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In the ongoing struggle to resolve our current energy crisis, many agencies and re-

searchers have spearheaded the application of direct energy conversion materials,

such as thermoelectric and thermionic devices for waste heat recovery and power

generation. However, the current state-of-the-art direct energy conversion materials

are plagued by extremely low efficiencies that prevent a widespread solution. Re-

cent effort to improve the efficiencies of these direct energy conversion materials has

demonstrated a drastic increase through the inclusion of nanoscale features. With

new advances in nanoscale materials comes the need for new models that can capture

the underlying physics. Thus, this research has developed a necessary tool and a

unique modeling approach (based on NEGF quantum simulations) that couples both

the electrical and thermal response of nanoscale transport accounting for both the

dissipative interactions of electron-phonon and phonon-phonon scattering. Through

the aid of high performance computing techniques, the models developed in this re-

search are able to explore the large design space of nano-structured thermoelectrics

and thermionic materials. The models allow computational predictions to drive in-

novation for new, optimized, direct energy conversion materials.

A specific device innovation that has come from this research is the development of

variably spaced superlattice (VSSL) devices, which are the next progression in band



engineering thermoelectric materials. Computational findings of VSSL materials pre-

dict a seven times increase in ZT at room temperature when compared to traditional

superlattice devices. Other thermoelectric materials studied include nanocrystalline

composites (NCC) which were predicted to outperform equivalent superlattice struc-

tures as a results of decreases electron filtering. In addition to thermoelectric mate-

rials, this research has developed a quantum modeling technique to investigate and

optimize nano-tipped thermionic and thermal-field devices. Results have provided in-

cite into the applicability of Richardson’s theory in characterizing the emission from

wide-band gap thermionic materials. Ultimately, the quantum models developed in

this research are a necessary tool for understanding nanoscale transport and innovat-

ing new nanostructured materials.
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CHAPTER I

INTRODUCTION

For every dollar spent powering integrated circuit devices, nearly 60 cents is

lost to thermal waste1. The automobile internal combustion engine is even less effi-

cient, with 80 cents for every dollar being lost to waste heat due to combustion and

mechanical inefficiencies2. In response to this issue, many agencies and researchers

have been applying direct energy conversion devices such as thermoelectric power

generators for waste heat recovery. However, the current state of thermoelectric

technology is characterized by low efficiencies, limiting widespread application and

preventing a practical solution to waste energy recovery. Over the past decade, re-

cent advances in nanostructured materials have demonstrated a substantial increase

in efficiency of these direct energy conversion materials and a possible avenue for

solution-driven innovations. These new nanostructure materials are a step forward

but require a more fundamental view point of the transport. To aid in understand-

ing this transport and innovating more efficient materials this research has developed

necessary tools to predict the electrical and thermal transport in nanoscale materials.

The models developed incorporate dissipative effects providing a tool to design direct

energy materials.

Forecasting the next ten years, direct energy conversion materials have the po-

tential to significantly aid the current energy crisis. In the context of thermoelectrics,

the technology is roughly one ZT away from being a major contributor to clean sus-

tainable energy production (no secondary waste). However, in order to reach this

goal, a greater understanding of the transport physics and further innovation of new,

more complex materials is required. In contributing to this goal, this thesis research

has developed two aspects. The first aspect is the innovation of new materials which

rely on complex band engineered structures. The second aspect and most significant

contribution is the development of new computational models (based on quantum

theory) to aid in understand the nanoscale transport behavior of new nanostructured

materials. Ultimately, the impact of this research in developing more efficient di-

rect energy conversion materials is beyond the concept of innovating devices for large

1Based on approximate calculations of joule heating in a 45nm 760million transistor with a

nominal turn on voltage of 500mV.
2Based on the calculation of a four-stroke Otto cycle assuming gasoline combustion and approx-

imate losses due to mechanical friction
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energy production or even the consumer market but rather has the potential to aid

developing countries where the availability of cheap sustainable energy does not exist.

The objective of this research relies on two focused areas of direct energy con-

version. The first area is nanostructured thermoelectrics where the research focused

on developing a coupled quantum modeling approach that accounts for the inter-

action of electrical (electrons) and thermal (phonons) transport and is capable of

predicting device level efficiencies. This was accomplished through the use of high-

performance computing (HPC) resources and the incorporation of additional physics

such as the dissipation due to electron-phonon interactions and phonon-phonon in-

teractions. The second area of this research is development of a model which could

predict the thermionic and field emission characteristics from a hot-body nano-tipped

wide-band gap materials. More specifically, modeling the thermionic and field emis-

sion from a more fundamental view point and understanding how models developed

for emission from metallic surfaces can be applied to the emission from wide-band

gap materials. Both of these objectives rely on implementing a quantum mechanical

modeling approach in which a non-equilibrium Green’s function (NEGF) method is

used to predict electrical and thermal transport performance based on inherit physical

material parameters. One of the driving necessities for these models is to understand

the influence of geometry on the transport and to optimize both the thermal and elec-

tronic structures for enhancement and potentially drastic increases in efficiency. This

work required an interdisciplinary understanding of engineering, physics and com-

puter science to develop model and new materials which incorporate major aspects

of electrical and thermal research.

Motivation

Thermoelectric materials have been demonstrated since the 1950’s when the

first Systems Nuclear Auxiliary Power (SNAP-1) was developed for remote power

generation. These initial devices require extremely high temperature source to main-

tain a reasonable efficiency and never could be justified for consumer application.

Recent advances in new nanostructured materials have ushered in a new interest

in thermoelectric power generation. Compounding these advances with the need

for clean sustainable energy and you have great motivation to bring thermoelectric

power generation to the consumer market. However, there is a need to first develop

an understanding of the transport in these new materials in order to make informed

decision on how to innovate more efficient nanostructured materials. Interestingly,
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because these nanostructures are on the order of a 100 or less unit cells the physics

of electrons and phonons transitions from a continuum regime to a quantum regime

which is described by a statistical process. The statistics of these quantized particles

is described through a quantum model and previous researchers using this approach

have been limited to very small or simplified geometries. By including more physics

in these quantum models, larger devices which resemble production level devices can

be modeled and understood. Furthermore, the addition of more physics through cou-

pling the electrical and thermal transport is a large motivator for this research because

an understanding of both the electrical and thermal transport governs the efficiency

of thermoelectrics. Additionally, understanding how nanostructured geometry affects

the transport is a key aspect and provides a large design space which can be explored

in pursuit of more efficient devices.

Thermoelectric devices have several advantages over traditional energy pro-

duction and refrigeration methods which are appealing to the consumer market. The

first appeal is that they have no secondary waste. This goes back to the essence of di-

rect energy conversion where thermal energy, lattice vibrations, are converted directly

to electrical energy. One can think of the electrons within the thermoelectric as being

the working fluid in a vapor-compression cycle or a steam turbine. Another appeal-

ing aspect of thermoelectrics is the idea of waste heat recovery where thermoelectrics

could be applied to the surface of any heat producing source and this heat could be

directly converted to an electrical potential. Figure 1.1 is a visual illustration of the

possible sources of waste heat. The first two, both the automobile and integrated cir-

cuit are seen as the most desired applications for waste heat recovery but waste heat

produced by large fossil fuel power production (d) is extremely lucrative and often

over shadowed. It is also worth noting that many of the advances in thermoelectrics

for power production can be applied to cooling applications where the thermoelectric

is used as a Peltier device to replace the household HVAC system or refrigeration

system.

One way researchers are attempting to make thermoelectrics more appealing

to the consumer market and help aid in our current energy crisis is by researching

ways to make thermoelectric devices more efficient. With the recent advances in nan-

otechnology and the means to fabricate materials on the atomic scale, the ability to

manipulate the electrical and thermal transport becomes a huge avenue for poten-

tially altering the current thermoelectric devices and the trend of the industry. To

put these nanotechnology modifications into perspective, one can think of adding fea-

tures (different materials) to the thermoelectric materials which are about 3000 times
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Figure 1.1 Illustration of possible waste heat recovery applications for direct en-
ergy conversion materials. (a) automobile, combustion and tribological losses, (b)
integrated circuit, (c) photovoltaic cells, (d) fossil fuel energy production.

smaller than a human hair. When you start adding features this small the physics

changes from a classical perspective to a quantum perspective.

When discussing the efficiency of a thermoelectric device, a common figure of

merit that is often used to describe the overall efficiency of the device is known as

the ZT value.

ZT =
S2σT

ke + kp
(1.1)

The figure of merit encompasses both the electrical and thermal performance

of the devices. The main objective in designing a good thermoelectric is to have a

large electrical contribution which includes a large Seebeck coefficient S and a large

electrical conductivity σ. Additionally, the thermoelectric should have a low thermal

conductivity which includes both the electrical and lattice contributions. Overall the

ZT is maximized when the numerator is maximized and the denominator is minimized.

Often it is easy to gauge the efficiency of a devices when compared to a known

efficiency such as a fossil fuel power production plant. The average return of a fossil
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fuel burning plant is around 33% efficient. That is to say, about one third of the

internal energy of coal is converted to potential energy in the power lines. This

value can now be used to compare to a thermoelectric with a corresponding ZT as

shown in Figure 1.2 for a given temperature ratio (TC/TH). With this efficiency

in mind, Figure 1.2 demonstrates that a thermoelectric needs a ZT on the order of

2 to 3 to compete with a fossil fuel power production cycle. The ZT for current

thermoelectrics lies between 1 to 2. Recent advances in thermoelectric devices have

come from the implementation of nano-features within the thermoelectric materials.

These nanofeatures interrupt the transport in a favorable way such that the ZT

values increase. Because nano-features are geometric dependent, the design space

of nanoscale thermoelectric materials become extremely large and previous modeling

approaches do not provide the necessary underlying physics to capture the correct

transport dynamics of these nanostructured materials. Thus, the main contribution

of this research is to develop new models which capture the physics and employ high

performance computational which can investigate a multi-scale device from atomistic

sizes up to bulk sizes. This model will not only be able to predict thermoelectric

performances from fundamental material properties but also innovate for new more

efficient thermoelectric devices.

The second aspect of this research deals with thermionic direct energy conver-

sion devices. Thermionics are very similar in context to thermoelectrics except they

are not a solid device but rather a vacuum device where a vacuum region separates the

hot and cold regions. Based on this description, thermionics have a district advantage

over thermoelectrics because they eliminate the lattice contribution to the thermal

conductivity. However, there are other aspects which offset the decreased lattice con-

tributions. Those aspects include the amount of energy an electron must have to

surpass the vacuum region or barrier energy. Similar to thermoelectrics, thermionic

devices are limited to select applications due to their conversion efficiency. Many of

the consumer applications outlined above for thermoelectrics are also applicable for

thermionics. However, typically thermionics are reserved for extremely high temper-

ature applications due to the current efficiency of the materials. If the efficiency of

these thermionic devices are increased they have the potential to alleviate the current

energy crisis. One of the more immediate applications of thermionics is for large

energy production such as fossil fuel burning plants where a large amount of waste

heat is produced.

The efficiency of thermionic devices can be framed in a similar manner to the

thermoelectrics description that was posed in the previous few paragraphs. In the
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Figure 1.2 Plot of the normalized efficiency of thermoelectrics for different temper-
ature differences versus ZT values. The maximum efficiency is divided by the Carnot
efficiency. Plot based on theory by Ramalingam (2000)

thermionic case, the efficiency is framed in terms of a temperature not ZT. Figure 1.3

is a plot of the efficiency of an ideal cathode as a function of temperature. Similar

to the thermoelectric plot, a banded region around 33% outlines the efficiency of a

fossil fuel energy production cycle. The lines in Figure 1.3 are based on Richardson’s

theory of an ideal metallic cathode neglecting radiative losses. The figure suggests

that the designer should select a material with the lowest work function to operate

at a highest possible efficiency for a given temperature. It turns out if you search

the periodic table, it is difficult to find a single elemental material that has a high

melting temperature and low work function value. Traditionally, researchers have

selected materials with extremely high melting temperatures, such as tungsten, with

an associated work function of approximately 4.5eV and have increased the operating

temperature to a value near the material’s melting temperature to operate at a higher

efficiency. However, this is not always possible given the application where a high

temperature bath is not always present. Additionally, many melting temperatures

of low work function salts are below 400K which are not applicative for near room

temperature applications. Thus, thermionic emitters much like thermoelectrics, have

been associated with low efficiencies which have limited their widespread application
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in the consumer market. The current trend for new thermionic materials is to use

wide-band gap semiconductors such as diamond which can be doped with elements

such as nitrogen and hydrogen. The use of dopants in wide-band gap materials has

the effect of lowering the work function value of the material. In order to understand

the emission from these wide-band gap materials this research has developed a model

based on fundamental material properties. The model devloped in this research is a

necessary tool to understand the transport from a fundamental view point.

Similar to thermoelectrics, thermionic devices can be used as cooling devices

by applying a moderate field to the thermionic device. Once a moderate field is

applied to these devices they are in an emission region which is characterized by both

thermal and field emission, hence the name thermal-field device. The addition of a

field aids in removing electrons from the surface by influencing the band structure.

Interestingly, instead of adding nano-features inside the material as is commonly done

for thermoelectrics, in thermionics nano-features are added to the cathode surface to

enhance emission. An applied field further enhances the emission by adjusting the

geometry to further enhance the curvature of the local field lines around the nano-

features. Similar to thermoelectrics, the transport is geometry dependent and rely

on a quantum mechanical description which is not captured in a classical treatment

of thermal-field emitters. By developing a model which can capture the emission

from these thermal-field emitters the geometry can be optimized in order to optimize

emission characteristics and predict the cooling potential.

Organization

The organization of this thesis work will begin by introducing thermoelectrics

through a historical perspective along with the explanation of the current state-of-the-

art in thermoelectric materials and modeling approaches. Following this discussion,

the history of thermionic emission and field emission devices will be considered. The

historical perspective of thermal-field emitters will introduce materials previously

investigated and include explanation of previous models used to study these devices

and their modeling limitations that ultimately motivate the modeling approach for

this research.

The second chapter is a comprehensive explanation of the phonon modeling

and electronic modeling theory with a development of the non-equilibrium Green’s

function quantum description used to model both the thermoelectric and thermionic

devices. Specific explanation will emphasize the development of a coupled modeling
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approach to facilitate the multiple phonon frequency scattering and dissipation from

phonon-phonon interactions. Preceding the coupled thermoelectric model will be an

elaboration of the thermal-field emission model which was adapted from the electronic

portion of the thermoelectric model.

The third chapter will bring together the validation and verification of both the

thermoelectric and thermionic models. The thermoelectric model will be validated

first by looking at the phonon and electron model independently. The electron model

will be validated based on the applied field dynamics and the model’s ability to match

thermoelectric values from the literature. The validation of the fully coupled model

will also be compared to data in the literature. The thermal-field model will be

validated against collaborated experimental data and verified with theory of metallic

emitters.

The fourth chapter will demonstrate how the developed models from this re-

search were used to optimize and innovated new nanostructured thermoelectric and

thermionic devices. A specific device innovation that will be elaborated on is vari-

ably spaced superlattice (VSSL) thermoelectric materials. The other analyses include

nanocrystalline composite materials and nano-tip thermal-field emitters.
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The final chapter will conclude the findings and provide an outline of the

contributions of this research. Additionally, discussion of future direction and future

research will be provided. In conclusion, details on where the source code for all the

models will be provided.

History of Thermoelectrics

The theoretical understanding of how thermoelectric generation and refriger-

ation operates has long been determined and was actually a collaboration of three

independent theories defining an encompassing theory of thermoelectricity. In 1823,

Thomas Johann Seebeck determined that when two dissimilar conductors formed a

closed loop and one end of the junction was heated, a magnetic compass held near

the junction would deflect in response to the applied temperature. Seebeck was under

the impression that the phenomenon was magnetic when in actuality it was electro-

magnetic. None the less, in his 1823 paper (Seebeck, 1823), he researched several

materials determining their, α2σ parameter. The α later became known as the See-

beck coefficient with units of volts per degree temperature.

The next observation in contributing to the thermoelectric effect was by Jean

Charles Athanase Peltier who observed changes in temperatures when a non-ambient

temperature probe was applied in the vicinity of a heterojunction of two dissimilar

metals while a current was applied. As Peltier increased the current he noted that

the temperature would increase or decrease at the junctions. The Peltier effect was

not equated to Seebeck’s findings until Heinrich Lenz in 1835 determined that the

direction of current governed whether thermal energy was absorbed or generated at

the junction. In Lenz’s experiments he used a bismuth-telluride junction to freeze

water and then reversed the current to melt ice back into water. (Goldsmid, 1964)

In the 1850’s William Thomson establish a relationship that accounted for

both the effects of a current and temperature gradient applied to a homogeneous

conductor. Termed the Thomson effect, this relation states that in a homogeneous

conductor with a current passing through it and a temperature gradient applied

across, thermal energy is either absorbed or generated along the conductor. He noted

that the direction of the current governed whether the thermal energy was absorbed

or generated in the conductor and the rate. He derived the Thomson coefficient

which has units of V/K and is a measuring of cooling rate governed by the change

in Seebeck coefficient over the change in temperature.

In the mid 1900’s scientists begin to study thermoelectric materials from an
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energy generation and/or refrigeration point of view. By now the understanding

of thermoelectric effects were recognized but devices were never attempted. It was

reasoned that a good thermoelectric device should have a large Seebeck coefficient

with a low thermal conductivity. A dimensionless figure of merit was devised that

encompasses these two competing effects in order to gauge the performance of the

thermoelectric devices. The figure of merit is defined in Equation 1.1 where T is

the average temperature of the device, S is the Seebeck coefficient, σ is the electrical

conductivity, ke is the electrical contribution to the thermal conductivity and kp is the

lattice contribution to thermal conductivity. Many researchers focused on metallic

thermoelectrics due to their high electrical conductivity. Unfortunately, the electrical

conductivity (σ) and electron thermal conductivity (ke) are proportional because of

the Wiedemann-Franz law which meant materials of ZT greater than 1 are difficult to

find. This holds true for both the energy generation and refrigeration thermoelectric

devices.

The implementation of semiconductors as thermoelectric materials began in

the mid 1950’s by Goldsmid and Douglas (1954) who demonstrated that a temper-

ature of below zero degrees Celsius could be obtained using bismuth (Bi) telluride

(Te) material junction. In using semiconductors, a decreased thermal conductivity

could be achieved but at the expense of a electrical conductivity compared to that of

a metal. The decreased thermal conductivity was a result of the decreased abundance

of delocalized electrons which was responsible for the large contribution of thermal

conductivity (ke). The decreased electrical conductivity of semiconductor materials

was only a slight hurdle until the transistor application took off in the late 1950’s

and early 1960’s when doped semiconductor technology was discovered. Addition-

ally, further enhancement of semiconductor materials were permitted by alloying the

materials or creating a two-phase material. The alloyed semiconductor maintained

considerable amount of electrical conductivity while decreasing the thermal conduc-

tivity considerably due to increased phonon scattering. At this point, both the Soviets

and the Americans had a large research effort in thermoelectrics for military and space

applications.

Figure 1.4 is a time-line perspective of the ZT values over the last few decades.

ZT values prior to the 1996 are not included because the values plateaued at 1.5 since

the implementation of bismuth-telluride alloys. The rise in the ZT in the 2000’s is

due to recent advances attributed to nanostructured thermoelectric materials being

discovered. Nanostructured materials have given way to a new avenue for control-

ling both the thermal and electrical transport properties of material. It is from the
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nanostructure point of view that the majority of the recent research and the proposed

research in this study will focus. Researchers have had success using nanostructures

to disrupt the thermal conductivity and to increase the electrical conductivity pre-

dicting ZTs upward of 2. Figure 1.4 demonstrates the projection of ZT values past

2010 where researchers will focus on more complex doped oxides and engineering the

band structure of materials. The engineering of the band structure requires high fi-

delity computational tools such as the models developed in this research to optimize

and engineer higher ZT materials. The next ten years may provide the necessary

increase in ZT up to values of 2-3 to compete with vapor compression cycles.

Nanostructured Thermoelectrics

The majority of literature from the last decade focused on decreasing the

thermal conductivity through nano-features. It has been reasoned by many, that
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the thermal conductivity is much more rewarding to design around because it is more

difficult to modify the electronic performance of wide-band gap semiconductors. How-

ever, this common wisdom has not limited the research targeted towards increasing

the electrical transport. With the recent advances in deposition techniques the ability

to build devices on the order of the de Broglie wavelength of electrons producing in-

creased performance due to nanoscale transport effects (Hicks and Dresselhaus, 1993).

This allows devices to be built in which the transport of electrons becomes ballistic

in nature, giving rise to near quantum conductance performance. The following few

paragraphs will focus on several nanostructures that have been investigated previ-

ously and will provide motivation for developing the required modeling techniques

required to capture the physics of these nanostructured materials.

Metal Alloys/Nano-Granuals

Many researchers have investigated alloying well known bulk thermoelectric

materials with hope of increased thermoelectric performance by decreasing the phonon

mean-free path of the material. Many of these enhanced thermoelectric alloys show

increases in efficiency because the thermal conductivity (kp) decreases considerably

where the electron mobility (µ) was already high and was less influenced by the

addition of alloys. Much of the decrease in the thermal conductivity of these alloys

can be explained from the addition of a different mass in the lattice promoting optical

phonon frequencies and changing the group velocity of the material.

In 1997, Sales et al. (1997) looked at filled skutterudite structure in which

good electrical conduction could be achieved while low thermal conductivities similar

to glass were obtainable. Orihashi et al. (2000) had another approach where he showed

that they can control the performance by the amount of tin that is introduced to the

lead telluride structure (Orihashi et al., 2000). Orihashi et al. (2000) confirmed that

if the material forms a complete solid solution then the lattice disordering becomes

minimum and the thermal conductivity decreases. Similarly, (Chung et al., 2000)

demonstrated in 2000 that single crystal CsxBi4Te6 could achieve a ZT of 0.8 where

the amount of cesium incorporated could influence a more complex crystal structure

increasing phonon scattering. The amount of cesium disrupted the lattice dynamics

and decreases kp and increased ZT. The notion of disrupting the lattice dynamics

is apparent in current nano-structured thermoelectrics but the degree of scattering

can be controlled by the layer thickness not the unit cell dimension as in these bulk

materials.
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In the thermoelectric community the ”alloy limit” is the lowest thermal con-

ductivity achievable for any concentration of a given alloy. A standard alloy limit

often cited is the SiGe alloy limit has a thermal conductivity of 1Wm−1K−1 at 600K.

This alloy limit is extremely hard to achieve with other alloys or better yet surpass.

This limit arrives from the Wiedemann-Franz law in metallic solids that says that

thermal and electrical conductivity are proportional to the Lorenz number. Many

researchers (Vining et al., 1991) looked at alloying silicon and germanium, SixGe1−x,

but could not surpass the alloy limit. Because the alloy limit could not be surpassed

but only met only met with a Si0.2Ge0.8 alloy at 600K this is commonly taken as a

standard reference material in the thermoelectric community. The inability to surpass

this alloy limit gave rise to a new approach where the thermoelectric material began

being constructed with nano-features using already well established thermoelectric

materials.

Superlattices

As deposition processes became more available, such as molecular beam epi-

taxy (MBE) and Metal-Organic Chemical Vapour Deposition (MOCVD), researchers

began investigating thin film mono-layer structures. A superlattice is defined as a pla-

nar structure with alternating layers of materials. One attribute that was leveraged

because of the discrete nature of electron states within the thin layers was quantum

confinement effects, in which, under low dimensionality the electron states are con-

strained and the density of states (DOS) diverges along the energy axis (Hicks and

Dresselhaus, 1993). This concept can be visualized by treating electrons as a wave in

which they can be represented by a string suspended between two boundaries. It is

understood from classical dynamics that when the string is excited it will have a finite

number of allowed modes which are a function of the distance between boundaries.

As the boundary are moved further apart the number of allowed modes increase. The

same principle holds for electrons acting as waves in a solid. It turns out these lowest

modes are critical to the transport and are a function of the individual layer thick-

ness. Because the low lying energy levels can be controlled by confining the waves in

particular directions an additional aspect arises do to the degeneracies of the states.

This advantage is referred to as a confinement effect in nanostructured materials. A

common plot of the density of states under low dimensionality shows bulk density of

state dispersion having a square root relation with increasing energy, a two dimension

constrained device having a stair step, and one dimension will have a step function
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Figure 1.5 The confinement effect in nanostructured materials modifies the low lying
energy states. This is evident in 1D and 2D confined structures when compared to
bulk 3D structures. The 1D state is described by a one of square root of energy
relation and the 2D is independent of energy.

with an inverse square root decay, see Figure 1.5. The abrupt step in the DOS times

the Fermi function is what results in increased electrical transport. By controlling the

degree of confinement the transport can be tuned. This is a critical aspect of VSSL

materials which will be demonstrated later in this research.

An advantage that arrives from thin film structures is the decreased thermal

conductivity (Lee et al., 1997) due to an acoustic mismatch arising from the alter-

nating layers and the inter-facial thermal resistance. Each interface will contribute a

specular or diffuse reflection to the incoming acoustical phonon. Because the thermal

conductivity within the structure is governed by the contribution of acoustic phonons,

under reduced number of states the thermal conductivity is decreased.

Another advantage of a thin film structure is the thermionic emission that can

be achieved through barrier regions in the alternating layers. Because the conduction

and valence band edge of either material do not lie exactly at the same energy level

there exists a finite probability that tunneling or thermionic emission will contribute

to the overall device transmission. Researchers (Mahan and Woods, 1998; Shakouri

et al., 1998) have explained this phenomenon and designed Schottky like barriers in

order to enhance the thermionic effect and to increase the thermoelectric efficiency.

In 2001, Venkatasubramanian et al. (2001) demonstrated a ZT of 2.4 could

be achieved with p-type Bi2Te3/Sb2Te3 superlattice device. This was a significant

finding that nanostructure can lead to increased figure of merits. However, other

researchers have yet to reproduce these findings (Vineis et al., 2010) and the figure
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of merit needs to be upwards of three to be marketable.

Bulusu and Walker (2008a, 2007b) demonstrated the use of non-equilibrium

Green’s functions (NEGF) to look at the thermoelectric performance of strained

silicon-germanium superlattices. Their studies confirmed that quantum confinement

of electronic states does contributed to an altered thermoelectric performance. It was

also confirmed in Bulusu and Walker (2008a) studies that NEGF compares well to

the available experimental values. One interesting finding that came out of the re-

search was the studying of strain effects. Using deformation potentials (Van de Walle,

1989) Bulusu and Walker (2008a) was able to calculate the band offset for a given

superlattice configuration. Under biaxial strain the results indicated that the silicon

and germanium conduction band edges invert resulting in the conduction band edge

of silicon being lower than the germanium conduction band edge. This inversion was

only for band minima along the transport direction. This will become essential in

constructing the band diagram in the study of variable spaced thermoelectrics where

the conduction needs to be well defined in the presence of straining. The conduc-

tion of the straining must be well characterized in order for the strain mode to work

correctly.

In an extension of Bulusu’s work, Musho and Walker (2011b) have shown that

the power factor plateaus after four layers. This gives confidence that the NEGF

formalism can be used to investigate large structures that are comprised of hundreds

of alternating layers. These finding are used to investigate superlattice type ther-

moelectric devices and give confidence in comparing to literature values with device

lengths of hundreds of layers.

Nanocrystalline Composites

More recently, researchers have found methods of embedding nanocrystals in-

side of matrix materials forming a nanocrystalline composite (NCC) nanostructure.

Again, these structures leverage the quantum effects at a small scale to increase

the thermoelectric efficiency. Only a select number of researchers have studied the

electronic effects of nanocrystals in thermoelectic devices. Wang et al. (2008) have

experimentally studied free-standing PbSe nanocrystal thermoelectrics as a function

of crystal size and has attributed an increase in electrical transport to confined states

that are delta-like in shape and which are shifted closer or further from the conduction

band edge depending on the size of the nanocrystals. Their qualitative explanation

of shifted density of states is captured inherently in the quantum model presented in
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this research.

Other researchers such as Zeng et al. (2007) experimentally studied the cross-

plane electronic transport effects of nanostructures and found an increase in cross-

plane Seebeck coefficient when inclusions were added. Zide et al. (2006) attributed

the increase in Zeng’s experiment to an electron filtering phenomenon and thermionic

emission in the cross-plane direction. While their trends are commensurate with mea-

surements, the magnitudes of the conductance in their Boltzmann-based type model

is dependent on the scattering time, which is essentially a fitting parameter. These

fitting parameters suggest large uncertainties for devices there have not experimen-

tally tested. The modeling approach in the following research attempts to predict the

transport from more fundamental quantities namely band offset and effective mass.

Using a NEGF method Musho and Walker (2011a) have demonstrated the-

oretically that the size of the nano-crystal can affect the thermoelectric electrical

transport using a NEGF method. Full explanation of the results can be found in

the results section (Section IV) of this thesis. There are two advantages to these

structures: 1) increased density of states due to confinement and 2) planar trans-

port effects. It was determined that moderate filtering was desired by constructing

a device with small germanium nano-crystals that were spaced commensurate to the

nano-crystal size. Because of the planar transport the nano-crystals acted as barriers

resulting in the large Seebeck while still allowing transport around the barrier main-

taining the mobility. Results showed that nanocrystalline composite devices could

outperform equivalent characteristic length superlattice devices due to the moderate

filtering (Musho and Walker, 2011a).

On the thermal side, several researchers (Glatz and Beloborodov, 2009; Hostler

et al., 2008; Kim et al., 2006b) have increased the figure of merit through incorporation

of defects, inclusions and nanoparticles in hopes of decreasing the phonon thermal

conductivity (kp). Experimental studies (Kim et al., 2006a) of NCC structures saw a

noticeable decrease in the thermal conductivity compared to equivalent superlattice

structures. Kim et al. (2006a) attributes the decrease in thermal conductivity to three

factors, the most significant being the increase in phonon scattering as a results of

the nanocrystals being on the order of the mean free path of phonons. Because the

mean free path of phonons is larger than electrons it was argued that the nanocrystals

don’t influence the electrons maintaining the electrical conductivity.
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Thermoelectric Modeling Approaches

Traditionally, the modeling of thermoelectrics was done based on continuum-

type relations or models (Murphy-Armando and Fahy, 2008). More specifically, Boltz-

mann type modeling approaches were taken, which rely heavily on user-specified

scattering parameters and particle-based theory. To be fully encompassing, the ther-

moelectric model must be able to predict both the thermal transport performance

and the electrical transport performance. Referring to Equation 1.1, the numerator

of the thermoelectric figure of merit comprises the electrical contribution and the

denominator comprises the thermal contribution. In the majority of the literature,

researchers targeted one of these transport mechanisms and assumed the other mech-

anism is based on a known relation, such as Wiedmann-Franz. The Wiedmann-Franz

law states that the electrical conductivity is proportional to the thermal conductivity.

The use of Wiedmann-Franz law is questionable when applied to semiconductors and

even more when applied nanostructured materials. Research by others (Bian et al.,

2007) has determined that the Lorenz constant in Wiedmann-Franz can be up to

fifty percent lower in some nanostructures. This corresponds to a fifty percent under

estimation of ZT value. The modeling approach taken in this research is to calcu-

late both the thermal and electrical contribution simultaneously to limit the need for

assumed transport of the unknown quantity. Furthermore, the results developed in

this research could be used as a means to predict the unknown values in experimental

studies that currently rely on the Wiedmann-Franz approximations.

In the context of calculating the continuum electrical performance of bulk

thermoelectric materials such as PbTe and SbTe alloys, a Boltzmann approach is

commonly used to determine the electrical conductivity and Seebeck coefficient. Of-

ten when these models were used, scattering was incorporated to account for defect

and electron-phonon interactions through an average scattering rate that is a free pa-

rameter for the researcher to select. Boltzmann type modeling approaches are based

on particle-based theories and thus their limited applicability to bulk materials. For

completeness, the device length where Boltzmann models are appropriate are at de-

vice scales three times the mean free path of electrons. Thus, a silicon device would

need to be approximately 90 nm for a Boltzmann approach to be appropriate. This

stems from the fact that particle based theory cannot capture quantum mechanical

effects such as confinement and tunneling, which are an integral part of the physics

in nanostructured thermoelectrics.

The Boltzmann particle based modeling approach can also be applied to the

study of thermal transport where the phonons are treated as particles. Again, this
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approach relies on knowing the scattering rate of phonons in response to defects and

impurities. Often these scattering rates can be looked up in the literature. The

Boltzmann thermal approach is limited to studying bulk materials in the absence of

nanoscale features. The limits on this particle based modeling approach are confined

to bulk device length above 90 nm similar to the treatment of electrons.

As mentioned in the previous section, the recent advances of nanostructured

thermoelectric ushered in a new era of thermoelectrics material study. Along with

these new materials came the need for new modeling techniques that could capture

the transport trends. The use of quantum models was applicable because of their

ability to calculate the ballistic nature of electrons and phonons. In addition to bal-

listic transport, confinement and electron-electron interaction are important and are

able to be captured within the quantum framework. Researchers within the electri-

cal engineering community and physics communities drove the advances in transistor

technology and started developing modeling techniques to model sub-tens of nanome-

ter transistor technology. Many of these models were based on solving Schrödinger’s

equation in a very similar fashion to that one would see in a entry level quantum

mechanics course. Unfortunately, many of the models developed were very compu-

tationally intensive and extremely limited in the device sizes that could be studied.

Additionally, it was difficult to deduce transport trends from these types of simula-

tions because the contacts often govern the transport in these devices. Many of the

recent advances in high performance computing have made larger simulations pos-

sible and through some clever mathematics and understanding quantized nanoscale

transport of electron and phonons to determined the transport.

There have been recent advances in atomistic type modeling where a first prin-

cipal ab-inito approach is taken to calculating the electronic transport (Derosa and

Seminario, 2001). These modeling approaches are exponentially more computation-

ally intensive then a discretized wave-equation finite-element approach. The current

state of the modeling approach based on first principles is centered around a density

functional theory (DFT) approach which relies on solving the exact wave-function

for each orbital. This approach may be reasoned most comprehensive but it is often

over kill when the researcher is strictly interested in the transport dynamics based

on geometric changes. These atomistic approaches allow dispersions to be calculated

that resemble experimental dispersion. Many of the dispersion that are calculated

from DFT can be used by transport models to predict the transport. Approaches

done by Brandbyge et al. (2002) use this very principle where the DFT solution is

used to determined the dispersion and then the dispersion is implemented in the non-
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equilibrium Green’s function approach to determined the transport. Often times you

will see this approach in the literature as a DFT-NEGF approach.

The approach taken in this research is similar in many respects to the DFT-

NEGF approach except a composite effective mass approach is taken where the in-

terest lies in determining the transport of the de-localized electrons within the solid.

Special emphasis on constructing a composite system is critical to calculating the cor-

rect transport because the contacts often dominate the transport. In a brief overview,

the approach taken solves a discretized Schrödinger equation using a Green’s func-

tion formalism for the wave-function of the valence or de-localized electrons within the

system. This approach has grown out of the electrical engineering community Guo

et al. (2004) where they are interested in nanoscale field effect transistors. It should

be pointed out that this approach has also been applied to understanding molecular

junctions Ghosh et al. (2004); Taylor et al. (2001). This is a novel approach because

the Green’s function allows the PDE (Schrödinger equation) to be solved through

integration of impulse responses that lie on a finite difference mesh which comprise

the channel of the device. Complexity of the Green’s functions solution comes from

adding an external potential that arise from applied fields and particle interactions.

Additionally, the Green’s function allows complex self-energy contacts which repre-

sent a semi-infinite contact to be connected at the source and drain. Through the use

of complex contacts and self-consistent approach many of the transport trends which

incorporate dissipation can be captured. This approach can ultimately be framed to

solve both the electron and phonon transport solution. Where the phonon solution

relies on an atomistic approach, and the electron is a discretized domain approach.

History of Thermal-Field Emission Devices

Thermionic emission devices are very similar to thermoelectric devices in that

the objective is to transport electronic charge but limit the amount of thermal en-

ergy transported. The real advantage of thermionic devices is that the contacts are

separated by a vacuum region. This vacuum region does cause an obstacle for elec-

tron transport, but it creates an even greater obstacle for thermal transport. At

the beginning of this chapter, Equation 1.1 was defined as the figure of merit for

thermoelectric power generation. In order to modify this equation to capture the

performance of thermionic power generation the lattice thermal conductivity (kp) in

the denominator of the figure of merit must be removed. The figure of merit becomes

Equation 1.2 where kr is added to capture the thermal conductivity due to radiation
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heat transfer. Because the lattice thermal conductivity is removed, thermionics are

often used in high temperature application where a large thermal gradient can be

maintained. Along with maintaining a thermal gradient, thermionics often require a

high temperature heat sink to thermally excite enough electrons to create a sufficient

flux.

ZT =
S2σT

ke + kr
(1.2)

The devices of interest in this research are vacuum thermionic devices. It is

assumed that the vacuum region is extremely high (less than 10−5torr) and thus there

is no convective thermal transport from the anode to the cathode and the thermal

losses are limited to radiative thermal transport across the vacuum. This is critical

especially in nanoscale thermionic devices to maintain a thermal gradient.

The applied motive behind thermionic device is very similar to thermoelectrics

except for two aspects. The first aspect as mentioned above is the absence of a lattice

thermal conduction. The second aspect is the increased barrier height require to excite

electrons over to transport across the structure. Again, because these thermionic

devices are targeted to be direct energy conversion devices a thermal gradient is

applied across the device and a electrical potential is collected from the conversion of

thermal energy to electrical energy. More specifically, electrons are thermally excited

on the cathode side in order to evaporate them off the surface and into the vacuum

region. The electrons then transport to the cooler anode electrode, taking thermal

energy along where they condense on the surface of the anode. The transport of

electrons from the hot cathode to the cold anode results in an apparent cooling effect

on the cathode.

Thermionic energy conversion has been limited to very select remote power

generation applications. One of the more notable proof-of-concept devices is the

SNAP-11 devices used in space power generation (Corliss and Harvey, 1964). Many

of these devices used nuclear radioisotope power generation to produce a large tem-

perature. By the 1960’s much of the literature in thermionics moved away from

vacuum devices and onto devices with interelectrode atmospheres such as cesium va-

pors. This proved to be a promising avenue because device efficiencies on the order

10 to 20% were possible. Many of the limitations were outlined by Langmuir (1932);

Carabateas (1962) dealt with kinetics of the positive ions and space charge limita-

tions. Because these cesium vapor thermionic devices had a atmosphere they formed

a plasma at the surface which is often referenced as ignited thermionics. The use
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of a cesium atmosphere was also questionable due to its carcinogenic nature. In the

1970’s after the space race thermionic research transitioned to thermoelectrics and

use of semiconductors which required a much lower temperature heat sink.

Historically, researchers have searched the periodic table to determine which

intrinsic elements would be the best performing thermionic emitters. Referring to

Figure 1.3 at the beginning of this chapter, in order to achieve an efficiency comparable

to a fossil fuel power generation cycle, the material must have either a low work

function or high melting temperature. The definition of the work function is defined

as the distance from the vacuum level to the Fermi level. By selecting a material with

a lower work function the population of electrons above the vacuum level at a given

temperature will increase exponentially leading to increased emission.

A survey of the solid elements from the periodic table can generate a plot of

the intrinsic work function as a function of atomic weight, see Figure 1.6. The trends

follow the bonding orbital trends, especially in the d orbitals where the increase

in bonding orbits follows increase in work function values. The lanthanides prove

to have some of the lowest intrinsic work functions which can be attributed to the

orbital hybridization between the 5d orbitals. It is important to point out that the

work function of graphitic carbon has a value of 5 eV , while the work function of

tungsten is around 4.5 eV .

Before the advent of semiconductors much of the focus was on materials with

high melting temperatures. Referring to Figure 1.3 again, the efficiency can be in-

creased by increasing the operating temperature that the material can withstand.

Thus, one of the highest melting temperatures of any elements is tungsten, with a

melting point around 3422◦C. Figure 1.7 is a plot of the work function normalized

by the thermal energy melting point (kBTm). A material with the lowest values in

this plot are the most desirable. The materials with the lowest values correspond

to low work functions and high melting points. The two elements that prove to be

the lowest are carbon and tungsten. The focus of this thesis will look at applying

diamond allotrope of carbon.

Thermionic and Thermal-Field Emitter Applications

Thermionic devices in the context of this research are centered around their

application to direct energy conversion. However they have application to electronic

cooling similar to the Peltier thermoelectric device. In the context of cool applications

thermal-field emitters have a distinct advantage. The field of thermal-field emitters is
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a combination of thermionic emission and field emission. The addition of an electric

field to a good thermionic device is the attenuation of the field in the vacuum region

resulting in an increased emission. Conceptually, the addition of an applied field

can be thought of as ripping the electrons off the surface. Because the electrons

are being forced from the surface there is a high flux of electrons moving from the

hot cathode to the cold anode. These thermal-field emitters have an application in

cooling space vehicles and sensing. Also, the thrust of this research concentrates on

its relevance in direct energy conversion. As mentioned in the previous sections, the

efficiency is governed by the operating temperature and as the temperature increases

the efficiency of these devices also increases. It has thus been the focus to apply

such thermionic devices in operation, such as the top-cycle in large production fossil

fuel plants. This device generates large amounts of high temperature waste heat and

require only a small fraction of energy recovered to be deemed efficient. The objective

of this research is to investigate materials with lower work function values which are

more efficient at lower operating temperatures permitting a broader application and

increased efficiency at the high operating temperatures.

The argument stands that thermal-field emitters have the potential to outper-

form thermoelectric power generators if the electrical conductivity could be increased

in such a way to sustain a marginal current density and the anode could be designed

to act as a constant temperature bath. Increasing the electrical conductivity provides

a formula that is supported by the non-existent thermal conductivity (neglecting

radiation), resulting in extremely high theoretical ZT values.

Diamond Films and Nanostructured Tips

One of the methods that material scientists have been trying to increase is

the current producing capabilities of thermal-field emitter devices by implementing

materials which can withstand high fields along with high temperatures. The under-

lying material parameter is ultimately the work function of the material that governs

the flux of electrons escaping the surface. The work function is the potential energy

required for an electron to go from the the Fermi level to the vacuum level of the

device. By decreasing the work function of the material, the equilibrium population

of electrons that can migrate over the barrier increases and the overall current den-

sity increases. As pointed out in Figure 1.7, carbon is a perfect candidate due to its

high melting temperature and ability to be doped, which effectively lowers the work

function value increasing emission characteristics.
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Many researchers (Kock et al., 2002; Koeck et al., 2011) have looked at chem-

ical vapor deposited (CVD) diamond because of the materials thermal properties

and ability to withstand high electric fields. However, it was not until recently did

researchers begin to add interstitial dopant atoms to the diamond materials with

such elements as nitrogen and hydrogen. It was found that these dopants increase

emission characteristics (Kock et al., 2002; Koeck et al., 2011). With the inherent

thermal properties and ability to dope diamond semiconductor materials, the perfor-

mance increase has brought this material to the forefront. In Figure 1.7, a green bar

in the carbon column is associated with the state-of-the-art in nitrogen-incorporated

diamond with an effective work function of 2.2 eV .

Researcher have also looked at incorporating nanocrystalline diamond materi-

als with nitrogen (Koeck et al., 2011) and also sulfur (Koeck and Nemanich, 2005).

Koeck determined for sulfur-doped diamond at room temperature that the emission

does not change when compared to natural diamond. However at elevated tempera-

tures he noted that there was a deviation from the Schottky formula suggesting that

the sulfur was contributing to the increased emission. In Koeck’s later publications

of nitrogen doped diamond (Koeck et al., 2004) he demonstrates that a high tem-

perature emission current is greater for nitrogen-doped diamond over sulfur-doped

diamonds.

There have been very few conclusions in the literature about the exact mecha-

nism for increased emission of these doped diamond materials. Recent work done by

Paxton (2011) come to some hypothesis that the emission is along the grain bound-

aries of the nanocrystalline diamond. This is justified by the dangling sp2 content

along the grain boundaries.

The nature of the CVD diamond in much of the literature (Subramanian et al.,

2007) is polycrystalline, resulting in a patchwork of different work functions and

different properties. As was shown in Figure 1.6, the bonding state of the material

is critical to the work function. This is especially apparent in the hybridization

of orbitals seen in the f and d states. The allotrope of carbon in this research is

assumed to be fully hybridized diamond structured carbon. However, the content of

the CVD diamond is not only polycrystalline, but also includes graphitic content and

non-hybridized carbon along the grains.
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Thermal-Field Emitters Modeling Approaches

Previous researchers have focused on either modeling thermionic emission or

field emission and have not extensively studied thermal-field emitters. The theory

of thermionic emission was developed back in the early 1900’s by Richardson (1916).

Richardson described the emission from hot bodies using kinetic theory of electrons

in a metal. At the time he was interested in understanding the emission of electrons

from metallic surfaces.

The emission of electrons from a metallic surface under an applied field requires

a more rigorous view of the electron dynamics. Around the same time Richardson was

characterizing the emission electrons from a hot surface (Schottky, 1914) describing

the interaction of a point charge with a plane surface. Schottky was responsible

for defining the image potential responsible for the interactions of a charge close to

a flat surface. Schottky is best known for the potential energy described by U =

−q2/(16πǫ0x) (Schottky, 1914). This potential is very important in describing the

emission of electrons from a surface as it defines the image barrier.

It was not until in the late 1920’s that Schottky’s theory was applied to de-

scribing the field emission of electrons. Fowler and Nordheim (1928) were responsible

for applying a wave-mechanical theory or commonly known as a quantum theory to

describe the emission process. The quantum theory that was developed by Fowler

and Nordheim was based around modeling an one-dimensional barrier defined by the

image potential and vacuum level. They determined that under an applied field the

band would bend creating a thin barrier inside the vacuum region. This thin region

which decreased in thickness with increased applied field had an associated finite

probability for which electrons could tunnel. The associated probability could be

determined from the quantum mechanic tunneling probability through this region.

Both Richardson theory and Fowler-Nordheim theory stand on their own to

define the two regions. These models proved to be good at explaining emission from

metal emitters, where the density of states could be approximated as single analytic

expression. The theory of both of these has been restated in the literature with certain

modification to capture the emission from non-metallic surfaces (Modinos, 1984).

Much of this theory developed the emission of electrons into a vacuum in

response to a temperature and electrical bias was revisited when the development of

semiconductor devices took place in the 1960’s. Analogous to an electron emitting

into a vacuum, the emission of an electron from into semiconductor is very similar. It

turns out that Schottky’s theory only need slight modification in terms of the addition

of a dielectric constant. This theory proved to be very important in describing the
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correct transport through diodes where the space-charge regions are critical to the

transport.

Not until recently did researchers turn their interest to the emission of elec-

trons from semiconductors in a vacuum for a possibility of direct energy conversion.

The transition to vacuum-semiconductor devices as opposed to metal-semiconductor

devices has brought to question applicability of many of theories. There is also the

issue of nano-structured surfaces where the potential could vary drastically. Much of

the theory originally developed for emission from metal surfaces has reached a length

scale in which the continuum expressions based on kinetic theory of electrons are

being questioned. This is especially true in the nano-tip emitter devices, where the

confinement of states within the tip and the high localized fields around the tip are

not captured in the standard Fowler-Nordheim theory.

In terms of modeling approaches, there is literature on ignited thermionics

where the energy distribution within the cesium vapor is calculated from a Boltz-

mann approach (Shaw and Margolis, 1969). This approach requires that the electron-

electron scattering rates are determined a priori. Shaw and Margolis (1969) suggest

that high fields cause the distribution of electrons within the vacuum to deviate from

an equilibrium Maxwellian distribution. Unfortunately, because the emission of elec-

trons in a vacuum is dependent on quantum mechanics, particle-based theory such

as Boltzmann is not well suited.

The majority of the work in the literature has looked at the emission from car-

bon nanotubes (Maiti et al., 2001) and graphitic ribbons (Tada and Watanabe, 2002).

Additionally, the literature include DFT simulation of field emission and absorbates

on the surface of materials Grujicic et al. (2003). In these DFT simulation the focus

was on the spectral emission and not the transport. There is a critical aspect to the

space charge effects especially in vacuum devices which is important to the transport.

Many of these DFT spectral responses can be coupled with the approach taken in this

research which focused on the transport. Because a discretized Schrödinger approach

was taken in this work, a more general treatment of the quantum mechanics can look

at more complex structure. The model can then be used to validate the application of

Fowler-Nordheim to characterized the emission from nanostructured wide-band gap

materials. Furthermore, the modeling approach developed in this research has the

ability to explore the intermediate region defined by thermionic and field emission

resulting. Often, in the literature this region is either characterized by field emission

or thermionic emission theory and often difficult to define the intermediate. Because

the model developed can capture this intermediate it can help understand the physics
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that lies within this region all fun a fundamental quantum point of view.
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CHAPTER II

THEORY

This chapter will focus on developing the background necessary to model

nanoscale transport in thermoelectrics and thermionic devices. The theory will first

introduce electron and phonon transport within semiconductors and the governing

equations to calculate the transport properties based on a non-equilibrium Green’s

function (NEGF) method in which both the nanoscale electrical and thermal trans-

port is calculated. An overview of thermal-field emitters, including thermionic and

field emission and how their counterparts were modeled using a similar NEGF model-

ing approach will follow the theory. The majority of the NEGF formalism described

in this thesis is built from the ballistic theory for both the electron and phonons which

can be found in Datta (2005). The research builds on and adapts this ballistic the-

ory to include dissipative effects, specifically the addition of multiple electron-phonon

interaction and phonon-phonon interaction with rigorous treatment of the spatial lo-

cation of phonon densities. Additionally, this research provides a unique approach to

modeling the thermal-field emission from nano-tip vacuum devices.

The thermoelectric modeling approach taken in this research is an abstraction

of the actual device configuration that one might find in a operational thermoelectric

device. This research focuses on studying and increasing the efficiency of a single leg

of the thermoelectric devices, which would ultimately increase the overall efficiency

of the device. Figure 2.1 is an illustration of a complete thermoelectric device with a

hot and cold side, along with both a n-type and p-type material to limit the amount

of thermal leakage. In the same figure, a subset of the device outlines the region of

a single leg of a n-type material that will be the modeling focus for this research.

Assuming both the n-type and p-type leg have approximately the same performance

trends in response to nano-features, when the material optimized in this research is

implemented in a full thermoelectric device construction with both legs, the overall

performance should increase proportionally to what was seen in a single leg. In

context to nanostructured materials within a single leg, this research will specifically

focus on the cross-plane superlattice transport.

Similar to the thermionic approach, in Figure 2.2, the modeling effort of

thermionic and field emission devices will be limited to modeling a single emitter

with periodic boundary conditions. Likewise, it is assumed that the performance of a
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Figure 2.1 Illustration of the single leg approximation that is modeled as a simplified
geometry from a fully functioning thermionic device. The models developed in this
research focus on optimizing the performance of a single leg.

single emitter modeled will be realized in the overall performance of an actual device

when hundreds of emitters are assembled in parallel. Additionally, the anode and

cathode are assumed constant temperature baths where the temperatures at both

the anode and cathode are specified and remain constant. In actuality, there is a

transient effect and a non-ideal heating effects which results in anode heating due

to both hot electrons transfered to the anode and radiative heat transfer from the

cathode to the anode. Additionally, it will be assumed that the radiative effects are

negligible and the anode and cathode remain at a constant temperature. The model-

ing approach developed in this research is strictly aimed at determining the electrical

current originating from the emission tip with these assumptions. The reader should

be aware that the open circuit voltage is critical in direct energy devices and should

be considered when selecting anode and cathode materials.

Electron Transport in Semiconductors

Electron transport on the nanoscale is governed by the statistical mechanics of

a fermion. In device transport, the system is constantly trying to reach an equilibrium

state or minimize the free energy of the system. The constant pursuit for equilibrium
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Figure 2.2 Illustration of the single emission tip approximation that is modeled as a
simplified device. The anode and cathode are assumed constant temperature baths.
The models developed in this research are design to optimize a single leg simulating
the neighboring emitters through periodic boundary conditions.

between the contacts is what drives the transport of electrons giving rise to a current

within the system. The expression that governs the equilibrium number of electrons

at any given temperature is the Fermi-Dirac (FD) distribution, Equation 2.1. The

FD distribution demonstrates that as the temperature of the system increases, the

equilibrium number of fermions within the system increases exponentially. This idea

of increasing the temperature to increase the electron population is a key aspect of

thermoelectric transport. By specifying different temperatures at the contacts, the

system is in non-equilibrium. Non-equilibrium in a system can be driven by having

two dissimilar materials that have two different chemical potentials (µ) or by adjusting

the temperature across materials. In a practical sense, this is why a thermocouple

works. It also demonstrates how thermoelectric devices operate.

fFD =
1

exp((ǫ− µ)/kBT ) + 1)
(2.1)

In the quantum theory of a free electron gas, the Pauli principle must always be

followed, which states that no two fermions can have the same quantum numbers. The

quantum number is defined by the spin of the electron and the size of the orbital. The
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states that the electrons can occupy are defined by the Schrödinger equation, equation

2.2, where ψ is the wave-function and ǫn are the eigenstate. These eigenstates are

discrete in nature and are what gives rise to the energy levels that the electrons can

occupy. In the context of nanoscale devices, this is critical because the length of the

device can confine the wave-function, causing a divergence of eigenvalues or electron

states.

Hψ =
−h̄2
2m

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

ψ = ǫnψn (2.2)

Noted in Equation 2.2 of the free-particle Schrödinger equation, the only vari-

able that defines the eigenvalues is the mass of the electron. When talking about

electrons within a semiconductor, the same potential theory of electrons still applies,

however, the mass of the electron, me, is replaced with an effective mass, m⋆
e. The

effective mass is derived from the relationship between the energy and momentum of

a electron moving through the solid. In most literature (Kittel, 1986), the effective

mass will be described as the curvature of the dispersion and is dependent on the

crystallographic direction in which the electron is moving. This is a mathematical

approximation to allow the free electron model to still be used for electrons moving

through a periodic solid and does not necessarily associate with the electron becoming

more massive or less. The effective mass of silicon in the 〈001〉 direction is 0.91me

and for germanium, the effective mass is approximately 0.95me in the same direction.

Because there are discrete states associated with Schrödinger solution, these

states are associated with acting as current carrying channels to transport electron

across a device. In essence, the electrons can be thought of as hopping from one

state to the next until they reach equilibrium. In nanoscale transport, there is a

finite current-carrying capacity for each energy level, even when the transport is

assumed ballistic. The current-carrying capacity is defined by the quantum conduc-

tance, 2e2/h. In a two contact system, the current is dependent on the Fermi function

at either contact, multiplied times the density of states within the device, and is a

result of either excess carriers moving right or left. In Kittel (1986), the net current

is simply defined as,

I =
D1D(ǫ)qV

L
qv =

2q2

h
V, (2.3)

where D1D(ǫ) is the density of states of a 1D device and µ1 − µ2 = qV is

the applied potential difference. Because µ1 and µ2 are different, it gives rise to an

electron population up to µ1 on the left contact and up to µ2 on the right contact,
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providing a non-equilibrium distribution of charge across the system. Because of this

disparity in charge between contacts, a left or right moving charge from the area of

high potential to the low potential is taking place in order to drive the system back

to equilibrium.

The expression in Equation 2.3 describes that the current is dependent on a

known constant multiplied by the applied potential. The proportionality constant,

2e2/h, is defined as the quantum conductance, and has a fundamental effect to the

conductivity of the system. The quantum conductance defines the finite conductance

a single energy level can conduct. The quantum conductance is the absolute upper

limit and the addition of scattering will scale down current carry capacity based on

the quantum conductance.

In turn, when the device is not a perfect conductor (dissipative effects) at all

energy levels, arriving from scattering or broadening at a given energy, the expression

for the current becomes,

Itot =
D1D(ǫ)qV

L
qvΞ =

2e2

h
V Ξ, (2.4)

where the same quantum conductance term is multiplied by Ξ, the transmis-

sion probability. The essence of this expression is what drives the Green’s function

formalism and is often times referenced as the Landauer formula. The Landauer for-

mula describes the summation over all the contribution energy levels to get the total

current. Often times, the expression will be written in integral form, as follows in

Equation 2.5, where the transmission for the one electron model is summed across

a range of electron energies to arrive at the overall current. The applied voltage is

within the FD terms f1 and f2.

Itot =

∫ ∞

0

2e2

h
Ξ (f2 − f1) dE (2.5)

The sole objective of the Green’s function is to solve Schrödinger’s equation

such that a transmission probability can be determined. In nanostructured materi-

als, the density of state’s landscape (where states lie spatially) is a key element in

the transmission and ultimately the transport of the material. The Green’s func-

tion solution, which will be elaborated in the next section, provides a mathematical

simplification to solving complex systems by allowing the superposition of impulse

responses from contacts and scattering mechanism to be included easily.
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Figure 2.3 Composite non-equilibrium Green’s function system for treatment of
contacts. Contacts are treated as semi-infinite where the analytic wave functions
(Ψ1,2) are known. The region in the middle is defined as the channel where the
Hamiltonian (Ψs) defines the discrete energy levels.

NEGF Electron Transport

The main objective of the non-equilibrium Green’s function (NEGF) is to ob-

tain the transmission probability between two contacts for a range of energy levels,

in order to obtain the transmission. The NEGF solution provides a many-particle

wave-based matrix treatment, incorporating boundary effects through a composite

self-energy representation. It is the self-energy aspect that gives NEGF a real advan-

tage, with two of the most important advantages being: 1) general expression can

be applied to complicated structures and 2) the Green’s function allows the electron

density to be calculated easily. Refer to Datta’s text (Datta, 2005) for a description

from a single electron point of view to a many-electron point of view. Examples are

outlined in the appendix of Datta’s book and Mahan’s book (Mahan, 2000).

One of the most complicated aspects of dealing with nanoscale devices and

transport is in the treatment of contacts. The NEGF is unique in that it constructs a

composite type system, illustrated in Figure 2.3. The contacts are treated as contin-

uum contacts in which the wave-functions are known and derived from the analytic

Schrödinger equation. In addition, the concentration of electrons at each contact is

specified by the Fermi-Dirac distribution at a given temperature. The overall wave-
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function of the composite Schrödinger equation will look like the following,







EI −H1 + iη −τ+1 0

−τ1 EI −H −τ2
0 −τ+2 EI −H2 + iη













Ψ1 + χ1

Ψ

Ψ2 + χ2






=







S1

0

S2






, (2.6)

where ψ and χ are a result of the wave-function Φ and the spilling over of states

from the isolated contact. H is the Hermitian uncoupled Hamiltonian. The iχ is a

small anti-Hermitian part, which results in the broadening of electron states. The

Hamiltonian is described by H = Ho + Hee where Ho is the single particle effective

mass Hamiltonian described by the Hubbard model. The Hee term is derived from

the many-electron coulombic interaction and will be touched on later when the self-

consistent method is discussed.

When coupling the channel to the contacts, a spilling over of electrons near

the contact gives rise to a Lorenzian type distribution of carriers within the channels.

This broadening of electronic energy is important in capturing the transport on the

nanoscale and real effect of contacts. The coupling of the contacts and the channel

are governed by the off-diagonal terms τ ; these can be thought of as scattering rate

terms. The term that is of interest in this expression is χ, which are thought of as

scattering waves in the source and drain region. Expanding the matrix expression

above, the following expression drops out,

{χ} = Gcτ
+{ψ}, (2.7)

where,

Gc = [EI −H + iη]−1. (2.8)

.

This expression gives rise to the Green’s function and the following expression

can be taken a step further to derive the Green’s function within the channel.

ψ = [G]S (2.9)

G = [EI −H − Σ]−1 (2.10)

Where Σ is defined as the self energy term and is what gives rise to the perturbing

of the uncoupled Hamiltonian when it is connected to the contacts.

34



Σ = τGτ+ = Γf(E) (2.11)

The superposition of additional Σ terms will later be shown to provide a means

to couple phonon contacts in the same way a physical contact is connected. The

superposition of impulse responses from contacts is a major advantage in the Green’s

function formalism.

The Green’s function provides an elegant method for solving the non-homogeneous

PDE arriving from Schrödinger’s equation. Because the contacts are treated as infi-

nite, they can be treated as impulses at the boundary points neighboring them. As

expressed in Equation 2.10, the Green’s function is constructed from the inversion of

the eigenvalue problem, giving rise to an orthonormal set of plane-wave eigenfunc-

tions (Arfken and Weber, 2005). Using Hilbert space transformations (Datta, 2005)

a series of general expression can be derived.

A = i[G−G+] (2.12)

Γ = i[Σ− Σ+] (2.13)

The variable A is defined as the spectral density and Γ is defined as the broadening

term. It will be shown later that these expressions are general and can be used in the

multiple particle representation. Likewise, the electron density or number of filled

states can be determined as follows,

Gn = GΣinG+, (2.14)

where G is the Green’s function at a given energy level and G+ is the complex

conjugate Green’s function. Σin is the in-scattering term that can be defined by

the Fermi function at the contact times the broadening term, Γ, at the contact. If

there are multiple contacts, the in-scattering term is a summation of the terms derived

from their individual Fermi and broadening terms. Note that the Fermi function is

known in the ballistic case, but when scattering is added, additional exercises must be

done to determined the Fermi function at the contacts, including scattering centers

which act as contacts to the system.

The following expression can be used to calculate the number of unfilled states

Gp, in the system.

A = Gn +Gp (2.15)

Here, Gn is the density of filled states and Gp is the density of unfilled states. The
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composite total density of local states for a Si/Ge superlattice is shown in Figure 2.4.

Notice that the plot of the filled density of states (Gn) in Figure 2.4 is a gradient

across the device demonstrating that the electrons are filling from the contact with

the higher potential. In this case a 100mV potential is applied to the left contact

and the right contact is grounded.

The amount of in-scattering from the contacts is defined by the surface Green’s

function and the broadening of the contacts.

Γn = τaτ+ (2.16)

Σin
1 = Γ1f1...Σ

in
2 = Γ2f2 (2.17)

Where fn is the Fermi function at each contact. For a two contact system the self

energy terms are simply the addition of the two. Notice the broadening term, Γn is

a function of the contact spectral function, a, and coupling energy τ . The coupling

energy will arrive from the off diagonal terms of the Hamiltonian. This same expres-

sion will be used later when calculating the in-scattering from phonons derived from

the phonon Green’s functions.

Now that the mechanics are in place, it is necessary to construct a working

description of a device using the Green’s function formalism. This is done through an

effective mass Hamiltonian, a depiction of the discretization scheme is shown in Figure

2.5. It should be noted, the electronic Green’s function is not an atomistic calculation

but rather the domain is discretized in spatial energy. This can be thought of as simply

discretization of Schrödinger equation for the delocalized conduction electrons that lie

above the conduction band edge. There is an underlying assumption that the electron

lie near the bottom of the conduction band edge and therefore the effective mass near

the bottom is used. As mentioned before, the states of these delocalized electrons are

described by a parabolic effective mass relation. Additionally, the NEGF formalism

here is spin independent and for all the analyses in this work the spins are assumed

degenerate and the charge is simply multiple times two to compensate for this fact.

In constructing a well behaved effective mass Hamiltonian (the routine used to

construct the Hamiltonian is provide in the Appendix), previous studies (Musho and

Walker, 2011b) have shown the domain should be discretized such that a cell spacing

of at least 1Å for convergence. In addition to spatial discretization the discretization

of the energy range is also critical to convergence. A rule of thumb stated by Datta

(2005) is to makes sure the bonding term, τ (off diagonal Hamiltonian term), is

always larger than the energy range you are interested in. In terms of elementary
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Figure 2.4 Plot of the local density of state (LDOS) for three difference states which
satisfy the relation A = Gn + Gp. Above, (a) total local density of states (A), (b)
filled density of states (Gn), and (c) unfilled density of states (Gp). These results were
calculated from the fully coupled model which includes electron-phonon interactions.
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Figure 2.5 Sketch of two dissimilar material heterostructure described by a one-
dimensional effective mass Hamiltonian. This structured is used to define a superlat-
tice material where the Hamiltonian has units per area. The dotted box corresponds
to the example Hamiltonian matrix provide in Equation 2.19.

wave mechanics, the domain size specified in the model only allow a finite number of

modes in a range of energy, thus the value selected for the cell size must make sure

the cuff-off frequency or allowed modes are greater than our range of interest.

When constructing the Hamiltonian matrix, it is necessary to make sure that

the matrix is Hermitian in order to get real eigenvalues. The equation for formulating

the Hamiltonian is as follows,

[Ec −
h̄2

2m⋆
c

∇2f(r) = Ef(r)]. (2.18)

Applying this equation to the example of a 1D structure in Figure 2.5, a heterojunc-

tion is formed by sandwiching two dissimilar materials. The point of contact between

the two materials is a cell that is composed of both, providing a transition. Note that

the transpose complex conjugate of the Hamiltonian must be zero, and the resulting

Hamiltonian for a three cell matrix with an interface atom at the center is,







Ec + 2t1 −t1 0

−t1 Ec+ t1 + t2 −t2
0 −t2 Ec + 2t2






, (2.19)

The variable tn = h̄2

2m∗
is the bonding energy defined by the effective mass and Ec is

the conduction band edge determined from the equilibrium calculation reference from

the specified Fermi level.

If a finite difference type expression is used to construct the matrix, the result-

ing matrix will not be Hermitian. This is because a standard finite difference scheme

averages the off diagonal terms in the mixed cell.
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The Hamiltonian is initially implemented to calculate the open channel eigen-

values of the system using the equilibrium equation,

(EI −H)ũ = 0, (2.20)

where I is the identity matrix and E are the eigenvalues. The eigenvalues, referred

to as the allowed energy levels or modes, provide the sub-band level which govern the

barrier height. Drawing the analogy to an elementary 1D barrier problem in quantum

mechanics, the formalism here in similar is theory, as the eigenvalues of the system

define a pseudo barrier height and there is an associated transmission probability

to tunnel through it. The transmission probability is based on a range of incoming

energy levels that are calculated for each sub-band. It is from these 1D solutions

that the transmission is integrated over all sub-band energies to determine the overall

transmission through the channel; this was demonstrated earlier in the Landauer

formula, see Equation 2.5. It should not be overlooked that the actual dispersion

of the material is direction dependent in that along the 〈100〉 or 〈111〉 direction the

energy levels are different. Because this research focuses on the transport of the

conduction electrons, only the band minimums are of interest. It coincidently turns

out that the band minimums of both Si and Ge are close to the 〈001〉 direction, near
the X and ∆ directions.

The only other consideration in solving the NEGF problem is to incorpo-

rate the interaction of many electrons or electron-electron interaction. This type

of coulombic interaction is handled through a self-consistent field (SCF) method.

Poisson’s equation is solved on the same lattice as the Hamiltonian matrix was con-

structed. A spatially varying dielectric field is constructed based on the permittivity

of each material within the channel.

−▽ •(ǫr ▽ U) =
q2

ǫ0
n(z) (2.21)

The Poisson equation has a similar construction to the Schrödinger equation,

where the Laplace operator, ▽, relates the potential to the charge distribution. If it

is assumed the potential varies slowly over the device, the potential can be calculated

by only taking the diagonal terms of Poisson’s equation, U = q2

ǫa
(Noa

2). No is the

probability electron distribution calculated from the spectral density relation, Gn,

calculated in Equation 2.14. The potential, U , is then passed to Schrödinger equation

and looped until a converged potential is determined. A self-consistent potential is

plotted in Figure 2.6 for a 6 bilayer Si/Ge superlattice structure. A large charge is
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Figure 2.6 Plot of the self-consistent potential which accounts for the many-electron
view point of the electronic NEGF model. There is a 100mV bias on the left boundary
inducing a current from left to right. Thus, the charge density is higher near the left
contact.

built up near left portion of the device due to a 100mV potential applied to the left

contact. As apparent on in the figure is the wave nature of the charges within the

silicon well regions.

The self-consistent method of solving Poisson’s equation iteratively outside the

Schrödinger solution gives a mean particle view point. In the context of this research,

the potential is converged based on an Anderson mixing routine (Eyert, 1996), which

the previous five values of the potential landscape are weighed to determine a new

estimation at the potential. The convergence is increased considerable with this type

of method compared to a simple mixing technique.

Strain Induced Band Shifting

Before continuing, it is important to discuss one aspect that is often overlooked

in nanoscale structures: the straining and subsequent modification to the electronic

structure. As was shown in Chapter I, previous research (Bulusu and Walker, 2007a)

used deformation potentials (Van de Walle, 1989) to modify the conduction band

edge. For a system with two layers, Van de Walle calculated an effective lattice
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constant, a||, in-plane and cross-plane, a⊥.

a|| =
a1G1h1 + a2G2h2
G1h1 +G2h2

(2.22)

a⊥ = a1[1−Di(a||/an − 1)] (2.23)

In Equation 2.22, an is the lattice constant of the material, Gn is the shear

modulus, and hn is the thickness. The shear modulus, G001
n = 2(c11+2c12)(1−c12/c11),

is a function of the elastic constants. The effective lattice constant, a|| can now be

used to determine the in-plane strain tensor based on the ratio of the effective lattice

constant to the actual lattice constant.

ǫn|| =
a||
an

− 1 (2.24)

ǫn⊥ =
a⊥
an

− 1 (2.25)

The expression for the conduction band offset is as follows,

∆E001
c =

2

3
Ξ(ǫ⊥ − ǫ||) (2.26)

where Ξ is the tabulated deformation potential in Table 2 of Van de Walle (1989). In

Bulusu’s research, (Bulusu and Walker, 2007b) she determined using Equation 2.26,

that conduction bands of silicon and germanium invert when a superlattice device is

formed. Van de Walle mentions this possibility and notes that information about the

higher bands is necessary for good confidence. Further investigation into the inversion

can show that this is true. There is some ambiguity in the transport model in this

work because the model is only interested in the band minimums. Figure 2.7 is the

full band diagram calculated by Krishnamurthy et al. (1986) with some additional

labeling to point out the direction of interest for this research. Since the transport

of the 1D structures in the this research are of interest are along the 〈001〉 direction,
the focus will be on between the ∆ and X direction of the band diagram. In applying

the equation above for the ∆ direction shift in conduction band edge, it is noted that

the Si band edge shifts up and the Ge shifts down resulting in the inversion.

Phonon Transport in Semiconductors

The method for calculating the non-equilibrium transport of phonons using

non-equilibrium Green’s function is very similar to the electron model except for two
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Figure 2.7 Full band diagram describing the band minimums along the 〈001〉 direc-
tion. Krishnamurthy et al. (1986)

aspects: 1) an atomistic harmonic potential is implemented instead of a effective mass

Hamiltonian, and 2) Poisson’s equation does not have to be solved because phonons

do not have a forcing function.

To begin, it is necessary to understand that phonons are bosonic in nature.

Bosons are particles with zero or integral spin (Kittel, 1986) and have a drastically

different equilibrium distribution than fermions up to the classical limit. The distri-

bution of phonons follow the Bose-Einstein (BE) distribution is shown in the following

equation.

fBE =
1

exp((ǫ− µ)/kBT )− 1)
(2.27)

When compared to Equation 2.27, Fermi-Dirac distribution, the only difference is the

minus in the denominator. The BE distribution will be implemented in the NEGF

formalism in the same manner as the FD was implemented for electrons. Equation 2.5

has the same Landaur approach, except with a slightly modified quantum conductance

for phonons.
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Figure 2.8 Sketch of two dissimilar material heterostructure described by a one-
dimensional atomistic Hamiltonian. A harmonic pair potential is used to construct
the Hamiltonian. The phonon model describes planes of atoms oscillating where the
Hamiltonian has units of per area.

NEGF Phonon Transport

The model developed in this research is built on the foundation of the ballistic

model outline in the literature (Zhang et al., 2007; Hopkins et al., 2009). The model

developed in this research includes additional physics to allow larger devices to be

studied. Once the device size reaches the size of the mean free path of phonons it

is necessary to take into account the dissipative mechanisms such as phonon-phonon

interactions. It will be shown in the results sections that this is critical for devices

above 50 nm where the ballistic solution severely over predicts the transport.

The model begins with an atomistic non-equilibrium Green’s function descrip-

tion used to calculate the thermal transport in nanoscale materials. Added complexity

in the description of the Hamiltonian stems from a discretization scheme, where the

cell center corresponds to equilibrium atom positions, hence the atomistic Green’s

function (AGF). Because of the one-dimensional planar geometry of the device, each

cell center along the device is treated as a basis of two atoms. This is derived from the

crystalline structure in the 〈001〉 directions of Si/Ge diamond cubic crystallographic

structure. Furthermore, there is an underlying assumption that the model represents

planes of atoms oscillating along the direction of transport generating the motion of

plane waves. This forces the assumption that the waves travel in a straight line and

for that reason, this steady state solution is thought of as an average path of motion

described by the wave-function (Ziman, 1960).

Unlike the electron model, the phonon solution does not require self-consistency

with an external field, decreasing the computational time required to reach a solu-

tion. The NEGF phonon treatment is a wave-based solution that treats the phonons

as waves, not particles, accounting for the tunneling of phonons similar to that of elec-

trons. Additionally, through an atomistic formalism, the system has discrete phonon
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frequencies that are unique for each device configuration. The dispersion is derived

from the unperturbed eigenvalue problem of the Hamiltonian. As the device length

increases, the dispersion becomes more continuous. The discreteness gives rise to

the quantum conductance of a single phonon frequency that governs the theoretical

transport of a single discrete phonon frequency. The objective of the NEGF is to

determine the transmission probability of each discrete phonon frequency, in order to

use a similar expression to the Landauer formalism. The total thermal energy, qtot,

transported as a function of the integrated transmission probability, Ξ, and single

phonon mode, h̄ω, takes the following form,

qtot =

∫ ωmax

0

h̄ω

(2π)3
Ξ (f2 − f1) dω, (2.28)

where the thermal quantum conductance is h̄ω
(2π)3

. Applying Fourier’s law and the

known temperature gradient between contacts, the phonon thermal conductivity, kp,

can be calculated based on the calculated heat flux. The method of including thermal

dissipation simply comes by adding an additional perturbing potential to the system

that affects the transmission probability.

In order to calculate the transmission probability, the Hamiltonian must be

constructed appropriately using an atomistic description. The atomistic harmonic

potential is based on an inter-atomic pair potential, which is derived from the equi-

librium position of atoms within the device. The harmonic matrix is constructed

using the Harrison potential (Harrison, 1989), which defines the potential energy of

the pair bond based on the lattice strain within the system (Equation 2.29). The

Harrison potential is essentially the second term in the Taylor expansion of the total

potential energy of the system and takes the following form,

U =
1

2
Co

(di − de)
2

d2e
. (2.29)

There are other pair potentials and three body potentials that are applicable, but

the Harrison potential has proven to be adequate for one-dimension construction and

reproduces the phonon dispersion derived from the analytic model.

The anharmonic lattice forces that are needed to facilitate inelastic scattering

transition are not included in the unperturbed Hamiltonian description, but are ac-

counted for in the perturbing potential, which is determined self-consistently. Often

the higher order terms of the pair potential that comprise the anharmonic terms are

difficult to determine and often over restrict the model or are simply used as fitting
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Figure 2.9 This figure illustrations the possible intrasubband and intersubband tran-
sitions with either the emission or absorption of a phonon frequency. The phonon
model handles the intraband transition explicitly and the interband transportion im-
plicitly.

parameters (Ziman, 1960). This is a unique approach taken for this research and will

be elaborated on in the later sections.

The Hamiltonian is constructed by placing atoms at a position near the equi-

librium lattice constant such that there is a divisible number of atoms within the

layer. This inherently induces a strain in the system of atoms, inducing potential

energy in the system. The Hamiltonian matrix is assembled in the same manner as

the effective mass Hamiltonian, in that the matrix must remain Hermitian to obtain

real eigenvalues. Knowing the potential energy at each lattice point and the mass of

each atom, the following Hamiltonian matrix is assembled.

Hij =
1

√

MiMj

−∂2U
∂uiuj

(2.30)

Here M is the mass and U is the potential energy derived from Equation 2.29.

The open channel equilibrium equation is similar to the electron equilibrium equation

except in the phonon model, the terms are framed in units of angular frequency, see

the following equilibrium equation,
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(ω2I −H)u = 0. (2.31)

Here ω2 is the angular frequency squared of the phonon eigenvalues, which can

be related to the discrete energy level of a phonon through E = h̄ω. These eigenvalues

describe the allowed modes within the channel region or the discrete phonon frequency

that are responsible for the transport. The simple 1D barrier analogy can be applied

to calculate the overall transmission of the structure from these eigenvalues. The

superposition of the transmission probabilities for each phonon frequency give rise to

the overall heat flux (see Equation 2.28).

The steps to calculate the phonon transport using NEGF are as follows, 1) the

harmonic matrix is assembled, 2) the eigenvalues are determined, 3) the transmission

probability for each phonon frequency that was defined by the eigenvalues is calcu-

lated, and 4) the thermal transport energy and thermal conductivity are calculated.

In reference to Equation 2.28 and step 3, each phonon frequency has a finite thermal

current governed by the phonon quantum conductance. The notion of a finite current

at discrete energy levels is very similar to the case of a single electron level in the elec-

tron framework. The transmission times the thermal quantum conductance between

either contacts is what limits the current carrying capacity of each phonon frequency.

The culmination of the transmission probabilities at discrete phonon frequencies gives

rise to the overall calculated thermal conductivity of the device.

Dissipative Modeling Approach

The dissipative effects which encompass the electron-phonon interaction in the

electron NEGF model and the phonon-phonon model in the NEGF phonon model

were handled through the addition of scattering contacts along the length of the

device. This increases the complexity and computational effort required to reach a

solution but it allows devices to be studied that have lengths that lie between the

ballistic and non-ballistic regime. The electron-phonon dissipation technique can be

found in the literature for a single phonon interaction but the added complexity

of coupling the phonons and electron NEGF description is unique to this research.

Likewise, the phonon-phonon interaction has never been handled so rigorously in the

literature to capture the dissipative phonon scattering, which has previously only

been investigated in the ballistic regime.
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Figure 2.10 Sketch of the NEGF self-energy diagram where the in-scattering and out-
scattering depend on the correlation (Σ) and spectral (Γ) functions. The correlation
function for the phonon source are solved self-consistently along with an effective
Fermi function for the phonon contact. Figure provided from Datta (2005).

Phonon-Phonon Scattering

The three phonon interaction is classified as either a normal process (N process)

or and Umklapp process (U process). Only the three phonon scattering process

influences the thermal conductivity directly. The normal process is synonymous with

elastic scattering, where the Umklapp scattering is ultimately what is of interest

in this research and is inelastic, forcing the phonons to lose coherency. In either

process, the total energy of the phonons must be conserved ω1 + ω2 = ω3; however,

the momentum is not conserved for a U process.

It should be emphasized that a phonon is classified into two energy ranges and

two polarizations. For the studies, the model only captures the longitudinal opti-

cal (LO) and longitudinal acoustic (LA) branches. The transverse optical (TO) and

transverse acoustic (TA) phonons are approximated by assuming the spring constant

is about the square root of the longitudinal spring constant. When studying higher di-

mension structures, the addition of transverse optical (TO) and acoustic (TA) branch

becomes necessary. The optical branch designation arrives from phonons with wave

vectors near the edge of the Brillouin zone and is noted in the dispersion curve as

leveling off at higher phonon energies. These optical modes can be thought of as

standing waves within the structure. The acoustic branch is the remaining part of

the dispersion for phonons, with wave-vectors near the center of the Brillouin zone.

The model allows both the acoustic and optical phonons to interact.
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To facilitate the phonon-phonon scattering, a self-consistent technique must

be used to determine the scattering matrices which are used as a perturbing potential

in the Green’s function. The scattering matrices will depend on the spatial popula-

tion of phonons across the device. This is similar to the electron-phonon interaction

except there is no deformation potential but rather an anharmonic factor replaces

this term. Additionally, the deformation potential is the electrical response to a cer-

tain phonon frequency where the anharmonic factor defined in the phonon model is a

phonon response to a certain phonon frequency. This will be handled in the detailed

explanation of the phonon model.

The phonon-phonon interaction is carried out by allowing each phonon fre-

quency to scatter with each other. The superposition of all of the scattering matrices

due to multiple phonon-phonon scattering events compose the overall scatter at each

discrete phonon frequency. This is carried out for all phonon frequencies in the same

manner. In the end, each phonon frequency has a single scattering rate and all these

scattering rates are averaged for a single spatial location or scattering site.

The selection rules for the three-phonon interaction are handled by shifting

the final density of states and the assumption is that all phonons scatter with each

other. The objective is to calculate a scattering rate for each phonon frequency

using a Fermi’s golden rule approach. As stated in the literature, the probability of

scattering is dependent on the allowed transition from initial to final state and the

available density of states of the final state.

P (E) =
2π

h̄
| 〈i |H ′ | f〉 |2 Df(E) (2.32)

In the framework of NEGF formalism, there are four transitions which are

facilitated from the view point of a single scattering site. They include the inflow (in-

scattering) and the outflow (out-scattering) of scattered phonons, which both include

the absorption and emission of phonons. Figure 2.11 is an illustration of the four

transitions relative to the current scattering state. The selection rules are governed

in the model govern such that a scattered phonon energy must not be greater than

highest phonon frequency and must not scatter below the lowest scattering frequency.

This avoids the complication of having the phonon frequencies scattering into states

which do not exist for the given system.

Fermi’s golden rule is written as a self-energy contact term, so the scattering

sites can be incorporated as an additional contact along the device at every cell cen-

ter in the Green’s function. The perturbing potential or self-energy term, which is

calculated in Equation 2.33, includes a scattering factor (fo) to govern the amplitude
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Figure 2.11 Illustration of the four transition channels which include inflow and
outflow with absorption and emission of a phonon. These transitions apply to both
the shifting of the electron and phonon density of states for both the electrical and
thermal models.

of the scattered phonon. The scattering parameter governs the strength of the an-

harmonicity in the lattice and is a free parameter of the phonon scattering model. If

the factor fo increases, the scattering rate increases, resulting in decreased transport

between the device contacts. The response will be shown in the results that this pa-

rameter was varied to determine an optimal value for the material. This term varies

from zero (no scattering) and increases until the scattering saturates the transport

and all phonons are scattered into the scattering contacts.

The model handles the calculation of the scattering term, Σ, by performing

matrix manipulation to the filled (Gn) and unfilled (Gp) density of states to represent

the final density of states (Df). Remember, the final density of states can either

be an absorption (E + h̄ω), the shifting of matrices down the energy axis, or an

emission (E − h̄ω), the shifting of matrices values up in energy. These new matrices,

(Gn(E ± h̄ω) and Gp(E ± h̄ω)), define the final states. The shifting of matrices

is carried out for all phonon frequencies to account for all the possible scattering

interactions. Because phonons are bosonic, the term Gp, which defines the unfilled

states where A = Gp + Gn, must be slightly modified from the electron formalism.

In the previous equation, A is the local density of states (LDOS) which is readily

determined from the difference between the retarding and advancing Green’s function.

The modification to the phonon formalism comes by making Gp = A, describing the

situation that the phonons can scatter into any state. This comes from the fact that

more than one boson can occupy a single state and the Pauli exclusion principle does
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not hold for bosons.

The following equations are the in-scattering (Σin
s,ph) and the out-scattering

(Σout
s,ph) terms for the phonon-phonon interactions. These are derived from the expres-

sion similar to the in-elastic electron scattering expressions where Nw is the Bose-

Einstein number. It is reasoned that the rate of absorption is 1+Nw and the emission

rate is Nw.

Σin
s,ph =

∫ h̄ωmax

h̄ωmin

d(h̄ω)

2π
fo[(Nω + 1)Gn(E + h̄ω)

+NωG
n(E − h̄ω)]

(2.33)

Σout
s,ph =

∫ h̄ωmax

h̄ωmin

d(h̄ω)

2π
fo[(Nω + 1)Gp(E − h̄ω)

+NωG
p(E + h̄ω)]

(2.34)

The model incorporates the new Σ scattering term as another contact along

the device channel. This is often referred to as the Butticker approximation (Datta,

2005). In addition to adding a contact, the model needs to make sure that the thermal

energy is conserved in the system. The energy entering and leaving the contacts and

scattering sites must add up to zero. An unknown Fermi function that defines the

rate of inflow and outflow through the scattering contacts is used to conserve energy.

The unknown Fermi function (fs) for the contacts is determined iteratively and used

to govern energy conservation. The expression Γ = Σ/fs used to described the

scattering terms in the Green’s function. The final scattering term which includes

the in-scattering and out-scattering follows the complex form,

Γs = (Σin
s,ph − i(Σout

s,ph − Σin
s,ph))/fs. (2.35)

The solution is iterated self-consistently until the scattering solution has con-

verged. The overall Green’s function takes the following form,

G = [ω2I −H − Σ1 − Σ2 − Σs]
−1. (2.36)

Once a solution is found, the overall scattering rates and the thermal conductivity

can be calculated.

50



Electron-Phonon Scattering

Now that the foundation has been assembled in the previous sections on how

to independently calculate the electron transport and phonon transport, it is nec-

essary to understand how to resolve a fully coupled system that incorporates the

electron-phonon interactions of multiple phonon frequencies. The major aspect that

is unknown when doing electron-phonon interactions is the rate at which the electrons

and phonons interact. Note, the following formalism assumes steady-state interactions

of electrons and phonons. No attempt has been made to resolve the transient effects

of electron-phonon scattering. In order to incorporate the phase-breaking operation

in which the background (phonons) interact with the electrons, a slightly more com-

plicated view point must be taken from the perspective of coherent (ballistic) electron

transport. The phonons disrupt the coherency of the electron wave-functions

The theory of scattering in this model is based on a self-consistent Born approx-

imation (SCBA) to determine the scattering matrices. It has been shown by (Datta,

1990; Lee and Venkatasubramanian, 2008) that the SCBA theory has a wide range of

validity and can apply to weakly and strongly coupled electrons and phonons. The

limitations of SCBA theory can only be determined by comparing to experimental

results. From this understanding, it is assumed that SCBA is valid for the nanostruc-

tured thermoelectric materials of interest in this research.

The basic Hamiltonian that describes the electron-phonon interaction has the

form,H = Hp+He+Hei. HereHp describes the oscillators (phonons) andHe describes

electrons using the Hubbard model and Hei describes the electron phonon interaction.

Writing the Hamiltonian in second quantization (Mahan, 2000), the following terms

can be partitioned so that the electron NEGF model solves He +Hei and the phonon

NEGF solves the remaining Hp. The electronic Green’s function model which includes

the electron-phonon interaction can be written as follows,

G = [EI −H − Uee − Σ1 − Σ2 − Σs]
−1. (2.37)

Here Σ1 and Σ2 are the in-scattering from the contacts, and Σs is the in-

scattering from the phonons. The in-scattering due to phonons is handled as multiple

contacts (Butticker probes) located along the length of the device.

The research is strictly interested in the intra-band transition of electrons as

a result of phonon-carrier (electron) interactions, see Figure 2.9. The scattering of

phonons from electron carriers or vice versa is influenced through the interaction of

strain induced by a phonon mode distorting the lattice as it propagates. As the
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Figure 2.12 Induced straining from the occupation of a phonon mode in the lattice
results in a shift in the energy relationship. This staining effect is described by po-
tential response calculated from a deformation potential. There are two deformation
potentials which describe the response of a acoustic and optical phonon mode. This
figure is from Harrison (1989).

lattice spacing changes under a localized strain, the band structure of the material is

modified, shifting the energy level as a results of orbitals overlapping, see Figure 2.12.

This is very similar to the shift in conduction band edge due to hydro-static strain from

the difference in neighboring lattice constants. The only difference is the parameters

that govern the electron-phonon interaction are dependent on localized parameters

such as number of phonon and electrons; therefore, a self-consistent method must be

used to iteratively fit the scattering parameters.

Fermi’s Golden Rule, which includes the deformation potential (Equation

2.38), demonstrates this fundamental straining.

S(k, k′) =
2π

h̄
| Hab

k′,k |2 δ(E(k′)− E(k)− h̄ω) +
2π

h̄
| Hem

k′,k |2 δ(E(k′)− E(k)− h̄ω)

(2.38)

Fermi’s Golden Rule describes the transition rate at which the electrons can transi-

tion from an initial state, k, and to a final state, k′. The straining is incorporated

through the scattering Hamiltonian, Hk′,k, which is a function of the wavefunction
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and scattering potential, Hk′,k = 〈Ψ |Us |Ψ〉.
The total scattering rate can be related to the Equation 2.38 through the

following expression,
1

τ
=

∑

k

S(k, k′), (2.39)

where τ is the overall scattering time for all the scattering phonon frequencies.

The localized stain that is induced from a given phonon mode can be treated

as a perturbing potential in the electronic framework. It is possible to derive the

potential response when an acoustic phonon mode is locally present resulting in a

strain displacement of neighboring atoms in the same direction. For a 1D chain of

atoms, the acoustic potential would follow this relation

Us
AP = Dadp

∂u

∂x
(2.40)

where DA is the acoustic deformation potential.

When an optical phonon mode is present, the expression for the perturbing

potential looks similar, however, since an optical phonon is a standing wave, the

neighboring atoms are displacing in the opposite direction thus,

Us
OP = Dodpu, (2.41)

where Dodp is the optical deformation potential. Both the acoustic and optical defor-

mation potential values are tabulated in Lunstrom’s text (Lundstrom, 2000) and can

be related to the momentum relaxation times.

Buttiker Approximation

The previously derived spectral function for both the electrons and phonons

will give rise to the rate at which the electrons and phonons scatter using the Fermi

Golden Rule expression. Assuming that the phonons and electrons interact as if

contacts were placed along the length of the device, one can make the analogy that

there is a Buttiker probe attached at each discretized cell center. These probes provide

a means of in-scattering and out-scattering along the length of the device. Each of

these scattering contacts have an associated delta potential that allows the interband

and intraband transition to be facilitated with the creation or annihilation of phonons.

In other’s work(Bulusu and Walker, 2007a; Koswatta et al., 2007) and Datta’s

text (Datta, 2005), the Σs term is calculated using a single phonon frequency with
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a deformation potential approach and the Bose-Einstein dispersion relation to deter-

mine the number of phonons, see Equation 2.42. The approach in this research is

similar, except multiple phonons frequencies will be included.

Σin
s,e =

∫ Emax

Emin

d(h̄ω)

2π
Do(h̄ω)((Nω + 1)Gn(E + h̄ω)

+NωG
n(E − h̄ω))

(2.42)

The factor Do is comprised of the phonon density of states and a deforma-

tion constant. The deformation potential provides a potential response due to the

presence of a particular phonon frequency. Thus, if multiple phonon frequencies are

incorporated, multiple potential responses are possible. This research will assume

that the superposition of multiple responses are related to the scattering of a single

scattering site along the device.

There are two types of deformation potentials, acoustic and optical, which are

selected based on the type of interaction. The deformation potential was selected

based on an optical cut-off frequency. If the incoming scattering phonon is below

the optical cut off frequency, it was assumed acoustic and the acoustic deformation

potential was used. Likewise, if the incoming phonon frequency was greater than the

cut-off, the optical deformation was used. The deformation potential is thought of

as the potential response due to the presence of a phonon which is a localized lattice

strain. Because the lattice strain is different for optical phonons, where the neigh-

boring atoms oscillate opposite each other, and acoustic phonons, where neighboring

atoms oscillate in the same directions, there are two different deformation potentials.

The acoustic deformation potential takes the following form,

Dadp =
D2

aβ
2q

24ρνs
, (2.43)

where Da is the tabulated acoustic deformation potentials factor determined from

experimental studies (Jacoboni and Reggiani, 1983; Jacoboni et al., 1977). The term

β is the wave-vector, ρ is the density of the material, and νs is the sound speed of the

material.

The optical deformation potential is similar except the deformation factor Dodp

has different units. The optical deformation takes the following form,

Dodp =
D2

oβ
2q

16ρωo
, (2.44)
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where ωo is the cut-off frequency for optical phonons. Both of these deformation

potentials were calculated based on the scattering rate for both optical and acoustic

phonons from a density of state description (Lundstrom, 2000).

Shifting the spectral function, E + h̄ω and E − h̄ω, allows the calculation of

probabilities from transition of an initial state to a final state. The rate of transition

is determined by the number of phonons in each state, Nw.

The approach by Bulusu and Walker (2007a) and Koswatta et al. (2007) fo-

cused on using a single deformation potential as a means of fitting the experimental

data because they only worked with a single phonon frequency to encompass all

phonon frequencies in the actual structure. They also limited their scattering to the

optical phonon scattering, which may be a valid assumption, but more modes can be

captured in the foregoing method, resolving transitions absent in their calculation.

To increase the fidelity of Equation 2.42, the model devised in this research

was to couple to the NEGF phonon solution to the NEGF electron model. The

NEGF phonon method calculates the dominate phonon modes of the structure and

the associated spatially varying correlation matrices allowing multiple phonon modes

to be coupled. Because the correlation matrices essentially provide the density of filled

phonon states (Gn) and empty phonon states (Gp), a greater fidelity in the model

can be resolved because the phonon distribution no longer relies on the equilibrium

Bose-Einstein equation. The following expression is what is required to couple the

output from the phonon NEGF to the electron NEGF.

The steady state equation is as follows for the self-energy term of the scattering

contacts placed along the device.

Γs,e =

∫ Emax

Emin

d(h̄ω)

2π
Dodp,adp(h̄ω)(G

n
e (E − h̄ω)Gab

ph(h̄ω)

+Gp
e(E − h̄ω)Gem

ph (h̄ω) +Dodp,adp(h̄ω)(G
n
e (E + h̄ω)Gem

ph (h̄ω)

+Gp
e(E + h̄ω)Gab

ph(h̄ω))

(2.45)

Σin
s,e =

∫ Emax

Emin

d(h̄ω)

2π
Dodp,adp(h̄ω)(G

n
e (E − h̄ω)Gab

ph(h̄ω)

+Dodp,adp(h̄ω)(G
n
e (E + h̄ω)Gem

ph (h̄ω))

(2.46)

55



Σout
s,e =

∫ Emax

Emin

d(h̄ω)

2π
Dodp,adp(h̄ω)(G

p
e(E − h̄ω)Gem

ph (h̄ω)

+Dodp,adp(h̄ω)(G
p
e(E + h̄ω)Gab

ph(h̄ω))

(2.47)

The terms Gab,em
ph are collapsed down into a scalar representation of the den-

sity of states for each given frequency. The term can be though of as the following

expression,

Nw ∝
∫

Gab,em
ph dE/2πfs. (2.48)

Now the rate depends on the actual density of phonons and not the equilibrium

number of phonons for a given phonon frequency.

Γs = (Σin
s,e − i(Σout

s,e − Σin
s,e))/fs (2.49)

The Gn(E − h̄ω) terms are determined by shifting the correction matrix by

the corresponding phonon energy, h̄ω, to take the view point of that final state. The

translation is carried out for all the terms in Equation 2.46 and Equation 2.47.

The gamma term in Equation 2.45 can be related to the scattering rate by

using Equation 2.49. Additionally, the σ term of Equation 2.50 can be related back

to the Boltzmann description as the scattering term Sin.

Γs,e = Sinh̄ =
h̄

τ
(2.50)

Now that the gamma term is known, the self-energy term can be added to

Equation 2.37 as an additional contact. The gamma term is a matrix with scattering

rates along the main diagonal, reflecting the scattering along the devices. The gamma

term can be related to the self-energy term, sigma, by the following relation,

Σs,e = Γs,efs. (2.51)

Here fs is the unknown Fermi function of the scattering contact. This term was

determined through an iterative method to conserve the energy of the system.
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Coupled Model Implementation

By coupling both the electron and phonon models together a system which

accounted for the dissipative effects of electron-phonon and phonon-phonon interac-

tions was accounted for. This is a unique approach where the phonon model is solved

which accounts for the phonon description and the dissipative phonon description.

Because the full dispersion is known that information could be passed to the electron

model to allow all the phonon frequencies to be scattered. By tracking all the scat-

tered energy which was scattered with phonons. That energy could be passed back

to the phonon model. This coupling and passing of the scattered energy was carried

out until a convergence criterion was reached that depended on the temperature of

system.

Figure 2.13 is a pseudo code diagram of the two models and the path of in-

teraction between the phonon and electron codes. All of the messages between the

two models were handled using a producer consumer message passing model. The

passing involved a status file from both the phonon model and electron model that

altered the status of available data or ready to receive data. If spatial grid data were

being passed between codes, an additional step in formatting the data was required.

This additional step was a result of the different grid discretization of the phonon

(atomistic) and the electron models (finite volume). In addition to the spatial in-

terpolation, the energy discretization of the two models also had to be interpolated

because of the difference in energy ranges. All the interpolation was done by using

a Hermite polynomial interpolation for each phonon frequency in the spatially direc-

tion, followed by an interpolation in the energy axis, resulting in an overall surface

interpolation. It was found that interpolation of the phonon surface (atomistic dis-

tance versus energy) to the electron surface (finite volume distance versus energy) was

less accurate than the independent interpolation of the spatial coordinates followed

by the energy coordinates. The accuracy also went down for extremely small device

sizes because the electron (finite volume) mesh only require a few cells which limited

the resolution of the phonon description after interpolation. Particular emphasis was

taken to conserve energy between the two meshes and to maintain the correct spatial

resolution.

Both the electron and phonon NEGF model were written to take advantage

of high performance computing techniques. Traditionally, the ballistic model of both

the electron and phonon model scale linearly up to sixty processors depending on

the size of the energy axis. This was done by allowing each parallel process to take

a subsection of the energy range, which does not rely on intermediate messaging,
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Figure 2.13 Electron and phonon coupled model pseudo code. Models are executed
separately and communicate through a message passing coupling interface. The cou-
pling interface is responsible for mesh interpolation between the atomistic phonon
model and the effective mass electronic model.
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Description Parameter Value
Grid spacing an 1 A
Number of energy steps NE 7201 steps
Fermi Energy Ef 0.1 eV
Effective Density States, Si NcSi 2.8e19 cm−3

Effective Density States, Ge NcGe 1.04e19 cm−3

Reference Temperature Tp 300 K
Temperature Difference dT 10 K

Table 2.1 NEGF general model parameters. Sources: † - Kittel (1986)

Part Material Effective Mass Relative Permitivity
Mat 1 Silicon 〈001〉 0.91me

†† 11.7 †

Mat 2 Germanium 〈001〉 0.95me
†† 16.0 ††

Contacts Silicon 〈001〉 0.91me
†† 11.7 †

Table 2.2 Electronic NEGF material parameters. Sources: † - Kittel (1986),†† -
Bulusu and Walker (2008a)

but simply the reduction of the current at the end of completion of each subsection.

However, when scattering is included in the model, the construction of the scattering

matrices after each energy integration proves to be a large bottleneck. The routine

that mixes or shifts the states to facilitate the scattering requires more computational

effort than a single matrix inversion. Significant time was spent to increase the

performance of the scattering matrices shifting by implementing the task in parallel

by passing a subsection of the total number of phonons that needs to be scattered to

each concurrent process and allowing that processor to shift the matrices accordingly.

The modeling parameters that were used for both the electron and phonon

formalism are tabulated in the following tables. Examples of the modeling results will

be found in the validation section where all the scattering parameters were varied.

Part Material Mass ( kg) Atoms/basis Co ( J) di ( nm) de ( nm)
Mat 1 Silicon 〈001〉 1.69·10−26 2 49.1† 0.543 0.235
Mat 2 Germanium 〈001〉 4.37·10−26 2 47.5† 0.565 0.244
Contacts Silicon 〈001〉 1.69·10−26 2 49.1† 0.543 0.235

Table 2.3 Phonon NEGF material parameters. Sources: † - Harrison (1989)
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Part Material Acoustic Def. Pot. ( eV) Optical Def. Pot. ( eV/m)
Mat 1 Silicon 〈001〉 9.0 † 0.5·1010 †

Mat 2 Germanium 〈001〉 9.0 † 0.79·1010 †

Table 2.4 Electronic NEGF scattering material parameters. Sources: † - Jacoboni
and Reggiani (1983); Jacoboni et al. (1977)

All the models progress by initially specifying the geometry of interest, and

the material and boundary conditions. The geometry is passed to the phonon model

through a message passing interface and the phonon execution begins. The message

handling relies on the execution of both the electron and phonon model within the

same directory, where each model generates message files that describe whether the

models are ready to receive or transfer data. The electron model constructs the

Hamiltonian and calculates the eigenvalues or subbands and waits for the phonon

model to complete. Once the phonon model has calculated the solution, it passes

the scattering parameters to the electron code. The coupling relies on the model’s

communication between files. The scattering calculation was determined to be the

limiting process in the execution, preventing the scaling above eight processors.

Thermionic and Field Emission Model

The theory of thermal field emission can be broken up into two sub-categories.

Those two categories include thermionic emission and field emission regimes which will

be handled separately below. Thermionic emission is the response of electrons due to a

thermal bias. Field emission is the response of electrons to a potential bias. Likewise,

thermal-field emission is the response to both a thermal and electrical bias. Often in

the literature, results of field emission are framed in terms of metal semiconductor

interfaces in the context to modern transistor technology. The theory of transistors

transport is built from these elementary equations which are related to the emission

of electrons from a metal surface into a vacuum. The only added complexity with

metal semiconductors interfaces is the addition of space charge effects. This creates a

depletion layer that is related to a non-unity relative permittivity in the semiconductor

along with a non-unity effective mass in the semiconductor, due to the electrons

momentum dynamics changing within the solid.

The theories of both emission regimes, be it thermionic or field emission, are

derived from non-equilibrium in the system. Again, similar to the thermoelectric ar-

gument framed at the beginning of this chapter, the charge disparity in either contact
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Figure 2.14 Illustration of a thermionic device emitting electrons from the hot cath-
ode. This research assumes the cathode and anode are constant temperature sources.
Electrons evaporate from the hot cathode and condense on the cold anode taking a
quantized amount of energy proportional to the kinetic energy of the electron.

is a results of the specified temperature at the contacts. Additionally, charge disparity

can arrive from the addition of an electrical potential which shifts the distribution

of electrons accordingly. This is the notion around thermal-field emitters where the

emission characteristic are a function of the non-equilibrium in the system, arriving

from both the thermal and electrical boundary conditions. It is the non-equilibrium

in the system that drives the transport for which equilibrium is desired.

Commonly, the current of any device will be written as

J = e

∫ ∞

0

N(E, T )D(E)dE, (2.52)

where J is the current density, e is the charge of an electron, N is the number of

electrons described by the Fermi-Dirac distributions and is a function of energy and

temperature, and finally, D is the density of states that is a function of energy. The

following expressions for thermionic and field emission are simply a closed formed

analytic expression to Equation 2.52, in which assumptions were made in order to

make the density of states (D) and number of electrons (N) more tractable. It will be

demonstrated that the modeling approach taken in this thesis research relaxes these

assumptions previously imposed on the closed formed analytic solutions, providing a
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more general treatment of both thermionic and field emission which still follows the

expression in Equation 2.52.

Thermionic Emission - Richardson-Dushman Theory

The theory of thermionic emission is based on thermally exciting electrons or

commonly referred to as boiling electrons over the barrier (defined by the vacuum

level) in order to drive transport imposed by the temperature non-equilibrium in a

system. This transport of electrons is collected as a charge, at the anode which can

be used to power an electronic device or stored as a potential. Thermionic emission

as mention prior in the historical section (Section I), was focused around materials

such as tungsten with extremely high melting temperatures. These metals could be

operated at higher efficiencies because of their high operating temperatures although

they had large work function values. Much of the research focused on characterizing

the transmission from metal and is ultimately from where the Richard-Dushman

theory is derived. Equation 2.53 is the Richardson-Dushman equation,

J = AT 2 exp
−φ
kBT

, (2.53)

where J is the current density, A is a fundamental pre-factor which has a value

of 120 Jcm−2K−2), T is the cathode emission temperature, and φ is the associated

work function of the cathode. This equation is often referenced in the literature as

Richardson’s equation and will be commonly re-written in a linear fashion described

by Equation 2.54.

ln(
J

T 2
) = ln(A)− −φ

kBT
(2.54)

It will be shown below that the use of Equation 2.54 to describe the emission from

semiconductor materials such as diamond is still approximate, however, this equation

should be used with caution at the onset of thermionic emission, where Richardson’s

equation overestimates the emission current.

The derivation of Richardson’s equation is formulated in the literature (Richard-

son, 1916; Modinos, 1984), where the thermionic theory is founded on a quantum me-

chanical description of emission of electrons at high temperature from surface states.

The use of Green’s functions to solve for the transmission in the present work is very

similar to the analytic approach taken by Murphy and Good (1956), except the treat-

ment in this research is more general and more rigorous to allow complex structures

and materials to be studied.
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In thermionic devices the transport of electrons within the device is driven by

the equilibrium distribution of charges across the system. In the case of thermionics,

the non-equilibrium that drives the electrons between two similar materials separated

by a interelectrode vacuum region is a temperature bias across the system. The

constant pursuit of the system to reach equilibrium is facilitated by electrons emitting

from the cathode region (heat source) to the anode region (heat sink). In a closed loop

configuration, the collected charge on the anode can be used as potential energy to

operate a load. This same principal of equilibrium is still applied when two dissimilar

materials comprise the system. However, the difference in chemical potentials between

the two materials provides additional non-equilibrium which can either aid or hinder

the desired transport.

As illustrated in Figure 2.14, this analysis assumes the cathode is in contact

with a constant temperature heat source and the anode is in contact with a constant

temperature heat sink. Additionally, for this analysis the difference in Fermi levels is

compensated such that there is no internal voltage drop which arises from using two

dissimilar materials for the anode and cathode. The disparity in charge population

that governs the non-equilibrium in the system increasing as a function of kBT when

the cathode temperature increases. More specifically, the charge distribution in the

anode and cathode regions can be described as a function of temperature by a Fermi-

Dirac distribution. Thus, to increase the emission characteristics, the system must be

driven further from equilibrium by increasing the temperature of the cathode region.

The expression which demonstrates the dependence of current on temperature is as

follows,

I(T,E) ∝
∫

f(T )D(E)dE. (2.55)

This expression states that the total current is proportional the equilibrium

distribution of charge described by the Fermi-Dirac term f(T ) times the density of

statesD(E). This statement can be used to describe the electrical current in a metallic

or semiconductor material and even insulator materials. However, care must be taken

when describing the density of states especially in the case of a semiconductor and

insulator material.

There are two aspects that must be accounted for in describing the density

of states of a semiconductor. The first aspect is the effective mass description which

relates the momentum of electrons to the kinetic energy within a solid based on free

particle dynamics. The second aspect is the confinement of states which can alter
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the low lying density of states due to symmetrical degeneracies. Focusing on the first

aspect, depending on the crystallographic direction, the density of states along the

transport direction can change considerably. The density of states of a Fermi gas can

be equated to the change in energy over the change in momentum as described in the

following expression,

g(E) =
dE

dk
. (2.56)

The energy expression in the numerator of Equation 2.56 can be related to

the electron mass through a particle in a box expression that assumes a parabolic

description as shown in the following manner,

E =
h̄2

2m∗
(k2x + k2y + k2z) =

h̄2|k|2
2m∗

, (2.57)

where m∗ is the effective mass. It should be noted that the effective mass description

is simply a mathematical adaptation of free particle theory modified to predict the

behavior of an electron in a solid. Because crystallographic solids have different lattice

vectors and bonding states in different crystallographic directions, the effective mass

is directionally dependent.

An expression for the density of states can be developed through manipulation

of the previous two expression resulting in the following expression,

g(E) =
1

2π

(

2m∗

h̄

)3/2 √
E, (2.58)

for a bulk solid.

Equation 2.58 demonstrates that given an effective mass of a material, the

density of states will be influenced and ultimately the emission characteristics de-

scribed by Equation 2.55 will be altered. Assuming that an non-localized electron

inside a metallic material can be approximated by the free electron dynamics and a

free-electron inside a semiconductor has an effective mass less than one, the density of

states for the metal can be assumed to be greater resulting in a larger current than a

semiconductor. This expression in Equation 2.58 is a classical distribution of a three

dimensional solid.

The second aspect that effects the density of states is the confinement. The

confinement of states forms degeneracies in the density of states resulting in increased

low lying states. This is especially important in nanoscale device such as thin films

and nanotips where electrons are confined in one or more directions. Due to this
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confinement effect the density of states is modified from the expression derived above

in Equation 2.58. More specifically, the confinement of states can aid in the number

of low lying energy states resulting in increased emission characteristics not captured

in the bulk density of states expressions.

The theory used to derive Richardson’s equation is formulated from a statisti-

cal thermodynamics view point of electrons and is dependent on a similar expression

outlined in Equation 2.55. Richardson related the emission current from a flux of par-

ticles through a differential area to the number of particles times the velocity normal

to the surface. The velocity of these particles is related to the change in energy over

the change in momentum. In describing the momentum he relied on a Maxwellian

distribution of velocities. In making this assumption the density of states is forced

to be continuous and originate at the equilibrium Fermi energy. Simplification of the

physics by Richardson to describe the emission of electrons from a metallic surface

resulted in a few underlying assumptions imposed on the formalism. The major un-

derlying assumption is that the electron within the metallic emitter can be described

as a bulk degenerate electron gas. In order to make this assumption a Boltzmann

distribution replaced the Fermi-Dirac distribution to describe the equilibrium distri-

bution of electrons within the solid. In association with the electron distribution,

the density of states was restricted to a continuous distribution. Ultimately, as a

result, Richardson’s theory is restricted to high temperatures between 1000K and

2000K where the Boltzmann approximation is valid. A categorical list of assumption

in Richardson’s theory is presented by Seitz (1940) along with a detailed derivation

which was beyond the scope of this work.

no =
2(2πmkBT )

3/2

h3
exp

(−Ef

kBT

)

(2.59)

Richardson theory can be derived from a more fundamental view point by

starting with Equation 2.60. This equation is determined from a Maxwellian velocity

distribution which describes required velocity normal to the surface an electron must

have to escape from the surface. Here no is the number of electrons per unit volume.

If this term is described with a classical distribution as in Equation 2.59 the overall

equation that describes the emission current will simplify to the same expression

Richardson determined, Equation 2.53.

J = qno

√

kBT

2πm∗
exp

−φ
kBT

(2.60)
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The term no can be framed outside of the classical statistic regime by using

the density of states expression from Equation 2.58 and the Fermi-Dirac distribution

as seen in the following equation,

no =
N

V
=

∫

g(E)f(T,E)dE

=

∫

1

2π

(

2m∗

h̄

)3/2√
E

1

1 + exp
(

−(E−Ef )

kBT

)dE.
(2.61)

Here g(E) is the density of states and f(E, T ) is the Fermi-Dirac term which

are both functions of energy. Unfortunately, it is difficult to analytically integrate this

term and the density of states is often complex and geometric dependent as described

above. It is important to point out that the pre-exponential terms of Equation 2.60

comprise the Richardson constant term. One would expect from the expression in

Equation 2.61 that Richardson’s constant is a function of the spectral landscape of the

density of states but also temperature. Equation 2.62 demonstrates the dependence of

Richardson’s constant on temperature and energy. This expression will come in useful

in the result section where the model developed in this research explicitly calculates

the emission from a similar view point.

AFermi(T,E) ∝
√

kB
2πm∗

∫

g(E)f(T,E)dE. (2.62)

The simplification of Richardson’s theory through classical derivations pro-

vides reason for a more rigorous treatment of the physics to correctly predict the

emission trends from semiconductor materials. Especially, in the case of wide-band

gap semiconductors which have a drastically different density of states from a metallic

material. Additionally, because the density of states is shifted the low lying energy

levels now lie at a energy which needs to be described more accurately through a

Fermi-Dirac distribution. The model developed this work is based on Fermi-Dirac

statistics and the calculation of the approximate density of states derived from a

discretized effective mass domain.

Field Emission - Fowler-Nordheim Theory

Similar to the thermionic emission equation, the equation which describes the

emission of electrons from metal surfaces in response to electric fields has also been

examined extensively. The Fowler-Nordheim Theory (FN) is a quantum mechanical
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description which relies on the tunneling of electrons through a potential barrier that

is lowered by the applied electric field. The equation that describes the emission of

electrons from a metal in response to an applied field is shown in Equation 2.63.

J =
K1β

2E2

φ
exp

K2φ
3/2

βE
(2.63)

Here, K1 = 1.541434 × 10−6AeV V −2 and K2 = 6.830888 × 10−9eV −3/2Vm−1 are

constants, φ is the work function, E is the electric field, A is the area, I is the current,

and β is a geometric enhancement factor. The FN curve is a relationship that was

derived to describe the emission performance of metal field emitters. The standard

physical assumption to the Fowler-Nordhiem equation can be found in several cited

references (Forbes, 2001). These assumptions, however, have not shown to capture

the emission of nanoscale field emission, which is of interest in this research.

Similar to the Richardson equation, the Fowler-Nordheim expression can be

linearized. Again, the slope depends on the work function values of the cathode. The

beta term is responsible for the field enhancement increase of the field due to the

geometry of the cathode. In the results section, the beta enhancement will account

for nano-tip emitters, where the beta term can be on the order of several thousands.

ln(
J

E2
) = ln(

K1β
2

φ
)− K2φ

3/2

βE
(2.64)

NEGF Thermal-Field Emission Model

The adaptation of NEGF used from previous microelectronic research (Bulusu

and Walker, 2007a; Musho and Walker, 2011b) of nanoscale thermoelectric materi-

als was readily straight forward. The NEGF method in the context of electronic

transport is a self-consistent field (SCF) approach, in which Schrödinger’s equation

and Poisson’s equation are solved self-consistently. Schrödinger’s equation solves the

electron spatial probabilities, while Poisson’s equation maintains the many electron

interaction. Care has been taken to use an Anderson mixing technique as opposed

to a simple mixing technique to reach a less computational intensive convergence.

The NEGF electric ballistic modeling developed the study of thermoelectrics, which

was described extensively at the beginning of this chapter, is where the modeling

approach here was derived.

Modifications have been made to the NEGF model to allow field emission

devices to be studied. The first modification from microelectric bilayer device models
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is the addition of a third material, which captures the effects of the vacuum region.

Second, the conduction band of the diamond was determined based on the reference

of the Fermi level (0.1eV ) and the vacuum level with the associated work function for

each material. Additionally, the copper conduction band was determined from the

work function and vacuum level. The reverse bias which is apparent when the copper

anode and diamond cathode are connected is assumed offset by an applied voltage

so that the results can be compared to experimental values in which this same offset

voltage was applied.

The transport in thermionic emitters is very similar in context to solid-state

dynamics of electrons and can be described by non-equilibrium thermodynamics. The

modeling approach developed in this research relies on the theory of non-equilibrium

statistics in which a charge disparity between the cathode and anode regions drives

the transport. The model developed predicts the emission characteristics due to

the temperature response of a diamond thin film emitter. The model developed is a

rigorous approach to calculating thermionic emission from semiconductor material by

taking key material aspects into account such as the density of states of the wide-band

gap material.

The motivation for using a NEGF method stems from the ability to calculate

electronic transport from a quantum description through self-energy contacts. The

model assumes the electron transport is ballistic in nature and accounts for the effects

of the semi-infinite contacts through broadening terms at either contact.

The Green’s function approach to solving Schrödinger’s equation provide an el-

egant method of including potential responses along the device from electron-electron

scattering and the addition of impulse responses from the contacts. The fully con-

structed Green’s function provides a means of determining the transmission prob-

ability from a single electron view point. The culmination of many single electron

solutions provides a general view of the transport. More precisely, once transmission

is known for a discretized range of levels, the Landauer formula can be implemented

to determine the overall current. The Landauer formula states that the transmission

for the single electron model can be integrated over a range of electron energies to

arrive at the overall current of a system. This approach assumes that each energy

level has a finite current-carrying capacity, even when the transport is assumed bal-

listic. The current-carrying capacity is defined by the quantum conductance, 2e2/h.

The quantum conductance is a fundamental constant commonly found in quantized

nanoscale transport and has applicability for confined structures such as thin films.

Additionally, the Landauer approach can be applied to bulk structures as long as the
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number of discretized energy levels which is integrated over is substantial such that

the energy levels become continuous in nature over the integration range.

The Landauer formula can be written in a general integral form of Equation 2.5

where Ξ is the transmission and the applied voltage and temperature difference at

the anode and cathode are accounted for in the Fermi-Dirac terms f1 and f2. The

total current is Itot which is integrated for each energy level.

Before the Green’s function can be solved the model first constructs an effective

mass Hamiltonian describing the band structure and conduction band edges. When

constructing the Hamiltonian matrix, it is necessary to make sure that the matrix is

Hermitian in order to obtain real eigenvalues. The interface between materials is a

mixed effective mass grid point and the hermicity is critical at this intersection. The

equation for formulating the Hamiltonian is as follows,

[Ec −
h̄2

2m⋆
c

∇2Ψ = EΨ]. (2.65)

The total Green’s function is assembled through a composite manner where

broadening effect from the device contacts and the device channel is coupled together.

The boundary condition at either contact are specified with a Fermi function at a

prescribed temperature, applied bias, and in-scattering or broadening term. The

remaining two boundaries on the lateral sides of the two dimensional domain are

assumed periodic and are handled through reflective boundary terms in the matrix.

A full Poisson equation inversion was solved due to importance of resolving how the

potential varied within the system.

The total Green’s function takes the form of Equation 2.66 which accounts

for the impulse response of the contacts and the response of the many-electron effect

determined from the self-consistent calculation. The term E is the energy of the

selected single electron energy level multiplied times the identity matrix I. The

Hamiltonian described above is contained within the H term followed by the spatial

impulse response of the electron-electron interaction which is described by the term

Ue. The remaining Σ terms correspond to each of the two semi-infinite contacts of

the cathode and anode region.

G = [EI −H − Ue − Σ1 − Σ2]
−1 (2.66)

The Green’s function is solved for each discretized energy level by a matrix

inversion operation. The current is integrated for each energy level using Landaur’s

formula. On top of solving the Green’s function for each energy level, the total
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energy integration is carried out for a threshold number of sub-bands. The sub-band

energy is specified in the contact terms Σ and is governed by the eigenvalues of the

unperturbed Hamiltonian prior to constructing the Green’s function.

Along with integrating the current for each energy level the integrated spatial

electron density was also calculated by the following expression,

ρ =

∫

GndE/2π, (2.67)

where Gn is the spatial density of occupied states. The spatial density of

charge is calculated from the overall density of states Gd, where Gd = Gn +Gp. The

term Gp is the spatial density of unoccupied states. The spectral function Gd is the

difference in advancing and retarding Green’s functions, Gd = i[G − G+]. In depth

derivation of these spectral function can be found in the literature Datta (2005) and

is beyond the scope of this article. Ultimately, the density of electrons ρ can then be

used in Poisson’s equation to determined the potential response Ue which accounts

for the interaction of many electrons.

The band structure described by the Hamiltonian where a copper material

comprises the anode and a diamond material comprises the cathode with the vacuum

region in between. Particular emphasis is taken in describing the band structure

of the emitter (crystalline diamond material). The internal voltage drop associated

with two dissimilar materials as the anode and cathode (Φa−Φc) was assumed offset

such that the difference is zero. This was imposed to compare the model results to

experimental results.

The construction of the band structure began with the anode material by

specifying a reference Fermi-level of 0.1 eV and assuming the conduction band lies

at that same energy level. The anode material was assumed copper with a tabulated

work function (Φa) of approximately 4.5 eV. The vacuum level, which is a static

reference level across the entire material was defined by the following, Evac = Efa+Φa.

Within the vacuum region the conduction band was assumed to lie at the system

vacuum level. The Fermi-level of the cathode is referenced from the static vacuum

level using the specified work function of the cathode (Φc), Efc = Evac − Φc. The

work function of the cathode, Φc, was the primary independent variable of these

studies. The conduction band edge of the cathode (Ec) was specified from the cathode

Fermi-level using a difference in electron affinity and work function, Eca = Φc − χ.

The difference in electron affinity and work function inside the cathode was held at

0.65 eV. The open circuit voltage is offset such that in the closed circuit configuration
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the bands are horizontal.

Because the cathode material of interest in this research is a semiconductor

material, the electron dynamics within the cathode region required an effective mass

description. An average effective mass was specified to be 0.54me which was assumed

typical of diamond material Nava et al. (1980). Since the remaining regions were

assumed to rely on free electron dynamics the effective mass was unity.

An important aspect of electron emission is the band bending at the semicon-

ductor vacuum interface. To account for this in the model a relative permittivity was

specified for the cathode region. The band bending due to space charge effects was

calculated self-consistently with the calculation of Poisson’s equation. The relative

permittivity of the vacuum and anode regions were assumed unity to impose the space

charge effects of free space.

In addition to assembling the Hamiltonian, a spatially varying dielectric field

is constructed that is described by the permitivity of the emitter and collector. The

Hamiltonian description is used in the Green’s function to calculate the space charge

effects, while the permitivity is used in Poisson’s equation to calculate the potential.

Lastly, the Green’s function is assembled through a composite manner where broad-

ening effect from the device contacts and the device channel are coupled together.

The boundary condition at either contact are specified with a Fermi function at a

prescribed temperature, applied bias, and in-scattering or broadening term. The re-

maining two boundaries on the lateral sides of the domain are assumed periodic and

are handled through reflective boundary terms in the matrix. A full Poisson equa-

tion inversion was solved due to the importance of resolving the potential within the

system and the fact that the potential does not vary smoothly over the length of the

device. The material parameters specified can be found in the following table.

The current voltage characteristics were determined by specifying a voltage

bias between the emitter and collector and calculating the corresponding current

transmission. The code calculates the transmission for a range of electron energies

at a given sub-band energy. One can think of this as solving an elementary quantum

barrier structure for a range of electron energies and barrier heights, with the added

complexities of a two dimensional wave equation and a more complicated geometry.

The integral of these transmission probabilities multiplied by the difference in Fermi

functions at either contact times the quantum conductance determines the current

through the device. This approach of calculating the one electron ballistic current is

often referred to as the Landauer formalism, see Equation 2.5.

To determine the current versus temperature characteristics, the exact same
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procedure as outlined in the previous paragraph is used, except the Fermi function of

either contact is held at a zero voltage bias and the temperature (kBT ) of the cathode

is increased. The integrated current is calculated and the temperature is increased

again by a specified amount which is governed by the user, as well as specified tem-

perature range and number of temperature steps. Poisson’s equation is still solved

to account for the many-electron effect, and number of sub-bands integrated over is

based on a current threshold. The current criterion is determined by calculating the

contribution of current to the total current from additional sub-bands.

Thermal-Field Emission Model Implementation

The model which was developed to capture the emission is based on a two-

dimensional wave equation. The implementation is very similar to the thermionic

implementation. The work function of both the anode and cathode is required. Ad-

ditionally, the effective mass is required. If the material is metallic it is assumed

that the electrons will follow free electron dynamics so the effective mass is assumed

unity. Additionally, the permitivity of the cathode and anode was required. Again,

the permitivity in the metallic regions are assumed to have a permitivity of free space

along as is similar in the vacuum region.

The code is implemented by the user providing the geometry and temperature

and voltage boundary condition. The mesh is assembled within the code using a two

dimensional structured mesh with variable size. The size depends on the Hamiltonian

condition for the range of energy. Care was taken to write the Hamiltonian such that

the minimum number of cells were required.

One of the limiting cases in the thermal-field model is the inversion of the

matrix for each energy level. The routine for the inversion use a LU factorization.

Initially, the code implemented a full matrix complex inversion using LAPACK rou-

tines but it was determined to be too slow. The two dimensional Hamiltonian is

a banded matrix with a tri-diagonal and a single off-diagonal term. A sparse LU

decomposition was used to speed up the inversion routine. There as about a three

time speed up with the sparse solver. Furthermore, to increase the throughput of the

model the LU factorization routines were implemented on GPU architecture using

the MAGMA full matrix LU factorization routines. This proved to have a increase

of three to four times over the standard full matrix LAPACK LU factorization. It

was determined that the use of a sparse LU factorization on a GPU would be most

advantageous once those routines become available.
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Part Material Effective Mass Relative Permitivity Work function (eV)
Cathode Diamond 0.54me 5.5 † 2.2-4.6 ††

- Vacuum (UHV) me 1 -
Anode Copper me 1 5.4 †††

Table 2.5 Thermal-field NEGF model parameters. Work function values are refer-
enced from a Fermi level of 0.1eV. (Sources: † - Kittel (1986), †† - Robertson (1999),
† † † - Lide (2007))

The table above outlines the material parameters used in the modeling of the

thermal-field emitters. Note that the anode is assumed copper and there is no effort

to discern to which crystallographic direction the anode or cathode is emitting.
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CHAPTER III

VALIDATION

To determine whether the models were calculating reasonable results, both the

electron NEGF and phonon NEGF models were independently validated and verified

with empirical equations, ballistic results and available literature values. Therefore

both the electron and phonon models were validated and verified to gain confidence

that the models would correctly predict intermediate values when exploring the design

space of thermoelectrics and vacuum devices.

The validation will begin with thermoelectrics, both the thermal and electrical

models will be investigated independently and finally together. For this validation

silicon and germanium are the two materials of interest due to their well characterized

dynamics and availability of literature values. On top of the availability of data on

silicon and germanium, they have been demonstrated as decent high temperature

thermoelectric materials with an alloy ZT of 1.0 (see Introduction Section). There are

additional advantages to selecting silicon and germanium as thermoelectric materials

due to their similar crystallographic nature and their moderate Seebeck coefficient.

Other materials are within the scope of this model; however, dominant scattering

mechanisms must be understood and accounted for in order to gain confidence that

the trends are correct. As a side note, materials which are binary and ternary type

materials have significant polar optical scattering which is not accounted for in the

model and would require additional modification to the scattering parameters.

Similar to the thermoelectric electronic and thermal models the thermionic

model developed was validated and verified against Richardson’s equation and exper-

imental values provided from a collaborator. The material of interest was a diamond

single crystal nitrogen incorporated material.

The last part of this section will explain how all the models were written to

take advantage of high performance computing facilities. The objective was to write

these models such that larger devices were feasible and the design space could be

explored. The thermal model has the potential to model devices upwards of microns

in size where the electron size can scale devices on the order of 200 microns.
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Figure 3.1 Plot of the thermal conductivity versus length for ballistic simulation,
phonon-phonon scattering, and literature values. The temperature is maintained at
300K and the material is homogeneous silicon 〈001〉 doped at 1018cm−3.

Dissipative Thermal Quantum Model Validation

To determine if the phonon scattering was operating correctly, a study to

calculate the thermal conductivity versus length was carried out for homogeneous

silicon material. Both the longitudinal and transverse directions were taken into

account. Figure 3.1 is a plot of the ballistic case, phonon-phonon scattering case with

varying anharmonic parameter, and experimental values found in the literature.

Homogeneous Silicon - Thermal Conductivity

As mentioned in the discussion, the phonon model relies on selecting a cor-

rect anharmonic scattering parameter, (fo), which relates the incoming amplitude

to the scattered amplitude of a phonon. By increasing this factor, the strength of

the scattering increases and the thermal conductivity decreases. From Figure 3.1 the

anharmonic scattering parameter is determined to be of the order of 10−5 to obtain

values approximately on the order of the experimental thermal conductivity values.

As mentioned in the discussion section, a harmonic description is used to describe the

oscillators in the unperturbed Hamiltonian and the anharmonicity which is required

for the scattering is added to the system through the scattering parameter and the
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self-consistent scattering contacts which lie along the device. In essence, by adjusting

the scattering factor, the magnitude of the anharmonicity of the system is increased

or decreased thus influencing the rate of scattering and ultimately driving the thermal

conductivity up or down.

In reference to Figure 3.1, if the scattering parameter is selected to be 5 · 10−5,

then as the device increases in length, the trends begin to match the experimental

values. At larger device sizes, above 400 nm, it is assumed that the trends would level

off. The maximum device size which is calculated is limited by current computational

resources. In comparison to the ballistic phonon model, as the device length surpasses

100 nm the ballistic and dissipative model diverge due to the increase influence of

the phonon-phonon interaction.

When the device length is below 200 nm confinement in the transport direction

becomes relevant and an analogy with low temperatures can be made as for the

curvature of the thermal conductivity at small device lengths. Additionally, the

kinetic argument (dotted line in Figure 3.1), which relies on a particle-based argument

where the boundary scattering dominates the scattering rate at small device lengths,

severely overestimates the thermal conductivity at device lengths below 200 nm. The

particle-based theory is the essence for developing a model which can capture the

transport at small device lengths.

Figure 3.1 demonstrates that the ballistic phonon model is only valid up to

approximately 50 nm. Above 50 nm the ballistic model overestimates the thermal

conductivity. At 200 nm the ballistic model is approximately 1.5 times greater than

the bulk value. This provides an argument for developing a scattering model which

can capture the intermediate ballistic bulk trends.

Si/Ge Superlattice Phonon Material - Thermal Conductivity

To illustrate the spatial scattering of the phonon model, a superlattice device

was investigated. Figure 3.2 is a plot of the phonon scattering rate for a 30 nm four

bilayer Si/Ge superlattice device. The right portion of the figure is the associated

transmission for both the ballistic and scattering cases. The scattering rate changes

as a function of the material composition within the device, noted by the change in

scattering rate (color) in the left portion of Figure 3.2. The spatial variation of the

scattering rate gives rise to non-equilibrium within the system. This non-equilibrium

is traditionally not captured when one assumes a single scattering rate across the

device. Passing the spatial scattering rate at each location along the device to the
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Figure 3.2 Contour plot of the phonon scattering rate as a function of spatial location
along device. To the right is the associated transmission for the ballistic case and the
scattering case. The device is a 30 nm superlattice device with four bilayers of Si/Ge
and a silicon end cap.

electron model provides an argument for localized Seebeck voltage between layers

which can influence the thermoelectric performance of the material.

The plot of the transmission in right part of Figure 3.2 demonstrates the

difference in the ballistic and scattering model. The ballistic model has sharp peaks of

transmission while the scattering model tends to dampen the response. The scattering

model also decreases the transmission at low frequencies attributed to the acoustic

modes. The acoustic modes are traveling waves which are the dominant carrier of

thermal energy. As the device length increases the number of acoustic modes increases

due to the addition of lower frequencies permitted between boundaries. In Figure 3.1

the ballistic model overestimated the thermal conductivity above 50 nm because of the

large or non-zero transmission of acoustic thermal energy carrying phonons. While

the scattering model diminishes the transmission of the acoustic phonons due to

acoustic phonon-phonon interactions, this in turn limits the thermal conductivity

and why in Figure 3.1 the thermal conductivity of the scattering model plateaus.

As the anharmonic parameter is increase the transmission probability of Figure 3.2

would decrease for the scattering model and ultimately, as is shown in Figure 3.1, the

thermal conductivity would decrease.

77



This model does well at calculating the room-temperature (300K) dynamics

where the scattering is dominated by phonon-phonon interactions. However, the

model lacks knowlege of impurity scattering which is the dominate mechanism at low

temperatures.

Dissipative Electrical Quantum Model Validation

To validate and verify the operation of the ballistic, single and multiple electron-

phonon NEGF model, the results from the independent electron NEGF model were

studied in a similar fashion to the phonon study above. The electron model was

validated by comparing current-voltage characteristics of homogeneous material to

available literature along with the comparison of thermoelectric figures such as See-

beck coefficient and conductivity. Finally, a sample of superlattice devices found in

the literature were modeled to validate thermoelectric quantities. These validation

were strictly limited to n-type materials which were phosphor doped. This is not to

say that p-type material cannot be modeled.

Homogeneous Silicon - Seebeck, Conductivity

A homogeneous silicon sample of 30 nm was modeled using just the electron

NEGF model with three methods which include, ballistic, single phonon and, multiple

phonon interaction. The doping density was varied from 1017 cm−3 to 1021 cm−3.

The crystallographic direction was 〈001〉 direction, temperature was held at 300K

and the remaining modeling parameters are outlined in Table ??.

Figure 3.3 is a plot of the Seebeck coefficient and the electrical conductivity

versus doping density. The lines in both figures outline the Boltzmann approxima-

tion which is a particle-based theory and depends on specifying a known scattering

rate. The circles in Figure 3.3 are literature values (Geballe and Hull, 1955; Morin,

1954) of single crystal (bulk length) homogeneous thermoelectric properties. The

plot of the Seebeck demonstrates that the NEGF model can capture the bulk trends

especially at high doping density. The Boltzmann approximation is linear, described

by Equation 3.1, and requires the user to know the scattering rate (τRTA) in order

to match the experimental data. The Boltzmann approximation also is not able to

handle the the high doping concentration. Ultimately, Figure 3.3 demonstrates that

the NEGF model is an appropriate model to recover the trends and does not require

the scattering rate to be known before the simulation as shown for the particle based

Boltzmann approach.
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S = kB(5/2 + νRTA − ln(Nd/Nc)) (3.1)

The same comparison can be made for the second plot of Figure 3.3 which

is a plot of the electrical conductivity versus doping concentration. The line repre-

sents in Figure 3.3 described the particle based theory described by the relation in

Equation 3.2. Equation 3.2 requires that a scattering rate, τRTA is known prior to

calculating the transport which is based on a relaxation time approximation. The

figure demonstrates that the multiple phonon model does the best at predicting the

electrical conductivity. The ballistic and single phonon models both over estimate

the electrical conductivity which would ultimately exaggerate the ZT values. There

is a key scattering mechanism which is not captured in the model which could ex-

plain the slight over estimation of all the NEGF models and that reason is the model

does not capture the effects of impurity scattering. The substitution dopant atoms

(phosphorous) are related to the impurity scattering which is lacking in the NEGF

model and would be expected to lower the conductivity.

In Figure 3.3 the ballistic case is greatest as expected, followed by the sin-

gle phonon frequency and then the multiple phonon frequency, which has the lowest

conductivity. Noted from the figure, the single phonon frequency underestimates

the actual scattering given by the experimental values. Researchers often use a sin-

gle phonon frequency scattering model and increase the deformation potential until

desired results are reached. In foresight, this may obtain correct magnitude of the

scattering; it is suggested that the accuracy of the transport trends are lost as the

scattering is artificially increased from the deformation potential. A more physical

approach demonstrated in this figure is to take into account the phonon frequencies of

the structure through a superposition of scattering rates. Because there are multiple

phonon frequencies more electron transitions can be facilitated.

σ =
qτRTANd

m∗
(3.2)

Another study of homogeneous silicon was to investigate the thermoelectric

properties as a function of length of the device, see Figure 3.4. The model parameters

used, such as effective mass are the same as above and are outline in Table ??.

For this study the multiple phonon NEGF model was the only model investigated

based on the justification of Figure 3.3. Figure 3.4 demonstrates that as the device

length increases the Seebeck coefficient is decreased slightly with increasing length.

Where the electrical increases significantly below 20 nm and then begins to plateau as
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Figure 3.3 Homogeneous silicon Seebeck coefficient and conductivity versus doping
density for ballistic, single phonon, and multiple phonon scattering NEGF model. The
temperature is maintained at 300K. Line represent Boltzmann model with relaxation
time approximation (RTA) and dots are associated experimental values.(Geballe and
Hull, 1955; Morin, 1954)
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the device length increases. This suggests that boundary scattering at the contacts

dominates the transport to device lengths over 60 nm. Again the effects of impurity

scattering are missing from the NEGF model which would become effective at higher

dopant concentration and lengths above 30 nm. The increasing electrical conductivity

can also be explained by the confinement of states and the introduction of additional

states as the device length increases. Because the quantum simulation is based on

discrete states and as the device increases all dimensions the states will become more

continuous and the states as a whole will look continuous.

Taking the analysis a step further from Figure 3.4 and using the model to

calculate the electrical contribution to the thermal conductivity (ke). The model

initially calculates ke from determining the electron flux with a temperature specified

at either contact. If there is a difference in temperature between the contacts then a

current is generated and it is this current that is electrical contribution to the thermal

conductivity. Recalling from the figure of merit equation, ZT = S2σT/(ke + kp), the

reason why homogeneous silicon does not make a good thermoelectric is because the

denominator is rather large corresponding to low ZT values. Figure 3.5 demonstrates

this argument by providing ke values versus length. For reference the lattice thermal

conductivity (kp) for bulk homogeneous silicon is approximately 145W/m−K.

Homogeneous Silicon - Mobility, Drift

The electronic code was written so that the current voltage characteristic could

be determined for a given thermoelectric material. The IV characteristics were carried

out for a homogeneous silicon material in the 〈001〉 direction at a doping density of

1013 cm−3 and a temperature of 300K. The applied field was varied from 1·10−4 V/m

to 1·107 V/m. The results are plotted in Figure 3.6 against an empirical mobility

available in the literature (Jacoboni et al., 1977).

The empirical relation following the expression of Equation 3.5 with the as-

sociated values in Table III. The expression represents bulk silicon at an intrinsic

doping density 1013 cm−3 at a temperature of 300K.

The NEGF model is slightly less then the empirical relation for several reasons,

those reasons include a lower effective mass than the bulk at 0.54 and the absence of

impurity scattering which is important at low temperatures (which this is not) and

low doping concentrations.

v = µE (3.3)
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Figure 3.4 Homogeneous silicon Seebeck coefficient and conductivity versus device
length for multiple phonon scattering NEGF model. The temperature is maintained
at 300K. The electrical conductivity reaches bulk transport at device lengths greater
than 60 nm.
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Parameter Expression at 300K

νl[cm/s] 1.5·109 ·T(−0.87) 1.07·107
ǫc[V/cm] 1.01·T1.55 6.91·103
β 2.57·102 ·T0.66 1.11

Table 3.1 Empirical parameters for bulk field and temperature dependent drift veloc-
ity in silicon. Parameters are associated with Equation 3.5. T is the average absolute
temperature of the material.(Jacoboni et al., 1977)

Figure 3.6 also depicts the mobility of the NEGF model through the expression

in Equation 3.3 and by the slope of the drift velocity versus applied field. Comparing

the slope of the empirical equation plotted in Figure 3.6 to that of the model through

visual inspection they look comparable. The fitted mobilities are listed in the figure

which are slightly less the bulk mobility of 1400 cm2/V − s. This can be attributed

to the bulk effective mass being larger than the 〈001〉 effective mass. As described in

Equation 3.4 the mobility should decrease with a lower effective masses.

µ =
qτ

m∗
(3.4)

v = vl
ǫ

ǫc

[

1

1 + ( ǫ
ǫc
)β

](1/β)

(3.5)

Figure 3.8 is a plot of the current-voltage characteristics for a 30 nm homo-

geneous silicon device. Notice that the ballistic and single phonon curve are fairly

similar with the single phonon model resulting in slightly lower current throughout

the voltage range. The multiple phonon model shows some non-linearities at low

bias energies which can be attributed to inelastic scattering of electrons. This non-

linearity at low fields is the ability of the multiple phonon frequency scattering model

to capture the interaction of the acoustic phonons. Often, in the literature, the IV

characteristics of experimental devices show this very trend where the current is non-

linear. Take for example the work done by Burr et al. (1997) on silicon materials

where the IV characteristics are nearly zero until a turn-on voltage is reached. It is

reasoned that the addition of a more descriptive phonon scattering process through

multiple phonon frequencies allows a better estimate a the actual IV characteristics.

This should not over shadow the consideration for other scattering mechanisms that

may be present in experimental structures such as grain boundaries and dislocations.

In reference to Burr’s work, the nano-particles in his silicon matrix may have de-
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Figure 3.7 Illustration of the inelastic electron phonon tunneling. (a) is the elastic
tunneling and (b) is the inelastic tunneling which requires a phonon (h̄ω).

creased the mobility or the slope but it is assumed the non-linearities would still be

present in the absence of boundary scattering.

The non-linearities in the IV characteristics is even more substantial in thin

film structures. This comes from the aid of phonon assisted tunneling. Again the

trends of the multiple phonon scattering frequency model from Figure 3.8 is very sim-

ilar to the trends one would find in an actual thin film structure. Researchers (Lambe

and Jaklevic, 1968) have studied the tunneling of electron through thin film oxides

and demonstrates this trend in current voltage characteristics as seen in Figure 3.8.

The non-linearities at a flow field noted by Lambe are attributed to the phonon

interaction influencing the electrons tunneling through inelastic electron tunneling.

Figure 3.7 is an illustration of the tunneling dynamics and the interaction of phonons.

As these phonons interact with the electrons, the electrons essentially gain or lose en-

ergy thermally in order to achieve as desired state on the other side of the barrier.

In most cases it is more probable to lose energy to phonons. This loss of energy

is demonstrated in the IV curve as a decrease in current for a given voltage. This

argument of phonon assisted tunneling will be touched on later and will be illustrated

in the plots of the local density of states, see Figure 3.12.

Additionally, as the number of electrons increase in the system due to increased

field, the influence of the electron-phonon interactions is less significant and the slope

of the single and ballistic models is recovered. This is seen in Figure 3.8 around

0.01-0.1µV .

Because the multiple phonon model takes into account the acoustic phonons,

the non-linearities in the IV curve are a results of the lower energy electrons inter-
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Figure 3.8 Current voltage characteristics at 300K versus applied voltage for electron
NEGF at low dopant concentration. The multiple phonon scattering model has non-
linearities associated at the low fields that is attributed to the significance of the
electron-phonon interaction when the total number of charge carriers is low.

acting with the lower energy phonons which results in inelastic electron tunneling

through the barrier material. The acoustic phonon description is not included in the

single phonon model. Only the interaction of electrons with a single optical phonon

frequency is considered.

An additional aspect of Figure 3.8 is the tailing off the current at higher fields.

This is reasoned to be an artifact of the effective mass description. It is assumed for

this research that the effective mass describes the curvature near the bottom of the

conduction band edge. As the field is increased the electrons are dependent higher

energies where non-parabolicity can become important. In an effort to describe high

field dynamics either another effective mass that describes the top of the bands should

be considered or a non-parabolic effective mass should be considered.

Si/Ge Superlattice Material - Thermoelectric Properties

The model demonstrated above for homogeneous silicon was applied to study

Si/Ge superlattice thermoelectrics materials. The motivation behind developing this

modeling approach was to capture the interactions of electrons and phonons at the
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Figure 3.9 Plot of the possible transport mechanisms and transition for a electron
in a superlattice structure. With the addition of electron-phonon interactions more
states are available to the electron which are critical to capturing the transport.
Transition (a) is electron surpassing the barrier with loss or contribution of phonon
energy, (b) is phonon assisted tunneling, (c) is phonon assisted tunneling with a loss of
energy to phonons, (d) is the phonon assisted transition above the conduction band,
and (e) is electron-electron interactions with a loss of energy to a phonon.

nanoscale. Figure 3.9 is a sketch of the most common transition of a electron which

involves a phonon. One of the most significant contributions of modeling the phonon

interactions is the ability to capture phonon assisted tunneling as demonstrated by

inset (b) of Figure 3.9. Figure 3.9 demonstrates other important transitions that are

captured by the model such as (a) the phonon assisted transition over a barrier by the

addition and loss of phonon energy. Likewise, (d) demonstrates a transition above

the conduction band edge of both materials, which includes phonon assistance. The

opposite of this, where a electron above the conduction band edge loses energy is

the common electron-phonon interaction attributed to Joule heating. By capturing

these interactions a more realistic electron environment is modeled resulting in greater

confidence in the transport results.

The Seebeck coefficient and electrical conductivity were calculated for varying

donor concentrations (n-type, phosphorous doped) for several superlattice configura-

tions found in the literature. Results are shown in Figure 3.13 for three models and

three superlattice configurations which are identical in construction to several experi-

mental devices also included in the plot. The three models include the ballistic, single

phonon and multiple phonon scattering models. The multiple phonon model proved
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to be the most accurate at predicting the overall performance of these thermoelectric

materials. Because the electrical conductivity can span a large range of values and

can heavily influence the thermoelectric performance, the multiple phonon model as

described above provides a more physical model of the transition leading to a more

accurate conductivity calculation. The single phonon model tends to over-predict

the electrical conductivity, while the multiple phonon model was within a order of

magnitude of the experimental values.

In the superlattice material the interaction of several different phonon fre-

quencies is critical to predicting the correct electrical transport. In the single phonon

case, when an electron interacts with an electronic barrier, the electron either has

to tunnel or scatter into an energy state above the barrier which is divisible by the

electron energy plus the scattered phonon energy. However, in the multiple phonon

scattering model the electron can be thermalized with a range of phonon energy and

transported across the barrier and be re-emitted as an electron on the other side.

Due to the increased number of allowed transitions from multiple phonon energies,

not just a single phonon energy, the transport is more representative of the actual

transport in the material.

Figure 3.10 is a plot of the scattering rate for multiple electron-phonon interac-

tions and the total calculated scattering rate which is an average of all the individual

scattering rates. The conduction band edge lies around 0.15 eV which is near the

Fermi level (0.1 eV). The occupancy of electrons below the Fermi level is zero and

this is why the associated scattering rate is zero. The phonon frequencies listed in

Figure 3.10 corresponds to few of the lowest acoustic phonon frequencies. These lower

frequencies have a lower scattering rate because the occupancy is low and the ther-

fore the scattering rate is low compared to the high energy optical phonons which

dominate the overall scattering rate. This is the basis in which many researchers only

include optical phonon frequencies, however, when the devices gets larger the acoustic

phonon become more critical to the transport dynamics.

The model also resolves the spatial scattering rate of electrons and phonons,

similar to the phonon scattering above. Figure 3.11 is a plot of the spatial scattering

for a two bilayer Si/Ge superlattice. The phonon model calculates the phonon content

for each phonon frequency and the probability of finding it spatially which is passed

to the electron code. The plot in Figure 3.10 is the spatial average of Figure 3.11. The

scattering rate within the germanium layer is different than the silicon layers which

is a concept that is absent when the scattering rate is assumed the same throughout

the device, as seen in single phonon scattering models. The scattering rates here
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Figure 3.10 Plot of the calculated scattering rates for multiple electron phonon
interactions in a Si(2 nm)/Ge(2 nm) two bilayer superlattice device at 300K. The
total scattering rate is an average of all the scattering rates. Note the oscillation in
the scattering rate which correspond to concentrations of high density of states that
lie across the device channel.
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Figure 3.11 Plot of the total averaged spatial scattering rate for a Si(5 nm)/Ge(5 nm)
six bilayer 35nm superlattice device at 300K. Notice that the scattering rate is dif-
ferent in the silicon (material closes to contacts) then the germanium due to the
difference in scattering deformation potentials and phonon content. The phonon con-
tent in each superlattice layer is determined from the phonon model and passed to
the electron model.

are on the order of typical rates that researchers Restrepo et al. (2009) report for

single crystal silicon. Often, reported scattering rate in the literature are for a single

dominant phonon frequency where the model developed in this research is able to

discern the scattering rate for multiple phonon frequencies. The average scattering

rate reported in Figure 3.10 is comparable to the single scattering rate reported in the

literature. The average scattering was determined through a simple arithmic mean,

1

τavg
=

1

N
(
1

τ1
+

1

τ2
...

1

τn
) (3.6)

where τavg is the average scattering rate and N is the number of phonon fre-

quencies. It was reasoned that a simple scalar addition of the scattering rate is

inappropriate because the number of frequencies is over ten which could change the

magnitude by one. In actuality, the number of unique phonon frequencies calculated

by the phonon model is proportional to the length of the device and is approximately

70 unique phonon scattering rates for a 35 nm device.

To illustrate the importance of scattering with multiple phonon frequencies a

plot of the local density of states was constructed for the three models. Figure 3.12 is

90



a plot of the local density of states for the multiple phonon frequency, single phonon

frequency and ballistic case. It is important to point out that in the multiple phonon

case the low lying states within in the well regions are accessible to the transport

electrons. Where is the ballistic case the transport electrons are restricted to energies

above the high conduction band edge. In the single phonon scattering case there is

a intermediate condition where a few of the states in the well region are accessible

but must be divisible by the single phonon scattering energy. This is a transition to

a model which is clearly including more of the physics through multiple scattering

pathways to capture a greater understanding of the electron transport.

It is important to point out that straining was left out of these superlat-

tice calculations. Further investigation of how straining influences the model could

shift both Seebeck coefficient and electrical conductivity values closer to experimental

values; however, the amount of straining when comparing to literature requires an

understanding of the interface conditions. How strain influences the thermoelectric

performance will be investigated in the following section by varying the degree of

strain. This is not an encompassing theory of straining and should distract from the

objective of this research which is to understand the influences of the electron-phonon

interaction in an ideal superlattice in the absence of straining.

Si/Ge Superlattice Material - Phonon Mode Selection

When the phonon mode passes the description of the phonon content to the

electronic model, it is difficult to discern which of the content is optical and which

is acoustic. This difficulty arises from the fact that there is not a clear defining

point at which a phonon becomes an acoustic phonon or an optical phonon. This is

important from a modeling point of view because the deformation potentials which

describe the perturbation in terms of strain depends on whether the phonon mode is

optical (neighboring atoms displaced opposite relative to each other) or if the phonon

is acoustic (neighboring atoms displaced in the same direction). Figure 3.14 is a

plot of the thermoelectric properties when the optical cut-off is 0.3 eV, label Multiple

Phonon Scattering, when all the phonons are assumed optical (optical deformation

potential only used) and when all the phonons as assumed acoustic phonons.

When all the phonon content passed from the phonon model to the electron

model is assumed acoustic the scattering is overestimated due to the increased scatter-

ing rate. This is demonstrated in Figure 3.14 as a large increase in Seebeck coefficient

and extremely low electrical conductivity which are direct results of a large scattering
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Figure 3.12 Plot of the local density of state (LDOS) for the three models, starting
from the top figure: (a) multiple phonon frequency scattering, (b) single phonon
frequency scattering, and (c) ballistic. Note that by allowing more transition from
scattering with a range of phonon frequencies the density of states within the well
region is accessible by electrons. The ballistic case limits the electron to take states
above the high conduction band.
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Figure 3.13 Plot of Seebeck coefficient and electrical conductivity as a function
of donor concentration for several superlattice configurations. Ballistic, single and
multiple phonon models are compared. Multiple phonon model has best accuracy at
predicting experimental values.
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rates. In the opposite case, where all the phonon content is assumed optical in nature,

the influence is less noticeable and more comparable with experimental values. The

literature and intuition suggests that the phonon content of these nanoscale mono-

layers are mainly comprised of optical phonon content due to the confined lattice

dynamics preventing low frequency acoustic phonons.

The ZT values for difference phonon content, assuming the phonon content

is all acoustic or all optical also demonstrates the dominance of the acoustic phonon

scattering, see Figure 3.15. Again, the phonon content is assumed mostly optical type

phonons based on the figure. The next section will study the influence of moving the

optical cut-off frequency which defines which of the phonons passed from the phonon

code are optical and which are acoustic.

Si/Ge Superlattice Material - Optical Cut-off Frequency

In the multiple phonon model the method of handling the passing both the

acoustic phonon and optical phonon content is different depending on the mode of

the phonon. The root of the difference lies in the how the deformation potential is

formulated as that fact that acoustic phonons produce lattice strain by displacing

neighboring atoms in the same direction and acoustic phonons displace the neighbor-

ing atoms in opposite directions. As discussed in the previous section there is not a

clear distinction of where the cut-off is between optical and acoustic phonons. The

model therefore requires the user to specify an energy cut-off for which all phonons

with energy below this level are assumed to be acoustic in nature and all phonons

above this cut-off are assumed to be optical in nature. Figure 3.16 is a plot of the See-

beck coefficient and electrical conductivity for increasing doping concentration and

difference levels of optical cut-off frequency. As the cut-off frequency is increased,

more phonon frequencies are assumed acoustic in nature and the Seebeck increases

due to an increased gradient of charge across the device. The electrical conductiv-

ity decreases as the mobility increases due to the increased electron acoustic phonon

scattering.

Taking the analysis a step further from Figure 3.16, the ZT value is estimated

as seen in Figure 3.17. As the doping concentration increases the ke contribution to

the ZT figure increase, decreasing the overall ZT. However, the electrical conductivity

also increases with doping which creates a maximum in ZT values. Often, this will

be seen in the literature as a maximum in the ZT which is reproduced by the model.

As the optical cut-off frequency increases, the curve shifts down and to the right due
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Figure 3.14 Plot of Seebeck coefficient and electrical conductivity as a function
doping when the optical phonon cut off is 0.3 eV (Multiple Phonon Scattering), when
all the phonons are assumed optical (Multiple Optical Phonon Scattering) and when
all the phonons are assumed acoustic (Multiple Acoustic Phonon Scattering). The
acoustic phonon scattering heavily influences scattering suggesting that majority of
the phonon content should be handled as optical phonons.
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Figure 3.15 Plot of the ZT value as a function of doping concentration when the
optical phonon cut off is 0.3 eV (Multiple Phonon Scattering), when all the phonons
are assumed optical (Multiple Optical Phonon Scattering) and when all the phonons
are assumed acoustic (Multiple Acoustic Phonon Scattering). When the total phonon
content is assumed acoustic the scattering rate is over predicted providing evidence
that the phonon content is mainly optical content.

to a decrease in electrical conductivity.

Si/Ge Superlattice Material - Acoustic Deformation Potential

Maintaining the optical cut-off frequency at 0.3 eV and varying the acoustic

deformation potential from 0.0 eV to 9.0 eV provides a means of evaluating how the

scattering rate is affecting the thermoelectric properties. Figure 3.18 is a plot of

the Seebeck coefficient and electrical conductivity versus doping for varying acoustic

deformation potentials. As the acoustic deformation potential is decreased, the scat-

tering rate decreases. At an acoustic cut-off frequency of 0.0 eV the case of optical

scattering only is recovered.

The ZT value can be determined by varying the acoustic deformation potential,

see Figure 3.19. It is reasoned that the acoustic deformation should be fairly small

because the majority of scattering in confined structures is a result of optical phonon

scattering. The trends of increased scattering at low dopant concentration is noted in

the literature (Burr et al., 1997) and is due to the low population of charge carriers

being scattered, thus diminishing the overall conductivity. This is less an issue at
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Figure 3.16 Plot of Seebeck coefficient and electrical conductivity as a function of
optical phonon frequency cut-off. When OPCUT is 0 eV, all phonons are assumed
optical. Notice the acoustic scattering dominates the scattering which suggests that
the acoustic deformation potential could be too large.
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Figure 3.17 Plot of the ZT value as a function of doping concentration for several
optical phonon frequency cut-offs. There is a maximum in the ZT values associated
with the influence of ke and σ with increasing doping concentration.

doping concentrations of 1019 cm−3 but then the ZT value decreases as ke increases

resulting in a extrema in the ZT curve.

Si/Ge Superlattice Material - Strain Effects

An aspect that is often critical in modeling thin film bilayers structures is

the effect of induced layer straining and its influence on the transport behavior. In

order to incorporate these effects to the model it requires that the researcher have

some knowledge of what the actual surface interface looks like. However, there are

modeling approaches which can be used with caution assuming a perfectly strained

interface between layers. Using the straining model explained in the theory chapter

(Section II), which is based the neighboring lattice constant of individual layers their

associated thickness, a shifting of band energy can be determined in response to

this hydrostatic load. The nature of the strain results from the difference in lattice

constant between neighboring layers, in this case silicon and germanium; silicon has

a smaller lattice constant than germanium. The straining model is only interested in

the uniaxial strain which is a result of Poisson effects. As the lattices at the interfaces

try to reach an equilibrium position between the two lattice constant a biaxial strain

in-plane is created which is associated with a uniaxial strain perpendicular to the
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Figure 3.18 Plot of Seebeck coefficient and electrical conductivity as a function of
acoustic phonon deformation potential. As the acoustic cut-off frequency increase the
scattering rate increases and when the acoustic cut-off frequency is 0.0 eV where the
case of only optical scattering is recovered.
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Figure 3.19 Plot of the ZT value as a function of acoustic phonon deformation
potential. Note, a maximum in the ZT values which is influenced by the increase in
acoustic deformation potential.

interface in the transport direction.

In Figure 3.21 a plot of a Si(8 nm)/Ge(2 nm) superlattice device with varying

percentage of strain is plotted with associated Seebeck and electrical conductivity

values. The dopant density was held at 1018 cm−3 for three difference temperatures.

The inset figure below the Seebeck coefficient and electrical conductivity are the

associated conduction band edge of the silicon and germanium superlattice material.

When the percentage of the full strain is 100 that means the full conduction band

offset calculated using the deformation strain theory is represented.

Figure 3.21 demonstrates how the amount of strain can significantly modify the

the transport where the electrical conductivity can decrease four orders of magnitude

and the Seebeck coefficient can increase by just less than two. Depending on the

interface quality of the thermoelectric bilayer material, the actually strain could lie

anywhere between 0 and 100 percent of the full strain. It is suggested by Van de

Walle (1989) that the researcher must pay close attention when the conduction bands

invert due to straining, as is seen around 5% strain in Figure 3.21.

The illustration in Figure 3.20 demonstrates the strain condition which would

be seen in the actual superlattice structure. The illustration points out two effects

which are absent from the straining model. The first effect, is dangling bonds shown
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Figure 3.20 Illustration of the lattice strain induced from two dissimilar lattice
constants in contact. The top figure demonstrates dangling bonds (blue circle) which
are not capture in strain model. The bottom figure illustrates a wave effect in the
thin films which decreases the induced straining effect which is also absent in strain
model but possibly present in a real structure. The model assume perfect straining
which all bonds are strained uniformly neglecting out-of-plane effects.

in the top illustration of Figure 3.20 outlined in a blue circle. The second effect is

the wavy effect of the layers which is seen experimentally for very thin layers. The

waviness is a mechanism of accounting for the strain. It results in decreasing the

apparent strain in the layers. The modeled only accounts for perfect interfaces and

does not account for slip or geometric changes. The model can, for that reason, be

thought of in terms of the absolute maximum effect from stain. Therefore, it is useful

to look at a percentage of that strain as shown in Figure 3.21.

Researchers Fischetti and Laux (1996) have investigated the straining of both

silicon and germanium from a density function theory (DFT) calculated deformation

potentials. Their results suggest that the germanium band structure is not heavily

influenced by the strain along the 〈001〉 direction, but the effective mass increases as

strain increases. The increase in effective mass would relate to a lower drift velocity

and lower mobility, see Equation 3.4. In silicon, however, it is reported to have a mod-

erate decrease in conduction band edge approximately 0.5 eV. The mobility in silicon

is reported to only increase slightly; however, in compression the mobility increases

101



 200

 400

 600

 800

 1000

 1200

 1400

S
ee

b
ec

k
 [

µV
/K

]

n-type Dopant Concentration 10
18

 cm
-3

Ballistic Si(8nm)/Ge(2nm) 77K
Ballistic Si(8nm)/Ge(2nm) 300K
Ballistic Si(8nm)/Ge(2nm) 600K

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  20  40  60  80  100E
c 

 B
an

d
 E

d
g
e 

[e
V

]

Percent of Full Strain

Silicon
Germanium

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

E
le

ct
ri

ca
l 

C
o
n
d
. 
[1

/Ω
-m

]

n-type Dopant Concentration 10
18

 cm
-3

Ballistic Si(8nm)/Ge(2nm) 77K
Ballistic Si(8nm)/Ge(2nm) 300K
Ballistic Si(8nm)/Ge(2nm) 600K

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  20  40  60  80  100E
c 

 B
an

d
 E

d
g

e 
[e

V
]

Percent of Full Strain

Silicon
Germanium

Figure 3.21 Plot of the (a) Seebeck coefficient, (b) electrical conductivity as a func-
tion of strain. Percent strain is a percentage of strain value derived from calculation
of conduction band shift from deformation potential strain calculation.
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Figure 3.22 Plot of the electrical contribution to the thermal conductivity as a func-
tion of strain. Percent strain is a percentage of strain value derived from calculation
of conduction band shift from deformation potential strain calculation.

tremendously. Because the silicon has a smaller lattice constant than germanium, the

strain is assumed to be in tension in the silicon and compressive in the germanium.

Based on these findings and the inability to characterize the interface surface of the

experimental samples, the straining effects are neglected.

Si/Ge Superlattice Material - Effective Mass

The effective mass which governs the dynamics of electrons within the solid is

a parameter that must be specified in the model for both the silicon and germanium

superlattice material. Because the model is an effective mass formalism, the change in

effective mass can be directly related (through Equation 3.4) to the mobility. Caution

must be taken because this equation is for bulk electron dynamics, not discrete energy

level dynamics of confined structures. Figure 3.23 is a plot of the Seebeck coefficient

and electrical conductivity as a function of change in effective mass. The effective

mass of the silicon layers was held at 0.91, while the effective mass of the germanium

layers were varied from 0.1 to 1.1. Likewise, the germanium layer effective mass

was held constant at 0.95 and the silicon layer effective mass was varied fro 0.1 to

1.1. The dependent effective mass values at which both layers were held constant
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corresponds to the nominal effective mass values along the crystallographic 〈001〉
direction. The plot of Figure 3.23 demonstrates that the Seebeck coefficient is not

heavily influenced by the selection of the effective mass with a less then 10% change

in Seebeck coefficient. However the electrical conductivity as a function of effective

mass varies up to one order of magnitude in conductivity at the maximum compared

to the lowest conductivity value. Noted from the same conductivity figure, the change

in germanium effective mass does not vary as large as the silicon material. The lack

of response in germanium as the effective mass changes can be partially attributed

to the fact that the superlattice layer thickness for germanium is quarter the size

compared to silicon.

Based on the continuum argument of Equation 3.2 one would expect that

the electrical conductivity should increase as the effective mass decreases. However,

because this is a superlattice structure and the states within the layers are confined, as

the effective mass increases, there are a greater number of states near the conduction

band edge which increases transport, see Figure 3.24. Justification to this argument

can be seen from Schrödinger’s equation, h̄/2m∗▽2 = E, where the steady state

eigenvalues, E, decrease when there is a larger effective mass (m∗). Therefore, in

nanostructured materials it is not the drift velocity (governed by the effective mass)

but rather the availability and location and number of transport states relative to the

Fermi level and lowest conduction band edge. If the Si(8 nm)/Ge(2 nm) superlattice

layers were increased in thickness, then the confinement effects would diminish as

states fell down in energy and the conductivity would come to be governed by the

drift velocity which would decrease as the effective mass increases.

Full ZT Model Validation

To determine the overall performance of the superlattice materials, the ZT

values were calculated for the superlattice devices using ZT = S2σT/ke + kp. Both

the electrical contribution and the lattice contribution were included in the thermal

conductivity value. Figure 3.25 is a plot of ZT versus donor concentration for several

superlattice devices. The multiple phonon model with the Si(2nm)/Ge(2nm) device

depicts an inflection in the ZT values due to the increase in ke. As the donor concen-

tration increases, the increased number of conduction electrons drives the ZT value

down. This resembles the correct trend which is absent in the ballistic and single

phonon model.
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Figure 3.23 Plot of the (a) Seebeck, (b) electrical conductivity as a function of
effective mass for a Si(8 nm)/Ge(2 nm) superlattice. The effective mass of was selec-
tively held constant for the germanium (green circles) while the silicon effective mass
was varied from 0.1 to 1.1. Similarly, silicon (blue triangles) effective mass was held
constant while the germanium effective mass was varied from 0.1 to 1.1.
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106



Temperature Distribution Validation

One of the appealing aspect of the coupled modeling approach is the ability to

predict the temperature distribution across a device. The model is initially specified

with an equilibrium temperature in the case of this study that temperature was 300K.

Both the electron and thermal model are specified with the device geometry. A voltage

bias is specified for the electrical model. The model of energy transfer between the

electrical and thermal model is through electron-phonon interactions. The amount

of energy for scattered from the electrons into phonon energy is tracked for each

frequency. That energy is then put into the phonon model through the contacts along

the device. This thermal energy disrupts the equilibrium of the thermal system. The

coupling of the two thermal and electrical model is allowed to iterate until the change

in the temperature distribution is less than a user specified 10%.

The temperature across the device was calculated in three difference methods.

The first method was done by solving for the temperature by fitting the equilibrium

distribution to the electron density of the sub bands. The following equation was

used to determine the temperature,

T =
−E(k)

kBln(1 − exp(−f(k)/No)
, (3.7)

where E(k) is the energy of each phonon frequency with wave vector k. The

term fk is the distribution of transport phonons which include the scattering phonons

from the electron interactions. No is the equilibrium distribution of phonons at the

equilibrium temperature of 300K. The maximum temperature is determined by solv-

ing for the maximum temperature at each energy level using Equation 3.7. The other

methods were to collect the electron distribution across all subband and carry out

Equation 3.7. The third method was to collect the overall energy of all the phonons

knowing the phonon distribution and iteratively fit a equilibrium distribution to that

energy.

The third method of fitting the equilibrium temperature using the total en-

ergy did not correctly estimate the temperature as the temperature was extremely

small. It was reasoned that the discrete energy of the phonon distribution does not

fit a continuous energy distribution as many of the energy is scattered into low lying

phonon frequencies. Meaning the phonon distribution in a nanostructure is not con-

tinuous but rather irregular. Ultimately, the first method of using Equation 3.7 and

calculating the temperature at each energy level was reasoned to be a better estimate

of the actual temperature distribution across the structure. However, caution must
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be taken when you use this conclusion. All of this analysis comes back to the funda-

mental definition of temperature. Commonly the definition of a temperature comes

from how you are measuring the temperature. If passive measurement of tempera-

ture is used caution must be taken because the phonon content in the channel cannot

be described as a Planck distribution for the same reason a Boltzmann distribution

cannot be fit and temperature backed out.

Figure 3.26 is a plot of the temperature distribution of a six bilayer Si/Ge

strained superlattice where Ge acts as the barrier. The bias applied to this sample

was 300mV at a total device length of 35 nm. The figure depicts a build up of

temperature near the first barrier interfaces that are closest to the contacts. This

is reasoned to be directly related to the charge build up at that interface and can

be confirmed by investigating the charge density in the electronic model. Also, this

figure suggests that the generation within each the different silicon and germanium

layers is different. This provides reason of a local Seebeck effect which is absent when

the generation from electron-phonons is not included in the model.

The temperature distribution of a superlattice channel in Figure 3.26 is an

interesting finding as the temperature landscape within the channel is often difficult

to experimentally determine. The reader should be aware that in many devices,

especially in high frequency electronics majority of the thermal energy within the

channel is a result of conduction from the contacts regions. In power devices, joule

heating in the contacts diffuses into the channel and is more significant than the

thermal energy generated in the channel due to electron-phonon generation. For this

very reason it is often difficult to experimentally measure the channel generation and

the corresponding temperature profile of channel.

In comparison to Figure 3.26 the same analysis was run for a 35nm homoge-

neous silicon device, see Figure 3.27. The generation is constant along the device as

would be expected. The temperature near the contacts is lower due to the decreased

electron population near the edge region. This comes from a wave nature of an elec-

tron and the probability of finding that electron within the channel region. A majority

of the energy is in lower lying energy levels which occupy states that have a higher

probability of being near the center of the channel. As the temperature increases

high states are filled which has greater probability of being closer to the contacts. In

an experiment either the diffusion of heat from the contacts or the diffusion of heat

from the center of the channel would diminish this effect.

108



 299

 300

 301

 302

 303

 304

 305

 306

 307

 308

 309

 310

 0  5  10  15  20  25  30  35

T
em

pe
ra

tu
re

 [
K

]

Device Length [nm]

Avg Temperature
Max Temperature

Int Temperature
Initial Temperature

Si Ge Si Ge Si Ge Si

Increased temperature due
 to electron build up from contacts

Figure 3.26 Plot of the temperature distribution along a 6 bilayer superlattice de-
vice with a 300mV bias and a equilibrium temperature of 300K. The temperature bias
was determined from the fully coupled model which accounts for the phonon energy
scattered from the electron-phonon interactions. The max temperature was deter-
mined by solving for the temperature distribution at each energy level and taking the
corresponding max temperature. Note, the figure demonstrates a slight increase in
temperature as a result of electron build up prior to the first Ge barrier.
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Figure 3.27 Plot of the temperature distribution along a 35nm homogeneous silicon
device with a 300mV bias and a equilibrium temperature of 300K. The max tempera-
ture was determined by solving for the temperature distribution at each energy level
and taking the corresponding max temperature.

Thermal-Field Emission Model Validation

The NEGF thermal-field model that was developed to study both thermionic

and field emission was validated by investigating the models response to the two

independent biases. First the model was validated for the response from a temperature

bias in the thermionic regime. Then the model was studied from a field emission point

of view calculating the response of a electrical bias. The performance of these two

independent case gives the model confidence that it can handle any intermediate

regime in which the response lies in between thermionic and field emission regimes.

Figure 3.28 is an illustration of the band diagram for a thermionic devices labeled

with the dominate modes of energy transmission between the anode and cathode.

The NEGF model does not account for the anode heating due to the fact that a

constant temperature bath is specified at either boundary.

Thermionic Model Validation

In the case of thermionic response when a specified temperature is applied to

both the anode (collector) and cathode (emitter), it is assumed that both contacts are
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Figure 3.28 Illustration of the band diagram of a semiconductor thermionic emis-
sion device with indicated energy transport mechanisms labeled. Energy flux due to
thermionic emission and the energy flux due to radiation (qa,c) between the anode and
cathode. The model neglects the effects of anode heating as a results of specifying
a constant temperature bath at the anode and cathode region. There are three con-
ditions, (a) applied voltage states, (b) cathode work function less than anode work
function, and (c) cathode work function greater than anode work function.

constant temperature baths so radiation effects can be neglected. The argument of

negligible radiative effects is demonstrated in Figure 3.29 which is a plot of the heat

flux from two infinite parallel plates. The plots are derived from Equation 3.8 which

states the heat flux (q) is proportional the Stefan-Boltzmann constant (σ) times the

difference in temperature to the fourth of both the cathode (Tc) and the anode (Ta).

The justification for this argument comes when the heat fluxes from the radiation are

compared to the total emission current due to the electrons.

qr = ǫσ(T 4
c − T 4

a ) (3.8)

The model accounts for the thermionic emission from both the anode and the

cathode by specifying the appropriate temperature at both boundaries. Figure 3.30

is a plot of the band structure derived from the effective mass Hamiltonian which

is plotted on the left of the figure and the associated current density versus energy

on the right of the figure. The current density in Figure 3.30 is monitored at either

boundary and the energy into the system is positive and the energy out of the system

is negative. It is critical that the integral of the anode and cathode current is equal
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Figure 3.29 Plot of the radiative heat flux as a function of cathode temperature and
ratio of cathode temperature (Tc) and anode temperature (Ta). This plot is calculated
from Equation 3.8 for the heat flux between two infinite parallel plates in the far field
with an assumed emissivity (ǫ) of unity.

in order to conserve charge. Figure 3.30 is classically what you would expect from

a thermionic emitter, in that the emission current resides above the vacuum level.

The figure also demonstrates an additional effect that is related to the quantum

mechanical nature of the simulation such that the emission current is not continuous

but rather has peaks of energy which correspond to the discrete states within the

system. If the system were increased in all spatial dimensions, then the number of

states would increase and the degree of confinement would decrease. States would

fall and the emission current would become more continuous as would be expected in

the continuum.

For ease of computational effort it was determined that the critical size at

which continuum values could be reproduced of thermionic emission were when the

vacuum was greater than 10 nm, as shown in the left plot in Figure 3.30. By easing

the degree of confinement within the vacuum, states fell down in energy and emission

current increases to a steady value in which the addition of more states did not heavily

influence the emission current. Furthermore there is justification for making the

vacuum level larger then 5 nm in order to avoid the possibility of electrons tunneling

through the vacuum region at an energy lower than the vacuum energy.

As pointed out in the introduction of this thesis (Section I), traditionally before

the advent of semiconductor technology, researchers had focused on using materials
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with high melting points such as tungsten for thermionic emitters. To demonstrate

the ability of the model developed in this research to not only capture the emission

from semiconductors but also metal emitters, a metal Tungsten material was mod-

eled. Tungsten with a work function of approximately 5.4 eV was simulated using the

model and compared to Richardson’s equation, Equation 2.53. To recall, Richard-

son’s equation is based on analytic simplification of the density of states and Fermi

function to be commensurate with the trends of thermionic emission from a metal

surface. Figure 3.31 is a plot of the three materials including tungsten, amorphous

carbon with a work function of 5 eV and the current state of the art doped diamond

with a work function of 2.2 eV. The model which is depicted at points in Figure 3.31

demonstrates that the model can capture the trends of Richardson’s equation (lines)

along with the ability to predict the on set of thermionic emission which is outside

the scope of the analytic expression.

The model provides a means of determining the charge density across the struc-

ture. This provided validation that the model was operating correctly. Figure 3.32 is

a plot of a diamond film with the cathode at an elevated temperature. Notice that
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Figure 3.31 Comparison of NEGF thermionic model prediction of tungsten, intrinsic
diamond and doped diamond. The model predicts the onset of thermionic emission
which is absent from the Richardson relationship.

the contact region has an extremely high charge density which is spilling over into the

cathode material. There is also a slight image potential near the edge of the cathode

which is due to the gathering of charge near the vacuum barrier. Because of this

larger charge density one would expect a image potential to be present also near the

tip which is an additional barrier the thermally excited electrons must overcome to

escape into the vacuum.

Thermionic Emission vs. Temperature

To validate and verify the response of the thermionic NEGF model the work

function and temperature of the cathode were varied. Figure 3.33 is a plot of the

emission current versus cathode temperature. Radiation effects are neglected. Both

the anode and cathode are assumed to be constant temperature baths, neglecting the

effects of anode heating from the electron collecting on the anode. In order to match

to experimental data by Paxton (2011) the difference in work function of the anode

and cathode (qVo = Φc − Φa) were considered offset by an applied voltage, resulting

in modeling pure thermionic in the absence of a field.

Figure 3.33 demonstrates the NEGF thermionic match Richardson’s equation
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Figure 3.32 Plot of the charge distruption calculation for a thin film thermionic
material with an elevated cathode temperature.

(Equation 2.63) and the experimental data (Paxton, 2011). One key element of the

model is the ability to predict the onset of thermionic emission. Comparing the

lines to the model’s predicted values in Figure 3.33, Richardson’s equation for a work

function of 2.2 eV would predict thermionic emission beginning at approximately

200K. However, the model predicts thermionic emission begins around 500K. This

can be supported by the experimental results in which emission was only able to be

measured after about 600K.

In addition to predicting emission characteristics, the goal of the model is

to determine the cooling effect or heat flux at the cathode which is in response to

electrons leaving the cathode region. Knowing the spectral emission shown in the

right part of Figure 3.30 and the kinetic energy of the electron associated with the

thermal energy (1/2mv2 = kBT ) an estimate of the power or heat flux can be deter-

mined. Figure 3.34 is a plot of the heat flux for varying work functions and cathode

temperatures. The lines are estimated heat fluxes from Richardson’s equation and a

Maxwell distribution of velocities. The fitted Richardson’s equation is used to predict

the cooling effect of the experimental device. However, the models value of a work

function of 2 eV is a better predictive measure of heat flux. Further explanation of

this will be provided in the results section.
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Figure 3.33 The NEGF thermionic model was compared to experimental doped di-
amond samples by varying the associated workfunction of the material. A work func-
tion of around 2.2 eV was required to reproduce the experimental trends. (a) Current
versus applied cathode temperature. (b) Richardson plot of thermionic emission.
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Figure 3.34 Calculation of the heat flux from the cathode based on the energy
distribution of electrons and their thermal velocity.

Computational Scaling and Parallel Performance

All the models developed in this research were written using a native Fortran 95

language and implemented to take advantage of high performance computing (HPC)

facilities. Effort was spent during the programming phase to optimize the code so

that large device sizes could be studied. For the 1D structures which include the

superlattice thermoelectric devices the electrical and thermal models were parallelized

by dividing the energy range across multiple processors. MPI routines were used to

pass the information back and forth. Because both the thermal and electrical model

involve a matrix inversion for each energy level there is considerable speed up if these

can be done in parallel on difference processors. When dissipation is added to the

models the bottle neck of the program is no longer the inversion but rather the mixing

done to calculate the scattering matrices. Effort was spend optimizing the shifting

routines but the scaling was limited to 8 processors.

The inversion of the Green’s function was handled by a LU decomposition

routine. Standard direct solver LU decomposition (LAPACK) routines were used for

the tri-diagonal 1D superlattice models. Before the models were written in Fortran

and optimized the ballistic theory was test in a MATLAB code. The speedup by using

a direct tri-diagonal solver and being smart about the sparse matrix multiplication
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Figure 3.35 Plot of the MATLAB model and parallel Fortran model performance.
About a 52 times speed up was achieved by solving the energy range in parallel and
using direct solver techniques.

gain a tremendous speedup as demonstrated in Figure 3.35. In MATLAB you would

expect a 30nm device to take about 1.7 days to complete where compared to the

parallel (number of processors = 8) Fortran model, about 50min. That speed up

equates to about a 52 times speed up.

The performance of the parallel Fortran model was evaluated by calculating

the speedup as a function of the number of processors. Figure 3.36 is a plot of

the speedup as a function of the number of processors. The solid line in the figure

represents the idea speed or linear speedup which corresponds to the decrease in run

by half for each additional processor that is added. If you draw a line through the

points which are evenly divisible by 8 then a of about 20 is expected when ran across

32 processors. The reason why it is less than a theoretical linear speedup has to do

with the reduction of spatial matrices and the calculation of Poisson’s equation on a

single processor.

To aid in the speed up of the inversion routine of the 2D Hamiltonian for

the thermionic and nanocrystalline composite thermoelectric model the inversion was

handled by two methods. The first method was a sparse LU factorization using

SuperLU. The second method was a LU factorization on graphic processing units
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Figure 3.36 Plot of the parallel performance speedup of the model using HPC re-
sources. Runs were made on a 8core/node Xeon E5520 cluster. The true scaling is
more representative when the nodes are divisible by 8.

(GPUs) using MAGMA routines. Both the SuperLU and GPU LU factorization

saw approximately a 3 times increase over full matrix LAPACK LU decomposition

routines. As the matrix increases with device sizes the speed up over the LAPACK

LU routine is even more evident. Once a sparse LU factorization routine is developed

for GPU execution it is suspected that the speedup could be substantial.
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CHAPTER IV

RESULTS

The previous chapters have familiarized the reader with the theory of thermo-

electric and thermionic conversion. The validation chapter provided some confidence

to the modeling trends. This chapter takes these developed models and uses them

to optimize thermoelectric and thermionic nanostructured devices. One of the main

uses of these models is to understand how the geometry affects the transport charac-

teristics. Because these models were written to take advantage of high performance

computing facilities they not only allow geometry to be studied but materials with

lengths that you would find in operational devices. The first optimized thermoelec-

tric device will be a variably spaced superlattice (VSSL) followed by a study of a two

dimensional planar nanocrystalline composite thermoelectric device. Last will be the

investigation of nano-tip thermionic devices.

Variably Spaced Superlattice (VSSL)

Through band engineering of superlattice materials it is hypothesized that

a increased performance can be obtained from variably spaced superlattice (VSSL)

structures, leading to further enhancement of thermoelectric properties. This pre-

sumption are based on electrical studies by other researchers(O’Dwyer et al., 2005;

Summers and Brennan, 1986) and our own investigation into regular superlattice

structures. This research study demonstrates how variably spaced semiconductor su-

perlattice materials can not only out perform equally spaced superlattices but also

exhibit anisotropic filtering behavior resulting in directionality of thermoelectric prop-

erties. This study is unique because 1) a directional Seebeck coefficient along a single

crystalline axis has never been investigated or even suggested, and 2) variably spaced

superlattices have not been investigated extensively for thermoelectric applications.

There are two distinct advantages to the electrical and thermal transport prop-

erties that arise from controlling the film thickness within the superlattice structure.

The first advantage of increased electrical conductivity is illustrated in Figure 4.1 and

is a result of electronic confinement of the low lying energy levels of the conduction

band within the well region. The second advantage is the reduced thermal conduc-

tivity as a results of the increased thermal boundary scattering that arises from the
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Figure 4.1 Illustration of the variable spaced superlattice device with in the off-state
and on-state where there is band alignment and injection of electrons across structure.

varying layer thickness of the well regions and the increased number of interfaces.

The design criteria are set by designing around a favorable electrical structure and

assuming the thermal properties will follow.

The band structure of the VSSL material can be described by a rectangular

periodic potential where the two different alternating film materials define well and

barrier regions with the added complexity of decreasing the layer thickness over con-

secutive well regions. By adjusting the film thickness of the well region, the degree

of confinement of the low lying energy states within this region can be shifted. If the

consecutive layer thicknesses are selected appropriately such that they are propor-

tional to the voltage drop, an injection of electrons can be achieved as a result of the

apparent alignment of energy levels, see Figure 4.1. The directionality of the material

arises from the alignment of states when the voltage drop is in the favorable direction,

as opposed to a divergence of energy states in the opposing biased direction.

The decreased thermal conductivity of VSSL arrives from the phonon spectral

response of the structure. Treating each layer of the superlattice structure indepen-

dently and calculating the frequency content associated with each independent layer
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an argument arises for the decreased thermal conductivity. From the wave equation,

the frequency content will be a function of the thickness of each individual layer.

Constructing a composite of the frequency content of the individual layers and ana-

lyzing the phonon spectra as a whole reveals phononic band gaps or frequencies where

phonons are not allowed. In treating a phonon as a particle, as the phonon moves

across a single layer of the structure it interacts with interface of a neighboring layer

and the phonon must either scatter into an allowed energy level of the next layer or

tunnel through the layer. The act of the phonon changing energy at these interfaces

results in increased thermal boundary scattering.

The argument of phononic band gaps can also be framed in terms of a basis

set. Treating the cumulative mass within each independent layer as two different

nearest neighbor masses, we can make the analogy that a single bilayer forms a basis

set as would be seen in a diatomic crystal. The acoustical branch of the dispersion

will depend on the number of atoms within the larger of the two layers. The optical

branch will be offset by some energy associated with smaller of the two masses and

form a phononic band gap relative to the top of the previous branch. The number

of branches will depend on the total number of bilayers within the structure. The

dispersion relation can be conceptualized from the notion of the masses oscillating

independently within their associated layer and together across multiple layers. It is

the essence of two differing masses periodically arranged within a system that will

provide the phononic band gap.

VSSL Material Configuration

The selection of the material configuration was based on demonstrating the

trends associated with a VSSL and a non-VSSL material. There was no attempt

to optimize the VSSL structure in this research but rather to show a performance

difference. Due to the distribution of electrons entering the system, the strict energy

level alignment of consecutive layers is relaxed. However perfect alignment of the

energy levels is optimal, but using an approximate structure is reasonable for proof of

concept. To design a general VSSL structure, thickness of consecutive layers can be

estimated under simple assumptions. Because the Seebeck voltage is dependent on

the device geometry this estimated design is only an approximation. To calculate and

approximate structure, first focus on only two neighboring well regions, assuming the

voltage drop is linear across the whole device region and the confined energy levels

of the well follow the relation h̄
2m∗

1
a2
, where a is the layer thickness. The neighboring
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layer has energy levels that follow h̄
2m∗

1
(a+Lg)2

, where Lg is an incremental increase

or decrease of the neighboring layer thickness. Equating the voltage drop across the

entire device region to the voltage drop between the neighboring layers a relation can

be written as follows,

−h̄2
2m∗

(

1

(Lw + Lg)2
− 1

(Lw)2

)

=
ST

Lt

, (4.1)

where Lw is the well width, Lb is the barrier width, Lg is the increment of

consecutive layers and Lt is the total length. Specifying a device length of 55 nm and

assuming the approximate Seebeck to be 500µV/K. For a 55 nm device with a 10K

temperature bias the Lg parameters is 0.508 nm which is the basis for selecting 0.5 nm

as the increment for the remaining studies in this research.

VSSL Performance

The first material of interest is a +0.5 nm VSSL (+VSSL); the thickness of

the well region is increased consecutively by 0.5 nm over seven well regions and the

barrier region is maintained at 5 nm. The first well region has a thickness of 0.5 nm

and the last well region in the series has a thickness of 4 nm. The volume fraction

of silicon within this material is approximately 51.4% Si. The second material is a

-0.5 nm VSSL (-VSSL), the construction is the same as the first material except the

bias is applied in the opposite direction. The third material, a non-VSSL structure,

has a total length of 60 nm with seven heterojunctions and the individual layers all

have a thickness of 4 nm for both the well and barrier regions.

The three structures are simulated at various temperatures to facilitate a rel-

ative comparison of performance. Figure 4.2 includes plots of the power factor (PF),

thermal conductivity and figure of merit (ZT) for the three structures as a function

of temperature. The first plot demonstrates the power factor (S2σ) as a function of

temperature labeled with closed symbols associated with left axis. On the same plot,

the Seebeck coefficient (S) is plotted with open symbols associated with the right

axis. The trends of the PF are typical for common TE materials for increasing tem-

perature. The PF increased for all structures as the temperature increases and the

relative difference in PF between the VSSL and non-VSSL structure decreases with

increasing temperature. These trends are a result of the increased electron population

as the temperature increases and corresponding to the increased number of tunneling

electrons between contacts. Referring back to equation 2.9, as the Fermi function of
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either contact increase with temperature the current will also increase proportionally,

resulting in greater conductivity ultimately influencing the PF.

Focusing on the PF at 300K for the +VSSL (closed circles), a value of ap-

proximately 3000µWm−1K−2 compared to 175µWm−1K−2 for a non-VSSL material

is apparent. The PF is greater for the +VSSL material because the electrical con-

ductivity increases considerably due to the alignment of energy levels resulting in the

injection of the electrons across the structure. Investigating the PF of the -VSSL and

non-VSSL suggest that the PF values are relatively close to each other as a result

of the non-alignment of energy levels. In essence, the non-aligned level cause the

transport in the -VSSL structure to be governed by tunneling through barriers and

wells as seen in a traditional (uniform) superlattice (non-VSSL) structure.

In the same plot, focusing on the Seebeck voltage (open symbols), as the

temperature increases the Seebeck decrease contrary to what was depicted for the PF

values (closed symbols). Comparing the Seebeck values for the +VSSL structure at

300K to that of the non-VSSL suggests that the Seebeck coefficient decreases at the

expense a large electrical conductivity. This is a common trend in most materials

where the Seebeck coefficient and electrical conductivity are inversely related. The

Seebeck increases as a result of the material’s ability to maintain a greater charge

distribution as seen in the non-VSSL and -VSSL structures.

Comparing both the +VSSL and -VSSL Seebeck coefficient from the first plot

of Figure 4.2 an apparent directionality is present. At 300K the Seebeck voltage

is nearly double for the -VSSL compared to the +VSSL. This directionality trend

is reversed for the PF values due to the electrical conductivity having the oppo-

site direction trend compared to Seebeck. The directionally is depicted in both the

Seebeck and electrical conductivity but the PF trends are mostly influenced by the

conductivity trends.

The second plot in Figure 4.2 is the thermal conductivity as a function of tem-

perature. The electronic contribution (ke) of the thermal conductivity (open symbols)

and the thermal contribution (kp) of the thermal conductivity (closed symbols) are

both plotted. The summation of the electron and phonon contributions are composed

into a single thermal conductivity (ke + kp) value depicted by the dashed lines. The

total conductivity of the +VSSL material is the red line, the green line is the -VSSL,

and the blue line is the non-VSSL.

The electrical contribution of the thermal conductivity (ke) for the +VSSL

(solid circles) has the largest overall conductivity of all the structures. This is a

result of the electrons that carry thermal energy experiencing the same increase in
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conductivity due to alignment of energy levels as the transport electrons. For a ma-

jority of the temperature range the +VSSL, thermal conductivity is almost entirely

influenced by ke from 200K and greater. For the -VSSL and the non-VSSL material

there is a transition at approximately 600K in the dominate mechanism of thermal

conductivity. Prior to this transition temperature the phonon thermal conductivity

(kp) is dominant; however, past 600K the total thermal conductivity is dominated by

the electrical contribution (ke). This transition is situated close to the Debye tem-

perature of silicon (645K) where the phonon conductivity (kp) plateaus. The Debye

temperature of germanium is approximately (374K) and the Debye temperature of

the superlattice structure is that of the material with the greater Debye temperature.

As the temperature increased above the superlattice Debye temperature the +VSSL

and -VSSL/non-VSSL structure are dominated by both the ke contribution and follow

a similar trend.

Using Equation 1.1, the overall figure of merit, ZT , can be calculated from the

composite of the two previous plots of PF and thermal conductivity. Multiplying the

power factor (PF) times the temperature (T ) and dividing by the total thermal con-

ductivity (ke+kp) we arrive at the overall ZT value. The calculated ZT as a function

of temperature, the third plot in Figure 4.2, demonstrates that the +VSSL materials

(closed circles) outperforms the other two materials up to the thermal conductivity

transition temperature of approximately 600K. This transition temperature, as men-

tioned before, is a result of the electrical contribution (ke) of the thermal conductivity

dominating the total thermal conductivity. In addition, due to the increasingly large

thermal conductivity value, as temperature increases the denominator of the figure

of merit is overwhelmed by the trends of the thermal conductivity.

At a temperature of 400K, a ZT = 0.20 for the +VSSL and a ZT = 0.04

for the non-VSSL material was calculated, resulting in five times increase in the ZT

for a +VSSL material. These results suggest that +VSSL structures can achieve a

greater ZT at room temperature over a non-VSSL due to a 17 times increase in PF

and only a 4 times increase in thermal conductivity. The transition region where the

non-VSSL begins to outperform the +VSSL material is associated with the electrical

contribution (ke) of the total thermal conductivity dominating the figure of merit.

Again, comparing the +VSSL and -VSSL structure a directional dependence arises

in the ZT plot and is heavily apparent at temperatures below 600K. Additionally,

the -VSSL structure follows the trend of the non-VSSL structure as expected due to

the lack of alignment resulting in mainly tunneling electrical transport similar to the

non-VSSL structure.
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Figure 4.2 Ballistic electrical and thermal properties calculated for two oppositely
graded VSSL and non-VSSL materials as a function of temperature. Circles: +0.5 nm
grading (+VSSL), squares: −0.5 nm grading (-VSSL), triangles: no grading (non-
VSSL). +VSSL material has a ZT = 0.20 compared to a ZT = 0.04 for non-VSSL
at 400K. Lines were added to guide the eye.
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Figure 4.3 Ballistic ZT values calculated for two oppositely graded VSSL and non-
VSSL materials as a function of temperature. Circles: +0.5 nm grading (+VSSL),
squares: −0.5 nm grading (-VSSL), triangles: no grading (non-VSSL). +VSSL mate-
rial has a ZT = 0.20 compared to a ZT = 0.04 for non-VSSL at 400K. Lines were
added to guide the eye.
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Figure 4.4 Illustration of the nanocrystalline composite (NCC) superlattice struc-
ture. Note that the model domain is an abstraction of a single crystalline modeled
with periodic boundary conditions.

Nanocrystalline Composite (NCC) Superlattice

Nanocrystalline composite (NCC) device were analyzed by simulating a range

of lengths by incrementally increasing the crystal spacing and crystal diameter re-

spectively. Figure 4.6 depicts the Seebeck coefficient and electrical conductivity of

homogeneous silicon (Si-Si), homogeneous germanium (Ge-Ge), silicon matrix ger-

manium crystal (Si-Ge), and germanium matrix silicon crystal (Ge-Si) devices as a

function of total device length. In this set of simulations the thickness of the matrix

material (Lm) and diameter of crystal material (D) are increased by 0.2nm for each

data point. The Seebeck coefficient is greatest for a silicon matrix, germanium crystal

(Si-Ge) device as a result of the electronic band structure. The Si-Ge device can be

thought as forming a classic quantum well-barrier structure, in which the conduction

band offset between the germanium conduction band edge and the silicon conduction

band edge is finite. The Seebeck performance is dependent on the equilibrium posi-

tion (I=0) which is largely influenced by the low lying electron states in the electronic

well (silicon layer for this configuration). A large build up of charge forms on either

side of the barrier leading to non-uniform distribution of charge. This charge build

up as a result of the barrier is beneficial from the point of view of increasing the

Seebeck coefficient but is an obstacle for the electrical conductivity. The electrons

either have to gain energy to go over the barrier or tunnel through the barrier, which
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Figure 4.5 Illustration of the degree of energy confinement decreasing and energy
levels collapsing causing alignment for select device lengths. Increase in conductivity
is only apparent for the Ge/Si device due to presence of a barrier in the Si/Ge device.

is a function of the barrier length. In turn, the electrical conductivity is greatest for

the homogeneous germanium device due to the absence of a barrier and the low con-

duction band edge (0.160eV). The crystal (barrier) is essential for increased Seebeck

coefficient but can also be tuned through mindful selection of crystal size for good

electrical conductivity performance.

The large increase in conductivity in Figure 4.6 for the Ge/Si devices is rea-

soned to be a result of the alignment of energy levels as the device length increases.

As eluded to in Equation 2.2, the energy levels follow the relation, h̄2

2m∗a2
, where a has

units of length related to the thickness of either the barrier or well region. Assuming

the lowest lying conduction band edge of the barrier and well are located at a different

energy, as the length of the barrier and well increases the energy levels will collapse

as a result of decreased confinement. Illustration of the energy levels collapsing is

shown in Figure 4.5. The increased transport is only apparent in the well case (Ge/Si

device) due to the alignment of energy levels at conduction band minimum of the ma-

trix material. In Figure 4.6, the conduction increases dramatically at L=2.5 nm as

levels align then decrease and increase again at L=4.5 nm as additional levels align as

they collapse and the device length increases. In the case of the Si/Ge device, where

there is an electronic barrier is formed by the crystal material, the transport of the

electrons in the low lying conduction band of the matrix material is always influenced

by the barrier of the crystal and prevents the alignment of energy levels across the

device at conduction band minima of the matrix material.

For the remainder of this article, we assume that the device is constructed

from a silicon matrix with a germanium crystal based on the aforementioned Seebeck
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performance.

Crystal Spacing

Constraining the crystal diameter (D) and increasing the crystal spacing, Fig-

ure 4.8 shows the corresponding Seebeck and electrical conductivity trends. Extrema

in the Seebeck coefficient exist for devices with crystal diameter between 1.5nm and

2nm. For the 1.5nm crystal diameter, the maximum Seebeck coefficient lies where

the gap between crystals is equal to 1nm. These extrema in the Seebeck can be at-

tributed to a critical distance from the neighboring crystals in which discrete energy

levels (eigenvalues) of the system diverge. As the spacing between crystals increases

the energy levels collapse, forming a large localization of energy levels which are oc-

cupied by conduction electrons. If the device spacing decreases, the energy levels

separate relative to each other forming widely spaced discrete energy levels. The

shifting of energy levels limits the density of states below the conduction band edge

of the barrier (0.602eV), inducing a filtering effect from the barrier Zide et al. (2006).

This filtering effect limits the conductivity and alters the local density of filled elec-

trons, ultimately influencing the Seebeck coefficient. The low lying energy states are

visualized in Figure 4.7 in the plot of the local density of available states (LDOS) as

pockets of states to the right and left of the barrier. Notice in Figure 4.7 that there

are no states within the crystal (barrier) region which ultimately induces the filtering

effect. Also, the low lying states next to the barrier are the states that contribute

majority to the tunneling current because they lie within kBT of conduction band

edge of the matrix material.

Crystal Size

To study the relationship of crystal size on the electrical transport, the to-

tal device length (L) was held constant and the crystal diameter (D) was increased

(Figure 4.9). The Seebeck coefficient increases as the crystal size increases; however,

the electrical conductivity decreases at a much greater rate. Again, as the crystal in-

creases in size it acts as a filtering mechanism and forces electrons to either transport

around or tunnel through the crystal (barrier). The increased Seebeck is a result of

the electron distribution below the crystal conduction band edge and is a function of

energy levels within the electronic well region. The electrical conductivity decreases

as the crystal size increases due to the decreased tunneling probability and the lim-

ited transport by low lying energy levels around the crystal. As the crystal diameter
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Figure 4.6 In-plane Seebeck and electrical conductivity for increasing device length.
The matrix thickness (Lm) and crystal diameter are increased by 0.2nm and the
device length (L) across the midspan is equal to two times the matrix thickness times
the crystal diameter (2Lm+D).
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Figure 4.7 Local density of available states (LDOS) along the centerline in the cross-
plane (transport) and in-plane (perpedicular transport) directions. Note the low lying
states in the matrix (well) material. The device is a 2nm silicon matrix with a 1nm
germanium crystal.
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increases, the low lying energy levels in the matrix diverge limiting the number of

states forcing electron to higher energy states decreasing conductivity. Because the

conductivity decreases at a much greater rate than the Seebeck increases, the optimal

power factor is obtained with a small crystal size.

Superlattice Comparison

A comparison of the power factor (PF) of nanocrystalline composite (NCC)

devices to that of a superlattice (SL) device was carried out for a range of geometries

(see Figure 4.10). The barrier material in both the SL and NCC device was chosen

as the independent variable while maintaining an equivalent characteristic length.

The characteristic length of both devices is defined as the distance between contacts

in the transport direction. The superlattice results were calculated using a similar

computational method described by Bulusu Bulusu and Walker (2008b,c).

In Figure 4.10, as the barrier thickness increases, the superlattice power factor

drops at a much faster rate than for the nanocrystalline device. As discussed in pre-

vious sections of this article, the rate at which the NCC device decreases is governed

not only by the probability of tunneling through the barrier, but also by transport

around the barrier. Where the SL device is governed only by the probability to tunnel

through the barrier due to the lack of dimensionality. Because the power factor is

greater for the NCC device, there is confidence that the NCC device can out perform

a SL device with equivalent characteristic lengths.

Thermionic Emission from Wide-Band Gap Materials

Much of the theory that revolves around the emission of electrons from a

hot body is based on theories developed by Wilson (Wilson, 1908) and Richard-

son (Richardson, 1916) and Langmuir (Langmuir, 1923). It was not until recently did

the application of wide-band gap semiconductor in thermionic device become advan-

tageous. It was noted by researchers (Koeck and Nemanich, 2005; Maiti et al., 2001)

that the addition of dopants and absorbates can significantly change the emission

characteristics. This significant change in emission brought to question the appli-

cability of Richardson’s equation. Recall that Richardson’s equation takes the form

of Equation 2.53. Where J is the emission current, A is a fundamental pre-factor

known as the Richardson constant, T is the temperature of the emitter, φ is the work

function, and kBT is the thermal energy of the emitter. The Richardson equation

can be linearized in the form of Equation 2.54 where the y-intercept is Richardson’s
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Figure 4.9 Seebeck and electrical conductivity for increasing crystal size, crystal
spacing held constant. Silicon matrix germanium crystal(Si-Ge) device. Minimization
of crystal size desired for optimal power factor.
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constant A. This is very useful in helping explain the deviation in the models values

from Richardson’s theory.

Thermionic Emission - Richardson’s Constant

Referring back to the validation section a plot of the current versus cathode

temperature, Figure 3.33, demonstrated that the model (points) had the same trend

of Richardson’s theory (lines). However, there is a slight offset in the y direction

which is evident in the linearized Figure 3.33b by a change in y-intercept. In the

theory section the A term of Richardson’s equation was determined to encompass

the density of states description of a metallic emitter. In the case of the modeling

approach developed in this research, an effective mass description was used which

included an approximate effective mass term for the wide-band gap material. Because

the effective mass term was less than unity for a diamond materials and there is a

band gap associated with these material the density of states within the cathode is

modified from a metallic description.

To further investigate the difference in Richardson’s constant, a series of three

cases were modeled with difference band offsets which is characterized by the distance

between the Fermi level and the bottom of the conduction band edge. By varying
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( eV ) Ec −Ef , (Acm
−2K−2 )

Work function 0.0 eV 0.65 eV 1.0 eV
0.25 32.68 - -
0.50 43.44 12.93 -
1.00 60.35 38.76 21.79
1.50 74.73 56.03 44.24
2.00 87.60 70.72 60.39
2.50 97.97 84.81 74.73
3.00 110.48 95.85 87.60
3.50 117.73 105.88 97.97
4.00 122.52 115.52 110.48
4.50 128.53 122.88 117.69
5.00 134.91 132.33 123.33
Richardson Theory 120. - -

Table 4.1 Table of the Richardson constant (Acm−2K−2 ) which is back calculated
from the NEGF thermionic model by fitting Richardson’s equation to the model’s
results for three materials with a band offset, Ec −Ef , from 0 to 1 eV . The effective
mass was assumed unity.

the amount of energy between the equilibrium Fermi level in the cathode and the

conduction band edge, φ − Ec, Richardson’s constant was back calculated by fitting

Richardson’s equation, Equation 2.54, to the model’s predicted values. To limit the

number of independent variables, the effective mass of these series of materials were

assumed unity. Table 4.1 is the associated Richardson constant for a metal (m∗ = 1)

with a conduction band offset Ec − Ef from 0 to 1 eV . The data from this table is

plotted in Figure 4.11 with an associated fit. The fit of Richardson’s constant versus

work function is described with the following empirical equation,

A = Ao +
√

φ exp (Am). (4.2)

Here, Ao is the y-intercept, Am is the slope of the line and φ is the work

function of the material. A least squares method was used to fit all three sets of band

offsets (Ec−Ef ) with a unique slope (Am) and a unique y-intercept (Ao). The relation

of Equation 4.2 was reason from the derivative of the expression in Equation 2.62.

For the material which describes a metallic emitter with a band offset of Ec −
Ef=0.0 eV the traditional Richardson constant of 120Acm−2K−2 is recovered when

the material has a work function of approximately 5 eV . Often in the literature,

values of Richardson’s constant for experimental metallic emitters varies around this
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Figure 4.11 Plot of the Richardson constant as a function of work function and Ec−
Ef . There is a linear relation between the Richardson constant and work function and
a exponential dependence on Ec−Ef . The arrow denotes a region where Richardson’s
theory is not valid due to low or negative electron affinities.

nominal value. For example from Reimann’s book (Reimann, 1934) Barium has a

value of 60Acm−2K−2 with a work function of 2.11 eV and Rhenium has a value of

200Acm−2K−2 with a work function of 5.1 eV .

Figure 4.11 demonstrates the dependence of Richardson’s constant versus work

function as a near linear dependence. This dependence is a result of Richardson’s

constant being related to the density of states and the Fermi-Dirac term given in the

expression of Equation 2.55. There is an added complexity that the Richardson’s

constant is the integral of the density of states and the Fermi distribution which is

determined from the model. When the band offset (Ec−Ef ) is increased the number of

states per energy level increases by the square root of energy assuming for simplicity a

bulk relation between density of states and energy as shown in Equation 2.58. As the

work function (φ) of the material increases, moving along the x-dir in Figure 4.11, the

Fermi-Dirac distribution, which is responsible for describing the filled states increases

exponentially, while at the same time the density of states is increasing by the square

root because the band offset (Ec − Ef ) is fixed and moves the conduction band

up. Therefore, from the expression in Equation 2.62, Richardson’s constant is the
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Ec − Ef Ao Am

( eV ) (Acm−2K−2 ) (Acm−2K−2eV −1/2 )
0.0 1.21 4.11
0.65 -39.3 4.35
1.0 -57.8. 4.42

Table 4.2 Table of the terms from Equation 2.64 where a least squares method was
used to determine a common y-intercept (Ao) and the slope (Am) by fitting the models
results for three band energies Ec − Ef . The effective mass was assumed unity.

product of the density of states times the Fermi term resulting is a relation that is

approximately square root. This is demonstrated in Figure 4.11 as a exponential

relation times a square root dependence on the work function. However, when the

work function is held constant and the band offset is changed the density of states

increased by a square root of energy but the Fermi term remains constant therefore

there is a squared relation between Richardson constant and band offset (conduction

band edge).

It is often difficult to see the relation of band offset and Richardson constant

in experimental devices because, the overall emission current (J) is dominated by

the work function values in the exponential term of Equation 2.53. Meaning, if the

material is a wide-band gap materials with a Ec−Ef=1.0 eV and a work function of

4 eV there is slight decrease in Richardson constant but the overall emission current

is dominated by the term exp(−φ/kBT ) which is more significant.

When the band offset (Ec − Ef ) is greater in energy than the vacuum level

then the emission changes regimes and the emission current begins to saturate with

increasing electron affinity (χ = φ − (Ec − Ef )). This case is evident in Figure 4.11

where the material with a band offset of 1.0 eV has a work function that is less than

1.0 eV. The state where the conduction band edge of the wide-band gap cathode lies

above the conduction band edge is illustrated in part (a) of Figure 4.12 and the case

where the conduction band edge is below the vacuum level is in part (b). To aid in

discerning where Richardson’s theory applies for low and negative electron affinity

materials black arrows where included in Figure 4.11. The black arrow defines the

region where Richardson’s equation is no longer valid due to low or negative electron

affinities where the conduction band edge exceeding the vacuum level.

The emission current at low and negative electron affinity materials were able

to calculated using the model. A plot that illustrates the saturation of the current as

the conduction band reaching this low electron affinity regime is shown in Figure 4.13
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Figure 4.12 Band diagram of a diamond material with an associated band offset
(Ec−Ef ) in two states. State (a) is a wide-band gap cathode with a negative electron
affinity such that the conduction band edge (Ec) lies above the vacuum level. To the
right, state (b) is where the conduction band edge is below the vacuum level with a
positive electron affinity.

for a material with a band offset of 1.0 eV. The points of interest in this figure are at

the lower work function values which are less than or equal to 1.0 eV. For example, a

0.5 eV work function material has an emission current approximately equivalent to the

emission current for a 1.0 eV work function material. As the electron affinity becomes

negative (see Figure 4.12(a)) and when an electron is excited to the conduction band

in the cathode the electron is quickly emitted into the vacuum. When the electron

affinity is more negative, the electron maybe accelerated by an induced field as the

electron drops down to the lower lying vacuum level. Studies (Pickett, 1994) have

shown that materials which have negative electron affinities are possible when other

materials are introduced to diamond cathodes. In the case of surface treatments on

the cathode, the induced field as a result of the negative electron affinity could be

rewarding in over coming surface effects. The notion of surface effects are left out of

this analysis and the cathodes are assumed clean. Thus the addition of an induced

field does not increase the emission current significantly.
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Figure 4.13 Plot of the emission current versus cathode temperature for a cathode
with a band offset (Ec − Ef ) of 1 eV. As the work function is decreased below 1 eV
the conduction band resides above the vacuum and the emission current saturates.
Richardson theory does not capture the emission when the conduction band is near
of above the vacuum level.

Thermionic Emission - Applied Field Regime

In the validation chapter of this thesis (Chapter III) the thermionic emission

was compared to Richardson’s equation and experimental data with good agreement.

The following analysis takes the modeling a step further and applies an electric field

to the thin film devices in order to increase the emission. Figure 4.14 is a plot of the

thermal-field emission for a 2.2 eV work function diamond-like cathode with a copper

anode calibrated for zero band offset. The selection of a work function was based on

the objective of predicting the experimental trends by Paxton (2011)

The model operates in the same manner as previously described, except now

an applied field boundary condition is imparted on the device. Figure 4.14 is a plot of

the resulting band diagram when an 30V/µm field is applied to the device. Notice the

vacuum region has a band offset which causes the slope of the conduction band within

the vacuum region to slope downward towards the anode. Because of the slope, there

is now a finite probability that electrons will tunnel through the narrow barrier which

is created at the vacuum-cathode interface. Following this progression, as the field is

increased, the slope of the conduction level within the vacuum region increases and

the probability to tunnel also is increased. The increased probability of tunneling is
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Figure 4.14 Plot of the band diagram of the thin film thermal-field emitter with an
applied field of 30V/µm.

demonstrated in the right portion of Figure 4.14 where there is emission current below

the vacuum level which can only be a results of the tunneling electrons in response

the narrowing of the vacuum-cathode interface barrier. This is classic thermionic

emission and the following emission figures will corroborate this explanation.

In Figure 4.15, the emission current is plotted versus the cathode temperature

with the same thermionic emission trend as seen previously. Again the emission is

compared against Richardson’s equation which is for pure thermionic emission from

a metal surface. The data points in the figure represent the NEGF model’s predicted

values for each cathode temperature where the anode temperature is held at 300K.

Each simulation was run by specifying the applied field through a voltage boundary

condition and varying the cathode temperature. The cathode was held at ground and

the anode was pulled down by an applied voltage.

As the applied field increases, the emission current increases, noted by the

arrow in Figure 4.15. The on set values of thermionic emission are also influenced by

the increased field. At higher temperatures the applied field is less noticeable, but is

still discernible.

In re-plotting Figure 4.15 such that the trends are linear using Equation 2.54,

an obvious trend is associated with change in applied field, see Figure 4.16. That
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Figure 4.15 Plot of the emission current versus cathode temperature for a range of
applied field from 0V/µm to 90V/µm.

trend is a change in slope with applied field. The lines in Figure 4.16 are associated

with fitting Equation 2.54 to the NEGF model and using the work function as the

fitting parameter. As would be expected, the work function is lowered with increasing

applied field.

The trend of decreased work function follows the general trend of Schottky the-

ory (Schottky, 1914), which derived the following expression similar to the Richard-

son’s equation,

J = AT 2 exp
−φ − (q3F )1/2

kBT
, (4.3)

where q is a charge of an electron and F is the applied field. Often plots such as

Figure 4.16 will be refereed to as Schottky plots. The Schottky equation is, however,

only valid for applied fields to metal vacuum interfaces or metal semiconductor inter-

faces. To simplify Equation 4.3 the work function can be combined into a single term,

φ∗ = φ−(e3F )1/2. This allows the fitted parameters in Figure 4.16 to be compared to

the predicted value from Equation 4.3. Table IV is a comparison of the fitted effective

work function φ∗ values and Schottky values.

Gathered from Table IV, the model has a considerably lower predicted value of

effective work function compared to the Schottky prediction. This can be attributed
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Applied Field (V/µm) Fitted Work Function (eV ) Schottky Work Function (eV )
0 2.28 2.28
10 2.19 2.28
30 1.99 2.27
50 1.92 2.26
70 1.80 2.25
90 1.68 2.24

Table 4.3 Comparison of thermal-field emission work function values from an 2.2 eV
work function diamond cathode with an applied field from 0V/µm to 90V/µm. The
models effective work function values are compared to Schottky work function values.

to be due to the nature that the Schottky equation is a generalization for low fields

and metallic emitters. Recall, in the model the cathode material is described by an

effective mass Hamiltonian representing a diamond cathode. Additionally, deviations

from the Schottky prediction also stem from the discrete nature of states in the model.

Because the model is a quantum description, states are not continuous, but have

discrete probabilities of being at a certain energy and spatial location. In Figure 4.14

on the right figure, the current is noted as having peaks of high current density that

are associated with increased current density. These peaks are a function of how well

the states align across the device. As the device length increases in the transport

direction, more states would converge as the confinement of the wave function is

relaxed. The convergence of state results in the states as a whole becoming more

continuous. Because the model has these discrete states there are confinement effects

within the cathode film which are responsible for increased emission and deviation

from the Schottky theory. This notion of confinement is a key aspect of increased

transmission in thermoelectric superlattice devices.

Thermionic Emission - Heat Flux

The emission current calculated from the NEGF model can now be used to

determine the cooling rate from the cathode due to the emission of electrons. The

heat flux is determined from the current density and the energy of the electrons

responsible for that current. The approximation that the kinetic energy from the

electrons leaving the surface at a given energy is completely normal to the direction

of cathode, qV = KE = 1/2mv2x. Figure 4.17 demonstrates the heat flux from the

cathode as a function of cathode temperature and applied field. Again, as the applied
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Figure 4.16 Plot of the thermal-field emission in Richardson form for a range of
applied field from 0V/µm to 90V/µm. The applied field effectively lowers the work
function of the material.

field is increased the cooling potential of the cathode increases due to the effective

lowering of the work function values.

By applying an increasing field to the material, the emission characteristics

of these film increase significantly. There was no mention of efficiency associated

with energy required to generate the applied field. This would be an inefficiency in

the overall objective of a direct energy device. However, it is reasoned that a small

field could exponentially increase the current characteristics. Furthermore, through

geometric enhancement in non-planar geometries such as nano-tips, the field could

enhance tremendously with lower applied fields, considerably increasing the emission

current.

Thermionic Emission - Nano-tips Enhancement

The evolution from a thin film thermal-field emitter to a tip was carried out

using the same modeling method. The only aspect that changed was the addition of

a square tip emitter. It is approximated from SEM images and discussion with Wade

(2011) that the actual nano-tip have a spherical cross-section with a diameter that

range from 2 nm up to 10 nm but is on average 5 nm. The other approximation is
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Figure 4.17 Plot of the heat flux at the cathode for a range of cathode temperatures
and applied field from 0V/µm to 90V/µm. An applied field increased the cooling
potential of the cathode.

the tip length which is on the order of microns. Using this size feature was not

possible due to computational resource limitations but the closest to this geometry

was calculated. Figure 4.18 is an illustration of the nano-tip thermal-field emitter

geometry which is modeled.

The same modeling parametric studies which were carried out for the thin

film thermal-field emitters were also carried out for the nano-tips. The first plot,

Figure 4.19, is a plot of the emission current as a function of cathode temperature for

a range of applied field from 0V/µm to 90V/µm. The plot is distinctly different from

the film, Figure 4.15, in that there is an increased low temperature emission which is

attributed to the field emission current. Additionally, the overall shift of the emission

curve is attributed to the additional enhancement of field emission. The field emission

is however, over-shadowed by the thermionic emission at higher temperature as seen

by the emission following the thermionic trends.

The emission current in Figure 4.19 can be replotted such that the Richardson

equation is linearized. The following figure allows the change in slope attributed to a

change in work function and non linearities associated with field emission to be dis-

cerned. The slight slope in the emission current and, especially, the low temperature
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Figure 4.18 Illustration of a single square tip geometry thermal-field emitter which is
modeled using a 2D NEGF model. As the iso-field lines contour the nano-tip cathode
the electrons are enhanced by a x-component and y-component of the local field. The
greater the curvature of the field lines the greater the enhancement.

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

E
m

is
si

on
 C

ur
re

nt
 [A

/m
2 ]

Cathode Temperature [K]

Increasing Applied Field

The lines are calculated from the 
Richardson equation by specifying 
the associated workfunction (2.2eV)
and fundamental prefactor.

Model - V,F,Φ = 0.0V, 0V/µm, 2.2eV
Model - V,F,Φ = 0.1V, 10V/µm, 2.2eV
Model - V,F,Φ = 0.3V, 30V/µm, 2.2eV
Model - V,F,Φ = 0.5V, 50V/µm, 2.2eV
Model - V,F,Φ = 0.7V, 70V/µm, 2.2eV
Model - V,F,Φ = 0.9V, 90V/µm, 2.2eV
Paxton, Davidson (2011)

Figure 4.19 Plot of the emission current versus cathode temperature for a 2.2 eV
work function nano-tip thermal-field emitter for a range of applied field from 0V/µm
to 90V/µm. Note, the low temperature field enhancement is absent in the film
analysis when compared to the nano-tips.
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Figure 4.20 Plot of the linearized emission current versus cathode temperature for a
2.2 eV work function nano-tip thermal-field emitter for a range of applied fields from
0V/µm to 90V/µm. Non-linearities at low temperatures are attributed to the field
emission regime.

values are attributed to the field emission and the field enhancement associated with

the effects of geometry on the field lines. Because the field lines bend around the tip

geometry, the local field at the edges of the square tips sees an enhanced field due

to a field in both the x and y directions. Often, the geometric enhancement will be

captured in the Fowler-Nordheim equation by a β pre-factor in front of the electric

field term. This pre-factor is strictly a function of the geometry. But the β pre-factor

can be attributed to the non-linearities in Figure 4.20.

The analysis of the heat flux from the cathode of the nano-tip thermal-field

emitters is shown in Figure 4.21. The increase in heat flux at low temperatures is

attributed to the geometric enhancement of field emission. Again the field emission

at higher temperatures is overshadowed by the thermionic emission current. It is

interesting to point out that the heat flux for the 90V/µm is nearly constant up to

the onset of the thermionic emission around 650K. The other interesting finding is the

ability to obtain 10W/m2 at room temperature. This analysis is, however, neglecting

the effects of joule heating in the cathode and anode. Additionally, in terms of direct

energy conversion, the heat fluxes obtain in this analysis required a potential to be
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Figure 4.21 Plot of the heat flux of the constant temperature cathode versus cath-
ode temperature for a nano-tip thermal-field emitter for a range of applied fields from
0V/µm to 90V/µm. Enhanced low temperature emission is attributed to the geo-
metric enhancement of field-field emission. The goal of 10W/m2 is achieved for a
3nm nano-tip diamond cathode with a work function of 2.2 eV and an applied field
of 70V/µm.

applied as a field which is considered a loss due to energy being applied to the system

in the form of output energy. This does not overshadow the ability to predict the

cooling potential from a nano-tip thermal field emitter. Through the development

of lower work function materials and nano-scale geometrical enhancements, these

thermal-field emitters become excellent candidates for direct energy conversion and

possibly the transcending of thermoelectric direct energy conversion materials.
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CHAPTER V

CONCLUSION

The current states of the energy crisis has brought to the forefront the need

for sustainable energy. A solution involves not only developing new energy systems

but systems that can recover waste heat from existing infrastructures. In contribut-

ing to a solution, this research was focused on developing two solution approaches.

Those approaches include development of quantum models along with the develop-

ment of novel nanostructured materials. The computational models developed in this

research are an essential tool for innovating these new, more efficient direct energy

conversion materials. This work had a particular goal in understanding the transport

on the nanoscale. Because the nano-features of interest are on the order of the mean

free path, continuum type relations are no longer valid and new modeling approaches

framed from a more fundamental view point were required. The modeling approach

developed in this research was based on a non-equilibrium Green’s function quantum

approach. This work emphasized the incorporation of additional physics into the

models such as electron-phonon and phonon-phonon interactions while implement-

ing the use of high-performance computational techniques. By including additional

physics and using HPC resources, device sizes of up to 200 nm were able to be stud-

ied, which resemble device length scales one might find in an working direct energy

conversion device. Ultimately, the models developed in this research allowed the

large design space of nanoscale thermoelectric and thermionic devices to be explored

which provide a necessary tool to aid in innovating new more efficient direct energy

conversion devices which could potentially lead to a real solution.

The simulation tools developed in this research to model the transport of

nanoscale thermoelectrics and thermionic devices a non-equilibrium Green’s function

quantum model. The model predicted both the electron and thermal transport from

a quantum point of view. The thermoelectric model developed for this research

took a novel approach of coupling the electron and phonon descriptions to capture

spatially varying multiple phonon frequency electron-phonon interactions along with

the phonon-phonon interactions. This model approach is unique because rigorous

coupling of the phonon and electron description has not been demonstrated in the

literature. The model developed is not only able to calculate the scattering of electrons

with multiple phonon frequencies, but also track the spatial scattering of varying
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phonon content along the length of the device which is important in highly confined

structures such as nanostructured superlattice devices. The ability to resolve the

change in spatial scattering is a critical aspect in studying many nanoscale transport

phenomena and provides an argument for determining the temperature distribution

in the channel region.

The thermoelectric model developed in this research was ultimately used to

explore the design space of Si/Ge superlattice materials for enhanced thermoelectric

performance which has been explored experimentally, but has not extensively been

studied theoretically. Validation and verification of the model was carried out by

comparing to available literature values for both the electron and phonon NEGF

model. Results demonstrated that multiple phonon scattering was a critical aspect

for calculating the electric transport properties of nanoscale superlattice materials.

By adding multiple phonon frequency scattering additional states within the well

regions were accessible to transport electron due to the assistance of phonons. Due

to phonon assistance, it was determined that the use of a single dominant phonon

frequency scattering model under estimate the Seebeck coefficient and overestimate

the electrical conductivity when compared to literature values. Because this coupled

technique solved the full phonon description it was not necessary for the user to

specify a single dominant phonon frequency. Instead the phonon frequencies were

calculated explicitly by the phonon model and then passed to the electron model. This

method proved to be more rigorous and computationally intensive but was reasoned

to provided a more physical description of the electron-phonon interactions.

Within the thermal model, the phonon-phonon interaction were accounted for

in a similar manner to the electron phonon interactions except an unknown anaharmic

parameter was defined that accounted for the anharmicity in the system and the

scattering was determined self-consistently based on the spatial phonon density. The

model determined a deviate from the ballistic solution at device lengths greater than

50 nm where the ballistic solution is no longer valid and over estimates the thermal

conductivity. The model proved to accurately account for the boundary scattering

which is often the limiting scattering mechanism in nanostructured thermoelectrics.

Ultimately, by solving both the electrical and thermal transport from a quantum

point of view a prediction of the full ZT performance, which included scattering in

both the electron and phonon transport was possible.

The coupled thermoelectric model developed in the research was implemented

to study a new innovation in superlattice thermoelectric technology which is depen-

dent on a band-engineered superlattice structure. This device was shown not only
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to have a lower thermal conductivity but a greater electrical conductivity as hypoth-

esized. More specifically, VSSL structures were seen to increase the ZT values up

to seven times at room-temperature when compared to traditional regular-spaced

superlattice structures. The regular superlattice did, however, prove to perform bet-

ter at higher temperatures due to the increase electron contribution to the thermal

conductivity of the VSSL device. This research suggests that VSSL structures are

indeed candidates for increased thermoelectric performance, especially for near room

temperature applications. Investigation of other materials in a VSSL configuration is

a pressing research topic.

The modeling approach applied to superlattices was also applied to the study

of a slightly more complex structure, nano-crystalline composite (NCC) material. To

investigate NCC structures the one dimensional electronic NEGF model was evolved

to look at planar structures that have two dimensions. This was necessary to resolve

the 2D transport around nano-features. The model compared the performance of

these NCC devices to equivalent superlattice (SL) devices suggesting that the NCC

devices could outperform SL devices by up to 5 times. The NCC devices were reasoned

to increase the electrical conductivity of the material compared to SL materials by

providing moderate filter effect. This allowed charge to travel around the barrier

unlike the SL material where charge was required to travel through the barrier. The

NCC also had a larger Seebeck coefficient and lower thermal conductivity which

increased the overall ZT values of the NCC material.

The last direct energy conversion devices that was investigated in this research

was the evolution of the non-equilibrium Green’s function modeling approach devel-

oped for thermoelectric studies to investigate the field and thermionic emission from

wide-band gap diamond cathodes and nano-tips. The model was validated against

Richardson’s theory and experimental values. The model was proven to reproduce

emission characteristics and also predict the onset of thermionic emission, which was

over predicted in Richardson’s theory. By modeling the thermionic emission from a

fundamental view point results were able to determine the applicability of well ac-

cepted Richardson’s theory and where it could be used with confidence. The model

predicted the emission from wide-band gap cathodes and back calculated the associ-

ated Richardson constant, which was determined to be both a function of the electron

affinity and the work function. The model was ultimately able to determine the cool-

ing rate or heat flux from the thermionic emitter which could then be used to assess

the cathode for direct energy conversion and refrigeration applications.

The thermionic model was also evolved to study thermal-field emission which
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includes the response of an applied field resulting in the simultaneous thermionic

emission and field emission. The thermal-field emission results demonstrated lowering

of the effective work function values with increasing applied field at a rate which was

greater than then the predicted emission from Schottky theory. The deviation from

Schottky theory was based the approximation of Schottky theory and the confinement

of discrete states within the thin film cathodes. The analysis of nano-tip thermal-

field emission demonstrated increased enhancement with a 3 nm tip which provides

cooling potential up to 10W/m2 at 300K (neglecting anode heating) with 2.2 eV

work function and 0.7V/µm applied field. An flat metallic cathode would require

a work function around 0.7 eV. The model allows more advanced structures to be

analyzed providing an essential tool to innovated new vacuum devices for direct energy

conversion applications.

Significant effort was taken to write the model in parallel using high-performance

computational techniques and state-of-the-art graphics processing unit (GPU) com-

putational resources. The models developed in this research proved a valid means of

modeling nanoscale devices from thermoelectrics to thermal field emitters and can be

adapted to look at a broad array of nanoscale material configurations and an array of

different materials. Many of the tools and finding from this research can be applied

to engineering, physics and biology field that research innovative nanoscale materials

for energy, devices, and sensing.

All the models and the associated source code will be available through an on-

line nanoscale community, http://www.nanohub.org. Future research towards study-

ing more complex materials such as doped oxides which have an inherently lower

thermal conductivity values due to polar effects is of future aspirations. The thermal-

field emission models are currently being evolved to study the emission characteristic

from nitrogen incorporated diamond nano-tip emitters, which have geometric en-

hancement effects ideal for cooling applications. In all, the models developed in this

research have the ultimate mission of evolving science in finding new, more efficient

materials for a more sustainable future.
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APPENDIX

1D Superlattice - Electron NEGF

This routine constructs the Hamiltonian for the 1D superlattice electronic portion. It is necessary

that the Hamiltonian be Hermitian so care must be taken at mixed cell interfaces.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Hamil_Create - Create 1D Hamiltonian Matrix - 1D Electron NEGF

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Hamil_Create

integer(kind=4) :: r, n, k

!!! diagonal Hamiltonian terms

k=0

do r = 1, Nl

if(r .eq. 1) then

H(1,1) = Ecx(1) + 2*tsx(1)*(1/Gdx(1)**2)

k = 0

if(Nec .ne. 0) then

do n = 2, Nec

H(n,n) = Ecx(n) + (tsx(n)/Gdx(n)**2+tsx(n-1)/Gdx(n-1)**2)

k=n

end do

H(k+1,k+1) = (Ecx(k+1)+Ecx(k))/2 + (tsx(k+1)/Gdx(k+1)**2+tsx(k)/Gdx(k)**2)

end if

end if

do n = k+2, k+Neb_l(r)

H(n,n) = Ecx(n) + (tsx(n)/Gdx(n)**2+tsx(n-1)/Gdx(n-1)**2)

k=n

end do

H(k+1,k+1) = (Ecx(k+1)+Ecx(k))/2 + (tsx(k+1)/Gdx(k+1)**2+tsx(k)/Gdx(k)**2)

do n = k+2, k+New_l(r)

H(n,n) = Ecx(n) + (tsx(n)/Gdx(n)**2+tsx(n-1)/Gdx(n-1)**2)

k=n

end do

H(k+1,k+1) = (Ecx(k+1)+Ecx(k))/2 + (tsx(k+1)/Gdx(k+1)**2+tsx(k)/Gdx(k)**2)

if(r .eq. Nl) then

do n = k+2, k+Neb_l(r+1)

H(n,n) = Ecx(n) + (tsx(n)/Gdx(n)**2+tsx(n-1)/Gdx(n-1)**2)

k=n

end do

H(Np,Np) = Ecx(Np) + 2*tsx(Np)*(1/Gdx(Np)**2)

end if

end do

!!! off-diagonal Hamiltonian terms
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k=0

do r = 1, Nl

do n = k+1, k+Neb_l(r)

H(n,n+1) = -tsx(n)*(1/Gdx(n)**2)

if(n .eq. 1) then

H(n+1,n) = -tsx(n)*(1/Gdx(n)**2)

else

H(n+1,n) = -tsx(n)*(1/Gdx(n)**2)

end if

k=n

end do

do n = k+1, k+New_l(r)

H(n,n+1) = -tsx(n)*(1/Gdx(n)**2)

H(n+1,n) = -tsx(n)*(1/Gdx(n)**2)

k=n

end do

if(r .eq. Nl) then

do n = k+1, k+Neb_l(r+1)

H(n,n+1) = -tsx(n)*(1/Gdx(n)**2)

H(n+1,n) = -tsx(n)*(1/Gdx(n)**2)

k=n

end do

if(Nec .ne. 0) then

H(k+1,k+2) = -tsx(k+1)*(1/Gdx(k+1)**2)

H(k+2,k+1) = -tsx(k+1)*(1/Gdx(k+1)**2)

do n = k+2, k+Nec+1

H(n,n+1) = -tsx(n)*(1/Gdx(n)**2)

H(n+1,n) = -tsx(n)*(1/Gdx(n)**2)

k=n

end do

end if

end if

end do

if(Nec .ne. 0) then

H(1,1) = Ecs_e + 2*tsc*(1/Gdx(1)**2)

H(Np,Np) = Ecs_e + 2*tsc*(1/Gdx(Np)**2)

H(2,1) = -tsc*(1/Gdx(1)**2)

H(Np-1,Np) = -tsc*(1/Gdx(Np)**2)

do n = 1, Nec

H(n,n) = Ecs_e + tsc*(1/Gdx(n)**2+1/Gdx(n-1)**2)

H(Np-n,Np-n) = Ecs_e + (tsc)*(1/Gdx(n)**2+1/Gdx(n-1)**2)

H(n,n+1) = -tsc*(1/Gdx(n)**2)

H(n+1,n) = -tsc*(1/Gdx(n)**2)

end do

end if

end subroutine Hamil_Create

This routine applies the electronic boundary conditions to the Hamiltonian and constructs the

Green’s function.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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!

! Negf_Bound - Boundary conditions - 1D Electron NEGF

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Negf_Bound

integer(kind=4) :: n

real(kind=8) :: tm_ss, tm_se

tm_ss = tsc*(1/Gdx(1)**2)

tm_se = tsc*(1/Gdx(Np)**2)

!! Calculating Fermi functions of electrons entering through Silicon Source and Drain !!

f1 = No1*dlog(1+dexp((-(E(k)-mu + Ua(1)))/kT1)) ! 2D Source fermi function. [1/m^2]

f2 = No2*dlog(1+dexp((-(E(k)-mu + Ua(Np)))/kT2)) ! 2D drain fermi function. [1/m^2]

f3 = No1*(1-dlog(1+dexp((-(E(k)-mu + Ua(1)))/kT1))) ! 2D Source fermi function. [1/m^2]

f4 = No2*(1-dlog(1+dexp((-(E(k)-mu + Ua(Np)))/kT2))) ! 2D drain fermi function. [1/m^2]

!f1 = 1/(1+dexp(((E(k)-mu - V/2))/kT1))

!f2 = 1/(1+dexp(((E(k)-mu + V/2))/kT2))

f5 = f_e(k)

ka1 = i*(1-(1 - ((dcmplx(E(k)) + zplus - dcmplx(Ds) - dcmplx(Ua(1)))/&

&(2.0*dcmplx(tm_ss))))**2)**0.5

ka1 = -i*cdlog((1 - ((dcmplx(E(k)) + zplus - dcmplx(Ds) - dcmplx(Ua(1)))/&

&(2.0*dcmplx(tm_ss)))) + ka1)

! Real Wave vector of broadened waves at drain

!(ACOS can be written in LOG Format See Matlab Manual)

Sig1(1,1) = dcmplx(-tm_ss)*zexp(i*ka1) ! Self energy of source (eV)

Gam1(1,1) = i*(Sig1(1,1) - conjg(Sig1(1,1))) ! Source broadening matrix (eV)

SigIn1(1,1) = Gam1(1,1)*dcmplx(f1) ! Inscattering term for source (eV/m^2)

SigOut1(1,1) = Gam1(1,1)*dcmplx(f3)

ka2 = i*(1-(1 - ((dcmplx(E(k)) + zplus - dcmplx(Ds) - dcmplx(Ua(Np)))/&

&(2.0*dcmplx(tm_se))))**2)**0.5

ka2 = -i*cdlog((1 - ((dcmplx(E(k)) + zplus - dcmplx(Ds) - dcmplx(Ua(Np)))/&

&(2.0*dcmplx(tm_se)))) + ka2)

! Real Wave vector of broadened waves at drain

!(ACOS can be written in LOG Format See Matlab Manual)

Sig2(Np,Np) = dcmplx(-tm_se)*zexp(i*ka2) ! Self energy of drain (eV)

Gam2(Np,Np) = i*(Sig2(Np,Np) - conjg(Sig2(Np,Np))) ! Drain broadening matrix (eV)

SigIn2(Np,Np) = Gam2(Np,Np)*dcmplx(f2) ! Inscattering term for drain (eV/m^2)

SigOut2(Np,Np) = Gam2(Np,Np)*dcmplx(f4)

Gamp(:) = 0.0

!Inscatter and Outscattering

!To just include Inscattering only SigInp

!Hilbert transformation to get real part

if(f5 .gt. 0.0 .and. tst .lt. 8) Gamp = -SigInp(:,k)/f5-0.5*i*(SigOutp(:,k)+&

&SigInp(:,k))/f5 !eV

G(:,:) = (0,0);

do n = 1, Np

G1(n,n) = (0,0); G2(n,n) = (0,0)

end do
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G1(1,1) = Sig1(1,1); G1(Np,Np) = Sig2(Np,Np) !(eV)

do n = 1, Np

G2(n,n) = ((dcmplx(E(k)) + zplus)*eye(n,n) - dcmplx(Ua(n)) - dcmplx(U(n,n)))

!(eV) Simplify Addition Because Only Diagonal Terms

end do

call Matxopt_ztcpy(dcmplx(H),G,Np)

call Matxopt_sub_zdtf(G2,G,Np)

call Matxopt_sub_zdtf2(G1,G,Np)

call Matxopt_sub_zvtf2(Gamp,G,Np)

!G = (G2 - dcmplx(H) - G1) ! Green’s function (1/eV)

end subroutine Negf_Bound

1D Superlattice - Phonon NEGF

This routine constructs the Hamiltonian for the 1D superlattice thermal portion. It is necessary

that the Hamiltonian be Hermitian so care must be taken at mixed cell interfaces. A periodic

potential is used to determine the spring constants.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Hamil_Create - Create Hamiltonian Matrix - 1D Phonon NEGF

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Hamil_Create

integer(kind=4) :: r, n, k

real(kind=8) :: t1, t2

Le(:) = 0.0;

!!! diagonal Hamiltonian terms

k=0; n=0

do r = 1, Nl

if(r .eq. 1) then

call Hamil_Couple(ms,Gdx(1),t1)

if(Neb_l(1) .ne. 1) then

H(1,1) = 2*t1*(1/Gdx(1)**2)

k = 0

else

Neb_l(1) = 2; Neb_flag = 1

k = -1

end if

if(Nec .ne. 0) then

do n = 2, Nec

call Hamil_Couple(ms,Gdx(n),t1)

call Hamil_Couple(ms,Gdx(n-1),t2)

H(n,n) = (t1/Gdx(n)**2+t2/Gdx(n-1)**2)

k=n

end do

call Hamil_Couple(ms,Gdx(k+1),t1)

call Hamil_Couple(ms,Gdx(k),t2)

H(k+1,k+1) = (t1/Gdx(k+1)**2+t2/Gdx(k)**2)
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end if

end if

do n = k+2, k+Neb_l(r)

if(n .gt. 1) then

call Hamil_Couple(ms,Gdx(n),t1)

call Hamil_Couple(ms,Gdx(n-1),t2)

H(n,n) = (t1/Gdx(n)**2+t2/Gdx(n-1)**2)

else

call Hamil_Couple(ms,Gdx(n),t1)

H(n,n) = 2*(t1/Gdx(n)**2)

end if

k=n

end do

call Hamil_Couple(mg,Gdx(k+1),t1)

call Hamil_Couple(ms,Gdx(k),t2)

H(k+1,k+1) = (t1*ms*ab_s/Gdx(k+1)**2+t2*mg*ab_g/Gdx(k)**2)

do n = k+2, k+New_l(r)

call Hamil_Couple(mg,Gdx(n),t1)

call Hamil_Couple(mg,Gdx(n-1),t2)

H(n,n) = (t1/Gdx(n)**2+t2/Gdx(n-1)**2)

k=n

end do

call Hamil_Couple(ms,Gdx(k+1),t1)

call Hamil_Couple(mg,Gdx(k),t2)

H(k+1,k+1) = (t1*mg*ab_g/Gdx(k+1)**2+t2*ms*ab_s/Gdx(k)**2)

if(New .eq. 0) H(k+1,k+1) = (t1/Gdx(k+1)**2+t2/Gdx(k)**2)

if(r .eq. Nl) then

do n = k+2, k+Neb_l(r+1)

call Hamil_Couple(ms,Gdx(n),t1)

call Hamil_Couple(ms,Gdx(n-1),t2)

H(n,n) = (t1/Gdx(n)**2+t2/Gdx(n-1)**2)

k=n

end do

if(Nec .ne. 0) then

call Hamil_Couple(ms,Gdx(k+1),t1)

call Hamil_Couple(ms,Gdx(k),t2)

H(k+1,k+1) = (t1/Gdx(k+1)**2+t2/Gdx(k)**2)

do n = k+2, k+Nec

call Hamil_Couple(ms,Gdx(n),t1)

call Hamil_Couple(ms,Gdx(n-1),t2)

H(n,n) = (t1/Gdx(n)**2+t2/Gdx(n-1)**2)

k=n

end do

end if

call Hamil_Couple(ms,Gdx(Np),t1)

H(Np,Np) = 2*t1*(1/Gdx(Np)**2)

end if

end do

if(rank .eq. 0) then

write(*,’(A,ES15.6,A)’) ’ ** Total Lattice Energy = ’,Le(1),’ J’
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write(*,’(A,ES15.6,A)’) ’ ** Mean Lattice Energy Per Atom = ’,Le(1)/Np,’ J/Atom’

write(*,’(A,ES15.6,A)’) ’ ** RMS Lattice Energy Per Atom = ’,Le(2)*2,’ J/Atom’

end if

!!! off-diagonal Hamiltonian terms

k=0

do r = 1, Nl

if(r .eq. 1) then

call Hamil_Couple(ms,Gdx(n),t1)

if(Neb_flag .ne. 1) then

H(2,1) = -t1*(1/Gdx(n)**2)

H(1,2) = -t1*(1/Gdx(n)**2)

k = 0

else

Neb_l(1) = 1;

k = 0

end if

if(Nec .ne. 0) then

do n = 2, Nec-1

call Hamil_Couple(ms,Gdx(n),t1)

H(n,n+1) = -t1*(1/Gdx(n)**2)

H(n+1,n) = -t1*(1/Gdx(n)**2)

k=n

end do

call Hamil_Couple(ms,Gdx(k+1),t1)

H(k+1,k+2) = -t1*(1/Gdx(k+1)**2)

H(k+2,k+1) = -t1*(1/Gdx(k+1)**2)

end if

end if

do n = k+1, k+Neb_l(r)

call Hamil_Couple(ms,Gdx(n),t1)

H(n,n+1) = -t1*(1/Gdx(n)**2)

H(n+1,n) = -t1*(1/Gdx(n)**2)

k=n

end do

do n = k+1, k+New_l(r)

call Hamil_Couple(mg,Gdx(n),t1)

H(n,n+1) = -t1*(1/Gdx(n)**2)

H(n+1,n) = -t1*(1/Gdx(n)**2)

k=n

end do

if(r .eq. Nl) then

do n = k+1, k+Neb_l(r+1)

call Hamil_Couple(ms,Gdx(n),t1)

H(n,n+1) = -t1*(1/Gdx(n)**2)

H(n+1,n) = -t1*(1/Gdx(n)**2)

k=n

end do

if(Nec .ne. 0) then

call Hamil_Couple(ms,Gdx(k+1),t1)

H(k+1,k+2) = -t1*(1/Gdx(k+1)**2)
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H(k+2,k+1) = -t1*(1/Gdx(k+1)**2)

do n = k+2, k+Nec+1

call Hamil_Couple(ms,Gdx(n),t1)

H(n,n+1) = -t1*(1/Gdx(n)**2)

H(n+1,n) = -t1*(1/Gdx(n)**2)

k=n

end do

end if

end if

end do

end subroutine Hamil_Create

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Hamil_Mass_Matrix - Create Hamiltonian Mass Matrix

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Hamil_Mass_Matrix

integer(kind=4) :: r, n, k

!!! diagonal Hamiltonian terms

!! ab_s number of atoms per basis

k=0; n=0

do r = 1, Nl

if(r .eq. 1) then

if(Neb_flag .ne. 1) then

M(1,1) = ms*ab_s

k = 0

else

Neb_l(1) = 2;

k = -1

end if

if(Nec .ne. 0) then

do n = 2, Nec

M(n,n) = ms*ab_s

k=n

end do

M(k+1,k+1) = ms*ab_s

end if

end if

do n = k+2, k+Neb_l(r)

M(n,n) = ms*ab_s

k=n

end do

M(k+1,k+1) = ms*ab_s*mg*ab_g

!M(k+1,k+1) = sqrt(ms*ab_s*mg*ab_g)

!M(k+1,k+1) = sqrt((ms*ab_s)**2 + (mg*ab_g)**2)

!M(k+1,k+1) = (ms*ab_s+mg*ab_g)/2

do n = k+2, k+New_l(r)

M(n,n) = mg*ab_g

k=n
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end do

M(k+1,k+1) = ms*ab_s*mg*ab_g

if(New .eq. 0) M(k+1,k+1) = ms*ab_s

if(r .eq. Nl) then

do n = k+2, k+Neb_l(r+1)

M(n,n) = ms*ab_s

k=n

end do

if(Nec .ne. 0) then

M(k+1,k+1) = ms

do n = k+2, k+Nec

M(n,n) = ms*ab_s

k=n

end do

end if

M(Np,Np) = ms*ab_s

end if

end do

!!! off-diagonal Hamiltonian terms

k=0

do r = 1, Nl

if(r .eq. 1) then

if(Neb_flag .ne. 1) then

M(2,1) = ms*ab_s

M(1,2) = ms*ab_s

else

Neb_l(1) = 1;

k = 0

end if

if(Nec .ne. 0) then

do n = 2, Nec-1

M(n,n+1) = ms*ab_s

M(n+1,n) = ms*ab_s

k=n

end do

M(k+1,k+2) = ms*ab_s

M(k+2,k+1) = ms*ab_s

end if

end if

do n = k+1, k+Neb_l(r)

M(n,n+1) = ms*ab_s

M(n+1,n) = ms*ab_s

k=n

end do

do n = k+1, k+New_l(r)

M(n,n+1) = mg*ab_g

M(n+1,n) = mg*ab_g

k=n

end do

if(r .eq. Nl) then

do n = k+1, k+Neb_l(r+1)
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M(n,n+1) = ms*ab_s

M(n+1,n) = ms*ab_s

k=n

end do

if(Nec .ne. 0) then

M(k+1,k+2) = ms*ab_s

M(k+2,k+1) = ms*ab_s

do n = k+2, k+Nec+1

M(n,n+1) = ms*ab_s

M(n+1,n) = ms*ab_s

k=n

end do

end if

end if

end do

end subroutine Hamil_Mass_Matrix

subroutine Hamil_Couple(m,a,t)

integer(kind=8) :: tt

real(kind=8) :: U

real(kind=8), intent(in) :: m, a

real(kind=8), intent(out) :: t

if(m .eq. ms_o) then

tt = 1

!call Atompot_LJ(a,U,tt) !Call interatomic potential

call Atompot_Harrison(a,U,tt)

!call Atompot_Harrison_Spring(a,U,tt)

!call Atompot_Hooke(a,U,tt)

!call Atompot_Stillinger_Weber(a,U,tt)

else

tt = 2

!call Atompot_LJ(a,U,tt) !Call interatomic potential

call Atompot_Harrison(a,U,tt)

!call Atompot_Harrison_Spring(a,U,tt)

!call Atompot_Hooke(a,U,tt)

!call Atompot_Stillinger_Weber(a,U,tt)

end if

t = 2*U ! Inter-unit cell coupling energy for silicon

Le(1) = Le(1) + U

Le(2) = sqrt(Le(2)**2 + U**2/Np)

end subroutine Hamil_Couple

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Atompot_LJ - Lennard Jones potential. Values from Kittel

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Atompot_LJ(r,U,t)
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real(kind=8), dimension(2) :: e,sig

integer(kind=8), intent(in) :: t

real(kind=8), intent(in) :: r

real(kind=8), intent(out) :: U

!e = 14e-16 * 6.24150974e11 ! [eV] LJ Parameters

e(1) = 49.1e-16 * 1e+7 ! [J] LJ Parameters Silicon

e(2) = 47.2e-16 * 1e+7 ! [J] LJ Parameters Germanium

sig(1) = 4.753e-10 ! [m] Silicon

sig(2) = 5.109e-10 ! [m] Germanium

U = (4*e(t)*((sig(t)/r)**12-(sig(t)/r)**6)) ! [J] Lennar-Jones potential

end subroutine Atompot_LJ

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Atompot_Hooke - Hooke’s law potential. Values from Kittel

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Atompot_Hooke(r,U,t)

real(kind=8), dimension(2) :: e,sig,c

integer(kind=8), intent(in) :: t

real(kind=8), intent(in) :: r

real(kind=8), intent(out) :: U

!e = 14e-16 * 6.24150974e11 ! [eV] LJ Parameters

e(1) = 1.66e11 ! [N/m^2] Parameters Silicon

e(2) = 1.29e11 ! [N/m^2] Parameters Germanium

sig(1) = 3.835e-10 ! [m] Silicon

sig(2) = 3.995e-10 ! [m] Germanium

!rho(1) = ms/e(1)/vsi**2

!rho(2) = mg/e(2)/vge**2

c = 3*sig**3/16*e

U = 0.5*c(t)*(r-sig(t))**2/sig(t)**2 ! [J] Lennar-Jones potential

end subroutine Atompot_Hooke

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Atompot_Stillinger_Weber - Stillinger Weber potential with just pair part

! This potential is for the a/4(x + y + z) direction of

! the diamond structure. Not correct for 1d chain

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Atompot_Stillinger_Weber(r,U,t)

real(kind=8) :: f,rr

real(kind=8), dimension(2) :: e, A,B,p,q,aa,sig

integer(kind=8), intent(in) :: t

real(kind=8), intent(in) :: r

real(kind=8), intent(out) :: U
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e(1) = 3.4723e-19 ! [J] Silicon

e(2) = 3.4723e-19 ! [J] Germanium

A(1) = 1.66e11

A(2) = 1.29e11

B(1) = 0.6022245584

B(2) = 0.6022245584

p(1) = 4

p(2) = 4

q(1) = 0

q(2) = 0

aa(1) = 1.8

aa(2) = 1.8

sig(1) = 2.0951e-10 ![m]

sig(2) = 2.0951e-10 ![m]

rr = r/sig(t)

f = A(t)*(B(t)*rr**(-p(t))-rr**(-q(t)))*exp(1/(rr-aa(t)))

write(*,*) ’rr, f =’,rr,f

U = -e(t)*f ! [J] Lennar-Jones potential

end subroutine Atompot_Stillinger_Weber

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Atompot_Harrison - Harrison potential. Values from Mingo phonon papers

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Atompot_Harrison(r,U,t)

real(kind=8), dimension(2) :: e,sig

integer(kind=8), intent(in) :: t

real(kind=8), intent(in) :: r

real(kind=8), intent(out) :: U

!e = 14e-16 * 6.24150974e11 ! [eV] LJ Parameters

e(1) = (49.1)*q ! [J] LJ Parameters Silicon

e(2) = (47.2)*q ! [J] LJ Parameters Germanium

sig(1) = 2.35e-10 ! [m] Silicon

sig(2) = 2.44e-10 ! [m] Germanium

U = (0.5*e(t)*((r-sig(t))/sig(t))**2) ! [J] Lennar-Jones potential

end subroutine Atompot_Harrison

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Atompot_Harrison_Spring - Harrison potential. Backout spring constant

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Atompot_Harrison_Spring(r,U,t)

real(kind=8), dimension(2) :: e,e1,sig
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integer(kind=8), intent(in) :: t

real(kind=8), intent(in) :: r

real(kind=8), intent(out) :: U

!e = 14e-16 * 6.24150974e11 ! [eV] LJ Parameters

e(1) = 49.1*q ! [J] LJ Parameters Silicon

e(2) = 47.2*q ! [J] LJ Parameters Germanium

e1(1) = 1.07*q ! [J] LJ Parameters Silicon

e1(2) = 0.845*q ! [J] LJ Parameters Germanium

sig(1) = 2.35e-10 ! [m] Silicon

sig(2) = 2.44e-10 ! [m] Germanium

U = 0.5*4/3*(e(t))*r**2 ! [J] Lennar-Jones potential

end subroutine Atompot_Harrison_Spring

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Atompot_Tersoff - Tersoff potential. Doesn’t work in 1D

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Atompot_Tersoff(r,U,t)

real(kind=8) :: fc

real(kind=8), dimension(2) :: e,sig

integer(kind=8), intent(in) :: t

real(kind=8), intent(in) :: r

real(kind=8), intent(out) :: U

!e = 14e-16 * 6.24150974e11 ! [eV] LJ Parameters

e(1) = 3.4*q !16.9e-16 * 1e+7 ! [J] LJ Parameters Silicon

e(2) = 13.7e-16 * 1e+7 ! [J] LJ Parameters Germanium

sig(1) = 2.74e-10 ! [m]

sig(2) = 2.74e-10 ! [m]

fc = 0.5-0.5*sin(pi/2*(r-sig(t)/r))

U = 0.5*fc

end subroutine Atompot_Tersoff

This routine defines the boundary conditions and constructs the Green’s function for the phonon

NEGF model.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Negf_Bound - Boundary conditions - 1D Phonon NEGF

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Negf_Bound

integer(kind=4) :: n

real(kind=8) :: tm_ss, tm_se, wcut, Np1, Np2, dN

tm_ss = abs(H(1,1))
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tm_se = abs(H(Np,Np))

wcut = 2*sqrt(abs(tm_ss))

!write(*,*) ’wcut, ecut = ’,wcut,hbar*wcut

!if(hbar*wcut .lt. E(k)) then

!E(k) = 0

! write(*,*) ’Warning: Above cut off frequency’,E(k),hbar*wcut

!end if

!! Calculating Fermi functions of electrons entering through Silicon Source and Drain !!

call Startup_DOS(vsi,E(k),kT1,No1)

call Startup_DOS(vsi,E(k),kT2,No2)

!Derived the fermi function for Bose-Einstein particles, not the same as electronic NEGF

f1 = -No1*dlog(1-dexp((-E(k))/kT1)) ! 2D Source fermi function. Units of 1/m^2

f2 = -No2*dlog(1-dexp((-E(k))/kT2)) ! 2D drain fermi function. Units of 1/m^2

f3 = No1*(1-dlog(1-dexp((-(E(k)))/kT1))) ! 2D Source fermi function. Units of 1/m^2

f4 = No2*(1-dlog(1-dexp((-(E(k)))/kT2))) ! 2D drain fermi function. Units of 1/m^2

f5 = f_e(k,3) !fermi function of scatters -

! iteratively determine such that the current is conserved

!f1 = 1/(dexp(E(k)/kT1)-1)

!f2 = 1/(dexp(E(k)/kT2)-1)

!write(*,*) ’f1, f2 = ’,f1,f2

!dN = E(k)/kT1*exp(E(k)/kT1)/(exp(E(k)/kT1)-1)**2*dT

!write(*,*) ’df, dN = ’,f2-f1,dN

Sig1(:,:) = 0.0; Gam1(:,:) = 0.0; SigIn1(:,:) = 0.0; SigOut1(:,:) = 0.0

ka1 = i*(1-(1 - ((dcmplx((E(k)/hbar)**2) + zplus - dcmplx(Ds))/&

&(2.0*dcmplx(tm_ss))))**2)**0.5

ka1 = -i*cdlog((1 - ((dcmplx((E(k)/hbar)**2) + zplus - dcmplx(Ds))/&

&(2.0*dcmplx(tm_ss)))) + ka1)

! Real Wave vector of broadened wave at drain

! (ACOS can be written in LOG Format See Matlab Manual)

!ka1 = acos(1-real(((E(k)/hbar)**2 + zplus - Ds)/(2.0*dcmplx(tm_ss))))

Sig1(1,1) = dcmplx(-tm_ss)*zexp(i*ka1) ! (omega^2) Self energy of source

Gam1(1,1) = i*(Sig1(1,1) - conjg(Sig1(1,1))) ! (omega^2) Source broadening matrix

SigIn1(1,1) = Gam1(1,1)*dcmplx(f1) ! (omega^2/m^2) Inscattering term for source

SigOut1(1,1) = Gam1(1,1)*dcmplx(f3)

Sig2(:,:) = 0.0; Gam2(:,:) = 0.0; SigIn2(:,:) = 0.0; SigOut2(:,:) = 0.0

ka2 = i*(1-(1 - ((dcmplx((E(k)/hbar)**2) + zplus - dcmplx(Ds))/&

&(2.0*dcmplx(tm_se))))**2)**0.5

ka2 = -i*cdlog((1 - ((dcmplx((E(k)/hbar)**2) + zplus - dcmplx(Ds))/&

&(2.0*dcmplx(tm_se)))) + ka2)

! Real Wave vector of broadened wavGp at drain

! (ACOS can be written in LOG Format See Matlab Manual)

!ka2 = acos(1-real(((E(k)/hbar)**2 + zplus - Ds)/(2.0*dcmplx(tm_se))))

Sig2(Np,Np) = dcmplx(-tm_se)*zexp(i*ka2) ! (omega^2) Self energy of drain

Gam2(Np,Np) = i*(Sig2(Np,Np) - conjg(Sig2(Np,Np))) ! (omega^2) Drain broadening matrix

SigIn2(Np,Np) = Gam2(Np,Np)*dcmplx(f2) ! (omega^2/m^2) Inscattering term for drain

SigOut2(Np,Np) = Gam2(Np,Np)*dcmplx(f4)

Gamp(:) = 0.0
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if(f5 .ne. 0.0 .and. tst .lt. 5) Gamp = -SigInp(:,k)/f5-0.5*i*(SigOutp(:,k)+&

&SigInp(:,k))/f5 !omega^2

G(:,:) = (0,0);

do n = 1, Np

G1(n,n) = (0,0); G2(n,n) = (0,0)

end do

G1(1,1) = Sig1(1,1); G1(Np,Np) = Sig2(Np,Np) !(omega^2)

do n = 1, Np

G2(n,n) = ((dcmplx((E(k)/hbar)**2) + zplus)*eye(n,n))

!(omega^2) Simplify Addition Because Only Diagonal Terms

end do

call Matxopt_ztcpy(dcmplx(H),G,Np)

call Matxopt_sub_zdtf(G2,G,Np)

call Matxopt_sub_zdtf2(G1,G,Np)

call Matxopt_sub_zvtf2(Gamp,G,Np)

!G = (G2 - dcmplx(H) - G1) ! Green’s function (omega^2)

end subroutine Negf_Bound

This routine calculate the scattering matrices for the phonon NEGF model. The scattering is

handled by shifting the density of states.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Negf_Scatter - Calculate scattering matricies - Inelastic Scattering

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Negf_Scatter

double precision dlange

external dlange

integer(4) :: off, n, j, fp, fe

real(8) :: NW, NE_off, w_ph

SigInpNew(:,:) = 0.0; SigOutpNew(:,:) = 0.0

fp = floor(sqrt(DH(1))/dw)-Ns !starting eigenvalue

! note first bin not at zero so subtract Ns

fe = ceiling(sqrt(DH(Np))/dw)-Ns

do n=1, Np

w_ph = DH(n) !omega^2

if(mwa .eq. 1) then !use Maxwellian Approx for Dist

Nw = exp(-sqrt(DH(n))*hbar/kT) ! Simplified Bose-Einstein distribution

else

Nw = 1/(exp(sqrt(DH(n))*hbar/kT)-1) !true BE dist

end if

off = ceiling(sqrt(DH(n))/dw)-Ns

!! Reassigning density of states to accomodate scattering
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!! Need to take the view point of the final electron state

!nse = eoshift(Gnt, shift = -off, dim = 2) !E+hw emit phonon, !1/omega^2-m^2

!nsa = eoshift(Gnt, shift = off, dim = 2) !E-hw absorb phonon, !1/omega^2-m^2

!pse = eoshift(Gpt, shift = -off, dim = 2) !E+hw emit phonon, !1/omega^2-m^2

!psa = eoshift(Gpt, shift = off, dim = 2) !E-hw absorb phonon, !1/omega^2-m^2

call Matxopt_eoshift(Gnt,NE,off,nse) !E-hw final state is after emission

call Matxopt_eoshift(Gnt,NE,-off,nsa) !E+hw final state is after absorption

call Matxopt_eoshift(Gpt,NE,off,pse) !E-hw

call Matxopt_eoshift(Gpt,NE,-off,psa) !E+hw

! need to zero matrix below lowest eigenvalue because +hw can’t result

! in phonon scattered below allowed modes or above

call Matxopt_eozero(nsa,NE,fe)

call Matxopt_eozero(psa,NE,fe)

call Matxopt_eozero(nse,NE,fe)

call Matxopt_eozero(pse,NE,fe)

call Matxopt_eozero(nsa,NE,-fp)

call Matxopt_eozero(psa,NE,-fp)

call Matxopt_eozero(nse,NE,-fp)

call Matxopt_eozero(pse,NE,-fp)

!unroll multiplications

!use modified mattherson rule to add scattering rates, simple average

!1/omega^2-m^2*omega^4 = omega^2/m^2

!SigInpNewt and SigOutpNewt Calculated at beginning at top

SigInpNew = SigInpNew + So/(2*pi)*w_ph*SigInpNewt*((1+Nw)*nse + Nw*nsa)/Np

SigOutpNew = SigOutpNew + So/(2*pi)*w_ph*SigInpNewt* &

&((1+Nw)*(nse+psa) + Nw*(nsa+pse))/Np

if(debug_l >5) Si(:,:,n) = sqrt(So/(2*pi)*w_ph*SigInpNewt* &

&((1+Nw)*(psa+nse) + Nw*(nsa+pse))/Np) !scattering rate 1/s-m^2

end do

! Poisson convergence method

select case (coc_s)

case (1) ! Simple mixing

call Scatter_lin_smix(SigInpNew, SigInp)

call Scatter_lin_smix(SigOutpNew, SigOutp)

case (2) ! Anderson mixing

call Scatter_anderson(SigInpNew,SigOutpNew,SigInp,SigOutp)

end select

norm(1) = dlange(’i’,Np,NE,(SigInpNew-SigInp),LDA,WORK)

norm(2) = dlange(’i’,Np,NE,SigInp,LDA,WORK)

norm(3) = dlange(’i’,Np,NE,(SigOutpNew-SigOutp),LDA,WORK)

norm(4) = dlange(’i’,Np,NE,SigOutp,LDA,WORK)

if(norm(2) .ne. 0.0 .and. norm(4) .ne. 0.0) then

chng = norm(1)/norm(2) + norm(3)/norm(4)

else

if(norm(1) .ne. 0.0 .and. norm(3) .ne. 0.0) then

chng = 1;
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else

chng = 0;

end if

end if

! Write change of charge to screen

if(debug_l>2) write(6,’(/,A,ES11.4)’) ’Scatter chg = ’,chng

end subroutine Negf_Scatter

2D Thermionic - Electron NEGF

This routine constructs the Hamiltonian for the 2D thermionic device. It is necessary that the

Hamiltonian be Hermitian so care must be taken at mixed cell interfaces. Templates are used to

define the regions of material.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Hamil_Create_5pt_std - Create Hamiltonian Matrix - 2D Electronic NEGF

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Hamil_Create_5pt_std

integer(kind=4) :: m, j, n

real(kind=8) :: Hv1, Hv2, h1, h2, h3, h4

real(kind=8) :: tsy1, tsy2, tgy1, tgy2, tsx1, tsx2

real(kind=8) :: tgx1, tgx2, tpy1, tpy2, tpx1, tpx2

do m = 1,Ndy

do j = 1,Ndx

n = (m-1)*Ndx + j

!! Effective Mass Hamiltonian - H(1,1) Upper Left Corner

h1 = 0; h2 = 0; h3 = 0; h4 = 0 ! Non-uniform Grid Parameters

if(m .eq. 1) then

h1 = Gdy(m)

h2 = Gdy(m)

else

h1 = Gdy(m)

h2 = Gdy(m-1)

end if

if(j .eq. 1) then

h3 = Gdx(j)

h4 = Gdx(j)

else

h3 = Gdx(j)

h4 = Gdx(j-1)

end if

!Calculate Inter-unit cell coupling energy

call Hamil_Couple(me_m,Ecm,h1,tsy1,m,n) ! Vacuum

call Hamil_Couple(me_m,Ecm,h2,tsy2,m,n)

call Hamil_Couple(me_e,Ece,h1,tgy1,m,n) ! Cathode

call Hamil_Couple(me_e,Ece,h2,tgy2,m,n)
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call Hamil_Couple(me_m,Ecm,h3,tsx1,m,n)

call Hamil_Couple(me_m,Ecm,h4,tsx2,m,n)

call Hamil_Couple(me_e,Ece,h3,tgx1,m,n)

call Hamil_Couple(me_e,Ece,h4,tgx2,m,n)

call Hamil_Couple(me_p,Ecp,h1,tpy1,m,n) ! Anode

call Hamil_Couple(me_p,Ecp,h2,tpy2,m,n)

call Hamil_Couple(me_p,Ecp,h3,tpx1,m,n)

call Hamil_Couple(me_p,Ecp,h4,tpx2,m,n)

!! Warning - It is important that the Hamiltonian is Hermitian

! The conduction band edge is added here so it is Hermitian. Note

! we will only be iterating poissons eq for the electrostatic potential

! Conduction Band Edge For POTENTIAL!

H(n,n) = (Ecm*Td(m,j) + Ece*(1-Tde(m,j)) + Ecp*Tdp(m,j))

if (m .lt. Ndy .and. m .gt. 1) then

Hv1 = tsy1*Tdc(m,j) + tgy1*(1-Tdc(m,j)) + tpy1*(Tdp_c(m,j))

Hv2 = tsy2*Tdc(m-1,j) + tgy2*(1-Tdc(m-1,j)) + tpy2*(Tdp_c(m-1,j))

H(n,n) = H(n,n) + Hv1 + Hv2

H(n,n+Ndx) = H(n,n+Ndx) - Hv1 !Down

H(n,n-Ndx) = H(n,n-Ndx) - Hv2 !Up

else if (m .eq. Ndy) then

Hv2 = tsy2*Tdc(m-1,j) + tgy2*(1-Tdc(m-1,j)) + tpy2*(Tdp_c(m-1,j))

H(n,n) = H(n,n) + 2*Hv2

H(n,n-Ndx) = H(n,n-Ndx) - Hv2 !Down, Reflective

H(n,n-Ndx*(Ndy-1)) = H(n,n-Ndx*(Ndy-1)) - Hv2 !Down, Reflective

else if (m .eq. 1) then

Hv1 = tsy1*Tdc(m,j) + tgy1*(1-Tdc(m,j)) + tpy1*(Tdp_c(m,j))

H(n,n) = H(n,n) + 2*Hv1

H(n,n+Ndx) = H(n,n+Ndx) - Hv1 !Up, Reflective

H(n,n+Ndx*(Ndy-1)) = H(n,n+Ndx*(Ndy-1)) - Hv1 !Up, Reflective

end if

if (j .gt. 1 .and. j .lt. Ndx) then

Hv1 = tsx1*Tdb(m,j) + tgx1*(1-Tdb(m,j)) + tpx1*(Tdp_c(m,j))

Hv2 = tsx2*Tdb(m,j-1) + tgx2*(1-Tdb(m,j-1)) + tpx2*(Tdp_c(m,j-1))

H(n,n) = H(n,n) + Hv1 + Hv2

H(n,n-1) = H(n,n-1) - Hv2 ! Left

H(n,n+1) = H(n,n+1) - Hv1 ! Right

else if (j .eq. 1) then

Hv1 = tsx1*Tdb(m,j) + tgx1*(1-Tdb(m,j)) + tpx1*(Tdp_c(m,j))

H(n,n) = H(n,n) + 2*Hv1

H(n,n+1) = H(n,n+1) - Hv1 ! Right

else if (j .eq. Ndx) then

Hv2 = tsx2*Tdb(m,j-1) + tgx2*(1-Tdb(m,j-1)) + tpx2*(Tdp_c(m,j-1))

H(n,n) = H(n,n) + 2*Hv2

H(n,n-1) = H(n,n-1) - Hv2 ! Left

end if

end do

end do

end subroutine Hamil_Create_5pt_std
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Hamil_Couple - Calculate Coupling Energy

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Hamil_Couple(m,Ec,a,t,mn,nn)

integer(kind=4), intent(in) :: mn, nn

real(kind=8), intent(in) :: m, a, Ec

real(kind=8), intent(out) :: t

t = (hbar**2.0)/(2.0*m*(a**2.0)*q) ! Inter-unit cell coupling energy for silicon

if(rank .eq. 0) call Errors_HamilE(t,Ec,Ef,a,mn,nn)

end subroutine Hamil_Couple

This routine defines the boundary condition for a 2D electron Hamiltonian and constructs the

Green’s function.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Negf_Bound - Boundary conditions

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Negf_Bound

integer(kind=4) :: n

real(kind=8) :: tm_p, tm_e, tm_m

call Hamil_Couple(me_p,Ecp,Gdx(1),tm_p,1,1)

call Hamil_Couple(me_e,Ece,Gdx(Ndx),tm_e,1,1)

call Hamil_Couple(me_m,Ecm,Gdx(Ndx),tm_m,1,1)

call Startup_Fermi(me_p,kT2,No1) ! Constant used in Fermi function (drain) (1/m2)

call Startup_Fermi(me_e,kT1,No2) ! Constant used in Fermi function (emitter) (1/m2)

!! Calculating Fermi functions of electrons entering through Silicon Source and Drain !!

if((E(k)- mu + V)/kT2 .gt. 800 .and. (E(k)- mu2)/kT1 .gt. 800) then

!left boundary

f1 = No1*dlog(1+dexp((-(E(k)- mu + V/2))/kT2)) ! 2D Collector fermi function [1/m^2]

!right boundary

f2 = No2*dlog(1+dexp((-(E(k)- mu2 - V/2))/kT1)) ! 2D Emitter fermi function [1/m^2]

else

f1 = No1*dlog(1+1/(1+dexp((E(k)- mu + V/2)/kT2))) ! 2D Collector fermi function [1/m^2]

f2 = No2*dlog(1+1/(1+dexp((E(k)- mu2 - V/2)/kT1))) ! 2D Emitter fermi function [1/m^2]

end if

ka1 = i*(1-(1 - ((dcmplx(E(k)) + zplus - dcmplx(Ds) - V/2)/(2.0*dcmplx(tm_p))))**2)**0.5

ka1 = -i*cdlog((1 - ((dcmplx(E(k)) + zplus - dcmplx(Ds) - V/2)/(2.0*dcmplx(tm_p)))) + ka1)

! Real Wave vector of broadened waves at drain

! (ACOS can be written in LOG Format See Matlab Manual)

do n = 1, Np, Ndx

Sig1(n) = dcmplx(-tm_p)*zexp(i*ka1) ! Self energy of source [eV]

Gam1(n) = i*(Sig1(n) - conjg(Sig1(n))) ! Source broadening matrix [eV]
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SigIn1(n) = Gam1(n)*dcmplx(f1) ! Inscattering term for source [eV/m^2]

end do

ka2 = i*(1-(1 - ((dcmplx(E(k)) + zplus - dcmplx(Ds) + V/2)/(2.0*dcmplx(tm_e))))**2)**0.5

ka2 = -i*cdlog((1 - ((dcmplx(E(k)) + zplus - dcmplx(Ds) + V/2)/(2.0*dcmplx(tm_e)))) + ka2)

!be careful, whole bottom or just emitter?

do n = Ndx, Np+1, Ndx

Sig2(n) = (0.0,0.0) !dcmplx(-tm_m)*zexp(i*ka2) ! Self energy of drain [eV]

Gam2(n) = i*(Sig2(n) - conjg(Sig2(n))) ! Drain broadening matrix [eV]

SigIn2(n) = Gam2(n)*dcmplx(f2) ! Inscattering term for drain [eV/m^2]

end do

!do n = Ndx, Np+1, Ndx

do n = Ndx*(Neby+1), Ndx*(Neby+Nwey+1), Ndx

Sig2(n) = dcmplx(-tm_e)*zexp(i*ka2) ! Self energy of drain [eV]

Gam2(n) = i*(Sig2(n) - conjg(Sig2(n))) ! Drain broadening matrix [eV]

SigIn2(n) = Gam2(n)*dcmplx(f2) ! Inscattering term for drain [eV/m^2]

end do

G1(:,:) = (0,0);G2(:,:) = (0,0)

do n = 1, Np, Ndx

G1(n,n) = Sig1(n) ![eV] Simplify Addition Because Only Periodic Diagonal Terms

end do

do n = Ndx, Np+1, Ndx

!do n = Ndx*(Neby+1), Ndx*(Neby+Nwey+1), Ndx

G1(n,n) = Sig2(n) ![eV]

end do

do n = 1, Np

G2(n,n) = ((dcmplx(E(k)) + zplus)*eye(n,n) - dcmplx(Ua(n)) + dcmplx(U(n,n)))

![eV] Simplify Addition Because Only Diagonal Terms

end do

G = (G2 - dcmplx(H) - G1) ! Green’s function [eV]

end subroutine Negf_Bound

This routine outputs a 3d plot of the local density of states in a VTK format to be opened in

Paraview visualization software.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

! Output_vtk_ldos - Plot Density of State (3d plot)

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

subroutine Output_vtk_ldos(A,c)

integer(kind=4) :: r, n, j, k, err

real(kind=8) :: w, l, Em

character*100 :: var

character*80 :: Fname
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integer(kind=4), intent(in) :: c

real(kind=8), dimension(:,:), intent(in) :: A

103 format (A)

104 format (ES12.5)

105 format (A,1X,I5,I5,I5)

106 format (A,I5,A)

107 format (A,I7)

Fname = Utility_MakeFileName(’ldos’,c,’vtk’)

open (unit=19, file=Fname, status=’NEW’, action=’write’, iostat=err)

write(var,*) Fname

call Errors_Fileopen(err,var)

write(19,103) ’# vtk DataFile Version 2.0’

write(19,103) ’Field Emission Device - LDOS’

write(19,103) ’ASCII’

write(19,103) ’DATASET RECTILINEAR_GRID’

write(19,105) ’DIMENSIONS’,Ndx,Ndy,NE

l = 0; w = 0

write(19,106) ’X_COORDINATES ’,Ndx,’ float’

do n=1,Ndx

write(19,104) l !Points

l = l + Gdx(n)

end do

write(19,106) ’Y_COORDINATES ’,Ndy,’ float’

do j=1,Ndy

write(19,104) w !Points

w = w + Gdy(j)

end do

Em = maxval(E)

write(19,106) ’Z_COORDINATES ’,NE,’ float’

do r=1,NE

write(19,104) E(r)/Em*l !Points

end do

write(19,107) ’POINT_DATA’, NE*Np

write(19,103) ’SCALARS LDOS float 1’

write(19,103) ’LOOKUP_TABLE default’

do r=1, NE

do k=1,Ndy

do n=1,Ndx

j = (k-1)*Ndx + n

write(19,104) A(r,j)/(2.0*pi) !LDOS Contour Plot

end do

end do

end do

close(unit=19)

end subroutine Output_vtk_ldos
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