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CHAPTER I 

 

INTRODUCTION 

 

Epigenetics is the study of heritable changes in gene expression or 

cellular phenotype caused by mechanisms other than changes to the DNA 

sequence.  Acetylation of histones is one of the main post-translational 

modifications responsible for altering the epigenetic landscape through regulation 

of chromatin structure.  Histone deacetylases are the key enzymes responsible 

for removing this modification.  In particular, histone deacetylase 3 (HDAC3) 

represents a pivotal member of the histone deacetylase family that modifies 

chromatin structure to regulate transcription, replication, recombination, and 

repair.  Furthermore, given that histone deacetylases are deregulated in cancer, 

particularly hematological malignancies, further study of the structure and 

function of HDAC3 may directly affect human health through the design of more 

specific and targeted histone deacetylase inhibitors. 

 

Chromatin Regulation 

DNA (deoxyribonucleic acid) is the main building block of life, containing 

the genetic information needed for development and every day functioning of 

nearly all living organisms.  The vast length of DNA, necessary to code for all 

aspects of life, needs to be compacted in such a way that it can fit into the 

nucleus of individual cells.  At the same time, relatively small sections of DNA 
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often need to be loose and accessible for proteins which function to modulate a 

variety of cellular processes such as transcription, replication, recombination, and 

repair.   

 

Structure 

Chromatin refers to the combination of DNA and proteins that make up the 

contents of the nucleus of a cell.  147 base pairs of DNA wrap around a histone 

octamer made up of two copies of each of the globular proteins histone H2A, 

H2B, H3, and H4 forming the nucleosome (1-4) (Fig. 1). The addition of one 

histone H1 protein wraps another 20 base pairs, resulting in two full turns of DNA 

around the octamer.  Structurally “loose” chromatin appears as beads-on-a-string 

with an average of 20 base pairs of linker DNA between nucleosomes (5, 6).  

This state of DNA is referred to as euchromatin.  In euchromatic regions the 

position of nucleosomes along DNA, combined with how tightly the DNA wraps 

around the histone octamer, impacts DNA accessibility during transcription, 

replication, recombination, and repair (7, 8).  These processes can only take 

place when DNA is in this “loose” state.  When multiple nucleosomes begin to 

tightly associate with each other, DNA begins to compact forming 

heterochromatin.  DNA contained in heterochromatic regions is not accessible for 

most cellular processes.   
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Figure 1. Nucleosome structure. 147 base pairs of DNA (purple and gray 
strands) are wrapped around a histone octamer formed by of two each of H2A 
(green), H2B (orange), H3 (red), and H4 (blue) represented by ribbon diagrams.  
Post-translationally modified N-terminal histone tails are unstructured and extend 
out from the nucleosome core particle. (PDB 1KX5) 
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Post-Translational Modifications 

The N-terminal tails and, to a lesser extent, the globular domains of 

histones are subject to post-translational modifications that directly regulate 

chromatin structure (Fig. 1).  These modifications include, but are not limited to, 

phosphorylation, acetylation, methylation, ubiquitylation and sumoylation.  

Phosphorylation occurs at a few serines and threonines, while a number of lysine 

residues are modified by methylation, ubiquitylation and sumoylation.  These 

modifications are exclusive such that when a lysine is acetylated, it cannot be 

methylated.  Methylation, which exists as mono-, di- or trimethylation, can also 

occur at arginine.    

Ubiquitylation and methylation have variable effects on chromatin 

depending on the precise amino acids modified.  For example, trimethylation of 

histone H3 lysine 4 (H3K4me3) generally occurs at active genes, whereas 

H3K9me3 generally occurs at inactive genes (9).  Sumoylation seems to 

correspond primarily with repression, while acetylation corresponds with 

activation.  Post-translational modifications do not exist in isolation and thus it is 

a combination of modifications that ultimately determines the “histone code” and 

determines the accessibility of a given DNA region (9).  The effect of histone 

modifications can be direct, causing structural changes to chromatin, or indirect, 

acting through the recruitment of effector proteins, so called “readers”.  Proteins 

that bind histones often contain chromodomains or tudordomains that bind to 

methylated lysines or bromodomains that bind to acetylated lysines (10, 11).  

Effector proteins include adenosine-5'-triphosphate (ATP)-dependent 
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nucleosome remodeling complexes that shift nucleosome positions along DNA or 

exchange/remove histones (12). ATP-dependent nucleosome remodeling 

complexes regulate gene expression, replication, and repair through regulating 

protein access to chromatin (13).  Post-translational modifications along with 

nucleosome shifting and histone exchange/removal are the major mechanisms 

by which chromatin is regulated. 

 

HATs and HDACs 

Post-translational modifications are by nature reversible: one family of 

proteins adds modifications when necessary and another family removes them.  

Acetylation represents one of the major post-translational modifications that 

directly impacts chromatin structure.  In the case of acetylation, histones are 

acetylated by histone acetyltransferases (HATs) and deacetylated by histone 

deacetylases (HDACs).  When histones are acetylated by HATs the positive 

charge normally present at the end of the lysine residues is neutralized leading to 

the loosening of chromatin.  In contrast, HDACs deacetylate histones leading to 

tighter DNA-histone and histone-histone associations resulting in chromatin 

compaction.  The studies described here pay particular attention to HDACs, 

known negative regulators of transcription, replication, recombination, and repair.   
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HDAC Family of Proteins 

 

Identification and Classification 

 The first mammalian histone deacetylase (HDAC1) was isolated from 

bovine thymus nuclear fractions and Jurkat nuclear extracts in 1996 (14).  This 

55kDa protein, originally named HD1 for histone deacetylase 1, was isolated 

along with its first known binding partner, retinoblastoma-associated protein 48 

(RbAp48), and is 60% identical to the yeast histone deacetylase, Rpd3.  Later 

that year HDAC2, originally named mRPD3 for mammalian RPD3, was identified 

based on an ability to bind the transcription factor, yin yang 1 (YY1) (15).  

Furthermore, HDAC2 activity was required for YY1-dependent transcriptional 

repression of a Gal4 construct.  In 1997 complementary DNA (cDNA) 

(EST200871) encoding a partial open reading frame with significant sequence 

similarity to HDAC1 and 2 was identified from a human fetal liver library (16).  

When expressed, the HDAC3 protein deacetylated chicken histones and 

repressed transcription of a Gal4 construct.  Even though HDACs have been 

studied for over 15 years, much remains to be discovered about the structure 

and function of individual HDACs.   

Today, the mammalian histone deacetylase family has grown to include 

eighteen proteins, which are divided into four classes based on their homology to 

yeast histone deacetylases Rpd3, Hda1, and Sir2 (17, 18).  Class 1 HDACs, 

consisting of HDAC1, 2, 3, and 8, are homologous to the yeast histone 

deacetylase Rpd3 while the class 2 HDACs (HDAC4, 5, 6, 7, 9, and 10) are 
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homologous to the yeast histone deacetylase Hda1. Class 3 HDACs, consisting 

of Sirtuin1-7, are homologous to the yeast histone deacetylase Sir2.  HDAC11 is 

the only member of the class 4 HDACs and is partly homologous to both yeast 

histone deacetylases Rpd3 and Hda1.  Though mammalian HDACs share a 

conserved deacetylase domain, they are a diverse group of proteins with unique 

localization, complex composition, level of activity, and even catalytic 

mechanism.  (17, 18) 

 

Class 1  

In general, class 1 histone deacetylases are ubiquitously expressed and 

localized to the nucleus (17).  However, HDAC3 can partially localize to the 

cytoplasm (discussed below).  This expression pattern allows class 1 HDACs to 

regulate transcription of a significant number of targets (≤10% of genes) in a 

variety of different tissues (19).  HDAC3 is catalytically active only when in 

complex with large multi-subunit co-repressor complexes while HDAC8 is a fully 

functional enzyme in isolation (20, 21).  HDAC3 is found in the silencing mediator 

for retinoic acid and thyroid receptors (SMRT) and nuclear receptor co-repressor 

(N-CoR) complexes (discussed below) (Fig. 2).  HDAC1 and 2, which share 82% 

identity and are nearly interchangeable, are partially active in isolation, but are 

highly active when in complex with their associated factors.  HDAC1 and 2 are 

found in three major types of complexes, the switch independent 3 (Sin3) 

complex (22), the nucleosome remodeling and deacetylating (NuRD) complex 

(23),    and  the  neuron-specific  co-repressor  element-1  silencing  transcription  
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Figure 2. SMRT/N-CoR co-repressor complex.  SMRT/N-CoR interacts directly 
with core complex members TBL1/TBLR1 and GPS2 while interacting with 
HDAC3 through Ins(1,4,5,6)P4.  TBL1/TBLR1 and GPS2 also directly interact.  
The co-repressor complex binds transcription factors to repress transcription. 
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(CoREST) complex (24).  Each complex is unique, with the NuRD complex 

containing ATP-dependent chromatin remodeling activity in addition to HDAC 

activity (25) and the CoREST complex primarily functioning at neuronal genes 

(26). The Sin3 complex is targeted to a multitude of promoters through various 

DNA-binding proteins.  In addition to functioning through these complexes, 

HDAC1 and 2 can also bind directly to DNA binding proteins YY1, RB binding 

protein-1 (RBBP1), and Sp1 (17). The multitude of HDAC1 and 2 associated 

proteins provides flexibility and specificity in modulating the epigenetic 

landscape.   

 

Class 2 

Class 2 HDACs can be divided into class 2a and 2b.  Class 2a consists of 

HDAC4, 5, 7, and 9.  These HDACs have little to no histone deacetylase 

enzymatic activity (27), but can associate with catalytically active HDACs 

including HDAC3 (28).   Class 2b HDACs, HDAC6 and 10, are classified by the 

presence of two catalytic domains. As a group, class 2 HDACs display more 

tissue-specific expression than any other class of HDACs (29).  Thus, inhibitors 

of class 2 HDACs may target diseases more specifically and with fewer side 

effects than multi-HDAC inhibitors.  In addition, this class of enzymes shuttles in 

and out of the nucleus in response to cellular signals.  Following phosphorylation 

of conserved N-terminal serine residues by Ca2+/CaM-dependent kinase (CaMK) 

the 14-3-3 proteins can sequester class 2 HDACs to the cytoplasm (30).  When 

localized to the cytoplasm class 2 HDACs cannot regulate transcription. The 



  10 

need to bind catalytically active HDACs, along with the varied localization and 

tissue-specific expression, equates to multiple layers of regulation for class 2 

HDACs.   

 

Class 3 

Class 3 HDACs, also known as sirtuins (Sirts), are unique among the four 

classes as they work in a nicotinamide adenine dinucleotide (NAD+) dependent 

manner while Class 1, 2, and 4 HDACs work in a zinc-dependent manner (31).  

NAD+ is a coenzyme found in all living cells that is primarily involved in redox 

reactions, carrying electrons from one reaction to another.  Sirtuins transfer 

acetyl groups from their substrate proteins to NAD+, making cellular levels of 

NAD+ a key regulator of sirtuin activity.    The dependence of sirtuins on NAD+ 

implies a role for this class of deacetylases in the regulation of metabolic 

homeostasis (32).  Individual sirtuins have divergent biological functions due to 

the distinct cell-type-specific sub-cellular localization of each family member.  In 

particular, Sirt1 is located in both the nucleus and the cytoplasm, Sirt2 in the 

cytoplasm alone, Sirt3, 4, and 5 are mitochondrial, and Sirt6 and 7 are 

exclusively nuclear (32, 33).  Inhibition of sirtuins may have particular 

significance for metabolic diseases.  

 

Histone Deacetylase 3 

HDAC3 is unique among the HDAC family of proteins.  The C-terminal 35 

amino  acids  of  HDAC3 are not seen in any other  histone  deacetylase  (Fig. 3).   
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Figure 3. HDAC3 domains. Deacetyl (Deacetylase domain), SMRT (SMRT 
binding region), RelA (RelA binding region), PP4 (protein phosphatase 4 binding 
region), NES (nuclear export signal), NLS (nuclear localization signal), and Ser 
424 (serine 424 phosphorylation site). 
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This unique region is required in vivo and in vitro for HDAC3 deacetylase activity 

and transcriptional repression (34).  In addition, HDAC3 is the only catalytically 

active histone deacetylase found as part of the SMRT/N-CoR co-repressor 

complex (Fig. 2).  This complex is recruited to a multitude of sites in the genome, 

including nuclear hormone receptors, to repress transcription (discussed below). 

In vitro HDAC3 preferentially deacetylates lysine 5 and 12 of histone H4 

and lysine 5 of histone H2A (35).  Newly synthesized histones H3 and H4 

undergo transient acetylation during synthesis phase (S phase) of the cell cycle 

and before deposition onto replicated DNA.  In particular, acetylation of H4K5 

and H4K12 is commonly associated with deposition of histones (36, 37).  Soon 

after deposition histones are deacetylated, in part by HDAC3, to stabilize the 

nucleosome and/or allow higher-order compaction of chromatin.  H4K5, H4K12, 

and H3K9K14 acetylation is often increased in the absence of Hdac3 while an 

increase in H4K8 and H4K16 acetylation is more variable (38-40). The increase 

in acetylation of H4K5 and H4K12, when HDAC3 is absent, suggests a role for 

HDAC3 in removing these marks after DNA replication. 

 

Histone Deacetylase Inhibitors  

Given the role of HDACs in modulating chromatin structure, ultimately 

regulating transcription, replication, recombination, and repair, it is not surprising 

that deregulation of HDAC function has been associated with cancer.  Many 

forms of leukemia are caused by chromosomal rearrangements that generate 

oncogenic fusion proteins.  Multiple fusion proteins, including the t(15;17) 
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encoded fusion of promyelocytic leukemia (PML) and the retinoic acid receptor 

(RAR), interact with SMRT/N-CoR leading to aberrant recruitment of the HDAC3-

containing co-repressor complex (41).  Such associations provide rationale for 

using histone deacetylase inhibitors to treat these hematological malignancies.  

Therefore, inhibition of one or more HDACs offers an attractive therapeutic 

opportunity for treating a variety of cancers. 

 

Identification and FDA Approval 

  The first histone deacetylase inhibitor (HDI), sodium butyrate (n-

butyrate), was described in 1977, eighteen years before the first mammalian 

HDAC was identified (Fig. 4).  Increased acetylation of histone H3 and H4 was 

observed following incubation of HeLa and Friend erythroleukemia cells with n-

butyrate (42).  This dose dependent, reversible increase in acetylation caused by 

n-butyrate was due to inhibition of histone deacetylation (43).  N-butyrate has 

other biochemical activities and thus is not specific for HDAC inhibition.  About 12 

years later, the fungi-static antibiotic trichostatin A (TSA) was identified as the 

first potent and specific HDAC inhibitor (44) (Fig. 4).   

Today there are two histone deacetylase inhibitors approved as single 

agents by the FDA for treatment of relapsed cutaneous T-cell lymphoma (CTCL).  

Vorinostat, also known as suberoylanilde hydroxamic acid (SAHA), was the first 

histone deacetylase inhibitor approved in 2006 and Romidepsin, also known as 

depsipeptide, was approved in 2009 (Fig. 4).  SAHA and depsipeptide are both 

multi-HDAC   inhibitors   that   inhibit   the   activity  of   class   1   and 2   HDACs.   
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Figure 4. Histone deacetylase inhibitors.  See text for details. 
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Specifically, SAHA inhibits HDAC1, 2, 3, 6, and 8 simultaneously (19).  More 

selective inhibitors are being developed in the hopes of reducing side effects and 

having more direct biological effects.  Selective and multi-HDAC inhibitors are in 

various phases of drug development/approval for the treatment of a variety of 

diseases including hematological malignancies and solid tumors (41, 45).  

Further study of the HDAC family of proteins is warranted as histone deacetylase 

inhibitors hold promise as effective treatments of human disease. 

 

Combinatorial Use 

Combining HDIs with inhibitors of other enzymes, classical 

chemotherapeutics, and/or radiation is being examined in the hopes of 

maximizing treatment efficacy (19, 46).  HDIs act as potent radiosensitizers due 

to their effects on the DNA damage response and are thus being tested in 

combination with radiation therapy (47).  In addition, the effects of HDIs on the 

structure of nucleosomes, leading to relaxation of chromatin, makes them 

attractive for combination treatment with DNA-targeted chemotherapeutics such 

as platinum compounds, topoisomerase inhibitors, and DNA intercalators (48, 

49).  DNA methylation by DNA methyltransferases (DNMTs) leads to gene 

silencing, in part due to recruitment of HDAC-containing transcriptional 

repression complexes (50).  Combination inhibition of HDACs and DNMTs could 

promote transcription of genes inappropriately silenced in cancer. Therefore, the 

combinatorial use of HDIs and other agents may be particularly useful for the 

treatment of cancer. 
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Cellular Effects 

Primary cells and cell lines are often the first systems used to study the 

effects of histone deacetylase inhibitors.  HDIs have produced a variety of effects 

on transformed cells including induction of cellular differentiation, apoptosis, or 

growth arrest, while altering the transcription of a surprisingly small number of 

genes (2-10% of expressed genes) (51).   Induction of cell death in particular can 

occur through a variety of mechanisms including activation of death receptor (52) 

or mitochondrial death pathways (53).  Cell cycle changes in normal and 

cancerous cells following HDI treatment can include arrest in G0/G1 or G2/M 

depending on the dose (41).  More directly related to cancer progression, HDIs 

affect angiogenesis, cell invasion and metastasis, and immune-modulatory 

activity (41).  Responses seen following HDI treatment seem to, at least in part, 

depend on the nature of the HDI, concentration used, length of exposure, and 

cellular context.  Though normal cells do respond to HDIs, there is a clearly 

documented higher sensitivity of transformed cells, thus providing the basis for 

HDI mediated tumor cell selective killing (54, 55).  HDIs are well suited for use in 

therapy due to both their relatively low toxicity to normal cells and their specific 

biological effects on cellular processes.  The effects of HDIs seem as diverse as 

the number of HDACs, thus careful attention must be paid to the HDAC(s) being 

targeted and the context in which particular HDIs are used.  It is this need to pay 

attention to the HDAC(s) being targeted and their normal biological functions that 

forms the basis for studying individual HDACs, including HDAC3. 
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Hdac3 Deletion Models 

 

Germline Deletion 

One of the best ways to study the biological functions of a given protein is 

to study the phenotypes associated with the protein’s inactivation in mice.  Mice 

lacking Hdac3 were created by first flanking exon 7 of Hdac3 with loxP sites and 

inserting a G418 resistance gene (Neo) between exon 7 and exon 8 to engineer 

a Cre-recombinase-dependent allele.  Mice harboring the targeted allele were 

crossed to EIIA-Cre transgenic mice to obtain progeny with either a “floxed” allele 

or a null allele.  Germline Hdac3 deletion triggered early embryonic lethality prior 

to embryonic day 9.5 (38).  The requirement for Hdac3 during early embryonic 

development precluded the study of complete deletion of Hdac3 in adult mice. 

 

Mouse Embryonic Fibroblasts 

Given the severity of this phenotype, analysis of Hdac3 function was 

performed in mouse embryonic fibroblasts (MEFs) isolated from embryonic day 

13.5-14.5 Hdac3F/- and Hdac3F/+ embryos (38).  The use of MEFs allowed for 

analysis of Hdac3 function on a cellular level.  Hdac3F/- MEFs were infected with 

adenovirus expressing Cre recombinase (Ad-cre) to genetically delete Hdac3.  

These Hdac3-null cells began to show signs of apoptosis 3-4 days post infection.  

At 5 days post infection the majority of cells were still viable giving a significant 

window in which to examine the cell cycle, DNA damage, and DNA repair.  To 

examine the cell cycle, Hdac3-/- and Hdac3+/- MEFs were analyzed using the 
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thymidine analogue BrdU in a pulse-chase experiment.  Two fold fewer Hdac3-/- 

MEFs were labeled with BrdU, suggesting that Hdac3 plays a role in the cycling 

of cells.  As the BrdU was chased through the cell cycle, BrdU positive cells were 

delayed in proceeding from one phase to the next with a particularly significant 

delay in clearing S phase.  This suggested a defect in cell cycle progression and 

DNA replication (38). 

DNA damage was examined as a possible source of the S phase defect.  

Hdac3-null cells analyzed through immunofluorescence (IF) had higher levels of 

the DNA double strand break (DSB) marker, phosphorylated histone H2AX 

(γH2AX) than their Hdac3+/- counterparts (38).  Additional markers of the DNA 

damage response, phosphorylated KRAB-associated protein 1 (KAP-1), 

phosphorylated minichromosome maintenance 2 (MCM2), and p53, were also 

elevated in the absence of Hdac3.  To specifically examine the impact of cell-

cycle progression on DNA damage, MEFs were first serum starved to 

synchronize cells in G0.  Following serum starvation, cells were again analyzed 

through IF for the presence of γH2AX.  Taking cells out of the cell cycle reduced 

the percentage of Hdac3-/- cells with DNA damage. Hdac3-null MEFs are 

characterized by cell-cycle-dependent DNA damage (38). 

Akin to an accumulation of endogenous DNA damage, Hdac3-/- MEFs had 

defects in repair of exogenous DNA damage induced using ionizing radiation 

(IR), doxorubicin, and cisplatin (38, 39).  Increased sensitivity to these forms of 

DNA damage suggests that in the absence of Hdac3 repair by the homologous 

recombination (HR) pathway and non-homologous end joining (NHEJ)-mediated 
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repair are inefficient.  There were clear defects in the repair of endogenous and 

exogenous DNA damage in the absence of Hdac3. 

Given the requirement for Hdac3 in removing histone deposition marks, 

H4K5 and H4K12 acetylation, mitotic chromosomes were analyzed through 

metaphase spreads.  Hdac3-null MEFs had a 5 to 8-fold increase in the number 

of breaks and gaps in metaphase chromosomes when compared to controls (39).  

Thus, Hdac3 has a critical role in maintaining genomic stability.   

To determine if histone deacetylase inhibitors also cause DNA damage, 

Hdac3F/+ MEFs were treated with increasing amounts of the multi-HDAC 

inhibitors, SAHA or TSA (38).  Treatment of cells with low levels of these multi-

HDAC inhibitors caused DNA damage similar to the levels seen in the absence 

of Hdac3.  Treatment with high levels of SAHA caused even greater DNA 

damage suggesting the DNA damage caused by HDIs may be a cumulative 

effect of inhibiting multiple HDACs (38). 

 

Immortalized Cells 

Immortalized cell lines offer another system in which to study loss of 

Hdac3.  Knockdown (KD) of Hdac3 in human colon cancer cell lines and HeLa 

cells using siRNA caused accumulation of cells in G2/M phase of the cell cycle 

(56), loss of the metaphase marker histone H3S10 phosphorylation, and 

increased aberrancy of mitotic figures (57).  A similar decrease in the number of 

cells in metaphase and H3S10 phosphorylation was observed in a line of Hdac3-/- 

National Institutes of Health (NIH) 3T3 cells.  Ad-cre infection was again used to 
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delete Hdac3, this time from an immortalized cell line established from Hdac3F/- 

MEFs through the NIH 3T3 regimen (38, 58).  A decrease in mitotic cells is often 

characteristic of an active DNA damage checkpoint (59).  Hdac3-/- NIH 3T3 cells 

treated with the DNA damage checkpoint inhibitor, caffeine, showed normal 

numbers of metaphase cells and levels of histone H3S10 phosphorylation (38). 

This implies that the metaphase defects were either due to a defect in DNA 

damage response or replicative stress seen only in immortalized cells.  Primary 

cells responded differently to loss of Hdac3, as none of these defects were seen 

in MEFs (38).  The mitotic defects seen in Hdac3-null and knockdown cells 

require the immortalization process. 

 

Mx1-Cre Conditional Deletion 

 In the case of embryonic lethality, following deletion of a protein in mice, 

conditional deletion is often used to study protein function.  Promoter driven Cre 

expression allows analysis of biological function in a particular cell type or tissue.  

Given the embryonic lethality caused by Hdac3 deletion in the germline, Hdac3 

heterozygous mice were crossed with transgenic Mx1-Cre and Albumin-Cre (Alb-

Cre) mice (40).  Mx1-Cre expression is stimulated by injection of synthetic 

double-stranded RNA (polyinosinic-poly-cytidylic acid, pIpC) to induce an 

interferon response.  This system allows for Hdac3 deletion in adult mice and 

bypasses embryonic lethality.  Treatment of Mx:Hdac3F/- mice lead to abnormal 

liver size and morphology with hypertrophic hepatocytes.  This liver phenotype 

prompted the Alb-Cre cross (40). 
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Alb-Cre Conditional Deletion 

Alb-Cre is expressed in parenchymal liver cells and was used to analyze 

the role of Hdac3 in the liver while avoiding possible side effects of interferon 

signaling in the Mx-Cre model.  By 28 days post birth the livers of Alb:Hdac3-/- 

mice were pale and hypertrophic, a trend that continued into adulthood (40). 

Alb:Hdac3-/- mice were also characterized by increased hepatocellular damage 

seen through elevated alanine transaminase (ALT) levels, altered metabolic 

homeostasis, and up-regulation of lipid and cholesterol biosynthesis regulatory 

genes (40).  In particular, the up-regulation of genes belonging to the p53 

network suggested the presence of DNA damage.  Alb:Hdac3-/- mice were aged 

for approximately 16 weeks and later 8-10 months.  By 16 weeks livers continued 

to appear pale due to an accumulation of lipids and contained “adenoma-like 

white nodules” (39).  By 8-10 months Alb:Hdac3-/- mice developed low-grade 

hepatocellular carcinoma (HCC) and the experiment was humanly terminated 

(39).  Thus the conditional deletion of Hdac3 in the liver led to altered metabolism 

and eventually cancer.  

Hepatocyes from Alb:Hdac3-/- mice were used to examine the effects of in 

vivo Hdac3 deletion (39). The increase in H3K9K14 acetylation in Alb:Hdac3-/- 

mice corresponded to a decrease in H3K9 methylation, a mark of 

heterochomatin. Hepatocytes from Alb:Hdac3-/- mice had decreased levels of 

heterochromatin as visualized by transmission electron microscopy and Hoechst 

staining.  Given the reduction in heterochromatin, nucleosomal compaction was 

examined through micrococcal nuclease (MNase) digestion and salt extraction.  
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Bulk chromatin isolated from nuclei of Alb:Hdac3-/- hepatocytes was more 

sensitive to MNase digestion and histone H3 was less resistant to high NaCl 

concentrations.  In the absence of Hdac3 global chromatin structure was more 

“open”, indicating that Hdac3 is required for maintaining proper chromatin 

structure in vivo (39). 

Given the increase in DNA damage and decrease in DNA repair seen in 

Hdac3-/- MEFs, endogenous and exogenous DNA damage was examined in 

Alb:Hdac3-/- hepatocytes (39).  DNA damage was again visualized using IF to 

detect the DNA double-stranded break markers γH2AX and p53-binding protein 1 

(53BP1).  Alb:Hdac3-/- hepatocytes displayed increased amounts of endogenous 

DNA and decreased rates of repair of exogenous damage induced by non-lethal 

doses of IR as compared to Alb:Hdac3+/- hepatocytes.  Though Hdac3 is not 

recruited to sites of double-strand breaks, it could impact repair through changes 

in histone acetylation especially of H3K9.  In vivo Hdac3 has a critical role in 

maintaining genomic stability (39). 

 

HDAC3 Containing Complexes 

 

SMRT/N-CoR 

HDAC3 biological functions are directly dependent on binding to SMRT/N-

CoR.  The SMRT/N-CoR complex was originally identified through recruitment by 

nuclear hormone receptors, thyroid-hormone receptor (TR), retinoic-acid receptor 

(RAR), and retinoid-X receptor (RXR), to repress transcription (60, 61).  Ligand 
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binding to nuclear hormone receptors leads to dissociation of SMRT/N-CoR and 

triggers gene activation.  It was later discovered that the SMRT/N-CoR complex 

contained HDAC3 and was dependent on the presence of HDAC3 for 

transcriptional repression (62, 63).   

HDAC3 is not a functional enzyme in isolation and requires binding of 

SMRT/N-CoR to be active.  Therefore, HDAC3 represents the catalytic 

component of the large multi-protein SMRT and N-CoR co-repressor complexes 

(64) (Fig. 2).  SMRT and N-CoR are two distinct, yet highly related, proteins with 

similar amino acid sequences (60, 61).  They each have a conserved 

deacetylase-activating domain (DAD) that binds HDAC3 and is required for 

HDAC3 activity (64).  The 95 amino acid DAD consists primarily of a SANT 

(Swi3/Ada2/N-CoR/TFIIIB) domain that is necessary and sufficient for HDAC3 

activation.  The DAD, in conjunction with additional regions of SMRT, bind both 

the extreme N and C-terminal ends of HDAC3 (amino acids 1-23 and 391-428) 

(64) (Fig. 3).  

 

Priming 

HDAC3 interacts with SMRT only after priming by the chaperone proteins, 

heat shock protein 70 (HSP70) and T-complex protein 1 (TCP-1) ring complex 

(TriC), in an ATP-dependent process (35, 65).  Following proper HDAC3 folding, 

TriC is displaced by SMRT.  Recombinant HDAC3 made in bacteria is devoid of 

enzymatic activity, as these steps do not occur in bacteria.  Priming by 
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chaperone proteins and binding of the SMRT/N-CoR DAD are necessary for 

enzymatic competency and full assembly of the co-repressor complex.   

 

Binding Partners 

Biochemical purifications from human cells have revealed additional 

members of the SMRT/N-CoR complexes.  Transducin β-like 1 (TBL1) 

(63)/TBL1-related protein (TBLR1) (66) and G protein pathway suppressor 2 

(GPS2) (66) are core members of the SMRT/N-CoR co-repressor complexes 

(Fig. 2). TBL1 and TBLR1 are functionally redundant proteins that can mediate 

SMRT/N-CoR co-repressor complex dependent transcriptional repression 

through binding to histone H2B and H4 (67).  The other member of the core 

complex, GPS2, mediates interactions with DNA binding transcription factors to 

facilitate recruitment of the complex to target promoters to repress transcription 

(66).  Though the presence of TBL1/TBLR1 and GPS2 does not impact the 

enzymatic activity of HDAC3 they do facilitate interactions of the co-repressor 

complex with other proteins. 

Many proteins are bound by the HDAC3 containing SMRT/N-CoR core 

complex.  Transcription factors that recruit the complex include peroxisome 

proliferator-activated receptor γ (PPARγ) (68), promyelocytic leukemia (PML) 

(69), runt-related transcription factor 2 (RUNX2) (70, 71), and transcription factor 

TFII-I (72) (Fig. 2).  The SMRT/N-CoR complex also binds retinoblastoma tumor 

suppressor protein (RB) (68), transcriptional repressor NF-κB activating protein 

(NKAP) (73), and co-repressors myeloid translocation gene 8 (MTG8), MTG16, 
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MTGR1 (74, 75), and krab associated protein 1 (KAP-1) (76).  HDAC3 primarily 

exists in complex with a multitude of core components and external binding 

partners.  Identifying new or further characterizing existing interactions of the 

SMRT/N-CoR complex could lead to new therapeutic opportunities in disease 

treatment through the use of histone deacetylase inhibitors. 

 

HDAC Crystal Structures 

 

HDAC8 and HDAC2 

Crystal structures offer some of the best information on catalytic 

mechanisms, amino acid surface accessibility, and interactions with other 

proteins.  A multitude of HDAC8 crystal structures bound to different ligands have 

been published (77-81).  HDAC8 is a structurally unique class 1 HDAC that does 

not exist as part of a multi-protein complex and is catalytically active when 

purified as a recombinant protein.  More recently the crystal structure of HDAC2 

bound to a ligand was published (82).  This structure did not offer any information 

on potential binding of HDAC2 to other members of multi-protein complexes.   

 

HDAC3 

HDAC3 represents the third class 1 histone deacetylase to be crystallized.  

Unlike the other HDACs, HDAC3 was crystalized in complex with the 

deacetylase-activating domain (DAD) of SMRT/N-CoR (83).  These studies 

revealed two unexpected aspects of the binding between these two key 
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components of the large multi-protein complexes.  The DAD, when in complex 

with HDAC3, undergoes extensive rearrangements as compared to the 

previously published structure of the DAD alone (84). The N-terminus of the DAD 

lies along the surface of HDAC3 making numerous associations with the N-

terminus of HDAC3 (amino acids 9-49) (83).  This region of HDAC3 differs 

extensively from that of HDAC8, which does not bind a co-repressor.  When in 

complex with HDAC3 the DAD of SMRT/N-CoR is in a different conformation 

than was originally shown by the crystal structure of the DAD alone. 

Secondly and most unexpectedly, an inositol tetraphosphate (D-myo-

inositol-1,4,5,6-tetrakisphosphate, Ins(1,4,5,6)P4) was identified at the interface 

of HDAC3 and the DAD (83) (Fig. 2).  This specific version of phosphorylated 

inositol is required for the interaction between HDAC3 and SMRT/N-CoR, making 

extensive contact with both proteins (His17, Gly21, Lys25, Arg265, Arg301 of 

HDAC3 and Lys449, Tyr470, Try471, Lys474, Lys475 of the DAD).  HDAC3 

enzymatic activity depends on Ins(1,4,5,6)P4 bridging the gap between HDAC3 

and the DAD.  SMRT/N-CoR-Ins(1,4,5,6)P4-Hdac3 complex formation appears 

necessary for a catalytically active co-repressor complex.  Though early crystal 

structures of HDAC8 and HDAC2 offered insight into the general structure of 

HDACs, only the recent structure of HDAC3, in complex with the deacetylase 

activating domain of SMRT/N-CoR, offers insight into HDACs in complex with 

other proteins (83). 
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HDAC3 Functional Domains 

The Ins(1,4,5,6)P4 interacting region is just one of a number of key 

HDAC3 functional and regulatory regions.  HDAC3 is a 428 amino acid protein 

that shares 53% identity with HDAC1, 52% with HDAC2, and 34% with HDAC8.  

Over half of HDAC3 consists of the highly conserved histone deacetylase domain 

(amino acids 22-316) that is the key feature of all HDAC proteins (85) (Fig. 3).  

 

Phosphorylation 

The unique HDAC3 C-terminus previously mentioned contains a single 

serine phosphorylation site at amino acid 424 (86) (Fig. 3).  Phosphorylation at 

this site by casein kinase 2 (CK2) is necessary for in vitro deacetylation of 

hyperacetylated core histones from HeLa cells.  The N-terminus of HDAC3 

(amino acids 1-122) interacts with protein serine/threonine phosphatase 4 (PP4) 

(Fig. 3).  Dephosphorylation of serine 424 by PP4 down-regulates HDAC3 

activity.  Unexpectedly, while phosphorylation status at this key residue impacts 

histone deacetylase activity, no difference is seen in the ability of phosphorylated 

versus nonphosphorylated HDAC3 to associate with N-CoR.  No proteins have 

been identified that selectively interact with phosphorylated HDAC3.  Though this 

is the only identified post-translational modification of HDAC3, the full impact of 

phosphorylation at serine 424 is yet to be elucidated (86). 
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Cytoplasmic Localization 

In addition to a distinct C-terminal region, HDAC3 is unique among class 1 

HDACs in its ability to localize to the cytoplasm (87).  A nuclear export signal 

(NES) (amino acids 180-313) in combination with the CRM1/exportin 1- related 

export pathway shuttles HDAC3 out of the nucleus (34) (Fig. 3).  The effects of 

cytoplasmic HDAC3 are not well understood.  Though HDAC3 has this unique 

ability, like all other class 1 HDACs, it is primarily localized to the nucleus.  A 

nuclear localization signal (NLS) (amino acids 313-428) assures that HDAC3 is 

localized to the nucleus and can deacetylate histones and non-histone proteins 

(34) (Fig. 3).  

 

RelA Binding 

One of the direct targets of HDAC3 in the nucleus is RelA.  This protein 

represents one of the only known non-histone targets of HDAC3.  The N-

terminus of HDAC3 (amino acids 1-45) physically binds the RelA subunit of the 

nuclear factor-κB (NF-κB) transcription factor (88) (Fig. 3).  Deacetylation of RelA 

by HDAC3 promotes effective binding of IκBα inhibitory proteins to the NF-κB 

complex and subsequent sequestration of NF-κB to the cytoplasm.  This nuclear 

export of NF-κB terminates target gene transcription.  Not only does HDAC3 

promote transcriptional repression through deacetylation of histones, it also 

promotes repression through deacetylation of RelA (88).  Though HDAC3 is a 

member of class 1 HDACs, it has a number of features not shared with any other 

class 1 enzyme. 
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Summary 

 Histone deacetylases regulate transcription, replication, recombination, 

and repair through modulation of chromatin structure.  HDAC3 represents a 

unique member of the HDAC family of proteins that functions in a multitude of 

cellular processes.  Loss of Hdac3 leads to changes in cell cycle progression, 

decreased chromatin compaction, increased genomic instability, decreased rates 

of DNA repair, and ultimately cancer.  HDAC3 is subject to regulation through 

phosphorylation and SMRT/N-CoR binding.  In addition, many proteins interact 

with HDAC3 but the localization and full impact of most of these interactions is 

not understood.  The elucidation of an HDAC3 crystal structure provides a better 

visualization of the cell surface.  Therefore, this structure should be used as a 

tool to evaluate how the structure of HDAC3 impacts function.   
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Plasmids 

 To allow viral expression in complementation experiments Flag tagged 

HDAC3 was sub-cloned into a murine stem cell virus (MSCV) vector that 

expresses green fluorescent protein (GFP) driven by an internal ribosome entry 

site (IRES).  PCR was used to integrate Xho1 sites on either end of wild type 

Flag-HDAC3.  The PCR amplified wild type Flag-HDAC3 and MSCV vector were 

cut with Xho1 and ligated together.  The correct orientation was verified by 

diagnostic digest using EcoR1 and BglII.  Quick change II XL (Aligent 

Technologies) was used to introduce point mutants into HDAC3 while in the 

MSCV-Flag-HDAC3 vector (Table 1).  Two sequential rounds of site directed 

mutagenesis were necessary to create some of the final mutants.  In the case of 

the H17C,G21A,K25I,R264P,L265M,R301A mutant, the MSCV-Flag-Hdac3 

H17C,G21A,K25I and MSCV-Flag-Hdac3 R264P,L265M,R301A constructs were 

cut with EcoR1 and BglII and the two opposite fragments ligated together.  The 

VSV-G vector, that expresses pantropic (VSV-G) envelope proteins from the 

CMV promoter, was used to allow packaging of virus in complementation 

experiments (89).  All constructs were verified through Sanger sequencing 

performed at the Vanderbilt DNA sequencing facility (Table 2 and 3).  
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Table 1. Mutagenesis Primers 
HDAC3 bases (black), mutations (red), and extra bases (green) 
   
Primer Name   Sequences (5'  3') 

Y298H FOR CTGGGTGGTGGTGGTCATACTGTCCGAAATGTT 
Y298H REV AACATTTCGGACAGTATGACCACCACCACCCAG 
S424A FOR TGACAATGACAAGGAAGCCGATGTGGAGATTTAAG 
S424A REV CTTAAATCTCCACATCGGCTTCCTTGTCATTGTCA 
S424D FOR CAATGACAAGGAAGACGATGTGGAGATTTAAGAGTG 
S424D REV CACTCTTAAATCTCCACATCGTCTTCCTTGTCATTG 

P11G,F16Y,H17Y FOR TTCTACGACGGCGACGTGGGCAACTACTACTACGGAGCTGG 
P11G,F16Y,H17Y REV CCAGCTCCGTAGTAGTAGTTGCCCACGTCGCCGTCGTAGAA 

H38N, K43R FOR AGCCTGGTCCTGAATTACGGTCTCTATAGGAAGATGATCGTC 
H38N, K43R REV GACGATCATCTTCCTATAGAGACCGTAATTCAGGACCAGGCT 
F199 deletion FOR CAAATACGGAAATTAC()TTCCCTGGCACAGGTG 
F199 deletion REV CACCTGTGCCAGGGAA()GTAATTTCCGTATTTG 
I46S, F48S FOR CTCTATAAGAAGATGAGCGTCTCCAAGCCATACCAGGCC 
I46S, F48S REV GGCCTGGTATGGCTTGGAGACGCTCATCTTCTTATAGAG 

F88S FOR AAGAGTCTTAATGCCTCCAACGTAGGCGATGAC 
F88S REV GTCATCGCCTACGTTGGAGGCATTAAGACTCTT 

F139S FOR CACCATGCCAAGAAGTCTGAGGCCTCTGGCTTC 
F139S REV GAAGCCAGAGGCCTCAGACTTCTTGGCATGGTG  
F246S FOR AACCAGGTAGTGGACTCCTACCAACCCACGTGC 
F246S REV GCACGTGGGTTGGTAGGAGTCCACTACCTGGTT 
F363S FOR GATCCGCCAGACAATCTCTGAAAACCTGAAGATGC 
F363S REV GCATCTTCAGGTTTTCAGAGATTGTCTGGCGGATC 

F329S, F336S FOR AGTGAATACTCCGAGTACTTTGCCCCAGACTCCACACTTCAT 
F329S, F336S REV ATGAAGTGTGGAGTCTGGGGCAAAGTACTCGGAGTATTCACT 

L265M FOR GGGCTGTGATCGAATGGGCTGCTTTAACC 
L265M REV GGTTAAAGCAGCCCATTCGATCACAGCCC 

R264P, L265M FOR CTGGGCTGTGATCCAATGGGCTGCTTTAAC 
R264P, L265M REV GTTAAAGCAGCCCATTGGATCACAGCCCAG 

H17C,G21A,K25I FOR GGGCAACTTCTGCTACGGAGCTGCACACCCTATGATCCCCCATCGCC 
H17C,G21A,K25I REV GGCGATGGGGGATCATAGGGTGTGCAGCTCCGTAGCAGAAGTTGCCC 

R301A FOR GTGGTTATACTGTCGCAAATGTTGCCCGCTG 
R301A REV CAGCGGGCAACATTTGCGACAGTATAACCAC 

HDAC3 to MSCV FOR AAAAACTCGAGGGTACCATGGACTACAAGGACGAC 
HDAC3 to MSCV REV AAAAACTCGAGAGAGGTAAAAGAAATTCCTTGGGAC 
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Table 2. Sequencing primers 
   

Primer Name   Sequences (5'  3') 
MSCV FOR CCTTGAACCTCCTCGTTCGACC 
MSCV REV CCAAGCGGCTTCGGCCAGTAACG 

HDAC3 INTERNAL FOR GAGAGTGGCCGCTACTACTGT 
HDAC3 INTERNAL FOR GAGTACTTTGCCCCAGACTTCA 
HDAC3 INTERNAL REV GTAACTCTGGTCATCAAATGCCA 
HDAC3 INTERNAL REV GATTGTCTGGCGGATCTGGTC 

 

 

 

Table 3. Plasmids 
  

Plasmid Mutation 
MSCV - 

MSCV-Flag-Hdac3 - 
MSCV-Flag-Hdac3 Y298H 
MSCV-Flag-Hdac3 424A 
MSCV-Flag-Hdac3 424D 
MSCV-Flag-Hdac3 P11G, F16Y, H17Y 
MSCV-Flag-Hdac3 H38N, K43R 
MSCV-Flag-Hdac3 F199 deletion 
MSCV-Flag-Hdac3 I46S, F48S 
MSCV-Flag-Hdac3 F88S, F139S 
MSCV-Flag-Hdac3 F246S, F363S 
MSCV-Flag-Hdac3 F329S, F336S 
MSCV-Flag-Hdac3 L265M 
MSCV-Flag-Hdac3 R264P, L265M 
MSCV-Flag-Hdac3 H17C, G21A, K25I 
MSCV-Flag-Hdac3 H17C, G21A, K25I, R264P, L265M, R301A 

VSV-G - 
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Cell culture 

 NIH 3T3 cells were cultured in dulbecco’s modified eagle’s medium 

(DMEM) (Cellgro) supplemented with 10% bovine calf serum (Atlanta 

Biologicals), 50 µg/ml penicillin-streptomycin (Cellgro), and 2 mM L-glutamine 

(Cellgro).  

 

Generating Hdac3-/- NIH 3T3 Cells 

 An immortalized NIH 3T3 Hdac3F/- cell line was previously established 

from Hdac3F/- MEFs following the National Institutes of Health (NIH) 3T3 regimen 

(38, 58).  Hdac3-/- NIH 3T3 cells were obtained following infection of Hdac3F/- NIH 

3T3 cells with recombinant adenovirus expressing the Cre recombinase (Ad-

Cre).  The day before Ad-cre infection Hdac3F/- NIH 3T3 cells were seeded at 5 x 

105 cells/10 cm dish.  Cells were incubated with Ad-Cre (Ad5-CMV-Cre obtained 

from the Vector Development Lab, Baylor University, 2 x 105 particles/cell in 3 

mls media) for 3 hrs.  Deletion was confirmed through western blot analysis three 

days post infection.   

 

Complementation 

The day before transfection with MSCV constructs, GP2-293 cells were 

seeded at 1.2 x 106 cells/6cm dish.  Cells were co-transfected using Polyfect 

(Qiagen) with 4 µg VSV-G and MSCV constructs at a 1:3 ratio.  A second plating 

and MSCV construct transfection was performed the following day.  Cells were 

permitted to produce MSCV virus for three days.  The day before MSCV infection 
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Hdac3-/- NIH 3T3 cells were seeded at 1 x 105 cells/6 cm dish.  For MSCV 

infection, media was collected from packaging cells, filtered through a 0.45-µm 

cellulose acetate filter, and added to Hdac3-/- NIH 3T3 cells.  To aid MSCV 

infection, polybrene was added to the viral media at a final concentration of 4 

µg/ml.  A second MSCV infection was performed the following day with fresh 

media being added 1 day after the second MSCV infection.  Three days after the 

second MSCV infection the percent of Hdac3-/- NIH 3T3 cells expressing GFP 

was assessed on a FACS Calibur flow cytometer using Cell Quest Pro software 

(BD).  Only conditions in which the percent of cells expressing GFP was ≥80% 

were permitted to continue.  Greater than 90% GFP expression was often 

achieved.  Hdac3-/- NIH 3T3 cells expressing GFP were seeded at 1 x 105 

cells/10 cm dish.  Two days later cells were trypsinized, counted using the 

Countess automated cell counter (Invitrogen), and replated at 1 x 105 cells/10 cm 

dish.  This was repeated two additional times.  Expression of Flag tagged 

HDAC3 constructs was confirmed through western blot (data not shown).  

To visualize exponential cellular growth the following equation was used  

((the current days cell count) X (the pervious days cellular dilution)) +  

(the previous days total cell number) = (the current days total cell number) 

 

Immunoblotting 

 Whole cell lysates, for detection of Hdac3 levels, were prepared using 

RIPA (radio immunoprecipitation assay) buffer and resolved by SDS-PAGE 

(sodium dodecyl sulfate polyacrylamide gel electrophoresis). For immunoblotting, 
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samples were transferred onto nitrocellulose membranes and probed with the 

appropriate primary antibodies.  Proteins were visualized using LI-COR 

Biosciences IRDye secondary antibodies combined with the Odyssey detection 

system (LI-COR).  The antibody for Actin (A2066) was purchased from Sigma.  

The antibody for HDAC3 (ab16047) was purchased from Abcam.  
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CHAPTER III 

 

THE CATALYTIC ACTIVITY OF HDAC3 IS NECESSARY FOR A NORMAL 
RATE OF CELLULAR PROLIFERATION 

 

 

Introduction 

 Histone deacetylase inhibitors are increasingly being tested as therapy for 

a variety of diseases, most notably solid and hematological cancers.  The main 

advantage of HDIs is their relatively low toxicity compared to other therapies, 

targeting cancerous cells more vigorously than normal cells.  One of the 

hallmarks of cancerous cells is their ability to divide and grow uncontrollably, 

bypassing the mechanisms cells have in place to limit growth and proliferation.  I 

looked to understand the mechanism by which HDAC3 regulates cellular 

proliferation through a structure/function approach.  The Hdac3-/- NIH 3T3 cell 

system we have established gave me a unique opportunity to alter the amino 

acid composition of HDAC3 in cells lacking endogenous Hdac3.  Point mutants 

were introduced into HDAC3 to elucidate the impact of histone deacetylase 

activity, HDAC3 phosphorylation, interactions with hydrophobic regions, RelA 

binding, and SMRT/N-CoR binding on cellular proliferation.  
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Results 

 

Deletion of Hdac3 in NIH 3T3 cells 

 In the absence of Hdac3 our line of immortalized NIH 3T3 cells behaved 

similarly to cell lines in which HDAC3 is knocked down (38).  Following treatment 

with adenovirus expressing the Cre recombinase (Ad-Cre) Hdac3 is deleted from 

Hdac3F/- NIH 3T3 cells, generating cells lacking endogenous Hdac3.  Hdac3-/- 

NIH 3T3 cells remain predominantly Hdac3-null, as visualized through western 

blot, for at least 14 days (Fig. 5).  Following this period, Hdac3 expression begins 

to increase, eventually reaching levels detected in uninfected Hdac3F/- NIH 3T3 

cells.  It is clear that Ad-Cre infection of Hdac3F/- NIH 3T3 cells does not hit every 

cell and thus Hdac3 expression is maintained in a small population of cells, which 

out complete Hdac3-null cells over time.  That said, the level of deletion achieved 

in our system does provide a sufficient window in which HDAC3 can be 

exogenously expressed in a predominately Hdac3-/- NIH 3T3 cell system.   

 

Loss of Hdac3 decreases growth rate 

The predominant phenotype observed upon Hdac3 deletion in NIH 3T3 

cells was a decrease in growth rate as compared to controls (Fig. 6), suggesting 

that Hdac3 is necessary for a normal rate of cellular proliferation.  I looked to take 

advantage of this defect to identify structural elements and interactions of 

HDAC3 that impact growth rate.  
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Figure 5. Hdac3 deletion in NIH 3T3 cells. 5 x 105 Hdac3F/- NIH 3T3 cells were 
infected with 2 x 105 particles/cell adenovirus expressing Cre recombinase.  
Whole cell lysates were prepared from Hdac3-/-  and control Hdac3F/- NIH 3T3 
cells on the indicated days post infection.  Samples were analyzed by SDS-
PAGE and immunoblotted with antibodies to HDAC3 and actin.  Hdac3F/- NIH 
3T3 cells (F/-) 
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Figure 6. Proliferation defect upon Hdac3 deletion. Hdac3F/- NIH 3T3 cells 
(F/-) and Hdac3-/- NIH 3T3 cells (-/-).  Following an initial plating at 1 x 105 cells, 
every two days cells were trypsinized, counted, and replated at 1 x 105 cells.  
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I first confirmed that re-expression of HDAC3 in Hdac3-/- NIH 3T3 cells 

would complement the growth defect.  Using the murine stem cell virus (MSCV) 

retrovirus expression vector, that also expresses green fluorescent protein 

(GFP), I infected Hdac3-/- NIH 3T3 cells with Flag tagged HDAC3 expressing or 

empty vector control virus.  The percent of Hdac3-/- NIH 3T3 cells expressing 

GFP, and thus HDAC3, was assessed through flow cytometry (Fig 7).  To allow 

comparison between independent experiments and ensure significant HDAC3 

expression, only conditions in which the percent of cells expressing GFP was 

≥80% were analyzed.  Moreover, Hdac3-/- NIH 3T3 cells expressing HDAC3 were 

trypsinized, counted, and re-plated at a 1 x 105 cells/10 cm dish every two days 

to avoid contact inhibition of growth.  Expression of HDAC3 led to an increase in 

the rate of proliferation, as compared to the control MSCV alone (Fig. 8).  Thus, 

the defect in cell growth is due to the loss of Hdac3 expression and can be 

complemented by expression of HDAC3. 

 

Catalytic activity of HDAC3 is necessary for a normal growth rate  

 HDAC3 histone deacetylase activity is central to the role of HDAC3 in 

regulating transcription, replication, recombination, and repair.  Therefore, I set 

out to determine if HDAC3 catalytic activity is necessary for the mechanism by 

which HDAC3 regulates cellular proliferation.  Through sequence alignment of 

various histone deacetylases, it was determined that in the catalytic pocket of the 

inactive class 2a HDACs there is a distinctive histidine (H) while in class 1 and 4 

HDACs  this  amino  acid  is a  tyrosine (Y).   A  tyrosine  to  histidine  mutation of  



  41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 7. GFP expression correlates with HDAC3 expression in infected 
Hdac3-/- NIH 3T3 cells. A. Dot plot of Hdac3-/- NIH 3T3 cells analyzed through 
flow cytometry.  B. Uninfected control Hdac3-/- NIH 3T3 cells do not express GFP.  
C. ≥80% of infected Hdac3-/- NIH 3T3 cells express GFP. 
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Figure 8. Catalytic activity of HDAC3 is necessary for a normal growth rate. 
Hdac3-/- NIH 3T3 cells were infected with MSCV virus expressing no HDAC3 
(MSCV), wild-type flag tagged HDAC3 (Fl-HDAC3), and catalytically inactive 
mutant HDAC3 (Y298H).  Following an initial plating at 1 x 105 cells, every two 
days cells were trypsinized, counted, and replated at 1 x 105 cells.  
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HDAC3 amino acid 298 abolished the in vitro deacetylase activity of HDAC3 

towards an acetylated histone H4 peptide and core histones (27). The Y298H 

substitution did not affect the association of HDAC3 with the DAD of N-CoR, 

suggesting the amino acid substitution did not disturb the integrity of the co-

repressor complex (27).  Complementation of Hdac3-/- NIH 3T3 cells with Flag 

tagged HDAC3 containing the Y298H substitution did not complement the growth 

defect (Fig. 8).  Therefore, HDAC3 deacetylase activity is required for a normal 

rate of cellular proliferation. 

  

Phosphorylation of HDAC3 is not necessary for a normal growth rate 

 Amino acid serine 424 is a key HDAC3 phosphorylation site (86).  In vitro 

studies identified phosphorylation of serine 424 as necessary for HDAC3 histone 

deacetylase activity (86).  To explore if phosphorylation of serine 424 was 

necessary for the mechanism by which HDAC3 regulates cellular proliferation I 

created a pair of point mutants.  First, serine 424 was mutated to aspartic acid 

(D), a phosphomimetic amino acid.  The negative charge of the aspartic acid side 

chain resembles the negative charge of a phosphorylated amino acid.  Second, 

serine 424 was mutated to alanine (A), a small amino acid with no reactive 

groups.  Alanine cannot be phosphorylated and does not resemble a 

phosphorylated amino acid.  I hypothesized that an aspartic acid mutant at amino 

acid 424 would result in constitutive HDAC3 activity, and would therefore 

complement the growth defect.  At the same time, an alanine mutant at amino 

acid 424 would not complement the growth defect due to a lack of catalytic 
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activity, as seen in the Y298H mutant.  As expected, the S424D mutant did 

complement the growth defect, proliferating at a rate equivalent to Hdac3-/- NIH 

3T3 cells expressing wild-type Flag tagged HDAC3 (Fig. 9).  Unexpectedly, the 

S424A mutant also complemented the growth defect (Fig. 9).  The fact that 

S424D and S424A mutants both proliferated at a rate equivalent to wild-type 

HDAC3 shows that the charge status at amino acid 424 does not affect growth 

rate.  These data imply that in vivo the phosphorylation status of HDAC3 at 

serine 424 may not affect HDAC3 catalytic activity to the extent shown in vitro. 

 

HDAC3 homology model 

With a desire to identify key amino acids important for HDAC3-mediated 

changes in cellular proliferation, I set out to better understand the structure of 

HDAC3.  First, the amino acid sequence of HDAC3 was run through metaPrDOS 

(meta protein disorder prediction system) to predict the level of disorder present 

in fully folded HDAC3 (Fig. 10).  According to the prediction, the C-terminal 59 

amino acids, which include the amino acids unique to HDAC3, would be unfolded 

giving no structural information.  At the time these studies were started no crystal 

structure of HDAC3 was available.  Multiple HDAC8 crystal structures had been 

published along with one HDAC2 structure (77-82).  Though HDAC8 is a 

member of the class 1 HDACs it is not a member of a large multi-protein complex 

and thus is presumably not regulated in the same manner as HDAC3. The 

ClustalW sequence alignment software was used to align HDAC2 and 3, allowing 

visualization of identical and similar amino acids  (Fig. 11).   The  52%  sequence  
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Figure 9. Phosphorylation of HDAC3 is not necessary for a normal growth 
rate. Hdac3-/- NIH 3T3 cells were infected with MSCV virus expressing no 
HDAC3 (MSCV), wild-type flag tagged HDAC3 (Fl-HDAC3), an uncharged/non-
reactive mutant at serine 424 (S424A), and a  phosphomimetic mutant at serine 
424 (S424D).  Following an initial plating at 1 x 105 cells, every two days cells 
were trypsinized, counted, and replated at 1 x 105 cells.  
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Figure 10. Last 46 amino acids of HDAC3 are predicted to be disordered.  A. 
MetaPrDOS protein disorder prediction for HDAC3.  B. Amino acid sequence of 
HDAC3 with disordered amino acids shown in red. 
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HDAC3 MA-------KTVAYFYDPDVGNFHYGAGHPMKPHRLALTHSLVLHYGLYKKMIVFKPYQA 53                       
HDAC2 MAYSQGGGKKKVCYYYDGDIGNYYYGQGHPMKPHRIRMTHNLLLNYGLYRKMEIYRPHKA 60                              
 **       *.*.*:** *:**::** ********: :**.*:*:****:** :::*::* 
 
 
HDAC3 SQHDMCRFHSEDYIDFLQRVSPTNMQGFTKSLNAFNVGDDCPVFPGLFEFCSRYTGASLQ 113                        
HDAC2 TAEEMTKYHSDEYIKFLRSIRPDNMSEYSKQMQRFNVGEDCPVFDGLFEFCQLSTGGSVA 120                                
 : .:* ::**::**.**: : * **. ::*.:: ****:***** ******.  **.*: 
  
 
HDAC3 GATQLNNKICDIAINWAGGLHHAKKFEASGFCYVNDIVIGILELLKYHPRVLYIDIDIHH 173                      
HDAC2 GAVKLNRQQTDMAVNWAGGLHHAKKSEASGFCYVNDIVLAILELLKYHQRVLYIDIDIHH 180                           
 **.:**.:  *:*:*********** ************:.******** *********** 
 
 
HDAC3 GDGVQEAFYLTDRVMTVSFHKYGNYFFPGTGDMYEVGAESGRYYCLNVPLRDGIDDQSYK 233                       
HDAC2 GDGVEEAFYTTDRVMTVSFHKYGE-YFPGTGDLRDIGAGKGKYYAVNFPMRDGIDDESYG 239                           
 ****:**** *************  :******: ::** .*:**.:*.*:******:**  
 
 
HDAC3 HLFQPVINQVVDFYQPTCIVLQCGADSLGCDRLGCFNLSIRGHGECVEYVKSFNIPLLVL 293                    
HDAC2 QIFKPIISKVMEMYQPSAVVLQCGADSLSGDRLGCFNLTVKGHAKCVEVVKTFNLPLLML 299                            
 ::*:*:*.:*:::***:.:*********. ********:::**.:*** **:**:***:* 
 
 
HDAC3 GGGGYTVRNVARCWTYETSLLVEEAISEELPYSEYFEYFAPDFTLHPDVSTRIENQNSRQ 353                       
HDAC2 GGGGYTIRNVARCWTYETAVALDCEIPNELPYNDYFEYFGPDFKLHISPSN-MTNQNTPE 358                          
 ******:***********:: ::  *.:****.:*****.***.** . *. : ***: :  
 
                        
HDAC3 YLDQIRQTIFENLKMLNHAPSVQIHDVPADLLTYDRTDEADAEER---GPEENYSRPEAP 407                      
HDAC2 YMEKIKQRLFENLRMLPHAPGVQMQAIPEDAVHEDSGDEDGEDPDKRISIRASDKRIACD 418                           
 *:::*:* :****:** ***.**:: :* * :  *  ** . :     . . . .*  .  
 
 
HDAC3 NEFYDG------------DHDN---------------DKESDVEI--------------- 428                      
HDAC2 EEFSDSEDEGEGGRRNVADHKKGAKKARIEEDKKETEDKKTDVKEEDKSKDNSGEKTDTK 478                               
 :** *.            **.:               **::**:              
 
 
HDAC3 ----------                       
HDAC2 GTKSEQLSNP 488 

 
 
 
 
 
 
 
 
Figure 11. HDAC3 is 52% identical and 58% similar to HDAC2.   
ClustalW sequence alignment of HDAC3 and HDAC2.   
A (*) (asterisk) indicates positions which have a single, fully conserved residue.  
A (:) (colon) indicates conservation between groups of strongly similar properties.   
A (.) (period) indicates conservation between groups of weakly similar properties. 
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identity (58% similarity) of HDAC2 made it the obvious choice to use to create an 

HDAC3 homology model.  Using PyMOL a homology model was constructed 

using HDAC2 (PDB structure 3MAX (82)) as a basis for modeling.  As predicted, 

one of the major limitations of this structure was an inability to visualize the last 

59 amino acids of HDAC3.  That said, with the homology model I was able to 

visualize the surface of HDAC3 and localize the active site.   

With a desire to further understand dynamics at work on the protein 

surface I ran a script (color_h.py) in PyMOL designed to color amino acid side 

chains according to their level of hydrophobicity (Fig. 12).  This script utilizes the 

normalized consensus hydrophobicity scale to determine what color to color an 

amino acid with white being hydrophilic and red being hydrophobic (90).  This 

HDAC3 homology model represented the best structural information available. 

 

Binding of SMRT/N-CoR and RelA to HDAC3 is not necessary for a normal 
growth rate 
 

Using the final homology model, I designed a series of point mutants to 

determine HDAC3 regions important for the mechanism by which HDAC3 

regulates cellular proliferation.  First, mutations were made in the N-terminal 

regions that bind SMRT (amino acids 1-23) and RelA (amino acids 1-45) (Fig. 3).  

Failure to complement the growth defect with HDAC3 containing mutations in 

these regions, would allow easy identification of the binding partner(s) necessary 

for a normal growth rate.  Amino acids prominently on the cell surface in the 

SMRT binding region (proline 11,  phenylalanine 16,  and  histidine 17)  and RelA  
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def color_h(selection="(all)"): 
        s = str(selection) 
 print s 
        cmd.set_color('color_ile',[0.996,0.062,0.062]) 
        cmd.set_color('color_phe',[0.996,0.109,0.109]) 
        cmd.set_color('color_val',[0.992,0.156,0.156]) 
        cmd.set_color('color_leu',[0.992,0.207,0.207]) 
        cmd.set_color('color_trp',[0.992,0.254,0.254]) 
        cmd.set_color('color_met',[0.988,0.301,0.301]) 
        cmd.set_color('color_ala',[0.988,0.348,0.348]) 
        cmd.set_color('color_gly',[0.984,0.394,0.394]) 
        cmd.set_color('color_cys',[0.984,0.445,0.445]) 
        cmd.set_color('color_tyr',[0.984,0.492,0.492]) 
        cmd.set_color('color_pro',[0.980,0.539,0.539]) 
        cmd.set_color('color_thr',[0.980,0.586,0.586]) 
        cmd.set_color('color_ser',[0.980,0.637,0.637]) 
        cmd.set_color('color_his',[0.977,0.684,0.684]) 
        cmd.set_color('color_glu',[0.977,0.730,0.730]) 
        cmd.set_color('color_asn',[0.973,0.777,0.777]) 
        cmd.set_color('color_gln',[0.973,0.824,0.824]) 
        cmd.set_color('color_asp',[0.973,0.875,0.875]) 
        cmd.set_color('color_lys',[0.899,0.922,0.922]) 
        cmd.set_color('color_arg',[0.899,0.969,0.969]) 
        cmd.color("color_ile","("+s+" and resn ile)")  
        cmd.color("color_phe","("+s+" and resn phe)") 
        cmd.color("color_val","("+s+" and resn val)") 
        cmd.color("color_leu","("+s+" and resn leu)") 
        cmd.color("color_trp","("+s+" and resn trp)") 
        cmd.color("color_met","("+s+" and resn met)") 
        cmd.color("color_ala","("+s+" and resn ala)") 
        cmd.color("color_gly","("+s+" and resn gly)") 
        cmd.color("color_cys","("+s+" and resn cys)") 
        cmd.color("color_tyr","("+s+" and resn tyr)") 
        cmd.color("color_pro","("+s+" and resn pro)") 
        cmd.color("color_thr","("+s+" and resn thr)") 
        cmd.color("color_ser","("+s+" and resn ser)") 
        cmd.color("color_his","("+s+" and resn his)") 
        cmd.color("color_glu","("+s+" and resn glu)") 
        cmd.color("color_asn","("+s+" and resn asn)") 
        cmd.color("color_gln","("+s+" and resn gln)") 
        cmd.color("color_asp","("+s+" and resn asp)") 
        cmd.color("color_lys","("+s+" and resn lys)") 
        cmd.color("color_arg","("+s+" and resn arg)") 
cmd.extend('color_h',color_h) 
 
 
 
 
Figure 12. Pymol script used to model hydrophobicity of amino acids  
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binding region (histidine 38 and lysine 43) were mutated simultaneously to their 

corresponding amino acids in HDAC2 (glycine 11, tyrosine 16, tyrosine 17 and 

asparagine 38, arginine 43) (Fig. 13).  These mutations were chosen to preserve 

HDAC3 structural integrity while still preventing binding to SMRT and RelA, as 

HDAC2 does not bind either of these proteins.   

The two mutants intended to eliminate binding to SMRT and RelA, 

confirmed binding partners of HDAC3, did complement the growth defect, 

proliferating at a rate equivalent to Hdac3-/- NIH 3T3 cells expressing wild-type 

Flag tagged HDAC3 (Fig. 14).  This suggested that SMRT and RelA binding are 

not required for modulating the effects of HDAC3 on cellular proliferation.  Given 

that SMRT/N-CoR binding to HDAC3 is required for activity and that, as shown in 

the Y298H mutant, catalytic activity is required for a normal rate of proliferation it 

was surprising that HDAC3 containing mutations in the SMRT binding region 

complemented the growth defect. 

 

Hydrophobic regions of HDAC3 are not necessary for a normal growth rate 

Next, mutations were made in HDAC3 hydrophobic regions visualized on 

the protein surface.  Hydrophobic regions are primed for protein-protein 

interactions, as the amino acid side chains do not interact favorably with the 

hydrophilic environment.  The amino acids in region 1 (isoleucine 46 and 

phenylalanine 48), region 2 (phenylalanine 88 and 139), region 3 (phenylalanine 

246 and 363), and region 4 (phenylalanine 329 and 336) were simultaneously 

mutated to serine (S) (Fig. 15).   The mid-sized polar amino acid serine was used  
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Figure 13. Protein surface hydrophobic amino acids predicted to bind 
SMRT/N-CoR and RelA. HDAC3 amino acids colored based on a spectrum of 
white being hydrophilic to red being hydrophobic. A. SMRT/N-CoR binding 
hydrophobic region.  B. Amino acids P11, F16, H17 mutated to eliminate binding 
to SMRT/N-CoR shown in blue.  C. RelA binding hydrophobic region.  D. Amino 
acids H38, K43 mutated to eliminate binding to RelA shown in blue.  
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Figure 14. Binding of SMRT/N-CoR and RelA to HDAC3 is not necessary for 
a normal growth rate. Hdac3-/- NIH 3T3 cells were infected with MSCV virus 
expressing no HDAC3 (MSCV), wild-type flag tagged HDAC3 (Fl-HDAC3), a 
mutant intended to eliminate binding to SMRT/N-CoR (P11G,F16Y,H17Y), and a 
mutant intended to eliminate binding to RelA (H38N, K43R).  Following an initial 
plating at 1 x 105 cells, every two days cells were trypsinized, counted, and 
replated at 1 x 105 cells.  
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Figure 15. Protein surface hydrophobic amino acids predicted to be 
binding regions. HDAC3 amino acids colored based on a spectrum of white 
being hydrophilic to red being hydrophobic. A. Hydrophobic binding region 1.  B. 
Amino acids I46, F48 mutated to eliminate binding shown in blue.  C. 
Hydrophobic binding region 2.  D. Amino acids F88, F139 mutated to eliminate 
binding shown in blue.  E. Hydrophobic binding region 3.  F. Amino acids F246, 
F363 mutated to eliminate binding shown in blue.  G. Hydrophobic binding region 
4.  H. Amino acids F329, F336 mutated to eliminate binding shown in blue. 
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to minimize the structural impact of the point mutants while still affecting 

hydrophobicity.   

All the HDAC3 mutants, containing polar amino acid substitutions in 

hydrophobic regions, complemented the growth defect, proliferating at a rate 

equivalent to or better than Hdac3-/- NIH 3T3 cells expressing wild-type Flag 

tagged HDAC3 (Fig. 16). Hydrophobicity in these four regions is not required for 

Hdac3 regulated cellular proliferation. 

 

An intact “lid” of HDAC3 is not necessary for a normal growth rate 

Finally, in analyzing the sequence alignment and structures of HDAC3 and 

HDAC2 it was determined that HDAC3 contains a phenylalanine (F) at amino 

acid 199 that is not present in HDAC2.  This additional amino acid makes the 

putative “lid” that extends over the active site of HDAC3 larger than that seen in 

HDAC2.  To make the HDAC3 “lid” look more like that of HDAC2, phenylalanine 

199 was deleted (Fig. 17).  Removal of F199 could alter the catalytic targets of 

HDAC3 leading to a failure to complement or could make HDAC3 constitutively 

active leading to a growth rate higher than wild-type. 

The HDAC3 mutant containing a single amino acid deletion in the “lid” that 

extends over the active site complemented the growth defect, proliferating at a 

rate equivalent to Hdac3-/- NIH 3T3 cells expressing wild-type Flag tagged 

HDAC3 (Fig. 18).  This suggests that either the deletion did not significantly alter 

the catalytic targets of HDAC3 or the “lid” does not impact the mechanism by 

which HDAC3 regulates cellular proliferation. 
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Figure 16. Protein surface hydrophobic regions are not necessary for a 
normal growth rate. Hdac3-/- NIH 3T3 cells were infected with MSCV virus 
expressing no HDAC3 (MSCV), wild-type flag tagged HDAC3 (Fl-HDAC3), and 
mutants intended to eliminate binding to hydrophobic regions (I26S,F48S   
G88S,F139S   F246S,F363S   F329S,F336S). Following an initial plating at 1 x 
105 cells, every two days cells were trypsinized, counted, and replated at 1 x 105 
cells.  
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Figure 17. “Lid” amino acid of HDAC3 not present in HDAC2. HDAC3 amino 
acids colored based on a spectrum of white being hydrophilic to red being 
hydrophobic. A. “Lid” and active site of HDAC3.  B. Amino acid F199 deleted to 
make the “lid” of HDAC3 look more like that of HDAC2 shown in blue.   
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Figure 18. An intact “lid” of HDAC3 is not necessary for a normal growth 
rate. Hdac3-/- NIH 3T3 cells were infected with MSCV virus expressing no 
HDAC3 (MSCV), wild-type flag tagged HDAC3 (Fl-HDAC3), and a mutant 
intended to make the “lid” of HDAC3 look more like that of HDAC2 (ΔF199).  
Following an initial plating at 1 x 105 cells, every two days cells were trypsinized, 
counted, and replated at 1 x 105 cells.  
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Binding of the SMRT/N-CoR deacetylase activating domain to HDAC3 is 
necessary for a normal growth rate 
 
 The recent publication of an HDAC3 crystal structure prompted further 

analysis of HDAC3 interactions (83).  HDAC3 is seen in complex with not only 

the deacetylase activating domain (DAD) of SMRT/N-CoR but also an inositol 

tetraphosphate molecule [Ins(1,4,5,6)P4] (Fig. 19A).  This crystal structure 

provides a more accurate view of the HDAC3 three-dimensional structure than 

the HDAC3 homology model.  Five HDAC3 amino acids were noted to contribute 

hydrogen bonds and salt bridges to Ins(1,4,5,6)P4 (83) (Fig. 19B).  Four 

combinations of HDAC3 point mutants resulted in loss of in vitro deacetylase 

activity and interaction with the SMRT-DAD (83).  The published point mutants 

were recreated to explore if interaction with Ins(1,4,5,6)P4 and subsequently the 

DAD of SMRT/N-CoR was necessary for the mechanism by which HDAC3 

regulates cellular proliferation (Fig. 20).  Amino acids in HDAC3: single loop 6 

(leucine 265), double loop 6 (arginine 264 and leucine 265), loop 1 (histidine 17, 

glycine 21, lysine 25), and double loop 1+6 (histidine 17, glycine 21, lysine 25, 

arginine 264 leucine 265, and arginine 301) were simultaneously mutated to their 

corresponding amino acids in HDAC8 (Table 4). 

 

Table 4. Crystal structure mutants 
  
Location Name Mutation(s) 
Single Loop 6 L265M 
Double Loop 6 R264P,L265M 
Loop 1 H17C,G21A,K25I 
Double Loop 1+6 H17C,G21A,K25I,R264P,L265M,R301A 
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Figure 19. HDAC3 amino acids interacting with Ins(1,4,5,6)P4. A. D-myo-
inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P4). B. Amino acids H17, G21, 
K25, R264, L265, R301 mutated to eliminate binding to (1,4,5,6)P4 shown in 
cyan.  Single loop 6 (L265), double loop 6 (R264,L265), loop 1 (H17,G21,K25), 
and double loop 1+6 (H17,G21,K25,R264,L265,R301). DAD of SMRT/N-CoR 
(green), Ins(1,4,5,6)P4 (blue), and HDAC3 (spectrum of white to red). 
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Figure 20. HDAC3 amino acids shown to interact with Ins(1,4,5,6)P4 and 
mediate association with the DAD of SMRT/N-CoR. HDAC3 amino acids 
colored based on a spectrum of white being hydrophilic to red being hydrophobic. 
A. View of the active site with acetyl group (yellow) and the association between 
DAD of SMRT/N-CoR (green), Ins(1,4,5,6)P4 (blue), and HDAC3 (spectrum of 
white to red).  B. Inset of DAD, Ins(1,4,5,6)P4, HDAC3 interface. C. Inset of acetyl 
containing active site. D. Ins(1,4,5,6)P4 interacting region.   E. Amino acids H17, 
G21, K25, R264, L265, R301 mutated to eliminate binding to (1,4,5,6)P4 shown in 
cyan. 
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Surprisingly, expression of these HDAC3 mutants had variable effects on 

the growth of Hdac3-/- NIH 3T3 cells.  Both the single loop 6 mutant (L265M) and 

the loop 1 mutant (H17C,G21A,K25I) complemented the growth defect (Fig 21).  

On the other hand, both the double loop 6 mutant (R264P,L265M) and the 

double loop 1+6 mutant (H17C,G21A,K25I,R264P,L265M,R301A) failed to 

complement the growth defect (Fig. 21).  These data suggest that the interaction 

with Ins(1,4,5,6)P4 and subsequently the DAD of SMRT/N-CoR does affect the 

growth rate.  That said, some of the previously published SMRT-DAD binding 

and in vitro deacetylase assay data is in conflict with this in vivo proliferation 

data.  Given the Y298H data it is unlikely that single loop 6 mutant (L265M) and 

the loop 1 mutant (H17C,G21A,K25I) would be catalytically inactive and still 

complement the growth defect.  This seems similar to the HDAC3 serine 424 

phosphorylation situation where in vitro assays may not accurately represent the 

in vivo situation. 

 

Discussion 

  The HDAC family of proteins is defined by the presence of a histone 

deacetylase domain.  The majority of HDACs, including HDAC3, are catalytically 

active enzymes.  Through the use of a well-established HDAC3 catalytically 

inactive mutant, I demonstrated that catalytic activity is required for the ability of 

HDAC3 to regulate cellular proliferation (Fig. 8).  HDAC3 could regulate growth 

rate through deacetylation of histones or non-histone proteins.  To date RelA is 

one of the only identified non-histone targets of  HDAC3.   Deacetylation of RelA,  
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Figure 21. Binding of Ins(1,4,5,6)P4 to HDAC3 is necessary for a normal 
growth rate. Hdac3-/- NIH 3T3 cells were infected with MSCV virus expressing 
no HDAC3 (MSCV), wild-type flag tagged HDAC3 (Fl-HDAC3), and mutants 
intended to eliminate binding to Ins(1,4,5,6)P4 (L265M   R264P,L265M   
H17C,G21A,K25I   H17C,G21A,K25I,R264P,L265M,R301A). Following an initial 
plating at 1x 105 cells, every two days cells were trypsinized, counted, and 
replated at 1 x 105 cells.  
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which binds directly to the N-terminus of HDAC3, terminates NF-κB target gene 

transcription through effective binding of IκBα inhibitory proteins.  NF-κB 

regulates genes that control cell survival and proliferation.  Expression of an 

HDAC3 mutant intended to eliminate binding to RelA complemented the growth 

defect (Fig. 14).  This implies that RelA binding to HDAC3 is not required for the 

mechanism by which HDAC3 regulates cellular proliferation.  At this time I am 

unable to confirm that the HDAC3 mutant does not bind RelA.  Other HDACs, 

including class 1 HDACs, deacetylate a number of non-histone targets including 

p53, YY1, signal transducer and activator of transcription 3 (STAT3), E2F 

transcription factor 1 (E2F1), Ku70, and heat shock protein 90 (HSP90) (91).  It 

seems likely that additional non-histone targets of HDAC3 exist.  Deacetylation of 

these targets could be the source of the mechanism by which HDAC3 regulates 

cellular proliferation.   

Even among class 1 histone deacetylases, HDAC3 is subject to unique 

regulation that directly impacts catalytic activity.  The C-terminal 35 amino acids 

of HDAC3 do not share sequence similarity with any other histone deacetylase.  

Much attention has been paid to this unique region as potentially key to HDAC3 

regulation.  Phosphorylation of serine 424, within this unique region, is the lone 

HDAC3 phosphorylation event impacting activity (86).  Phosphorylation of serine 

424 was required for HDAC3 dependent in vitro histone deacetylase activity (86).  

Through mutation of this amino acid to alanine and aspartic acid I demonstrated 

that phosphorylation at amino acid 424 is not required for the mechanism by 

which HDAC3 regulates cellular proliferation (Fig. 9).  Expression of HDAC3 
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containing an alanine mutant, which cannot be phosphorylated and does not 

resemble a phosphorylated amino acid, complemented the growth defect.  Given 

the in vitro deacetylase data, this suggests that either the mechanism by which 

HDAC3 regulates growth rate is not dependent on the deacetylation of histones 

or HDAC3 phosphorylation at serine 424 does not alter HDAC3 activity in vivo.  

Other class 1 HDACs, HDAC1 and 2, are phosphorylated at multiple sites (92).  

In the case of HDAC2, phosphorylation of different amino acids can regulate 

activity, co-repressor binding, and chromatin distribution (93, 94).  That said, 

phosphorylation of HDAC2 is not important for transcriptional repression (94).   It 

seems that, similar to HDAC2, the impact of HDAC3 phosphorylation is more 

complex than originally appreciated.  

A the time these experiments were started the full impact of changes to 

HDAC3, such as those seen following phosphorylation, could not be elucidated 

due to a lack of structural knowledge.  A structural model of HDAC3 was 

produced through the use of protein disorder prediction software, sequence 

alignment, homology modeling, and measures of protein surface hydrophobicity.  

This model allowed prediction, based on level of hydrophobicity, of HDAC3 

regions likely to bind other proteins.  Expression of HDAC3 containing mutations 

intended to eliminate binding to four independent surface accessible hydrophobic 

regions complemented the growth defect (Fig. 16).  This suggests that either no 

proteins bind these novel regions, the mutations introduced did not eliminate 

binding to the yet unidentified proteins, or the proteins that bind these regions are 

not required for the mechanism by which HDAC3 regulates cellular proliferation.  
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Previously, HDAC3 interacting proteins were identified using a stringent, high-

throughput yeast two-hybrid system (95).  These included proteins already 

known to interact with HDAC3 including RB, RelA, PPARγ, PML, heat shock 

proteins, and members of the TCP-1 ring complex.  Novel proteins were also 

identified such as mitogen-activated protein kinase 11 (MAPK11), protein 

inhibitor of activated STAT 2 (PIAS2), and retinoblastoma binding protein 4 

(RBBP4), among others.  Although the HDAC3-binding region has not been 

identified for most of these proteins, many of them have established roles in the 

regulation of proliferation.  Our approach to identifying novel binding regions can 

only be further enhanced by the publication of an HDAC3 crystal structure bound 

to the deacetylase activating domain of SMRT/N-CoR (83).   

The HDAC3 crystal structure offers a more precise picture of the protein 

surface.  In particular the “lid”, hypothesized to be important for HDAC3 catalytic 

site specificity, is not nearly as pronounced in the crystal structure as had been 

suggested by the homology model.  It is thus not surprising that expression of 

HDAC3 containing a single amino acid deletion in the “lid” complemented the 

growth defect, proliferating at a rate faster than Hdac3-/- NIH 3T3 cells expressing 

wild-type Flag tagged HDAC3 (Fig. 18).  This data highlights the idea that a 

model is only a model and may not provide an accurate representation of a 

proteins structure in all situations.   

The publication of an HDAC3 crystal structure also reinforces the 

importance of the SMRT/N-CoR deacetylase activating domain (DAD) for 

HDAC3 deacetylase activity (83).  Unexpectedly, expression of an HDAC3 
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mutant intended to eliminate binding to SMRT/N-CoR complemented the growth 

defect (Fig. 14).  The finding that Ins(1,4,5,6)P4 appears at the interface between 

HDAC3 and the SMRT/N-CoR DAD helps explain why this SMRT/N-CoR mutant, 

designed using the homology model, complemented the growth defect.  The 

homology model did not represent the impact of SMRT/N-CoR binding and the 

presence of Ins(1,4,5,6)P4.  It is likely that this mutant did not perturb HDAC3 

interaction with Ins(1,4,5,6)P4 and thus SMRT/N-CoR.  That said, expression of 

HDAC3 mutants specifically designed to eliminate interaction with Ins(1,4,5,6)P4 

had variable effects on growth of Hdac3-/- NIH 3T3 cells (Fig. 21).  These data 

highlight the importance of HDAC3 amino acids 264 and 265 (loop 6) to 

Ins(1,4,5,6)P4 interaction and the mechanism by which Hdac3 regulates cellular 

proliferation.   

Small active molecules that regulate chromatin such as inositol 

polyphosphates (IPs), ATP, NAD+, acetyl coenzyme A (Acetyl-CoA), and S-

adenosyl methionine (SAM) are generated through normal cell metabolism (12, 

96).  These small molecules and metabolites can regulate chromatin directly 

through modification of histones or by altering the activity of effector proteins 

such as nucleosome remodeling complexes.  Some remodelers are even subject 

to covalent modification through use of metabolites.  (12, 96) 

Inositol polyposphates, such as Ins(1,4,5,6)P4 seen in the HDAC3 crystal 

structure, are increasingly being recognized for their regulatory role in chromatin 

remodeling.  In yeast, mutations in genes encoding polyphosphate kinases, 

responsible for IP biogenesis, have led to altered gene transcription and impaired 
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promoter remodeling due to inefficient recruitment of ATP-dependent 

nucleosome remodeling factors (97-99).  The number of phosphate groups on an 

inositol ring, dictated by the activity of polyphosphate kinases, can affect IPs 

regulatory role.  IP6 inhibits while IP4 and IP5 stimulate nucleosome mobilization 

by remodeling factors (97).  Even membrane bound inositol 4,5-bisphosphate 

(PIP2) controls localization of some remodeling factors (100).  The presence of 

Ins(1,4,5,6)P4 at the interface of HDAC3 and SMRT/N-CoR lends further support 

to the idea of IPs regulating chromatin, this time through acetylation.  The 

catalytic activity of HDAC3, made possible through the HDAC3-Ins(1,4,5,6)P4-

SMRT/N-CoR interaction, is required for HDAC3 regulation of chromatin 

structure and cellular proliferation.  
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CHAPTER IV 

 

FUTURE DIRECTIONS 

 

Complementation of Hdac3-/- NIH 3T3 cells through expression of HDAC3 

mutants clearly represents a powerful tool to explore how HDAC3 structure 

affects function.  Additional replicates of all of the presented complementation 

experiments should be performed to further solidify the results.  Though I am 

confident in the conclusions, a significant number of equivalent experiments have 

not yet been performed to obtain statistical significance.  In addition, proper 

interpretation of the complementation experiments depends on the status of the 

HDAC3-protein interactions targeted.  Co-immunoprecipitations (co-IPs) should 

be performed to determine if the mutant intended to eliminate binding to RelA did 

in fact not bind RelA.  Also, co-IP experiments should be performed to determine 

if the homology model based SMRT/N-CoR mutant, the serine 424 mutants, and 

the crystal structure mutants are able to bind SMRT/N-CoR.  The status of 

SMRT/N-CoR interaction with the HDAC3 crystal structure mutants is of 

particular interest given the apparent discrepancy between the complementation 

data of two of the crystal structure mutants and the published SMRT-DAD data.  

All four of the crystal structure mutants were non-functional in in vitro deacetylase 

assays and did not bind the SMRT-DAD (83).  In the context of the DAD alone 

(91 amino acids), all of the crystal structure mutants may eliminate binding to the 

deacetylase activating domain of SMRT/N-CoR through disruption of the 



  69 

Ins(1,4,5,6)P4 interaction.  However, full length SMRT binds both the N and C-

terminal ends of HDAC3.  In vivo, SMRT (2514 amino acids) is a significantly 

larger more dynamic protein than was represented by the SMRT-DAD.  The 

impact of full length SMRT, in combination with SMRT-DAD, should be taken into 

account when considering the effects of HDAC3 mutations. 

Histone acetylation should also be examined in complementation 

experiments as another measure of HDAC3 function in vivo.  Histone H4 lysine 5 

and lysine 12 are well-established targets of HDAC3 histone deacetylase activity 

(35).   Increased H4K5 and H4K12 acetylation was observed in Hdac3-/- NIH 3T3 

cells as compared to controls (39).  Immunoblotting should be performed to 

compare the levels of H4K5 and H4K12 acetylation in Hdac3-/- NIH 3T3 cells 

expressing the control MSCV, Flag tagged wild-type HDAC3, and HDAC3 

mutations.  H4K5 and H4K12 acetylation should return to their normally low 

levels following complementation of the growth defect.  This would further 

address the discrepancy between the complementation data of two of the crystal 

structure mutants and the published SMRT-DAD data, particularly as it relates to 

the in vitro deacetylase assays. 

The HDAC3/SMRT-DAD crystal structure represents a more accurate 

depiction of the true structure of HDAC3 and breaks new ground with the 

identification of Ins(1,4,5,6)P4.  The presence of any molecule, let alone an 

inositol polyphosphate, bridging the interaction between HDAC3 and SMRT/N-

CoR had not been considered in the HDAC field.  The HDAC3 surface visualized 

in the crystal structure is different than that visualized in the homology model.  
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With the more accurate HDAC3 structure, further analysis of hydrophobic regions 

should be performed.  If HDAC3 regulates proliferation through deacetylation of a 

non-histone protein, such as RelA or those suggested by the yeast two-hybrid 

data (95), that protein is likely to interact directly with HDAC3.  Hydrophobic 

regions on the protein surface still represent likely sites of HDAC3-protein 

interaction.   

The presence of Ins(1,4,5,6)P4 in the HDAC3 crystal structure opens up 

new avenues of potential investigation not considered at the start of these 

studies.  Further analysis of the impact of inositol polyphosphates on HDAC3 

function should be performed through the use of Hdac3-null and heterozygous 

NIH 3T3 cells.  It is conceivable that there is an inositol polyphosphate feedback 

loop used to regulate the activity of HDAC3 (Fig. 22).  An increase in HDAC3 

activity, through Ins(1,4,5,6)P4 dependent formation of the SMRT/N-CoR 

complex, could lead to decreased levels of Ins(1,4,5,6)P4 through transcriptional 

repression of a polyphosphate kinase.  This decrease in Ins(1,4,5,6)P4 would 

lead to a decrease in HDAC3 activity through an inability to form a functional 

SMRT/N-CoR complex thereby leading to increased levels of Ins(1,4,5,6)P4.  It 

would be interesting to compare the levels of different inositol polyphosphates 

(IP2-IP6) in Hdac3F/- and Hdac3-/- NIH 3T3 cells through anion exchange HPLC 

chromatography.  Hdac3 loss could lead to an over all increase in the levels of 

inositol pohlyphosphates due to an increase in kinase expression, which could be 

evaluated  through  gene  expression  analysis,  or a shift in the balance between  
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Figure 22. Potential inositol polyphosphate feedback loop that regulates 
HDAC3 activity. An increase in HDAC3 activity, through Ins(1,4,5,6)P4 
dependent formation of the SMRT/N-CoR complex, could lead to decreased 
levels of Ins(1,4,5,6)P4 through transcriptional repression of a polyphsphate 
kinase.  This decrease in Ins(1,4,5,6)P4 could lead to a decrease in HDAC3 
activity through an inability to form a functional SMRT/N-CoR complex thereby 
leading to increased levels of Ins(1,4,5,6)P4.  
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individual inositol polyphosphates due to a lack of SMRT/N-CoR complex 

formation.   

A significant number of inositol kinases are necessary to generate the all 

of the inositol polyphosphates.  Up to six phosphates can be placed on the 

inositol ring in different combinations of locations.  Ins(1,4,5)P3 3-kinase is 

specifically responsible for phosphorylating Ins(1,4,5)P3 to generate 

Ins(1,3,4,5)P4.  Nonsense mutation of Ins(1,4,5)P3 3-kinase in mice led to severe 

T-cell deficiency (101, 102).  A similar loss of single positive T-cells was 

observed following conditional deletion of Hdac3 in mice using Lck promoter 

driven cre expression (A. Summers, unpublished data).  This further supports the 

argument that inositol polyphosphate regulation impacts HDAC3 activity.  

Polyphosphate kinases, including Ins(1,4,5)P3 3-kinase, should be knocked down 

in Hdac3F/- NIH 3T3 cells to determine if a similar decrease in proliferation, as 

that seen in the absence of Hdac3, would be observed.  In addition, H4K5 and 

H4K12 acetylation should be assessed in these experiments to confirm that the 

effects seen in the absence of a polyphosphate kinase are directly related to loss 

of Hdac3 function.  Binding of full length SMRT/N-CoR and SMRT-DAD to Hdac3 

should also be assessed in these experiments.  It is clear from our data and the 

HDAC3 crystal structure that the activity of HDAC3 is dependent upon 

Ins(1,4,5,6)P4 bridging between SMRT/N-CoR and HDAC3. 
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