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 CHAPTER I 

  

INTRODUCTION 

 

1.1 Motivation 

 Throughout the design, fabrication, certification, and operation of an engineering 

system, measures are taken to reduce the uncertainty regarding the system’s performance.  

In complex and expensive engineering systems, such as those used in the aerospace 

industry, activities during system tests and periodic inspections are essential to the 

system’s lifespan.  Uncertainty reduction regarding system performance is vital to the 

minimization of risk.  The goal in a testing campaign is to develop a sufficiently complete 

understanding of the performance of the system in question in the most economically 

efficient manner.  Tests need to be performed and designed with adequate fidelity and 

resolution so that the results provide meaningful information that can be used to reduce 

the uncertainty of the full system performance.  Information gained from lower level 

testing data is used to assess full system performance through the use of computer model 

simulations.  These models need to be rigorously verified against numerical benchmarks, 

and systematically validated by a hierarchy of component and subsystem tests. Research 

into quantification of margins and uncertainties (QMU) has the goal of enabling this 

overall capability [1]. 
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Currently, test campaign design procedures for uncertainty reduction are 

developed based on prior experience and ad hoc rules.  However, using these approaches, 

it is difficult to quantify the test campaign’s return on investment in terms of risk 

reduction.  Thus, a systematic mathematical approach to test campaign design provides 

an attractive alternative to current procedures.  Bayesian statistics provide the necessary 

tools for a mathematical approach to test campaign design because of their ability to 

include uncertainties due to natural variability and lack of knowledge. This research uses 

a Bayesian framework to develop rigorous analytical methodologies for decision making 

about the selection and design of tests and inspections for uncertainty reduction in 

complex engineering systems.  Topics explored include: Test resource allocation and 

design of hierarchical system calibration tests, test design for the purpose of integrated 

computational materials engineering (ICME), and inspection type decision combination 

optimization during the system’s operational life. 

 

1.2 Preliminaries 

Prior to the implementation of a test campaign methodology, both aleatory and 

epistemic sources of uncertainty must be identified.  Aleatory uncertainty includes natural 

variability in the model inputs and model parameters and leads to variability in the model 

outputs.  Epistemic uncertainty (due to lack of knowledge) includes testing measurement 

errors as well as uncertainties due to the presence of sparse and interval data in the inputs 

and outputs.  Epistemic uncertainty has been addressed using both probabilistic [2] and 

non-probabilistic approaches [3]. 
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Prior to the implementation of the resource allocation and test design 

methodologies, models representing the behavior of materials, components, subsystems, 

and the overall system of interest must be developed.  Researchers have investigated 

probabilistic as well as non-probabilistic approaches for uncertainty quantification, model 

verification, and model validation.  Probabilistic approaches include sampling methods 

[4, 5], reliability methods [6, 7], Bayesian methods [8, 9], entropy–based methods [10, 

11], etc.  Non-probabilistic methods include evidence theory [12, 13, 14], convex models 

of uncertainty [15], Zadeh’s extension principle [16], fuzzy theory [2], etc.  While 

probabilistic methods have been used to address natural variability, non-probabilistic 

methods have been used to address epistemic uncertainty due to interval data; however, 

probabilistic approaches to address interval data have also been recently developed [3, 

17].  

Test campaigns can be developed for both calibration and validation of system 

models.  This thesis focuses on model calibration, but future work could extend the 

proposed methodologies to validation.  A rigorous approach to model verification and 

validation should explicitly account for the various sources of uncertainty such as 

physical variability, information uncertainty, model error, measurement error, etc. and 

develop a robust metric that can quantitatively judge the performance of the model and 

assess the confidence in the model prediction.  Statistical confidence intervals [18, 19], 

classical statistical hypothesis testing [20, 21], Bayesian hypothesis testing [22], and 

reliability-based approaches [23] have been investigated for the purpose of validation.  

The Bayesian hypothesis testing approach [22, 24, 25] is found to be effective as it can 

account for both aleatory and epistemic uncertainties [26] and directly compute the 
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probability that the model is correct based on the available validation data.  Jiang and 

Mahadevan [27] established a relationship between the Bayesian validation metric and 

the risk associated with decision making in model validation. 

Recently, Urbina et al [28] developed a Bayesian network approach that serves as 

a foundation for the development of the selection methodologies in this research.  This 

thesis extends the Bayesian network approach to efficiently make decisions regarding 

testing and inspections of realistic engineering problems, including multi-level, multi-

disciplinary systems.  The Bayesian network is an ideal choice for this purpose because it 

can: 

 

1. Connect (i) component-level, subsystem-level, and system-level models; (ii) 

corresponding model inputs, parameters, outputs, and errors; and (iii) test data 

and measurement errors at different levels. 

2. Include different types of uncertainty - natural variability, data uncertainty, 

and model uncertainty. 

3. Solve both types of uncertainty quantification problems: forward and inverse. 

  

Once properly developed system models, model parameters, testing data, and 

errors have been connected through a Bayesian network, this tool can be used to solve a 

variety of engineering design and resource allocation problems.  The following section 

will outline the specific applications highlighted by this research. 
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1.3 Review of research and organization of thesis 

 The overall goal of the presented research is to develop rigorous analytical 

methodologies for the selection and design of tests and inspections on engineering 

systems at the material, component, subsystem, and full system levels for the purpose of 

reducing the uncertainty in full system performance.  Each methodology uses a Bayesian 

network to provide a unified framework that connects information between all levels and 

all physics involved in each problem.  This thesis is organized into seven chapters.  

Chapter I provides an introduction to the scope of the presented research and outlines the 

organization of this thesis. Chapter II provides a brief discussion of the key underlying 

statistical and mathematical processes used in this research, which include: Bayesian 

analysis, global sensitivity analysis, Gaussian process surrogate modeling, Latin 

hypercube sampling, and the Kullback-Leibler distance.  Four methodologies, each 

solving a different type of system testing issue are presented in Chapters III-VI, which 

are briefly outlined in the remainder of this section. 

 Chapter III develops a methodology for the allocation of testing resources in 

hierarchical systems.  Using a Bayesian network, models, testing data, and errors can be 

connected in multi-level multi-physics systems.  The proposed methodology seeks to 

select the optimal combination of material, component, subsystem, and full system tests 

so that the uncertainty in the full system performance is minimized. The proposed 

methodology is shown on two example problems: (1) a multi-disciplinary thermal 

vibration problem, and (2) a multi-level multidisciplinary simplified space telescope 

mirror. 
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 Chapter IV builds upon the methodology developed in Chapter III in order to 

design the selected tests in an adaptive way.  By seeking to select the input settings of the 

model calibration tests as well as the types of tests to be performed based on the results of 

previously performed tests, this proposed methodology adapts future tests to previously 

acquired data.  This approach results in a sequence of designed tests that seeks to 

minimize the uncertainty in performance prediction of the full multi-level multi-physics 

system.  The methodology is demonstrated on the same multi-disciplinary thermal 

vibration problem shown in Chapter III. 

 Chapter V extends the methods developed in Chapter IV to address the issue of 

materials design.  Materials have traditionally been treated as a constraint in the design of 

complex engineering systems.  ICME seeks to include materials design in the engineering 

design process.  This goal comes with numerous computational challenges including the 

issue of uncertainty quantification.  This chapter proposes a methodology to optimize the 

variables of a manufacturing process such that the performance of the manufactured 

component is optimized with a certain level of confidence.  This methodology is 

demonstrated using a helicopter rotor mast subjected to both bending and torsion loading.  

The problem optimizes the depth of shot peening (a manufacturing process) that best 

extends the useful life of the component given an initial defect size and loading scenario. 

 Chapter VI develops a methodology to make decisions about inspection types.  

Digital twins are computer models that seek to exactly replicate a complex engineering 

system and include all uncertainties about the state of the system.  Uncertainties are 

reduced by calibrating the digital twin with test and inspection data.  The methodology 

proposed in this chapter seeks to select the best inspection fidelity such that the digital 
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twin is updated in the most economical manner.  The methodology is presented using a 

helicopter rotor mast crack growth problem. 

 Chapter VII provides conclusions about the methodologies developed and 

potential directions for future research on resource allocation for uncertainty reduction.  
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CHAPTER II 

 

BACKGROUND INFORMATION 

 

Chapter II will provide a brief introduction to the key underlying statistical and 

mathematical processes that are essential to the formulation of the test campaign design 

methodologies developed in this thesis:  Bayesian analysis, global sensitivity analysis, 

Gaussian process surrogate modeling, Latin hypercube sampling, and the Kullback-

Leibler distance. 

 

2.1 Bayesian networks 

Bayesian analysis updates a prior assumption about the distribution of a random 

variable based on observed instances of that variable or functions of that variable.  A 

Bayesian network [29, 30] is a graphical representation of the relationship between 

various uncertain quantities in a system.  With the Bayesian network, the outputs of 

component and subsystem level tests can be related to the inputs of the overall system. 

Each uncertain quantity is represented as a node and successive links are 

connected to each other using unidirectional arrows that express dependence in terms of 

conditional probabilities.  Disconnected nodes imply independence between the 

corresponding random variables.  Figure 1 shows a conceptual Bayesian network that 

aids in uncertainty quantification across multiple levels of models and observed data. 

Circles correspond to uncertain variables and squares represent observed data.  A solid 
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line arrow represents a conditional probability link, and a dashed line arrow represents 

the link of a variable to its observed data if available. 

 

 

Figure 1: Bayesian Network Illustration 
 

In Figure 1, a system level output   is a function of two subsystem level quantities 

   and   ; in turn,    is a function of subsystem-level input    and model parameter   , 

and similarly,    is a function of subsystem-level input    and model parameter   .  For 

example, in a beam deflection study, the applied force is an input, the elastic modulus is a 

model parameter, while the deflection is measured and a model is built to predict the 

deflection.  Experimental data    and    are available for comparison with the respective 

model predictions    and   . 

In the forward problem, the probability distributions of the inputs (   and   ) and 

model parameters (   and   ) are known or assumed, and these distributions are used to 

calculate the probability density function (PDF) of    and   , which in turn are used to 

calculate the PDF of the system-level output   as: 
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  ( )  ∫  ( |     )    

(  |     )   
(  |     )   

 

(  )   
(  )   

(  )   
(  )             

 

(1) 

 

Equation 1 can be solved using methods of uncertainty propagation such as Monte 

Carlo simulation (MCS), first-order reliability method (FORM), second-order reliability 

method (SORM), etc. [7]. 

In the inverse problem, the probability densities of the model parameters (   and 

   in Figure 1) can be updated based on the observed data (   and   ) using Bayes 

theorem as: 

 

  (     |     )     (     ) 
 (  ) 

 (  ) (2) 

 

The joint posterior density is given by (     |     ).  The likelihood function, 

 (     ), is calculated as the probability of observing the given data (  ,   ), conditioned 

on the parameters being updated, i.e.    and   .  The likelihood function accounts for the 

uncertainty in the inputs    and   .  For details of the likelihood function, refer to [31, 

32]. 

A prior distribution (  (  ) and   (  )) is a representation of all of the 

knowledge known about a parameter before collecting any additional data.  Prior 

distributions of the random variables of interest can be either informative or non-

informative.  If a significant amount of information is known about the behavior of a 

variable, an informative prior can be used and will assist the analysis.  For instance, the 

parameters of common materials may have well known distributions, manufactured 
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products may have specified nominal values and tolerance levels, or an expert may have 

a high level of confidence that a parameter falls in a certain interval range.  This concept 

of the prior distribution is heavily scrutinized by detractors of Bayesian statistical 

methods because the assumptions made about the prior distribution affect the result of the 

Bayesian analysis.  Poor assumptions of prior information will ineffectively bias the 

resulting posterior distributions.  However, the inclusion of useful information into a 

prior distribution increases the effectiveness of the analysis and eases the computational 

difficulty.  The prior distribution describes the subjective knowledge about the system 

and the associated uncertainty.  This prior knowledge is updated in the Bayesian analysis 

process when new information becomes available in the form of testing or inspection 

data.  This leads to the reduction of uncertainty in the system-level prediction.  For more 

information about prior distributions, including non-informative priors, refer to [9]. 

 

2.2 Global sensitivity analysis 

Global sensitivity analysis [33, 34, 35] is a powerful tool used to determine the 

relative contribution of each source of uncertainty to the overall uncertainty of the model 

outputs.  Unlike local sensitivity analysis, global sensitivities average the conditional 

variance       
( |  ) over the entire distribution of   .  Global sensitivity is generally 

expressed in the form of two indices, the first order effects index and the total effects 

index.  The first effects index of a particular variable is always between zero and one, is 

indicative of the variable’s contribution to the system variance without considering its 

interaction with other variables, and is calculated as: 
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[    

( |  )]

   ( )
 (3) 

 

where    is the random variable of interest,     is all random variables excluding   , and 

  is the model output.   

The sum of the total effects indices of all    is always greater than or equal to one. 

The total effects index for a particular variable is indicative of the variable’s contribution 

to the system variance including its interaction with other variables and is calculated as: 

 

 
      

    
[     

( |   )]

   ( )
 (4) 

 

In the context of test design, global sensitivity analysis provides a quantitative 

measure of which variables are important to the overall model output.  This information 

aids in the process of determining which model parameters to update within the Bayesian 

network and eliminates the need for tests which do not update “important” parameters.  

However, global sensitivity analysis does not give any indication of the expected 

reduction of uncertainty in the full system output before performing a given test.  Nor 

does it determine what value of test input settings are most likely to maximize the 

information gained from performing a calibration test.  Thus, global sensitivity analysis is 

a necessary tool in the development of the test design optimization problem, but is not 

sufficient to provide a solution. 
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2.3 Gaussian process surrogate modeling 

The proposed procedure for test resource allocation requires several hundred 

thousand evaluations of the component-level, subsystem-level, and system-level models.  

If these are physics-based models implemented in time-consuming computer codes (e.g. 

finite element models), then this is a computationally expensive task.  Hence, a few runs 

of the actual model are used to train an inexpensive, efficient surrogate model in this 

research.  A Gaussian process surrogate model has been used for this purpose.  Different 

types of surrogate modeling techniques (conventional polynomial response surface, 

polynomial chaos expansion [36], support vector regression [37], relevance vector 

regression [38], and Gaussian process interpolation [39]) have been investigated in the 

literature.  This thesis uses the Gaussian process (GP) surrogate model, which is a 

powerful technique based on spatial statistics for interpolating data and is increasingly 

being used to build surrogates to expensive computer simulations for the purposes of 

optimization and uncertainty quantification [39, 40, 41].  The GP model is (1) not 

constrained by polynomial-type functional forms; (2) capable of representing highly 

nonlinear relationships in multiple dimensions; and (3) produces an estimate of the 

prediction uncertainty which depends on the number and location of training data. 

The basic idea of the GP model is that the response values   evaluated at different 

values of the input variables  , are modeled as a Gaussian random field, with a mean and 

covariance function.  Suppose that there are   training points,              of a  -

dimensional input variable vector, yielding the output values 

 (  )  (  )  ( )   (  ).  Let Q denote the   x   matrix of correlations among 

input variables at the training points.  Under the assumption that the parameters 
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governing both the trend function (  (  ) at each training point) and the covariance ( ) 

are known, the expected value and variance of the Gaussian process at a prediction 

location    is calculated as: 

 

  ( (  ))    (  )    (  )   (    ) 

   ( (  ))   (        ) 

(5) 

 

In Equation 5,   represents the vector of correlations between the prediction 

point,   , and the training points,   represents the vector of trend coefficients, and   

represents the vector of trend functions.  For details of this method, refer to [40,41,42]. 

Adaptive techniques can be used to select training points for the GP model, in 

order to construct the response surface to a desired level of accuracy or precision.  Since 

the GP model is capable of estimating the variance in the model output, a variance 

minimization algorithm proposed by McFarland [41] identifies the next training point at 

the input variable value which corresponds to the largest variance.  By repeating this 

algorithm, training points are adaptively identified until the estimated variance is below a 

desired threshold.  Additionally, training point design has been extended to minimize bias 

[43].  After the Gaussian process surrogate model is constructed and its parameters are 

estimated, it is used for Bayesian updating and test resource allocation optimization. 

 

2.4 Latin hypercube sampling 

 Basic Monte Carlo simulation may not be affordable for a problem where a large 

number of samples are required to obtain a reasonable estimate of the distribution.  In 
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these cases, advanced sampling techniques are used to reduce the required number of 

function evaluations.  Latin hypercube sampling [44] is one such technique which 

ensures that each segment in the range of an input random variable is represented in a 

manner proportional to its probability.  In Latin hypercube sampling, each input 

dimension is divided into a number of segments equal to the number of samples such that 

each segment has an equal probability of occurrence.  When samples are taken, they will 

be distributed such that the same number of samples will be taken from each segment.  

Clearly, there are many combinations of samples that would meet these criteria, and the 

combinations become more numerous as the dimensionality increases.  In order to ensure 

that the entire domain is reasonably covered, optimum symmetric sample design 

procedures that seek to maximize the minimum distance between any two samples have 

been developed [45].  Latin hypercube sampling is used extensively in this research to 

reduce the necessary number of function evaluations that must be performed. 

 

2.5 Kullback-Leibler distance 

The pursuit of data that leads us to a better understanding of the performance 

prediction of the full system leads to an important question: How can the amount of 

information gained be described in a quantitative manner?  Two metrics are used in this 

research to quantitatively judge the uncertainty reduction in a variable after additional 

information is gained: (1) variance reduction and (2) the Kullback-Leibler distance.  In a 

variance reduction technique, the testing campaign that corresponds to the posterior 

output variable with the lowest variance is chosen as optimal.  This technique is valid if 

the “true” value of the calibration parameter is a single deterministic value.  This is the 
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case when the calibration tests being performed use the same component as the 

component to be used in the full system.  However, this metric is not valid if the 

components being used in the full system are not the exact same specimen as is being 

tested.  In this case, the calibration parameters will in reality be distributions.  When this 

is the case, the model calibration parameters cannot be updated directly and the 

distribution parameters of the calibration parameters must be updated.  When this is the 

case, an information-theoretic approach, the Kullback-Leibler distance, can be used. 

The Kullback-Leibler (KL) distance is an information-theoretic distance 

developed by Kullback and Leibler [46] used to measure the similarity between two 

probability distributions.  The KL distance in units of ‘nats’ is given as: 

 

    (   )  ∫ ( )  [
 ( )

 ( )
]     (6) 

 

where  ( ) is the PDF of the prior distribution and  ( ) is the PDF of the posterior 

distribution of interest.  Note that Equation 6 is asymmetrical, meaning that    (   )  

   (   ).   

The higher the KL distance, the less similar the posterior distribution is from the 

prior distribution, which corresponds to a larger amount of information gain.  If the KL 

distance is equal to zero, the two functions are identical.  Therefore, in order to maximize 

the information gained by acquiring new testing data, the proposed methodology in 

Chapter IV seeks to select the type of test and the test settings that maximize the expected 

KL distance between the prior model output PDF and the posterior output PDF. 
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CHAPTER III 

 

ALLOCATION OF TESTING RESOURCES IN HIERARCHICAL SYSTEMS 

 

3.1 Introduction 

 Typically, a multi-level multi-physics system has several parameters that 

influence the overall system-level output, and the uncertainty in these parameters can be 

updated by tests at multiple levels of the system and multiple types of physics coupling.  

When the posterior distributions of the parameters are propagated through the system 

model to calculate the overall system-level output, the posterior variance of the overall 

system-level prediction can be computed.  With more acquisition of data, a decreasing 

trend can be observed in the variance of the system-level output. 

Two types of questions need to be answered: (1) What type of tests to do (which 

component, isolated physics, etc.)? and (2) How many repetitions of each type?  Each 

type of test has a different testing cost and an associated reduction in the variance of 

system-level prediction.  Further, the same type of test may need to be repeated on 

nominally identical specimens of the same component or subsystem.  Such repetition is 

performed in order to account for the effect of natural variability across nominally 

identical specimens; while each repetition may have the same monetary cost, the 

associated reduction in the variance of system-level prediction may be different. 

The test conducted on one subsystem is assumed to be statistically independent of 

another test on another subsystem; in other words, one type of test is independent of any 

other type.  Further, for a given type of test, the repetitions across multiple replicas are 
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also considered to be independent.  It is assumed that a model is available to predict the 

quantity being measured in each type of test; the model may have several outputs but 

only that output which is measured is of concern. 

The key idea of the proposed methodology is to use all available component-level 

models and test data to quantify the uncertainty in the overall system level performance 

prediction.  This methodology combines two types of inverse problems (model 

calibration and test resource optimization) and forward uncertainty propagation.  The 

probability distributions of the model parameters are updated using the Bayesian network 

after collecting data through testing, and the updated distributions are propagated through 

the component and system models to recalculate the variance in the system performance 

prediction.  An optimization-based procedure is then used to aid in test resource 

allocation by taking into consideration the reduction in variance due to testing, as well as 

the costs involved in testing, thereby facilitating efficient cost-benefit analysis. 

 

3.2 Global sensitivity analysis in resource allocation 

 The first step of the proposed resource allocation methodology is to use sensitivity 

analysis to identify those parameters that have a significant influence on the variance of 

the overall system-level prediction.  Once the “important” parameters are identified, only 

those tests that aid in reducing the uncertainty in these important parameters should be 

included in the analysis.  For example, consider a system-level output that is very 

sensitive to the uncertainty in the parameters of sub-system-I but not sensitive to the 

parameters of sub-system-II, then it is logical to perform more sub-system-I tests than 

sub-system-II tests.  Note that this procedure for test identification is only a preliminary 
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approach.  This approach can answer the question - “which tests to do?” In order to 

answer the question, “how many tests to do?”, it is necessary to quantify the decrease in 

variance that may be caused due to a particular test.  The effect of a particular test on 

variance reduction can be quantified by using Bayesian updating.  Therefore, the 

proposed resource allocation methodology first uses sensitivity analysis for selection of 

calibration parameters and then uses Bayesian updating to quantify the effect of a test on 

the variance of system-level prediction. 

  

3.3 Optimization formulation 

 In order to solve the resource allocation problem and identify the number of tests 

to be performed for each type, the optimization problem can be formulated in two ways, 

as explained below. 

In the first formulation shown in Equation 7, the goal is to minimize the variance 

of the system-level output subject to satisfying a budget constraint. 

 

         
     

 (   ( )) 

    ∑(     )              

 

   

 

      [        ] 

(7) 

 

In Equation 7, q refers to the number of different types of possible tests.  The cost 

of the     (        ) type of test is equal to   , and    (decision variable) denotes the 

number of repetitions of the     type of test. Let    denote all the data collected through 
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the     type of test. Let       denote the vector of all   ’s and let   denote the entire set 

of data collected from all   types of tests. 

Alternatively, the resource allocation problem can be formulated by minimizing 

the cost required to decrease the variance of the system-level output below a threshold 

level, as: 
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(8) 

 

In this chapter, the first formulation (Equation 7) is pursued for resource 

allocation because the threshold level for the variance is assumed to be unknown.  Using 

 , the model parameters are calibrated and the system-level response,  ( ), is 

computed.  The optimization in Equation 7 calculates the optimal values of   , given the 

cost values   , such that the expected value of variance of the system-level prediction, 

 (   ( )), is minimized, while the budget constraint is satisfied. 

This optimization formulation uses  (   ( )) as the objective function because 

  is a function of  , which is not available before testing.  Hence, random realizations of 

the test data set,   are generated; each random realization is used to compute    ( | ), 

and the expectation over such random realizations is calculated to be the objective 

function, as: 
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 (   ( ))  ∫   ( | )  ( )   (9) 

 

where  ( ) is the density considered for the test data. Assuming that one type of test is 

performed independently of another (i.e. a subsystem-level test is independent of a 

material-level test), Equation 9 can be written as: 

 

  (   ( ))

 ∫   ( |        ) (  ) (  )  (  )            

 

(10) 

 

where  (  ) is the density considered for the data obtained through the     test. Before 

any testing is done, all prior knowledge regarding the model parameters, and the 

mathematical models constitute the only information available for the calculation of 

 (  ).  Therefore,  (  ) is calculated as: 

 

 
 (  )  ∫ (  |  ) 

 (  )    (11) 

 

where    represents the output of the mathematical model corresponding to the     type of 

test,    represents the underlying parameters, and   (  ) represents the prior knowledge 

regarding those parameters.  Note that Equation 11 is simply an uncertainty propagation 

problem, where the other sources of uncertainty (such as physical variability in inputs, 

solution approximation errors, data uncertainty) can also be included in the computation 

of  (  |  ). 
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Equations 9–11 are implemented using a numerical algorithm, where a finite 

number of realizations of D are generated and  (   ( )) is computed over these 

realizations.  Then,  (   ( )) can be minimized using the optimization in Equation 7, 

and the ideal combination of tests can be identified. 

Note that an inequality constraint (for the budget), and not an equality constraint, 

is considered in Equation 7.  This means that the optimal solution which minimizes 

 (   ( )) need not necessarily exhaust the budget.  Consider the simple case where 

there are two possible test types (     and     ), and the budget is equal to 6 cost 

units.  There are two test combinations which exhaust the budget: (1) [    ,     ], 

and (2) [  =0,     ].  Suppose that these two combinations lead to a value of 

 (   ( )) which is greater than that achieved through the test combination [    , 

    ].  Then, obviously the combination [    ,     ] must be selected because it 

achieves the goal of reducing  (   ( )) even though it may not exhaust the budget. 

 

3.4 Solution to the optimization problem 

 Equation 7 is a complicated integer optimization problem, where Bayesian 

updating and forward propagation need to be repeated for each random realization of the 

test data in order to evaluate the objective function, thus increasing the computational 

cost several fold.  In spite of the use of Gaussian process surrogate models to replace the 

expensive system model, high computing power is still needed to solve the optimization 

problem. 

Integer optimization is sometimes solved using an approximation method, where 

the integer constraint is first relaxed, and the integers nearest to the resulting optimal 
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solution are used in further solution of the original (un-relaxed) problem.  Unfortunately, 

this approach is not applicable to the solution of Equation 7, since the objective function 

(system-level prediction variance) is defined and computed only for integer-valued 

decision variables (number of tests).  It is meaningless to have a non-integer number of 

tests. 

A multi-step procedure for solving the optimization problem is proposed in this 

chapter.  Within each step, the global optimal solution is computed using an exhaustive 

search process, whereas across steps, a greedy algorithm is pursued.  The step size is 

chosen in cost units, and additional steps are added until the budget constraint is satisfied.   

Let the size of the first step be equal to    cost units; the globally optimal testing 

combination for this cost (=  ) is denoted by      
 , and is calculated using exhaustive 

search, as: 
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(12) 

 

The optimization procedure in the second stage is dependent on the optimal 

solution from the first stage, i.e.      
 . In general, the optimization for the     stage, given 

the solution in the previous stage (i.e.      
   

 ), is performed for cost =   .  Note that 

∑   
              .  The     optimization is formulated as: 
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As seen in Equation 13, the decision variables for the     stage are      
     

, i.e. 

those tests which need to be performed in the     stage; therefore the total number of tests 

is equal to the sum of      
     

 and      
   

, i.e. the optimal number of tests in the previous 

stage.  The same procedure is repeated until no additional test can be performed with the 

budget constraint satisfied. 

The selection of step size for a given budget is an important issue.  The true 

global optimal solution can be calculated by considering one step whose size is equal to 

the entire budget.  However, due to the large number of possible testing combinations, 

this approach may be computationally infeasible. 

In a practical problem, several steps are considered, and the step sizes must be 

chosen judiciously based on (1) the costs of each type of test; (2) time required for each 

Bayesian update; (3) number of random realizations of data needed to compute 

 (   ( )); and (4) the test combinations that are suitable for the chosen step size; a 

very small step size may not even include an expensive type of test. 
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3.5 An illustrative example 

 This subsection presents a simple illustrative example, only to demonstrate the 

decrease of variance with testing.  In order to focus on this objective, simple 

mathematical relationships are chosen (even the system-level response has no coupling), 

and measurement errors are assumed to be negligible.  Other features such as coupled 

system response, measurements errors, solution approximation errors (while replacing the 

underlying physics-based model with a Gaussian process approximation), etc. are 

considered later in Sections 3.7 and 3.8. 

The Bayesian network for this problem is exactly the same as that in Figure 1.  

There are four independent quantities and three dependent quantities; the numerical 

details of this problem are specified in Table 1. The notation  (   ) is used to represent 

a normally distributed quantity with mean   and standard deviation  . Two types of tests 

(on two different lower levels) can be done and this information is used to update the 

uncertainty in the system-level response based on the tests. 

 

Table 1: Numerical Details: Resource Allocation Illustration 

Quantity Type Description 

   (input) Independent N(100,5) 

   (parameter) Independent N(50,10) 

   (input) Independent N(10,1) 

   (parameter) Independent N(15,4) 

    Dependent Model:          

    Dependent Model:          

   System-level response Model:         

Quantity to Measure Cost No. of Tests 

    10    

    5     
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Probability distributions are assumed to be available for the inputs    and   ; if 

this information was not available, and only sparse and/or interval data was available for 

the inputs, then the likelihood-based method developed in [3] can be used to construct a 

probability distributions for them.  The variance of   before conducting any test (i.e. by 

propagating the above distributions of   ,   ,   , and    through the models) is 142 units.  

The objective is calculate the number of tests on    and    (   and   ), that will lead to a 

minimum variance in z, subject to a total budget of $50.  Since there are only two 

parameters, global sensitivity analysis is not necessary, and hence, both    and    are 

chosen for calibration.  The proposed optimization methodology is used for this purpose; 

five different stages are considered and the available budget in each stage is considered to 

be $10.  The results of test prioritization are given in Table 2 and Figure 2. 

 

Table 2: Resource Allocation: Results 

Cumulative Cost        (   ( )) 

$10 
1 0 62.0 

0 2 127.0 

$20 
2 0 53.0 

1 2 46.6 

$30 
2 2 37.6 

1 4 46.1 

$40 
3 2 34.0 

2 4 37.6 

$50 
4 2 32.5 

3 4 33.8 

 

At the end of the optimization procedure, the optimal combination is found to be 

4 tests on    and 2 tests on   .  Further, this solution was verified by considering all other 

combinations (exhaustive search) of    and    and computing the corresponding 

 (   ( )); for this illustrative example, this verification is numerically affordable.  
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However, for practical examples, a few random values of       = [  ,   ] (if not all) can 

be considered and it can be verified if the estimated solution is really optimal. 

 

 

Figure 2: Variance vs. Cost: Resource Allocation Illustration 

3.6 Summary of proposed methodology 

 The various steps of the proposed methodology are summarized below: 

 

1. Construction of the Bayesian network:  The first step is to identify the various 

component-level, subsystem-level, and system-level models.  Each model has 

an output quantity and correspondingly, a test can be performed to measure 

this quantity.  All the models are connected through the Bayesian network, 

and the data available across the nodes is also indicated.  The model errors, if 

available, can also be included in the Bayesian network.  Though solution 

approximation errors can be calculated prior to testing and included in the 

Bayes network, model form error cannot be calculated before testing.  It must 

be noted that the Bayesian network, due to its acyclic nature, cannot account 
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for feedback coupling between models.  When the system-level response is a 

coupled physics-based solution, the overall solution is directly included in the 

Bayesian network instead of considering the individual physics separately. 

 

2. Sensitivity Analysis: The next step is to perform global sensitivity analysis 

and identify the “important” parameters that significantly contribute to the 

uncertainty in the system-level response.  Then, those tests which can aid in 

the reduction of uncertainty in these “important” parameters are selected for 

consideration in the optimization for test resource allocation. 

 

3. Bayesian updating: The third step is to perform Bayesian updating and 

calibrate parameters for a particular realization of measurement data.  Then, 

this needs to be repeated by generating multiple realizations of measurement 

data in order to compute the expected value of variance, as in Equation 9.  

(Due to the required computational expense, the original physics models can 

be replaced with Gaussian process surrogates. Though this does not lead to 

analytical calculation of the posterior, it increases the computational 

efficiency several fold.) The most important aspect of Bayesian updating is 

the construction of the likelihood function, which is based on the difference 

between the model prediction and experimental observations, caused due to 

measurement and model errors.  The solution approximation error due to the 

use of GP surrogate model is stochastic and is included.  The true model form 

errors and measurement errors cannot be estimated before any actual testing is 
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performed.  In this chapter, since the realizations of measurement data are 

generated based on the model itself, model form errors are not included.  

However, measurement errors are used in the construction of the likelihood 

function in the numerical examples in Sections 3.7 and 3.8. 

 

4. Resource allocation optimization: The final step is to perform the resource 

allocation optimization using the multi-step procedure developed in Sections 

3.2 and 3.3.  It may be useful to verify that the resultant solution is actually 

optimal by computing  (    ( )) for few other       values. 

 

The following sections implement the proposed test resource allocation 

methodology to multidisciplinary and multi-level problems.  Two different types of 

configurations are considered in order to emphasize the philosophical differences 

involved in model development and testing of such systems. 

In a multi-disciplinary system, the overall system-level output is calculated using 

a multi-physics simulation.  Each of the individual physics is tested.  The models 

governing the individual physics may interact with each other through feedback coupling, 

i.e. the output of one is the input of the other and vice-versa.  From a hierarchical point of 

view, both these models are at the same level of hierarchy whereas the system-level 

prediction is at a higher-level.  For example, in fluid-structure analysis, the displacement 

(output of structural analysis) and pressure (output of fluid analysis) fields are inputs to 

the fluid analysis and structural analysis respectively.  Due to the acyclic nature of the 

Bayesian network, it is not possible to compute the system-level response by explicitly 



30 

 

accounting for this feedback; instead, the coupled solution is directly computed and used.  

If there is only feed-forward coupling between two disciplinary analyses then each 

individual analysis can be separately included in the Bayesian network.  The tests are 

always performed for individual physics without coupling.  Section 3.7 discusses 

resource allocation for such a coupled multi-physics thermal-structural problem, 

representative of vibrations in solar arrays of telescopes and spacecraft booms.  The tests 

performed for individual thermal and structural physics are used to calibrate underlying 

parameters, which are then used to compute the coupled system-level response. 

On the other hand, in a multi-level system, the complexity of the model and 

underlying phenomenon increase along the hierarchy.  The model used for system-level 

prediction is at the highest level of hierarchy and each subsequent model is at a lower 

hierarchy.  There is a set of parameters common to the models at all levels.  These 

parameters are calibrated using data at the lower levels (where the models and the 

physical phenomena are simpler relative to the system-level), and the calibrated 

quantities are used to predict the system-level response.  For example, consider two types 

of tests: (1) axial test on a coupon; and (2) bending test on a beam; either/both of these 

tests may be used to estimate the modulus, and then predict the deflection in a thick plate, 

when all three (coupon, beam, and plate) are made of the same material.   

Section 3.8 discusses resource allocation for a multi-physics multi-level problem, 

where both features (tests conducted for individual physics and tests of simpler 

components or conditions) are used for the calibration of parameters and prediction of the 

system-level response. 
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3.7 Multidisciplinary system 

 

3.7.1 Description of problem 

 This coupled-physics thermal vibration example illustrates a laboratory 

experiment which can be used to study and simulate the behavior in solar arrays of 

telescopes and spacecraft booms [47].  The test comprises of a vertically mounted 

storable, tubular, extendable member (STEM) which is fixed at the top end and a heat 

source that applies heat to one side of the member.  A STEM is a flat plate with residual 

stresses that when unrolled (much like a tape measure) curves to create a thin-walled 

circular tube.  This allows long telescope or spacecraft booms to be retracted and easily 

stored.  The tube and the mass are initially at rest and a constant heat flux is applied on 

one side along the length of the tube.  The application of the heat flux causes an increase 

in the temperature on the incident surface while the unheated side remains at the initial 

temperature.  The temperature gradient causes the beam to bend away from the lamp, due 

to the thermal moment.  The displacement of the beam, in turn, changes the distribution 

of temperature along the length of the beam, leading to a change the temperature gradient 

and the thermal moment, which in turn affects the flexural behavior.  Thus the 

combination of heat transfer and flexural mechanics leads to oscillations of the beam.  

The setup of this experiment is shown in Figure 3. 
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Figure 3: Thermally Induced Vibrations 

 

The temperature at the tip mass (  ) is given by the following differential 

equation; 

 

    

  
 

  

 
 

  

 
(  

 (   )

  
) (14) 

 

In Equation 14,  (   ) represents the displacement of the beam as a function of 

length and time.  Thornton [47] explains how to calculate the parameters   ,  , and    as 

a function of the incident solar flux ( ). 

 The displacement  (   ) can be related to the displacement of the tip mass  ( ) 

as: 
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The tip mass displacement  ( ), in turn, depends on the forcing function as 

follows: 

 

 
 ̈       ̇  (  

  
  

  
)   

 ( )

 
 (16) 

 

In Equation 16,   is the damping ratio, and    is the angular frequency.  The 

forcing function  ( ) depends on the thermal moment which in turn depends on the 

temperature, thereby causing coupling between the thermal equation and the structural 

equation.  These relations are shown in the following equations: 
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 (   )  ∫    (   )   ( )     (18) 

 

In Equation 18,   in the elastic modulus,   is the coefficient of thermal 

expansion,   is the angle of incident flux on the cross section,   is the distance from the 

center of the cross section and the integral is over the area of the cross section  .  Refer 

to Thornton [47] for a detailed description of this problem. 
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 The objective of the testing campaign for this problem is to reduce the overall 

uncertainty about the response of the output variable ( ), which is defined as the ratios of 

two displacement amplitudes at different time instances when the incident solar flux ( ) 

is equal to 2000     .  If    , the oscillations are not increasing and the system is 

stable.  Conversely, if     the oscillations are increasing, commonly referred to as 

flutter, and the system is deemed to have failed.  While a Gaussian process surrogate 

model is constructed to calculate  , individual physics predictions are performed using 

the above physics-based models. 

 

Table 3: Calibration Quantities: Thermal Vibration Problem 

Symbol Quantity Property Prior CoV 

  Elastic modulus Structural 0.1 

  Specific heat Thermal 0.1 

  Damping Structural 0.1 

  Radius Geometric 0.03 

  Emissivity Thermal 0.1 

 

 The calibration parameters need to be estimated during test data; four different 

types of tests are considered, as shown in Table 4.  The total budget available for testing 

is assumed to be $2000. It is assumed that the entire multi-disciplinary system cannot be 

tested. 

 

Table 4: Types of Tests: Thermal Vibration Problem 

Test type Physics Calibrate Input-Output Cost No. of tests 

Material-level Thermal   Heat-Temperature rise $100     
Material-level Structural   Amplitude decay $100     

Subsystem-level Thermal  ,  ,   Heat-Temperature rise $500    
Subsystem-level Structural  ,   Acceleration $500    
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The calibration quantities, the model predictions, and the test data are connected 

through a Bayesian network, as shown in Figure 4. 

 In the Bayesian network in Figure 4, “Temp” refers to temperature, “Accn” refers 

to the acceleration, “Disp” refers to the displacement, and “Amp” refers to the amplitude 

of vibration.  Measurement errors ( ) are assumed too have a standard deviation that is 

equal to ten percent of the model prediction.  This Bayesian network is used for 

uncertainty quantification, Bayesian updating, and resource allocation. 

 

 

Figure 4: Bayesian Network: Thermal Vibration Problem 
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3.7.2 Resource allocation 

 The objective is to calculate the number of tests that lead to a maximum reduction 

in the variance of  .  Let       denote the number of tests, where       = [   ,     ,   , 

  ]; where     is the number of material level temperature tests,     is the number of 

material level pluck tests,    is the number of flexural subsystem tests, and    is the 

number of thermal subsystem tests.  Let   = [    ,     ,    ,    ] denote the test 

measurements.  The optimization problem for resource allocation can be formulated as 

shown in Equation 19. 

 

         
     

 (   ( )) 

         (       )     (     )       

                        

(19) 

 

 The above optimization is solved using the multi-stage optimization procedure 

discussed in Sections 3.2 and 3.3. Four stages and a budget of $500 for each stage are 

considered, thereby accounting for the total budget of $2000.  Each stage has 8 options 

(as opposed to two in the mathematical example in Section 3.5); only the optimal solution 

in each stage is shown. 

Note that Table 5 expresses the expectation of variance of   in terms of 

percentage of the variance before any testing; this variance is equal to 5.69 x 10−7; since 

  is a ratio, this variance is dimensionless. 
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Table 5: Resource Allocation Results: Thermal Vibration Problem 

Stage No.                (   ( )) 

(in %) 

No tests 0 0 0 0 100.0 

Stage 1: $500 1 4 0 0 74.6 

Stage 2: $1000 1 4 1 0 51.4 

Stage 3: $1500 1 4 1 1 44.8 

Stage 4: $2000 1 9 1 1 44.2 

 

For a $2000 budget, it is seen that one temperature test, nine pluck tests, one 

thermal subsystem test, and one flexural subsystem test are required to achieve the 

maximum reduction in the variance of  .  The results show that while it is useful to do all 

the tests, repeating the pluck test which calibrates structural damping is not only cheap 

but also leads to effective decrease in the variance of  .  The decrease of variance with 

cost is shown in Figure 5. 

 

 

Figure 5: Cost vs. Variance: Thermal Vibration Problem 

 

It is seen that the reduction in variance using the last $1000 (i.e. from $1000 to 

$2000) was much smaller when compared to the reduction in variance using the initial 

$1000.  Such information is very useful for budgeting purposes, since all the above 
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computation (and practical resource allocation) is done before any test is actually 

conducted. 

 

3.8 Multi-level, multi-disciplinary system 

 

3.8.1 Description of problem 

 A simplified space telescope mirror problem is considered as an example of a 

multi-level, multidisciplinary system.  As shown in Figure 6, it consists of three 

components - leg, mirror and plate, which are integrated to form the overall system, 

which can also be decomposed into various pieces as shown in Figure 6. 

 

 

Figure 6: Simplified Space Telescope Mirror Problem 

 

 The system is tested under two types of physics – mechanical (due to gravity 

loading) and thermal (due to solar flux), that interact with each other, and affect the 

optical performance of the mirror.  Eight different types of tests are considered, as 

tabulated in Table 6.  It is assumed that the full system test under combined mechanical 

and thermal loading cannot be performed. 
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Table 6: Types of Tests: Telescope Mirror 

Test No. Component Physics Cost Units 

1 Only leg Mechanical 1 

2 Only mirror Mechanical 3 

3 Only plate Mechanical 1 

4 Entire assembly Mechanical 15 

5 Only leg Thermal 10 

6 Only mirror Thermal 30 

7 Only Plate Thermal 10 

8 Entire Assembly Thermal 150 

 

 The system was simulated using the Sierra multi-physics mechanics simulation 

suite developed at Sandia National Laboratories [48].  The thermal and the structural 

properties of the system affect the overall optical performance of the telescope mirror.  

The thermal and structural meshes were independent, with different and programmable 

mesh densities.  In each case, as appropriate, the Sierra code Aria was used for 

thermodynamics, heat transfer, and radiation modeling, and the Sierra code Adagio was 

used for solid mechanics and quasi-static transient dynamics.  For the purpose of this 

study, the optical system output was simply taken to be the deformation of the mirror at 

the center of the mirror.  For this study, each Sierra simulation was wrapped within a 

DAKOTA [49] script to generate input-output data, which were later used to build 

Gaussian process surrogate models.  Nine different surrogate models are constructed; 

eight of them to make predictions corresponding to the tests in Table 6, and the remaining 

model is for system-level prediction.  The overall system output (denoted by  ) is chosen 

to be the deflection of mirror relative to the center of the plate under both gravity and 

solar flux; this is equal to the sum of individual deflections under gravity sag and solar 

flux.  Deflection is here a proxy for performance metrics such as wave-front error, focus 

drift, or other system-level characteristics that cannot be well-represented without 
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coupling the structural, thermal, and optical models.  The test data and the Gaussian 

process models can be connected through a Bayesian network, as shown in Figure 7. 

 

 

Figure 7: Bayesian Network: Telescope Mirror Problem 

 

Consider the Bayesian network in Figure 7.  The quantities   ,   ,    and   ,   , 

   refer to the model parameters and inputs of the leg, mirror, and plate components 

respectively; note that each of these quantities is a vector since a component may have 

more than one parameter/input.  Each model parameter vector consists of the 

corresponding component’s density, Young’s modulus, Poisson’s ratio, coefficient of 

thermal expansion, thermal conductivity, specific heat, and emissivity.  Thus, this 
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example demonstrates the scalability of the proposed methodology by considering eight 

possible types of tests and twenty-one different parameters.  The model predictions (for 

leg, mirror, plate, and assembly) are denoted by   ,   ,   ,    (mechanical loading due 

to gravity sag) and   ,   ,   ,    (thermal loading due to solar flux) respectively.  

Though the same symbol   has been used to denote the difference between model 

prediction and observation throughout the Bayesian network, the statistics of   is 

different for different tests, and equal to ten percent of the model prediction. 

 

3.8.2 Sensitivity analysis 

 Sensitivity analysis is very important in this example because there are possible 

calibration parameters.  The sensitivities of the system-level output   to all the 

parameters – previously mentioned twenty-one model parameters (  ,   ,   ) – are 

quantified using sensitivity analysis based on DAKOTA [49].  The “important” 

parameters based on the results of sensitivity analysis are tabulated in Table 7. 

 

Table 7: Sensitivity Analysis for Coupled System: Telescope Mirror 

Model Parameter Importance Measure 

 [49] 

Cumulative Importance 

[49] 

Mirror Young’s Modulus 0.8021 0.8021 

Leg Emissivity 0.0277 0.8298 

Mirror Poisson’s Ratio 0.0235 0.8533 

Mirror Density 0.0112 0.8645 

 

Further, the input solar flux has an importance measure of 0.12; however this is 

not a model parameter.  From Table 7, it can be seen that four model parameters, along 

with the solar flux, account for more than 98% of the variance of the system output.  
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These four parameters, i.e. mirror elastic modulus, leg emissivity, mirror Poisson’s ratio, 

and mirror density, are chosen to be calibrated through testing. 

 

3.8.3 Test resource allocation 

 The goal of the resource allocation problem is to select tests that minimize the 

variance of the overall system output ( ) under both gravity sag and solar flux.  There are 

four types of tests that can be useful to calibrate the aforementioned “important” 

parameters; these tests are the gravity sag assembly level test (number of tests =      and 

each test costs 15 units), the solar flux assembly level test (number of tests =      and 

each costs 150 units), the solar flux leg component test (number of tests =      and each 

costs 10 units), and the gravity sag mirror component test (number of tests =      and 

each costs 3 units).  In each test, the displacement of the mirror under the given loading is 

measured; correspondingly four different Gaussian process surrogate models are 

constructed to obtain model predictions.  Also, a total budget of 150 cost units is assumed 

to be available.  The optimization for test resource allocation is written as: 

 

         
     

 (   ( )) 

                                      

                              

(20) 

 

The results of test resource allocation are given in Table 8.  Similar to the 

previous sections, this is a multi-stage optimization.  In each stage, 30 cost units are 

considered, and there are seven options to exhaust a budget of 30 cost units in each stage, 
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and the optimal solution in each stage is shown.  Table 8 presents the variance in terms of 

percentage of the variance of   before testing (which was equal to 1.33 x 10−
12

 m
2
).       

is the vector of (    ,     ,     ,     ). 

Table 8: Multi-Stage Optimization: Telescope Mirror 

      Cost Units  (   ( )) 

(in %) 

(0,0,1,6) 28 12.3 

(1,0,1,11) 58 8.7 

(3,0,1,11) 88 7.4 

(4,0,1,16) 118 6.6 

(5,0,1,21) 148 6.1 

 

The results of the test resource allocation optimization recommend 5 assembly–

level tests under gravity sag, 1 leg component test under solar flux, and 21 mirror 

component tests under gravity sag in order to minimize the system output variance.  The 

decrease in variance with cost, based on the optimal solution in each stage, is shown in 

Figure 8. 

 If the assembly–level tests (one under gravity sag and one under solar flux) were 

alone performed, then the variance decreases to 33.6% of the original value, at a cost of 

165 units.  Hence, it is evident that the proposed methodology achieves better 

performance (higher reduction in variance) at a lower cost. 

 It is seen from Figure 8 that there is little improvement in the system variance 

after testing worth 58 cost units.  At that point, the results recommend performing 1 

assembly–level test under gravity sag, 1 leg component test under solar flux and 11 

mirror component tests under gravity sag.  Hence, subsequent tests do not significantly 

aid in the reduction of variance in  . If the alternate optimization formulation (Equation 

8) with a threshold variance lower than 5% of the prior variance had been chosen for 
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resource allocation, then it may have been impossible to satisfy the variance constraint.  

Therefore, the optimization formulation in Equation 7 may be preferred, since it provides 

an estimate of the variance with cost. 

 

Figure 8: Variance vs. Cost: Telescope Mirror Problem 

 

3.9 Conclusion 

 Testing at the component, subsystem and system levels is important in the context 

of uncertainty quantification in multi-level systems.  When the systems are multi-

disciplinary, it is important to conduct tests for both individual and combined physics.  

But rarely is it feasible to conduct every imaginable test, either due to schedule or cost 

considerations.  This chapter developed an analytical procedure to aid in deciding which 

tests to conduct, especially for complex and expensive systems.  A Bayesian network is 

used to connect multiple models and test data at different levels, and also include the 

various sources of error and uncertainty.  The steps of the proposed methodology can be 

summarized as follows: (1) connect models and experiments at multiple levels efficiently 

through a Bayesian network; (2) systematically account for and include natural 
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variability, data uncertainty, and solution approximation errors; (3) predict the overall 

uncertainty in the system model prediction; and (4) optimize resource allocation for test 

selection and identify the most effective tests to reduce overall system model uncertainty. 

A lower level test can easily isolate individual components and hence, the model 

parameters can be effectively updated, leading to a significant reduction in the variance 

of the system-level prediction.  However, such a test would not account for interactions 

between higher level models and the corresponding parameters.  In contrast, a higher 

level test would include the effects of interaction between multiple subsystem-level and 

component-level models.  However, the calibration of parameters across multiple models 

may be difficult and may not lead to a significant reduction in the variance of the system-

level prediction.  The proposed test resource allocation procedure trades off between 

lower level tests and higher level tests by accounting not only for the resultant reduction 

in variance of the system-level prediction but also the testing costs. 

Future work needs to address three major issues.  The first deals with 

computational effort.  As the number of calibration variables increases and the number of 

types of tests increases, the numerical difficulties involved in the numerical solution of 

the optimization problem increase; efficient numerical methods need to be developed for 

this purpose.  The second deals with test design; having identified the number of tests, the 

next step would be to design them in order to maximize the uncertainty reduction in the 

system level prediction.  This is addressed in the next chapter.  Finally, though the 

numerical examples presented in this chapter considered different features (multiple 

levels of complexity and coupled physics interactions) representative of practical 
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applications, it is necessary to further investigate the extension of the proposed 

methodology for realistic engineering problems. 
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CHAPTER IV 

 

DESIGN OF MODEL CALIBRATION TESTS 

 

4.1 Introduction 

Testing is a complicated and essential part of product development in any 

engineering system.  Highly complex engineering systems, such as those used in the 

aerospace industry, often must be designed to perform under extreme conditions in 

extraordinary locations.  Often, the testing of such systems at their actual usage 

conditions is dangerous, expensive, and impractical.  In such situations, it is necessary to 

predict the performance of these engineering systems at their actual usage conditions by 

performing tests under controlled laboratory settings and, through computer modeling, 

use the information gained to reduce the uncertainty regarding full system performance.  

Existing practices determined the type of tests to be performed and the manner in which a 

test is to be performed based on legacy and prior experience.  However, inefficiencies in 

these methods lead to wasteful spending and large performance uncertainties.  The 

optimal design of tests at the material, component, and subsystem levels will more 

efficiently quantify the margins and risks associated with the performance of a 

complicated engineering system. 

In Chapter III, the optimization objective sought to minimize the variance of the 

model output.  This approach is valid if the calibration parameters can be thought of as 

single values with some degree of uncertainty that the test campaign should seek to 

reduce.  This would be the case if the component being tested was the same component to 
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be used in the full system and thus its material and geometric properties would have a 

single true value.  This chapter considers a different case where the components being 

tested in system calibration tests are nominally identical but not the same component that 

will be used in the full system.  In this case it is desirable to calibrate the true distribution 

of a model parameter for the family of components.  A variance reduction method is not 

sufficient for this purpose because the objective may seek to unfairly reduce the 

uncertainty in a model parameter.  Thus, this chapter employs an information-theoretic 

objective function (the Kullback-Leibler distance presented in Section 2.5) which seeks 

to gain the maximum information about the model output. 

The goal in a testing campaign is to develop the best possible understanding of the 

performance of the system in question in the most economically efficient manner.  Tests 

need to be performed and designed with adequate fidelity and resolution so that the 

results provide meaningful information that can be used to reduce the uncertainty 

regarding the full system performance.  This relationship between lower level testing data 

and full system performance must be made through the use of computer model 

simulations.  These models need to be rigorously verified against numerical benchmarks, 

and systematically validated by a hierarchy of component and subsystem tests.  Research 

into quantification of margins and uncertainties (QMU) has the goal of enabling this 

overall capability [1].  This leads to two concerning questions: (1) what combination of 

tests to perform and (2) at what settings to perform each test?  Question (1) was 

addressed in depth in Chapter III and will be expanded upon in Section 4.2.  Answering 

question (2) will be the primary focus of this chapter. 
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The goal of the test design methodology is to select – in an adaptive manner – the 

optimal combination of system calibration tests for a given cost budget and the most 

effective design input settings at which to perform each test.  The presented 

methodology’s ability to adapt as each piece of testing data is collected provides a 

significant advantage to the overall testing process.  The methodology takes into 

consideration all previously collected test data when designing the next test in the 

sequence.  Tests and test input settings are chosen based on their corresponding 

expectation of information gain on the full system output as measured by the Kullback-

Leibler distance.  The methodology is demonstrated using a thermally induced vibration 

problem.  

 

4.2 Test combination selection 

Chapter III developed a Bayesian network approach to system test resource 

allocation that selects the combination of tests that best minimizes the expected variance 

of the overall system output.  This chapter utilizes this tool to select the types of tests that 

will be designed.  Ideally, every possible combination of tests and test settings would be 

compared and the combination whose resulting data is most likely to lead to the 

maximum gain of information about the full system level output would be selected.  

However, a large number of possible testing sequences exist for even a simple problem 

making this computationally prohibitive.  Instead, the proposed methodology uses a 

complicated integer optimization formula to select a set of tests for a predetermined cost 

step (of size  ) whose resulting data ( ) is most expected to lead to a maximum gain of 

information about the full system output ( ) over the entire possible range of test input 
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settings ( ).  The function    (   ) refers to the Kullback-Leibler distance from 

distribution   to distribution  . 

 The optimization is formulated as follows: 

 

         
     

  (   ( 
 ( )  ( ))) 

     (    )     (        ) 

      [         ] 

(21) 

  

In Equation 21,    is the cost of the     type of test,    is the number of repetitions 

of the     type of test, and   is the total number of types of tests available for selection.  

The expected value of the KL distance between the current and updated distribution of 

the full system output is calculated as: 

 

 
 (   ( 

 ( )  ( )))  ∫   ( 
 ( )  ( | )) ( )   (22) 

 

where, 

 

 
 (  )  ∭ (  |      ) (  |         )  (    ) ( )         (23) 

 

 (  ) is the density considered for the data obtained through the     test. Before any 

testing is done, all prior knowledge regarding the model parameters, and the 

mathematical models constitute the only information available for the calculation of 
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 (  ).     is the model output corresponding to the     type of test.    refers to the 

complete set of data from all performed tests,             .  In Equation 22,   ( ) 

refers to the PDF of the full system output at its current state (i.e. already updated with all 

previously collected testing data).    ( ) is only equal to the original prior distribution if 

no tests have been performed.  Similarly, in Equation 23,   (    ) refers to the PDFs of 

the distribution parameters of the model calibration parameters at the current state.  

     refers to the joint probability distribution of the distribution parameters of the 

model calibration parameters. 

 The expression  (  |         ) in Equation 23 represents the test measurement 

error for the     test.  The test measurement errors used in this thesis are assumed to be 

normal with zero mean and some standard deviation.  Since the test measurement errors 

are symmetric, and the objective functions used for test resource allocation and design 

take an expectation over the range of possible test data, test errors are omitted from the 

calculation of   .  Using this assumption, Equation 23 can be rewritten as: 

 

 (  )  ∭ (  |      )  (    ) ( )         (24) 

 

The step size,   (in monetary units), is of critical importance to the success of the 

methodology.  In a practical problem, each step size must be chosen judiciously based on 

(1) the cost of each type of test; (2) the time required to solve the optimization in 

Equation 21 (due to the potentially large number of test combinations); (3) the total 

budget allotted to testing.  The solution to the optimization problem posed in Equation 21 
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is a set of tests that will be designed in a given step using the methodology proposed in 

Section 4.3. 

 

4.3 Test input setting selection 

Once a particular type of test has been selected to be performed, the testing input 

settings,  , must be designed.  It is desirable that the resulting data from the test provides 

as much new information about the distribution of the model output ( ) as possible.  The 

new information gained by performing the test is measured using the KL distance metric 

discussed previously.  Thus, the selection of best test input settings for a single test is 

achieved by the following optimization: 

 

         
 

  (   ( 
 ( )  ( ))) (25) 

 

where, 

 

 
 (   ( 

 ( )  ( )))  ∫   ( 
 ( )  ( | )) ( )   (26) 

 

and, 

 

 
 (  )  ∬ (  |      )  (    )        (27) 
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The optimization posed in Equation 25 requires performing a large number of 

Bayesian updates for every step of the optimization procedure.  Because of this 

significant computational expense, two simplifications are implemented: (1) the value 

 (   ( 
 ( )  ( ))) at each   is estimated through a first order approximation and (2) 

a surrogate model relating   to this approximation of  (   ( 
 ( )  ( ))) is created.  

A first order approximation of  (   ( 
 ( )  ( ))) is achieved by calculating each 

 (  ) using the most likely value of the current joint distribution of the model calibration 

parameters,   (    ), instead of integrating over the entire distribution of    and   .  

The most likely values of the model calibration parameters are denoted as   
  and   

 . 

With this procedure, Equation 12 would be simplified to the following form: 

 

  (  )   (  |  
   

   ) (28) 

where, 

 

   
   

                         
    

   (    )  (29) 

  

The development of a surrogate model to relate   to  (   ( 
 ( )  ( ))) varies 

in computational difficultly depending on the range, sensitivity, and dimensionality of  .  

In the example problem posed in Section 4.6, Gaussian process surrogate models are used 

to develop this relationship.  Once the surrogate model is created it can be used to solve 

the optimization problem shown above. 
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The settings of a laboratory test generally must be restricted to a certain number 

of significant digits due to user and equipment restrictions.  This simplifies the domain of 

a test input setting to a set of discrete values.  This discrete optimization problem can be 

solved through a simple enumeration.  However, if   has a very large range or high 

dimensionality, more advanced optimization techniques may be necessary.  The methods 

shown in Sections 4.2 and 4.3 are used together in the following section to adaptively 

design the model calibration testing sequence. 

 

4.4 Test design optimization process 

Now that methods have been developed to select both the types of tests to be 

performed and the input settings at which to perform them, this section will develop a 

procedure to combine them and develop a test campaign for the calibration of the model 

parameters relevant to the full system.  This section develops a double loop optimization 

procedure that selects combinations of component, material, subsystem, and full system 

tests in the outer loop and then designs the input settingss of each selected test in the 

inner loop. 

 In Figure 9,   represents the test combination selection step.  For each test 

combination selection step,  , a set of tests to be designed is selected using the method 

described in Section 4.2.  The term    represents the size of the cost step for the     test 

combination step.  The solution to the test combination optimization for the     step is 

denoted as    and is a vector of the number of repetitions of each test type to be 

performed (   [  
 
   

 
   

 
] where   is the total number of possible test types). 
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 Once a set of tests,   , is developed, a single test (not a single test type, but one 

individual test) is selected from    and its input settings,  , are designed using the 

method shown in Section 4.3.  The test is then performed and the resulting data is used to 

update the previous probability distribution of the model parameters.  The updated 

distribution of the model parameters is then used as the prior distribution for designing 

the next test in   .  This process continues until every test in    has been designed.  The 

total number of tests designed in the     step is equal to the summation of the elements of 

  . 

 

 

Figure 9: Test Design Flowchart 
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Figure 9 shows the adaptive test design methodology to calibrate relevant model 

parameters for a given total budget.  “Total Budget” is given in monetary units and 

represents the upper bound on the cost of the test campaign.  The “Total Budget” does 

not need to be met, but cannot be exceeded.  The outer loop is repeated until no 

additional test can be performed without exceeding the total budget, at which point the 

test campaign is completed.  The phrase “additional tests can be afforded” implies that 

the cost of the least expensive calibration test is less than the amount of unspent funds in 

the total budget.  If this is true, an additional test selection step (   ) can be run to 

select a new combination of tests to be designed.  If this statement is false, no additional 

tests can be afforded and the optimization is complete.  Also, this metric could be 

modified to include some sort of information gain threshold where if the information gain 

from the previous test selection step (   ) to the current test selection step ( ) were 

sufficiently small, it would be determined that spending additional funds on calibration 

tests is not economical and the optimization would be complete. 

 The result of this procedure is a series of calibration tests that is optimized, in an 

adaptive manner, to gain the most information about the full system response.  In this 

way, the test campaign can most efficiently reduce the uncertainty of the overall system 

performance.  This methodology is illustrated in a simple numerical example in Section 

4.5. 

 

4.5 An illustrative example  

 This section will provide a simple numerical example only for the purposes of 

illustrating the test design methodology.  The system used for this demonstration has 
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exactly the same Bayesian network as shown in Figure 1 and the model parameters and 

system tests have the same properties as shown in Table 1.  Unlike the illustrative 

example in Chapter III, measurement error will be included in this example.  The 

assumed measurement errors are given in Table 9. 

 

Table 9: Measurement Errors: Illustrative Example 

Test Measurement 

Error 

   N(0,5) 

   N(0,1.5) 

 

The input settings for the calibration tests and their corresponding ranges of 

possible values are shown in Table 10.  It will be assume that significant digit limitations 

only allow test settings to be specified as integer values. 

 

Table 10:Test Input Settings: Illustrative Example 

Setting Minimum Maximum 

   85 115 

   7 13 

 

For the purposes of test design, a “reality” for the model parameters must 

generated in order to simulate testing data.  Samples of the model parameters are taken 

from this “reality” and used with the mathematical models to produce samples of the full 

system output.  The “reality” for this example problem will be   =60 and   =10.  The 

test combination selection step size,  , will be set at 10 cost units.  After a set of tests for 

a given test combination selection step is chosen, all tests in the set are designed and 

simulated in the adaptive sequential method described in this chapter.  The model 

parameter distributions updated with the data collected from the test simulations are then 
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used to select the next combination of tests to be designed.  This iterative process is 

continued until the budget ($50) is exhausted or no additional tests can be afforded. 

 The results of the test combination selection and test design are given in Table 11 

and Table 12 respectively. 

 

Table 11: Test Combination Selection Results: Illustrative Example 

Cumulative 

Cost 

       (   ( 
 ( )  ( ))) 

$10 1 0 7.00 

0 2 0.86 

$20 2 0 0.58 

1 2 0.50 

$30 3 0 0.14 

2 2 0.63 

$40 3 2 0.18 

2 4 0.02 

$50 4 2 0.08 

3 4 0.02 

 

 

Table 12: Test Design Results: Illustrative Example 

Step Test Type Input Setting Measured Output 

1 1                

2 1                

3 2              

2              

4 3                

5 3                

 

 The distance from the updated posterior distribution to the generated reality 

versus the cost of testing is shown Figure 10 and the PDFs of the prior, posterior, and 

“real” distributions are shown in Figure 11. 
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Figure 10: KL Distance to Reality versus Testing Cost: Illustrative Example 

 

 

 

Figure 11: Test Design Results: Illustrative Example 
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 The results show an adaptive optimal solution that performs 4    tests and 2    

tests with the design parameters shown in Table 12.  The results show the updated 

distributions converge quickly towards the true solution.  It can be seen in Figure 10 that 

little additional information is obtained after a cost of $25.  Therefore, it may not be 

economical to continue performing calibration tests at that point. 

 

4.6 Summary of proposed methodology 

The proposed methodology seeks to select the types of calibration tests and the 

input values to each calibration test that best gains information about the performance of 

the full system output.  This methodology can be summarized in 3 steps. 

 

1. Construction of the Bayesian network: Much like the methodology developed 

in Chapter III, the first step is to identify the various component-level, 

subsystem-level, and system-level models.  Each model has an output quantity 

and correspondingly, a test can be performed to measure this quantity.  All the 

models are connected through the Bayesian network, and the data available 

across the nodes is also indicated.  The model errors, if available, can also be 

included in the Bayesian network. 

 

2. Test combination selection:  The selection of the optimal combination of tests 

to be performed is done in a manner similar to that in Chapter III.  For a given 

budget (or in this case step size) the prior distributions of the model 

parameters and the range of possible testing inputs are used to generate 
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random realizations of testing data for a given combination of tests.  Each 

piece of data that is generated is then used to update the prior distributions and 

thus the distribution of the overall system output.  The test combination that 

best gains information about the overall output (measured as expectation of 

the KL distance from the prior to the posterior) is selected as the optimal 

combination and its tests are performed. 

 

3. Test input selection: For each test that is selected to be performed, the input 

settings that best gain information about the full system output should be used.  

First Gaussian process surrogate models are created that relate the input 

settings to the KL distance from the prior distribution to the posterior 

distribution developed using data generated from a given input setting.  This is 

done by selecting training points from the domain of test input settings and the 

current most likely values of the model parameter’s distribution parameters 

and using the test data generated to update the full system output distribution 

from the previous step.  The KL distance from the previous distribution to the 

updated distribution is the output value of the surrogate model.  (This is what 

is meant by saying the methodology is adaptive.  The selection of input 

settings for the next test is based on the full system output distribution 

resulting from the previous step.)  Once all the training points have been 

evaluated and the surrogate model has been constructed, a simple brute force 

enumeration (where every possible discrete input setting combination is 

evaluated using the surrogate model) is used to find the value of input settings 
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that maximizes the KL distance from the current distribution to the resulting 

prior distribution.  This process continues until no further tests can be 

afforded. 

 

4.7 Thermal vibration problem 

 

4.7.1 Description of problem 

 The test design methodology will be demonstrated using a similar multi-physics 

thermally induced vibration problem as presented in Chapter III.  Refer to Section 3.6 for 

details on the geometry and physics of the problem. 

 The objective of the testing campaign for this problem is to reduce the overall 

uncertainty about the response of the output variable ( ), which is defined as the ratios of 

two displacement amplitudes at different time instances when the incident solar flux ( ) 

is equal to 2000     .  If    , the oscillations are not increasing and the system is 

stable.  Conversely, if     the oscillations are increasing, commonly referred to as 

flutter, and the system is deemed to have failed. 

Using a sensitivity analysis, five model parameters were selected for this example 

and their distribution parameters will be calibrated using a Bayesian updating procedure.  

All model parameters are assumed to have a normal distribution and their means and 

standard deviations will have normal prior distributions that will be updated as testing 

data is collected.  The prior distributions of the calibration quantities are shown in Table 

13.  Note that Table 13  specifies a prior distribution for the mean and standard deviation 

of each model calibration parameter as opposed to Table 3 from the previous chapter 



63 

 

which only specifies single values for the mean and standard deviation of each model 

calibration parameter.  This is a consequence of the chapter’s modified approach in which 

we are calibrating the model parameters of a family of components as opposed to 

calibrating the model parameters of a single component as we did in Chapter III. 

 

Table 13: Calibration Quantities: Thermal Vibration Problem 

Sym. Model 

Parameter 

Property Mean of 

Mean 

CoV of 

Mean 

Mean of 

Standard 

Deviation 

CoV of 

Standard 

Deviation 

  Elastic Modulus Structural 193x10
9 

0.10 193x10
8 

0.10 

  Specific Heat Thermal 502.4 0.10 50.24 0.10 

  Damping Ratio Structural 1x10
-3 

0.10 1x10
-4 

0.10 

  Radius Geometric 1.71x10
-3 

0.03 5.1x10
-5 

0.10 

  Emissivity Thermal 0.75 0.10 0.075 0.10 

 

 Since it is assumed that the entire multi-disciplinary thermal vibration problem 

cannot be tested, the presented model calibration quantities are to be updated using both 

material-level and subsystem-level tests.  Four different types of tests are considered; the 

details of each test are shown in Table 14. 

 

Table 14: Types of Tests: Thermal Vibration Problem 

Test Level Physics Calibrates Inputs Outputs Cost No. of 

Tests 

Material Thermal   Heat Temperature $100     

Material Structural   Initial Disp., 

No. of Cycles 

Displacement $100     

Subsystem Thermal  ,  ,   Initial Disp., 

Time 

Displacement $500    

Subsystem Structural  ,   Heat Flux Temperature $500    

  

Each of the four types of tests has associated test input settings whose values will 

be selected from a given range of possible values in the test design methodology.  The 
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test input settings relevant to the thermal vibration problem are detailed in Table 15.  Let 

   ,    ,   , and    denote a single material level temperature test, material level 

pluck test, thermal subsystem test, and flexural subsystem test respectively. 

 

Table 15: Test Input Settings: Thermal Vibration Problem 

Input Setting Symbol Relevant Test Minimum Maximum 

Heat Energy       10 100 

Initial Displacement        0.005 0.015 

No. of Cycles       1 400 

Measurement Time      0.1 4 

Initial Displacement       0.005 0.015 

Heat Flux      100 2000 

 

The calibration quantities, test input settings, model predictions, test data, and 

corresponding errors are connected through a Bayesian network as shown in Figure 4. 

 

4.7.2 Test design 

The objective of the test design methodology is to select the combination of tests 

and the test input settings that gain the most information about the output of the overall 

system.  The total budget for the problem is set at $2500 for the entire testing campaign.  

Given this budget and the costs of the individual tests presented in Table 14, an 

intermediate step size of $500 makes good sense for the test combination selection 

portion of the problem because, at that dollar amount, only eight unique combinations 

(shown in Table 16) of the four possible system tests exist. 
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Table 16: Test Combinations for $500 Step Size: Thermal Vibration Problem 

              

5 0 0 0 

4 1 0 0 

3 2 0 0 

2 3 0 0 

1 4 0 0 

0 5 0 0 

0 0 1 0 

0 0 0 1 

 

Using a step size of $500, the optimization presented in Equation 21 takes the 

following form: 

 

         
     

  (   ( 
 ( )  ( ))) 

        (       )      (     )        

                      

(30) 

  

When the optimization problem presented in Equation 30 is solved for each step 

of $500, a set of tests to be performed is generated.  Since the total budget is $2500 and 

the intermediate step sizes are $500, 5 test selection steps will be needed to exhaust the 

budget.  Once the set of tests is selected, the input settingss of all the tests in the set are 

designed in the adaptive, sequential manner shown in Section 4.3.  For the purposes of 

this example, actual laboratory tests were not performed, but instead test results are 

simulated. 

Since actual laboratory tests were not performed for this research, for the 

purposes of the example problems, a system “reality” will be generated.  This “reality” 

will be a set of distributions of the model parameters that are meant to represent the 
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actual state of the family of systems being tested in the example problem.  The “reality” 

is used along the mathematical system models, the designed test input settings, and 

assumed measurement errors to simulate testing data.  Results of two test campaign 

designs for two different “realities” (one where the “reality” is similar to the prior and 

one where it is significantly different) are shown in the following subsections.   

 

4.7.2.1 Example 1: Reality similar to prior 

In the first thermal vibration example problem, the simulated data is close to the 

prior distribution of the output variable,  .  The results of the testing campaign design are 

shown in Table 17 and the prior, posterior, and “real” distributions are shown in Figure 

12.  Note that the distributions in Figure 12 are obtained by propagating parameter 

distributions through the system model; thus, the “reality” distribution is not obtained by 

directly measuring the system output. 

 The results show that the adapted optimum testing configuration for a $2500 

budget and the observed results consists of 11     tests, 9     tests, 1    test, and 0    

tests with the input values shown in Table 17.  The probability distribution functions 

shown in Figure 12 show that the posterior distribution obtained by updating the prior 

distribution with the simulated data visually appears to be moving in the direction of the 

simulated “reality”.  However, it can be seen in Figure 13, which shows the KL distance 

from the current distribution to the simulated “reality” as a function of the cumulative 

cost of the tests performed, that the posterior distribution’s distance to the “reality” 

increases and then decreases.  This outcome is a result of the general similarity of the 
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prior distribution to the “reality” and it would be expected that the acquisition of more 

data would lead to a better result. 

 

Table 17: Test Design Results: Thermal Vibration: Example 1 

Test Type Test Input Test Input Test Output 

Step 1 

      =0.0150  =162   = 0.008018 

     =99.3         = 1.4350 

      =0.0144  =184   = 0.005594 

      =0.0150  =183   = 0.006521 

      =0.0145  =264   = 0.004251 

Step 2 

      =50.9         = 0.5909 

      =62.9         = 0.7423 

      =100.0         = 1.1836 

      =33.9         = 0.4570 

      =85.0         = 1.0165 

Step 3 

      =0.0150  =194   = 0.004380 

      =0.0150  =213   = 0.005903 

      =0.0133  =330   = 0.002105 

      =0.0150  =200   = 0.004798 

      =0.0144  =317   = 0.002647 

Step 4 

      =88.4         = 1.0177 

      =76.1         = 0.8811 

      =91.5         = 0.9703 

      =40.0         = 0.4356 

      =75.9         = 0.8220 

Step 5 

     =1926   = 4.0        = 1.5665 
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Figure 12: Test Design Results: Thermal Vibration Problem: Example 1 

 

 

Figure 13: KL Distance from posterior to Reality versus Cost: Thermal Vibration 

Problem: Example 1 
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current distribution as possible, the distributions tend to jump from side to side as 

additional data pulls it towards its steady state. 

 

4.7.2.2 Example 2: Reality dissimilar from prior 

In this thermal vibration example problem, unlike the previous example, the 

generated “reality” is significantly different from the prior distribution of  .  The results 

of the testing campaign design are shown in Table 18 and the prior, posterior, and “real” 

distributions are shown in Figure 14. 

 

 

Figure 14: Test Design Results: Thermal Vibration Problem: Example 2 
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Table 18: Test Design Results: Thermal Vibration: Example 2 

Test Type Test Input Test Input Test Output 

Step 1 

      =0.0150  =162   = 0.004067 

     =48.8         = 0.4855 

      =0.0122  =167   = 0.004765 

      =0.0150  =144   = 0.005184 

      =0.0143  =154   = 0.005113 

Step 2 

      =0.0150  =151   = 0.004152 

      =0.0150  =144   = 0.005213 

      =0.0150  =184   = 0.004796 

      =0.0150  =135   = 0.006233 

     =72.6         = 0.8608 

Step 3 

     =63.3         = 0.6761 

     =81.6         = 0.9442 

     =100.0         = 1.2654 

     =58.8         = 0.6341 

     =99.3         = 0.5909 

Step 4 

      =0.0150  =138   = 0.004281 

      =0.0150  =178   = 0.004125 

      =0.0150  =127   = 0.006175 

      =0.0148  =173   = 0.005538 

      =0.0133  =142   = 0.005177 

Step 5 

     =39.3         = 0.4546 

     =92.5         = 1.040 

     =100.0         = 1.1017 

     =76.1         = 0.8373 

     =100.0         = 1.4020 

 

The results show that the adapted optimum testing configuration for a $2500 

budget and the observed results consists of 16     tests, 9     tests, 0    tests, and 0 

   tests with the input values shown in Table 18.  The results shown in Figure 14 

validate the effectiveness of the methodology.  Figure 15 shows the KL distance from the 

current distribution to the simulated “reality” as a function of the cumulative cost of the 

tests performed for both a designed test campaign and for a test campaign where the 
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types of tests performed were the same but the test input settings were not designed but 

chosen at random.  Figure 15 shows a clear advantage to designing the input settings of 

the tests performed calibration test campaign. 

 

 

Figure 15: KL Distance from Posterior to Reality versus Cost: Thermal Vibration 

Problem: Example 2 

 

4.8 Conclusion 

The proper design of model calibration tests is a vital part of model development 

for complicated engineering systems.  Relating test input settings to expectations of the 

resulting information gain allows for the development of a testing campaign that is 

economically efficient and technically productive.  The use of a Bayesian network for the 

connection of model calibration parameters, test settings, test data, model errors, and 
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0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

Cost ($)

K
L
 D

is
ta

n
c
e
 t

o
 R

e
a
lit

y

 

 

Randomly Generated Test Inputs

Designed Test Inputs



72 

 

the full system.  The steps in the proposed methodology can be summarized as follows: 

(1) connect models and experiments at multiple levels efficiently through a Bayesian 

network; (2) systematically account for and include natural variability, data uncertainty, 

and solution approximation errors; (3) develop, in a sequential adaptive manner, a 

combination of test types and test input settings that best gains information about the 

output of the full system. 

 Future work may include the elimination of simplifying assumptions including 

making a first order approximation of the expectation of the KL distance during the test 

setting selection process and the use of a greedy search optimization.  Also, optimizing 

the test type combinations and the test setting together instead of separately would lead to 

a more accurate solution. 

 The proposed optimization procedure provides an adaptive approach to the 

selection of test type combinations and the design of test input settings.  By using the 

current, updated distributions of the calibration parameters, the selection of the test 

settings of the next test is dependent on the information gained by all the previously 

performed tests.  This flexibility allows for an optimized solution to be achieved that has 

significant advantage over selecting test inputs by random or ad hoc methods.  
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CHAPTER V 

 

DESIGN OF TESTS FOR CALIBRATION OF MANUFACTURING 

OPTIMIZATION MODELS 

 

5.1 Introduction 

 Materials engineering has historically been a crucial discipline to the development 

of new engineering products and the advancement of technological fields [50].  In the 

modern era, new materials are critical to advancements in high-tech fields such as 

computing, electronics, defense, and space transportation.  However, the process of 

developing new materials is slow in comparison to engineering design in other disciplines 

and often requires significant trial and error.  The materials to be used in a complicated 

engineering system are typically selected from a set of available materials that have been 

tested in order to understand their material properties.  The cost of this materials testing is 

often expensive and time consuming, causing a significant barrier between the material’s 

development and the material’s use.  This reality removes materials engineering from the 

design process of advanced engineering systems forcing the materials to be treated as 

constraints.  An emerging field, integrated computational materials engineering (ICME) 

[50], is attempting to rectify this discrepancy in development time in order to return 

materials engineering to the design process.  The success of this movement would result 

in materials that are specifically tailored to the objectives of an engineering system and 

would likely lead to significant advances in the capabilities of modern engineering 

products. 
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 A number of significant challenges exist in the implementation of ICME to 

realistic engineering problems.  Challenges include but are not limited to, the 

development of models for a range of various manufacturing variables, the development 

of an implementation structure to integrate various levels of models and information (in 

this research Bayesian networks are used for this process, however the construction of a 

Bayesian network is not a simple task; often the structure of the network and the 

relationship between nodes is not fully known), handling of numerous and large 

databases, and the proper selection and design of calibration and validation experiments 

[50].  All of these challenges contain aspects that require the use of advanced uncertainty 

quantification techniques.  The connection of uncertainties from the design and 

manufacturing of a material to the output of the system in which the material is to be used 

would allow for the reduction of full system performance uncertainties by improving and 

adjusting material manufacturing variables. This truly includes materials design in the 

system optimization process. 

 This chapter aims to develop a methodology for the inclusion of manufacturing 

design variables in the optimization procedure for test resource allocation and design.  

The methodology will build on the two methodologies developed in Chapter III and 

Chapter IV but will now include the calibration of the parameters of the manufacturing 

optimization models in addition to the parameters of the system model.  The proposed 

methodology is demonstrated using a single component fatigue crack growth problem 

where the degree of shot peening that is used in the component’s manufacturing is 

optimized. 
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5.2 Manufacturing process optimization 

 The methodology developed in this chapter will be similar to that developed in 

Chapter IV with one major difference; the objective function for the test design 

optimization will be some function of the manufacturing process optimization.  The 

relationship from manufacturing variables to a system level output can be made in a 

multi-level process where first a model relates the manufacturing variables to the material 

properties of the system and then additional models relate the system material properties 

to the system output.  This multi-level process will be denoted by the relationship 

   (  )  where   is the output of the system,    is a vector of the manufacturing 

variables, and   is the function relationship between them.  In a realistic system   will be 

a complicated function with a great deal of uncertainty.  The goal of the test campaign 

will be to calibrate the parameters of the function  , which will be denoted as   , in order 

to obtain a specified goal in the optimization of the manufacturing variables.  Once   has 

been developed, the manufacturing process optimization must determine what 

characteristics of   are most desirable to the system’s intended use.  Note that the 

quantity   in the formulations below is generic, and can represent different outputs 

(system reliability, number of cycles to failure, stress, etc.). It can be either deterministic 

or stochastic. 

 From a reliability perspective, the value of    which results in the smallest 

probability of failure for the system would be chosen as the solution to the optimization 

problem (denoted   
 ).  If the output,  , is the reliability of the system, this can be shown 

as: 
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    (31) 

 

In the above equation, R is a deterministic quantity. However, if R is stochastic, 

an approach of reduced performance uncertainty could also be explored where the    

value that corresponds to the lowest variance of R is chosen as optimal.  The 

corresponding optimization can be written as: 

 

         
  

     ( |  ) (32) 

 

When R is stochastic, one could try to maximize or minimize a number of 

attributes of the distribution of   such as its mean, variance, or a percentile value, and 

may include some weighting function related to the cost of the chosen manufacturing 

process. (A common option is robust design, where the mean of   is maximized and 

variance of   is minimized). Section 5.6 considers an example problem with   as the 

component life, which is treated stochastic.   

 If function evaluations are expensive, surrogate models relating    to   for a 

given value of    are developed to ease computation.  Once the optimization objective is 

selected, the parameters of the optimization models can be calibrated using tests at 

multiple system levels.  Section 5.3 discusses the design of these tests in order to 

accomplish the overall goal of the calibration procedure. 
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5.3 Formulation of calibration test optimization 

 The goal of this chapter is to select the combination of tests and the input setting 

at which each test is to be performed in order to best calibrate the distribution parameters 

of the manufacturing optimization model parameters (e.g.     and    ).  The 

development of an objective function for the optimization of model calibration tests is not 

a simple task and must reflect the desired benefits from the optimization of the 

manufacturing variables.  The development of this function is complicated by the fact 

that    is not a random variable but a deterministic test setting.  Because of this, the 

output of the full system output,  , is not a single distribution as it was in Chapter III and 

Chapter IV, but has a distribution corresponding to each value of   .  Two general 

approaches exist for handling this issue: (1) optimize some expectation of a characteristic 

of   over the entire range of    and (2) only consider the answer to the manufacturing 

optimization problem,   
 , when optimizing the calibration tests. 

 Option (1) is concerned with reducing uncertainty over the entire range of   .    

While this approach is likely to converge to the global optimum of the manufacturing 

optimization, it will also needlessly reduce uncertainty in portions of the range of    that 

will not be the solution to the manufacturing optimization.  With this option, since the 

goal is uncertainty reduction, objective functions, such as K-L distance or variance 

minimization, should be used.  The optimization formulations for K-L distance 

maximization and variance minimization are shown in Equations 33 and Equation 34 

respectively.  The function    (   ) refers to the Kullback-Leibler distance from 

distribution   to distribution  . 
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(33) 

 

 

         
           

 (   ( )) 

    ∑(     )              

 

   

 

(34) 

 

where, 

 

       [        ] 

                 
(35) 

 

 In Equation 35,   refers to the number of different types of possible tests, and   

refers to the total number of tests performed. The cost of the     (        ) type of test 

is equal to   ,    (decision variable) denotes the number of repetitions of the     type of 

test, and       (decision variable) represents the vector of test input variables for all tests 

performed. Let    denote all the data collected through the     type of test. Let       

denote the vector of all   ’s and let   denote the entire set of data,   [        ], 

collected from all   types of tests. 
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The expected value of the KL distance between the current and updated 

distribution of the full system output is calculated as: 

 

 
 (   ( 

 ( )  ( )))  ∬   ( 
 ( |  )  ( |    )) ( )      (36) 

 

where, 

 
 (  )  ∬ (  |         )  (       )         (37) 

 

   represents the output of the mathematical model of the     type of test.  The 

expectation of the variance can be calculated as: 

 

 
 (   ( ))  ∬   ( |    ) ( )      (38) 

 

 Option (2) involves an optimization objective function that is a function of the 

solution to the manufacturing variable optimization function   
  instead of the entire 

range of   .  Here the problem is a nested optimization, where the solution to the 

manufacturing variable optimization problem is nested within the calibration test 

optimization since       and       are used to generate a data set,  , which in turn help to 

calibrate the distribution parameters of    which are used to solve the manufacturing 

optimization problem which produces   
  and  .  This option will focus on obtaining a 

localized solution more quickly than Option (1).  Option (2) is conducive to having the 

objective function of the calibration test design optimization be the same as the objective 



80 

 

function for the manufacturing variables.  For example, using the objective function 

given in Equation 31, the calibration test design optimization could be formulated as: 

 

         
           

   ( ) 

      ∑(     )              

 

   

 

(39) 

 

where, 

 

         
  

( (     (           ))) (40) 

 

where, 

 

 
 ( |  )  ∫ ( |    ) ( )   (41) 

 

and, 

 

 
 (  )  ∬ ( |         )  (  )         (42) 

 

Once the optimization has been formulated, it can be solved using they multi-step 

adaptive optimization method shown in Section 5.4.  Note that multiple sets of possible 

data,  , are generated, leading to multiple posterior distributions of    and therefore 
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multiple values of   using Equation 40.  Equation 39 therefore maximizes the 

expectation of  . 

 

5.4 Solution to the optimization problem 

 The multi-step adaptive test design procedure developed in Chapter IV can be 

used to solve any of the optimization problems posed in Section 5.3.  In this section, we 

will briefly review the procedure and use it to show the solution to the optimization 

presented in Equation 39 and Equation 40. 

 

5.4.1 Test combination selection 

The proposed methodology uses a integer optimization formula to select a set of 

tests for a predetermined cost step (of size  ) whose resulting data ( ) is most expected 

to lead to the full system output ( ) which best satisfies the objective function over the 

entire possible range of test input settings ( ). 

 The optimization with the objective function from Equation 39 is formulated as 

follows: 

 

         
     

   ( ) 

        (    )      (        ) 

      [         ] 

(43) 

 

where, 
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 (  )  ∭ (  |         )  (       ) ( )           (44) 

 

The step size,   (in monetary units), is of critical importance to the success of the 

methodology.  In a practical problem, each step size must be chosen judiciously based on 

(1) the cost of each type of test; (2) the time required to solve the optimization in 

Equation 43; (3) the total budget allotted to testing.  The optimization is solved 

numerically by generating realizations of   from the prior distribution of    ,    ,  and 

the range of   for each possible test combination.  The test combination that is expected 

to best satisfy the objective function is chosen.  The solution to the optimization problem 

posed in Equation 43 is a set of tests that will be designed in a given step using the 

methodology proposed in Section 5.4.2. 

 

5.4.2 Test input setting design 

Once a particular type of test has been selected to be performed, the test input 

settings,  , to be used must be designed.  The value of   should be selected in order to 

best satisfy the objective function.  Using the objective function from Equation 39, the 

test input setting optimization is formulated as: 

 

         
 

  ( ) (45) 

 

where, 

 



83 

 

 
 (  )  ∬ (  |         )  (       )         (46) 

 

The optimization posed in Equation 45 requires performing a large number of 

Bayesian updates for every step of the optimization procedure.  Because of this 

significant computational expense, two simplifications are implemented: (1) the value of 

  at each   is estimated through a first order approximation and (2) a surrogate model 

relating   to this approximation of   is created.  A first order approximation of   is 

achieved by fixing    using the most likely value of the current joint distribution of the 

parameters of the model calibration parameters,   (       ), to create a distribution.  

Then using the most likely value of the resulting distribution of    (which is normal with 

mean    
  and standard deviation    

 ) is used with the tests mathematical models to 

develop   .   With this procedure, Equation 46 is simplified to the following form: 

 

      ,  where                 (  |   
     

   ) (47) 

 

where, 

 

    
     

               (       )  (48) 

 

The development of a surrogate model to relate   to an approximation of   varies 

in computational difficultly depending on the range, sensitivity, and dimensionality of  .  

In the example problem posed in Section 5.6, Gaussian process surrogate models are used 

to develop this relationship.  Once the surrogate model is created it can be used to solve 
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the optimization problem shown above.  Often (as discussed in Chapter IV), due to 

restraints in the significant digits of the test input settings, the optimization can be solved 

quickly through a simple enumeration.  However, if   has a very large range or high 

dimensionality, more advanced optimization techniques may be necessary. 

The methods shown in Section 5.4 are used in the manner shown by Figure 9 to 

solve the full test design optimization problem.  A double-loop process is utilized to 

adaptively select and design each test in sequence.  First a set of tests for a given step size 

is selected and then each one of the selected tests is designed sequentially.  The process 

repeats itself until no more tests can be afforded or a target value of the objective is 

reached. 

5.5 Summary of proposed methodology 

 The proposed methodology can be summarized in four key points. 

 

1. Construction of the Bayesian network: The proper development of the 

Bayesian network for the manufacturing optimization problem is not trivial.  

The conditional relationships between manufacturing input parameters and the 

model parameters that control the full system output can be complicated, 

contain a great deal of uncertainty, and may be all together unknown.  The 

models not only of the full system but also the optimization models must be 

rigorously calibrated and validated.  This issue is considered one of the 

significant challenges to the implementation of ICME and should be the 

subject of significant future work. 
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2. Formulate manufacturing process optimization: Once the Bayesian network 

has been developed, the optimization for the manufacturing process should be 

developed in a manner that selects the manufacturing input parameters which 

correspond to the most favorable full system output distribution,  .  

Numerous objective function possibilities exists for this purpose, including 

selecting the distribution with the minimum variance or selecting the 

distribution that shows the maximum reliability. 

 

3. Formulate the calibration test optimization:  Separate from the manufacturing 

process optimization, the optimization of calibration tests may pursue one of 

two goals.  (1) Optimize some expectation of a characteristic of   over the 

entire range of the manufacturing variables,   .  This approach is used to 

improve the quality of the optimization as it calibrates model parameters over 

the entire range of    including portions that will likely not be the solution to 

the optimization problem.  And (2) only consider the answer to the 

manufacturing optimization problem,   
 , when optimizing the calibration 

tests.  This approach is useful for selecting a localized answer that focuses on 

regions of    that will affect the outcome of the optimization.  Option (2) is 

solved using a nested optimization where the optimization of the 

manufacturing variables is nesting within the optimization of the calibration 

tests.  Option (2) will be utilized in the example problem that follows in 

Section 5.6. 
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4. Solve the optimization problem:  The solution to the optimization problem can 

be obtained using the multi-step adaptive methodology for test design 

proposed in Chapter IV.  This process first selects a set of tests to perform 

given a step size (in monetary units) and then designs the tests selected.  This 

process continues until no additional tests can be performed while satisfying 

the total budget constraint. 

 

The result of the proposed methodology is an adaptively chosen set of designed 

tests which efficiently reduces the uncertainty in the parameters of the full system model 

and the parameters that relate manufacturing variables to the full system model in order 

to benefit the manufacturing optimization process.  This methodology is demonstrated in 

Section 5.6 with a fatigue crack growth problem using a component that undergoes a shot 

peening treatment (a manufacturing process). 

 

5.6 Numerical Example: Shot peening optimization 

 

5.6.1 Description of problem 

 The example shown in this section is concerned with optimizing the depth of shot 

peening,   , (a manufacturing process) in order to best extend the useful life of a 

helicopter rotor mast subjected to both torsion and bending loads.  The objective of this 

example is to select the set of model calibration tests and corresponding test input settings 

that best updates the shot peening optimization such that the 95% lower confidence 

bound on the remaining useful life of the structure given an initial flaw size is 

maximized. 



87 

 

5.6.1.1 Shot peening 

 Peening is a manufacturing process designed to work-harden metals by firing 

small objects at areas of the component where stress concentrations are expected to be 

high.  Shot peening [51] is a form of peening where small metal balls are fired at high 

speeds to create small indentations on the exterior of a metal component.  Shot peening 

increases the yield strength and failure strength of a material which should retard failure 

due to crack growth.  Shot peened indentations can be varied in size and depth based on 

the type of shot and the speed at which it is fired.  Larger indentations have more positive 

effects on the material properties of the component; however, on small components (like 

the one considered in this problem) large shot peening depths,   , can significantly 

reduce the effective area of the member, lowering its load capacity.  Thus, an optimized 

indentation depth would most efficiently extend the life of a cracked component.  In this 

example,    values will be allowed to range from        to       .  This optimization 

will be performed in the remainder of the section. 

 

5.6.1.2 Helicopter rotor mast 

The component (shown in Figure 16) to be considered is a two radius hollow 

cylinder which is assumed to experience surface cracking in the fillet region (a common 

location for crack initiation). 

 



88 

 

 

Figure 16: Helicopter Rotor Mast Model 

 

 The crack growth in this example uses linear elastic fracture mechanics (LEFM), 

and assumes a planar crack.  The commercial finite element software ANSYS (version 

11.0) is used to calculate the mode I, mode II, and mode III stress intensity factors.  A 

sub-modeling technique is used to facilitate computational efficiency in finite element 

analysis, as shown in Figure 16.  The crack growth problem is solved in a multi-level 

manner.  First the entire structure is modeled with a coarse mesh and then the region 

surrounding the crack is modeled using a refined mesh.  The boundary conditions of the 

sub-model are obtained from the solution of the full model [52]. 

 Paris’ law [53] is used for crack growth analysis.  Paris’ law gives the growth of a 

crack per cycle,      , as: 

 

   

  
  (  )  (49) 
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In Equation 49,    is the range of the stress intensity factor (SIF) which is 

computed by the finite element model, and   and   are fitting parameters of the crack 

growth model which are properties of the material.  The fitting parameters,   and  , will 

be treated as random variables and updated as new crack damage inspection data 

becomes available.  All cracks are assumed to be elliptical (characterized by a crack 

length and a crack depth). Multiple runs of FEA are conducted, accounting for different 

combinations of input variables - crack sizes along x-axis, aspect ratios, bending 

moments (torsion is assumed to be proportional to bending), and the SIFs at the crack tip 

are calculated.  The crack lengths at any depth of shot peening were interpolated using a 

linear model fitted to calculated crack sizes at      and         . 

 The rotor mast component is made with a 4340 Steel Alloy which has the 

assumed material properties shown in Table 19.  The assumed geometric properties of the 

component are shown in Table 20.  Some of the material and geometric properties are 

related to the shot peening depth   .   

 

Table 19: Assumed Material Properties: Shot Peening Problem 

Steel Alloy 4340 

Modulus of Elasticity 29,700 ksi 

Poisson Ration 0.29 

Failure Stress (  )          
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Table 20: Assumed Geometric Properties: Shot Peening Problem 

Length 6 in 

Moment Arm (  ) 2.5 in 

Inside Radius (  ) 0.3 in 

Outside Radius (narrow section) (  )             
Outside Radius (wide section) 0.8 in 

 

 The problem has twelve calibration parameters, the mean and the standard 

deviations of:   ,   ,   ,   ,   , and   .  Their prior distributions are shown in Table 21.  

   is the failure stress of the material,    is the length of the moment arm or the distance 

from the crack to the location where the bending load is applied,    is the inner radius of 

the hollow cylindrical component, and    is the effective outer radius of the component at 

the crack location.   In Table 19 the quantity    is a constant distribution that will not be 

calibrated.  Its distribution is   (                ).  The physical meaning for not 

calibrating    is that it is assumed    (which is equal to    when     ) has a well-

known distribution for 4340 steel that is not shot peened.   

 

Table 21: Prior Distributions of Calibration Parameters: Shot Peening Problem 

Model 

Parameter 

Distribution 

Type 

Mean Standard Deviation 

   Normal   (       )   (           ) 

   Normal   (     )   (      ) 

  , Normal   (             
            ) 

  (             
            ) 

   Normal   (              
          ) 

  (            
           ) 

   Normal   (        )   (             ) 

   Normal   (                )   (                ) 

 

 The rotor mast component will be subjected to a bending,  , and torsion,  , load 

for a certain duration (measured in number of rotations).  The average bending and 
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torsion loads experienced over the duration are random variables with the distributions 

given in Table 22. 

 

Table 22: Loading Parameters: Shot Peening Problem 

Load Distribution 

Type 

Mean Standard Deviation 

Bending Normal   (            
             ) 

                      

Torsion Normal   (           
            ) 

                      

 

 The system failure criterion,  , is a function of crack size, component geometry, 

failure stress, and applied loading.  Cracks are assumed to be semi-elliptical and planar 

with length    and depth   .  The stresses due to bending,   , and torsion,   , are 

assumed to follow simple mechanical formulas given as: 

 

 

 
   

     
 

 

   
     

 
 

(50) 

 

where   and   respectively are the area moment of inertia and the torsional moment of 

inertia of the component’s cross section.  Not that it is always assumed that the direction 

of bending is oriented in such a manner that the crack is at a maximum distance away 

from the neutral axis.  Assuming a semi-elliptical crack, the area of the crack,   , is as 

follows: 
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 (51) 

 

Using a conservative assumption that the crack is a void of area    a distance    

away from the neutral axis, the denominators of Equation 50 can be estimated as: 

 

    (  
    

 )         
  

   (  
    

 )         
  

(52) 

 

Using a safety factor of 1.667, the failure criterion can be calculated as follows: 

 

 
          √  

    
  (53) 

 

If     the system is assumed to have failed.  The full system output variable,  , 

is calculated as the number of cycles required to reach failure,   , assuming an initial 

crack size of            and          .  The Bayesian network for this problem is 

shown in Figure 17. 
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Figure 17: Bayesian Network: Shot Peening Problem 

 

 The calibration parameters will be updated using three component level tests: (1) 

a pure bending test, (2) a pure torsion test, and (3) an isolated crack growth test.  It is 

assumed that the cost of all three tests is equal to 1 cost unit.  The total budget for the test 

is set at 4 cost units, so four tests can be afforded. Each test is assumed to have a 

measurement error that is normal with a mean of zero and some specified standard 

deviation. 

 

Pure Bending Test 

 The pure bending test will test an uncracked specimen with some level of shot 

peening to failure.  The test input is the depth of shot peening,   , used on the specimen 
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and the output is the bending load,   , that causes failure.  The expression to calculate    

is: 

 

 
     

  
    

 

  

 

   
 (54) 

 

 This test calibrates the parameters,    and   , since    is related to    through    

(see Table 19) and     is related to    through    (see Table 20).  

 

Pure Torsion Test 

 The pure torsion test will test an uncracked specimen with some level of shot 

peening to failure.  The test input is the depth of shot peening,   , used on the specimen 

and the output is the torsion load,   , that causes failure.  The formula to calculate    is: 

 

 
     

  
    

 

  

 

   
 (55) 

 

 The test also calibrates the parameters of,    and   . 

Controlled Crack Growth Test 

 The controlled crack growth test will test a rotor mast specimen with an initial 

crack of length 0.1 inches some level of shot peening over 10,000 cycles.  The test inputs 

are the depth of shot peening,   , used on the specimen and the stress intensity factor, 

   (which will be allowed to range from 20 to 30    √  ), and the output is the final 

length of the crack,   .  The equation relating the two quantities is given as: 
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                  (  )  (56) 

 

 The test calibrates the parameters,   ,   ,   , and    since   and   are related to 

   (see Table 19).  It is assumed that    does not change during the 10,000 cycles. 

 

5.6.2 Manufacturing optimization formulation 

 A performance based objective function will be used for the manufacturing 

optimization problem.  The objective function will be defined as the number of cycles, 

  , that corresponds to the point where the CDF is equal to 0.05 (denoted      ).        

can be more formally defined as: 

 

 
∫  (  |          )        

 

     

 (57) 

 

 Recall that     and     refers to the means and standard distributions of the 

calibration variables of the test design problem.  Thus, the manufacturing optimization 

equation can be written as: 

 

         
  

         (58) 
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 Once the optimization is formulated, it can be integrated with the calibration test 

optimization to solve the test design problem.  Let the solution to Equation 58 be denoted 

as   
 . 

 

5.6.3 Test design optimization formulation 

 The objective function for the calibration test design problem will only depend on 

the solution to the test design problem   
  as described in Section 5.4.  The objective 

function will seek to maximize the expectation of the same objective function as in the 

manufacturing optimization problem and is given as: 

 

         
           

   (     ) 

    ∑(     )              
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(59) 

 

where, 

             
  

( (     (           ))) (60) 

 

where,   refers to the number of different types of possible tests, and   refers to the total 

number of tests performed and is equal to            . The cost of the     (  

      ) type of test is equal to   ,    (decision variable) denotes the number of repetitions 
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of the     type of test, and       (decision variable) represents the vector of test input 

settings for all tests performed. Let    denote all the data collected through the     type of 

test. Let       denote the vector of all   ’s and let   denote the entire set of data, 

  [        ], collected from all   types of tests. 

For this optimization       is defined as: 

 

 
∫  (  |  )        

 

     

 (61) 

 

where, 

 

 
 (  |  )  ∫ (  |    ) ( )   (62) 

 

and, 

 

 
 (  )  ∬ (  |         )  (       )         (63) 

 

where    is the output of the mathematical model of the     calibration test.  This 

optimization problem is solved using the multi-step adaptive algorithm developed in 

Chapter IV and rehashed in Section 5.4. 
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5.6.4 Test design optimization solution 

The proposed methodology uses a complicated optimization method to select a set 

of tests for a predetermined cost step (of size  ) whose resulting data ( ) is most 

expected to lead to the full system output ( ) which best satisfies the objective function 

over the entire possible range of test input settings ( ).  The solution will be found using 

an adaptive multi-step procedure that first selects a set of tests to be performed in a given 

cost step, and then designs the tests is a sequential adaptive way.  The resulting data set, 

 , is then used as the starting point for the next step of test combination selections.  This 

process continues until the no more tests can be performed under the total budget 

constraint.  

 The test combination selection equation for a single step with                is 

formulated as follows: 

 

         
     

   (     ) 

                   

                  

(64) 

 

where    is the number of pure bending tests,    is the number of pure torsion tests, and 

    is the number of controlled crack growth tests.  This produces six possible test 

combinations to be compared which are shown in Table 23. 
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Table 23: Test Combinations: Shot Peening Problem 

          Cost 

2 0 0 2 

0 2 0 2 

0 0 2 2 

1 1 0 2 

1 0 1 2 

0 1 1 2 

. 

 The optimum combination of additional calibration tests for each of the two steps 

is shown in Table 24. 

 

Table 24: Optimum Combination of Additional Calibration Tests: Shot Peening Problem 

           (     ) 

Step 1 

1 0 1 14,327 

Step2 

0 0 2 14,336 

 

The result is a set of tests to be designed using the algorithm developed in Chapter 

IV and the optimization in Equation 65. 

 

         
     

   (     ) 

 

(65) 

 

The results of the test design optimization are shown in Table 25.  The results of 

the corresponding manufacturing variable optimization are shown in Table 26 and Figure 

18.  Let   ,   , and     denote a single bending, torsion, and crack growth test 

respectively. 
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Table 25: Test Design Results: Shot Peening Problem 

Test Input Parameter Input Parameter Test Output 

Step 1 

                       

                                

Step 2 

                                

                                

 

 

Table 26: Manufacturing Optimization Results: Shot Peening Problem 

Testing Cost           

0 0.0151 in 16262 

2 0.0145 in 17805 

4 0.0146 in 18000 

 

The two step optimization resulted in the selection and design of four tests.  In 

Step 1 a bending test and a crack growth test are chosen and designed and in Step 2 two 

crack growth tests are chosen and designed.  Figure 18 shows that the 5
th

 percentile value 

(     ) of the number of cycles to failure is increasing as more tests are performed.  

However, it is concerning that such large discrepancy exists between the       values 

obtained through test design (shown in Table 26) and the expectations shown in Table 24.  

The low expectations of       obtained in the test combination selection process indicate 

that the model output,  , is expected to decrease for a randomly chosen input setting.  

This discrepancy indicates that since the calibration parameters were assumed to be 

distributions, and not single points, that an information-theoretic objective function may 

have been more suitable. 
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Figure 18: Manufacturing Optimization Results: Shot Peening Problem 

 

 

5.7 Conclusions 

 The inclusion of the optimization of new materials in the design of complicated 

engineering systems has great promise to provide significant advancements for modern 

technology.  The ability to tailor a material for a specific use allows engineers greater 

flexibility and capability in the design process and thus creates more efficient and 

powerful systems.  The emerging field of ICME seeks to take on the enormous 

computational challenges involved in the achievement of this idea.  Proper 

implementation of advanced uncertainty quantification techniques is critical to the 

success of ICME.  This chapter proposes a methodology to calibrate the parameters of an 

optimization model that connects the input parameters of a manufacturing process to the 

output of the full system of interest.  The reduction of uncertainty between the 

manufacturing variables and the full system output allows for a more robust and 

meaningful manufacturing optimization.  Future work on this topic might include 

16000

16200

16400

16600

16800

17000

17200

17400

17600

17800

18000

18200

0 1 2 3 4

C
yc

le
s 

Testing Cost 



102 

 

improved objective functions using an information-theoretic approach and improved 

modeling to relate manufacturing variables to material parameters.  



103 

 

CHAPTER VI 

 

OPTIMIZATION OF DAMAGE INSPECTION TYPE DECISIONS 

FOR OPERATIONAL RISK MANAGEMENT  

 

6.1 Introduction 

 A digital twin [54] is a complex, computational model that mimics all aspects of a 

particular engineering system, including geometry, experienced loadings, and relevant 

physics in order to produce performance estimates and facilitate decisions about system 

usage.  A properly developed digital twin should also incorporate the sources of 

uncertainty related to the current state of the system and future system performance.  

Information gained on the system including testing results, damage inspection data, load 

measurement data, and performance results can be used to update the digital twin and 

thus its reliability and performance predictions.   

Manual non-destructive inspections (NDI) [55] are a routine and necessary part of 

the structural health monitoring process for an engineering system.  Inspections on 

complex engineering systems can be expensive and time consuming, causing vital 

equipment to remain unusable for significant periods of time.  The optimization of the 

inspection process such that the system is rendered fit or unfit for service as efficiently as 

possible is desirable to ensure the efficient use of scarce resources.   

The inclusion of damage inspection data into the digital twin concept is a type of 

reliability based optimization [56], and will be the focus of this chapter.  This chapter 

develops a methodology to optimize the scheduling of future system damage inspections 
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using the data and uncertainties contained within the digital twin and the distribution of 

possible system loadings.  This methodology is demonstrated using a single component 

fatigue crack growth model. 

 

6.2 Damage inspection  

 One outcome of a system damage inspection is the updating of the reliability 

estimate of the system provided by the system’s digital twin under a given loading and 

operating condition.  In order for the system to be used, the probability of system failure, 

  , must be less than some allowable probability of failure,   , with a specified degree of 

confidence.  If the probability of failure is calculated using a sampling procedure, some 

degree of uncertainty is associated with the estimate.  If   is the number of full system 

output samples taken, the error associated with the probability of failure estimate is [7]. 

  

 

   (  )  

√(    )  

 

  
 

(66) 

 

Using Equation 66, an allowable number of failure samples,     , can be 

developed for a given number of full-system samples such that if the number of failures 

observed, which is denoted as   , is greater than the allowable number, the system is not 

cleared for use under the specified loading condition.  For example, if the acceptable 

probability of failure is 0.001 with a required confidence of 95% , 100,000 samples of the 

system output were taken, and 100 were observed to have failed, using Equation 66 the 
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distribution of    would be normal with a mean of 0.001 and a standard deviation of 

0.0001.  This would mean that the confidence that    is less than    is only 50%.  

However, if 84 failures were observed,    would be normal with a mean of 0.00084 and a 

standard deviation of 0.0000916.  This would mean that the confidence that    is less 

than    slightly over 95%.  Therefore, if 84 or fewer system failures are observed in 

100,000 samples the system is deemed to have an acceptably low probability of failure. 

If the system is not cleared for use, additional inspection data may be collected to 

reduce the uncertainty of the system, the system may be operated under a less damaging 

loading condition, or the system may be removed from service. 

Three outcomes are possible when a damage inspection is performed:  (1) the 

damage is not detected, (2) the damage is detected but not measured, and (3) the damage 

is detected and measured.  These outcomes introduce two sources of uncertainty to the 

digital twin updating process: (1) probability of detection,    , and (2) damage 

measurement error.      refers to the inspector’s chance of discovering the damage to 

the system and is often given as some function of the damage severity.  Damage 

measurement error refers to the inspector’s inability to measure the precise state of the 

damage and is given as some function of the fidelity of the inspection being performed.  

    and damage measurement errors are used to construct the likelihood functions that 

are used to update the system’s digital twin.  Note that damage not being detected is still 

a significant result of a damage inspection. 

In addition to damage inspection, information can be provided to the digital twin 

by onboard load sensors (such as strain gauges) and damage detection devices.  Load 

sensors reduce the uncertainty regarding the loads experienced by the structure which in 
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turn reduces the uncertainty regarding the damage accumulated by the system.  Damage 

sensors help to detect flaws in the system, thus significantly increasing the    .  

Naturally, both load sensors and damage detection devices have corresponding 

uncertainties about their own performance.  The degree of these uncertainties tends to 

increase with the number of system uses. 

For a given loading scenario, if the information provided to the digital twin, 

  ( ), produces the condition where         , then no damage inspection is necessary 

and the system is cleared to be subjected to the loading scenario.  However, if        , 

a decision must be made regarding which inspection or combination of inspections 

should be performed in order to best update the digital twin.  Three outcomes are possible 

after an inspection is performed an the collected data is used to update   ( ): (1)  

        and the system is cleared to be used (this is the ideal scenario), (2)         

and additional or higher level inspections exist that, if performed, may clear the system 

for use, (3)         and no additional or higher level inspections exist that may clear 

the system for use.  While the system being proven unreliable is clearly undesirable, it is 

still better to come to this conclusion in the most economical way.  For example, if a less 

expensive lower fidelity inspection is selected and its results are inconclusive, it is then 

necessary to perform a more expensive higher fidelity inspection.  If the higher fidelity 

test was selected instead, it would not have been necessary to perform both inspections, 

which would have been more economical.  On the other hand, if the lower fidelity test is 

sufficient to clear the system for use, its selection is more economical. 

Thus, in order to select the inspection type decision combination that is expected 

to be the most economical, it is necessary to develop an optimization procedure that 
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compares the quotient of the expectation of system return and the expectation of 

inspection cost of each possible inspection type decision combination. 

 

6.3 Optimization procedure 

The methodology developed in this chapter will use a sampling-based 

optimization procedure to determine the most economical inspection type decision 

combination for the system in question.  The methodology takes the current state of the 

system as understood by the system’s digital twin,   ( ), and updates it with possible 

inspection data,  , which is generated based on   ( ), for a given inspection type 

decision combination,  .    is a discrete vector containing all of the of test type decisions 

to be made about a system in the period of interest.   The optimization is formulated as: 

 

 
        

     

 ( |     )

 ( |     )
 

      [         ] 

(67) 

 

 In Equation 67,   is the return from the system, which could be measured in any 

number of ways including number of missions performed, number of hours used, or 

number of cycles completed and   is the cost involved in performing a set of inspections.  

  is the number of inspection type decision points.  An inspection type decision point is 

defined as a point in time during the system’s life span where a decision regarding the 

type of inspection to be performed needs to be made.  The objective function is calculated 

as: 
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 (68) 

 

 In Equation 68,   represents the number of samples of inspection data to be taken 

of each inspection type decision combination,  .     represents the system return related 

to the     sample,    represents the total inspection cost related to the     sample, and 

   represents the inspection data generated in the     sample. 

 As in Chapters III, the analysis is done before any inspections are performed.  As 

a result,   must be generated using all prior knowledge regarding the model parameters 

and the digital twin.  This constitutes the only information available for the calculation of 

 (  ), where    is the data collected from the     type of inspection and   

          , where   is the total number of types of inspections. Therefore,  (  ) is 

calculated as: 

 

 
 (  )  ∫ (  | )  ( )   (69) 

 

where    represents the output of the digital twin corresponding to the     type of 

inspection,   represents the underlying parameters, and   ( ) represents the prior 

knowledge regarding those parameters. Note that Equation 69 is simply an uncertainty 

propagation problem, where the other sources of uncertainty (such as physical variability 

in inputs, solution approximation errors, data uncertainty,    , and data measurement 

errors) can also be included in the computation of  (  | ). 
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 The optimization requires the generation of many samples of the outcomes of 

inspection data over multiple cycles of system usage.  Multiple cycles of system usage 

are required because the value of an inspection may be that fewer additional inspections, 

or lower quality inspections are required later in the systems life cycle.  For example, if a 

higher fidelity inspection is performed at a cost of 2 cost units before Mission 1, perhaps 

no inspections are necessary prior to the next two missions, but if a lower fidelity 

inspection is performed at a cost of 1 cost unit before Mission 1, perhaps lower fidelity 

inspections are also required before Missions 2 and 3.  In this scenario choosing a higher 

fidelity inspection is optimal even though the lower fidelity inspection more 

inexpensively clears the system to perform Mission 1.  Damage inspection data must be 

simulated at every point in the system life cycle where an inspection is to be performed; 

thus, the sampling may need to be extensive.  To deal with this problem, Latin hypercube 

sampling is used to decrease the necessary number of samples.   

In each sample, the digital twin propagates its initial distribution of model 

parameters through several cycles of simulated use, updating the model parameters each 

time a new piece of inspection data is generated.  At points where inspection data is to be 

generated, a decision must be made about what type of inspection to perform.  Within the 

optimization framework, these decisions are predetermined for each set of samples,      .  

The cost and return of each sample can then be calculated.  By performing many samples, 

the objective function, shown in Equation 68, can be computed.  A set of samples must 

be developed for each combination of damage inspection decisions. This process is 

summarized in Figure 19. 
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Figure 19: Inspection Sampling Flowchart 
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It is likely that the number of possible damage inspection type decision 

combinations is too large to make the optimization computationally affordable.  If this is 

the case an adaptive methodology that is broken into steps with a greedy search method 

between steps (much like the optimization presented in Chapter III) can be utilized to 

simplify the computation.  The step size,  , is the number of missions to be considered in 

each step of the multi-step optimization.    should be as large as computationally 

affordable to maximize the optimization’s accuracy.    can also be chosen based on the 

required intervals between inspections (which is not addressed in this thesis).  The 

selected inspection decision combination for the     step,   , becomes the starting place 

for the optimization of the next step,     .  The multi-step optimization is formulated as 

follows. 
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(70) 

 

The optimization procedure described in this section determines the ideal 

decisions for inspection type decisions given the current information contained in the 

system’s digital twin.  The single step methodology is presented for a single component 

fatigue crack growth model in section 6.5. 
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6.4 Summary of proposed methodology 

The methodology developed in the preceding sections uses a sampling technique 

to select the inspection type decision combination that best maximizes the expectation of 

the value received from the system of interest.  The methodology can be summarized in 4 

parts. 

 

1. Digital twin construction: The construction of a proper and useful digital twin 

is key to the effectiveness of this methodology.  Digital twins should 

accurately represent the engineering system and should incorporate all viable 

failure mechanisms as well and represent the interactions between different 

components and subsystems.  Digital twins should be rigorously verified, 

validated and calibrated and should include all uncertainties about the system. 

 

2. Construct Bayesian network: The methodology uses a Bayesian network to 

connect all the models and the data available in a unified manner.  The model 

errors, if available, can also be included in the Bayesian network.  The 

Bayesian network is used to update the model parameters of the digital twin 

when new load or inspection data is collected. 

 

3. Inspection development: Inspection procedures should be properly developed 

so that the information gained from the inspection is relevant to the reduction 

of uncertainty in the digital twin.  Inspection errors must be sufficiently low, 

the     of an inspection must be sufficiently high, and the damage being 
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measured must be critical to the performance or failure of the system.  A 

global sensitivity analysis approach could be used to relate the parameters 

updated by a given inspection to the full system output in order to determine 

the relevance of an inspection type.  Also, the number of inspections 

considered in the optimization must be small enough to make the optimization 

computation affordable. 

 

4. Inspection Optimization: Once the relevant inspections have been selected, the 

vector       must be constructed.        includes all possible combinations of 

inspection selection decisions possible in the number of missions to be 

considered.  For each combination, a finite number of samples are run using a 

Latin hypercube sampling method to generate values of damage inspection 

results.  For each sample, the return,  , which is measured by some form of 

system usage, and the inspection cost,  , is calculated.  The optimization 

output variable is calculated as the expectation of   divided by the expectation 

of   for all samples of a given inspection combination.  The optimal 

inspection type decision combination is that which best maximizes this 

quotient. 

 

The result of the proposed methodology is a chosen inspection type decision 

combination which is best expected to most economically inspect the system.  This 

methodology is demonstrated with a fatigue crack growth model in Section 6.5. 
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6.5 Fatigue crack growth analysis 

 Digital twins in a practical sense are complex computer models of complicated 

engineering systems which are comprised of several functional levels and cover a wide 

array of physics.  A well-developed digital twin evaluates numerous failure modes and 

models the interactions between different levels and components.  For the purposes of 

this research, a single component digital twin that models fatigue crack growth on a 

helicopter rotor mast will be used to illustrate the developed methodology for uncertainty 

reduction.   

 

6.5.1 Description of problem 

 The model used in this example problem, shown in Figure 16, simulates fatigue 

crack growth in a helicopter rotor mast subjected to both tensile and bending loads.  Note 

that the model used in this problem is the same as that used in the example problem in 

Chapter V.  For completeness, some of the model properties will be restated in this 

chapter. 

The component is a two radius hollow cylinder which is assumed to experience 

cracking at the beginning of the transition region (a common place for crack initiation).  

The objective of this example problem will be to choose a crack damage inspection type 

decision combination that most economically reduces the uncertainty in the performance 

of the component.  

 The rotor mast component is made with a 4340 Steel Alloy which has the material 

properties shown in Table 27.  The geometric properties of the component are shown in 

Table 28. 
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Table 27: Mechanical Properties of 4340 Steel: Digital Twin 

Steel Alloy 4340 

Modulus of Elasticity 205 GPa 

Poisson Ration 0.29 

Yield Stress 1.110 GPa 

Ultimate Stress 0.710 GPa 

  

 

Table 28: Geometric Properties: Digital Twin 

Length 0.152 m 

Inside Radius 7.62 mm 

Outside Radius (narrow section) 15.24 mm 

Outside Radius (wide section) 20.30 mm 

 

Unlike the examples in previous chapters, this example will incorporate 

information collected during multiple time steps.  In this example, the component’s 

digital twin was first used to determine if the probability of failure under a specified 

loading condition is sufficiently low.  If the failure criterion is met, the component will be 

“cleared” to perform the “mission”.  However, if the failure criterion is not met, 

inspection data must be collected to attempt to clear the component.  If the component is 

cleared to perform a mission, the process repeats itself to attempt to clear the component 

for the next mission.  This process continues until inspection data no longer successfully 

clears the component at which point it is designated to be retired, repaired, or used at a 

lower load level. 

Each mission consists of an average bending load ( ), an average torsion load 

( ), and a specified duration ( ) (measured by number of helicopter blade revolutions).  

Each of the three loading parameters has nominal values and some degree of uncertainty.  

The values of the loading parameters are assumed to be Gaussian with a mean and 

standard deviation as shown in Table 29. 
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Table 29: Mission Loading Parameters: Digital Twin 

Loading 

Parameter 

Mean Value Standard 

Deviation 

Avg. Bending Load 0.1596 (N-m) 1.596x10
-3

 (N-m) 

Avg. Torsion Load 0.1177 (N-m) 8.243x10
-3

 (N-m) 

Duration 20,000 cycles 1500 cycles 

 

Once a component is cleared for a mission, the component is submitted to an 

actual loading which is measured by the strain gauges attached to the component with 

some degree of uncertainty.  This uncertainty increases with time as the confidence in the 

gauges decreases.  The loading parameters measurement uncertainties are given as a 

function of number of mission run from the beginning of the analysis,   .  The 

relationships are given in Equation 71. 

 

    (         )        (    ) 

   (         )       (    ) 

   (         )        (    ) 

(71) 

 

The relationships between the crack growth model parameters, the component 

loading parameters, damage inspection data, information gained by strain gauges, and the 

systems errors and uncertainties can be connected using a Bayesian network as shown in 

Figure 20. 
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Figure 20: Bayesian Network: Digital Twin 

  

The failure criterion,  , for this problem will be a function of the crack length, 

  , and the crack depth,   , and is given as: 

 

  (     )           
 

 
      (72) 

 

In Equation 72, the area of a semi-elliptical crack with crack length    and crack 

depth    is compared to an area of 0.635 mm
2
.  If the area is smaller than 0.635 mm

2
   

is positive.  Otherwise,   is negative and the component is deemed to have failed.  The 

system is deemed to have an acceptably low probability of failure if             

with a confidence of 95%.  If 20,000 samples of  , given the initial crack distribution as 

understood by the system’s digital twin subjected to a prescribed loading condition, are 

taken, observing 13 (=    ) or fewer failures in the 20,000 samples creates a distribution 
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of the probability of    (as calculated by Equation 66) that is normal with a mean of 

0.00065 and a standard deviation of 0.00018.  Observing 13 or fewer failures in 20,000 

samples satisfies the above conditions and the component is cleared to perform a mission 

under the prescribed loading conditions.   

This example problem will seek to determine the optimal inspection type decision 

combination for the component given the prior condition as understood by the digital 

twin.  The prior condition is shown in Table 30. 

 

Table 30: Parameter Distribution Prior to Optimization: Digital Twin 

Parameter Distribution     

  (crack length) lognormal 0.0987 0.0660 

  (crack depth) lognormal 0.0486 0.0315 

  normal 3.0 0.0090 

  normal 3.408x10
-10 

3.408x10
-11

 

 

6.5.2 Inspection optimization 

Two types of inspections will be considered in this example: (1) a High Fidelity 

Inspection,    , and (2) a Low Fidelity Inspection,    .  It is also possible that no 

inspection is necessary.  That situation will be denoted as   . 

A     will use ultrasonic equipment to measure both the length and depth of a 

crack in the helicopter rotor mast.      will have a high     and low measurement 

error.  If a     fails to clear the component to perform the next mission, the component 

is designated for repair or retirement or downgraded mission as there is not a higher level 

inspection.  The cost of a     is assumed to be 3 cost units. 

A     consists of a visual inspection that can only measure the length of the 

crack.      will have a lower     and higher measurement error than a    .  If a low 
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fidelity inspection fails to clear the component for use, a     must then be performed to 

attempt to clear the component.  The cost of a single     is assumed to be 1 cost unit.  It 

must be noted that if both     and     need to be performed because the     fails to 

clear the component, the total cost of this scenario is 4 cost units.  The possible inspection 

scenarios for a single mission are summarized in Figure 21. 

 

 

Figure 21: Single Inspection Decision Flowchart: Digital Twin 

 

    is usually a monotonic function of crack size and is used to represent 

uncertainty in crack detection.  The result of crack detection can be treated as a binary 

variable [52] 
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The probability of the two possible values of    can be expressed in terms of     
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The function  ( ) can be obtained either by pure empirical methods [57] or 

model-assisted methods [58]. In this chapter, a statistical representation is adopted by 

treating  ( ) as a standard normal cumulative distribution function [59] 
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The parameters   and   are assumed to be determined using the following 

equations: 

 

           

               

       

               

(76) 

 

The measurement errors corresponding to the two test types are given as: 
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where   (   ) denotes a normal distribution with mean   and standard deviation  . 

In order to solve the optimization problem, all possible decision combinations 

should be considered for the desired number of missions to be considered.  Notice from 

Figure 21 that only one inspection decision (whether to first perform a     or a    ) 

needs to be made per inspection cycle.  For this example, we will consider an analysis 

length of four missions.  Therefore, only sixteen possible combinations of inspection 

decisions,      , exist.  One hundred samples of each       are taken and the value of the 

objective function,  ( )  ( ), is calculated for each.  The       which maximizes the 

objective function is selected.  The results are shown in Table 31. 

 

Table 31: Inspection Optimization Results: Digital Twin 

Mission Number  ( )  ( ) 

1 2 3 4  

                0.230 

                0.234 

                0.245 

                0.249 

                0.248 

                0.252 

                0.262 

                0.265 

                0.199 

                0.200 

                0.212 

                0.214 

                0.197 

                0.199 

                0.210 

                0.210 

 

Table 31 shows that given only the information currently contained in the 

system’s digital twin, the ideal inspection type decision combination is    ,    ,    , 
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     and it is expected to produce 0.265 missions for every cost unit spent on 

inspections. 

 

6.6 Conclusions 

 The improvement of digital twin technology will provide great advances in the 

ability of engineers to understand the capabilities and limitations of complex engineering 

systems.  Uncertainty quantification is a vital part of the development of digital twins and 

the optimization of uncertainty reduction techniques will help to economically gain 

information that aids in the engineering decision making process.  In this chapter, tools 

were developed to select non-destructive test type decisions based on the information and 

uncertainties currently incorporated in a digital twin.  This methodology is easily 

extendable to other aspects of digital twin development such as validation test selection 

and design as well as calibration test selection and design (as shown in Chapters II and 

III).  Future work might seek to relax the time constraints imposed by this methodology 

so that decisions can be made about schedule as well inspection type. 

 The main road block in the implementation of this methodology (as with most 

aspects of digital twin development and use) is the intense computational effort required.  

In order to solve the optimization problem posed in Section 6.5, 96 processors were run 

continuously for over 8 days.  It can be imagined that for a more complex system with 

multiple components, several failure modes, and a variety of inspection types, the 

computational burden would become significant.  For this methodology to have real 

world practicality, significant computational advancements, either faster computer 

processing or faster computational algorithms would be required.  
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CHAPTER VII 

 

CONCLUSIONS AND FUTURE WORK 

 

 The increasing complexity of modern engineering systems has created a demand 

for robust uncertainty quantification techniques.  As engineering systems become more 

complicated, expensive, and dangerous, the need to accurately model their behavior prior 

to their use or even fabrication continues to increase and the cost of failure becomes 

increasingly unacceptable.  The design of an efficient test campaign for uncertainty 

reduction, and accelerated model and system certification is essential to the continued 

development of high-tech systems. 

This research developed four methodologies for uncertainty reduction under 

various engineering conditions.  All four methodologies utilized the Bayesian network 

tool to connect data at different system levels and across multiple physics and 

engineering processes.  The ability to connect data in a unified framework through the 

Bayesian network allows information gained about the system at the material, 

component, and subsystem level to be propagated upward to reduce the uncertainty of the 

full system output.  The primary benefit to using a Bayesian network for test campaign 

design is the ability to calibrate the full system model without testing the full system.  

This is critically important when full system tests are impractical due to high costs or 

extreme operating conditions (i.e. space vehicle or high performance aircraft).  

 Chapter III primarily explored the concept of test resource allocation for 

uncertainty reduction in hierarchical systems.  Using a Bayesian network model, 
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uncertain quantities, data, and both model and testing errors (all at multiple levels) were 

connected.  Decisions were made about which tests at which levels, and on which 

variables should be performed.  The methodology selected both the tests that should be 

performed and how many repetitions of each test to do in order to best reduce the 

uncertainty in the full system output.  The methodology was demonstrated on a multi-

physics thermal vibration problem, and a multi-physics multi-level telescope mirror 

problem.  The results clearly show the benefit of systematic test selection.  The designed 

methodology used a complex integer optimization coupled with a greedy search 

algorithm to develop a set of tests to perform that is best expected to reduce the variance 

of the full system output.  Future work into this subject may include increases in 

computational efficiency to allow for more complicated problems with several levels and 

many calibration parameters, and the use of robust optimization techniques. 

Chapter IV took the methodology developed in Chapter III and extended it to 

include the design of the test input settings for each calibration test.  Chapter IV also 

incorporated an adaptive methodology in which the tests are designed sequentially and 

the results from all previous tests are used to select the input settings for the next test.  

Chapter IV also used an information-theoretic objective function which allows the 

calibration to update the mean, the uncertainty in the mean, the variance, and the 

uncertainty in the variance, for each calibration parameter as opposed to a variance 

reduction technique which converge to a single value for each calibration parameter.  The 

result of the methodology is a multi-step adaptive algorithm to find a sequence of test 

types and the corresponding test input settings that seek to maximize the information 

gained on the full system output.  Future work could include increases in computational 
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efficiency and a mechanism for choosing the order in which tests in a given combination 

should be performed.  Also, the simultaneous optimization of both the test type and the 

test input settings would likely lead to a more accurate solution, but is computationally 

challenging. 

 Chapter V adapts the methodologies developed in the previous chapters to solve a 

test campaign problem for manufacturing optimization.  Integrated computation materials 

engineering is an emerging field that is seeking to rectify the disparity in the development 

time between complex engineering systems and new engineering materials.  This chapter 

discusses an optimization methodology that could be taken to design calibration tests that 

would reduce the uncertainty in the manufacturing optimization.  The proposed 

methodology incorporates an optimization of the manufacturing variables in the objective 

function of the test allocation and design optimizations.  The result is a two-level 

optimization that optimizes some aspect of the full system output as a function of the 

manufacturing variables.  This field has great promise for new research and future work 

can include a variety of different topics including: the development of models for a range 

of various manufacturing variables, development of an implementation structure to 

integrate various levels of models and information, and the handling of numerous and 

large databases on materials behavior. 

 Chapter VI explores the optimization of damage inspection type decision 

combinations using the digital twin of a system.  Using a sampling technique, different 

inspection type decision combinations are compared to determine which one best 

maximizes the value gained from the system in its remaining useful life.  The result of the 

methodology is a set of inspection decisions that is most efficient given the current state 
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of the digital twin.  Future work in this area requires increased computational efficiency 

in order to analyze large realistic systems with multiple interacting components and a 

variety of failure modes.  

 The continued improvement of advanced uncertainty quantification techniques 

including the optimization of system test campaigns will accelerate the development of 

highly complex engineering systems and will play a crucial role in the advancement of 

modern technology. 
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