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CHAPTERII

INTRODUCTION

Our object of study is Yu’s Property A. It was introduced in [58] as a hon-equivariant counterpart
of amenability and turned out to be a useful tool in large-scale geometry of metric spaces and finitely
generated groups.

The starting point for the work presented below is an averaging theorem for Property A. It turns
out that over amenable groups Property A, even though it a priori expected to be much more flexible,
in one aspect behaves exactly like amenability. This allows us to reduce some problems about the
geometry of an amenable group to the equivariant setting, which is much easier to handle. We
present three élierent applications of the averaging principle.

The first application is a construction of a metric space which does not have Property A but does
admit a coarse embedding into a Hilbert space. The existence of such spaces was not settled since
[58], where Property A was shown to imply coarse embeddability into the Hilbert space and the
question left open was whether one can reverse this implication. The examples given here are the
only known at present with the above properties. They also disprove a conjecture of Dranishnikov
that Property A is equivalent to coarse embeddability ito

The second application is to a quasi-isometry invariaptrélated to Property A which we
introduce in the fifth chapter. The definition is based on the study of the asymptotic geometry of sets
arising in the definition of Property A and the averaging principle allows to reduce this geometry to
the geometry of Falner sets used to define amenability. This yields a bound on our invariant in terms
of isoperimetric profiles, a classical invariant studied ifiedtential geometry and geometric group
theory. On the other hand we obtain @éient bound in terms of type of asymptotic dimension,
which is a fine invariant related to asymptotic dimension, both were introduced by Gromov in [28].
We apply these results to reprove some estimates on isoperimetric profiles of certain amenable
groups and, more importantly, construct finitely generated groups with finite asymptotic dimension
which cannot have linear type. The question whether such groups exist was posed by Roe.

Our last result concerns the spectrum of the Laplace-Beltrami operator. We use coarse index

theory and the averaging principle now applied to show that certain factor groups inherit Property



A from the original group. This allows to use Yu’s theorem on the coarse Baum-Connes Conjecture
to show that the spectrum of the Laplace-Beltrami operator acting on square-intggfalies on

a certain Galois coverings of compact manifolds contains zero for gofRer universal covers this
follows directly from Yu’s theorem, however in our case it is important to consider covers which
have a non-trivial, amenable fundamental group. This together with an assumption of macroscopical
largeness yields the required theorem.

The material presented below is the subject of the articles [42, 41, 43].



CHAPTER I
PRELIMINARIES

Coarse geometry

Coarse geometry originates from Mostow’s celebrated rigidity theorem and was later popular-
ized by Gromov in the context of finitely generated groups, mainly through his proof of Milnor’s
conjecture that groups with polynomial growth are exactly the ones which are virtually nilpotent.

Consider an unbounded metric spaged) with the metric topology. Every such space carries
another metricl which induces the same topology and such tKadl) is bounded - take for example
d= min(1, d). In other words, topology concentrates on local, infinitesimal phenomena, neglecting
the global properties of the metric. It is however natural to expect that some of the geometric
properties of a unbounded metric space should take place globally and should not depend on any
local data. The idea behind coarse geometry is to formalize these intuitions.

Imagine that we're given a discrete metric space and that we start moving away from it with
some speed. Because of perspective, the further away we move the closer to each other the points
look. As we move away to infinity from our space, the object we observe looks more and more
"dense”, "continuous” - think of the integers becoming a real line when viewed from infinity or of
a bounded space looking like a single point when viewed fronfiacgntly large distance.

This intuition was formalized by Gromov [26, 28] and then extended by van den Dries and
Wilkie [18]. It is done by taking an appropriate limit of a sequence of metric spdges(X, éd)
which are just given by the original spaeewith metric divided by elements of an increasing
sequences, (which governs the speed with which we’re moving away frgin See also [49] for

details.

Spaces and maps

All metric spaces will be assumed to peoper, by which we mean that every closed ball of

finite radius is compact. A metric space will be caltéidcreteif there exists a constaf > 0 such



thatd(x,y) = C for all x,y € X. A discrete metric space will be called locally finite if every ball of
finite radius is finite, and will be said to be of bounded geometry if for efRery O there exists a
numberN(R) such that B(x, R) < N(R) for everyx € X. Bounded geometry clearly implies local
finiteness. Also note that any locally finite metric space must be at most countable.

As explained earlier, we would like to identify spaces which look the same from infinity. Below
we give the appropriate notions of morphisms and equivalences implementing the ideas of coarse

geometry.
Definition 2.1. Let X, Y be metric spaces. Amap X — Y is called a coarse map if
(1) fis proper i.e. the preimage of a compact set is compact

(2) there exists a hon-decreasing functjan: [0, ) — [0, o0) such that

dv(f(3), F(Y)) < p+(dx(x ).

The map f is called large-scale Lipschitpif can be chosen to be arffime function.

Note that we do not impose any behaviorfadn small distances, in particulércan be discon-

tinuous - in that case the const&hbnly controls the size of discontinuities.

Definition 2.2. Two maps fg: X — Y are close if there exists a constant-@ such that

dv(f(x),9(x) <C

for every xe X.

The following notion of a coarse embedding describes a controlled inclusion in large-scale ge-

ometry. It was introduced by Gromov in [28] and is of great importance for applications [58].

Definition 2.3. A coarse map f. X — Y is a coarse embedding if there exists a nondecreasing

functionp_ : [0, o0) — [0, o) such that

p-(dx(x.y)) < dv(f(x). £(¥))



and lim{_ p-(t) = co. We say that f is a quasi-isometric embedding if hethand p_ can be
chosen to be f@ne. We call f a coarse equivalence (quasi-isometry) if it is a coarse embedding
(quasi-isometric embedding) and there is a constart & such that the image(K) is a C-net in

Y.

Equivalentlyf : X — Y is a coarse equivalence (quasi-isometric equivalence) if there is a coarse
map (large-scale Lipschitz mag): Y — X such thatf o g andgo f are close to identity mapsyd
and ldk respectively.

We will additionally that the metric space we deal with are quasi-geodesic.

Definition 2.4. A metric space is uniformly quasi-geodesic if there exist constarits>C0O such
that for any xy € X there exists a sequence=xxiy, Xz.. .., Xn-1, Xn = Y Of points in X such that n

depends only on(d, y) and

> d0%, %41) < Cd(x,y)
i=1

where % = X, X, = y and dX;, Xi;1) < L.

Groups as geometric objects

One particular class of examples of bounded geometry metric spaces arises naturally in group
theory. LetG = (X | R) be a finitely generated group, wheZe= =1 is the generating set. Then
every elemeng € G can be written as a word . By |g| we denote the length of the shortest word
representing and we call it thdength of g This length function can be thought of as a horm on
the groupG, and just as one defines the metric on normed spaces we define the word length metric
by setting

de(g.h) = Ig™*h

for all g, h € G. This metric is invariant under left translations, ide.(yg, yh) = ds(g, h) is satisfied

foranyy,g,he G.

Example 2.5. Take the group of intege = ({-1,1} | 0). Then the word length af € Z is just

the absolute valum| and the word length metric &(m, n) = |m-n|.
A natural question to ask is whether this metric depends on the choice of the generating set,
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and it is not hard to notice it does: just compare the above examplezniti {(—2,-1,1,2} | 0 ).
However it turns out that two metrics arising fronftdrent generating sets give coarsely equivalent
metric spaces. This shows that a finitely generated group carries an intrinsic coarse geometry and

every coarse-geometric invariant is in fact an invariant of the group.

The combinatorial model

We will also use a combinatorial model for our discrete metric spaces, it will become important
in the last chapter in coarsening of homology. This model is known as the Rips complex and it is a

certain simplicial approximation of our discrete metric spAce

Definition 2.6. Let X be a discrete metric space. The Rips complex of X , deng(eqd, Bs the
polyhedron constructed in the following way: the set of vertices is the set X and pgintsxx

span a simplex if (&, x;) < d.

In other wordsPy(X) is the nerve of the coverind(x, d)}x.x. We metrize the Rips complex by
giving each simplex the metric that it inherits from the sphere under the projection of the standard
simplex inR" ontoS™*. Note that ford = 1 we get simply the Cayley graph of the gro@p

The Rips compleXPy encodes the process dfkilling the local topology on scale d by
"squeezing” everything of diameter less théninto a single simplex. Asl grows to infinity this
is exactly what we are looking for in the coarse geometric setting. An example of a very intuitive
observation is Rips’ theorem thatlifis a hyperbolic group then the compl&¥(I') is contractible

for all suficiently larged.

Amenability

In what follows wheneveA is a set, # will denote its cardinality. LeG be a finitely generated

group with a word length metric. The bounddly of a setF c G is defined as

OF = {xe G\ F|d(x F) = 1}.



Denote

51(X)={f "X SR Z|f(x)|<oo},

XeX

with the usual norm

HASEPRLC]

XeX

and

0(X)1+ ={f e a(X) [Ifll.=1,f > 0}.

In other words¢1(X)1 .+ is the space of positive probability measures<iif I'is a finitely generated

group,y e I"'andf € ¢1(I')1+ then byy - f we denote the translation dfby elementy, i.e.

(- )@ = f(9).
Definition 2.7. A finitely generated group is amenable if any of the following equivalent condi-
tions is satisfied:

(1) (Invariant Mean Condition) There exists a left invariant mean ég(I'), i.e. a positive, linear

functional [ - dg onte(I') such that[ 1 dg=1and [y - f dg= [ f dg for anyy € T;

(2) (Falner condition)For everye > 0 there exists a finite set E G such that

(3) (Hulanicki-Reiter condition) For everye > 0 and R< oo there exists a function & ¢1(I")1 +
such that

If =y fllopo <e

for all |y] < R and# suppf < .

Amenability was introduced by von Neumann in his study of the Banach-Tarski paradox. It
has many dterent equivalent definitions and a large number of applicationffarént branches of

mathematics. Standard references on amenability include [6, 24, 45].



Examples of amenable groups include finite groups, abelian groups and any group that can be
obtained from these by taking extensions, subgroups or quotients. Also groups with subexponential
volume growth are amenable. Itis easy to show on the other hand that free groups are not amenable.

Thus also any group that contains a free subgroup is not amenable.

Property A as metric amenability

Property A was introduced by Yu in [58] as a metric, "non-equivariant” version of amenability.

Definition 2.8 ([58]). A discrete metric space X has Property A if for every R ande > O there
is a collection{Ax}xex Of finite subsets of X N and S> 0 such that

#ﬂxﬁﬂy

1) — -~
()#ﬂxmﬂy

<ewhendxy) <R;
(2) Axc B(x,S) x N

The class of finitely generated groups possessing Property A is quite large, at present the only
groups known not to have Property A are Gromov’s groups which contain expanders in their Cayley
graphs. There are also groups for which it is not yet known whether they have Property A, e.g.
Thompson’s groug-.

It was also shown by Guentner, Kaminker and Ozawa that a finitely generated group has Prop-
erty A if and only if the reduced grou@*-algebraC; (I') is exact, see [31, 44], while Higson and
Roe [33] proved that Property A f@ is equivalent to the existence of a topologically amenable

action ofG on some compact space.

We recall the characterization of Property A in terms of finitely supported functions in the unit
sphere of the Banach spae This characterization, modeled after the Hulanicki-Reiter condition,

was proved in [33].

Proposition 2.9([33]). Let X be a discrete metric space with bounded geometry. The following

conditions are equivalent:
(1) X has property A;
(2) Forevery R> 0ande > Othere existsamap: X — £1(X)1+, (X &x) and S> 0 such that

8



(@) lléx — &lla < e whenever (x,y) <R

(b) suppéx € B(x, S) for every xe X.

Property A was introduced as a conditiorfiatient to coarsely embed a metric space into a

Hilbert space.

Theorem 2.10([58]). Let X be a discrete metric space with Property A. Then X admits a coarse

embedding into the Hilbert space.

This on the other hand, via coarse index theory has application to problems such as the Novikov
Conjecture, positive scalar curvature problem, zero-in-the-spectrum problem. These applications

follow from a remarkable theorem of Yu.

Theorem 2.11([58]). Let X be a bounded geometry metric space which admits a coarse embedding

into the Hilbert space. Then the Coarse Baum-Connes Conjecture holds for X.

One of the main features of Property A is that it is satisfied by a class of groups incomparably
larger than that of amenable groups. In fact the only examples of groups known not to have Property

A are random groups containing expanders in their Cayley graphs constructed by Gromov [29, 30].



CHAPTER IlI

AN AVERAGING THEOREM FOR PROPERTY A

In this chapter we prove the theorem which will be our main tool. Our further results are derived
using this theorem. In order to present it we first need to introduce some definitions which quantify

Property A and amenability.
Definition 3.1. Let X be a discrete metric space.

(1) Foramapé¢ : X — £1(X)1.+ satisfying condition (2) in Proposition 2.9 with> 0 and R> 0
denote

Sx (¢, Re) =intS,

Sx (£, R, €) € NU {oo}, where the infimum is taken over all>S0 satisfyingsuppéx € B(x, S)
for every xe X.
(2) Define
radk(R &) = inf Sx (¢, R &),

radR, €) € N U {co}, where the infimum is taken over all maps satisfying the conditions in (1)

above for R and.

(3) If I'is a finitely generated group then givernsR0, & > 0 by radi™(R, &) € N'U {0} we denote
the smallest S for which there exists a functior 1(I')1+ with suppf C B(S) satisfying

condition (3) in Definition 2.7 for aly € I" such thafy| < R.

In other words, ra‘ffv is the notion resulting from restricting (1) and (2) to considering only
functionsé : T' — ¢1(I')1+ given by translates of a single functidne ¢1(I') 1+, i.e. & =y - f for

everyy € I and for some fixed € ¢1(X)1+.

Theorem 3.2(Averaging theorem for Property A, [42]). LetT be finitely generated amenable

10



group.Then for any > 0 and R> 0 the following equality holds,
radr(Re) = rad™Re).

Proof. To show the inequality radR &) < rad™(R ), given a finitely supported functiofi €
¢1(I)1+ satisfying condition (3) from Definition 2.7 fdR > 0 ande > 0 and ally € T" such that
lgl < R, consider the mag: T’ — ¢1()1+ defined by, =y - f.

To prove the other inequality assume thatatisfies condition (2) of Proposition 2.9 far> 0,

e > 0 with S > 0 realized by the functio&i : T' — ¢1(I')1+. For everyy € I' define

f(y) = fr £y 9 dg

This gives a well-defined functioh : I' — R, &(y~1g) as a function ofy belongs to/«(I') since
&(y) < 1forally,ger.
First observe that ify| > S thené&q(y~1g) = O for all g € T, thusf(y) = 0 whenevety| > S.

Consequently,

Iflamy = > f0)= >, | &9 dg

y€B(S) yeB(s) VT

- fr[z fgwlg)] dg = [ 1dg = 1

veB(S)

Thusf is an element of1(I')1 +. If 2 € T'is such thai1| < Rthen

If=2-fllyy = D 1FG) - (™)

yell

= 2 | frfgw‘lg) dg- fr &((17")"g) dg|

yeB(S)UAB(S)

11



> 1 atrede- [ éngte dol

yeB(S)uaBs) T

Y1 [t o - £t o) dal

yeB(S)uaB(s) T

f{ > Iég(y‘lg)—fﬁ—lg(y‘lg)l] dg
I\ yeB(S)UaB(S)

fsdg = g,
r

IA

IA

since

[a@ade = [ 1@y a)dg

fr £114(y"19) dg,

this is a consequence of the invariance of the mean.
Thus for the previously chosdRande we have constructed a functidne ¢1(I')1 + satisfying
[If —y- fllo@ < ewhenever I< |y| < Rand supd < B(S) for the sameS as foré. This proves the

second inequality. m|
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CHAPTER IV

PROPERTY A IS NOT EQUIVALENT TO EMBEDDABILITY INTO¢;

In this chapter we present the first application of the averaging theorem. As mentioned earlier
the original motivation to introduce Property A in [58] was that it was fiicent condition to
embed coarsely a metric space into the Hilbert space. Since then it was an open problem whether
the converse implication holds, i.e. whether Property A is equivalent to coarse embeddability into
the Hilbert space. Below we present the first and at present the only known construction of a
metric space which does not have Property A but does embed coarsely intg-gppgce, 1< p <
o0, including the Hilbert space. Our construction also gives counterexamples to a conjecture by
A.N. Dranishnikov, that for discrete metric spaces Property A is equivalent to coarse embeddability

into ¢;.

Behavior of Fglner sets in high-dimensional products

Let (X1, dx,), (X2, dx,) be metric spaces. We will consider the cartesian prodyct X, with

the ¢1-metric, i.e.

dx,xx, (%, Y) = dx, (X1, y1) + d(X2, ¥2),

for x = (X1, X2), ¥ = (Y1, ¥2), both inXy x Xo. If 'y, I'» are finitely generated groups such metric on
I'y x T’z is left-invariant if and only if the metrics on the factors are. In particular, if the metric on
the factors is the word length metric then themetric on the direct product gives the word length
metric associated to the standard set generators arising from the generators on the factors.

In this section we study how does the numbeg-riaehave for cartesian powers of a fixed finitely
generated amenable grolip Theorem 3.2 will be our main tool, allowing us to reduce questions
about ragh to questions about r%ﬂl". Note that ifX andY are discrete metric spaces, and for every
R > 0 ande > 0 there are maps: X — ¢1(X) andZ : Y — ¢41(Y) realizing Property A foX andY

respectively, then the mag { : X X Y — £1(X x Y) of the form

E® L(xy) = Exdys

13



give Property A forX x Y in the sense of Proposition 2.9 and in the particular case WheiX the
diameter of the supports increases (the reader can extract precise estimates from [14]). The main
result of this section shows that this is always the case.

The next theorem is the key ingredient in the construction of spaces without Property A.

Theorem 4.1. LetTI" be a finitely generated amenable group. Then for @rye < 2,
lim inf rada (1, ) = .

Proof. Assume the contrary. Then there existsSaa N such that for infinitely many € N there is
a functionf, € ¢1(I'")1 ; satisfying

Ifa—vy-fullt <e,

suppf, € Bm(S) for all y € T such thatl'| = 1. Fix§ < 22;58 andm € N and for anyn € N for which

fn as above exists consider the decomposition
M=T"xIMx..xIMxTI"
where 0<r <m. Fork=1, ..., ”—r;r denote by f, the restriction off,, to the set
{gesuppfy : 10 =S, gp zee (K-1)m+ 1 <i <mkj,

of those elements of sudp whose length in thig-th factorlI'™ is exactlyS, and extend it with O
to a function on the whol&"; we denote byg; thei-th coordinate ofy € I'" as an element of the

cartesian product.

Since fork # |, wherekm+r < nandlm +r < n, we have

suppdkfn N suppd; fn = 0

and

>
|
X

Ngd

10k fnlls < Ifalls = 1,

T
IR
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we can conclude that for eveey>" 0, which we now choose to satis§fZ < & + 6, there exists a

suficiently largen € N andi € N such that

10; fullL < €.
Denote
fn_6| fn
=— e 1(X .
= ool 0
We have
le—v-ollh = I(fn =y fn) + (¥ - Gifn = i f)lla
||fn_ai fn||1
< 8+2:9 < €+0,
1-¢

by the previous choice of. "Now consider the decompositidi! = T'™ x ™™ wherel™ is the
i-th factor in which we performed the previous operationsfanFor everyg € I'™ define (we're

recycling the letterf here, the "old”f’s don't appear in the proof anymore)
f@= ), ¢,
hern-m

whereh e ™™, Thenf € ¢1(I"™)y+ and supg C Bn(S — 1). Moreover, for an elemente I'™ of

length 1,

If=y-fla = > If@- (9

germ

DD elah - elyiah)

gel™ hern-m

15
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DL D, le@h - ey 'ghl

gel'™ hern-m

le(g)—so(y‘lg)l =lle-v- ¢l < e+0.
gel™m

Sincem € N was arbitrary we can obtain a fami{§im}men Of functionsfy, € £1(I'™)4 . satisfying

Ifm—v-fullt<e+0

and suppfm € Brm(S — 1) wheres is independent ofn. If we apply the procedure described above
to this family we can again reduce the diameter of the supports of the fundtjosusd obtain yet

another new familyf fm}men of functions fy, € £1(')1.+ such that
fn—vy fmli1 <e+26

and SUprm c Brm(s - 2)

After repeating this procedu@times we obtain a familyfy}mar such thatf € £,(I'™); , and

Ifm—v-fmllt < &+S6
2-¢
< S 2
< e+ 5 < 2
sinces < 22;58 However, for everyn e N
wheng = e,
fm(Q) =
0 otherwise.
and
[fn—7v- fll =2
for everym € N and everyy € I'™, which gives a contradiction. O

Remark 4.2. In the proofs in this section we have reduced the study Property A to studying

16



amenability, however we expect that the above considerations can be carried out as well in a more

general setting for the price of complicating the arguments and estimates.

Constructing coarsely embeddable metric spaces without Property A

In this section we construct metric spaces which do not have Property A, but which do admit a
coarse embedding into the Hilbert space.

First observe that the exact values of both rad an8attpend on the metric, in particular in
the case of a word length on the group, on the choice of the generating set. What is independent
of such choices is whether rad and $¥#dre finite or infinite. The following is a straight-forward

consequence of Definition 3.1 and the Proposition 2.9.

Proposition 4.3. (1a) If a discrete metric space X has Property A theadR, &) < oo for every
R> 0ande > 0.

(1b) A discrete metric space X with bounded geometry has Property A if and ordg@R, £) < oo
for every R> 0 ande > 0.

(2) Afinitely generated group is amenable if and onlyatf™(R &) < oo for every R> 0 ande > 0.

The idea for our construction is natural: take a disjoint union of bounded, locally finite metric
spaces, for which it is known that they satisfy Property A with diameters growing to infinity, so that
we violate the condition from Proposition 4.3.

On the other hand the condition r&j€) = o for anyR > 0 ande > 0 does not rule out coarse
embeddability into the Hilbert space, which is characterized by the existenag-aype functions
in the sphere of,. This was proved by Dadarlat and Guentner [14], see also [40] for discussion and
applications.

Given a sequencéXn, dn)} >’ ; we will make the disjoint sunX = [] X, into a metric space by

giving it a metricdy such that
1. dy restricted taX, is dy,
2. dx(Xn, Xns1) = N+ 1,
3. if n < mwe havedx(Xn, Xm) = St dy (X, Xicr1)-

17



Theorem 4.4. LetT" be a finite, group. The (locally finite) metric spa&e = [],.,I" has the

following properties:
(1) X does not have Property A
(2) Xt embeds coarsely int§, for anyl < p < co.

Proof. To prove 1) observe that by 4.3 X would satisfy Property A then ragl(1, €) would be
finite for every O< & < 2, which in turn would imply that the restriction of maggealizing Property

A for everye andR = 1 to eacll™ C X gives Property A with diameter bounded uniformlyrin

supradm(l, &) < oo,
neN

sinceBy,. (X, R) = Br(x, R) for all sufficiently largen and allx € I ¢ Xr. However by theorems

4.1 and 3.2,
rad(1,£) = radm(l¢)
and
raoerﬂ"(l, g) — oo
asn — oo.

To prove 2), note that sindeis a finite metric space any one-to-one map fidinto the space

{1 is biLipschitz. Denote the biLipschitz constant byThen the product map

f”:fxfx...xf:F”e(anfl]
ntimes =1 1
is also a biLipschitz map with the same consthntwhere( n, 51)1 denotes a direct sum of
copies oft1 with a ¢£1-metric, which is of course isometrically isomorphicéo It is clear that this
sufices to embedr into ¢1 coarsely.

In [40] the author proved that the Hilbert space embeds coarsely intépady< p < co and
that the properties of coarse embeddability fgéor 1 < p < 2 are all equivalent. Thu¥r embeds

coarsely into the Banach spaggfor any 1< p < co. O
Note that in the simplest casg = Z,, the spaceXy, is a disjoint union of discrete cubes of
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increasing dimensions, with tifg-metric. Acube compleis a metric polyhedral complex in which
each cell is isometric to the Euclidean cubelld, and the gluing maps are isometries. For instance

the planeR? is a cube complex with cubes given by i + 1] x [k, k + 1], k,n € N.
Corollary 4.5. An infinite-dimensional cube complex does not have Property A

On the other hand it is also not hard to construct an infinite-dimensional cube complex which

embeds coarsely into ardy, giving a diferent realization of examples discussed above.
We finally mention a conjecture formulated by Dranishnikov [15, Conjecture 4.4] that a discrete

metric spaceX has Property A if and only iX embeds coarsely into the spaie The examples

discussed in this section are in particular counterexamples to Dranishnikov’s conjecture.
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CHAPTER V
ISOPERIMETRY AND ASYMPTOTIC DIMENSION

In this chapter we introduce and study a quasi-isometry invariant related to Property A and
we develop some techniques to estimate it. In particular we show how to estimate it using: 1)
the isoperimetric profile of a group, 2) type of asymptotic dimension. These methods allow to
answer a question of Roe, who asked if there exist groups of finite asymptotic dimension but of non-
linear type. We show a construction of such groups for any given prescribed value of asymptotic

dimension.

Definition of the A-profile

We introduce the following function associated to any metric space with Property A.

Definition 5.1 (Isodiametric profile of a metric space. Let X be a metric space with Property A.

Define the functiody : N — N by the formula
1
Ax (n) = rady (1, ﬁ)‘

Clearly the function A is well-defined and non-decreasing. We will be interested in estimating
the asymptotic behavior of 4 i.e. in the rate of divergence ofyA We consider the following
relation. We writef < gif there exist constants, K > 0 such thatf (n) < Cg(Kn) for alln € N and
we writef ~ gif f <gandg =< f.

The asymptotic behavior of Adoes not depend on the choiceRE 1 and the sequenc%aup

to constants, the argument will be given further in this section.

Example 5.2. Let X be a bounded metric space. Theg A const. In fact, A(n) = d'aTmX forall n

large enough.

Example 5.3. Let T be any locally finite tree. ThenA< n. Indeed, recall from [58] that for a

fixed R > 0 ande > 0 Property A for the tree is constructed by fixing a painbn the boundary
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of T and taking normalized characteristic functions of the geodesic segments of ?§ngththe

geodesic ray starting fromin the direction ofw.

Example 5.4. Let T be a finitely generated group with polynomial growth. Than#n. In this

case the normalized characteristic functions of balls of radise the required estimate.

Basic properties

We now move on to prove the most natural properties - estimate for subspaces, direct products
and invariance under quasi-isometries. For the first one, we will use the fact that Property A is

hereditary [54].

Proposition 5.5. Let Y have Property A and X Y. Then X has Property A and for any>R0,
e>0

radk(R, &) < 3rad/(R ¢)

Proof. For everyy € Y let p(y) € X be a point such that(y, p(y)) < 2d(y, X). Define an isometry
I :61(Y) - 1(X xY) by the formula

f(y) if x=p(y)

0 otherwise

If(xy) =

Lete > 0 andR > 0. By definition of Property A there exist a numbr< oo and a map
£ 1Y — (1(Y) such thatléy — &y lley) < eif d(y,y’) < Rand supgy < B(y,S) for everyy € Y.
Defineé : X — ¢1(X)1 by the formula

&) =) I&(Y).

yeY

Then it is easy to check that

||Ex - gx’”ﬁ(X) <e&

wheneved(x, X') < Rand

suppéx € B(x, 3S).
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A direct consequence is the following.

Proposition 5.6. Let XC Y be a subspace. Thdk < Ay.

Direct products

We consider direct products with tlig-metric, as explained in an earlier section.

Proposition 5.7. Let X;, X, be countable discrete metric spaces with property A. Then
A XgxXo = maX(Axla AXz) .

Proof. LetR=1,¢ > 0 and letthe maps: X — €1(X)1.+,n: Y — €1(Y)1+ realize Property A for
R = 1 ande, for X andY and respectively, with diameters of the supp&tsandSy respectively.

Thenthe mag ®n: X xY — £1(X x Y)1+ defined by

ER Ny (ZW) = Ex(D ny(W),

satisfies

supp(g ® n(x,y)) C B((XY),Sx + Sy) € B((x,y),2maxSx, Sy)).

ForR = 1 we also have the following estimate:

D 1Ex@nyw) - Ex @y (W)

zeX,weY

1€ ® Nexy) — € © Nex y)llen(xx)

<D 1Ex@my(w) - E@ny (W)
zeXweY
+ 0 1@y W) - Ec@ny W)l
zeX,weY
< léx = Exlleyxy + llmy = nylleyyy < e.
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The last inequality follows from the fact that sindgx,y)(X,y’)) = R = 1 then eitherx = x’ or

y =Y. This proves A, xx, < max(Ax,,Ax,). The estimate2” follows from Proposition 5.6. O

Permanence properties of groups with Property A have been extensively studied in connection
to the Novikov Conjecture, see e.g. [3], [14], [11], [54], so estimates of this sort are possible also

for e.g. free products, extensions, some direct limits, groups acting on metric spaces and more.

Invariance under quasi-isometries

We devote the rest of this section to proving large-scale invariance of the asymptotigs of A
we will in particular estimate how does the isodiametric function behave under coarse equivalences
that are not necessarily quasi-isometries. Strictly for that purpose Roe N define the function

ASR(n) = rady (R, £). With this definition A = A",

Lemma 5.8. For a fixed R> 0 and« € N we have
AR = AR o
Lemma 5.9. Let X have Property A. Then for anyR € N we have
AR~ ALR

Proof. If R < R then obviously ragd(R, €) < radk(R’, €) for any e and the inequality X" follows.
Conversely, assume thiat < R. If d(x,y) < Rand that we're given the functighfrom the definition
of Property A forR ande. Then by the uniform quasi-geodesic conditiono(Definition 2.4) with

k equal to the largest integer smaller tH#R', we have

k=1

= Eyllesg < D Iéx — éxallesy < Ken,
i=0

where thex = Xo, X1, ..., Xk-1, X« = Yy are such thati(x,y) < > ,d(x, xi+1) andd(x, Xi+1) < R.
This gives the inequalit¥x (¢, R, €) < Sx(&, R «¢), and consequently

radg(R , €) < radk(R, ke).
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This together with the previous lemma proves the assertion. m|

Having proved that the asymptotics ofﬁ\depend neither oR nor onk, as a consequence we

get the desired statement on large-scale behaviogof A

Theorem 5.10.Let X Y be metric spaces and let Y have Property A. LetXf — Y be a coarse

embedding. Then X has Property A and

Ax<(,0_lOAy.

In particular, if X and Y are quasi-isometric thexy ~ Ay.

Proof. Let f : X — Y be the coarse embedding with Lipschitz constaanhd distortiony_. Since
we're only interested in the asymptotic behavior, we may assume that fott laigep_(t) is strictly
increasing. Also by Proposition 5.5 without loss of generality we may assumé ihanto.

For every pointy € Y choose a unique poin, in the preimage ~1(y). This gives an inclusion
0(Y)1+ € €1(X)1+. SinceY has Property A, for everg > 0 andR < 0 there exists a map
&Y — (1(Y)1+ and a numbe§ > 0 satisfying conditions from Proposition 2.9. Chodskarge
enough so thap_(R) > 1 and define amap: X — ¢1(Y)1+ C €1(X)1.+ setting

Erw(y) if z=x,

0 otherwise.

nx(2 =

It is easy to check thag satisfies the required conditions and that
Sx(R&,1) < 9= (Sv(LR &,4)).
This, with Lemma 5.8 gives

Ax = AR < ¢TTo AR = oTloAy.

Relation to isoperimetric profiles
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The Fglner function measures the volume of the support of a function afftf naglasures the
radius of the smallest ball in which such support is contained. Since the Fglner function is defined
using the number rad and the numbers rad an8%ate equal on an amenable groups by the

averaging theorem, we have

Theorem 5.11. LetI be a finitely generated amenable group. Then
proAr > Fal.

Proof. Since As(n) = rad(l %) = radf1, %), the numberpr(Ar(n)) is the volume of the ball

containing supgd, wheref minimizes rad®/(1, %). Thus

pr(Ar(n)) > #suppf > Fal(n),

since Fgl) minimizes the volume of suppfor ¢ = % O

It follows that the function A in the case of amenable groups can have nontrivial behavior, as

we now explain. Given two finitely generated grodpsandI’z one defines their wreath product
I, = ( Dyery FZ) = I,

where the action of> on @,r,I2) is by a coordinate shift. Since the wreath product preserves
amenability, one can wonder how does the function-fgl depend on the functions Fgland
Fol-,. This was studied in [55], [46], [25] and a complete answer was given by A. Erschler in [19],
where it was proved that

Fok,r, ~ (Fal, ) ", 1)

provided that the following condition holdsx) for any C > 0 there is a K> 0 such that for any
n > 0, Fal-,(Kn) > CFgl,(n). This last assumption will be automatically fulfilled in the cases we
will consider, note however that it does not allbwto be finite.

Now, using Theorem 5.11, we can apply this to the isodiametric function.
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Proposition 5.12. LetI'1, I'; be discrete amenable groups andfetl-, satisfy conditior(x). Then

Arlgrz = Fﬂ'rz ( In Fﬂ'rl).

The proof amounts to recalling the fact that growth of a finitely generated group is at most

exponential. Consequently, since & = Z(...(Z (2 Z)...) the Fglner function satisfies

k times

n
Folg, ~n" |

k times

we obtain

Corollary 5.13. Let G, be as above. Then

n
AGk > n"

k-1 times

Inn.

Another example in [19] is one of a grodpwith Fgl growing faster than any of the above

iterated exponents. This of course gives the same conclusion for the fungtion A

Recall also that it is not known whether Property A is satisfied for Thompson'’s grotlipomp-

son’s groupF is defined by the presentation
(a,b|[abt,a tba] = [ab !, a?ba’] = €)

or

(X,i eN| xj‘lxixj = X1 fori > j).

On the other hand it is known that the iterated wreath product

Wk=(..ZZ2)2Z)2.. ) Z

k times

is a quasi-isometrically embedded subgroup ¢br everyk € N, this was shown by S. Cleary [12],

and Theorem 5.10 leads to the following statement:
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Corollary 5.14. If Thompson’s group F has Property A then

AFZI’lk

for every ke N.

Asymptotic dimension and the A-profile

In this section we will show another method to estimate & is based on the connection
between Property A and asymptotic dimension. In particular we show a large class of spaces for
which Ax =~ n. These spaces will arise as spaces with finite asymptotic dimensioreaf type
i.e. where the diameter of the elements of the covers depends linearly on disjointness.

A family U of subsets of a metric space will be callédbounded if diamd < § for every

U € U. Two familiesUy, U, areR-disjoint if d(U1, U,) > Rfor anyU; € U1, Uz € Uo.

Definition 5.15 ([28]). We say that a metric space X has asymptotic dimension less tkai k
denotedasdimX < Kk, if for every R> 0 one can find a numbe¥ < oo and k+ 1 R-disjoint families

U, ..., Uy of subsets of X such that

X=UoU...U Uy

and everyl{; is 5-bounded

Asymptotic dimension is a large-scale version of the classical covering dimension in topology.
It is a coarse invariant and a fundamental notion for [57], where the Novikov Conjecture for groups
with finite asymptotic dimension is proved. Because of this result asymptotic dimension of groups
has become a very actively studied notion, we refer the reader to the articles [4], [5] and to [49]
and the references there for more on asymptotic dimension of finitely generated groups. Let us just
mention here that examples of groups with finite asdim include free, hyperbolic, Coxeter groups,
free products and extensions of groups with finite asdim. On the other hand it is easy to see that
there are finitely generated groups which don’t have finite asymptotic dimension - ju&t t@ker
Thompson’s groufF, each of which containg* as a subgroup for evekyand since such inclusion

is always a coarse embedding and asdira n, it pushes asymptotic dimensioff to infinity.
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The following finer invariant associated to a space with finite asymptotic dimension was also

introduced by Gromov [28, p. 29], see also [49, Chapter 9], [17, Section 4]

Definition 5.16. Let X be a metric space satisfyirgdimX < k. Define the type functiorx :
N — N in the following way:7y x(n) is the smallest € N for which X can be covered by+1

familiesUy, ..., Ux which are all n-disjoint and-bounded.

The type function is also known amension functiorand its linearity is often referred to as
Higson propertyor finite Assouad-Nagata dimensjasee the discussion later in this chapter. The
proof of our next statement adapts an argument of Higson and Roe [33], who showed that finite

asymptotic dimension implies Property A.

Theorem 5.17.Let X be a metric space satisfyiagdimX < k. Then
Ax < TKx -

Proof. By assumption, for everm € N, X admits a cover bk + 1, 7x x(n)-bounded,n-disjoint
families U;, as in definition 5.15. Le?/ be a cover ofX consisting of all the sets from all the
familiesU;. There exists a partition of unityv }veys and a constanty depending only otk such

that:
(1) eachy is Lipschitz with constant /;
(2) supdiam(supp) < 1k x(n) + 4n < Cyrix(N);
(3) for everyx € X no more thark + 1 of the valueg/(x) are non-zero.

For everyy choose a unique poin, in the set supp and define

&= W) oy,
7
Then ifd(x,y) < 1 we see that

2
€% = Elevcx) = ; WO - v < G
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whereC, is another constant dependingloonly and

supp £y € B(x, Ckrix(Crn)).

Once again by Lemma 5.8 we are done. m|

Thus spaces and groups of finite asymptotic dimension of linear type havséar. The
simplest examples of such are Euclidean spaces and trees, and their finite cartesian products, by an
argument similar to the one in Proposition 5.7. It is also well-knowndHatperbolic groups are in
this class, one can quickly deduce this fact either directly from [50] or from a theorem of Buyalo and
Schroeder [10], which states that every hyperbolic group admits a quasi-isometric embedding into
a product of a finite number of trees. In fact, Dranishnikov and Zarichnyi showed that every metric
space with finite asymptotic dimension is equivalent to a subset of a product of a finite number of
trees [17], however this equivalence is in general just coarse and not quasi-isometric, we will give

examples illustrating this below.

The main estimate

As a corollary of the results presented in the two previous sections we get our main application,
a direct relation between two of the considered large-scale invariants: Vershik’s Fglner function and

Gromov's type of asymptotic dimension.
Theorem 5.18. LetT be a finitely generated amenable group satisfyasgiml” < k. Then there
exists a constant C depending only on k such that

Fol<por OCTk,r.

Proof. The estimate follows from Theorem 5.11 and Theorem 5.17. O

A general conclusion coming from this result is that several asymptotic invariants considered
in the literature, namely: decay of the heat kernel, isoperimetric profiles, Falner functions, type

function of asymptotic dimension, our function &nd distortion of coarse embeddings, in the case
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of amenable groups all carry very similar information. We will show below how to use this fact to

obtain results in various directions.

Remark 5.19. The constan€C in the above formula is a technical consequence of the estimates in
the proof of Theorem 5.17 and it doesn’t seem that we can get rid of it a priori. We can however
omit it once we know for example thatsatisfies conditionX) from Section 4: for ever{ there

exists a numbeK such thaCry x(n) < 7« x(Kn) for all n. This is a very mild condition, in particular

it holds for all common asymptotics. Another situation when the con§atdes not play a role is
when the upper estimate on the growthis known. For the purposes of applications in Sections 7
and 8 we will be interested only in groups with exponential growth and we will omit the coritant

from now on.

Estimates of isoperimetric profiles

We will use our main theorem and asymptotic dimension to get precise estimates of the func-
tion Fgl for some groups. Although these estimates are known (see e.g. [46]), our purpose is to
show that even though in Theorem 5.18 we, loosely speaking, pass between the volume of a set and
the volume of the ball which contains it, which one can expect will cause some loss of informa-
tion in the exponential growth case, we can in fact obtain sharp estimates on Fgl. In other words,
asymptotically Falner sets behave like balls. We will use the following consequence of Theorem

5.18.

Corollary 5.20. If " is an amenable group with exponential growth and finite asymptotic dimension
of linear type then

Fol~ e".

The statement follows from Theorem 5.18 and a theorem of Coulhon ané-Salste [13],
stating that for groups of exponential growth the function Fgl grows at least exponentially.
It should be also pointed out that the question of existence of amenable groups with exponential

growth and at most exponential Falner function was first asked by Kaimanovich and Vershik in [36].

Example 5.21.The first example we consider are grous = Z2xa Z, whereA e SL,(Z) satisfies
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|[trace@)| > 2, usually one takes just

The groupSa has exponential growth and it is a discrete, quasi-isometrically embedded lattice in
the group Sol used by Thurston to describe one of the geometries in his geometrization conjecture.
The group Sol is quasi-isometric to a undistorted horosphéeiié #i?, a product of two hyperbolic
planes. The latter has finite asymptotic dimension of linear type, this can be seen directly or from
the fact that the hyperbolic plane embeds quasi-isometrically into a product of trees ([9]), and so we

recover (see e.g. [46, Section 3]) the estimate

FﬂlgA =~

The same strategy works for polycyclic groups which are lattices in solvable Lie groups of dimen-

sion at least 3.

Example 5.22. The solvable Baumslag-Solitar groups,

BS(LK) = (ab : aba®=1b*),

wherek > 1, constitute our second example. These groups are metabelian but not polycyclic and
they act properly, cocompactly by isometries on a warped product R x Tk, whereTg is an
infinite, orientedk + 1-regular tree. For every vertaxn this tree we have 1 incoming edge and
edges going out of, and we orient the incoming edge towards the vevteMetrically, the seR xr
wherer is an infinite, coherently oriented line, is an isometric copy of the hyperbolic plane, see [20]
for a detailed construction of the spaXg Since both the tree and the hyperbolic plane have finite
asymptotic dimension of linear type, it is easy to check by a direct construction of coverings or of
a quasi-isometric embedding into an appropriately chosen spac¥dth#go has finite asymptotic
dimension of linear type. Thus, since by the Milrwarc Lemma BS(XK) is quasi-isometric té,
we get (see [46, Theorem 3.5])

Foksak ~ €.

Example 5.23. Assume we are given two finitely generated amenable gréugsdH and an exact
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sequence

0—K—DI—>H-—0, (2)

i.e. I' is an extension oK by H. Assume also thdf is undistorted i (recall that a subgroupl

is undistortedin the ambient group if the embedding oH as a subgroup is quasi-isometric) and
that bothK andH have finite asymptotic dimension of linear type. Under these assumptions, in
[7] a Hurewicz-type theorem for asymptotic dimension of linear type is proved, which in particular
implies thatl” also has finite asymptotic dimension of linear type. In our situation this yields the

following

Corollary 5.24. Let KI',H be finitely generated amenable groups, sequence (2) be exact. Assume
that K is undistorted ii” and that the latter has exponential growth. If H and K have finite asymp-
totic dimension of linear type then

Fol~e".

Note however that this does not apply to the graépconsidered above. In that example the

fiberZ? is well-known to be exponentially distorted in the ambient extension.

The above of course raises the question, which amenable groups with exponential growth have
finite asymptotic dimension of linear type. The next section is devoted to building examples which

fail this condition.

Applications to dimension theory
There are two questions concerning asymptotic dimension and its type function:

(Q.1) How to build natural examples of finitely generated groups with growing faster than
linearly for some kMost of the known examples of groups with finite asymptotic dimension
have linear type and to the author’s best knowledge no examples of groups with other behavior

of the type function were known.

(Q.2) Assume we have an example like in (Q.1), w#dimI” < k andrir > n. Can we find k> k

such thatry - will be linear?
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These questions, although quite natural, become even more relevant if one identifies after Dran-
ishnikov and Zarichnyi [17, Section 4] asdim with linear type as the large-scale analog of the
Assouad-Nagata dimension [1], [37], which is an invariant in the Lipschitz category of metric
spaces. The precise definition in our setting is simply the followangretric space X has Assouad-
Nagata dimensior K if it satisfiesasdimX < k andrx < n. The above questions can be then
rephrased in the following way: (Q.How to build finitely generated groups with Assouad-Nagata
dimension strictly greater than asymptotic dimensi¢Q72) Does finite asymptotic dimension im-

ply finite Assouad-Nagata dimension?

We will use Theorem 5.18 to answer both questions and build some interesting examples of
groups with finite asymptotic dimension. For any non-trivial finite grébupnd fork = 1, 2,3, ...
consider the grouﬁ(kl) = H:ZX. In the simplest casél = Z/2Z the groufy is a lamplighter group
(see e.g. [25], [B1]).

We have asdirﬁ(kl) = k. We will only sketch the proof. To see asdﬁﬁ) < k one needs to
appeal to recent work of Dranishnikov and Smith [16], in which they extend the notion of asymp-
totic dimension to alcountablegroups. And so observe that by [16, Theorem 2.1], the infinitely
generated countable groap.,«xH (equipped with a proper length function inherited frm(j?) has
asymptotic dimension zero, since every of its finitely generated subgroups is finite. ZSihes
asymptotic dimensiok, the semi-direct produci®,.,« H) = ZX is of asymptotic dimension at most
k, by the Hurewicz-type theorem in [16]. Then the inclusionZéfin r(kl) as a subgroup gives
asdimr” ¢ k- 1.

Now, by equation (1) used earlier in this chapter we have
Folw = (Fol )™ =~ e(™),
k
For anyk’ > k, Theorem 5.18 gives

(n)
n
e < pr(kl) o Tk’,l“(kl)’
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but this implies

k
nt =< Tk’,l“(kl) .

since the growth ol“(kl) is exponential.
Now take the grourF(kz) =H zl"(kl). By the same argument as before asﬂﬁ‘h: k, and again

by Theorem 5.18 for ank’ we get
(e("k))
€ < Pr@ © T o,

which gives

K
e(n) < T, 2.
k@

Iterating this construction we get for a fixddandi = 1,2,... infinitely many (depending on
different choices oH) finitely generated grouﬂg((i) with asdim equal exactly and type function

growing at least as fast as the iterated exponential function

exp exp ..expn.
— e
i-1times
This gives the examples postulated by (Q.1) and answers (Q.2) negatively, since in particular all

estimates are independentidf

Two comments are in order.

Remark 5.25. In the case of asymptotic dimension 1, the construction above is optimal in the
following sense. Januszkiewicz aBwiatkowski [35] and independently Gentimis [22] proved that

if a finitely presented grou@ has asymptotic dimension 1 then it is virtually free, and it follows that

it satisfiesr1 g < n. So the groupﬁg) fori > 2 are examples showing that results of Januszkiewicz-
Swiatkowski and Gentimis will not be true if one drops the requirement of finite presentation. It
also follows that one cannot obtain examples with propertiesﬂiﬂand which would be finitely

presented.

Remark 5.26. By [17] all the groups considered in this section embed coarsely into a product of

finitely many trees. It might be interesting to note that by arguments similar to those in Theorem
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5.10, any such embedding must be strongly distorting, i.el.“fjb’rt must satisfy

=

fori=1

and

o_<(nin...Inmk  fori=23,...

i—1times
This contrasts again to the case of hyperbolic groups, which, as mentioned previously, embed quasi-

isometrically into an appropriately chosen product of finitely many trees [9].
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CHAPTER VI

COARSE INDEX THEORY AND THE ZERO-IN-THE-SPECTRUM CONJECTURE

The zero-in-the-spectrum problem

The zero-in-the-spectrum conjecture was first formulated by Gromov [27, 28] and asks if the
spectrum Laplace-Beltrami operator acting on the square-integoeolens on the universal cover
of a closed aspherical manifold contains zero. This fact is implied by the Strong Novikov Con-
jecture and thus the interest in finding a counterexample. A more general zero-in-the-spectrum
conjecture on open complete manifolds was stated by Lott and it is true if there is a positive answer
to the following questiondoes the spectrum of the Laplace-Beltrami operatpacting on square-
integrable p-forms of a complete manifol contain zero for some p 0,1,...? The answer is
negative in general: Farber and Weinberger [21] showed that for ever§ there exists a manifold
N such that zero is not in the spectrumygffor anyp € 0, 1... acting on the universal cover &f.

Later Higson, Roe and Schick [34] extended this result and gave a complete description of groups
which can appear as fundamental groups of manifolds whose universal covers don't have zero in
the spectrum of the Laplacian.

Because of the origins of the problem, various covering spaces are a natural environment for
considering zero-in-the-spectrum questions. An early result of this type is a theorem of Brooks
[8] stating that given a regular covérl of a compact manifoldyV, O is in the spectrum ohg on
M if and only if the group of deck transformations is amenable. The articles [38, 39] provide a

comprehensive survey of this topic.

The Laplace-Beltrami operator

The Laplace-Beltrami operator and the Laplace-de Rham operator are generalizations of the

usual Laplace operator fro” to a Riemannian manifol. Its action on a functiorf : M - R
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can be expressed by the formula

. 1 iin
Af =div-Vf = \/F(G)al (\/@gjﬁjf)

where:G = JTJ = {gij} is the metric tensor) denotes the Jacobiar; ! = {g'} is the inverse of
G.
More generally we consider a complete Riemannian manifoldAdi{t¥), the space of square-

integrablep-forms onM. ThusAP(M) is a Hilbert space. Because of completenesMofe can

f dwAn= (—l)deg“”lf w Adp
M M

where w, dw, n, dn are smooth, square-integrable forms ln(see [38, Lemma 1] for a proof).

integrate by parts om:

Considerd*, the adjoint operator td. We construct a self-adjoint operatbr. A*(M) — A*(M) by
setting

A =dd" +dd.

Then, by restrictingA to AP(M) we obtainAp. The spectrum o\, is contained in [0co). The

zero-in-the-spectrum question asks if 0 belongs to the spectruyp fofr somep.

Index theory via the coarse assembly map

One way of showing that zeisin the spectrum of the Laplace-Beltrami operator is to use index
theory. We first need to briefly recall the construction of the coarse index.

Let X be a discrete metric space. AimoduleHy = (H, p) is a pair consisting of a separable
Hilbert spaceH and a*-representatiop : Co(X) — B(H) of the algebra of complex-valued
functions vanishing at infinity. We will say that a&module isnon-degenratéf the representation
p is non-trivial, and we will call itstandardif no compact operators are in the imagepofexcept

0(0) of course.

Definition 6.1. Let X, Y be discrete metric space attk, Hy the corresponding modules. The
support of a bounded operafbr. Hx — Hy is denotedsuppT and is defined to be the complement

in X x Y of the set of all pointéx,y) € X x Y for which there exist functions g € Cy(X) such that

37



gT f =0and f(x) # 0 # g(y).
Definition 6.2. Let X andHy be as above and let T be a bounded operato-n Then
(1) Thepropagatiorof T is the numbesuR, ycsuppr d(X. Y).
(2) T is said to be locally compact if for anyd Co(X) the operators fT and T f are compact.
The following definition introduces the Roe algebra

Definition 6.3. Let Hx be a standard, non-degenerate X-module. The Roe algelté) & the

C*-algebra closure of all locally compact operators %fx which have finite propagation.

The algebr&*(X) does not depend on the choices we made along the way, namely on the choice
of the X-module as long as it is standard and non-degenerate.

Take nowd € N and a cycle {, p, F) in the K-homologyK.(Py(X)) = KK.(Co(Pg(X)),C)
such thatH equipped wittp is a standard, non-degenerd&gX)-module. Choosé{ = {U} be a
locally finite, uniformly bounded open cover Bfj(X) and{¢y} be a continuous partition of unity

subordinate to the covdr. We define an operator

F =) pleu)?F p(eu)"?,
U
where the infinite sum converges in the strong topology because the covering is locally finite.
Lemma 6.4([57]). For F, F as above we have
(1) F has finite propagation
(2) IIFil < 41IF I

Note that H, p, F) is equivalent to I, p, F) in the groupKo(Pg(X)). This is so because the
operatorp(f)(F — F) is compact for anyf € Co(Pg(X))

We will now construct an element &f-theory of the Roe algebra that will be the "index at scale
d” of the cycle above. In the description &f-theory we're using, the elements of the group are
Kasparov modules over the pait,C*(Py4(X))). Take& = C*(P4(X)) as a module over itself, and

the representatiop : C — B(E) is given by the assignment+® Idg.
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The last element we need in the triple is an operatoEorit will be given by F acting as a
multiplier onC*(Py(X)). All we need is to observe th&? — 1 € C*(P4(X)), and that is so because

bothF2 and 1 have finite propagation. Thus we can construct a Kasparov module

(C*(Pa(X)), , F). 3)

With the above notation, the coarse index at sdagehe map Index: Ko(Pg(X)) — Ko(C*(Pg(X)))
defined by the formula

Index([(H, p, F)]) = [(C*(Pa(X)), v, F)].

Coarse index

There is a natural inclusiory : Py4(X) — Pg4+1(X) given simply by the fact that the cover
{B(x,d)}xex is inscribed in the covefB(x,d + 1)}xex. Combining this with the index maps for

d=1,2,... we get the following diagram:

i1 id

Ko(Pi(X))  ——  Ko(P2(X)) ——  Ko(Pua(X)) —— ...
llndexl llnde)g llnde)g

Ko(C*(P1(X))) —— Ko(C'(P2(X))) —— Ko(C*(Pa(X))) —— ...

Note that
Jiflo Ko(C*(Pd(X)) = Ko(C*(X)).

Definition 6.5. We define the coarse index map
p& 2 lim Ko(Pa(X)) = Ko(C*(X)

as the direct limit of the mapgadexy.

The strategy for showing that 0 is not in the spectrum of the Laplace-Beltrami operator relies on

the following statement.

Proposition 6.6([47]). Let M be a complete Riemannian manifold abde the de Rham operator.
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If u°([D]) # 0in K.(C*(M)) then the spectrum of the Laplace-Beltrami operator acting on the

square-integrable forms oM contains zero.

We refer [38, 47] for the arguments.

Group quotients with Property A

As mentioned earlier, Property A resembles amenability and enjoys a number of the same prop-
erties as amenability e.g. inheritance by subgroups and extensions. Unlike amenability however,
Property A is preserved by free products [11] and, more importantly, is not preserved under sur-
jective homomorphisms. The latter is a consequence of Gromov’s construction [30] of finitely
presented groups which do not coarsely embed into the Hilbert space together with exactness of

free groups. Thus we are interested in general conditions guaranteeing that in the exact sequence
1—H—>G—>G/H—1 4)

G/H has Property A provided th& has it. If we exclude the trivial case and assume @yt is

infinite there are two other cases in which such a statement is obviously true:

(1) If His afinite group the® andG/H are quasi-isometric, 98 is exact if and only ilG/H is

exact.

(2) If the exact sequence (4) splits then ti&fH is embedded i, and inherits exactness from

the ambient group.
Our first step in proving Theorem 6.11 is the following

Theorem 6.7. Let G be a finitely generated group satisfying Property A and let H be an amenable

subgroup of G. Then the quotienf B has Property A.

This condition is sharp: as soon as we drop the amenability conditidth, ave can takes in
(4) to be a free group and get all finitely generated groups as quotients. We will treat the cosets of
H as orbits of its action o and denote the orbit of € G by Hx. The quotientG/H is a metric
space with the metric

d(Hx, Hy) = hrpler?4 d(hx h'y).
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This in particular means that the quotient n@ap- G/H is a contraction.
The next statement is a version of the averaging theorem for Property A, only now we average

over the subgroup instead of the whole group and we are not interested in quantitative statement.

Proposition 6.8. Let G be a group with Property A and let H be an amenable subgroup of G. Then
for everye > 0 Property A can be realized by a mgp G — ¢1(G)1+ such that¢ is equivariant

under the action of H, i.e.,

¢hx = h‘fx (5)
for every he H and xe G.

Proof. Assume thaG satisfies conditions of Definition 2.9 f&t < o, £ > 0 with S > O realized

by a function{ : G — ¢1(G)1.+. For everyx € G define

&) = fH Zinhy) dh

Since 0< &(y) < 1 for all x,y € G we get a well-defined functiotiy : G — R satisfying
0 < &x(y) < 1forallx,y € G. Observe thatifi(x,y) > S then/x(y) = 0. SinceH acts by isometries,
d(hx hy) = d(x,y) and it follows thax(y) = 0 if d(x,y) > S. This allows to compute the norm of

&xt

dae = D, &M= D, | dxhy)dh

yeB(xS) yeBx.s) v H

_ f[ 3 ghx(hy)] dh = fldh
H \yeB(x.9) H

= 1

which shows thafy is an element of1(G) + for everyx € G.

Let now Xy, X € G satisfyd(x, x2) = 1. Then

41



e —Enllae = D |6a() — &6l (6)

yeG
- yZG fH live(y) dh— fH dve(h) o
< f Zlihxl(hy)—im(hy)l] dh
H yeX

IA

fsdh: e,
H

since the sum is in fact finite and the metric is left-invariant.
Finally we need to show that (5) holds. Indeedy; ¥ H andx € G then by the invariance of the

mean orH we obtain

Exy) = fH Zx(hy) dh

fH Gy ly) dh = £0Y)

Y - Ex(Y),

after substitutindy = hy. This ends the proof. m|

Theorem 6.9. Let G be a group with Property A and let H be an amenable subgroup of G. Then

the quotient GH has Property A.
Proof. By Proposition 6.8, the functiafi: G — ¢1(G) can be chosen to be equivariant on cosets of

H. We define the map : G/H — ¢1(G/H)1.+ by

nrx(HY) = > &(hy).

heH
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We need to show thatis well defined. So leHx = HX" andHy = Hy’ as elements o&/H. Then

there are elements g € H such thatyx = X’ andgy =y'.

nHx (HY')

Dl &e(hy) = > &x(hgy)

heH heH

D &thgy = ) &dhy)

heH heH

UHx(Hy),

after using Proposition 6.8 and substitutiyighg for g.

Now note that since the quotient m&o— G/H is a contraction, if the elemenitsx andHy are

more than distanc8 away from each otheg, vanishes on the coskty and we have

nx(HY) = > &(hy) = 0,
heH
thus suppHx € B(Hx, S) and we also have

Z nHx(Hy)

HyeG/H

D D &ty

HyeG/H heH

lI7HxlleyG/m)

énllese/my = 1.

Suppose now that elemeik andH X’ are distance 1 from each other. This means that the elements

43



xandx’ can be assumed to satiglyx, X') < 1. Thus

Z | nrx(HY) = nrx (HY) |

17Hx = 7Hx llera/m)

HyeG/H

= DD ay - sty
HyeG/H | heH heH

< D DLty - &y
HyeG/H heH

= |léx—éxllae) < e

Large Riemannian manifolds

There are several notions of largeness of open manifolds, see e.g. [27]. One of them is uniform
contractibility, which means that for eveR > 0 there exists ai$r > 0 such that for any point
x € M the ballB(x, R) is contractible insidd(x, Sg). We will need a less restrictive criterion.

Let X be a metric space. An anflech system is a sequenité ke Of covers such that:

(1) there exist numbemR, k=1,2,..., such that diamy) < Ry for everyU € Uy;
(2) the Lebesque numbeig of Uy satisfydx > Re_1;

(3) Ak — o ask - .

Let HLf be the locally finite homology theory. The coarse homolét.(X) [47] is defined by
setting

HX.(X) = Jim H.'(UK)

where{Uy} is an antiCech system foK and|Uy| denotes the nerve space of the caugr see also
[32]. There is a character map : H!f (X) = HX,(X) induced by the map : X — |U4| defined by

the formula

()= > eu(IUl,

UEU]_
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where{py Ju, is a partition of unity subordinate to the cowét. The character maq. is an isomor-

phism provided thaX is uniformly contractible [47], see also [32].

Definition 6.10([23]). Let M be a complete, oriented n-dimensional manifold. [l H'nf M)

be the fundamental class M. We callM macroscopically large if
c.(IM]) # 0.

Note that the notion of macroscopical largeness for equivalent metrics depends only on the
guasi-isometry class of these metrics. More precisely, take a mariiolchich is equipped with
two equivalent, quasi-isometric metriak, andd, and the corresponding character mapsbgnd

c? respectively. Then for any the diagram

Hr (M)

ct c?

HXn((M. dy)) HXn((M. d2))

id, =

is commutative, so in particulan, d,) is large if and only if M, dy) is.

Index of the de Rham operator

Let (M, dy,) be an open complete Riemannian manifold andddie a group acting freely,
properly onM by isometries with a compact quotiest = M/G. We have the following exact
sequence:

1 — M) — m(N) —» G— 1L

In the above setting we will say thatl is aco-amenable covef 71(M) is amenable 1 is often
called an amenable cover whéris amenable). Obviously if; (M) is non-trivial, the manifoldM

is not uniformly contractible.

Theorem 6.11. Let (N, dy) be a closed Riemannian manifold such thaf{N) is C*-exact. Let
(M, dy) be a co-amenable cover & which is large and has bounded geometry (i.e. bounded

sectional curvature and positive injectivity radius). Then the zero-in-the-spectrum conjecture holds
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for M with any bounded geometry metric which is quasi-isometric and topologically equivalent to

dar.

Proof. Let M, N andG be as above. By assumptions and Theorem 6.7 we havé thed Property
A. By the Svarc-Milnor lemmaG and M are quasi-isometric due to the fact thet= M/G is
compact. Sinc& has Property A and Property A is a coarse invariaitequipped with any metric

in the quasi-isometry class dfi has Property A. We take the following composition

K. (M) —— KX (M) —— K.(C'(M)).

Let O be the de Rham operator gW. Since M is large, we have that[(D)] # 0 in the coarse
K-homology groupKX.(M). By Theorems 2.2 and 1.1 in [58], Property A fad implies that
the Coarse Baum-Connes Conjecture is trueféri.e. u® is an isomorphism and consequently

u[c.(D)] # 0in K,.(C*(M)). By Proposition 6.6 this ends the proof. i

In the caser1(M) = {1} (i.e. the cover is universal), Theorem 6.11 is due to Yu [58]. The
assumption of largeness cannot be dropped as the example of Farber and Weinberger [21] shows
(see also [34]), since in their construction the fundamental group of the mamfdkia direct

product of free groups, which is exact.
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