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Chapter 1   Introduction 

For the past several decades, electronic medical record (EMR) systems have been 

progressively adopted in multiple aspects of clinical care and healthcare endeavors, e.g., capturing 

the condition of patients, facilitate communication between healthcare providers [1, 2], and 

improve the quality of care [3] . Meanwhile, the importance of repurposing the data in such 

resources to enhance secondary use, such as public health [4, 5] and biomedical research [6, 7], 

has been increasingly acknowledged. To realize such programs on a large scale, it is critical to 

share EMR data with researchers within and beyond the healthcare organization (HCO) at which 

it was generated [8].  In certain instances, such as when research is sponsored by the National 

Institutes of Health, HCOs must have plans for sharing data [9].  However, concerns over the 

privacy rights of the corresponding patients [10, 11, 12] have been posed by the dissemination of 

such data and remain one of the primary challenges before data sharing by HCOs.  

One of the most common approaches to mitigate the above concerns as recommended by 

the National Institutes of Health data sharing policy [9], is to ensure the removal of protected health 

information (PHI) in the data to be shared. This information includes explicit identifiers (e.g., 

patient names) and quasi-identifiers (e.g., dates). This sanitizing process, called de-identification, 

is usually according to a regulatory standard, such as that specified in the Privacy Rule of the 

Health Insurance Portability and Accountability Act of 1996, or HIPAA [13], or European 

Medicines Agency (EMA) policy 0070 [14]. 

It is readily apparent where potential identifiers reside (e.g., a column in a database table 

labeled as “Patient Name”) in structured data (e.g., diagnosis codes [15]) or semi-structured text 

[16](e.g., problem lists [17]), which makes such data relatively straightforward to de-identify.  

However, a substantial amount of information is documented only in the form of natural language 

(e.g., clinical narratives) [18], which has proven to be a great enabler of flexibility in clinical 

workflow [19] and decision support [20]. Trying to thoroughly identify the existence of sensitive 

information (i.e., achieve perfect recall) while leaving all instances of non-identifiers in place (i.e., 

achieve high precision) [21, 22, 23, 24, 25, 26] is improbable in practice in clinical narratives, no 

matter manually or automatically [27, 28].  
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Thus it is fair to presume that even an HCO would make a considerable investment in the 

natural language de-identification process, some level of identifier leaking is still possible or the 

shared data will hardly be useful due to redaction of non-identifiers.  

It is important to recognize the above fact because evidence suggests that increasing the 

amount of training data provided to de-identification tools could lead to diminishing returns in 

improving recall and precision eventually. 

Scalability is always an issue for an HCO to take into account when evaluating de-

identification methods. Manual de-identification of clinical narratives can be costly, both in labor 

and time [29], which means to construct a corpus of more than a few hundred documents is almost 

infeasible. Since even moderate size health care institutions can annually accumulate millions of 

records in the EMR system, evidently this is not a scalable approach. This is where automated de-

identification tools come into play. Such tools translate the task of de-identification into a natural 

language processing (NLP) problem to make the process more efficient and replicable. Roughly 

categorized there are three groups of automated systems [2]: 1) rules and dictionaries, 2) machine 

learning, and 3) a hybrid of the two.   

Rule-based systems perform well when informed by local knowledge and hand-crafted 

rules [30, 31].  But such knowledge is not always easy to elicit and might require significant 

amount of time to gather, which leads to scalability and portability problems [26].   

Contrarily, solutions based on machine learning tend to be more generalizable and robust 

[26]. For this type of approaches, de-identification models are inferred from numerous textual 

features automatically derived from annotated training data. Nevertheless, they demand a certain 

amount of manually-annotated narrative to start with, in order to inform the learning process, 

which could call the scalability into question.  

Hybrid models, which strive to integrate the best of both rule-based and machine learning-

based algorithms, can improve de-identification performance [25], but require not only local 

knowledge but also human annotated training data. 

1.1 Problem Statement 

This dissertation is primarily concerned with the scalability challenge in de-identification 

systems based on machine learning. We address this challenge by fulfilling three tasks in the 
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context of natural language de-identification. The overall architecture of this research is illustrated 

in Figure 1. Starting from a collection of unannotated natural language clinical data which is 

subject to the exploit of malicious attackers when shared, the ultimate aim of the system is to 

successfully identify and therefore protect the PHI in the dataset.   

1.1.1 Task 1 - Game Based Model for Investment Allocation 

The first task aims to answer the question of how to formalize the interaction between an 

HCO that shares its EMR data and a potential adversary that intends to exploit the private 

information in the shared dataset. Note that the HCO has access to limited budget and human help 

to start the machine learning based de-identification, which requires an optimized solution to make 

investments rather than simply exhausting the resource. In this dissertation we introduce a game 

theory based framework to model the cost and benefit relation between an HCO and an adversary 

in order to investigate the threat of PHI exposure and to minimize the expenditures of an HCO, 

namely, the amount of training data allocated for natural language de-identification. In our game 

model, we assume the adversary is capable of mimicking the HCO’s strategy of de-identification, 

which enables the HCO to construct an adversarial model and simulate the behavior of the 

adversary before actually performing the de-identification process.   

1.1.2 Task 2 - Document Clustering 

The second aspect of the scalability challenge in this dissertation focuses on how to better 

utilize a given set of training data for machine learning based de-identification. This is based on 

the observation that for machine based de-identification systems, training and testing on the same 

document type (e.g., discharge summaries) of clinical narratives yield the best performance [32]. 

Yet the information of document types is not always readily available and may not always provide 

the best basis for grouping records due to heterogeneity in documentation practices. We then 

proposed and developed a feature extraction and clustering strategy to partition clinical documents 

into inferred types (categorized by writing complexity and clinical vocabulary usage) over which 

de-identification models are trained and tested. This clustering strategy is performed on both the 

gold standard data and the testing data after the amount of training resources needed for de-

identification is determined by our game based framework in Task 1.  



 

4  

1.1.3 Task 3 - Active Learning 

For the last part of the problem, we incorporate active learning [33] in machine learning 

de-identification and answer the question of whether utilizing active learning in the process of 

machine learning de-identification can yield better results than passive learning (i.e., randomly 

sampling documents for training) in terms of performance measures. The hypothesis is that if the 

machine learning de-identification system could actively request information that helps to create 

a better model, less training data will be needed to maintain (or even improve) the performance of 

trained models. As shown in Figure 1, after the clusters of training and testing documents are 

generated as in Task 2, the clusters are fed into the active learning framework as input to create 

the final output of protected data. 

 

Figure 1.  Natural language de-identification pipeline and how this dissertation fits in the big 
picture of the de-identification workflow                                                                   

1.2 Dissertation Overview 

This dissertation is constructed as follows: we first formalize the game theory based 

resource allocation framework for natural language de-identification in chapter 2 as Task 1, then 

in chapter 2 we present Task 2, the document clustering strategy calculated with writing 

complexity measures in order to enhance the training and testing of de-identification. In the last 
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chapter, we introduce an active learning approach for de-identification, design a pipeline to 

conduct experiments and assess the performance. Note that all three frameworks in this 

dissertation are evaluated on real world datasets.   
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Chapter 2   Game Based Model for Investment Allocation 

To mitigate privacy risks in EMR usage, HCOs aim to remove potentially identifying 

patient information. Since a substantial quantity of EMR data is in the form of natural language 

and subject to exploits by ill-intentioned data recipients even after de-identification, HCOs have 

been encouraged to make as much investment as possible to detect and remove potential identifiers. 

However, such a strategy assumes the recipients are sufficiently incentivized and capable of 

exploiting leaked identifiers, which may not hold true in practice and may lead HCOs to overinvest 

in de-identification.  The goal of Task 1 is to design a natural language de-identification framework, 

rooted in game theory, which enables an HCO to optimize their investments given the expected 

capabilities of an adversarial recipient. The answer to this problem depends largely on how much 

shared data is worth - to both the HCO providing the data and the potential recipients (who may 

exploit it maliciously, such as re-identification of patient data).  Therefore, for an HCO to a make 

rational decision about how much to invest in de-identification, the incentives (and disincentives) 

of sharing data, as well as the cost-benefit model that incorporates behavior of the anticipated 

recipients, need to be well-defined.   

We introduce a Stackelberg game to balance risk and utility in natural language de-

identification. This game represents a cost-benefit model that enables an HCO with a fixed budget 

to minimize their investment in the de-identification process. Specifically, we model the HCO as 

a defender/publisher who has a limited budget, with a responsibility to protect patient privacy, and 

the malicious data recipient as a potential attacker who attempts to exploit it via re-identification. 

Under this model, the HCO incurs a cost when performing de-identification (e.g., paying readers 

to manually redact identifiers or annotate an EMR corpus to train an automated tool) based on 

which the publisher aims to achieve better protection of the data while retaining its utility.  The 

attacker, by contrast, is incentivized to expose as much sensitive information from the published 

records as possible, but is bounded in capability (e.g., by a budget of their own) to perform the 

attack. 

We formalize the interaction between the HCO and the ill-intentioned data recipient in a 

game theoretic framework. In this game, the publisher is a leader, who chooses whether or not to 

share data, and, if so, how much of their budget to spend on de-identification tasks (with the 

incentive to minimize spending, so that the surplus may be applied to other activities, such as 
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additional research studies).  The attacker, by contrast, is a follower, who aims to discover leaked 

instances of PHI. The publisher may choose not to share the data, for example, if de-identification 

costs or risks from data sharing outweigh the benefits.  The attacker, similarly, may opt out of 

attacking altogether if the benefits (e.g., from finding and exploiting leaked sensitive information) 

are not worth the cost of uncovering this information. One important aspect of our framework is 

that it explicitly models several mechanisms by which an attacker may be deterred. The first is for 

the publisher to manipulate the data and influence the confidence the attacker has in their claims 

of identifier discovery.  An example of such a strategy is the “hiding in plain sight”, or HIPS, 

approach, whereby all detected instances of identifiers are replaced with fake instances that exhibit 

a similar semantics (e.g., replacing the name “Rachel” with “Alice”, replacing an actual date 

“4/12/2015” with a randomly generated date “4/25/2015” and replacing a real medical record 

number “12638920” with a generated medical record number “53267935”) [28] which makes it 

difficult for an attacker to distinguish between fake and real PHI. A second deterrence mechanism 

is to institute data use agreements that penalize the attacker when they commit an exploit and are 

caught in the act.  The model we introduce explicitly represents and reasons over both mechanisms. 

 

 
Figure 2.  A depiction of the traditional view on natural language de-identification (left) and an 
augmented view that accounts for potential attackers (right) and translation of traditional 
information retrieval measures into economic factors. 

 

We evaluate the model by assessing the overall payoff to the HCO and the adversary using 

2100 clinical notes from Vanderbilt University Medical Center. We simulate several policy 
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alternatives using a range of parameters, including the cost of training a de-identification model 

and the loss in data utility due to the removal of terms that are not identifiers. In addition, we 

compare policy options where, when an attacker is fined for misuse, a monetary penalty is paid to 

the publishing HCO as opposed to a third party (e.g., a federal regulator).  

Our results show that a game theoretic framework can be applied in leading HCO’s to 

optimized decision making in natural language de-identification investments before sharing EMR 

data. More specifically in our study, when an HCO is forced to exhaust a limited budget (set to 

$2000 in the study), the precision and recall of the de-identification of the HCO are 0.86 and 0.8, 

respectively.  A game-based approach enables a more refined cost-benefit tradeoff, improving both 

privacy and utility for the HCO. For example, our investigation shows that it is possible for an 

HCO to release the data without spending all their budget on de-identification and still deter the 

attacker, with a precision of 0.77 and a recall of 0.61 for the de-identification. There also exist 

scenarios in which the model indicates an HCO should not release any data because the risk is too 

great. In addition, we find that the practice of paying fines back to a HCO (an artifact of suing for 

breach of contract), as opposed to a third party such as a federal regulator, can induce an elevated 

level of data sharing risk, where the HCO is incentivized to bait the attacker to elicit compensation. 

Task 1 provides three primary insights: 

1) An Adversarial Model for Natural Language De-identification: The traditional view 

on natural language de-identification is depicted to the left of Figure 1.  In this view, a publisher 

considers only the precision and recall of the redaction strategy.  The rate of PHI discovery tends 

to grow logarithmically in the amount of training data supplied [22], which means that a publisher 

would require infinite investment to achieve perfect data protection.  However, in the game view, 

the role of an attacker can be formalized, depicted to the right of Figure 1, as can the budgets 

available to both players in the system. In this augmented scenario, both sides engage in a cost-

benefit analysis, which explicitly accounts for the interactions between the two agents.  

2) A Stackelberg Formulation of De-identification: Based on the adversarial model, we 

introduce a game theoretic approach to solving this problem. This approach is based on a 

Stackelberg (or leader-follower) game, where the publisher can simulate the capabilities of the 

adversary before deciding on which strategy to implement (e.g., how much funding to invest in 

the de-identification process).  In doing so, the publisher assumes that the adversary optimizes 
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their strategy and chooses a level of investment in de-identification that maximizes their benefit 

accounting for an attacker’s response.  

3) Systematic Policy Evaluation: We investigate the game under several policy designs 

for how penalties are paid for violations. We use a dataset of approximately 2100 real clinical 

notes from Vanderbilt University Medical Center to assess each policy.  In doing so, we perform 

a sensitivity analysis on the decisions made as a function of the costs (e.g., penalties) enforced in 

the system.  We find that there are cases in which the attacker will choose to forgo an attack while 

the publisher invests only a moderate amount in supporting de-identification.  We also show that 

there are cases when the publisher should choose not to play and not share data. 

This representation of the de-identification problem is notable in that it can 1) provide 

HCOs (or regulators, in the event that such contracts are formalized in policies) with the ability to 

engineer appropriate levels of penalization; 2) provide institutional review boards (IRBs) with a 

clearer picture of the actual (as opposed to perceived) risks of sharing natural language EMRs, and 

3) explicitly model the tradeoffs between data utility and privacy risks.   

2.1 Background  

2.1.1 Machine Learning and Natural Language De-identification Tools 

There are various machine learning approaches to de-identification that have been 

developed.  These include strategies based on maximum entropy models [34], decisions trees [24], 

random forest [35], support vector machines [36], and conditional random fields [2, 23, 37] (CRF).  

CRFs [38], in particular, have been broadly applied by the NLP community to solve various 

problems, such as shallow parsing in sequence labeling tasks [39] and biomedical named entity 

recognition [40].  In the context of de-identification, the task is generalized to a named entity 

tagging problem [22], such that the goal is to identify and correctly assign type labels to each PHI 

instance (e.g., person names, ages, and calendar dates). As a brand of classifier designed to label 

words according to such types, CRFs presume that dependencies exist between these type labels, 

and then capture these dependencies under a first-order Markov assumption. 

Various software tools have adopted CRFs for de-identification. The Health Information 

DE-identification (HIDE) [23] and a tool at Cincinnati Children’s Hospital [2] were both 

developed based on the Mallet toolkit [41], while the Best-of-Breed (BoB) system [25] 
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incorporates a CRF implementation from the Stanford NLP group [42]. For this dissertation, we 

work with the MITRE Identification Scrubber Toolkit (MIST), which is based on the Carafe toolkit 

[43].  We use MIST because its built-in functionality addresses several useful tasks, including a 

web-based graphical annotation interface, a tagging module, a redaction and re-synthesis module, 

and an automated experiment engine.  

Existing machine learning approaches to de-identification strive to maximize performance 

in terms of standard information retrieval measures, such as precision, recall, or a balanced F-

measure [27, 44, 45, 46] at the token level (individual word) and instance level (phrase, e.g., first 

and last name).  

However, this also implies that a recipient of the data will have the ability (or motivation) 

to exploit all leaked identifiers.  Given that this can lead to over investment in training, our 

approach is substantially different in that it models the decision making process of selecting a 

natural language de-identification strategy as a game, where the performance measures, as well as 

the final payoffs (which are influenced by these scores and other considerations), determine the 

strategy. This reflects a more complete and principled approach to modeling the tradeoff between 

costs and benefits in de-identification. 

2.1.2 Cost-Benefit Tradeoff in Security and Privacy Problems 

A number of models have been introduced to support cost-benefit analysis in privacy 

problems.  Here, we highlight several of the more relevant to our investigation. Specifically, it was 

shown that privacy valuations can be characterized by certain economic factors [47, 48], while a 

company’s market value can be related to privacy breaches’ [49]. Recently, an analytical cost 

model was proposed to monetize the tradeoff between privacy and data utility (according to data 

mining algorithms) in health data publishing [50]. Our research is similar in the sense that we aim 

to quantify the costs and benefits for the publisher and the attacker in our framework.   

2.1.3 Game Theory in Privacy  

Game theory has become an effective framework for modeling privacy (as well as security) 

challenges [51].  Our work specifically makes use of the Stackelberg game, in which the publisher 

acts first, after which the attacker makes a decision. In certain settings, this game has been modeled 

to enable a publisher to optimize the allocation of limited resources for better security, a number 
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of which [52, 53] were based on the similar assumption of our study, which is the adversary makes 

perfectly rational decisions to maximize the payoff.   

There have been several investigations in solving privacy problems with a Stackelberg 

game approach, some of which exhibit a similar concept with our work in modeling a two-party 

interaction with a Stackelberg game [53, 54, 55, 56, 57, 58]. Liu et al. proposed a game model 

based on the assumption that the players have uncertainty with respect to each other’s payoff 

function [53]. Rajbhandari et al. provided a model with a smaller strategy space [56]. Blocki et al. 

studied economic considerations in the design of internal audit mechanisms parameter [57]. Wan 

et al. designed a game theoretic framework for a data publisher to evaluate the tradeoff between 

re-identification risk and the value of sharing structured data [58]. While we represent a similar 

setting for the game by viewing the publisher as the leader and the potential attacker as the follower, 

our focus on natural language de-identification is novel, as well as our explicit reliance on 

classification performance measures. Additionally, our study considers the representation of 

alternative penalty-payment mechanisms, such as whether fines are paid back to the publisher or 

to some external regulator.  

2.2 Methods 

2.2.1 Game Theoretic Risk Model 

We assess the risk of the re-identification attack against natural language clinical text that 

has been subject to the HIPS de-identification approach as a Stackelberg game. Our game is 

composed of two players, a publisher p and an attacker a. Both players aim to maximize their 

payoffs during the game. The publisher moves first by proactively deciding whether or not to share 

data (and if so, how much budget to allocate in the process). The attacker moves second by 

deciding whether or not to re-identify the data (and if so, how much budget to allocate in the 

process). Below we describe in greater detail the strategy space for the publisher and the attacker. 
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Figure 3.  A natural language data de-identification and sharing pipeline from the publisher (left) 
to the attacker (right). 

To model such an attack, we constructed a data sharing pipeline based on the MITRE 

Identification Scrubber Toolkit (MIST) [22] as shown to the left of Figure 3. We selected MIST 

for its built-in functionality of several useful tasks: 1) a tagging module, 2) an identifier redaction 

and resynthesis module, and 3) an automated experiment engine.  

The publisher begins with a set of identified EMRs, denoted by N, to be shared. This set is 

split into 1) a subset A  N for manual labeling and training of a de-identification model Mp (which 

in the case of MIST is a conditional random field) and 2) a subset S  N to be de-identified by Mp, 

resynthesized with the HIPS method and turned into a publishable document set Sp. We assume 

the number of EMRs that may be shared is fixed, while the publisher can choose the size of the 

training data set. The publisher decides whether or not to share Sp, which turns into Sa when 

published to the attacker. 

After receiving published documents Sa, the attacker targets the residual identifiers using 

the pipeline depicted in the right of Figure 3. Note that here we assume the adversary knows that 

the fake identifiers were distinguishable from non-identifiers in the publisher’s model, thus they 

try to rebuild the publisher’s de-identification model. If the attacker wants to exploit the 
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shortcomings of the model and chooses to use a different framework, then it is likely to be a 

suboptimal classifier since they are unlikely to replicate what the publisher did and are likely to 

retain more fake instances than using the same framework (or pipeline). Though, as illustrated in 

Figure 3, the attacker’s aim is to attack the detection of PHI, this framework generalizes to the case 

when the attacker targets the resynthesis process itself. The attacker begins by manually labeling 

a subset of Sa, as C  Sa. Next, the attacker trains a model Ma under the same framework as the 

publisher (in our case, the attacker also utilizes MIST or some other tool that relies on conditional 

random fields). Finally, the attacker applies model Ma to a subset of the remainder of the published 

EMRs, denoted by D  Sa, to obtain a set of EMRs with tagged predicted identifiers, denoted by 

D*. 

2.2.2 Attacker Model 

Note that prior research [28] suggests that humans cannot distinguish leaked identifiers 

from fake identifiers. Here our assumption is the worst case scenario in which the attacker can 

manually distinguish real from fake instances in the published EMRs, when the attacker can assign 

distinct labels to fake and real identifiers in the training data, but it takes time and effort to 

accomplish this task, especially when fake information is highly prevalent in the published data. 

This is why the attacker leverages the help of machine-based approaches to decrease the impact 

and distraction of the fake. As a start, the attacker chooses manually tagging either real or fake 

identifiers in a small batch of documents as a binary classification target. 

 

Tag the real information. The training model is instructed to search for real identifiers, 

which means the machine-tagged results are actual leaks. We define precision and recall in such 

attacks as follows:  

(𝑷)𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =  
 attacker match

attacker match + attacker spurious
 

(𝑹)𝑒𝑐𝑎𝑙𝑙 =
 attacker match

attacker match + attacker missing
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For reference purposes, the upper section of Table 1 provides explicit definitions of these 

variables. 

Variable Definition 

attacker match Residual real identifiers successfully tagged by the attacker 

attacker spurious Information tagged by the attacker that is not a real identifier 

attacker missing Residual real identifiers not detected by the attacker 

“missing” reported by publisher Total residual real identifiers in the published data 

“spurious” reported by attacker Information that is not a fake identifier redacted by the attacker 

(i.e., it is either a real instance or general clinical text)  

publisher missing ∩ attacker spurious Residual real identifiers redacted by the attacker 

“missing” reported by attacker Residual fake identifiers left in place by the attacker 

Table 1. Variables in the Attacker’s strategies. 

Tag the fake information. The corresponding model trained by fake information tends to 

tag resynthesized information in the attacked EMRs. After redacting such machine tagged 

identifiers, the final residual identifiers in the resulting EMRs (which we assume that the attacker 

can find by careful inspection of the document – in effect annotating the residual PHI) are 

considered by the attacker as real (i.e., leaks).  To evaluate the performance of the attack, we define 

the precision and the recall of the attacker in this case as follows.  The lower section of Table 1 

provides definitions of these variables. 

 

(𝑷)𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =  
publisher missing – (publisher missing ∩  attacker spurious)

(publisher missing – (publisher missing ∩  attacker spurious)) + attacker missing
 

 

(𝑹)𝑒𝑐𝑎𝑙𝑙 =
publisher missing – (publisher missing ∩  attacker spurious)

publisher missing 
 

 

Note that in the following experiments we only applied “Tag the fake information” since 

1) our preliminary test with “Tag the real information” suggests that there are not enough training 

data for the attacker when training with the real, 2) even under an assumption of an infinitely-sized 
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training dataset, there would still be problems with “Tag the real information”.  This is because, 

by definition, these real identifiers left in place by the publisher’s model are the hardest instances 

for the CRF to find.  It may be the case that what we are looking at here is the “noise” to the 

“signal”.  While it may be possible to pick up some of these instances, this is outside the scope of 

this paper (where we assume that the attacker attempts to mimic the publisher). 

2.2.3 Cost Model Assumptions 

We make the following assumptions for risk assessment purposes: 

1) Both the publisher and the attacker begin with a fixed budget to spend in their activities; 

2) The publisher can choose not to share any data and the attacker may choose not to attack 

if their payoffs are negative; 

3) The publisher pays for annotating each EMR for training; 

4) The publisher incurs a penalty for each false positive (that is, for each asserted leaked PHI 

instance that is not, in fact, a leak), resulting in utility loss due to over-redaction; 

5) The publisher incurs a loss for each successful recovery of a leaked PHI instance by the 

attacker; 

6) The attacker pays for annotating each HIPS de-identified record for model training 

purposes; 

7) The attacker incurs a penalty for each false positive; and 

8) The attacker is rewarded for a successful detection of a leaked identifier. 

 

 Variable Description Publisher Attacker 
Average number of (real and fake) instances per EMR i i 
Number of EMR training documents (decision variable) α 𝛾 
Number of published HIPS de-identified documents  β β  
Annotation cost per document cp ca 
Loss for a false positive  lp la 
Value for a true positive 0 v 
Budget  Bp Ba 
Precision Pp Pa 
Recall Rp Ra 

Table 2. Definitions of the variables in the cost models. 
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2.2.4 Cost Model Basis 

The variables relied upon to define the cost functions for the publisher and attacker are 

summarized in Table 2.  We define 𝐵௔ as the attacker’s budget, 𝑐௔ as the annotation cost for each 

EMR, and 𝛾 as the number of training instances annotated by the attacker. Consequentially, 𝛾𝑐௔ 

corresponds to the total cost of training.  

Given the average number of PHI instances per EMR 𝑖, the publisher’s published size 𝛽, 

and the publisher’s recall 𝑅௣, the total number of instances leaked by the publisher is expected to 

be:  

𝑖𝛽൫1 −  𝑅௣൯ 

Now, let 𝑅௔ be the attacker’s recall.  Then, the number of correct guesses for leaked PHI 

is expected to be: 

𝑖𝛽൫1 − 𝑅௣൯𝑅௔ 

We define the value per true positive for the attacker as 𝑣. As such, the total value for a 

successful attack is expected to be: 

𝑖𝛽൫1 −  𝑅௣൯𝑅௔𝑣 

Next, let us consider the attacker’s total guesses for the leaks. This can be derived by the 

attacker’s recall and precision (𝑃௔): 

𝑖𝛽൫1 −  𝑅௣൯𝑅௔ 

𝑃௔
 

Based on this characterization, the number of false guesses made by the attacker is: 

𝑖𝛽൫1 −  𝑅௣൯𝑅௔  

𝑃௔
−  𝑖𝛽൫1 −  𝑅௣൯𝑅௔ =   𝑖𝛽൫1 −  𝑅௣൯𝑅௔ ൬

1  

𝑃௔
−  1൰ 

Let us define the attacker’s loss per false positive as 𝑙௔. Then the loss for incorrect guesses 

is: 

𝑖𝛽൫1 −  𝑅௣൯𝑅௔ ൬
1  

𝑃௔
−  1൰ 𝑙௔ 

The attacker’s payoff for a re-identification attack, should he choose to attack, is thus 

defined as: 

 
𝐵௔ − 𝛾𝑐௔ + 𝑖𝛽൫1 −  𝑅௣൯𝑅௔ ൭𝑣 − 𝑙௔ ൬

1  

𝑃௔
−  1൰൱ (1) 
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Therefore, the net gain, accounting for true and false leaks detected by the attacker is: 

 
𝑖𝛽൫1 −  𝑅௣൯𝑅௔ ൬𝑣 − ൬

1  

𝑃௔
−  1൰ 𝑙௔൰ (2) 

 

2.2.5 Policy Alternatives 

Turning now to the publisher’s payoff, we consider four variations, giving rise to different 

instances of strategic interactions between the publisher and the attacker.  

Traditional Policy: This is how an HCO is currently forced to play in a data sharing ecosystem. 

Under this model, the publisher:  

1) is required to publish the data under all circumstances,  

2) is forced to exhaust the budget on training the de-identification model, which implies that 

𝐵௣ − 𝛼𝑐௣ = 0 , where 𝐵௣  is the publisher’s initial budget, 𝑐௣  is the cost to annotate a 

document,  𝛼𝑐௣  is the total cost for training 𝛼  documents to create a de-identification 

model, and  

3) is penalized monetarily (or reputationally) by a third party for false positives (poor 

precision) and the attacker’s successful attack.  

Similar to the derivation of the attacker’s payoff, let us define the publisher’s precision as 𝑃௣ and 

the loss per false positive as 𝑙௣. Then, the overall loss incurred by the publisher for poor precision 

is: 

 𝑖𝛽𝑅௣ ቆ
1

 𝑃௣
 –  1ቇ 𝑙௣ 

Based on this setup, the publisher’s payoff can be defined as: 

 
𝐵௣ − 𝛼𝑐௣ −    𝑖𝛽𝑅௣ ቆ

1

 𝑃௣
 –  1ቇ 𝑙௣ − 𝑖𝛽൫1 −  𝑅௣൯𝑅௔𝑣 (3) 

Since, in this setting 𝐵௣ − 𝛼𝑐௣ = 0, the publisher’s payoff can be simplified to: 

 
−   𝑖𝛽𝑅௣ ቆ

1

 𝑃௣
 –  1ቇ 𝑙௣ − 𝑖𝛽൫1 −  𝑅௣൯𝑅௔𝑣. (4) 

 

Safe-forward Policy: In this policy, the publisher’s goal is to deter the attacker. If 

deterrence is not possible, or the publisher cannot achieve positive payoff, the publisher will 
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choose to publish nothing, indicating a payoff of 0. In this setting, whenever the attacker is 

penalized, it is assumed that the fine is collected by a third party (e.g., the U.S. Department of 

Health and Human Services). Since there is no penalty paid from the publisher,  

𝑖𝛽൫1 −  𝑅௣൯𝑅௔𝑣 =  0.  Thus, the payoff of the publisher (who makes the decision to play) can be 

simplified from Equation (3) to: 

 
𝐵௣ − α𝑐௣ −   𝑖𝛽𝑅௣ ቆ

1

 𝑃௣
 –  1ቇ 𝑙௣ (5) 

Since the publisher is not willing to tolerate a loss, this can also be thought of as the “no 

risk” policy. 

Attack-forward Policy: In this policy, the publisher’s decision variables are whether to 

publish any data at all, and if so, how much training data to use (that is, is a decision variable). 

As before, any penalty incurred by the attacker is collected by a third party.  The payoff of the 

publisher is defined as in Equation (3). 

Attack-back Policy: This policy is similar to the Attack-forward policy, except now the 

publisher collects fines paid out by the attacker. This type of setting reflects what happens when 

the publisher is legally entitled to damages from the attacker (i.e., the popular “I’ll sue you for 

violation of a contract.” situation). Since the publisher basically pays for the net gain of the attacker 

(see Equation (2)) in this policy, the payoff of the publisher can be defined as: 

 
𝐵௣ − 𝛼𝑐௣ − 𝑖𝛽𝑅௣ ቆ

1

 𝑃௣
 –  1ቇ 𝑙௣ − 𝑖𝛽൫1 −  𝑅௣൯𝑅௔(𝑣 − ൬

1  

𝑃௔
−  1൰ 𝑙௔) (6) 
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2.3 Experimental Design and Results 

2.3.1 Dataset 

The dataset used in Task 1 consists of a corpus of 2100 clinical encounter notes drawn 

from the Vanderbilt University Medical Center (VUMC) EMR system.  Each file was drawn from 

a different patient and this set of records is composed of five document types, including i) clinical 

notes for history and physicals (HP), ii) discharge summaries (DS), iii) pathology notes (PATH), 

iv) clinical communications (CC), and v) respiratory care encounter notes (RC). The numbers of 

documents of each type are shown in Table 3. There are 11 PHI types in the corpus, the details, 

and justification, of which are provided in Appendix A1. 

Document Type Number 

CC 500 

DS 409 

HP 398 

PATH 349 

RC 400 

Table 3. Distribution of document types in the corpus. 

2.3.2 Publisher and Attacker Model Performance Measures 

We set up a data publishing pipeline (Figure 4) to evaluate the performance of both parties 

in this process. The size of the dataset to be published was fixed at 400 documents. The publisher 

trained a data de-identification model with an independent set of 200 clinical records, manually 

annotated as gold standard documents. From this dataset, we randomly sampled subsets of 10, 20, 

50, 100, and 200 documents to train models on different quantities of training data, corresponding 

to different levels of de-identification accuracy. Note that these training numbers are unrealistically 

small, but serve an experimental purpose of generating variation in model performance, which is 

desirable from an experimental perspective. 
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Figure 4.  Experimental design for performance and cost model evaluations of the publisher and 
the attacker.  Note that a specific experiment consists of the publisher and attacker choosing one 
level of training each. 

The resulting model was then applied to redact the PHI instances in the 400 documents 

planned for publication, after which all detected instances were replaced with fake instances. Since 

the model cannot achieve 100% recall, the 400 records available for publication included a mix of 

residual leaked identifiers and fake identifiers. For each training scenario of the publisher, we 

simulated the adversary’s strategy by annotating subsets of 10, 20, 50 and 100 EMRs using the tag 

fake PHI model mentioned earlier. The resulting models were applied to the remainder of the 

shared dataset. The entire process is shown as a simplified pipeline in Figure 4. 

We assessed the performance of the publisher and attacker in terms of precision, recall, 

and F-measure. All the scenarios were repeated five times and we report average results.  Figure 

5 shows that the publisher’s precision and recall improve with increasing size of the training data. 

The precision ranged from 0.70 (when training with 10 records) to 0.86 (when training with 200 

records). The recall of the publisher sustained a more dramatic change from 0.49 (when training 

with 10 records) to 0.8 (when training with 200 records). This indicates that the potential leaks 

available for detection by the attacker drops from 51% of the instances to 20%.   
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Figure 5.  Performance for the publisher’s de-identification model as a function of the number of 
documents provided for training. 

Figure 6 shows the attacker’s performance using the “tag fake” approach under different 

training scenarios of the publisher. In each plot, the horizontal axis represents the attacker’s change 

in training size, while the vertical axis represents a performance measure. Each of the three lines 

shows the performance of the attacker in a specific training size of the publisher (e.g., the solid 

line in Figure 6(a) depicts the attacker’s change in precision when the publisher trains with 10 

documents). As shown in Figure 6(a), overall, the attacker’s precision increases as additional data 

is annotated and applied for training. Specifically, for the documents de-identified by the 

publisher’s 10-document training model, the attacker’s precision increases from 0.72 to 0.85 when 

the attacker increases the training size from 10 to 100 documents. When the publisher increases 

the training size, the attacker’s precision shows a decreasing trend. For example, when the attacker 

fixes the number of training documents to 10, the precision falls from 0.72 to 0.38 as the 

publisher’s training size grows from 10 to 200. The attacker’s recall (with respect to instances that 

were leaked by the publisher), on the other hand, remains steady, at around 0.99 among all 

scenarios, as shown in Figure 6(b).  The F-measure change with respect to the training sizes 

followed a similar path to the precision (see Figure 6(c)).  
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Figure 6.  The influence of the publisher’s training dataset size on the attacker’s (a) precision, (b) 
recall, and (c) F-measure. 
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2.3.3 Publisher and Attacker Costs  

We begin our case studies by assigning values to variables as summarized in Table 4. The 

number of total PHI instances in the EMRs available for publication is 7758, such that the average 

number of PHIs per EMR (i) is 19.4. For interpretation purposes, we set this value to 20.  We set 

the annotation cost per record for the publisher (cp) to be $10. As stated earlier, the publisher has 

a limited budget, which is determined by the maximum amount of money needed for annotation. 

In our case the publisher’s maximum training size (α) is 200, leading to an initial publisher budget 

(Bp) of $2000. We chose the (reputational) penalty for removal of non-identifiers (lp) to be $0.1 

per instance.  

Case Name 
Attacker’s Annotation 

Cost Per EMR 

Attacker’s Loss Per 

False Positive 

Attacker’s Value Per True 

Positive 

Low $1 $0.30 $0.10 

Mid-low $4 $0 $0.10 

Mid-high $4 $0.50 $0.50 

High $10 $0.30 $0.50 

Table 4. Names of the case studies and their corresponding variable values. 

On the attacker’s side, we set the budget (Ba) to $1000. For each combination of the 

parameters, we first calculated the attacker’s payoff. Since we modeled the interaction between 

the publisher and the attacker as a Stackelberg game, for each strategy available to the publisher, 

we computed the attacker’s best response (i.e., the strategy that maximizing the attacker’s payoff) 

and then evaluated the publisher’s payoff.  If the attacker’s optimized payoff was negative after 

deducting the initial budget, we considered the attacker to be completely deterred. Similarly, if the 

publisher’s payoffs from sharing data was negative, we assumed that no data would be shared if 

such an option was available. 

We applied four different combinations of parameters yielding four case studies, which we 

refer to as Low, Mid-low, Mid-high, and High. In the Low case, all values of the three parameters 

were relatively small (ca = $1, la = $0.3, v = $0.1), while in the High case, the parameter values 

were high comparing to the other cases (ca = $10, la = $0.3, v = $0.5).  For the Mid-low and Mid-

high cases, the values of ca was set to $4, and the remaining values were la = 0, v = $0.1 and la = 
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$0.5, v = $0.5, respectively. Note that in the Mid-low case, we selected 0 for the value of la to show 

an extreme case when the attacker does not suffer from incorrect prediction at all. 

The results of the case studies are shown in Table 5. Each row reports the results of a 

specific case in terms of training strategies and payoffs for both the publisher and the attacker.  

Each grouping of four rows present a summary of cases in one of the four policies (i.e., Traditional, 

Safe-forward, Attack-forward, and Attack-back).  

Traditional Policy: As noted earlier, in this policy, the publisher is obligated to spend all 

of the budget on training a protection model and publish the EMRs (see Table 5).  There were 

several notable findings from this baseline analysis.  First, it should be noticed that the publisher 

always spends money because they are forced to exhaust their budget.  They are then subject to 

further losses from inaccurate de-identification (i.e., translation of non-identifiers to fake 

identifiers) and attacks from the recipient.  At the same time, it should be recognized that the 

recipient only chooses to attack in one of the cases.  Specifically, in the Mid-low case, the attacker 

chooses to train on 10 documents and achieves a return of $116.30. 
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Policy Case Name  

Number of 

Documents in 

Attacker 

Training  

Attacker 

Payoff 

Number of 

Documents in 

Publisher Training 

Publisher Payoff  

Does the 

Publisher 

Share Data? 

Traditional 

Low 0 0 200 -$104.12  

Mid - Low 10 $116.30  200 -$260.49  

Mid - High 0 0 200 -$104.12  

High 0 0 200 -$104.12  

Safe-

forward 

(No risk) 

Low 0 $0  30 $1,558.22  

Mid - Low 0 $0  0 $0.00  

Mid - High 0 $0  180 $101.71  

High 0 $0  190 $3.37  

Attack-

forward 

Low 0 $0  30 $1,558.22  

Mid - Low 10 $361.17  10 $1,343.76  

Mid - High 0 $0  180 $101.71  

High 24 $563.49  40 $44.58  

Attack-back 

Low 0 $0  30 $1,558.22  

Mid - Low 10 $361.17  10 $1,343.76  

Mid - High 58 $651.34  30 $675.68  

High 26 $422.17  50 $688.63  

Table 5. Case study results for each policy in terms of number of training EMRs and payoffs for 
the publisher and attacker. 

 

Safe-forward (No risk) Policy: In this policy, the publisher decides whether or not to play 

and manipulates the training dataset size to ensure that the attacker will never attack.  There are 

several notable findings to highlight at this point.  First, when the publisher cannot find a strategy 

to prevent the attack, s/he chooses not to share EMRs. This occurs in the Mid-low case, which 

leads to no payoff in the Safe Forward policy in contrast to the negative payoff in the Traditional 

policy.  Second, since the attacker cannot benefit from the attacks, the attacker will never play the 

game, such that when the publisher shares data, the publisher always ends up with a positive payoff.  

In contrast to the Traditional policy, each of the Low, Mid-high, and High cases lead to positive 

payoffs for the publisher. Nonetheless, it should be noted that each of these cases leads to a 

different amount of investment in training and overall payoff. 

Attack-forward Policy: In this policy, the publisher decides whether or not to play, but now 

selects a training dataset size that maximize the overall payoff.  Any penalty the attacker incurs is 
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paid forward to a third party.  Again, there are several notable findings to highlight. First, this 

design of the game leads to situations in which the publisher makes the same decision as in the 

Safe-forward policy. This means that the publisher’s optimal strategy occurs when the attacker 

chooses not to play (see the Low and Mid-high cases).  Second, there are cases when the publisher 

chooses to share EMRs when they would have failed to do so under the Safe-forward policy (see 

the Mid-low case).  However, this policy also leads to what appears to be a negative outcome in 

comparison to the Safe-forward policy.  Specifically, in the High case, the publisher chooses to 

share less data (40 documents instead of 190), so that they can achieve a higher payoff ($44.58 

instead of $3.37). Yet, in doing so, they open the system up to attack and enable the attacker to 

receive a positive payoff instead of being deterred from playing entirely. 

Attack-back Policy: In this policy, the publisher decides whether or not to share, but now 

selects a training dataset size that maximize the overall payoff.  Any penalty the attacker incurs is 

paid back to the publisher.  The results for this game imply that permitting the publisher to sue the 

attacker for damages could be a dangerous policy.  This is because it appears to encourage the 

publisher to undertrain and bait the attacker, inducing more hazard in this system. A clear 

illustration of this finding is depicted in the Mid-high case, where the publisher has lowered their 

training from 180 to 30 EMRs to raise their payoff from $101.71 to $675.68 while enabling the 

attacker to move from a decision of not playing to actually playing and receiving a positive payoff 

of $651.34. 

 To provide context for how the publisher arrives at this decision, Figures 7 and 8 illustrate 

the process of decision making for the Mid-high case. The processes for the rest of the cases are 

presented in Appendix A2. In each figure, the optimized attacker decision (in terms of investment 

in training) as a function of the publisher’s potential decision (in terms of investment as well) is 

shown in the upper plot, while the actual payoffs to the two players are shown in the bottom plot. 

For instance, in Figure 7, the training size options for the publisher are represented by the 

horizontal axes, whereas the attacker’s decisions and the payoff are shown by the vertical axes. 

The publisher thus makes its optimized decision based on all possible payoffs to the attacker and 

the publisher.   
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Figure 7.  Decision making process of the publisher and corresponding strategies of the attacker 
in the Mid-high case when the attacker’s pays the penalty forward to a third party. 

As can be seen in Figure 7, when the attacker’s penalty goes to a third party, if the publisher 

chooses to train with 50 documents, the attacker’s optimal size of training data is 100, which yields 

the payoff of $36.52 to the publisher and $416.17 to the attacker. If the publisher aims to make the 

most of the budget, the publisher should pick 180 (tagged in red) as the training size, left with a 

payoff of $101.71.  In this case, the attacker will choose not to attack, since the attacker can never 

obtain a positive payoff. Consequently, if the publisher attempts to always deter the attacker, the 

publisher’s optimal training size is, again, 180. Thus, this figure illustrates that in case Mid-high, 

policies of Safe-forward and Attack-forward actually yield same decisions for the publisher.    
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Figure 8.  Decision making process of the publisher and corresponding strategies of the attacker 
in the Mid-high case when the attacker pays the penalty back to the publisher. 

Similarly in Figure 8, when the publisher receives the fine paid by the attacker, the 

publisher’s decision to ensure the attacker be suppressed stays the same with Figure 7, which is 

180. However, if the publisher targets to maximize the payoff, the best option for the publisher 

changes to be 30, leaving a payoff of $675.68, where the attacker trains with 58 and is left with 

$651.34.  
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2.3.4 Sensitivity Analysis 

Next, we performed a sensitivity analysis of the payoffs of the publisher and the attacker 

to investigate the relationships between the strategies of the publisher and the parameters of the 

attacker. For each of the policies shown in Figs 9 and 10, we fix the value of the attacker’s 

annotation cost per document (ca) and vary the attacker’s fine for incorrect detection per instance 

(la) and the value per successfully detected instance for the attacker (v). The results are depicted 

as heat maps, in which the horizontal axes represent v (the value per true positive), and the vertical 

represent la (the loss per false positive). Note that the lighter the yellow, the greater the net payoff 

to the publisher/attacker. For brevity, we analyze the figures corresponding to the Low and Mid-

high cases and provide the figures of the other cases in Appendix A3.  

Figure 9 shows the sensitivity analysis for the four policies (i.e., Traditional, Safe-forward, 

Attacker-forward, and Attack-back) of the Low case, where ca = 1.  Note that in the Traditional 

policy (i.e., where the publisher always exhausts the budget to train a de-identification model), the 

attacker will not attack above the diagonal of the plot, where v  la. However, the publisher’s 

payoff stays below 0 under all possible combinations of v and la. In all Safe-forward, Attack-

forward and Attack-back policies the publisher’s best choice is 30, while the regions in which no 

attack transpires appears when v  0.5 * la.  In both forward penalty payment policies the change 

of v exhibits a larger impact on the publisher’s payoff than la (which hardly affects the payoff). 

The larger the v, the smaller the publisher’s payoff.  In the Attack-back policy, v still has a greater 

impact than la, though it should be noted that la shows an increased impact over the forward policies.  

This is expected because the fine incurred by la is returned to the publisher.  
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Figure 9.  Sensitivity of attacker’s and publisher’s payoffs to the attacker’s value per true 
positive (v) and loss per false positive (la) for policies Traditional, Safe-forward, Attack-forward 
and Attack-back when the attacker’s annotation cost per EMR (ca) is $1. The result for the Low 
case (v = $0.1, la = $0.3) is circled in each figure.  
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Figure 10 depicts the policies corresponding to the Mid-high case, where ca = 4. The region 

in which no attack transpires for the Traditional policy is approximately when la  2/3(v – 0.1). 

Again, the publisher’s payoff stays below 0 under all possible combinations of v and la.  In both 

of the forward policies, the publisher’s best option is to train on 180 documents, while the 

attacker’s payoff is always 0. Notably, the publisher’s payoff can be divided into two general 

situations: 1) the region that is all red, which indicates a payoff of 0 because the publisher chooses 

not to play and 2) the remainder of the space where there is a positive payoff for the publisher that 

is devoid of attack risk.  Finally, for the Attack-back policy, the attacker’s payoff is 0 when v < la, 

leaving the publisher with a large positive payoff.  Clearly, in this policy, where risk is permitted, 

the publisher’s payoff is affected by both the attacker’s value per true positive (v) and the loss per 

false positive for the attacker (la).  
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Figure 10. Sensitivity of attacker’s and publisher’s payoffs to the attacker’s value per true 
positive (v) and loss per false positive (la) for four policies when attacker’s annotation cost per 
EMR (ca) is $4. The Mid-high case (v = $0.5, la = $0.5) is circled.  
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2.4 Discussion  

Task 1 demonstrates that natural language de-identification under a hiding in plain sight 

(HIPS) [28] framework can be mapped to a game theoretic model that formally quantifies the 

tradeoff between data publishing and privacy risks.  In doing so, we showed traditional views [27, 

44] on privacy protection can force HCOs to exhaust budgets and bear the risk of losing reputation 

(in the event of changing non-identifiers to redacted or fake identifiers) and money (in the event 

re-identification is successful), such optimal strategies still enable the HCO with a positive payoff.  

By modeling data sharing as a game, we observed that, under certain circumstances, it is 

possible for the HCO to opt for strategies that will ensure a malicious but rational recipient of de-

identified EMR data will not attempt re-identification via residual identifiers.   Moreover, we 

discovered that the way in which penalties are paid by adversaries for violating terms of service 

significantly influences how data is shared, sometimes resulting in perverse outcomes.  

Specifically, we showed that when those sharing the data are entitled to damages for violation of 

a contractual agreement, they may be inappropriately incentivized to bait an attacker by publishing 

potentially exploitable patient data. We acknowledge that this is not a solution for all EMR data 

sharing scenarios, but can serve as one approach to organizing and managing the system when the 

main problem parameters can be defined. 

2.4.1 Limitations 

While this investigation suggests that a game theoretic framework for natural language de-

identification can facilitate more informed and, in certain circumstances, greater amounts of data 

sharing, there are several limitations that need to be acknowledged. 

 First, the above findings are based on the assumption that we understand what the 

motivation is for the attacker and that it is monetary (or at least a factor is quantifiable). In other 

words, our model focused on economic motivated attackers, whereas reputation driven attackers 

are out of scope.  

Second, we acknowledge that our case studies are based on a single dataset.  As such, the 

generalizability of our findings requires further investigation with other datasets.  However, it is 

critical that such investigations be performed on EMRs with real residual identifiers.  This is 

challenging because, public use datasets, such as those made available by i2b2 [27, 45, 46] or 
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Cincinnati Children’s hospital [59] have removed all identifiers, including those which machine 

learning methods would have a difficult time discovering in the first place [32]. 

 Third, it is important to recognize that the definition of cost plays a key role in our 

framework. We performed a sensitivity analysis to determine the stability of our findings, but 

depending on the actual content in an EMR, the costs per record may change.  
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Chapter 3   Document Clustering 

De-identification tools based on machine learning approaches require a considerable 

amount of training data for a kick-start. The model training process is usually based on either a 

random group of documents or a pre-existing document type designation (e.g., discharge 

summary). Previous studies have shown grouping clinical narratives by document types before 

starting the process of de-identification model training, and apply models to documents according 

to the designated types could improve the performance of de-identification models.  

Task 2 of this dissertation is based on the observation that in practice the information of 

document types could be missing. Further, even if it is available, since there is heterogeneity 

existing in documentation practices, such information may not always be the most reliable standard 

for dividing medical records into training groups.   

In this dissertation we investigate if inherent features can identify document subsets to 

enhance de-identification performance. The hypothesis is that certain characteristics of the clinical 

documents themselves that are mathematically calculable, can be used to enhance the training of 

machine learned de-identification models by grouping clinical documents into more homogeneous 

subsets thus improve the performance of de-identification. Specifically we explore the usage of 

writing complexity and richness of clinical vocabulary of clinical narratives. To assess this 

hypothesis, we developed a feature extraction and clustering strategy to partition clinical narratives 

into inferred types over which de-identification models are trained and tested. For corpora that 

contains highly diverse documents, the methods we discuss in this dissertation may be of particular 

value for de-identification.   

To evaluate this hypothesis we utilized two corpora.  The first consists of the 889 discharge 

summaries from the i2b2 challenge which is publicly available.  The second corpus consists of 

over 4500 medical records from the Vanderbilt University Medical Center (VUMC) of different 

document types (e.g., discharge summaries, history and physical reports, and radiology reports). 

Specifically, we investigate three alternative scenarios for clustering clinical narratives: 1) EHR-

assigned document type, 2) writing complexity and clinical vocabulary richness, and 3) a random 

process. 

For scenario 2), we applied an unsupervised clustering method to group two corpora based 

on writing complexity measures and compared the performance in terms of recall, precision, and 



 

36  

F-measure of de-identification models trained on such clusters with models trained on documents 

grouped randomly or VUMC document type. 

Our experiment results showed that for the i2b2 dataset which is a highly regularized 

dataset with the same document type, training and testing on the same clusters based on complexity 

measures (average F-score 0.966) did not significantly surpass randomly selected clusters (average 

F-score 0.965). For the Vanderbilt dataset, which consists a variety of clinical narratives, de-

identification models trained on the same writing complexity measures (with the average F-

measure of 0.917) are better than models trained on random groups (with an average F-measure of 

0.881). Moreover, increasing the size of a training subset sampled from a specific cluster could 

yield improved results (e.g., for subsets from a certain stylometric cluster, the F-measure raised 

from 0.743 to 0.841 when training size increased from 10 to 50 documents, and when training with 

200 documents the F-measure reached 0.901). It was also observed that in some cases training on 

the same stylometric features tended to surpass training on the same document types. 

3.1 Background 

3.1.1 Writing Styles 

Writing styles are author-specific literary patterns [60], the formal characterization of 

which can be traced back to at least the 19th century [61].  A wide array of assessment functions 

have been proposed to quantitatively represent personal writing style in the form of stylometric 

features. These measurements vary in their nature; e.g., lexical features are based on word-tokens 

[61], while another feature class is derived from syntactic information, approximated by part-of-

speech [62]. 

In this work, we utilize two general types of writing complexity.  The first type corresponds 

to readability.  A readability formula is a measure designed to provide quantitative estimates of 

the difficulty in writing style [63].  Such formulae tend to count language variables in a document 

and estimate the reading difficulty level based on the associated statistics [64].  The earliest 

formulation of this concept [65] is attributed to Lively and Pressey for children’s readability,3 

which measured the vocabulary difficulty with specific indicators.  This work influenced later 

readability studies, notably the Flesch’s Reading Ease formula [66] (one of the most widely used 

readability measurements in the world [63]), which predicts the ease of reading based on ratios of 
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syllables per word and words per sentence.  Over 200 readability formulas have been published 

[65], and in this work we focus on several representative formulae, which are presented in Table 

7.  

Our second type of writing complexity is lexical richness (or diversity). This is a subclass 

of lexical features based on vocabulary size, frequency distribution, and other variations [60].  

Lexical richness includes a simple type token ratio (TTR): 

𝑇𝑇𝑅(𝑁) =
௏(ே)

ே
 , 

where N denotes a document’s word count and V(N) denotes the number of unique words. 

Some measures are variations of TTR, such as Carroll’s Corrected TTR [67].  Others, such 

as Dugast’s Uber Index [68], incorporate simple transformations of V(N) and N. 

3.2 Methods  

3.2.1 Materials 

In this study, we applied our methodology to two datasets.  For the first dataset, we selected 

patient records from an existing de-identified version of StarChart, the VUMC EHR [69].  The 

system contains information dating back to 1984 and continues to receive feeds from a diverse set 

of sources, including lab results, radiology reports, and external transcription companies.  In lieu 

of a large human annotated corpus, we leveraged a locally-specialized version of DE-ID, which is 

a commercially available rules-based de-identification software tool [31], to indicate the position 

and syntactic type (e.g., name versus date) of each patient identifier. DE-ID replaces identifiers 

with generic placeholders for the syntactic type.  This decision was based on the fact that currently 

DE-ID, in conjunction with several pre- and post-processing modules developed at the VUMC, 

remains one of the core technologies by which the VUMC de-identifies its medical records (over 

1.7 million) for local investigator-initiated research projects [70].  In addition, in a demonstration 

project conducted at the VUMC for its institutional review board, it was shown that the software 

in place at the VUMC exhibited a recall of over 99.9% for HIPAA Safe Harbor identifiers. 
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Document Type Documents 

Average No. of 

PHI Instances Precision Recall F-measure 

History & Physical (HP) 550 23.8 0.882 0.897 0.889 

General Report (REP) 550 24.64 0.941 0.922 0.931 

Discharge Summary (DS) 550 47.29 0.937 0.941 0.939 

Radiology Note (RAD) 547 5.64 0.954 0.914 0.933 

Pathology Note (PATH) 550 16.93 0.913 0.910 0.912 

Family History (FH) 200 1.12 0.949 0.768 0.842 

Clinical Communication (CC) 550 23.67 0.949 0.979 0.964 

Letters (LET) 550 44.2 0.887 0.905 0.896 

Rehabilitation Note (REHAB) 550 44.2 0.888 0.905 0.897 

Average 0.922 0.904 0.911 

St. Dev. 0.030 0.057 0.035 

Table 6. VUMC EMR document types in the study and corresponding performances of de-
identification training models. 

The corpus used for this study was randomly selected across dates and portions of the 

clinical enterprise.  It consists of 4,597 clinical documents of 9 EHR types, including discharge 

summaries (DS), history & physical assessments (HP), radiology notes (RAD), and pathology 

notes (PATH).  The frequency distribution of documents by EHR type is shown in Table 6.  There 

are approximately 550 documents of each type, except for family histories (FH) which consisted 

of 200.  

 The second dataset corresponds to the i2b2 de-identification challenge corpus [22]. It 

contains 889 annotated clinical notes in the form of hospital discharge summaries from the Partners 

Healthcare System, within which the real identifiers were replaced by synthetic information.  

3.2.2 Document Pre-processing and Clustering Based on Complexity and Richness 
Measures  

The process by which documents were pre-processed and clustered is depicted in Figure 

11, which also provides an overview of the experimental design. In general, the process of 
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stylometric clustering corresponds to three stages: 1) Data Preprocessing (resynthesis of DE-IDed 

documents), 2) Feature Extraction, and 3) Unsupervised Document Clustering.  

 

 

Figure 11.  Framework for building, training, and testing de-identification models based on 
complexity measures and random processes. 

3.2.2.1 Preprocessing 

The DE-ID software tool in use at VUMC replaces instances of PHI with fillers of the 

corresponding type (e.g. “John Smith could be replaced by “**NAME[XXX WWW]”). To 

correctly calculate the writing style features and compare results with the i2B2 corpus, we 

transformed DE-ID’ed documents into realistic text because the fillers might interfere with the 

syntax or semantics of the sentences, and thus impact the complexity score computations.  Realistic 
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text was also needed for training the machine-learned models that would subsequently be used to 

evaluate the impact of alternative clustering strategies on de-identification performance.  The 

conversion from de-identified documents was accomplished using the MIST Resynthesis Engine 

[22].This software engine creates plausible replacements for the PHI fillers, generating documents 

looking realistic to users [28].  A fictional example of a clinical document pre- and post-resynthesis 

is depicted in Figure 12. 

 

De-identified Record Resynthesized Record 

**NAME[ZZZ, YYY M] 

**DATE[Sep 08 2010] 13:18: **NAME[XXX 

WWW] (school nurse) calling needing to clear up 

some things like when pt has seizures at school 

when pt can be sent home. Pls call 615- 

**PHONE . 

Martin, Jessie C. 

Dec 15 2010 13:18: Ashley Johnson (school 

nurse) calling needing to clear up some things like 

when pt has seizures at school when pt can be sent 

home. Pls call 615-331-7755. 

Figure 12. An example of a de-identified and resynthesized clinical narrative. 

3.2.2.2 Complexity and Richness Feature Extraction 

The goal of complexity and richness feature extraction is to construct an appropriate feature 

set for each clinical document.  This set is then translated into a corresponding feature matrix 

supplied to a machine learning algorithm, where each row and column of the matrix corresponds 

to an individual document and complexity feature value, respectively.  For this work we used three 

types of measures to characterize document writing style.  The first two correspond to the 

readability and lexical richness measures mentioned earlier.  The implementation for the reading 

complexity measures and lexical richness measures were accomplished using the Korpus package 

in the R programming environment [71].   

The third writing style measure we refer to as clinical term richness.  Here, we justify this 

measure and describe its computation. While the two types of writing complexity we use have 

been in use for decades, they only characterize the complexity of a document’s syntax.  Our 

documents all derive from the clinical domain, but a wide range of healthcare workers compose 
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them (e.g., nurses, technicians, physicians from various medical specialties).  We hypothesized 

that the characteristics of PHI in documents may correlate with the quantity of clinical language 

they contain, and that clinical language “richness” would be an important factor to consider when 

clustering documents for de-identification purposes.  The clinical term richness measure was thus 

designed to represent the ratio of the sum of all clinical terms in a document to the sum of all of 

its terms, as shown in Table 7.  To identify clinical terms we processed each document with 

MetaMap [72], which maps words and phrases to the Unified Medical Language System’s (UMLS) 

Metathesaurus [73]. This clinical richness ratio was included with the writing complexity measures 

in each document’s feature vector. 
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Name Formula Type Dataset 

Danielson.Bryan 

DB = 1.0364 CPSp + 0.194 CPSt – 0.6059 

(CPSp = characters per space, CPSt = characters per 
sentence) 

Readability 
Vanderbilt, 

i2b2 

Dickes.Steiwer Shortcut 

V* = 235.95993-(Var2 * 73.021) – (Var1 * 12.56438) – 
(Var3 * 50.03293) 

Var1 = ln((number of words/number of sentences)+1) 

Var2 = ln((number of letters/number of words)+1) 

Var3 = TTR(Type-Token-Ratio) 

Readability 
Vanderbilt 

 

Flesch Reading Ease 

RE = 206.835 – 0.846wl – 1.015sl 

(wl = number of syllables per 100 words; sl = average 
number of words per sentence) 

Readability 
Vanderbilt 

 

Gunning FOG Index 
FOG = 0.4(average sentence length + percentage of words 

of 3 or more syllables) 
Readability Vanderbilt 

Linsear Write Index 

Result = (number of easy words) + (3 * number of hard 
words)/number of sentences 

If result is > 20, divide by 2 for grade level.  If number is 
< 20, subtract 2, then divide by 2 for grade level. 

Easy words:  two syllables or less 

Hard words : three syllables or more 

Readability Vanderbilt 

Carroll’s corrected TTR 𝐶𝑇𝑇𝑅(𝑁) =
𝑉(𝑁)

2√𝑁
 

Lexical 
Richness 

Vanderbilt 

Dugast’s Uber Index 𝑈 =
𝑙𝑜𝑔ଶ𝑁

𝑙𝑜𝑔𝑁 − 𝑙𝑜𝑔𝑉(𝑁)
 

Lexical 
Richness 

Vanderbilt 

Clinical Term Ratio 
CTR = 

஼்ே

ே
 

CTN : clinical terms number 

Clinical 
Terms 

Richness 

Vanderbilt, 

i2b2 

(a) Formulas and types of complexity feature (part 1). 
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Coleman-Liau Index 

First estimates cloze percentage, then calculates grade 
equivalent: 

𝑪𝑳𝑬𝑪𝑷 = 𝟏𝟒𝟏. 𝟖𝟒𝟎𝟏
−  𝟎. 𝟐𝟏𝟒𝟓𝟗𝟎 

×
𝟏𝟎𝟎 × 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒍𝒐𝒛𝒆𝒔

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒘𝒐𝒓𝒅𝒔
+ 𝟏. 𝟎𝟕𝟗𝟖𝟏𝟐 

×  
𝟏𝟎𝟎 × 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒆𝒏𝒕𝒆𝒏𝒄𝒆𝒔

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒘𝒐𝒓𝒅𝒔
 

𝑪𝑳𝒈𝒓𝒂𝒅𝒆 = −𝟐𝟕. 𝟒𝟎𝟎𝟒 ×  
𝑪𝑳𝑬𝑪𝑷

𝟏𝟎𝟎
 + 𝟐𝟑. 𝟎𝟔𝟑𝟗𝟓 

Readability i2b2 

Flesch-Kincaid Grade 
Level 

𝐹𝐾௚௥௔ௗ௘ = 0.39 ×  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

+ 11.8 × 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠
− 15.59 

Readability i2b2 

FORCAST Readability 
Formula 

FORCAST
= 20

−  
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒 𝑤𝑜𝑟𝑑𝑠 ×  

150
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠

10
 

 

Readability i2b2 

Lasbarhetsindex(LIX) 

LIX

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

+  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑙𝑜𝑛𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 6 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 × 100

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠
 

Readability i2b2 

Kuntzsch’s Text-
Redundanz-Index(TRI) 

TRI = (0.449 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒 𝑤𝑜𝑟𝑑𝑠)
− (2.467 
×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑟𝑘𝑠)
− (0.937 
× 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑟𝑒𝑖𝑔𝑛 𝑤𝑜𝑟𝑑𝑠)
− 14.417 

Readability i2b2 

Yule’s K (K.ld) 

K

=  10ସ  ×  
൬∑ 𝑉(𝑖, 𝑁)௏(ே)

௜ୀଵ  ቀ
𝑖
𝑁ቁ

ଶ

൰ − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛𝑠

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛𝑠)ଶ
 

V(i, N) : the numbers of word types occurring i times in a 
sample of length N 

 

Lexical 
Richness 

i2b2 

Measure of Textual 
Lexical Diversity (MTLD) 

MTLD = The mean length of sequential word strings in a 
text that maintain a given TTR value. 

Lexical 
Richness 

i2b2 

(b) Formulas and types of complexity feature (part 2). 

Table 7. Formulas and types of complexity feature and their associated formulaic representation. 
[63, 64, 68, 71, 74, 75, 76] 
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We started with 19 readability formulas and 12 lexical richness measures. To eliminate the 

effect caused by correlations between measures, we performed a feature selection process based 

on Regularized Random Forest (RRF) on the 31 features [77].  The process was performed 

independently for each of the corpora.  The final feature sets for the VUMC and i2b2 datasets are 

shown in Table 7. The feature set for the VUMC corpus was composed of 8 measures: 5 associated 

with readability measurement, 2 with lexical richness assessment, and the clinical term richness 

measure.  The fact that the latter measure was retained indicated that this feature was sufficiently 

distinct from standard writing complexity measures.  The feature set for the i2b2 dataset was 

composed of 9 measures, again including the clinical term richness measure, among which 6 were 

related to readability measures, 2 with lexical richness. 

3.2.2.3 Unsupervised Document Clustering  

Clustering was performed in an unsupervised manner according to a hierarchical model, 

with Ward’s coefficient [78] as the measure of goodness of fit.  The number of clusters was 

determined by evaluating the quality of the clusters based on the Dunn index [79]. Using this 

criterion, we assigned each of the documents in our study corpus of the VUMC dataset to one of 

13 clusters, which ranged in size from 60 to 672 documents. The i2b2 data was partitioned into 2 

clusters, the sizes of which were 413 and 476, respectively.  

3.3 Experiment Design and Results 

3.3.1 Training and Testing Data Preparation 

To perform our experiments, we defined the following sets of clusters for the Vanderbilt 

data: 

1) VUMC EHR-assigned Document Types. This set of clusters was based on document type 

assigned to each document as it was composed in the EHR by a VUMC employee (Table 6).  We 

refer to these clusters as T1, …, T9.  

2) Complexity Measures. This set of clusters was based on the process described in the 

previous section. We refer to these clusters as C1, …, C13. 

3) Complexity Measure-based subsets. These sets were randomly selected from clusters 

C1, …, C13, with varying size over {10, 20, 30, 50, 75, 100, 150, 200}, denoted as Csi,j, from which 
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i ranges from 1 to m and j corresponds to the number of randomly selected documents (e.g., Csi,10 

corresponds to a set of 10 randomly selected documents from the ith cluster). 

4) Random Processes. We generated random groups of equal size for the stylometric 

clusters to ensure this type of cluster contains a comparable amount of data with the complexity-

based clusters.  In doing so, we derived a third set of clusters R1, …, R13, such that |Ci| = |Ri| for all 

clusters. 

5) Large random clusters. After generating clusters from complexity measures, for each 

cluster Ci, we gather all the remaining clusters (i.e., C1, …, Ci-1, Ci+1, …, C13) to create a large 

random document set.  We derived several random subsets from such large clusters, with varying 

size over {100, 200, 500, 1000}. These random subsets are denoted as Di,j, where i ranges from 1 

to m and j corresponds to the number of randomly selected documents (e.g., Di,100 corresponds to 

100 randomly selected documents not in the ith cluster).  The goal of experiments based on these 

subsets is to create a baseline for the evaluation of stylometric clusters. 
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Figure 13.  Framework for building, training, and testing de-identification models based on 
VUMC type designation. 

For evaluation, we performed five sets of experiments using 10-fold cross-validation in 

each scenario.  First, we trained and tested over each of the datasets, {C1, …, C13}, {R1, …, R13}, 

and {T1, …, T9} (as shown in Figure 11 and Figure 13).  Second, within the stylometric and random 

clusters, we evaluated the performance of the learned models in a cross-dataset manner (as shown 

in Figure 11).  For insta1nce, we train a model over Ci and test it over C1, …, Ci-1, Ci+1, …, Cm.  

Third, we trained on each stylometric cluster and tested with the corresponding same-size random 

set. Fourth, we evaluated the training performance of the large random clusters when testing on 

the stylometric clusters (as shown in Figure B1 of Appendix B1).  Specifically, we trained on each 

of the random subsets Di,1, …, Di,s and tested against Ci.  For the final set of experiments, which 

aim to evaluate the training sensitivity of the stylometric clusters, we trained and tested over all 

the subsets of such clusters, {Cs1,10, …, Csm,k} (as shown in Figure B2 of Appendix B1).  
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3.3.2 De-identification Model Training 

Separate de-identification models were trained for each cluster of documents using default 

MIST settings. The resulting models were used in their respective experiments to evaluate de-

identification performance. 

3.3.3 Evaluation Measures  

We report our results for each of the experiments using standard information retrieval 

measures.  In the context of this study, these measures are defined as follows: 

(p)recision = 
௡௨௠௕௘௥ ௢௙ ௉ுூ ௜௡௦௧௔௡௖௘௦ ௖௢௥௥௘௖௧௟௬ ௟௔௕௘௟௘ௗ 

௡௨௠௕௘௥ ௢௙ ௉ுூ ௜௡௦௧௔௡௖௘௦ ௟௔௕௘௟௘ௗ ௕௬ ௧௛௘ ௦௬௦௧௘௠
   

(r)ecall  = 
௡௨௠௕௘௥ ௢௙ ௉ுூ ௜௡௦௧௔௡௖௘௦ ௖௢௥௥௘௖௧௟௬ ௟௔௕௘௟௘ௗ 

௡௨௠௕௘௥ ௢௙ ௉ுூ ௜௡௦௧௔௡௖௘௦ ௟௔௕௘௟௘ௗ ௜௡ ௧௛௘ ௚௢௟ௗ ௦௧௔௡ௗ௔௥ௗ
 

(F)-measure =  
ଶ௣  

௣ା௥
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3.3.4 Results 
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Figure 14. VUMC document type distribution for stylometric clusters. 
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To provide insight into the composition of stylometric clusters, Figure 14 reports on the 

distribution of document types for each cluster. These charts show that 9 out of 13 stylometric 

clusters are highly heterogeneous mixtures of VUMC document types, which confirms that our 

clustering method is not merely replicating the grouping of the document types. The clusters that 

were relatively homogenous in document type consisted of general reports (C12 and C13), letters 

(C10), and pathology notes (C11). 

  



 

50  

Table 8. VUMC de-identification performance (in terms of F-measure) based on clusters derived 
from the complexity measures and random process.  

Test Cluster Min Max Self Min Cluster Max Cluster (if not self) 

Stylometric Clusters 

C1 (n = 547) 0.172 0.921 0.921 C13 --- 

C2 (n = 229) 0.157 0.881 0.851 C13 C3 

C3 (n = 569) 0.198 0.944 0.944 C13 --- 

C4 (n = 403) 0.176 0.872 0.872 C13 --- 

C5 (n = 531) 0.15 0.925 0.915 C13 C6 

C6 (n = 362) 0.13 0.884 0.878 C13 C10 

C7 (n = 323) 0.169 0.941 0.922 C13 C4 

C8 (n = 247) 0.106 0.897 0.896 C13 C6 

C9 (n = 611) 0.125 0.906 0.906 C13 --- 

C10 (n = 439) 0.148 0.889 0.889 C13 --- 

C11 (n = 92) 0.492 0.993 0.96 C13 C4 

C12 (n = 184) 0.246 0.977 0.977 C13 --- 

C13 (n = 60) 0.101 0.99 0.99 C12 --- 

Random  Clusters 

R1 (n = 547) 0.791 0.894 0.891 R13 R7 

R2 (n = 229) 0.809 0.903 0.886 R13 R7 

R3 (n = 569) 0.81 0.916 0.896 R13 R7 

R4 (n = 403) 0.793 0.899 0.892 R13 R7 

R5 (n = 531) 0.801 0.903 0.888 R13 R7 

R6 (n = 362) 0.786 0.89 0.869 R13 R7 

R7 (n = 323) 0.805 0.902 0.902 R13 --- 

R8 (n = 247) 0.809 0.906 0.903 R13 R7 

R9 (n = 611) 0.803 0.899 0.89 R13 R7 

R10 (n = 439) 0.799 0.913 0.858 R13 R5 

R11 (n = 92) 0.783 0.9 0.88 R13 R2 

R12 (n = 184) 0.775 0.896 0.836 R13 R8 

R13 (n = 60) 0.869 0.959 0.869 R13 R5 



 

51  

Clusters Compared C  R  R  C  

C1 vs R1 0.866 0.914 

C2 vs R2 0.756 0.893 

C3 vs R3 0.835 0.937 

C4 vs R4 0.884 0.858 

C5 vs R5 0.844 0.929 

C6 vs R6 0.877 0.872 

C7 vs R7 0.800 0.936 

C8 vs R8 0.831 0.863 

C9 vs R9 0.841 0.881 

C10 vs R10 0.860 0.790 

C11 vs R11 0.434 0.967 

C12 vs R12 0.746 0.835 

C13 vs R13 0.172 0.551 

Average 0.750 0.864 

St. Dev. 0.210 0.105 

Table 9. VUMC de-identification performance, in terms of F-measure, for cross-cluster 
experiments. (Training Cluster  Test Cluster) 

Tables 8 and 9 summarize the evaluation results for the various de-identification models 

with the Vanderbilt dataset. For brevity, tables 8 and 9 focus on results of the Vanderbilt data with 

respect to the F-measure. In general, recall and precision were balanced (the full results including 

recall and precision are presented in Appendix B2). We would like to note that our evaluation used 

the DE-ID processed documents as a gold standard, which indicates the impact of the DE-ID 

performance on our results. Table 10 presents the total number of PHI types and instances in 

training de-identification models for stylometric clusters. 
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Cluster  

Number of PHI 

Types in Training 

Average Number Of 

PHI Instances in Training 

C1 (n = 547) 13 12912 

C2 (n = 229) 9 1036 

C3 (n = 569) 14 17303 

C4 (n = 403) 14 9688 

C5 (n = 531) 13 6207 

C6 (n = 362) 13 8613 

C7 (n = 323) 11 3974 

C8 (n = 247) 11 7944 

C9 (n = 611) 13 9145 

C10 (n = 439) 12 17455 

C11 (n = 92) 4 281.7 

C12 (n = 184) 10 3648.6 

C13 (n = 60) 3 3231 

Cluster (i2b2 

dataset) No. of PHI Types in Training Average No. of PHI Instances in Training 

IC1 (n = 413) 8 24259.5 

IC2 (n = 476) 8 23817.6 

Table 10. Number of PHI types and instances in each of the stylometric clusters in the VUMC 
corpus. 

3.3.4.1 De-identification Training on Complexity and Random Clusters  

In Table 8, each row represents a test dataset.  Since we tested models trained on each of 

the clusters, for each column, we report the best (max) and worst (min) F-measures with 

corresponding training datasets. We also report the F-measure of the model trained on the 

corresponding testing cluster (self). The results presented in the first half of the table were 

generated by the scenario in which training and testing was performed with clusters derived from 

the complexity measures, while the second half correspond to random clusters. 

Regarding the stylometric experiment, generally speaking, in seven of the clusters (C1, C3, 

C4, C9, C10, C12, C13), training and testing on the same cluster (i.e., Ci vs. Ci) performed better than 

testing with models based on different clusters (i.e., Ci vs. Cj, i  j).  For example, when testing on 
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C13, which is the smallest (60 documents), the model trained on documents from this cluster 

achieved an F-measure of 0.990, but the F-measure never reached higher than 0.808 for C3 with 

models based on other clusters, in which cases the F-measure dropped as far as 0.101 for C12.  The 

possible explanation could be found in the limited number of PHI types and relatively sufficient 

number of PHI instances in the cluster, as shown in Table 10.  It also suggests that training and 

testing on the same cluster might eliminate the limitation of insufficient training data.  Specifically, 

training on smaller clusters (e.g., C12, C13) performed poorly when evaluating on clusters other 

than themselves, but exceptionally well when testing on their own. 

The pattern found in the previous tests, however, did not hold true in the scenario where 

training and testing was performed with clusters derived from a random process.  The results found 

in these experiments confirmed our hypothesis that training and testing on the same random 

clusters would not necessarily yield the best performance comparing with training and testing on 

different clusters based on random process.  Rather, de-identification models trained on different 

clusters showed similar variations in testing, despite the fact that they were testing on their own or 

on other random clusters.  Specifically, models created by R13 always performed worse than other 

training models (with the F-measure ranging from 0.775 to 0.869) including testing on itself.  R7 

on the other hand was the best training set, whose F-measures dominated 9 out of all 13 testing 

sets, including testing on its own.  Unlike the high variation in experiments for complexity-

measure-based clusters, the F-measure was bounded between 0.775 and 0.959 in this half of Table 

8.  

3.3.4.2 De-identification Training and Testing Crossing Cluster Types 

Table 9 reports on the evaluation of experiments crossing cluster types.  In the columns 

under CR we trained on stylometric clusters and tested on random clusters of the same size, while 

in RC we reversed the process.  Comparing Tables 8 and 9, it can be seen that the stylometric 

models performed worse than random models on the random clusters, with an F-measure between 

0.172 and 0.884.  When testing on stylometric clusters, nine of the models trained on the testing 

clusters themselves performed better than random training models. R2, R5, R7 and R11 achieved better 

models than their stylometric counterparts C2, C5, C7 and C11. 

However, recalling the fact that six of the stylometric clusters showed best testing results 

with training models of clusters other than themselves, the four clusters (C2, C5, C7 and C11) were 
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all included.  When testing on C7 and C11, models trained on C4 yielded the best performance over 

all stylometric clusters, with F-measures of 0.941 and 0.993 respectively, which also surpassed the 

best performances of models by random clusters R7 and R11.   For testing on C2 and C5, models 

trained on C3 and C6 yielded the best F-measures (0.881 and 0.925, respectively), both on par with 

the random models R2 and R5 (F-measures of 0.893 and 0.929, respectively). 

3.3.4.3  De-identification Training on Large Random Clusters 

  

(a) Random Process Clusters (b) Stylometric Clusters 

Figure 15. Average F-measure (+/- 1 standard deviation) of de-identification models as a 
function of the training (subset) set size for left) large random mixture clusters and right) 
stylometric clusters. 

The average performance for de-identification models trained on different sized subsets of 

large random-process based clusters and tested on complexity-measure based clusters is depicted 

in Figure 15 left).  Figures depicting the performance of each of the large random clusters are 

included in Appendix B3.  Overall, larger size training sets performed better than smaller size sets, 

as shown in the left of Figure 15.  For instance, the F-measure of 100 documents for D10,100 was 

0.733, which increased with the sample size, such that by 1000 documents, the F-measure was 

0.804. 

In comparison to the results from Table 8, the F-measures for training and testing on a 

particular stylometric cluster Ci generally performed better than a sample size of 200 documents 

from Di. It can be seen that 8 out of the 13 complexity clusters outperformed subsets of size 500 

and five (C4, C9, C10, C12, and C13) yielded better F-measures than the random subsets of 1000 

documents. Specifically, C10, C12 and C13 contain the least number of documents of all clusters - 
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each with less than 200 documents. These findings indicate that for smaller clusters, training and 

testing on their own may achieve better performance than training models over a much larger 

dataset of randomly selected documents (while C11 was an exception to this trend). 

3.3.4.4 De-identification Training on Subsets of Complexity Based Clusters 

The experimental results for de-identification models trained and tested on varying sizes 

of subsets from the complexity-measure based clusters are depicted in online Appendix B3, for 

evaluating the scalability of such clusters.  The right of Figure 15 plots the average performance 

of stylometric clusters. Similar to the large random datasets, increasing sample size seems to 

improve de-identification model training. 

Recalling the results from large mixed random clusters, a subset of C10 with the size of 75 

already outperformed the corresponding random dataset of 1000 documents in terms of F-measure 

- the former achieved 0.813 while the latter achieved 0.804. With C12 and C13, the 50-document 

subset yielded better F-measures than the 1000-document random clusters, a subset of 10 

documents could achieve an F-measure of 0.961, while a random dataset of 1000 documents only 

achieved 0.859. Such findings suggest that smaller clusters tend to be homogeneous, for which 

training on a limited number of documents of their own group would surpass training on much 

larger random clusters. 

3.3.4.5 De-identification Training on Clusters based on VUMC Designated Type  

Beyond the statistics for VUMC-designated document type, Table 6 reports the testing 

results of training de-identification models based on these types.  The overall performance was 

worse than the complexity-measures based clusters scenario.  Here, it can be seen that documents 

of type CC generated the highest scores in all the measurements, with an F-measure of 0.964, and 

type FH produced the lowest F-measure of 0.842.  Comparing all scenarios, the average F-

measures of training and testing on the same cluster are ordered as follows: complexity measures 

clustering (0.917) > document type clustering (0.911) > random clustering (0.881). The F-scores 

of the complexity-based clusters were significantly higher than those with random clusters (t = 

2.79, p = 0.006); meanwhile, their F-score difference between the complexity clustering and 

document type based clustering were not statistically significant. 
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3.3.4.6 De-identification Training on i2b2 Data 

Table 11 summarizes the experiment results on the i2b2 dataset. The training and testing 

procedures were consistent with the Vanderbilt dataset, except that the type-based clustering was 

not possible because the i2b2 data only contains discharge summaries. 

 

Table 11. i2b2 de-identification performance (in terms of Precision, Recall, and F-measure)  
based on complexity clusters and random clusters 

For comparison, we randomly divided the dataset into 2 clusters (IR1 and IR2) with the 

same sizes as the stylometric clusters (413 and 476 documents). 

It can be seen that, for the stylometric clusters, training and testing on the same cluster 

always yielded better F-scores than training and testing on different clusters. IC2 performed best 

with an F-measure of 0.972.  However, the general performance of both stylometric clusters were 

on par, with the random clusters.  Specific, the stylometric and random cluster F-scores were 0.966 

and 0.965, respectively. As such, there was no statistical significant difference.  

However, the results are not entirely unsurprising.  The findings suggest that the i2b2 

dataset is a highly homogenous corpus and lacks the variance in writing styles that is amenable to 

Train  

Test 

IC1  IC2 

P R F  P R F 

IC1 (n = 413) 0.964 0.955 0.959  0.963 0.948 0.955 

IC2 (n = 476) 0.961 0.936 0.948  0.974 0.970 0.972 

 

Train  

Test 

 

IR1 

  

IR2 

P R F  P R F 

IR1 (n = 413) 0.970 0.960 0.965  0.966 0.962 0.964 

IR2 (n = 476) 0.969 0.960 0.965  0.967 0.962 0.965 
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our stylometric clustering strategy. This is consistent with the fact that the dataset consists entirely 

of discharge summaries from Partners Healthcare [27]. 

3.4 Discussion 

There are several notable aspects of the experimental analysis to highlight. First, the results 

confirm the hypothesis that training on a stylometric cluster yields better de-identification 

performance when testing on the same cluster.  Second, it was further confirmed that stylometric 

de-identification models yield results that are better than models based on random collections of 

documents (which is akin to training de-identification models on mixtures of many document types 

as is common done). One possible explanation of this observation is the writing style features lead 

to models that account for grammar and phrasing, which are critical in natural language processing. 

As a result, the models learned over these features could yield better performance than the ones 

based on random features. Third, the performance of stylometric models is, in many instances, 

better than those derived from VUMC-designated document types.  In combination, these findings 

suggest that higher fidelity de-identification models can be composed with less training data and 

institutional knowledge.  This is critical because there are potentially hundreds to thousands of 

document types generated in healthcare settings.  Though the proposed strategy does not always 

yield the best de-identification model, we believe it is more scalable because of its hierarchical 

clustering strategy, which minimizes the number of clusters and thus de-identification models we 

apply. We note that hierarchical grouping could also be performed on document types to reduce 

the number of total documents types, but this will still yield random groups due to the inability to 

partition predefined types. 

Despite the positive nature of the results, we recognize that our study is limited in its scope 

for several reasons. First, we used a VUMC-specialized version of DE-ID as a proxy for a human-

annotated corpus.  This technology is oriented toward PHI recall and, thus may over-redact, which 

could explain why our F-measures are a little lower than those observed in gold standard 

environments.  Second, our data was mainly based on the VUMC, a single healthcare organization.  

While there is data available from other sites, such as the i2b2 corpus, they tend to be composed 

solely of a single type (e.g., discharge summaries) and are relatively small in size (e.g., ~1500).  

The clustering experiment on the i2b2 data showed limited improvement on de-identification 

model training, indicating the homogeneity of i2b2 data obstructed the writing stylometric 
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clustering. Third, the VUMC EMR contains over 1000 document types because EMR users are 

allowed to create custom document types, but we chose to focus on only nine of the larger size 

types in this setting to report on interpretable results and to avoid an overly complex analysis. 

Finally, while our findings lend credibility to the claim that features based on readability 

and lexical richness can lead to better de-identification models than random groups of documents, 

we acknowledge that such features may be correlated with other unknown factors.  For instance, 

though unlikely, the MIST resynthesis engine may embed behind a certain pattern in the new PHI 

instances.  This pattern could, in turn, influence the grammar and phrasing.  Second, the DE-ID 

process might induce a pattern in the documents as well.  For instance, DE-ID obscures the 

distribution of character length of PHI instances, which could, in turn, bias the resynthesis process.  

Third, our findings are mainly based on documents from a single institution; i.e., the VUMC. It is 

possible that data from a different institution might not exhibit as robust a clustering or distinction 

in performance.  
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Chapter 4   Active Learning for De-identification 

Given that modern EMR systems manage data on millions of patients, it is critical to 

develop de-identification routines for such data in a manner that are both effective and efficient 

[21]. However, creating a gold standard corpus for training de-identification models can be 

excessively costly in practice [80, 81], such that incorporating an active learning in the process 

may reduce the overall cost for annotation and, thus, support the establishment of a more scalable 

de-identification pipeline. Instead of randomly sampling a dataset for training purposes (or what 

is called passive learning), active learning works by allowing the machine learning system to select 

the data to be annotated by a human oracle and added to the set of training data iteratively [82]. 

The system is expected to learn and improve its accuracy throughout the process, while eventually 

fewer instances annotated by humans are required than passive learning [83]. For this chapter of 

the dissertation, we report on an active learning pipeline for de-identification based on machine 

learning. In doing so, we assess the extent to which active learning can lead to better results than 

passive learning (i.e., randomly selecting documents to be annotated by humans for the purposes 

of training a classifier). Our hypothesis is that, with machine learning based de-identification 

systems actively requesting more informative data that helps to create a better model from human 

annotators, less training data will be needed in the machine learning process to maintain (or even 

improve) the performance of trained models for de-identification. 

This chapter is organized as follows. We first review existing active learning applications 

in NLP (especially for named entity recognition tasks) and specifically with clinical documents. 

Next, we establish an active learning workflow for natural language de-identification and introduce 

several new heuristics for solving the key problem of active learning (i.e., choosing the most 

informative data for annotation), which is what makes our work notable. We then conduct a series 

of controlled and systematic experiments on a real world dataset of clinical study reports (CSRs) 

for a clinical trial (company name of which withheld for business confidentiality reasons) and the 

publicly accessible i2b2 dataset [27] on the active learning pipeline, while evaluating the 

performance of the heuristics. We show that, in general, active learning can yield a comparable 

and, at times, better performance, with less training data than passive learning.                                                                    
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4.1 Background 

In this section, we review 1) query strategies in related research of active learning, 2) 

applications of active learning specifically with clinical documents.  

4.1.1 Active learning query strategies 

Several query strategies for active learning in sequence labeling tasks with CRFs were 

investigated and compared by Settles [82], including uncertainty sampling, information density, 

Fisher information, and query-by-committee, some of which are more computationally costly in 

practice.  

Kapoor [84]  introduced a decision-theoretic active learning approach with Gaussian 

process classifiers and evaluated the framework with voice messages classification. The work 

utilized the expected value of information (VOI) that accounts for the cost of misclassification. 

Also, the concept of return on investment (ROI) was implemented in active learning to 

account for the cost of annotation [85], which was assessed on a part of speech tagging task. In our 

work, we introduce and assess query strategies based on uncertainty sampling and the notion of 

return on investment (ROI) for de-identification, as these approaches are more practical in real 

world. 

4.1.2 Active learning with clinical documents 

Active learning has been shown to be an effective tool in named entity recognition tasks in 

clinical text [86]. The study simulated several selection strategies including both uncertainty and 

diversity sampling, these findings suggest that active learning is more efficient than passive 

learning in most cases. They further suggested that uncertainty sampling was the best strategy for 

reducing the annotation cost. The results implied that human annotation cost should be taken into 

account when evaluating the performance of active learning.  

In the context of de-identification, Bostrom and colleagues [87] proposed an active learning 

approach that relied upon a random forest classifier.  They evaluated the approach with a dataset 

of 100 Swedish EMRs. In their framework, the query strategy to determine which documents 

humans should annotate next focused on entropy-based uncertainty sampling. However, this 

investigation was limited in several notable ways.  First, entropy-based uncertainty sampling does 
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not explicitly account for the human annotation cost, such that we introduce and implement several 

query strategies in our system beyond. Second, we perform an expanded investigation and conduct 

controlled experiments using real, as well as a publicly accessible resynthesized, EMR data. 

Recently, Fong [88] developed an active learning workflow for Patient Safety Events (PSE) 

identification with SVM and showed that active learning helped in identifying health information 

technology (HIT) - related events.  

4.2 Methods 

We adopt a pool-based active learning framework [82]. In our scenario, this means that 

there is a limited amount of annotated data and a large pool of unannotated data the framework 

could select from.   

The pipeline for the active learning framework for natural language de-identification is 

illustrated in Figure 16. Initially, we use a small batch of data that is selected randomly from the 

dataset as the starting point of the active learning. The human annotators then manually tag the 

PHI in the initial batch of data to create a gold standard dataset for de-identification model training.  

Since human annotation is costly, the goal of active learning is to reduce the total amount 

of human annotation needed in the process while maintaining (or even improving) the performance 

of de-identification model training. In reality, the human effort involved in the framework can be 

viewed as two parts: 1) the human annotation effort in gold standard creation and 2) the human 

correction effort that is needed to fix incorrect labels generated in the previous round when the de-

identification model is applied to unannotated data (because no reasonable existing automatic de-

identification approaches yield a recall of 100%). After the first batch of gold standard data is 

created by human annotators, we train a de-identification model, which is applied to the remainder 

of the unannotated data. The active learning pipeline then queries for more informative data to be 

corrected by humans based on the performance of previous models and/or additional criteria.  This 

information is expected to assist in better de-identification model development. Another way to 

view this strategy is, instead of randomly selecting a fixed amount of unannotated data for training 

data (passive learning), the system actively queries for the data that potentially contributes more 

information in model training. 
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Figure 16. Pipeline of the active learning framework for natural language de-identification. 

This begs the question: how should we select the data that is more informative? Since the 

query for active learning is based on a heuristic, we propose and develop several query strategies 

for our active learning de-identification framework and compare the performances with our 

simulation. Before providing the details of each strategy, we formalize the problem statement.   

4.2.1 Problem Formulation 

Let D be a set of documents, 𝐷௅ and 𝐷௎ be the set of annotated and unannotated documents, 

where 𝐷 =  𝐷௅ ∪ 𝐷௎. 𝐷௎ consists of n documents, 𝑑ଵ, 𝑑ଶ, … , 𝑑௡. 

Let Q(𝑑௜)  be the query strategy that the active learning framework utilizes to select 

additional documents for human annotation. Note that, we choose documents rather than tokens 

as the unit for selection, as it is impractical for a human annotator to annotate tokens out of context, 

also selecting tokens could lead to a significant computational overhead since it takes time to 

retrain the model each time the training dataset is updated. 

The goal of the query step is to choose the data 𝑑௖ that maximizes Q(𝑑௜),  

𝑑௖ = 𝑎𝑟𝑔 𝑚𝑎𝑥
ௗ೔∈஽ೆ

(Q(𝑑௜)).  

At this point, let 𝐷ௌ  be the selected batch of k documents for a human to annotate, In 

essence, this consists of the k documents that maximize Q(𝑑௜). Note that the value of k could 

depend on the learning rate of the framework, as well as the time that it takes to retrain and 

reannotate. 
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Once 𝐷ௌ has been corrected by the human, it is removed from the unannotated document 

set 𝐷௎, while 𝐷௅ is updated to include the annotated batch of documents:  

𝐷௅′ =  𝐷௅ ∪ 𝐷ୗ,  𝐷௎′ =  𝐷௎\𝐷ୗ. 

Each time 𝐷ௌ is annotated and added to training, the de-identification model needs to be 

retrained using 𝐷௅′. Additionally, the unannotated documents will become part of the annotated 

set, based on the updated model. Next, we introduce several options for query strategies that we 

utilize in our system. 

4.2.2 Uncertainty Sampling 

One of the more prevalent query strategies for active learning is uncertainty sampling [82]. 

In this model, it is assumed that the active learning system picks the data that the current model is 

most uncertain of when making predictions.  

4.2.2.1 Least confidence (LC) 

For a CRF model, given a token 𝑥, let 𝑦 be the most likely predicted label of 𝑥 (e.g., a 

patient’s name or a date) and let 𝑃(𝑦|𝑥)  be the posterior probability. Then 𝑃(𝑦|𝑥)  is the 

confidence score of 𝑥 given the current model. We next define the uncertainty of token x as 1 −

 𝑃(𝑦|𝑥). Note that, we aim to find the document for which the current model has the least 

confidence.  Upon doing so, we could either use the summation of the LC-based uncertainty of all 

tokens in a document 𝑑௜:,  

𝑈𝐶(𝑑௜) = ෍(1 −  𝑃(𝑦௧|𝑥௧))

௧

 
(7) 

 

or the mean of all token uncertainty based on LC:  

 

𝑈𝐶(𝑑௜) =  
∑ (1 −  𝑃(𝑦௧|𝑥௧))௧

𝑙௜
 

(8) 

 

where 𝑙௜ is the total number of tokens in 𝑑௜. 

The problem with adopting the mean of all token uncertainty is that it neglects the length 

of the documents in the selection process, which may not be optimal.   
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One of the initial findings of employing the sum of token uncertainty approach is that the 

predicted non-PHI tokens are more likely to produce a prediction confidence score of 0.95 or 

higher, while the confidence of the tokens that are predicted as PHI are, in most cases, lower. Also, 

since the selection aims for documents with a higher sum of token uncertainty, it tends to be biased 

towards documents that contain a larger amount of tokens, even though the PHI density in the 

selected set of documents could be low (which is not desirable for model training).  

For a simple illustration, imagine we have the following two documents 𝑑ଵ and 𝑑ଶ, the 

information of the two documents is summarized in Table 12.  

Statistic Document 𝒅𝟏 Document 𝒅𝟐 

Total number of non-PHI token  1000 100 

Average non-PHI token confidence 0.99 0.99 

Total number of PHI token 5 10 

Average PHI token confidence 0.6 0.6 

PHI density 0.5% 9.1% 

Sum of token uncertainty  12 5 

Table 12. An example of how the number of tokens and PHI density influence the sum of token 
uncertainty of documents. 

Note that, document 𝒅𝟐 consists of a much higher PHI density than document 𝒅𝟏 and might 

provide more information in de-identification model training. Nonetheless, uncertainty sampling 

will more likely choose document 𝒅𝟏 over document 𝒅𝟐 due to a higher sum of token uncertainty. 

To mitigate this problem, we introduce a modified version of the least confidence approach, 

which we refer to as least confidence with upper bound (LCUB). In this variation, instead of 

summing the uncertainty of all tokens, the framework calculates the sum of uncertainty of tokens, 

when 𝑃(𝑦௧|𝑥௧) <  𝜃, where 𝜃 is a cutoff value for uncertainty sampling. 

Now, let ∑ 𝑓(𝑥௧, 𝜃)be the modified sum of token uncertainty with cutoff value 𝜃: 

 

𝑓(𝑥௧, 𝜃) = ቊ
(1 −  𝑃൫𝑦𝑡ห𝑥𝑡൯, 𝑃൫𝑦𝑡ห𝑥𝑡൯ < 𝜃

0, 𝑃൫𝑦𝑡ห𝑥𝑡൯ ≥ 𝜃
 

 

(9) 
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4.2.2.2 Entropy 

Entropy measures the potential amount of discriminative information available. Given a 

token 𝑥, its entropy H(𝑥) is computed as: 

H(𝑥) =  − ෍ 𝑃൫𝑦௝ห𝑥൯𝑙𝑜𝑔𝑃൫𝑦௝ห𝑥൯

௠

௝

 (10) 

where m corresponds to the number of most probable labels of 𝑥, as predicted by the current 

classification model (e.g., the CRF). Here 𝑃൫𝑦௝ห𝑥൯ is the probability that 𝑥’s label is 𝑦௝ .  

Again, for a document 𝑑௜  that contains 𝑡 tokens, the total entropy-based uncertainty of 

𝑑௜  can be calculated as: 

𝑈𝐶(𝑑௜) = − ෍ ෍ 𝑃൫𝑦௧௝ห𝑥௧൯𝑙𝑜𝑔𝑃൫𝑦௧௝ห𝑥௧൯

௝௧

 (11) 

Similar to the LC approach, entropy-based uncertainty also tends to suffer from the 

problem of low PHI density documents. To mitigate this issue, we introduce an entropy with lower 

bound (ELB) approach. In this approach, we set a minimum threshold 𝜌 for token entropy. 

Thus, let ∑ 𝑔(𝑥௧, 𝜌) be the modified sum of token entropy with minimum value  𝜌 : 

𝑔(𝑥௧, 𝜌) = ൜
H(𝑥௧), H(𝑥௧) >  𝜌 

0,       H(𝑥௧) ≤  𝜌 
 (12) 

4.2.3 Return on Investment  

The goal of active learning is to reduce the human effort needed in the machine learning 

process. Both the least confidence and the entropy-based uncertainty sampling methods seek to 

solve the problem by minimizing the training data required. However, this implicitly assumes that 

the cost for human annotation is fixed and is not explicitly modeled during the query step. In reality, 

we need to acknowledge that the effort that a human annotator spends is more complex than the 

above assumption. Consider, it is likely that the cost varies based on PHI types, error types, human 

fatigue (due to the number, or length, of documents), among other factors. Additionally, the 

contribution of human correction towards a better model can also vary according to various factors, 

such as PHI types and error types. Thus, we designed a query strategy that accounts for both the 

cost and the contribution of human correction.  
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We assume there is a reading cost for the human annotator that is proportional to the length 

of the document that is being annotated. The average reading cost per token is denoted by 𝑐𝑡௥ , 

which implies that the total reading cost for a document 𝑑௜ of length 𝑙௜ is 𝑐𝑡௥ × 𝑙௜ . 

Again, we start formalizing the problem considering a given token 𝑥. Let y be the most 

likely label of 𝑥. 𝑃(𝑦|𝑥) is the probability that the active learning system assigns 𝑦 as the label of 

𝑥, while 𝑃′(𝑦|𝑥) is the true probability that 𝑥 is of class y. 

Without loss of generality, here, we consider only a two-class of the problem, PHI versus 

non-PHI. This indicates that we assume the annotation cost and the human contribution of 

correcting a PHI instance classified as the wrong PHI type cancel each other out. Let 𝑐𝑡௡ and 𝑐𝑡௣ 

be the human correction cost of correcting a false negative (or FN) instance (i.e., a token 

mistakenly labeled by the learned model as non-PHI) and a false positive (or FP) instance (i.e., a 

non-PHI token mistakenly labeled by the current model as PHI), respectively. Similarly, 𝑐𝑛௡ and 

𝑐𝑛௣ represent the human correction contribution of correcting an FN instance and correcting an 

FP instance, respectively. 

Thus, the expected total contribution of human correction for token 𝑥 when 𝑦 is a non-PHI 

instance can be defined as 𝑇𝐶𝐶𝑁(𝑥) and calculated as: 

𝑇𝐶𝐶𝑁(𝑥) =  𝑐𝑛௡ × 𝑃(𝑦|𝑥) × ൫1 − 𝑃′(𝑦|𝑥)൯ + 𝑐𝑛௣ × (1 −  𝑃(𝑦|𝑥)) ×

𝑃′(𝑦|𝑥)  
(13) 

 

The expected total cost of human correction for token 𝑥 when 𝑦 is a non-PHI instance is 

represented by 𝑇𝐶𝐶𝑇(𝑥), then 

𝑇𝐶𝐶𝑇(𝑥) =  𝑐𝑡௡ × 𝑃(𝑦|𝑥) × ൫1 − 𝑃′(𝑦|𝑥)൯ + 𝑐𝑡௣ × (1 −  𝑃(𝑦|𝑥)) ×

𝑃′(𝑦|𝑥)  
(14) 

 

Then, we have the expected return on investment (ROI) of token 𝑥 labeled as non-PHI: 

𝑅𝑂𝐼(𝑥) = (𝑐𝑛௡ −  𝑐𝑡௡) × 𝑃(𝑦|𝑥) × ൫1 − 𝑃′(𝑦|𝑥)൯ + ൫𝑐𝑛௣ −  𝑐𝑡௣൯ × ൫1 −

 𝑃(𝑦|𝑥)൯ × 𝑃ᇱ൫𝑦ห𝑥൯ − 𝑐𝑡௥  
(15) 

 

Similarly, the expected ROI of token 𝑥 labeled as PHI: 
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𝑅𝑂𝐼(𝑥) = ൫𝑐𝑛௣ −  𝑐𝑡௣൯ × 𝑃(𝑦|𝑥) × ൫1 − 𝑃′(𝑦|𝑥)൯ + (𝑐𝑛௡ − 𝑐𝑡௡) × ൫1 −

 𝑃(𝑦|𝑥)൯ × 𝑃′(𝑦|𝑥) − 𝑐𝑡௥  
(16) 

 

Note that 𝑐𝑛௡ − 𝑐𝑡௡  and 𝑐𝑛௣ − 𝑐𝑡௣   represent the net contribution of correcting an FN 

instance and an FP instance, respectively.  At this point, let 𝑁𝐶௡  and 𝑁𝐶௣  denote the net 

contribution of an FN instance correction and an FP instance correction, respectively. Thus,  

𝑅𝑂𝐼(𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝑁𝐶௡ × 𝑃(𝑦|𝑥) × ൫1 − 𝑃ᇱ൫𝑦ห𝑥൯൯ +

𝑁𝐶௣ × ൫1 −  𝑃(𝑦|𝑥)൯ × 𝑃′(𝑦|𝑥) − 𝑐𝑡௥ , 𝑦 𝑖𝑠 𝑛𝑜𝑛 − 𝑃𝐻𝐼

𝑁𝐶௣ × 𝑃(𝑦|𝑥) × ൫1 − 𝑃ᇱ൫𝑦ห𝑥൯൯ +

𝑁𝐶௡ × ൫1 −  𝑃(𝑦|𝑥)൯ × 𝑃′(𝑦|𝑥) − 𝑐𝑡௥ , 𝑦 𝑖𝑠 𝑃𝐻𝐼

 (17) 

 

Consequently, the total expected ROI of unannotated document 𝑑௜ is: 

𝑅𝑂𝐼(𝑑௜) = ෍ 𝑅𝑂𝐼(𝑥௧)

௧

 (18) 

Finally, it is desirable that the active learning pipeline picks documents that could 

maximize ROI.  

4.3 Experiment Design and results 

4.3.1 Dataset  

After constructing the active learning pipeline, we utilized two datasets for simulation and 

evaluation: 1) a dataset drawn from a healthcare organization (anonymized due to contractual 

agreements), which we refer to as dataset A and 2) a publicly available dataset from the i2b2 de-

identification challenge [27].  

Dataset A consists of 370 documents with a total number of 312991 tokens, and 7098 PHI 

instances from 12 PHI types. Note that certain PHI types contain no more than a couple of instances 

in this corpus (e.g., COUNTRY, DOB, MIDDLE_NAME, and SITE_ID), which makes it 

challenging to train an effective model. This, in turn, leads to considerably lower recall scores in 

the experiments. 

To assess the de-identification performance of this whole dataset, we conducted a 10-fold 

cross-validation on this corpus before simulating the active learning process. Each time we trained 
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a de-identification model with 90% of the documents and tested the model on the remaining 10% 

of the data. The average precision, recall and F-measure for the PHI types in this dataset are 

summarized in Table 13.  

Note that the FIRST_NAME, LAST_NAME and MEDICAL_HISTORY types appear to 

be the most difficult to detect among all types (Figure 17), the possible reasons of which could be 

that FIRST_NAME and LAST_NAME have only a few hundred instances, and 

EDICAL_HISTORY lacks sufficient contextual cues in the documents.  

 

PHI Type Total 

Number of 

Instances 

Precision 

(average) 

Recall 

(average) 

F-measure 

(average) 

AGE 298 1.000 0.965 0.982 

COUNTRY 1 1.000 0.900 0.900 

DATE 2824 0.973 0.972 0.972 

DOB 1 1.000 0.900 0.900 

FIRST_NAME 234 0.991 0.903 0.944 

INITIALS 671 0.995 0.971 0.983 

LAST_NAME 254 0.991 0.906 0.946 

MEDICAL_HISTORY 1257 0.901 0.941 0.920 

MIDDLE_NAME 14 0.900 0.767 0.780 

RACE 253 1.000 0.988 0.994 

SITE_ID 36 1.000 0.643 0.775 

SUBJID 1255 0.954 0.986 0.970 

Overall 7098 0.962 0.962 0.962 

Table 13. The average number of precision, recall and F-measure overall and for specific PHI 
types included in dataset A 
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(a) Total number of PHI instances by PHI type 

 

(b) De-identification performance by PHI type 

Figure 17. Dataset A overall statistics: (a) Total number of PHI instances and (b) De-
identification performance by PHI type. 
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The i2b2 dataset contains 889 annotated discharge summaries drawn from Partners 

Healthcare, with the real identifiers replaced by synthetic information [27].   

4.3.2 Experimental Design and Evaluation  

We simulated the active learning query strategies with dataset A. For uncertainty sampling 

strategies, namely least confidence and entropy, we varied the parameters to evaluate the original 

and modified models (i.e., LC with a cutoff value and entropy with a minimum value). Specifically, 

the cutoff value θ of LC ranged from 0.1 to 0.9, with a step size of 0.1 and the minimum entropy 

score was selected from a set of four values: {0.001, 0.01, 0.1, 1}.  

For the ROI model, the parameters include: 1) the costs of correcting an FP instance and 

an FN instance, 2) the contributions of the two types of correction, and 3) 𝑃′(𝑦|𝑥), which is the 

true probability that token x is of class y. Since 𝑃′(𝑦|𝑥)  is unknown in this scenario, we 

approximate 𝑃′(𝑦|𝑥) with 𝑃(𝑦|𝑥),, the predicted probability based on the current model. In doing 

so, the ROI can be reduced to: 

𝑅𝑂𝐼(𝑥) = ൫𝑁𝐶௡ + 𝑁𝐶௣ ൯ × 𝑃(𝑦|𝑥) × ൫1 − 𝑃(𝑦|𝑥)൯ − 𝑐𝑡௥  
(19) 

We vary 𝑁𝐶௡ , 𝑁𝐶௣  and 𝑐𝑡௥ to investigate how these parameters influence the active 

learning performance. The parameter settings for LCUB, ELB and ROI are listed in Table 14. 
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Case 
Name 

LCUB_1 LCUB_2 LCUB_3 LCUB_4 LCUB_5 LCUB_6 LCUB_7 LCUB_8 LCUB_9 LCUB_10 

𝜽 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 (a) Simulation case names and corresponding parameter settings for query strategy LCUB 

 

 

 

 (b) Simulation case names and corresponding parameter settings for query strategy ELB 

 

Case 

Name 
𝑁𝐶 𝑐𝑜𝑠𝑡௥  

ROI_1 0.1 0 

ROI_2 0.1 0.01 

ROI_3 0.5 0.01 

(c) Simulation case names and corresponding parameter settings for query strategy ROI 

Table 14. The simulation case names and their corresponding parameter settings: (a) LCUB, (b) 
ELB, and (c) ROI. 

4.3.3 Simulation Results and Analysis  

We initially evaluated the approaches with a randomly selected initial batch of 10 

documents. For each learning iteration, the simulation selects an additional batch of documents to 

add to the training set and learns a new de-identification model. The process proceeds for 10 

iterations. For a baseline comparison, we use a random selection of the next batch of documents 

to be added to training, which we refer to as Random. All results are based on an average of 3 runs. 

We evaluate the framework with a batch size of 10, 5 and 1.   

Case Name ELB_1 ELB_2 ELB_3 ELB_4 ELB_5 

𝝆 0 1 0.1 0.01 0.001 
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4.3.3.1 Dataset A Results 

4.3.3.1.1 Batch size 10 

Table 15 compares the overall performance in terms of precision, recall and F-measure for 

the various query strategies, with the best score for each training level highlighted in bold. The 

learning curves are reported in Figure 18. For brevity, we choose the setting with the best 

performance to plot for each strategy. Note that in LCUB_10, the upper bound of LC is set to 1, 

which implies that all confidence scores are taken into account. Also, ELB_1 is equal to using 

entropy without a minimum value. 

  

(a) Random overall performance (b) LCUB_6 overall performance 

 
(c) ELB_3 overall performance (d) ROI_2 overall performance  

Figure 18. Learning curves for the active learning strategies and passive learning (with a batch 
size of 10 documents) for dataset A. (Note: Each curve corresponds to the simulation case that 
achieved the highest performance.) 
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It can be seen that there is a general increasing trend for all query strategies (including 

random selection) as additional training data is added. This is particularly pronounced when there 

is less than 50 training documents, at which point most of the selection approaches yield an F-

measure of over 0.9. The observed growth in performance slows down from training 50 to 100 

documents. Additionally, the classification model generally favors precision over recall in all 

testing scenarios, especially at early training stages (i.e., when the number of training documents 

is smaller than 50). 

In terms of recall, ELB_3 outperforms all other selection methods at the final training 

stages, achieving 0.949 at 100 training documents, while LCUB_6 achieves the best precision at 

the final training stage. However, ROI_2 learns faster at the beginning than all other strategies. 

Also, it provides the most steady growth in all three performance measures among all participants 

in comparison, which is preferable in reducing human correction effort. 
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Table 15. Performance of various active learning strategies and passive learning (with a batch size of 10 documents) for dataset A. 

 

Number of Training 

Documents 

Precision 

 

Recall 

 

F-measure 

LCUB_6 ELB_3 ROI_2 Random 

 

LCUB_6 ELB_3 ROI_2 Random 

 

LCUB_6 ELB_3 ROI_2 Random 

10 0.889 0.916 0.866 0.862  0.691 0.702 0.701 0.703  0.778 0.795 0.774 0.773 

20 0.788 0.891 0.901 0.725  0.764 0.742 0.836 0.785  0.775 0.810 0.867 0.748 

30 0.897 0.927 0.916 0.922  0.846 0.853 0.861 0.768  0.871 0.889 0.887 0.835 

40 0.917 0.924 0.919 0.909  0.894 0.883 0.880 0.869  0.906 0.903 0.899 0.888 

50 0.928 0.915 0.916 0.921  0.896 0.907 0.895 0.883  0.912 0.911 0.906 0.901 

60 0.937 0.944 0.930 0.918  0.921 0.882 0.905 0.894  0.929 0.912 0.917 0.906 

70 0.935 0.932 0.938 0.923  0.926 0.925 0.906 0.903  0.931 0.928 0.922 0.913 

80 0.915 0.941 0.929 0.923  0.934 0.935 0.931 0.905  0.924 0.938 0.929 0.914 

90 0.950 0.939 0.924 0.948  0.938 0.944 0.929 0.917  0.944 0.941 0.926 0.932 

100 0.959 0.953 0.946 0.943  0.939 0.949 0.937 0.927  0.949 0.951 0.941 0.935 
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(a) Overall precision learning curves  (b) Overall recall learning curves  

 

 
(c) Overall F-measure learning curves  (d) Overall precision comparison  

 
(e) Overall recall comparison  (f) Overall F-measure comparison  

Figure 19. Overall performance comparison for the active learning strategies and passive learning 
(with a batch size of 10 documents) for dataset A. 
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However, the previous observation is not guaranteed to hold true for each PHI type. Shown 

in Figures 20 through 22, among the three types of PHI that we focus on (FIRST_NAME, 

LAST_NAME and MEDICAL_HISTORY), there is no obvious trend for precision for 

FIRST_NAME or LAST_NAME. By contrast, the precision for MEDICAL_HISTORY increases 

with additional training data (Figure 22). Both the recall and F-measure exhibits more clear 

increasing trends for all three PHI types, in both the active and passive learning scenarios. For 

FIRST_NAME (Figure 20) and LAST_NAME (Figure 21), the active learning approaches are 

more stable in growth than Random, but do not necessarily outperform Random in the final 

iterations. For MEDICAL_HISTORY, the selection based on active learning exceeds Random 

selection, especially for ROI_2 (Figure 22). 

  



 

77  

 

(a) FIRST_NAME precision learning curves  (b) FIRST_NAME recall learning curves  

 

(c) FIRST_NAME F-measure learning curves  (d) FIRST_NAME precision comparison 

 

(e) FIRST_NAME recall comparison  (f) FIRST_NAME F-measure comparison  

Figure 20. FIRST_NAME performance comparison for the active learning strategies and passive 
learning (with a batch size of 10 documents) for dataset A. 
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(a) LAST_NAME precision learning curves  (b) LAST_NAME recall learning curves  

 
(c) LAST_NAME F-measure learning curves  (d) LAST_NAME precision comparison 

 
(e) LAST_NAME recall comparison  (f) LAST_NAME F-measure comparison  

Figure 21. LAST_NAME performance comparison for the active learning strategies and passive 
learning (with a batch size of 10 documents) for dataset A. 
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(a) MEDICAL_HISTORY precision learning curves  (b) MEDICAL_HISTORY recall learning curves  

 

(c) MEDICAL_HISTORY F-measure learning curves  (d) MEDICAL_HISTORY precision comparison  

 

(e) MEDICAL_HISTORY recall comparison  (f) MEDICAL_HISTORY F-measure comparison  

Figure 22. MEDICAL_HISTORY performance comparison for the active learning strategies and 
passive learning (with a batch size of 10 documents) for dataset A. 
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4.3.3.1.2 Batch Size 5 

When the batch size is reduced to 5, the advantage of active learning versus passive 

learning (random selection) becomes more apparent (Table 16, Figure 23). Generally, ELB_3 and 

ROI_3 (the best performed settings of ELB and ROI) exceeds Random on all three performance 

measures (P, R, and F). Additionally, LCUB_6 (the best of LCUB) shows less stable growth than 

the other two active learning approaches, but is still better than Random most of the time.  

Similar to a batch size of 10, the overall recall and F-measure improves with higher training 

quantities of training documents for both of the active and passive approaches. The increasing 

trend does not hold for precision.  Rather, precision fluctuates around 0.9 for active learning and 

0.85 for random. As for recall, to yield a score 0.9, ROI_3 requires around 35 training documents, 

LCUB_6 and ELB_3 need 50 documents, and for Random the best score within 10 iterations is 

only 0.876. At a training level of 30 documents, ROI_3 could reach an F-measure of over 90%, 

while the highest F-score for random is 0.887. 

Regarding performance scores of the three individual PHI types, the advantage of adopting 

active learning over passive learning remains for ROI_3 (Figures 24-26). Specifically for 

MEDICAL_HISTORY (as in Figure 26), the recall of ROI_3 sees a steady growth and arrives at 

0.787 after 10 iterations. By contrast, the random approach manifests a much more unstable trend 

and never reaches above 0.7. Comparing to the overall F-measure, although the F-measure of 

MEDICAL_HISTORY is generally worse, it shows much more drastic growth within the 10 

iterations.
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Table 16. Performance of the active and passive learning strategies, using a batch size of 5 documents for dataset A. 

Number of Training 

Documents 

Precision 

 

Recall 

 

F-measure 

LCUB_6 ELB_3 ROI_3 Random 

 

LCUB_6 ELB_3 ROI_3 Random 

 

LCUB_6 ELB_3 ROI_3 Random 

10 0.907 0.890 0.891 0.903  0.722 0.704 0.7 0.699  0.803 0.786 0.784 0.788 

15 0.915 0.877 0.915 0.886  0.747 0.766 0.766 0.722  0.822 0.818 0.834 0.795 

20 0.838 0.836 0.882 0.805  0.840 0.833 0.828 0.818  0.839 0.831 0.854 0.809 

25 0.901 0.917 0.917 0.822  0.729 0.827 0.852 0.834  0.792 0.868 0.884 0.825 

30 0.865 0.872 0.932 0.727  0.877 0.864 0.874 0.821  0.870 0.868 0.902 0.755 

35 0.898 0.880 0.883 0.892  0.865 0.818 0.899 0.860  0.881 0.839 0.89 0.875 

40 0.869 0.929 0.919 0.892  0.894 0.868 0.902 0.841  0.880 0.897 0.91 0.863 

45 0.911 0.936 0.92 0.869  0.850 0.876 0.898 0.876  0.876 0.905 0.908 0.871 

50 0.934 0.829 0.918 0.938  0.908 0.898 0.907 0.822  0.920 0.857 0.912 0.873 

55 0.947 0.928 0.937 0.915  0.905 0.904 0.907 0.861  0.926 0.916 0.922 0.887 
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(a) Overall precision learning curves   (b) Overall recall learning curves   

 
(c) Overall F-measure learning curves   (d) Overall precision comparison  

 

 
(e) Overall recall comparison  (f) Overall F-measure comparison  

Figure 23. Overall performance comparison for the active learning strategies and passive 
learning (with a batch size of 5 documents) for dataset A. 
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(a) FIRST_NAME precision learning curves   (b) FIRST_NAME recall learning curves   

 

 

(c) FIRST_NAME F-measure learning curves   (d) FIRST_NAME precision comparison  

 

(e) FIRST_NAME recall comparison  (f) FIRST_NAME F-measure comparison  

Figure 24. FIRST_NAME performance comparison for the active learning strategies and passive 
learning (with a batch size of 5 documents) for dataset A.  
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(a) LAST_NAME precision learning curves   (b) LAST_NAME recall learning curves   

 
(c) LAST_NAME F-measure learning curves   (d) LAST_NAME precision comparison  

 
(e) LAST_NAME recall comparison  (f) LAST_NAME F-measure comparison  

Figure 25. LAST_NAME performance comparison for the active learning strategies and passive 
learning (with a batch size of 5 documents) for dataset A. 
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(a) MEDICAL_HISTORY precision learning curves   (b) MEDICAL_HISTORY recall learning curves   

 
(c) MEDICAL_HISTORY F-measure learning curves   (d) MEDICAL_HISTORY precision comparison  

 
(e) MEDICAL_HISTORY recall comparison  (f) MEDICAL_HISTORY F-measure comparison  

Figure 26. MEDICAL_HISTORY performance comparison for the active learning strategies and 
passive learning (with a batch size of 5 documents) for dataset A. 
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4.3.3.1.3 Batch Size 1 

The simulation with a batch size of 1 document led to more complex results than above 

scenarios (Table 17, Figure 27). ROI_1 generally outperformed random selection as well as other 

active learning approaches within 10 iterations, reaching an F-measure of 0.87 with 19 training 

documents. LCUB_6 and ELB_3 generated higher performance scores than random in most cases, 

but the learning was less stable than ROI_1. When considering the performance by PHI types 

(Figures 27-30), ROI_1 demonstrated a greater advantage than the other strategies, particularly in 

terms of recall and F-measure. 
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Table 17. Performance of various active and passive learning strategies with a batch size of 1 training document for dataset A.

Number of Training 

Documents  

Precision 
 

Recall 
 

F-measure 

LCUB_6 ELB_3 ROI_1 Random 
 
LCUB_6 ELB_3 ROI_1 Random 

 
LCUB_6 ELB_3 ROI_1 Random 

10 0.895 0.904 0.918 0.840  0.696 0.696 0.683 0.719  0.783 0.786 0.783 0.772 

11 0.896 0.823 0.877 0.905  0.701 0.734 0.722 0.655  0.785 0.775 0.790 0.753 

12 0.880 0.677 0.856 0.899  0.734 0.714 0.792 0.714  0.799 0.652 0.818 0.795 

13 0.903 0.813 0.907 0.862  0.743 0.791 0.719 0.741  0.815 0.801 0.802 0.796 

14 0.822 0.891 0.880 0.841  0.729 0.792 0.782 0.765  0.773 0.839 0.827 0.798 

15 0.868 0.877 0.906 0.836  0.780 0.792 0.737 0.777  0.816 0.832 0.810 0.804 

16 0.901 0.842 0.905 0.907  0.795 0.770 0.790 0.743  0.844 0.797 0.843 0.815 

17 0.907 0.857 0.882 0.815  0.824 0.806 0.816 0.798  0.863 0.828 0.847 0.806 

18 0.916 0.868 0.880 0.840  0.794 0.790 0.828 0.801  0.849 0.824 0.852 0.819 

19 0.913 0.918 0.889 0.868  0.772 0.818 0.861 0.802  0.835 0.864 0.874 0.833 
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(a) Overall precision learning curves   (b) Overall recall learning curves   

 
(c) Overall F-measure learning curves   (d) Overall precision comparison  

 
(e) Overall recall comparison  (f) Overall F-measure comparison  

Figure 27. Overall performance comparison for the active learning strategies and passive learning 
(with a batch size of 1 document) for dataset A. 
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(a) FIRST_NAME precision learning curves   (b) FIRST_NAME recall learning curves   

 
(c) FIRST_NAME F-measure learning curves   (d) FIRST_NAME precision comparison  

 
(e) FIRST_NAME recall comparison  (f) FIRST_NAME F-measure comparison  

Figure 28. FIRST_NAME performance comparison for the active learning strategies and passive 
learning (with a batch size of 1 document) for dataset A.  
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(a) LAST_NAME precision learning curves   (b) LAST_NAME recall learning curves   

 
(c) LAST_NAME F-measure learning curves   (d) LAST_NAME precision comparison  

 
(e) LAST_NAME recall comparison  (f) LAST_NAME F-measure comparison  

Figure 29. LAST_NAME performance comparison for the active learning strategies and passive 
learning (with a batch size of 1 document) for dataset A. 
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(a) MEDICAL_HISTORY precision learning curves   (b) MEDICAL_HISTORY recall learning curves   

 
(c) MEDICAL_HISTORY F-measure learning curves   (d) MEDICAL_HISTORY precision comparison  

 
(e) MEDICAL_HISTORY recall comparison  (f) MEDICAL_HISTORY F-measure comparison  

Figure 30.  MEDICAL_HISTORY performance comparison for the active learning strategies an 
d passive learning (with a batch size of 1 document) for dataset A. 
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4.3.3.1.4 Batch size comparison 

To compare the performance of models trained with different batch sizes, we plot the levels 

of performance scores against the size of training datasets needed for each of the batch sizes (i.e., 

the minimum number of training documents the active learning was provided to reach a certain 

level of performance). Since the precision across all PHI types could yield over 0.9 at the beginning 

10 random documents and did not exhibit a clear trend as more training data was supplied, we 

focus on the recall and F-measure for this comparison. Overall, when the active learning proceeds 

with smaller batch sizes, the performance scores, in terms of recall and F-measure, could attain a 

certain level with less training data involved. 

As shown on Figure 31, a recall of 0.8 required 20 training documents for batch sizes 10 

and 5, while only 17 documents were needed for batch size 1. A recall of 0.85 required at least 30 

documents for a batch size of 10, while 25 were needed for a batch size 5, and only 19 for batch 

size 1. Finally, we observed that a batch size of 10 could reach a recall of 0.9 with 50 documents, 

while a batch size of 5 could yield the same level of recall with 40 documents in training. Since 

all batch sizes were tested with 10 iterations, the maximum training number for batch size 1 was 

19, the highest recall of which (0.86) was less than 0.9 and thus not included in the plot. 

Generally, in comparison to recall, it took less training data to achieve the same level of F-

measure. Starting from an F-measure of 0.8, a batch size of 10 required 20 documents to build the 

model, and a batch size 5 and 1 needed 15 and 12, respectively. When the goal of F-measure was 

set to 0.85, 20 documents were needed for both a batch size of 10 and 5, whereas 17 documents 

were required for a batch size of 1. Again, a batch size of 1 could never reach an F-measure of 

over 0.9 within 10 iterations, while a minimum of 30 or 40 documents was needed with respect to 

training for batch size 5 or 10. 
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(a) Overall recall comparison (b) Overall F-measure comparison  

Figure 31. Overall comparison of different active learning batch sizes for the minimum number 
of training documents that was provided to reach a certain level of performance for dataset A. 

Next, we compared different batch sizes for specific PHI types, particularly FIRST_NAME, 

LAST_NAME, and MEDICAL_HISTORY (as shown in Figure 32). 

For FIRST_NAME, the comparison showed similar results with the overall comparison.  

Specifically, a batch size of 1 could reach a recall or an F-measure of 0.8 or 0.85 faster than batch 

sizes of 5 and 10, and a batch size of 5 required no greater than the same amount of training data 

than a batch size of 10 for the performance scores (recall and F-measure) to reach scores of 0.8, 

0.85 or 0.9. 

For LAST_NAME and MEDICAL_HISTORY, more performance levels were considered 

in the comparison because the growth was more drastic than FIRST_NAME. The findings based 

on overall and FIRST_NAME did not hold for LAST_NAME. A batch size of 5 almost always 

performed worse than a batch size of 10 or a batch size of 1, for both recall and F-measure. In 

other words, it took more training data for a batch size of 5 to attain a certain performance level. 

MEDICAL_HISTORY continued to be the most difficult PHI type to classify and using a smaller 

batch size in active learning helped to learn faster.  

It should be noted that, though opting for a smaller batch size could benefit model training 

(especially in the early stages of active learning), it also requires more time for retraining the entire 

process, which could be substantial depending on the size of the dataset.  
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(a) FIRST_NAME recall comparison (b) FIRST_NAME F-measure comparison  

 
(c) LAST_NAME recall comparison (d) LAST_NAME F-measure comparison  

 
(e) MEDICAL_HISTORY recall comparison (f) MEDICAL_HISTORY F-measure comparison  

Figure 32. Comparison of different active learning batch sizes for the minimum number of 
training documents that was provided to reach a certain level of performance for a PHI type for 
dataset A. 
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4.3.3.2 I2b2 Results 

When experimenting on the i2b2 dataset, the active learning approaches surpass passive 

learning for all three batch sizes (10, 5 and 1), especially in terms of recall and F-measure (Tables 

18-20). As shown in Figure 33, similar to previous findings with dataset A, smaller batch sizes 

lead to more significant difference between active learning and Random. Meanwhile, unlike in 

dataset A, LCUB performs better than other active strategies with batch size of 10 and 5, and ROI 

is the best query strategy when the batch size is 1. 

4.3.3.2.1 Batch Size 10 

The overall performance (precision, recall and F-measure) comparison of a batch size of 

10 documents for different query strategies for the i2b2 dataset is reported in Table 18. Again, the 

winning score is highlighted in bold for every training level.  

The general increasing trend with more data included in training also exists for all query 

strategies in comparison for the i2b2 dataset, as well as the better performance of precision 

comparing with recall. Further, the growth exhibited with the i2b2 dataset is more stable than with 

dataset A. Overall, all active learning approaches manifest higher performance scores than passive 

learning.  

For the later learning stages, LCUB attains the best scores among all selection strategies in 

terms of all three performance measures (precision, recall and F-measure), and reaches 0.926, 

0.910 and 0.918, respectively, when training with 100 documents.  
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Table 18. Performance of various active learning strategies and passive learning of the i2b2 dataset 
(with a batch size of 10 documents). 

4.3.3.2.2 Batch Size 5 

When it comes to a batch size of 5 documents (Table 19), among all strategies, it is still 

LCUB that dominates at later learning stages, which ends up with 0.912, 0.874 and 0.892 for 

precision, recall, and F-measure after 10 iterations. Active learning performs better than Random 

at all training levels for recall and F-measure, and at the majority of training levels for precision. 

  

Number of 

Training 

Documents 

Precision 

 

Recall 

 

F-measure 

LCUB_4 ELB_2 ROI_3 Random 

 

LCUB_4 ELB_2 ROI_3 Random

 

LCUB_4 ELB_2 ROI_3 Random 

10 0.835 0.824 0.818 0.834 
 

0.649 0.640 0.664 0.666 
 

0.730 0.719 0.733 0.740 

20 0.873 0.882 0.867 0.870 
 

0.779 0.765 0.774 0.746 
 

0.823 0.819 0.818 0.803 

30 0.891 0.894 0.894 0.873 
 

0.825 0.829 0.820 0.802 
 

0.857 0.860 0.855 0.836 

40 0.897 0.897 0.899 0.877 
 

0.843 0.848 0.836 0.836 
 

0.869 0.872 0.866 0.856 

50 0.903 0.906 0.903 0.899 
 

0.860 0.862 0.852 0.850 
 

0.881 0.883 0.876 0.874 

60 0.911 0.911 0.906 0.906 
 

0.874 0.869 0.858 0.862 
 

0.892 0.889 0.881 0.883 

70 0.915 0.911 0.906 0.906 
 

0.887 0.880 0.865 0.869 
 

0.901 0.895 0.885 0.887 

80 0.919 0.919 0.907 0.905 
 

0.895 0.890 0.872 0.874 
 

0.907 0.904 0.889 0.889 

90 0.923 0.922 0.910 0.909 
 

0.904 0.897 0.880 0.882 
 

0.913 0.910 0.895 0.895 

100 0.926 0.923 0.911 0.915 
 

0.910 0.902 0.886 0.885 
 

0.918 0.912 0.898 0.900 
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Table 19. Performance of various active learning strategies and passive learning of the i2b2 dataset 
(with a batch size of 5 documents). 

4.3.3.2.3 Batch Size 1 

Finally, for the results of learning with a batch size of 1 document (Table 20), active 

learning manifests more evident advantage over passive learning, especially in terms of recall and 

f-measure. Unlike previous findings with larger batch sizes, ROI is the best performing strategy 

in general. Also, overall learning is not as stable as learning with a larger batch size.  

  

Number of 

Training 

Documents 

Precision 
 

Recall 
 

F-measure 

LCUB_7 ELB_2 ROI_3 Random 
 LCUB_

7 

ELB_

2 

ROI_

3 

Rando

m 

 LCUB_

7 

ELB_

2 

ROI_

3 

Rando

m 

10 0.818 0.842 0.842 0.842  0.680 0.667 0.635 0.648  0.742 0.744 0.723 0.732 

15 0.867 0.855 0.860 0.867  0.723 0.735 0.731 0.718  0.788 0.791 0.790 0.785 

20 0.876 0.867 0.867 0.869  0.795 0.794 0.793 0.779  0.834 0.829 0.828 0.821 

25 0.886 0.884 0.889 0.873  0.805 0.813 0.821 0.799  0.844 0.847 0.853 0.834 

30 0.895 0.896 0.895 0.891  0.825 0.822 0.826 0.818  0.859 0.857 0.859 0.852 

35 0.898 0.894 0.895 0.888  0.842 0.841 0.836 0.835  0.869 0.867 0.864 0.860 

40 0.904 0.896 0.902 0.895  0.850 0.848 0.843 0.846  0.876 0.871 0.871 0.870 

45 0.906 0.897 0.902 0.899  0.863 0.854 0.848 0.848  0.884 0.875 0.875 0.873 

50 0.906 0.901 0.903 0.908  0.869 0.859 0.851 0.858  0.887 0.879 0.877 0.882 

55 0.912 0.904 0.902 0.906  0.874 0.866 0.854 0.864  0.892 0.884 0.878 0.884 
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Table 20. Performance of various active learning strategies and passive learning of the i2b2 dataset 
(with a batch size of 1 document). 

 

 
(a) Learning curves for overall recall (batch size = 10)              (b) Learning curves for overall recall (batch size = 1) 

Figure 33. Recall comparison for active and passive learning (with a batch size of 10 documents 
or 1 document) for the i2b2 dataset. 
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 LCUB_
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ELB_
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ROI_

3 

Rando

m 

 LCUB_

8 

ELB_

4 

ROI_

3 

Rando

m 

10 0.845 0.844 0.833 0.829  0.650 0.642 0.656 0.666  0.735 0.729 0.733 0.738 

11 0.825 0.824 0.820 0.834  0.715 0.672 0.669 0.681  0.766 0.739 0.735 0.750 

12 0.856 0.818 0.843 0.838  0.678 0.703 0.706 0.674  0.757 0.754 0.768 0.747 

13 0.865 0.868 0.878 0.832  0.718 0.699 0.697 0.715  0.785 0.774 0.777 0.769 

14 0.832 0.844 0.841 0.855  0.742 0.752 0.763 0.719  0.783 0.793 0.800 0.780 

15 0.866 0.863 0.842 0.847  0.730 0.752 0.769 0.719  0.792 0.804 0.804 0.777 

16 0.872 0.868 0.864 0.865  0.751 0.747 0.769 0.732  0.807 0.803 0.814 0.793 

17 0.857 0.870 0.866 0.853  0.768 0.771 0.779 0.759  0.810 0.817 0.820 0.803 

18 0.865 0.866 0.872 0.863  0.774 0.776 0.766 0.761  0.817 0.818 0.815 0.808 

19 0.857 0.863 0.876 0.867  0.797 0.792 0.781 0.757  0.825 0.825 0.826 0.808 
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4.3.3.2.4 Batch Size Comparison 

Again, to investigate the impact of batch sizes on active learning, we plot the minimum 

number of documents that the system trains on to reach a certain level of recall or F-measure for 

the i2b2 dataset (Figure 34). Generally, we could reach a similar finding with the dataset A, that 

is, it requires less documents for the training to attain a certain level of performance when opting 

for a smaller batch size. For example, batch size of 10 needs 30 documents for a recall of 0.8, while 

batch size of 5 requires 25 documents, and bath size 1 needs 19. 

 
(a) Overall recall comparison (i2b2) (b) Overall F-measure comparison (i2b2) 

Figure 34. Comparison of active learning batch sizes for a given number of training documents 
that was provided to reach a certain level of performance for the i2b2 dataset. 

4.4 Discussion 

There are several notable findings that we wish to highlight from this investigation. 

First and foremost, the simulation results for both dataset A and the i2b2 dataset lend 

credibility to the hypothesis that adopting active learning in training data selection for natural 

language de-identification could generally result in more efficient learning than selecting data 

randomly (passive learning). It is reasonable to conclude that active learning could lead to 

comparable or higher performance scores with less amount of training data needed than passive 

learning. 

Additionally, it is worth mentioning that various query strategies in active learning 

exhibited different trends in learning. Depending on the specific learning goals (e.g., focusing on 
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overall performance or an individual PHI type) the decision for which active learning query 

strategy should be adopted could vary. ROI often generated a more stable learning curve than other 

strategies for dataset A, but the finding did not hold for the i2b2 dataset, which may be due to the 

fact that the i2b2 data is highly regularized and the results with it do not always transfer to real 

datasets [27].   

Finally, the choice of batch size could play a non-trivial part in the learning process, as 

smaller batch sizes could aid faster learning, yet result in a considerable increase in re-training 

time. For dataset A, when batch size is 1, overall precision of active learning might be exceeded 

by random selection, while active learning remained the advantage over passive learning in recall 

and F-measure.   
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Chapter 5 Conclusion 

 

5.1 Summary of results and contributions 

This dissertation focused on addressing the scalability challenge in machine learning based 

natural language de-identification through three tasks.  

Task 1 formally quantified the tradeoff between data publishing and privacy risks existing 

in a natural language de-identification framework that incorporates HIPS strategy with a game 

theoretical framework. We modeled the data sharing process as a game and conducted case studies 

to show that, it is possible in some cases for the HCO to make decisions without exhausting its 

budget to ensure a malicious but rational recipient of de-identified EMR data not to attempt re-

identification.  Also, we demonstrated that how adversaries pay their penalties for violating terms 

of service significantly influences how data is shared, and could even result in perverse outcomes.  

Specifically, we showed that if the HCO that shares the data is entitled to damages for violation of 

a contractual agreement, it may be incentivized inappropriately to bait an attacker by publishing 

patient data that is potentially exploitable.  

In Task 2, we constructed a feature extraction and clustering strategy based on writing 

complexity and clinical vocabulary usage to partition clinical documents into inferred types in 

order to better utilize a given set of data for de-identification model training. We conducted 

experiments on the clustering framework to show that, 1) training on a stylometric cluster yields 

better de-identification performance when testing on the same cluster, 2) the stylometric de-

identification models yield better results than random documents generated models, 3) the 

performance of stylometric models is, in many instances, better than models created by documents 

grouped according to VUMC-designated document types.  The above findings suggest that it is 

possible to achieve higher fidelity de-identification models with less training data and institutional 

knowledge.   

For the last task of this dissertation, we developed an active learning pipeline for natural 

language de-identification, and evaluated the pipeline on a real-world clinical trials dataset through 

simulations. The results from the experiments confirmed that utilizing active learning in training 

data sampling could generate models with comparable or better performances with less data than 
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passive learning. Additionally, we discovered that adopting different query strategies in active 

learning could lead to different trends in learning. Finally, we showed that the choice of batch sizes 

could influence the performance of active learning in de-identification, more specifically, smaller 

batch sizes could lead to faster learning while increasing re-training time.  

5.2 Limitations of the work and future directions 

 For the game theory based resource allocation framework, we recognize that our study is 

limited in its scope for several reasons. First, our model focused on economic motivated attackers, 

whereas reputation-driven attackers are out of scope of this dissertation. Also, we acknowledge 

that our case studies are based on a single dataset. For a future direction, we could further 

investigate the generalizability of the game based framework experimenting with other datasets. It 

is challenging to conduct such investigations on EMRs with real residual identifiers, since public 

use datasets (e.g., i2b2 dataset [27] or Cincinnati Children’s hospital dataset [59]) have replaced 

all real identifiers with synthetic identifiers. Finally, it should be recognized that the definition of 

cost plays a key role in our framework. Although a sensitivity analysis was performed to determine 

the stability of the findings, the costs per record (depending on the actual content in an EMR) may 

change and needs more extensive study in the future.  

As for task 2, we used a VUMC-specialized version of DE-ID as a proxy for a human-

annotated corpus which might result in lower F-measures than those observed in gold standard 

environments. Again, our data was mainly based on single healthcare organization, which is the 

VUMC, and it is possible that data from a different institution might not exhibit the same in 

performance. While acquiring substantial amount data from other sites that is composed of several 

document types could be challenging in practice, it could be considered for future extensions of 

this research. Next, although the VUMC EMR contains over 1000 document types, we only chose 

to focus on nine of the larger size types to report on interpretable results and to avoid an overly 

complex analysis. Lastly for this task, we acknowledge that features based on readability and 

lexical richness may be correlated with other unknown factors, such that, the new PHI instances 

introduced by the MIST resynthesis module might influence the grammar and phrasing.  

Finally, despite the merits of our investigation, there is opportunity for improvement in 

active learning in our setting. Here we provide several such opportunities. First, in the ROI model, 

we integrated human annotation cost and contribution and provided results based on simulations, 
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but the actual costs and contributions in real-world problems need to be measured through user 

studies. Second, instead of fixing a batch size over the entire active learning process, an adaptive 

batch sizing strategy might lead to better training performance. Lastly, deep learning methods (e.g., 

recurrent neural networks) might be considered for the active learning system, as they have 

recently shown promising results in de-identificaiton [89]. Note that, while the proposed pipeline 

will likely still be applicable by simply switching the machine learning basis, it is possible that 

doing so might influence the performance.  
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Appendices 

 

Appendix A1: Summary of PHI Types in the VUMC Dataset 

The corpus used in Chapter 2 consists of 11 types of PHI. The specific types and details 

for each are listed in Table A1. Note that there are several reasons for why we selected this set of 

PHI types. 

First, this research is based on a collaboration between a team at the Vanderbilt University 

Medical Center (VUMC) and a team at the Group Health Research Institute (GHRI).  At the 

VUMC, EMR data is currently de-identified as 15 types of PHI.  By contrast, GHRI generated a 

dataset that consisted of 19 types of PHI for a project sponsored under the ONC SHARP program.  

Though there are less PHI types at the VUMC, these are not a proper subset of the GHRI set, a 

harmonization of the two sets was performed. Table A2 provided an alignment of the various PHI 

types in the de-identification projects upon which the HIPS evaluation was based. More 

specifically, the PT_NAME and DOC_NAME in the SHARP dataset could translate to be one PHI 

type as NAME in the VUMC dataset; the SHARP PHI type ADDRESS was represented by 

STREET-ADDRESS, PLACE and ZIP-CODE; the PHONE and FAX in the SHARP corpus 

corresponded to the PHONE in the VUMC corpus; the SHARP types of VEHICLE_ID, 

CERT_NUM, ACCT_NUM, PLAN_BENF_NUM, OTHER_ID, MED_REC_NUM, and SSN 

were all covered by ID-NUM in the VUMC dataset; the SHARP dataset had the type of IP_ADDR 

which was not included in the VUMC set, while the VUMC provided PATH-NUMBER and 

INITIALS which were not part of the SHARP dataset. After the harmonization, the PHI types 

colored in Table A2 are the ones that were utilized in the HIPS evaluation. 
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The second reason is that, at the time of this study, four of the of PHI types 1) IP addresses, 

2) URLs, 3) room numbers, and 4) doctor’s initials did not have plausible resynthesis modules in 

place.  As such these types of PHI were removed from consideration under the HIPS model.  Since 

this paper only considers the capability of the HIPS approach, we did not investigate these PHI 

types.  

# PHI Type Description 

1 Address 
A street address, possibly including the city, state, and 
ZIP code 

2 Age The age of the entity 

3 Date A date, including the year 

4 Email An email address 

5 Medical Record Number A medical record number for a patient 

6 Organization Name 
The name of any organization associated with the 
patient or their healthcare. 

7 Other ID 
An ID number other than the ones identified above, such 
as a medical device ID or run number of an assay in a 
laboratory.  

8 Patient Name The personal name of a patient or relative. 

9 Provider Name The name of a medical provider 

10 Phone A telephone or fax number 

11 Social Security Number A Social Security Number for a patient 

Table A1. Summary of PHI types in the studied corpus. 
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SHARP PHI Type SHARP description Vanderbilt PHI Type Vanderbilt description 
ORG_NAME A medical facility INSTITUTION A medical facility 
PT_NAME The name of a patient 

NAME 
The name of a patient or medical 
provider DOC_NAME 

The name of a medical 
provider 

DATE A date, including the year DATE A date, including the year 

ADDRESS 
A street address, possibly 
including the city, state, and 
ZIP code 

STREET-ADDRESS 
A street address, not including the 
city, state, or ZIP code 

PLACE A city and/or state 
ZIP-CODE A ZIP code 

 ROOM A hospital room number 

PHONE A telephone number 
PHONE A telephone number 

FAX A fax telephone number 

AGE An age AGE An age 
EMAIL An email address EMAIL An email address 

URL A URL WEB-LOC A URL 

VEHICLE_ID 
An identifying number for a 
vehicle 

ID-NUM Any identification number 

CERT_NUM Certificate number 

ACCT_NUM A patient account number 
PLAN_BENF_NUM Plan beneficiary number 

OTHER_ID 
An ID number other than the 
ones identified above 

MED_REC_NUM A medical record number 

SSN A Social Security number 

DEV_ID A device ID serial number DEVICE-ID A device ID number 

 PATH-NUMBER A pathology number 

IP_ADDR An Internet IP address  

 INITIALS The initials of a medical provider 

Table A2. Alignment of the various PHI types in the de-identification projects upon which the 
HIPS evaluation was based. 
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Appendix A2: The Processes of Decision Making for Cases Low, Mid-low and High 

Figures A1 through A5 illustrate results of the game for the Low, Mid-low and High cases 

under the various policies. The upper plots in these figures depict the attacker’s optimized 

decisions for training as a function of the publisher’s potential training decisions.  The lower plots 

in these figures depict the actual payoffs to the two players.  

When the attacker’s income is forced to $0, which indicates the Safe-forward (No risk) 

policy, the Low (Figure A1 and A2) and High (Figure A4 and A5) cases lead to positive payoffs 

for the publisher rather than the $0 payoffs in the Traditional policy.  Figures A1 and A2 suggest 

that, in the Low case, no matter where the attacker’s penalty payment is sent, the publisher will 

reach the same decision in all three policies (i.e., Safe-forward, Attack-forward, and Attack-back), 

yielding a payoff of $1558.22.   
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Figure A1. Decision making process of the publisher and corresponding strategies of the attacker 
in the Low case when the attacker pays its penalty forward to a third party. 
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Figure A2. Decision making process of the publisher and corresponding strategies of the 
attacker in the Low case when the attacker pays its penalty back to the publisher. 
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Figure A3 corresponds to the Mid-low case. In this situation, when the publisher’s aim is 

to suppress the attacker, its best option yields a payoff of $0.  This means the publisher chooses 

not to share the data.  Figure A3 also indicates that if the publisher aims for the maximum payoff, 

it tends to undertrain and bait the attacker. This suggests the case in which the attacker bears $0 

penalty could put the records of patients in a hazardous situation.   

 

Figure A3. Decision making process of the publisher and corresponding strategies of the 
attacker in the Mid-low case.  
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Figures A4 and A5 correspond to the High case when the attacker’s penalty is sent forward 

to a third party and back to the publisher, respectively.  Notably, the Safe-forward policy reaches 

the same decision wherever the attacker’s penalty goes, in which the publisher trains with 190 

documents, redacts and shares the data, and yields a payoff slightly larger than $0. The publisher’s 

decisions differ in the Attack-forward and Attack-back policies. Specifically, the latter encourages 

the publisher to train with a relatively larger dataset and leads to less payoff to the attacker.  

 

Figure A4. Decision making process of the publisher and corresponding strategies of the 
attacker in the High case when the attacker’s pays its penalty forward to a third party. 
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Figure A5. Decision making process of the publisher and corresponding strategies of the 
attacker in the High case when the attacker’s pays its penalty back to the publisher. 
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Appendix A3: Sensitivity Analysis for Cases Mid-low and High  

Figures A6 and A7 depict the sensitivity analysis for the Mid-low and the High cases, 

respectively. In each figure, the value of the attacker’s annotation cost per document (ca) is fixed. 

The horizontal axis represent the attacker’s value per true guess (v), while the vertical axis 

represents its fine for false guesses per instance (la). The heat maps show the change of payoffs for 

both players, such that the lighter the yellow, the more payoff the publisher / attacker is left with.  

Figure A6 shows the sensitivity analysis for the four policies (i.e., Traditional, Safe-

forward, Attacker-forward, and Attack-back) for the Mid-low case, where ca = $4.  In the 

Traditional policy, for all possible combinations of v and la, the publisher’s payoff is negative, 

while the “no attack” region is realized when la  2/3(v – 0.1). In the forward penalty payment 

policies varying v incurs a larger impact on the publisher’s payoff than varying la. The larger the 

v, the smaller the publisher’s payoff.  In the Attack-back policy, la exhibits an increased impact 

over the forward policies because the fine of the attacker is paid back to the publisher; however, it 

v continues to exhibit a major impact.  
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Figure A6. Sensitivity of attacker’s and publisher’s payoffs to the attacker’s value per true 
positive (v) and loss per false positive (la) for the four policies when the attacker’s annotation 
cost per EMR (ca) is $4. The result for the Mid-low case (v = $0.1 , la = 0) is circled in each 
figure. 
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Figure A7 shows the sensitivity analysis for the four policies in the High case, where ca = 

$10. Again, the publisher’s payoff remains below $0 in the Traditional policy, while the “no attack” 

region is realized when la  2/3(v – 0.1). In the Safe-forward policy, the publisher’s payoff is 

divided into two parts: 1) an all red region, which indicates $0 payoff because the publisher fails 

to share any data and 2) the remainder of the space where there is a positive payoff for the publisher 

because it is devoid of any committed attacks. For both the Attack-back and the Attack-forward 

polices, the attacker’s payoff is $0 when v < la.  In the Attack-forward policy, the publisher’s 

payoff is affected more by v than la, while in the Attack-back policy both v and la exhibit a 

considerable degree of impact on the publisher’s payoff. 
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Figure A7. Sensitivity of attacker’s and publisher’s payoffs to the attacker’s value per true positive 
(v) and loss per false positive (la) for the four policies when the attacker’s annotation cost per EMR 
(ca) is $10. The result for the High case (v = $0.5, la = $0.3) is circled in each figure. 
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Appendix B1 

This appendix provides an illustration of the experimental design for the scalability tests 

reported in the main manuscript. 

The scenario depicted in Figure B1 corresponds to the experimental setting in which de-

identification models are trained on large random mixture clusters and tested on stylometric 

clusters.  In this setting, we randomly sampled from the large mixture of random clusters, with 

sizes ranging from 100 to 1000.  The models were trained on such random subsets and tested on 

complexity based clusters. 

The scenario depicted in Figure B2 corresponds to the experimental setting in which de-

identification models are both trained and tested on stylometric clusters. In this case, de-

identification models were trained and tested on subsets of stylometric clusters, sizing from 10 to 

200. 
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Figure B1. Experimental design of the scalability test for large random mixture clusters.
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Figure B2. Experimental design of the scalability test for complexity based clusters.
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Appendix B2 

This section contains complete results (in terms of precision, recall and F-measure) of the de-identification model training and 

testing experiments. 

Due to page width limitations, results for complexity based clusters and random clusters are split into 3 tables each. Tables B1-

a to B1-c correspond to clusters created by complexity measures. Tables B2-a to B2-c are showing the results for random process 

generated clusters. 
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Table B1-a. De-identification performance (in terms of Precision, Recall, and F-measure) based on clusters derived from the complexity measures. 

Train   

Test  

C1  C2  C3  C4 

P R F  P R F  P R F  P R F 

C1 (n = 547) 0.922 0.921 0.921  0.839 0.806 0.821  0.899 0.913 0.906  0.902 0.918 0.910 

C2 (n = 229) 0.877 0.886 0.879  0.892 0.815 0.851  0.873 0.891 0.881  0.868 0.874 0.871 

C3 (n = 569) 0.943 0.935 0.939  0.873 0.842 0.857  0.940 0.947 0.944  0.937 0.939 0.938 

C4 (n = 403) 0.842 0.845 0.843  0.740 0.674 0.705  0.830 0.840 0.835  0.867 0.876 0.872 

C5 (n = 531) 0.923 0.925 0.924  0.870 0.805 0.836  0.897 0.918 0.907  0.914 0.927 0.921 

C6 (n = 362) 0.849 0.852 0.851  0.759 0.689 0.721  0.826 0.859 0.842  0.860 0.883 0.871 

C7 (n = 323) 0.937 0.942 0.940  0.891 0.828 0.858  0.936 0.939 0.937  0.935 0.947 0.941 

C8 (n = 247) 0.881 0.876 0.878  0.809 0.725 0.764  0.852 0.867 0.859  0.881 0.892 0.887 

C9 (n = 611) 0.872 0.858 0.865  0.790 0.749 0.768  0.819 0.860 0.839  0.846 0.878 0.862 

C10 (n = 439) 0.766 0.772 0.769  0.674 0.586 0.625  0.749 0.766 0.758  0.815 0.832 0.823 

C11 (n = 92) 0.988 0.970 0.978  0.947 0.878 0.910  0.976 0.985 0.980  0.989 0.997 0.993 

C12 (n = 184) 0.935 0.834 0.882  0.757 0.758 0.757  0.844 0.837 0.840  0.839 0.873 0.855 

C13 (n = 60) 0.994 0.569 0.722  0.978 0.542 0.687  0.993 0.681 0.808  0.997 0.610 0.755 
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Table B1-b. De-identification performance (in terms of Precision, Recall, and F-measure) based on clusters derived from the complexity measures. 

Train   

Test  

C5  C6  C7  C8 

P R F  P R F  P R F  P R F 

C1 (n = 547) 0.905 0.887 0.896  0.906 0.895 0.901  0.892 0.879 0.885  0.892 0.869 0.881 

C2 (n = 229) 0.862 0.814 0.837  0.878 0.851 0.864  0.812 0.792 0.801  0.842 0.806 0.822 

C3 (n = 569) 0.931 0.905 0.918  0.934 0.907 0.920  0.930 0.920 0.925  0.925 0.884 0.904 

C4 (n = 403) 0.849 0.818 0.833  0.859 0.856 0.857  0.817 0.802 0.809  0.847 0.833 0.840 

C5 (n = 531) 0.928 0.902 0.915  0.934 0.917 0.925  0.886 0.886 0.886  0.920 0.895 0.908 

C6 (n = 362) 0.865 0.826 0.845  0.879 0.877 0.878  0.816 0.809 0.812  0.868 0.869 0.868 

C7 (n = 323) 0.934 0.912 0.922  0.934 0.913 0.923  0.929 0.914 0.922  0.926 0.892 0.908 

C8 (n = 247) 0.885 0.849 0.866  0.902 0.893 0.897  0.838 0.819 0.828  0.901 0.891 0.896 

C9 (n = 611) 0.880 0.846 0.863  0.901 0.879 0.890  0.798 0.827 0.812  0.879 0.847 0.863 

C10 (n = 439) 0.785 0.753 0.768  0.826 0.832 0.829  0.732 0.722 0.726  0.801 0.804 0.803 

C11 (n = 92) 0.986 0.957 0.970  0.980 0.980 0.980  0.983 0.972 0.977  0.947 0.962 0.955 

C12 (n = 184) 0.975 0.897 0.934  0.957 0.794 0.867  0.894 0.781 0.833  0.948 0.748 0.836 

C13 (n = 60) 0.983 0.197 0.326  0.949 0.286 0.438  0.984 0.310 0.469  0.963 0.088 0.160 
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Table B1-c. De-identification performance (in terms of Precision, Recall, and F-measure) based on clusters derived from the complexity 
measures. 

Train  

Test 

C9  C10  C11  C12  C13 

P R F  P R F  P R F  P R F  P R F 

C1 (n = 547) 0.894 0.865 0.879  0.877 0.856 0.866  0.344 0.601 0.433  0.796 0.732 0.762  0.115 0.347 0.172 

C2 (n = 229) 0.855 0.803 0.827  0.852 0.818 0.834  0.337 0.513 0.398  0.752 0.669 0.706  0.103 0.340 0.157 

C3 (n = 569) 0.925 0.878 0.901  0.911 0.855 0.882  0.382 0.629 0.466  0.819 0.768 0.792  0.136 0.367 0.198 

C4 (n = 403) 0.834 0.818 0.826  0.853 0.853 0.853  0.393 0.579 0.457  0.761 0.705 0.731  0.127 0.293 0.176 

C5 (n = 531) 0.929 0.907 0.918  0.905 0.908 0.907  0.418 0.653 0.495  0.847 0.794 0.819  0.095 0.358 0.150 

C6 (n = 362) 0.875 0.849 0.862  0.872 0.895 0.884  0.293 0.546 0.376  0.770 0.712 0.739  0.086 0.267 0.130 

C7 (n = 323) 0.929 0.890 0.909  0.906 0.875 0.890  0.417 0.614 0.492  0.814 0.796 0.805  0.114 0.345 0.169 

C8 (n = 247) 0.892 0.860 0.875  0.883 0.897 0.890  0.280 0.495 0.352  0.769 0.701 0.731  0.068 0.254 0.106 

C9 (n = 611) 0.912 0.899 0.906  0.854 0.871 0.862  0.350 0.639 0.446  0.793 0.745 0.768  0.079 0.302 0.125 

C10 (n = 439) 0.780 0.764 0.772  0.883 0.895 0.889  0.290 0.524 0.364  0.667 0.613 0.638  0.105 0.256 0.148 

C11 (n = 92) 0.973 0.986 0.979  0.972 0.980 0.976  0.963 0.957 0.960  0.922 0.921 0.920  0.378 0.718 0.492 

C12 (n = 184) 0.925 0.860 0.891  0.820 0.787 0.803  0.459 0.557 0.492  0.973 0.981 0.977  0.199 0.331 0.246 

C13 (n = 60) 0.551 0.156 0.243  0.965 0.194 0.319  0.394 0.062 0.107  0.897 0.054 0.101  0.994 0.987 0.990 



 

124  

   Table B2-a. De-identification performance (in terms of Precision, Recall, and F-measure) based on random clusters  

Train  

Test 

R1  R 2  R 3  R 4 

P R F  P R F  P R F  P R F 

R1 (n = 547) 0.893 0.888 0.891  0.886 0.877 0.881  0.884 0.882 0.883  0.892 0.885 0.888 

R2 (n = 229) 0.900 0.894 0.897  0.891 0.881 0.886  0.891 0.885 0.888  0.900 0.894 0.897 

R3 (n = 569) 0.902 0.903 0.903  0.903 0.896 0.899  0.896 0.896 0.896  0.914 0.907 0.910 

R4 (n = 403) 0.888 0.884 0.886  0.885 0.878 0.881  0.888 0.889 0.888  0.892 0.892 0.892 

R5 (n = 531) 0.895 0.888 0.892  0.881 0.886 0.883  0.887 0.887 0.887  0.901 0.893 0.897 

R6 (n = 362) 0.889 0.870 0.879  0.887 0.864 0.875  0.888 0.874 0.881  0.898 0.875 0.886 

R7 (n = 323) 0.889 0.884 0.886  0.889 0.884 0.886  0.893 0.892 0.892  0.903 0.896 0.900 

R8 (n = 247) 0.899 0.900 0.899  0.897 0.889 0.893  0.892 0.891 0.891  0.903 0.897 0.900 

R9 (n = 611) 0.892 0.885 0.888  0.883 0.880 0.881  0.889 0.884 0.887  0.897 0.888 0.892 

R10 (n = 439) 0.886 0.897 0.891  0.901 0.900 0.901  0.903 0.908 0.906  0.909 0.913 0.911 

R11 (n = 92) 0.891 0.889 0.890  0.903 0.896 0.900  0.891 0.892 0.891  0.900 0.896 0.898 

R12 (n = 184) 0.896 0.885 0.890  0.895 0.883 0.888  0.886 0.870 0.878  0.901 0.887 0.893 

R13 (n = 60) 0.944 0.947 0.945  0.941 0.954 0.947  0.946 0.958 0.952  0.948 0.959 0.953 
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  Table B2-b. De-identification performance (in terms of Precision, Recall, and F-measure)  based on random clusters 

Train  

Test 

R5  R6  R7  R8 

P R F  P R F  P R F  P R F 

R1 (n = 547) 0.885 0.882 0.883  0.881 0.882 0.881  0.894 0.895 0.894  0.890 0.877 0.883 

R2 (n = 229) 0.898 0.890 0.894  0.885 0.888 0.887  0.904 0.902 0.903  0.903 0.895 0.899 

R3 (n = 569) 0.910 0.902 0.906  0.906 0.905 0.905  0.912 0.920 0.916  0.905 0.903 0.904 

R4 (n = 403) 0.889 0.891 0.890  0.885 0.890 0.887  0.897 0.901 0.899  0.885 0.886 0.885 

R5 (n = 531) 0.893 0.883 0.888  0.890 0.884 0.887  0.902 0.904 0.903  0.894 0.888 0.891 

R6 (n = 362) 0.892 0.872 0.882  0.878 0.862 0.869  0.894 0.885 0.890  0.898 0.878 0.887 

R7 (n = 323) 0.892 0.885 0.889  0.888 0.895 0.891  0.901 0.903 0.902  0.894 0.889 0.891 

R8 (n = 247) 0.895 0.894 0.895  0.894 0.894 0.894  0.903 0.910 0.906  0.902 0.904 0.903 

R9 (n = 611) 0.886 0.883 0.884  0.891 0.884 0.887  0.900 0.897 0.899  0.895 0.886 0.890 

R10 (n = 439) 0.912 0.913 0.913  0.886 0.895 0.890  0.910 0.910 0.910  0.909 0.901 0.905 

R11 (n = 92) 0.890 0.887 0.889  0.887 0.888 0.887  0.895 0.896 0.896  0.902 0.894 0.898 

R12 (n = 184) 0.897 0.879 0.887  0.895 0.876 0.884  0.894 0.893 0.893  0.905 0.888 0.896 

R13 (n = 60) 0.954 0.964 0.959  0.939 0.953 0.945  0.952 0.966 0.959  0.949 0.960 0.954 
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- Table B2-c. De-identification performance (in terms of Precision, Recall, and F-measure)  based on random clusters 

Train  

Test 

R9  R10  R11  R12  R13 

P R F  P R F  P R F  P R F  P R F 

R1 (n = 547) 0.888 0.882 0.885  0.869 0.842 0.855  0.866 0.852 0.859  0.853 0.830 0.841  0.850 0.741 0.791 

R2 (n = 229) 0.900 0.896 0.898  0.886 0.861 0.873  0.885 0.872 0.878  0.867 0.845 0.856  0.862 0.762 0.809 

R3 (n = 569) 0.908 0.904 0.906  0.895 0.875 0.885  0.888 0.881 0.884  0.879 0.846 0.862  0.867 0.764 0.810 

R4 (n = 403) 0.887 0.888 0.887  0.873 0.855 0.863  0.871 0.859 0.865  0.830 0.836 0.832  0.854 0.743 0.793 

R5 (n = 531) 0.888 0.887 0.887  0.879 0.853 0.866  0.880 0.861 0.870  0.860 0.822 0.840  0.856 0.756 0.801 

R6 (n = 362) 0.893 0.878 0.886  0.878 0.837 0.857  0.874 0.841 0.857  0.840 0.792 0.815  0.859 0.728 0.786 

R7 (n = 323) 0.892 0.892 0.892  0.873 0.843 0.857  0.870 0.852 0.861  0.867 0.827 0.846  0.862 0.756 0.805 

R8 (n = 247) 0.901 0.899 0.900  0.887 0.857 0.872  0.877 0.864 0.871  0.871 0.833 0.851  0.868 0.759 0.809 

R9 (n = 611) 0.891 0.888 0.890  0.884 0.849 0.866  0.883 0.856 0.869  0.865 0.825 0.844  0.873 0.743 0.803 

R10 (n = 439) 0.899 0.898 0.898  0.872 0.844 0.858  0.889 0.883 0.886  0.864 0.824 0.843  0.864 0.744 0.799 

R11 (n = 92) 0.892 0.891 0.891  0.879 0.856 0.867  0.890 0.872 0.880  0.867 0.848 0.857  0.855 0.724 0.783 

R12 (n = 184) 0.896 0.891 0.893  0.875 0.841 0.857  0.887 0.865 0.876  0.855 0.819 0.836  0.855 0.718 0.775 

R13 (n = 60) 0.944 0.969 0.956  0.926 0.926 0.926  0.943 0.952 0.947  0.913 0.878 0.894  0.931 0.818 0.869 
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Appendix B3 

In this appendix, we provide the scalability results for large random mixture clusters 

(Figure B3) and complexity measure-based clusters (Figure B4). For each subplot, the x-axis 

represents the size of subset invoked for trained, while the y-axis corresponds to the F-measure of 

the result. 
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Figure B3. Scalability analysis on large mixed random subsets. 
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Figure B4. Scalability analysis on stylometric clusters. 
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