictors in the tree structure, which may require data shifts to cross 
branching thresholds before affecting predictions.92 Beyond the rSAPS-II tree-based model, our 
review found no studies assessing temporal performance of models based on modern 
techniques that minimize overfitting, handle collinearity, incorporate complex interactions, or 
automate variable selection, such as penalized regression and flexible machine learning 
algorithms.  

Our systematic review is strengthened by inclusion of studies leveraging large national 
and international datasets covering extended timeframes, as well as several studies applying 
identical data definitions and restrictions in development and validation cohorts. The findings are 
limited by the unexpected restriction to evidence primarily from a single clinical domain (i.e., 
mortality) and the narrative nature of most evidence regarding case mix shift. In addition, in 
order to synthesize evidence with metrics common across studies, we limited our analysis of 
calibration to overall O:E ratios, which may obscure trends in performance within subgroups that 
may have allowed for more direct links with data shifts. 
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Conclusions 
 

Risk prediction is ubiquitous in health care, supporting medical decision-making and 
quality benchmarking. As EHR utilization increases, the next frontier is integrating these data 
resources to support advanced predictive analytics delivering individualized risk estimates at the 
point of care. Real-time application of prediction models within EHRs will allow clinical decision 
support to move from Boolean logic rules to flexible model-based tools incorporating high-
dimensional information. This transition will require well-calibrated models that consistently 
provide estimates of individual risk that are well-aligned with true risk. A key challenge to broad 
implementation, however, is the deterioration of model calibration over time. Additional research 
is required to determine whether and how modeling methods exacerbate or alleviate calibration 
drift under varying data shift scenarios. Such understanding of how model performance may 
shift over time is essential for interpreting risk estimates, developing and maintaining user 
confidence, developing guidelines for model updating, and designing efficient systems for 
routine model maintenance. 
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CHAPTER 3 
 
 

STUDY DESIGN 
 
 

In response to the limited evidence regarding variations in the robustness of modeling 
methods to performance drift, we explored the temporal performance of seven common 
regression and machine learning methods for two illustrative clinical outcomes — hospital-
acquired acute kidney injury and 30-day all-cause mortality after hospital admission. We 
assessed calibration at varying levels of stringency to both compare our findings with the 
existing literature and to extend our assessments to measures particularly relevant for e-HPA 
clinical decision support systems. Further, we applied multiple methods to assess each form of 
data shift in order to link changes in patient and hospital-level characteristics to fluctuations in 
model performance.  
 
 

Illustrative Clinical Outcomes 
 

This study is aimed at understanding the connection between data shift, modeling 
methods, and model performance in general, and for this reason outcomes of interest in any 
clinical domain could potentially serve as exemplar endpoints for this work. We elected to study 
two clinical use cases with different clinical patient patterns, exposures, and distinct outcomes.  
We explored performance drift and data shift in models for hospital-acquired acute kidney injury 
and 30-day all-cause mortality after hospital admission. These outcomes may be optimal for 
prediction modeling for a number of reasons. They are well-defined and easily measurable and 
have a short time span from predictor observation to outcome occurrence, which reduces the 
risk of measurement error and follow-up bias.  In addition, both domains are associated with an 
existing body of risk prediction literature, which provides a basis for predictor selection. Finally, 
both outcomes of interest have risk factors that are routinely collected during normal delivery of 
care, which makes these outcomes reasonable targets for automated EHR-integrated 
probability-based decision support and quality benchmarking. 
 
 
Hospital-Acquired Acute Kidney Injury 
 

Hospital-acquired acute kidney injury (AKI) affects 5-7% of hospitalized patients101-104 
and is associated with myocardial infarction, chronic kidney disease and end stage renal 
disease.105-107 Among the general inpatient population, the AKI mortality rate is 10-15%, and 
among critically ill patients and those with AKI requiring dialysis, the mortality rate may be more 
than 50%.103, 106, 108, 109 Existing clinical prediction models for AKI have generally been restricted 
to focused subpopulations and developed with logistic regression;110-119 however, with the 
increasing availability of large EHR cohorts, a growing number of studies have begun pursuing 
AKI models based on large national patient populations and advanced modeling methods.62, 120-
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122 Key risk factors in these models are collected during normal delivery of care and many, such 
as use of nephrotoxic medications, are modifiable,3, 62 creating opportunities for EHR-integrated 
prediction models to support decision-making. However, while clinical use of these models for 
patient-level decision-making depends critically upon well-calibrated models, calibration has not 
been consistently reported and calibration drift has not been studies among models for AKI.110, 

111, 118-120, 123 
 
 
30-Day All-Cause Mortality After Hospital Admission 

 
While the rate of inpatient death has been declining, there were over 700,000 deaths 

among hospitalized patients in 2010.124 Mortality rates are particularly high for older patients, 
with 73% of deaths occurring among patients over 65 years, and those admitted with respiratory 
failure, pneumonia, or septicemia.124 Mortality within 30-days of hospital admission, a key metric 
of hospital quality and patient safety, is assessed and tracked by the Centers for Medicare and 
Medicaid Services (CMS) to both inform the public and, since 2013, to adjust 
reimbursements.125 CMS quality metrics rely on prediction models to standardize mortality rates 
by adjusting for the case mix of each hospital’s patient population.125 In addition to quality 
benchmarking, prediction models for hospital mortality are used to support decision-making and 
reduce mortality rates, particularly in the critical care setting.2 CDS tools presenting a patient’s 
predicted probability of 30-day mortality at or near the time of admission/transfer could create 
and promote opportunities to allocate limited resources, provide additional education/assistance 
to patients and caregivers, or prompt additional interventions. Our literature review highlighted 
the long history of prediction models for hospital mortality and concern over calibration drift in 
this domain. While advanced regression and machine learning methods have been 
implemented for mortality prediction,126-128 as noted in our review, studies of calibration drift 
have primarily focused on logistic regression models. In the only exception, Minne et al24, 92 
reported more stable calibration for a tree-based model compared to a corresponding logistic 
model. By including hospital mortality in our study, we extend this existing literature through 
consideration of additional modeling methods, more stringent assessments of calibration, and 
systematic quantitative evaluations of data shifts.   

 
 

Data Sources and Definitions 
 
Veterans Affairs Inpatient Data  
 

We collected data on all admissions to all US Department of Veterans Affairs (VA) 
hospitals nationwide with date of admission between January 1, 2003 and December 31, 2013.  
These data were available through VA Informatics and Computing Infrastructure (VINCI), a data 
and analysis resource containing national retrospective data for patients hospitalized at any of 
116 VA hospitals and bringing together data from the VA’s Computerized Patient Record 
System (CPRS) and Veterans Health Information Systems and Technology Architecture 
(VistA).129, 130 For each admission, we accessed data on laboratory results; diagnosis and 
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procedure codes (International Classification of Diseases version 9 [ICD-9], ICD-9 Procedure, 
and Current Procedural Terminology [CPT]); preadmission and administered medications; 
radiology reports; orders; and vital status.129 Parallel information and health care utilization data 
for the year prior to each admission (including events in 2002) was also collected. Further, we 
linked admissions involving the same patient in order to assess admission history. All 
associated data collection and analyses in this study was approved by the Institutional Review 
Board and the Research and Development committee of the Tennessee Valley Healthcare 
System VA. 
 
 
Acute Kidney Injury Study Population 
 

Our AKI cohort included admissions beginning between January 1, 2003 and December 
31, 2013. A complete list of predictors, details of variable definitions, and details of cohort 
construction have been published previously.62 We modeled the probability of patients 
developing Stage 1+ AKI as defined by the KDIGO classification guidelines.131 AKI status was 
defined using the baseline creatinine level (mean outpatient value) and the maximum creatinine 
value and dialysis procedure codes recorded between 48 hours and 9 days after admission.  

Predictor variables and exclusion criteria were based on data collected prior to 
admission (within 1 year) or within 48 hours of admission. We included predictors selected for 
prior AKI modeling efforts, which were based on KDIGO guidelines and existing literature.62 
Predictors included demographics, medications, vital signs, body mass index, laboratory values, 
and diagnoses. Comorbidity information was based on International Classification of Diseases 
version 9 (ICD-9) Procedure and Current Procedural Terminology codes recorded in the year 
prior to admission. Medications, vital signs, and body mass index risk factors were summarized 
separately for the pre-admission and admission windows (24 hours before admission to 48 
hours after admission). Baseline creatinine and values collected between 24 hours before and 
48 hours after admission were used to determine community-acquired AKI status. Admission 
window laboratory values were collected between 24 hours before and 48 hours after 
admission. Other preadmission/index laboratory values were defined by the most recent value 
collected between 5 days before admission and 48 hours after admission. Preadmission 
medication covered medications taken 90 days to 24 hours prior to admission. A complete list of 
predictors is included in Appendix A.  
 We limited our cohort to admissions with a length of stay between 48 hours and 30 days. 
Admissions were required to have creatinine values measured prior to admission, within 48 
hours of admission, and more than 48 hours after admission. Patients under 18 years of age, 
patients with dialysis or renal transplant prior to admission, patients with community-acquired 
acute kidney injury, and patients receiving hospice care within 30 days of admission or within 48 
hours after admission were excluded. All admissions to VA facilities with fewer than 100 
admissions per year or to facilities not reporting key laboratory data to the central data 
warehouse were also excluded.  
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30-Day All-Cause Mortality Study Population 
 
 Our 30-day all-cause mortality after hospital admission cohort included admissions 
beginning between January 1, 2006 and December 31, 2013.  Administrative and logistical 
considerations lead us to leverage a slightly different admissions cohort for our mortality than 
our AKI analyses. Key mortality predictors were not readily available in our existing AKI cohort, 
and the cohort underlying our mortality analyses was in-production at the time of study 
development, allowing us to incorporate our data definitions into the initial build. Since our 
analyses of the two outcomes are analogous but fully independent and we characterize 
temporal performance relative to the time of model development (see Temporal Data-Splitting 
section), the chronological misalignment between the AKI and mortality training cohorts and 
different lengths of validation periods do not complicate interpretation of our findings. 

We modeled the probability of death within 30-days of admission to any VA facility, 
regardless of the cause of death and whether the death occurred during admission or after 
discharge. We defined a predictor set based on a review of previously published risk models for 
hospital mortality.2,	132-134 Predictors included demographics, admission characteristics, body 
mass index, laboratory values, diagnoses, and health care utilization. We modeled the 
probability of mortality 48 hours after admission, allowing the use of data collected prior to 
inpatient stay and during the admission window (24 hours before through 48 hours after 
admission). For each admission, we applied the algorithm used by CMS to determine whether 
the admission was planned or unplanned.135 Comorbidity information was based on ICD-9 
codes recorded prior to admission. We recorded dialysis status, a history of dyslipidemia, and 
conditions included in the Elixhauser comorbidity classification system.136 The Elixhauser 
obesity category was excluded in favor of body mass index at admission. We recorded the most 
recent value for select laboratory tests during the admission window. Health care utilization was 
characterized as the number of inpatient stays at any VA facility, the number of outpatient visits 
to VA providers, and whether the patient had any unplanned readmissions over the year prior to 
the index admission. A complete list of predictors is included in Appendix B.  

In order to avoid censorship issues and ensure 30-days of follow-up for outcome 
ascertainment, we excluded admissions beginning after December 1, 2013. Admissions of 
patients less than 18 years of age or receiving hospice care at the time discharge were 
excluded. We further limited to admissions with a length of stay of at least 48 hour. All 
admissions to VA facilities with fewer than 100 admissions per year or to facilities not reporting 
key laboratory data to the central data warehouse were also excluded. Finally, we filtered 
admissions by site, randomly selecting 50% of the sites within each Veterans Integrated Service 
Network (VISN) for inclusion in this analysis. Site-based filtering of the data was included for 
practical reasons, as the national sample of eligible admissions was so large as to be 
computationally infeasible given the complexity and volume of model fitting included in our 
analyses.  
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Temporal Data-Splitting  
 

We temporally divided the data into development and validation periods. All admissions 
in the first year of each dataset (i.e., 2003 for AKI and 2005 for mortality) served as the 
development cohort. The remaining years of data served as the validation period, resulting in 
nine years of validation data for the AKI analysis and eight years of validation data for the 
mortality analysis. Admissions during the validation period were divided into sequential 
validation cohorts consisting of admissions within each consecutive 3-month period. Our AKI 
analysis included 36 such validation cohorts; our mortality analysis included 32 such validation 
cohorts. We labeled each 3-month validation period with the number of years between the end 
of the development period and end of the validation period. 
 
 

Modeling Approach 
 

Modeling Methods 
 

Statistical and machine learning techniques approach prediction modeling from different 
perspectives, each with benefits and limitations. Regression models take a parametric or 
semiparametric approach, requiring pre-specification of predictor effects and interactions. The 
effect of each predictor in these models, however, is interpretable, which may be desirable and 
help support user confidence among some target clinical audiences.47 Machine learning 
methods, on the other hand, use model-free algorithm-based approaches to develop predictions 
without the need to pre-specify the form of predictor-outcome associations or interactions 
between predictors. Such models may be able to leverage information from complex 
associations that are difficult to include in parametric models; 16, 47, 49 however, these models 
require large sample sizes, are not interpretable, and may be difficult to transfer across 
information systems.17, 47 As both regression and machine learning methods may provide valid, 
clinically useful risk estimates, the appropriate modeling approach may vary by clinical use case 
and the robustness of each modeling method to the changing environment in which the model 
will be applied.47 
 We explored the robustness of seven common regression and machine learning 
methods to data shifts and performance drift. The regression models included logistic 
regression, L-1 penalized logistic regression, L-2 penalized logistic regression, and L-1/L-2 
penalized logistic regression. The machine learning methods included naïve Bayes, neural 
networks, and random forests. Parallel models based on the same training data and predictor 
set were developed for each model, and the performance of each was assessed across each 
validation period. A short description of each method is provided below. 
 
 
Regression Methods 
 

Classical statistical regression techniques, such as logistic and Cox regression, have a 
long history of use for clinical prediction.47-49 These parametric data modeling methods 
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incorporate subject matter knowledge to define the anticipated relationships between predictors 
and outcomes, as well as the interactions between predictors.17, 47, 49 With the large predictor set 
available with EHRs, we may not have the detailed understanding required to fully pre-specify 
the complex, high-order interactions that exist between predictors and are informative for 
outcome prediction. While these methods are familiar and may be applied to relatively small 
cohorts, misspecification of predictor effects may bias risk estimates.17, 47 Penalized regression 
methods extend traditional regression models to reduce overfitting by shrinking coefficients to 
reduce variability.  

 
Logistic regression (LR). The logistic regression model is familiar and provides an 

interpretable model; however, requires pre-specification of all effects and does not provide in a 
parsimonious model.40 Due to our large sample size, we need not be overly concerned with 
overfitting of our LR models as we have a large number of events per predictor variable.  
We may, however, include non-informative predictors or multiple highly correlated predictors.  
The basic LR model retains all specified effects and does not select key predictor effects to 
create a parsimonious model. 
 

L-2 penalized logistic regression (L2). Often referred to as ridge regression, L-2 
penalized regression extends traditional regression models by reducing overfitting by shrinking 
of coefficients. This is achieved by restricting the sum of the squared coefficients, which shrinks 
coefficients without allowing any coefficients to be reduced to 0.137 This approach reduces 
overfitting but does not provide for variable selection. Groups of correlated predictors will tend to 
be assigned similar coefficients by the L2 model.138   

 
L-1 penalized logistic regression (L1). Commonly known as lasso regression, L-1 

penalized regression provides for both overfitting and variable selection.  The L1 model allows 
some coefficients to shrink to 0 by restricting the sum of the absolute values of the 
coefficients.139 While allowing for a more parsimonious model, a limitation of the L1 model 
approach is that among groups of correlated predictors, a single variable may be randomly 
selected for inclusion.138 

 
L-1/L-2 penalized logistic regression (L1-L2). By combining both the L1 and L2 

penalizations, L-1/L-2 penalized regression, known as the elastic net model, addresses issues 
of overfitting, variable selection, and groups of correlated predictors. In the L1-L2 model, groups 
of correlated predictors are included to excluded form the model as a group and, if included, 
tend to have similar coefficients.138 The L1-L2 model, however, remains limited by the 
requirement to pre-specify all predictor affects and interactions. 
 
 
Machine Learning Methods 
 

With the increasing availability of high dimensional clinical datasets, machine learning 
techniques are increasingly being applied to clinical prediction tasks.1, 16, 59 Machine learning 
methods are based on algorithmic approaches that do not require prespecification of effects and 
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leverage information in large datasets to capture previously unrecognized and complex 
associations for improved prediction.16, 47, 49 These models may be better able to characterize 
the complex relationships in clinical datasets, but do so by constructing models that are not 
human-interpretable and thus may not be suitable for all use cases.17, 47 

Naïve Bayes (NB). The naïve Bayes model takes an efficient approach to prediction by 
applying Bayes Rule under the assumption that all predictors are independent. This assumption 
allows predictions on new data based on simple summaries of the training set into prior 
probabilities and conditional probabilities calculated separately for each predictor.140 This 
approach tends to work well for classification,141 but can result in predicted probabilities that are 
extreme (i.e., pushed toward 0 or 1) when any predictors are rarely or frequently observed with 
the outcome, harming model calibration.142 
 

Neural Networks (NN). Neural network models are composed of multiple layers of 
connected nodes, each having a value based on an activation function combining weighted 
information from input nodes.143 The input layer consists of one node for each predictor variable; 
the output layer consists of nodes for the outcome variable.  Any number of hidden layers is 
possible, however, one is typically adequate.60 The weighted connections between the layers 
allow for complex non-linear associations and high-order interactions between predictors, 
without these relationships requiring prespecification.60, 144 Computational requirements and the 
need to define the model structure without overfitting can be limitations of NN models; however, 
NN have a long history of utilization in the clinical prediction literature.60 
 

Random Forest (RF). Classification and regression trees are graphical models that 
partition data by repeatedly splitting the sample. At each level of the tree, the sample is split on 
a single predictor selected to maximize the purity (i.e., consistency of the outcome) of the data 
in each branch.145 The random forest model extends this approach by combining predictions 
across a large number of trees, each constructed with a subsample of predictors and a 
bootstrap sample of the training data.146 The number of predictors considered for each tree 
affects model performance by balancing the strength of prediction for individual trees and 
correlation among trees.146 The RF approach implicitly allows for complex predictor-outcome 
associations and interactions among predictors, while also allowing the consideration of any 
number of predictors. 16, 47, 49, 146 

  
 
Model Development  
 

For both AKI and mortality, we fit parallel models using each of the seven methods 
based on a common predictor set and admissions in the one-year development cohort (see 
Figure 5). For the regression models, continuous predictors were fit with restricted cubic splines 
to capture nonlinear associations; however, no interaction effects were specified. We specified a 
NN model with one hidden layer.60 For methods with hyperparameters (L1-L2: alpha penalty 
level; RF: number of predictors considered per split, number of trees, minimum node size/depth; 
NN: size of hidden layer), values were selected using 5-fold cross validation. Models were 
internally validated with the bootstrap (B=200). For each bootstrap iteration, we imputed missing 
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laboratory, demographic, and health care utilization values with predictive mean matching and 
used the same imputed dataset to fit each type of model. There were no missing values for 
predictors based on administrative diagnoses codes as we assumed the condition to be not 
present if no codes were recorded in the medical record. The lambda shrinkage parameter for 
the penalized regression methods was selected with cross-validation for each bootstrap 
iteration. We constructed a final version of each model based on the full development cohort. 
 
 

Temporal Performance Evaluation 
 

We assessed performance with measures of discrimination, calibration, and accuracy 
evaluated at development and in each quarterly validation period (see Figure 5). Metric 
definitions, ideal values, and interpretations are described below and summarized in Table 6.   

 
 

Figure 5. Analysis structure with parallel models, temporal data-splitting, 
and repeated validations 

 
 
 
Measures of Model Accuracy 

 
Model accuracy describes overall model fit, capturing aspects of both discrimination and 

calibration. We evaluated accuracy with two proper scoring rules. The Brier score, a quadratic 
scoring rule, is the mean squared error in prediction (i.e., !"#$" = 	 '

(
(*+ − -+)

(
+ ). The range of 

the Brier score, however, varies with the outcome rate, challenging interpretation across 
samples.65 To simplify comparisons across our temporal cohorts, we implemented the scaled 
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Brier score, which measures model error as a proportion of maximum error and scaled such that 
0 indicates maximum error and 1 indicates perfect accuracy (i.e., !"#$"/01234 = 1 −

67+37

67+3789:
	  

 
 
Table 6. Definitions and interpretations of model performance metrics 

Metric Description Range 
Ideal 
value 

Accuracy     
Scaled Brier score Mean squared difference between 

observed outcome and predicted 
probability, scaled by maximum possible 
value based on non-informative model.65  

0 - 1 1 

Nagelkerke’s R2 Variation of the logarithmic scoring rule, 
scaled such that higher values indicate a 
more accurate model.65  

0 – 1 1 

Discrimination    
Area under the 
Receiver Operating 
Characteristic curve 
(AUC) 

An assessment of the probability that an 
observation with the outcome is assigned 
a higher risk estimate than an observation 
without the outcome. Values of 0.5 
indicate an uninformative model, and 
values of 0.5 or 1.0 indicating perfect 
discrimination.75 

0 - 1 1 

Calibration     
Observed to 
expected ratio (O:E) 

Ratio of outcome rate to mean predicted 
probability. Values greater than 1 indicate 
underprediction of risk, on average. 
Values less than 1 indicate overprediction 
of risk, on average. 

0 - 
unbounded 

1 

Cox intercept Intercept (;) of the logistic calibration 
curve model: <=>#? @ = ; + B ∗ <- where 
B = 1.147 Values greater than 0 indicate 
systematic underprediction; values less 
than 0 indicate systematic overprediction. 
Also referred to as calibration-in-the-
large.22, 65 

unbounded 0 

Cox slope Slope (B) of the logistic calibration curve 
model: <=>#? @ = ; + B ∗ <-.147 Values 
less than 1 indicate overfitting, with 
predicted values having too much 
variability and predictor affects requiring 
shrinkage.22, 65 

unbounded 1 

Estimated calibration 
index (ECI) 

Mean squared difference between 
predicted probabilities and observed 
probabilities estimated from flexible 
calibration curves, scaled to range from 0 
to 100.71, 72  

0 - 100 0 
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where !"#$"D1E = F$GH * ∗ 1 − F$GH *
I
+	 1 − F$GH * ∗ F$GH(*)I ).65 Similarly, the 

logarithmic scoring rule can be difficult to interpret and have an undefined range, so we 
implemented the Nagelkerke’s R2, a normalized logarithmic scoring rule ranging from 0 for the 
least accurate model to 1 for the perfectly accurate model that can interpreted as a pseudo-R2 
describing the proportion of explained variation.65 
 
 
Measures of Model Discrimination  
 

Discrimination describes the ability of the model to distinguish events from non-events or 
correctly rank-order observations by risk.65 The receiver operating curve plots model sensitivity 
against the false positive rate (1-specifity). The area under the curve (AUC) provides an 
assessment of the probability that an observation with the outcome is assigned a higher 
predicted probability than an observation without the outcome. AUC ranges from 0 to 1, with 0.5 
indicating an uninformative model and 1.0 indicating perfect discrimination.75  
 
 
Measures of Model Calibration 
 

Calibration describes the agreement between observed and predicted risk, or how well 
the predicted probability aligns with the true probability that an individual will experience the 
outcome.148 Van Calster et al71 proposed a 4-tier hierarchy for assessing model calibration. The 
highest tier in this hierarchy may not be realistic, assessable, or necessary.71 The third tier, 
moderate calibration, however, can be shown to ensure models have a net benefit greater than 
or equal to treat-all or treat-none strategies, thus ensuring predictions are nonharmful to clinical 
decision-making.71 We thus characterized calibration across the first three tiers of the calibration 
hierarchy – mean, weak, and moderate calibration. 

Mean calibration, the weakest form of calibration, requires agreement between the 
predicted and observed risk on average across all observations.71 We characterized mean 
calibration with the observed to expected outcome ratio (O:E) and the intercept of the Cox 
recalibration model. The O:E ratio compares the mean predicted probability with the population 
event rate.  O:E  ratio values of 1 indicate perfect calibration, while values less than 1 indicate 
average overprediction of risk and values greater than 1 indicate average underprediction.24 
Systematic over- or underprediction is also captured in the intercept of the Cox recalibration 
model (∝ in the model <=>#? @ =	∝ +B ∗ <- where <- is the logit-scale prediction and B = 1).147 
Calibrated models will have an intercept of 0, while systematic overprediction will result in 
intercepts less than 0 and systematic underprediction will result in intercepts greater than 0.22, 65 

Weak calibration builds on mean calibration by requiring neither systematic over- or 
underprediction nor over- or underfitting.71 By extending calibration to include an assessment of 
over- and underfitting, weak calibration considers the appropriateness of the variability of the 
predictions rather than just the mean of the predictions.  An overfit model will have predictions 
that are too extreme for low and high risk observations; an underfit model will have predictions 
that are too close to the mean for both low and high risk observations.65 We assessed weak 
calibration with the intercept (∝) and slope (B) of the Cox recalibration model.71 For a model 
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meeting weak calibration standards, the intercept and slope would be 0 and 1, respectively. 
Over- and underfitting are measured by the slope, with values less the 1 indicating overfitting 
and values greater than 1 indicating underfitting.65   

Moderate calibration, the most stringent level considered in this analysis, requires more 
detailed alignment of predicted and observed probabilities across the range of predictions.71 For 
a binary outcome, we do not have true observed probabiltities, thus we may think of moderate 
calibration as comparing the observed outcome rate with the predicted probability for groups of 
observations with similar predicted risk.  For a moderately calibrated model, this means that a 
plot of the observed proportion versus predicted probability would form approximately a 45° line. 
The Hosmer-Lemeshow test, which assesses calibration across predicted probabilities using a 
chi-squared test based on g equally-sized groups (typically g=10), is a commonly reported 
measure of moderate calibration.71, 149 This test, however, is not well-suited to large datasets, as 
its power to detect miscalibration increases with sample size, resulting in significant tests even 
for very small deviations from perfect calibration when samples sizes are large.150 This test 
statistic also lacks sensitivity to multiple common forms of miscalibration, including overfitting or 
systematic differences between datasets.22 Thus, while a prominent metric in the literature, we 
do not evaluate the Hosmer-Lemeshow test. Instead, we assess moderate calibration with the 
recently proposed flexible calibration curve approach. These curves are constructed by fitting a 
logistic model for the observed outcome based on predicted probabilities fit with a restricted 
cubic spline (see Figure 6).72, 151 As graphical comparison of multiple curves is difficult, we 
summarize curves with the estimated calibration index (ECI), the mean squared difference 
between predicted probabilities and estimated observed probabilities from the flexible calibration 
curves.71, 72 The ECI is scaled to range between 0 and 100, with lower values indicating greater 
calibration. 

We extended this analysis of moderate calibration to explore in more detail how model 
performance shifted in and out of calibration across the full range of predicted probability. As 
illustrated in Figure 6, using confidence intervals around the flexible calibration curves, we 
determined regions of calibration, overprediction, and underprediction. Ranges of predicted 
probability in which the 95% confidence interval (CI) included the 45° line were labeled as 
regions of calibration.  Ranges of predicted probability in which 45° line was below or above the 
95% CI were labeled as regions of overprediction and underprediction, respectively.  We further 
divided regions of over- and underprediction into marginally miscalibrated (i.e., regions where 
the 99% CI included the 45° line but the 95% CI did not) and miscalibrated regions (i.e. regions 
where the 99% CI did not include the 45° line). We calculated the ECI within each region to 
assess the magnitude of miscalibration.  For any regions with less than 50 admissions, we 
stabilized the regional ECI by borrowing information from adjacent regions. Since observations 
are not uniformly distributed across the range of predicted probability, we also rescaled the 
regions by the volume of observations with predicted probabilities within each region (see 
Figure 7). The original scale of the regions provides a sense of calibration across the entire 
range of probability, while the proportional regional volume assessment emphasizes calibration 
status based on data density and thus calibration status of the ranges of probability most 
relevant to the actual data.
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Figure 6. Example flexible calibration curve with 95% (darker band) and 
99% (lighter band) confidence intervals and regions of predicted probability 
by calibration status. The black 45° line indicates perfect calibration.  

 
 

Figure 7. Illustration of rescaling regions of calibration by data density for 
proportional regional volume assessment 
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Temporal Validation 
 

In order to assess the initial performance of each model, we recorded the performance 
of the models developed for each bootstrap iteration on those observations not selected for that 
iteration’s training sample (i.e., holdout sample). We constructed 95% confidence intervals for 
each metric based on the mean and standard deviation across the holdout samples. These 
initial performance measures serve as a reference for assessing temporal changes in 
performance in subsequent validation cohorts. For the regions of calibration analysis, we 
combined predictions across all 200 holdout samples to construct the flexible calibration curves 
used to define the regions of probability over which each model was calibrated, overpredicted, 
and underpredicted.  These combined holdout samples were also used for the proportional 
volume assessment. 

We applied each model to all validation observations, providing multiple predicted 
probabilities of the outcome for every observation (seven for AKI observations; seven for 
readmission observations).  Within each 3-month temporal validation cohort, we assessed 
performance with the percentile method by calculating mean performance and 95% confidence 
intervals for each model across 1,000 bootstrap samples. Flexible calibration curves for the 
regions of calibration and proportional volume analysis were based on all observations in each 
temporal cohort.   
 
 

Data Shift Assessment 
 

Performance drift results from data shifts, or differences that arise over time between the 
population on which the model was developed and the population on which the model is 
applied. Data shifts may take the form of changes in the underlying outcome rate, case mix of 
the patient population, and/or associations between predictors and outcomes,6, 7, 23 which may 
result from changes in the health care system’s patient population, treatment and diagnosis 
patterns, or measurement methods.5, 6, 21 In order to better understand drivers of any observed 
performance drift and any differences in drift by modeling method, we evaluated our AKI and 
mortality cohorts for each type of data shift using multiple approaches. 
 
 
Event Rate and Case Mix Shift Assessment 
 

We explored the presence of event rate and case mix shift by assessing distributions of 
individual predictors, distribution of patient predicted risk, and membership models predicting 
whether observations belong to the development or validation cohorts.  

To assess changes in the outcome rate and distribution of individual predictor variables, 
we calculated the mean or proportion for each continuous or categorical variable, respectively. 
We tested for temporal linear and non-linear changes in the distribution of each variable, 
adjusting for multiple comparisons with the Bonferroni method. This approach is straightforward 
and has been used to explore case mix changes affecting models for hospital mortality.23 
However, small changes in predictor distributions may be highlighted as significant trends; 
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simultaneous changes in multiple predictors can be difficult to interpret, particularly when 
predictors are correlated; and linking observed changes in predictor distributions directly to 
model performance can be challenging.73, 148 

We implemented membership models to explore whether the case mix and event rate 
were different enough to distinguish between the development and validation cohorts.  Using all 
data from both the development and validation cohorts, these models predict whether an 
observation is from the validation cohort based on covariates that include all predictors and the 
outcome of the original model.73 High levels of discrimination indicate case mix and event rate 
drift are present.  Further, we can interpret the structure of the membership model to identify 
predictors contributing to case mix changes.73 We fit separate membership models comparing 
the development cohort to each consecutive validation cohort using both logistic regression and 
random forest models. The AUC of the logistic regression membership models was recorded to 
determine the presence of case mix and event rate shift relative to the development set for each 
validation cohort.73 AUCs were adjusted for optimism using the bootstrap (B=200).  Odds ratios 
from the logistic regression membership models provided measures of the covariate-adjusted 
contribution of each predictor to case mix shift73 and how the contribution of each predictor to 
case mix shift may have changed over time. Similarly, we documented the variable importance 
rank of each variable in the random forest membership models to explore how the relative 
importance of each predictor to case mix shift may have changed over time. Variable 
importance ranks were assigned based on the decrease in node impurity (Gini node impurity 
index) due to splitting on a particular variable averaged over all trees, with larger decreases 
indicating more important//higher ranked predictors. For each predictor, we tested for linear and 
non-linear changes in variable importance rank over time, adjusting for multiple comparisons 
with the Bonferroni method. 

Finally, we also explored summary approach to characterizing case mix shift.  We 
documented changes in the mean and standard deviation of the predicted probabilities over 
time, providing an indication of shifts in average patient severity and patient population 
heterogeneity of risk, respectively.73, 148 Changes in heterogeneity of risk has been linked to 
changes in model discrimination, with increased heterogeneity leading to increased 
discrimination.73 By combining these measures with the AUC of the membership models, we 
can assess both the degree of case mix shift and how this case mix shift is affecting the patient 
population risk distribution.  
 
 
Predictor-Outcome Association Shift Assessment 
 

We explored shifts in the strength of associations between predictors and the outcome, 
as well as shifts in the relative importance of predictors, by considering how the structure of 
models changed over time when refit for each validation cohort. We documented changes the 
odds ratio for each predictor from LR models and changes in variable selection patterns from L1 
models fit in each validation cohort. Since variable selection may be unstable, we implemented 
the bootstrap with 200 iterations for each validation cohort when refitting the L1 model. For each 
predictor, we calculated the proportion of bootstrapped iterations in which the predictor was 
selected by the L1 models in each validation period 138, 152 and tested for linear and non-linear 
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changes in selection proportion over time. We also documented temporal patterns in the relative 
importance of each predictor as measured by changes in RF variable importance ranks. 
Predictors were ranked by the mean decrease in the Gini node impurity index, with larger 
decreases indicating more important//higher ranked predictors. These refit RF models were 
developed with the hyperparameters of the original RF model based on the development cohort. 
For each predictor, we tested for linear and non-linear changes in variable importance rank over 
time. We adjusted for multiple comparisons with the Bonferroni method within in component of 
the analysis.
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CHAPTER 4 
 
 

TEMPORAL EVALUATION OF MODELS PREDICTING  
HOSPITAL-ACQUIRED ACUTE KIDNEY INJURY 

 
 

We explored performance drift and data shifts among models for hospital-acquired acute 
kidney injury in a national population of admissions to VA hospitals over the 10-year period from 
2003-2012. Across seven parallel model fit with logistic regression, L-1 penalized logistic 
regression, L-2 penalized logistic regression, L-1/L-2 penalized logistic regression, naïve Bayes, 
neural networks, and random forests, we document diverging patterns of calibration drift. This 
performance deterioration occurred in the presence of complex, multi-form data shifts in the 
patient population. 

Our national VA cohort for the AKI study consisted of 1,841,951 admissions, 170,675 
during the development cohort (i.e., admissions beginning in 2003) and 1,671,276 during the 
validation period (i.e., admissions beginning in 2004 through 2012). Each of the 36 consecutive 
temporal validation cohorts included a mean of 46,424 admissions (range: 42,168-49,798). A 
brief summary of the patient population at select points across the study period is presented in 
Table 7 (See Appendix C for details for all predictors). Patients were primarily white males 
(96.1%), with a mean age of 66.1 years (standard deviation: 13.0) and mean body mass index 
of 27.8 (standard deviation: 7.5). Overall, 6.8% of admissions were complicated by AKI. 
 
 

Model Development 
 
Modeling Parameters 
 

Prior to developing and internally validating the seven parallel models, we selected 
hyperparameters values for the L-1/L-2 penalized logistic regression, random forest, and neural 
network models. Table 8 provides the values selected through 5-fold cross validation. The 
shrinkage parameters for the three penalized regression models were selected during each 
bootstrap iteration. 
 
 
Initial Model Performance 
 

Bootstrap-corrected performance metrics for the seven models at development are 
presented in Table 9. We observed similar levels of overall accuracy among the regression 
models, with slightly lower levels of accuracy for the RF and NN models. Discrimination was 
modest, with AUCs ranging from 0.69-0.76. The LR, L1, and L1-L2 models were most 
discriminative; the NB model was least discriminative. The four regression models and the NN 
model were well-calibrated based on the O:E ratio and ECI. The RF model was well-calibrated 
based on ECI, while slightly underpredicting according to the O:E ratio (1.07, 95%CI:1.06-1.07).  
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Table 7. AKI Patient population at development (2003) and in three years of the validation 
period (2006, 2009, 2012) 

  2003 2006 2009 2012 
N 170,675 176,341 193,917 184,827 
% AKI 7.7 7.4 6.5 6.2 
Age in years (mean and SD) 65.7 (12.9) 65.9 (12.9) 66.1 (13.0) 66.5 (13.0) 
% Female 3.2 3.7 4.0 4.5 
Race 

    % White 75.0 75.9 75.4 74.9 
% Black 20.1 19.1 19.0 19.1 
% American Indian/Alaskan 0.8 0.9 0.9 0.9 
% Asian/Pacific Islander 0.9 1.1 1.2 1.1 
% Unreported 3.2 3.1 3.5 4.0 

BMI at admission (mean and SD) 27.4 (7.8) 27.7 (7.7) 28.1 (7.9) 28.4 (7.5) 
Mean outpatient GFR prior to admission 
(mean and SD) 69.5 (24.5) 70.5 (24.9) 72.3 (25.4) 74.5 (26.4) 
Select medications (admission window)     

Vancomycin 5.3 10.4 14.5 16.3 
ACEi 32.9 34.1 31.4 27.7 
Antiemetics 3.3 5.1 9.3 13.2 
Beta blockers 40.1 48.6 48.4 37.1 
Opioids 50.8 59.2 63.3 64.3 
Statins 27.9 38.9 43.8 44.0 

Select diagnoses (preadmission)     
Anemia 14.5 23.3 28.6 31.1 
Cancer 18.8 22.8 24.6 24.9 
Chronic obstructive pulmonary disease 24.6 30.9 34.0 35.1 
Congestive heart failure 15.2 18.6 19.7 20.0 
Diabetes mellitus 29.7 34.6 39.1 42.6 
Dyslipidemia 28.8 49.7 59.7 65.4 
Alcoholism 12.1 18.9 23.5 26.4 
Hypertension 55.0 69.4 74.5 76.7 

Abbreviations: ACEi=angiotensin converting enzyme inhibitor; GFR=glomerular filtration rate; 
SD=standard deviation 

 
 

     Table 8. Hyperparameters selected for AKI models 
Model Hyperparameter Value 
L1-L2 Elastic-net mixing parameter (a) 0.8 
Random forest # predictors considered per tree 14 

 
Minimum # observations per node 15 

  # trees 600 
Neural network Size of hidden layer 100 
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Table 9. Initial AKI model performance in development cohort 
 Regression   Machine Learning 

 LR L1 L2 L1-L2  RF NN NB 
Accuracy         

    Scaled Brier score 0.081 
[0.080, 0.081] 

0.078 
[0.077, 0.078] 

0.069 
[0.068, 0.069] 

0.078 
[0.077, 0.078]  0.062 

[0.062, 0.062] 
0.049 

[0.049, 0.049] * 

    Nagelkerke’s R2 0.154 
[0.154, 0.155] 

0.150 
[0.149, 0.150] 

0.135 
[0.135, 0.136] 

0.150 
[0.149, 0.150]  0.113 

[0.112, 0.113] 
0.102 

[0.102, 0.103] * 

Discrimination         
    AUC 0.764 

[0.764, 0.765] 
0.761 

[0.761, 0.762] 
0.750 

[0.750, 0.751] 
0.761 

[0.761, 0.762]  0.734 
[0.734, 0.735] 

0.720 
[0.719, 0.720] 

0.692 
[0.692, 0.693] 

Calibration         
    O:E ratio 1.001 

[0.998, 1.003] 
1.002 

[0.999, 1.004] 
1.002 

[1.000, 1.005] 
1.002 

[0.999, 1.004]  1.066 
[1.060, 1.072] 

1.003 
[1.000, 1.006] 

0.225 
[0.217, 0.233] 

    Cox intercept -0.087 
[-0.094, -0.079] 

0.085 
[0.074, 0.096] 

0.231 
[0.221, 0.241] 

0.094 
[0.082, 0.106]  -0.283 

[-0.291, -0.274] 
-0.211 

[-0.221, -0.201] 
-2.416 

[-2.430, -2.402] 

    Cox slope 0.958 
[0.955, 0.962] 

1.039 
[1.035, 1.043] 

1.105 
[1.100, 1.109] 

1.043 
[1.038, 1.048]  0.840 

[0.836, 0.844] 
0.903 

[0.899, 0.907] 
0.083 

[0.082, 0.084] 

    ECI 0.004 
[0.003, 0.004] 

0.004 
[0.004, 0.004] 

0.007 
[0.007, 0.008] 

0.004 
[0.004, 0.005]  0.006 

[0.006, 0.007] 
0.008 

[0.008, 0.009] 
21.028 

[20.189, 21.867] 
* Non-calculable due to extreme predicted probabilities of 0 and 1. 
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While no models were perfectly calibrated according to the Cox intercept and slope, these 
metrics approached their ideal values for the LR, L1, and L1-L2 models. The Cox intercept and 
slope of the RF and NN models indicated minor systematic overprediction and overfitting, while 
these metrics indicated minor underprediction and underfitting of the L2 model. The NB model 
lacked accuracy and calibration as measured by all metrics. 

 
 

Model Performance Over Time 
 
Accuracy 
 

The accuracy of all models declined over time, with a larger magnitude of change 
observed for the regression models (see Figure 8). For both the scaled Brier score and 
Nagelkerke’s R2, smaller values indicate lower model accuracy. The scaled Brier score declined 
over time for all models (adjusted p<0.001), with the rate of change larger for the regression 
models than the RF and NN models. This metric initially indicated lower levels of accuracy for 
 
 
Figure 8. Accuracy of AKI models over time by modeling method. Regression models are 
displayed with circular markers and red-orange colors. Machine learning models are displayed 
with triangular markers and blue-purple colors. Due to the large discrepancy between NB 
performance and performance of the other models, the vertical axes are scaled such that NB 
values are excluded from the plots. 
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the NN model compared to the regression models, with the difference attenuating over the first 
3-4 years of the validation period as the scaled Brier score declined more quickly for the 
regression models. The Nagelkerke’s R2 was stable for the RF and NN models, while declining 
over time for the regression models (adjusted p<0.001). The decline in accuracy among the 
regression models lead to the difference in the Nagelkerke’s R2 between the regression and 
machine learning methods being attenuated over time. The NB model consistently 
underperformed all other models on both accuracy metrics. 
 
 
Discrimination  
 

Over the 9-year validation period, discrimination was stable for all models except the NB 
(adjusted p<0.001; see Figure 9). The NB model experienced a small decline in AUC over time 
(slope: -0.002, 95% CI: -0.003, -0.002), which resulted in an overall change in AUC across the 
study of -0.01 (AUC of 0.69 at developed to 0.68 in the final validation cohort). The regression 
models generally maintained higher AUCs compared to the machine learning models. The L2 
regression model, however, had comparable discrimination to the RF model and significantly 
lower AUCs than the LR model in eleven validation cohorts, primarily after five years.  
 
 

Figure 9. Discrimination of AKI models over time by modeling method. Regression 
models are displayed with circular markers and red-orange colors. Machine learning 
models are displayed with triangular markers and blue-purple colors. 

 
 
 
Calibration 
 

All models experienced calibration drift (see Figure 10). The models experienced similar 
temporal patterns of calibration drift for measures of mean (O:E ratios) and weak calibration 
(Cox calibration model intercepts and slopes). O:E ratios and Cox intercepts primarily declined 
over the first four years of the validation period. Within these four years, we observed several 
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Figure 10. Calibration of AKI models over time by modeling method. Regression models are displayed with circular markers and red-
orange colors. Machine learning models are displayed with triangular markers and blue-purple colors. Due to the large discrepancy 
between NB performance and performance of the other models, the vertical axes are scaled such that NB values are excluded from 
the plots. 
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periods of rapid calibration drift, particularly in the first and fourth years of validation. Cox 
intercepts continued to decline after the first four years of validation, although at a slower rate. 
In the second half of the validation period, all models had O:E ratios less than 1 and Cox 
intercepts less than 0, indicating overprediction. O:E ratios for the RF and NN models were 
significantly higher than O:E ratios for the regression models three years after development. 
Cox intercepts were higher for the penalized regression models than the NN and RF models for 
the first four years and across the validation period, respectively. Together, these two findings 
indicate a larger magnitude of average overprediction among the regression models compared 
to the RF and NN models. Cox slopes declined slightly over time for the regression models and 
were stable for the RF and NN models (adjusted p<0.001). The rate of change in the Cox slope 
among the regression models was small, with, for example, a slope of -0.004 (95%CI: -0.007, -
0.002) for the LR model resulting in a change from 0.958 (95% CI: 0.955, 0.962) at development 
to 0.933 (95% CI: 0.895, 0.974) in the final validation period. Despite these changes in the Cox 
slope, the confidence intervals for the Cox slopes for the regression models captured the ideal 
value of 1.0 for most validation cohorts. The LR and NN models provided slightly overfit 
predictions with the Cox slope less than 1.0 and intermittently significant. The RF model 
exhibited overfitting across the validation period. 

We observed diverging patterns of calibration drift among models for measures of 
moderate calibration base on flexible calibration curves. ECIs increased over the validation 
period for all models (adjusted p<0.001), indicating deteriorating calibration. For all models, the 
rate of drift in ECI was slow over the first three years of the validation period, after which we 
observed larger increases in ECIs over time. ECIs exhibited varying calibration drift patterns 
between the regression and machine learning models, particularly in the second half of the 
validation period. After three years, ECIs deteriorated more substantially and became 
significantly higher for the regression models compared to the RF and NN models. The ranges 
of predicted probabilities and proportion of admissions over which each model was calibrated 
also changed over time and varied by modeling method (see Figures 11 and 12). With the 
exception of the NB model, which strongly overpredicted for most predicted probabilities and 
strongly underpredicted for the lowest predicted probabilties models moved in and out of 
regions of calibration, overprediction, and underprediction across the range of predicted 
probability. The penalized regression models maintained calibration over time in the 0.4 – 0.9 
range, while the RF and NN models tended to underpredict in this range with surrounding 
calibration regions for lower and higher probabilities. These patterns were fairly consistent over 
time. Rescaling each region by the volume of admissions captured with the range of predicted 
probability, we observe similar grouping of temporal patterns – one for regression models and 
one for the NN and RF models. For the regression models, the majority of admissions fell within 
regions of overprediction for most validation cohorts. Over the second half of the validation 
period, the magnitude of this overprediction increased, as indicated by the darkening of the blue 
region. In the first three years of validation, for the majority of admissions, the NN model was 
calibrated and the RF model slightly underpredicted or was calibrated. After three years, regions 
of overprediction captured a higher proportion of admissions for both the RF and NN models; 
however, the magnitude of overprediction remained low for most validation cohorts. The NB 
model significantly unpredicted for approximately 40% of admissions and significantly 
overpredicted for approximately 60% of admissions. 
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Figure 11. Regions of calibration of AKI models over time by modeling method. Areas of 
overprediction and underprediction are shaded based on based on within-region estimated 
calibration index (ECI) in order to highlight the magnitude of miscalibration. 
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Figure 12. Proportional volume assessment regions of calibration of AKI models over time by 
modeling method. Regions of calibration are scale by proportion of observations in each region 
and shaded by the magnitude of the within region estimated calibration index (ECI).  
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Data Shifts Over Time 
 
Event Rate Shift 

 
We observed evidence of event rate shift across the three assessment methods. Across 

the validation period, the event rate declined from 7.7% in the development cohort to 6.3% in 
the final quarterly validation cohort (adjusted p<0.0002; see Figure 13). AKI was also a 
significant predictor in the logistic regression membership models discriminating between 
admissions from the validation and development cohorts (see Figure 14). The odds of an  
 
 

Figure 13. Proportion of admissions complicated by AKI over 
time. Red lines indicate fitted values. 

 
 
 
Figure 14. Membership model results for AKI. Odds ratio (left) and 95% confidence intervals for 
AKI based on logistic membership models fit for each 3-month temporal validation cohort. Grey 
line indicates null odds ratio of 1. Variable importance rank (right) for AKI based on random 
forest membership models fit for each 3-month temporal validation cohort. Higher ranks (smaller 
numbers) indicate greater importance to model performance. 
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admission belonging to a validation sample were approximately 15-25% lower for admissions 
complicated by AKI than admissions without AKI in validation years 4 through 9. The relative 
importance of the outcome compared to predictors in the random forest membership model, 
however, declined over time from the 77th most important variable to 94th. The proportion of 
admissions complicated by AKI, magnitude of the odds ratio from the logistic regression 
membership model, and variable importance rank from the random forest membership model 
shifted at a higher rate in the first half of the validation period and slowed or stabilized.  
 
 
Case Mix Shift 
 

We observed case mix shift across the validation period. Changes over time distribution 
of the linear predictors revealed changing patient case mix in terms of increasing severity of the 
patient population (adjusted p<0.002). However, we did not observe changes in heterogeneity 
of risk in the patient population for most models, with the exception being the RF model which 
experienced a decline in the standard deviation to indicate decreasing heterogeneity of the 
patient population (adjusted p<0.002). The membership model approach also noted the 
presence of case mix shift. The logistic membership models increasingly discriminated between 
admissions from the development and each sequential validation cohort, as indicated by the 
AUC increasing from 0.601 (95% CI: 0.598, 0.603) to 0.921 (95% CI: 0.919, 0.922) (see Figure 
15).  
 
 

Figure 15. Discrimination of AKI logistic membership models 
over time 

 
 
 

For predictor-level assessments of case mix shift, we present detailed graphical results 
for six consistent exemplar predictors – use of antiemetics and vancomycin during the 
admission window, age, mean outpatient glomerular filtration rate (GFR) prior to admission, 
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history of cancer, and history of diabetes. Findings for these predictors highlight several data 
shift patterns observed among the full set of predictor variables. 

Temporal changes were observed in the distributions of 95.2% of predictors (adjusted 
p<0.0002), including linear, monotone nonlinear, and non-monotone changes (see Figure 16 for 
details of six exemplar predictors). Shifts were generally small in magnitude. For example, 
although a statistically significant linear trend in age was recorded across the study period, the 
overall increase in mean age was less than 1 years. The largest changes we observed were in 
the proportion of admissions involving patients receiving certain medications and diagnosed 
with chronic diseases (see Table 7 and Appendix C). For example, admissions to patient with a 
history of hypertension increased from 55.0% in 2003 to 76.7% in 2012, and admissions to  
 
 
Figure 16. Distributions of select AKI predictors across over time. Continuous predictors 
summarized as means, categorical variables summarized as proportions. Red lines indicate 
fitted, smoothed values. 
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patients with diabetes increased from 29.7% to 42.6% over the same period. Similarly, patients 
receiving statins during the admission window increased from 27.9% in 2003 to 44.0% in 2012, 
and patients receiving vancomycin during the admission window increased from 5.3% to 16.3%. 
Six predictors – use of antifungals and monoamine oxidase inhibitors (MAOIs) during the 90 
days prior to admission and use of non-steroidal anti-inflammatory drugs (NSAIDs), MAOIs, 
anhydrase diuretics, and lithium during the admission window – had stable distributions over 
time.  

We also observed changes the adjusted contributions of predictors to discriminating 
between development and validation admissions. Odds ratios from the logistic membership 
models indicated significant and temporally varying strengths of associations between the  

 
 

Figure 17. Odds ratios and 95% confidence intervals of select predictors from AKI logistic 
membership models. For continuous variables, odds ratios indicate effect of one IQR change in 
value. Grey lines indicate null odds ratio of 1. 
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majority of predictors and whether admissions belonged to the validation or development 
cohorts (see Figure 17 for odds ratios of the six exemplar predictors). Temporal changes in  
membership model odds ratios did not consistently follow the temporal trends observed in the 
unadjusted distributions of individual predictors. For example, while the mean age at admission 
increased across the 9-year validation period, the odds ratio exhibited increasing strength of 
association between age and membership in the validation versus development cohort over the 
first five years and subsequently a decreasing strength of association over the remaining four 
years. The proportion of admissions with a history of diabetes increased almost linearly over 
time; however, the membership model odds ratio for this predictor was stable and non-
significant over the first 3 years of the validation period. On the other hand, use of antiemetics 
during the admission window both increased in frequency and was associated with increased 
odds of being a validation observation over time. Among the six predictors with stable individual 
variable distributions, we observed stable logistic membership model odds ratios. 

The relative importance of predictors to discriminating between validation and 
development admissions varied over time (see Figure 18 for details on the six exemplar 
predictors). In random forest membership models, we observed temporal changes in variable 
importance rankings for 96 of 121 predictors (79.3%; p<0.0002). Changes in variable 
importance ranks were generally small in magnitude (mean change=17, interquartile range= 10-
19). Predictors with the greatest changes in importance rank included use of vancomycin, 
antiemetics, and fluoroquinolones during the admission window. The relative importance of use 
of vancomycin and antiemetics during the admission window increased from 85 to 17 and 93 to 
7, respectively. The importance of antiemetics use increased steadily over time, while the 
vancomycin use experienced a sharp increase in importance during the second year of the 
validation period, followed by a more gradual increase in rank over the remaining years of the 
validation period. The variable importance rank of fluoroquinolones use during the admission 
window was stable in in the mid-30s for two years and slowly declined to 89 over the next seven 
years. A history of dyslipidemia was ranked as the 37th most important variable for the first 3-
month validation cohort. The predictor’s rank increased over the next 3 years, with a history of 
dyslipidemia becoming one of the three most important predictors by 3 years and being ranked 
the most important predictor during 5 validation cohorts. With the exception of use of NSAIDs 
during the admission window, no trends were observed in the variable importance ranks of the 
six predictors with stable distributions over time. 
 
 
Predictor-Outcome Association Shift 
 

Changes in the strength of associations between predictors and AKI were measured by 
changes in the structure of models refit in each validation cohort. No temporal changes were 
observed for the majority of predictors. For those predictors with strongest and/or most changed 
predictor-outcome associations, we present results for four time points in Table 10. In addition, 
we present more detailed graphical results for the same six exemplar predictors included in the 
detailed case mix shift results above – use of antiemetics and vancomycin during the admission 
window, age, mean outpatient GFR prior to admission, history of cancer, and history of 
diabetes.  
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Figure 18. Variable importance ranks of select predictors from AKI random forest membership 
models. Higher ranks (smaller numbers) indicate greater importance to model performance. 

 
 
 

In logistic regression models refit in each validation cohort, we observe few significant 
temporal changes in the strength of predictor-outcome associations (see Table 10 and Figure 
19). Compared to odds ratios from the original model based on 2003 data, we observed 
tendencies toward temporal strengthening or weakening associations for a limited number of 
predictors. However, these changes generally did not reach statistical significance, with the 
exception of a few isolated 3-month validation periods. This pattern was most pronounced for 
use of vancomycin during the admission window, for which the odds ratio increased starting at 
approximately three years into the validation period and was significantly higher than the odds 
ratio of the original model for 7 of the last 12 validation cohorts. In the original model and for 
most of the first half of the validation period, patient age at admission and a history of diabetes 
were significantly associated with AKI. Declines in the odds ratio for these predictors beginning 
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Table 10. Select predictor-outcome associations in AKI models refit over time. Odds ratios from logistic regression models (LR OR), 
variable importance ranks from random forest models (RF rank), and proportion of times predictors was selected in 200 L-1 
penalized logistic regression (L1) modeling iterations based on models fit at development and within select temporal validation 
cohorts.   
 Development (2003)  2006 – Q4  2009 – Q4  2012 – Q4 

Predictor 
LR OR*  
(95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
 (95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
(95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
(95% CI) 

RF 
Rank 

L1 % 
selected 

Highest ranking predictors at development 
Mean GFR in admission 
window 

0.16  
[0.15, 0.18] 1 100   

0.18  
[0.15, 0.22] 1 100   

0.14 
[0.12, 0.17] 1 100   

0.13  
[0.11, 0.16] 1 100 

Change in GFR during  
admission window 

0.61 
[0.59, 0.64] 2 100   

0.62  
[0.57, 0.67] 2 100   

0.61  
[0.56, 0.66] 2 100   

0.59  
[0.55, 0.64] 2 100 

Mean outpatient GFR before 
admission 

4.14 
[3.81, 4.51] 3 100   

4.39  
[3.72, 5.18] 3 100   

4.60  
[3.87, 5.46] 3 100   

3.75  
[3.15, 4.47] 3 100 

Blood urea nitrogen 
 

1.26  
[1.20, 1.33] 4 100   

1.36  
[1.23, 1.51] 4 100   

1.27  
[1.14, 1.42] 4 100   

1.06  
[0.94, 1.20] 7 88 

BMI at admission 
 

1.00  
[0.90, 1.12] 5 77   

1.01  
[0.81, 1.25] 5 50.5   

1.16  
[0.93, 1.45] 5 86   

1.05  
[0.81, 1.36] 4 93 

White blood cell count 
 

1.20  
[1.15, 1.26] 6 100   

1.18  
[1.08, 1.29] 11 98.5   

1.22  
[1.11, 1.34] 9 100   

1.24  
[1.12, 1.37] 6 100 

Platelets 
 

0.89  
[0.85, 0.94] 7 100   

0.89  
[0.81, 0.97] 9 75   

1.01  
[0.91, 1.13] 11 75   

1.08  
[0.96, 1.22] 5 90.5 

Alkaline phosphatase 
 

1.06  
[1.02, 1.09] 8 100   

1.02  
[0.94, 1.10] 8 76   

1.01  
[0.93, 1.09] 8 89.5   

1.02  
[0.93, 1.12] 8 82 

Glucose 
 

1.06  
[1.01, 1.11] 9 97.5   

0.99  
[0.91, 1.08] 6 50   

1.09  
[1.00, 1.19] 6 73   

1.04  
[0.95, 1.15] 11 90 

Standard deviation of  
preadmission GFR 

0.99  
[0.95, 1.04] 10 81.5   

0.99 
 [0.90, 1.09] 12 42.5   

0.94  
[0.86, 1.04] 12 45   

1.05  
[0.95, 1.16] 13 88.5 

Variables with shifts in association 
Age 

 
1.22  

[1.15, 1.29] 21 100   
1.27  

[1.13, 1.43] 19 100   
1.07  

[0.94, 1.22] 18 88.5   
1.12  

[0.97, 1.30] 25 94 

GFR count during admission 
window 

1.02  
[0.97, 1.07] 33 100   

0.98  
[0.90, 1.07] 32 99   

1.03  
[0.95, 1.12] 33 64   

1.00  
[0.95, 1.06] 29 89.5 

History of hypertension 
 

1.25  
[1.31, 1.19] 39 100   

1.39  
[1.57, 1.24] 39 100   

1.36  
[1.56, 1.19] 54 100   

1.24  
[1.43, 1.07] 60 100 
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Table 10. (continued) Select predictor-outcome associations in AKI models refit over time. Odds ratios from logistic regression 
models (LR OR), variable importance ranks from random forest models (RF rank), and proportion of times predictors was selected in 
200 L-1 penalized logistic regression (L1) modeling iterations based on models fit at development and within select temporal 
validation cohorts. 

 Development (2003)  2006 – Q4  2009 – Q4  2012 – Q4 

Predictor 
LR OR*  
(95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
 (95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
(95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
(95% CI) 

RF 
Rank 

L1 % 
selected 

History of diabetes mellitus 
 

1.14  
[1.08, 1.21] 40 100   

1.14  
[1.03, 1.27] 41 100   

1.03  
[0.92, 1.15] 47 80.5   

1.11  
[0.99, 1.24] 49 97.5 

ACEi in 90 days prior to  
admission 

1.15  
[1.09, 1.21] 41 100   

1.05  
[0.95, 1.17] 53 84   

1.15  
[1.03, 1.28] 60 98.5   

1.01  
[0.90, 1.13] 65 47 

CCB in 90 days prior to 
 admission 

1.16  
[1.10, 1.23] 50 100   

1.09  
[0.98, 1.23] 54 87.5   

1.03  
[0.91, 1.16] 80 49   

1.06  
[0.93, 1.20] 69 77 

History of cancer 
 

1.22  
[1.16, 1.28] 61 100   

1.09  
[0.99, 1.20] 74 86   

0.95  
[0.87, 1.05] 101 48.5   

1.05 
 [0.95, 1.16] 93 71.5 

History of dyslipidemia 
 

1.03  
[0.99, 1.09] 65 94   

1.02  
[0.93, 1.13] 85 57   

1.17  
[1.05, 1.30] 93 97   

1.01  
[0.90, 1.13] 104 39.5 

Fluoroquinolones during  
admission window 

1.05  
[0.97, 1.15] 66 86.5   

0.88  
[0.75, 1.02] 100 64   

0.89  
[0.75, 1.04] 81 58.5   

0.88  
[0.72, 1.06] 95 73 

Lactate ringers IVF 
 

2.43  
[0.33, 17.72] 67 98   

2.34  
[0.21, 25.62] 42 62.5   

0.41  
[0.01, 16.52] 44 71.5   

8.43  
[0.77, 91.72] 40 69 

Vancomycin during  
admission window 

1.13  
[1.03, 1.23] 81 100   

1.18  
[1.04, 1.34] 62 98.5   

1.44  
[1.28, 1.63] 43 100   

1.58  
[1.39, 1.79] 39 100 

History of COPD 
 

1.07  
[1.02, 1.12] 84 98.5   

1.02  
[0.93, 1.11] 92 36.5   

0.95  
[0.87, 1.05] 97 38.5   

1.05  
[0.95, 1.15] 97 77 

Penicillins during admission 
window 

0.97 
 [0.92, 1.04] 86 49   

1.05  
[0.94, 1.18] 89 67   

0.94  
[0.83, 1.06] 85 32   

0.99 
 [0.88, 1.13] 59 63.5 

Antiemetics during 
admission window 

1.20  
[1.07, 1.35] 90 99   

1.14  
[0.96, 1.36] 80 72.5   

1.31  
[1.14, 1.51] 50 98   

1.22  
[1.07, 1.39] 68 96.5 

Antiemetics in 90 days prior 
to admission 

1.09  
[0.97, 1.23] 101 83   

1.13  
[0.90, 1.41] 82 50   

1.01  
[0.81, 1.26] 89 29   

1.18  
[0.98, 1.42] 71 89 

* Odds ratios for continuous predictors are for an interquartile range increase in value 
Abbreviations::CCB=calcium channel blocker; COPD=chronic obstructive pulmonary disease; IVF=intravenous fluids 
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at validation year four resulted in the associations becoming non-significant; however, 
confidence intervals for the refitted odds ratios overlapped with confidence intervals of the 
original model in all but one validation cohort. 
 
 
Figure 19. Odds ratios and 95% confidence intervals of select predictors from AKI logistic 
models refit over time. For continuous variables, odds ratios indicate effect of one IQR change 
in value. Grey lines indicate initial odds ratio and confidence interval. 

 
  

 
In L-1 penalized logistic regression models refit over time, we observed no temporal 

changes in selection patterns of the majority of predictors (see Figure 20 and Table 10). Six 
predictors—use of loop and thiazide diuretics in the admission window, mean and change in 
GFR in the admission window, mean outpatient GFR prior to admission, and patient race—were 
consistently selected for inclusion in the model in the development and every validation cohort. 
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Figure 20. Variable selection of select predictors from AKI L-1 penalized logistic regression 
models refit over time. Proportion of bootstrap iterations (B=200) in which select predictors were 
retained.  

 
 
 
Use of vancomycin during the admission window, a history of hypertension, and hypertension at 
admission were selected in at least 90% of L1 modeling iterations in the development and every 
validation cohort. Two predictors—age at admission and use of fluoroquinolones during the 
admission window—exhibited significant temporal changes in the frequency of selection 
(adjusted p<0.0002). Age at admission became less frequently selected during the second half 
of the validation period. Selection frequency of use of fluoroquinolones during the admission 
window declined by three years into the validation period, followed by small increases in 
selection frequency over the remainder of the validation period. Although not statistically 
significant, we noted temporal changes in the variability of selection of additional predictors, 
such as history of diabetes and use of antiemetics during at the admission window (see Figure  
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Figure 21. Variable importance ranks of select predictors from AKI random forest models refit 
over time. Higher ranks (smaller numbers) indicate greater importance to model performance. 

 
 
 
20), with the changes noticeably separating patterns of the first and second halves of the 
validation period. 

Based on RF models refit in each temporal validation cohort, 11 predictors (9.3%) 
experienced significant temporal changes in variable importance ranking (adjusted p<0.0002; 
see Table 10 and Figure 21). The relative strength of association between AKI and admission 
GFR count, use of antiemetics in the 90 days prior to admission, lactate ringer intravenous 
fluids, and use of antiemetics, vancomycin, and penicillins during the admission window 
increased over time as the variable importance rank of each predictor increased over the 
validation period. We observed reduced variable importance ranks over time for history of 
dyslipidemia, use of ACEi and calcium channel blockers in the 90 days prior to admission, 
history of diabetes, and history of chronic obstructive pulmonary disease. The observed 
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temporal changes in variable ranks were not consistent over time. For example, the relative 
importance of history of diabetes was stable around 40th for almost four years before  
becoming more variable and trending toward lower ranks. Mean GFR during the admission 
window ranked as the most important variable in the original model and for models in every 
validation cohort.  
 
 

Conclusions 
 

In this rigorous comparison of regression and machine learning models for development 
of AKI during a hospital admission, discrimination remained quite stable over time and 
calibration deteriorated substantially, with all methods drifting toward overprediction within one 
year of development. While discrimination statistically significantly declined over time for the 
penalized regression and naïve Bayes models, the magnitude of these changes was minimal 
and did not result in practically meaningful changes in AUCs. For the most stringent calibration 
measures, machine learning models exhibited superior stability compared to regression models. 
Decreases in the rate of AKI over time coincided with increasing overprediction in all models, 
while changes in predictor-outcome associations temporally corresponded with diverging 
calibration between machine learning and regression models. Interpretation of these findings 
and their implications for model updating are discussed and integrated with the findings of our 
corresponding 30-day mortality analysis in Chapter 6. 
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CHAPTER 5 
 
 

TEMPORAL EVALUATION OF MODELS PREDICTING  
30-DAY ALL-CAUSE MORTALITY AFTER HOSPITAL ADMISSION 

 
 

To more fully understand the impact of modeling methods on performance over time, we 
extended our analysis beyond the acute kidney injury study and performed corresponding 
analysis among models for 30-day all-cause mortality after hospital admission. Applying the 
same seven modeling methods – logistic regression, L-1 penalized logistic regression, L-2 
penalized logistic regression, L-1/L-2 penalized logistic regression, naïve Bayes, neural 
networks, and random forests – we observed multiple patterns of calibration drift that both 
reinforced and expanded on the findings of our AKI analysis. The combinations of data shifts in 
our mortality study population also differed from those observed in our AKI population, further 
making this analysis complementary to the findings described in the previous chapter. 

Nationwide, 3,467,142 admissions to VA facilities met all eligibility criteria for our 30-day 
all-cause mortality analyses. Restricting to the 50% of sites randomly selected by stratified 
Veterans Integrated Service Network, our analysis included 1,893,284 admissions (54.6% of all 
eligible admissions), 235,548 in the 2006 development cohort and 1,657,736 in the 7-year 
validation period. The final validation cohort (i.e., 2013-Q4) was smaller than the other validation 
cohorts (n=37,442) as it was restricted to admissions beginning on or before December 1, 2013 
to allow for sufficient follow-up time for outcome ascertainment. The remaining 27 validation 
cohorts consisted of 60,011 admissions on average (range 57,367 – 62,139). A brief summary 
of the patient population at select points across the study period is presented in Table 11 (See 
Appendix D for details for all predictors). Admitted patients were primarily male (95.0%), white 
(72.1%), in their early 60s (mean age: 63.4; standard deviation: 14.0), and diagnosed with at 
least one chronic medical condition (93.9% with one diagnosis, 86.8% diagnosed with multiple 
conditions). Overall, the 30-day all-cause mortality rate after admission was 4.9%.   
 
 

Model Development 
 
Modeling Parameters 
 

Table 12 provides the hyperparameter values selected through 5-fold cross validation for 
the L-1/L-2 penalized logistic regression, random forest, and neural network models. These 
hyperparameters were used for all internal validation bootstrap iterations. The shrinkage 
parameters (lamba), however, for the three penalized regression models were selected during 
each bootstrap iteration. 
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Table 11. 30-Day mortality patient population at development (2006) and in three years of the 
validation period (2007, 2010, 2013) 
  2006 2007 2010 2013 

N 235,548 235,734 243,631 214,798 
% 30-day mortality 5.0 4.9 4.9 4.7 
Age in years (mean and SD) 62.9 (13.7) 63.0 (13.8) 63.6 (14.0) 63.9 (14.3) 
% Female 4.5 4.7 4.9 5.5 
Race         
    % White 71.7 71.6 72.3 72.1 
    % Black 19.8 20.0 19.6 19.8 
    % American Indian/Alaskan 1.3 1.4 1.5 1.6 
    % Asian/Pacific Islander 1.1 1.2 1.2 1.3 
    % Unreported 6.0 5.9 5.5 5.3 
BMI at admission (mean and SD) 28.2 (7.1) 28.3 (7.3) 28.7 (7.2) 28.8 (7.1) 
Health care utilization (prior year)       
    Inpatient visits (mean and SD) 1.3 (2.0) 1.3 (2.0) 1.3 (2.0) 1.3 (2.1) 
    Outpatient visits (mean and SD) 36.4 (43.6) 37.1 (43.3) 42.0 (48.2) 43.5 (48.9) 
% Unplanned readmission 10.3 10.5 10.5 10.4 
Select diagnoses (preadmission) 

        Cardiac arrhythmias 8.4 10.6 15.7 19.3 
    Chronic pulmonary disease 28.4 32.4 38.5 41.2 
    Congestive heart failure 17.3 19.1 22.0 23.7 
    Depression 20.1 24.5 32.6 38.4 
    Drug abuse 12.4 14.9 18.8 22.0 
    Dyslipidemia 41.8 49.6 61.5 66.4 
    Fluid and electrolyte disorders 19.0 23.9 32.8 38.1 
    Hypertension 61.7 67.4 74.2 76.4 
    Renal failure 12.3 15.3 19.5 21.9 
Abbreviations: SD=standard deviation 

 
 

Table 12. Hyperparameters selected for 30-day mortality models 
Model Hyperparameter Value 

L1-L2 Elastic-net mixing parameter (a) 0.2 
Random forest # predictors considered per tree 6 

 
Minimum # observations per node 5 

  # trees 600 
Neural network Size of hidden layer 51 

 
 
Initial Model Performance 
 

Initial performance of each of the seven models is presented in Table 13. For both 
measures of accuracy, performance was similar for the four regressions and the RF model, and  
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Table 13. Initial 30-day mortality model performance in development cohort 

 Regression  Machine Learning 
  LR L1 L2 L1-L2   RF NN NB 
Accuracy         

    Scaled Brier score 
0.131	

[0.131,	0.132]	
0.128	

[0.128,	0.129]	
0.124	

[0.124,	0.125]	
0.129	

[0.128,	0.129]	
0.119	

[0.119,	0.119]	
0.073	

[0.072,	0.074]	
* 

    Nagelkerke’s R2 
0.253	

[0.252,	0.254]	
0.248	

[0.247,	0.249]	
0.241	

[0.241,	0.242]	
0.248	

[0.247,	0.249]	
0.220	

[0.219,	0.221]	
0.171	

[0.170,	0.172]	 * 

Discrimination 
        

    AUC 
0.847	

[0.846,	0.847]	
0.844	

[0.844,	0.844]	
0.842	

[0.841,	0.842]	
0.844	

[0.844,	0.844]	  
0.834	

[0.833,	0.834]	
0.794	

[0.794,	0.795]	
0.768	

[0.768,	0.769]	
Calibration 

        
    O:E ratio 

0.998	
[0.996,	1.001]	

0.998	
[0.996,	1.001]	

0.998	
[0.996,	1.001]	

0.998	
[0.996,	1.001]	

0.929	
[0.927,	0.931]	

0.997	
[0.993,	1.000]	

0.339	
[0.338,	0.340]	

    Cox intercept 
-0.048	

[-0.055,	-0.042]	
0.088	

[0.080,	0.096]	
0.215	

[0.207,	0.223]	
0.096	

[0.088,	0.105]	
0.074	

[0.065,	0.082]	
-0.122	

[-0.133,	-0.112]	
-2.548	

[-2.551,	-2.546]	

    Cox slope 
0.980	

[0.977,	0.982]	
1.039	

[1.036,	1.042]	
1.093	

[1.090,	1.096]	
1.043	

[1.040,	1.046]	
1.072	

[1.069,	1.076]	
0.951	

[0.947,	0.955]	
0.113	

[0.113,	0.114]	

    ECI 
0.013	

[0.013,	0.014]	
0.010	

[0.010,	0.010]	
0.011	

[0.010,	0.011]	
0.010	

[0.010,	0.010]	
0.034	

[0.033,	0.034]	
0.008	

[0.007,	0.008]	
7.783	

[7.758,	7.808]	
* Non-calculable due to extreme predicted probabilities of 0 and 1. 
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lower for the NN model. Discrimination was generally good, with AUCs ranging from 0.77 to 
0.85. The NN and NB models had slightly lower AUCs that the regression and RF models. The 
regression models and the NN model were calibrated based on O:E ratios and ECIs. The RF 
model, with an O:E ratio of 0.93 (95% CI: 0.93, 0.93), slightly overpredicted on average. No 
models were perfectly calibrated according to Cox intercepts and slopes; however, these 
metrics generally approached their ideal values and indicated similar levels of 
over/underpredicting and over/underfitting across models. The NB model lacked accuracy and 
calibration as measured by all metrics. 

 
 

Model Performance Over Time 
 
Accuracy 
 

Accuracy was stable over time for the L2, RF, and NN models, and declined slightly for 
the LR, L1, L1-L2, and NB models (adjusted p<0.001; see Figure 22). Temporal changes in the  
 
 
Figure 22. Accuracy of 30-day mortality models over time by modeling method. Regression 
models are displayed with circular markers and red-orange colors. Machine learning models are 
displayed with triangular markers and blue-purple colors. Due to the large discrepancy between 
NB performance and performance of the other models, the vertical axes are scaled such that 
NB values are excluded from the plots. 
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accuracy of the LR, L1, and L1-L2 regression models were observed for the scaled Brier score 
but not the Nagelkerke’s R2. For these models, overall changes in the scaled Brier score were 
small in magnitude. For example, the rate of change for the LR model was -0.002 (95% CI: -
0.004, -0.001) and resulted in an overall change from 0.131 (95% CI: 0.131, 0.132) to 0.124 
(95% CI: 0.108, 0.139). The accuracy of the RF and regression models was similar, initially and 
over time. On both accuracy measures, the NN model exhibited lower accuracy than all other 
models, with the exception of the NB model, across the entire study period. The NB model 
consistently underperformed all other models based on both the scaled Brier score and 
Nagelkerke’s R2. 
 
 
Discrimination  
 

We observed stable discrimination for all models over the seven-year validation period 
(adjusted p>0.001; see Figure 23). The regression and RF models had comparable AUCs and 
maintained higher discrimination than the NB and NN models. The NB and NN models exhibited 
similar levels of discrimination, with significant differences that were small in magnitude at a 
couple time points. 

  
 
Figure 23. Discrimination of 30-day mortality models over time by modeling method. 
Regression models are displayed with circular markers and red-orange colors. 
Machine learning models are displayed with triangular markers and blue-purple colors. 

 
 
 
Calibration 
 

We observed calibration drift for all models, with the magnitude and pattern of drift 
varying by modeling method and calibration metric (see Figure 24). The NB model substantially 
underperformed all other models in terms of calibration due to extreme predictions, and thus the 
performance of this model is not considered further. 
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Figure 24. Calibration of 30-day mortality models over time by modeling method. Regression models are displayed with circular 
markers and red-orange colors. Machine learning models are displayed with triangular markers and blue-purple colors. Due to the 
large discrepancy between NB performance and performance of the other models, the vertical axes are scaled such that NB values 
are excluded from the plots. 
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O:E ratios declined immediately after development for all models and across the study 
period for all models except the NN, indicating increasing average overprediction. At the first 
quarterly validation period, the O:E ratio included the null values of 1.0 for only the NN and LR 
models. These two models achieved calibration according to the O:E ratio at 2-4 additional time 
points, however, overpredicted on average for most of the validation period. The trajectory of 
O:E ratios was similar for most models, with the exception of the NN model which did not exhibit 
a significant slope in the O:E ratio over time (adjusted p<0.001 for all models except the NN 
model). The NN model demonstrated significantly less overprediction than the RF and 
regression models, particularly in the last three years of the validation period. In addition to the 
overall drift, a seasonal pattern was apparent in the O:E ratios. In the first and fourth quarters of 
most validation years, O:E ratios peaked for all models. 

Assessments of weak calibration also documented different patterns of drift across 
methods. Cox intercepts declined across the validation period for each of the regression models 
(adjusted p<0.001), indicating increasing overprediction, while remaining stable for the RF and 
NN models. The L2 regression model exhibited a smaller decline over time in the Cox intercept 
than the other regression models and did not systematically over or underpredict in 16 of 28 
validation cohorts. The RF did not systematically over or underpredict in the majority of 
validation cohorts (24 of 28), and the NN model systematically overpredicted to a stable degree 
for the entire study period. Additionally, we observed a seasonal pattern in Cox intercepts 
similar to that of the O:E ratios, although to a lesser degree. Cox slopes were stable over time 
(adjusted p>0.001). No significant overfitting was observed for the LR, L1, and L1-L2 regression 
models. The L2 regression and RF models exhibited some underfitting (i.e., Cox slope>1.0). 
This underfitting was consistent over time for the L2 model and demonstrated a nonsignificant 
tendency toward increasing for the RF model. The NN model had Cox slopes less than 1.0, 
indicating overfitting, for 13 of the 28 validation cohorts; however, there was no significant 
change in the level of Cox slopes over time for the NN model.  

While the regression and RF models experienced calibration drift at the moderate level 
of calibration, the NN model exhibited stable overall moderate calibration with some seasonal 
variation. ECIs of the regression and RF models increased across the validation period 
(adjusted p<0.001), indicating declining calibration, and exhibited no changes in the trajectory or 
rate of ECI drift during the seven years. The L2 regression model experienced a smaller 
magnitude of drift in the ECI compared to the other regression models and a similar magnitude 
of drift to the RF model. Compared with the L2 regression and RF models, the rate of change in 
ECI was 50% higher for the LR regression model (0.006 [95%CI: 0.005, 0.008] vs 0.004 [95% 
CI: 0.003, 0.005] and 0.004 [95% CI: 0.002, 0.005] for the LR vs L2 and RF, respectively) and 
75% higher for the L1 and L1-L2 regression models (0.007 [95%CI: 0.006, 0.009] for both). For 
each model, seasonal corrections of the ECI were observed in the first and fourth quarters of 
each year. ECIs were stable over time for the NN model (adjusted p>0.001). Although not 
significantly different from the surrounding time periods, in most validation years, the ECI of the 
NN model was markedly lower (i.e., closer to the ideal value of 0) during the first and fourth 
quarters. 

The ranges of predicted probabilities and proportion of admissions over which each 
model was calibrated also changed over time and varied by modeling method (see Figures 25 
and 26). With the exception of the NB model, which strongly overpredicted for most predicted 
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Figure 25. Regions of calibration of 30-day mortality models over time by modeling method. 
Areas of overprediction and underprediction are shaded based on based on within-region 
estimated calibration index (ECI) in order to highlight the magnitude of miscalibration. 

 



	 73 

Figure 26. Proportional volume assessment regions of calibration of 30-day mortality models 
over time by modeling method. Regions are scaled by proportion of observations in each region 
and shaded by the magnitude of the within region estimated calibration index (ECI).  
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probabilities, each model moved in and out of regions of calibration, overprediction, and 
underprediction across the range of predicted probability. The RF model was the only model 
with a large range of probabilities over which the model strongly underpredicted, as highlighted 
by the darkest purple shade dominating the RF panel of Figure 25. During the first half of the 
validation period, the L2 regression model tended to be calibrated for predictions in the 50% to 
90% ranges of risk. The remaining models and the L2 regression model during the second half 
of the validation period tended to strongly overpredict for predicted probabilities starting at 
approximately 20% risk. For each regression model, across the validation period the 
proportional volume assessment indicated that nearly half of admissions were in regions of 
overprediction, with the proportion increasing slowly over time. The majority of these admissions 
were minimally overpredicted, falling in areas with regional ECI values near the ideal value of 0, 
as highlighted by the lightest blue shades in Figure 26. For example, in the LR model, a low risk 
region of overprediction captured at least 40% of admissions in each validation cohort and had 
a mean ECI of 0.005 (range: 0.002 – 0.009). Each regression model also experienced growth in 
volume of an overpredicted region with a larger magnitude of miscalibration among higher 
predicted probabilities. For the L1 and L1-L2 regression models, the vast majority of admissions 
were strongly overpredicted in the last year of the study period.  The overpredicted region of the 
RF model captured a slowly growing proportion of admissions over time and increased modestly 
in the magnitude of overprediction across the validation period. The proportional volume 
assessment highlighted a seasonal pattern in the calibration of the NN model for admissions 
with predicted probabilities under 3%. On average, 61.3% of all admissions were in this low risk 
region for which the NN model was calibrated during the first and fourth quarters of most years 
and minimally overpredicted during the second and third quarters. 
 
 

Data Shifts Over Time 
 
Event Rate Shift 

 
Over the seven-year validation period, there was a statistically significant decline in the 

30-day mortality rate (adjusted p<0.0003). The event rate declined from 5.0% in the 2006 
development year to 4.8% in the final validation period (see Figure 27). Seasonal changes 
within each validation year were three times larger than the overall change in the mortality rate 
(mean within year change: 0.6%; overall change: 0.2%). Two years after development, the 
mortality rate was a significant predictor in logistic membership models discriminating between 
development and validation admissions (see Figure 28). The odds ratios for mortality in these 
models decreased over time from 0.95 (95% CI: 0.91, 0.99) in the first quarter of 2009 (i.e., two 
years from development) to 0.81 (95%CI: 0.76, 0.87) in the final validation cohort. While this 
overall change accrued over five years, we observed an annual pattern of odds ratios generally 
moving toward the null during the 1st and 4th quarters. The relative importance of 30-day 
mortality in the random forest membership models changed over time (adjusted p<0.0004); 
however, this small change occurred over the first validation year in which the rank changed 
from 59 to 63, and the variable importance rank was stable at a mean of 63 (range: 62 – 64) out 
of 67 over the next six years. 
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Figure 27. Proportion of admissions resulting in 30-day mortality 
over time. Red lines indicate fitted values. 

 
 
 
Figure 28. Membership model results for 30-day mortality. Odds ratio (left) and 95% confidence 
intervals for 30-day mortality based on logistic membership models fit for each 3-month 
temporal validation cohort. Grey line indicates null odds ratio of 1. Variable importance rank 
(right) for 30-day mortality based on random forest membership models fit for each 3-month 
temporal validation cohort. Higher ranks (smaller numbers) indicate greater importance to model 
performance. 

 
 
 
Case Mix Shift 
 

We observed case mix shift across the validation period. Distributions of predicted 
probabilities indicated changes in severity and heterogeneity of risk in the patient population 
over time (adjusted p<0.002). Predictions from the NN model were the exception, exhibiting no 
change in the variability of predictions. Predictions from all models indicated an increase in 
mean patient severity over time. The standard deviation of the predictions from regression 
models increased 4-5% over the seven validation years, indicating more heterogeneity of risk 
among patients. The RF model, on the other hand, indicated a 5% decrease in heterogeneity of 
risk. Membership models also noted the presence of overall case mix shift. The logistic 
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membership models increasingly discriminated between admissions from the development and 
each sequential validation cohort, with AUCs increasing from 0.616 (95% CI: 0.613, 0.618) to 
0.836 (95% CI: 0.834, 0.839) (see Figure 29).  

For predictor-level assessments of case mix shift, we present detailed graphical results 
for six exemplar predictors – history of liver disease, depression, and dyslipidemia, as well as 
the most recent sodium, mean corpuscular hemoglobin concentration (MCHC), and serum 
creatinine values recorded during the admission window. Findings for these predictors highlight 
common data shift patterns observed among the full set of predictor variables. 

 
 
Figure 29. Discrimination of 30-day mortality logistic membership 
models over time 

 
 
 

We observed changes in the distributions of 94.5% of predictors during the study period 
(adjusted p<0.0003; see Figure 30 for details of six exemplar predictors). The proportion of 
admissions to black patients, admissions that were planned, and admissions that were 
unplanned but not readmissions did not change over time. In addition, the mean of the most 
recent blood urea nitrogen level in the admission window was constant over. Changes in vital 
signs, laboratory values, and body mass index were generally small in magnitude. The forms of 
these changes were variable, with some having an inflection points at three to four years after 
model development. The largest changes were observed among health history variables. With 
the exception of HIV, which declined by less than 0.5%, the proportion of admissions involving 
patients with each health condition increased across the validation period. The rates of these 
increases were generally constant over time. Among health history variables, the largest 
changes occurred for dyslipidemia (41.8% to 66.8%), fluid and electrolyte disorders (19.0% to 
38.9%), and depression (20.1% to 39.9%), and the smallest change for lymphoma (1.2% to 
1.6%). 

For most predictors, we observed temporal changes in the adjusted contributions of 
predictors to discriminating between development and validation admissions based on logistic 
membership models (see Figure 31 for details on the six exemplar predictors). Most laboratory  
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Figure 30. Distributions of select 30-day mortality predictors across over time. Continuous 
predictors summarized as means, categorical variables summarized as proportions. Red lines 
indicate fitted, smoothed values. 

 
 
 
value predictors were variable in terms of both their strength and direction of association with 
membership in the validation versus development cohorts, indicating variable contribution to 
case mix differences. The health history variables generally either increased in strength of 
association as membership model predictors across the study period or during the first two to 
three years followed by stable odds ratios for the remainder of the study period. The largest 
changes in odds ratios, indicating the most substantial shift in contribution to case mix 
difference after adjustment for other variables, were observed for dyslipidemia, depression, drug 
abuse and fluid and electrolyte disorders. The increasing magnitude of these odds ratios 
resulted in these variables becoming the most predictive variables for distinguishing 
development and validation observations by the end of the study period. A history of blood loss 
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Figure 31. Odds ratios and 95% confidence intervals of select predictors from 30-day mortality 
logistic membership models. For continuous variables, odds ratios indicate effect of one IQR 
change in value. Grey lines indicate null odds ratio of 1. 

 
 
 
anemia, race, and unplanned readmission in the previous year were not significant predictors in 
the logistic membership models.  

Temporal changes in the relative importance of predictors in random forest membership 
models were observed in 74.6% of predictors (adjusted p<0.0004; see Figure 32 for details on 
the six exemplar predictors). Among variables with significant temporal changes in variable 
importance rank, the mean change in rank was 14 (interquartile range: 7 – 17). Consistent with 
the logistic membership models, the largest contribution to case mix shifts based on the 
magnitude of change in random forest membership model variable importance rank were 
dyslipidemia, depression, drug abuse, and fluid and electrolyte disorders. The rank of drug 
abuse increased slowly over the first six years and then more quickly during the final study year, 
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leading to an overall increase in rank from 43 at the first validation period to 13 in the final 
validation cohort. For dyslipidemia, depress, and fluid and electrolyte disorders, variable 
importance ranks were initially fairly stable in the 30s and 40s (out of 67), increased quickly 
three to four year after development, and then remained stable in the top 10 most important 
predictors for the remainder of the validation period. Among predictors with smaller changes in 
variable importance rank over time, shifts in rank generally followed similar patterns with either 
consistent changes over time or an inflection in the trajectory of rank at roughly three or four 
years. Mean corpuscular hemoglobin concentration and platelet count were consistently among 
the highest ranking variables in the random forest membership models. 
 
 
Figure 32. Variable importance ranks of select predictors from 30-day mortality random forest 
membership models. Higher ranks (smaller numbers) indicate greater importance to model 
performance. 
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Predictor-Outcome Association Shift 
 

Changes in the strength of associations between predictors and 30-day mortality were 
measured by changes in the structure of models refit in each validation cohort. For the majority 
of predictor, we observed no temporal changes in association. For those predictors with the 
strongest and/or most changed predictor-outcome associations, we present results for four time 
points across the study period in Table 14. In addition, we present more detailed graphical 
results for the same six exemplar predictors included in the detailed case mix shift results above 
– history of liver disease, depression, and dyslipidemia, as well as the most recent sodium,  
 
 
Figure 33. Odds ratios and 95% confidence intervals of select predictors from 30-day mortality 
logistic models refit over time. For continuous variables, odds ratios indicate effect of one IQR 
change in value. Grey lines indicate initial odds ratio and confidence interval. 
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Table 14. Select predictor-outcome associations in 30-day mortality models refit over time. Odds ratios from logistic regression 
models (LR OR), variable importance ranks from random forest models (RF rank), and proportion of times predictors was selected in 
200 L-1 penalized logistic regression (L1) modeling iterations based on 30-day mortality models fit at development and within select 
temporal validation cohorts.   

 Development (2006)  2007 – Q4  2010 – Q4  2013 – Q4 

Predictor 
LR OR*  
(95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
 (95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
(95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
(95% CI) 

RF 
Rank 

L1 % 
selected 

Highest ranking predictors at development 

Age (years) 
2.47  

[2.30, 2.65] 1 100 
 

2.54 
[2.19, 2.94] 1 100 

 

2.57  
[2.21, 2.99] 1 100 

 

2.38  
[1.93, 2.94] 2 100 

Body mass index  
0.80 

[0.76, 0.84] 2 100 
 

0.70 
[0.62, 0.78] 4 100 

 

0.75  
[0.67, 0.83] 2 100 

 

0.72  
[0.62, 0.83] 5 100 

Albumin 
0.63  

[0.60, 0.67] 3 100 
 

0.67  
[0.59, 0.75] 2 100 

 

0.54  
[0.48, 0.61] 3 100 

 

0.53  
[0.45, 0.63] 1 100 

Pulse (minimum) 
1.42  

[1.34, 1.50] 4 100 
 

1.46  
[1.31, 1.64] 3 100 

 

1.31  
[1.18, 1.47] 4 100 

 

1.54 
[1.33, 1.78] 3 100 

Pulse (maximum) 
1.75  

[1.65, 1.85] 5 100 
 

1.45  
[1.29, 1.63] 8 100 

 

1.54  
[1.38, 1.72] 7 100 

 

1.51 
[1.30, 1.75] 10 100 

Alkaline phosphatase 
1.15  

[1.10, 1.20] 6 100 
 

1.11  
[1.01, 1.22] 5 100 

 

1.18  
[1.09, 1.29] 8 100 

 

1.17 
[1.04, 1.32] 9 100 

White blood cell count 
1.26  

[1.20, 1.33] 7 100 
 

1.30 
[1.17, 1.45] 9 100 

 

1.20 
[1.08, 1.34] 9 100 

 

1.30 
[1.13, 1.49] 8 100 

Systolic blood pressure  
(maximum) 

0.80 
[0.75, 0.85] 8 100 

 

0.75  
[0.66, 0.85] 6 100 

 

0.67  
[0.59, 0.75] 5 100 

 

0.69 
[0.59, 0.81] 4 100 

Platelet count 
0.94  

[0.89, 0.99] 9 100 
 

0.96  
[0.86, 1.08] 10 100 

 

0.88  
[0.79, 0.98] 10 100 

 

1.04 
[0.90, 1.19] 6 99.5 

Systolic blood pressure  
(minimum) 

0.98  
[0.92, 1.05] 10 100 

 

0.86 
[0.76, 0.99] 7 100 

 

0.92  
[0.81, 1.05] 6 100 

 

0.94 
[0.79, 1.11] 12 96 

Variables with shifts in association 

Chloride 
0.95  

[0.90, 0.99] 28  99.5 
 

0.77  
[0.68, 0.87] 26 98.5 

 

0.65 
 [0.58, 0.73] 23 100 

 

0.61 
[0.53, 0.71] 25 100 

Depression 
0.91  

[0.86, 0.97] 51  99.5 
 

0.90  
[0.80, 1.02] 55 84.5 

 

0.98 
[0.89, 1.09] 48 60 

 

0.89 
[0.78, 1.01] 43 85 

Dyslipidemia 
0.95  

[0.91, 0.99] 39 100 
 

1.02  
[0.93, 1.12] 40 51 

 

0.94 
[0.85, 1.03] 36 85.5 

 

1.06 
[0.93, 1.21] 50 39 
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Table 14. (continued) Select predictor-outcome associations in 30-day mortality models refit over time. Odds ratios from logistic 
regression models (LR OR), variable importance ranks from random forest models (RF rank), and proportion of times predictors was 
selected in 200 L-1 penalized logistic regression (L1) modeling iterations based on 30-day mortality models fit at development and 
within select temporal validation cohorts.   

 Development (2006)  2007 – Q4  2010 – Q4  2013 – Q4 

Predictor 
LR OR*  
(95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
 (95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
(95% CI) 

RF 
Rank 

L1 % 
selected   

LR OR 
(95% CI) 

RF 
Rank 

L1 % 
selected 

Liver disease 
1.11  

[1.02, 1.21] 56 97.5  
1.42  

[1.22, 1.65] 42 99.5  
0.99  

[0.86, 1.14] 57 29  
0.91  

[0.77, 1.08] 57 44.5 

Liver disease 
1.11  

[1.02, 1.21] 56 97.5 
 

1.42  
[1.22, 1.65] 42 99.5 

 

0.99  
[0.86, 1.14] 57 29 

 

0.91  
[0.77, 1.08] 57 44.5 

Mean corpuscular  
hemoglobin concentration 

1.03  
[0.97, 1.09] 25 99 

 

0.54  
[0.35, 0.82] 24 96 

 

1.02  
[0.82, 1.28] 27 81.5 

 

1.64  
[0.96, 2.79] 24 69 

Serum creatinine 
0.95  

[0.91, 0.99] 29 82.5 
 

0.87  
[0.80, 0.94] 29 50 

 

1.07  
[0.98, 1.16] 20 39.5 

 

0.93  
[0.84, 1.03] 17 47 

Sodium 
0.81 

[0.77, 0.85] 23 100   
1.03  

[0.92, 1.16] 28 96   
1.10 

[0.99, 1.22] 28 91   
1.17  

[1.02, 1.35] 21 
8525 

 
* Odds ratios for continuous predictors are for an interquartile range increase in value 
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mean corpuscular hemoglobin concentration, and serum creatinine values recorded during the 

admission window.  

We observed little evidence of temporal changes in the strength of predictor-outcome 

associations based on logistic regression models refit in each validation cohort (see Table 14 

and Figure 33). For the majority of predictors, odds ratios remained within the confidence 

intervals of the odds ratio from the original model based on 2006 data. Some variables did 

exhibit a non-significant tendency toward strengthening or weakening associations. For 

example, a history of liver disease seemed to reveal declining odds ratio over time (see Figure 

33), although the confidence intervals overlapped with those from the original model and 

 
 
Figure 34. Variable selection of select predictors from 30-day mortality L-1 penalized logistic 

regression models refit over time. Proportion of bootstrap iterations (B=200) in which select 

predictors were retained. 
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captured the null value in nearly all validation cohorts. For some laboratory values, such as 

chloride and sodium levels during admission, odds ratios were less stable, moving in and out of 

significance in both directions of association.  

In L-1 penalized logistic regression models refit over time, we observed significant 

temporal changes in selection patterns for two predictors (adjusted p<0.0004; see Table 14 and 

Figure 34). The frequency of selection for inclusion in L1 regression models began to decline 

starting after approximately two years of validation for both a history of liver disease and mean 

corpuscular hemoglobin concentration. The magnitude of decline in selection frequency was 

larger for liver disease, which was selected in 98.0% of bootstrap iterations at development and  

 
 
Figure 35. Variable importance ranks of select predictors from 30-day mortality random forest 

models refit over time. Higher ranks (smaller numbers) indicate greater importance to model 

performance. 
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44.5% in the final validation period. Twenty-one of the 66 predictors were consistently selected 

for inclusion in the L1 regression models across the study period. These predictors 

characterized laboratory values, vital signs, demographics, and health history. Among the 

remaining of predictors, the proportion of times each was selected was variable, with no clear or 

statistically significant patterns emerging over time.  

Refitting random forest models in each validation cohort revealed temporal changes in 

the variable importance ranking of three predictors (adjusted p<0.0004; see Table 14 and 

Figure 35). Ranks for a history of depression and serum creatinine during the admission window 

increased steadily across the validation period, increasing from 51 to 43 for depression and 29 

to 17 for creatinine. The variable importance rank of dyslipidemia was steady through  

the first five years and then declined from 39 to 50 over the last two years of the validation 

period. Variable importance ranks were variable for most predictors, but did not experience 

short or long term tendencies toward increasing or decreasing rank. Age at admission was 

consistently identified as the most important predictor, with the exception of the final validation 

cohort in which it was ranked second. Body mass index and minimum pulse in the admission 

window were also consistently ranked highly across the study period.  

 

 

Conclusions 
 

In repeated validations over seven years, we observed varying patterns of performance 

among regression and machine learning models for 30-day all-cause mortality after hospital 

admission. Among all models, discrimination was stable over time. With the exception of the 

neural network model, calibration drifted across the entire validation period as all other models 

increasingly overpredicted risk. Seasonal changes in the mortality rate were correlated with 

cyclical fluctuations in the calibration of all models, including the neural network model despite 

its maintaining stable calibration overall. Case mix shift dominated temporal changes in the 

patient population. Taken together with the observed calibration drift, the data shift assessments 

highlight robustness of the neural network model, moderate susceptibility of the random forest 

and L-2 penalized logistic regression models, and high susceptibility of the other regression 

models to case mix shift. In the next chapter, the implications of these findings are interpreted in 

conjunction with the findings of our acute kidney injury analysis, in which different patterns of 

performance drift and data shift were observed (see Chapter 4), to provide a more complete 

assessment of the impact of modeling methods on model performance over time.  
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CHAPTER 6 
 
 

IMPACT OF MODELING METHODS ON PERFORMANCE DRIFT  
AND IMPLICATIONS FOR MODEL UPDATING PROTOCOLS 

 

 

Our literature review highlighted the need for additional research into whether and how 

modeling methods exacerbate or alleviate calibration drift under varying data shift scenarios. In 

this rigorous comparison of performance drift in regression and machine learning models, we 

demonstrated that discrimination remained reasonably stable over time and all modeling 

methods were susceptible to deteriorating calibration. The degree of susceptibility of each 

modeling method to calibration drift varied based on the types of data shifts occurring in the 

patient population. All methods were susceptible to changes in the underlying event rate, while 

shifting case mix and predictor-outcome associations had a greater impact on regression 

models than the machine learning approaches. These findings highlight the need to tailor model 

updating protocols to modeling methods in terms of both the approach to and timing of 

recalibration or revision. Here we integrate findings from both our hospital-acquired acute kidney 

injury and 30-day all-cause mortality analyses, discuss implications of these findings, note 

limitations of our approach, and provide recommendations for updating strategies. 

 

 

Performance Drift across Modeling Methods 
 

We observed stable discrimination over time for modeling methods. The exception to 

this finding was the naïve Bayes model for AKI which experienced a statistically significant 

decline in discrimination; however, the magnitude of this change was minimal, resulting in the 

AUC weakening from 0.69 to 0.68 over 9 years, a difference unlikely to have practical 

implications. The stability of discrimination in our models was consistent with findings of our 

literature review, which highlighted various logistic models having stable discrimination even up 

to 20 years after model development.
23, 24, 78, 82, 90, 92, 99, 100

  

 Calibration deteriorated over time for all modeling methods. The calibration metrics 

being considered directly impacted whether we observed differences in calibration drift across 

methods. For our mortality models, we detected differences in calibration drift by modeling 

method at all levels of calibration. For our AKI models, calibration drift was similar across 

methods when characterized with mean and weak calibration measures, yet machine learning 

models exhibit superior stability in calibration compared to regression models when considering 

the most stringent calibration measures. 

Mean calibration, as measured with O:E ratios, deteriorated over time for all modeling 

methods. In our AKI analysis, O:E ratios declined over the first four validation years, indicating 

increasing overprediction, with several periods of rapid drift, particularly in the first and fourth 

years after development. This pattern was consistent across AKI models. In our mortality 

analyses, O:E ratios declined across the seven years of the validation period for all models 

except the neural network model, which exhibited a cyclical pattern in O:E ratios and initial drift 
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into overprediction but did not demonstrate a statistically significant declining trend over time. 

Our findings of increasing overprediction on average for both outcomes were consistent with 

previous studies of calibration drift.
23, 24, 76, 82, 90, 95, 96

 While prior work focused on logistic 

regression models, Minne et al
24, 92

 directly compared calibration drift based on O:E ratios of 

logistic regression and tree-based versions of the rSAPS-II model. O:E ratios indicated 

increasing levels of overprediction within four years of development for the logistic model, while 

remaining relatively stable for the tree-based model.
24, 92

 In contrast, we did not observe more 

stability of O:E ratios for our random forest models compared to logistic models. Minne et al
24, 92

 

did not report more details measures of calibration or evaluations of data shifts, preventing us 

from fully understanding the factors driving the differences in our findings. 

 At the level of weak calibration, we observed increasing overprediction and generally 

stable levels of overfitting over time, although findings varied by modeling method in some 

cases. Among all AKI models, Cox intercepts declined over time, indicating increasing 

overprediction. The rate of this change, however, was greater in the first half of the validation 

period than the second. For regression models for mortality, Cox intercepts also showed 

increasing overprediction across the validation period. The decline in Cox intercepts was 

smaller for the L-2 penalized logistic regression model than other regression models. For the 

mortality models built with random forest and neural network approaches, Cox intercepts were 

stable over time. The level of overfitting, as measured by the Cox slope, was stable over time 

for all mortality models, as well as the AKI random forest and neural network models. 

Statistically significant, but small in magnitude, declines in Cox slopes were recorded for the AKI 

regression models. Our findings for the logistic models for both AKI and mortality were 

consistent with an assessment of the logistic APACHE-III model over a 10-year period by Paul 

et al
95

 which reported declining Cox intercepts and stable Cox slopes.  

 For the most stringent calibration measures considered in these analyses, the machine 

learning methods exhibited more stability in performance than the regressions methods. In our 

AKI models, temporal deterioration in ECIs over time was substantively greater for regression 

compared to machine learning models. These diverging patterns of calibration drift were 

particularly apparent during the second half of the validation period. The neural network and 

random forest AKI models maintained calibration over probability ranges covering more 

admissions than the regression models and maintained a more consistently low magnitude of 

overprediction compared to an increasing magnitude of overprediction among the regressions. 

In our mortality analysis, the L-2 penalized logistic regression and random forest models 

demonstrated increasing ECIs (i.e., deteriorating moderate calibration) over time, although to a 

lesser degree than the other regression models. While the neural network mortality model had 

stable ECIs over time and was the best calibrated mortality model throughout the validation 

period, it also exhibited seasonal performance patterns in which calibration was markedly 

improved in the first and fourth quarters, corresponding to Autumn and Winter months. No prior 

studies of calibration drift were available for comparison with our moderate calibration findings. 
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Linking Data Shifts and Calibration Drift  
 

Performance drift results from data shifts in patient populations, including changes in the 

outcome rate, patient case mix, clinical practice, and documentation practices.
5-7, 21, 23, 73

 Our 

literature review underscored the limited availability of studies directly linking performance drift 

with temporal changes in patient populations. McCormick et al
89

 and Hickey et al,
86

 however, 

noted complex, multifaceted forms of data shifts, such as those we observed in both our AKI 

and mortality cohorts. Event rate shift across the study period, predictor-outcome association 

shift during the second half of the validation period, and complex case mix shift throughout the 

study period were documented in our 10-year AKI cohort. Over the eight years of admissions in 

the mortality cohort, we observed seasonal variation in the event rate, case mix shift across the 

study period, and minimal evidence of predictor-outcome association shift. These shifts resulted 

in performance drift at varying rates across the validation period and disparate patterns of 

calibration drift across models. Event rate and predictor-outcome association shifts 

straightforwardly link to patterns in performance drift. However, linkages between strong, 

complex case mix shift, which also influenced performance drift, are more difficult to directly link 

with performance. Despite such challenges, we integrated results across components of the 

analyses and across our two clinical domains to identify differences in the susceptibility of 

modeling methods to each form of data shift. These findings are summarized in Table 15.  

 

 

Table 15. Relative susceptibility of modeling methods to calibration drift under each form 

of data shifts in patient populations. Note, the calibration of the naïve Bayes model was 

insufficient in all cases, and so we do not include the model here.  

Modeling method 
Event rate 

shift 
Association 

shift 
Case mix 

shift 
Logistic regression High High High 

L-1 penalized logistic regression High High High 

L-2 penalized logistic regression High High Moderate 

L-1/L-2 penalized logistic regression High High High 

Random forest High Low Moderate 

Neural network High Low Low 

Note: Susceptibility of calibration for each model is relative to other models considered 

and is not intended as an absolute measure of model susceptibility to calibration drift.  

 

 

Event Rate Shift and Calibration  
 

Different patterns of event rate shift were observed in the AKI and mortality cohorts. The 

event rate in our AKI cohort declined from 7.7% in the development cohort to 6.3% across the 

study period. While we observed a small overall decline in the mortality rate (5.0% at 

development and 4.8% in the final validation cohort), seasonal variability within each study year 

was three times larger than this overall change.  
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Mean, weak, and moderate calibration metrics were susceptible to event rate shift for all 

modeling methods. Figure 36 illustrates the correlations between O:E ratios and outcome rates. 

In our AKI models, O:E ratios were strongly positively correlated with the event rate (Spearman 

rho: 0.92-0.95; adjusted p<0.001). In our mortality models, O:E ratios were strongly positively 

correlated with the event rate for the neural network model (Spearman rho: 0.92; adjusted 

p<0.001) and were moderately positively correlated for all other models (Spearman rho: 0.66-

0.72; adjusted p<0.001). The mortality panel in Figure 36 highlights that although the O:E ratios 

of the neural network model did not decline over time (adjusted p>0.0003), the seasonal pattern 

of higher mortality rates in the first and fourth quarters of each year (i.e., Autumn and Winter 

months) was strongly correlated with seasonal fluctuations in O:E ratios. This seasonal 

fluctuation in O:E ratios can be observed for the other mortality models. However, there is an 

additional temporal decline in these models’ O:E ratios beyond that attributable to event rate  

 

 

Figure 36. Observed to expected outcome ratios and event rates over time for 

AKI (top) and 30-day mortality (bottom) cohorts 
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shift, which is also reflected in the lower correlation coefficients for these models compared to 

the neural network model. These linkages between O:E ratio drift and event rate shift 

correspond with previous studies.
23, 76, 93

 At more refined levels of calibration, Cox intercepts 

were strongly positively correlated with event rate for the AKI regression models (Spearman rho: 

0.93-0.94; adjusted p<0.001), and were moderately correlated for the AKI random forest and 

neural network models (Spearman rho: 0.64 and 0.79, respectively; adjusted p<0.001). Among 

mortality models, Cox intercepts were moderately positively correlated with the event rate for 

the penalized regression models only (Spearman rho: 0.59-0.62; adjusted p<0.001). ECI was 

strongly negatively correlated with event rate for all AKI models (Spearman rho: -0.83 to -0.95; 

adjusted p<0.001), but was not correlated for any of the mortality models. 

Declines in event rates, whether over extended periods of time or during specific 

seasons, were associated with increasing overprediction. The link between reduced event rates 

and overprediction is most clearly illustrated by the results for the neural network mortality 

model. The mortality rate negligibly declined over time, and the neural network mortality model 

did not exhibit a tendency toward either increasing overprediction or increasing underprediction. 

Even small seasonal variations in the mortality rate, however, impacted both the model’s O:E 

ratios and proportional volume regions of calibration. Among patients predicted to be low risk, 

the neural network mortality model marginally overpredicted during the second and third 

quarters of most years when the mortality rate tended to be lower than average, but provided 

more calibrated predictions during the first and fourth quarters when the mortality rate tended to 

be higher than average. On the other hand, in the AKI cohort, in which the event rate decreased 

across the validation period, the magnitude of overprediction increased over time for all models. 

This pattern was apparent at various levels of calibration from declining O:E ratios less than 1.0 

to temporally increasing ECIs within regions of overprediction. The random forest and neural 

network models for AKI exhibited smaller absolute changes in each calibration metric compared 

to the regression models, and in the regions of calibration analysis did not reveal large temporal 

increases in the magnitude of overprediction as was observed for the regression models. These 

findings may indicate some difference in susceptibility of modeling methods to event rate shift. 

However, similar levels of correlation between AKI rates and O:E ratios, and the isolation of the 

differences in regional calibration patterns to the second half of the validation period rather than 

accruing across the study period may indicate difference across methods are due to something 

other than event rate shift. 

 

  

Predictor-Outcome Association Shift and Calibration 
 

Predictor-outcome association shifts were assessed by refitting the logistic regression, 

L-1 penalized logistic regression, and random forest models within each consecutive 3-month 

validation period. The mortality cohort did not appear to be experiencing significant shifts in 

predictor-outcome associations, and we thus focus on the AKI results for an understanding of 

how association changes may influence calibration drift across modeling methods. In the AKI 

cohort, shifts in predictor-outcome associations coincided with diverging patterns of calibration 

drift between the machine learning and regression models (see Figure 37 for illustrative 
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example). Although we observed limited evidence of changes in the strength of associations 

between predictors and AKI, the shifts we did document tended to occur over the second half of 

the validation period. This temporally corresponded with the years during which the regression 

models experienced more substantial calibration drift than the random forest and neural network 

models as measured by ECIs and regions of calibration. This may indicate greater susceptibility 

of regression methods to predictor-outcome association shift compared to random forest and 

neural network models, even in the presence of few or small association changes (see Table 

15). Additionally, this link between predictor-outcome association shift and model calibration 

appeared to impact moderate measures of calibration to a greater extent than mean and weak 

calibration measures, which experienced consistent patterns of drift across AKI models. 

 

 

Figure 37. Example of temporal concurrence of predictor-outcome 

association shift and calibration drift in AKI models. Odds ratios for an 

interquartile range change in age at admission from refit logistic models for 

AKI (top) and estimated calibration index of AKI models over time (bottom). 
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Case Mix Shift and Calibration 
 

Membership models clearly indicated the presence of case mix shift in both our AKI and 

mortality cohorts. We noted statistically significant changes over time in the distribution of 

approximately 95% of predictors for both AKI and mortality. The complexity of concurrent 

changes across the majority of predictors prevents the linkage of changes in individual 

predictors with performance drift, and the concurrence of multiple forms of population data shift, 

particularly in the AKI analysis, complicates our interpretation of the case mix results. 

In our AKI cohort, most of changes in predictor distributions were relatively small in 

magnitude and may not have been substantial enough to impact performance. Changes in the 

distribution of the suite of predictors, however, lead to an increase in mean patient severity. 

These changes did not lead to a change the variability of AKI risk in the patient population. This 

may indicate that shifts among correlated variables increased patient severity while keeping the 

case mix balanced in terms of risk distribution. On the other hand, case mix shifts leading to 

changes in patient severity, as observed in our study population, may affect mean and weak 

calibration,
73

 both of which experienced drift over the validation period. We might expect, 

however, that increasing severity of the patient population would result in underprediction,
73

 

while we observed increasing overprediction. These results parallel those previously reported in 

three studies documenting both increasing patient severity and declining O:E ratios.
23, 88, 90

 This 

underscores a high degree of susceptibility of all modeling methods to event rate shift as a 

driver of calibration drift even in the presence of case mix shifts. It may also be the case that our 

predictor set is not capturing certain risk factors that may also be shifting over time ways that 

actually reduce mean patient severity and negatively impacting our ability to characterize case 

mix changes in the patient population. 

Focusing on our mortality models may provide a clearer connection between case mix 

shift, performance drift, and modeling methods. In our mortality cohort, we did not detect 

substantial predictor-outcome association shifts and observed primarily seasonal changes in the 

event rate. As previously noted, this seasonal event rate shift was highly correlated with a 

cyclical pattern in calibration. However, with the exception of the neural network model, our 

mortality models experienced calibration drift that could not be explained by the seasonal 

variation in the mortality rate alone and is likely, therefore, associated with the documented 

changes in the patient case mix. The stability of calibration at all levels for the neural network 

model suggests this method is robust to case mix changes, at least to the extent seen in our 

mortality cohort. At the weak and moderate levels of calibration, the L-2 penalized logistic 

regression and random forest models experienced less deterioration in calibration over time 

than did the logistic, L-1 penalized logistic, and L-1/L-2 penalized logistic regressions. The basic 

logistic and penalized logistic regression methods that include variable selection, therefore, 

appear to be the most susceptible methods to calibration drift in the presence of case mix shift 

(see Table 15). The L-2 penalized logistic regression and random forest models appear to be 

moderately susceptible, falling between the other regression approaches and the neural 

network model.  

Additionally, we note that case mix shifts leading to changes in the variability of risk in 

the patient population have been noted to be of particular concern for discrimination drift as 

patients become more difficult to distinguish or more easily separable as they become more 
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homogenous or more heterogeneous.
73

 Although we observed increased heterogeneity of risk 

among patients in our mortality cohort, we did not observe changes in discrimination of our 

mortality models over time. This may indicate that the degree of change in the variability of the 

risk distribution was not sufficient to trigger discrimination drift. Studies of additional cohorts with 

greater changes in case mix variability would be necessary to understand whether modeling 

methods can withstand similar degrees of change prior to experiencing discrimination drift. 

 

 

Informatics Implications 
 

Our findings have important implications for the design and implementation of e-HPA 

systems and prediction model maintenance protocols.
1
 We recommend e-HPA systems 

incorporate active surveillance components to track model performance and characterize 

changes in patient populations over time. We further recommend the incorporation of both 

modeling goals and methodologies into such systems in order to tailor the performance metrics 

of concern, frequency of updating, and updating approach. 

The metrics most relevant to assessing performance over time and informing decisions 

regarding the need to update a clinical prediction model will vary by the context in which 

predictions are used. For use cases focused providing risk categories or for which only granular 

estimates are needed, the ability of a model to separate observations with and without the 

outcome is sufficient, while accuracy of individual predictions is not imperative. The stable 

discrimination observed for our AKI and mortality models, as well as in previous performance 

drift studies,
23, 24, 82, 88, 95, 99, 100

 may alleviate model updating concerns for such use cases. In 

these settings, frequently assessments of discrimination may not be necessary; however, model 

updating protocols must still be in place to address instances of change in local clinical or 

organizational practices which may require model revision.
153

 On the other hand, when 

individual predictions are of interest, discriminating but inaccurate predicted probabilities may 

lead to over-confidence, inappropriately alter treatment choices, or misappropriate resources.
1, 

23, 67, 68
 Precision medicine tools supporting individually tailored decisions must thus be 

concerned with calibration and attentive to drifting performance.  

In our study, not all calibration metrics captured important features of performance drift. 

Moderate calibration, evaluated with flexible calibration curves, is particularly relevant to the 

implementation of individual-level prediction systems. With moderate calibration, models have a 

net benefit greater than or equal to treat-all or treat-none strategies, thus ensuring predictions 

are nonharmful to decision-making.
71

 Among our AKI models, traditional weaker calibration 

assessments (i.e., O:E ratios and Cox recalibration model intercepts and slopes) failed to reveal 

differences in calibration drift between modeling methods that were readily apparent with 

measures of moderate calibration. Flexible calibration curves revealed substantially more 

deterioration in performance over time among regression models for AKI than corresponding 

random forest and neural network models. Based on these findings, we recommend 

surveillance systems focusing on calibration should implement moderate calibration measures, 

including the ECI and regional calibration assessments. Although the familiarity of O:E ratios 

and Cox intercepts and slopes is appealing and might also be tracked, reporting more stringent 
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metrics will enhance understanding of potentially clinically-relevant calibration issues and 

underscore methods-based performance vulnerabilities that may inform updating strategies.   

The frequency of repeated performance evaluations and model updating should be 

balanced to maintain acceptable levels of performance and ensure sufficient information content 

in validation and updating cohorts. In our two study populations, models began drifting toward 

overprediction within one year after development. We also noted periods of rapid change in 

calibration, particularly during the first and fourth AKI validation years. The neural network 

model for mortality, however, maintained stable calibration over time and did reveal a clear need 

for updating during the study period. Our results thus raise concern over the common approach 

of simply updating at scheduled annual or biannual intervals,
46, 154, 155

 as this may allow periods 

of reduced accuracy in the interim or result in the updating of well-performing models. While 

avoiding unnecessary model updating may conserve analytical and computational resources, 

particularly when refitting complex models, measuring calibration even at stringent levels is not 

especially computationally intensive. We thus recommend active model surveillance systems 

conduct frequent performance assessments at the shortest time interval that provides enough 

observations to support performance measurement. Prior research suggests at least 10 

outcome events per predictor is necessary to ensure sufficient information content for model 

validations.
46

 We elected to assess performance every 3 months, which provided more than 

enough data in each validation cohort based this rule of thumb (recommended minimum sample 

sizes vs mean sample size in validation cohorts: ~17,500 vs ~46,000 for AKI and ~13,500 vs 

~60,000 for mortality). In settings with large patient cohorts or common outcomes, monthly or bi-

monthly performance measures may be possible and preferable. Dynamic assessment as new 

observations become available may also be a feasible consideration for some systems. The 

timing of model recalibration or revision may then be data-driven based on observed 

performance degradation and would inherently be tailored to the susceptibility of various 

modeling methods to calibration drift.  

We further recommend active model surveillance systems monitor data shifts to provide 

early warning of the need for model updating and insight into the updating approach required to 

correct deteriorations in performance. There is a range of approaches to model updating, from 

simple recalibration to complex recalibration to full model revision (i.e., refitting) and even model 

extension with the incorporation of new predictors.
6, 7, 45, 46, 156

 Recalibration techniques retain 

information in existing models and improve generalizability, making these approaches 

preferable to revision when recalibration is sufficient to improve performance to acceptable 

levels.
7, 45, 153, 156

 Recalibration would be indicated when event rate shift dominates data shift and 

both stable discrimination and deteriorating calibration are recorded. However, in the presence 

of predictor-outcome association shifts, significant case mix shift, or changes in discrimination, 

full model revision should be recommended.
7, 45, 153, 156

 Surveillance systems tracking both model 

performance and population data shifts could leverage information about the susceptibility of 

modeling methods to identify key data shift components driving observed changes in 

performance in order to recommend an updating approach. As our study suggests, models 

based on different methods have variable updating needs, so the choice of updating approach 

should be tailored to the distinct susceptibilities modeling methods to performance drift. For 

example, while the detection of case mix shift may motivate model revision for most models, our 

mortality results suggest neural networks may not require updating as a result of isolated case 
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mix shift. Similarly, in our AKI analyses, regression models required revision in the presence of 

limited predictor-outcome association shifts, while under the same circumstances the random 

forest and neural network models maintained performance without updating. Of course, we also 

emphasize the importance of local knowledge, as changes in local clinical practice, 

organizational guidelines, or data definitions should always trigger model updates.
153

  

 
 

Clinical Implications 
 

Users of clinical prediction models, including providers, patients, and health 

administrators, should be aware of and attentive to calibration drift. Poor calibration can lead to 

poor decision-making at the level of both individual patients and health systems. Patients may 

be dissuaded from pursing potentially effective treatments when presented with erroneously 

elevated estimates of complication risks or may elect to undergo difficult treatments when 

presented with inflated estimates of negative disease prognosis.
23, 67

 Drifting calibration may 

also mislead benchmarking quality assessments that utilize prediction models to risk-adjust 

quality metrics for differences in patient case mix and severity between hospitals or care units. 

Minne et al
24

 found calibration drift of the logistic rSAPS-II model resulted in overly optimistic 

quality assessments. Fifteen percent of hospitals were identified as underperforming by the 

original rSAPS-II model affected by calibration drift, while 35% of the hospitals were identified as 

underperforming when the model was recalibrated to correct for overprediction.
24

 In another 

study comparing model recalibration and revision techniques, however, model updating did not 

influences quality assessments based on EuroSCORE predictions.
46

 Our study highlights that 

all models, regardless of the underlying modeling method, are susceptible to calibration drift in 

some data shift circumstances and calibration drift can occur quickly. Analysts managing 

models for patient-level decision-making and health system assessment should be proactive in 

developing policies and procedures for model updating. 

 

 
Limitations and Paths to Address Them 

 
Limited, Complex Data Shift Scenarios 
 

Although we utilized a large, national cohort, we explored model performance under just 

two data shift scenarios in our acute kidney injury and 30-day mortality study populations. All 

three forms of data shift were observed in our AKI population. Our mortality population 

experienced case mix shift and seasonal event rate shift, but not predictor-outcome association 

shift. These differing data shift combinations allowed for an initial understanding of the relative 

susceptibility of modeling methods to each form of data shift. With only two illustrative examples 

and co-occurring forms of shift, we are limited in our ability to draw conclusions about the extent 

of data shift each modeling method can tolerate. Extending our analyses with additional 

illustrative clinical outcomes may provide more evidence regarding in what circumstances 

certain modeling methods are more or less susceptible to performance drift. However, the 

results of such an approach would remain complicated by complex, co-occurring forms of data 
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shift. Simulation studies, on the other hand, would permit systematic control of the form and 

extent of data shifts. Such studies based on simple simulated datasets with defined variable 

relationships could be complemented by parallel analyses using synthetic datasets built from 

existing clinical cohorts to better reflect the depth of complexity in real-world variable 

relationships. With such simulations, we can consider model performance patterns under each 

form of shift in isolation and in predefined combinations. We may also explore other 

components of data shift that cannot be characterized with illustrative use cases, such as case 

mix or predictor-outcome association shifts in risk factors omitted from models. A simulation 

study would thus allow a more detailed characterization of the susceptibility of each modeling 

method. Additionally, simulations would provide a platform for testing hypotheses regarding the 

technical aspects of each model that convey susceptibility or robustness of calibration to data 

shifts in the patient population. By integrating results from illustrative use cases and simulation 

studies considering both fully simulated and synthetic datasets, we could construct a more fully 

formed understanding of the links between modeling methods, data shifts, and performance 

drift. 

 
 
Characterization of Case Mix Shift 
 

We observed complex case mix shift involving changes in the distribution of multiple 

predictors in both cohorts. Despite implementing a variety of methods to characterize case mix 

changes, directly linking shifting patterns among a multitude of individual predictors with 

calibration metrics remains challenging. Identifying those predictors driving the case mix 

changes that impact performance is further complicated by correlations between predictors and 

the potential for changes in omitted variables. While the existing methods for characterizing 

case mix shift focus on individual predictors, both in isolation and adjusted in multivariable 

membership models, the features of case mix shift most relevant to performance drift may not 

require such a detailed focus. Instead, we might consider clustering groups of similar patients 

and exploring how the density of our population moves between clusters over time. If model 

predictions are more accurate for patients in some clusters and less accurate in for those in 

others, then performance drift may be directly linkable to increased or decreased data density in 

high and low performing clusters. Identifying those clusters driving performance drift may allow 

us to better understand why some modeling methods are more robust to case mix shift than 

others by exploring the characteristics of key clusters and how models capture associations 

within these subgroups.  

 

 

Statistical versus Practical Miscalibration 
 
 Our study explored model calibration from a statistical perspective rather than that of 

clinical utility. Calibration drift is of most concern when it is sufficient to influence the clinical 

impact of a model. A recent study recommended assessment of flexible calibration curves to 

ensure nonharmful predictions,
71

 making our findings regarding the divergent patterns of ECI 

and regions of calibration across models an important consideration in model implementation. 
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However, statistically significant calibration drift may still not translate directly to clinically 

important changes in model performance. This is particularly true for large study populations, 

such as our AKI and mortality cohorts, in which confidence intervals can be quite narrow and 

cause even small deviations from perfect calibration to be identified as significant miscalibration. 

We observed an example of this issue with our mortality flexible calibration curves. In our 

mortality regression models, the flexible calibration curves identified a large proportion of 

admissions being contained in ranges where predicted probabilities were statistically 

significantly too high; however, the degree of overprediction was minimal and unlikely to be 

important from a practical standpoint. For example, in the logistic regression model for mortality, 

a low risk region of overprediction in each validation period captured more than 40% of 

admissions and these regions had a mean ECI of 0.005 (range: 0.002 – 0.009). Compared to 

the ideal ECI of 0 in the case of perfect calibration, an ECI of 0.005 is near perfect and 

essentially calibrated in a practical sense. Understanding whether, when, and how calibration 

drift affects the clinical utility of predictions for decision-making is one of the most important 

considerations for informing recalibration guidelines. Extending this study with the incorporation 

of clinical utility measures or the adaptation of calibration metrics to account for clinically 

acceptable margins of error would improve our ability to comment on how modeling methods 

influence performance drift in clinically meaningful ways. 

 

 

Additional Modeling Methods 
 

 Finally, there are a multitude of machine learning methods applicable to clinical 

prediction problems, and we have only included a limited number of commonly used methods in 

this study. Other modeling methods – such as support vector machines, k-nearest neighbors, 

averaged one-dependence estimators, and Bayesian networks – may reveal different patterns 

of susceptibility to data shifts and calibration drift. This study thus serves as an initial exploration 

documenting the influence of modeling methods on performance drift in the presence of various 

data shifts. As computational resources permit, we could extend our findings with additional 

modeling approaches. 

 

 

Conclusions 
 

Growing opportunities to leverage predictive analytics and integrate personalized risk 

prediction into clinical decision support requires well-calibrated models consistently providing 

accurate predictions. This study extends our understanding of model performance over time and 

the influence of modeling methods on performance drift. Our finding of stable discrimination may 

alleviate model updating concerns for predictions used to assign risk levels rather than 

individualized risk estimates. However, our calibration drift findings strongly support the need for 

routine recalibration of models incorporated into clinical decision support tools presenting 

personalized predicted probabilities. Our findings can inform recommendations regarding the 

timing of and approach to model updating. We recommend frequent validation of all models, 

with careful consideration of the timing of repeated assessment, sample sizes supporting each 
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assessment, and whether discrimination or stringent calibration metrics should be measured. In 

addition, routinely monitoring data shifts may provide early warning of the need for model 

updating and insight into the updating approach required to correct performance. Recalibration 

would be indicated in the case of calibration drift, stable discrimination, and event rate shift; 

however, in the presence of predictor-outcome association shifts, significant case mix shift, or 

changes in discrimination, full model revision would be indicated. Tracking of model 

performance and population shifts may be managed through the implementation of active 

surveillance systems. As our study suggests that models based on different methods have 

variable updating needs, such surveillance systems should be tailored to the distinct 

susceptibilities modeling methods to performance drift. Of course, we also emphasize the 

importance of local knowledge for triggering updating as local clinical and organizational 

practice changes require. Finally, we recommend flexibility of updating protocols in order to 

address miscalibration as it occurs rather than at scheduled intervals. 

Efficient and effective updating protocols will be essential for maintaining accuracy of 

and user confidence in personalized risk predictions integrated into clinical decision support for 

hospital-acquired acute kidney injury, 30-day all-cause hospital mortality, and other clinical 

outcomes. Development of automated model surveillance tools remains an open area of 

methods development, user-centered design, and best practices research. This work supports 

the advancement of predictive analytics for personalized clinical decision support by laying 

ground work for such automated, EHR-embedded surveillance frameworks implementing 

models based on advanced regression and machine learning techniques. While the suite of best 

practice guidelines remains to be developed, modeling methods will be an important component 

in determining when and how clinical prediction models must be updated. 
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APPENDIX A 
 
 

ACUTE KIDNEY INJURY PREDICTOR SET 
 
 

		 Time	window	for	data	capture	

  
Not	time	
dependent	

Preadmission	
(12	months)	

Preadmission	
(90-days)	

Admission	
window	a	

Demographics 		 		 		 		
Age at admission (years) X	 		 		 		
Gender X	 		 		 		
Race X	 		 		 		
Health history 		 		 		 		
Advanced liver disease 		 X	 		 		
Alcoholism 		 X	 		 		
Anemia 		 X	 		 		
Cancer 		 X	 		 		
Cardiovascular disease 		 X	 		 		
Cerebrovascular accident 		 X	 		 		
Chronic obstructive 		 X	 		 		
pulmonary disease 		 X	 		 		
Congestive heart failure 		 X	 		 		
Dementia 		 X	 		 		
Diabetes mellitus 		 X	 		 		
Dyslipidemia 		 X	 		 		
Hemiplegia 		 X	 		 		
Hepatitis 		 X	 		 		
HIV 		 X	 		 		
Hypertension (admission) 		 X	 		 		
Hypertension (preadmission) 		 X	 		 		
Hypotension(admission) 		 X	 		 		
Mitral valve regurgitation 		 X	 		 		
Peptic ulcer disease 		 X	 		 		
Peripheral vascular disease 		 X	 		 		
Rheumatoid arthritis 		 X	 		 		
Medications 		 		 		 		
ACEi 		 		 X	 X	
Acyclovir 		 		 		 X	
Aminoglycosides 		 		 X	 X	
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		 Time	window	for	data	capture	

  
Not	time	
dependent	

Preadmission	
(12	months)	

Preadmission	
(90-days)	

Admission	
window	a	

Angiotensin II receptor blocker 		 		 X	 X	
Anhydrase diuretic 		 		 X	 X	
Anti	tuberculosis 		 		 X	 X	
Antiemetics 		 		 X	 X	
Antifungals 		 		 X	 X	
Benzodiazepines 		 		 X	 X	
Beta blockers 		 		 X	 X	
Calcium channel blockers 		 		 X	 X	
Cephalosporins 		 		 X	 X	
Cimetidine 		 		 		 X	
Cyclosporine 		 		 		 X	
Fluoroquinolones 		 		 X	 X	
Glucocorticoids 		 		 X	 X	
Insulin 		 		 X	 X	
K-sparing diuretics 		 		 X	 X	
Lincomycin 		 		 X	 X	
Lithium 		 		 		 X	
Loop diuretics 		 		 X	 X	
Macrolides 		 		 X	 X	
MAOIs 		 		 X	 X	
Nacetylcysteine 		 		 		 X	
Nitrofurantoin 		 		 X	 X	
NSAIDs 		 		 X	 X	
Opioids 		 		 X	 X	
Penicillins 		 		 X	 X	
Statins 		 		 X	 X	
Sulfa antibiotics 		 		 X	 X	
Tetracyclines 		 		 X	 X	
Thiazides 		 		 X	 X	
Tricyclics 		 		 X	 X	
Trimethoprim 		 		 		 X	
Vancomycin 		 		 		 X	
Laboratory values 

b 		 		 		 		
Glomerular filtration rate 		 		 		 X	

Count 		 		 X	 X	
Mean 		 		 X	 X	
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		 Time	window	for	data	capture	

  
Not	time	
dependent	

Preadmission	
(12	months)	

Preadmission	
(90-days)	

Admission	
window	a	

Standard deviation 		 		 X	 X	
Delta 		 		 		 X	

Alanine aminotransferase 		 		 		 X	
Albumin 		 		 		 X	
Alkaline phosphatase 		 		 		 X	
Aspartate aminotransferase 		 		 		 X	
Bicardbonate 		 		 		 X	
Blood urea nitrogen 		 		 		 X	
Calcium 		 		 		 X	
Chloride 		 		 		 X	
Direct Bilirubin 		 		 		 X	
Glucose 		 		 		 X	
Hematocrit 		 		 		 X	
Hemoglobin 		 		 		 X	
Delta hemoglobin 		 		 		 X	
Mean corpuscular hemoglobin 		 		 		 X	
Mean corpuscular hemoglobin 

concentration 		 		 		 X	
Mean corpuscular volume 		 		 		 X	
Platelets 		 		 		 X	
Sodium 		 		 		 X	
White blood cell count 		 		 		 X	
Other 		 		 		 		
Body mass index (mean) 		 X	 		 X	
Intravenous fluids 		 		 		 		

Normal saline 		 		 		 X	
Half normal saline 		 		 		 X	
Lactate ringers 		 		 		 X	
Water 		 		 		 X	

Temperature (max) 		 		 X	 X	
 
a
 24 hours before admission to 48 hours after admission for vital signs, GFR, and medications; 5 

days before admission to 48 hours after admission for other laboratory values 

 
b
 Most recent value in window, except for glomerular filtration rate   
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APPENDIX B 
 
 

30-DAY ALL-CAUSE MORTALITY AFTER HOSPITAL ADMISSION PREDICTOR SET 
 

 

		 Time window for data capture 

Predictor 
Not time 

dependent 
Preadmission 
(12 months) 

Preadmission 
(all available 

history) 
Admission 
window a 

Admission 
(last 

recorded 
value) 

Demographics           

Age at admission 

(years) X         

Gender X         

Race X         

Health history           

AIDS/HIV 

(Elixhauser)     X     

Alcohol abuse 

(Elixhauser)     X     

Blood loss anemia 

(Elixhauser)     X     

Cardiac 

arrhythmias 

(Elixhauser)     X     

Chronic pulmonary 

disease 

(Elixhauser)     X     

Coagulopathy 

(Elixhauser)     X     

Congestive heart 

failure (Elixhauser)     X     

Deficiency anemia 

(Elixhauser)     X     

Depression 

(Elixhauser)     X     

Diabetes, 

complicated 

(Elixhauser)     X     

Diabetes, 

uncomplicated 

(Elixhauser)     X     

Dialysis   X       

Drug abuse 

(Elixhauser)     X     

Dyslipidemia   X       
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		 Time window for data capture 

Predictor 
Not time 

dependent 
Preadmission 
(12 months) 

Preadmission 
(all available 

history) 
Admission 
window a 

Admission 
(last 

recorded 
value) 

Fluid and 

electrolyte 

disorders 

(Elixhauser)     X     

Hypertension, 

complicated 

(Elixhauser)     X     

Hypertension, 

uncomplicated 

(Elixhauser)     X     

Hypothyroidism 

(Elixhauser)     X     

Liver disease 

(Elixhauser)     X     

Lymphoma 

(Elixhauser)     X     

Metastatic cancer 

(Elixhauser)     X     

Other neurological 

disorders 

(Elixhauser)     X     

Paralysis 

(Elixhauser)     X     

Peptic ulcer 

disease 

(Elixhauser)     X     

Peripheral vascular 

disorder 

(Elixhauser)     X     

Psychoses 

(Elixhauser)     X     

Pulmonary 

circulation disorder 

(Elixhauser)     X     

Renal failure 

(Elixhauser)     X     

Rheumatoid 

arthritis/collagen 

vascular diseases 

(Elixhauser)     X     

Solid tumor without 

metastasis 

(Elixhauser)     X     

Valvular disease     X     
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		 Time window for data capture 

Predictor 
Not time 

dependent 
Preadmission 
(12 months) 

Preadmission 
(all available 

history) 
Admission 
window a 

Admission 
(last 

recorded 
value) 

(Elixhauser) 

Weight loss 

(Elixhauser)     X     

Admission 
characteristics           

Admission type X         

Body mass index       X   

Health care 
utilization           

Inpatient visits 

(count)   X       

Outpatient visits 

(count)   X       

Unplanned 

readmissions    X       

Vitals           

SBP, minimum       X   

SBP, maximum       X   

DBP, minimum       X   

DBP, maximum       X   

Pulse, minimum       X   

Pulse, maximum       X   

Laboratory values b           

Alanine 

transaminase         X 

Albumin         X 

Alkaline 

phosphatase         X 

Aspartate 

aminotransferase         X 

Blood sugar         X 

Blood urea 

nitrogen         X 

Calcium         X 

Chloride         X 

Hematocrit         X 

Hemoglobin         X 

Mean corpuscular 

hemoglobin         X 
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		 Time window for data capture 

Predictor 
Not time 

dependent 
Preadmission 
(12 months) 

Preadmission 
(all available 

history) 
Admission 
window a 

Admission 
(last 

recorded 
value) 

Mean corpuscular 

hemoglobin 

concentration         X 

Mean corpuscular 

volume         X 

Platelets         X 

Potassium         X 

Serum bicarbonate         X 

Serum creatinine         X 

Sodium         X 

Total bilirubin         X 

White blood cell 

count         X 

 
a
 24 hours before admission to 48 hours after admission 

 
b
 Most recent value in window
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APPENDIX C 
 
 

SUMMARY OF HOSPITAL-ACQUIRED ACUTE KIDNEY INJURY PREDICTORS OVER TIME 
 
 
Summary of all predictors in hospital-acquired acute kidney injury models at development (2003) and for three years across the 9-
year validation period. 
 
  2003   2006   2009   2012 
Total admissions  170,675      176,341     193,917     184,827  

Variable % 
Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

Outcome                
Acute kidney injury 7.7    7.4    6.5    6.2   

Demographics                
Age at admission (years)  

66 
(56-77) 0.0   

64 
(57-76) 0.0   

64 
(58-76) 0.0   

65 
(59-76) 0.0 

Female 3.2    3.7    4.0    4.5   
Race                

White 75.0    75.9    75.4    74.9   
Black 20.1    19.1    19.0    19.1   
Asian/Pacific Islander 0.9    1.1    1.2    1.1   
American Indian/Alaskan 0.8    0.9    0.9    0.9   
Unreported 3.2    3.1    3.5    4.0   

Health history                
Advanced liver disease 2.7    3.6    4.2    4.7   
Alcoholism 12.1    18.9    23.5    26.4   

Anemia 14.5    23.3    28.6    31.1   
Cancer 18.8    22.8    24.6    24.9   
Cardiovascular disease 19.8    28.3    30.9    31.3   
Cerebrovascular accident 10.7    15.8    17.7    18.7   
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  2003   2006   2009   2012 
Total admissions  170,675      176,341     193,917     184,827  

Variable % 
Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

Chronic obstructive 
pulmonary disease 24.6    30.9    34.0    35.1   
Congestive heart failure 15.2    18.6    19.7    20.0   
Dementia 5.1    5.9    6.1    5.9   
Diabetes mellitus 29.7    34.6    39.1    42.6   
Dyslipidemia 28.8    49.7    59.7    65.4   
Hemiplegia 3.0    4.2    4.5    4.7   
Hepatitis 5.8    9.2    11.0    12.1   
HIV 1.4    1.3    1.3    1.1   
Hypertension (admission) 10.8    10.5    10.3    11.1   
Hypertension (preadmission) 55.0    69.4    74.5    76.7   
Hypotension(admission) 7.5    9.1    8.7    7.2   
Mitral valve regurgitation 1.2    2.5    3.2    3.4   
Peptic ulcer disease 3.6    5.5    6.1    6.3   
Peripheral vascular disease 11.9    17.2    19.5    20.6   
Rheumatoid arthritis 2.1    2.7    3.0    3.3   

Medications                
Preadmission                

ACEi 36.9    37.9    35.8    32.5   
Aminoglycosides 1.6    1.4    1.0    0.8   
Angiotensin II receptor  
blocker 3.8    5.5    6.6    7.2   
Anhydrase diuretic 0.2    0.2    0.2    0.2   
Antiemetics 3.4    3.8    4.4    5.7   
Antifungals 2.7    2.8    2.7    2.7   
Anti	tuberculosis 0.4    0.5    0.4    0.3   
Benzodiazepines 13.1    13.6    13.3    12.0   
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  2003   2006   2009   2012 
Total admissions  170,675      176,341     193,917     184,827  

Variable % 
Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

Beta blockers 37.1    43.3    43.5    42.3   
Calcium channel blockers 21.7    21.5    23.1    23.6   
Cephalosporins 5.4    5.6    4.8    4.7   
Fluoroquinolones 5.6    10.8    8.7    8.0   
Glucocorticoids 10.5    11.2    12.2    12.3   
Insulin 10.7    12.0    13.5    14.3   
K-sparing diuretics 7.8    7.5    7.2    6.7   
Lincomycin 1.5    1.8    2.0    2.3   
Loop diuretics 23.9    23.2    22.1    21.4   
Macrolides 6.1    6.2    5.9    5.8   
MAOIs 0.0    0.0    0.0    0.0   
Nitrofurantoin 0.6    0.8    1.0    1.0   
NSAIDs 20.2    18.2    17.5    17.6   
Opioids 42.9    47.7    51.1    51.7   
Penicillins 9.0    9.3    8.3    8.1   
Statins 31.9    41.7    46.2    46.4   
Sulfa antibiotics 3.8    4.4    5.3    5.2   
Tetracyclines 2.4    3.3    3.6    4.1   
Tricyclics 6.2    5.5    4.3    3.8   
Thiazides 12.7    15.0    15.3    13.5   

Admission                
ACEi 32.9    34.1    31.4    27.7   
Acyclovir 0.7    1.0    1.2    1.4   
Aminoglycosides 2.7    2.0    1.3    0.9   
Angiotensin II receptor  
blocker 2.9    4.5    5.3    5.7   
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  2003   2006   2009   2012 
Total admissions  170,675      176,341     193,917     184,827  

Variable % 
Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

Anhydrase diuretic 0.2    0.2    0.2    0.2   
Antiemetics 3.3    5.1    9.3    13.2   
Antifungals 2.3    2.4    2.3    2.3   
Anti	tuberculosis 0.5    0.5    0.3    0.3   
Benzodiazepines 21.3    22.7    21.3    19.9   
Beta blockers 40.1    48.6    48.4    47.1   
Calcium channel blockers 17.0    18.3    20.9    21.5   
Cephalosporins 17.6    18.6    17.7    19.0   
Cimetidine 0.4    0.2    0.1    0.1   
Cyclosporine 0.2    0.2    0.2    0.2   
Fluoroquinolones 5.0    8.2    6.9    5.9   
Glucocorticoids 12.5    13.4    13.9    13.8   
Insulin 21.4    27.1    29.6    28.9   
K-sparing diuretics 6.2    6.2    5.7    5.4   
Lincomycin 2.7    2.4    2.0    2.1   
Lithium 0.8    0.8    0.8    0.8   
Loop diuretics 25.8    26.0    24.6    23.4   
Macrolides 6.3    6.9    6.4    6.7   
MAOIs 0.0    0.0    0.0    0.0   
Nacetylcysteine 2.6    3.8    3.5    1.2   
Nitrofurantoin 0.2    0.2    0.3    0.2   
NSAIDs 8.6    8.6    8.5    8.7   
Opioids 50.8    59.2    63.3    64.3   
Penicillins 13.0    15.0    16.2    17.8   
Statins 27.9    38.9    43.8    44.0   
Sulfa antibiotics 1.7    1.9    1.8    1.5   
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  2003   2006   2009   2012 
Total admissions  170,675      176,341     193,917     184,827  

Variable % 
Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

Tetracyclines 1.4    1.8    1.6    1.7   
Thiazides 7.9    9.5    9.5    8.2   
Tricyclics 3.8    3.7    3.1    2.6   
Trimethoprim 1.4    1.4    1.4    1.1   
Vancomycin 5.3    10.4    14.5    16.3   

Laboratory values                
Glomerular filtration rate                

Count, preadmission  3 (2-6) 20.3   4 (2-6) 18.1   4 (2-7) 16.6   2 (1-5) 32.5 

Mean, preadmission  
67.8 

(53.3-83.1) 17.5   
68.8  

(54.1-84.4) 14.9   
70.8 

(55.5-86.2) 12.6   
72.8 

(56.9-89.5) 12.3 

SD, preadmission  
8.02 

(4.78-12.62) 34.8   
8.06 

(4.83-12.66) 31.8   
8.38 

(5.13-13.01) 29.7   
8.32 

(4.61-13.36) 53.0 

Count, admission  3 (2-3) 1.5   3 (2-3) 1.2   3 (2-3) 1.1   3 (2-3) 1.1 

Mean, admission  
75.7 

(58.8-94.73) 1.5   
76.77 

(59.73-96.25) 1.2   
79.25 

(61.7-98.73) 1.1   
82.1 

(63.8-102.7) 1.1 

SD, admission  
6.68 

(3.04-11.46) 20.5   
6.79 

(3.15-11.62) 16.8   
6.87 

(3.46-11.66) 14.0   
7.35 

(3.76-12.7) 12.4 

Delta, admission   0 (0-9.9) 1.5   
0 

(0-11.4) 1.2   
0 

(0-12.1) 1.1   
1.2 

(-0.5-13.6) 1.1 

Alanine aminotransferase   26 
(17-40) 27.6   

24 
(16-38) 24.5   

23 
(16-36.25) 23.6   

23 
(16-37) 24.0 

Albumin   3.4 
(2.9-3.8) 27.0   

3.4 
(2.9-3.9) 24.7   

3.4 
(2.9-3.9) 23.3   

3.4 
(2.9-3.8) 22.1 

Alkaline phosphatase   86 
(67-115) 25.5   

83 
(65-110) 24.0   

81 
(64-108) 23.3   

79 
(62-105) 23.7 

Aspartate aminotransferase   25 
(18-40) 26.8   

26 
(19-39) 25.6   

25 
(19-39) 24.8   

25 
(18-39) 25.3 

Bicardbonate   26 
(24-29) 0.5   

26.1 
(24-29) 0.3   

26 
(24-29) 0.2   

26 
(24-28) 0.1 

Blood urea nitrogen   15 
(11-22) 6.3   

15 
(10.7-22) 4.7   

15 
(10-21) 6.9   

15 
(10-21) 7.1 

Calcium   8.7 
(8.3-9.1) 12.3   

8.7 
(8.3-9.1) 6.2   

8.7 
(8.3-9.1) 5.1   

8.6 
(8.2-9) 4.3 
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  2003   2006   2009   2012 
Total admissions  170,675      176,341     193,917     184,827  

Variable % 
Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

Chloride   103 
(100-106) 0.6   

103 
(100-106) 0.2   

103 
(100-106) 0.2   

103 
(100-106) 0.2 

Direct Bilirubin   0.6 
(0.4-1) 25.8   

0.7 
(0.42-1) 24.2   

0.7 
(0.4-1) 23.3   

0.7 
(0.4-1) 23.7 

Glucose 
  

114 
(96-148) 2.0   

115 
(96-148) 0.8   

116 
(97-150) 0.5   

115 
(96-149) 0.4 

Hematocrit 
  36.4 

(31.9-40.8) 0.8   
36.1 

(31.7-40.4) 0.5   
35.5 

(31.2-39.8) 0.5   
35.6 

(31.1-39.7) 0.4 

Hemoglobin 
  12.2 

(10.6-13.7) 1.4   
12.1 

(10.6-13.7) 1.2   
11.9 

(10.4-13.4) 1.1   
11.9 

(10.3-13.4) 1.2 

Delta hemoglobin   -0.3 
(-1.3-0) 1.5   

-0.4 
(-1.3-0) 1.2   

-0.5 
(-1.4-0) 1.1   

-0.6 
(-1.4-0) 1.1 

Mean corpuscular  
hemoglobin 

  30.5 
(28.9-31.9) 1.9   

30.5 
(28.9-31.9) 1.2   

30.6 
(29-32.1) 0.9   

30.5 
(28.9-32.1) 1.0 

Mean corpuscular  
Hemoglobin concentration 

  33.6 
(32.9-34.3) 0.9   

33.8 
(33-34.4) 0.7   

33.7 
(32.9-34.4) 0.6   

33.6 
(32.8-34.3) 0.7 

Mean corpuscular volume  
90.4 

(86.5-94.2) 0.9   
90.3 

(86.4-94.1) 0.7   
90.7 

(86.8-94.6) 0.6   
90.9 

(86.9-94.8) 0.6 

Platelets  
214 

(162-278) 1.1   
221 

(167-288) 0.9   
202 

(153-262) 0.8   
192 

(145-248) 0.8 

Sodium  
138 

(135-140) 0.2   
138 

(135-140) 0.1   
138 

(135-140) 0.1   
138 

(135-140) 0.1 

White blood cell count  
8.1 

(6.2-10.8) 0.9   
8.1 

(6.2-10.8) 0.7   
8.01 

(6.1-10.7) 0.6   
7.94 

(6-10.5) 0.7 

Other  
              

Body mass index (mean, 365 
days preadmission)  

 27 
(23.5-31.3) 13.2   

27.3 
(23.7-31.6) 10.8   

27.6 
(23.9-32.1) 9.4   

27.9 
(24.2-32.5) 9.4 

Body mass index (mean,  
admission) 

  26.5 
(22.74-30.93) 40.9   

26.68 
(22.91-31.25) 30.7   

27.03 
(23.15-31.73) 24.7   

27.34 
(23.4-32.07) 23.5 

Intravenous fluids   
              

Normal saline  0 (0-0.5) 0.0   0 (0-1) 0.0   0 (0-1) 0.0   
0.1 

(0-1.3) 0.0 
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  2003   2006   2009   2012 
Total admissions  170,675      176,341     193,917     184,827  

Variable % 
Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

 
% 

Median  
(IQR) 

% 
Missing 

Half normal saline   0 (0-0) 0.0   0 (0-0) 0.0   0 (0-0) 0.0   0 (0-0) 0.0 

Lactate ringers   0 (0-0) 0.0   0 (0-0) 0.0   0 (0-0) 0.0   0 (0-0) 0.0 

Water   0 (0-0.1) 0.0   
0 

(0-0.14) 0.0   0 (0-0.1) 0.0   0 (0-0.1) 0.0 

Temperature (max, 90 days  
preadmission) 

  98.6 
(97.9-99.4) 23.9   

98.6 
(97.9-99.4) 21.1   

98.6 
(98-99.2) 18.6   

98.6 
(98-99.2) 18.8 

   Temperature (max,  
admission) 

  98.9 
(98.2-99.8) 5.7   

98.9 
(98.3-99.8) 2.5   

98.8 
(98.3-99.6) 1.5   

98.8 
(98.4-99.6) 1.2 
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APPENDIX D 
 
 

SUMMARY OF 30-DAY ALL-CAUSE MORTALITY AFTER HOSPITAL ADMISSION PREDICTORS OVER TIME 
 
 
Summary of all predictors in 30-day all-cause hospital mortality models at development (2006) and for three years across the 8-year 
validation period. 
 
  2003 

 
2006 

 
2009 

 
2012 

Total admissions 235,548 
 

235,734 
 

243,631 
 

214,798 

Variable % 
Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

Outcome                
30-day mortality 5.0  0.0  4.9  0.0  4.9  0.0  4.7  0.0 

Demographics                
Age at admission (years) 	 61 (54 - 74) 0.0  	 61 (54 - 74) 0.0  	 63 (55 - 74) 0.0  	 64 (56 - 73) 0.0 

Female 4.5  0.0  4.7  0.0  4.9  0.0  5.5  0.0 

Race  	 	 	 	 	 	 	 	 	 	 	 	 	 	
White 71.7  0.0  71.6  0.0  72.3  0.0  72.1  0.0 
Black 19.8  0.0  20.0  0.0  19.6  0.0  19.8  0.0 

Asian/Pacific Islander 1.3  0.0  1.4  0.0  1.5  0.0  1.6  0.0 

American Indian/Alaskan 1.1  0.0  1.2  0.0  1.2  0.0  1.3  0.0 

Unreported 6.0  0.0  5.9  0.0  5.5  0.0  5.3  0.0 

Health history                

AIDS/HIV 1.2  0.0  1.3  0.0  1.1  0.0  1.2  0.0 
Alcohol abuse 4.5  0.0  5.4  0.0  7.3  0.0  8.5  0.0 

Blood loss anemia 1.4  0.0  1.8  0.0  2.3  0.0  2.5  0.0 

Cardiac arrhythmias 8.4  0.0  10.6  0.0  15.7  0.0  19.3  0.0 

Chronic pulmonary disease 28.4  0.0  32.4  0.0  38.5  0.0  41.2  0.0 

Coagulopathy 5.9  0.0  7.4  0.0  9.6  0.0  11.1  0.0 

Congestive heart failure 17.3  0.0  19.1  0.0  22.0  0.0  23.7  0.0 
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  2003 
 

2006 
 

2009 
 

2012 
Total admissions 235,548 

 
235,734 

 
243,631 

 
214,798 

Variable % 
Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

Deficiency anemia 7.6  0.0  9.4  0.0  13.1  0.0  15.0  0.0 

Depression 20.1  0.0  24.5  0.0  32.6  0.0  38.4  0.0 

Diabetes, complicated 12.7  0.0  15.1  0.0  18.5  0.0  20.6  0.0 

Diabetes, uncomplicated 31.5  0.0  33.3  0.0  36.9  0.0  39.0  0.0 

Dialysis 2.8  0.0  3.0  0.0  3.2  0.0  3.3  0.0 

Drug abuse 12.4  0.0  14.9  0.0  18.8  0.0  22.0  0.0 

Dyslipidemia 41.8  0.0  49.6  0.0  61.5  0.0  66.4  0.0 

Fluid and electrolyte  
disorders 

19.0  0.0  23.9  0.0  32.8  0.0  38.1  0.0 

Hypertension, complicated 8.4  0.0  11.1  0.0  16.0  0.0  18.2  0.0 

Hypertension, uncomplicated 61.7  0.0  67.4  0.0  74.2  0.0  76.4  0.0 

Hypothyroidism 7.1  0.0  8.3  0.0  10.2  0.0  11.6  0.0 

Liver disease 9.3  0.0  11.3  0.0  14.2  0.0  16.5  0.0 

Lymphoma 1.2  0.0  1.3  0.0  1.5  0.0  1.6  0.0 

Metastatic cancer 3.5  0.0  3.9  0.0  4.1  0.0  4.5  0.0 

Other neurological disorders 4.6  0.0  5.8  0.0  8.6  0.0  10.3  0.0 

Paralysis 2.3  0.0  2.7  0.0  3.6  0.0  4.0  0.0 

Peptic ulcer disease 2.2  0.0  3.0  0.0  4.1  0.0  4.6  0.0 

Peripheral vascular disorder 13.0  0.0  15.3  0.0  18.8  0.0  20.3  0.0 

Psychoses 12.3  0.0  13.2  0.0  14.6  0.0  15.9  0.0 

Pulmonary circulation  
disorder 

2.4  0.0  3.3  0.0  5.0  0.0  6.0  0.0 

Renal failure 12.3  0.0  15.3  0.0  19.5  0.0  21.9  0.0 

Rheumatoid arthritis/collagen  
vascular diseases 

2.6  0.0  3.0  0.0  3.9  0.0  4.6  0.0 

Solid tumor without  
metastasis 

15.8  0.0  17.4  0.0  19.8  0.0  20.6  0.0 
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  2003 
 

2006 
 

2009 
 

2012 
Total admissions 235,548 

 
235,734 

 
243,631 

 
214,798 

Variable % 
Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

Valvular disease 6.7  0.0  8.3  0.0  10.5  0.0  11.6  0.0 
Weight loss 3.6  0.0  4.5  0.0  5.9  0.0  7.0  0.0 

Admission characteristics                
Admission type                

Planned 13.8  0.0  13.8  0.0  13.8  0.0  13.9  0.0 
Unplanned readmission 10.3  0.0  10.5  0.0  10.5  0.0  10.4  0.0 

Unplanned, not  
readmission 

75.8  0.0  75.7  0.0  75.7  0.0  75.7  0.0 

Body mass index  27.26  
(23.61-31.71) 

18.5   27.35  
(23.64-31.8) 

14.8   27.7 
(23.92-32.29) 

10.0   27.87  
(24.02-32.48) 

8.8 

Health care utilization (prior year)              
# inpatient visits   1 (0 - 2) 0.0   1 (0 - 2) 0.0   1 (0 - 2) 0.0   1 (0 - 2) 0.0 

# outpatient visits  25  
(12 - 45) 

0.0   26  
(13 - 46) 

0.0   29  
(14 - 52) 

0.0   30  
(15 - 55) 

0.0 

Any unplanned 
readmissions  

24.6    25.0  0.0  25.6  0.0  25.2  0.0 

Vitals (admission window)                
SBP, minimum  109  

(99 - 121) 
2.5   108  

(98 - 120) 
2.4   108  

(98 - 119) 
2.0   109  

(99 - 120) 
1.4 

SBP, maximum  148  
(134 - 163) 

2.4   148  
(134 - 163) 

2.4   149 
(136 - 164) 

1.9   150  
(137 - 165) 

1.3 

DBP, minimum  60 (52 - 68) 2.5   60 (53 - 69) 2.4   60 (53 - 68) 2.0   61 (54 - 69) 1.4 

DBP, maximum  85 (77 - 94) 2.5   86 (77 - 94) 2.4   87 (79 - 96) 1.9   88 (80 - 96) 1.4 

Pulse, minimum  67 (59 - 76) 2.5   66 (59 - 76) 2.4   66 (58 - 75) 2.0   66 (59 - 75) 1.4 

Pulse, maximum  94 (82 - 106) 2.4   94 (82 - 106) 2.3   95 (83 - 107) 1.9   95 (84 - 107) 1.3 

Laboratory values (last in admission window)              
Alanine transaminase  24 (17 - 36) 14.2   24 (16 - 35) 12.9   23 (16 - 34) 11.8   24 (17 - 35) 11.9 

Albumin  3.8 (3.4 - 4.2) 17.2   3.8 (3.4 - 4.2) 15.9   3.8 (3.3 - 4.1) 14.1   3.8 (3.3 - 4.1) 13.0 

Alkaline phosphatase  82 (66 - 104) 14.6   81 (65 - 103) 13.7   81 (65 - 104) 12.3   79 (64 - 101) 12.4 



	 116 

  2003 
 

2006 
 

2009 
 

2012 
Total admissions 235,548 

 
235,734 

 
243,631 

 
214,798 

Variable % 
Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

 
% 

Median 
(IQR) 

% 
Missing 

Aspartate aminotransferase  24 (19 - 32) 15.4   24 (19 - 32) 14.4   24 (19 - 32) 12.6   23 (18 - 32) 12.8 

Blood sugar  106 (93 - 132) 9.6   106 (93 - 132) 9.0   106 (93 - 133) 7.8   106 (93 - 134) 8.0 

Blood urea nitrogen  16 (12 - 23) 11.7   16 (12 - 23) 11.4   16 (12 - 23) 13.4   16 (12 - 23) 13.2 

Calcium  9.2 (8.8 - 9.5) 15.0   9.2 (8.8 - 9.5) 13.5   9.2 (8.8 - 9.5) 12.0   9.1 (8.8 - 9.5) 11.9 

Chloride  103.2  
(101 - 106) 

36.4   104  
(101 - 106) 

23.7   103  
(100 - 106) 

22.4   103  
(100 - 106) 

23.9 

Hematocrit  39.9  
(35.3 - 43.6) 

10.9   39.6 
 (35.1 - 43.4) 

10.1   39.4  
(34.8 - 43.1) 

8.7   39.7  
(35 - 43.3) 

8.6 

Hemoglobin  13.5  
(11.8 - 14.8) 

12.5   13.4  
(11.8 - 14.8) 

11.8   13.3  
(11.6 - 14.6) 

10.7   13.2  
(11.5 - 14.6) 

10.8 

Mean corpuscular  
hemoglobin 

 30.8  
(29.3 - 32.2) 

40.9   30.8  
(29.3 - 32.3) 

26.1   30.8  
(29.2 - 32.3) 

24.7   30.4  
(28.9 - 31.9) 

26.1 

Mean corpuscular  
hemoglobin concentration 

 33.8  
(33.2 - 34.4) 

40.4   33.9  
(33.2 - 34.5) 

25.5   33.7  
(33 - 34.4) 

24.2   33.3  
(32.6 - 34) 

25.7 

Mean corpuscular volume  90.5  
(86.8 - 94.2) 

11.0   90.9  
(87.2 - 94.7) 

10.2   91.3  
(87.4 - 95.1) 

8.8   91.1  
(87.2 - 95) 

8.7 

Platelets  242  
(191 - 302) 

12.4   235 
(185 - 294) 

11.6   214  
(169 - 266) 

10.3   211  
(167 - 263) 

9.9 

Potassium  4.2 (3.9 - 4.5) 8.9   4.2 (3.9 - 4.5) 8.4   4.2 (3.9 - 4.5) 7.2   4.1 (3.9 - 4.5) 7.4 

Serum bicarbonate  27 (25 - 29) 9.4   27 (24.4 - 29) 8.9   27 (25 - 29) 7.6   26.9 (24 - 29) 7.5 

Serum creatinine  1.1  
(0.9 - 1.3) 

9.8   1.1  
(0.9 - 1.33) 

9.3   1.0 
(0.84 - 1.3) 

8.6   1.0 
(0.82 - 1.3) 

9.4 

Sodium  139  
(137 - 141) 

8.8   139  
(137 - 141) 

8.4   139  
(136 - 140) 

7.1   139  
(136 - 141) 

7.2 

Total bilirubin  0.6 (0.4 - 0.8) 15.2   0.6 (0.4 - 0.8) 14.2   0.6 (0.4 - 0.8) 12.9   0.6 (0.4 - 0.8) 12.3 

White blood cell count  7.4 (5.9 - 9.3) 11.6   7.3 (5.8 - 9.2) 10.8   7.3 (5.8 - 9.1) 9.4   7.3 (5.8 - 9.1) 9.3 
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