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CHAPTER I 
 
 
 

THE DEVELOPMENT OF AN ENGINEER 
 
 
 

Introduction 

 A young child dreams of being an astronaut.  She dreams of piloting a complex 

rocket full of buttons and gadgets through the sky and discovering new planets in the 

unknown, unchartered universe of scientific frontiers. As the child grows, she makes her 

way through the sacred halls of formal schooling.  She takes classes, goes to college, and 

starts to work.  Somewhere along this way, the stars and spaceship dreams of her 

childhood become obscured, maybe by the ceiling of an unsupportive classroom, maybe 

by the bright lights of other opportunities.  More likely than not, when we see the adult, 

the starry-eyed engineer is no longer there.  Where did she go? 

 In this dissertation, I examine the formal mechanisms that create qualified 

engineers.  I am motivated by the important role that engineers play in the economic and 

social development of nations around the world.  I am further motivated by the justice 

and importance of supporting children from all backgrounds in their aspirations to 

become engineers. I use quantitative and qualitative analyses to understand the factors 

that influence engineering achievement and application.  I focus on college factors, and I 

extend the central analysis with studies of pre-college problem-solving achievement and 

post-college choice. A broader understanding of the engineering training process as a 

whole gives policymakers a more nuanced, detailed understanding of where to target 
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solutions as well as an increased understanding of areas that previously posed challenges 

in research design and analysis.  

 

The Engineering Pipeline 

 The chronology of formal engineering training is often described as a pipeline 

(e.g., National Science Foundation, 1987), one that runs from the student’s birthplace, 

into pre-school acculturation in the home, through mandatory primary and secondary 

schooling, up to formal engineering training in college, and finally leading to engineering 

practice in the labor market.  This pipeline is leaking.  Policymakers are worried.  Who 

will build the society of tomorrow, and, more urgently, who will fix the society of today?  

 Engineering knowledge is vital to the development and sustainability of 

industrialized economies.  The National Academy of Engineering describes how the most 

pressing challenges of the day—for example, making solar energy economical or 

securing cyberspace—require engineers to lead in their solution (National Academy of 

Engineering, 2010).  This dissertation examines three major points at which the pipeline 

is losing engineers.  Further, I examine the identity of the engineer who either persists 

through or stops out of the engineering training process.  I divide the turning points in the 

engineering pipeline into two categories: obstacles to continuation within the pipeline and 

outside alternatives that draw potential engineers into other fields.  Why is this important 

conduit of human capital leaking?  And for whom?
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 Figure 1 details the course of the engineering pipeline.  Engineers’ trajectories 

start from the earliest moments—in the home—where they begin with the personal 

characteristics of their birth (e.g., gender, race/ethnicity).  They are then exposed to social 

and cultural experiences in their home and their community.  They move into required 

formal schooling, where they, along with their peer group are exposed to the particular 

resources and practices of that school.  Up until this point, they have begun the decision-

making process that leads to their choice to study engineering in university. After primary 

and secondary school, they make the additional decision of the university they attend.  

Once in university, they are provided with a set of resources and experiences particular to 

that institution.  They make the decision to stay in the program, and they also make the 

decision to complete their undergraduate degree.  Finally, they choose to enter the labor 

market in a certain sector. 

 At each turning point, engineers are faced with choices—both in persisting or 

exiting the pipeline as well as in their choice of major/sector of engineering.  They are 

also faced with obstacles and competing alternatives to their continuation—barriers and 

leaks in the system.  The obstacles and alternatives presented to each engineer differ 

greatly.  A number of factors go into the engineer’s decision-making process, but one of 

the most important is her accumulation of technological capital. 

 I argue that technological capital, its acquisition, and its application are actually 

new components of contemporary cultural capital.  In this introduction, I first define 

technological capital and how it fits within the established frameworks of social and 

cultural capital.  I then discuss each of the important components illustrated in the 

pipeline diagram to understand how earlier works on social and cultural capital inform 
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this model. I begin with the first components of the pipeline: home factors and pre-school 

acculturation.  I present ways in which seminal social and cultural capital work informs 

the relationship between out-of-school factors and in-school opportunities.  I then discuss 

the ways in which mandatory schooling and engineering training further constrain the 

opportunities of students.  I describe the reproduction mechanisms of selection into 

higher levels of education and the social and cultural capital components that moderate 

selection.  Next, I proceed to discuss the more specific tracks that engineers might 

choose, citing literature on tracking and its relationship to social and cultural background.  

Finally, I discuss the differential outcomes that engineers going through this “pipeline” 

encounter. I describe broad frameworks for human development. I conclude this chapter 

by describing the structure and contribution of the rest of the dissertation. 

 

Technological Capital 

 I begin by defining technological capital and justifying its distinction from other 

forms of cultural capital. In this dissertation, I extend cultural capital to include the newer 

dimension of “technological capital”.  Technological capital consists of both the 

understanding of digital tools as well as how these tools are applied.  For example, 

technological capital includes the types of phones that different groups of people view as 

normal or acceptable.  Low-income Americans make up the majority of the user 

population for pre-paid cellular phones, while post-paid plan users have higher incomes 

overall (Sullivan, 2011). 

 Technological capital, its acquisition, and its use all exhibit the same 

characteristics as other components of cultural capital.  Technological capital comes with 
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a certain lexicon, words to indicate one’s knowledge of objects in the area, similar to the 

valuation of certain types of art or leisure activities (Bourdieu, 1977).  It comes with a 

specific history, an understanding of a constructed hierarchy of types of technology, uses 

of technology, and pressure for the most recent technological tool.  With an 

understanding of the technologies that should be valued, one can gain entry into more 

privileged social circles. 

 

 

 

 

Figure 2. Technological Capital as a Component of Cultural Capital 

 

 Certain technologies received more valued status in society at large, though their 

valuation is often unrelated to their efficacy, arbitrarily constructed as more- or less-

privileged groups espouse given technologies en masse.  The school system is then set up 

to reward certain types of technology use and awareness.  For example, while schools 

attended by more privileged groups may inculcate a respect for the fields of engineering 
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and hard sciences, schools attended by less privileged groups may focus more on 

vocational technical work as a valued profession.  While more privileged schools may 

invest in curricula that ask students to use technology to search for information at home, 

less privileged schools may only present computers as places for free-time game use. (I 

base these subject-specific hypotheses on general findings of differences in curricula 

between schools by Anyon [2008], which I describe further below.) 

 As with other forms of cultural capital, technological capital intersects with the 

dimensions of race, class, gender, culture, and age.  Social capital broadly includes both 

the connections between members of a specific group (bonding capital) and the links to 

other groups in the larger society (bridging capital); communities create both bonding and 

bridging capital in the dimension of technological capital as well (Coleman, 1988).  

Within a community, certain types of technology and careers that employ technology are 

valued.  For example, a given community may contain numerous role models who work 

in engineering.  Members of the community may underscore the value of an engineering 

career and the importance of studying science, math, and technology.  Other communities 

may not.   

 The capacity to own and demonstrate use of prized technology signals an 

individual’s possession of valued technological capital.  Technological capital is a new 

addition to the dimensions of cultural capital; it is distinct from linguistic cultural capital 

as it is both a language as well as a physical and conceptual resource and an avenue to 

information.  I use it here to refer specifically to engineering and information and 

communication technologies, often digital today. 
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Home and Community: the Beginning of the Pipeline 

 Before a student even enters a school, the engineering pipeline begins in the 

home.  I begin here as well, incorporating important social and cultural capital 

frameworks that describe the reproduction of social and economic hierarchies stemming 

from a student’s home environment.  The course that a student follows later in life 

derives from early exposure to elements of class and culture, career aspirations and 

educational motivation, and norms and practices in her home.  Early work by Bowles and 

Gintis (1976), based on earlier work of Marx and Weber, laid the groundwork for the 

ideas of cultural capital and habitus, describing the way the needs of an industrial 

economy create a hierarchical system with differentiated jobs that must be filled.  The 

hierarchies mimicked by schools condition students both to be prepared for and to accept 

the same status jobs that their parents have in the industrial economy.  The structure of 

society is reproduced via the school system. The general knowledge, behavior, and skills 

are passed from one generation within a social group/class to the next, so children, by 

virtue of birth, are provided with distinct stocks.  Schools, as institutions of the 

community and controlled by the dominant classes, tend to systematically favor the 

capital possessed by these same dominant classes and devalue that of the less-privileged.  

Schools put a value on background factors, and these are converted into “objective” 

currencies such as jobs, achievement, and salaries. 

Specifically, the example of language illustrates how a student’s background 

translates into commodifiable resources (Bernstein & Heath, as cited in MacLeod, 1995).  

The authors note that membership in different social milieus generates distinct 

vocabulary and speech patterns through socialization.  This linguistic cultural capital 
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becomes an enabler or an impediment in school, where certain cultural resources are 

valued, and only some children may actually have the resources that are being measured. 

 Collins (1977) lays out a theory of conflict, drawing on Weber (and Marx) to 

describe how culturally distinguished groups struggle for an advantage for various goods.  

Collins proceeds to describe how education serves the purpose of teaching to particular 

groups.  Individuals are “allocated” to these groups by institutions, often through schools 

(Meyer, 1977).  These schools may be put in place by implicit or even explicit purposes 

of cultural and social control; for example, Rogoff (2003) describes the relationship 

between cultures of schooling and their purposes in how Western schools were used as 

foreign missions, colonializing tools, and supports for American expansion.  On the other 

hand, tailoring schools to target the local context may be the most efficient; Miller and 

Shinn (2005) describe the utility that policy interventions can gain from building on 

indigenous knowledge.  The relationship of in-school learning to home background is 

visible in science education as well.  Children in a rural Mexican community, for 

example, share core sets of community knowledge related to plants (Wyndham, 2010). 

The knowledge that students begin to accrue and value in the home translates to the 

capital they bring with them through later steps in the engineering pipeline. I note this in 

my studies by focusing on the environments in which students access technological 

resources and noting the predictive power of their background factors. 

 Social capital—as conceptualized by obligations and expectations, information 

channels, and social norms—is a resource for actions on the part of the student, whether 

individually, within the family, or within the community.  Coleman (1988) expounds on 

the relationship between social capital, other forms of capital, and the other people with 
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whom high school dropouts interact.  The student’s decisions are an amalgam of 

individual “rational actor” choices and accepted directions within the social context. The 

decision-making process as it relates to the engineering pipeline is described further 

below.  The idea of the social context extends to an understanding of space and place as 

important determinants of students’ opportunities.  Lareau (2003) looks at the very 

different day-to-day lives of children living in close proximity, but different 

neighborhoods, from each other.  These children experience their respective locales very 

differently, and their interactions with school are starkly contrasted. 

 These interactions are characterized by the cultural capital that students display, 

the markers they show to indicate their group membership and the resources (including 

technological capital) that they possess. The idea of “habitus” describes how a student’s 

“natural” behavior translates into accessibility of resources.   Bourdieu (1977) describes 

how children of different classes inherit vastly different stocks of cultural capital.  These 

children come to school with different “habitus” resources, systems of “lasting, 

transposable dispositions which, integrating past experiences, [function] at every moment 

as a matrix of perceptions, appreciations, and actions” (Macleod, 1995, p. 14).  Implicit 

biases, whether or not they are founded, leads to administrators, teachers, and others in 

power to reward students differentially.  In a more recent example, researchers find that 

math teachers are consistently biased against female students (Riegle-Crumb & 

Humphries, 2012).  This applies to the understanding of technology and its application 

that I investigate in my dissertation.  I find support for the theoretical frameworks of 

social reproduction, that students who come from different backgrounds, even when 

exposed to the same resources, understand and appreciate technological tools in different 
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ways. The root of the engineering pipeline—the home and the community—is the source 

of many of differences that we see further down the line. 

 We want to learn.  We crave new information, novel stimulation for our neurons.  

Universally, people want to feed their brains, advance their careers, and use knowledge to 

create stable lives for themselves and their families.  And yet, we cannot escape the 

nature of the jungle around us.  Complex differences in political structures, cultural 

norms, geographical characteristics, and economic backgrounds incubate together to 

create challenges and opportunities unique to our individual situations.  As students apply 

the technological capital and other resources that they have amassed, they move in 

different ways through the educational system. I focus on the background characteristics 

of gender, race, and socioeconomic class as important determinants of engineering 

educational opportunity and achievement. 

 

Next in the Pipeline: Mandatory Schooling and the Beginning of Selection 

After growing up in a given community and beginning to understand the world 

through their own unique lens, students enter the formal education component of the 

engineering pipeline.  There, a series of selection processes direct them into various 

sectors of schooling.  This selection is not entirely random.  One of the most problematic 

challenges in empirical investigations of returns to educational inputs is the fact that 

different types of students systematically choose different schools, programs, and careers.  

The process of selection happens multiple times throughout the pipeline, and it is done by 

institutions and policymakers as well as the students.  There is a self-selection process in 

the choices students make, and, often, there is a “creaming” of the student pool with 
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groups that are seen as having the highest potential allowed to move on to the next level 

of education.  I detail further here the theoretical work in social capital and development 

economics that describes how both the individual and the society selects the students who 

will continue on in the engineering pipeline and those who will not advance. 

The technical-functional theoretical perspective offers that, in an industrialized 

society, schools serve as an efficient apportioning tool.  The skills required of workers are 

met by their educational training.  Educational requirements are constantly increasing as 

the skills required for jobs increases (Collins, 1977).  A more progressive view, though, 

argues that education merely serves to justify the stratifications already extant in society 

(see above).  Meyer’s work (1977) puts forth numerous propositions illustrating how 

schools are used to allocate students to different social groups; many of these allocation 

mechanisms are less related to providing freedom of choice to the individual or to 

answering the diverse needs of a society than they are to reproducing previous structures 

of power. 

From a societal (or policymaking) perspective, education can be used as a way of 

controlling the human capital necessary for their economies—if more engineers of a 

certain type are needed, educational planning can deliver these workers.  Orazem and 

King (2008) detail a basic economic cost-benefit supply-demand model for local and 

central government policymakers.  The authors describe an equilibrium model 

incorporating a supply of spots in schools and a demand by households for schooling 

(based on price, household income, and wages the child would earn at that time).  This 

model describes how and where governments might decide to subsidize schooling or 

limit access.  Private schools, for example, or vouchers, may be tools for policymakers to 
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create structures promoting or hampering access or career direction.  And, as investigated 

in my dissertation, selection into public or private schools is an important mechanism by 

which the engineering pipeline is segregated.  Given the link between household income 

and school attendance, governments may increase household resources to increase 

educational access (in practice, often with conditions, e.g., Progresa [Schultz, 2004]).  

This example is one that attempts to tailor itself to the context, focusing on the 

opportunity cost in rural areas and allocating more money to girls, and, as a result, 

changing the household decisionmaking process to alleviate barriers to access. 

 The education decision-making process is not one-sided; policymakers may shape 

the demand for certain skills, but students and families form the supply of students and 

graduates.  The needs and desires of policymakers may not always align with those of 

households or individuals, and, further, policy interventions may not always have the 

intended consequences.  For example, while increasing enrollment has characterized an 

achievement of increased access, there has not been a commensurate increase in skills 

achievement, though governments increasingly want higher skilled workers (Orazem & 

King, 2008).   

 The decisions of students and their families are just as complex as those made by 

policymakers.  Based on a traditional household model of decision-making regarding 

human capital investments, I look at the decisions an individual makes as she goes 

through the formal schooling component of the engineering pipeline. Orazem and King 

(2008) describe benefits to schooling in terms of anticipated future earnings (discounted 

at a rate that depends on the family’s income), a function here of years of schooling and 

exogenous factors related to schooling outcomes (e.g., ability, school quality).  This 
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depends on how useful a child’s time is in the home versus in school (and in the future if 

more educated) and on the quality and quantity of school supply.  Further, girls’ time is 

often more valuable in the home in rural, developing contexts, and their human capital 

may be discounted by their parents relative to boys’ learning.   

Perceived costs to schooling may include explicit costs such as tuition, uniforms, 

and other inputs, as well as fixed opportunity costs such as current foregone earnings.  

Context-specific considerations, such as the average amount of schooling, preclude or 

change decisions for students from certain milieus—e.g., in some contexts, it may be 

significant if a child EVER attends school.  Investment in human capital may change 

based on the knowledge that an educated student may emigrate; considering mobility 

from a household perspective, rural households may under-invest in education because 

the external benefits of educated rural children are transferred to urban areas instead of 

their home locales (Orazem & King, 2008).  Parents’ and students’ access to information 

(Stanton-Salazar & Dornbusch, 1995), peer behavior (Tierney & Venegas, 2006), role 

models and learned role confidence (Cech et al., 2011), and risk aversion (Duflo, 2006; 

Perna, 2006) all combine to determine selection into further schooling. In most cases, this 

means that traditionally underserved groups—low-income, racial/ethnic minorities, and 

women—systematically select out of persisting through the engineering pipeline at higher 

rates.  

 Anyon’s research underscores the fact that school selection practices are unequal 

in relation to out-of-school factors, as school knowledge and class are closely related; 

students in schools that serve working class families receive different content in a 

different format from students in schools that serve professional or elite families (Anyon, 
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2008).  Meyer describes numerous ways in which schools use their structures to allocate 

people to unequal outcomes in social status groups (Meyer, 1977).  Anyon (2008) further 

describes how schools can be tailored, but in a perversely stratifying way, whereby 

students receive different curricula (as noted before in an example regarding 

technological capital) and have different behavior demonstrated to them depending on 

their SES.  The selection barrier, even during mandatory primary and secondary 

education, is one way that the pipeline is broken, and I illustrate how this barrier 

disproportionately affects students with less-valued technological capital.  

 

The Crux of the Pipeline: Engineering Training and Differentiation  

 The core of engineering training is usually seen as the undergraduate degree 

experience.  Here, students are further tracked into schools and more specifically into 

disciplines of engineering.  Formal “tracking systems” are another reason the pipeline is 

has a multitude of problems.  Students do not completely have free rein to choose the 

education they receive. Entrance into different levels of schooling, types of schools, and 

programs of study are often based on entrance exams, prior training, or other 

qualifications (e.g., Brazil’s ENEM; Instituto Nacional de Estudos e Pesquisas 

Educacionais Anísio Teixeira, 2012).   Further, students who are traditionally 

disadvantaged find themselves disproportionately less likely to enroll or persist through 

college, and, further, to enroll or persist in higher-reward tracks (e.g., Stanton-Salazar & 

Dornbusch, 1995; Perna & Titus, 2005).  Major works in social reproduction theory in 

the previous section describe how students from different backgrounds are differentially 

prepared to access higher levels of schooling overall. In this section, I further detail how 
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this selection mechanism works even within disciplines or within the same schools ; the 

mechanism of tracking and differentiation between more- or less-valued types of 

engineering provides inequitable access to more-valued technological capital. 

Social establishments are created to serve the members of the community.  The 

institution of the formal public school is often burdened with the purpose of providing an 

equal learning platform to all and serving as a social equalizer; the movement for 

universal primary education (e.g., the United Nations Educational, Scientific, and 

Cultural Organization [UNESCO]’s Education for All) pushes for a country’s formal 

public school as providing a basic right across the nation. However, some scholars argue 

that as one of the first, most formative social institutions that nearly all inhabitants will 

encounter, formal schools actually serve to exacerbate and solidify the inequalities 

already present in society. While policymakers may portray this as an "apportioning" 

function of schools, which provide differentiated labor for a diversified economy, 

tracking inequitably distributes students within schools and within areas of study that are 

hierarchically rewarded. 

 Processes and pedagogies such as tracking within schools have been shown to 

have notable effects on student achievement (Gamoran & Berends, 1987).  Further, even 

within the same schools, the techniques devoted to children of different backgrounds 

differ vastly, and the experiences that students have are, on average, quite different 

(Jencks & Phillips, 1998).  Scholars continue to debate the structure and consequences of 

this phenomenon (Hallinan & Oakes, 1994).  Students of different backgrounds are 

represented disproportionately in different academic tracks (Kelly, 2008).  Gamoran 

(2004) shows that these tracks receive different content, which, especially for disciplines 
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like math which build on prior knowledge, makes catching up difficult; what is more, 

teacher quality measures show that the more experienced teachers are seen as necessary 

for the more advanced tracks.   

 One of the most common ways of tracking in engineering is structural, between-

school tracking for academic and vocational studies; this type of tracking is especially 

relevant for engineering and technical studies.  The debate between vocational and 

academic training has been long and contentious (e.g., Foster, 1965; Psacharopolous, 

1987).  Many bodies recognize the need for higher education opportunities to be diverse 

(e.g., Task Force on Higher Education and Society, 2004).  Indeed, arguments over 

financing higher education through rates of return analysis contend that allowing general 

education or individual choice results in an overabundance of graduates in the wrong 

fields (Psacharopoulos, 1986). Such arguments justify the need for government 

intervention to actually promote tracking.     

 Economic analyses (Psacharopoulos, 1987) further argue that the 

individual returns to vocational education outweigh its public costs, since vocational 

education tends to be more expensive due to financing for equipment and infrastructure.  

Debate then becomes even more complicated as policymakers look to private financing 

for vocational education, though it is more often the case that low-SES students are 

tracked here (Bennell, 1996).   

Even decades ago (Foster, 1965), international policymakers pointed out that, 

given the agricultural nature of less-developed areas, broad access to vocational and 

technical education would be important, perhaps more beneficial even than academic 

training.  Technical and vocational education (TVE) provides immediately-marketable 
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skills, and these practical fields may be directly applicable to infrastructural development 

needs.  While tracking may serve as an apportioning tool, having multiple tracks within 

engineering does allow for diverse alternatives from which students can choose their own 

path.   However, the way that tracks are rigidly stratified places limitations on students 

going through the engineering pipeline. 

Even early scholars (Foster, 1965) pointed out that some variables were missing 

from this kind of analysis.  Students of TVE (technical and vocational education) would 

not be flexible and prepared for a shifting labor market; the fields of TVE would have to 

match quite well with job needs; and the populations accessing TVE might perpetuate 

social inequalities.  And, vocational and academic education need not be seen as direct 

substitutes, as both have social benefits. More recently, some point out that skills and 

information possession in the modern “knowledge economy” are a currency in and of 

themselves.  The tracking mechanisms of the engineering degree channel the flow of 

engineers through the pipeline into different opportunities; more lucrative opportunities 

are disproportionately offered to students who have more of the traditionally-valued 

technological capital. 

 

Entering the Labor Market: Engineering, Technology, and Development  

 Finally, the engineer has reached “certification” status and is ready to enter the 

labor market.  Policymakers are increasingly concerned with concerned with which 

students will reach this point and where engineering students will enter the labor 

market—the final step in the engineering pipeline.  In particular, policymakers in low-

income contexts are concerned about graduates who will emigrate.  Increased schooling 
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may allow students more freedom in mobility (Orazem and King, 2008), and central 

government oversight of local education may be useful to the source country because of 

increased intra- and inter-country migration.  Interregional migration may have public 

benefits (Schultz, 1964; Saxenian, 2005), but more often, policymakers are worried about 

the flight of human capital from the home country.   

For students making study and career decisions, some factors weigh more heavily 

in the decisionmaking process than others.  Harren (1979) creates a career decision-

making model which divides the “process” of choosing a major into distinct areas: 

awareness, planning, commitment, and implementation.  In my study, I ask students 

about their perceptions in these different stages, as well as their aspirations.  Studies that 

have polled students about the factors they considered when choosing an engineering 

major show that financial considerations are often cited, and a “match with interests” may 

be the most important (Beggs, Bantham, & Taylor, 2008), which I include in my survey. I 

use student perceptions and ask about individual factors as well as perceptions of broader 

factors. 

 Decision-making processes differ by SES, and the starkest contrast can be seen 

for students living at the margins of poverty. Duflo (2006) describes the decision-making 

process of the poor as adhering to an appropriate rationale to which classical economic 

theory is not applicable.  Banerjee and Duflo (2007) summarize household surveys in a 

number of contexts to describe “the way the extremely poor live their lives” (p. 141), 

illustrating the ways in which this descisionmaking process differs from the rational actor 

model normally applied in previous studies of student choice.  This has important 
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implications for engineering and technology, as the most beneficial technological training 

may not always be chosen by the students who could most benefit from it. 

 Lou (2011) provides an empirical example of the decision-making process for 

students from a village background.  She investigates how rural students navigate the 

decision to leave (or not) their home for the appeal of the city. In her ethnography, she 

looks at how rural students view their own locales as industrialization takes place in the 

towns and cities nearby.  Leaving for “the city” is “romanticized” as opposed to the 

“polluted”, corrupt countryside, and schooling is seen as the path there.  However, a 

competing perspective sees schools as a place of huge academic pressure that is not 

completely delivering on the students’ hopes, and more students are dropping out.  For 

whom is schooling providing opportunities? Who can access development? 

 At the national level, the engineering pipeline is a key component of development 

and sustained growth.  And, at the individual level, information and communication 

technology (ICT) has become a type of cultural capital; in addition, a student's capacity to 

enter the engineering labor market at an advantageous point is also a component of 

technological capital.  Both the possession and use of technological capital are part of 

Sen’s concept of capabilities and an individual’s own freedom.  Sen defines 

“capabilities” as the combinations of functionings accessible to a person, the life they can 

choose for themselves.  The “capabilities set” is the group of functionings a person can 

choose from (Sen, 1999).  Given the importance of technological capital for nations and 

individuals, it is imperative that policymakers understand whether the investments made 

in formal university training are well-directed, and whether policy changes directed at 

pre-college factors and post-college decision-making can help to address the lack of 
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engineering capital.  I detail below the three studies that provide novel insights into the 

engineering training pipeline for students from less privileged backgrounds. 

 

Analysis 

 
 
Technology on Trial: Can Computers Effectively Increase the Engineering Skills of  
Traditionally Under-served Populations? 

 Since the middle of the twentieth century, computers and learning have been 

enthusiastically linked, with bright hopes for a world-changing technology to cure the 

ailments of the brick-and-mortar education system.  New learning technologies are seen 

as specifically useful for teaching basic engineering skills such as critical thinking or 

problem solving.  LOGO, Number Munchers, Math Rabbit—each decade has seen its 

share of computer-assisted learning (CAL) programs heralded as system-altering tools, 

and each decade has seen them subsequently added to the tally of interventions past.  

Since the 1980s, educational computing in low-income areas in particular has been 

promoted as an assured new digital fix for the learning and “21st century preparation” of 

traditionally-underserved groups.  Unfortunately, the revolution has not happened. In 

practice, digital “fads” have frequently failed. And, in evaluations, researchers have not 

conclusively measured the utility of computers for the engineering education of 

underserved students. 

 But now, technologies have changed.  Computer penetration in low-income areas, 

the flexibility of software, and the spaces in which computers are available argue more 

today than ever for the potential of CAL. Better data are available to estimate the impact 

of computer use on engineering achievement.  And, advancements in statistical methods 
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for causal inference make it possible to use newer secondary data to clearly understand 

the impact of computers.  A new look may reveal more conclusive evidence for 

technology as a tool to train pre-college engineers. 

 I use information from the Programme for International Student Assessment 

(PISA) to model the relationship between independent and school-based student 

computer use and problem-solving outcomes within and between schools and countries.  

The overall question I seek to answer is: how is computer use related to problem-solving 

skills? What relationships exist for independent and school-based use, and how do these 

types of use interact? Does this relationship vary across schools and countries? Does this 

relationship vary across types of use, and do results persist across assessments?  

I address selection issues inherent in this cross-sectional dataset by matching 

students on family and household resource characteristics to move closer to measuring 

the causal effect of computer use and engineering skills.  I use a generalized propensity 

score and a matching estimator to estimate the average treatment on the treated (ATT) 

effect.  To understand the utility of technology as a support in low-income contexts, I 

focus on a varied set of high-, middle-, and low-income countries included in PISA’s 

dataset.  I also separate out students who use computers in low-income households and 

match them to similar non-users who also come from low-income households.  

I find evidence that previous work has neglected to investigate a crucial 

dimension of social and cultural capital in human development: technological capital.  

This study comes to three conclusions: school use of computers has a positive effect on 

problem-solving achievement in the two large, diverse, high-income countries studied; 

home use has no effect or a negative effect; and use “elsewhere” is positive at low levels 
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of use. These imply changes of policies in the following three ways: schools outside the 

US and Canada could look at the programmatic practices and environment for school-

based computer use in these countries; opportunities for more “effective” home use 

should be supported, e.g., increased parent information on educational computer use; and, 

use “elsewhere” should be both encouraged and facilitated at moderate levels. As a tool 

often implemented to begin the fundamental problem-solving training of engineers for 

the modern “knowledge economy”, computers are promising interventions that still need 

fine-tuning. 

 

What Can College Do?: Social, Cultural, and Technological Capital in Brazilian 
Higher Education 

 Engineers are sought after as the catalysts for nations' economic sustenance and 

growth.  However, there is little conclusive evidence as to what educational inputs are 

directly connected to training better engineers. Indeed, there is little data at the college 

level in any country, including the United States, to explain what colleges do to 

effectively increase the achievement of graduates in any field.  Recent advances in 

nation-wide university assessments in Brazil offer a way to concretely answer the 

question plaguing national policymakers worldwide—what should universities invest in 

to create essential human capital for a competitive global knowledge economy? 

 The most important advancement in the field of higher education policy analysis 

is the growth in the availability of data on student performance at the college level. The 

first national-scale dataset of this sort come from Brazil; it gathers nationally 

representative information and includes a general and subject-specific knowledge 

assessment. I use these data here, in one of the first quantitative studies to provide 
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estimates for the predictors of student achievement at the college level.  I exploit the 

capacity of the national dataset from 2005 and 2008, using student- and institution-level 

background factors for a representative sample of students graduating from 

undergraduate engineering degree programs.  

 Are the investments in costly engineering college inputs paying off? Do the 

inequities observed in primary and secondary education persist for the limited group that 

makes it to tertiary schooling? I find that individual characteristics such as race and 

gender have strong predictive power for a student's score (especially on the engineering 

test), for what type of university a student attends, and for whether that student finishes 

the degree. A student's home environment and the schooling she was exposed to before 

college also predict her score, even within institutions.  However, university factors also 

matter—there is growth from first to final year, and factors such as large classes and 

reports of bad teachers are related to lower scores. The environment for research and the 

types of peers one has at university contribute to student success. 

 These findings imply that expanding opportunities for high-quality (private) high 

school across races and income levels and improving the state of public high schools 

could have benefits into the college years. On the flip side, interventions to support 

faculty development in private universities could raise the achievement of students who 

are tracked into these schools, but expanding access and opportunities in the public 

higher education system may be an even more promising intervention.  

 In my analysis, I make two unique contributions to higher education policy 

analysis. First, I look at predictors of performance on a national, standardized assessment 

in two different sets of cohorts.  Second, I use detailed individual background 
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information to conduct checks of consistency of my results.  Education policymakers 

tend to view university as a separate world, a specialized place—a place where students 

are no longer children and a time when students become adults and knowledge 

acquisition becomes job preparation.  My work applies analyses that have uncovered 

fundamental tenets of the understanding of pre-college education and finds that the 

university is largely an extension of the pre-college experience. 

 The ENADE scores, along with measures of the university resources, are used in 

the “General Index of Courses”, a national evaluation system.  However, my work 

illustrates the need for an understanding of how efficiently these resources are used, as 

there are significant differences between institutions in the resources they have available.  

Engineering companies in Brazil often only look at graduates from a few of the top 

universities. 

 Even among similarly-selected peers, coming from a background where students 

have been exposed to the utility of formal schooling (parent education) and academic 

norms and effort (reported study time), students in higher education are better able to 

make use of the same resources to learn how to apply knowledge to technical problem 

solving.  But further exposure to technological resources in higher education matters as 

well.  It is not the physical resources themselves; for example, the area of the laboratories 

at the school does not predict higher achievement.  It is being in an environment that 

values them, being exposed to an innovative, research-valuing, practical-oriented learning 

space; practical work and research emphasis were both strong predictors of achievement.  

The acquisition and application of job-related technological capital depends on both the 
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home and the learning environment.  Opportunities that recognize the intersection of the 

two and broaden opportunities are vital for national development. 

 

Houses of BRICKS: Career Decision-making for Engineers in Growing Economies 

 Engineers are seen as a vital pillar for the construction of a healthy, industrialized 

economy.  However, they are also seen as a threatened, scarce resource, one that is 

expensive to create and difficult to pin down once it enters the labor market as a highly-

desirable asset.  Low- and middle-income countries in particular are concerned that they 

lack engineers they need to support the growth of local industry, the expansion of 

infrastructure, and the improvement of living standards.   

 I investigate the pivotal point in the engineering pipeline where the engineers who 

have successfully reached “certification status” and are completing their undergraduate 

degrees and preparing to enter the job market.  I ask final year engineering students in 

exemplary institutions in South Africa to describe their concept of the “local” and 

“global” space and then to express the push/pull factors that exist in each and affect their 

decision-making process. 

 I find that students note an emphasis on global preparation compared to locally-

relevant topics, an under-preparation in relevant real-world skills compared to their 

importance, and a need for local engineers.  This implies the following policy 

recommendations.  Starting in primary school, locally-relevant engineering and the value 

of working in it could both enhance student learning and prepare them to enter the field 

later in their educational careers.  Practical courses with local hands-on experiences 

within the college curriculum could also serve the dual purpose of enhancing learning 
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outcomes and connecting students to the local space.  Finally, incentives to return once 

abroad (e.g., scholarship that requires returning to South Africa) or to go into engineering 

entrepreneurship could provide both private and social benefits. 

The motivation is not lacking—engineers are already an intrinsically-motivated 

group.  Many report that the challenge of completing engineering degree itself was part 

of the appeal of the major.  Despite this passion, students do not interpret the local need 

for engineers as applicable to themselves.   Barriers to local application of engineering 

training need to be lifted, and (even small) bits of encouragement to practice engineering 

locally should be in place.    

 

Contribution  

 This dissertation makes novel contributions in four areas.  First, it asks questions 

that are prevalent in the policy conversation, but it asks them about and, in fact, focuses 

on populations that are left out of the bulk of research studies.  Second, it analyzes data 

that have barely been touched and gathers new data where information was previously 

nonexistent.  Third, it demonstrates and begins to expand upon a new theoretical concept.  

Finally, it provides useful recommendations for policymakers that open up new directions 

to support important fixes for the engineering training pipeline. 

 

Context 

 The use and development of engineering ability is a prescient, pressing policy 

question.  However, whether the question is about how technology tools can help 

engineers learn, or how engineering colleges should work, or how engineers are needed 
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to fill important jobs, the issue is frequently framed in broad terms, looking at average 

effects across many different groups of engineers with vastly different experiences.  

Administrators call for the expansion of technology in schools or recruitment into 

“STEM” fields, but they pay less attention to who is being trained.  In my study, I 

explicitly focus on the relevance of a student's identity to the opportunities she receives.  

The cultural context of engineering education is a novel addition that I offer here. 

 

Data 

 The central analysis in my dissertation estimates the importance of school and 

non-school factors in educational achievement at the higher education level.  To do so, I 

employ a large, novel dataset that has been used previously only a handful of times.  The 

information gathered in this student-level dataset is powerful, but this dissertation is one 

of the first to fully exploit it. 

 Not only do I perform analyses on a recent dataset that has rarely been studied 

before, but I gather new information.  I gather information from the perspective of the 

students who are going through the engineering training process.  A major piece of the 

pipeline puzzle that has been missing is the knowledge of what happens to the students 

after they receive their degrees and the understanding of why students navigate the 

schooling process in the ways that they do. This study provides important steps in 

illuminating this issue. 
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Theory 

 By incorporating new information and focusing my study on the novel context of 

students' identities, I am able to make contributions to a new area of theory.  The 

theoretical frameworks of social and cultural capital form important supports for many 

analyses.  However, technological capital as a component of cultural capital is an 

important new area of theoretical development.  The possession of technological capital 

promotes or prevents access to future opportunities. It is the new cultural key to the more 

revered doors of upward mobility.  In this dissertation, I illustrate how the role of 

technological capital plays out in the creation of human capital. 

 

Policy  

 These issues are important to connect to policy changes.  I make suggestions that 

are immediately useful for implementation. Recommendations are frequently made to 

“tailor” education, but less work has been done to try to understand the factors that are 

important to tailor learning to and how this can be done more effectively.  How do people 

learn in different environments? How do you get people to stay and focus on their own 

communities? How do people stay connected with home while navigating educational 

pipelines?  Is it peers? Family? Neighborhoods? Schools?  What factors are important to 

tailor learning to? New developments in digital technology and engineering hold promise 

for underserved communities.  But, without an understanding of how technological 

capital is acquired and applied, policymakers may be investing in expensive inputs 

without benefits to the students or the community. The removal of obstacles and the 
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addition of incentives in the decision-making process would help all students to navigate 

the engineering education process. 
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CHAPTER II 
 
 
 

TECHNOLOGY ON TRIAL:  

IN WHAT ENVIRONMENTS CAN COMPUTERS EFFECTIVELY INCREASE THE 

ENGINEERING SKILLS OF TRADITIONALLY UNDER-SERVED POPULATIONS? 

 

Policy Imperative: Another “World-changing” Inventi on? 

 In 1947, U.S. Chairman of the Federal Communications Commission Charles R. 

Denny described a new technology: “Its educational potential is unlimited.  It will be the 

most powerful communication tool of them all” (Wolters, 1947, p. 1).  Sixty-five years 

ago, he was describing the television, which was supposed to radically transform the 

essence of learning. 

 Subsequent classroom technologies have been consistently welcomed as the next 

silver bullet for the challenges of training young technologists.  The same language 

extolling the utility of the TV could be inserted into an article about computer-based 

learning today, as educational technology continues riding the waves of public opinion.  

Beyond the name of the technology, little seems to change, and yet computer-based 

learning interventions today receive the same faddish fawning, faith, and finances.  They 

are bandied about in the popular press (New York Times, 2010; Times of India, 2010); 

significant government funds are invested in their implementation (e.g., 100% of 

Singapore high schools on internet, student-computer ratio of 8:1; Twining, 2002); and 

the educational technology industry commands huge monetary resources (e.g., $16 
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billion in the USA; McCrummen, 2010).  This significant investment of capital despite 

mixed reports of computers’ utility is enough to warrant a more rigorous evaluation. 

 But, there may be even more reason to reexamine the utility of computers in 

different learning environments now.  The unique flexibility and interactivity of 

computer-aided instruction may actually distinguish this intervention from previous 

technologies—whether books, assessments, or copying machines.  Given the widespread 

nature of computers—there are nearly two billion internet users worldwide (Internet 

World Stats, 2010)—and its peculiarities (e.g., tailoring to the user, Dahotre et al., 2011), 

computers may lend themselves to breaking through the disappointments of technologies 

past. The accessibility and structure of computers now may adhere more closely than ever 

to a theory of change for imparting basic engineering skills such as critical thinking and 

problem-solving.  Further, new data and statistical tools may aid in the detection of the 

effects of computer use on achievement. 

 This study is motivated both by the dire need for evaluation of a broadly-

implemented tool and by the educational potential this tool may have. The perceived 

importance of computer-based learning interventions in training innovators, especially in 

resource-challenged contexts (see, for example, the World Bank’s promotion; World 

Bank, 2011), demands a deeper knowledge base of their costs and benefits and, most 

importantly, where they are useful.  They can be an expensive intervention, and still, few 

studies have successfully estimated the causal effect of computer use on learning 

outcomes for low-income students in different usage environments. This study isolates 

the relationship between computer use in different environments and problem-solving 

skills for economically-disadvantaged populations in a sample of high- and low-income 
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countries by comparing the outcomes for students matched on the likelihood of using a 

computer. It employs more recent data and newer statistical tools to better address 

deficiencies in previous evaluations. 

 

Research Questions and Hypotheses 

 I use information from the 2003 Programme for International Student Assessment 

(PISA) to model the relationship between student computer use in different environments 

and problem-solving skills for students from economically and socially disadvantaged 

backgrounds.  The overall question I seek to answer is, “How is computer use related to 

higher scores on an assessment of problem-solving skills for underserved students?” 

More specifically, I match students using propensity scores for the likelihood of using a 

computer in a given environment, and I ask: 

• Do students who are similarly likely to use a computer have higher problem-solving 

scores when they use it? 

• Do these higher scores differ based on the environment where the student uses the 

computer?  

• Is this problem-solving score difference for underserved students consistent across 

national contexts and across various computer-based activities? 

I test these research questions by creating a matched sample of students equally 

likely to use computers and then comparing the “treatment” group that reports computer 

use to the “control” group that does not.  I hypothesize that, contrary to technologies past, 

computers are an effective way of supporting the acquisition of problem-solving skills for 

diverse populations, including and specifically, traditionally marginalized groups.  
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However, to be effective, the technology environment must be conducive to thoughtful 

exploration and access for unique students.  Previous studies of computer use have not 

fully taken into account how important the usage context is to learning; I include both the 

immediate learning context and national cultural environment of the intervention in 

analysis. It is vital that policymakers understand with more certainty the complexities of 

how computer-based learning may or may not be effective.   

 

Phenomena and Hypotheses 

Based on limited evidence pointing to the possible utility of computer use as well as 

on the theoretical relationship I describe above and in more detail in the following 

conceptual framework, I hypothesize that students from low-income backgrounds who 

use computers will have higher scores on assessments of problem-solving skills than 

those who do not, holding other factors equal.  Further, because of literature on problem-

solving and initial findings on the unsupervised use of computers (Inamdar & Kulkarni, 

2007; Papert, 1984; DeBoer, 2009), I hypothesize that this effect will be more noticeable 

for students who use the computers in independent learning environments (in the home or 

“elsewhere”) rather than in the directed environment of the school.  Finally, because I 

hypothesize that the learning and cultural contexts matter (see chapter 1), I hypothesize 

that there will be noticeable heterogeneity of the treatment effect across a diverse sample 

of countries.  
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Conceptual Framework and Literature 

 The new advancement of computerized learning merits a fresh look, especially 

with the finances and policy attention it receives. Where previous studies have not fully 

incorporated the key factor of the student's environment, I situate my work in a 

sociological perspective.  Further, I incorporate constructivism, which notes the 

importance of the learning context and provides the conceptual foundation for numerous 

recent digital learning programs (Piaget, 1962).  Learning theory overall suggests that 

computers are educational tools with huge potential; empirical evidence corroborates the 

relationship between computers and constructivist pedagogy in the classroom (Gulek and 

Demirtas, 2005; Becker, 2001; Roschelle, 2000).  The constructivist framework has even 

been expanded into the “constructionist” framework, used extensively in work with early 

LOGO interventions (Papert & Harel, 1991).  However, the literature is relatively small 

given the popular attention it received.  In addition, it has focused on access and usage 

rather than outcomes, and scholars note that access clearly does not always translate to 

use or utility in learning (Smerdon & Cronen, 2000).  More importantly, empirical 

research on computers has not been married to relevant research on the social context of 

learning as it is here. 

 I draw on constructivism and theoretical frameworks of the social context of 

education to investigate three important areas: first, whether computer use matters at all 

for the academic outcomes of underprivileged students; second, whether this 

effectiveness varies based on where the computers are used; and third, whether variation 

in effectiveness can be explained by national factors or usage behavior. (The conceptual 

model is given in Figure 1.) 
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Computer Use Effects on Academic Outcomes: Few Rigorous Studies, Little  
Consensus (RQ1) 

The general question of computers' utility in education has not been answered 

conclusively (research question 1).  Numerous individual studies find small but 

significant effects of school-based computer interventions for student achievement (e.g., 

Papanastasiou et al. 2003; Wittwer & Senkbeil, 2007; Chen & Liu, 2007).  The conflict 

between studies that find no effects (e.g., Angrist &Lavy, 2002) and studies that find 

significant positive effects (e.g., Banerjee et al., 2007) persists.  The few quantitatively 

rigorous randomized control trials are those mentioned in this section. Recent meta-

analyses in the United States (Soe et al., 2000) and around the world (DeBoer, 2010a) 

combine independent study results and confirm small but significant effects.  However, 

these effects display a large amount of heterogeneity that cannot be explained by 

available information, which provokes the next research question. 

Numerous explanations are given for why computer use affects academic 

outcomes.  First, computer-assisted learning (CAL) is seen as a more enjoyable venue for 

learning, one often associated with play, for which children may have more enthusiasm 

and therefore a higher uptake of knowledge transferred there (e.g., Mumtaz, 2001).  

Computers may be more effective because of their capability to individualize instruction 

(Barrow, Markman, & Rouse, 2008).  And, though computer use may not increase math 

or reading scores, it is shown to increase computer fluency and cognitive skills (Malamud 

& Pop-Eleches, 2010).  This may be due to the fact that computer can may encourage 

self-directed learning and problem-solving, which I detail in the next section. 
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Learning Context: Different Environments for Use (RQ2)  

Heterogeneity may be largely attributable to the greatly-varying contexts in which 

the aforementioned studies took place.  Many previous studies of school-based computer 

interventions condition on socioeconomic status (SES) and other factors known to be 

closely associated with academic achievement (e.g., Tien & Fu, 2008; Du et al. 2004; 

Prinsen et al., 2007).  My study explicitly matches students based on these important 

background characteristics and investigates the effects of use of computers outside of 

school as well as in school to understand the individual and interacted effects of different 

computer use environments.   

Research on computer use outside of school is sparse but shows some promise of 

the effectiveness of independent exploration on the machines.  Some prior studies suggest 

that independent acquisition of computer skills could enhance achievement (Garthwait, 

2007; So & Kong, 2007; Inamdar & Kulkarni, 2007; Kam, Ramachandran, Sahni, & 

Canny, 2006).  Other studies (Wittwer & Senkbeil, 2007; Papanastasiou et al., 2003) find 

that availability of a computer and certain types of use can have little or negative 

association with increased achievement, though particular activities (e.g., problem-

solving) are associated with increased achievement.  Empirical tests of a technology 

intervention (Jasper) that focuses on group learning also finds evidence of the differential 

processes of learning in different environments (Young & McNeese, 1993).   

Two explanations drive hypotheses for this research question.  First, independent 

use of computers is a type of self-directed learning.  As students can explore on their 

own, learn about topics of their own interest, make mistakes, and solve their own 

challenges, it stands to reason they will come away with a deeper and more persistent 
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knowledge of the topic.  Second, as students use computers for both independent 

exploration and more formal education purposes, the computers enter the space of their 

learning community.  Earlier research by Scardamalia and Bereiter (1994) describe how 

IT can create a framework for schools as communities of knowledge.  Computers can 

support these communities, and they can also extend learning to be constructed in out-of-

school communities.  The creation of these knowledge communities differs between the 

environments in which they are constructed.  My three models isolate the effects of 

computer use “in school”, “at home”, and “elsewhere” (research question 2).   Problem-

solving scores will be used in the same models to determine differences in the effects of 

varying use environments on outcomes as suggested by the literature and conceptual 

model. 

 

Why the variation? National Policy Differences and Individual Behavior (RQ3) 

 Beyond estimating the effects of computer use, I push this study further by 

investigating macro-factors that may cause heterogeneity in the observed effects.  First, 

variation in national policy creates vastly different computer usage environments for 

students. I hypothesize that there will be differences in the estimated effects by country, 

and I test this empirically in addition to highlighting the policy environments that could 

lead to this variation.   

 Further, previous studies have drawn conclusions about the effectiveness of 

computer use (e.g., United States Department of Education, 2010) without noting what 

students were doing on the computers.  In PISA 2003, I have access to student reports of 

what programs they use the most. I note the significant differences in usage behavior 
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between more- and less-frequent computer users and relate this to the effectiveness of 

computer use. 

 

A Novel Focus on Underprivileged Populations in Diverse Nations 

 National differences. The issue of access for lower-income students is an 

immediate threat to unbiased estimates as well as a policy challenge; the digital divide 

manifests itself between high- and low-income countries (Compare the near-universal 

availability of computers in Korean households to the less than 40% availability in 

Thailand. [PISA, 2003]) as well as for populations within countries (Du et al, 2004).  In 

previous research, the digital divide has usually been studied in an oversimplified way—

comparing the usage of the “haves” and the “have-nots”.  Further, scholars demonstrate 

that, when low-income students use computers in school, they are often doing so in a 

more rote-learning environment, and they receive differential benefits from its use (Du et 

al., 2004).  As a population that has been overlooked or lumped into previous analyses, 

students from disadvantaged backgrounds merit a focused study. In my paper, I focus on 

under-served students.  I first describe here the differences in computer learning 

environments across countries, and I then detail the framework for investigating low-

income students’ use of computers in particular. 

Statistics describing the availability and use of computers in schools reveal stark 

differences between countries (World Economic Forum, 2008). Country-level factors 

such as culture, national income level, investment in digital education tools, and other 

factors are clearly important. While the differences between cultures are part of the very 

motivation for looking at computer use in different countries, they also necessitate care in 
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conducting the investigation. Some reports call into question the validity of comparing 

and contrasting vastly different cultures, pedagogies, and school systems and caution 

heavily against drawing firm conclusions from international assessment data (e.g., 

Rotberg, 2006). I do not make causal arguments in juxtaposing these national contexts; I 

recognize the process by which PISA’s information was gathered (OECD, 2005) and 

compare results in order to generate future directions for research and possible policy 

implications for education leaders.   

The five countries included in this study all have unique digital learning 

environments and are undergoing important changes in recent years.  In the United 

States, computer use grew in the five years preceding the PISA data collection, and the 

southeast leads computer usage, possibly due to within-country regional competitiveness 

(Becker, 2001). Students across Canada share computers at approximately five students 

per computer—better than the OECD average—but use them less frequently (40% 

frequent use, 4 points below the OECD average [Bussiere, Cartwright, & Knighton, 

2004]).  At the time of PISA 2003, Thailand was in the process of implementing national-

level policies to support technology use in education (Rumpagaporn & Darmawan, 

2007).  Korea reports that there is at least one computer per school classroom, and over 

20% of teachers use them in every class (Ministry of Education, Science, and 

Technology, 2008).  Finally, since the first PISA data included in this study, Uruguay 

decided to lead the One Laptop Per Child charge and hand out computers to over a 

quarter million children, over 70% of whom previously had no computer at home (One 

Laptop Per Child, 2009).  
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The digital divide. In each of these countries, the gaps between students who do 

and do not have access to computers, who do and do not use computers, and who do or 

do not have socioeconomic or cultural privilege are closely related.  Not only are there 

clear systematic differences in technology penetration between groups, but a growing 

body of more recent research suggests that attempts to add technology to communities 

only serve to widen extant disparities.   

Data from North Carolina show that there are indeed racial and SES differences in 

home computer access and use (Vigdor & Ladd, 2010). The study offers significant 

negative estimates of the academic effects of introducing computers and high-speed 

internet in the homes of students in this panel dataset.  Elsewhere (e.g., Wainer et al., 

2008), evidence from Brazil shows computer use and access segmented by students’ 

socioeconomic status.  The authors further find that educational outcomes are negatively 

correlated to computer use and positively correlated to access, a differential effect that 

widens the difference for poorer students.   

These (and other) studies point to the importance of where and how technology is 

used.  Researchers and policymakers alike must understand that simply focusing on 

providing access neglects the recognition that users must have the wherewithal to make 

sense of digital tools.  A study using PISA 2006 (OECD, 2010) characterizes this “second 

digital divide, noting that some households have the right competencies to maximize the 

benefits of the technology.  Results from previous work imply a need for targeted 

interventions for low-SES students, yet few studies focus solely on underprivileged 

student use.  I sample from within a larger dataset to isolate the effects of computer use 
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solely for underserved students, matching similar students with one another in order to 

advance policymakers’ understanding of technology use as a cultural capital question.   

Cultural capital.  Bourdieu’s theory of cultural capital (Bourdieu, 1977) 

describes the ways that social class markers, norms, and values interact in the educational 

system to further the privilege of more powerful social groups.  Though not included in 

Bourdieu’s original scheme, and not yet widely researched, digital technologies are a part 

of this framework as well, and “technological capital” is an important contemporary 

component of social and cultural capital.  Groups with lower socio-cultural and economic 

status are often those with lower access and use of digital technologies.  The persistence 

of the “digital divide” moves beyond just the access that communities have; they employ 

different sources of cultural capital, and the role of informational technology in 

individuals’ lives is socially constructed (Rojas et al., 2012). 

Warschauer and Matuchniak (2010) argue that it is not just access that is 

important for educational technology, but creating a supportive environment.  Their 

argument that a fertile environment for IT to be useful introduces the idea of IT as a 

context-dependent tool.  Emmison and Frow (1998) discuss the applicability of cultural 

capital to issues of IT, including descriptions of the correlation between “traditional” 

measures of cultural capital (e.g., museum visits) with household computer ownership.  

In most previous research, the “digital divide” and characterizations of access and use in 

underserved populations are seen through a (power) framework of “Western ideologies of 

technology use”; however, focusing on particular subgroups allows the researcher to 

recognize and value the types of use of members of a non-dominant group (Brock, 

Kvasny, & Hales, 2010). I build on these limited empirical and theoretical pieces to 
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provide an explicit focus on the importance of technical capital in understanding social 

and human capital development. 

 

Methodological Framework 

 Methodologically, I draw heavily on Rubin's work identifying a statistical 

solution to the problem of causal inference (Rubin, 1974), estimating treatment effects 

using propensity score matching (Rubin, 2001), and using multiple imputation (Little & 

Rubin, 2003).   

As there are few rigorous studies that investigate computer use and achievement, 

so there are also few that use propensity score matching.  It has been used to match 

students and compare computerized to paper-based testing (Puhan, Boughton, & Kim, 

2007). Xin and Zou (2010) use similar methods to move towards answering the causal 

question of the effect of frequent computer use on math scores.  Spiezia (2010) conducts 

a similar study using PISA 2006 and estimates a selection function for the frequency of 

student computer use. I address problems created by this method by employing a 

generalized propensity score procedure, building off of theoretical work on propensity 

score matching by Rosenbaum and Rubin (1983), Imbens’s extension to multi-valued 

treatments (2000), and numerous examples from the medical literature of empirical work 

using the same procedure (e.g., Foster, 2003; Feng et al., 2010).  For example, Foster 

(2003) investigates children’s response to mental health services by using the inverse of 

the propensity for a certain dose as a weight to adjust estimates, similar to the methods I 

detail below for my study. 
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Methods 

 

Data 

The sample for my project comes from PISA 2003 which included, for the first 

time, a set of questions concerning information and communication technology (ICT) as 

well as an assessment section on problem-solving skills. Also, the PISA assessment 

rotates its focus section each year.  (The 2003 focus was on mathematics.)  The 2003 

PISA student questionnaire (OECD 2003a) and Information Communication Technology 

(ICT) familiarity questionnaire (OECD 2003b) both address issues of student usage 

behaviors in terms of time, location, and ease of use. Data is available on students from 

over forty different countries.  I can compare the effectiveness of computers in promoting 

academic achievement for underserved populations in the US to disadvantaged 

populations in other high-income, diverse countries as well as more homogenous or 

lower-income countries.  I limit my sample to a selection of countries to be compared and 

contrasted to the US case: another high-income, diverse country (Canada); a high-

income, more homogenous country often cited as having an effective education system 

(Korea); a low-income, Latin American country (Uruguay), and a low-income, South-

east Asian country (Thailand).  I further limit my sample by focusing on the bottom 

quarter of families based on the economic and socio-cultural status index relative for each 

country.   
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PISA offers fertile ground for redressing the dearth in the literature on computer 

use and achievement and is in fact used by two studies previously mentioned as all or part 

of their measurement tools. With the inclusion of questions specifically investigating 

students’ use of computers in different settings, researchers can look at the relationship of 

newer technology to an established assessment of learning outcomes. Also, the other 

PISA assessments gather information about students’ use of computers (though questions 

are not identical to PISA 2003). The possibility therefore exists for further work taking 

advantage of PISA’s longitudinal country-level information; I use PISA 2009 to nearly 

replicate this study. 

 

Sampling Frame 

The sampling design for this assessment is a two stage, stratified random sample, 

with the first level being the schools and the second being the students within the schools. 

Countries were allowed to pursue national options where they did not interfere with the 

general test collection. In some cases, the primary sampling unit was an area (such as a 

province) if lists of schools were not available at the national level. 

Fifteen-year-olds in grades 5 and higher in official educational programs were 

chosen as the proxy for students at the end of compulsory education. These students, 

therefore, are measured on what is deemed to be the knowledge and skills essential for 

full participation in society. Approximately 4,500 students were targeted in each 

participating country—35 students were chosen in 150 schools (to address response 

rates). Schools were sampled with a probability proportional to their size (the estimated 

number of 15 year olds at the school). The students are a nationally representative sample 
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of students in participating countries. The final sample size is 49,924 (Canada: 27,953; 

Korea: 5444; Thailand: 5236; United States: 5456; and Uruguay: 5835).  When limited to 

the bottom quarter of ESCS, the final working dataset contains 12,116 observations, 

approximately 6,500 for Canada and approximately 1,300 for the other four countries. 

 

Survey and Assessment 

Participants in the PISA assessments include all of the OECD members—wealthy 

developed nations concentrated in Western Europe—as well as OECD partners who have 

chosen to participate in the current assessment. The countries participating in PISA 2003 

are given in Table 1. The ICT survey was given as an international option for countries 

participating in PISA 2003. Thirty-two of the forty-one countries in PISA 2003 chose to 

distribute the ICT questionnaire to students in their studies. (See Table 1 for countries.) 

 

Limitations  

Limitations to this work include the complexity of the three use environments, the 

generalizability of the PISA sample, and the time order requirement to firmly establish 

causality.  The former makes interpretation of coefficients challenging, but this richer 

picture of computer use is one of the unique contributions of my work.  The latter 

limitations are weaknesses in the study that are found in other PISA work and all 

previous non-RCT studies.  While useful steps are taken to address endogeneity concerns 

in my work, it may still be a problem; the cross-sectional data will never be as airtight as 

a randomized trial.  There are nevertheless great benefits to increasing understanding of 

the relationships between computer use and academic outcomes, and this study provides 
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useful baseline data for potential RCTs.  Future work may incorporate information from 

the mathematics sub-scales, the Trends in International Math and Science Study 

(TIMSS), or other datasets to incorporate more detailed outcome or curricular 

information or to look at trends over time.    

 

Variables 

 Treatment variables and computer controls are drawn from the ICT questionnaire. 

There are questions on the ICT questionnaire that address availability and use of 

computers at school, at home, and “elsewhere”.  Other controls are drawn from the 

student questionnaire, and my outcome variables are all drawn from the PISA assessment 

instrument.  Independent variables of interest are detailed in the “variable list” document.  

Total student weights, a set of frequency weights for the assessment, are used to address 

the complex survey design of PISA, which samples schools and then 15 year olds within 

schools and allows countries to stratify and oversample with some flexibility. The 

outcome variable of interest is the problem-solving skills score.  Outcome variables for 

each country (problem-solving literacy), when adjusted for survey design, all have means 

between 480 and 490 with standard deviations around 100. 

 

Modeling Strategy 

 

Causal Inference 

 In order to estimate the causal effect of computer use for low-SES students, I am 

faced with two problems—the classic counterfactual problem and the problem of 
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selection bias. First, I am interested in problem-solving achievement (outcome value Y) 

for an individual (i) when that individual uses a computer (treatment t) versus when that 

individual does not use a computer (control c). I write this as below, following Rubin 

(1974, as cited in Holland, 1986): 

 effect of t = Yt(i) – Yc(i) 

However, because it is impossible to observe two different treatment conditions on the 

same individual, I must observe an average effect (T) over a population of i's:  

 E(Yt – Yc) = T, or, by extension E(Yt) – E(Yc) = T. 

The latter implies that averaging over multiple distinct individuals can provide 

information about the average treatment effect for a population.  However, this is only 

valid where the assignment to treatment is unrelated to factors that would influence the 

outcome measure, that using a computer is unrelated to factors such as parental education 

or attitudes towards learning that might also influence problem solving achievement.  

Herein lies the second problem in estimating the causal effect of computer use for low 

income students. 

In addition to the problem of observing both treatment and control situations on 

the same individual, I am faced with a nonrandomized treatment in a cross-sectional 

dataset.  Individuals assigned to control and treatment groups may differ on observable 

and unobservable traits that are also linked to different outcomes; students who use a 

computer may also be ones who have greater resources at home, which has an established 

link to academic outcomes.  This may bias the measure of the average treatment effect.  

In order to recover unbiased estimates of the relationship between computer use and 

academic outcomes, I create a matched sample of students who are similarly likely to use 
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computers.  While I must match on observable factors, I assume that these factors are 

also related to unobservable factors that threaten the unbiased estimate of the treatment 

effect, and I can come closer to causation. 

 In this dataset, there are a number of factors used to predict computer use—

student factors such as age and gender, family background factors such as parental 

education and family structure, and home factors such as possession of a computer.  I 

cannot simply match on covariates—I am limited by the dimensionality of covariate 

matching because of my sample size.  One of the newer tools in the policy analyst's 

toolbox today is propensity score matching.  Rubin (2001) describes, for an observational 

study like mine, estimating a probability ei that a unit i will receive a treatment (Wt = 1) 

versus not receive a treatment (Wt = 0) given a vector of certain observed outcomes X i.  

This assumes that the treatment assignment is independent of confounding covariates 

given a certain propensity score (Conditional Independence Assumption). 

Still, I can only control for observable factors, a major caveat in observational 

propensity score matching versus a randomized trial. Rubin also notes that the possibility 

of differences due to unobservables even after matching on important observables may be 

addressed by testing different models for sensitivity analysis and testing structural 

assumptions, which I do by running additional regressions using control variables on the 

matched sample and employing a multi-level prediction model that takes into account the 

nested structure of students within schools within countries. 

While this is a cross-sectional dataset, it still needs to be clear that the variables 

used to match treatment and control observations are not affected by participation.  This 

is a difficult relationship to distinguish, as the argument could be made that a variable 
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like “confidence on routine [computer-based] tasks” is an outcome of prior computer use.  

However, the PISA questionnaire explicitly asks about current use, and a characteristic 

such as computer confidence is more fixed over time prior to reporting current use levels. 

 

Results   

 

Missing data 

 While missing data do not plague the final working dataset, there are a number of 

key variables that are missing information. There are noticeable amounts of missing data 

particularly in some of the computer availability and specific use variables. However, 

there does not appear to be a systematic pattern to this missing data. All of the variables 

have over 75% of their information; the most missing data is 22.13% for the question 

“Where did you learn computers?” Further, out of the 12,116 observation dataset, less 

than 10% of the observations are missing on more than five variables, and these are often 

the “type of use” questions. 

Nevertheless, I impute missing data to address potential bias from casewise 

deletion of a sample of the dataset that is not Missing Completely at Random (MCAR) as 

well as to increase the efficiency of my estimates.  I estimate five imputed datasets.  

(Rubin [1987] shows that even with a rate of missing information of 0.5, five imputations 

will yield estimates over 90% efficient.) Missing data are imputed separately for each 

country using all of the covariates in the fully-specified PSM prediction model and the 

ATT model, taking into account the complex sampling design.  A comparison of results 

prior to imputing missing data and after is given in the Appendix.  The illustration there 



 
51 
 

suggests that missing data biases results downwards and slightly increases the variance of 

point estimates; including imputed data shows larger, significant positive effects.  A set 

of five imputed datasets is estimated for each of the five outcomes (plausible values).  

More detail on plausible values is given in the following section. 

 

Plausible Values 

 The PISA cognitive assessment is administered in a bib spiral manner. Fourteen 

forms of the cognitive item assessment are administered with some overlap, and item 

response theory (IRT) is used to predict a student’s overall score from the items to which 

a student actually responded.  PISA computes a posterior distribution around the values 

given for students and provides five random values drawn from these distributions for 

each student. 

scorei = E[posterior distribution of full score for student i] 

While many studies only conduct analyses on one of the plausible values, and depending 

on only one plausible value for analysis should not bias coefficient estimates, this 

underestimates the variance of the final coefficient estimates.  

 ATT = ave(coefficient estimates for each iteration) = ( 1 + 2 + 3 + 4 + 5) / 5 

The procedure for final coefficient and variance estimates is similar to the creation and 

estimation of coefficients based on imputed data.  To estimate coefficient variance, both 

the variation within each “sample” and between the five “samples” must be incorporated. 

 average of the variance within each “sample” = σ
2  =  (σ2

1+ σ2
2 + σ2

3 + σ2
4 + 

σ
2

5)/5 
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The variance of this error across the full sample of plausible values is given using the 

estimator for unbiased sample variance: 

 variance of the measurement error = σ
2
σ2 = ( )* 2 

Finally, combining the two variances gives: 

 σ
2
total  = (σ2

1+ σ2
2 + σ2

3 + σ2
4 + σ2

5)/5 + (1+1/M)( )* 2 

Any differences between standard error estimates between coefficients from different 

plausible values will increase the total variance estimates, decreasing the efficiency of the 

estimated treatment effect; comparisons are given in Appendix C.  PISA (2011) gives 

more detail on this procedure for estimating regression coefficients and other procedures 

using plausible values. In reporting my results, variance estimates for coefficients of 

interest are given including both within- and between-estimate variation.  I also take into 

account PISA’s complex sampling design. Accounting for the complex sampling 

procedure in PISA while predicting the propensity for computer use does not change the 

estimated effects at the 1/100th place. 

 

Matching 

Choosing covariates for prediction.  An important consideration is the possible 

association of computer usage with other variables that are known to be closely 

associated with academic achievement, for example, socioeconomic status (Tien & Fu, 

2008; Du et al. 2004), gender (Prinsen et al., 2007), or geography (DeBoer, 2009).  I use 

vectors of student individual and home background characteristics, school resource 

variables, and national identifiers to create matched comparison groups (see variable list).  
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To specify the prediction model, I use what Lee (2006) calls the “DW” test, after 

Dehejia and Wahba (1999).  The authors iteratively estimate the propensity score, check 

for balance on covariates, and reformulate the propensity score.  Established connections 

have been made between computer use and student characteristics (e.g., gender [Du et al., 

2004]), family background (e.g., parental education), and self-efficacy (e.g., confidence 

on computerized tasks); these factors have also been shown to predict academic 

achievement 

PISA’s rich dataset has a number of factors recorded for students, their families, 

and their attitudes towards learning tools.  After conducting this specification test for an 

ordinal logistic regression, I use the following set of covariates to predict treatment status 

 p(status = t | X) = f(student chars, family chars, confidence) 

where student chars: age, grade (compared to modal grade in country), gender 

family chars: possess computer, highest parental occupation status, parental 

education, home possessions index, non-nuclear family structure 

and confidence chars: indices of confidence on routine computerized tasks, 

internet tasks, high-level tasks, and mathematics self-efficacy 

Table 2 shows the significance of predictors in the ordinal logistic regression 

(again, an example without missing data, for use at school from the USA) predicting 

treatment level. 

 Choosing a matching algorithm.  While there are a number of matching 

estimators used in binary PSM, I am faced with different challenges since the treatment is 

reported at ordinal levels in this study.  Instead of using a binary PS, I use a “generalized 

propensity score”.  This score can be incorporated into analysis either as a weight or as a 
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regressor in a prediction model for achievement.  As guiding examples, I look at Dearing, 

McCartney, & Taylor (2009), who use weights, and Hirano and Imbens (2004), who 

employ regression. 

 

Estimating the Propensity Score 

After imputing relevant independent variables for each treatment within each 

country, I proceed with the PSM procedure. I have already defined a prediction model; 

the subsequent steps are to estimate the expected outcome adjusting for the generalized 

propensity score and to average over the entire dose-response function, following Hirano 

and Imbens (2004). I use PISA’s provided balanced repeated replicates for final effect 

estimates.  I focus on their method (regression method, rather than a second set of 

weights) for results reporting. 

 Treatment-dose response model.  While propensity score models normally 

estimate the effect of a binary treatment, computer use in PISA is not measured as a 

binary variable.  Students respond with a choice between five levels of how frequent their 

use is of computers, ranging from “almost every day” to “never”. 

 Imbens (2000) extends Rosenbaum and Rubin’s (1983) propensity score 

methodology to treatments with multiple levels.  By maintaining the assumption of weak 

unconfoundedness, and requiring only the independence of each potential outcome at a 

particular treatment level, the average outcome can be estimated by conditioning on the 

generalized propensity score, a score that gives the conditional probability of receiving a 

particular level of treatment, rather than just receiving the treatment, given pre-treatment 

variables. Imbens demonstrates that ordered levels of treatment (as is the case in this 
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study) can be estimated using an ordinal logistic regression. He then describes estimation 

of the treatment effect by averaging the conditional expectation of the outcome given 

treatment levels and propensity scores as well as using the propensity scores as weights. I 

test both methods.  However, the weighting method does not also allow for survey 

weights to be taken into account, so I concentrate my final report on results using the 

regression method. 

 I use an ordered probit model to predict the level of usage a student will report in 

each environment. After estimation, I generate predicted values for each level of use; I do 

not assume that the change between each treatment is incremental, so with this method, I 

have a generalized propensity score for each level of use. Results reported (e.g., Table 4) 

give the estimated treatment effect coefficient for each treatment level in regressions that 

include levels of use as dummy variables as well as each general propensity score as a 

vector of regressors or as probability weights. 

 

Balance  

 Not only am I concerned about balancing treated and untreated observations in 

general, I am concerned about the difference in how the samples may be look in different 

countries.  As can be seen from Figure 2, the spread of reported computer usage in 

different contexts is very different in the five sample countries, in particular, in terms of 

home use.  This is the full sample, however, and the data also need to pass a balancing 

test in the matched sample. 

 A variety of balancing tests exists to ascertain whether observations in 

treatment/control groups matched on propensity scores have similar distributions of 



 
56 
 

observable covariates.  Since the propensity scores serve the purpose of balancing the 

distribution of observed covariates between control and treatment groups, they are judged 

on this balance rather than on model fit (Lee, 2006). Following Lee (2006), I conduct 

both a “specification” balancing test and an “after matching” balancing test. In the case of 

the generalized propensity score, these procedures are similar; Hirano and Imbens (2004) 

describe testing the differences in means of the covariates between treated and untreated 

observations in each treatment category. 

 After balancing, I test for equality of each covariate mean between groups. Table 

2 shows an example of the balance of predictive covariates before and after matching (for 

the USA, use in school, before imputing missing data). Covariates that differ significantly 

across the treatment levels do not vary significantly when adjusted by the generalized 

propensity score. 

 As noted above, the actual numbers for treated cases at especially the highest 

treatment levels becomes small.  For example, in the case of “use at home” in Thailand, 

there are only 16 treated cases in the highest treatment level. Zhao (2004) finds that PSM 

is not better than covariate matching for small samples; however, in my case, a small 

sample size limits the applicability of covariate matching because of its dimensional 

needs.  Blackford (2009) demonstrates a medical application of propensity score 

matching to a sample with 77 “treated” cases in the analytic sample. She notes that a 

logistic prediction model requires 10 observations per confounder, a condition which is 

satisfied in my study even for the most extreme treatment situations. 

 In the discussion of the results that follows, I report treatment effects that are 

significant and the context in which they are significant—in which environment the 
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computer is used, in which country, and at what level of use.  Results tables also describe 

the estimated treatment effects by these three dimensions.  

 

 

Research Question 1: Does computer use affect problem-solving achievement for  
low-income students? 

 Table 1 gives results for computer use overall and for different treatment dosage 

levels. I only report the estimates for treatment effects, though the regression model also 

includes the propensity scores as covariates, and the weighting model includes important 

predictors of the outcome as well as incorporating the propensity score as a weight.  

Overall use (operationalized as the highest use in any location) has a statistically and 

practically significant effect on problem solving skills over not using computers at all in 

the United States and Canada.  Results in other countries are not statistically significant.  

Effect sizes go as high as .68 standard deviations for occasional computer use in the 

United States. It should be noted, however, that these effects are insignificant in the 

model that uses propensity scores as weights.  Effects are insignificant in other countries.  

As in the previously-noted literature, the utility of computers is a question with mixed 

results; the following two research questions shed more light on which contexts may 

actually be useful places to use computers. 

 

Research Question 2: Does the effect of computer use vary by where it takes place? 

 Table 1 also gives results for computer use by context. The effectiveness of 

computer use appears highly context dependent. Use of computers at school varies by 

country.  It has a significant, positive effect on problem-solving skills in the United States 
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and Canada.  Use of computers in schools does not have a significant effect for low-

income students in Thailand. However, at high levels, computer use in schools has a 

significant negative effect on problem-solving skills in Uruguay and Korea.   

Across these diverse national contexts and different dosage levels, using a 

computer at home does not have a positive effect on problem-solving skills.  In a few 

cases, using a computer at home is related to lower problem-solving skills.   

Using a computer “elsewhere” (somewhere besides school or the student’s home) 

varies by the level of use.  This student-driven use is significantly related to lower 

problem-solving scores for the most high-frequency levels of use.  But, at lower levels, 

using a computer outside of the more “traditional” contexts of school or home is related 

to higher levels of problem-solving achievement. 

 

Research Question 3: Does the effect depend on the type of use? What differences in  
the national context can explain variation in the estimated effects? 

 I investigate the significant differences in usage type reported by students at 

different dosage levels.  I combine the information on significant treatment effects at 

different dosages for each country with the rankings of usage for different programs.  For 

example, I look at the most frequently-used programs for Canadian students who report 

“daily”, “weekly”, “monthly”, “rarely”, and “never” using computers at school, and I 

note how this might relate to the significance of estimated effects.  ANOVA tests of 

differences in mean program use by amount of overall computer usage are significant in 

the cases mentioned, but I detail further which programs are used more frequently.  What 

are students using the computers for that might explain differences in the effect of 

computers on achievement? What national policies might help explain differences? 
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 In the United States, computer use overall seems beneficial.  At every level of 

treatment, students have higher problem-solving scores than those who never use 

computers.  The reported student usage of programs has students “using the internet for 

information” the most frequently, except for students who report that they never use the 

computer. On the contrary, students who “never” use the computer at school report using 

computers to download the most. For students who use the computer at home, the only 

significant result is that using it on a weekly basis has a negative effect; those students are 

on computers to use the internet for information.  However, at school, using the internet 

for information is reported at a high level for students for whom computer use is 

beneficial. Perhaps guided use of the information available on the internet is related to the 

utility of computers.  For independent computer use, the students who are using 

computers independently and not benefitting from them are using them to access 

computer games, where students who use them infrequently and see a positive effect 

from their use are using computers more for learning programs and for getting 

information on the internet and using internet software. 

 Canadian results are similar. School use, which is overall positive for students, 

shows more infrequent users use the internet for information less and for downloading 

music more.  They use computers more frequently for chatting, while more frequent users 

use the computer for games more. Home use, which is not beneficial, also sees students 

using the computers for chatting, though this is less for lower levels of use.  The students 

who use computers “elsewhere” frequently and see negative effects from them use the 

computers more for downloading software and less for getting information or using a 

word processing program. 
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In Korea, frequent school use actually has a negative effect. Frequent users are 

using the computers more for programming and graphing and less for learning school 

material. Students using the computers “elsewhere” at high levels see negative effects; 

those students are using the computers less for learning school material.  On the other 

hand, less frequent “elsewhere” users are using the computers more for chatting and 

graphing, drawing, or painting, and benefitting from it. 

In Uruguay, frequent school use has a negative effect. Students using computers 

at that level use them less for getting information from the internet or chatting. Home use 

is also not beneficial—students use the computers more for computer games, though, 

interestingly, they also use them more for learning school material and using educational 

software.  In Thailand, usage patterns for the computers did not display easily notable 

patterns related to the measured effects. 

In countries where school use is good, students use the computers to access the 

internet and gather information. In the home, though, students use the internet for getting 

information, chatting, playing, and learning; but, in that context, computer use is not 

beneficial. Most notable is that the frequent “elsewhere” users are using computers more 

for what might be characterized as less complex tasks—downloading information or 

playing games.  On the other hand, students who use the computers “elsewhere”, but do 

so to a lesser extent, are benefitting academically for this use.  These students use the 

computers more for chatting, drawing, and getting information from the internet.  Future 

studies could focus on a particular program use on computers to follow up on the 

measurement of the overall effects of computer use given here. 
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Checks of Consistency of Estimates 

As I have to make a number of research design choices, I test a number of 

specifications to determine how consistent my estimates of the treatment effect are.  I test 

multiple models for determining the propensity score and for using the generalized 

propensity score in estimating treatment effects.  Further, I apply the same model to the 

four countries that also participate in the ICT questionnaire in PISA 2009.  I use math 

scores here as my outcome of interest, as problem-solving skills were not assessed.  

Besides this difference, my approach is comparable to a repeated cross-section design, 

replicating the same study across multiple years. 

 PISA 2009. Compared to results in Tables 2 and 3, the results in PISA 2009 show 

Canada, Korea, and Uruguay estimates for “any use” and “home use” continuing to be 

positive and significant effects on mathematics achievement.  Similarly, the effectiveness 

of school use appears to be mixed.  Estimates are insignificant or negative in all countries 

except for Thailand, where school use is strongly positive. This is consistent with the 

overall findings from 2003 on problem solving, though the fine grain on the treatment 

dosage available in the 2003 questionnaire is no longer present. 

 Multi-level prediction model. I recognize that students in this assessment are 

nested within both schools and countries.  Taking into account the multi-level nature of 

the data would more accurately reflect the true structure of the treatment—students who 

may or may not use computers in different environments are affected by the choices, 

behaviors, and backgrounds of the students who surround them in these different 

environments.  As such, the correct model to generate the predicted values for the 

generalized propensity score would be a random effects model, and I use this approach. 
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Arpino and Mealli (2011), as an example reference study, demonstrate that a general 

random effects model that accounts for the hierarchical structure of data performs better 

than more parsimonious models. However, I find the results consistent (at the 

hundredths’ place) across these prediction models. 

 

Discussion and Policy Implications 

 As policymakers struggle to determine where computers are an effective use of 

time and money for increasing low-income students’ problem-solving skills, more 

attention needs to be paid to the context in which computers are used and what they are 

used for.  Further, an understanding of how computers’ utility in different contexts relates 

to constructivism and learning theory more broadly would support targeting learning 

interventions effectively to students. 

 School use appears to be beneficial in the two large, diverse, high income 

countries in this study. Policymakers should better understand what about the 

opportunities to use computers at school is relevant for problem-solving and how school 

use could be taken advantage of even more.  In the other three countries, school use 

policies need revision.  While schools are often the places where computers are most 

available to students in these contexts, the saturation of access does not necessarily lead 

to higher learning outcomes. In fact, in the lower-income countries—Uruguay and 

Thailand—school use is related to lower problem-solving skills.  In both of these 

contexts, computer-based learning interventions have increased in schools, but the 

necessary support for teacher training on the machines may not have had the chance to 

catch up to the computers’ availability.  While major pushes for access characterize 
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computer placement in schools, the focus on access may actually be detrimental to the 

learning process. Access without thought for how the computers are being used may 

actually take away from more valuable learning time on other tasks. 

 Across all of the countries in the study, more care should be taken in student use 

of computers in the home, as use in this context is not significantly helpful and, in fact, is 

often related to lower problem-solving scores. Interventions with parents or take-home 

work conscientiously linked to problem-solving could support computer use in this 

context in ways more relevant to academic learning. 

 However, when students take the responsibility upon themselves of using 

computers to a moderate extent in an environment outside of the home or school, they 

benefit.  Use “elsewhere” has the most potential for development as an intervention. A 

moderate amount of use could relate to higher problem-solving skills for students in a 

variety of countries.  Policymakers could encourage and provide for opportunities for 

using computers on students’ own time, allowing them to take the responsibility to use 

the machines on their own in a self-directed fashion.  Computer use has the potential to 

serve the most under-served students in a host of countries, but only if students are given 

meaningful tasks and opportunities to learn. 

 

Little Available Rigorous Guidance 

This study is motivated by two troubling characteristics of the public and 

academic understanding of the relationship between computer use and learning—first, 

that there has been widespread faith in the intervention despite little rigorous evidence for 
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computers’ utility and second, that computers do exhibit the potential for important 

support of learning for under-served students.  

Computer use in education is a high-profile but controversial intervention, with 

few rigorous, outcomes-based evaluations, disputed results, and claims regarding both 

high and low effectiveness that may lack thoughtful evidence. In particular, computers 

have been offered as a unique learning tool for underserved populations, a learning tool 

that could address the additional challenges prevalent for these students.  Low-income 

students have differential access to technology, but few studies isolate this important 

population in analysis.  Numerous national policy agendas, however, note that focusing 

on ameliorating the achievement gap is an important national goal (e.g., McKinsey, 2009) 

and that digital tools should help. 

 

Manipulable, High Priority Intervention 

Computer use is a policy variable that is often manipulated but little understood.  

Despite the lack of consensus on computers' usefulness or best practices for 

implementation, they have become a prevalent policy tool in many education systems.  

Policymakers can control availability and access to school computer labs, implement 

computers in classrooms, encourage personalized education programs (Chen & Liu, 

2007), provide off-campus spaces for learning (e.g., Gates Foundation project in Vietnam 

[Gates Foundation, 2009]), and provide take-home technology (e.g., 1-to-1 computing in 

Maine, USA [Maine Learning Technology Initiative, 2011]).  

In this study I address both the lack of consensus in rigorous evaluations of 

computer use and the potential that computers have for learning benefits. Local and 
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national policymakers should be interested in conclusive evidence on both structured and 

unstructured computer use. Computers are becoming as ingrained in quotidian life as 

televisions are already.  Whether they will be washed out with the next wave of 

technological advancements or continue to advance the quality of learning for students 

around the world will depend on our understanding of their capacity to provide learning. 

Where the theory of constructivism (Piaget, 1962) guided the investigation of the 

contexts of computer use and educational achievement, so it can also help to understand 

the results observed.  People learn by building on what is familiar with what is 

interesting.  Constructivism describes the process of students scaffolding their learning 

with new, challenging concepts.  In the framework of constructivism, prior knowledge is 

used to understand new information; through “accommodation and assimilation”, 

students piece together new knowledge (Piaget, 1962, p.275).  

Constructivism underscores the utility of tailoring instruction to the needs of the 

student, engaging the student in novel activities, and encouraging higher-order thinking 

skills. While the basic framework of constructivism motivates catering to each student, it 

also introduces an important tension between the unique needs of an individual and the 

environment around the learner.  On the one hand, the individual builds on his or her own 

paradigm to gain knowledge; on the other, the learning must happen in context.  While 

von Glasersfeld (1989) argues that the responsibility for learning lies with the learner, 

Duffy and Jonassen (1992) underscore the importance of collaboration between learners. 

This study finds that computer use can be beneficial for the learner when the 

structured environment of learning both challenges and directs the student’s knowledge 

acquisition.  If students are not being challenged (using computers in environments that 
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without technological support or using computers simply for downloading), their 

knowledge and skills will not be increased, and, instead, they may take time away from 

other learning activities.  If, however, they can access new information that may be useful 

to learning, computer use in this environment is beneficial. 

 

Technological Capital 

Few researchers and even fewer policymakers have recognized that we must 

move from the understanding of digital interventions as simplistic learning tools to a 

conceptualization of technology as a key component of cultural capital. Though 

computer-assisted learning utilizes a more advanced intervention than its technological 

predecessors (the television or other electronic learning interventions), it is still a tool that 

can be used or misused.   

The computer and information technology are supposed to have democratizing 

properties; arguments are widely made for the potential of internet access in the lowest 

income areas to provide popular empowerment.  What is clear from previous work and 

even in this study, which focuses on low-income populations, is that negative effects are 

present alongside positive effects.  It is not enough to look to technology on its own to 

solve traditional issues of inequity in educational opportunity.  Technology is the same as 

other tools that may be co-opted and used to reinforce stratification.  Unless their 

particular use is understood, they do not have the desired effect.   

Certainly, in some cases, the cultivation of technological capital may actually 

override traditional boundaries of other markers of socio-cultural status (Kapitzke, 2000).  

Technological literacy, as a new dimension of both human and cultural capital, has the 
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potential to bypass other entrenched barriers to individual and social development.  

However, policymakers need to understand how computers are used in various contexts 

in order for technology to alleviate rather than exacerbate extant gaps. 

Technology is a language.  And just as linguistic cultural capital translates into 

building intra-community bonds or bridges to broader social mobility, so technological 

capital can either reinforce the connections between members of the same group or 

provide an individual access to communities outside the realm of her birth.  Individuals 

begin to learn the language of technology in their homes, with their peers, and inside their 

classrooms.  The way they interact with technology is heavily context dependent.  What 

kind of technology does a particular community perceive as valuable? 

My work finds evidence for a recommendation that self-directed computer use 

may be useful, but that it benefits from some supervision and/or direction from parents, 

teachers, or other mentors.  Previous studies (e.g., Vigdor & Ladd, 2010; Malamud & 

Pop-Eleches, 2010) find results that corroborate this recommendation.  While children 

may explore technological tools on their own, the involvement and examples of parents 

and community members contribute in meaningful ways to the utility of computer use for 

actual learning.   

Even more than other forms of cultural capital, technological literacy is a 

prescient issue and a misunderstood one.  The mixed effects I find here are important; 

they illustrate the relevance of the usage environment to computers’ utility and the ways 

in which technological capital may have both convergent and divergent effects depending 

on the environments, levels, and types of use.  It is not just that computers are a tool that 

can be used or misused, it is a question of what is being delivered on them.  The ways in 
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which the different offerings of computers in a learning environment can impact 

achievement are illustrated in this study.  In looking at the further training of certified 

problem solvers who access particular realms of technological capital (i.e., engineers), I 

continue to develop the concept of technological capital in subsequent chapters. 
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Figures and Tables 

Table 1. Countries participating in PISA 2003  
Countries  

Australia  Austria  Belgium  Brazil  
Canada  Czech Republic  Denmark  Finland  
France  Germany  Greece  Hong Kong 

(China) 
Hungary  Iceland  Indonesia  Ireland  
Italy  Japan  Korea  Latvia  
Liechtenstein  Luxembourg  Macao (China)  Mexico  
The Netherlands  New Zealand  Norway  Poland  
Portugal  Russian 

Federation 
Serbia and 
Montenegro  

Slovak Republic  

Spain  Sweden  Switzerland  Thailand  
Tunisia  Turkey  United Kingdom  United States  
Uruguay  

Note: Countries in bold are non-OECD members; countries in italics did not participate in the 
ICT survey option. 
 

 
Figure 1. Conceptual model   
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Table 2. Significance of differences in means of predictive covariates by treatment level 

before and after weighting with the generalized propensity score 

Covariate Significance of F-stat for 
ANOVA 

Significance of F-stat for 
ANOVA w/GPS 

Age .38 .70 
Grade .62 .65 
Gender .31 .27 
Possess computer .03 .81 
Highest parental 
occupation 

.06 .55 

Parental education .85 .98 
Home possession .88 .72 
Single parent family .38 .70 
“Other” family structure .12 .91 
Mixed family .47 .67 
Confidence on routine tasks .14 .13 
Confidence with internet .66 .63 
Confidence with high-level 
tasks 

.00 .52 

Math self-efficacy .19 .49 
 

Table 3. Ordinal logistic regression of covariates for use of computers at school 

Covariate Coefficient Standard error 

Age -.15 .11 
Grade .04 .05 
Gender .03 .06 
Possess computer .27 .08 
Highest parental occupation .01 .00 
Parental education .01 .01 
Home possession -.03 .05 
Single parent family -.01 .07 
“Other” family structure .38 .12 
Mixed family -.12 .10 
Confidence on routine tasks .01 .04 
Confidence with internet .07 .05 
Confidence with high-level 
tasks 

-.23 .04 

Math self-efficacy -.02 .03 
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Table 4. Effectiveness of different levels of computer use over “never” use, regression 

method 

Treatment 
level 

USA Korea Uruguay Thailand Canada 

Highest computer use anywhere    
Daily 66.98 

(23.05) 
-18.62 
(24.94) 

-26.82 
(10.02) 

-29.92 
(9.88) 

32.90 
(19.38) 

Weekly 46.12 
(23.88) 

-5.54 
(25.22) 

0.83 
(9.03) 

-12.45 
(9.26) 

32.99 
(19.98) 

Monthly 79.59 
(23.62) 

5.06 
(24.60) 

26.51 
(13.19) 

-9.91 
(9.51) 

36.94 
(20.55) 

Rarely 87.05 
(23.25) 

-50.71 
(33.68) 

-1.00 
(13.03) 

-2.70 
(9.45) 

54.76 
(22.91) 

Use at school 
Daily 22.77 

(6.00) 
-15.20 
(8.67) 

-36.62 
(8.58) 

-37.46 
(11.32) 

-8.11 
(5.60) 

Weekly 3.47 
(5.65) 

-31.70 
(4.18) 

-19.70 
(6.91) 

-18.06 
(7.55) 

-6.89 
(4.45) 

Monthly 37.79 
(6.17) 

-10.83 
(5.98) 

-12.49 
(9.24) 

-17.92 
(8.08) 

4.65 
(5.46) 

Rarely 21.95 
(8.01) 

1.48 
(6.69) 

-5.14 
(7.11) 

-6.71 
(6.40) 

13.52 
(5.31) 

Use at home 
Daily -10.76 

(9.62) 
-16.69 
(6.80) 

-5.70 
(16.81) 

-9.22 
(16.31) 

20.99 
(10.18) 

Weekly -34.51 
(11.38) 

-5.78 
(6.68) 

-22.69 
(16.01) 

20.87 
(16.15) 

12.26 
(10.82) 

Monthly -18.90 
(10.61) 

2.71 
(7.35) 

39.82 
(32.77) 

-18.66 
(19.43) 

7.84 
(11.76) 

Rarely -16.23 
(10.71) 

-25.06 
(16.59) 

-37.61 
(19.95) 

-48.40 
(17.54) 

-7.45 
(14.94) 

Use “elsewhere” 
Daily -19.64 

(11.40) 
-41.80 
(10.87) 

-30.25 
(11.17) 

5.55 
(19.09) 

-43.17 
(5.86) 

Weekly -8.96 
(5.55) 

-21.83 
(6.39) 

19.60 
(8.54) 

3.53 
(10.11) 

-23.42 
(6.19) 

Monthly 10.71 
(6.72) 

6.09 
(6.64) 

43.38 
(7.77) 

13.40 
(10.41) 

-7.97 
(6.04) 

Rarely 19.55 
(5.38) 

12.41 
(7.88) 

26.48 
(10.70) 

9.67 
(6.17) 

-3.21 
(6.36) 
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Table 5. Effectiveness of different levels of computer use over “never” use, weighting 

method 

Treatment 
level 

USA Korea Uruguay Thailand Canada 

Highest computer use anywhere    
Daily 62.34 

(25.41) 
-23.13 
(21.84) 

-26.62 
(14.88) 

-30.03 
(18.20) 

2.76 
(12.58) 

Weekly 43.41 
(26.44) 

-18.90 
(21.50) 

-11.46 
(11.37) 

-18.70 
(13.01) 

0.51 
(12.90) 

Monthly 62.63 
(26.68) 

3.71 
(23.07) 

2.07 
(13.91) 

-16.04 
(13.22) 

2.46 
(13.67) 

Rarely 60.36 
(27.18) 

-5.64 
(32.93) 

-21.28 
(13.60) 

-11.87 
(14.07) 

-13.66 
(16.85) 

Use at school 
Daily 22.20 

(8.85) 
-16.66 
(12.18) 

-39.42 
(10.86) 

-29.26 
(17.04) 

3.93 
(4.89) 

Weekly 7.05 
(9.07) 

-31.15 
(5.83) 

-21.35 
(7.63)  

-17.89 
(11.58) 

-1.15 
(4.69) 

Monthly 25.02 
(9.01) 

-8.07 
(6.60) 

-13.66 
(10.62) 

-16.81 
(12.13) 

11.71 
(4.52) 

Rarely 18.17 
(9.46) 

2.44 
(8.27) 

-4.63 
(10.19) 

-11.23 
(11.95) 

8.35 
(4.97) 

Use at home 
Daily -7.47 

(14.01) 
-47.37 
(27.12) 

-15.94 
(24.44) 

0.29 
(28.44) 

3.71 
(9.84) 

Weekly -9.91 
(15.61)  

-45.80 
(29.48) 

-16.04 
(35.77) 

1.24 
(24.99) 

2.56 
(10.09) 

Monthly 4.41 
(15.69) 

-34.47 
(28.87) 

-5.77 
(40.04) 

-37.10 
(30.53) 

8.81 
(9.97) 

Rarely -1.74 
(14.69) 

-54.28 
(34.90) 

-19.15 
(40.25) 

-47.52 
(31.14) 

2.44 
(11.44) 

Use “elsewhere” 
Daily -31.66 

(14.77) 
-38.81 
(13.43) 

-18.71 
(12.16) 

-4.70 
(24.22) 

-30.55 
(5.30) 

Weekly -12.95 
(8.07) 

-21.12 
(8.00) 

10.15 
(8.10) 

6.77 
(13.73) 

-20.86 
(3.94) 

Monthly 2.60 
(7.33) 

-3.06 
(8.62) 

26.55 
(10.29) 

4.99 
(11.53) 

-2.70 
(3.85) 

Rarely 7.38 
(7.13) 

7.12 
(7.24) 

5.87 
(9.64) 

6.81 
(7.64) 

2.84 
(3.99) 
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Table 6. Consistency of effects in PISA 2009 
Treatment Korea Uruguay Thailand Canada 
Binary use of 
computer 

51.14 (7.63) 22.43 (5.07) 
 

25.74 (8.51) 
 

65.57 (9.40) 

Binary use at 
school 

10.44 (5.81) 7.06 (4.71) 
 

26.45 (6.76) 
 

31.54 (4.35) 

Binary use at 
home 

53.14 (5.75) 15.89 (4.44) 24.31 (4.73) 
 

34.80 (4.45) 

     
Daily use at 
home 

35.66 (18.24) -17.19 (5.60) 15.39 (9.34) -17.83 (7.79) 

Weekly use at 
home 

71.07 (18.58) -21.38 (6.03) 24.68 (8.12) -12.41 (8.15) 

Monthly use at 
home 

42.25 (23.28) -9.78 (7.65) 16.32 (8.19) 1.23 (9.48) 

     
Daily use at 
school 

-47.73 (10.31) -14.87 (5.12) 5.32 (7.07) -25.93 (5.01) 

Weekly use at 
school 

-19.40 (6.33) -14.16 (4.82) 12.94 (5.95) -5.48 (4.73) 

Monthly use at 
school 

-15.56 (5.50) 3.47 (5.09) 14.76 (6.20) 10.97 (4.81) 

 

 



 
74 
 

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

almost every day
a few times each week

between 1 pwk & 1 pmn
less than 1 pmn

never

CAN

KOR

THA

URY

USA

Total

F
ra

ct
io

n

How much uses computer at home
Graphs by country alphanumeric iso code

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

almost every day
a few times each week

between 1 pwk & 1 pmn
less than 1 pmn

never

CAN

KOR

THA

URY

USA

Total

F
ra

ct
io

n

How much uses computer at school
Graphs by country alphanumeric iso code

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

almost every day
a few times each week

between 1 pwk & 1 pmn
less than 1 pmn

never

CAN

KOR

THA

URY

USA

Total

F
ra

ct
io

n

How much uses computer elsewhere
Graphs by country alphanumeric iso code

Figure 2. Reported treatment level by country and place of use. 
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Table 7. Variables list: PISA 2003 and PISA 2009 

Variable Original 
Name (if 
different) 

Label Format Values 

Outcome variables    
Pv*prob  Plausible value in 

problemsolving 
F9.4 Plausible value in 

problemsolving 
Treatment variables    
Usecomputer  ic02q01 Uses computer F1 0=No, 1=Yes 
Usehome  ic04q01 How much uses 

computer 
F1 1=Almost every day at 

home  
2=A few times each week  
3=Between 1 per week and 
1 per month  
4=Less than 1 per month  
5=Never 

Useschool  ic04q02 How much uses 
computer at school 

F1 1=Almost every day  
2=A few times each week  
3=Between 1 per week and 
1 per month  
4=Less than 1 per month  
5=Never 

Useelsewhere  ic04q03 How much uses 
computer elsewhere 

F1 1=Almost every day  
2=A few times each week  
3=Between 1 per week and 
1 per month  
4=Less than 1 per month  
5=Never 

Matching/control variables: home/family student   
Escs   Index of socio-

economic and 
cultural status 

F10.5 Index of Socio-Economic 
and Cultural Status 

Mothered  st11r01 Mother’s highest 
schooling 

F1 1=None  
2=ISCED 1  
3=ISCED 2  
4=ISCED 3B, C  
5=ISCED 3A 

Fathered  st13r01 Father’s highest 
schooling 

F1 1=None  
2=ISCED 1  
3=ISCED 2  
4=ISCED 3B, C  
5=ISCED 3A 

Posscomputer  st17q04 Possesses computer F1 0=No, 1=Yes 
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Posssoftware  st17q05 Possesses software F1 0=No, 1=Yes 
Possinternet  st17q06 Possesses internet F1 0=No, 1=Yes 
Compathome  ic01q01 Computer at home F1 0=No, 1=Yes 
Compelsewhere  ic01q03 Computer elsewhere F1 0=No, 1=Yes 
Famstruc   Family Structure F1 1=Single parent family  

2=Nuclear family  
3=Mixed family  
4=Other 

Hisei   Highest parent 
occupation status 

F2 Highest parental 
occupation status 

Pared   Highest parent 
education 

F2 Highest parental education 
in years of schooling 

Matching/control variables: student   
Stu_id  stidstd student id A5 student identification 
Sch_grade  st01q01 Grade in school F2 Student’s grade 
B_month  st02q02 Birth month F2 Student’s birth month (01-

12) 
B_year  st02q02 Birth year F2 Student’s birth year (86-

90) 
Age   Age F5.2 Age of student 
Grade   Grade compared to 

country 
F2 Grade compared to modal 

grade in country 
Gender  st03q01 Female F2 0=Male, 1=Female 
Intuse   Internet/entertainment 

use 
F9.4 ICT: Internet/entertainment 

use (WLE) 
Prguse   Program/software use F9.4 ICT: Programs/software 

use (WLE) 
Routconf   Confidence on 

routine tasks 
F9.4 ICT: Confidence in routine 

tasks (WLE) 
Intconf   Confidence with 

internet 
F9.4 ICT: Confidence in internet 

tasks (WLE) 
Highconf   Confidence with 

high-level tasks 
F9.4 ICT: Confidence in high-

level tasks (WLE) 
Comptime  ic03q01 How long used 

computer 
F1 1=Less than 1 year  

2=1 to 3 years  
3=3 to 5 years  
4=More than 5 years 

Complearn  ic08q01 Where learned 
computers 

F1 1=My school  
2=My friends  
3=My family  
4=Taught myself  
5=Others 

Intlearn  ic09q01 Where learned 
internet 

F1 1=Don’t know how to use  
2=My school  
3=My friends  
4=My family 
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5=Taught myself  
6=Others 

Matching/control variables: school    
Schoolid    school id A5 school identification 
Compatschool  ic01q02 Computer at school F1 0=No, 1=Yes 
Matching/control variables: national    
Country   Country A3 three-digit country 

identifiers 
Cnt   alphanumeric iso 

code 
A3 three-digit country 

identifiers 
Subnatio   adjudicated sub-

region 
A4 four-digit identifier of 

regions within countries 
     
Weight variables/identifiers   
W_fstuwt   student final weight F9.4 student final weight 
Stratum   stratum A5 Stratum indicating within-

country region  
 

 

 



 
78 
 

CHAPTER III 
 
 
 

WHAT CAN COLLEGE DO?:  
SOCIAL, CULTURAL, AND TECHNOLOGICAL CAPITAL IN BRAZILIAN 

HIGHER EDUCATION 
 
 
 

Motivation 

 Engineers are sought after as the catalysts for nations' economic sustenance and 

growth.  However, there is little conclusive evidence as to what educational inputs are 

directly connected to training better engineers. Indeed, there is little data at the college 

level in any country, including the United States, to explain what colleges do to 

effectively increase the achievement of graduates in any field.  Recent advances in 

nation-wide university assessments in Brazil offer a way to concretely answer the 

question plaguing national policymakers worldwide—what should universities invest in 

to create essential human capital for a competitive global knowledge economy? 

 The most important advancement in the field of higher education policy analysis 

is the growth in the availability of data on student performance at the college level. The 

first large-scale dataset of this sort come from Brazil; it gathers nationally representative 

information and includes a general and subject-specific knowledge assessment. I use 

these data here, in one of the first quantitative studies to estimate the predictive power of 

home and school factors for student achievement at the college level.  I exploit the 

capacity of the national dataset from 2005 and 2008, using student- and institution-level 

background factors for a representative sample of students graduating from tertiary 

degree programs. In doing so, I offer a major contribution to the understanding of formal 
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tertiary education by demonstrating its impact on student achievement. 

 Engineers are upheld as keys to a country’s growth and prosperity.  In the United 

States, President Barack Obama re-established the Council of Advisors on Science and 

Technology (PCAST), repeatedly turning to them for reports on education as job 

preparation.  (See, for example, one of the more recent reports—Prepare and Inspire: K-

12 Education in Science, Technology, Engineering, and Math (Stem) for America’s 

Future [PCAST, 2010].) His 2011 State of the Union speech even likened the current 

engineering workforce crisis as this generation’s “Sputnik moment” (Obama, 2011).  The 

OECD further recognizes the change in economies’ structures to the new “knowledge 

economies”, which draw largely on national innovation and engineering capacity (OECD, 

1996).  The World Bank Institute has gone a step further and quantified a “knowledge 

economy index”, which includes factors relevant to engineering education: innovation, 

education, and ICT (World Bank Institute, 2007).  This translates into huge budgets 

focused on the training of engineers. 

 However, even the world’s largest economies deplore their continued lack of 

trained engineers.  A recent editorial in one of São Paulo’s largest newspapers lamented 

“A falta de engenheiros [The lack of engineers]” (O Estado de São Paulo, 2012).  A focal 

point of President Obama’s recent address to the National Governors Association focused 

on the need for highly technically skilled workforce (Obama, 2012). 

 

Research Question  

In my study, I use a unique new dataset to quantify the predictors of engineering 

student achievement in higher education.  I exploit the capacity of information from 
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Brazil, which provides student- and institutional-level background factors as well as a 

general and subject-specific assessment for a representative sample of students 

graduating from tertiary degree programs.  I use these novel data to test the significance 

of teacher and university characteristics in predicting achievement as well as the 

importance of home background compared to school factors.  I ask here: 

“What institutional and student-level qualities are associated with higher achievement for 

engineering students in Brazil?” 

More specifically,  

• Does the availability of more physical plant resources, often noted as necessary 

for engineering training, predict higher achievement? 

• Do student-centered learning methods predict higher achievement? 

• Does having instructors with actual engineering experience predict higher 

achievement? 

• Do home background factors predict higher achievement, and how do they 

compare on balance with significant institutional characteristics?  

 

Hypotheses 

 I hypothesize that learning methods and teacher practices are significantly 

positively related to achievement on the general assessment and, even more, in subjects 

specific to engineering.  I hypothesize that the availability of physical resources and the 

certification of teachers will not be as strongly linked to higher achievement as to matters 

of pedagogy and people.  I also hypothesize that the school-based factors will account for 

more of the variance than home-based factors; I believe the data here will show that a 
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strong selection mechanism related to home background factors is in place prior to 

matriculation into tertiary education.   

 

Conceptual Framework and Literature 

At a time when engineers are called upon to address the “Grand Challenges” of 

the 21st Century (National Academy of Engineering, 2010), the cross-sectional picture 

my work provides is a novel and prescient perspective in the nascent field of engineering 

education (EE) research.  To provide an overall context for the study of engineering 

student achievement, I describe the substantial debates surrounding the numerous 

predictors of student achievement, both in and outside formal schooling institutions.  

Literature using large datasets to investigate achievement in higher education is scant, 

however; I give a broad overview of that subject area here.  I also note previous work in 

Brazilian higher education and in engineering student training.   

As policymakers tweak the engineering pipeline, there is some consensus on the 

broad domains that are important: physical/laboratory resources are costly but necessary 

inputs that are vital for engineering achievement; practical learning opportunities are 

beneficial as replicas of real-world job tasks; and, having teachers who know a thing or 

two about real-world engineering themselves makes it easier to transfer useful 

experiences to the next generation of engineers.  But, beyond policymakers’ intuition, 

there are few quantitative analyses of which of these inputs matter, let alone estimates 

that approach an understanding of the causal process that leads from a child’s home to 

her graduation day with an engineering degree.  One of the main hindrances has been the 

lack of data that could answer these questions.  However, the question of whether school 
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matters for student success has been addressed numerous times and in numerous contexts 

for primary and secondary schooling.     

 

The Effect of Home and School on Academic Achievement 

 Primary and secondary education.  National data on student performance in 

primary and secondary education have existed for decades.  Some school factors (e.g., 

class size; teacher experience in the first few years; the availability of textbooks) have 

been shown to matter.  At the same time, factors outside the school, in contexts around 

the world, find a way to enter the hallowed walls of the learning environment.  A 

student’s home environment prepares her to be able to navigate the pathways of formal 

schooling (see the large literature on social and cultural capital; Bourdieu, 1977).  Both 

the school and the experiences a student has outside of school affect how that student 

scores on tests from pre-primary school through high school.   

 Among numerous unsettled debates is how much either of these environments 

matter for what policymakers point to as the key end-of-the-day goal: academic 

achievement.  Educators, policymakers, parents, and students alike believe in the power 

of formal schooling institutions to promote student learning and open opportunities for 

any student willing to avail herself of learning resources.  However, a number of studies 

have called into question the “power” of schools in the face of hugely influential home 

background factors.  While factors of the schooling environment should be related to the 

learning outcomes of students, their educational preparation begins outside of the school 

and continues there throughout the child’s educational career. Numerous students have 

been undertaken to understand the relationship between numerous characteristics of the 
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environments around a child and his or her academic achievement.  

 Beginning with the Coleman Report in the United States (Coleman et al., 1966), a 

series of studies showed that home resources explained more of the variation in scores 

than the inputs a student was exposed to in school.  However, when studies were 

expanded to include a number of lower-income countries in the analysis (Heyneman & 

Loxley, 1983), school resources explained more of the variance in achievement 

outcomes.  In some contexts, the inputs of formal schooling—textbooks, desks, 

teachers—seem to outweigh the advantages or limitations that students bring to school 

(e.g., Uganda; Heyneman, 1976); in others, a student’s personal characteristics are 

overpoweringly predictive of achievement, regardless of what school resources they can 

access (e.g., United States; Coleman et al., 1966).   

Follow-up studies continue to replicate this line of work in varying sets of 

countries.  A heated debate continues around the question of how much school “matters” 

and where this is the case.  Gamoran and Long (2008) provide a useful comprehensive 

review of the development of this area of inquiry over the last forty years, including a 

description of the study of these two sets of resources in the international domain (e.g., 

Baker, Goesling, & LeTendre, 2003; Long, 2006).  They reiterate the fact that, in lower-

income countries, school resources explain more of the variation in achievement 

(Gamoran & Long, 2008).  More recently, authors (e.g., Chudgar & Luschei, 2009) have 

tried to better understand why school or home factors matter more.   

In this vein of literature on school and home background effects, numerous 

explanations are offered for the varying influence that these factors display on 

educational achievement.  Students in environments where schooling is nearly universal 
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are more differentiated by the resources they have to prepare for learning outside of 

school; conversely, students in places where educational resources are scarce, and where 

advancement depends almost entirely on test performance, are more differentiated by the 

quality of school resources they have (Heyneman & Loxley, 1983).  Countries with 

greater inequality may see schools serve as a way for children from different 

backgrounds to have a more equal opportunity to learn important academic subjects 

(Chudgar & Luschei, 2009).  It has been established, though, that the school environment 

and the platform of the home interact to position the student to achieve on a test, and 

policymakers can find policy tools to tweak a student’s resources at home and school to 

support educational development.   

Various studies point to the perceived importance of specific factors within 

universities such as student funding, remedial courses, science equipment, teaching 

practices, and professor experience for tertiary students (ABET, 2011).  However, the 

outcomes of interest in these studies are usually persistence, attainment, or degree 

completion (National Science Board, 2012).  The questions of what factors can improve 

students’ performance on a standardized test have largely been asked in the primary and 

secondary school context.  Once students get to college, will their background matter at 

all?  Or will the elite few who have “chosen” to pursue an engineering degree check their 

“invisible knapsacks” (McIntosh, 1988) at the door and be separated only by the quality 

of the learning materials at their disposal? 

 Achievement in higher education.  The dataset used in this analysis is one of the 

first opportunities to look at student achievement in a higher education context. While 

student test information has long been and is increasingly a staple of primary and 
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secondary educational studies (e.g., No Child Left Behind, the bac, the arbiter, TIMSS, 

PISA), tertiary data is far behind.  Information is usually contained within institutions, 

and even then, this information is usually limited to course grades (or GPA) or unique 

focused studies, rather than a broadly comparable, nationally-standardized test.  

 In the near future, the Organisation for Economic Co-operation and Development 

(OECD) will conduct a new assessment, the Assessment of Higher Education Learning 

Outcomes (AHELO), which will begin to fill in this dearth of information.  AHELO will 

test general skills (e.g., critical thinking) and discipline-specific skills besides gathering 

demographic and educational environment information; the study is still in the feasibility 

testing phase, and engineering is one of the disciplines at this stage (OECD, 2011).  

University and non-school factors will be available to researchers to analyze for students 

in their final year of undergraduate programs in OECD and OECD partner countries.  

This information will be available for chosen example institutions in 15 countries at the 

end of 2012.  However, Brazil has administered a standardized assessment to a nationally 

representative sample of university first years and final years.   

 The Exame nacional de Desempenho de avalição de Estudiantes, or, the National 

Student Performance Exame (ENADE), grew out of a demand for standardized measures 

of higher education performance.  Beginning with the Provão, Brazil attempted to 

provide a nationally-standardized measure of institutional quality (Cruz et al., 2010).  The 

Provão provided information on student course performance, teacher variables, and 

institutional factors and generated a score used for comparison (and competition).  

ENADE, which grew out of the Provão, added a student sampling process and a 

curricular- and criterion-based examination.  ENADE has been administrated yearly since 
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2004, though every year does not comprise every subject area.  The test gathers 

information on general knowledge (e.g., civics and Brazilian history) and subject-specific 

knowledge for a sample of enrolling (first-year) and completing (final-year) students.  

(The first- and final-year students take the same test.)  ENADE also includes student 

background questions and university and course resources.  Other assessments conducted 

under the Brazilian Institute for Higher Education (e.g., the Censo da Educação Superior, 

or Higher Education Census) provide additional information on courses and students. 

 Despite the potential of the ENADE dataset, few studies have taken advantage of 

it, possibly because of its recent availability and ongoing development.  I note the few 

examples here.  Cruz and coauthors (2010) use ENADE’s information to investigate the 

link between quantitative reasoning classes and performance on the ENADE exam.  The 

authors use correlation coefficients to answer this question for a sample of 

Administration students.  While I build on their work by including curricular information 

as one of the institutional factors associated with ENADE performance, I use a regression 

model that includes other institutional factors and student-level controls.  I build on 

another available study as well (Lobo & Lobo, 2010).  The authors investigate the factors 

predicting the performance of engineering students from 2005, including both cultural 

background factors and academic behavior, which are shown to have significant 

predictive power. They follow up by predicting the performance of final-year students in 

Administration based on the quality of incoming students for that course (for the same 

year); first-year student performance explains 20% of the variance in final-year 

performance, though this is in a simple univariate regression. 

 In addition to academic behavior and home environment, I control for individual 
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student factors that previous studies with ENADE have found to be significant.  For 

example, Vendramini and coauthors (2010) look at statistics questions for the entire 

sample of students tested.  The authors find differences in performance by gender for a 

number of sub-samples of students (e.g., Pharmacy, Dentistry).  The authors also note 

differences in general performance between students in different majors, pointing out that 

there are important differences in competitiveness for the students who go into different 

fields.  Since I concentrate on engineering, I may not find this difference.   

One exemplary paper is available that uses ENADE data to investigate the effect 

of peers in student school choice and the setting of tuition prices (Andrade et al., 2009).  

Of particular use is the methodology employed in this paper.  The authors use freshman 

performance on the ENADE as a proxy for student body quality; I employ a similar 

approach in looking at the growth in test scores for cohorts of students in the same 

institution.  Further, the authors check the robustness of their results with a 2SLS estimate 

and with the addition of data from other datasets; I verify the consistency of estimates in 

a similar fashion. 

 

The Brazilian Context 

 Race and inequality in Brazil. The scant amount of previous work using 

ENADE does not address the pressing question of whether students’ backgrounds largely 

determine the probability of their academic success or whether school resources at the 

college level can mitigate pre-university disparities.  In Brazil, these disparities are large. 

Even for the subset of students who make it into college engineering programs, 

differences in income, race and ethnicity, gender, and parental education are significant.  
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And, this is indeed a select group. 

Brazil is marked by high income inequality, which is observable in the ENADE 

dataset as well; most of the students fall into the lower brackets of the categories on the 

questionnaire, with the portion of students falling off rapidly as income increases. The 

portion of the population below the poverty line varies from 23-45% based on the level 

used and is concentrated in rural areas, smaller towns, and the North and Northeast 

regions (Ferreira et al., 2003).  And, this income inequality is closely intertwined with 

access to educational opportunity; a study in rural Paraíba found that educational 

attainment was the most important factor related to poverty level (Verner, 2004).     

Brazilian policymakers have looked to the formal schooling system not only as an 

institution that can mitigate home inequities, but as a playing field that itself needs to be 

made more equal.  Earlier efforts at alleviating poverty initially exacerbated inequalities 

by supporting the relatively better-off, but its more recent progressive policies and 

socially-inclusive market interventions (Hunter & Sugiyama, 2009) have been 

accompanied by greater poverty reduction, though slower growth, than India (Ravallion, 

2009).  Targeted interventions—for example, conditional cash transfers—have a positive 

effect on school attendance for children from poor families (Cardoso & Souza, 2004). 

The “Bolsa Escola” and, later, “Bolsa Familia”, both targeted education-related family 

stipend programs; however, they did not necessarily translate into educational benefits 

besides increased attendance (Schwartzman, 2005).   

Similar to the United States, socioeconomic opportunities differ greatly across 

racial and ethnic lines (Trumpbour, 2011).  One of the most complex out-of-school 

factors investigated here is race and ethnicity. Brazilian society has historically claimed 
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to be “color-blind”, but developments in the 20th century led to a more complex 

understanding of the numerous races in the country.  After the 1960’s, the Black 

Movement in Brazil, spread in part from the United States across the Americas, focused 

on empowering the black identity by pushing the multi-racial categories aside as an 

“escape hatch” (Daniel, 2004) and focusing on empowering the most disenfranchised 

groups.  The conversation around race has continued to develop since then. 

Brazilians, in fact, recognize a large array of racial designations; the Brazilian 

census has over one hundred self-designations, which are mostly based on phenotype 

(Brown, 2011). Alternatives to the Brazilian Census Bureau’s designations that have been 

vetted have not been shown to be less complicated (Miranda-Ribeiro & Caetano, 2004). 

Self-classification is reported in numerous places to be related to SES and gender as well 

(Francis & Tannuri-Pianto, forthcoming), though the landscape shifted with the 

introduction of racial quotas.  A study incorporating both surveys and interviews in Belo 

Horizonte found a decrease in self-designations of “white” and an increase in 

designations such as negro (black), amarelo (yellow), and especially moreno (brown), 

also noting that it is not just lighter skin, but a greater number of possessions that predicts 

self-designation as “white” (Brown, 2011). Identity in this context is mutable; depending 

on one’s own perspective and possession of certain types of social capital, an individual 

assigns herself a racial category.  In my investigation of technological capital, a student’s 

self-concept in relation to technology and technological careers plays an important role in 

navigating the higher education system. 

 Higher education in Brazil has long been considered elitist, though it has not 

explicitly excluded non-white students (Silva, 2007). From the time of colonialization, a 
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“racial hierarchy” was in place in Brazil, a rigid social structure connected to economic 

opportunities that continued even into the era of the “myth of a racial democracy” 

(McLucas, 2011). Recently, even the “colorblind” Brazilian system has recognized the 

inequality in educational opportunities for different races, in particular at the tertiary 

level. After the turn of the century, a controversial racial quota system began rolling out 

at different universities, bringing with it a wave of protests and legal challenges (Duffy, 

2009). Student protests, an established and accepted part of Brazilian higher education, 

were this time directed at an attempt to enhance equity of access, including in 

engineering.  Studies of social activism in Brazil in general point out that even 

supposedly democracy-enhancing mechanisms such as protests may be used by those 

already in possession of social capital to preserve their privileges (Hunter & Sugiyama, 

2011). 

Quotas are still in place, though.  A study at the University of Brasília found that 

initially there were significant differences in admittance cutoff scores for students 

admitted under the quotas, but this narrowed after only a few years as “darker” students’ 

preparation for school increased (Francis & Tannuri-Pinto, 2011).  (In my dataset, 

ENADE, there is a significant difference between minority and white students in entrance 

exam tests, but this difference becomes insignificant when controlling for other important 

demographic and institutional characteristics.)  Further, differences in grades once at 

school were practically small; the authors also noted, though, that there were changes in 

self-designations—for example, “brown” students were more likely to consider 

themselves “black” as a polarization of racial identities took place (Francis & Tannuri-

Pinto, 2011).  Even for younger children, affirmative action policies may be related to 
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more diverse, “darker” identity designations, though all of the children studied would 

prefer to be “whiter” (França & Lima, 2011). 

Race and class are closely intertwined in the Brazilian context.  Brazil has a 

notably high level of inequality, accounting for the lion’s share of the poor in Latin 

America (Elbers et al., 2004).  As racial identities were largely eschewed in the “racial 

democracy” prior to quotas, they have been difficult to incorporate as important 

dimensions of social policy.  Researchers find that current racial quotas are understood as 

class-based justifications, as class “cleavages” are still prescient for individuals and seen 

as within the purview of the state to address.  Even though policies explicitly addressing 

race are now being realized, they are still understood mostly through the intersection with 

social class (Schwartzman & Moraes, 2010; Lovell & Wood, 1998). 

 Brazil’s higher education system. The Brazilian context is large and diverse, 

and it poses a host of challenges that are unique to this dataset.  The private sector in 

higher education is very large, especially the for-profit area, but the student selection into 

the highly competitive public schools creates a stark contrast in the reputation of 

graduates from the two sectors.  A complex environment of race and ethnicity, sex, high 

income inequality, and the urban/rural divide complicates the expected relationships 

between school inputs and student achievement.   

 Brazilian higher education is dominated by private universities, which make up 

over 70% of the institutions by administrative category (Paranhos et al., 2009), many of 

which are for-profit universities. The private sector in higher education has grown 

immensely in the number of institutions and in the size of the universities, aided both by 

“neo-liberal” World Bank and government incentives (Wang, 2011) as well as by the 
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huge increase in demand for higher education (McCowan, 2004).  While the private 

sector offers less competitive entry exams and flexibility in schedule and location, the 

private sector may actually be contributing to an increase in inequity, as fees are beyond 

the reach of a large portion of the age cohort and are higher for better institutions and 

more rewarding majors (McCowan, 2007; McCown, 2004).  

Before entering a tertiary program, students must have already selected their field 

of study, and they apply to institutional programs specifically in these areas.  The 

admittance system to higher education is complex and linked to a high-stakes test 

required of high school graduates wishing to enter a particular university program.  In the 

past, a student would have to choose her desired major and desired university and take 

that university’s specific vestibular exam, an admittance test that differed by each 

university program.  More recently, universities are standardizing their exams in the form 

of the ENEM (High School National Exam), saving costs for students and universities 

alike (Downie, 2010). Its implementation continues to be controversial, and universities 

such as Universidade de São Paulo (USP) and Universidade de Campinas (UNICAMP), 

some of the most prestigious universities in the country, continue to prefer their own tests 

and schedules.  Many students in the ENADE dataset can be linked to their ENEM score, 

though, which provides an important check of the consistency of estimates as a pre-test 

score. 

 Engineering education. Concerns abound regarding recruiting more engineers 

and holding them in the discipline.  Talent and skills are highly sought after by 

employers. An international poll of human resource managers in 2006 found that three-

quarters said that attracting and retaining talent was their top priority; some 62% worried 
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about company-wide talent shortages (Wooldridge, 2006).   

At the same time, a broader awareness of world issues and international 

experience have become more desirable for students and future employers alike 

(Continental Corporation, 2007). A huge number of students are studying abroad (OECD, 

2007). Engineers are being called upon to answer global challenges; certain questions, 

e.g., climate change, point to globalized problems as well as solutions. Research can no 

longer be confined to certain locales, especially in science (Young et al., 2006). 

“Grand challenges” in engineering point out the potential for engineering to solve 

major problems for the world.  Many of the challenges are pressing issues for 

development (National Academy of Engineering, 2010).  Growing and changing 

demands on engineering graduates have made the skills needed a more complex field to 

navigate.  The United States, for example, adopted new accreditation criteria that call for 

student-centered pedagogies and preparation in soft skills; a National Academy report 

outlines new skillsets needed for the “Engineer of 2020”; and a survey of college 

administrators and employers corroborates this (ABET; NAE, 2004; NACE, 2004).  

Students are looking for professors who would deliver and possess these same skills 

(Morell & DeBoer, 2011). This study complements the extant literature by estimating the 

effect of both university and home background factors on engineers’ achievement.   

 Engineering education in Brazil. Brazil’s technology sector has developed 

largely within its own sphere.  The nation is isolated as a Lusophone country in a largely 

Hispanophone area; regionalization efforts in engineering have faltered before (Scavarda, 

Morell, and Jones, 2006).  While the last half of the 20th century saw notable growth in 

science and technology capacity in Brazil, the sector has not had resources keep up or 
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solidified connections with the government and the education system in the last decade of 

the century (Schwartzman et al., 1993). 

 As Brazil industrialized, its engineering identity was largely characterized by 

fragmentation at the regional and municipal levels—by a complex “agglomeration of 

regional economies…looking outwards” and by strong municipal organizations (Lucena, 

2008, p. 3). Even now, strong regional differences in higher education are notable. 

Brazil’s first emperor, who recognized the nation’s vast and diverse resources needed to 

be mapped, tried to structure engineering as a nation-building tool; engineering 

universities were originally modeled strongly after France, though with local 

modifications, and schools still today struggle to balance practical and theoretical 

teaching (Lucena, 2011).  I recognize the historical context by controlling for institutions’ 

locations and their position relative to students’ homes.  I also investigate the importance 

of practical and theoretical teaching methods. 

Though national innovation policy encourages investment, many Brazilians 

studying abroad return home, and though higher education continues to expand, it still 

has a drought of engineers (Carlson et al., 1996). Brazil’s higher education system is 

influenced both by former colonial occupiers and the huge EE system in the USA 

(Castro, 1983). Referred as a “natural knowledge economy” (Bound, 2008), Brazil’s rich 

natural resources are a national asset and a sustainability challenge for local engineers. 

Engineering needs may go unmet because of a mass exodus during undergraduate 

training, when many engineering students change to less challenging majors, possibly 

because of the difficulty of the course (Birdsall & Sabot, 1996). Despite the high level of 

prestige of engineering as a field of study, students drop out or avoid choosing the field 
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altogether, and only recently have researchers begun to address the engineering education 

system as a policy lever. 

In the last forty years, science education research has been systematized and 

developed as the overall science education field was renovated (Villani et al., 2010).  In 

Brazil, student-centered approaches such as problem-based learning (PBL) have been 

evaluated and shown to be successful in engineering courses (Roberto, 2008).  Brazil is 

developing high-technology R&D centers and advanced technological capacity, with 

biomedical engineering education and research growing notably over the last ten years, 

for example (Gehlot, 2009).  Some universities (particularly new ones) have successfully 

experimented with non-traditional courses such as broad “Introduction to Engineering” 

courses which allow students more time to consciously choose their discipline (Romero 

et al., 2011).  With the development of private education, policymakers across Latin 

America are struggling to determine how engineering still relates to society as the field 

shifts away from infrastructure and nation-building support (Lucena et al., 2008). 

As a fast-developing middle-income country, Brazil is investing heavily in the 

preparation, training, and growth of the engineering workforce.  It recently announced a 

new US$2 billion scholarship program to support science and technology students as part 

of the larger “Science without Borders” government program (Gardner, 2011).  And, 

Brazil is not alone in this. Around the world, urgent conversations and concrete 

investment make STEM education a high priority. The results of this study have broad 

global implications.  Little rigorous evidence exists—for any higher education system 

worldwide—to determine where in the university environment policymakers should 

focus, or even whether it is the university system and not K-12 education or even non-
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school interventions where the money should be directed. Brazil is in the position, 

though, to provide the data that can finally answer this question. I analyze those data 

here. 

 

Data 

 The ENADE data are gathered yearly for a representative sample of students in 

selected institutions in their first year or last year of a selected program.  (“First years” 

have completed 7-22% of their coursework, and “final years” at least 80% of their 

coursework [Ministério da Educação, 2005].)  In 2005 and 2008, engineering institutions 

participated in the ENADE data collection. ENADE assesses both general knowledge, 

such as Brazilian history, and subject-specific knowledge questions on engineering for 

students in the major. Besides the assessment component, inspectors visit the universities 

to examine physical, pedagogical, and human resources.  Students also provide home 

background information.  I limit my sample to students whose listed area of study is any 

“Engineering” (Engineering I-VIII) for 2005 and 2008 test-takers; I have over 45,000 

observations for each year.  

 Since standardized assessments of tertiary student achievement are nearly non-

existent at the national or even state levels, researchers and policymakers are very excited 

about the upcoming release of the Assessment of Higher Education Learning Outcomes 

(AHELO). Compared to ENADE, AHELO has the advantage of comparing results across 

countries. However, it is currently only in the feasibility testing phase; information will 

not be available even for “example institutions” until the end of 2012.  ENADE, on the 

other hand, has nationally representative data on both general and subject-specific areas, 
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and it also gathers student and institutional background information. Further, information 

is only being gathered on final-year students, not first-years, while ENADE covers both 

cohorts.  Testing culture has shifted in Brazil as well, with universities slowly adopting 

more nationally-standardized assessments for entrance exams as well as for institutional 

evaluation.  Both of these assessments are critical to furthering policymakers’ 

understanding of the role of higher education institutions.  The detailed relationships 

between resources and achievement that ENADE can illustrate are important 

complements to the broad pictures AHELO data will paint. Future development for 

AHELO could build off of lessons learned in ENADE. 

 

Supplemental Datasets 

 I divide my analyses into two sections (see methods below).  My main analysis is 

completed on two years of full ENADE data for students in 2005 and 2008.  I take 

advantage of additional available information, though, for checks of consistency of the 

results I find.  The second component of my analyses matches the majority of students in 

2005 with their college entrance exams and more detailed college information.  First, I 

match students in the 2005 ENADE sample with those who took the ENEM (Exame 

Nacional do Ensino Médio, or National High School Exam).  For the students in this 

matched dataset, I further add data from the Higher Education Census.  Not only can I get 

inside the “black box” to understand the specific resources of institutions that matter, I 

can control for pre-college achievement, match this for first years, and incorporate 

important student-level factors such as the distance from the student’s home to the 

college.  (In Brazil, students are much more likely to live at home and/or to attend 
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university close to home.)  I have ENEM data back to 1999, and using these data along 

with the 2005 university census, I create a matched dataset of nearly 60% of the ENADE 

sample.  

 

Variables 

 I use only ENADE data from 2005 and 2008, when engineering students were 

assessed.  Follow-up analyses may use 2011 when it is made available.  I further limit my 

sample to students in the 8 “groups” (7 in 2005) of engineering study. These include 

civil, electrical and electronic, mechanical, chemical, material, industrial, geological, and 

agricultural engineers and their related fields. I use information from the student 

background questionnaire (age, gender, first/final year, race/ethnicity, etc.), the student 

assessment (both general and subject-specific), and the department representative’s 

questionnaire on characteristics of the program. 

Both student-reported and administrator-reported information on university 

resources are available.  While administrator information might be considered more 

“objective”, it should be noted that respondents for the administrator questionnaire are 

course coordinators at the same universities, and these scores are part of the overall 

scores assigned to the universities.  I note differences between student and administrator 

reports.   

 Outcome of interest.  I run analyses on the full assessment as well as the general 

knowledge and engineering-specific tests separately.  The outcomes of interest are 

relatively normally distributed in both the full 2005/2008 dataset and the matched 2005 

sample.  In 2005, the average scores are slightly lower. 
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 Student background. The characteristics of the individual student, the student’s 

home environment, and the pre-college learning environment are combined in the 

construct of “student background”.  Race in the student questionnaire is given in the 

categories (translated) “white”, “black”, “mixed”, “Asian”, and “indigenous”. Experience 

with private school prior to university is operationalized as “1” if the student has had any 

exposure to private education (some or all). Student reports of computer and English 

proficiency are used as proxies for prior ability (highest levels) and reported study time as 

a proxy for academic press (logic model).  Student questionnaires also give information 

on parental education; the higher of the two for parents’ education is used and compared 

to the baseline category of “no education”.  The same questionnaire also provides income 

information.  (See figures 1 through 4 for the distribution of parental education by 

income levels and the distribution of family income by type of university.) 

 Physical resources.  Physical school resources include metrics relevant to the 

whole institution and resources specifically devoted to STEM fields.  The dataset 

provides information on student evaluations of laboratory quality and the institution’s 

overall lab area.  Data are also acquired on average class size and student teacher ratio.  

(See tables 9-13 for details on institutional characteristics.) 

 Teacher quality.  Student perspectives are given on teacher quality as well as 

quantitative measures of teacher qualifications.  Teacher experience is reported by 

students as “teacher mastery of subject taught”, while the ratio of PhDs to the overall 

faculty is given by the institution.   

 Pedagogy and learning environment. Classroom pedagogy is reported as one of 

the following primary methods of instruction: “lecture”, “partial lecture”, “practical”, or 
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“group work”, compared to “other”. Student evaluations of resources are averaged within 

programs, and data can be matched for program-level resources in the restricted dataset 

as well. 

 Missing data. There is some missing information in this dataset, particularly for 

the student questions on the background questionnaire.  However, it does not appear to be 

systematic. I nevertheless use multiple imputation with chained equations to address 

potential bias from casewise deletion of a sample of the dataset that is not Missing 

Completely at Random (MCAR) as well as to increase the efficiency of my estimates.   

(Rubin, 1987 shows that even with a rate of missing information of 0.5, five imputations 

will yield estimates over 90% efficient.)   

 

Methodology 

 I first estimate a basic OLS regression predicting student achievement using 

student-level controls (age, gender, parental education). I predict achievement for final 

year students based on these individual controls as well as institutional resources, 

teaching practices, and teacher qualifications. Previous research suggests that there is an 

endogeneity of student choice in the relationship between school quality and student 

achievement, and I test a number of additional models to determine whether estimates are 

consistent. I find evidence of the endogeneity of student choice, but I find that the general 

findings are consistent across models.  I estimate a model that utilizes a fixed effect for 

each engineering program.  I estimate the portion of variance in achievement within and 

between institutions. I am also able to match some students to their entrance exam score 

and control for the students’ achievement prior to college, isolating the effects of 
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institutional inputs. Finally, I take advantage of the multiple years during which 

engineering students were assessed by comparing the scores of first and final year 

students.  

 I run a number of analyses on the information provided by the ENADE data.  

First, I look at the confidence intervals for the in- and out-of-school factors predicting 

achievement of the first- and final-year engineering students. I use conventional (alpha = 

0.05) levels for creating the confidence intervals for the coefficient estimates. I also 

check the consistency of the estimates between the numerous models I estimate.  If there 

are major differences between the basic OLS estimate and the IV and fixed-effects 

estimates, I attempt to account for this.  Finally, I look at the decomposition of variance 

in the prediction of student achievement outcomes to understand the percent of variation 

explained by home versus school factors.  I split my analyses into two sections: full 

samples of 2005 vs. 2008 and checks of consistency with the 2005 sample for which I 

have location and pre-test information.  (Note, I only have pre-test information for the 

matched sample, so I look at a standard value-added model only with these data.) 

 

Cohort Data 

 OLS.  I first estimate a basic OLS regression predicting student achievement 

using student-level controls. I predict achievement for final year students based on these 

individual controls as well as institutional resources, teaching practices, and teacher 

qualifications. I use the following general model as my “naive” estimator: 

Y ij = β0 + β1StuControlsij + β2HomeResij + β3TeachQualityij + β4SchoolResij + 

β5ClassResij + β6TeachPracij + eij 
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where  

StuControls are the student controls such as age, gender, and study hours;  

HomeRes are the home background factors such as parental education and 

location; 

TeachQuality are the teacher quality factors such as experience; 

SchoolRes are the physical resources of the engineering institution; 

ClassRes are the classroom resources such as class size; 

and TeachPrac are the teaching practices such as student-centered learning of 

student i in institution j. 

 FE, RE. I am concerned about student choice in the relationship between school 

quality and student achievement, even more so in Brazil than in studies in the United 

States, and I test a number of additional models to determine whether estimates are 

consistent.  I compare the first model to a second that utilizes a fixed effect for each 

engineering program. The following model is employed here: 

Y ij = β0 + β1StuControlsij + β2HomeResij + β3TeachQualityij + β4SchoolResij + 

β5ClassResij + β6TeachPracij + β7Institutionij + eij + uj 

where each institution in the dataset receives its own error term u. 

 Cohort Comparisons. Finally, I take advantage of the multiple years during 

which engineering students were assessed.  I compare the scores of first- and final-year 

students in 2005 and 2008 in the same institutions, recognizing that institutional changes 

may have been made over this time.  I also look at the cohorts of students who were first-

years in 2005 and final-years in 2008.  (Typical engineering undergraduate degrees in 

Brazil take at least four years, but I use this cohort study as the closest approximation 
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available.)  This is similar to the General Course Index (IGC) procedure, which uses 

information from the previous three years’ ENADE results to evaluate universities across 

Brazil. 

Robustness Check with Matched Data 

 I incorporate two additional sources of information and re-run the analyses with 

data from the same students on their pre-college entrance exams and more detailed 

characteristics of their colleges.  I use OLS to estimate the predictive power of school and 

home resources while controlling for the student’s pre-college test score.  I use this 

subsample in a fixed-effects model as well, though I do not need information from the 

CENSO for this model.  I also test an instrumental variables model using distance and 

tuition to instrument for the easily-visible school characteristics students may identify in 

their decision-making.  Previous studies in higher education in the US (e.g., Bettinger & 

Long, 2004; Kling, 2000; Card, 1993) use distance between the student’s home and the 

location of the college as an instrument for the student choice mechanism.  Some authors 

argue that this is either not a valid instrument or that interpretations of results are 

erroneous (Carneiro & Heckman, 2002).  However, in Brazil, distance to school is an 

even stronger predictor of school choice; many students still live at home during college.  

And, given the other information I have, I am less concerned that distance would be 

correlated with omitted variables.   

 

Limitations  

 One of the major limitations of the external validity of my study is the fact that a 

number of institutions, including some of the most prominent ones, choose not to 
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participate in ENADE.  While the number of participating institutions is still large, some 

of the non-participants are seen as the top institutions in the country (including the 

Universidade de São Paulo, the top engineering school), universities that do not need to 

participate in the IGC ranking system since they are already recognized as the best.  At 

the individual level, students choose to boycott the ENADE assessment as well.  The 

majority of these boycotts are done by handing a blank test, and a higher percentage of 

public school students boycott than those in private school.  However, the engineering 

groups were among the lowest in the proportion of students boycotting, none more than 

6% (Leitão et al., 2010). 

 In addition, there is a popular understanding that, since the ENADE is a major 

component of the high-stakes institutional ranking of universities, that universities game 

the ENADE test and send their highest-achieving students to take it (Folha de São Paulo, 

2012).  One way I can verify whether this threatens my sample is to compare the 

demographic characteristics of the ENADE sample with the overall characteristics given 

in the CENSO.  As a check, I look at the proportion of females in the matched sample of 

ENADE compared to the gender ratio of the student body overall given in the CENSO 

for the same university.  I find that the mean female proportion in 2005 given in ENADE 

is 0.26 (SE = 0.01) while the average gender ratio in the same universities is 0.47 (SE = 

0.03), a significant difference.  However, even with this variable (the closest comparison 

I can make between the two datasets), I cannot say for sure that universities are indeed 

sending a different group of students to take the test; the information I have from the 

CENSO is on the whole institution, and there should be a lower ratio of females in the 

engineering programs.  I confirm that that correlation between the gender ratio and 
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average female proportion in the course move in the same direction and are significantly 

correlated (0.29, p=0.00). 

 

Results and Analysis 

 

Student Background 

 Characteristics of the student’s identity and experiences that pre-date the college 

years still affect his or her engineering achievement. Depending on the preparation and 

acculturation students receive prior to college, they are differentially able to learn the 

material given in the university; they come to university with different tools.  These 

results fit into the established theoretical framework of social and cultural capital 

(Bourdieu, 1977).  Individual factors that are part of the student's identity, her/his home 

environment growing up, and the experience of elementary and high school have 

persistent predictive power for a student's achievement at the beginning and end of 

college. Tables 1-4 give estimates from models that use only the ENADE data.  Results 

are generally consistent in models that use students matched with information from the 

pre-college exam (ENEM) to have a pre-test score. Tables 5-7 show results using 

ENADE data matched with ENEM and CENSO. 

 The student. Results across the models suggest that many components of the 

student's identity are important for student achievement.  Individual background 

characteristics are more frequently significant predictors and with stronger effect sizes for 

the engineering component of the test than for the general part, the burden of the 

traditionally under-represented minorities in engineering that has been identified in other 
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studies. For example, women do significantly worse on the engineering-specific 

component, though they actually do significantly better on the general component. Black, 

mixed, and indigenous students have lower scores than white students on the engineering 

portion.  Even using fixed effects to control for selection into better universities, I find 

that white students outperform their non-white peers; it is not just that privileged, high-

performing students choose to attend better universities.  As might be expected, students 

who report that they study more have higher scores, as do students who report that they 

are better at using computers.  These results are consistent between models using only the 

full ENADE engineering sample and models using ENADE with matched pre-college 

exam scores as a pre-test. 

 The home. Parental education and family income matter in predictable ways, but 

they matter much more for the general component of the test. Even in the model that 

controls for a student's previous scores, home background still significantly predicts 

achievement; the cultural capital that the student receives as s/he grows up not only helps 

to provide the student with knowledge prior to entering college, it also provides the 

student with the tools used to navigate higher education and learn more while at the 

university. Having parents with any education—whether just elementary school or higher 

education—predicts higher scores than having parents without formal education. Coming 

from a family with a low income (as compared to families in the middle) significantly 

predicts lower achievement, and coming from a family with a high income predicts 

higher scores, especially on the general component. Even controlling for selection bias 

into better schools, students from high income homes perform better on the general part 

of the assessment.  
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 The pre-tertiary school experience. Students who attended private high schools 

have significantly higher test scores, particularly on the specific (engineering) part of the 

assessment. This runs contrary to the college private school effect on scores (more detail 

in that section below).   

 

University Factors 

 Even controlling for all of the student background factors and institutional inputs 

in the model, students in their final year have higher scores than students in their first 

years.  Even in fixed-effects models that include controls for prior achievement, the effect 

size of being a final year versus a first year is approximately 0.7—assuming a 5 year 

degree, approximately 0.14 per year.  This is even larger for the engineering test—0.16 

per year. By the standards given for upper secondary school math gains annually [0.01 in 

Hill et al., 2007], this would be considered quite large.  And, in Brazil, high school 

achievement effect sizes can be approximated given Brazil’s Prova, or a standardized test 

given to 8th and 11th graders—in 2005, the average gain per year in high school was 

approximately 0.17 standard deviations, not controlling for other factors related to growth 

(INEP, 2012; Aparecida et al., 2008). 

 Students are learning something during their university experience, and the 

magnitude of the increase in achievement due to being a final year versus a first year is 

about twice as big for the engineering test as for the general knowledge test—engineering 

students are indeed learning something at school about engineering. The factors at 

schools that contribute to this learning are complex, however, and institutional 

characteristics do not all behave predictably.  Further, in looking at overall achievement, 
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it appears that about half of the variation is at the student level within institutions, and 

half is between institutions. 

  Within institutions—even controlling for the first year students’ scores, a higher 

proportion of males and white students predicted higher final year score averages, while 

higher family income predicted lower scores.  

 It is illuminating to see the significantly different profiles of the student body that 

begins the engineering course and the group that graduates, as well as to compare the 

group that goes through the private university system to the group that goes through the 

public system.  In addition, because I can match students in the ENEM dataset, I can 

compare the profile of students in the representative group of engineering courses in 

ENADE and students who were not.  Table 8 gives these comparisons.  It is clear that the 

group of students tracked into the private versus the public institutions are different, and 

it is clear that the students who finish their degrees are systematically different from those 

who start (Table 14).  This difference also helps explain counter-intuitive results we see.  

For example, in the fixed-effects models, the coefficient on private primary and 

secondary schooling becomes significantly negative.  This may be explained by the group 

of intense escolas tecnicas, highly-regarded public technical schools.  Further, we can see 

that the students who go into engineering are systematically different from their peers 

who have taken the same college entrance exam.  These differences are statistically and 

practically significant.  

 Equipment. In one glaring counter-intuitive result, student reports of very good 

physical facilities—including laboratories—predict lower scores on the engineering 

assessment compared to reports of good and satisfactory facilities. This may be explained 
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by the conundrum of well-equipped but low-performing private schools.  In models using 

the matched data (and controlling for prior achievement), effects are in the predicted 

direction.  And, in looking at the addition of an instrument to the matched data, the bias 

in these estimates is clearly diminished.  This self-reported data, while problematic if 

interpreted without further examination, is useful in its revelation of the varying 

perspectives students have on the resources at their disposal.  The students who may be 

more critical and demanding are also, on average, performing better; on the other hand, 

students who may accept whatever resources they are given without a critical eye are not 

doing as well.  Further, the students at private schools who are, on average, performing 

worse report greater satisfaction with the resources they have. 

 More predictably, large average class sizes are related to lower scores, 

particularly for the engineering assessment. In the institution-level panel dataset, large 

average class sizes predict lower scores even when controlling for first year student 

scores. 

 Teaching.  Student evaluations of their teachers' mastery of their subjects shows 

that very good teachers and bad teachers both predict lower scores compared to good and 

mediocre teachers. The negative impact of very good teachers is, however, only 

marginally statistically significant (a = 0.05), and the magnitude of the negative impact of 

bad and very bad teachers is ten times larger.  The counter-intuitive result may indicate 

that students who are doing well or are at better schools are more critical of their 

professors, and students who may not be learning more are less critical of their 

professors.  This explanation is expounded upon below in the discussion of private 

universities.  
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 Private universities. Scores are predicted to be significantly lower in private 

universities than in public ones (effect size = 0.33).  There is a higher proportion of large 

classes, but a much higher proportion of students report good labs and a much lower 

proportion report bad laboratories than in public universities.  A lower portion of students 

report that lecture is the predominant pedagogy.  There is a much higher report of good 

teachers in private universities, though, as noted above, students may be more or less 

critical in different environments.  On the face of it, private colleges have better 

resources. 

 However, the picture of the private university student is very different, and the 

private university experience serves a different purpose.  A logistic regression predicting 

private university attendance portrays the following private school attendee (Table 6).  

Students who are more likely to attend a private university are older, graduated from a 

public high school, performed worse on their college entrance exams, live at home, and 

have parents who either have just elementary education or who attended college or 

higher. The crossover from private high school to public college and vice versa creates a 

policy conundrum, where students whose parents can afford private K-12 education are 

well-prepared for competitive and well-funded public universities, and students who 

attend public K-12 must resort to the leftover spots in higher education.   

 In general, public universities improve student scores more (figure 5): public 

schools improve by 14.1 points on average (and start higher); private schools improve by 

12.7 (significant difference between both groups). 

 Fixed Effects, IV Estimates.  In the full dataset and the matched sample, I find 

significant within- and between-institution variation in engineering student achievement.  
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In all of the models, between-institution variation is larger.  However, it is notable that, 

for the subject-specific assessment, within- and between-institution variation is nearly 

equal, while between-institution variance is much larger than within-institution variance 

for the general knowledge test.  Once students are selected into a university (general 

knowledge), there is less variation in how they utilize those resources (engineering 

knowledge). 

 In my instrumental variables estimate, I use location in a capital city, distance to 

college, a second-order term, school cost, and an interaction as instruments for three of 

the most public signals sent to students about university quality—whether a university is 

public or private, the ratio of PhDs on the faculty, and the proportion of the student body 

from high-income backgrounds.  F-statistics for the first stage regressions (Table 7) are 

all greater than 10, and the coefficients for the excluded instruments are significant.  I use 

an over-identification test to verify that these institutional factors are indeed endogenous 

to student achievement.  I find that the instruments are valid, but they are only marginally 

statistically insignificant. 

 The variable I am most concerned about in terms of self-selection is the selection 

into a private university.  However, I include two other potentially endogenous 

regressors—the ratio of PhDs on the faculty and the proportion of high income students 

in the student population. I am concerned not only about selection into private or public 

university, but also about selection into higher quality universities in both sectors.  Both 

of these additional two variables would be noticeable indicators for students making their 

selection into university. 

 A comparison across the OLS/IV models seems to indicate I have removed some 
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of the potential bias whereby students with higher ability would select into public 

universities.  I also seem to have removed the bias whereby students would select into 

universities with a peer group with higher income.  The most interesting result in 

comparing the OLS and IV models comes in looking at the removal of bias for the ratio 

of PhDs on the faculty; the omitted variable bias appears to move in opposite directions 

for the general versus the specific test.  The doctor ratio variable appears to have been 

biased downward overall (students with lower achievement select into institutions with a 

higher ratio of PhDs).  This may be because students with overall higher abilities may 

selected into institutions with a higher doctor ratio on faculty (as evidenced by the 

changed in the coefficients for the general test), but these students are not necessarily the 

ones who would then perform well as engineers.  However, the factors that I instrument 

for are only the most visible of the factors that students might use to select their 

university, and I may not have been able to remove all of the omitted variable bias in the 

model.  And, as the excluded instruments have low p-values in the overidentification test, 

I have reservations about the use of this model as my main source of results reported.  In 

future work, I focus on the selection into private university as the primary endogenous 

variable of interest. Also, I separate out the OLS and FE results as the main results I 

discuss below. 

 

 

Discussion and Implications 

 School matters. In every model, the additive effect of being a final-year as 

opposed to being a first-year was significant. This result seems obvious; of course 
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students will know more about engineering at the end of a four year engineering program 

than at the beginning.  The size of the change is notable though—an increase of 

approximately 0.5 standard deviations for the general test and nearly 1 standard deviation 

for the engineering-specific assessment.  Of the school factors included in the model, 

teachers seem to matter the most; the largest result is the estimate of student reports of 

bad teachers, even controlling for varying private/public environments. 

 College does matter, but can it “make up for” discrepancies in pre-college 

factors? Effect sizes for school and home inputs were comparable, but the between-

school variation was larger than within-institution variation across models.  It should be 

noted that college dropout plagues the Brazilian system (Fava de Oliveira, 2011); the 

make-up of final years versus first years in this dataset is very different.  It is differential.  

From first years to final years, the proportion of students in private universities goes 

down, the portion of students from higher income families or who attended private high 

schools goes up, and the portion of students whose parents did not go to college or who 

are black, mixed, or indigenous greatly decreases.   

 A student's identity is significantly related to staying in school and for how the 

student fares on the engineering assessment.  A student's home background and pre-

tertiary experiences also matter for school retention as well as for where they go to school 

and their achievement on the general assessment.  As shown even in the models that 

control for previous achievement (the high school exit exam), the social and cultural 

resources that a student brings to college are important for navigating the university 

learning environment.   This is true in particular for the creation of technological capital; 

a student’s exposure to more resources in primary and secondary school prepares her to 
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choose a tertiary engineering education experience and to make better use of the same 

learning resources. 

 University factors do matter, and policymakers would do well to invest in creating 

an effective school space for engineers.  Effective teachers are at the heart of this puzzle, 

and more research is needed to understand what makes an effective teacher and how to 

train them.  But, institutional resources can only do their job if students are prepared for 

university.  As child development research has demonstrated the need for school 

readiness in young children, so this study begins to reveal that pre-college factors matter 

for university-level achievement.  Private school high school graduates have much higher 

high school exit exams; well-prepared students from private high schools crossover to the 

public universities, and under-privileged students in the public high schools crossover to 

private universities.   

 As Brazil leads the way in data collection of this sort, it should continue to look to 

improve the information it gathers.  I see from my rich amalgamated dataset that, across 

multiple sources of information, results are consistent.  However, as I have information 

from both the student and institutional perspective, I also note that some information 

around the same constructs seems to be measuring different things.  For example, the 

coefficients on “research emphasis” and “good labs” act in opposite directions.  While the 

overall research environment of a university might be thriving, the laboratory facilities 

may not necessarily be conducive to undergraduate student learning. 

A look at current Brazilian education practice could provide the inspiration for a 

policy change in higher education.  Low-cost private schools (often coupled with public 

subsidies) may be one policy tool that could allow for policy intervention into the pre-
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university domain.  The CENSO gives information on the financial situation of higher 

education institutions in Brazil.  Unlike in the United States, the best-funded schools are 

the public schools.  Comparing public to private schools (Table 14), one can see that the 

per-pupil amount spent solely on science/engineering equipment and the per-pupil 

income of the institutions are significantly larger.  This is the case despite the small 

difference in the gain in scores from first year to final year in the two types of 

institutions. 

Intervention to support the development of faculty within the private universities 

may also serve to raise the achievement of the students who are tracked into this part of 

the system. Perhaps even more promising, though, is the expansion and support of high-

quality public higher education.  Following on McCowan (2007)’s recommendations, 

interventions and incentives that build on the success of public higher education and 

expand access to its opportunities—through distance education, for example—could lead 

to both increased quality and equity.  

The formal school career of engineers is fraught with choices and challenges.  

Even after the high-stakes selection process that is a barrier to getting into university 

engineering programs, this more-homogenous group of students sees differential attrition, 

differential achievement, and, anecdotally, differential job success.  Of course the 

students who do get through to the final year of an engineering program are higher 

performing, but which students are these? Are they prepared enough? And, what 

investments helped them get there? 

A major policy recommendation I suggest based on these data is to provide a set 

of incentives specifically for the students most at-risk for stop-out during the college 
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experience: low-income and minority students.  There is clearly a systematic pattern of 

differential stopout for engineers who come into the higher education system with less 

technological capital already at their disposal.  Providing tailored, targeted support for 

these students to excel in their coursework, to complete their degrees, and to enter the 

engineering workforce would mitigate the exit of a substantial number of potential 

engineers from the engineering pipeline. 

The nature of engineering training may necessitate another policy 

recommendation—a closer connection between industry and formal schooling and 

between tertiary engineering education and out-of-school factors.  The creation of 

technological capital begins in the home, and engineering college programs might see 

more success in their students if student preparation began earlier.  The same is true for 

companies preparing Brazil’s next generation of engineers—the preparation of quality 

engineering workers begins before their first day on the job. 

What does it mean to invest in one’s own engineering education? The large 

private sector in higher education cannot be ignored in engineering training.  Does it 

change the way one perceives the quality of the resources at hand?  On average, students 

in private universities perform worse, though the student perspective on resources if 

significantly better.  Take teacher quality, for example.  The average “good teacher” 

rating is significantly higher in private than in public universities.  This is the case despite 

the fact that the proportion of doctors on the faculty in public universities is nearly three 

times higher.  It may be the case that students rate the quality of a significant investment 

on their part as higher than if they were not paying for it.  However, the learning 

environment in private universities may also be more conducive to a nurturing 
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experience; for example, the amount of group work reported in private universities is 

significantly higher.  Given the preparation of the students they receive, private 

universities may, overall, be providing an effective learning experience. 

 Future work will include analysis of restricted data for 2008 as well as more 

detailed analysis of university resources.  In 2011, engineering students were again 

sampled, and they will be included in follow-up work as well. Brazil has taken the lead in 

gathering university-level assessment data.  It now has the opportunity to take the lead in 

solving problems of educational quality and equity that continue to perplex policymakers 

worldwide. 
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Figures and Tables 

Table 1. OLS Prediction of Scores with Full ENADE Engineers Set (2005/2008) 

 Full score General  Engineering 
Sex -0.06 (0.30) 2.14 (0.40) -0.79 (0.29) 
Age -0.01 (0.03) -0.03 (0.03) 0.00 (0.03) 
Black -1.95 (0.31) -1.40 (0.41) -2.13 (0.33) 
Mixed -1.29 (0.30) -0.43 (0.42) -1.57 (0.30) 
Asian -0.18 (0.52) -0.65 (0.64) -0.02 (0.56) 
Indigenous -2.10 (0.74) -1.95 (0.93) -2.15 (0.80) 
Private 0.65 (0.22) 0.59 (0.32) 0.67 (0.23) 
Computing 1.17 (0.20) 1.46 (0.24) 1.07 (0.21) 
Study 0.36 (0.04) 0.42 (0.04) 0.34 (0.04) 
Parent ed: elementary 2.72 (0.82) 4.16 (1.33) 2.24 (0.79) 
Parent ed: junior secondary 2.35 (0.84) 3.67 (1.30) 1.91 (0.82) 
Parent ed: senior secondary 2.50 (0.85) 3.77 (1.31) 2.07 (0.82) 
Parent ed: higher education 3.91 (0.88) 4.82 (1.34) 3.61 (0.84) 
Family income low -0.26 (0.27) 0.78 (0.33) -0.60 (0.28) 
Family income high 0.14 (0.23) 1.09 (0.30) -0.18 (0.24) 
“Good” teachers -7.33 (3.88) -5.44 (4.31) -7.96 (3.96) 
“Bad” teachers -71.85 (12.70) -61.55 (13.69) -75.29 (12.88) 
“Good” labs -9.42 (4.43) -8.59 (4.34) -9.70 (4.61) 
“Bad” labs 11.59 (9.01) 9.96 (9.04) 12.14 (9.34) 
Medium class size -2.12 (3.52) -0.66 (3.25) -2.61 (3.76) 
Large class size -8.85 (3.59) -5.69 (3.67) -9.91 (3.86) 
Year of exam -0.69 (0.11) -1.09 (0.14) -0.56 (0.11) 
First year -6.72 (0.28) -3.99 (0.32) -7.64 (0.31) 
Constant 1433.27 

(224.69) 
2249.57 
(283.65) 

1163.84 
(227.15) 

    
Observations 125160 125161 125160 
R-squared 0.14 0.05 0.14 
Adjusted R-squared    
F 57.85 35.50 57.63 
D.f. model 23 23 23 
D.r. residuals 400 400 400 
    
Standard errors in parentheses   
Note: OLS model uses student weights.  
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Table 2. Fixed effects by institution (2005/2008)  
 Full score General Engineering 
Sex -0.07 (0.14) 2.33 (0.20) -0.86 (0.15) 
Age 0.08 (0.01) 0.04 (0.02) 0.09 (0.01) 
Black -1.47 (0.24) -1.11 (0.35) -1.60 (0.26) 
Mixed -0.54 (0.15) 0.08 (0.23) -0.75 (0.17) 
Asian -0.62 (0.34) -1.05 (0.50) -0.48 (0.36) 
Indigenous -1.34 (0.59) -1.41 (0.86) -1.31 (0.63) 
Private 0.32 (0.12) 0.40 (0.17) 0.29 (0.13) 
Computing 1.27 (0.12) 1.39 (0.17) 1.24 (0.12) 
Study 0.18 (0.02) 0.25 (0.03) 0.16 (0.02) 
Parent ed: 
elementary 

2.35 (0.72) 3.45 (1.05) 1.98 (0.77) 

Parent ed: 
junior sec. 

1.99 (0.72) 3.09 (1.05) 1.63 (0.77) 

Parent ed: 
senior sec. 

1.96 (0.71) 2.95 (1.04) 1.63 (0.76) 

Parent ed: 
higher ed. 

2.58 (0.71) 3.33 (1.04) 2.33 (0.76) 

Family income 
low 

-0.99 (0.13) 0.24 (0.19) -1.40 (0.14) 

Family income 
high 

0.74 (0.16) 1.42 (0.23) 0.51 (0.17) 

Year of exam -0.46 (0.05) -1.00 (0.08) -0.28 (0.06) 
First year -5.55 (0.12) -3.32 (0.17) -6.29 (0.13) 
Constant 955.69 

(103.44) 
2060.99 
(151.48) 

589.82 
(111.09) 

    
Observations 48913 48914 48913 
R-squared 0.07 0.02 0.08 
Adjusted R-
squared 

0.07 0.01 0.07 

F 225.76 66.61 248.64 
D.f. model 406 406 406 
D.r. residuals 48506 48507 48506 
    
Standard errors in parentheses  
Fixed effect by institution.   
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Table 3. Cohort Comparisons (2005/2008) 
Full scores    
 2005/2008 cohort 2008 first to 

final 
2005 first to final 

(Mean) first year scores 0.36 (0.03)   0.44 (0.02) 
(Mean) first year scores   0.48 (0.03)   
(Mean) sex -6.16 (1.65) 1.36 (1.63) -6.25 (1.40) 
(Mean) age -0.44 (0.16) -0.38 (0.16) 0.40 (0.14) 
(Mean) black -1.17 (5.64) -9.03 (5.07) -11.07 (4.72) 
(Mean) mixed -10.31 (2.74) -5.57 (2.79) -7.92 (2.26) 
(Mean) asian -5.97 (9.40) -15.94 (10.16) -10.37 (7.48) 
(Mean) indigenous -7.80 (18.52) -29.03 (18.75) 3.06 (9.97) 
(Mean) private pre-
college 

-2.04 (2.25) -3.14 (2.22) 1.34 (1.80) 

(Mean) computing -5.33 (2.29) -1.87 (2.26) 5.65 (1.87) 
(Mean) study 1.29 (0.37) 1.12 (0.34) 1.69 (0.28) 
(Mean) parent ed: elem 16.07 (11.49) 7.86 (9.76) -18.14 (10.19) 
(Mean) parent ed: 
junior secondary 

17.09 (11.25) 12.89 (9.52) -11.11 (10.00) 

(Mean) parent ed: 
senior secondary 

18.02 (10.90) 14.73 (9.02) -14.13 (9.72) 

(Mean) parent ed: 
higher education 

21.65 (10.91) 16.06 (9.06) -11.05 (9.74) 

(Mean) family income 
low 

-1.91 (2.04) -3.26 (2.01) 0.14 (1.81) 

(Mean) family income 
high 

-8.42 (3.86) -3.46 (3.87) -10.24 (3.00) 

(Mean) “good” teachers 2.34 (3.53) 4.65 (3.54) -10.07 (3.17) 
(Mean) “bad” teachers -7.18 (10.87) 4.59 (10.21) -25.05 (9.51) 
(Mean) “good” labs -3.47 (3.30) -2.53 (3.36) -2.51 (2.90) 
(Mean) “bad” labs -3.58 (6.37) -10.09 (6.14) -1.44 (5.83) 
(Mean) medium 
average class size 

-2.21 (2.91) -3.33 (3.01) -1.43 (2.36) 

(Mean) large average 
class size 

-5.31 (2.94) -7.32 (3.00) -4.49 (2.80) 

Constant 26.37 (12.26) 25.31 (10.51) 32.91 (10.78) 
    
Observations 894 948 873 
R-squared 0.43 0.42 0.51 
Adjusted R-squared 0.42 0.40 0.50 
F 29.82 29.95 40.97 
D.f. model 22 22 22 
D.r. residuals 871 925 850 
Standard errors in parentheses   
Institution-level cohort predictions   
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Table 4. OLS and IV Models for Matched Data 
 OLS Model 

Predicting 
full 

IV Model 
Predicting 

full 

OLS Model 
Predicting 

general 

IV Model 
Predicting 

general 

OLS Model 
Predicting 

subject 

IV Model 
Predicting 

subject 
Doctor ratio 0.51    

(0.04) 
2.33   

(0.75) 
0.39    

(0.05) 
-0.36 
(0.72) 

0.47    
(0.04) 

3.34    
(0.89) 

Average high 
income 

0.12   
(0.04) 

-0.82  
(0.39) 

0.16    
(0.05) 

0.37 
(0.37) 
 

 

0.08 
(0.04) 

-1.29   
(0.47) 
 

 

Private 
university 

-0.15    
(0.02) 

-0.01 
(0.28) 

-0.07   
(0.02) 

-0.43 
(0.27) 

-0.15    
(0.02) 

0.18 
(0.34) 

Sex 0.01 
(0.01) 

0.02 
(0.01) 

0.14    
(0.01) 

0.11    
(0.01) 

-0.04    
(0.01) 

-0.03  
(0.01) 

       
Age -0.01    

(0.00) 
-0.01   
(0.00) 

-0.00 
(0.00) 

0.00 
(0.00) 

-0.01    
(0.00) 

-0.01    
(0.00) 

       
Black -0.08   

(0.03) 
-0.06   
(0.02) 

-0.02 
(0.03) 

-0.03 
(0.03) 

-0.09   
(0.03) 

-0.07   
(0.03) 

       
Mixed -0.01 

(0.02) 
0.00 

(0.02) 
0.02 

(0.02) 
0.02 

(0.01) 
-0.02 
(0.02) 

-0.01 
(0.02) 

       
Asian -0.04 

(0.04) 
-0.05 
(0.03) 

-0.04 
(0.03) 

-0.04 
(0.03) 

-0.03 
(0.04) 

-0.05 
(0.05) 

       
Indigenous -0.01 

(0.06) 
0.00 

(0.06) 
0.01 

(0.07) 
0.04 

(0.05) 
-0.02 
(0.06) 

-0.02 
(0.08) 

       
Private pre-
college 

-0.04   
(0.01) 

-0.02 
(0.01) 

-0.02 
(0.01) 

-0.00 
(0.01) 

-0.04   
(0.01) 

-0.02 
(0.01) 

       
Computing -0.00 

(0.01) 
0.01 

(0.01) 
0.01 

(0.01) 
0.00 

(0.01) 
-0.00 
(0.01) 

0.01 
(0.01) 

       
Study 0.02    

(0.00) 
0.01    

(0.00) 
0.02    

(0.00) 
0.02    

(0.00) 
0.01    

(0.00) 
0.01   

(0.00) 
       
English 0.07    

(0.01) 
0.07    

(0.01) 
0.10    

(0.01) 
0.09    

(0.01) 
0.04    

(0.01) 
0.06    

(0.01) 
       
ENEM 
objective 

0.01    
(0.00) 

0.00    
(0.00) 

0.01    
(0.00) 

0.00    
(0.00) 

0.01    
(0.00) 

0.00    
(0.00) 

       
ENEM 
redactive 

-0.00 
(0.00) 

0.00 
(0.00) 

0.00    
(0.00) 

0.00   
(0.00) 

-0.00    
(0.00) 

0.00 
(0.00) 

       
Live with 
family 

-0.01 
(0.02) 

0.01 
(0.02) 

-0.01 
(0.03) 

0.02 
(0.02) 

-0.01 
(0.02) 

0.01 
(0.02) 

       
Parental ed: 
elementary 

0.15 
(0.09) 

0.20   
(0.07) 

0.12 
(0.14) 

0.17 
(0.09) 

0.14 
(0.08) 

0.19  
(0.08) 

       
Parental ed: 
junior sec. 

0.11 
(0.11) 

0.13 
(0.08) 

0.12 
(0.14) 

0.13 
(0.08) 

0.09 
(0.09) 

0.11 
(0.10) 
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Parental ed: 
senior sec. 

0.09 
(0.10) 

0.14 
(0.08) 

0.11 
(0.13) 

0.15 
(0.09) 

0.07 
(0.09) 

0.12 
(0.09) 

       
Parental ed: 
higher ed. 

0.09 
(0.10) 

0.16 
(0.08) 

0.12 
(0.14) 

0.14 
(0.09) 

0.07 
(0.09) 

0.15 
(0.09) 

       
Family 
income: 
lower-mid. 

-0.02 
(0.02) 

-0.03 
(0.03) 

-0.02 
(0.02) 

-0.03 
(0.03) 

-0.01 
(0.02) 

-0.03 
(0.03) 

       
Family 
income: 
middle 
income 

-0.02 
(0.02) 

-0.03 
(0.02) 

-0.03 
(0.02) 

-0.02 
(0.03) 

-0.01 
(0.02) 

-0.03 
(0.02) 

       
Family 
income: 
higher mid. 

-0.01 
(0.02) 

-0.03 
(0.03) 

-0.05 
(0.03) 

-0.05 
(0.03) 

0.00 
(0.02) 

-0.02 
(0.03) 

       
Family 
income: high 

0.04 
(0.03) 

0.04 
(0.03) 

-0.03 
(0.04) 

-0.04 
(0.04) 

0.06  
(0.03) 

0.08  
(0.03) 

       
Family 
income: 
highest  

0.08  
(0.03) 

0.13   
(0.04) 

-0.07 
(0.04) 

-0.07 
(0.05) 

0.12    
(0.03) 

0.21    
(0.05) 

       
Family 
income: none 

-0.02 
(0.08) 

-0.00 
(0.08) 

-0.12 
(0.08) 

-0.03 
(0.08) 

0.02 
(0.08) 

0.01 
(0.09) 

       
Average 
“good” 
teacher rating 

0.08 
(0.05) 

0.39    
(0.10) 

0.07 
(0.06) 

0.04 
(0.09) 

0.07 
(0.06) 

0.52    
(0.11) 

       
Average 
“bad” teacher 
rating 

-1.11    
(0.15) 

-0.85   
(0.27) 

-0.67    
(0.16) 

-0.77   
(0.26) 

-1.09    
(0.15) 

-0.80  
(0.32) 

       
IP (number of 
patents) 

0.00    
(0.00) 

-0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00    
(0.00) 

-0.00 
(0.00) 

       
       
Research 
emphasis 

0.01 
(0.02) 

-0.11    
(0.03) 

0.00 
(0.02) 

0.02 
(0.03) 

0.01 
(0.02) 

-0.16    
(0.04) 

       
Average 
“good” lab 
rating 

-0.09  
(0.04) 

0.70   
(0.22) 

-0.14   
(0.05) 

0.02 
(0.21) 

-0.06 
(0.04) 

0.94    
(0.26) 

       
Average 
“bad” lab 
rating 

-0.23   
(0.08) 

1.26  
(0.49) 

-0.17  
(0.09) 

-0.48 
(0.47) 

-0.22   
(0.08) 

1.94    
(0.58) 
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Average 
female prop. 

0.38    
(0.05) 

0.03 
(0.11) 

0.10 
(0.05) 

0.09 
(0.10) 
 

 

0.42    
(0.05) 

0.00 
(0.13) 
 

 

       
       
Average 
black prop. 

0.66    
(0.13) 

0.24 
(0.17) 

0.75    
(0.14) 

0.45    
(0.12) 

0.51    
(0.13) 

0.26 
(0.14) 

       
Average 
mixed prop. 

-0.23    
(0.05) 

-1.22   
(0.40) 

-0.03 
(0.06) 

-0.07 
(0.17) 

-0.27    
(0.05) 

0.35 
(0.21) 

       
Average 
asian prop. 

-0.40   
(0.14) 

-0.89   
(0.30) 

-0.40   
(0.15) 

0.12 
(0.37) 

-0.33  
(0.14) 

-1.72    
(0.47) 

       
Average 
indigenous 
prop. 

-0.30 
(0.27) 

0.03 
(0.11) 

0.36 
(0.29) 

0.22 
(0.29) 

-0.51 
(0.27) 

-1.31    
(0.36) 

       
       
Lectures 0.61    

(0.06) 
-0.35 
(0.24) 

0.33    
(0.07) 

0.31 
(0.23) 

0.62    
(0.06) 

-0.62  
(0.28) 

       
Group work -0.10 

(0.09) 
-0.10 
(0.08) 

-0.18 
(0.09) 

-0.04 
(0.08) 

-0.05 
(0.09) 

-0.12 
(0.10) 

       
Seminars 0.00 

(0.00) 
0.00   

(0.00) 
0.00 

(0.00) 
0.00 

(0.00) 
0.00 

(0.00) 
0.00   

(0.00) 
       
Incoming -0.75    

(0.01) 
-0.57    
(0.02) 

-0.31    
(0.02) 

-0.21    
(0.02) 
 

 

-0.79    
(0.01) 

-0.68    
(0.02) 

Constant -0.04 
(0.14) 

-0.64  
(0.31) 

-0.70    
(0.19) 

-0.05 
(0.30) 

0.23 
(0.13) 

-0.84  
(0.36) 

Observations 31033 27499 31033 27499 31033 27499 
R2 0.31 0.17 0.16 0.13 0.29 0.06 
Adjusted R2 0.31 0.17 0.15 0.13 0.29 0.06 
F 275.00 233.49 111.68 114.33 249.14 192.00 
D.f. model 51 41 51 41 51 41 
Sarganp  0.12  0.18  0.15 
Archi2p  0.00  0.05  0.00 
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Table 5. Prediction of Student Being in Private University 
 (1) (2) 
 Logit Model Predicting 

that student is in a 
private univ. 

Logit Model Predicting a 
student’s enrollment in a private 

univ. (just student chars.) 
Private univ.   
Sex -0.02 

(0.09) 
-0.31    
(0.03) 

   
Age 0.05    

(0.01) 
-0.02    
(0.00) 

   
Black -0.07 

(0.21) 
0.10 

(0.07) 
   
Mixed -0.06 

(0.10) 
-0.22    
(0.04) 

   
Asian -0.04 

(0.21) 
-0.08 
(0.09) 

   
Indigenous 0.17 

(0.45) 
0.07 

(0.13) 
   
Private pre-college -0.23   

(0.09) 
-0.39    
(0.04) 

   
Computing 0.02 

(0.08) 
0.40    

(0.03) 
   
Study -0.03  

(0.01) 
-0.14    
(0.01) 

   
English -0.02 

(0.07) 
-0.25    
(0.03) 

   
ENEM objective -0.00 

(0.00) 
-0.02    
(0.00) 

   
ENEM redactive -0.00 

(0.00) 
0.00    

(0.00) 
   
Live with family 0.32  

(0.15) 
0.26    

(0.07) 
   
Parental ed: 
elementary 

0.66 
(0.84) 

-0.31 
(0.31) 

   
Parental ed: junior 
sec. 

0.87 
(0.92) 

-0.19 
(0.30) 

   
Parental ed: senior 
sec. 

0.80 
(0.89) 

-0.31 
(0.32) 

   
Parental ed: higher 0.85 -0.46 



 
125 

 

ed. (0.88) (0.34) 
   
Family income: 
lower-mid. 

-0.18 
(0.15) 

0.29    
(0.05) 

   
Family income: 
middle income 

-0.10 
(0.17) 

0.28    
(0.05) 

   
Family income: 
higher mid. 

0.02 
(0.16) 

0.34    
(0.05) 

   
Family income: 
high 

0.28 
(0.23) 

0.62    
(0.07) 

   
Family income: 
highest  

0.38 
(0.31) 

0.99    
(0.08) 

   
Family income: 
none 

-0.81 
(0.45) 

0.16 
(0.17) 

   
Average “good” 
teacher rating 

3.57    
(0.41) 

 
 

   
Average “bad” 
teacher rating 

-13.45    
(1.06) 

 
 

   
IP (number of 
patents) 

0.00    
(0.00) 

 
 

   
Doctor ratio -12.78    

(0.39) 
 
 

   
Research emphasis 0.22 

(0.14) 
 
 

   
Average “good” 
lab rating 

2.56    
(0.27) 

 
 

   
Average “bad” lab 
rating 

-0.76 
(0.53) 

 
 

   
Average class size: 
medium 

-2.77    
(0.21) 

 
 

   
Average class size: 
large 

2.38    
(0.27) 

 
 

   
Overall STR 0.09    

(0.01) 
 
 

   
Overall gender 
ratio 

0.36    
(0.05) 

 
 

   
Scholarships 66.32    

(2.84) 
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Library area -0.00    

(0.00) 
 
 

   
Laboratory area 0.00    

(0.00) 
 
 

   
Computers -0.00  

(0.00) 
 
 

   
Average female 
prop. 

-4.12    
(0.33) 

 
 

   
Average low 
income prop. 

1.27  
(0.52) 

 
 

   
Average high 
education prop. 

-1.14 
(0.74) 

 
 

   
Average black 
prop. 

-0.68 
(0.72) 

 
 

   
Average mixed 
prop. 

0.70  
(0.34) 

 
 

   
Average asian 
prop. 

18.19    
(1.17) 

 
 

   
Average 
indigenous prop. 

-7.32    
(2.20) 

 
 

   
Average high 
educaiton 

1.33   
(0.44) 

 
 

   
Lectures -2.38    

(0.48) 
 
 

   
Group work 

 
3.57    

(0.72) 
 
 

   
Practical work 6.99    

(1.20) 
 
 

   
Seminars 0.01    

(0.00) 
 
 

   
Constant -0.15 

(1.22) 
2.35    

(0.40) 
Observations 31060 31060 



 
 

Table 6. Institutional Fixed Effects for All Universities, Private, and Public by Full, General, and Specific Assessment 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
 FE Model 

Predicting 
full (all 
univs.) 

FE Model 
Predicting full 

(private 
univs.) 

FE Model 
Predicting 
full (public 

univs.) 

FE Model 
Predicting 
general (all 

univs.) 

FE Model 
Predicting 

general 
(private 
univs.) 

FE Model 
Predicting 

general 
(public 
univs.) 

FE Model 
Predicting 
subject (all 

univs.) 

FE Model 
Predicting 

subject 
(private 
univs.) 

FE Model 
Predicting 

subject 
(public 
univs.) 

Sex 0.00 
(0.01) 

0.06    
(0.02) 

-0.06    
(0.02) 

0.14    
(0.01) 

0.18    
(0.02) 

0.10    
(0.02) 

-0.05    
(0.01) 

0.01 
(0.02) 

-0.11    
(0.02) 

          
Age -0.01    

(0.00) 
0.00 

(0.00) 
-0.04    
(0.00) 

-0.00 
(0.00) 

0.01    
(0.00) 

-0.03    
(0.00) 

-0.01    
(0.00) 

0.00 
(0.00) 

-0.03    
(0.00) 

          
Black -0.08   

(0.03) 
-0.03 
(0.03) 

-0.16    
(0.04) 

-0.03 
(0.03) 

0.01 
(0.04) 

-0.06 
(0.05) 

-0.09    
(0.03) 

-0.04 
(0.03) 

-0.17    
(0.04) 

          
Mixed -0.01 

(0.02) 
0.01 

(0.02) 
-0.03 
(0.03) 

0.02 
(0.02) 

0.06  
(0.02) 

-0.01 
(0.03) 

-0.02 
(0.02) 

-0.01 
(0.02) 

-0.03 
(0.03) 

          
Asian -0.04 

(0.03) 
-0.05 
(0.04) 

-0.05 
(0.04) 

-0.04 
(0.03) 

0.01 
(0.04) 

-0.08 
(0.05) 

-0.04 
(0.03) 

-0.06 
(0.04) 

-0.02 
(0.05) 

          
Indigenous -0.03 

(0.05) 
0.04 

(0.07) 
-0.11 
(0.09) 

0.00 
(0.07) 

0.09 
(0.09) 

-0.08 
(0.10) 

-0.04 
(0.05) 

0.02 
(0.06) 

-0.11 
(0.09) 

          
Private pre-
college 

-0.04   
(0.01) 

0.00 
(0.02) 

-0.08    
(0.02) 

-0.02 
(0.01) 

-0.01 
(0.03) 

-0.04 
(0.02) 

-0.04   
(0.01) 

0.01 
(0.02) 

-0.08    
(0.02) 

          
Computing 0.00 

(0.01) 
-0.01 
(0.01) 

0.02 
(0.02) 

0.01 
(0.01) 

0.00 
(0.02) 

0.02 
(0.02) 

-0.00 
(0.01) 

-0.01 
(0.01) 

0.01 
(0.02) 

          
Study 0.01    

(0.00) 
0.01    

(0.00) 
0.01    

(0.00) 
0.02    

(0.00) 
0.02    

(0.00) 
0.01    

(0.00) 
0.01    

(0.00) 
0.01  

(0.00) 
0.01  

(0.00) 
          
English 0.06    

(0.01) 
0.07    

(0.01) 
0.04  

(0.02) 
0.09    

(0.01) 
0.12    

(0.02) 
0.05  

(0.02) 
0.04    

(0.01) 
0.04   

(0.01) 
0.03 

(0.02) 
          
ENEM 
objective 

0.01    
(0.00) 

0.01    
(0.00) 

0.01    
(0.00) 

0.01    
(0.00) 

0.01    
(0.00) 

0.00    
(0.00) 

0.01    
(0.00) 

0.01    
(0.00) 

0.00    
(0.00) 
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ENEM 
redactive 

-0.00 
(0.00) 

-0.00 
(0.00) 

-0.00 
(0.00) 

0.00    
(0.00) 

0.00    
(0.00) 

0.00   
(0.00) 

-0.00    
(0.00) 

-0.00    
(0.00) 

-0.00 
(0.00) 

          
Live with 
family 

0.00 
(0.02) 

0.02 
(0.03) 

-0.02 
(0.03) 

-0.00 
(0.03) 

0.02 
(0.04) 

-0.02 
(0.03) 

0.00 
(0.02) 

0.02 
(0.03) 

-0.01 
(0.03) 

          
Parental ed: 
elementary 

0.14 
(0.11) 

0.15 
(0.10) 

0.11 
(0.17) 

0.10 
(0.15) 

0.18 
(0.17) 

-0.05 
(0.15) 

0.13 
(0.09) 

0.11 
(0.08) 

0.15 
(0.18) 

          
Parental ed: 
junior sec. 

0.12 
(0.12) 

0.16 
(0.10) 

0.08 
(0.19) 

0.12 
(0.15) 

0.23 
(0.18) 

-0.05 
(0.14) 

0.10 
(0.10) 

0.11 
(0.09) 

0.11 
(0.19) 

          
Parental ed: 
senior sec. 

0.11 
(0.11) 

0.12 
(0.10) 

0.09 
(0.17) 

0.11 
(0.14) 

0.21 
(0.18) 

-0.04 
(0.13) 

0.09 
(0.10) 

0.07 
(0.09) 

0.13 
(0.18) 

          
Parental ed: 
higher ed. 

0.10 
(0.11) 

0.14 
(0.10) 

0.07 
(0.18) 

0.11 
(0.14) 

0.21 
(0.18) 

-0.05 
(0.13) 

0.08 
(0.10) 

0.09 
(0.09) 

0.10 
(0.19) 

          
Family 
income: 
lower-mid. 

-0.02 
(0.02) 

-0.04 
(0.03) 

-0.00 
(0.03) 

-0.03 
(0.02) 

-0.03 
(0.03) 

-0.01 
(0.05) 

-0.02 
(0.02) 

-0.03 
(0.02) 

0.00 
(0.03) 

          
Family 
income: 
middle 
income 

-0.02 
(0.02) 

-0.03 
(0.02) 

0.00 
(0.03) 

-0.02 
(0.02) 

-0.02 
(0.03) 

-0.03 
(0.05) 

-0.01 
(0.02) 

-0.03 
(0.02) 

0.01 
(0.03) 

          
Family 
income: 
higher mid. 

-0.01 
(0.02) 

-0.05 
(0.03) 

0.03 
(0.03) 

-0.04 
(0.03) 

-0.07  
(0.03) 

-0.01 
(0.05) 

0.00 
(0.02) 

-0.03 
(0.03) 

0.05 
(0.03) 

          
Family 
income: 
high 

0.03 
(0.03) 

-0.01 
(0.04) 

0.06 
(0.04) 

-0.02 
(0.03) 

-0.06 
(0.04) 

0.01 
(0.06) 

0.04 
(0.03) 

0.01 
(0.04) 

0.07 
(0.04) 

          
Family 
income: 
highest  

0.05 
(0.03) 

-0.02 
(0.04) 

0.15   
(0.05) 

-0.06 
(0.04) 

-0.11  
(0.05) 

0.01 
(0.06) 

0.09   
(0.03) 

0.02 
(0.04) 

0.17    
(0.05) 

          
Family 
income: 

-0.01 
(0.08) 

-0.03 
(0.09) 

0.03 
(0.11) 

-0.09 
(0.08) 

-0.09 
(0.11) 

-0.07 
(0.13) 

0.03 
(0.08) 

-0.00 
(0.09) 

0.07 
(0.11) 
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 none 
          
Overall STR -0.01    

(0.00) 
-0.00   
(0.00) 

-0.16    
(0.01) 

-0.01    
(0.00) 

-0.00 
(0.00) 

-0.04   
(0.01) 

-0.00  
(0.00) 

-0.00  
(0.00) 

-0.18    
(0.01) 

          
Overall 
gender ratio 

0.04    
(0.01) 

0.03  
(0.01) 

0.04    
(0.01) 

0.04    
(0.01) 

0.01 
(0.02) 

0.05    
(0.01) 

0.04    
(0.01) 

0.04   
(0.01) 

0.03    
(0.01) 

          
Incoming -0.73    

(0.01) 
-0.59    
(0.02) 

-0.90    
(0.02) 

-0.28    
(0.02) 

-0.33    
(0.02) 

-0.30    
(0.02) 

-0.78    
(0.01) 

-0.59    
(0.02) 

-0.98    
(0.02) 

          
Constant 0.25 

(0.13) 
-0.50    
(0.13) 

1.51    
(0.21) 

-0.38  
(0.17) 

-1.02    
(0.20) 

0.82    
(0.19) 

0.45    
(0.12) 

-0.21 
(0.13) 

1.52    
(0.22) 

Observation
s 

31060 16288 14772 31060 16288 14772 31060 16288 14772 

R2 0.15 0.14 0.19 0.06 0.09 0.04 0.15 0.12 0.20 
Adjusted R2 0.14 0.13 0.18 0.05 0.07 0.04 0.14 0.10 0.20 
F 213.67 100.29 129.94 75.66 58.80 26.09 208.59 81.76 143.08 
D.f. model 333 247 111 333 247 111 333 247 111 
D.r. 
residuals 

30726 16040 14660 30726 16040 14660 30726 16040 14660 

Within- 
institution 
variance 
explained 

0.15 0.14 0.19 0.06 0.09 0.04 0.15 0.12 0.20 

Between-
institution 
variance 
explained 

0.28 0.15 0.10 0.35 0.23 0.11 0.21 0.09 0.10 

Overall 
variance 
explained 

0.22 0.18 0.15 0.11 0.11 0.06 0.20 0.15 0.16 

12
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Table 7. First Stage Regressions Predicting Instrumented Variables 

 (1) (2) (3) 
 First-stage: 

private univ. 
First-stage: average 

high income 
First-stage: doctor 

ratio 
Sex 0.00 

(0.00) 
0.00 

(0.00) 
0.00 

(0.00) 
    
Age 0.00    

(0.00) 
0.00   

(0.00) 
0.00    

(0.00) 
    
Black -0.00 

(0.01) 
0.01    

(0.00) 
0.00 

(0.00) 
    
Mixed 0.00 

(0.00) 
0.01    

(0.00) 
-0.00 
(0.00) 

    
Asian 0.00 

(0.01) 
-0.00 
(0.00) 

-0.00 
(0.00) 

    
Indigenous -0.03 

(0.02) 
0.01 

(0.01) 
0.00 

(0.01) 
    
Private -0.02    

(0.00) 
0.01    

(0.00) 
0.01    

(0.00) 
    
Computing 0.02    

(0.00) 
-0.00 
(0.00) 

-0.01    
(0.00) 

    
Study -0.00    

(0.00) 
0.00    

(0.00) 
0.00    

(0.00) 
    
English -0.01  

(0.00) 
0.01    

(0.00) 
0.01    

(0.00) 
    
ENEM objective -0.03    

(0.00) 
0.01    

(0.00) 
0.02    

(0.00) 
    
ENEM redactive 0.01    

(0.00) 
-0.00 
(0.00) 

-0.01    
(0.00) 

    
Live with family 0.03    

(0.01) 
0.00 

(0.00) 
-0.01  
(0.00) 

    
Parental ed: 
elementary 

-0.02 
(0.02) 

-0.01 
(0.01) 

0.01 
(0.01) 
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Parental ed: junior 
sec. 

-0.00 
(0.02) 

-0.01 
(0.01) 

0.00 
(0.01) 

    
Parental ed: senior 
sec. 

-0.01 
(0.02) 

-0.00 
(0.01) 

0.00 
(0.01) 

    
Parental ed: higher 
ed. 

-0.01 
(0.02) 

0.01 
(0.01) 

0.01 
(0.01) 

    
Family income: 
lower-mid. 

0.00 
(0.01) 

-0.01    
(0.00) 

-0.00 
(0.00) 

    
Family income: 
middle income 

0.00 
(0.01) 

-0.01    
(0.00) 

0.00 
(0.00) 

    
Family income: 
higher mid. 

0.00 
(0.01) 

0.01   
(0.00) 

0.00 
(0.00) 

    
Family income: 
high 

0.02   
(0.01) 

0.03    
(0.00) 

-0.00 
(0.00) 

    
Family income: 
highest  

0.04    
(0.01) 

0.06    
(0.00) 

-0.01 
(0.01) 

    
Family income: 
none 

0.00 
(0.02) 

-0.01 
(0.01) 

0.01 
(0.01) 

    
Lectures -1.03    

(0.02) 
0.22    

(0.01) 
0.74    

(0.01) 
    
Group work 0.11    

(0.03) 
-0.14    
(0.01) 

-0.08    
(0.01) 

    
Seminars 0.00   

(0.00) 
-0.00 
(0.00) 

-0.00  
(0.00) 

    
“Good” labs 0.96    

(0.01) 
0.05    

(0.00) 
-0.29    
(0.01) 

    
“Bad” labs 0.47    

(0.02) 
0.04    

(0.01) 
-0.67    
(0.01) 

    
Incoming 0.01 

(0.00) 
-0.01    
(0.00) 

0.00 
(0.00) 

    
Average female -0.64    

(0.01) 
0.05    

(0.00) 
0.32    

(0.01) 
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Average black 0.04 

(0.04) 
-0.25    
(0.01) 

-0.03 
(0.02) 

    
Average mix -0.19    

(0.01) 
-0.09    
(0.00) 

-0.15    
(0.01) 

    
Average asian 0.45    

(0.04) 
0.21    

(0.01) 
0.48    

(0.02) 
    
Average 
indigenous 

0.69    
(0.08) 

-0.61    
(0.03) 

-0.26    
(0.04) 

    
Research emphasis -0.04    

(0.00) 
-0.03    
(0.00) 

0.06    
(0.00) 

    
Ip -0.00    

(0.00) 
0.00    

(0.00) 
0.00    

(0.00) 
    
“Good” teachers 0.35    

(0.02) 
0.17    

(0.01) 
-0.14    
(0.01) 

    
“Bad” teachers -0.70    

(0.04) 
-0.17    
(0.01) 

-0.21    
(0.02) 

    
Distance -0.00    

(0.00) 
-0.00  
(0.00) 

-0.00  
(0.00) 

    
Distance tuition 0.00 

(0.00) 
-0.00    
(0.00) 

-0.00  
(0.00) 

    
Distance^2 0.00 

(0.00) 
-0.00 
(0.00) 

0.00    
(0.00) 

    
Capital city 0.03    

(0.00) 
0.05    

(0.00) 
0.01   

(0.00) 
    
Per-pupil tuition 0.00    

(0.00) 
0.00  

(0.00) 
-0.00    
(0.00) 

    
Constant 0.43    

(0.03) 
-0.04    
(0.01) 

0.12    
(0.02) 

Observations 31060 31060 31060 
R2 0.73 0.48 0.68 
F 1950.00 651.78 1493.73 
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Table 8. Comparison of Demographics of Engineers/Non-Engineers 

 Non-engineers  Sampled engineers 

Variable Obs M SD Obs M SD 

White 5256980 0.57 0.49 30267 0.71 0.45 

Mixed 5256980 0.31 0.46 30267 0.20 0.40 

Black 5256980 0.06 0.24 30267 0.03 0.18 

Asian 5256980 0.05 0.22 30267 0.05 0.21 

Indigenous 5256980 0.01 0.09 30267 0.00 0.07 

Single 5277133 0.93 0.26 30308 0.99 0.11 

Married 5277133 0.06 0.24 30308 0.01 0.10 

Separated 5277133 0.01 0.09 30308 0.00 0.03 

Widow 5277133 0.00 0.03 30308 0.00 0.02 

Father ed: no school 5262671 0.06 0.25 30262 0.01 0.10 

Father ed: early primary 5262671 0.29 0.45 30262 0.12 0.33 

Father ed: primary 5262671 0.15 0.36 30262 0.11 0.31 

Father ed: junior secondary 5262671 0.06 0.24 30262 0.06 0.24 

Father ed: senior secondary 5262671 0.16 0.37 30262 0.23 0.42 

Father ed: some higher 
education 

5262671 0.04 0.20 30262 0.09 0.28 

Father ed: undergraduate degree 5262671 0.12 0.33 30262 0.27 0.44 

Father ed: postgraduate 5262671 0.04 0.19 30262 0.09 0.28 

Mother ed: no school 5276866 0.06 0.23 30302 0.01 0.10 

Mother ed: early primary 5276866 0.28 0.45 30302 0.11 0.31 

Mother ed: primary 5276866 0.17 0.38 30302 0.11 0.31 

Mother ed: junior secondary 5276866 0.07 0.25 30302 0.06 0.24 

Mother ed: senior secondary 5276866 0.19 0.40 30302 0.27 0.44 

Mother ed: some higher 5276866 0.05 0.21 30302 0.08 0.27 
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education 

Mother ed: undergraduate 
degree 

5276866 0.12 0.33 30302 0.27 0.44 

Mother ed: postgraduate 5276866 0.04 0.19 30302 0.09 0.28 

Lower middle income 5243137 0.31 0.46 30134 0.22 0.41 

Middle income 5243137 0.19 0.39 30134 0.28 0.45 

Higher middle income 5243137 0.14 0.35 30134 0.31 0.46 

High income 5243137 0.03 0.18 30134 0.07 0.26 

Max income 5243137 0.02 0.13 30134 0.03 0.18 

No income 5243137 0.01 0.11 30134 0.01 0.08 

No computers 5123229 0.32 0.47 30125 0.18 0.38 

One computer 5123229 0.28 0.45 30125 0.54 0.50 

Two computers 5123229 0.03 0.18 30125 0.08 0.27 

Three or more computers 5123229 0.01 0.09 30125 0.02 0.14 

Secondary only public 5259275 0.68 0.47 30289 0.40 0.49 

Secondary some private 5259275 0.05 0.22 30289 0.06 0.24 

Secondary only private 5259275 0.25 0.44 30289 0.52 0.50 

Secondary teachers excellent 5271361 0.00 0.03 30271 0.00 0.04 
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Table 9. Physical Infrastructure (Student and Institutional Perspective) 

 “Good” 
labs  

“Bad” 
labs  

Lab area  Library 
area  

Computers  Funding  

“Good” 
labs  

1.00       

“Bad” labs  -0.81 
(0.00)  

1.00      

Lab area  -0.18  
(0.00)  

0.23 
(0.00)  

1.00     

Library 
area  

-0.15 
(0.00) 

0.21 
(0.00) 

0.79 
(0.00)  

1.00    

Computers  -0.16 
(0.00)  

-0.00 
(0.07)  

-0.09 
(0.00)  

-0.09 
(0.00)  

1.00   

Funding  -0.12 
(0.00)  

0.08 
(0.00)  

-0.00 
(0.26)  

-0.03 
(0.00)  

0.12 
(0.00)  

1.00  

 

Table 10. Teacher Quality (Student and Institutional Perspective) 

 “Good” 
profs  

“Bad” 
profs  

Doctor 
ratio  

Lecture 
ave  

Group 
work 
ave  

Practical 
work 
ave  

Seminars  

“Good” 
profs  

1.00        

“Bad” 
profs  

-0.54 
(0.00)  

1.00       

Doctor 
ratio  

-0.36  
(0.00)  

0.11 
(0.00)  

1.00      

Lecture 
ave  

-0.44 
(0.00) 

0.14 
(0.00) 

0.72 
(0.00)  

1.00     

Group 
work ave  

0.14 
(0.00)  

0.08 
(0.00)  

-0.45 
(0.00)  

-0.59 
(0.00)  

1.00    

Practical 
work ave  

0.30 
(0.00)  

-0.15 
(0.00)  

-0.41 
(0.00)  

-0.56 
(0.00)  

0.14 
(0.00)  

1.00   

Seminars  0.04 
(0.00)  

-0.03 
(0.00)  

0.00 
(0.04)  

0.03 
(0.00)  

-0.00 
(0.17)  

0.10 
(0.00)  

1.00  
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Table 11. Learning Environment: Class Size (Student and Institutional Perspective) 

 “Medium” class ave  “Large” class ave  Student/ faculty 
ratio  

“Medium” class ave  1.00    
“Large” class ave  -0.57 

(0.00)  
1.00   

Student/ faculty 
ratio  

-0.10  
(0.00)  

0.17 
(0.00  

1.00  

 

Table 12. Learning Environment: Peer Composition (Student and Institutional 
Perspective) 

 Average low income  Average high income  
Scholarships  0.04 

(0.00)  
0.01 
(0.06) 

 Institutional gender ratio   
Sample average female  0.29 

(0.00)  
 

 



 

 

Table 13. Private/Public University Students, Incoming/Outgoing Students 

 Public     Private     

 Final 
year 

  First 
year 

  Final 
year 

  First 
year 

  

 Obs M SD Obs M SD Obs M SD Obs M SD 

Gender 4150 0.31 0.46 12325 0.29 0.45 3759 0.26 0.44 14404 0.21 0.41 

Age 4150 23.53 1.63 12325 20.56 2.06 3759 23.76 2.17 14404 20.88 2.90 

Black 2715 0.02 0.15 7087 0.04 0.20 2978 0.02 0.13 9489 0.05 0.23 

Mixed 2715 0.17 0.37 7087 0.20 0.40 2978 0.11 0.32 9489 0.18 0.38 

Asian 2715 0.05 0.22 7087 0.04 0.19 2978 0.06 0.23 9489 0.03 0.18 

Indigenous 2715 0.01 0.09 7087 0.01 0.09 2978 0.00 0.06 9489 0.01 0.10 

Private 2712 0.67 0.47 7099 0.62 0.48 2979 0.66 0.48 9471 0.45 0.50 

Computing 2709 0.56 0.50 6995 0.30 0.46 2971 0.62 0.48 9375 0.38 0.49 

Study 2701 5.15 3.24 7073 4.94 3.25 2970 3.59 2.85 9438 3.68 2.86 

English 2713 0.74 0.44 7095 0.56 0.50 2978 0.69 0.46 9469 0.47 0.50 

ENEM 
objective 

4150 0.22 1.07 12325 0.28 0.97 3759 -0.24 1.01 14404 -0.24 0.93 

ENEM 
redactive 

4150 0.09 1.05 12325 0.13 1.01 3759 -0.15 1.00 14404 -0.10 0.95 

13
7 



 

Live with 
family 

3715 0.93 0.25 10969 0.94 0.24 3302 0.96 0.20 12402 0.95 0.21 

Parental ed: 
elementary 

2696 0.05 0.21 7056 0.05 0.21 2963 0.05 0.22 9437 0.09 0.28 

Parental ed: 
junior 
secondary 

2696 0.06 0.23 7056 0.06 0.25 2963 0.06 0.24 9437 0.11 0.32 

Parental ed: 
senior 
secondary 

2696 0.26 0.44 7056 0.31 0.46 2963 0.27 0.44 9437 0.35 0.48 

Parental ed: 
higher 
education 

2696 0.63 0.48 7056 0.58 0.49 2963 0.62 0.49 9437 0.44 0.50 

Lower 
middle 
income 

3699 0.11 0.32 10891 0.23 0.42 3286 0.08 0.28 12309 0.27 0.44 

Middle 
income 

3699 0.25 0.43 10891 0.29 0.45 3286 0.22 0.41 12309 0.30 0.46 

Higher 
middle 
income 

3699 0.39 0.49 10891 0.31 0.46 3286 0.43 0.49 12309 0.25 0.44 

Higher 
income 

3699 0.12 0.33 10891 0.06 0.23 3286 0.14 0.34 12309 0.05 0.22 

Max income 3699 0.06 0.24 10891 0.02 0.14 3286 0.09 0.29 12309 0.03 0.16 

No income 3699 0.01 0.09 10891 0.01 0.08 3286 0.01 0.07 12309 0.01 0.07 

"Good" 4150 0.24 0.07 12325 0.23 0.09 3755 0.41 0.12 14378 0.41 0.14 

13
8 



 

teachers 

"Bad" 
teachers 

4150 0.07 0.05 12325 0.07 0.05 3755 0.03 0.03 14378 0.03 0.04 

Ip 4150 795.03 3650.71 12325 568.05 3071.99 3759 5.44 161.86 14404 105.66 766.83 

Doctor ratio 4150 0.53 0.21 12325 0.49 0.22 3759 0.21 0.10 14404 0.17 0.10 

Research 
emphasis 

2600 0.85 0.36 7829 0.78 0.42 2506 0.47 0.50 8342 0.62 0.49 

"Good" labs 4150 0.29 0.15 12325 0.29 0.19 3755 0.74 0.16 14378 0.72 0.18 

"Bad" labs 4150 0.18 0.11 12325 0.19 0.12 3755 0.04 0.07 14378 0.05 0.08 

Medium 
class size 

4150 0.59 0.14 12325 0.59 0.15 3755 0.44 0.17 14378 0.45 0.20 

Large class 
size 

4150 0.15 0.13 12325 0.15 0.14 3755 0.26 0.22 14378 0.25 0.26 

Overall STR 4150 1.07 1.73 12325 1.10 2.10 3759 3.88 7.00 14404 4.11 8.01 

Scholarships 4150 0.00 0.00 12325 0.00 0.01 3704 0.06 0.08 14229 0.05 0.08 

Library area 4150 106924.60 692858.50 12325 265202.30 1205000.00 3744 76026.02 241275.70 14378 55891.96 199016.40 

Laboratory 
area 

2818 238569.60 1006284.00 7625 175829.70 839886.00 0   0   

Computers 4150 2947.06 2559.82 12325 2705.45 2628.34 3759 1133.12 1434.84 14404 1330.65 1881.94 

Average 
female 

4150 0.31 0.11 12325 0.31 0.11 3759 0.23 0.13 14404 0.22 0.13 

Average low 4150 0.09 0.08 12325 0.11 0.09 3755 0.09 0.08 14378 0.13 0.10 

13
9 



 

income 

Average high 
income 

4150 0.18 0.10 12325 0.15 0.09 3755 0.19 0.15 14378 0.13 0.12 

Average 
black 

4150 0.03 0.03 12325 0.04 0.04 3755 0.04 0.05 14378 0.05 0.06 

Average 
mixed 

4150 0.18 0.13 12325 0.20 0.14 3755 0.15 0.12 14378 0.18 0.14 

Average 
asian 

4150 0.05 0.05 12325 0.04 0.05 3755 0.05 0.04 14378 0.03 0.04 

Average 
indigenous 

4150 0.01 0.01 12325 0.01 0.01 3755 0.01 0.02 14378 0.01 0.03 

Average 
higher 
education 

4150 0.62 0.14 12325 0.58 0.14 3755 0.55 0.18 14378 0.47 0.19 

Lectures 4150 0.53 0.11 12325 0.50 0.12 3755 0.34 0.11 14378 0.31 0.11 

Group work 4150 0.04 0.04 12325 0.05 0.05 3755 0.08 0.07 14378 0.10 0.08 

Practical 
work 

4150 0.03 0.03 12325 0.04 0.04 3755 0.07 0.05 14378 0.07 0.05 

Seminars 4150 24.86 33.62 12325 23.14 31.95 3759 22.43 111.02 14404 28.25 128.58 

Female 
faculty ratio 

4150 0.38 0.10 12325 0.39 0.08 3759 0.36 0.13 14404 0.40 0.11 

 14
0 
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Table 14. Per-pupil Funding Comparison, Public and Private Institutions 

 Public Private p-value 

Per-pupil funds 
towards 
science/engineering 
equipment 

17782.73 3532.27 0.05 

Per-pupil expenditure, 
total 

2175724 1491043 0.11 

Per-pupil receipts 3119427 1541054 0.02 
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Figure 1. Parental Education by Income Levels 
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Figure 2. Family Income (Low, Mid, High) by Type of School 

Public Private 
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Figure 3. Private Primary/Secondary Schooling by Private/Public University 
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Figure 4. Achievement on the Full Assessment by Race/ethnicity 
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Figure 5. Incoming vs. Final Year Students, Public and Private Universities 
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Figure 6. Full Test (Outcome of Interest, Blank Responses Removed), 2005 
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CHAPTER IV 
 
 
 

HOUSES OF BRICKS:  
CAREER DECISION-MAKING FOR ENGINEERS IN GROWING ECONOMIES 

 
 
 

Motivation 

A street is crumbling in central Soweto Township. Ten miles away, at the 

University of Witwatersrand, top engineering degrees “address the social, spatial and 

infrastructural needs of a transforming South Africa” (University of Witwatersrand, 

2010). And yet, the Soweto thoroughfare continues to darken into potholes—the 

Engineering Council of South Africa (ECSA) claims the country has only half the 

engineers necessary to meet development demands (O'Donnell, 2010).  

Far from the noisy streets of some of Asia’s largest cities, bordering the wind-

sheared plains of Inner Mongolia in Danjinghe, 103 square meters of wind turbines churn 

out 200 megawatts of electricity—purportedly part of a national wind resource capable of 

powering China to 2030. However, the same report describing the new lead China has 

taken in wind energy provision states from the beginning that the country still depends on 

expertise from Europe and America (Li et al., 2010). 

Why are the countries extolled as rising development stars struggling to find 

citizens qualified to fill some of the most essential jobs? And, how can policymakers in 

these large, vibrant, newly-middle-income countries prepare locally-aware engineers to 

buttress the large and growing structures on which these nations increasingly depend?  I 

develop a unique survey to provide one of the first pictures of the student choice process 

for engineering graduates.  I then analyze survey data on student perceptions of 
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engineering training in one of the BRICS countries to address this issue at the center of 

crisis conversations in nearly every country around the world.   

 

Research Questions 

In my study, I address the complex issue of student choice, engineering curricula, 

and international migration as well as the dearth of previous literature that answers these 

questions.  I provide insight into the choice mechanism of engineering students in some 

of the fastest-developing nations as well as perspectives on the preparation these students 

receive to address local development challenges. I test two competing theories that might 

explain the dearth of relevant engineers—international conflict (the draw of jobs abroad) 

and local specialization (the lack of relevant training)—by gathering information from 

one of members (South Africa) of the extended “BRICKS” family: Brazil, Russia, India, 

China, South Korea, and South Africa. 

I take advantage of a novel dataset to address pressing questions of engineering 

graduate labor market choices.  I create and test a new survey on the decision-making 

process of graduating engineering students.  I then conduct a survey of a sample of 

current final-year undergraduate engineering students at a major university on the choices 

they made leading up to their current positions, their perspectives on the training they 

currently receive, and their future aspirations. I look at whether it is the pull of the 

international jobs that top engineers have been trained for or the lack of a locally-relevant 

curriculum to provide engineering skills that creates the dearth in local engineering talent 

experienced by these burgeoning nations.  

I ask generally, “Do engineering programs in developing countries train their 

students to address local development challenges?”  
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More specifically, I investigate the following:  

• What factors do engineering students in South Africa identify as strongly 

influential in their choice of major?  

• How well do engineering South African students feel they are being trained to 

tackle these engineering tasks?  

• How well does satisfaction with locally-relevant training predict aspiration to a 

local career? 

 

Hypotheses 

I hypothesize that students would prefer to be motivated by a socially-conscious, 

locally-relevant occupation, but that because of a lack of curricular preparation, they turn 

to international opportunities. I further hypothesize that it is a lack of opportunity in the 

local labor market that precludes their entry into the national supply of engineers and 

leaves their home country without the STEM workforce it deems necessary. 

 

Literature and Conceptual Framework 

  At a time when engineers are called upon to address the “Grand Challenges” of 

the 21st Century (National Academy of Engineering, 2010), the picture from the student 

perspective that my work provides is a novel and prescient perspective in the nascent 

field of engineering education (EE) research.  To provide an overall context for the study 

of engineering student achievement, I describe the substantial debates surrounding 

international migration, the global engineering job market, and engineering training.   



148 
 

 Two issues usually raised regarding engineering in developing country tertiary 

education are: (1) the human capital created at local universities is not retained, and (2) 

outside technical expertise is often needed since there is a lack of available human capital 

within the country. Is this a problem of supply or demand? Is the demand for local 

engineers and the commensurate pay not competitive at the international level, or is the 

trickling supply of applicable engineers at fault due to irrelevant curricula? 

 

The “Giant Sucking Sound” of Brain Drain 

 Students choose to pursue careers in a given area for a host of reasons. Concerns 

abound regarding recruiting more engineers and holding them in the discipline (Walden 

& Foor, 2008). Even in the developed world, the questions of attraction, access, and 

retention of qualified engineers are raised. In the case of lower-income countries, high-

skill labor migration is traditionally viewed as the malicious specter of “brain drain” on 

the sending country. This view argues that the Western world is sucking the developing 

world dry of its best workers because of several pull factors, e.g., higher wages and 

standard of living.  

And, the question of having too few engineers is compounded by having under-

qualified ones.  Talent and skills are highly sought after by employers. An international 

poll of human resource managers in 2006 found that three-quarters said that attracting 

and retaining talent was their top priority; some 62% worried about company-wide talent 

shortages (Woolridge, 2006).  This problem is cited even in Asia’s large and burgeoning 

economies. A broader awareness of world issues and international experience have 

become more desirable for students and future employers alike (Continental Corporation, 

2007). A huge number of students are studying abroad (Organisation for Economic Co-
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operation and Development [OECD], 2007). Engineers, even locally-specialized ones, 

must also be aware of the world around them. Certain questions, e.g., climate change, 

point to globalized problems as well as solutions. Questions and relevant research can no 

longer be confined to certain locales, especially in science (Young et al., 2006). 

 However, there are few studies of the complex decision-making process that leads 

to this overall trend. Some point out that there are actually positive outcomes of 

international migration that reduce the effects of the “brain drain”. Advances in 

technology over the past decade have helped to accelerate the idea of “brain circulation” 

through the development of sophisticated information and communication technology 

and through the liberalization of many of the global markets (Saxenian, 2005). Though 

arguments are made that both the sending and receiving countries benefit from the 

migration of talent, researchers (e.g., Hart, 2006) point out that some countries are still at-

risk for losing investments made in human capital and having adverse effects on 

development.  Countries are becoming proactive about recruiting their talented diaspora 

back.  For example, China is implementing “Plan 111” to create a “Brain Gain” and 

recruit leading scholars to China (Li, 2006).  A new report on Indian and Chinese 

returnees from the US suggests that very few want to stay in their adopted country 

(Wadhwa et al., 2009).  In another report, this is only 8% for Indian respondents 

(Finegold et al., 2011).  In Sub-Saharan Africa, graduates from higher education “account 

for less than 3% of the labour force but more than 35% of all migrants” (Leveraging 

Migration for Africa). 

 Few studies have addressed individual choice and the relevance of the curriculum 

in studies of international migration, let alone focusing on engineering education. In my 

study, I test the significance of this first theory by asking students about competitive 
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international offers and their consideration of global factors as they navigate the 

educational pipeline. 

 

The Elusive Value of Specialization 

 Opposite brain drain, the problem faced by the BRICKS may be the lack of 

relevance of the local curriculum in training specialists. Bowman (1962) describes the 

course of development for America’s land grant colleges, which were faced with the 

challenge of relevant “human resource creation”, needing human capital trained to 

address particular development needs. In many ways, the BRICKS face a similar 

challenge in their national higher education policy agendas today. They have 

development needs to be answered by their engineers, but students may also need 

different training for the global marketplace.   

 “Grand challenges” in engineering point out the potential for engineering to solve 

major problems for the world.  Many of the challenges are pressing issues for 

development (National Academy of Engineering, 2010).  Growing and changing 

demands on engineering graduates have made the skills needed a more complex field to 

navigate.  The United States, for example, adopted new accreditation criteria that call for 

student-centered pedagogies and preparation in soft skills; a National Academy report 

outlines new skillsets needed for the “Engineer of 2020”; and a survey of college 

administrators and employers corroborates this (ABET; NAE, 2004; NACE, 2004).  

Students are looking for professors who would deliver and possess these same skills 

(Morell & DeBoer, 2011). 

 But, there is still a dearth of highly-qualified engineers and scientists to address 

local needs. Locally-sourced knowledge and the inclusion of local stakeholders are assets 
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to development projects (Bray, 1999). Developing countries either do not have the 

capacity to train local talent (e.g., Mozambique: Hood, 2002), or they must watch the 

flight of their top intellectuals to pursue work and study outside the country (e.g., South 

Africa: Hagopian et al., 2004). The tug-of-war between local relevance and global 

applicability is omnipresent. 

 Localization may provide benefits for innovation and relevance (Andersson, 

Quigley, & Wilhelmsson, 2005), while a globalized perspective may allow employees to 

be more adaptable (Organisation for Economic Co-operation Development, 2007). Cheng 

(2005) recommends a hybrid model that takes global issues and adapts them to local 

needs. Moving forward from Bowman (1962)’s discussion of appropriately designed 

higher education structures, the information gathered here looks at the possibility for 

national investment in engineering to “focus on competence building to enable Africa [or 

the other developing economies studied here] to solve its own problems” (Juma & Bell, 

2006). If students are trained to best address localized problems, they may stay in the 

locale where they are both useful and have important social networks. I test the relevance 

of this second theory by including survey questions on the training that students receive 

and the factors (including social networks) related to their choice of major. 

 

National and International Engineering Markets 

 International standards and globalized competition come up frequently in this 

literature as goals for countries to benchmark their progress and as helpful guidelines to 

addressing local problems.  The Washington Accord, the first international agreement 

regarding mutual recognition of engineering qualifications (1989), may facilitate brain 

circulation.  Included in this agreement are clauses addressing comparable accreditation 
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procedures, mutual monitoring, and goals for development.  This accord was followed by 

a number of additional agreements regarding issues such as technical degrees and student 

exchanges.  

 

Full Members:  

Australia (IEAust) 

Canada (CCPE) 

Hong Kong, China (HKIE) – 1995 

Ireland 

Japan (JABEE) 

New Zealand (IPENZ) 

*South Africa (ECSA) 

United Kingdom (ECuk) 

United States of America (ABET) 

Provisional Members: 

Chinese Taipei 

Germany (ASIIN) 

Korea (ABEEK) 

Malaysia (BEM) 

Singapore (IES)  

 

The only BRIC country on either list is South Africa, a full member of the Washington 

Accord.  I investigate the South African situation in more detail here. 

 

Who are the “BRICKS”? 

 In late 2001, the Goldman Sachs Global Economic Center released a working 

paper extolling the huge economic potential of four developing countries—Brazil, 

Russia, India, and China (O'Neill, 2001). Over the next decade, the term “BRIC” became 

a ubiquitous descriptor for the four rising stars of the developing economy pantheon. 

Since the publication of the “BRIC” working paper, other developing countries have 

jostled to join the list; inclusion in the “BRIC” family portends a country’s promising 

development future in the international arena. South Korea has publicly maneuvered to 
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be added, and Turkey has been considered. South Africa is frequently cited as an 

important middle-income country example, and, more importantly, in the BRICS group it 

represents the forgotten continent of the Global South—Africa. A recent McKinsey 

report even noted its place at the head of the “African Lions” (Roxburgh et al., 2010). 

 South Africa’s particular history manifests itself in the issues of diversity that 

current policymakers in higher education must address. Issues of access focus on 

affirmative action programs and remedial programs.  d’Almaine and co-authors (1997) 

point out that, even today, though traditionally segregated technikons are becoming 

mixed, their racial make-up still reflects their apartheid-era status, and there is much less 

opportunity for blacks. Overall, South Africa’s basic tertiary access is not as central an 

issue as it is elsewhere in Sub-Saharan Africa ([SSA] Teferra & Altbach, 2004). The 

country has a national-level board focused on the structure of engineering education, the 

Engineering Council of South Africa (ECSA). The ECSA explicitly states that one of the 

purposes of engineering is national development (ECSA, 2008); my study presents the 

students’ evaluation of this point.  

Systematically connecting sectors within countries is vital: “The most damaging 

legacy of the African system of higher education is the separation between research, 

training, and practical activities” (Juma & Bell, 2006).  African leaders recently gathered 

to discuss points to increase the preparation of university graduates (an increasing 

number) for the labor market, including emphasizing local university-industry 

partnerships (Association of Commonwealth Universities, 2011). A recent document 

review and analysis on the connection between higher education and development also 
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underscored the need to connect higher education actors to other political and social 

actors (Higher Education Research and Advocacy Network in Africa, 2011).   

These questions are only more recently gaining attention, so there is not a lot of 

rigorous academic work (e.g., Waghid, 2000; Case & Jawitz, 2003; d’Almaine et al., 

1997) available.  In engineering training, theory and practice may be mismatched 

(Waghid, 2000; Ensor, 2004).  Overall, South Africa’s basic tertiary access is not as 

central an issue as it is elsewhere in SSA: “South Africa, with more than half a million 

students in its twenty-one universities and fifteen technikons (post-secondary vocational 

colleges), is third in the number of enrolled students on the continent” (Teferra & 

Altbach, 2004).  South Africa has a “practicing engineers per capita” of 1:130 (World 

Economic Forum, 2001) and a GDP per capita of 9,736 (by World Bank GDP, World 

Bank, 2007).  The University of Cape Town is one of South Africa’s oldest universities, a 

flagship public institution.  I focus on this university as an exemplary engineering 

program for the country.   

As the number of tertiary students continues to massify (broaden access to 

education), policmakers struggle to create learning opportunities that are relevant and 

beneficial.  Banya & Elu (2001) conducted a longitudinal qualitative study looking at 

African higher education funding through the World Bank. Their findings pointed out 

that even with greater emphasis on higher education in budgetary allotment, high student-

faculty ratios persist in these areas, where demand for access to tertiary education is large 

and growing.  Adewumi (2008) discusses the example of agricultural engineering.  

Agricultural engineering, while necessary for developing nations, may be available and 

necessary, but these engineers are often marginalized.  Unemployment for the greater and 
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greater numbers of engineering graduates partially results from incoherent national 

education policies.  A final concern, and one of the most important that comes up, is the 

high cost of the specific needs for engineering training.  Engineering entails high-cost 

training (e.g., laboratory equipment). As Juma (2007, p. 7) points out, “most of the 

universities that exist in Africa were originally designed to support nation building. The 

challenge today is community development.” 

  Calls for change often point to connections with business and entrepreneurship 

training.  Examples often cited of best practices for development in Africa include 

Ghana’s University for Development Studies, the University of Zambia, and the Kigali 

Institute of Science, Technology and Management, which focuses on advanced research 

responsive to local needs.  Knowledge is frequently cited as being important to a 

country’s economic development.  More recently, it has been argued that increased 

globalization has made knowledge-based development even more pressing for reasons of 

competitiveness.  Knowledge, rather than natural resources or manual labor, is valuable 

for both its adaptability as a resource and its relevance to contemporary industries.  The 

concept of a knowledge economy emphasizes exploiting knowledge in a flexible, agile 

way in order to respond quickly to the global economy and to take advantage of 

partnerships within nations and with other countries.  Often, the progress of a knowledge 

economy (KE) must be incremental, and it must necessarily be highly context-relevant to 

the country in question.  Because of KE’s implications for today’s global economy, 

moving towards or sustaining a nation’s knowledge economy is important for both 

developed and developing countries (World Bank, 2007). These and other supporters 

mentioned argue implicitly and explicitly that the purpose of education is to train students 
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to be skilled workers for their own good and the good of the country (Camacho & Cook, 

2007), and that the country’s economic competitiveness depends on its innovative 

capabilities. 

 While this work is situated in the decisions national policymakers make in 

training and retaining talent, ultimately the decisions are made at the individual level.  

Students face a number of factors in their decision-making process—both when they 

enter school and choose a major and when they choose where their career will take them 

upon graduation.  I note this literature in the creation of the survey below. 

 

Definitions 

The demands on engineers today include innovation to a great extent.  As defined 

by the new Innovations: Technology, Governance, and Globalization journal in its 

inaugural issue (Auerswald & Quadir, 2006, p. 4), innovations are “the efforts of 

individuals, groups, and communities who creatively employ new organizational forms, 

and in many cases new technology, to effect discontinuous change.”  This is not only in 

curricular content and skills taught (e.g., Brophy et al., 2004, creativity, Schumpeter, 

1928, Amabile et al., 1996; Davila et al., 2006; critical thinking, Luecke & Katz, 2003) 

but in teaching practices as well (Fletcher, 2007). 

Technology, here, refers to engineering specifically and to the innovation 

component of the “knowledge economy” more broadly.  Further, technology in these 

conversations often means infrastructure, but it has implications more largely for poverty 

reduction, agricultural challenges, and sustainable development, which are being 

addressed more and more in the literature.  Juma & Bell (2006, p. 2) define 
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“infrastructure” as “the facilities, structures, associated equipment, services, and 

institutional arrangements that facilitate the flow of goods and services between 

individuals, firms, and governments”.  

 

Conceptual Framework of Student Engineering Choice and Practice 

I build on previous work that underscores the importance of understanding the 

student perspective on their environments and on the factors that matter for student 

decision-making.  I first ask for the student to provide definitions for the terms that they 

will use in the interview.  Understanding how s/he defines the “local” space in general 

(e.g., family? parish? district? nation? [Kepe, 1999]) and in scientific terms (e.g., a 

community water resource, a national pollution policy; Calheiros, Seidl, & Ferreira, 

2001) is central to understanding how they navigate these boundaries.  I also ask him/her 

to identify the characteristics of the engineer who would be best suited to answer relevant 

challenges. 

I then ask a number of questions about the student’s previous decisions in 

choosing a track, a school, and a major.  What opportunities were available in secondary 

school? What incentives were provided for different opportunities?  I ask him/her to 

identify important influences (e.g., family) in these choices as well (Bourdieu, 1977).  I 

also ask about the student’s perception of his/her own ability to choose between options. 

Engineering students also identify their perceptions of the training they are 

receiving.  First, they discuss the curricular preparation they are receiving (student 

evaluations of curriculum; importance of curriculum; comparing importance to emphasis 

in program; Guest et al., 1999)—they discuss areas such as communication, content 
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knowledge, critical thinking, research, teamwork, adaptability, cross-cultural 

understanding, problem-solving, using ICT, creativity, rank order of importance of skills, 

extracurricular opportunities, practical opportunities, study abroad, guidance/mentorship 

(Texas Higher Education Coordinating Board, 2010; National Academy of Engineering, 

2004; Dassault Systemes and the Student Platform for Engineering Education 

Development, 2009; Morell & DeBoer, 2011). 

Finally, looking to the future, I ask about career aspirations in college.  In what 

area—international vs. local opportunities—are students focusing their searches (De 

Grip, Fouarge, & Sauermann, 2009)? Do they perceive migration to be a problem? How 

do they perceive the career path, and do they plan to stay in an engineering career at all? 

(Hunt, 2010) And, were they prepared for the career’s needs and provided with guidance 

in this process? 

I end the survey with a series of background factors that, based on my overall 

conceptual framework, are important determinants of the student’s and the household’s 

educational choices (e.g., scholarship status, parental occupation).  I also ask about the 

student’s current career focus in his/her major. 

 

Data and Methods 

 

Survey Information 

My survey gathers student self-reports on their decision-making process, their 

current attitude towards EE, and their future aspirations. This survey is developed from 

an interview protocol that was tested during an interdisciplinary qualitative methods 
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research course where I investigated the educational decisions made by Bangladeshi and 

American earth sciences students. I draw on previously-used surveys by the state of 

Texas (Texas Higher Education Commissioning Board, 2010) as well as on a framework 

developed to investigate engineering student retention (Anderson-Rowland, 1997).  This 

question has not been applied to look at the whole process of engineering education and 

the engineering pipeline for students around the world before. 

Independent variables—which here serve as groups for t-tests—come from 

demographic information (age, race/ethnicity, gender, parental education, etc.) provided 

by respondents. Dependent variables include Likert-scale identification of the pre-college 

factors influencing the students’ choices of major, evaluations of how well the current 

curricula prepares students to answer local development challenges, and an index of 

future career aspirations. Further, demographic background characteristics of respondents 

will be gathered at this point and compared to the known indicators for the university.  

Prior to embarking on data collection work, I conduct cognitive interviews with 

engineering students and administrators in the United States and South Africa to test the 

instrument.  In compliance with the Institutional Review Board of Vanderbilt University, 

informed consent will be obtained from students taking this survey. Students will be 

made fully aware of the voluntary nature of their participation. Appropriate steps to 

ensure the protection of privacy are taken. 

 

Analysis 

In order to understand the choices, experiences, and aspirations of engineering 

students in developing contexts, I gather cross-sectional survey data on a sample of 
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students graduating in the engineering majors. The sampling frame for my study consists 

of two stages. The primary sampling unit is the faculty or college of engineering. Here, I 

take a purposive sample from institutions that I can reach and that have agreed to 

participate in this first study. This study focuses on information from the University of 

Cape Town (UCT), which I pointedly select.  I distribute the survey to all graduating 

engineering students.  In the 2011 class (graduating in December 2011), there are 500 

students.  Within the selected university, the sampling frame of final year students is 

drawn from administrative records in coordination with UCT’s Ethical Research Board 

and engineering department administration. I have a response rate of approximately 11%. 

 The cross-sectional data from the survey provide a useful representative look at, 

on average, the most important background factors for students, their perceptions of how 

well their programs prepare them to address local problems, and their future goals. I 

conduct one-sample t-tests for each country to confirm or reject my hypothesis that 

specialization is the ideal driving factor. With the addition of background information on 

survey respondents, I can determine how closely school experiences are associated with 

future aspirations and how these break down along demographic lines. 

 

Limitations 

 One major limitation is the particular context of this institution.  The University of 

Cape Town is not a representative sample of universities in South Africa—it was 

purposively sampled as a convenient site and as one of the flagship, international 

institutions in the country. 
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Nor are the students who filled out the survey necessarily a representative sample 

of the students at UCT.  Self-selection out of the study may also threaten the analysis. To 

mitigate this, the survey was offered online for convenience, and respondents were 

automatically entered to win a nominal prize.  However, the response rate was 

approximately 11%, and the group that chose not to respond may be systematically 

different from the group that did. 

More broadly, the group that I sample is not representative of the group that 

started their first year at UCT together.  The students in my study are necessarily already 

on the engineering track; I am able to generalize to the population of students who, at an 

early age, may go into this field, but not to all students trained in the country; primary 

and secondary education may be important turning points, but I only look at the 

perspective of those who chose to finish studying engineering in university. This study 

adds to an overall understanding of the engineering pipeline, but only from the 

perspective of those who have made it to the end.  Even here, students face barriers to 

their continuation in engineering as they would desire, and they are wooed away by 

outside incentives. 

 

Results 

 The survey asks students about three dimensions of their engineering study and 

career choice.  First, I ask about factors leading up to their choice of major.  Within this 

dimension, students give their perspective on two constructs: factors that influenced their 

choice and the relevance of their pre-tertiary training.  They rate the importance of factors 

that went into their decision to pursue engineering, and they rate the frequency of local 
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science and engineering topics and teacher knowledge in local topics.  The second 

dimension is the student’s current college training.  Constructs within this dimension 

include the quality of university resources for their training, the effectiveness of their 

training versus the importance of the skills imparted, and their current awareness of 

engineering in local or global space. The third dimension is the student’s choice of job.  

The constructs within this dimension on the survey include the offers received, the 

attractiveness of jobs in local or global spaces, and the obligation the student feels to 

work in different spaces. 

In addition, I note how students define the “local” space and how they believe the 

local engineering job market should work. Students answer questions about the constructs 

of local space and local engineering problems; they describe which areas can be 

categorized as “local”, “global”, or “in-between”, and they give an example of a “local” 

engineering problem.  They also provide their perspective on the “ideal” worker for local 

engineering jobs and the reality of the local engineering workforce. 

 

Defining Local Space 

 South African students define the “local” space as an administrative demarcation 

smaller than a state/province.  The household, neighborhood, and city are all local.  The 

state, nation, and region are “in-between”, while the region, continent, and world are 

“global”.  Figure 1 illustrates the transition in perception from “local” to “global” spaces.  

While South Africa shares strong cultural connections to other countries in southern 

Africa and in sub-Saharan Africa more broadly, areas outside of the national level are 

seen as “global”. 
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 Students give examples of “local” engineering problems that focus on examples 

of basic living needs.  Many responses mention “energy”, “water”, and “sanitation”.  Few 

responses mention “basic engineering problems” such as “find stress on a beam” or 

“build a building”.  They evoke a conceptualization of a community with a deficit, one 

that “lacks”, whether it lacks electricity or other services.  On the other hand, they refrain 

from using terms that indicate higher technology, increased efficiency, or movement 

towards an ideal level of development.  Rather, they focus on bringing up an environment 

to a minimum level, e.g., “provide adequate sanitation”.  Answers referring to improving 

“poor transport” systems are frequent, where “increasing efficient traffic flow” are rare. 

 

Choice of Major 

Ratings of influences.  Students rate the influences they felt when deciding to 

choose engineering for a major.  On a scale from 1 to 10, they give ratings to the factors 

cited in previous work as influential on undergraduates’ decisions to enter and stay in an 

engineering degree. For graduates in South Africa, the highest influence was that 

engineering offered interesting work.  The next highest was the challenge of solving 

problems, and only after this came references to the marketability of the profession 

around the world and the surfeit of job opportunities. 

Additional reasons for choosing engineering.  Numerous students provided 

additional reasons that were not encapsulated in the reasons accrued from previous 

studies.  These additional reasons were all aspirational; they referenced a great deal of 

intrinsic motivation on the part of young engineers.  The students spoke of passion and 
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creativity, personal challenge and improvement, and development for themselves and 

their communities.   

 For example, one student wrote the following: 

 “I found engineering late in life – having not really understood what it was at all, 

and learning that I loved it.  I wish I had been given an opportunity to find out more 

earlier.” 

 Another said: 

 “The most important factor [as to why] I did engineering was to influence and 

develop technology that helps preserve natural resource and also improve global quality 

of life (starting locally)”. 

Relevance and quality of primary/secondary school.  Students rated the 

relevance and quality of their high school experiences as higher than in primary school.  

They received more exposure to local science and engineering topics in high school. 

Further, they received significantly more exposure to engineering than in primary school.   

In primary school, the difference between locally-relevant science and locally-relevant 

engineering exposure was significant (with science being higher).  Overall, teacher 

knowledge of local topics was rated below “somewhat knowledgeable”.   

 

Training 

University resources. Students rated their professors overall as fairly good 

teachers and above-average engineers (means of 7.41 and 6.94, respectively).  The 

students who responded to the survey had taken significantly more local internship 

opportunities than they had global exchanges.  (The range of local internships was from 0 
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to 6 with a modal value 0, had 38 students and a secondary mode of 2.  Exchange 

opportunities ranged only from 0 to 2, with only one student going abroad twice.) 

Effectiveness of training vs. importance of skill.  For all of the skills listed on 

the survey, students rated their realized training as less effective than the importance they 

assigned to the skill. Of particular note, the coverage of global problems, hands on 

experience, training on local topics, the coverage of local cultural issues, and training to 

work internationally were all significantly lower ratings than their importance indicated.  

The most effectively taught domain was the coverage of global issues, followed by 

hands-on training and local topics, then training to do international work, and finally 

local culture.  Students also rated training on local culture as the least important skill for 

future work.  On the other hand, they rated hands-on training as the most important, 

followed by global issues. 

Student’s awareness.  There were few significant differences between students’ 

personal identification with a given space and their familiarity with engineering practice 

at that level.  One exception was the significantly higher (p = 0.58) sense of personal 

identity than familiarity with engineering practice at the city level.  And, at larger 

demarcations, students were slightly less personally attached but more familiar with 

engineering practice, while at lower levels the opposite was true. 

 

Choice of Job 

Offers. Students received significantly more local offers than job offers abroad.  

Still, many students listed only one or two offers in both categories.    
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Attraction. There was not a significant difference between the attractiveness of a 

local versus a national job across the dimensions of attractiveness for job seekers.  

However, between the local/national levels and the international level, there were notable 

differences in which dimensions would be “pull” factors as students entered the job 

market.  The local levels were significantly more appealing in the dimensions of 

familiarity with issues and family.  On the other hand, the global level was significantly 

more appealing for reasons of technology and wages.  (See figures 4-6.) 

Obligation.  Students were asked to rate the level of obligation they felt to work 

in either a local or global space.  There was no significant difference between their levels 

of feeling obligated to work in either space. 

 

Opinions 

Despite finding no difference between students’ personal feelings of obligation to 

the local context, their opinions of local training for engineers are strong.  Their 

assessment of how important it is for local engineers to work locally was significantly 

higher than the frequency they cited as reality.  They believe that it is important to train 

local students to address local engineering problems (mean of 8.35).  But, their ideal for 

engineers working locally does not match up with their perception of reality. 

 

Discussion 

 After summarizing the numerous results of the study above, I discuss the overall 

answers it provides to my research questions.  I contextualize my study within the 

broader literature, and I provide directions for future work. 
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Implications 

 Student responses do not indicate a simple “push/pull” dichotomy.  Their choices 

are not made solely on the lack of relevant locally-relevant training or the preponderance 

of high-paying international opportunities.  Instead, motivated, qualified engineers are 

being reluctantly drawn to areas that may be less socially valuable but that have more 

immediate relevance for them.   

 In addition, there is a competing local market that exists outside socially-

conscious, locally-relevant engineering positions.  Students may work in local jobs, but 

they may exit the engineering sector for higher-paying jobs in finance. 

 There did not appear to be a significant difference between graduates of different 

sexes or scholarship statuses on how obligated they felt to work locally.  However, there 

did appear to be significant differences between students who identified as different races 

in how obligated they felt to work locally (Table 1).  The three main racial/ethnic groups 

in the sample that are often under-represented in engineering felt a higher sense of 

obligation to work locally than the white/Caucasian/European graduates in the study. 

Similarly, white/Caucasian/European graduates did not rate “local needs” or “number of 

job opportunities” as highly as factors that determined their choice to go into engineering. 

(There were not significant differences by race in ratings of the primary/secondary 

training received.) 

Technological capital.  Students exhibit a desire to act locally, but they note a 

lack in mechanisms that are relevant to them.  There is the potential for locally-grown 
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technological capital to be applied, but the final link between a student’s training and the 

need for that individual in the local context is not clear.   

 As can be seen from student responses regarding the ideal and the reality for local 

or foreign engineering to practice in their community, it is not that students perceive there 

to be too many foreigners—it is that there are not enough local engineers who work in 

these jobs.  Students’ training is highly theoretical, and while they receive adequate 

training on skills for working in a global environment, hands on opportunities for local 

work are scarce despite student interest.  They have the passion, but they do not have the 

personal investment in being part of the local engineering workforce they recognize as 

necessary. 

 This lack of connection between motivated graduates and the jobs they are needed 

to fill reflects a lack of what Grossman and colleagues (2009) term “pedagogy of 

practice” in their preparation to work in engineering.  In particular, students report few 

“approximations of practice” (Grossman et al., 2009) that provide students the 

opportunity to see their skills as they would be used in areas of high need for local 

development.  Without this active learning, students do not understand the pathway by 

which the theoretical concepts they have learned can be useful, though they may 

understand the need for engineers to address development challenges.   

Policy measures.  Policy measures the build on this passion and cultivate a 

personal relevance to engineering training could directly address the dearth of locally-

trained, qualified engineers.  Though the primary school context offers ample opportunity 

for beginning to instill an understanding and valuation of local engineering, those 

opportunities are not provided. 
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Practical classes are important component of the engineering curriculum, and 

students note they need improvement.  Connect these practical classes to pressing local 

issues as well as to local industry, providing a possible source of funding and a 

guaranteed local job opportunity.   

 In addition, students could be encouraged to take advantage of their global 

training to go abroad, but incentives could be put in place to bring them back to practice 

in South Africa.  Finally, support for the creation of one’s own opportunities—

entrepreneurship—could encourage individuals to engage in economic development that 

benefits their community and future generations of engineers.  A major missing link in 

the scope of the implications of chapter 3 is the lack of perspective on the importance of 

the job market in the selection process for students.  Chapter 4 underscores the 

importance of the job market from the student perspective.  Implications of this work in 

its recognition of the need for practice in the profession of engineering extend beyond 

just this discipline.  As Grossman et al. (2009) note, other disciplines have the same 

challenges with a lack of opportunities for practice.  Engineering, among other 

disciplines, recognizes the need for hands-on opportunities during the education process 

that are meaningful to the student and useful for society in the future (e.g., ABET, 2011); 

however, engineering education, as with other disciplines must adapt its learning culture 

to incorporate practice in its conception of educational excellence. 

 It is not just a problem of demand for engineers in socially-relevant jobs.  The 

reason for a recommendation for local incentives is the lack of supports in the local 

engineering culture to foster students’ application of their knowledge.  Even at flagship 

universities in the United States (e.g., the Massachusetts Institute of Technology), 
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students may see a lack of applicability in the skills they learn to the jobs to which they 

aspire (Felder & Brent, 2003). 

 

Future Work 

In the future, I will extend the survey in terms of countries and in the dimension 

of the institutions represented within countries.  Policymakers around the world voice 

their need to recruit and retain a highly-qualified local engineering force.  Broader 

surveys of this kind would give insight into the actual decision-making process of recent 

graduates. 

A number of structural, institutional, and personal factors contribute to the 

achievement outcomes of engineers and the choices young people make that determine 

their future career paths. This study focuses on the concerns of fast-growing economies. 

Often, developing contexts are left out of major discussions of fine-tuning engineering 

training. Society’s greatest challenges may be answered by engineers, but this will only 

happen if we are aware of improvements that need to be made in engineers’ intellectual 

and practical preparation. 

The implications of this study extend most directly to other rapidly-developing 

economies. The students expressed the tension they themselves felt between international 

competition/global competence and local specialization. They were inclined toward 

selecting the emotive import of local problems as a priority, but not one would discount 

the need for international perspective. As countries balance local infrastructure needs 

with mounting demand for equal integration on the international playing field, they must 

understand why precious human resources may not end up in jobs that immediately serve 
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national needs. The external validity of this study extends to the broader international 

community, though. In any locale, the tools of the intellectual toolbox must fit the job at 

hand. Regardless of the country’s income level, nations jealously guard their engineers. 

Administrators would do well to understand what predicts student achievement and what 

drives these students to embark on the lives they choose to lead.  

Engineering education itself is a young field, and there are bountiful opportunities 

to explore unstudied subject areas. However, the perspective of students and a rigorous 

understanding of student learning are often left unincorporated in the investigation of 

access, persistence, and labor market outcomes. This work builds on the foundation of a 

new, prescient field by using a dataset incomparable in tertiary education anywhere in the 

world and by soliciting data from stakeholders previous research has largely left 

untapped. 



172 
 

Figures 

1.85
3.70

94.44

3.70

5.56

90.74

7.41

24.07

68.52

11.11

50.00

38.89

46.30

44.44

9.26

44.44

44.44

11.11

87.04

12.96

0.00

98.15

1.85
0.00

0
20

40
60

80
10

0
pe

rc
en

t

household
neighborhood

city
state

nation
region

continent
world

Global In-between
Local

 

Figure 1. Identification of Local, In-between, and Global Spaces 
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Figure 2. Areas with which respondents most closely identify 
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Figure 3. Areas of Engineering with which Respondents are Most Familiar 
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Figure 4.  Reasons Given for Attractiveness of Local Engineering Job 
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Figure 5. Reasons Given for Attractiveness of South African Engineering Job 
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Figure 6. Reasons Given for Attractiveness of Global Engineering Job 
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Table 1. Racial Differences in Obligation to Work Locally 

Race/ethnicity N M SD 

White/European/ 

Caucasian 

24 4.79 2.34 

Black/African 16 6.5 2.80 

Indian 5 7 2.45 

Colored/mixed 7 7.86 0.90 

Other 2 7.5 0.71 

Note: ANOVA gives F-statistic p = 0.02 
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Appendices 

Appendix A: Survey Protocol 

Engineering graduate survey 
 
You have been selected for a survey on the quality of your engineering training. This survey's purpose is to 
understand how well universities prepare their engineering students to address development challenges. 
This survey should take less than 20 minutes. Your responses are very valuable, and they will help further 
our understanding of how to structure engineering education. If you complete the survey and enter a contact 
email address, you will be entered to win an iPad. You are under no obligation to participate, though. 
Thank you very much for your time and knowledge. Consent information is given below. Click "Continue" 
to begin the survey. By clicking "Continue", you give your consent to participate in this survey.  
 
INFORMED CONSENT INFORMATION  
This informed consent document applies to final-year engineering students. The following information is 
provided to inform you about the research project and your participation in it. Please read this form 
carefully and feel free to ask any questions you may have about this study and the information given below. 
Your participation in this research study is voluntary. You are also free to withdraw from this study at any 
time.  
 
1.Purpose of the study: The purpose of the study is to understand how well universities that offer 
engineering degrees are preparing their students to address development challenges in their home locales 
versus being trained to take newer jobs abroad. This study is being conducted in partial fulfillment of 
requirements for the doctoral degree. You are being asked to participate in a research study because your 
perspective as a member of these engineering programs is valuable, giving a first-hand account of this 
preparation process.  
 
2.Procedures and duration: This study takes place over the course of 1 month. The survey takes 
approximately 20 minutes.  
 
3.Description of the discomforts, inconveniences, and/or risks that can be reasonably expected as a result of 
participation in this study: Survey of approximately 20 minutes.  
 
4.Good effects that might result from this study: a) The benefits to science and humankind that might result 
from this study: Universities in growing economies will have a better understanding of how to tailor their 
programs to prepare local engineers to address local problems. b) The benefits you might get from being in 
this study: Students may find the subject interesting, they may feel empowered getting to talk about their 
own opinions of the education they are receiving, and they may be motivated to get involved making 
changes to their own education system. It is possible that they will not feel a direct benefit.  
 
5.Compensation for participation: entry in a raffle for the chance to win an iPad  
 
6.Circumstances under which the Principal Investigator may withdraw you from study participation: non-
responsiveness  
 
7.What happens if you choose to withdraw from study participation: Information already provided will be 
kept confidential. The information already provided will be used, but it will not be linked to the student.  
 
8.Contact Information. If you should have any questions about this research study or possibly injury, please 
feel free to contact Jennifer DeBoer at 615-343-4576 or my Faculty Advisor, Stephen Heyneman at 615-
322-1169. For additional information about giving consent or your rights as a participant in this study, to 
discuss problems, concerns, and questions, or to offer input, please feel free to contact the Vanderbilt 
University Institutional Review Board Office at (615) 322-2918 or toll free at (866) 224-8273.  
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13.Confidentiality: All efforts, within reason, will be made to keep your personal information in your 
research record confidential but total confidentiality cannot be guaranteed. Surveys will be anonymous. 
Aggregated results will be available to university leaders and policymakers. Only the researcher will have 
access to the individual-level data. A random number generator will give each respondent an ID. Survey 
responses will be collected online via a password-protected instrument. After the study is concluded, the 
individual-level information will be destroyed.  
 
14.Privacy: Your information may be shared with Vanderbilt or the government, such as the Vanderbilt 
University Institutional Review Board, Federal Government Office for Human Research Protections, 
National Science Foundation, if you or someone else is in danger or if we are required to do so by law.  
 
STATEMENT BY PERSON AGREEING TO PARTICIPATE IN THIS STUDY  
I have read this informed consent document. All my questions have been answered, and I freely and 
voluntarily choose to participate. 
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Please check whether you consider the following areas "local", "global", or "in-between". * 
  Local  In-between  Global   
Household       
Neighborhood       
City/town       
State/province       
Nation       
Region       
Continent       
World       
 
IN ONE SENTENCE, please give an example of a "local" engineering problem. * 
 
Both the words "COMMUNITY" and "LOCAL" below mean local as per the option you have chosen 
above. 
 
The following questions ask for your opinion on statements about local/foreign engineers and where they 
work. 
Please choose the number from 1 to 10 that comes the closest to your own opinion. 
 
Engineers from this community are better suited for local engineering jobs than engineers from outside the 
community. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
It is beneficial to this community if engineers trained in my university take jobs outside the community. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
I think engineers trained in my university often take jobs outside the community. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
It is beneficial if international experts are used for engineering needs in my local community. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
I think engineers from abroad are often hired for jobs in my local community. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
I am currently AWARE of engineering AROUND THE WORLD. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
I am currently AWARE of engineering IN MY COMMUNITY. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
It is important to train local engineering students to solve local problems. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
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On a scale from "not important" to "very important", indicate how important each of the following was in 
your choice to study engineering. * 
  1 (not important)  2 (a little important)  3 (somewhat important)  4 (very 
important)   
Potential salary        
Doing interesting work        
Many job opportunities        
Challenge of solving problems        
Profession transferable throughout the world        
Opportunities to solve global problems        
Hardest major and want to prove I can do it        
Parental influence        
Opportunities to answer local needs        
Peer influence        
 
If another factor was at all important, please explain below. 
 
On a scale from "almost never" to "almost always", please answer the following questions. * 
  1 (almost never)  2 (a little)  3 (sometimes)  4 (almost always)   
I was exposed to local science applications in primary school.      
  
I was exposed to engineering in primary school.        
My teachers showed they were knowledgeable about local science/engineering applications in primary 
school.        
I was exposed to local science applications in high school.        
I was exposed to engineering in high school.        
My teachers showed they were knowledgeable about local science/engineering applications in high school. 
       
 
Please indicate, to the best of your knowledge, the number of official connections your university has 
established to local and global communities. * 
  1 (do not know)  2 (none)  3 (a few)  4 (some)  5 (many)   
university partnerships with local businesses and industry, government, or NGOs    
  
university partnerships with international businesses and industry, government, or NGOs   
      
university projects with local community groups or schools       
  
university projects with schools or groups abroad         
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The following questions are about components of your curriculum. 
Please choose the number from 1 to 10 that comes the closest to your own opinion. 
 
In my education, I am being prepared to address local engineering problems. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree           
 Strongly agree 
 
The overall training I receive is highly specialized. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree           
 Strongly agree 
 
My university allows me to concentrate very specifically on my field of interest. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree           
 Strongly agree 
 
In coursework, I am being prepared to address global engineering challenges. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree           
 Strongly agree 
 
On a scale from "not very effective" to "very effective", please rate the following parts of your university 
training. * 
  1 (not very effective)  2 (a little effective)  3 (somewhat effective)  4 (very 
effective)   
mathematics courses        
basic sciences courses        
communications courses        
professional skills courses        
coverage of "global" engineering problems        
hands-on engineering experience        
training on "local" engineering topics        
research training        
coverage of local cultural issues        
training to work in international environment        
problem solving skills        
ethics training        
 
On a scale from "not very important" to "very important", please rate the importance of learning these skills 
for the job you look for. * 
  1 (not very important)  2 (a little important)  3 (somewhat important)  4 (very 
important)   
mathematics courses        
basic sciences courses        
communications courses        
professional skills courses        
coverage of "global" engineering problems        
hands-on engineering experience        
training on "local" engineering topics        
research training        
coverage of local cultural issues        
training to work in international environment        
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problem solving skills        
ethics training        
 
The following questions are about extracurricular activities. 
 
There are extracurricular opportunities to work on international projects. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
If research or internships with local projects are available, please indicate how many you have participated 
in. 
 
Please check all of the extracurricular opportunities that you participate in. * 
 
    Academic societies 
    Recreational clubs 
    Competitions 
    Public events (speeches, festivals) 
    Workshops 
    Apprenticeships 
    Sporting activities 
    Connections with alumni 
    Community service/volunteering 
    Entrepreneurship 
    Conferences 
    Study abroad 
    Student publications 
    Professional societies 
    Research assistantships 
    I don't have time to participate in extracurricular activities. 
    Other 
    None available 
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Opportunities are available to work on local engineering projects outside of class. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
If study abroad programs are available, please indicate how many you have participated in. 
 
The extracurricular activities at my university are beneficial. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
The following questions ask about your teachers. 
Please choose the number from 1 to 10 that comes the closest to your own opinion. 
 
On average, my professors have been knowledgeable about LOCAL engineering issues. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
On average, my professors have been knowledgeable about GLOBAL engineering problems. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
My professors were good teachers. * 
 
    none 
    a few 
    some 
    many 
    all 
 
 
My professors were model engineers. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
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The following questions ask about the physical resources at your university. 
 
The laboratories and other physical resources provide good opportunities to learn about LOCAL 
engineering issues. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
The laboratories and other physical resources provide good opportunities to learn about GLOBAL 
engineering issues. * 
 1  2  3  4  5  6  7  8  9  10   
Strongly disagree         Strongly agree 
 
Please check the areas you IDENTIFY most closely with. * (In other words, which areas do you personally 
feel the most connected with?) 
 
    Household 
    Neighborhood 
    City 
    County 
    State/province 
    Nation 
    Region 
    Continent 
    World 
 
 
These questions ask about the job you are looking for. 
 
Please check the areas for engineering problem(s) you are most familiar with. * 
 
    Household 
    Neighborhood 
    City 
    County 
    State/province 
    Nation 
    Region 
    Continent 
    World 
 
 
On a scale from "no feeling" to "strong feeling", please indicate how strongly you feel an obligation to 
work in engineering locally. * 
 1  2  3  4  5  6  7  8  9  10   
No feeling           
 Strong feeling 
 
On a scale from "no feeling" to "strong feeling", please indicate how strongly you feel an obligation to 
work in engineering abroad. * 
 1  2  3  4  5  6  7  8  9  10   
No feeling           
 Strong feeling 
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These questions ask about your current plans. 
 
How many offers or potential placements have you received in the last year for jobs in another country 
after you graduate? * 
 
How many offers or potential placements have you received in the last year for jobs in THIS country after 
you graduate? * 
 
Please check which factors make a job in your "local" community attractive to you. * 
 
    Wages 
    Technology 
    Family 
    Standard of living 
    Job availability 
    Familiarity with issues 
    Sense of fulfillment with job 
    None of the above 
 
 
Please check which factors make a job in this country attractive to you. * 
 
    Wages 
    Technology 
    Family 
    Standard of living 
    Job availability 
    Familiarity with issues 
    Sense of fulfillment with job 
    None of the above 
 
 
Please check which factors make a job abroad attractive to you. * 
 
    Wages 
    Technology 
    Family 
    Standard of living 
    Job availability 
    Familiarity with issues 
    Sense of fulfillment with job 
    None of the above 
 
 
Are you going to work in engineering as your first job when you finish university? * 
 1  2  3  4  5  6  7  8  9  10   
Definitely not           
 Definitely will 
 
Will you work in engineering in your home country at any point in your career? * 
 1  2  3  4  5  6  7  8  9  10   
Definitely not           
 Definitely will 
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Will you work in engineering at any point in your career? * 
 1  2  3  4  5  6  7  8  9  10   
Definitely not           
 Definitely will 
 
IF NOT, please check the reasons you will switch out of engineering. 
 
    my original reasons for choosing engineering no longer apply 
    other subjects are better taught/more interesting 
    demand low for local engineers 
    poor teaching, inadequate advising/help 
    international engineering jobs not available 
    not interested in it 
    pay for local engineers not competitive 
    curriculum irrelevant to pressing real-world problems 
 
 
Age * 
 
Postal code of the town where you went to high school * 
 
Father's occupation * 
 
Mother's occupation * 
 
Did you receive a scholarship or other financial aid to attend university? * 
 
    Yes 
    No 
 
 
With what religious or ethnic group do you most strongly identify? * 
 
Sex * 
 
University name * 
 
Engineering program * 
 
Year that you began your undergraduate studies * 
 
Into what field of work are you planning to go when you graduate? * 
 
If you would like to be entered in a drawing to win an iPad, please enter your email address. 
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CHAPTER V 
 
 
 

CONCLUSIONS AND IMPLICATIONS 
 
 
 

The Acquisition and Application of Technological Capital  

 In the three studies of this dissertation, I can see the development of engineering 

ability from the problem-solving skills of a fifteen-year-old student at the end of 

mandatory formal schooling, through the university-based bulk of engineering training, 

and through to the first foray into the workforce. I am able to come close to estimation of 

the causal effects of major (often expensive) educational inputs.  I am able to hear from 

the students themselves as to what path they followed and where they will go.  And, I am 

able to parse out the complex interaction between the home background and the formal 

schooling system.  This dissertation studies the formation of engineers through the formal 

and informal, subtle, and implicit processes of the engineering education system.   

 As I study the core of the engineering pipeline—university training—I find that 

there is a great deal of variation between institutions.  Universities matter for 

achievement.  Students in highly-selective institutions with well-regarded national 

reputations, much more research investment, and highly-qualified teachers do better.  

However, the technological capital accrued to the student before college still determines 

whether students will learn how to apply technological knowledge once they go through 

university training; even among similarly-selected peers, coming from a background 

where students have been exposed to the utility of formal schooling (parent education) 

and academic norms and effort (reported study time), students in higher education are 
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better able to make use of the same resources to learn how to apply knowledge to 

technical problem solving. 

 In addition to my in-depth look at the university engineering experience, I expand 

the understanding of where engineering educators should focus, providing studies that 

look at pre-college and post-college engineers as bookends to the more-oft-thought-of 

college engineer.  The process to train engineers begins before university, and the 

decision they make to enter the field after university is hugely important for the national 

economy.  In my investigation of one particular technological tool (computers) and the 

acquisition and application of this tool for pre-college engineering ability, I find that 

policymakers must understand the context in which students acquire problem-solving 

skills and in which they use technology.  As I gather student perspectives from 

graduating engineers, I find that students, though they may be passionate about 

engineering, have not internalized the passion for its practice or its local application. 

 

Implications 

 

Contribution 

 Technological capital is first created by home experiences, and the capacity for 

students to acquire it during their formal schooling is tempered by early exposure.  The 

tracks of formal schooling then lay a path for engineers to be formed, trying to nurture 

the development of relevant technical skill to support national growth. But, vital 

engineering manpower is often run off course; students who are not as prepared to use the 

most valued type of technological tools and processes may not find entrée into the next 
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level of schooling.  Or, their skills might be more rewarded in another field.  I find that 

the systematic differences in the engineers who do and do not ultimately step into the 

field of practice threaten the sustained growth of their respective countries. Relevant 

training, support, and opportunities could ameliorate this. 

 My dissertation makes contributions in four areas: its focus on the contextual 

factors supporting or inhibiting the acquisition and use of engineering skills for certain 

groups of students; its use of novel data; its development of a theory of technological 

capital; and its concrete policy recommendations.  The focus here on technological 

capital has implications for other fields of study.  The importance of the novel 

information I study here highlights the need for datasets similar to those at the national 

level in Brazil in order to answer questions of educational effects and efficiency.  And, 

based on my findings, I detail two major policy recommendations below. 

 

Policy Recommendations  

 In order to facilitate the positive role of engineering skills in development, I 

recommend two broad policy shifts.  The obstacles that exist in the pipeline need to be 

cleared, and the leaks in the piping need to be fixed.  In other words, the barriers to 

advancement that exist for engineers from certain backgrounds need to be removed, and 

incentives for them to stay in the engineering sector need to be put in place. 

 First, barriers that exist for students from low-income or other disadvantageous 

backgrounds should be alleviated by targeted support in the learning environment 

depending on the cultural background of the student and her logistical needs.  Students in 

the hot, noisy machine shop at the Bethel Business and Community Development Center 
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(BBCDC) curve a blindingly silver mirror into a parabola, destined to catch the burning 

rays of the sun that heat the Lesotho mountains and power a solar thermal generator 

(BBCDC, 2011).  Participants at the center are mostly adults from this remote, rural 

district of the tiny country.  The school caters the subjects it teaches and the experiential 

teaching methods it employs to practical needs of the immediate community.  This is one 

example of a tailored, supportive engineering learning structure. In another example, 

Swail, Redd, and Perna (2003) describe ways in which underrepresented students in the 

United States can better be supported as unique individuals as they navigate the college 

experience. 

 Learning opportunities like those offered by BBCDC are tailored to the distinctive 

characteristics of their environment.  Knowing that the home, school, and community 

context may predict a student’s behavior and educational outcomes, educators mold 

learning structures around local needs.  Anecdotal reports illustrate the success of such 

models. 

 Worlds away from southern Africa, across rural America, schoolchildren spend 

over twice the recommended time, more than sixty minutes on average (Howley, 2001), 

riding the school bus.  Children in Grapevine, Arkansas ride the bus for as much as three 

hours a day.  But, since 2007, the ride for students in Grapevine has become an extension 

of the school’s learning environment.  Wireless receivers needle out the roof of the bus, 

and students can take online courses, collaborate on writing projects, and communicate 

with teachers (Simon, 2008).  Students see value not only in using the computers, but in 

how they are used. This intervention demonstrates to participating children the value in 

this kind and this use of technology. And, in addition, children receive support in such 
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computer use. It becomes familiar, and they adopt this usage behavior as part of their 

"habitus". 

 Students of many ages gather in a Bangladeshi village to learn from a local female 

teacher in a one-room school.  Students too old to enter formal public school, students 

from communities with no government school provided, and traditionally-excluded 

students (e.g., females) are given the opportunity to learn in an intense, highly-interactive 

environment and prepare to enter official secondary schools (BRAC, 2011). These 

examples of tailored, targeted opportunities break down the obstacles that might 

otherwise prevent underrepresented students from advancing through the pipeline. BRAC 

and similar interventions support access for specific groups that might otherwise select 

out of formal education or into a less-valuable training track. 

 Second, incentives need to be put in place in three areas: the use and value of 

technological knowledge and practice, the persistence of students through the engineering 

training system, and the practice of engineering.  In the United States, engineering 

societies geared towards under-represented groups in engineering abound.  The Society 

for Women in Engineering, the National Society of Black Engineers, the National Society 

of Hispanic Professional Engineers, and more target under-represented groups as their 

missions.  They provide role models to encourage students to value technology and see 

themselves in their roles in the future.  While the extent of professional societies in the 

US has provided support and an attractive environment for underrepresented engineers to 

stay in the pipeline, there is still a notable disparity in the access of women and minorities 

in the engineering workforce (NAE, 2011); an expansion of supports as well as greater 
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attention to the barriers that still exist is necessary even here, and such targeted supports 

are models that could be exported elsewhere.    

 In Brazil, companies and NGOs offer scholarships for students from rural areas to 

use technology in university (e.g., Revista Fator, 2007). Though such incentives are vital 

to recruit under-represented groups into college engineering training, they are critically 

needed to recruit graduating engineers and graduating engineers from under-represented 

groups to support the local economy.  In the labor market, the incentives to practice 

engineering locally do not match national need.  Equity, quality, and efficiency goals 

could be met by targeted scholarships for low-income students from companies who can 

also provide internships opportunities.   

 

Future Work  

 The three studies of the engineering pipeline in my dissertation are first steps.  

Each of them leaves room for future work, and the entire dissertation lays the ground 

work for a larger research agenda in the future.  I discuss future steps for each paper in 

more detail in the respective chapters.   

 Overall, future work includes extending analyses in terms of data included as well 

as updating information.  It also includes recommendations for additional methodological 

approaches—either complementary qualitative information or a targeted randomized trial 

to evaluate the causal mechanism suggested by the relationship estimated.  More work 

needs to be done to understand the similarities and differences between the contexts 

represented in my studies and other locales around the world. A deeper understanding of 
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the role and working mechanism of technological capital is crucial to equitably providing 

opportunities for rising generations of engineers. 

 

Building Engineers and Societies 

 The engineering pipeline must be reconstructed.  Rather than a leaky pipe flowing 

downhill, losing more and more precious cargo through a series of one-way valves and 

no possibility of re-entry or changing course, the engineering pipeline should be inter-

connected, flexible, thoroughly supported, and attractive.  Students with varying 

backgrounds and various interests need diverse opportunities, rather than an ever-

narrowing horizon of engineering futures.  To best serve the needs of national and 

individual development, the pipeline must acknowledge the vast variation in prior 

experiences that students bring along with them, the connection between this and who 

becomes an engineer, and the need for flexibility in how students navigate their education 

journey. The pipeline should be tailored to the technological capital of the student.  

 Figure 1 broadly illustrates the concept of a “tailored pipeline”, a re-

conceptualized version of the trajectory of the engineer that recognizes the numerous 

paths important engineering human capital should be allowed to take today. Students may 

change from a vocational track to an academic one and back; they may take an extra year 

during formal training to gain real-world experience; or, they may exit and re-enter the 

profession after gaining other valuable experiences.  Instead of walls, multiple entry paths 

(gray arrows) students may take should break through traditional barriers to persistence in 

engineering.  Instead of allowing for students to fall through the cracks in the pipeline, 

supports (below pipeline) exist to target those in danger of stopping out. Targeted 
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incentives (stars) encourage students at each step to persist to the next. This newer, more 

realistic concept for today’s student integrates the separate worlds of background, choice 

mechanisms, and competing incentives and obstacles that can be observed in the 

antiquated pipeline (Chapter I). 

 

 

 

 

 

Figure 1. Reconstructing the pipeline 

 

 

 Improvements in schooling as we understand it are already underway. Since 1972, 

rural Indian women have attended Barefoot College (Barefoot College, 2011).  They 

learn basic engineering skills, directed towards solar innovations, and they then return to 

their villages to implement and pass on their skills. Through this model, non-traditional 

students receive an education tailored to their own needs and those of their environment, 

and technology is both an enabler and a vital resource for this opportunity.  Targeted, 

tailored technology use and technological training will ensure the equitable distribution 

of technological capital throughout a society as well as the efficient use of human capital 

for development. 

 The pathway through the engineering pipeline needs to be cleared.  Only then can 

the infrastructure of a healthy contemporary society, the building blocks of development, 
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the engineering pipeline pass a material test of solidity.  For the starry-eyed student 

looking down the path towards a career as an engineer, a clear view of the night sky and 

an unobstructed path to a highly-valued engineering career will be possible only with 

policymakers’ recognition of the support for engineering education that must be targeted 

uniquely to each individual student from an early age. 
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