
Large Scale Data Management for Enterprise Workloads

By

Ashish Tapdiya

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

May 11, 2018

Nashville, Tennessee

Approved:

Daniel Fabbri, Ph.D.

Bradley Malin, Ph.D.

Jules White, Ph.D.

Yuan Xue, Ph.D.

William French, Ph.D.

To My Teachers.

ii

ACKNOWLEDGMENTS

My PhD journey has been a long one and I have been extremely fortunate to have

Dr. Daniel Fabbri as my adviser in this journey. I want to thank Dan for his patience,

guidance, and the countless hours that he has spent with me to bring this dissertation to its

current state. I am amazed by not only Dan’s technical expertise, but also his willingness

to care for and ensure the overall well-being of his students. I hope some of his enthusiasm

and brilliance has rubbed off on to me through this process. I will always be thankful to

both Dan and Dr. Vivek Narasayya for providing me an opportunity to intern at Microsoft

Research and experience the Microsoft culture.

I am grateful to Dr. Yuan Xue for introducing me to the PhD research and teaching me

about how to distill the essence of a technical paper. I would also like to thank Dr. Bradley

Malin for his valuable feedback regarding the dissertation document. Thanks to Dr. Jules

White and Dr. William French for making time to serve on my committee. I am indebted

to Dr. Errin Fulp for introducing me to the world of research.

I was extremely fortunate to have some of the most brilliant and humble people, Jia Bai,

Wei Yan, Li Li, Xiaowei Li, Fan Qui, Xujie Si, and Zhijun Yin as my lab mates. I cherish

my time spent with them.

Many thanks to my flatmates Saumitra, Milind, and Anirban for making the apartment

feel like a home. I appreciate Srivatsan’s guidance in helping me settle down during the

initial part of my PhD journey.

Thanks to our Nashville family for their friendship and the memorable times they shared

with us. We are grateful to Dave and Janice Hoagey, our landlords who always treated us

like their kids.

If it was not for these gentlemen, surviving this PhD journey would not have been easy.

Thanks to – Siladitya Mukherjee for being my gym buddy and at times a vent for my frus-

tations. Tanmay Misra for increasing productivity by creating clockwork like disturbance

iii

in my life. Parikshit Moitra for numerous visits and hikes to the parks, lakes and rivers.

Gaurav Das for being the most easy going person who was always willing to provide com-

pany.

I am indebted to my parents for providing unwavering support throughout my life.

They taught me to always give my best and to always do the right thing. I want to thank

my Grandparents for sharing interesting stories from their lives that provide me with the

perspective to see through tough times. I love my nieces and nephew, who provided a

regular dose of hilariously innocent conversations. Saving the best for the last, my loving

wife Monica Hedda has been a source of continuous support and encouragement for me.

Monica’s ability to find a silver lining in every situation has helped me stay positive through

tough times. Thank you for being my rock. Congratulations to you on earning your Master

of Science, I am proud of you. I look forward to globetrotting with you.

iv

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . xi

LIST OF FIGURES . xiii

1 Introduction . 1

1.1 Problem Statement . 3

1.1.1 Large Scale Enterprise Data Management for OLTP Workloads 4

1.1.1.1 Online Transaction Processing in Relational Databases 5

1.1.1.2 Online Transaction Processing in Distributed Databases 6

1.1.2 Large Scale Enterprise Data Management for OLAP Workloads 7

1.1.2.1 SQL-on-Hadoop . 7

1.1.2.2 SQL-on-Object-Storage . 8

1.2 Research Approach and Contributions . 9

1.2.1 Putting It All Together . 11

2 Background and Related Work . 14

2.0.1 Large-Scale Data Processing Frameworks 14

2.0.1.1 HBase and Phoenix . 15

2.0.1.2 Amazon S3 . 18

2.0.1.3 Impala . 19

2.0.1.4 Drill . 20

2.0.1.5 Spark and Spark SQL . 20

2.0.2 Large Scale Enterprise Data Management for OLTP Workloads 22

2.0.2.1 Online Transaction Processing in Relational Databases 22

v

2.0.2.2 Online Transaction Processing in Distributed Databases 23

2.0.3 Large Scale Enterprise Data Management for OLAP Workloads 27

2.0.3.1 OLAP with Hadoop as Storage Substrate 27

2.0.3.2 OLAP with Object Storage Systems as Storage Substrate 28

3 Performance Variations in Profiling MySQL Server on the Xen Platform: Is it Xen

or MySQL? . 30

3.1 Experiment Methodology . 31

3.1.1 Request Processing Overview . 32

3.1.2 Database Server Specifics . 34

3.1.3 Xen Hypervisor and Virtual Machine Configuration 34

3.1.4 Client Workload Generator . 35

3.1.5 Benchmark SQL Statements . 35

3.1.5.1 Simple Query . 36

3.1.5.2 Complex Query . 37

3.1.6 Performance Metric . 38

3.1.7 Experiment Setup . 38

3.2 Performance Evaluation of Benchmark Read Statement 39

3.2.0.1 Dom-u Performance Discussion 39

3.2.0.2 Dom-0 Performance Discussion 41

3.2.1 Impact of network I/O on performance variations 41

3.2.2 Impact of disk I/O on performance variations 44

3.2.3 Impact of database population from snapshot on performance variations 46

3.3 Amazon EC2 Experiments . 49

3.3.1 Database population from the script 50

3.3.2 Database population from the snapshot 50

3.4 Performance evaluation of benchmark simple query 51

3.5 Performance evaluation of benchmark write statement 51

vi

3.6 Chapter Summary . 52

4 A Comparative Analysis of Materialized Views Selection and Concurrency Con-

trol Mechanisms in NoSQL Databases . 53

4.1 Background . 54

4.1.1 Relation, Index and Schema Models 55

4.1.2 Modeling Workload . 55

4.1.3 Baseline Database Transformation . 55

4.2 Challenges and Design Choices . 56

4.2.0.1 Implication of Materialized Views 56

4.2.0.2 Lock Number and Granularity 57

4.2.0.3 View Selection Challenges . 57

4.2.1 Design Decisions . 58

4.3 System Overview . 58

4.4 Generating Candidate Views . 59

4.4.1 Roots Selection . 61

4.4.2 Candidate Views Generation Mechanism 61

4.4.2.1 Mechanism Overview . 62

4.4.2.2 Mechanism Description . 63

4.4.2.3 Discussion . 65

4.5 Views Selection Mechanism . 65

4.5.1 Views Selection . 66

4.5.2 Query Re-writing . 68

4.5.3 Additional View Indexes . 68

4.6 View Maintenance Mechanism . 68

4.6.1 Insert Statement . 69

4.6.1.1 Applicability Test . 69

4.6.1.2 Tuple Construction . 69

vii

4.6.2 Delete Statement . 69

4.6.2.1 Applicability Test . 69

4.6.2.2 Key Construction . 69

4.6.3 Update Statement . 70

4.6.3.1 Applicability Test . 70

4.6.3.2 Tuple Construction . 70

4.7 System Architecture . 70

4.7.1 Lock Implementation . 71

4.7.2 Write Transaction Procedures . 72

4.7.3 Transaction Isolation Level . 73

4.8 Experimental Evaluation . 73

4.8.1 Experiment Environment . 74

4.8.1.1 Testbed . 74

4.8.1.2 Performance Metric . 74

4.8.2 Micro Benchmark Evaluation . 75

4.8.2.1 Schema and Workload . 75

4.8.2.2 Experiment Setup and Results 76

4.8.3 Locking Overhead Evaluation . 77

4.8.4 TPC-W Benchmark Evaluation . 78

4.8.4.1 Benchmark . 78

4.8.4.2 Systems Evaluated . 79

4.8.4.3 Performance Evaluation of Joins in the TPC-W Benchmark . . 80

4.8.4.4 Performance Evaluation of Write Statements in the TPC-W

Benchmark . 81

4.8.4.5 Performance Comparison of All Evaluated Systems 82

4.9 Chapter Summary . 84

viii

5 A comparative analysis of state-of-the-art SQL-on-Hadoop systems for interactive

analytics . 85

5.1 Background . 87

5.2 Experiment Goals . 88

5.3 Micro Benchmark Experiments . 89

5.3.1 Hardware Configuration . 89

5.3.2 Software Configuration . 90

5.3.3 Experiment Setup . 90

5.3.4 WDA Benchmark . 91

5.3.5 Data Preparation . 91

5.3.6 Experiment Results . 94

5.3.6.1 Selection Task (Q1) . 95

5.3.6.2 Aggregation Task (Q2) . 95

5.3.6.3 Join Task (Q3) . 97

5.4 TPC-H Benchmark Experiments . 98

5.4.1 Hardware and Software Configuration 98

5.4.2 Data Preparation . 99

5.4.3 Experiment Results . 99

5.4.3.1 Execution Time Breakdown 102

5.4.3.2 Correlated Sub-query Execution in Drill 103

5.4.3.3 Parquet versus Text Performance 106

5.4.3.4 Size-up Characteristic Evaluation 108

5.5 Discussion and Chapter Summary . 108

ix

6 Fusion: Implementation and evaluation of block range indexes in a SQL-on-

Object-Storage system . 111

6.1 Block Range Index . 113

6.1.1 BRIN Implementation and Storage Choices 114

6.1.1.1 Key Value Store Based Implementation 114

6.1.1.2 Interval Tree Based Implementation 116

6.2 System Overview . 116

6.3 Experimental Evaluation . 118

6.3.1 Hardware Configuration . 118

6.3.2 Software Configuration . 119

6.3.3 Experiment Setup . 119

6.3.4 TPC-W Benchmark . 120

6.3.5 Experiment Results . 120

6.3.5.1 Fusion versus Baseline . 120

6.3.5.2 Impact of Data Partition Size in Fusion System 122

6.3.5.3 Fusion versus Baseline: Impact of Database Size 123

6.3.5.4 Write Statement Performance 124

6.4 Chapter Summary . 125

7 Future Work . 126

7.0.1 Mechanisms . 126

7.0.2 Experiments . 127

8 Conclusion . 129

8.1 Summary of Contributions . 129

BIBLIOGRAPHY . 132

x

LIST OF TABLES

Table Page

2.1 Summary and classification of related works. 26

3.1 Notations commonly used throughout this chapter. 36

3.2 Query µ and µse with dom-u inside Nodes B, C and D 43

4.1 Qualitative comparison of NoSQL, NewSQL and Synergy systems. 54

4.2 Sum of RT of all the statements in the TPC-W benchmark to quantify trade

off between read performance gain and write performance overhead of using

MVs in each evaluated system. VoltDB is excluded since it does not support

all queries in the benchmark. 82

4.3 Database sizes across different evaluated systems. 82

4.4 Specification of joins in the TPC-W Benchmark. 83

4.5 Specification of write statements in TPC-W Benchmark. 83

5.1 Qualitative comparison of evaluated SQL-on-Hadoop systems. 86

5.2 Data preparation times (seconds) in evaluated systems for WDA benchmark. 91

5.3 Query RTs (in seconds) in evaluated systems using WDA benchmark for 2, 4

and 8 worker nodes in the cluster. RT in bold text denotes the fastest system

for each query and cluster size combination. AM denotes the arithmetic

mean. To compute the normalized AM: for each query, we normalize the

query RTs in each system and for each cluster size by the query RT in Impala

with 2 worker nodes. 93

5.4 Data preparation times (seconds) in systems for the TPC-H benchmark . . . 98

xi

5.5 Query RTs (seconds) in evaluated systems using the TPC-H benchmark at

125, 250 and 500 scale factors. RT in bold text denotes the fastest system

for each query, scale factor and file format combination. To compute the

normalized AM–Q{2,11,13,16,19,21,22}: for each query, we normalize the

query RTs in each system, at all scale factors and for each storage format by

the query RT in Impala, for the parquet storage format, at scale factor 125. . . 100

5.6 Size-up property evaluation in each system. SF denotes scale factor. 107

6.1 Example Block range index for id column of Customers table. 113

6.2 Total time to compute index intervals for 10GB TPC-W database with 16MB

table partitions. 121

6.3 Total time to create indexes in the Fusion system. 121

6.4 Fusion versus Baseline: Performance of TPC-W queries that could use block

range indexes. 122

6.5 Fusion versus Baseline: Overall performance of TPC-W benchmark queries. 122

6.6 Index intervals computation in Fusion system for 10GB TPC-W database

with 4MB and 16MB partitions. 122

6.7 Total query execution time in Fusion system for 10GB TPC-W database with

4MB and 16MB partitions. 123

6.8 Fusion versus Baseline: Overall performance of TPC-W benchmark queries

for 10GB and 50GB TPC-W databases. 123

6.9 Write statement performance in Fusion system for 4MB and 16MB chunks. . 124

xii

LIST OF FIGURES

Figure Page

1.1 Large Scale Data Management Frameworks Ecosystem. 3

1.2 Summary of both challenges faced by data architects in large scale data

management of each enterprise workload class and the mechanisms pro-

posed in this dissertation to address these challenges. 11

2.1 HBase architecture overview . 15

2.2 An example table in HBase. 16

2.3 Physical view of HBase table in Figure 2.2. 16

2.4 Single Table Aggregation Query Processing in Phoenix 17

2.5 Join query processing in Phoenix . 18

2.6 Impala architecture overview . 18

3.1 Laboratory test bed . 32

3.2 Request Processing Overview With MySQL Server Hosted Inside Xen Domains . 33

3.3 Simple Query . 36

3.4 Complex Query . 37

3.5 Write Statement . 38

3.6 Profiling model . 39

3.7 Read statement performance comparison between dom-0 and dom-u VMs for γ =

0 and S = Sde f ault . 40

3.8 Measuring query execution time in a client session 42

3.9 Read statement performance comparison between dom-u’s for different cache al-

locations. 43

3.10 Percentage reduction in τ for different values of γ relative to τ for γ = 0 on

Node B’s dom-u . 44

xiii

3.11 Read statement performance comparison between dom-0 and dom-u VMs for database

populated using mysqldump snapshot . 46

3.12 Read statement performance comparison between database populated from script

and snapshot on Amazon EC2 cloud platform 47

3.13 Simple query performance comparison between dom-0 and dom-u VMs with γ =

0 and S = Sde f ault . 48

3.14 Write statement performance comparison between dom-0 and dom-u VMs for γ =

0 and S = Sde f ault . 49

4.1 Relations in the Company Schema. 54

4.2 Database transformation workflow in Synergy system. 58

4.3 Input and output of the candidate views generation mechanism for the Com-

pany database with roots set Qcompany = {Address, Department}. 61

4.4 Intermediate results of the candidate views generation mechanism for the Com-

pany database with roots set Qcompany = {Address,Department}. Relations: De-

partment (D), Department Location (DL), Employee (E), Works On (WO), Project

(P), Dependent (DP), Address (A) . 62

4.5 Illustration of view selection and query re-writing procedure for an example equi

join query using an example rooted tree. 66

4.6 Synergy System Architecture Overview. 70

4.7 Micro benchmark schema graph. 74

4.8 Micro-Benchmark Workload. 75

4.9 Micro benchmark results to show that performance of join algorithms is

slow in HBase. Y axis is drawn at log scale. 76

4.10 Experiment to show overhead associated with two phase row locking in

HBase. 77

4.11 Materialized views selection mechanism and concurrency control mecha-

nism used in each evaluated system. 78

xiv

4.12 Evaluation and comparison of join performance across different systems

using join queries in the TPC-W benchmark. Y axis is drawn at log scale.

Join queries {Q3, Q7, Q9, Q10} are not supported in VoltDB. 80

4.13 Performance Evaluation of the write statements in the TPC-W benchmark

to exhibit the overhead of lock management and updating views in the Syn-

ergy system. Comparison of write statement performance across different

systems. 81

5.1 Query execution model in each evaluated system. 88

5.2 Query text and logical plans for the WDA benchmark queries. 94

5.3 The breakdown of query RT into aggregated processing time for each operator

type in evaluated systems. The TPC-H scale factor is 500 and the storage format

is parquet. For each query, the left bar, the middle bar and the right bar represent

Impala, Spark SQL and Drill systems, respectively. 101

5.4 Query text and execution plans with profiled operator times in evaluated system

for TPC-H query 4. The storage format is parquet and the SF is 500 104

5.5 The breakdown of query RT into aggregated processing time for each operator

type in evaluated systems. The TPC-H scale factor is 500 and the storage format is

text. For each query, the left bar, the middle bar and the right bar represent Impala,

Spark SQL and Drill systems, respectively. 106

6.1 Range query sub cases in a block range index. 115

6.2 Fusion system overview. 117

6.3 Query processing in Fusion system. 118

xv

Chapter 1

Introduction

Continual proliferation of mobile devices, sensors, gaming consoles, and social media

combined with the ever-increasing online and mobile user population has resulted in a data

deluge. Web 2.0 applications enable users to generate content by sharing media (images,

videos, news, etc.), placing orders online, and interacting through social media dialogue.

For example, Facebook has a global user base of more than 1.4 billion users and handles

more than 4 million posts per minute [1]. In addition to user generated data, server farms,

financial systems, telecom network equipments, and sensors generate continuous streams

of machine data (event log messages, trades, CDRs, resource utilizations, etc.). As an

example, NaviSite processes 5-10K server event log messages generated per second by a

server farm of thousands of servers [2].

Traditionally, relational databases are used as the backend for web and mobile applica-

tion development. However, as an application becomes popular and its user base widens,

the database system must scale up to handle the increasing workload. While relational

databases are well suited for vertical scaling, they require specialized hardware that can be

expensive. The need to process high volumes of concurrent user transactions and store huge

amounts of data in a scalable and cost-efficient manner has led to the development of several

NoSQL [3, 4, 5, 6, 7] and NewSQL [8, 9] distributed databases. NoSQL databases trade

high transaction latency for horizontal scalability, flexible data modeling, and automated

data partitioning as compared to relational databases. In contrast, NewSQL databases trade

limited query expressiveness for high transaction throughput and horizontal scalability.

Storing and analyzing large amounts of data in a timely and cost efficient manner en-

ables organizations to discover patterns, build analytical models to streamline business pro-

cesses, identify customer sentiment to drive targeted marketing campaigns, etc. Enterprises

1

traditionally use parallel DBMSs (row-oriented/column-oriented) for large scale data ana-

lytics. Column-oriented systems [10, 11, 12] generally outperform row-oriented systems

[13, 14, 15] for read heavy analytical workloads by trading write performance degradation

for increased read performance. However, in case of a mid-query failure, parallel databases

lose all the work and need to re-run the query from beginning.

To overcome the limitation of complete-restart on failure, several new large scale data

analytics frameworks [16, 17, 18, 19, 20] have been proposed recently. Hadoop [21] is

a distributed file system (HDFS) modeled after the GFS design [22]. MapReduce [16]

(MR) is a fault tolerant batch-oriented data processing framework built on top of HDFS

for processing large data sets in-parallel on clusters of commodity hardware. Spark [19]

is a cluster computing framework that gains significant efficiency over MR framework by

pipelining data between operations and keeping intermediate results in memory.

The developer familiarity and the query expressiveness of SQL has led to the emer-

gence of several SQL-on-Hadoop query execution engines. Hive [17] enables users to

write queries in HiveQL (SQL-like) language that can be compiled into a directed acyclical

graph of MR/Tez/Spark jobs and run on the respective runtime. Spark SQL [20] proposes

a DataFrames API for relational query processing on top of Spark execution engine. Al-

though Hive and Spark-SQL enable users to write SQL queries to get answers from the

data, the query response times exceed expected latency for interactive analytics. To this

end, Impala [23] and Drill [24] have been proposed recently. Impala is a massively parallel

processing (MPP) query execution engine built on top of HDFS. Similar to Impala, Drill is

an MPP query execution engine that leverages vectorization and processes columnar data

in memory with lazy materialization. Impala and Drill trade fault intolerance for increased

performance as compared to Hive and Spark-SQL.

In addition to Hadoop, distributed object storage systems like Amazon S3 [25] and

Microsoft Azure Blob storage [26] have been proposed recently. This has led to both,

emergence of new SQL-on-Object-Storage systems like Snowflake [27] and implementa-

2

tion of I/O subsystems in existing query engines like Impala [23], Spark SQL [20], etc., to

process the data stored in object stores like S3.

HDFS 2.0
Hadoop Distributed File System

HBase
Distributed Database

YARN (MR v2)
Cluster Resource

Manager

Spark
In-Memory

Computation Engine

Phoenix
Query Execution Engine

Phoenix
JDBC Client

Pig
Data

Manipulation

Hive
Structured

Query

Sp
ar

k
SQ

L
R

el
at

io
n

al
 D

at
a

P
ro

ce
ss

in
g

M
LL

ib
D

at
a

M
in

in
g

G
ra

p
h

X
G

ra
p

h
 A

n
al

ys
is

Drill
MPP Query Engine

IMPALA
MPP Query Engine

Kudu KuduS3 S3

Figure 1.1: Large Scale Data Management Frameworks Ecosystem.

Concomitant with the development of big data systems has been the emergence of cloud

computing [28]. Cloud platforms enable networked access to a shared pool of computing

resources (compute, storage, network, etc.). Users can dynamically provision and release

resources in response to the demand. The pay-as-you-go metering service charges users

based on the lease duration of each resource used. Cloud providers harness commodity

hardware and virtualization to build a shared platform. Cloud computing synergizes large

scale data management by enabling users to dynamically create and scale a cluster for

recently proposed horizontally scalable databases and data processing frameworks.

1.1 Problem Statement

Enterprises model each business process as a workload. Enterprise workloads are gen-

erally classified into online transaction processing (OLTP) and online analytical processing

(OLAP). Each workload type is characterized by the mix of read/write requests, query

complexity, request rate and service level objectives. The OLTP workloads are gener-

ally characterized by a large volume of highly concurrent transaction requests and a low

expected response latency (e.g. order processing). In contrast, the OLAP workloads gener-

ally involve a low volume of complex queries for creating business intelligence (e.g. future

sales prediction). Although, several large scale data management systems have been pro-

3

posed recently for each workload type, data architects still face various challenges in both

1) scaling the proposed systems for enterprise workloads, and 2) choosing the right system

for their workloads. First, the proposed systems make different design decisions regarding

data partitioning, storage format, query processing, etc., resulting in query performance

trade offs. Second, systems trade query expressiveness for performance and vice-versa,

resulting in limited practical utility. Third, novel cloud based storage architectures trade

performance for cost; this begets the need to develop new mechanisms that augment the

performance of the system in order to get practical use out of it. Hence, for each enterprise

application, system architects must design or choose a data management solution that can

meet the service level objectives of the application. We call this the “large scale enterprise

data management” problem.

In this dissertation, we solve this problem for each enterprise workload type by study-

ing the design choices and the query performance trade offs across the proposed systems.

For OLTP workloads, we study the query performance, query expressiveness, scalability

and disk utilization trade offs across relational, NoSQL and NewSQL databases to develop

mechanisms for scalable transaction processing. For OLAP workloads, we evaluate four

state-of-the-art SQL-on-Hadoop systems using standard analytical processing benchmarks

to understand the characteristics of two primary components of a SQL-on-Hadoop system

(query optimizer and query execution engine) and their impact on the query performance.

In addition, we study different block range index implementations to evaluate and under-

stand their impact on the performance of SQL-on-Object-Storage systems.

1.1.1 Large Scale Enterprise Data Management for OLTP Workloads

Relational and distributed databases represent two different architectures for OLTP. Re-

lational databases are well suited to vertical scaling whereas distributed databases are de-

signed to scale out. Our goal is to evaluate the query performance, query expressiveness,

scalability and disk utilization trade offs across both architectures using standard OLTP

4

benchmarks and develop mechanisms for scalable transaction processing.

1.1.1.1 Online Transaction Processing in Relational Databases

We study the performance of relational databases using a standard OLTP benchmark.

Our goal is to develop mechanisms for efficient resource management on the cloud hosting

platforms by creating robust performance profiles.

With the ever increasing popularity of cloud hosting platforms, more and more enter-

prises are moving to the cloud to reduce infrastructure and operational costs. Traditionally,

relational databases represent the primary choice as the storage tier of a web application.

Cloud service providers lease database appliance VMs (e.g. Amazon RDS [29]) to the

users and provide Service Level Agreement (SLA) guarantees. To manage the SLA, ser-

vice providers rely on resource management mechanisms. At the center of a resource man-

agement mechanism lies a performance model. A model predicts system performance by

taking a set of input parameters that capture the expected workload, as well as the allocated

resource. SLA is specified in accordance with the performance predicted by the model.

Performance profiling is an established method for building the performance model.

Consistency and repeatability of the profiled results is quintessential to the utility of the

constructed performance model. In contrast with the dedicated hosting, shared access to

the compute resources, hardware heterogeneity and indirect I/O in cloud hosting platforms

raises novel challenges in creation of a repeatable and consistent performance profile.

• Guest VMs utilize interfaces in host VM to perform I/O operations. In addition, Log-

ical Volume Manager (LVM) is used to virtualize disk storage across hosted VMs.

These two indirections can result in significant performance variations for disk I/O

heavy workloads.

• Contention for the shared I/O resource between guest VMs hosted on the same physi-

cal machine can cause temporal performance variations, rendering the profile created

during one time interval to be useless in another.

5

1.1.1.2 Online Transaction Processing in Distributed Databases

Our goal is to design a scalable data store with a standard SQL interface that enables

users to express common queries occurring in OLTP workloads while ensuring high per-

formance and ACID transaction semantics.

NewSQL architectures enable a database to scale out linearly while providing ACID

transaction guarantees. However, their schema design requires careful consideration when

choosing partition keys, since joins are restricted to partition keys only, resulting in lim-

ited query expressiveness. Similarly, NoSQL databases can also scale out linearly, but are

limited to single key atomic operations and expose a simple data manipulation API (i.e.,

get, put, delete, and scan operations). A SQL skin (e.g. Apache Phoenix) on top of a

NoSQL database could be utilized to perform a Strawman transformation of a relational

database to a NoSQL database; however, such a Strawman transformation is limited by

join performance due to the distribution of data across the cluster and data transfer latency.

Materialized views represent a standard method to improve join performance through

pre-computation. However, deploying materialized views on top of a NoSQL store, while

ensuring ACID semantics, presents many challenges:

• NoSQL databases are limited to atomic key-based operations (i.e. multiple rows

cannot be updated atomically in a single operation). Hence, additional concurrency

controls are required to ensure data consistency between materialized views and base

tables.

• Additional care must be taken when selecting views to materialize, due to the dis-

tribution of data in a NoSQL database, to avoid high view maintenance and storage

costs. For example, materializing a many-to-many join may lead to large view main-

tenance costs, because an update to a single base table row may propagate view

updates across the cluster.

6

1.1.2 Large Scale Enterprise Data Management for OLAP Workloads

SQL-on-Hadoop and SQL-on-Object-Storage denote two different architectures for on-

line analytical processing. SQL-on-Hadoop represents a shared nothing architecture where

as SQL-on-Object-Storage represents a decoupled architecture in which compute and stor-

age can scale independently. For SQL-on-Hadoop systems, our goal is to understand the

impact of file formats, size-up, and scale-up characteristics in each evaluated system. For

SQL-on-Object-Storage systems, our goal is to empirically evaluate the impact of block

range indexes on the query performance.

1.1.2.1 SQL-on-Hadoop

We study and compare four SQL-on-Hadoop systems (Impala, Drill, Spark SQL and

Phoenix) for interactive analytics using standard benchmarks. Our goal is to evaluate and

understand the characteristics of two primary components of a SQL-on-Hadoop system

(query optimizer and query execution engine) and their impact on the query performance.

Hadoop has emerged as the central data repository in enterprises. Enterprises rely on

analytical data processing engines to gain actionable insights from the data. The reliance of

several enterprise tools on SQL along with the developer familiarity has led to the develop-

ment of numerous SQL-on-Hadoop systems (Impala, Spark SQL, etc.) for analytical data

processing. SQL-on-Hadoop systems take various forms. One class of system relies on a

batch processing runtime for query execution. Systems like Shark [30] and Spark SQL [20]

employ the Spark runtime to execute queries specified using the standard SQL syntax. An-

other class of SQL-on-Hadoop system is inspired by Google’s Dremel [31], and leverages

a massively parallel processing (MPP) database architecture. Systems like Impala [23] and

Drill [32] avoid overhead associated with launching jobs for each query by utilizing long

running daemons. However, even within this class, differing design decisions, such as early

versus late materialization, impact query performance.

We chose to study these systems due to a variety of reasons: 1) Each evaluated system

7

has a large user base as they are part of major Hadoop distributions including Cloudera,

MapR, Hortonworks, etc. 2) Each system is open source, targets the same class of inter-

active analytics, and is optimized for the same storage substrate. 3) Each system employs

cost based optimization and advanced run time code generation techniques. 4) These sys-

tems have significantly different architectures (e.g. batch processing versus long running

daemons) and make varying design decisions for query processing (e.g. vectorized [33]

versus volcano model [34]).

1.1.2.2 SQL-on-Object-Storage

We use block range index to improve the read performance of a SQL-on-Object-Storage

system by skipping irrelevant data. Our goal is to study different block range index im-

plementations and understand their impact on the performance of SQL-on-Object-Storage

systems.

A cloud deployed Hadoop cluster can either utilize instance storage or network attached

block storage (e.g. Amazon EBS). Instance storage is ephemeral where as network attached

block storage can be expensive for big and growing data. In contrast, object storage systems

(e.g. Amazon S3) are cheaper than the network attached block storage and provide better

performance per dollar [35]. However, despite object storage system’s better performance

per dollar as compared to the network attached block storage, object storage may not be

suitable for interactive analytics due to the high access latency and low read throughput.

Hence, additional mechanisms are required to improve the read performance of SQL-on-

Object-Storage systems.

Read performance of a query engine can be improved by increasing data read through-

put and skipping irrelevant data. Data read throughput can be increased by employing

caching, parallelizing reads, and storing data in a compressed format. On the other hand,

columnar storage and indexing structures are generally used to skip reading the irrelevant

data. In this work, we focus on exploring the use of indexing structures that can effec-

8

tively skip irrelevant data stored in the object storage systems like S3. Although B+-tree

and R-tree based indexes have been shown to be very effective in traditional data ware-

housing systems, high maintenance overhead and poor random I/O performance of object

storage systems like S3, limits their utility in object stores. In contrast, Block Range In-

dexes (BRIN) are a natural fit for skipping irrelevant data in object stores. They exhibit low

maintenance overhead and their size is a fraction of the table size. However, BRIN can be

implemented in a variety of ways in the cloud environment. Hence, it is interesting to both

evaluate the impact of BRIN on the performance of a SQL-on-Object-Storage system and

understand performance characteristics of different block range index implementations.

1.2 Research Approach and Contributions

The high level contributions of this dissertation are as follows. For OLTP workloads,

we have developed mechanisms for scalable transaction processing in relational and dis-

tributed databases. For relational databases, we present a simple mechanism to stabi-

lize the performance of cloud hosted databases. For distributed databases, we present

the design of a novel data store that utilizes materialized views and a specialized con-

currency control mechanism to improve read performance without significantly degrading

write performance. For OLAP workloads, we empirically evaluate SQL-on-Hadoop and

SQL-on-Object-Storage systems and illustrate their performance characteristics. For SQL-

on-Hadoop systems, we demonstrate the size-up behavior, scale-up behavior, optimizer

attributes, execution engine efficiency and impact of file formats. For SQL-on-Object-

Storage systems, we empirically evaluate the performance impact of block range index

implementations.

The detailed contributions of this dissertation are as follows:

• In Chapter 3, we study the performance of MySQL server on the Xen platform using

an OLTP benchmark. We observe significant performance variations across repeated

runs in spite of contention free hosting of a single guest VM on a physical machine.

9

Also, notable performance difference between guest VMs created equal on physical

machines of a homogeneous cluster is noticed. We present and evaluate a black

box approach based on database population from a snapshot to reduce perceived

performance variations and create a consistent and repeatable performance profile.

• In Chapter 4, we present the Synergy system that leverages MVs and a light-weight

concurrency control on top of a NoSQL database to provide for scalable data man-

agement with familiar relational conventions and more robust query expressiveness.

Synergy harnesses databases’ hierarchical schemas to generate candidate MVs, and

then uses a workload driven selection mechanism to select views for materialization.

To provide ACID semantics in the presence of views, the system implements concur-

rency controls on top of the NoSQL database using a hierarchical locking mechanism

that only requires a single lock to be held per transaction. The Synergy system pro-

vides ACID semantics with the read-committed transaction isolation level.

• In Chapter 5, we evaluate and understand the characteristics of two primary com-

ponents of a SQL-on-Hadoop system (query optimizer and query execution engine)

and their impact on the query performance. For the query optimizer, we characterize

the execution plan generation, the join order selection and the operator selection in

each evaluated system. For the query execution engine, we evaluate the efficiency of

operator implementations in each system and identify the performance bottlenecks.

We examine the impact of text (row-wise) and parquet (columnar) storage formats

on the query performance in each system. To understand the size-up characteristic

in each system, we increase the data size in a cluster and examine the query perfor-

mance changes. We evaluate the scale-up behavior in each system by proportionally

increasing both the cluster and the data size. The results from this study can be uti-

lized in two ways: (i) to assist practitioners choose a SQL-on-Hadoop system based

on their workloads and SLA requirements, and (ii) to provide data architects insight

10

into performance impacts of evaluated SQL-on-Hadoop systems.

• In Chapter 6, we evaluate the performance of SQL-on-Object-Storage systems for in-

teractive data analytics. To improve the baseline performance, we empirically eval-

uate the utility of block range indexing structures. We harness interval trees and

key value stores as two different mechanisms to implement the block range indexes.

In addition, we empirically evaluate different block range index implementations to

understand their performance trade offs.

OLTP OLAP

Relational

Databases

NoSQL

Databases

NewSQL

Databases
SQL-on-Hadoop SQL-on-Object-Storage

Parallel Databases

Column Stores

Performance Profiling

Enterprise Workloads

Observation

Performance Variations

Caused by

On-disk Data Fragmentation

Slow Join

Performance

Slow Read

Performance

Query Optimizer and

Execution Engine

Characteristics

Rebuild Tables and Indices

Physical Data

Reorganization

Use Materialized Views

Physical Database

Design Tuning

Use BRIN Indices

Physical Database

Design Tuning

Increase Query Throughput

Decrease Query Latency

Illustrate Performance Characteristics

Approach Approach

Goal

Figure 1.2: Summary of both challenges faced by data architects in large scale data man-
agement of each enterprise workload class and the mechanisms proposed in this dissertation
to address these challenges.

1.2.1 Putting It All Together

An enterprise workload is characterized by the mix of read and write statements, query

complexity, etc. OLTP and OLAP represent two different types of enterprise workloads.

Traditionally, a relational database management system (RDBMS) is used to manage the

data for OLTP workloads. However, RDBMSs are hard to scale horizontally. To overcome

this limitation, NoSQL (e.g. HBase) and NewSQL (e.g. VoltDB) data stores have been

11

proposed recently. Parallel database management systems (PDBMSs) and column stores

(e.g. Vertica) represent conventional choices for OLAP. For scalable storage of big data,

Distributed file systems (e.g. HDFS) and Object storage systems (e.g. Amazon S3) have

been proposed recently. User familiarity with SQL for data analytics has led to the devel-

opment of SQL engines (e.g. Impala, Drill, Spark SQL, etc.) that can query the data stored

in scalable storage engines, such as S3 and HDFS. SQL query engines like Impala, Drill,

etc., harness the architecture and query processing techniques that are developed for both

PDBMSs and column stores.

In this work, our goal is to enable scalable data management for each enterprise work-

load class. Next we look at the general steps taken in this dissertation to address the chal-

lenges faced in achieving this goal. For each workload type (e.g. OLTP) and database

system type (e.g. NoSQL) combination, we first profile the performance of proposed sys-

tem(s) (e.g. HBase) using standard benchmarks (e.g. TPC-W). Then, we study the profiled

information to identify the performance bottlenecks. Next, we survey the traditional meth-

ods that can be used to overcome these bottlenecks and improve the system performance.

Finally, we adapt the traditional methods for use with the proposed system(s) by develop-

ing novel mechanisms. The proposed mechanisms result in an increase in query throughput

and a reduction in query latency. Figure 1.2, summarizes the challenges faced in large scale

data management of each enterprise workload class and the mechanisms proposed in this

dissertation to address these challenges.

We profile the performance of MySQL RDBMS inside a cloud VM instance and ob-

serve significant variations caused by the on-disk data fragmentation. To reduce variations

and stabilize performance, we perform physical data re-organization by rebuilding tables

and indices. We evaluate the performance of NoSQL databases and observe that the joins

are slow. To improve the join performance, we leverage a physical database design tuning

technique based on the materialized views. For OLAP workloads, we evaluate and illustrate

the performance characteristics of four state-of-the-art SQL-on-Hadoop systems. The per-

12

formance evaluation of SQL-on-Object-Storage systems shows that the reads are slow due

to the high data transfer latency. To this end, we use BRIN indices as a physical database

design tuning mechanism to enable data skipping and improve the read performance.

The remainder of this dissertation is organized as follows. Chapter 2 surveys related

works and provides an overview of the large scale data processing systems used in this

dissertation. We profile the performance of MySQL server on Xen platform for OLTP

workloads in Chapter 3. In Chapter 4, we present the design of Synergy system that en-

ables scalable data processing with relational conventions on top of a NoSQL data store.

We perform a comparative analysis of four state-of-the-art SQL-on-Hadoop systems using

standard analytical processing benchmarks in Chapter 5. In Chapter 6, we evaluate the

impact of BRIN on the performance of SQL-on-Object-Storage systems. We present our

future work in Chapter 7. Finally, Chapter 8 concludes this dissertation.

13

Chapter 2

Background and Related Work

In this chapter we first provide an architectural overview of the different large-scale

data processing frameworks that we examine and utilize in this thesis. Next, we review

works related to the performance evaluation of applications on the virtualized cloud plat-

forms, online transaction processing in distributed databases, performance comparison and

benchmarking of different SQL-on-Hadoop systems for OLAP workloads and query pro-

cessing in the cloud with an object storage system as the storage substrate.

2.0.1 Large-Scale Data Processing Frameworks

Web 2.0 applications are characterized by user generated content and the interaction

among users. Users place orders, share opinion, build social connections and interact

through social media dialogue. The growth in user population combined with the prolifer-

ation of mobile devices result in an increased number of transactions and an unprecedented

growth of the data footprint. The need to support a large number of concurrent transactions

and store huge amounts of data in a scalable manner has led to the development of several

horizontally scalable, shared nothing distributed databases (Bigtable [3], HBase [4], Cas-

sandra [6], MongoDB [5], H-Store [8], Spanner [9], etc.). In addition, enterprises rely on

analysis of data to identify valuable patterns and propose new products to the customers.

The quality of extracted patterns is directly dependent on the amount of data analyzed;

however both storage and analysis of high volumes of data in a cost efficient and timely

manner raises novel challenges. To address these challenges, several large scale analytics

frameworks have been proposed recently (MapReduce [16], Pig [18], Hive [17], Impala

[23], Kudu [36] etc.). Next, we introduce the distributed database (HBase), object storage

14

system (S3) and the large scale analytics frameworks (Impala, Drill, and Spark) utilized in

this thesis.

Client Zookeeper

Region Region

RegionServer

Region Region

RegionServer

HMaster

HDFS

Block

Data Node

NameNodeHDFS

Block

HDFS

Block

Data Node

HDFS

BlockH
D

F
S

H

B
as

e

Figure 2.1: HBase architecture overview

2.0.1.1 HBase and Phoenix

HBase is a column family-oriented distributed database modeled after Google’s Bigtable.

A distributed HBase cluster comprises of different components including Region servers,

HBase master, Zookeeper ensemble and Hadoop Distributed File System (HDFS), as de-

picted in Figure 2.1. An HBase table is split into smaller chunks called regions, that are

distributed across the cluster. A region server is responsible for hosting and serving regions.

A region server exposes an interface for data manipulation and region maintenance. The

HBase master monitors the region servers, manages region distribution among the region

servers and exposes an interface for all metadata changes. Zookeeper is a highly avail-

able distributed coordination service that is integral to the proper functioning of both the

HBase client and the HBase cluster. HBase master and region servers rely on zookeeper

ensemble to manage cluster membership. HBase clients query zookeeper to identify the re-

gion server hosting the root region. HBase harnesses HDFS as the persistent storage layer;

hence, data blocks of a region hosted by a region server may be distributed across different

cluster nodes. HBase achieves durability & high availability by persisting its write ahead

log (WAL) in the HDFS and utilizing HDFS supported data replication.

15

Row Key Column Family

Personal

Column Family

Home

Id Name Email Phone

1 Alice alice@gmail.com 1234

Column Qualifier

Figure 2.2: An example table in HBase.

“”“1”, “Personal”, “Name”, 1234456778901, “Alice”

“1”, “Personal”, “Email”, 1234456778900, “alice@gmail.com”

“1”, “Home”, “Phone”, 1454456778901, “1234”

(a) HFile for ‘Personal’ column family

(b) HFile for ‘Home’ column family

Figure 2.3: Physical view of HBase table in Figure 2.2.

HBase organizes data into tables. A table consists of rows that are sorted alphabetically

by the row key. HBase groups columns in a table into column families such that each

column family data is stored in its own file. A column is identified by a column qualifier.

Also, a column can have multiple versions of a data sorted by the timestamp. Figure 2.3

depicts the physical storage view of the data in HBase corresponding to the table shown in

Figure 2.2.

The HBase data manipulation API comprises of five primitive operations: Get, Put,

Scan, Delete and Increment. The Get, Put, Delete and Increment operations operate on a

single row specified by the row key. HBase provides ACID transaction semantics for row-

level operations. However, scan operations do not exhibit snapshot isolation. A scanner

only ensures that it returns a consistent and complete version of a row that existed when it

read it.

HBase filters enable users to harness server side compute power in reducing the data

returned to the client. Filters can be combined with the scanner to push data filtering criteria

down to the server. Coprocessors extend HBase from a scalable data store to a distributed

storage and computational platform. HBase coprocessors are classified into observers and

endpoints. An observer is similar to a trigger in relational database management systems

16

(RDBMSs). It acts as a proxy between the client & the region server that can be invoked

after every get and put operation to modify the data access. Endpoints are analogous to the

stored procedures in RDBMSs. Endpoints enable users to push an arbitrary computational

task to the region servers.

Phoenix [37] is a client side relational database layer on top of HBase. It compiles a

SQL query into a series of HBase scans and coordinates the execution of scans to generate

a standard JDBC result set. Phoenix gathers a set of keys per region that are at equal byte

distance and utilizes this information to split a large scan into smaller chunks that can be run

in parallel. Phoenix harnesses HBase features of scan predicate pushdown and coproces-

sors to push maximum processing on the server side. The default transaction semantics in

Phoenix with base tables only is same as HBase; however, recent integration with Tephra

[38] enables multi-statement transactions in Phoenix through MVCC. Note, the MVCC

transaction support in Phoenix can be turned on/off by starting/stopping Phoenix-Tephra

transaction server.

Phoenix JDBC Driver

Client

3

Final Merge
Scan

Scan

Filter

Aggregation

Coprocessor

Region Server 1

1

Scan

Filter

Aggregation

Coprocessor

Region Server 2

2

2

Figure 2.4: Single Table Aggregation Query Processing in Phoenix

Figure 2.4 depicts the processing for a single table aggregation query in Phoenix: 1)

client begins by issuing parallel scans to the servers, 2) the results of each scan are then

partially aggregated on each server using an aggregation coprocessor, and 3) partially ag-

gregated results are then merged on the client to produce final result. Phoenix join support

includes broadcast hash join and merge join. Figure 2.5 depicts the hash join processing in

Phoenix: 1) client issues parallel scans to read one input of the join operation and creates

17

Phoenix JDBC Driver

Client

5

Final Merge

Scan Join Input 2

Scan

Filter

Join

Coprocessor

Region Server 1

3

4

Hash

Cache

Scan

Filter

Join

Coprocessor

Region Server 2

4

Hash

Cache

Prepare Hash Table Scan Join Input 1

1

2

2

Figure 2.5: Join query processing in Phoenix

hash table of the intermediate result set, 2) the prepared hash table is then sent to and cached

on each server hosting the regions of other input, 3) the client then issues parallel scans for

the other input of the join operator, 4) the results of each scan are then joined with the

cached hash table (of intermediate results) on each server using the join coprocessor, and

5) the joined result sets from each parallel scan are then merged in the client. The broadcast

hash join currently requires one side of the join input to completely fit in memory. Phoenix

also supports global and local covered secondary indexes, which are used seamlessly by

the query optimizer. Phoenix currently cannot recover from mid-query failures.

SQL App

OBDC

Hive

Metastore
Catalog

State

Store

Query Planner

Query Coordinator

Query Exec Engine

HDFS DN HBASE

Query Planner

Query Coordinator

Query Exec Engine

HDFS DN HBASE

Query Planner

Query Coordinator

Query Exec Engine

HDFS DN HBASE

Fully MPP

Distributed

SQL Interface Unified metadata

Figure 2.6: Impala architecture overview

2.0.1.2 Amazon S3

Amazon S3 is a object storage system that provides scalability, availability and dura-

bility guarantees at commodity costs. S3 exposes a simple API with GET/PUT/DELETE

18

operations and users can interact with S3 using a REST-style HTTP interface or SOAP in-

terface. S3 objects are immutable and cannot be appended to or changed. Hence, in order

to modify a object, a new object with changes needs to be written in full. However, GET

operation enables users to fetch parts of an object. Hence, for the columnar storage formats

like parquet, inclusion of an object header with start and end points for each column can be

utilized to skip irrelevant columns.

2.0.1.3 Impala

Impala is a massively parallel processing (MPP) SQL query execution engine inspired

by the Dremel [31] system. Impala architecture includes three daemon services: impalad,

catalog and statestore, as depicted in Figure 2.6. Generally, a single impalad service is

deployed on each worker node in the cluster. impalad daemons are symmetric, i.e. each

impalad daemon can execute a query fragment on behalf of the other daemon, as well as act

as a query coordinator for the queries submitted to it. catalog service publishes metadata

information to the impalad daemons using statestore publish/subscribe service.

The Impala query planner constructs an execution plan in two steps. In the first step, the

query parse tree is transformed into a single node execution plan using available operators.

Then, simple heuristics are used to generate single node plans with different join orders and

cost-based optimization is then utilized to select the plan with the least cost. In the second

step, the selected plan is made distributed by choosing a join procedure (broadcast or hash

partitioned) for each join in the single node plan. Impala query planner is implemented in

Java.

Impala query execution engine makes extensive use of LLVM library: 1) to generate

query specific code for functions that are called numerous times for a single query (e.g.

record parser), and 2) to minimize the performance impact of virtual functions by directly

calling the required function. Impala query execution engine is implemented in c++; hence

query performance is not affected by the garbage collection issues.

19

Impala can process data stored in a variety of file formats including RCFile, Sequence-

File, Avro, Parquet, CSV etc. Impala execution engine is decoupled from the underlying

storage engine; hence, it can read data stored in HBase, HDFS, Kudu etc. Impala currently

cannot recover from mid-query faults.

2.0.1.4 Drill

Drill is a MPP query execution engine inspired by the Dremel system. The Drill runtime

comprises of long running symmetrical daemons. The query optimizer in Drill is derived

from the Apache Calcite and utilizes rule (filter pushdown into storage engine) and cost

based optimization techniques to generate an efficient execution plan.

The Drill execution engine utilizes vectorized query processing to achieve peak effi-

ciency by keeping CPU pipelines full at all times. The run time code compilation enables

Drill to generate efficient custom code for each query. Drill harnesses a pipelined execu-

tion model where all tasks are scheduled at once and data moves through the task pipelines.

Drill currently cannot recover from mid-query faults.

Drill optimizes for columnar storage as well as columnar execution through an in-

memory hierarchical columnar data model. In addition, Drill provides native support for

nested data. Drill has the ability to discover schema on the fly. Also, Drill enables federated

query processing by allowing users to combine and query the data stored in various under-

lying storage engines including but not limited to HDFS, NoSQL (e.g. HBase, MongoDB)

and Cloud Storage (e.g. S3, Azure Blob).

2.0.1.5 Spark and Spark SQL

Spark is a cluster computing framework that executes data-parallel computations in

a scalable and fault-tolerant manner. Resilient distributed datasets (RDDs) represent the

primary abstraction in Spark, that leverages the distributed cluster memory and enables

efficient data reuse between computations.

20

An RDD is a read only, partitioned collection of records. Spark API defines operations

(map, join etc.) to transform an existing RDD into a new RDD. Spark evaluates RDDs in

a lazy manner and no computation is initiated until an action operation (reduce, save etc.)

is invoked, enabling pipelined execution across transformations. Spark achieves significant

efficiency as compared to MapReduce framework by harnessing cluster memory to store

intermediate results; however, as a downside, it also makes itself susceptible to mid-query

failures. Hence, to recover from mid-query faults, Spark logs the lineage of transformations

used to derive an RDD and utilizes the transformation history to efficiently recover lost

partitions.

Spark SQL is a component in the Spark ecosystem for working with the structured

data. Spark SQL introduces the DataFrames API that enables users to seamlessly combine

relational queries and procedural API in a single Spark program. DataFrames represent

the primary abstraction in Spark SQL. A DataFrame is a distributed collection of data

organized into named columns using columnar format. Hence, a DataFrame is analogous

to a table in the relational database. In comparison with the Spark’s RDD API, Spark SQL’s

DataFrames API leverages the structure of data to execute operations more efficiently.

The catalyst query optimizer in Spark SQL follows the traditional optimization steps

of query parsing/analysis, logical planning, physical planning and code generation. The

logical planner in catalyst applies rule based optimizations (predicate pushdown, projection

pruning etc.) to optimize the input logical plan. The physical planner generates multiple

physical plans for the logical plan using physical operators (e.g. different join algorithms)

available in the execution engine. Then, cost-based optimization is used to evaluate and

select the plan with the least cost. Finally, Spark SQL utilizes quasiquotes feature of scala

language to convert SQL expressions into abstract syntax trees (ASTs), which are then

fed into scala compiler to generate the bytecode at runtime. Spark SQL relies on Spark

execution engine’s lineage based architecture to recover from mid-query faults.

Spark SQL can process data stored in a variety of formats including Avro, Parquet,

21

CSV, JSON etc. In addition, Spark SQL can read and process data from several storage

engines (HDFS, HBase, Hive, MySQL etc.) in a single Spark program.

2.0.2 Large Scale Enterprise Data Management for OLTP Workloads

2.0.2.1 Online Transaction Processing in Relational Databases

Cloud computing has emerged as a new paradigm for on-demand access to shared com-

pute resources (server, storage, network etc.). Virtualization enables platform providers to

maximize hardware utilization by hosting multiple virtual machines (VMs) on a physi-

cal server and sharing hardware resources across hosted VMs. Since, access to a shared

resource by VMs hosted on a physical server may overlap in time, it is interesting and valu-

able to understand what class of applications are affected by crosstalk between VMs and

to what extent. Traditionally, relational databases are used as a backend for web applica-

tion development; hence, profiling database performance on cloud platforms is important.

In addition, since database workloads are generally disk I/O heavy and a para-virtualized

host VM performs disk I/O on behalf of guest VM, it is interesting to understand how this

indirection affects performance.

Several studies [39],[40],[41] have been undertaken to characterize the impact of virtu-

alization on the network, disk and CPU performance of a VM. Wang et al. utilize micro

benchmarks to evaluate network performance in the Amazon EC2 data center and find that

network behavior is anomalous with high variance in the network delay. In [41], authors

evaluate the performance of latency-sensitive multimedia applications and show that the

contention for shared I/O resource between VMs hosted on the same physical node can

degrade the CPU, disk jitter and throughput experienced by the application. In [40], El-

Khamra et al. explore the performance of HPC applications on the cloud benchmark and

observe high variance in communication times. In [42], authors compare the performance

of a data intensive MapReduce application on two different platforms: 1) Amazon EC2,

2) Private cloud, and conclude that the variance on EC2 is so high that the wall clock

22

experiments may only be performed with considerable care.

In [43],[44], authors have reported performance difference between VMs of the same

abstract type in data centers like Amazon EC2, attributing the difference in performance to

the placement of VMs and the heterogeneous hardware in evolving data centers like Ama-

zon EC2. In contrast with the prior studies, we profile the performance of MySQL database

server (hosted inside a guest VM) in a controlled virtualized environment by hosting a sin-

gle guest VM on a physical server and show that the disk fragmentation can be significantly

more pronounced for guest VM, affecting the consistency of developed performance pro-

file.

2.0.2.2 Online Transaction Processing in Distributed Databases

Relational databases represent the primary choice as the storage tier of a multi-tier web

application [45], since RDBMs provide ACID transaction semantics, principled mecha-

nism for schema design, and a declarative language for data manipulation. As the appli-

cation user base and the data footprint grows, the database system must scale up. Rela-

tional databases are well suited for vertical scaling; however, hardware and licensing costs

could be prohibitively high. As a result, several horizontally scalable distributed databases

(NoSQL and NewSQL) [4, 8, 5, 9] have been proposed recently. Distribution of data across

the cluster in the distributed databases requires data shuffle over the network to perform the

join operation, resulting in slow join performance. NewSQL databases like [8] avoid ex-

pensive joins by restricting the joins to the partition keys only; however, this results in

limited query expressiveness. Therefore, to support the most common type of joins (inner-

join) occurring in the OLTP workloads in an unrestricted manner, we choose and focus

on NoSQL databases. However, the join performance must improve to get practical use

out of the system. Materialized views represent a standard method for improving the join

performance. Next we investigate existing works related to the creation and maintenance

of materialized views.

23

Materialized Views. MVs have been studied from multiple standpoints in the SQL do-

main: view maintenance, view matching, automated views selection, dynamic view main-

tenance etc. In [46, 47, 48, 49] authors explore the problem of efficient view maintenance in

response to the base table updates. The dynamic views [50] introduce storage efficiency by

automatically adapting the number of rows in the view in response to the changing work-

load. The view matching techniques are utilized in query optimization to determine query

containment and query derivability [51, 52, 53]. In [54], authors propose a workload driven

mechanism to automate the task of selecting an optimal number of views and indexes for

decision support system applications. The MVs selection and maintenance in a transaction

processing NoSQL data store raises novel challenges since most of the existing views se-

lection approaches are oblivious to the relationship between schema relations which can

lead to heavy view maintenance costs and can shift the bottleneck from reads to writes. To

this end, Synergy proposes a novel, schema relationship aware view selection mechanism.

Introduction of views in a NoSQL database generates the requirement for view mainte-

nance and new concurrency controls to ensure consistency between the materialized views

and base tables. Next, we examine transactions related works in the NoSQL databases.

Transactions. Transaction support in the majority of the first generation NoSQL stores

[4, 55] and Big Data systems [56] is limited to single-keys. G-Store [57] extends HBase

to support multi-key transactions in a layer on top using a 2 phase locking protocol. Sim-

ilar to G-Store, we implement write transactions in a layer on top of HBase. CloudTPS

[58] supports multi-key read/write transactions in a highly scalable DHT based transaction

layer using optimistic concurrency control (OCC). In [59], authors extend CloudTPS to

support consistent foreign-key equi-joins. ecStore [60] provides snapshot isolation using

MVCC based on the global timestamp transaction ordering in a decoupled layer on top of

an ordered key-value store BATON. ElasTras [61] proposes a novel key-value store that

implements MVCC based transactions. Percolator [62] extends Bigtable to allow cross-

row, cross-table ACID transactions and enables incremental updates to the web index data

24

stored in BigTable. Megastore [63] introduces entity groups as a granule of physical data

partitioning and supports ACID transactions with in an entity group. F1 [64] is built on top

of Spanner [9] and supports global ACID transactions for the Google AdWords business.

In contrast with Spanner, Synergy is limited to single data center use; however, Synergy en-

ables enhanced SQL query expressiveness and does not require sophisticated infrastructure

including atomic clocks, GPS etc. The NewSQL databases [8, 65] scale out linearly while

ensuring ACID semantics; however, the join support is limited to partitioning keys. The

first generation of NewSQL systems required all data to reside in main memory; however,

recent work [66] overcomes this limitation by keeping cold data on the disk.

Recent works have explored data partitioning as a mechanism to minimize distributed

transactions. Next, we survey works related to data partitioning in distributed databases.

Data Partitioning. Megastore [63], F1 [64] and Elastras [61] harness hierarchical

schema structure to cluster related data together and minimize the distributed transactions.

On the contrary, Synergy generates MVs utilizing hierarchical schema structure to reduce

query run times. In [67], authors automate the task of data partitioning by developing a

technique for automated selection of root relations in a schema. Schism [68] proposes fine

grained data partitioning by co-locating related tuples based on workload logs.

NoSQL databases generally expose a simple data manipulation API including scan, get,

put and delete operations. Hence, to support SQL on top of a NoSQL database, several SQL

layers have been developed. Next, we investigate SQL layers on top of NoSQL databases

that enable a simple mapping of database schema and workload.

Database Transformation. In [69], authors present a model to map and store relational

tables in a key-value store; however, the mechanism to transform the SQL based workload

using the key-value API is not provided. Phoenix [6] and FoundationDB [7] implement

a SQL skin that executes the SQL workload using NoSQL primitives. Synergy utilizes

Phoenix as a SQL skin to operate on the NoSQL data store.

25

Ta
bl

e
2.

1:
Su

m
m

ar
y

an
d

cl
as

si
fic

at
io

n
of

re
la

te
d

w
or

ks
.

A
pp

ro
ac

h
Q

ue
ry

E
ng

in
es

C
om

pa
re

d
B

en
ch

m
ar

ks
C

lu
st

er
Sp

ec
ifi

ca
tio

n
D

B
Si

ze
(M

ax
.)

E
xp

er
im

en
tM

et
ri

cs
Pa

vl
o

et
al

.[
70

]
M

R
,D

B
M

S-
X

,V
er

tic
a

W
D

A
10

0
no

de
s

(m
ax

),
Pr

iv
at

e
C

lu
st

er
2.

1
T

B
R

T,
Sc

al
e

U
p,

Sp
ee

d
U

p
Fl

or
at

ou
et

al
.[

71
]

H
iv

e-
M

R
,S

Q
L

Se
ve

rP
D

W
T

PC
-H

16
no

de
s,

Pr
iv

at
e

C
lu

st
er

16
T

B
R

T,
Si

ze
U

p
Fl

or
at

ou
et

al
.[

72
]

H
iv

e-
Te

z,
H

iv
e-

M
R

,I
m

pa
la

T
PC

-H
,T

PC
-D

S
de

riv
ed

21
no

de
s,

Pr
iv

at
e

C
lu

st
er

1
T

B
R

T
[7

3]
R

ed
sh

if
t,

Sh
ar

k,
Im

pa
la

,H
iv

e-
M

R
,H

iv
e-

T
E

Z
A

M
P

L
ab

B
ig

D
at

a
B

en
ch

m
ar

k
(A

L
B

B
)

5
no

de
s,

A
m

az
on

E
C

2
12

7.
5

G
B

R
T

W
ou

w
et

al
.[

74
]

H
iv

e-
M

R
,S

ha
rk

,I
m

pa
la

A
L

B
B

,R
ea

lW
or

ld
5

no
de

s,
A

m
az

on
E

C
2

52
3

G
B

R
T,

Sp
ee

d
U

p,
Si

ze
U

p
Pi

rz
ad

eh
et

al
.[

75
]

A
st

er
ix

D
B

,S
ys

te
m

-X
,H

iv
e-

M
R

,M
on

go
D

B
B

ig
Fu

n
M

ic
ro

B
en

ch
m

ar
k

10
no

de
s,

Pr
iv

at
e

C
lu

st
er

80
0

G
B

R
T,

Sc
al

e
U

p
Sh

ie
ta

l.
[7

6]
Sp

ar
k,

M
R

W
or

d
C

ou
nt

,P
ag

e
R

an
k,

K
-M

ea
ns

,S
or

t
4

no
de

s,
Pr

iv
at

e
C

lu
st

er
50

0
G

B
R

T
O

ur
W

or
k

P-
H

B
as

e,
D

ri
ll,

Sp
ar

k
SQ

L
,I

m
pa

la
W

D
A

,T
PC

-H
21

no
de

s(
m

ax
),

A
m

az
on

E
C

2
50

0G
B

R
T,

Sc
al

e
U

p,
Si

ze
U

p

26

2.0.3 Large Scale Enterprise Data Management for OLAP Workloads

2.0.3.1 OLAP with Hadoop as Storage Substrate

With the widespread popularity and adoption of Hadoop as the centralized data reposi-

tory in enterprises, a large number of systems, such as MapReduce [16], Hive [17], Pig[18],

Spark [77], Impala [23], HadoopDB [78], etc. have been developed over the past decade

for efficient analytics processing on top of Hadoop. SQL-on-Hadoop systems enable users

to write queries using familiar SQL syntax; however each system makes different architec-

tural choices in implementing the query optimizer and the query execution engine. As a

result, it is valuable to evaluate and benchmark different SQL-on-Hadoop systems against

each other. In addition, since parallel DBMSs too are designed for large scale data anal-

ysis, it is interesting to compare parallel DBMSs with SQL-on-Hadoop systems. To this

end, several recent studies have compared a variety of SQL-on-Hadoop systems and paral-

lel databases using standard benchmarks. Table 2.1 presents a classification of the related

works.

In [70] authors compare MR framework with parallel databases and notice that MR is

compute intensive and high task startup costs dominate the execution time of short duration

jobs. In [71], authors compare Hive with SQL Server PDW and observe that although Hive

achieves better scalability, high CPU overhead associated with the RCFile format in Hive

results in a slower query performance as compared to the SQL Server PDW. In [72], au-

thors compare Hive and Impala and attribute the disk I/O efficiency, long running daemons

and run time code generation in Impala as the reasons for its better performance than Hive.

In [74] authors compare Shark, Hive and Impala and observe that Impala exhibits the best

CPU efficiency and the join performance worsens as the cluster size increases due to the

increased data shuffle. In [75], authors propose a social media inspired micro benchmark

to compare AsterixDB [56], System-X, Hive-MR and MongoDB systems. Experimental

results show that MongoDB becomes unstable for large aggregations due to memory issues

27

and the lack of index support in Hive-MR causes point and range queries to be expensive. In

[76], authors evaluate MR and Spark for iterative and batch workloads using micro bench-

marks to show that the CPU overhead associated with the de/serialization of intermediate

results is the primary resource bottleneck.

To the best of our knowledge, this is the first work to thoroughly evaluate, understand

and compare the performance of Drill, Phoenix and Spark SQL v2.0 systems for SQL

workloads using standard analytics benchmarks including WDA and TPC-H. In addition,

we compare the performance of aforementioned systems with Impala, a mature and well

studied [72, 74] SQL-on-Hadoop system.

2.0.3.2 OLAP with Object Storage Systems as Storage Substrate

The SQL-on-Hadoop movement has gained traction in the recent years for OLAP. A

Hadoop cluster in the cloud environment can either utilize instance storage or network at-

tached Block storage (e.g. Amazon EBS) to store the data. Instance storage is ephemeral,

which makes it primarily suitable for adhoc data analysis where as network attached Block

storage is expensive and better suited for latency sensitive OLTP workloads. On the con-

trary, object storage systems like Amazon S3 [25], Microsoft Azure Blob Storage [79], etc.,

are cheaper than the network attached Block storage and provide better performance per

dollar [35] for OLAP workloads. This has led to the emergence of SQL-on-Object-Storage

systems like Snowflake [27]. In addition, SQL query engines like Impala [23], Spark SQL

[20], Drill [24], etc., have also implemented I/O subsystems to access and process the data

stored in Object Stores like S3.

Although object storage systems like S3 deliver better performance per dollar than

the network-attached block storage systems like EBS, high access latency and low read

throughput can lead to exessively high and non-interactive query response times. Tradi-

tionally, use of a caching layer improves the read throughput of data warehousing appli-

cations. To this end, distributed caching systems like Tachyon [80] and Alluxio [81] have

28

been proposed recently, which can enhance the read throughput of query engines that use

an object store as a storage backend. The use of an indexing structure to read only relevant

data represents another well established method to improve the query performance in a data

warehousing system. To this end, the use of horizontal data partitioning in conjunction with

min-max indexes or block range indexes [82] represents an effective mechanism to skip

reading irrelevant data in object stores like S3. In [83], authors propose and demonstrate

efficacy of small materialized aggregates as a lightweight indexing structure to speed-up

aggregation queries for OLAP workloads. In [84], authors propose workload driven data

partitioning method to enable maximal data skipping during query processing. In [85],

authors present a mechanism to implement a scalable and distributed segment tree using a

key value data store for answering interval queries.

29

Chapter 3

Performance Variations in Profiling MySQL Server on the Xen Platform: Is it Xen or

MySQL?

Published in International Journal of Computer Science and Information

Technologies (IJCSIT) 2014.

Reliability of a performance model is essential to robust resource management of ap-

plications on the cloud platform. Existing studies show that the contention for shared I/O

induces temporal performance variations in a guest VM and heterogeneity in the underlying

hardware leads to relative performance difference between guest VMs of the same abstract

type. In this chapter, we demonstrate that a guest VM exhibits significant performance

variations across repeated runs in spite of contention free hosting of a single guest VM

on a physical machine. Also, notable performance difference between guest VMs created

equal on physical machines of a homogeneous cluster is noticed. Systematic examination

of the components involved in the request processing identifies disk I/O as the source of

variations. Further investigation establishes that the root cause of the variations is linked

with how MySQL manages the storage of tables and indexes on the guest VM’s disk file

system. The observed variations in performance raise the challenge of creating a consistent

and repeatable profile. To this end, we present and evaluate a black box approach based on

database population from a snapshot to reduce the perceived performance variations. The

experimental results show that the profile created for a database populated using a snapshot

can be used for performance modeling up to 80% CPU utilization. We validate our findings

on the Amazon EC2 cloud platform.

The rest of this chapter is structured as follows. We describe our experiment methodol-

ogy in section 3.1. In section 3.2, we present our observations related to the complex read

30

statement performance. We describe our experiments performed on the Amazon EC2 cloud

platform in section 3.3. In section 3.4, we evaluate the performance of simple read state-

ment. We discuss our performance observations related to the write statement in section

3.5, and conclude in section 3.6.

3.1 Experiment Methodology

We perform experiments in two environments: laboratory test bed and the Amazon

EC2 cloud platform. Our laboratory test bed represents a controlled execution environment

which allows us to do fine grained resource allocation. We utilize the laboratory test bed to

perform extensive experiments and present the performance observations in sections 3.2,

3.4 and 3.5. We utilize Amazon EC2 to perform experiments on a large cluster and validate

our findings on a commercial cloud platform. Our Amazon EC2 experiment setup and

performance observations are presented in section 3.3. Next, we describe our laboratory

test bed.

Our laboratory experiment environment consists of a Xen based four node homoge-

neous cluster connected through Linksys 5-Port 10/100 switch as depicted in Figure 3.1.

Each physical node in the cluster is a Dell work station configured with Intel quad core 3.1

GHz processor, 8GB RAM and 500 GB 6.0 GB/s SATA hard drive. Each node is running

Xen v4.1.2 as the virtual machine monitor in the paravirtualized mode and Linux kernel

v3.0.69 as the host VM (dom-0). We reserve one node for running the client workload gen-

erator (CWG) as depicted in Figure 3.1. It has a single VM (dom-0) residing on it. CWG

runs inside that VM. Remaining three nodes, each have a host VM (dom-0) and a guest VM

(dom-u) residing on it. In order to prevent the variations caused by the contending guest

VMs, we host a single dom-u on each node. Guest VM is running Linux kernel v3.0.69. In

order to profile MySQL server in the guest VM, it is hosted inside the dom-u as depicted

in Figure 3.2(a). Similarly, to evaluate the performance of MySQL server in the host VM,

it is hosted inside the dom-0 as depicted in Figure 3.2(b).

31

The following sub-sections describe our design choices related to the software compo-

nents that run on our test bed including Xen, MySQL Server and CWG. In addition, we

give query processing overview, describe our performance metric and SQL statements that

constitute our workload. We conclude this section with the description of our experiment

setup.

Switch

Client Workload

Generator

MySQL Server

MySQL ServerMySQL Server

(Node A) (Node B) (Node C)

(Node D)

Figure 3.1: Laboratory test bed

3.1.1 Request Processing Overview

First, we consider the scenario where MySQL server is hosted inside dom-u, as de-

picted in Figure 3.2(a). Client request is initially received by the native driver residing in

dom-0 (1), please refer to the step number in the figure for each step here. Then, native

driver transfers the request to the netback driver residing inside dom-0 (2). Request is then

demultiplexed by the netback driver to the netfront driver residing in dom-u (3). Finally,

MySQL server receives the request from the netfront driver (4). In order to process the re-

quest, Innodb storage engine first checks the block cache to see if the data blocks required

to prepare the reply reside in it (6,7). However, if a cache miss occurs, then the storage

engine sends a request for the required blocks to the blockfront driver (8). Blockfront

driver then requests the blockback driver in dom-0 to perform the disk I/O on its behalf

(9). Blockback driver forwards the request to the native driver (10). Native driver reads

32

N
at

iv
e

D
ri

v
er

s

N
et

b
ac

k

N
et

fr
o

n
t

B
lo

ck
b

ac
k

B
lo

ck
fr

o
n

t

Xen HypervisorNIC

Disk

Block Cache

Innodb

Storage

Engine

MySQL Server

Dom-0 Dom-u

Client

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

(a) MySQL Server Hosted Inside Dom-u

N
at

iv
e

D
ri

v
er

s

N
et

b
ac

k

B
lo

ck
b

ac
k

Xen Hypervisor
NIC

Disk

Dom-0

Client

1

2
Block Cache

Innodb

Storage

Engine

MySQL Server

7

3

4
56

8

9
10

11

12

Kernel Space

User Space

Virtual machine Monitor

(b) MySQL Server Hosted Inside Dom-0

Figure 3.2: Request Processing Overview With MySQL Server Hosted Inside Xen Domains

the blocks from the disk (11,12) and send them to the blockback driver (13). Blockback

driver demultiplexes blocks to the blockfront driver in dom-u (14). Finally, storage engine

receives the data blocks from the blockfront driver (15). Once a reply is prepared then, it

is sent to the netfront driver (16) which in turn forwards it to netback driver in dom-0 (17).

Netback driver forwards the reply to the native driver (18) from where it is finally received

by the client (20).

Next, we consider the scenario where MySQL server is hosted inside dom-0, as de-

picted in Figure 3.2(b). Native driver in dom-0 receives the client request (2) and forwards

it directly to the MySQL server (3). Innodb storage engine then checks the cache for the

required data blocks (4,5). If a cache miss occurs then, storage engine directly requests

33

the native driver to read the disk data blocks (6). Once a reply is prepared, MySQL server

sends the reply to the native driver (10) from where it is delivered to the client (12).

3.1.2 Database Server Specifics

We use MySQL v5.1 as the database server with innodb storage engine. MySQL server

is configured with the max connections parameter set to 2000 and the query cache size

parameter set to 0 for all experiments. max connections parameter defines the maximum

number of permitted simultaneous client connections. max connections parameter value

is increased so as to stress the server and evaluate performance at higher request rates.

query cache size parameter defines the amount of memory allocated to store the query

results. Query cache is turned off as we are interested in understanding the performance

impact of innodb specific buffer pool cache. Innodb buffer pool is a block level cache for

caching data and indexes in memory. innodb buffer pool size (γ) parameter defines the

size of the block cache. γ is an input parameter to our profiling model.

Database is populated utilizing the population script provided with the TPC-W bench-

mark [86]. Population script mimics the behavior where users modify the database state

by issuing INSERT statements. We modify the script to use the innodb storage engine.

Database size (S) can be modulated by varying two parameters in the script: NUM EBS

and NUM ITEMS. To perform experiments with the default database size (Sde f ault), we

populate database with NUM EBS set to 100 and NUM ITEMS set to 10000.

3.1.3 Xen Hypervisor and Virtual Machine Configuration

We have installed Xen v4.1.2 in the paravirtualized mode with standard netback/net-

front and blockback/blockfront devices as the networking and storage systems respectively.

Both dom-0 and dom-u run Ubuntu with Linux kernel v3.0.69. Logical volume manager

(LVM) is the industry standard for creating dom-u file system due to its flexible manage-

ment [87]. Hence, we create LVM backed dom-u file system. Specifically, we create a

34

single physical partition and assign it to a logical volume group. Then, we create a single

logical volume for dom-u inside that volume group.

We profile the database performance by hosting the MySQL server inside both dom-0

and dom-u. To profile the MySQL server inside a dom-u residing on a physical node, we

allocate one virtual CPU (vcpu) to the dom-u and pin it down on a physical CPU (pcpu).

Also, we allocate one vcpu to the dom-0 residing on the same physical node and pin it

down on a pcpu. This results in a symmetric vcpu and pcpu allocation across both dom-0

and dom-u. Similarly, in order to profile the MySQL server inside a dom-0, we destroy the

dom-u residing on a physical node and host only dom-0. Again, we allocate one vcpu to

the dom-0 and pin it down on a pcpu.

3.1.4 Client Workload Generator

Workload generator emulates the client behavior by invoking SQL statement requests

at the MySQL server. Workload (λ) is generated through an open model where each new

request is invoked independent of any previous requests. The open workload generator

model is characterized by request arrival into the system according to some arrival process.

Recently, a poisson process was utilized to model the open workload generator [88], [89].

Hence, we adopt the same model and choose poisson as the arrival process where request

inter arrival times are exponentially distributed.

3.1.5 Benchmark SQL Statements

We utilize the TPC-W benchmark to identify the benchmark SQL statements. TPC-W

is a transactional web benchmark modeled after e-commerce web applications. We analyze

the application tier servlets to extract all SQL statements that can be invoked at the database

tier. Extracted SQL statements can be classified into two categories: read and write. Based

on the query execution plan obtained through EXPLAIN statement [90], read statements

can be further classified into two query types: simple and complex.

35

Table 3.1: Notations commonly used throughout this chapter.

τ Mean response time
τse Standard error of τ

λ Workload
γ innodb buffer pool size
S Database size

Sde f ault
Default database size with,
NUM EBS=100 & NUM ITEMS=10000

dom-0 Host VM
dom-u Guest VM
θ CPU utilization
θmean Mean CPU utilization
µ Mean network delay
µse Standard error of µ

d
Experiment duration
Set to 180 seconds

3.1.5.1 Simple Query

A simple query utilizes indices to prepare the final result set. We evaluate the perfor-

mance of all extracted simple queries and observe that all queries exhibit similar perfor-

mance trend. Also, the difference between the query response times is negligible. Hence,

we select and describe a representative simple query. Specifically, the query is a SELECT

statement that filters records from the Customer table based on the specified unique user

name (customer.i uname = ?). The filtered Customer table is then inner joined with the Ad-

dress and Country tables. Please refer to the TPC-W documentation [86] for the description

of table schemas. The query syntax is presented in Figure 3.3.

SELECT *
FROM customer, address, country
WHERE customer.c addr id = address.addr id AND
address.addr co id = country.co id AND customer.c uname = ?

Figure 3.3: Simple Query

36

3.1.5.2 Complex Query

In addition to the use of indexes, a complex query may involve operations like creation

of internal temporary table, sorting etc. Depending on the size of temporary table and data

set to be sorted, disk file system may be used to prepare the final result set. We evaluate

the performance of all extracted complex queries and observe significant performance vari-

ations. The magnitude of variation is different across queries; however, the performance

trend is similar. Next, we select and describe a representative complex query. Specifically,

query is a SELECT statement that filters records from the Item table based on the specified

subject (item.i subject = ?). Filtered Item table is then inner joined with the Author table

followed by the sorting operation on a specified column item.i pub date. Final result set is

then limited to a maximum of 50 records. Query syntax is presented in Figure 3.4.

SELECT i id, i title, a fname, a lname
FROM item, author
WHERE item.i a id = author.a id AND item.i subject = ? ORDER
BY item.i pub date DESC item.i title LIMIT 0,50

Figure 3.4: Complex Query

Any realistic workload will have a mix of both simple and complex queries. Now, mag-

nitude of response time for a complex query is significantly larger than that of a simple

query. Therefore, complex queries represent the heavy hitters and variance in their per-

formance can lead to the violation of SLA negotiated response time. Hence, we choose the

complex query presented in Figure 3.4 as the benchmark read statement. In section 3.4, we

evaluate performance of the simple query presented in Figure 3.3.

We evaluate the performance of all extracted write statements and observe that all state-

ments exhibit similar performance trend. Hence, we select an INSERT as a representa-

tive benchmark write statement. Specifically, statement is a INSERT into table order line.

Statement syntax is presented in Figure 3.5.

37

INSERT IGNORE INTO order line (ol id, ol o id, ol i id, ol qty,
ol discount, ol comments)

Figure 3.5: Write Statement

3.1.6 Performance Metric

We subject MySQL server to the requests generated by the CWG. For each generated

request, we record its response time. Mean response time (τ) for all the requests generated

during a time interval represents our performance metric. Let k requests are generated

during a time duration of d seconds and ri denotes the response time for the ith request.

Then, τ for an experiment with duration d is,

τ = (
k

∑
i=1

ri)/k .

3.1.7 Experiment Setup

We design experiments by varying parameters both intrinsic and extrinsic to the MySQL

server. Intrinsic parameter includes γ and extrinsic parameter includes λ . Hence, each indi-

vidual experiment is represented as a set of two parameter values (γ , λ). For each parameter

setting, we perform experiments both on dom-0 and dom-u. Experiments on dom-0 serve

as a reference, since dom-0 performance is expected to be close to native performance.

However, the focus of this study to understand performance in dom-u since dom-u corre-

sponds to a VM instance that cloud platform leases. Also, we repeat each experiment for

both the read and the write statements selected in section 3.1.5. During the read statement

profile generation, we restart MySQL server before the start of each new experiment. In

case of write statement profiling, we drop the existing database and repopulate before the

start of each new experiment.

For each experiment, we record the CPU utilization (θ) at regular intervals inside the

VM hosting the MySQL server. We utilize the vmstat utility provided with the sysstat

38

Read/Write

Statements
Virtual Machine

λ γ

θ

τ

Figure 3.6: Profiling model

package for Linux environment to record θ . For an experiment starting at time t, with

a duration of d seconds, we take measurements at regular intervals of 3 seconds starting

at time t + 30 seconds and ending at time t + (d− 30) seconds. As an example, for an

experiment duration of 180 seconds, we take 40 measurements. We set duration d of each

experiment to 180 seconds. Also, we repeat each experiment 20 times and report the mean

value and the standard error of the mean. Figure 3.6 depicts our profiling model for an

experiment with the input and the output parameters.

3.2 Performance Evaluation of Benchmark Read Statement

In this set of experiments, we profile the benchmark complex query presented in Figure

3.4, on our laboratory test bed. Innodb buffer pool cache is turned off by setting the value

of γ to 0. We increase λ in increments of 10 starting at 10 req/sec until θ in the VM is less

than 100%. Database is populated for Sde f ault .

3.2.0.1 Dom-u Performance Discussion

Figures 3.7a and 3.7b depict the impact of λ on query τ and θmean respectively for

MySQL server hosted inside dom-u on nodes B, C and D. VMs exhibit different request

handling capacity since nodes B and C saturate at 40 req/sec where as node D saturates at

39

10 20 30 40 50
0

1000

2000

3000

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

Node B
Node C
Node D

(a) Dom-u

0 20 40 60
0

20

40

60

80

100

Request Rate (req/sec)

M
ea

n
%

 C
P

U
 U

til
iz

at
io

n

Node B
Node C
Node D

(b) Dom-u

10 20 30 40 50
0

1000

2000

3000

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

Node B
Node C
Node D

(c) Dom-0

0 20 40 60
0

20

40

60

80

100

Request Rate (req/sec)

M
ea

n
%

 C
P

U
 U

til
iz

at
io

n

Node B
Node C
Node D

(d) Dom-0

Figure 3.7: Read statement performance comparison between dom-0 and dom-u VMs for γ = 0
and S = Sde f ault

50 req/sec. Also, a direct correlation between τ and θmean is observed in each VM. Figure

3.7a shows a notable difference in the performance of three VM’s for a request rate greater

than 30 req/sec. Also, for dom-u on node A, at a request rate of 40 req/sec and 80% θmean,

τse is in excess of 500 msec, exhibiting a high variance across repeated experiment runs in

a VM.

Query τse is less than 5 msec for request rate up to 30 req/sec in all dom-u’s. Also,

relative difference in query τ is less than 30 msec up to a request rate of 30 req/sec between

any pair of dom-u’s. Hence, profiled relationships can be utilized for performance modeling

up to 50% θmean since, 50% θmean corresponds to a request rate of 30 req/sec.

40

3.2.0.2 Dom-0 Performance Discussion

Figures 3.7c and 3.7d depict the performance profiles for the MySQL server hosted

inside dom-0 on nodes B, C and D. Similar to dom-u, a direct correlation between τ and

θmean is observed in each VM. However, in contrast to dom-u, a dom-0 VM exhibits negli-

gible performance variance between repeated runs of an experiment. In Figure 3.7c, query

τse is less than 5 msec up to a request rate of 50 req/sec for all dom-0’s. Also, difference in

query τ between any pair of dom-0’s is less than 40 msec up to a request rate of 50 req/sec.

Hence, profiled relationships can be utilized for performance modeling up to 80% θmean

since, 80% θmean corresponds to the request rate of 50 req/sec.

Summary: Query performance varies significantly across the dom-u’s and between

repeated runs on the same dom-u for a θmean greater than 50%. This behavior inhibits

us from directly using the profiled relationship for performance modeling on dom-u.

When MySQL server is hosted inside dom-u, a client request is processed utilizing

components residing both inside the Xen I/O virtualization subsystem and the MySQL

server as described in section 3.1.1 and depicted in Figure 3.2(a). Therefore, in the next

three subsections, we systematically investigate each component utilizing black box tech-

niques to identify the root cause of the performance variations. Specifically, we ascertain

whether it is the network I/O or the disk I/O, that is responsible for the perceived variations.

In addition, we identify the software component to assign fault to.

3.2.1 Impact of network I/O on performance variations

In this section, we aim to confirm if the network I/O subsystem in the Xen is causing

the observed performance variations. The Xen network I/O subsystem comprising of the

netback/netfront drivers, processes the packet streams for the client request and the MySQL

response. Now, the response time of a query is the sum of network delay and the query

execution time. Therefore, in order to determine the network delay for a query, we record

41

both its response time and the execution time.

Query response time is recorded in the CWG. However, for recording the query execu-

tion time, we utilize the MySQL server’s built in profiler. MySQL profiler is specific to an

individual client session and profiles all the statements sent to the server during a session.

We send each client query request in an independent session. We turn the profiling on for

the session before sending the query. After receiving the query response, we fetch the pro-

file for the executed query from the server. Figure 3.8 depicts our procedure to obtain both

the response time and the execution time of a query in a client session. Next, we describe

our experiment design.

Connect to the server

Send statement “SET profiling = 1” to enable profiling

Record current time as the “start time”

Send query

Record current time the as “end time”

Query response time is equal to “end time – start time”

Send statement “show profiles” to fetch query profile

Extract query execution time from query profile

Terminate connection

Figure 3.8: Measuring query execution time in a client session

In this set of experiments, we measure the impact of workload on the query network

delay. We increase λ in increments of 10 starting at 10 req/sec until θ in the VM is less

than 100%. Also, for each value of λ , we run the experiment for 180 seconds. We compute

the mean network delay (µ) and the standard error of the mean (µse) for each experiment.

Also, each experiment is repeated on nodes B, C and D.

Table 3.2 presents the summary of experiment results. Query µ increases minimally

with the increase in λ . Also, µse is inconsequential for all experiments. In addition, Query

42

10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

Node B
Node C
Node D

48% CPU
Utilization

(a) γ = 2 MB (20%)

10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

Node B
Node C
Node D

46% CPU Utilization

(b) γ = 4 MB (40%)

10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

Node B
Node C
Node D

50% CPU Utilization

(c) γ = 6 MB (60%)

10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

Node B
Node C
Node D

13% CPU Utilization

(d) γ = 8 MB (80%)

Figure 3.9: Read statement performance comparison between dom-u’s for different cache alloca-
tions.

µ is negligible in comparison with the query τ for all values of λ . Also, since, the time

spent by a query in the netback/netfront drivers is always bounded by the network delay.

Therefore, we conclude that the Xen network I/O subsystem is not responsible for the

observed variations.

Table 3.2: Query µ and µse with dom-u inside Nodes B, C and D

λ
Node B Node C Node D

Number of requests generated µ µse Number of requests generated µ µse Number of requests generated µ µse
10 1755 1.48 0.01 1837 1.47 0.01 1857 1.43 0.01
20 3613 1.47 0.007 3513 1.46 0.007 3655 1.56 0.02
30 5488 1.51 0.01 5509 1.54 0.01 5481 1.55 0.01
40 7133 2.05 0.05 7175 1.61 0.03 7341 1.81 0.02
50 8977 3.68 0.07

Summary: Insignificant values of µ and µse suggest that the netback/netfront drivers

are not inducing the perceived variations.

43

3.2.2 Impact of disk I/O on performance variations

In this section, our goal is to ascertain whether disk I/O is the source of noticed per-

formance variations. It is well understood that the Innodb buffer pool cache improves the

database performance by keeping the frequently accessed data in memory [88],[91]. How-

ever, we employ buffer pool cache to reduce the disk I/O performed by the storage engine

and evaluate its impact on the observed performance variations. Specifically, our objective

is to understand the impact of different cache allocations on the performance of MySQL

server hosted inside the dom-u. Next, we describe our experiment design.

In this set of experiments, we evaluate the server performance only inside dom-u since

server exhibits significantly larger variations in dom-u as compared to dom-0. Again, we

profile the benchmark complex query presented in Figure 3.4. It involves join on two tables:

item and author. The combined size of data+index for the two tables is 10 MB. Hence,

setting the value of γ to 10 MB (100%) makes both the tables memory resident. As a result,

workload becomes compute bound. We increase γ in increments of 2 starting at 2 MB. λ

in increased until θ in the VM is less than 100%.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Request Rate (req/sec)

%
 R

ed
uc

tio
n

in
 M

R
T

20% cache
40% cache
60% cache
80% cache

Figure 3.10: Percentage reduction in τ for different values of γ relative to τ for γ = 0 on
Node B’s dom-u

Figure 3.9 illustrates the impact of λ on query τ for different cache allocations. With

44

the increase in the value of γ , both, τ and τse monotonically decrease in each dom-u for

the same value of λ . Also, with the increase in cache, inter dom-u performance difference

monotonically reduces. For 2 and 4 MB values of γ , query τ increases non-linearly with

the increase in λ across all dom-u’s. For γ = 6 MB, query τ increases almost linearly with

the increase in λ . Query τ remains nearly constant with the increasing λ for γ = 8 MB and

higher cache allocations.

CPU utilization guideline for performance modeling does not change with the increase

in cache allocation. As depicted in Figure 3.9, for cache allocations of 20% (2 MB), 40%

(4 MB) and 60% (6 MB), performance variations start to manifest for θmean value of more

than 50%. Hence, profiled relationships could be utilized for performance modeling up to

50% θ . This behavior is similar to the experiments presented in section 3.2 with γ = 0. For

γ = 8 MB, we plot results up to 80 req/sec; however, we do not observe any variations up

to 120 req/sec and 23% θ .

In order to understand how does the query τ decrease with the increase in cache allo-

cation relative to the query τ for no cache, we plot Figure 3.10. Figure 3.10 depicts the

percentage reduction in τ for the different values of γ relative to τ for γ = 0. We plot results

only for the dom-u residing on Node B; however, the trend is similar across all dom-u’s.

For γ = 2 MB, we do not observe a significant performance benefit up to 25 req/sec. For

γ = 4 MB, performance benefit increases in a steep manner with the increase in λ . Hence,

for a smaller cache allocation, benefit is larger at higher request rates.

Summary: Monotonic reduction in performance variations with the increase in cache

size indicate that disk I/O is responsible for the perceived variations.

Now, disk I/O involves two software components: Xen disk I/O subsystem and Innodb

storage engine, as described in section 3.1.1. Xen disk I/O subsystem comprises of block-

back andblockfront drivers. blockback/blockfront drivers serve the disk block read/write

requests generated by the MySQL server. However, the storage layout of the tables and

indexes on the disk is managed by the MySQL server’s Innodb storage engine. Therefore,

45

10 20 30 40 50
0

50

100

150

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

Node B
Node C
Node D

(a) Dom-u

0 20 40 60
0

20

40

60

80

100

Request Rate (req/sec)

M
ea

n
%

 C
P

U
 U

til
iz

at
io

n

Node B
Node C
Node D

(b) Dom-u

10 20 30 40 50
0

50

100

150

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

Node B
Node C
Node D

(c) Dom-0

0 20 40 60
0

20

40

60

80

100

Request Rate (req/sec)

M
ea

n
%

 C
P

U
 U

til
iz

at
io

n

Node B
Node C
Node D

(d) Dom-0

Figure 3.11: Read statement performance comparison between dom-0 and dom-u VMs for
database populated using mysqldump snapshot

in the next section, we attempt to identify the software component that should be assigned

the fault to.

3.2.3 Impact of database population from snapshot on performance variations

In this section, we aim to verify whether the MySQL server’s storage engine is responsi-

ble for the observed performance variations. MySQL server does not expose a direct mech-

anism to control the storage layout of tables and indexes on the disk. However, mysqldump

backup utility can be utilized to take a snapshot of the database and then the database can

be repopulated using the snapshot. Therefore, we employ mysqldump to alter the database

storage on the disk and evaluate its performance impact. Next, we describe our experiment

46

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

VM 1
VM 2
VM 3
VM 4
VM 5
VM 6
VM 7
VM 8
VM 9
VM 10

(a) Script Populated Database

0 5 10 15 20 25
0

20

40

60

80

100

Request Rate (req/sec)

M
ea

n
%

 C
PU

 U
til

iz
at

io
n

(b) Script Populated Database

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

VM 1
VM 2
VM 3
VM 4
VM 5
VM 6
VM 7
VM 8
VM 9
VM 10

(c) Snapshot Populated Database

0 5 10 15 20 25
0

20

40

60

80

100

Request Rate (req/sec)

M
ea

n
%

 C
PU

 U
til

iz
at

io
n

(d) Snapshot Populated Database

Figure 3.12: Read statement performance comparison between database populated from script and
snapshot on Amazon EC2 cloud platform

design.

In this set of experiments, we first take the database dump on each VM using the mysql-

dump backup utility. Next, we drop the existing database on each VM and repopulate it us-

ing the dump file. Again, we profile the benchmark complex query presented in Figure 3.4.

Innodb buffer pool cache is turned off by setting the value of γ to 0. Also, λ is increased in

increments of 10 starting at 10 req/sec until θ in the VM is less than 100%.

As depicted in Figures 3.11a and 3.11c, query τ difference between any two VMs is less

than 20 msec for λ up to 50 req/sec. Also, query τse across repeated runs on any VM is less

than 3 msec up to 80% θmean. Hence, relationship profiled on one VM could be utilized for

performance modeling on any other VM up to 80% θ . Also, it can be noticed from Figures

47

0 50 100 150 200 250
0

1

2

3

4

5

Request Rate (req/sec)

M
ea

n
%

 C
P

U
 U

til
iz

at
io

n

Node B
Node C
Node D

(a) Dom-u

0 50 100 150 200 250
0

20

40

60

80

100

Request Rate (req/sec)

M
ea

n
%

 C
P

U
 U

til
iz

at
io

n

Node B
Node C
Node D

(b) Dom-u

0 50 100 150 200 250
0

1

2

3

4

5

Request Rate (req/sec)

M
ea

n
%

 C
P

U
 U

til
iz

at
io

n

Node B
Node C
Node D

(c) Dom-0

0 50 100 150 200 250
0

20

40

60

80

100

Request Rate (req/sec)

M
ea

n
%

 C
P

U
 U

til
iz

at
io

n

Node B
Node C
Node D

(d) Dom-0

Figure 3.13: Simple query performance comparison between dom-0 and dom-u VMs with γ = 0
and S = Sde f ault

3.7 and 3.11, that query τ in a VM is smaller for a snapshot populated database than the

script populated database for the same λ .

Populating the database from a snapshot increases the request handling capacity of the

MySQL server hosted inside a dom-u. As a consequence, service providers can manage

the SLA with a smaller cluster size. This results in reduced rental cost and increased

profit margins for the service provider. However, as a downside, database remains offline

during the re-population phase. Also, as the size of database grows, re-population time also

increases.

Summary: Database population from a snapshot significantly reduces variance in per-

formance both across dom-u’s and between repeated runs on a dom-u. Hence, we conclude

48

10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

Node B
Node C
Node D

(a) Dom-u

0 20 40 60 80
0

20

40

60

80

100

Request Rate (req/sec)

M
ea

n
%

 C
P

U
 U

til
iz

at
io

n

Node B
Node C
Node D

(b) Dom-u

10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Request Rate (req/sec)

M
ea

n
R

es
po

ns
e

T
im

e
(m

se
c)

Node B
Node C
Node D

(c) Dom-0

0 20 40 60 80
0

20

40

60

80

100

Request Rate (req/sec)

M
ea

n
%

 C
P

U
 U

til
iz

at
io

n

Node B
Node C
Node D

(d) Dom-0

Figure 3.14: Write statement performance comparison between dom-0 and dom-u VMs for γ = 0
and S = Sde f ault

that the root cause of variations is linked with how MySQL manages the storage of tables

and indexes on the guest VM’s disk file system

3.3 Amazon EC2 Experiments

We performed experiments on Amazon EC2 to validate our findings on a commercial

cloud platform. Specifically, we leased 20 guest VMs from the us-east-1b availability zone

in the US-East region. 10 VMs are m1.medium instances and the remaining 10 are m1.small

instances. We boot the VMs with Ubuntu 11.10 Amazon Machine Image (AMI). Each VM

has a 8 GB standard Elastic Block Store (EBS) volume attached to it. We harness the

m1.medium VMs to host the MySQL server since a m1.medium VM has a greater request

49

handling capacity than a m1.small VM. This behavior aids in generating a representative

query profile. CWG runs inside the m1.small VMs. In this study, we profile the benchmark

complex query presented in Figure 3.4. Innodb buffer pool cache is turned off by setting

the value of γ to 0. Also, we increase λ in increments of 4 starting at 4 req/sec until θ in

the VM is less than 100%.

3.3.1 Database population from the script

In this set of experiments, database is populated using the population script for Sde f ault .

As depicted in Figure 3.12a, for λ higher than 12 req/sec, τ of VMs 2 and 10 differs

significantly from the rest of the VMs. Also, for a request rate of 20 req/sec, query exhibits

a τse of 173 msec in VM 5. Figure 3.12b presents the mean and the standard error of

θmean for all the VMs. Similar to the experiments in section 3.2, query performance varies

significantly, both across the guest VMs and between repeated runs on the same guest VM.

3.3.2 Database population from the snapshot

In this set of experiments, we take the database dump on each VM using the mysqldump

backup utility. Next, we drop the existing database on each VM and repopulate using

the dump file. As depicted in Figure 3.12c, query τse is less than 3 msec between the

repeated runs on each VM. Also, query τ difference between any two VMs is less than 50

msec. Hence, similar to the laboratory environment, database population from the dump

significantly reduces the performance variations on Amazon EC2 platform as well.

Summary: Benchmark complex query exhibits similar performance characteristics both

on the laboratory test bed and the Amazon EC2 cloud platform.

50

3.4 Performance evaluation of benchmark simple query

In this set of experiments, we profile the benchmark simple query presented in Figure

3.3. Innodb buffer pool cache is turned off by setting the value of γ to 0. We increase λ

in increments of 20 starting at 20 req/sec until the server refuses any more connections.

Database is populated for Sde f ault .

As depicted in Figures 3.13a and 3.13c, difference in τ for the same value of λ is

negligible between any two VMs. Also, the difference between τ for λ=20 and τ for

λ=120 is less than 1 msec for all the VMs. Similarly, query τse is less than 1 msec across

all the experiments on each VM. Hence, for a simple query, performance trend is similar

on both dom-0 and dom-u. However, request handling capacity of a dom-0 (220 req/sec) is

almost double in comparison with the request handling capacity of a dom-u (120 req/sec).

Summary: Benchmark simple query exhibits negligible performance variations up to a

high λ value of 120 req/sec in dom-u.

3.5 Performance evaluation of benchmark write statement

In this set of experiments, we profile the benchmark write statement presented in Figure

3.5. Innodb buffer pool cache is turned off by setting the value of γ to 0. Database is

populated for Sde f ault . In dom-0, we increase λ in increments of 10 starting at 10 req/sec

until θ in the VM is less than 100%. In dom-u, we increase λ in increments of 20 starting

at 20 req/sec until the server refuses to accept any more connections.

As depicted in Figures 3.14a and 3.14c, write request handling capacity of a dom-u is

more than twice that of a dom-0. Statement τ increases linearly with the increase in request

rate on a dom-u. Whereas, on a dom-0, statement τ increases non-linearly with the increase

in request rate.

Summary: Benchmark write statement performance exhibits negligible performance

variations up to a request rate of 80 req/sec in dom-u

51

3.6 Chapter Summary

In this chapter, we demonstrate novel performance variations across repeated runs of a

dom-u and between dom-u’s created equal on homogeneous hardware. We systematically

investigate and identify disk I/O as the origin of variations. In addition, we show that it is

not the Xen disk I/O subsystem, rather the MySQL storage engine which is responsible for

the observed performance variations. Also, we present and evaluate a black box approach

to reduce variations based on the mysqldump backup utility. Experimental results show

that database population from a snapshot reduces perceived variations significantly and

increases request handling capacity of a dom-u. Hence, mysqldump utility can be exploited

to improve the performance of a guest VM on the cloud platform. However, as a downside,

database remains offline during the re-population phase. We also evaluate the impact of

different cache allocations on the database performance.

52

Chapter 4

A Comparative Analysis of Materialized Views Selection and Concurrency Control

Mechanisms in NoSQL Databases

Published in IEEE Cluster Conference 2017.

Increasing resource demands require relational databases to scale. While relational

databases are well suited for vertical scaling, specialized hardware can be expensive. Con-

versely, emerging NewSQL and NoSQL data stores are designed to scale horizontally.

NewSQL databases provide ACID transaction support; however, joins are limited to the

partition keys, resulting in restricted query expressiveness. On the other hand, NoSQL

databases are designed to scale out linearly on commodity hardware; however, they are

limited by slow join performance. Hence, we consider if the NoSQL join performance

can be improved while ensuring ACID semantics and without drastically sacrificing write

performance, disk utilization and query expressiveness.

This chapter presents the Synergy system that leverages schema and workload driven

mechanism to identify materialized views and a specialized concurrency control system on

top of a NoSQL database to enable scalable data management with familiar relational con-

ventions. Synergy trades slight write performance degradation and increased disk utiliza-

tion for faster join performance (compared to standard NoSQL databases) and improved

query expressiveness (compared to NewSQL databases). Experimental results using the

TPC-W benchmark show that, for a database populated with 1M customers, the Synergy

system exhibits a maximum performance improvement of 80.5% as compared to other

evaluated systems.

The rest of this chapter is organized as follows. In Section 4.1 we present the back-

ground information. Then, in Section 4.2, we motivate the need for a novel view selection

53

Table 4.1: Qualitative comparison of NoSQL, NewSQL and Synergy systems.

Scalability Query Expressiveness Transaction Support Disk Utilization
NoSQL
(HBase) Linear scale out SQL ACID with Snapshot Transaction Isolation Moderate

NewSQL
(VoltDB) Linear scale out

SQL with joins limited to
partition keys ACID with Serializable Transaction Isolation Low

Synergy Linear scale out
SQL with MVs limited to

Key/Foreign-Key joins
ACID with Read Committed

Transaction Isolation High

EID EName EHome_AID EOffice_AID E_DNo

DNo DName

DL_DNo DLocation

PNo PName P_DNo

WO_EID WO_PNo Hours

DP_EID DPName DPHome_AID

EMPLOYEE

DEPARTMENT

DEPARTMENT LOCATION

PROJECT

WORKS ON

DEPENDENT

Foreign Key Reference

AID Street City Zip

ADDRESS

Underlined Attributes Represent Primary Key

Figure 4.1: Relations in the Company Schema.

mechanism in a key-value store. Section 4.3 presents the Synergy system overview. Sec-

tion 4.4 presents the candidate views generation mechanism in the Synergy system. Next,

in Section 4.5 we describe the views selection procedure in the Synergy system. The views

maintenance mechanism for the Synergy system is presented in Section 4.6. Thereafter,

Section 4.7 presents the Synergy system architecture. In Section 6.3, we experimentally

evaluate Synergy system. Finally, we conclude in Section 4.9.

4.1 Background

We first review the concepts of a relation, index and schema which are common to

both SQL and NoSQL data models. Then, we present a model for the database workload.

Finally, we describe the mechanism to perform a baseline transformation of a relational

database to a NoSQL database. Table 4.1 shows the qualitative comparison of evaluated

systems.

54

4.1.1 Relation, Index and Schema Models

Relation– A relation R is modeled as a set of attributes. The primary key of R denoted

as PK(R), is a tuple of attributes that uniquely identify each record in R. The foreign key of

R denoted as FK(R), is a set of attributes that reference another relation T. A relation can

have multiple foreign keys, hence let F(R) denotes the set of foreign keys of R.

Index– In this work we utilize covered indexes that store the required data in the index

itself. An index X on a relation R denoted as X(R), is modeled as a set of attributes (s.t.

X(R) ⊂ R). Let Xtuple(R) denotes a tuple of attributes that the index is indexed upon (s.t.

Xtuple(R) ⊂ X(R)). The key of an index is a union of attributes in tuples Xtuple(R) and

PK(R), in that order. Since a relation can have multiple indexes, let I(R) denotes the set of

indexes on R.

Schema– Using the previous definitions of a relation and an index, a database schema

S is modeled as a set of relations and the corresponding index sets, S = {R1, I(R1), R2,

I(R2),..., Rn, I(Rn)}, where n represents the number of relations in the schema. We use an

example Company database for the purpose of exposition. Figure 4.1 depicts the relations

in the Company database schema.

4.1.2 Modeling Workload

A database workload W = {w1,..., wm} is modeled as a set of SQL statements, where

m is the number of statements.

4.1.3 Baseline Database Transformation

In this section, we describe the mechanism to perform a baseline transformation from

a relational to a NoSQL database.

Baseline Schema Transformation – A relation R becomes a relation R′ in NoSQL

schema with the same set of attributes as R. The row key of R′ is a delimited concatenation

55

of the value of attributes in PK(R). Similarly, an index X(R) on a relation R becomes a

relation X(R′) in NoSQL schema with the same set of attributes as X(R). The row key of

X(R′) is a delimited concatenation of the value of attributes in the key of X(R). Note that in

NoSQL, both for a relation and an index, we assign all attributes to a single column family.

Baseline Workload Transformation – Each read statement from the relational work-

load is added to the NoSQL workload. Each write statement for a relation R that specifies

each key attribute in the WHERE clause is added to the NoSQL workload.

4.2 Challenges and Design Choices

Joins are expensive in a NoSQL database due to the distribution of data items across

different cluster nodes. It is well understood that MVs improve join performance by pre-

computing and storing results in the database [51, 52, 53]. This observation is verified with

TPC-W micro-benchmark which shows that scanning a MV is significantly faster than the

join performance (see Section 4.8.2 for experiment details). Thus, we consider how to

incorporate MVs into a NoSQL store, while ensuring consistency.

4.2.0.1 Implication of Materialized Views

NoSQL databases are generally limited to key-based single row operations [4, 3, 55].

Hence, to ensure the ACID semantics in the presence of MVs, view maintenance and con-

currency controls are required to ensure consistency between the MVs and base tables.

The design choices for concurrency control mechanisms include multi-versioning, locking

and timestamp ordering. While multi-versioning may seem like a nature fit given HBase

and other NoSQL system’s temporal key component (i.e., cell values are composed of a

row-key, column family, column and time stamp) [3, 55], experimental results show that

getting and checking additional rows’ timestamps decreases performance. Therefore, this

result motivates a lock-based concurrency control mechanism to attain the read committed

isolation level.

56

4.2.0.2 Lock Number and Granularity

Row level locks and database locks represent the two ends of the locking mechanism

spectrum. Database locks degrade system throughput since only a single transaction can

access the database at a time. Similarly, acquiring row level locks on individual base tables

can be expensive in the presence of MVs in a NoSQL database, since the system may need

to acquire a large number of locks for complex queries. Experimental results show that for

a modest number of 100 locks, the time to acquire and release locks is 1.3x the response

time of the most expensive write transaction in the proposed system (see Section 4.8.3 and

Section 4.8.4.4). This observation motivates minimizing the number of locks required per

transaction.

4.2.0.3 View Selection Challenges

The types of MVs that are allowed impact the data store performance in varying ways.

Purely workload based MVs selection mechanisms [54] (schema relationships are oblivi-

ous) can result in optimal read performance by allowing for the materialization of a max-

imum number of joins in the workload (i.e., views constructed with many-to-many joins

or non-foreign key joins). While this approach is well suited for OLAP workloads, it can

degrade write performance and increase disk utilization and transaction management costs

for the OLTP workloads, especially in a distributed database. In contrast a schema aware–

workload driven MVs selection mechanism limits the type of views allowed, resulting in

sub-optimal read performance. However, this approach prevents high storage costs and

shifts of the bottleneck from read to the write performance. Given the design goal to hold

a single lock per transaction across base tables and MVs, this observation motivates us to

not allow views with many-to-many joins or joins that do not have key relationships.

57

Baseline

Transformation

INPUT :
Baseline NoSQL

Schema and

Workload

Candidate Views

Generation Mechanism

Candidate

Views

OUTPUT :

Synergy Schema with views and view-indexes,

Synergy Workload using views

Views Selection Mechanism

View-Indexes

Addition

Relational

Schema and

Workload

Views Selection

Query Re-writing

Figure 4.2: Database transformation workflow in Synergy system.

4.2.1 Design Decisions

For the Synergy system, we make the following design decisions based off of our anal-

ysis of the TPC-W benchmark, which contains many key/foreign-key equi-joins. First, we

develop a concurrency control mechanism that leverages the schema’s relational hierar-

chy, grabs one lock per transaction and provides the read committed isolation level. Sec-

ond, in cooperation with our concurrency control mechanism, the system only materializes

key/foreign-key equi-joins, does not materialize joins across many-many relationships, and

each base relation may only be assigned to a single relational hierarchy for materializa-

tion (so that a single lock must be acquired per transaction). We believe the synergistic

design decisions between the concurrency control and view selection mechanism provides

for a novel architecture and substantially differentiates this work from previous works on

materialized view selection.

4.3 System Overview

In this section we provide an overview of the Synergy system, as depicted in Figure

4.2. The objective of our system is to design a scalable and high performance NoSQL

database while ensuring the ACID semantics.

We first perform a baseline transformation of the input relational database to a NoSQL

database using the mechanism described in Section 4.1.3. Due to the slow join performance

in the baseline transformed database system, we decide to use MVs. We use the candidate

58

views generation mechanism to create a list of potential views to materialize based on

the database’s hierarchical structure. Next, we use a workload driven view selection

mechanism to select views from the candidate set. Then, we re-write the workload using

selected views as needed. To ensure high read performance, we supplement the schema

with additional view-indexes. To ensure ACID semantics in the presence of views, we

implement a concurrency control layer on top of HBase (as described in Section 4.7), which

is able to grab a single lock per transaction, while providing the read committed transaction

isolation level.

System Limitations – The Synergy system only materializes key/foreign-key equi-

joins. In addition, Synergy system is restricted to single SQL statement transactions. In

agreement with our design decision of single lock per transaction, write statements that do

not specify all key attributes and affect multiple base table rows are not supported. The

Synergy system does not enforce foreign key constraints. The transaction isolation level in

the Synergy system is limited to read committed. In addition, the Synergy system can only

be used with NoSQL data stores that trade availability for strong consistency in presence

of network partition (CP model from the CAP theorem [92]).

4.4 Generating Candidate Views

In this section we present a mechanism to create candidate views for the materialization

of equi joins in the workload. We observe that the joins are slow in a NoSQL database (see

Section 4.2). Hence, materializing the joins in the workload as views can improve the

query performance. We harness the schema’s structure to identify the candidate views, in

particular the key/foreign-key relationships. We begin by presenting formal definitions for

schema relationships and views.

We assume that the input schema S is normalized and free from both simple and transi-

tive circular references, to limit the scope of this work. We model the relationships in S as

a directed graph G=(H,E). The vertices in G represent the relations in S and edges encode

59

the key/foreign-key relationship between relations. An edge exists between relations Ri

and R j, if they are related as described by:

Definition 1 (Schema Relationships) The relationship between relations Ri and R j, de-

noted as Ri← R j, exists iff FKk(Ri) references PK(R j), where FKk(Ri) ∈ F(Ri)

Figure 4.3(a) depicts the schema graph corresponding to the relations in the Company

database schema in Figure 4.1. Next, we define an edge and a path in the schema graph.

Definition 2 (Edge in Schema Graph) A directed edge ei in a schema graph from a rela-

tion Ri to a relation R j is represented as a (PK,FK) tuple where PK is the primary key of

Ri and FK is the foreign key of R j.

Definition 3 (Path in Schema Graph) A path between relations Ri and R j in a schema

graph is modeled as an alternating sequence of relations and directed edges between the

relations, [Ri,ei,...,e j−1,R j]. The alternating sequence begins and ends in a relation.

Database schemas have a hierarchical structure; hence, we can choose a set of relations in

the schema graph as roots to create rooted trees. Next, we define a rooted tree.

Definition 4 (Rooted Tree) A rooted tree T is a directed graph composed of a subset of

nodes and edges from the schema graph in which there exists a root node, and unique paths

from the root node to each non-root node.

We use rooted trees to identify the candidate views. Next, we define a candidate view.

Definition 5 (Candidate View) A candidate view V is a path in a rooted tree. A view is

stored physically as a relation. The attributes of V is a set union of attributes of relations

in V and the key of V denoted as PK(V) is the key of the last relation in the view. Also, a

view-index has the same definition and semantic as a table index.

60

A WO

E
DP

D

DL

P

DL
P

WO

DP

D

(a) Schema Graph (b) Rooted Trees

Root relation

Relations: Department (D), Department_Location(DL), Employee (E), Works_On(WO), Project (P), Dependent (DP), Address (A)

E

A

Figure 4.3: Input and output of the candidate views generation mechanism for the Company
database with roots set Qcompany = {Address, Department}.

4.4.1 Roots Selection

Each view has a single root. The set of roots Q for a schema S is a subset of relations in

S. Q can either be provided by the database designer or it can be learned in an automated

manner. In this work, we assume that the database designer provides Q. Note that the

automated selection of roots is a separate problem and can be addressed independently.

4.4.2 Candidate Views Generation Mechanism

The goals of the candidate views generation mechanism are as follows:

• Assign each non-root relation in the schema graph to at most one root. This

enables us to hold a single lock on the root relation’s row key while ensuring ACID

semantics.

• Select a single path between the root and each non-root relation assigned to it.

If there are multiple paths between any pair of relations, then the relationship can be

one-many or many-many. However, recall that we define many-many relationship as

a join materialization boundary. Therefore, to ensure a one-many relationship, we

should select a single path.

61

A
WO

E
DP

D

DL

P

(a) Schema DAG

A WOE DPD DLP

(b) A topological ordering of schema DAG

DL
P

WO

DP

D

Root relation

E

A

(c) Rooted Graphs

Figure 4.4: Intermediate results of the candidate views generation mechanism for the Company
database with roots set Qcompany = {Address,Department}. Relations: Department (D), Depart-
ment Location (DL), Employee (E), Works On (WO), Project (P), Dependent (DP), Address (A)

4.4.2.1 Mechanism Overview

In this section, we present the overview of the mechanism to generate the candidate

views. We first transform the input schema graph into a directed acyclic graph (DAG)

to ensure at most one direct path between any pair of relations in the graph. Thereafter,

we identify a topological ordering of the relations in the schema DAG. Next, we use the

topological order to iteratively examine and assign each non-root relation to a root by

selecting a path from the root to the non-root relation. Following the assignment of schema

62

relations to roots, a rooted graph is created for each root relation. Finally, we transform

each rooted graph into a rooted tree to ensure a single path between the root and each

non-root relation. The output of the mechanism is a set of rooted trees and each unique

path in a rooted tree represents a candidate view.

4.4.2.2 Mechanism Description

In this section, we describe the candidate views generation mechanism in detail using

our continuing example of the Company database. We use Qcompany = {Address,Department}

as the roots set. In addition, we use a synthetic workload for the purpose of exposition with

WCompany = {w1,w2,w3},

W1: Get address details of an employee

SELECT * FROM Employee as e, Address as a

WHERE a.AID = e.EHome AID and e.EID = ?

W2: Get all the employees and their hours who work in a department.

SELECT *

FROM Department as d, Employee as e, Works On as wo

WHERE d.DNo = e.E DNo and e.EID = wo.WO EID

and d.DNo = ?

W3: Get all the employees who work a certain number of hours.

SELECT * FROM Employee as e, Works On as wo

WHERE e.EID = wo.WO EID and wo.Hours = ?

Heuristic– During the different steps of the mechanism, we use a heuristic based ap-

proach to select a candidate from a set. We choose the number of overlapping joins as

a simple workload aware heuristic to assign a weight to each candidate. Note that other

heuristics can be used seamlessly with the mechanism.

Input: Schema graph G, workload W and the roots set Q.

63

Output: Set of rooted trees.

Steps:

1. Transform input graph to DAG: In the first step we transform the input schema

graph G into a DAG. We achieve this by selecting and keeping at most one edge

between any pair of nodes in the schema graph.

We use our heuristic to assign a weight to each candidate edge. Then, we select the

edge with maximum weight and remove the rest. For example, we remove the (AID,

EOffice AID) edge from the schema graph in Figure 4.3(a) to generate the schema

DAG depicted in Figure 4.4a.

2. Topologically order relations in the DAG: Next, we identify a linear ordering of

the relations in DAG such that for every directed edge from relation Ri to R j, Ri

comes before R j in the ordering. Figure 4.4b represents a topological ordering of the

schema DAG presented in Figure 4.4a.

3. Assign relations to roots: Next, in the topological order, we examine each non-root

relation in the schema DAG and decide upon its assignment to a root by executing

the following steps:

(a) Identify paths: We identify paths in the DAG from each root relation to the

non-root relation.

(b) Select a path: Next, we utilize our heuristic to assign a weight to each path.

Then, we iterate over the paths in the sorted order by weight until we find a

path that includes a single root relation and none of the relations on the path are

assigned to a root other than the root present in the path.

(c) Add path: Then, we add the selected path to the rooted graph created for the

root in the path.

Figure 4.4c depicts the rooted graphs generated for the Company database.

64

4. Transform rooted graphs to rooted trees: Next, we transform the rooted graphs

created in step 3 into rooted trees. We first identify a topological ordering of the non-

root relations in the rooted graph. We repeat the next step while we have relations

left in the topological ordering.

(a) Select a Path: Using the rooted graph we identify paths between the root rela-

tion and the last relation in the topological ordering. Next, we assign a weight

to each path using our heuristic. Then, we select the path with maximum weight

and add it to the rooted tree. Thereafter, we remove all non-root relations in the

path from the topological ordering and continue.

Note that in step 3, we examine non-root relations of a schema DAG in the forward topolog-

ical order to give each non-root relation a chance to be assigned to any root that has a path

to it. Conversely, in step 4, we examine non-root relations of a rooted graph in the reverse

topological order to keep the paths that will allow materialization of maximum number of

joins in the workload. Following the candidate views generation mechanism, a rooted tree

is generated for each root in Q. Figure 4.3(b) depicts the set of rooted trees generated for

the Company database.

4.4.2.3 Discussion

The proposed candidate views generation mechanism is a heuristic based approach;

hence, does not guarantee materialization of optimal number of joins in the workload. In

addition, the usability of generated candidate views for join materialization is dependent

on roots selection.

4.5 Views Selection Mechanism

In this section we describe our procedures for views selection from the candidate set

and re-writing queries using selected views. Similar to [54], we use a workload driven

65

(a) Example rooted tree (b) Example equi join query

SELECT *

FROM R2 , R3 , R4 , R5 , R6

WHERE R2.pk2 = R3.fk3

and R3.pk3 = R4.fk4

and R2.pk2 = R5.fk5

and R5.pk5 = R6.fk6

R1 R2 R3 R4

R5 R6

(pk1 , fk2) (pk2 , fk3) (pk3 , fk4)

(pk5 , fk6)

Root relationIdentified Views ,

View Name

[R2,(pk2 , fk3),R3,(pk3 , fk4),R4] R2 – R3 – R4

[R5,(pk5 , fk6),R6] R5 – R6

(c) Views selected (d) Query re-write using

selected views

SELECT *

FROM R2–R3–R4 , R5–R6

WHERE R2–R3–R4 .pk2 = R5–R6.fk5

Marked Relations & Edges ,

R1 R2 R3 R4

R5 R6

(pk1 , fk2) (pk2 , fk3) (pk3 , fk4)

(pk5 , fk6)

Figure 4.5: Illustration of view selection and query re-writing procedure for an example equi join
query using an example rooted tree.

views selection mechanism. We also illustrate our method for supplementing the schema

with additional indexes to ensure query performance.

4.5.1 Views Selection

The high resource requirement and the expensive nature of joins in a NoSQL database

(see Section 4.2) provides us with the motivation to materialize as many joins in the work-

load as possible to ensure low request response times and high system throughput. We use

a workload driven approach to select views. We iteratively examine each equi join query

in the workload and select views for it. Next, we describe our procedure to select views for

a given query.

66

Views selection for a Query–We harness the rooted trees and the query syntax to select

views for a query. To illustrate the procedure, we use the example rooted tree and the

example query depicted in Figures 4.5(a) and 4.5(b) respectively. We begin the procedure

with un-marked rooted trees. Then, we use the join conditions in the query to mark the

relevant edges and participating relations in the rooted trees. Figure 4.5(c) depicts the

marked edges and relations in the example rooted tree. Next, we examine each rooted tree

to identify the views to be selected for the query.

For a given rooted tree, we iteratively choose a path until no new path can be chosen.

During each iteration, path selection is done using two rules: 1) all the nodes and edges in

the path are marked, and 2) the path starts in a marked node that has no incoming marked

edge and ends in either a leaf node or a node that has no outgoing marked edge. Then,

we select the chosen path as a view. Next, we un-mark the participating relations of the

path and outgoing edges of the participating relations, in the rooted tree. Thereafter, we

continue with the next iteration. Figure 4.5(c) depicts the views selected for the example

query.

Final View Set– After processing the entire workload, we add the set of all selected

views to the schema.

Limitations– 1) We select views only for the equi join queries in the workload. 2)

Searching the space of all syntactically relevant views is not feasible in practice [54]; hence,

similar to [54], our views selection procedure is heuristic based and does not necessarily

select the optimal set of views. 3) A views selection procedure that can take advantage of

view sharing opportunities across different queries is part of our future work. 4) Currently

we do not pass a storage constraint to our views selection algorithm; however, it can be

easily adapted to use storage constraint in presence of a cost based query optimizer.

67

4.5.2 Query Re-writing

Following views selection, we re-write queries using selected views. We iteratively

examine each equi join query in the workload and re-write it using the views selected for

it. To re-write a query, we replace the constituent relations of a view with the view. In

addition, we remove the join conditions for which both participating relations belong to a

single view. Figure 4.5(d) depicts the example query re-written using selected views.

4.5.3 Additional View Indexes

Unfortunately, in certain scenarios query execution times can be high despite the use of

views. Consider a case in which the query using the view has a filter on an attribute other

than the attribute that the view is indexed upon. Then, to prepare the query response, we

have to scan the entire view. This can be expensive, depending on the size of the view.

Hence, to improve the performance of workload queries that use views, we supplement the

schema with additional indexes.

For each view, we examine each conjunctive query that uses this view and decide

whether to add a view-index or not. If the query only has filters on one or more view

attributes that neither the view nor any of its indexes are indexed upon, then we add a

view-index indexed upon a filter attribute to the schema. Note that in this work we do not

recommend indexes on base tables and assume that the input schema has necessary base

table indexes.

4.6 View Maintenance Mechanism

In this section, we describe the mechanism for view maintenance as the underlying base

tables are updated. For each type of write statement we present: 1) an applicability test to

determine if a base table update applies to a view and 2) a tuple construction procedure to

prepare tuples for the view update upon a base table update.

68

4.6.1 Insert Statement

4.6.1.1 Applicability Test

A base table insert for a relation Ri applies to a view Vi iff Ri is the last relation in Vi’s

sequence of relations.

4.6.1.2 Tuple Construction

Insertion into a view upon a base table insert may require reading tuples from the base

tables to construct the view tuple. For a base table insert that applies to a view with k

relations, we need to read related tuples from k−1 base tables to construct the view tuple.

We utilize the key/foreign-key relationships between view relations to sequentially read the

base table tuples, starting with relation Rk−1 and ending in relation R1. Then, we construct

the view tuple using previously read tuples and the insert statement. Notice that the time

to create a view tuple increases linearly with the number of relations in the view and is

independent of the cardinality ratios between the relations.

4.6.2 Delete Statement

4.6.2.1 Applicability Test

A base table delete for a relation Ri applies to a view Vi iff Ri is the last relation in Vi.

Note that we do not perform cascading deletes.

4.6.2.2 Key Construction

To delete a view tuple upon a base table delete, we use the base table key provided with

the delete statement. However, to delete the view index tuple, we need to first construct

the index key to issue a delete upon. Hence, we first read the tuple from the view using

the base table key in the delete statement. Then, we use the attributes in the read tuple to

69

Client

Phoenix API

Phoenix API

Write Transaction

Procedures Transaction

Manager

Slave

HBase Layer

…

Transaction Layer

DataNodes NameNode

R
ea

d
 R

eq
u

es
ts

Write Requests

Write Transactions WAL

Master

Synergy Workload

Synergy

Schema

…

RegionServers HMaster

HBase HDFS

ZooKeeper Ensemble

Client

Phoenix API

Synergy Workload

Plan Generator

Figure 4.6: Synergy System Architecture Overview.

construct the index key and issue the delete. Notice that the time to construct a view index

key is constant.

4.6.3 Update Statement

4.6.3.1 Applicability Test

A base table update for a relation Ri applies to a view Vi iff Ri is in Vi’s sequence of

relations.

4.6.3.2 Tuple Construction

Unfortunately, updating the view upon a base table update can be expensive if the view

is not indexed on the key of the update statement, since we need to either join the base

tables or scan the entire view for the tuple construction. To efficiently prepare view updates,

we supplement the schema with additional indexes based on the workload. Due to space

concerns, we omit the details.

4.7 System Architecture

In this section we describe the Synergy system architecture. The Synergy system com-

prises of HBase layer, clients and the Transaction layer as depicted in Figure 4.6.

70

HBase layer– The Synergy system harnesses HBase layer as the distributed data stor-

age substrate. The HBase layer comprises of HBase, HDFS and ZooKeeper components.

We refer the reader to [4] for the role and description of each component shown in Figure

4.6.

Clients– The clients utilize Phoenix API to execute read and write statements in the

workload. A client sends a read request directly to the HBase layer. On the contrary, a write

request is sent to the Transaction layer, followed by a synchronous wait for a response.

Transaction Layer– The Synergy system employs the Transaction layer for imple-

menting ACID transaction support on top of the HBase layer. The Transaction layer is a

distributed, scalable and fault tolerant layer that comprises of a Master node and one or

more Slave nodes. The Slave nodes receive and process write requests from clients. Each

slave node has a transaction manager that implements a write ahead log (WAL) for recov-

ery and durability. The WAL is stored in HDFS. Upon receiving a request, the transaction

manager first assigns a transaction id to the statement and then appends the statement in

WAL along with the assigned id. Then, a transaction procedure utilizes Phoenix API to

execute the transaction. Finally, a response is sent back to the client. The Master node is

responsible for detecting slave node failures and starting a new slave node to take over and

replay the WAL of a failed slave node.

4.7.1 Lock Implementation

Logical Locking– Recall that we restrict the write workload to statements that specify

all key attributes (see Section 4.3) and decide to employ hierarchical locking as the con-

currency control mechanism (see Section 4.2). Hence, to update a row for a relation in a

rooted tree, we acquire the lock on the key of the associated row in the root relation. In

addition, since each relation is part of at most one rooted tree, we hold a single lock per

write operation.

Physical Locking– We implement our locking mechanism through lock tables stored

71

in HBase. We create one lock table per root relation. The lock table key has same set of

attributes as the root relation’s key and it includes a single boolean column that identifies

if lock is in use or not. A lock table entry is created when a tuple is inserted into the root

table.

Discussion– We implement light weight hierarchical locking mechanism in Synergy by

holding a single lock per write operation. As a downside of hierarchical locking, all rows

associated with the root key along all the paths are locked which can affect throughput

with concurrent requests trying to grab the lock on the same root key. Note that lock

management is not the primary contribution of our work. Other transaction management

systems like Themis [93], Tephra [38], Omid [94] etc. could also be used.

4.7.2 Write Transaction Procedures

Synergy utilizes transaction procedures to atomically update the base table, views and

corresponding indexes upon a base table update. For insert and delete statements, the

transaction procedure first acquires the lock on the root key. Then, the base table, appli-

cable views and corresponding indexes are updated using the tuple/key construction pro-

cedures described in Section 4.6. Finally, the lock is released. Note that each transaction

inserts/deletes a single row in/from the base table, applicable views and corresponding in-

dexes.

A base table update may require multi-row updates on the materialized view. Now,

while a view is being updated upon a base table update, conflict with the concurrent writes

is prevented by the locking mechanism; however, a concurrent read may read dirty data.

Hence, to facilitate the detection of a dirty read, we mark the data in views and view-

indexes before update and un-mark after update. If dirty data is read in a transaction, then

the read is restarted. The update transaction is a 6-step procedure: 1) We first acquire a

lock on the root key. 2) Then, we read all the rows that need to be updated. 3) Next, we

mark all the rows that need to be updated. 4) Then, we issue a sequence of updates. 5)

72

Next, we un-mark all the updated rows. 6) Finally, we release the lock.

The plan generator component (see Figure 4.6) in the Synergy transaction layer auto

generates the execution plan for each write transaction.

4.7.3 Transaction Isolation Level

The Synergy system is restricted to single statement transactions. In addition, Synergy

does not support queries in which a relation is used more than once due to potential dirty

reads. The Synergy system provides ACID semantics with read committed transaction

isolation level, which is also the default transaction isolation level for PostgreSQL [95].

A single row is inserted/deleted into/from the base table, applicable views and corre-

sponding indexes upon a base table insert/delete. In addition, to answer a query either a

table is used directly or a view involving the table is used but not both. Hence, a reader

either reads the entire row or the row is absent from the read result set. This enables read

committed behavior for insert and delete statements.

Recall that the system marks the rows to be updated in a view as dirty before issuing

updates, and if a concurrent scan reads a dirty row, the scan is restarted. Hence we modify

the scan behavior to check for marked rows in the scanned result-set and re-scan if a

marked row is present. This ensures that update statement preserves the read committed

semantics.

Note that the read committed semantics are preserved during a failure scenario, since

the base table lock is held until the system recovers from the failure.

4.8 Experimental Evaluation

In this section we first describe our experiment environment. Next, we use a TPC-

W micro-benchmark to evaluate the join performance in HBase. Thereafter, we profile

the performance overhead of two phase row locking in HBase. Finally, we evaluate the

73

Order
(o_id, ol_o_id)

Customer Order_line
(c_id, o_c_id)

Figure 4.7: Micro benchmark schema graph.

performance of Synergy system and compare it with four other systems using the full TPC-

W benchmark.

4.8.1 Experiment Environment

4.8.1.1 Testbed

Amazon EC2 represents our experiment environment. We create an eight node cluster

using m4.4xlarge virtual machine (VM) instances. Each instance is configured with 16

vCPU’s, 64GB RAM and 120 GB SSD elastic block storage (EBS), running Ubuntu 14.04.

HBase, HDFS and Zookeeper: The HDFS NameNode, the HBase HMaster, and the

ZooKeeper server processes run on one instance. We designate five instances as slaves,

each running the HDFS DataNode and the HBase RegionServer processes. We use Hadoop

v2.6.5, HBase v1.2.4.

Synergy and Phoenix: We dedicate one instance to host a Synergy transaction layer

slave and the Phoenix-Tephra server. Synergy transaction layer master is hosted on the

same node that hosts HBase and HDFS masters. We use Phoenix v4.8.2.

VoltDB: We create a five instance VoltDB (v6.8) cluster by hosting a VoltDB daemon

on each instance that is also hosting the HDFS DataNode and the HBase RegionServer

processes.

Client: We reserve one node as client to drive the workload for each system.

4.8.1.2 Performance Metric

The request response time represents our performance metric, denoted as τ . We mea-

sure τ in the client.

74

Q1: Get all the customers and their orders

Using base tables,

SELECT *

FROM Customer as c, Order as o

WHERE c.c_id = o.o_c_id

Using view,

SELECT * FROM Customer-Order

Q2: Get all the customers, their orders and the

constituting order lines.

Using base tables,

SELECT *

FROM Customer as c, Order as o, Order line as ol

WHERE c.c_id = o.o_c_id and o.o_id = ol.ol_o_id

Using view,

SELECT * FROM Customer-Order-Order line

Figure 4.8: Micro-Benchmark Workload.

4.8.2 Micro Benchmark Evaluation

We use a TPC-W micro-benchmark to evaluate the join performance in HBase.

4.8.2.1 Schema and Workload

The micro benchmark schema comprises of three relations from the TPC-W bench-

mark: Customer, Order and Order line. Customers can have one or more orders and

each order can have one or more order lines. Figure 4.7 depicts the schema graph for

the benchmark schema. Next, to evaluate the join performance, we create a synthetic

workload comprising of two foreign key equi-join queries: Q1 (Customer,Order) and Q2

(Customer,Order,Order line).

A join query can be evaluated using two different approaches: 1) using a join algorithm

that combines the matching tuples from the specified tables and 2) scanning pre-computed

and stored results from a materialized view. Hence, to compare the join algorithm perfor-

mance with the view scan performance, we materialize the joins in the workload as views.

Customer-Order and Customer-Order-Order line represent the MVs corresponding to the

75

500 5000 50000

Number of Customers

100

102

104

106

R
es

po
ns

e
T

im
e

(m
s) View Scan

Join Algorithm

(a) Q1

500 5000 50000

Number of Customers

100

102

104

106

R
es

po
ns

e
T

im
e

(m
s)

View Scan
Join Algorithm

(b) Q2

Figure 4.9: Micro benchmark results to show that performance of join algorithms is slow
in HBase. Y axis is drawn at log scale.

join queries Q1 and Q2 respectively. Figure 4.8 presents the workload queries written using

base tables and MVs.

4.8.2.2 Experiment Setup and Results

Each experiment is characterized by the database scale and the join query. We set the

cardinality ratio between relations as 1:10. We scale the database by increasing the number

of customers in multiples of 10, starting at 500. For each database scale, we major compact

both base tables and views after database population. Section 4.8.2.1 presents the join

queries in the workload. We repeat each experiment 10 times and report the mean and

the standard error of response time. Figure 4.9 depicts the experiment results with Y axis

drawn at log scale.

76

Number of Locks

10 100 1000

Overhead (in ms) 342 571 2182

Figure 4.10: Experiment to show overhead associated with two phase row locking in
HBase.

For the database populated with 50K customers, view scan is 6x and 11.7x faster than

the join algorithm for queries Q1 and Q2 respectively. In conclusion, micro-benchmark

results show that the join algorithm performance is slow in HBase, providing the moti-

vation for join materialization.

4.8.3 Locking Overhead Evaluation

In this experiment, our goal is to evaluate the performance overhead of acquiring and

releasing row locks in HBase. We create a single lock table in the HBase layer with two

attributes: id and lock status. The lock status is a boolean column that identifies whether

lock is in use or not. We use checkAndPut HBase operation in the client node to acquire

and release locks. We increase the number of locks in multiples of 10 starting at 10 and

measure the overhead in client. We repeat each experiment 10 times and present the mean

overhead time. Figure 4.10 shows the experiment results.

Locking overhead with 100 locks is 1.3x the response time of statement W13 in the

Synergy system (see Section 4.8.4.4 and Figure 4.13); W13 represents the most expensive

write transaction in the Synergy system. Also note that 100 represents a modest number of

locks for a write transaction, since multiple tables with varying cardinalities may be joined

together as a view. In conclusion, overhead associated with the acquisition and release of

row locks represents a major transaction performance bottleneck in HBase, motivating

the use of a single lock per transaction.

77

Mechanisms
Systems

VoltDB Synergy MVCC-A MVCC-UA Baseline

Materialized

Views

Selection

None

Schema

Relationships

Aware

Schema

Relationships

Aware

Schema

Relationships

Un-Aware

None

Concurrency

Control

Single Threaded

Partition Processing

Hierarchical

Locking
MVCC MVCC MVCC

Figure 4.11: Materialized views selection mechanism and concurrency control mechanism
used in each evaluated system.

4.8.4 TPC-W Benchmark Evaluation

4.8.4.1 Benchmark

TPC-W [86] is a transactional web benchmark. It has a two tier architecture including a

web tier and a database tier. TPC-W workload includes 14 different types of web requests

where each request is modeled as a servlet. Each servlet is in turn composed of one or more

SQL statements. We analyze the TPC-W servlets to extract all the SQL statements that can

be invoked at the database tier. Extracted set of SQL statements represents our workload.

We exclude a DELETE statement (DELETE FROM shopping cart line WHERE scl sc id

= ?) from the workload that may affect multiple base table rows. Phoenix currently does not

provide an implementation of the soundex algorithm; hence, we exclude two join queries

from the workload that use soundex algorithm.

The database size (DBsize) can be modulated by varying two parameters: the number of

customers (NUM CUST) and the number of items (NUM ITEMS). We set NUM ITEMS

to 10 * NUM CUST. In addition, we change the cardinality between the Customer and the

Orders table from .9 to 10. We populate the database with 1 million customers. For each

system that utilizes HBase as the storage layer, we major compact base tables, indexes and

MVs after the database population.

78

4.8.4.2 Systems Evaluated

Synergy: We use QT PC−W = {Author, Customer, Country} as the roots set to generate

views in the Synergy system. We create base tables, selected views and corresponding

indexes in HBase. In addition, we create lock tables for each root in QT PC−W . We disable

the Phoenix-Tephra transaction support.

MVCC-UA: To compare our views generation and selection mechanism with [54], we

deploy SQL Server 2012 on a single EC2 VM instance. Next, we populate the TPC-W

database with 1 million customers and run the TPC-W benchmark queries. Then, we use

the SQL Server’s database engine tuning advisor to analyze the profiled workload and

generate views. We create the generated views along with base tables and indexes in HBase

and run the workload with Phoenix-Tephra transaction support (MVCC) enabled.

MVCC-A: In addition to the base tables and indexes, we create the views and the view-

indexes generated by the Synergy system in HBase and run the workload with Phoenix-

Tephra transaction support (MVCC) instead of the specialized transaction support used in

Synergy.

Baseline: We only create base tables and corresponding indexes in HBase and run the

workload with Phoenix-Tephra transaction support (MVCC).

VoltDB: A VoltDB table can either be partitioned or replicated. The partitioning column

is specified by the user and partitioned tables can only be joined on equality of partitioning

column. Now, a table can join with other tables using different columns in different queries

of the workload; however, since each table can only be partitioned on a single column, only

a subset of workload join queries may work for a partitioning scheme.

To profile the performance of maximum number of joins in the TPC-W benchmark we

use three different partitioning schemes in VoltDB. However, note that in practice only

one partitioning scheme could be used for a database. Also, note that only base tables and

corresponding indexes are used in VoltDB.

Figure 4.11 summarizes the MVs creation and concurrency control mechanisms used

79

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Join Query ID

100

102

104

106

R
es

po
ns

e
T

im
e

(m
s)

VoltDB Synergy MVCC-A MVCC-UA Baseline

X X X X

Figure 4.12: Evaluation and comparison of join performance across different systems using
join queries in the TPC-W benchmark. Y axis is drawn at log scale. Join queries {Q3, Q7,
Q9, Q10} are not supported in VoltDB.

in each evaluated system.

4.8.4.3 Performance Evaluation of Joins in the TPC-W Benchmark

Experiment setup– In this set of experiments, we evaluate and compare the join perfor-

mance across different systems using the join queries in the TPC-W benchmark. Recall

that we used three different partitioning schemes in VoltDB to support maximum number

of TPC-W joins, using any single partitioning scheme less than 50% of the TPC-W joins

are supported.

We evaluate each query10 times and present the mean and the standard error of the

recorded response times. See Table 4.4 for the specification of join queries in the TPC-W

benchmark. Figure 4.12 presents the experiment results. Note that join queries {Q3, Q7,

Q9, Q10} are not supported in VoltDB.

Discussion– On an average the join queries in Synergy are 19.5x, 6.2x and 28.2x faster

as compared to the MVCC-UA, MVCC-A and Baseline system respectively. The view se-

lection mechanism in the Synergy system selects more MVs as compared to MVCC-UA,

resulting in significantly larger join performance benefit. In MVCC-UA, the response time

80

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13

Write Statement ID

200

400

600

800

1000

1200

1400

1600

R
es

po
ns

e
T

im
e

(m
s)

VoltDB Synergy MVCC-A MVCC-UA Baseline

Figure 4.13: Performance Evaluation of the write statements in the TPC-W benchmark
to exhibit the overhead of lock management and updating views in the Synergy system.
Comparison of write statement performance across different systems.

of Q10 is significantly lower than the Baseline system since MVCC-UA utilizes a material-

ized view for query evaluation. The join performance in Synergy system with specialized

concurrency control is marginally better than MVCC-A that uses MVCC. The join queries

that used views in Synergy are on an average 11x slower than VoltDB (excluding queries

that are not supported in VoltDB). In conclusion, join response times in the Synergy sys-

tem with selected views are significantly lower as compared to MVCC-UA and Baseline

system for the benchmark queries. In addition, although the Synergy join performance is

slower than VoltDB, Synergy allows for significantly more expressive joins than VoltDB.

4.8.4.4 Performance Evaluation of Write Statements in the TPC-W Benchmark

Experiment setup–In this set of experiments, we aim to evaluate the performance over-

head of acquiring/releasing a lock and updating MVs in the Synergy system. In addition,

we compare the write statement performance across different systems using the write state-

ments in the TPC-W benchmark. See Table 4.5 for the specification of write statements in

the TPC-W benchmark. We evaluate each statement 10 times and present the mean and the

standard error of the recorded response times. Figure 4.13 presents our experiment results.

Discussion–On an average the write statements in Synergy are 9x, 8.6x and 8.6x less

81

expensive than MVCC-UA, MVCC-A and Baseline system respectively. In Synergy sys-

tem, the execution time of statements W6 and W11 is significantly lower than the other

write statements since the corresponding relation is not part of any views. Although Base-

line system does not use any MVs and MVCC-UA utilizes only one materialized view,

the statement response times in these systems are high since MVCC adds an overhead of

800-900 ms to each statement’s execution time. On an average the write statements in Syn-

ergy are 9.4x more expensive than the VoltDB. In conclusion, experimental results show

that the use of hierarchical locking in Synergy system significantly reduces the write

transaction response times in presence of MVs.

Table 4.2: Sum of RT of all the statements in the TPC-W benchmark to quantify trade
off between read performance gain and write performance overhead of using MVs in each
evaluated system. VoltDB is excluded since it does not support all queries in the bench-
mark.

Evaluated Systems
Synergy MVCC-A MVCC-UA Baseline

Mean Response Time
(in seconds) 33.7 77.4 132.4 173.4

Standard Error .03 .02 .06 .07

Table 4.3: Database sizes across different evaluated systems.

No. of Customers Database Size (in GB)
VoltDB Synergy MVCC-A MVCC-UA Baseline

1M 31.8 92 91.8 45.73 43.8

4.8.4.5 Performance Comparison of All Evaluated Systems

Experiment setup–In this set of experiments, we evaluate the performance gain and

the storage overhead of using MVs in the Synergy system and compare it with the other

systems. Note that we exclude VoltDB since it does not support all join queries in the

TPC-W benchmark. We evaluate the performance of systems using all the statements in

the TPC-W benchmark.

82

During an experiment, we run each benchmark SQL statement and record its response

time. Next, we compute the sum of response time of all statements. We run each ex-

periment 10 times and present mean and standard error of the benchmark response time.

Table 4.2 presents the experiment results. Table 4.3 summarizes the database sizes across

different systems.

Discussion– Synergy system exhibits a performance improvement of 74.5%, 56.3%

and 80.5% as compared to the MVCC-UA, MVCC-A and Baseline system respectively.

Conversely, the database size in the Synergy system is 2x, 1x and 2.1x the database size

in the MVCC-UA, MVCC-A and Baseline system respectively. Hence, Synergy system

trades slight write performance degradation and increased disk utilization for faster join

performance. In conclusion, the specialized concurrency control mechanism and the

MVs generation mechanism in the Synergy system significantly improve the read perfor-

mance without shifting the bottleneck to the write performance.

Table 4.4: Specification of joins in the TPC-W Benchmark.

Join ID Tables Filters Order By Group By Limit Clause
Q1 Item, Order line ol o id None None None
Q2 Customer, Orders c uname o date, o id None 1
Q3 Customer, Address, Country c name None None None
Q4 Author, Item i subject i title None 50
Q5 Author, Item i subject i pub date, i title None 50
Q6 Author, Item i id None None None

Q7
Orders, Customer, Address as ship addr, Address

as bill addr, Country as ship co, Country as bill co o id None None None

Q8 Item, Shopping cart line scl sc id None None None
Q9 Item as I, Item as J i id None None None
Q10 Author, Item, Order line, Orders tmp table i subject ol qty i id 50

Q11 Order line as ol, Order line as ol2, Orders tmp table
ol.ol i id,

ol2.ol i id <>
ol qty ol i id 5

Table 4.5: Specification of write statements in TPC-W Benchmark.

ID Statement ID Statement ID Statement ID Statement
W1 Insert Orders W2 Insert CC Xacts W3 Insert Order line W4 Insert Customer
W5 Insert Address W6 Insert shopping cart W7 Insert shopping cart line W8 Delete shopping cart line
W9 Update Item1 W10 Update Item2 W11 Update shopping cart W12 Update shoppping cart line
W13 Update customer

83

4.9 Chapter Summary

In this chapter we present the Synergy system, a data store that leverages schema based–

workload driven materialized views and a specialized concurrency control system on top

of a NoSQL database that allows for scalable data management with familiar relational

conventions. Synergy trades slight write performance degradation and increased disk uti-

lization for faster join performance (compared to standard NoSQL databases) and improved

query expressiveness (compared to NewSQL databases). Experiment results on a lab clus-

ter using the TPC-W benchmark show the efficacy of our system.

84

Chapter 5

A comparative analysis of state-of-the-art SQL-on-Hadoop systems for interactive

analytics

Published in IEEE BigData Conference 2017.

Hadoop is emerging as the primary data hub in enterprises, and SQL represents the de

facto language for data analysis. This combination has led to the development of a vari-

ety of SQL-on-Hadoop systems in use today. While the various SQL-on-Hadoop systems

target the same class of analytical workloads, their different architectures, design decisions

and implementations impact query performance. In this chapter, we perform a comparative

analysis of four state-of-the-art SQL-on-Hadoop systems (Impala, Drill, Spark SQL and

Phoenix) using the Web Data Analytics micro benchmark and the TPC-H benchmark on

the Amazon EC2 cloud platform. The TPC-H experiment results show that, although Im-

pala outperforms other systems (4.41x – 6.65x) in the text format, trade-offs exists in the

parquet format, with each system performing best on subsets of queries. A comprehensive

analysis of execution profiles expands upon the performance results to provide insights into

performance variations, performance bottlenecks and query execution characteristics.

The rest of this chapter is organized as follows. In Section 5.1 we present the back-

ground information. Then, in Section 5.2, we describe our study goals. Section 5.3 utilizes

the WDA micro benchmark to evaluate and compare the performance of chosen systems.

Next, in Section 5.4, we use the TPC-H benchmark to thoroughly evaluate query expres-

siveness, optimizer quality and query execution engine efficiency in the examined systems.

Finally, we conclude in Section 5.5.

85

Ta
bl

e
5.

1:
Q

ua
lit

at
iv

e
co

m
pa

ri
so

n
of

ev
al

ua
te

d
SQ

L
-o

n-
H

ad
oo

p
sy

st
em

s.

Sy
st

em
Q

ue
ry

O
pt

im
iz

er
E

xe
cu

tio
n

M
od

el
Fa

ul
tT

ol
er

an
ce

E
xe

cu
tio

n
R

un
tim

e
Sc

he
m

a
R

eq
ui

re
m

en
ts

Im
pa

la
C

os
tB

as
ed

O
pt

im
iz

er
th

at
at

te
m

pt
s

to
m

in
im

iz
e

ne
tw

or
k

tr
an

sf
er

Vo
lc

an
o

B
at

ch
-a

t-
a-

Ti
m

e,
Pi

pe
lin

ed
E

xe
cu

tio
n,

R
un

tim
e

C
od

e
G

en
er

at
io

n
R

eq
ui

re
s

Q
ue

ry
R

es
ta

rt
M

PP
E

ng
in

e
w

ith
L

on
g

R
un

ni
ng

D
ae

m
on

s
U

pf
ro

nt
de

fin
iti

on
re

qu
ir

ed

Sp
ar

k
SQ

L
E

xt
en

si
bl

e
C

at
al

ys
tO

pt
im

iz
er

w
ith

C
os

ta
nd

R
ul

e
ba

se
d

op
tim

iz
at

io
n

Pi
pe

lin
ed

E
xe

cu
tio

n,
W

ho
le

St
ag

e
C

od
e

G
en

er
at

io
n,

V
ec

to
ri

ze
d

Pr
oc

es
si

ng
L

in
ea

ge
ba

se
d

R
D

D
Tr

an
sf

or
m

at
io

ns
Sp

ar
k

E
ng

in
e

R
efl

ec
tio

n
an

d
C

as
e

cl
as

se
s

ba
se

d
sc

he
m

a
in

fe
re

nc
e

D
ri

ll
A

pa
ch

e
C

al
ci

te
de

riv
ed

C
os

t
B

as
ed

O
pt

im
iz

er
V

ec
to

ri
ze

d
Pr

oc
es

si
ng

,P
ip

el
in

ed
E

xe
cu

tio
n,

R
un

tim
e

C
od

e
C

om
pi

la
tio

n
R

eq
ui

re
s

Q
ue

ry
R

es
ta

rt
M

PP
E

ng
in

e
w

ith
L

on
g

R
un

ni
ng

D
ae

m
on

s
Sc

he
m

al
es

s
Q

ue
ry

Su
pp

or
t

P-
H

B
as

e
A

pa
ch

e
C

al
ci

te
de

riv
ed

C
os

t
B

as
ed

O
pt

im
iz

er
B

lo
ck

in
g

E
xe

cu
tio

n
R

eq
ui

re
s

Q
ue

ry
R

es
ta

rt
C

lie
nt

C
oo

rd
in

at
ed

Pa
ra

lle
l

H
B

as
e

Sc
an

s
B

as
ed

U
pf

ro
nt

de
fin

iti
on

re
qu

ir
ed

86

5.1 Background

In this section we elucidate on how we utilize the profiling information exposed by each

evaluated system. Table 5.1 presents a qualitative comparison of the evaluated systems.

IMPALA and DRILL. The profiler provides an execution summary for the scan, join,

aggregation, data-exchange and sort operators present in a query execution plan. Note, the

scan operator includes the time to scan, filter, and project tuples from a table. Also, the

data-exchange operator includes the time to transfer the data over the network; however,

the data de/serialization time is not summarized by the profiler.

SPARK SQL. The profiler generates detailed statistics for each execution stage in

the query DAG. For each stage, we summarize the task data to calculate average val-

ues for scheduling delay, GC time, shuffle-read time, shuffle-write time and executor-

computing time. We map the query execution plan operators to the query DAG stages.

Note, multiple operators (with pipelined execution), such as join and partial-aggregation,

final-aggregation and sort, scan and partial-aggregation, may be mapped to a single DAG

stage. The executor-computing time for a stage is credited as the processing time for the

operator/s mapped to that stage. The Spark runtime performs I/O in the background while

a task is computing, and shuffle-read represents the time for which a task is blocked read-

ing the data over the network from another node [96]. Hence, the shuffle-read time for a

stage is attributed as the processing time for the corresponding data-exchange operator/s in

the query plan. Also, the shuffle-write time for a stage is assigned to the data serialization

overhead.

In this study, we utilize the average operator time in each evaluated system for analysis.

In addition, we could not use operator level execution time break-down in PHOENIX since

currently it does not record execution statistics.

We acknowledge the variance in profiling information exposed by evaluated systems;

however, despite the differences, we are able to gain significant insight into the performance

characteristics of evaluated systems.

87

Query Optimizer Query Execution Engine

Operator Implementations

CPU Memory Disk I/O Network I/O

Join Order Selection

Operator Selection

Benchmark

Query

Evaluated SQL-on-Hadoop System

Cluster Resources (# workers) Soft Parameter Configuration

Execution Profile Resource MetricsResponse Time

Figure 5.1: Query execution model in each evaluated system.

5.2 Experiment Goals

In this section we describe our study goals. The query performance in a SQL-on-

Hadoop system is dependent both on the quality of the execution plan generated by the

query optimizer and the efficient execution of the generated plan by the query engine,

as shown in Figure 5.1. The optimizer generates a query execution plan by evaluating

different join orders and selecting physical operators for the relational algebra operations

in the chosen query plan. The query execution engine utilizes operator implementations

to carry out the generated plan and produce the output RS. An operator may use one or

more sub-systems (CPU, Disk, Network and Memory) in the execution engine to perform

its task. The query RT represents our performance metric. We collect resource utilization

metrics and query execution profiles in each system.

In this study, our goal is to evaluate and understand the characteristics of two main

components of a SQL-on-Hadoop system (query optimizer and query execution engine)

and their impact on the query performance. For the query optimizer, our objective is to

characterize the execution plan generation, the join order selection and the operator selec-

tion in each evaluated system. To this end, we analyze and compare the generated execution

plans in each system and understand their impact on the query performance. For the query

execution engine, we aim to evaluate the efficiency of operator implementations in each

system and identify the performance bottlenecks. To this end, we utilize the query exe-

cution profiles to extract the operator processing times. In each system, we aggregate the

88

processing times for each operator type to understand the contribution of each operator

type to the query RT. In addition, we compare the total benchmark operator processing

times between evaluated systems to identify if a sub-system in an execution engine is a

performance bottleneck.

We perform experiments along three dimensions – storage format, scale-up and size-

up. We examine the impact of text (row-wise) and parquet (columnar) storage formats on

the query performance in each system. To understand the size-up characteristic in each

system, we increase the data size in a cluster and examine the query performance changes.

We evaluate the scale-up behavior in each system by proportionally increasing both the

cluster and the data size. Note that we use the scale-up and size-up definitions specified in

[97].

5.3 Micro Benchmark Experiments

In this section we utilize the WDA micro benchmark proposed in [70] to evaluate and

compare the performance of Impala, Drill, Spark SQL and P-HBase systems.

5.3.1 Hardware Configuration

We harness Amazon EC2 cloud environment to setup experiment testbeds. Our testbeds

comprise of “worker” VMs of r3.4xlarge instance type, a “client” VM of r3.4xlarge in-

stance type and a “master” VM of d2.xlarge instance type. A r3.4xlarge VM instance

is configured with 16 vCPUs, 122GB RAM, 320GB SSD instance storage and 120GB

EBS storage and a d2.xlarge VM instance is configured with 4 vCPUs, 30.5GB RAM,

3x 2000GB HDD instance storage and 120GB EBS storage. Note, we choose r3.4xlarge

instance for the worker nodes since evaluated systems are optimized for in-memory exe-

cution and the RAM size in a r3.4xlarge instance is large enough to hold the intermediate

result-sets of all workload queries in-memory for the largest evaluated DB size.

89

5.3.2 Software Configuration

We deploy HDFS, HBase, Drill, Impala, Spark, Yarn, Hive and Zookeeper frameworks

on each cluster. We host the control processes (e.g. HMaster, NameNode etc.) from each

framework on the master VM. We also use master VM as the landing node for the data

generation. Worker processes from each framework (e.g. DataNode, Drillbit etc.) are

hosted on each worker VM in the cluster. We reserve the client VM to drive the workload.

We deploy the Phoenix JDBC driver in the client VM and put relevant jars on the classpath

of each Region Server. We use the Cloudera Distribution v5.8.0, Impala v2.6.0, Spark v2.0,

Drill v1.8.0, HBase v1.2.0 and Phoenix v4.8.0.

Fine tuning of soft parameters is quintessential to getting the best performance out

of a software system. To identify the values for performance knobs that ensure a fair

comparison between evaluated systems, we rely on: 1) Settings used in prior studies (e.g.

[74, 72]). 2) Best practice guidelines from industry experts and system developers (e.g.

[98]). 3) Experimentation with different values that enable us to run all benchmark queries

and achieve the best performance.

For HDFS, we enable short-circuit reads, set the block size to 256MB and set the repli-

cation to 3. We enable Yarn as the resource manager for Spark and set spark.executor.cores

to 8, spark.executor.memory to 8GB and spark.memory.offheap to 16GB. We set the heap

size to 20GB in each Region-Server. We assign 95GB to each worker process in Impala

and Drill.

5.3.3 Experiment Setup

We evaluate systems one at a time. During the evaluation of a system, we stop the

processes for other systems to prevent any interference. We disable HDFS caching in each

system. We execute benchmark queries using a closed workload model, where a new query

is issued after receiving the response for the previous query. We run each query five times

90

and report the average of the query RT for the last four runs with a warm OS cache. We

use a JDBC driver to run the workload in P-HBase and shell scripts to issue queries in

Spark SQL, Drill and Impala. Similar to [70], we write query output to HDFS in Spark

SQL and to local file system in Impala, Drill and P-HBase. We use collectl linux utility to

record resource utilization on each worker node with a 3 second interval. We export the

query execution profile in all systems except P-HBase since it currently does not record

execution statistics.

5.3.4 WDA Benchmark

The benchmark schema comprises of two relations (UserVisits and Rankings) that

model the log files of HTTP server traffic. The benchmark workload comprises of simple

tasks (selection query, aggregation query, and join query) related to HTML document pro-

cessing. Note, similar to [73], we choose the aggregation task variant that groups records

by the source IP address prefix. In addition, we remove the UDF task from the workload

since it could not be implemented in each evaluated system. We use the data generator

utility provided with the WDA benchmark to generate 20GB of UserVisits data and 1GB

of Rankings data per worker node (same as in [70]). We refer reader to [70] for detailed

benchmark description.

Table 5.2: Data preparation times (seconds) in evaluated systems for WDA benchmark.

of
Worker
Nodes

Insert
HDFS

Impala P-HBase Drill and
Spark SQL

Load
Tables

Compute
Stats Total Load

Tables
Major

Compact Total Total

2 280 10.93 283.97 574.9 6748 1590 8618 280
4 550 9.5 291.4 850.9 7027 1722 9299 550
8 1124 8.6 295.2 1427.8 9088 1559 11771 1124

5.3.5 Data Preparation

We evaluate each system with the data stored in the text format to ensure storage format

parity across systems. In each system, we first load the text data from the landing node into

91

HDFS. Drill and Spark SQL are capable of directly querying the text data stored in HDFS.

Next, we describe the subsequent data preparation steps taken in Impala and P-HBase,

IMPALA. We create the benchmark schema and load tables with the text data stored in

HDFS. Next, we utilize the COMPUTE STATS command to collect statistics for each table.

P-HBASE. We create UserVisits and Rankings tables with visitDate and pageRank as

the first attribute in the respective row-keys. As a result, similar to [70], UserVisits and

Rankings tables are sorted on visitDate and pageRank columns respectively. We assign

all columns in a table to a single column family. We utilize the salting feature provided

by Phoenix to pre-split each table with two regions per region-server. Salting prevents

region-server hotspotting and achieves uniform load distribution across region-servers in

the cluster. We utilize a MR based bulk loader in Phoenix to load the text data stored in

HDFS into HBase tables. Next, we run major compaction on each table to merge multiple

HFiles of a region into a single HFile. Phoenix collects data statistics for each table during

the major compaction process.

Table 5.2 presents the data preparation times in each evaluated system for 2, 4 and 8

worker nodes. The time to load data into HDFS from the landing node increases linearly

with an increase in the cluster and the data size (recall that the data size increases with

each worker). The time to load data into Impala tables is a small fraction of the total data

preparation cost since Impala’s text loading process simply moves the files to a Impala

managed directory in HDFS. The statistics computation process in Impala and the major

compaction process in P-HBase exhibit good scale-up characteristic as the execution times

remain nearly constant for the different cluster sizes. However, the data loading times for

the MR based bulk loader in P-HBase increase with an increase in the data size and the

number of worker nodes in the cluster.

92

Ta
bl

e
5.

3:
Q

ue
ry

R
T

s(
in

se
co

nd
s)

in
ev

al
ua

te
d

sy
st

em
su

si
ng

W
D

A
be

nc
hm

ar
k

fo
r2

,4
an

d
8

w
or

ke
rn

od
es

in
th

e
cl

us
te

r.
R

T
in

bo
ld

te
xt

de
no

te
s

th
e

fa
st

es
ts

ys
te

m
fo

r
ea

ch
qu

er
y

an
d

cl
us

te
r

si
ze

co
m

bi
na

tio
n.

A
M

de
no

te
s

th
e

ar
ith

m
et

ic
m

ea
n.

To
co

m
pu

te
th

e
no

rm
al

iz
ed

A
M

:
fo

r
ea

ch
qu

er
y,

w
e

no
rm

al
iz

e
th

e
qu

er
y

R
T

s
in

ea
ch

sy
st

em
an

d
fo

r
ea

ch
cl

us
te

r
si

ze
by

th
e

qu
er

y
R

T
in

Im
pa

la
w

ith
2

w
or

ke
r

no
de

s.

W
D

A
Q

ue
ry

N
o.

#
of

w
or

ke
r

no
de

s–
2

#
of

w
or

ke
r

no
de

s–
4

#
of

w
or

ke
r

no
de

s–
8

Im
pa

la
Sp

ar
k

D
ri

ll
P-

H
B

as
e

Im
pa

la
Sp

ar
k

D
ri

ll
P-

H
B

as
e

Im
pa

la
Sp

ar
k

D
ri

ll
P-

H
B

as
e

Q
1

E
xe

cu
tio

n
0.

28
5.

5
9

0.
3

0.
28

6
16

.5
0.

34
0.

28
7

30
0.

62
W

ri
te

O
ut

pu
t

3.
13

0.
5

2
8.

7
6.

03
0.

9
3.

5
14

.6
6

11
.5

2
2.

1
5

26
.3

8
To

ta
l

3.
41

6
11

9
6.

31
6.

9
20

15
11

.8
9.

1
35

27
Q

2
To

ta
l

12
.6

68
.6

33
24

0
12

.4
68

31
.8

22
8

13
.1

5
69

.1
68

23
1

Q
3

To
ta

l
14

.8
67

.1
34

14
15

70
.1

35
.1

17
15

.1
2

84
.6

72
40

A
M

10
.2

7
47

.2
3

26
87

.6
7

11
.2

4
48

.3
3

28
.9

7
86

.6
7

13
.3

6
54

.2
7

58
.3

3
99

.3
3

N
or

m
al

iz
ed

A
M

1
3.

89
2.

7
7.

52
1.

28
4.

04
3.

58
7.

84
1.

84
4.

61
6.

79
9.

63

93

(Q1) SELECT pageURL, pageRank

FROM Rankings WHERE pageRank > X

(Q2) SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)

FROM UserVisits GROUP BY SUBSTR(sourceIP, 1, 7)

(Q3) SELECT sourceIP, totalRevenue, avgPageRank

FROM (SELECT sourceIP, AVG(pageRank) as avgPageRank,

SUM(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL AND

UV.visitDate BETWEEN Date('2000-01-15')

AND Date('2000-01-22')

GROUP BY UV.sourceIP)

ORDER BY totalRevenue DESC LIMIT 1

Coordinator Merge

Rankings

Scan

(Q1)(Query Text)

Coordinator Merge

UserVisits

Scan

Partial Aggregation

(Q2)

Final Aggregation

Data Exchange

UserVisitsRankings

Scan

Data Exchange Data Exchange

(Q3)

Join

Coordinator Merge

Partial Aggregation

Final Aggregation

Data Exchange

TopN

Scan

Figure 5.2: Query text and logical plans for the WDA benchmark queries.

5.3.6 Experiment Results

Table 5.3 presents the query RT for tasks in the WDA benchmark. Note, the standard

error of the mean query RT is negligible in evaluated systems; hence, we exclude it from

the presentation of the results. To evaluate the scale-up characteristic in each system, we

perform experiments with 2, 4 and 8 worker nodes in the cluster. On an average, Impala

is (5.2x - 7.5x), (2.7x - 3.7x) and (2.5x - 3.9x) faster as compared to P-HBase, Drill, and

Spark SQL, respectively. Next, for each benchmark task, we analyze the execution profiles

to understand its performance characteristics in each evaluated system. Figure 5.2 shows

the text and the logical execution plans for the benchmark tasks.

94

5.3.6.1 Selection Task (Q1)

The selection task is a scan query with a lightweight filter on the Rankings table. It is

designed to primarily measure the read and the write throughput in each evaluated system.

Similar to [70], we set the filter parameter to 10, resulting in ≈ 33K records per worker

node in the cluster.

DISCUSSION. Impala, Spark SQL and Drill perform a full scan of the Rankings table

and apply the filter to generate the output RS. Impala is the fastest with sub-second scan

operator time. P-HBase achieves significant scan efficiency by performing a range-scan

on the Rankings table since it is sorted on the pageRank attribute. The scan operator time

represents a major fraction (.95x) of the total query execution time in Spark SQL. Drill is

the slowest and the scan operator is the primary contributor (.9x) to the total query execution

time in Drill. Impala and Spark SQL exhibit the lowest (8%) and the highest (35%) mean

CPU utilizations, respectively. The output RS materialization time shows that Spark SQL

achieves the highest write throughput and P-HBase is the slowest.

SCALE-UP BEHAVIOR. The constant query execution time across different cluster

sizes shows linear scale-up behavior in Impala. Although the relative query execution

time in Drill, Spark SQL and P-HBase increases with the increase in the cluster size, Drill

exhibits the maximum increase (≈ 80%). Further examination of the query execution pro-

file in Drill shows that, although the processing time of the scan operator remains nearly

constant, the scan operator wait time increases as the cluster is scaled up, resulting in the

observed increase in the query execution time. In each system, the output RS materializa-

tion time increases proportionately with the increase in the cluster size since nearly 33K

records are generated for each worker node in the cluster.

5.3.6.2 Aggregation Task (Q2)

The aggregation task groups records by the seven-character prefix of the sourceIP at-

tribute in the UserVisits table and produces ≈ 1000 groups regardless of the number of

95

workers in the cluster. It is designed to evaluate the performance of each system for par-

allel analytics on a single table. Note, output RS materialization time is negligible; hence,

we only report the total query RT.

DISCUSSION. Each evaluated system scans the UserVisits table and performs partial-

aggregation followed by the final-aggregation to generate the output RS. Impala is at least

5x faster than the other evaluated systems. Impala uses the streaming-aggregation (SA)

operator and it is the primary contributor (≈ .85x) to the query RT. Drill utilizes the hash-

aggregation (HA) operator and although the query RT is high in Drill, the total aggregation

operator processing time is less than 2s (as compared to ≈ 11s in Impala) across all clus-

ter sizes. The scan operator is the primary contributor (.65x - .9x) to the query RT in

Drill. P-HBase exhibits the highest query RT since it scans approximately 40% more data

(UserVisits size is ≈ 1.4x in P-HBase, due to the HBase HFile format that appends key,

column family, column and timestamp to each cell value) than other systems and its ex-

ecution engine lacks the run time code generation feature. In Spark SQL, the scan and

the partial-aggregation operators are mapped to a single DAG stage that contributes nearly

98% to the query RT. Impala achieves lowest mean CPU utilization (20%) as compared to

Drill (35%), Spark SQL (60%) and P-HBase (55%).

SCALE-UP BEHAVIOR. Impala, Spark SQL and P-HBase exhibit near linear scale-up

characteristic as the query RT remains almost constant with the increase in the cluster size.

On the contrary, the query RT in Drill more than doubles as the cluster size is increased

from 4 to 8 worker nodes. Further analysis of execution profile shows that, similar to the

selection task, increases in the scan operator wait time is primarily responsible for this

increase in the query RT. Note, although the query RT in Drill increases as the cluster is

scaled up, the aggregation operator time remains nearly constant.

96

5.3.6.3 Join Task (Q3)

The join task consumes two input tables (Rankings and UserVisits) and combines

records with values matching on the join attributes (pageURL and destURL). It is designed

to examine the efficiency of each sub-system (CPU, disk, etc.) in the evaluated query exe-

cution engines.

DISCUSSION. Drill, Impala, and Spark SQL scan and hash-partition Rankings and

UserVisits tables on the join keys. The matching records from the partitioned tables are

then joined, aggregated and sorted to generate the output RS. Impala utilizes the hash-join

(HJ) operator and although the join operator processing time is high in Impala (≈ 7s), query

RT is dominated by the scan operator time (≈ 80% of query RT) for the UserVisits table.

Similarly, the scan operator time for the UserVisits table is the primary contributor to the

query RT in both Spark SQL (.8x – .9x) and Drill (at least .75x). Drill uses the HJ operator

and despite the high query RT, Drill exhibits the lowest join operator processing time (less

than 4.5s) among all evaluated systems and across all cluster sizes. P-HBase performs a

range-scan of the UserVisits table to prepare and broadcast the hash table to each region

server. Since the UserVisits table is sorted on the filter attribute visitDate, P-HBase is able

to perform the range-scan and gain significant scan efficiency.

SCALE-UP BEHAVIOR. The query RT in P-HBase increases as the cluster is scaled up

since the time to broadcast the hash table of one join input from the client to the region

servers increases. Spark SQL utilizes the sort-merge-join (SMJ) operator and the join op-

erator processing time shows increase as the cluster is scaled up. Similar to the aggregation

task, the query RT in Drill more than doubles as the cluster size is increased from 4 to 8

workers due to an increase in the scan operator wait time. In addition, the join operator time

in Drill shows marginal increase (2.7s – 4.2s) as the cluster is scaled up. Impala exhibits

near linear scale-up behavior with almost constant query RTs across different cluster sizes.

97

5.4 TPC-H Benchmark Experiments

Next, we utilize the TPC-H benchmark to evaluate and compare the performance of

Impala, Drill and Spark SQL systems. We use TPC-H since its workload comprises of a

wide range of complex analytical tasks that thoroughly test query expressiveness, optimizer

quality and query execution engine efficiency in the examined systems. We evaluate each

system with the data stored in, both the text and the parquet storage formats. The par-

quet format enables analytical systems to achieve improved disk I/O efficiency by allowing

reads to skip unnecessary columns, and improved storage efficiency through compression

and encoding schemes. To evaluate the size-up characteristic of each examined system,

we perform experiments for three scale-factors (SFs) : 125, 250, and 500. Note that SF

denotes the database size (in GB) in the text format. We exclude P-HBase from the TPC-H

experiments since more than 90% of the benchmark queries require evaluation of one or

more joins to compute the output RS. However, the P-HBase execution engine architecture

with client coordinated shuffle is not apt for join heavy workloads and results in orders of

magnitude slower query performance as compared to the other evaluated systems. We use

the same experiment setup for each evaluated system as described in Section 6.3.3.

Table 5.4: Data preparation times (seconds) in systems for the TPC-H benchmark

TPC-H
Scale

Factor

Insert
HDFS

Impala Spark SQL and Drill
Text Parquet Text Parquet

Load
Tables

Compute
Stats Total Load

Tables
Compute

Stats Total Total Convert Total

125 957 31.4 118.4 1106.8 120.2 127.7 1236.3 957 134.8 1091.8
250 1900 32.8 214.6 2147.4 205.9 247.2 2385.9 1900 212.3 2112.3
500 3898 33.4 415 4346.4 354.1 441.9 4727.4 3898 328 4226

5.4.1 Hardware and Software Configuration

Our experiment testbed comprises of 20 worker VMs, 1 client VM and 1 master VM

(see Section 6.3.1 for VM instance descriptions). We use the same software configuration

for each evaluated system as described in Section 6.3.2.

98

5.4.2 Data Preparation

For the text format, we use the same data preparation steps in each evaluated system

as described in Section 5.3.5. For the parquet format, we take different steps in the Impala

and the Spark SQL systems. In Spark SQL, for each TPC-H table, we use a script to

first read the text files stored in HDFS into a rdd, then convert the rdd into a data frame

and finally save the data frame back into HDFS in the parquet format. Created parquet

files are then queried in, both Drill and Spark SQL systems. In Impala, we first create

the schema for parquet tables and then load parquet tables using the text tables. Next, we

utilize the COMPUTE STATS command to collect statistics for each parquet table. We use

Snappy compression with parquet format in each evaluated system. Table 5.4 shows the

data preparation times for each evaluated system at TPC-H scale factors 125, 250 and 500.

The DB size in the parquet format at scale factors 125, 250 and 500 is 39.9GB, 79.8GB and

168.1GB respectively. The data preparation in each system for both the text and the parquet

formats increases proportionately with the increase in the data size, exhibiting good size-up

property.

5.4.3 Experiment Results

Table 5.5 presents the RT of TPC-H queries in each evaluated system for the text and the

parquet storage formats at scale factors 125, 250, and 500. Again, the standard error of the

mean query RT is minimal in evaluated systems; hence, we exclude it from the presentation

of the results. Table 5.5 also shows the arithmetic mean (AM) of the RT of all benchmark

queries for each storage format, SF, and evaluated system combination.

Only 15 TPC-H queries could be evaluated in each system. AM–Q{2,11,13,16,19,21,22}

represents the AM of the RT of all benchmark queries except Q2, Q11, Q13, Q16, Q19,

Q21, Q22. The query optimizer in Impala failed to plan for Q11. Drill exhibits minimal

query expressiveness with six failed queries in the two storage formats. Queries Q2, Q19,

99

Ta
bl

e
5.

5:
Q

ue
ry

R
T

s
(s

ec
on

ds
)

in
ev

al
ua

te
d

sy
st

em
s

us
in

g
th

e
T

PC
-H

be
nc

hm
ar

k
at

12
5,

25
0

an
d

50
0

sc
al

e
fa

ct
or

s.
R

T
in

bo
ld

te
xt

de
no

te
s

th
e

fa
st

es
t

sy
st

em
fo

r
ea

ch
qu

er
y,

sc
al

e
fa

ct
or

an
d

fil
e

fo
rm

at
co

m
bi

na
tio

n.
To

co
m

pu
te

th
e

no
rm

al
iz

ed
A

M
–

Q
{2

,1
1,

13
,1

6,
19

,2
1,

22
}:

fo
re

ac
h

qu
er

y,
w

e
no

rm
al

iz
e

th
e

qu
er

y
R

T
s

in
ea

ch
sy

st
em

,a
ta

ll
sc

al
e

fa
ct

or
s

an
d

fo
re

ac
h

st
or

ag
e

fo
rm

at
by

th
e

qu
er

y
R

T
in

Im
pa

la
,f

or
th

e
pa

rq
ue

ts
to

ra
ge

fo
rm

at
,a

ts
ca

le
fa

ct
or

12
5.

T
PC

-H
Q

ue
ry

N
o.

T
PC

–H
Sc

al
e

Fa
ct

or
–

12
5

T
PC

–H
Sc

al
e

Fa
ct

or
–

25
0

T
PC

–H
Sc

al
e

Fa
ct

or
–

50
0

Im
pa

la
Sp

ar
k

SQ
L

D
ri

ll
Im

pa
la

Sp
ar

k
SQ

L
D

ri
ll

Im
pa

la
Sp

ar
k

SQ
L

D
ri

ll
Te

xt
Pa

rq
ue

t
Te

xt
Pa

rq
ue

t
Te

xt
Pa

rq
ue

t
Te

xt
Pa

rq
ue

t
Te

xt
Pa

rq
ue

t
Te

xt
Pa

rq
ue

t
Te

xt
Pa

rq
ue

t
Te

xt
Pa

rq
ue

t
Te

xt
Pa

rq
ue

t
Q

1
37

.6
8

37
.7

9
24

.8
4.

86
33

.3
3

18
.0

6
71

.0
9

73
46

.2
3

6.
56

63
.8

1
26

.9
14

2.
43

13
8.

6
78

.4
6

22
.5

6
13

2.
33

50
.7

Q
2

3.
59

2.
58

43
.4

16
.0

3
Fa

ile
d

Fa
ile

d
5.

56
3.

43
72

.9
3

23
.8

6
Fa

ile
d

Fa
ile

d
8.

73
4.

1
15

2.
5

33
.2

Fa
ile

d
Fa

ile
d

Q
3

9.
08

7.
34

28
.7

7.
3

52
.1

6
16

.5
15

.6
6

12
.6

6
54

.5
11

.5
92

.4
6

23
.7

28
.3

3
24

.2
11

2.
93

22
.1

3
18

9.
46

40
.4

6
Q

4
7.

94
7.

31
44

.2
25

.5
6

54
.7

6
18

.3
6

13
.7

6
12

.6
6

79
.8

46
.4

6
94

.6
3

29
.1

28
.5

16
.6

6
17

1.
4

94
19

7
44

.9
Q

5
13

.3
10

.4
4

46
.1

25
.1

6
50

.2
3

13
.8

23
.9

26
.6

3
97

.1
3

35
.1

95
.8

3
18

.3
3

44
.6

3
52

.2
15

1.
06

62
19

8.
73

37
.1

6
Q

6
3

1.
81

21
.6

3
2.

26
29

.9
3

5.
26

5.
86

1.
84

36
.7

6
2.

7
57

.6
6

6.
73

11
.1

6
2.

8
74

.0
3

3.
9

12
5.

73
12

.8
6

Q
7

13
.4

7
13

.2
9

75
.8

1
22

.4
52

.1
17

.9
6

22
.2

21
.7

6
14

4.
33

61
.5

6
10

0.
4

32
.8

3
42

.1
6

44
.6

24
4.

43
65

.0
6

19
9.

5
66

.7
3

Q
8

5.
68

3.
49

47
.3

3
18

.8
6

42
.2

3
5.

53
10

.6
6.

7
67

41
.5

87
.2

11
.4

6
21

.7
3

11
.5

3
12

8.
4

78
.7

3
20

8.
56

22
.9

3
Q

9
14

.7
9

12
.2

9
54

.2
6

30
.3

6
46

.7
12

.4
23

.5
3

17
.7

3
95

.7
66

.7
3

11
2.

3
28

.1
40

.1
3

31
.0

6
18

1.
13

12
5

23
1.

33
61

.7
Q

10
7.

27
5.

68
32

.8
3

8.
56

40
.7

3
12

.8
6

11
.6

9.
13

62
.2

6
10

.7
6

79
19

.0
6

20
.7

3
15

.5
11

0.
13

32
.5

6
16

8.
86

40
.4

6
Q

11
Fa

ile
d

Fa
ile

d
33

.2
3

21
.3

3
11

.9
3

1.
66

Fa
ile

d
Fa

ile
d

51
.4

6
28

.7
6

19
.7

6
1.

8
Fa

ile
d

Fa
ile

d
77

.9
6

37
.6

3
32

.6
6

3.
66

Q
12

6.
58

4.
97

26
.7

6
4.

76
37

.4
3

18
.1

11
.2

3
7.

96
48

.1
6.

5
76

.7
28

.3
21

.0
3

12
.9

3
93

.5
6

10
.4

3
15

7.
6

58
.3

Q
13

9.
01

10
.7

5
16

.4
3

9.
26

Fa
ile

d
9.

36
17

.8
6

20
.4

6
22

.9
6

15
.2

3
Fa

ile
d

9.
4

34
.9

3
36

34
.8

6
25

.7
3

Fa
ile

d
22

.9
Q

14
4.

44
3.

88
23

.2
6

3.
73

30
.2

4.
5

7.
5

4.
4

39
.9

4.
96

61
.5

3
8.

83
12

.9
3

8.
3

72
.9

7.
23

13
4.

76
18

.3
3

Q
15

11
.2

6
8.

4
49

.5
4.

96
30

.6
6

18
.4

9.
92

77
.9

6
7.

36
61

.9
9

13
.2

6
31

.8
8

16
.2

1
14

7.
06

12
.0

3
12

9.
06

22
.2

6
Q

16
6.

37
6.

32
68

.9
3

81
Fa

ile
d

8.
46

6.
16

8.
36

13
6.

76
15

2
Fa

ile
d

17
.0

6
12

.7
5

12
.9

6
28

6.
93

37
1.

96
Fa

ile
d

25
.3

Q
17

29
.6

5
31

.1
9

53
.8

17
.0

6
95

.2
6

14
.9

6
61

.2
3

64
.7

3
99

.9
3

41
.9

3
18

2.
26

24
.1

3
12

5.
76

96
.7

4
20

2.
06

87
.0

6
36

1.
63

43
.7

6
Q

18
17

.8
17

.8
2

63
.6

15
.1

3
98

.7
6

25
.9

3
36

.2
4

30
.2

11
0.

83
27

.2
3

22
6.

36
48

.1
6

72
.9

3
47

.0
3

20
1.

9
51

.5
47

8.
06

12
4.

83
Q

19
49

.6
9

52
.2

2
22

.9
6

4.
46

Fa
ile

d
Fa

ile
d

10
5.

73
11

4.
53

40
.6

3
5.

36
Fa

ile
d

Fa
ile

d
21

1.
13

20
9.

13
74

.4
6

8.
8

Fa
ile

d
Fa

ile
d

Q
20

8.
54

4.
53

38
.2

6
21

.4
3

45
.1

3
9.

86
15

.2
4

7.
46

57
.2

6
19

.1
91

.0
3

18
.4

29
.1

13
.1

6
11

0.
86

26
.7

3
17

1.
96

27
.6

3
Q

21
24

.1
9

23
.1

5
13

1.
7

83
.6

3
Fa

ile
d

Fa
ile

d
46

.8
44

.8
3

26
5.

66
17

2.
8

Fa
ile

d
Fa

ile
d

95
.8

3
89

58
3.

5
36

4.
43

Fa
ile

d
Fa

ile
d

Q
22

3.
36

2.
86

22
.8

6
13

.3
Fa

ile
d

Fa
ile

d
5.

16
5.

13
30

.7
17

.2
6

Fa
ile

d
Fa

ile
d

8.
7

8.
33

48
.2

3
35

.6
6

Fa
ile

d
Fa

ile
d

A
M

–
–

44
.1

1
20

.0
6

–
–

–
–

79
.0

4
36

.6
–

–
–

–
15

1.
76

71
.7

4
–

–
A

M
–Q

{2
,1

1,
13

,
16

,1
9,

21
,2

2}
12

.8
6

11
.7

3
41

.3
7

14
.1

5
50

.1
5

12
.7

6
23

.6
4

21
.2

9
72

.8
4

26
.5

8
10

0.
46

21
.2

3
45

.8
2

36
.9

7
13

4.
77

47
.7

5
20

9.
07

42
.5

1

N
or

m
al

iz
ed

A
M

–Q
{2

,1
1,

13
,1

6,
19

,2
1,

22
}

1.
26

1
5.

83
1.

87
6.

75
1.

68
2.

25
1.

65
9.

95
3.

15
13

.4
2.

79
4.

27
2.

86
18

.8
6

5.
65

28
.4

1
5.

8

Te
xt

(A
M

)o
ve

r
Pa

rq
ue

t(
A

M
)

1.
26

3.
11

4.
01

1.
36

3.
15

4.
8

1.
49

3.
33

4.
89

100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
TPC-H Query Number

0

100

200

300

400

500

600

O
p
er
at
o
r
P
ro
ce
ss
in
g
T
im

e
(i
n
 s
)

Scan-Join-Aggregation-Sort

Scan

Join-Aggregation-Sort

Garbage Collection

Data Serialization

Join

Aggregation

Data Exchange

Sort

Scheduling Delay

Scan-Join-Aggregation-Sort

Scan

Join-Aggregation-Sort

Garbage Collection

Data Serialization

Join

Aggregation

Data Exchange

Sort

Scheduling Delay

Figure 5.3: The breakdown of query RT into aggregated processing time for each operator type
in evaluated systems. The TPC-H scale factor is 500 and the storage format is parquet. For each
query, the left bar, the middle bar and the right bar represent Impala, Spark SQL and Drill systems,
respectively.

Q21 and Q22 failed for both storage formats in Drill with a server side “Drill Remote

Exception”, whereas queries Q13 and Q16 failed with the same error for the text storage

format only.

We use the normalized AM–Q{2,11,13,16,19,21,22} (see Table 5.5) to carry out an

overall performance comparison of evaluated systems for the text and the parquet storage

formats at scale factors 125, 250, and 500. In the text format, Impala is the fastest (4.41x

– 6.65x) and Drill is the slowest (1.15x – 6.65x), across all evaluated scale factors. In

the parquet format, although Drill is nearly 1.1x faster than Spark SQL at smaller scale

factors (SF 125 and SF 250), Spark SQL marginally outperforms (1.02x) Drill for the

largest evaluated scale factor (SF 500). Impala is the fastest (1.68x – 2.0x) system in

the parquet format, across all evaluated scale factors. In contrast with the text format,

parquet format results exhibit interesting query performance trade-offs with each system

outperforming the other two systems for a subset of TPC-H queries.

In the subsequent sections, we analyze the query execution profiles to gain an insight

into the optimizer characteristics and the execution engine efficiency in each evaluated

system.

101

5.4.3.1 Execution Time Breakdown

In this section we present the breakdown of query RT into aggregated execution time

for each operator type to understand execution characteristics in evaluated systems. We

perform this analysis for the largest evaluated scale factor (SF 500) in the parquet format

(see Section 5.4.3.3 for parquet vs. text comparison). Figure 5.3 depicts the execution time

breakdown for the TPC-H benchmark queries in evaluated systems.

IMPALA. Impala primarily utilizes HJ and SA operators to perform join and aggre-

gation operations, respectively. The query RT is dominated by scan, join and aggregation

operator times in Impala. On an average, the join and aggregation operator times are 35%

and 25% of the query RT, respectively. Use of a single CPU core to perform the join and the

aggregation operations (identified in previous work [72] as well) combined with the choice

of SA operator to perform the grouping aggregation, results in sub-optimal CPU and mem-

ory resource usage and is the primary performance bottleneck in Impala. Although, on an

average, the scan operator time is 18% of the query RT, Impala exhibits the most efficient

disk I/O sub-system among all evaluated systems. The average data-exchange operator

time is 6% of the query RT, demonstrating efficient network I/O subsystem. Query 19 RT

is relatively high in Impala since predicates are evaluated during the join operation instead

of being pushed down to the scan operation.

DRILL. Drill mainly uses HA and SA operators to perform grouping and non-grouping

aggregation operations, respectively. In addition, HJ represents the primary join operator

in Drill. The scan operator contributes the maximum (on an average 42%) to the query

RT in Drill. The total scan operator time in Drill is nearly 4.5x as compared to Impala for

all benchmark queries that completed in both systems. Although, on an average, the join

operator time in Drill is 21% of the query RT, the HJ operator choice combined with an ef-

ficient operator implementation results in lowest total join operator time for all benchmark

queries among all evaluated systems. Drill exhibits high scheduling overhead with aver-

age time being 13% of the query RT; however, the data-exchange operator shows notable

102

efficiency with average time being 4% of the query RT.

SPARK SQL. Recall that multiple query plan operators may be mapped to a single

DAG stage in Spark SQL (see Section 5.1). Hence, for queries that perform: 1) partial-

aggregation and join, and/or 2) final-aggregation and sort operations in a single stage, we

present the sum of join, aggregation, and sort operator times, denoted as JAS. Also, for

queries that perform scan and partial-aggregation operations in a single stage, we present

the sum of scan and JAS operation times.

Spark SQL largely utilizes SMJ and HA operators to perform join and aggregation op-

erations, respectively. On an average, the scan and the JAS operations contribute 42% and

46% to the query RT, respectively (based on the 15 TPC-H queries that perform scan and

JAS operations in separate stages). The joins are expensive in Spark SQL due to use of

SMJ operator that performs a costly sort operation on both join inputs before combining

the matching records. On an average, the GC time is 7% of the query RT and scan opera-

tion represents the principal source of GC overhead. Although the average data-exchange

operator time is 7% of the query RT, the network data transfer performance in Spark SQL

is at least 3x slower as compared to other evaluated systems based on the total benchmark

data-exchange time.

5.4.3.2 Correlated Sub-query Execution in Drill

In this section we discuss correlated sub-query execution characteristic in Drill through

an example TPC-H query (Q4). In the case of correlated sub-queries with one or more

filters on the outer table, Drill optimizer generates a query execution plan that first performs

a join of the outer and inner table to filter the inner table rows for which the join key does

not match with the join key of the filtered outer table. The filtered inner table rows are then

joined with the outer table rows to generate the output RS. We also compare the Drill query

execution with the query execution in Impala and Spark SQL systems. Figure 5.4 depicts

the query text, execution plans and the profiled operator times in evaluated systems for the

103

Order

A

Z

Lineitem Order

SELECT

o_orderpriority,

count(*) as order_count

FROM

order

WHERE

o_orderdate >= '1993-07-01'

and o_orderdate < '1993-10-01'

and EXISTS

(SELECT *

FROM lineitem

WHERE

l_orderkey = o_orderkey and

l_commitdate < l_receiptdate

)

GROUP BY

o_orderpriority

ORDER BY

o_orderpriority

TPC-H Q4 Drill

Scan : 5Scan : 23.7

Scan : 7

HP : .09 HP : .04

HP : .31 HP : .55

HP : .03

HA : .02

HA : 0

Sort : .03

HJ : .13

HJ : 3.6

Coordinator Merge

A

Z

OrderLineitem

A

Z

LineitemOrder

Spark Impala

A

Z

Scan : 1.4 Scan : 1.3

HP : .03

HJ : 2.6

SA : 2.6

HP : .001

Finalize : .18

Sort : .03

Symbol Description

Aggregation

Data Exchange

Inner Join

Right Semi Join

Left Semi Join

Sort/TopN

Input Table

Acronym :
Time

Operator Name :
Execution time (s)

Table

Scan : 5 Scan : 41

HA

&

SMJ

HP : 2.6HP : 16.4

HA : 0.2

HP : 0

RP : 0

Sort : .03

Acronym Description Acronym Description Acronym Description

SA Streaming Aggregate HA Hash Aggregate RP Range Partitioning

HP Hash Partitioning HJ Hash Join SMJ Sort Merge Join

Coordinator Merge

:31.6

Figure 5.4: Query text and execution plans with profiled operator times in evaluated system for
TPC-H query 4. The storage format is parquet and the SF is 500

TPC-H query 4. Note that the storage format is parquet and scale factor is 500.

DRILL. The Order table is scanned (o orderkey, o orderdate), filtered (o orderdate

>= ‘1993-07-01’ and o orderdate <‘1993-10-01’) and hash-partitioned on the o orderkey.

Similarly, Lineitem table is scanned (l orderkey, l commitdate, l receiptdate), filtered (l commitdate

<l receiptdate) and hash-partitioned on the l orderkey. Next, tuples from the Order and the

Lineitem partitions are inner joined using the HJ operator and the intermediate RS is hash-

partitioned on the o orderkey. This join operation reduces the number of Lineitem rows that

104

are shuffled across the cluster nodes. Next, Order table is scanned (o orderkey, o orderdate,

o orderpriority), filtered (o orderdate >= ‘1993-07-01’ and o orderdate <‘1993-10-01’)

and hash-partitioned on the o orderkey for the second time. Then, tuples from the inter-

mediate RS and Order partitions are inner joined using the HJ operator. Subsequently,

the results are partially hash-aggregated and hash-partitioned on the grouping attribute

(o orderpriority) to enable final hash-aggregation. Finally, sorted results are merged in

the coordinator node.

The first join between the Lineitem and the Order table reduces the data that are par-

titioned across the cluster nodes. However, as shown in Figure 5.4, scan operation is the

primary performance bottleneck in Drill. In addition, using the same plan with text data

worsens the performance since all columns in the Order table are scanned twice during

query execution.

SPARK SQL. The Lineitem and the Order tables are scanned and hash-partitioned on

the join keys (o orderkey, l orderkey). The tuples from the Order and Lineitem table parti-

tions are then left-semi joined using the SMJ operator. The results are then partially hash-

aggregated and hash-partitioned on the grouping attribute (o orderpriority) to enable final

hash-aggregation. The aggregated results are then range partitioned and sorted to generate

the output RS. Although only three columns need to be scanned from both tables in the par-

quet format, due to a bug in the plan generation for queries with exists clause, all columns

are scanned in both tables. As a result, scan operation is very costly for both tables. In

addition, since relevant columns are projected after the join operation, the data-exchange

operation and the sort operation in SMJ (required disk spill) are expensive as well.

IMPALA. Similar to Spark SQL, Impala scans and hash-partitions the Lineitem and

the Order tables on the join keys (o orderkey, l orderkey). The tuples from the Lineitem

and the Order table partitions are then right-semi joined using the HJ operator. The join

results are then partially hash-aggregated and hash-partitioned on the grouping attribute

(o orderpriority) to enable final hash-aggregation. The aggregated results are then sorted

105

and merged in the coordinator to produce the output RS. A simple and effective query

execution plan combined with an efficient disk I/O subsystem enables Impala to outperform

other systems by at least a factor of 2.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
TPC-H Query Number

0

100

200

300

400

500

600

O
p
er
at
o
r
P
ro
ce
ss
in
g
T
im

e
(i
n
 s
)

Scan-Join-Aggregation-Sort

Scan

Join-Aggregation-Sort

Garbage Collection

Data Serialization

Join

Aggregation

Data Exchange

Sort

Scheduling Delay

Scan-Join-Aggregation-Sort

Scan

Join-Aggregation-Sort

Garbage Collection

Data Serialization

Join

Aggregation

Data Exchange

Sort

Scheduling Delay

Figure 5.5: The breakdown of query RT into aggregated processing time for each operator type
in evaluated systems. The TPC-H scale factor is 500 and the storage format is text. For each
query, the left bar, the middle bar and the right bar represent Impala, Spark SQL and Drill systems,
respectively.

5.4.3.3 Parquet versus Text Performance

In this section we evaluate the query performance differences between the text and

parquet storage formats in each evaluated system. The last row in Table 5.5 shows the ratio

of overall text to parquet performance in each system for TPC-H scale factors 125, 250 and

500. These numbers were computed using the normalized AM–Q{2,11,13,16,19,21,22}

values. Drill and Impala exhibit the maximum (4.01x – 4.89x) and minimum (1.26x –

1.49x) performance speed-up, respectively from the text to the parquet format. Also, as

we increase the data size, the speed-up factor between the two formats increases in each

system. Next, we use results from the largest TPC-H scale factor (SF 500) to understand

the reasons for the performance difference between the two storage formats in evaluated

systems. For each system, figures 5.3 and 5.5 show the per operator total time spent by a

query in the parquet and text storage formats, respectively.

IMPALA. Impala explicitly collects statistics on the data and generates the same query

execution plan in both formats. On an average, the query scan operator time in the text

106

format is 3.2x the parquet format. The input and output data sizes for a join operator

remain same in both storage formats; however, on an average, the HJ operator time in the

text format is 3x as compared to the parquet format. Excluding query 17 for which the

partial-aggregation operator time increases by 60% from the parquet to the text format,

the total aggregation operator time for all benchmark queries shows nominal difference

(less than 5%) between the two formats. The sort and the data-exchange operator times

exhibit minimal variance between two storage formats. Hence, scan and HJ operators are

the primary contributors to the increase in query RT in the text format as compared to the

parquet format.

DRILL. Drill generates the same query execution plan for both storage formats. The

join, aggregation, sort and data-exchange operators exhibit nominal difference in the pro-

cessing time between the two storage formats. The scan operator is the principal perfor-

mance bottleneck in the text format in Drill, since on an average, the scan operator time in

the text format is 12x as compared to the parquet format.

SPARK SQL. Spark SQL generates query execution plans with the same join order in

both formats. To query the text data, the Spark SQL optimizer harnesses SMJ operator

to perform all the joins in the execution plan. However, for the parquet data, small tables

(region and nation) are exchanged using the broadcast mechanism and the HJ operator is

utilized to join tuples from the small table and the other join input. The joins performed

using the same operator (SMJ) show nominal difference between the two storage formats.

On an average, the scan operator time in the text format is 8.7x as compared to the parquet

format. Note, remaining operations (data-exchange, GC, etc.) show insignificant difference

in processing time between the two storage formats.

Table 5.6: Size-up property evaluation in each system. SF denotes scale factor.

Storage Format Impala Spark SQL Drill
SF250 / SF125 SF500 / SF250 SF250 / SF125 SF500 / SF250 SF250 / SF125 SF500 / SF250

Text 1.78 1.89 1.76 1.89 1.99 2.1
Parquet 1.65 1.73 1.68 1.79 1.66 2.07

107

5.4.3.4 Size-up Characteristic Evaluation

In this section we assess the size-up behavior in the evaluated systems as we increase the

TPC-H scale factor in multiples of 2 between 125 and 500. Table 5.6 presents the ratio of

overall performance at consecutive scale factors in evaluated systems for both storage for-

mats. These numbers were computed using the normalized AM–Q{2,11,13,16,19,21,22}

values.

IMPALA. Impala exhibits sub-linear size-up behavior for both storage formats. On an

average, the join, aggregation and data-exchange operator times double as the database size

is doubled. However, the scan operator time exhibits sub-linear increase, resulting in the

sub-linear size-up behavior in Impala.

DRILL. With the increase in the database size, the optimizer’s join procedure selection

in Drill favors hash-partitioned HJ as compared to the broadcast HJ. Hence, in the parquet

format, Drill chooses more broadcast HJs for scale factor 125 (DB size – 39.9 GB) as

compared to the scale factor 250 (DB size – 79.8 GB). Since broadcast HJs exhibit higher

execution times in comparison with the hash-partitioned HJs in Drill, sub-linear size-up

behavior is observed as the scale factor is doubled from 125 to 250 in the parquet format.

SPARK SQL. Spark SQL shows sub-linear size-up behavior for both storage formats.

In the text format, although the JAS operation time reduces marginally as the database size

is doubled, the reduction in scan operation time is primarily responsible for the sub-linear

size-up behavior. In the parquet format, the reduction in both scan and JAS operation times

is accountable for the sub-linear size-up behavior.

5.5 Discussion and Chapter Summary

In this section we summarize the strengths and weaknesses of evaluated systems and

the lessons learned from this study.

QUERY OPTIMIZER. The query optimizers in Impala and Spark SQL generate simple

108

and efficient execution plans by evaluating and selecting from a variety of join strategies

including semi-join, anti-join, etc. However, we note that the cardinality estimates can be

significantly off in Impala, resulting in expensive join order selection in some cases. The

cost-based query optimization is still in its nascent stages in Phoenix; hence, users need to:

1) define the join evaluation order, and 2) choose the join algorithm to be used. The query

optimizer in Drill can generate complex and inefficient execution plans, especially for the

correlated sub-queries.

QUERY EXECUTION ENGINE. The Impala execution engine has the most efficient

and stable disk I/O sub-system among all evaluated systems, as demonstrated by the lowest

scan operator times for both storage formats. Although the Drill execution engine (with

the columnar data model for in-memory processing) is optimized for the on-disk columnar

data storage format (parquet), the scan operator is the principal contributor to the query RT

in the parquet format. In addition, the scan operator becomes a performance bottleneck in

Drill for the data stored in the text format with an unstable behavior characterized by the

high scan operator wait times. In comparison with other evaluated systems, Phoenix has a

notably larger data footprint due to the HBase HFile storage format, resulting in expensive

full table scans.

The join and aggregation operator implementations in the Drill query engine harness all

available CPU cores and achieve the shortest processing times among all evaluated systems.

In contrast, the use of a single CPU core to perform the join and aggregation operations

in Impala, results in sub-optimal resource utilization; however, ongoing efforts to enable

multi-core execution for all operators [99] should lead to performance improvement. Joins

are costly in Spark SQL due to the choice of SMJ as the primary join operator, which

requires an expensive sort operation prior to the join operation.

The data-exchange operator contributes nominally to the query RT in Impala, Spark

SQL, and Drill. However, the client coordinated data-exchange operation is the primary

performance bottleneck in Phoenix, making it ill-suited for join-heavy workloads that shuf-

109

fle large amounts of data.

The results from this study can be utilized in two ways: (i) to assist practitioners choose

a SQL-on-Hadoop system based on their workloads and SLA requirements, and (ii) to

provide the data architects more insight into the performance impacts of evaluated SQL-

on-Hadoop systems.

110

Chapter 6

Fusion: Implementation and evaluation of block range indexes in a

SQL-on-Object-Storage system

Cloud computing is emerging as a novel paradigm for large scale distributed comput-

ing, driven by the economies of scale. Cloud platforms like Amazon EC2 [28], Microsoft

Azure [79], Google Cloud [100] etc., enable users to elastically acquire and release re-

sources from a virtually infinite resource pool. Concomitant with the emergence of cloud

computing is the data deluge that the enterprises are experiencing in storing the data gen-

erated from a variety of sources including social media, transactional systems, sensors, etc.

Now, the combination of the need to glean actionable insights from the big data and to tap

the potential of cloud hosting platforms, has led to the development of both new storage

systems (e.g. HDFS [21], MapR-FS [101], Amazon S3 [25], Microsoft Azure Blob Storage

[26], etc.) and query engines (e.g. Impala [23], Drill [24], Spark SQL [20]).

Instance storage, network attached Block storage, and Object storage represent different

storage substrate choices for modern query engines (e.g. Impala, Spark SQL, etc.) on

the cloud platforms. Each storage substrate choice represents a trade off between cost,

persistence and performance. Hadoop storage system is designed to leverage the shared

nothing architecture where each node in the cluster acts both as a compute node and a

storage node. A Hadoop cluster in the cloud environment can utilize either Instance storage

or network attached Block storage (e.g. Amazon EBS) as the storage substrate. A Hadoop

cluster achieves optimal performance with the Instance storage by leveraging short circuit

local reads. Although Instance storage is ideal for ad hoc data analysis, complete data

loss after a cluster shutdown makes it less suitable for analyzing large and growing data,

due to the high data population times. A Block storage service like Amazon EBS is non-

ephemeral and enables users to elastically attach/detach network drives to the VM instances

111

in the cluster; however, EBS is expensive. In contrast, object storage systems like S3, Azure

blob storage, etc., are cheaper than the network attached Block storage systems and provide

better performance per dollar [35]. In addition, the use of a object storage system like S3

as the storage backend de-couples compute from storage, enabling independent scaling of

either clusters. However, despite S3’s better performance per dollar as compared to EBS,

S3 may not be suitable for interactive analytics due to the data transfer latency (between

EC2 and S3) and low read throughput. Hence, new mechanisms are required to enable

interactive analytics with a object storage system as the storage backend of query engines.

Traditionally, the read performance of a query engine can be improved by increasing

data read throughput and skipping irrelevant data. The data read throughput can be in-

creased by employing caching, parallelizing reads and storing the data in a compressed

format. Conventionally, columnar storage and indexing structures are used to skip reading

the irrelevant data.

In this work, we focus on exploring indexing structures that can effectively skip irrel-

evant data stored in object storage systems like S3. Although B-tree, B+-tree, and R-tree

indexes have been shown to be very effective in traditional data warehousing systems, high

maintenance overhead, large storage footprint, and poor random I/O performance of object

storage systems like S3, makes them less attractive for the query engines that use object

storage systems as the storage backend. On the contrary, Block Range Indexes (BRIN)

can be a better fit for skipping irrelevant data stored in object stores, since they exhibit low

maintenance overhead, are lightweight (orders of magnitude smaller in size than traditional

indexes [27]) and can be very effective for naturally ordered data (e.g. sensor data).

In this work our goals are two fold: 1) Empirically evaluate the performance impact of

block range indexes in a object storage system using a standard benchmark. 2) Empirically

evaluate the performance trade offs of different block range index implementations.

112

Table 6.1: Example Block range index for id column of Customers table.

min max block number
1 20 1
24 48 2
36 100 3

6.1 Block Range Index

In this section, we first review block range indexes. Then, we explore different imple-

mentation and storage choices for block range indexes. A table is stored as a set of blocks

on a storage medium. For a table T, a block range index on a column c aggregates and

materializes a set of values for each block in T. Table 6.1 shows an example block range

index (min, max, block number), storing minimum and maximum aggregates for the id col-

umn of the Customers table, which comprises of 3 blocks on the physical storage. Note

that the intervals in the index can overlap (e.g. intervals (24 – 48) and (36 – 100) in Table

6.1 overlap). The object storage systems like S3 and Azure Blob Store do not expose the

size or number of blocks that a stored object is comprised of. Hence, object store users

need to proactively partition a table into chunks and compute aggregates for these chunks

to leverage the block range indexes.

A block range index on a column c can be utilized by the query engine to skip blocks

of a table during query processing in two cases:

• EQUALITY filter on c in workload query (c = a) – In this case BRIN returns all

chunk ids for which value (a) is between min and max values. As an example, for a

workload query – SELECT * FROM Customers WHERE id = 5, the equality filter is

id = 5; hence, BRIN returns {1}.

• RANGE filter on c in workload query (c in range(a,b)) – In this case BRIN returns all

chunks ids for which range (a,b) overlaps with (min,max) interval. As an example,

for a workload query – SELECT * FROM Customers WHERE id ≥ 25 and id ≤ 70,

113

the range filter is id in range(25,70); hence, BRIN returns {2,3}.

Hence, a equality filter in the workload query requires a response for a point(a) query

from the block range index. A range filter in the workload query requires a response for a

range(a,b) query from the block range index. During query processing, the query engine

reads only those table chunks whose ids are returned by the block range index. Note that

block range indexes can work with the data stored in both the text and columnar (e.g.

Parquet) storage formats.

6.1.1 BRIN Implementation and Storage Choices

In this section we look at different choices in implementing and storing a block range

index. A block range index can be implemented using a key value store or a interval tree

data structure. A key value store based distributed BRIN implementation is scalable where

as an interval tree based BRIN implementation can provide low query latency.

6.1.1.1 Key Value Store Based Implementation

We store a block range index as a table in an ordered key value store, such that each

index interval (min, max) is stored as a row and each individual aggregate value in a row

(e.g. min) is stored in a separate column. In addition, each row also stores the chunk

id associated with the interval in an individual column. An ordered key value store like

HBase is designed to perform fast key-based Get’s and Range scans. Hence, we consider

how to harness a key value store to efficiently perform point(a) and range(a,b) queries, that

represent the standard workload for a block range index.

Point(a) Query – For a point query, we return all table rows whose interval (min, max)

satisfies the predicate,

min ≤ a ∩ max ≥ a

114

To efficiently execute this query in a key value store, we choose min as the first part

of the table key. As a result, query becomes a range scan (min in range (* , a)) and the

resulting rows are filtered on the fly (using filter max ≥ a).

Range Query Interval

Case 1

Case 2

Case 3

a b

min max

min max

min max

Case 2 & Case 3

min max

Figure 6.1: Range query sub cases in a block range index.

Range(a,b) Query – For range queries, we store two copies of an index, each in a

separate table. For the first table we choose min as first part of the table key. Similarly, for

the second table we choose max as first part of the table key. For a range query, we return

all table rows whose interval (min, max) overlaps with the given interval (a, b). More

specifically, we break it down into three sub cases (Figure 6.1) and return the union of rows

returned by each sub case.

Case 1.

min ≤ a ∩ max ≥ b

To efficiently execute this query in a key value store, we use the index that has min as

the first part of the table key. As a result, query becomes a range scan (min in range (* , a))

and the resulting rows are filtered on the fly (using filter max ≥ b).

Case 2.

min ≥ a ∩ min ≤ b

To efficiently execute this query in a key value store, we use the index that has min as

the first part of the table key. As a result, query becomes a range scan (min in range (a , b)).

115

Case 3.

max ≥ a ∩ max ≤ b

To efficiently execute this query in a key value store, we use the index that has max as

the first part of the table key. As a result, query becomes a range scan (max in range (a ,

b)).

6.1.1.2 Interval Tree Based Implementation

We use the augmented self-balancing binary search tree to implement a interval tree

[102] that resides on a single compute node. Note, exploring mechanisms to implement a

distributed interval tree using a scalable storage engine like key value store, object store,

etc., is part of our future work. Since the storage associated with a compute cluster is

ephemeral, the interval tree needs to be serialized to a persistent storage medium to prevent

re-computation. The different storage choices include RDBMS, key value store, object

store, etc. Although RDBMS represents a feasible choice to persist the tree, a large en-

terprise can have several different applications using the system; hence, the tree storage

choice needs to be scalable.

To persist the tree, we choose to serialize it to two different storage substrates: 1) as

a blob in a object store, and 2) as a key-value pair in a key value store. The different

implementation choices for a interval tree that resides on a single node in the compute

cluster are 1) disk based, and 2) entirely memory resident. For the sake of simplicity,

we implement the interval tree to reside in memory for the entire existence of a compute

cluster.

6.2 System Overview

Figure 6.2 shows the overview of the Fusion SQL-on-Object-Storage system. Tradi-

tionally, users interact with the web/mobile applications and perform transactions. The

116

ETL
Table

S3

Interval

Tree

Min Max Chunk ID

HBase

Block Range Index

Impala Drill Spark SQL

EC2

Compute Cluster

OLAP System

Chunks

OLTP

System

Figure 6.2: Fusion system overview.

transaction data from the OLTP system/s is then loaded into an OLAP system using the

ETL process. We harness S3 as the storage engine for the OLAP system. The tables are

horizontally partitioned into fixed sized chunks and the chunks for a table are stored in an

individual S3 directory. We leverage Amazon EC2 cloud platform to create the compute

cluster and deploy the Spark SQL query engine in it. Note, other distributed query engines

like Impala, Drill, HAWQ, etc., could also be used. We utilize the Spark SQL query engine

to compute ranges/intervals for each chosen block range index. We currently use a sim-

ple workload driven approach to choose block range indexes for creation. Specifically, we

create an index for each column that is part of a point and/or range filter in the workload.

As described in section 6.1.1, we leverage interval trees and key-value stores as two

different mechanisms to implement a block range index. We harness HBase NoSQL data

store to implement the block range index. We use S3 and HBase as two different storage

substrates to persist the interval tree. When a new compute cluster is created, we read and

deserialize the index tree stored on a storage substrate (S3/HBase) and construct the interval

tree that resides in the memory on a single node in the compute cluster. Before destroying

a compute cluster, we serialize the tree back to the persistent storage (S3/HBase).

Query Processing. Figure 6.3 shows the different steps involved in the processing of

a workload query in the Fusion system. User issues a workload query for execution to

the Fusion system (step 1). To identify the relevant table chunks to query, Fusion system

117

min max chunk_id

HBase/Interval Tree

custid – BRIN for cid

Query Engine

Spark SQL

S3

Storage Engine
SELECT * FROM customer WHERE cid = a

1

SELECT chunk_id

FROM custid

WHERE min <= a and max >= a

2

Query Response :

chunk ids (0,..,N)

3

Query Response

5

SELECT * FROM customer0,..,customerN

WHERE cid = a

4

Fusion System

Figure 6.3: Query processing in Fusion system.

utilizes the filter value from the workload query to prepare and issue a query to the relevant

BRIN index (step 2). Next, BRIN index response provides the ids of table chunks relevant

to the workload query (step 3). Then, Fusion system re-writes the workload query using

the chunk ids provided by the BRIN index (step 4). Finally, the Spark SQL query engine is

used to execute the workload query and send the response back to the user (step 5). Note,

in the absence of a usable filter or a relevant BRIN index, the Fusion system executes the

workload query by reading all table chunks.

6.3 Experimental Evaluation

In this section we first describe our experiment environment. Next, we use the TPC-W

benchmark to evaluate the performance of Fusion system and compare it with a Baseline

system that does not use block range indexes.

6.3.1 Hardware Configuration

We harness Amazon EC2 cloud environment to setup the compute cluster (Spark) and

the key value store cluster (HBase). Our testbeds comprise of “worker” VMs of m4.2xlarge

instance type, a “client” VM of m4.2xlarge instance type and a “master” VM of d2.xlarge

118

instance type. A m4.2xlarge VM instance is configured with 8 vCPUs, 32GB RAM, and

120GB EBS storage and a d2.xlarge VM instance is configured with 4 vCPUs, 30.5GB

RAM, 3x 2000GB HDD instance storage and 120GB EBS storage. We use three worker

VMs in the compute cluster and two worker VMs in the key value store cluster.

6.3.2 Software Configuration

We deploy Spark, Yarn, Hive, and Zookeeper frameworks on the compute cluster. Simi-

larly, we deploy HDFS, HBase, Phoenix, and Zookeeper frameworks on the key value store

cluster. We host the control processes (e.g. HMaster) from each framework on the master

VM. We also use master VM as the landing node for the data generation in the compute

cluster. Worker processes from each framework (e.g. DataNode) are hosted on each worker

VM in the cluster. We reserve the client VM to drive the workload. We deploy the Phoenix

JDBC driver in the client VM and put relevant jars on the classpath of each Region Server.

We use the Cloudera Distribution v5.8.0, Spark v2.0, HBase v1.2.0 and Phoenix v4.8.0.

Fine tuning of soft parameters is quintessential to getting the best performance out

of a software system. To identify the values for performance knobs that ensure a fair

comparison between evaluated systems, we rely on: 1) Settings used in prior studies (e.g.

[74, 72]). 2) Best practice guidelines from industry experts and system developers (e.g.

[98]). 3) Experimentation with different values that enable us to run all benchmark queries

and achieve the best performance.

We enable Yarn as the resource manager for Spark and set spark.executor.cores to 8,

spark.executor.memory to 8GB and spark.memory.offheap to 16GB.

6.3.3 Experiment Setup

We evaluate systems one at a time. During the evaluation of a system, we stop the

processes for other systems to prevent any interference. We execute benchmark queries

using a closed workload model, where a new query is issued after receiving the response

119

for the previous query. We run each query three times and report the average of the query

RT for the last two runs with a warm OS cache. We use Phoenix as a SQL skin to query

the block range indexes implemented using HBase. We use a JDBC driver to issue queries

in Phoenix and shell scripts to issue queries in Spark SQL. We use collectl linux utility to

record resource utilization on each worker node with a 3 second interval. We export the

query execution profile in Spark SQL.

6.3.4 TPC-W Benchmark

We use the TPC-W [86] benchmark to empirically evaluate the implemented Fusion

system. To perform experiments, we modulate the database size by varying two parameters

in the population script: NUM EBS and NUM ITEMS. We exclude write statements from

the workload that do not specify each key attribute in the where clause. This is done

to prevent modifying more than one S3 chunk in response to a update statement in the

transaction log of the OLTP system.

6.3.5 Experiment Results

In this section, we first evaluate the Fusion system and compare it with a Baseline

system using the TPC-W benchmark. Next, we examine the impact of chunk size on the

performance of the Fusion system. Then, we evaluate the performance impact of increasing

the database size in the Fusion system. Finally, we examine the performance of TPC-W

write statements in the implemented Fusion system.

6.3.5.1 Fusion versus Baseline

We evaluate the Fusion system and compare it with a Baseline system. Fusion system

creates nine block range indexes based off of the analysis of the TPC-W workload. On

the contrary, Baseline system does not utilize block range indexes. We populate TPC-W

database with 10 GB of data and 16 MB table partitions in the Fusion system. Now, prior to

120

the index creation, we need to compute the intervals/ranges for each index using the table

chunks.

Table 6.2: Total time to compute index intervals for 10GB TPC-W database with 16MB
table partitions.

Number of Indexes Total Index Intervals Computation Time (in s)
9 780

Index Intervals Computation. We utilize Spark SQL to compute intervals for each

index. We compute intervals for indexes sequentially, one index at a time. In addition,

for a index, we compute intervals sequentially, one chunk at a time. Table 6.2, shows the

time to compute intervals for all nine indexes. We acknowledge that parallelism could be

harnessed to reduce the time to compute index intervals.

Table 6.3: Total time to create indexes in the Fusion system.

Index Creation Time (in s)

HBase
Interval Tree

S3 Storage HBase Storage
283.4 6.25 1.48

Index Creation. Table 6.3 shows the time to create HBase and interval tree based block

range indexes. We use a MR based data uploader (provided by Phoenix) to populate HBase

indexes. The high task start up costs of MR jobs leads to significantly higher index creation

time in HBase as compared to the interval trees. Interval tree based index creation time

includes the time to serialize/deserialize index to/from the persistent storage (HBase/S3)

medium. Although S3 storage is nearly 4x slower than the HBase storage for the interval

tree based indexes, the use of HBase requires a EBS based cluster setup and maintenance,

which can be expensive. Note, in contrast with HBase indexes that are query-ready across

different compute cluster creations/shutdowns, interval tree based indexes need to be re-

populated after each cluster creation/start.

Query Performance. Table 6.4 shows the performance comparison of Fusion and

Baseline systems for all TPC-W queries that could use block range indexes. The total query

121

Table 6.4: Fusion versus Baseline: Performance of TPC-W queries that could use block
range indexes.

Number
of

Queries

Fusion Baseline
Total Time to Query Index (in s)

Query Execution Time (in s) Query Execution Time (in s)
HBase Interval Tree

16 0.54 .01s 211.4 275

Table 6.5: Fusion versus Baseline: Overall performance of TPC-W benchmark queries.

Number of
Queries

Total Query Execution Time (in s)
Fusion Baseline

20 230.8 295.5

execution time in Fusion system is nearly 24% lower than the Baseline system. The time

to query both HBase and interval tree based block range indexes is negligible as compared

to the query execution time.

Queries that could not use any indexes in the Fusion system (with partitioned data)

exhibit performance similar to the Baseline system (with un-partitioned data). Table 6.5

shows the overall performance of TPC-W queries in Fusion and Baseline systems.

6.3.5.2 Impact of Data Partition Size in Fusion System

To evaluate the performance impact of table partition size in the Fusion system, we

experiment with two different table chunk sizes: 4MB and 16MB (see Section 6.3.5.1).

Similar to Section 6.3.5.1, the TPC-W database is populated with 10GB of data.

Table 6.6: Index intervals computation in Fusion system for 10GB TPC-W database with
4MB and 16MB partitions.

Number of
Indexes

Total Index Intervals Computation Time (in s)
16 MB 4 MB

9 780 4122

Index Intervals Computation. Table 6.6, shows the time to compute index intervals

for both 4MB and 16MB chunk sizes. Reducing the chunk size from 16MB to 4MB in-

creases the number of intervals that need to be processed; however it also reduces the data

to process per interval. The total index intervals computation time for 4MB chunk size is

122

nearly 5x as compared to the 16MB chunk size. This behavior is attributed to higher job

overhead and inefficient execution in Spark SQL for smaller (4MB) chunk size.

Note, index creation times exhibit a nominal increase for 4MB chunks as compared to

the 16MB chunks; hence, we exclude these results from presentation.

Table 6.7: Total query execution time in Fusion system for 10GB TPC-W database with
4MB and 16MB partitions.

Number of
Queries

Fusion - Total Query Execution Time (in s)
16 MB 4 MB

20 230.8 260.5

Query Performance. The basic idea behind smaller data chunk size is to enable more

aggressive data skipping, leading to a reduction in the overall query response time. How-

ever, as shown in Table 6.7, for the TPC-W benchmark, the total query execution time in

the Fusion system exhibits an increase for the 4MB chunk size as compared to the 16MB

chunk size. Further investigation shows that, although several queries that use a block range

index on a non-key column, read significantly less table data for the 4MB chunks than the

16MB chunks, the query response times do not exhibit a significant decrease due to the

high processing overhead for smaller data chunks (4MB) in Spark SQL.

6.3.5.3 Fusion versus Baseline: Impact of Database Size

We evaluate the impact of database size on the query performance in both Fusion and

Baseline systems. We experiment with two different database sizes: 10GB (see Section

6.3.5.1) and 50GB. Similar to Section 6.3.5.1, the data partition size is 16MB in the Fusion

system.

Table 6.8: Fusion versus Baseline: Overall performance of TPC-W benchmark queries for
10GB and 50GB TPC-W databases.

Number
of

Queries

Total Query Execution Time (in s)
DB Size - 10GB DB Size - 50GB

Fusion Baseline Fusion Baseline
20 230.8 295.5 907.3 1170.4

123

Query Performance. Table 6.8 shows the the overall performance of TPC-W queries in

Fusion and Baseline systems for 10GB and 50GB database sizes. Although the benchmark

query execution time reduces in both systems with the increase in the database size, the

total query execution time in Fusion system is nearly 22% lower than the Baseline system

across both database sizes.

6.3.5.4 Write Statement Performance

Fusion System. For insert statements, we compute the time to insert a chunk in a S3

table and not a single row, since the ETL process can bundle multiple insert statements for

a table from the OLTP transaction log into a chunk and then insert this chunk into the S3

table. This prevents creation of single row chunks in a S3 table.

Table 6.9: Write statement performance in Fusion system for 4MB and 16MB chunks.

Statement Execution Time (in s)
Chunk Size - 4 MB Chunk Size - 16 MB

Insert Update/Delete Insert Update/Delete
.34 1.75 1.54 3.22

For an update/delete statement, we first identify the chunk that needs to be updated.

This is accomplished by first querying the relevant block range index to identify the can-

didate chunk(s) and then using the Spark SQL computing engine to narrow the candidate

set down to the chunk that contains the record to be updated. Next, we read the identi-

fied chunk from S3 into memory, update the record and write the updated chunk back into

S3. Although the time to read, update and write a chunk back into S3 is proportional to the

chunk size, identifying the chunk to be updated may require querying all table chunks in the

worst case. Therefore, the execution time for an update/delete statement can be arbitrary.

Since the TPC-W data is sorted on the primary key, the query to the block range index for

each update/delete statement in the benchmark always returns a single chunk. As a result,

the execution time for each benchmark update/delete statement is nearly the same. Hence,

we present the execution time for only one benchmark update/delete statement. Table 6.9

124

shows the write statement performance in the Fusion system.

Baseline System. To execute a insert/update/delete statement on a table, a new table

with changes needs to be written in full, since the S3 objects are immutable. Hence, the

time to modify a table in the Baseline system is proportional to the size of the table. How-

ever, it is impractical in practice to read and re-write big tables; hence, we exclude write

performance evaluation in Baseline system from our experiments.

6.4 Chapter Summary

In this chapter, we present the implementation and evaluation of Fusion system that

harnesses block range indexes as a mechanism to improve the query performance of SQL-

on-Object-Storage systems. We empirically evaluate the creation and querying overhead

associated with two different block range index implementations. Experiment results show

that the use of S3 as a persistent storage medium for small interval tree based indexes, can

achieve both acceptable performance and cost efficiency. Experiment with different table

chunk sizes demonstrates that although smaller chunk size may allow for more aggressive

data skipping, the query performance may actually regress due to the high processing over-

head associated with smaller chunks in query engines like Spark SQL. The Fusion system

with immutable table chunks is not suitable for update heavy workloads as demonstrated

by the experimental evaluation of benchmark write statements.

125

Chapter 7

Future Work

In this dissertation, we have presented various mechanisms to enable scalable data man-

agement for each enterprise workload class. However, through the development of these

mechanisms, we have identified several avenues to explore and build upon the current work.

Next, we discuss some of these ideas as part of our future work. In addition, we discuss

additional experiments than can be performed to improve the comprehensiveness of this

dissertation.

7.0.1 Mechanisms

In chapter 3, we present a black box approach based on the database re-population, to

reduce the observed performance variations and develop robust profiles. However, we do

not take a position on how often the database should be re-populated. Hence, an alerting

mechanism could be developed that monitors the performance and generates an alert prior

to a significant performance regression. In addition, re-populating the complete database

may not be practical for large databases. Therefore, fine-grained re-population strategies

(e.g. rebuilding specific indexes) could be explored. The proposed black box solution

provides symptomatic relief; however, a white box approach that identifies the actual source

of variations, could be more useful in developing the mechanisms that prevent variations

from manifestation.

In chapter 4, the proposed Synergy system utilizes a heuristic based approach to gener-

ate the candidate views for materialization. However, to generate more robust candidates,

the generation mechanism could be adapted to use a cost based optimizer instead of a

heuristic. The views selection mechanism in the Synergy system, selects views for each

126

workload query independently. However, this leads to the loss of opportunity to share

views across different queries and save the storage space. Hence, we plan to supplement

the Synergy system with a new views selection mechanism, that can leverage the oppor-

tunity to share views across different workload queries. In addition, we plan to merge our

code for the proposed system with the Phoenix code base and make the Synergy system

available to all Phoenix users.

In chapter 5, we profile the performance of four SQL-on-Hadoop systems along several

dimensions including, file formats, scale-up, size-up, database size etc. The profiled results

could be utilized to build performance models. The performance models can in turn be

leveraged to answer WHAT-IF questions related to the capacity planning process for each

evaluated system in the cloud environment.

In chapter 6, Fusion system utilizes in-memory interval trees to implement the block

range indexes. However, in-memory interval trees are centralized and could be too big to

hold in memory for large tables. Hence, we are currently working on devising a mecha-

nism to create distributed interval trees using key value stores. In addition, the block range

indexes selection mechanism in the Fusion system is oblivious to the distribution of data in

the table columns. Hence, we plan to supplement the Fusion system by computing the data

distribution information on table columns and using this information to guide whether im-

plementing a block range index could be useful in skipping data. Exploring other indexing

structures that can be used with the proposed Fusion system (e.g. Bitmap indexes can be

very useful with low-cardinality columns) is part of our future work.

7.0.2 Experiments

• Chapter 3 – We host MySQL database server in a cloud VM instance and evaluate

its performance. It would be interesting to evaluate and confirm that the observed

behavior is not specific to MySQL server and can be generalized to other RDBMSs

(e.g. PostgreSQL).

127

• Chapter 4 – A throughput evaluation using different request rates (using a workload

driver that generates concurrent requests) would emphasize the higher request han-

dled capacity in the proposed Synergy system as compared to the other evaluated

systems. In addition, Synergy system can be empirically evaluated using different

roots sets to understand the impact of roots selection on both the quality of the se-

lected views and the concurrency control overhead.

• Chapter 5 – We examine the size-up and scale-up properties for all evaluated sys-

tems, we plan to also evaluate the speed-up property to create a more comprehensive

understanding of performance characteristics in each system.

• Chapter 6 – For the design of the Fusion system we argue that the B+-tree indices

are not a good fit; however, in the future, we would like to implement and evaluate

B+-tree based indices to empirically justify this argument. In addition, we evaluate

Fusion system performance with two different chunk sizes (16MB and 4MB); how-

ever, profiling with several different chunk sizes would create more data points and

enable us to better understand the impact of chunk size on the system performance.

128

Chapter 8

Conclusion

Persistent growth in the use of mobile devices, social media platforms, gaming con-

soles, etc., combined with the ever-increasing online user population, has resulted in a data

explosion. Traditional data management solutions are inadequate to meet the storage and

processing challenges posed by such large and complex data. Although several large scale

data management solutions have been proposed recently for each enterprise workload class,

system architects still face several challenges in choosing or designing the right solution for

their workloads. To this end, we propose mechanisms to enable scalable data management

for each enterprise workload class.

8.1 Summary of Contributions

For OLTP workloads, we have developed mechanisms for scalable transaction process-

ing in relational and distributed databases. For relational databases, we present a sim-

ple mechanism to stabilize the performance of cloud hosted databases. For distributed

databases, we present the design of a novel data store that utilizes materialized views and a

specialized concurrency control mechanism to enable scalable transaction processing. Our

detailed contributions are as follows:

• Relational Databases. Profiling represents a standard technique to build a database

performance model. However, relational databases hosted on the virtualized cloud

platforms exhibit performance variations. The observed performance variations raise

the challenge of creating a consistent and repeatable profile. To this end, we present

a black box approach based on the database population from a snapshot to reduce

the perceived performance variations. The experimental evaluation shows that the

129

profile created for a database populated using a snapshot can be used for performance

modeling up to a high (80%) CPU utilization value. We also validate our findings on

the Amazon EC2 cloud platform.

• Distributed Databases. NoSQL databases are designed to scale out linearly on com-

modity hardware; however, they are limited by the slow join performance. To this

end, we present Synergy system that leverages schema and workload driven mech-

anism to identify materialized views and a specialized concurrency control system

on top of a NoSQL database to enable scalable data management with familiar rela-

tional conventions. Experimental results using the TPC-W benchmark show that, for

a database populated with 1M customers, the Synergy system exhibits a maximum

performance improvement of 80.5% as compared to other evaluated systems.

SQL-on-Hadoop and SQL-on-Object-Storage denote two different architectures for

OLAP. For SQL-on-Hadoop systems, we study the impact of file formats, size-up and

scale-up characteristics in four state-of-the-art SQL-on-Hadoop systems. For SQL-on-

Object-Storage systems, we implement and evaluate the impact of block range indexes

on the query performance. Our detailed contributions are as follows:

• SQL-on-Hadoop. We perform a comparative analysis of four state-of-the-art SQL-

on-Hadoop systems (Impala, Drill, Spark SQL and Phoenix) using the Web Data

Analytics micro benchmark and the TPC-H benchmark on the Amazon EC2 cloud

platform. The TPC-H experiment results show that, although Impala outperforms

other systems (4.41x – 6.65x) in the text format, trade-offs exists in the parquet for-

mat, with each system performing best on subsets of queries. A comprehensive anal-

ysis of execution profiles expands upon the performance results to provide insights

into performance variations, performance bottlenecks and query execution character-

istics.

• SQL-on-Object-Storage. Baseline SQL-on-Object-Storage systems are slow and

130

impractical to use. To this end, we present the design and implementation of Fusion

system that harnesses block range indexes as a mechanism to improve the query per-

formance in SQL-on-Object-Storage systems. We empirically evaluate the creation

and querying overhead associated with two different block range index implementa-

tions in the Fusion system. Experiment results show that the use of S3 as a persistent

storage medium for small interval tree based indexes, can achieve both acceptable

performance and cost efficiency. In addition, the smaller chunk size may allow for

more aggressive data skipping; however, the query performance may actually regress

due to the high processing overhead associated with smaller chunks in query engines

like Spark SQL.

131

BIBLIOGRAPHY

[1] How much data is generated every minute on social media? [online]. available:

http://wersm.com/how-much-data-is-generated-every-minute-on-social-media/.

[2] Apache Storm [online]. available: http://storm.apache.org/releases/current/powered-

by.html.

[3] Fay Chang et al. Bigtable: A distributed storage system for structured data. In OSDI,

pages 15–15, 2006.

[4] HBase. [online]. available: http://hbase.apache.org/.

[5] MongoDB. [online]. available: https://www.mongodb.org/.

[6] Apache Cassandra. [online]. available: http://cassandra.apache.org/.

[7] Foundation DB. [online]. available: https://foundationdb.com/.

[8] Robert Kallman et al. H-store: A high-performance, distributed main memory trans-

action processing system. Proc. VLDB Endow., pages 1496–1499, 2008.

[9] James C. Corbett et al. Spanner: Google’s globally-distributed database. In OSDI,

pages 251–264, 2012.

[10] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,

Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat

O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: A column-oriented dbms.

In VLDB ’05, 2005.

[11] MonetDB [online]. available: https://www.monetdb.org/home.

[12] Vertica [online]. available: https://www.vertica.com/.

132

[13] Teradata [online]. available: http://www.teradata.com/?langtype=1033.

[14] Redshift [online]. available: https://aws.amazon.com/redshift/.

[15] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I. Hsiao, and

R. Rasmussen. The gamma database machine project. IEEE Trans. on Knowl. and

Data Eng., 1990.

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on

large clusters. In OSDI’04, 2004.

[17] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A ware-

housing solution over a map-reduce framework. Proc. VLDB Endow., 2(2):1626–

1629, August 2009.

[18] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew

Tomkins. Pig latin: A not-so-foreign language for data processing. In SIGMOD ’08,

2008.

[19] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In HotCloud, 2010.

[20] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei

Zaharia. Spark sql: Relational data processing in spark. In SIGMOD ’15, 2015.

[21] Apache Hadoop [online]. available: http://hadoop.apache.org/.

[22] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.

In SOSP ’03, 2003.

[23] Marcel Kornacker et al. Impala: A modern, open-source sql engine for hadoop. In

CIDR’15, 2015.

133

[24] Apche drill [online]. available: https://drill.apache.org/.

[25] Amazon S3 - Simple Storage Service.

[26] Microsoft Azure Blob Storage. [online]. available: https://azure.microsoft.com/en-

us/services/storage/blobs/.

[27] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jian-

sheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,

Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. The

snowflake elastic data warehouse. In SIGMOD ’16, 2016.

[28] Amazon elastic compute cloud (amazon ec2). [online]. available:

http://aws.amazon.com/ec2/.

[29] Amazon Relational Database Service [online]. available:

https://aws.amazon.com/rds/.

[30] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker, and

Ion Stoica. Shark: Sql and rich analytics at scale. In SIGMOD ’13, 2013.

[31] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivaku-

mar, Matt Tolton, and Theo Vassilakis. Dremel: Interactive analysis of web-scale

datasets. Proc. VLDB Endow., 3(1-2), September 2010.

[32] Apache Drill: Interactive Ad-Hoc Analysis at Scale [online]. available:

http://online.liebertpub.com/doi/pdf/10.1089/big.2013.0011.

[33] Peter Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining

query execution. In CIDR, 2005.

[34] G. Graefe. Volcano – an extensible and parallel query evaluation system. IEEE

Trans. on Knowl. and Data Eng., 1994.

134

[35] Top 5 Reasons for Choosing S3 over HDFS. [online]. available:

https://databricks.com/blog/2017/05/31/top-5-reasons-for-choosing-s3-over-

hdfs.html.

[36] Apache Kudu. [online]. available: http://getkudu.io/.

[37] Apache Phoenix. [online]. available: http://phoenix.apache.org/.

[38] Thepra. [online]. available: http://tephra.incubator.apache.org/.

[39] Guohui Wang and T. S. Eugene Ng. The impact of virtualization on network perfor-

mance of amazon ec2 data center. In INFOCOM’10.

[40] Yaakoub El-Khamra, Hyunjoo Kim, Shantenu Jha, and Manish Parashar. Exploring

the performance fluctuations of hpc workloads on clouds. In CLOUDCOM ’10.

[41] Sean Kenneth Barker and Prashant Shenoy. Empirical evaluation of latency-sensitive

application performance in the cloud. In MMSys ’10.

[42] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime measurements

in the cloud: observing, analyzing, and reducing variance. Proc. VLDB Endow.

[43] M. Suhail Rehman and Majd F. Sakr. Initial findings for provisioning variation in

cloud computing. In CLOUDCOM ’10.

[44] Benjamin Farley, Ari Juels, Venkatanathan Varadarajan, Thomas Ristenpart,

Kevin D. Bowers, and Michael M. Swift. More for your money: exploiting per-

formance heterogeneity in public clouds. In SoCC ’12.

[45] Bhuvan Urgaonkar and Abhishek Chandra. Dynamic provisioning of multi-tier in-

ternet applications. In ICAC ’05.

[46] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently updating ma-

terialized views. In SIGMOD, pages 61–71, 1986.

135

[47] Dallan Quass, Ashish Gupta, Inderpal Singh Mumick, and Jennifer Widom. Making

views self-maintainable for data warehousing. In DIS, pages 158–169, 1996.

[48] José A. Blakeley, Neil Coburn, and Per-Ake Larson. Updating derived relations:

Detecting irrelevant and autonomously computable updates. ACM Trans. Database

Syst., 14(3), September 1989.

[49] Parag Agrawal et al. Asynchronous view maintenance for vlsd databases. In SIG-

MOD, pages 179–192, 2009.

[50] Jingren Zhou, Per-Ake Larson, Jonathan Goldstein, and Luping Ding. Dynamic

materialized views. In ICDE, pages 526–535, 2007.

[51] Per-Ake Larson and H. Z. Yang. Computing queries from derived relations. In

VLDB, pages 259–269, 1985.

[52] H. Z. Yang and Per-Ake Larson. Query transformation for psj-queries. In VLDB,

pages 245–254, 1987.

[53] Jonathan Goldstein and Per-Ake Larson. Optimizing queries using materialized

views: A practical, scalable solution. In SIGMOD, pages 331–342, 2001.

[54] Sanjay Agrawal et al. Automated selection of materialized views and indexes in sql

databases. In VLDB, pages 496–505, 2000.

[55] Accumulo. [online]. available: https://accumulo.apache.org/.

[56] Sattam Alsubaiee et al. Asterixdb: A scalable, open source bdms. Proc. VLDB

Endow., pages 1905–1916, 2014.

[57] Sudipto Das et al. G-store: A scalable data store for transactional multi key access

in the cloud. In SoCC, pages 163–174, 2010.

136

[58] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. CloudTPS: Scalable transactions

for Web applications in the cloud. IEEE Transactions on Services Computing,

5(4):525–539, Oct-Dec 2012.

[59] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. Scalable join queries in cloud data

stores. In CCGrid, pages 547–555, 2012.

[60] Hoang Tam Vo et al. Towards elastic transactional cloud storage with range query

support. Proc. VLDB Endow., pages 506–514, 2010.

[61] Sudipto Das et al. Elastras: An elastic, scalable, and self-managing transactional

database for the cloud. ACM Trans. Database Syst., 38(1):5:1–5:45, April 2013.

[62] Daniel Peng and Frank Dabek. Large-scale incremental processing using distributed

transactions and notifications. In OSDI, pages 1–15, 2010.

[63] Jason Baker et al. Megastore: Providing scalable, highly available storage for inter-

active services. In CIDR, pages 223–234, 2011.

[64] Jeff Shute et al. F1: A distributed sql database that scales. Proc. VLDB Endow.,

pages 1068–1079, 2013.

[65] VoltDB. [online]. available: https://voltdb.com/.

[66] Justin DeBrabant et al. Anti-caching: A new approach to database management

system architecture. Proc. VLDB Endow., pages 1942–1953, 2013.

[67] Bin Liu et al. Automatic entity-grouping for OLTP workloads. In ICDE, 2014.

[68] Carlo Curino et al. Schism: A workload-driven approach to database replication and

partitioning. Proc. VLDB Endow., pages 48–57, 2010.

[69] Davi E. M. Arnaut, Rebeca Schroeder, and Carmem S. Hara. Phoenix: A relational

storage component for the cloud. In CLOUD, pages 684–691, 2011.

137

[70] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,

Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-

scale data analysis. In SIGMOD ’09, 2009.

[71] Avrilia Floratou, Nikhil Teletia, David J. DeWitt, Jignesh M. Patel, and Donghui

Zhang. Can the elephants handle the nosql onslaught? Proc. VLDB Endow.,

5(12):1712–1723, August 2012.

[72] Avrilia Floratou, Umar Farooq Minhas, and Fatma Özcan. Sql-on-hadoop: Full cir-

cle back to shared-nothing database architectures. Proc. VLDB Endow., 7(12):1295–

1306, August 2014.

[73] AmpLab Big Data Benchmark [online]. available:

https://amplab.cs.berkeley.edu/benchmark/.

[74] Stefan van Wouw et al. An empirical performance evaluation of distributed sql query

engines. In ICPE’15, 2015.

[75] Pouria Pirzadeh et al. Bigfun: A performance study of big data management system

functionality. In IEEE BIG DATA, 2015.

[76] Juwei Shi et al. Clash of the titans: Mapreduce vs. spark for large scale data analyt-

ics. in Proc. VLDB Endow., 2015.

[77] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-

phy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient dis-

tributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In

NSDI’12, 2012.

[78] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and

Alexander Rasin. Hadoopdb: An architectural hybrid of mapreduce and dbms tech-

nologies for analytical workloads. Proc. VLDB Endow., 2(1), August 2009.

138

[79] Microsoft Azure Cloud Computing Platform and Services. [online]. available:

https://azure.microsoft.com/en-us/.

[80] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Tachyon:

Reliable, memory speed storage for cluster computing frameworks. In SOCC ’14,

2014.

[81] Alluxio [online]. available: https://www.alluxio.org/.

[82] Block Range Index [online]. available: https://www.postgresql.org/docs/9.5/static/brin-

intro.html.

[83] Guido Moerkotte. Small materialized aggregates: A light weight index structure for

data warehousing. In VLDB ’98, 1998.

[84] Liwen Sun, Michael J. Franklin, Sanjay Krishnan, and Reynold S. Xin. Fine-grained

partitioning for aggressive data skipping. In SIGMOD ’14, 2014.

[85] Ioannis Patlakas, George Sfakianakis, Peter Triantafillou, and Nikos Ntarmos. Inter-

val indexing and querying on key-value cloud stores. In ICDE ’13, 2013.

[86] TPC-W benchmark. [online]. available: http://www.tpc.org/tpcw/.

[87] Prabhakar Chaganti. Xen Virtualization: A fast and practical guide to supporting

multiple operating systems with the Xen hypervisor. Packt Publishing, 2007.

[88] Pengcheng Xiong et al. Intelligent management of virtualized resources for database

systems in cloud environment. In ICDE, pages 87–98, 2011.

[89] Yuan Chen, Subu Iyer, Dejan Milojicic, and Akhil Sahai. A systematic and practical

approach to generating policies from service level objectives. In IM, pages 89–96,

2009.

[90] Mysql: Explain syntax. [online]. available: http://dev.mysql.com/doc/refman/5.0/en/explain.html.

139

[91] Mysql: The innodb buffer pool. [online]. available:

http://dev.mysql.com/doc/refman/5.5/en/innodb-buffer-pool.html.

[92] CAP theorem. [online]. available: https://en.wikipedia.org/wiki/cap theorem.

[93] Themis. [online]. available: https://github.com/xiaomi/themis.

[94] Omid. [online]. available: https://github.com/yahoo/omid.

[95] PostgreSQL: Transaction Isolation. [online]. available:

http://www.postgresql.org/docs/9.1/static/transaction-iso.html.

[96] Kay Ousterhout et al. Making sense of performance in data analytics frameworks.

In NSDI, 2015.

[97] D. J. DeWitt. The Wisconsin Benchmark: Past, present and future. In J. Gray, editor,

The Benchmark Handbook. Morgan Kaufmann, 1993.

[98] Apache HBase Performance Tuning. [online]. available:

https://www.slideshare.net/lhofhansl/h-base-tuninghbasecon2015ok.

[99] Multi-threaded query execution in Impala. [online]. available:

https://issues.apache.org/jira/browse/impala-3902.

[100] Google Cloud Platform. [online]. available: https://cloud.google.com/.

[101] MapR-FS. [online]. available: https://mapr.com/products/mapr-fs/.

[102] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

140

