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CHAPTER I 

 

 

 INTRODUCTION 

 

 

The latest review [1] from the National Cancer Institute (NCI) shows that, in the 

United States, there were approximately 126,329 people (66,622 male and 59,707 female) 

alive on January 1, 2007 who had brain or other nervous system cancer. The same report 

also estimated that 22,070 people would be diagnosed with brain cancer in 2009 and that 

12,920 of them will die of this disease. Tumor resection achieved during brain surgery is 

a common technique used in course of treatment. These surgeries can be very invasive 

and carry a significant risk to the patient. Indeed, malignant structures can be localized in 

close proximity to sensitive structures such as critical sensory and motor areas or blood 

vessels.  In addition to that, cancerous tissue is not always easily discernible from normal 

tissue. To address this issue, image-guided systems have been developed over the years 

in an attempt to assist surgeons to perform complete tumor resection while avoiding 

touching sensitive areas.  

A typical image-guided neurosurgery system (IGNS) presents preoperative 

images to neurosurgeons in all angles so that they can precisely locate tumor and brain 

structures and effectively plan the operation to minimize the damage to the brain. Such 

preoperative images are usually of high quality and hard to acquire during the procedure. 



2 

 

However, it is almost impossible for the patient’s head to be in the same orientation in the 

operating room as it is in the scanner and a substantial amount of brain deformation 

occurs during the procedure due to the resection itself, loss of Cerebrospinal Fluid (CSF) 

or the administration of drugs [2-4]. In the medical imaging literature, intraoperative 

brain deformation is commonly referred to as brain shift. Due to this brain shift, images 

acquired preoperatively do not accurately represent the state of the brain during the 

procedure. To take advantage of all the information preoperative imaging provides to the 

surgical team, these images need to be adjusted to conform to the actual shape of the 

brain. A number of techniques have been proposed over the years, which will be 

reviewed succinctly in the next following sections. In this dissertation, we present a set of 

methods that can be used with a laser range scanner to estimate cortical displacement. 

These displacements can be used, in turn, to drive mathematical models capable of 

estimating brain displacement in deeper regions.   

 

1.1. Background on Intraoperative Brain Shift Estimation 

A number of imaging techniques have been employed to estimate intraoperative 

brain shift. These include intraoperative MR (iMR) [12-16], intraoperative Computed 

Tomography (iCT) [17-20] , intraoperative Ultrasound (iUS) [21-33], stereo imaging [34-

37], or Laser Range Scan (LRS) images [38-43]. In this section, these imaging systems 

are reviewed together with the corresponding computational methods used to estimate 

brain shift. 
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1.1.1 Methods developed to estimate brain shift using iMR 

Intraoperative MR images can either be acquired by using interventional scanner 

directly in the operation room (OR) [12-15, 28] or moving patients back and forth 

between the OR and an adjacent scanning room [16]. Interventional MRs are not only 

expensive but they also require expensive non-magnetic surgical instruments. In addition, 

to permit better accessibility to the patients during the operation, open magnets are often 

used. These scanners typically have poor spatial resolution and the images they generate 

often suffer from substantial geometric distortions. As a result interventional MRs have 

not been widely adopted in brain surgeries. The alternative, which is to move the patient 

out of the OR for scanning, complicates the surgical procedure and introduces up to 10 

minutes overhead for each scan.  It is also not very commonly used. 

Even when intraoperative MR images are acquired, their spatial resolution is often 

lower than the spatial resolution of standard diagnostic scanners. Registering pre- and 

intra-operative images is thus advantageous and various algorithms have been developed 

to achieve this. In [15], the intra- and pre-operative images are aligned by maximizing 

their Mutual Information (MI) with a rigid transformation. Ferrant et al. [6, 14] proposed 

a nonrigid surface matching algorithm to track the shift of key surfaces and then further 

extrapolate volumetric deformation using a linear finite element elastic model. In [13], a 

block matching algorithm was proposed to estimate a  sparse deformation field, and then 

a dense deformation field was computed by an iterative hybrid method. This method was 

later extended to preoperative fMRI and DT-MRIs in [15].   
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1.1.2 Methods developed to estimate brain shift using iCT 

The first iCT scanner in the United States was made at the University of 

Pittsburgh for minimally invasive brain surgery in 1981 [20]. Recently, a mobile CT 

scanner, equipped with wheels for intraoperative and ICU applications, was developed at 

Harvard [17]. In 2007, BrainSuite iCT [18], a system integrating Siemens' Miyabi CT 

scanner with BrainLab's computer-aided surgery equipment, was installed in the United 

States for the first time. The total investment for fielding this system ranges from 2 to 5 

million dollars. It is approximately half of an iMR system but it remains a substantial 

capital investment, which may not be affordable for the vast majority of the hospitals in 

the US and over the world.  

Recently, a portable low dose intraoperative CT called xCAT ENT [19] has been 

introduced. The dimensions of the scanner are 32" x 47" x 60", which is smaller than 

traditional CT scanner, and it is equipped with wheels to be effortlessly rolled into 

position directly behind the patient's head by one person. It can produce CT images with 

slice thickness as low as 0.4mm. The scanning time is around 20s for 600 frames and 

reconstruction time is about 60sec/300 slices with a radiation dose of 57.6mAs. This 

scanner is good indeed for providing additional guidance for the surgeon with good 

resolution in a short time but soft tissue contrast is not as good as with diagnostic 

scanners.  

 

1.1.3 Methods developed to estimate brain shift using iUS 

Using ultrasound is much less expensive than using MR, but this usually yields 
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images with relatively poor quality. To date there are three types of registration 

algorithms that have been used to register intraoperative ultrasound with preoperative 

MR images [22, 28, 30, 31, 33].  

The first type relies on the image intensity or gradient values. As US tends to 

enhance the boundaries between anatomical structures, its intensity resembles the 

gradient more than the raw intensity of MR images. To better associate the intensity of 

MR with that of US, Roche et al. [32] proposed a similarity metric named the Bivariate 

Correlation Ratio (BCR), which generalizes the correlation ratio and considers both 

gradient and intensity information of MR images.  

The second kind of method searches for a transformation that maximizes the co-

joint probability of voxels being included in hyperechogenic structures in both the 

preoperative MR and intraoperative US images. The probability map is constructed using 

both the mean curvature of the preoperative MR image and manual segmentation of the 

pathological tissues in the MR image. In [23], it has been shown that this method is 

superior to registration based on mutual information, normalized mutual information, or 

the correlation ratio. However, the validation was performed on three intraoperative data 

acquired after opening of the dura and did not involve any tumor resection case. In 

addition, the requirement of manual segmentation of pathological tissues makes this 

method difficult to integrate into the clinical flow.  

The last but the most common method is to register MR with iUS images based 

on homologous features  [22, 24, 25, 29-31]. In [22]  preoperative MR  is first registered 

with iUS image. Then the brain shift was measured by human delineated homologous 

features such as the falx or tumor boundaries. Reinertsen et al. [31] registered vessels 
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segmented in preoperative MRA volumes with vessels visible in intraoperative Doppler 

US images. The authors compared three different registration schemes (1) a rigid 

registration based on manually selected points, (2) a rigid registration based on vessel 

points extracted automatically, and (3) a non-rigid registration based on vessels. In the 

non-rigid registration, a modified ICP approach [45], in which outliers are eliminated 

through a least trimmed squares approach, is used to establish point correspondence, 

followed by the estimation of a Thin-Plate Splines (TPS) transformation. It was shown 

that the non-rigid registration only improves results marginally over the rigid registration, 

suggesting little deformation occurred between the pre- and intra-operative images in 

their studies. However, it is not clear whether any of their intraoperative US were 

acquired after resection, which is the case in our study. The tumor resection introduces 

large deformations of the cortical surface in our data, which requires the non-rigid 

registration of images collected before and after tumor resection.  

 

1.1.4 Methods developed to estimate brain shift using stereo images 

Nakajima et al. proposed to register preoperative data with intraoperative video 

images as early as 1997 [45]. In their work, vessels segmented in preoperative MR 

images were registered to surface vessels visible in the intraoperative video images and 

the system was tested on images acquired after opening of the dura. Sun et al. extended 

this approach by using a pair of cameras [37]. They demonstrated the capability of 

tracking the shape of the cortical surface after opening of the dura on two neurosurgical 

cases. More recently Delorenzo et al. [34, 35] have used a pair of stereo images and 

registered them with preoperative images based on a combination of intensity and 
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manually segmented sulcal features. To correct calibration errors, the registration and 

camera calibration are performed simultaneously in their algorithm. Their method was 

applied to patients undergoing stage 1 epilepsy surgery, which only involves the opening 

of the dura. The more challenging problem, measuring brain shift during tumor resection, 

is not addressed in their studies. Moreover, to the best of our knowledge, they have not 

developed any automatic algorithm to extract vessels from those stereo images. 

 

1.1.5 Methods developed to estimate brain shift using LRS 

At our institution, a laser range scanner with an integrated high resolution digital 

camera is used [39-43] to capture the visual appearance as well as the three-dimensional 

geometry of the brain surface during surgery. Briefly described (more detailed 

information are provided in Chapter III), the LRS captures a 2D picture of the field of 

view and a 3D point cloud (i.e., a set of surface points). The scanner also provides a 

mapping between the two, such that a textured point cloud can be generated. The scanner 

can also be tracked [46]. This means that a 3D point acquired at time t1 can be 

transformed into the coordinate system at time t2 even if the scanner position changes in 

the t1- t2 interval, as often happens during surgical cases. Tracking brain motion thus only 

requires establishing a correspondence between points acquired at time t1 and time t2. The 

LRS used in these studies is somewhat unique in that it captures both geometric and 

intensity information from the object of interest.  

Preliminary studies have explored brain shift estimation during craniotomy using 

LRS data. In [41], several rigid registration methods were applied on phantom data to 

examine the accuracy and robustness of the proposed framework. Also, registration 
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performed on one in vivo case has shown the feasibility of acquiring data in the OR with 

this system. Results indicate that a method called SurfaceMI, which used intensity 

information, is better than ICP [47] and other point based registration for registration of 

preoperative MR image to the intraoperative LRS surface.  

In the work presented herein, we focus on the registration of intraoperative data 

acquired at different time instead of registration from preoperative MR image to 

intraoperative LRS surface.  In other words, we have extended our study from 

craniotomy to tumor resection. In Chapter III, we propose a method to do registration 

from pre- to post-tumor resection LRS scans. It has been evaluated using ten in vivo data 

from the OR and shown to lead to an RMS error that is smaller than 1mm. 

In addition to the work performed at our institution, Audette et al. [38] also 

performed 3D non-rigid surface registration on phantom data obtained by LRS. This 

method requires initial manual alignment of the surfaces, and to the best of our 

knowledge, it has not been tested on clinical data so far. 

A central part of the work presented in this dissertation, is to investigate methods 

to estimate the large brain shift occurring during tumor resection, mainly via registration 

of pre- and post-resection data. Preliminary results using intensity-based registration has 

shown the feasibility of aligning 3D LRS scans via registration of 2D images [42, 43]. 

However, only one in vivo case with a small tumor resection was tested using this 

method. With more in vivo data collected, it became apparent that intensity-based 

registration alone would not work for cases with bigger resections. The main challenges 

include the hole created by the resection itself, sagging of the brain caused by this hole, 

some tissue underneath the skull appearing in the field of view after resection, and 
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bleeding. All these issues modify the appearance of the images. Therefore, methods that 

rely on extracting homologous features visible in the images need to be developed. In the 

type of images we deal with, vessels are the most prominent features, so in this 

dissertation we have developed and tested registration methods based on them.  

 

1.1.6 Brief review of vessel segmentation from optical images 

To develop vessel-based registration, it is necessary to have a robust vessel 

segmentation algorithm. Segmenting vessels from LRS images shares lots of 

commonalities with segmenting vessels from retinal images in that both LRS and retinal 

images are optical images, both of them contain vessels with variable width, and both of 

them suffer from artifacts introduced by lighting conditions. Since no vessel 

segmentation techniques on LRS images have been reported in literature, a brief review 

on the segmentation of blood vessels from retinal images is presented here. Briefly 

described, these methods fall into the following categories: match filtering [49-54], 

tracking based methods [55-58], multithreshold probing [51, 59], morphology based 

techniques [60, 61]  and clustering [58] or supervised learning method [62-66]. 

Lalonde et al. tracked a ‘twin point’ along the vessel boundary within an edge 

map [56]. Cree et al. tracked the vessel by fitting a two-dimensional physical model of 

vessel profile to a local region of the vessel [55]. This category of tracking algorithms 

does not fit well with LRS images since the vessels in the image are not always 

connected. In fact, they are just parts of different veins, arteries, and capillaries, which 

happen to appear on the opening of cortical surface and are not necessarily connected to 

each other.  
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Some researchers applied supervised learning methods to retinal vessel 

segmentation. Sinthanayothin et al. [64] used a neural network trained by the 

backpropagation learning algorithm. Niemeijer et al. [62] trained a k-nearest neighbor 

classifier to classify the feature vectors constructed from multiscale Gaussian filtering 

and the original level of green channel image. Staal et al. obtained better results [66] by 

using ridge profiles and applying a feature selection algorithm. Soares et al. [65] adopted 

the Gabor wavelet transform to construct a five dimensional feature vector and used 

Bayesian classifier. Ricci et al. [63] used a line operator to construct a three dimensional 

feature vector and adopted a support vector machine. Methods of this kind differ in the 

construction of feature vectors and the choice of classifier, but the main idea remains the 

same, which is to find the best discriminant features to separate the vessels from the 

background.  

As far as matching filter based methods is concerned, Chaudhuri et al. proposed a 

directional 2D matched filter as early as 1989 [49]; Koller et al. proposed a nonlinear 

multiscale line filter based on the second derivative of Gaussian function [52] in 1995. 

One of the matched filter methods, which utilizes the elongated structure of vessels is 

called multiscale vesselness filter. This was proposed by Frangi et al. [67], who used the 

eigenvalues of the image’s Hessian matrix to construct a vesselness measurement for 

each scale. Frangi’s idea was inspired by the work of Lorenz [53], and Sato [54], who 

introduced a 3D multi-scale line enhancement filter to segment curvilinear structures in 

medical images. The filter is based on the second order directional derivatives of 

smoothed images using Gaussian kernel at multiple scales with adaptive orientation 

selection using the Hessian matrix. They demonstrated the segmentation of brain vessels 
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from MRI/MRA, bronchi from a chest CT, and liver vessels from an abdominal CT using 

this method. Later this approach has been used and extended by numerous authors (see 

for instance [50, 68, 69] and others).  

The matched filter based method using Hessian matrix is of particular interest for 

LRS images because it is fast and easy to use. But we noticed that even if LRS images 

share similarities with retinal images, the vessels in retinal images have much better 

intensity homogeneity than LRS images. The abrupt intensity change inside the vessel in 

LRS images, which is caused by reflection of blood, produces fake edges inside the 

vessels and causes trouble for all the methods that use edge or gradient information. 

Moreover, since the cortical surface can be very irregular after tumor resection, the 

lighting will cause more artifacts than what is typically visible in the retinal images, 

which is always a smooth spherical surface. Part of our work will thus involve 

developing specific methods that will permit the robust segmentation of LRS images. 

 

1.1.7 Brief review of methods developed to track nonrigid motions  

As will become clear in later chapters, automatic registration of LRS images 

acquired before and after resection is not an easy task even if vessels can be segmented. 

This is so because the large discrepancy caused by the resection makes finding 

homologous features automatically extremely challenging. We will solve this problem by 

using intraoperative video, as the high frame rate in these sequences makes changes 

between frames smaller and thus it is possible to track these images automatically. The 

field of image tracking is very large and a complete coverage of the literature published 

in this area is outside the scope of this dissertation. But, some representative examples 
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include kernel-based methods such as mean-shift [70], which locate stationary points of a 

density function given discrete data sampled from that function. Contour-based methods, 

such as active contours, proposed by Kass et al. [71] are also common. Modified versions 

of this approach have been used to track non-rigid structures such as blood cells [72] and 

much attention has been paid to the human heart and the tracking of the left ventricle in 

both 2D and 3D [73-76]. Another kind of method, i.e., active shape models [77], which 

incorporates some prior knowledge of the object shape, has been used for motion tracking.  

For example, to track the silhouette of a walking pedestrian [78], or organs [79]. Some 

authors even have extended the active shape model to include the modeling of temporal 

shape variations [80]. Here, since the vasculature we are tracking does not move in 

specific motion patterns, active shape models do not seem to be a sound approach. As we 

need to do for the segmentation of vessels in the LRS images, we will develop methods 

that are adapted to the type of images we are dealing with.  

 

1.2. Goals and Contributions of This Dissertation 

The goal of this dissertation is to develop a set of new methods that can be used to 

estimate intraoperative cortical surface shift through tracked laser range scan (LRS) data 

and microscope video sequences. This set of methods includes novel vessel segmentation 

algorithms, new registration methods for pre- and post-resection LRS data and new 

tracking algorithms for microscope video sequences recorded during a tumor resection 

surgery. Using the techniques developed in this dissertation, we have built a framework 

that will allow accurate measurement of brain shift in the operating room.  

The contributions of this dissertation are summarized below: 
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First, we have tested whether it is feasible to register the pre- and post-resection 

LRS images using manually delineated vessels. Based on this, experiments have been 

performed to compare a 2D/3D feature-based registration and a 3D feature-based 

registration. We have shown that the registration of 2D images acquired with a tracked 

laser range scanner is sufficient to compute the 3D displacement of pixels visible in the 

images. 

Second, a semiautomatic method has been developed to extract homologous 

vessels in pre- and post-resection LRS images and register them. This reduces human 

interventions for vessel extraction, and facilitates the feature-based registration method to 

be used in the OR. Specifically, experts specify pairs of starting and ending points for 

each vessel segment. Then, an algorithm has been developed to connect those pairs of 

points quickly and automatically. The computed vessel centerlines, which are 

homologous features because the selected ending points are homologous, can be well 

registered using the proposed feature-based registration method.  

Third, an automatic segmentation approach has been developed to extract vessels 

from the intraoperative images, which are then used to register the images. This could 

eliminate a significant amount of interaction time that is otherwise required to extract the 

vessels.  

Fourth, a method has been proposed and developed to track vessels in a single 

video sequence obtained from the microscope in the OR. The tracking of video sequences 

could be used to help relate pre- and post- tumor resection LRS image acquired at large 

time intervals despite the big differences visible in these images. In turn, this would 

permit the automatic estimation of cortical shift. 
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At last, a software program that assists in inter-video tracking has been developed 

to track multiple intraoperative video sequences. As the shift between video sequences is 

relatively big and nonrigid, it is still necessary to provide a graphical interface that allows 

users to give proper human guidance so that high precision tracking can be ensured. 

The reminder of this dissertation is organized as follows. Chapter II shows using a 

2D approach is preferable than a 3D approach when using vessels extracted from the LRS 

images. Chapter III presents a semiautomatic method to extract vessels from pre- and 

post- brain tumor resection laser range scan image. It details the validation of this method 

for ten patients. Chapter IV proposes a method to extract vessels fully automatically from 

laser range scan images. Because pre- and post- resection vessels are too different to be 

registered fully automatically, Chapter V presents a method to collect and track 

intraoperative video sequences. It also provides a detailed validation study performed on 

21 video sequences. Chapter VI addresses the inter-video registration issue. A program 

has been created to facilitate human interaction for this purpose. 
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Abstract 

Intraoperative brain shift limits the usefulness of image-guided neurosurgery 

systems (IGNS), which are based on preoperative images. Methods that are being 

developed to address this problem need intraoperative measurements as input. In this 

chapter, we present an intraoperative surface shift measurement technique that relies on a 

tracked 3D laser range scanner. This scanner acquires both 3D range data and 2D images, 

which are co-registered. We compare two methods to derive displacements at every point 

in the field of view. The first one relies on the registration of the 2D images; the second 

relies on the direct 3D registration of the 3D range data. Our results, based on five data 

sets, show that the 2D method is preferable. 

 

 

2.1 Introduction 

How to measure and compensate for brain shift during surgical procedures is an 

active area of research in image-guided neurosurgery (IGNS).  Studies have shown that 

the brain could deform more than two centimeters during surgery due to a number of 

reasons ranging from the procedure itself (e.g. resection), gravity, or the administration of 

drugs. Deformations of this magnitude greatly reduce the usefulness of IGNS navigation 

systems, which are based on preoperative images. To address these issues, approaches 

have been proposed in recent past. These typically involve deforming preoperative 

images using intraoperative information [7]. At our institution, we rely on finite element 

models to perform the deformation [81]. The intraoperative displacement of surface 

points is necessary to guide the deployment of boundary conditions for these models. 
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Several approaches are possible to compute this displacement, ranging from 

localizing homologous points during the surgery using a tracked probe to stereo images 

[2].  In our system, we use a tracked laser range scanner, which provides us with dense 

data sets [82]. The laser range scanner captures a 2D picture of the field of view and a 3D 

point cloud.  The scanner also provides a mapping between the two, such that a textured 

point cloud can be generated. The 3D coordinates of any point and its corresponding 

coordinate in the field of view 2D image can thus be computed. The scanner is also 

tracked, which means that the 3D coordinates of a point acquired at time t1 can be related 

to the coordinates of a point acquired at time t2 even if the scanner position changes in the 

t1-t2 interval, as is the case in our application. The problem thus consists in establishing a 

correspondence between points acquired at time t1 and time t2. If this correspondence is 

established, displacements can be computed. In previous work [42, 43] we have reported 

a method to establish such a correspondence. This method, which relied on an intensity-

based non-rigid registration method to register the 2D pictures, is appropriate for cases in 

which the tumor is small and the majority of the cortical surface remains within the visual 

field. Based on extensive experience in the operating room, we have realized that many 

of these assumptions are significantly challenged during neurosurgical cases involving 

tumor resections. 

In this chapter, we present alternative approaches to establish this correspondence 

and we evaluate the results we have obtained with these approaches on 5 patients.  
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2.2 Methods 

 

 

2.2.1. Data acquisition 

A high resolution commercial LRS (RealScan3D USB, 3D Digital Inc., Bethel, 

CT, USA) system is used in this study. The device is capable of generating 500000 points 

with a resolution of 0.175mm. The 3D position of each point on the scan is calculated via 

triangulation. At the same time, a digital camera (Canon Optix 400) acquires a texture 

image (2D picture) with a resolution up to 2592 by 1944 pixels. The texture image and 

the 3D point cloud are registered. A complete data set thus includes a set of image pixels 

with coordinates (u, v) and a series of points with coordinates (x, y, z). The (u, v) 

coordinates of any (x, y, z) point can be computed and vice-versa. Because the density of 

the point cloud is lower than the pixel density, obtaining x, y, and z coordinates for a 

pixel typically requires interpolation.  

  The following protocol, which was approved by the Vanderbilt IRB, was used to 

acquire data from consented patients. After opening of the dura, the LRS system, which 

is mounted on an adjustable arm or a monopod, is placed within 20-30 cm of the patient. 

A pre-resection scan is taken, which takes on the order of 1minute. The system is 

removed from the field and the procedure proceeds normally. After tumor extraction, a 

post-resection scan is acquired by moving the scanner back into place above the 

craniotomy. The scanner is tracked and a digitization stylus is tracked during the whole 

process by an Optotrak Certus system (NDI, Waterloo, Ontario, Canada).  Because the 

scanner is tracked, the pre- and post-resection positions do not need to be exactly the 
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same. More details about the data acquisition procedure can be found in [40].  

Fig.II.1 shows a patient in the OR with the tracked laser range scanner positioned 

on the top of the craniotomy. The IREDs used for tracking the device, which are attached 

to the scanner, are also visible. 

 

Fig.II.1: View of the operating room with the tracked laser range scanner positioned approximately 

30cm above the craniotomy. 

 

 

2.2.2. Registration protocol 

Establishing a correspondence between points in the pre- and post-resection scans 

can be viewed as a registration problem. Several approaches are possible with the data set 

at our disposal. The first approach is to register the 2D images. Because each of the 2D 

images is registered to its own point cloud, the 3D displacement of any point within the 

images can be obtained once the 2D images are registered. Panel (a) of Fig.II.2 
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schematizes this approach, which has been used in [42, 43]. The second approach is to 

work directly on the point cloud and to view the problem as a 3D registration problem. 

This approach has been investigated by Cao et al. [39]. In this work, 3D features were 

manually identified in the 3D point clouds and registered to each other. Displacements 

computed at the selected features were then interpolated over the entire 3D point cloud. 

This approach is schematized in panel (b) of Fig.II.2. 

 

   

(a) 

R Pre-resection  
2D image (u, v) 

 

Post-resection  
2D image (u’,v’) 

 

Pre-resection 3D  
Point clouds (x,y,z) 

 

Post-resection 3D  
Point clouds (x’,y’,z’) 

 

(b) 

R 
Pre-resection 3D 
Point clouds (x,y,z) 

 

Post-resection 3D  
Point clouds (x’,y’,z’) 
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 (c) 

Fig.II.2: (a) and (b) schematize two approaches that can be used to establish a correspondence 

between pre- and post- resection scans.  Panel (c) shows an actual case. The top two images are the 

2D pictures, the bottom two are the textured 3D point clouds. 

In the work presented herein, we compare results obtained with the 2D and the 3D 

approaches. As discussed above, the images included in the current study involve large 

tumors and therefore large resections, which induce relatively large brain displacements. 

Because of this, segments of the brain visible in the preoperative images may not be 

visible in the postoperative images and vice-versa. All these factors make purely 

intensity-based registration method, such as the one proposed in [48], less robust. Instead, 

we rely on feature-based methods. First, pre- and post-resection images are brought into 

rough alignment using a 2D projective transformation computed with four points marked 
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on the skull around the craniotomy, which are visible in both pre- and post-resection 

images. Next, vessels are manually delineated in both images (see lines visible in Fig.II.2. 

(c)). These vessels are then registered to each other using the robust point matching 

(RPM) algorithm proposed by Chui et al. [83]. This algorithm takes as input two sets of 

points and iteratively computes a correspondence between these points and the 

transformation that registers them. The two sets of points do not need to have the same 

cardinality and the algorithm can deal with the problem of outliers. The transformation 

computed based on the points is then applied to the entire image volume. As is done in 

the work of Chui et al., thin-plates splines (TPS) are used as interpolants.  

In the 2D approach, the 2D images are registered first.  Once this is done, the 

correspondence between each 2D image and its corresponding point cloud is used to 

compute 3D displacements at every point. Finally, deformed textured surfaces (3D point 

clouds) are generated. Because 3D coordinates are known for points on an irregular grid, 

3D displacements are interpolated using the FastRBF toolbox developed by FarField 

technology [84]. 

In the 3D case, the 3D coordinates of the manually selected points are first 

computed (interpolation is also required here) and the two sets of 3D points are registered 

using the 3D version of the RPM technique. The transformation computed in this way is 

applied to the entire 3D texture surfaces.  

 

 

2.3. Experiments and Results 

Five data sets have been acquired according to the protocol described above. 
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Tumor size for these cases ranged from 2.8cm3 to 193.4 cm3. In each case, vessels were 

manually delineated in both the pre- and post-resection images. Representative post-

resection image with delineated vessels can be seen in Fig.II.3. The 2D and 3D 

registration methods were then applied to these data sets.  

 

Fig.II.3: Representative post-resection image with delineated vessels. 

Fig.II.4 illustrates qualitatively the type of results that were achieved. Panel (a) 

shows the pre- and post-resection textured surface (top surface and bottom surface, 

respectively). This figure illustrates both the overall brain sag that has occurred between 

the two acquisitions and the void left by the resection (the intrusion visible in the middle 

of the bottom surface). Brain sag in this case, which is not unusual, is on the order of 8-
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15mm. 
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Fig.II.4: Panel (a) shows the pre- and post- LRS (after tumor resection) in the same physical space. 

Panel (b) shows the registration result using 3D method. Panel (c) shows the registration result using 

2D method. Panel (d) shows the same as panel (c) but view from a different angle. Panel (e) shows the 

deformation field of the 2D method, and the purple arrow represents the gravity direction. Panel (f) 

shows the difference between the two deformation fields` magnitude map. 

Panels (b) and (c) show the final registration results obtained with the 3D and the 

2D methods, respectively. In both cases, the pre-resection texture surface has been 

registered to the postoperative textured surface. The pre-resection surface has been 

colored in gray to facilitate visualization. Panel (d) shows the same thing as panel (c) but 

(a) (b) 

(c) (d) 

(e) (f) 
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from a different angle.  

Focusing on panels (b) and (c), it is apparent that the 2D approach produces 

results that are superior to those obtained with the 3D approach. Panel (e) shows the 

displacements vectors computed with the 2D approach. In this plot, the length of the 

arrows is proportional to the computed displacements; their direction is derived from the 

computed deformation field. The direction of gravity is shown with the gray arrow. These 

results are consistent with previously reported brain shift studies that show that the 

majority of the displacement occurs in the direction of gravity [85]. 

Panel (f) shows the difference in the magnitude of the displacements computed 

with the 2D and the 3D approaches. The lines drawn on the figure are the vessels that 

were used for computing the registrations. In this figure a light shade of gray indicates a 

larger value than a darker shade. As expected the displacement difference is zero at the 

vessels but is substantial away from the vessels (up to 10 mm).  

 

Fig.II.5: Brain shift and target points 

To quantitatively test and evaluate both approaches, a number of homologous 

points have been selected manually on each pair of images. Typically, these point sets 
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consist of vessel bifurcations that could be visualized in the images. The number of 

points selected for each pair of images ranged from 6 to 11, depending on the vessels that 

could be seen. When possible, the points were selected such that they would cover the 

entire field of view. Fig.II.5 shows one example in which six points have been selected. 

The figure also shows one of the vessels that were used to compute the registration. For 

each pair of images the Euclidean distance between the homologous points after 

registration was computed and averaged, and defined as Target Registration Error 

(TRE)[86]. The results we have obtained with the five set of test images are reported in 

Table.II.1. This table also reports the average displacement computed at the points with 

the 2D method. 

Table.II.1: Comparison of TRE 

Patient# 

Number of  Estimated          TRE(mm) 

target points average shift 3D RPM 2D RPM  

1 6 22.4 5.4 3.2 

2 6 14.7 3.0 2.7 

3 6 1.9 0.2 0.2 

4 6 3.1 1.1 1.0 
5 11 13.8 3.3 2.7 

Mean± STD 7± 2.2 9.6± 8.6 2.6± 2.0 1.9±1.2 

 

 

2.4. Discussion  

It may appear counter-intuitive that a 2D method produces more accurate results 

than a 3D method. The difference between the two approaches is caused by the 

interpolation method that is used. In both cases, registration is computed based on sparse 
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features (lines drawn in the images). The transformations computed with these sparse 

features are then applied to the entire field of view. When the 2D approach is used, 

images (2D pictures) are registered and displacements are computed using the associated 

3D point clouds. More formally, (u. v) -> (u’, v’) => (x, y, z) -> (x’, y’, z’).  The point (x’, 

y’, z’) is obtained by interpolating the 3D point cloud locally. As a consequence, this 

point falls on the textured surface. In the 3D case, the situation is different. The 3D 

coordinates of the vessels are used to compute the transformation. This 3D 

transformation is then applied to the entire field of view to create a transformed textured 

surface. Therefore, displacements away from the features used to compute the 

transformation can be arbitrary.  The 2D registration approach is thus more constrained 

than the 3D one, which explains its superior performance.  

Our results show that intraoperative brain shift can be very substantial and that 

preoperative images need to be transformed to provide surgeons with reliable information. 

Results we have obtained with the tracked laser scanner approach indicate that this is a 

viable solution, but the method still requires a fair amount of user interaction to identify 

homologous structures. In the following chapters, we present methods aiming at 

automating the process. This is, however, a challenging problem because of the large 

difference between the pre- and post-resection images.  
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Abstract 

This chapter presents a semi-automatic method for the registration of images 

acquired during surgery with a tracked laser range scanner (LRS). This method, which 

relies on the registration of vessels that can be visualized in the pre- and the post-

resection images, is a component of a larger system designed to compute brain shift that 

occurs during tumor resection cases. Because very large differences between pre- and 

post-resection images are typically observed, the development of fully automatic methods 

to register these images is difficult. The method presented in this chapter is semi-

automatic and only requires the identification of a number of points along the length of 

the vessels. Vessel segments joining these points are then automatically identified using 

an optimal path finding algorithm that relies on intensity features extracted from the 

images. Once vessels are identified, they are registered using a robust point-based 

nonrigid registration algorithm. The transformation computed with the vessels is then 

applied to the entire image. This permits to establish a complete correspondence between 

the pre- and post- three-dimensional LRS data. Experiments show that the method is 

robust to operator errors in localizing homologous points and a quantitative evaluation 

performed on 10 surgical cases shows submillimetric registration accuracy. 

 

 

3.1. Introduction 

How to measure and compensate for brain shift during surgical procedures is an 

active area of research in image-guided neurosurgery (IGNS). Studies have shown that 

the brain could deform more than two centimeters during surgery due to a number of 
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reasons ranging from the procedure itself (e.g. resection), loss of cerebrospinal fluid 

(CSF), or the administration of drugs. Deformations of this magnitude greatly reduce the 

usefulness of standard IGNS navigation systems, which are based on preoperative 

images. To address these issues, approaches have been proposed, which rely on 

biomechanical models to predict the deformation of intraoperative images during the 

procedure, as a low-cost alternative to intraoperative magnetic resonance imaging [5-11]. 

But, all of these methods require some type of intraoperative brain movement 

measurements as input.  

Methods, which have been proposed to estimate brain movement intra-operatively 

include intraoperative MR images [12, 13], ultrasound [28, 30, 31], stereo images [34, 

37], or laser range scanners [38-43, 46]. Intraoperative MR images can either be acquired 

with interventional scanners, which are in the operating room [12, 13], or by moving the 

patient to an adjacent room in which the scanner is located [16]. Large fixed-coil 

interventional MRs are expensive, require special equipment, and limit surgeons’ access 

to the operating field [28]. Smaller open magnets typically suffer from poor resolution 

and geometric distortions. Because of this, it is unlikely that this type of intraoperative 

imaging will become widely available. An alternative is to build operating rooms 

adjacent to the scanning room. During the procedure, the patient can be moved back and 

forth between the rooms and scans acquired. This, however, complicates the procedure 

and can add up to 10 minutes for each scan [16]. Ultrasound (US) is a cheaper solution 

but it suffers from relatively poor image quality. Nevertheless it has been used by several 

groups to register pre- and intra-operative images (see for instance [28, 30, 31],[22, 87]). 

In [28], the authors estimate brain shift around the tumor by computing a rigid body 
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registration between the tumor delineated in the preoperative MR volume and in 3D US 

volumes acquired before and after opening of the dura but prior to resection. Reinertsen 

et al. [31] rely on vessels segmented in preoperative MR angiography volumes and in 

vessels visible in intraoperative Doppler ultrasound images.  The authors state that two 

US volumes are acquired. The first one prior to opening of the dura and the second one 

during the procedure but no details are provided on whether or not these images were 

acquired after resection. The authors compare registration results obtained with (1) a rigid 

body transformation computed with points selected manually, (2) a rigid body 

transformation computed with vessel points extracted automatically in the MR and US 

images, and (3) a non-rigid transformation computed with the vessel points. To compute 

the non-rigid transformation, they use a modified iterative closest point approach [47], in 

which outliers are eliminated through a least trimmed squares approach. Once 

correspondence is established, thin-plate splines are used to compute the transformation. 

Results show that the non-rigid transformation improves things only marginally over the 

rigid-body transformation computed with manually selected points, thus suggesting that 

in the data set used in that study little deformation happened between the pre- and intra-

operative images. Video images have been proposed to register pre- and intra-operative 

data as early as 1997 by Nakajima et al. [45]. In this work, vessels segmented in 

preoperative MR images were registered to surface vessels visible in the intraoperative 

video images and the system was tested on images acquired after opening of the dura. 

This approach was extended by Sun et al. [37] who used a pair of cameras. They 

demonstrate their ability to track the shape of the cortical surface after the opening of the 

dura on two neurosurgical cases. A similar approach is followed by Skrinjar [36].  More 



33 

 

recently, DeLorenzo et al. [34, 35] have used a pair of stereo images and they register 

preoperative images with intraoperative video images using a combination of sulcal and 

intensity features. They propose a method by which registration and camera calibration 

are performed simultaneously and they show that this approach permits to correct 

calibration errors. In this work, sulcal grooves were segmented by hand and the system 

was applied to patients undergoing stage 1 epilepsy surgery. This is a procedure, which 

requires the opening of the dura for the placement of an array of intracranial electrode on 

the surface of the brain but it does not require resection. At our institution, a tracked laser 

range scanner with an integrated high resolution digital camera is utilized to capture the 

visual appearance as well as the three-dimensional geometry of the brain surface during 

surgery. Briefly described (more detailed information are provided in [40]), the tracked 

laser range scanner captures a 2D picture of the field of view and a 3D point cloud (i.e., a 

set of surface points for which the x, y, and z coordinates are known). The scanner also 

provides a mapping between the two, such that a textured point cloud can be generated. 

The 3D coordinates of any point and its corresponding coordinates in the field of view 

2D image can thus be computed. The scanner is also tracked, which means that the 3D 

coordinates of a point acquired at time t1 can be related to the coordinates of a point 

acquired at time t2 even if the scanner position changes in the t1- t2 interval, as happens 

often during surgical cases. Tracking brain motion thus only requires establishing a 

correspondence between points acquired at time t1 and time t2. If this correspondence is 

established, the 3D spatial coordinates of a point at time t1 and its spatial coordinates at 

time t2 can be obtained, which permits computing its 3D displacement. 

As discussed above, a number of methods have been proposed to measure brain 
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shift during surgery but, to the best of our knowledge, none of these methods have been 

extensively evaluated on data sets acquired before and after tumor resection. Clinical 

evaluation has been largely limited to measuring cortical or tumor shift following 

craniotomy or opening of the dura. Although difficult, this is considerably less 

challenging than attempting to measure shift during the case after resection because 

resection creates a void, which, in turn, substantially alters the shape of the brain. 

Because parts of the brain sag to fill in the void, portions of the brain not visible in the 

pre-resection images can enter the field of view and become visible in the post-resection 

images. Parts of the brain visible in the pre-resection images can also slide under the skull 

and become obscured in the post-resection images. Bleeding, which changes the contrast 

of the images further complicates the task. Due to these difficulties, methods proposed so 

far to measure intraoperative brain movement are unlikely to succeed. For instance, 

simply tracking the surface of the cortex to measure sagging or bulging does not provide 

information on the displacement of the points parallel to the cortical surface. The 

resolution of US images only permits identifying relatively large vessels. As discussed by 

Reinertsen et al.[30, 31], this leads to transformations that are accurate close to these 

large vessels but less so further away from the vessels, thus suggesting the need for 

intraoperative imaging techniques that have the spatial resolution required to visualize 

small cortical vessels. Intensity-based methods as the ones we have proposed in earlier 

work [42, 43] are also not robust enough to deal with the very large differences observed 

in clinical images. 

To address these issues, in Chapter II we have proposed a method based on 

manually delineated vessels and its potential was shown on a limited number of cases. 
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Here we expand on this work. As others have done [30, 31, 45],  we use vessels to 

register the images but our work differs in several important ways. First, we use a tracked 

laser range scanner that provides us with simultaneous high resolution 2D and 3D 

information. DeLorenzo et al. [35] have shown the importance of on-line calibration 

when using stereo cameras. The algorithm they proposed achieve this but is time-

consuming (more than 20 min. on a modern PC). Our approach does not require on-line 

calibration. Second, we use a semi-automatic method for the extraction of the vessels in 

the image. This method is inspired by work of Wink et al. [88]. In this approach vessels 

are enhanced using the vesselness filter proposed by Frangi et al. [67]. A minimum cost 

path is then found between starting and ending points given by users. Wink et al. used a 

multi-scale search method to follow vessels with a constant width. We use a scalar cost 

function based on maximal vessel response but we add a term that favors paths that are in 

the center of the vessels as suggested by Bitter et al. [89]. This method is fast, robust to 

user input error, and permits identifying large and small vessels over the entire field of 

view. Speed and robustness are important because the system will need to be used by 

surgeons under time pressure in the operating room. Third, we use the robust point 

matching algorithm proposed by Chui and Rangarajan [83] to match the vessels as 

opposed to a modified iterative closest point approach proposed by [47].  Finally, we 

validate our approach on 10 intraoperative tumor resection data sets. This is a unique data 

set in which optically tracked pre- and post-resection 2D and 3D information has been 

acquired. 

The rest of the chapter is organized as follows. Section 3.2 describes the methods 

and presents the data used in the study. It concludes with a description of the validation 
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methods used to evaluate our approach. Results obtained on 10 tumor resection cases are 

presented in Section 3.3. Conclusions and suggestions for future work are detailed in 

Section 3.4. 

 

 

3.2. Method  

 

 

3.2.1. Data and data acquisition protocol 

A high resolution commercial LRS (RealScan3D USB, 3D Digital Inc., Bethel, 

CT, USA) system is used in this study. The device is capable of generating 500,000 

points with a resolution of 0.15mm-0.2mm at the approximate range used during 

neurosurgery. The 3D position of each point on the scan is calculated via triangulation. 

At the same time, a digital camera (Canon Optix 400) acquires a texture image with a 

resolution up to 2592 by 1944 pixels. The texture image and the 3D point cloud are 

registered. A complete data set thus includes a series of points with coordinates (x, y, z) 

with a corresponding set of image pixel coordinates (u, v).  

The following protocol, which was approved by the Vanderbilt Institutional 

Review Board, was used to acquire data from consented patients. After opening of the 

dura, the LRS system is placed within 20-30 cm of the patient using an adjustable arm or 

a monopod.  A pre-resection scan is taken, which takes on the order of 1-2 minutes 

including setup. This includes moving into the field, collecting the data, and withdrawing 
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from the field. After tumor extraction, a post-resection scan is acquired by moving the 

scanner back into place above the craniotomy. Because the scanner is tracked, the pre- 

and post-resection scan positions do not need to be exactly the same. More details about 

the data acquisition procedure can be found in [40].   

 

Fig.III.1: The top panel shows the tracked laser range scanner (A) positioned on top of the patient 

(B). The traditional IGNS system (C) can be seen on the right of the image. The bottom panel shows 

the user interface (D) developed in house to permit data collection. 

The first image in Fig.III.1 shows a patient (B) in the OR with the tracked laser 

range scanner (A) positioned on the top of the craniotomy. The traditional IGNS (C) can 
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be seen on the opposite side of the scanner. The second image in Fig.III.1 shows the 

panel we have developed (D) for data collection and processing.  

Fig.III.2, which shows typical pre- (left panels) and post-resection (right panels) 

images, illustrates the complexity of the task at hand. In this figure, the top panels are the 

2D digital images of patient #2 acquired with the camera and the bottom panels are the 

textured point clouds, i.e. the 3D surfaces acquired with the laser scanner. Pre- and post-

resection images are acquired with the scanner in a different position and orientation, and 

the resection has created a large hole in the middle of the image that induces substantial 

brain deformation. Blood and the lighting conditions also change the appearance of the 

images. Additionally, the brain shifts with respect to the craniotomy during the procedure. 

As a consequence, parts of the brain visible in the first image slide under the skull and are 

hidden in the second image. The same phenomenon makes parts of the brain hidden 

under the skull in the first image appear in the second. 

 

 

3.2.2. Extraction of the vessels centerline 

Fig.III.2 suggests that the most reliable features that can be extracted from the 

pre- and post-resection images are the centerlines of these vessels. Preliminary results 

presented in Chapter II also suggest that registration based on these features leads to 

accurate results. But in Chapter II, the centerlines were extracted manually. This is both 

lengthy and inaccurate. Here the process is largely automated with a method based on a 

minimum-cost path algorithm [90]. This algorithm requires the computation of a cost 

matrix, performed automatically, and the manual selection of one starting and one ending 
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point for each vessel segment to be used for registration. The next section describes the 

method used to create the cost matrix. 

 

 

Fig.III.2: Representative example of a pre- and post-resection image pair. The top panels are the 2D 

images, the bottom panels are the textured point clouds of patient #2 reported in the study. 

 

 

3.2.3. Creation of the cost matrix 

The cost matrix determines the minimum cost path and is computed using two 

terms derived from the images. The first one is related to the vesselness of a point in the 

image as defined by Frangi et al. [67]. The second one is based on a distance map 
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computed on an edge image. In their work, Frangi et al. propose a multi-scale filter based 

on the Hessian of the image used to enhance tubular structures. The approach they 

proposed is to (1) convolve the image with Gaussian filters with various standard 

deviations, (2) compute the Hessian of the smoothed images, defined as  
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with ijI  the second spatial derivative of the image in the i and then j directions, 

and (3) compute the eigenvalues of the Hessian. An analysis of the eigenvalues 

determines the type of structure a particular pixel belongs. Pixels, which pertain to 

tubular-like structures that are bright on a dark background, will satisfy the following 

conditions:   
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Based on this observation, the vesselness filter, Frangi et al. proposed, is as 

follows:  
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    The first term in this equation is large when 1λ  is small and 2λ  is large. The 

second term, which is called the “second order structureness”, is large for non-

background pixels. To detect vessels of various dimensions, the filter is applied to images 

that have been convolved with Gaussian filters whose standard deviation is changed from 

small to large. The vesselness filter responds to small vessels in an image blurred with a 

Gaussian filter with a small standard deviation. It responds to large vessels in an image 
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blurred with a Gaussian filter with a large standard deviation. The coefficient β  and c are 

chosen experimentally. Here, these were chosen as 0.5 and 0.05 of the maximum 

intensity value in the image, respectively. In this application, six standard deviations are 

used, ranging from one pixel to six pixels and the cost term associated with the vesselness 

feature is defined as: 

∑=
=

6

1
),(),(

k
kkv yxVwyxC                                                  (4) 

in which the value of the weight kw is -0.5 for the standard deviation that 

produces the largest response and zero for all the others. 

Fig.III.3 shows typical results obtained with this approach. The input image is 

shown in the top left panel; the cost image is shown in the top right panel. While the 

vesselness filter clearly enhances the vessels, the figure also shows that the centerline of 

the vessels is not localized precisely. The filter also responds to structures that are not 

vessels. To address this issue, a second term is added to the cost matrix. First, an edge 

image is computed using a canny edge detector, then a distance map is computed from 

the edge image. In this distance map, intensity values are zero on the edges and increases 

when moving away from the edges. The middle left panel in Fig.III.3 shows the edge 

image. The distance map image is shown in the middle right panel; in this image, darker 

intensity values correspond to larger distances. To better visualize the distance term of 

the cost function, the bottom left panel shows the distance map masked by a binary map 

obtained by thresholding the vesselness image using threshold 0.96. 

The overall cost matrix is computed as  

),(),( yxDwCyxC dv +=                           (5) 
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in which dw  is equal to -0.5. The Canny edge detector of MATLAB 7.0 (The 

MathWorks, Inc., Natick, MA) was used in which the high threshold is selected 

automatically depending on image characteristics. The low threshold is set to 0.4 times 

the high threshold. The overall cost matrix thus weighs equally the vesselness and the 

distance features. The resulting cost image is shown in the bottom right panel of Fig.III.3. 

As this image shows, the centerline of the vessels tends to correspond to pixels with the 

lowest intensity values. 
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Fig.III.3: Illustration of the cost matrix used to find vessels. The top left panel shows the original 

image of patient #7 reported in the study. The top right panel shows the vesselness image. The middle 

left panel is the edge map. The middle right panel shows the distance map computed from the edge 

map. The bottom panel left shows the distance map masked by a vessel mask obtained by 

thresholding the vesselness image using threshold 0.96. The bottom right panel shows the final cost 

matrix. 
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3.2.4. Centerline extraction 

Vessel segmentation is then achieved semi-automatically. A graphical user 

interface has been developed, which permits visualizing pre- and post-resection images 

side-by-side. Roughly homologous starting and ending points are localized for vessel 

segments visible in these images by the end user. When a pair of starting and ending 

points has been identified, the minimum-cost path between these points is computed 

automatically using Dijkstra’s shortest path algorithm [90].  

 

Fig.III.4: This shows an example of centerlines extraction from a pre-resection image of patient #7. 

Yellow and white point on the left image are starting and ending points, respectively. The computed 

centerlines are shown in yellow on the right panels. 

Fig.III.4 illustrates the process. The left panel shows one of the images acquired 

with the system (the cortical surface has been manually extracted from the original 

images). The selected starting and ending points are shown in yellow and white, 

respectively on the left panel. The vessels extracted by the minimum cost path algorithm 

are shown on the right. In its current state, the system requires the user to select one pair 

of starting and ending points at a time. When the pair is selected, the vessel segment that 

joins them is computed. Computation of an optimal path between a starting and an ending 
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point takes less than one second on a 3GHz Intel Core 2 Duo Machine. The process is 

repeated until vessel segments that cover the useable portion of the image are segmented. 

This figure also shows that the method can be used to segment large or small vessels. 

Experiments have shown that vessels as small as 0.175mm in diameter can be extracted.  

 

 

3.2.5. Vessel registration 

Once vessels have been segmented, they are non-rigidly registered. This is done 

with the robust point matching proposed by Chui and Rangarajan [83] and their 

MATLAB implementation [91] was used. This algorithm alternates between a fuzzy 

assignment step and a registration step to register point sets. Here, all the vessel 

centerlines detected in the previous step form two sets of points (one set of points in the 

pre-resection image and the other in the post-resection image). Each point in one of the 

sets, say set two is assigned to one or several points in the other set. Once the assignment 

is done a transformation that registers the points in set two to the corresponding points in 

set one is computed. If a point in set two is assigned to more than one point in set one, a 

virtual point computed as the weighted centroid of these points is used to compute the 

transformation. The fuzzy assignment is computed with the softassign algorithm 

proposed by Gold et al. [92]: 
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in which },...,2,1,{: KavV a = and },...,2,1,{: NixX i =  are the two sets of points. 

f  is the transformation used to register the two sets of points. T is called the temperature 
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parameter, which is introduced to simulate physical annealing. Following the 

recommendations given in [92], an initial value of 0.5, which is reduced from iteration to 

iteration, is used here. Thus, equation (6) establishes a fuzzy correspondence between 

points in set V and points in set X. Because the value of T decreases over time, the 

fuzziness of the assignment decreases as the algorithm progresses.  The major advantage 

of this fuzzy assignment is that it permits handling data sets with different cardinality and 

it also permits to handle outliers. At each iteration, after the correspondence is 

determined, a thin-plate spline based non-rigid transformation f  is computed, which 

solves the following least squares problem: 
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ia xy   can be considered as a virtual correspondence for 
av . λ  

is a regularization parameter, the value of which is changed over time. The algorithm 

starts with a transformation that is very smooth (heavily regularized). As the algorithm 

evolves and correspondence improves, the regularization constrain λ  is progressively 

relaxed.  

 

 

3.2.6. Overall registration procedure 

Fig.III.5 illustrates the overall process used to register the pre- and post-resection 

images and to compute the brain shift that has occurred during the procedure. In this 

figure, the top panels show the images, as acquired with the LRS. As seen before, these 
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images contain more than the cortical surfaces. The four points visible on the skull (black 

crosses) are fiducial points drawn on the skull by the neurosurgeon. These are used to 

compute a projective transformation to initialize the process; this transformation is called 

T1. The cortical surfaces are then extracted manually and shown in (c) and (d).   
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Fig.III.5: Illustration of the various steps involved in the registration process. The top panels are the 

original images of patient #7. These are registered with a projective transformation (T1). The brain 

surface is extracted from the original images manually (c) and (d)). The feature maps are computed 

((e) and (f)). Corresponding vessels are detected and the non-rigid transformation T2 is computed ((g) 

and (h)). T2 is applied to the image in panel (g) to generate the registered images ((i) and (j)). 
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Next, the feature maps are computed on the pre- and post-resection cortical 

images ((e) and (f)). Starting and ending points are identified manually and vessel 

centerlines are extracted ((g) and (h)). Using the centerlines, the transformation that 

registers the two cortical images is computed; this transformation is called T2. Panel (i) 

shows the pre-resection image registered to the post-resection image. A group of vessels 

were drawn in (i) and copied to (j), which shows a good correspondence with the vessels 

in image (j).  

An additional transformation T3 (see Chapter II) not shown here relates a point in 

the image to a 3D coordinate.  The shift at any point in the image is computed as the 

difference in the 3D coordinates of this point in the pre-resection scan and its 

corresponding 3D coordinates in the post-resection scan.  

 

 

3.2.7. Validation Strategy 

The method that has been used to validate the approach relies on the selection of 

homologous points. A number of points have been selected manually on the pre- and 

post-resection images. These are points that are relatively easy to identify in both images, 

which include vessel intersections, end points, etc. The number of homologous points 

varies from case to case, depending on what is visible in the images. Using the 

registration transformations described above, the points in the pre-resection images are 

projected onto the post-resection image and a registration error, which is called Target 

Registration Error (TRE) [86], is computed as  
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T

i                                          (8) 

in which 
iX  and 

iY are the points selected in the pre-resection and post-resection 

images, respectively. The transformation T is the transformation obtained by 

concatenating all the elementary transformations discussed previously. 

 

 

3.3. Results 

 

 

3.3.1. Vessel centerline extraction with and without distance term 

 Fig.III.6 illustrates the effect of the distance term in the cost function used to 

detect the vessel centerlines. The left panel shows the entire image and the right shows a 

zoomed version of the region within the box. In the right panel, the white points are the 

path obtained with the vesselness feature alone. The green points are the path obtained 

when both the vesselness and the distance term are used. Clearly, the additional distance 

term favors points that are on the centerline. The effect of this term is more important for 

large vessels than for small ones.  
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Fig.III.6: Difference in centerline extraction without (green points) and with (white points) the distance 

term using patient #3 data. 

 

 

3.3.2. Sensitivity of the process to the selection of the points 

The main manual input required by the algorithm is the selection of the starting 

and ending points in the pre- and post-resection images. To test the sensitivity of the 

algorithm to the selection of these points the following experiment was performed. One 

typical pre- and post- resection set of images was selected. In these images, a series of 

starting and ending points were manually picked. The position of the starting and ending 

points was then perturbed using random numbers drawn from Gaussian distributions with 

zero mean and standard deviation ranging from 2 to 5 pixels. For each standard deviation, 

the process was repeated a 100 times. For each set of points, the transformation that 

registers the pre- and post-resection images was computed. An additional registration in 

which the position of the points was not perturbed was computed and used as a baseline.  

The difference between the baseline displacement and the displacement obtained 

with each of the transformations was computed pixel by pixel and averaged for each 
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standard deviation. Fig.III.7 shows average difference maps obtained for the various 

standard deviations used in this sensitivity study. 

These results show submillimetric differences for standard deviations up to 3 

pixels. When the standard deviation increases, some parts of the image experience an 

error that reaches 1 mm over regions that are far away from any vessels. This is because 

the transformation is not constrained over these regions. In practice, it is therefore 

important to select vessels, which cover as much of the field of view as possible.  

The left panels in this figure show displacements that correspond to 2, 3, 4, and 5 

pixels. It illustrates the fact that a displacement of 3 pixels in the x and y direction is 

easily noticeable. It also shows that even if the starting and ending points are not selected 

correctly, most of the trajectory between the points is the same. Thus, only a few of the 

feature points used for registration are different, which makes the process robust to 

operator error.  
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Fig.III.7: Effect of starting and ending points displacement on the registration. Top panel: original 

image of patient #7. The other panels show the region within the green square magnified (on the left) 

and the difference maps on the right. From top to bottom, the standard deviation used to perturb the 

points was increased from 2 pixels to 5 pixels. 
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3.3.3. Qualitative results 

Fig.III.8 shows a pre- and a post-resection surface in the physical space.  In this 

figure white and green homologous points have been selected on the pre- and post-

resection images, respectively. The tip of the arrows is the position to which the white 

dots have been moved using the registration transformations. As can be seen these are 

close to the corresponding green points.  

 

Fig.III.8: Top panel, texture surface obtained before resection (A) and texture surface obtained after resection (B) of 

patient #7. The white points on the pre-resection scan and the green points in the post-resection scan 

were selected manually as corresponding points. On the bottom panel, the white arrows show where 

each white point has been mapped onto the post-resection scan. 
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Fig.III.9 presents another set of results in which the pre- and post-resection 

textured surfaces ((A) and (B)) are shown. The color-coded and gray-level surfaces are 

the pre-resection and post-resection scans, respectively. The top left panel shows these 

surfaces before registration. The top right and bottom left both show the surfaces after 

registration ((C) and (B)). The bottom right panel shows a checkerboard image of the 

registered pre- and post-resection images indicating, at least visually, the quality of the 

registration.  

 

Fig.III.9: The top left panel shows the pre- (color) (A) and post-resection (gray) (B) textured surface 

of patient #3. The top right panel shows these two surfaces registered to each other using the 

proposed method. (C) is the deformed pre-resection surface. The bottom left panel shows the same 

but from a different angle. The bottom right panel shows a checkerboard image generated with the 

registered pre- and post-resection textured images, which indicates a good registration between the 

two. 
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Interaction time to select homologous points varies between 30 and 60 seconds, 

depending on the number of line segments being selected. Computation of optimal paths, 

which, as discussed before takes about one second per path, can be computed while 

manual selection for new vessel segments is ongoing. As currently implemented, the 

computation of the registration transformations take between 1 and 5 minutes, depending 

on the number of points in each of the two points sets used by the RPM algorithm. 

 

 

3.3.4. Quantitative results 

Table.III.1 presents quantitative results obtained with 10 patients (4 men and 6 

women). In addition to the mean and max TRE values for each case, it lists the volume of 

the tumor, the size of the craniotomy, and the measured surface shift. Lesion size was 

measured from preoperative MR images acquired for each subject. Mean cortical surface 

shift were calculated as average distance of human selected homologous target points on 

textured laser range scans. The maximal cortical surface shift is the largest shift among 

target points.  These results show an average TRE, which is submillimetric, and average 

surface displacements on the order of 1cm with a maximum value of 2.7cm.  

Homologous points used to validate the results are selected on vessels or at the 

intersection of vessels because these are the only easily discernible features in the images. 

Some of these points may also be included or are in close proximity to points that have 

been used for the registration. In this application, this problem is difficult to avoid 

because of the difficulty of selecting homologous points in uniform areas. One also notes 
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that, because the robust point matching algorithm is used, (1) a strict correspondence 

between points in the two images is not established and (2) the thin-plate spline 

transformation does not match the point pairs exactly. There is thus a non-zero 

registration error, even for points included in the set used for the computation of the 

transformation itself. Furthermore, in practice, care is taken to select vessel segments that 

cover the useable portion of the image, thus constraining the transformation. It is 

therefore reasonable to assume that the error values that are being reported are 

representative of the errors over the entire image but that a slightly larger error could be 

observed over regions in which feature points are not selected.  
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Table.III.1: Average target registration errors and estimated brain’s surface shift for 10 tumor 

resection cases 

Patient 
# 

Age 
(yr) 
/Sex 

Crani-
otomy 
Dia- 
meter 
(cm) 

Lesion 
Size 
 
 

(cm3) 

Number  
of 

targets 

Maximum 
 

TRE 
 

(mm) 

TRE 
 
 
 

(mm) 

Maximum 
 

shift 
 

(mm) 

Mean  
 

shift 
 

(mm) 

1 22 
/F 

7.7 5.2 x 6.2 x 
6.0 

15 2.79 1.13 27.51 23.57 

2 52 
/M 

8.3 4.9 x 5.6 x 
5.0 

15 2.24 1.06 20.68 15.13 

3 58 
/M 

4.7 3.7 x 3.5 x 
4.1 

9 1.77 0.75 10.34 8.50 

4 77 
/M 

5.0 3.4 x 3.6 x 
2.0 

6 2.73 1.28 10.81 9.15 

5 57 
/F 

3.5 1.0 x 1.4 x 
2.0 

6 0.84 0.44 3.45 1.89 

6 56 
/F 

4.5 4.7 x 3.2 x 
4.0 

18 2.49 0.92 5.59 2.72 

7 75 
/F 

6.1 5.0 x 5.0 x 
5.0 

15 2.92 0.62 15.27 13.01 

8 23 
/F 

6.4 4.0 x 3.0 x 
3.0 

18 2.02 0.88 3.92 2.97 

9 46 
/F 

4.3 3.0 x 3.0 x 
3.0 

9 1.94 0.70 9.40 8.07 

10 26 
/M 

9.0 6.9 x 4.0 x 
4.0 

15 1.97 0.91 12.45 8.99 

 
Ave- 
rage 

 
49 

5.95 
 ± 
1.87 

76.96 
± 

61.37 

13 
± 
5 

2.17 
± 
0.62 

0.87 
± 
0.25 

11.94 
± 
7.58 

9.40 
± 
6.60 

 

Fig.III.10 plots the TRE value for 126 points vs. their distance to the closest point 

included in the set of points used to compute the transformations. This figure shows a 

weak but nevertheless significant (r = 0.35) correlation between TRE and distance to 

feature.  
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Fig.III.10: Plot of TRE error versus the distance to closest feature point used to compute the 

registrations. 

 

 

3.3.5. Discussions and conclusions 

Accurate estimation of brain shift occurring during surgery is critical for image-

guided neurosurgery. Mathematical models capable of predicting shift occurring away 

from the surface are currently being developed [93] but these models need intraoperative 

brain measurements as input. A number of methods have been proposed over the years to 

measure brain shift, which occurs when the dura is opened, but this is the first study that 

extensively reports on measurement made after tumor resection. Tracked probes are a 

possible solution to acquire this information but this method often leads to sparse 

information as homologous points need to be identified on the cortical surface before and 

after resection. Furthermore, drastic changes in the appearance of the brain surface 

between pre- and post-resection makes the selection of homologous points a challenging 

task. The tracked laser range scanner approach presented in this dissertation is minimally 
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disruptive as it only requires moving the scanner in and out of the field to acquire data 

sets, which takes on the order of one minute. The laser range scanner also generates 

dense data sets, potentially providing the model with displacement values over the entire 

exposed surface. The key issue to accurate estimation of surface displacements is the 

registration of the laser range scanner data sets. Because the 3D point clouds are 

registered to high resolution 2D images, this problem can be solved by registering the 2D 

images. It has been shown in Chapter II that registering the 3D data sets via the 2D 

images does, in fact, produce results that are superior to those obtained when registering 

the 3D point clouds directly. The major difficulty to be addressed is the difference 

observed in the images before and after resection in most clinical cases. Except when 

tumors are very small, resection produces differences in the images that are such that 

intensity-based methods are ineffectual. Preliminary results in Chapter II on a smaller 

data have shown that a promising alternative is to register images using vessels 

delineated in the images. But delineating manually vessels in pre- and post-resection 

images is relatively difficult, time consuming, prone to errors, and not practical in the 

operating room. In this chapter, a practical solution is proposed. The feature maps can be 

computed rapidly, pre- and post-resection images presented to the physicians and starting 

and ending points identified. Because the system computes a minimum cost path between 

starting and ending points, very accurate selection of the points is not critical. The results 

that have been obtained on tumor resection cases demonstrate the accuracy of the process 

with an overall submillimetric TRE. The data gathered from the 10 patients included in 

the study also show significant brain shift. The average observed brain shift is about one 

centimeter with a standard deviation of 6.6 mm. Shifts greater than one centimeter have 
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been observed in 3 of the 10 cases, thus corroborating the need for intraoperative 

updating of preoperative information.  

With the MATLAB implementation of the RPM algorithm [91], computing the 

transformation that registers the images and applying that transformation to the image 

takes between one and five minutes, depending on the number of points used and the size 

of the images. Since this method will be part of the user interface of a comprehensive 

system designed for intraoperative brain shift correction, it has been re-implemented in 

the C++ programming language and it now takes less than 1 minute. In the next chapter, 

we propose a method that could automate the vessel selection process further. 
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Abstract 

Measurement of intraoperative cortical brain movement is necessary to drive 

mechanical models developed to predict sub-cortical shift. At our institution, this is done 

with a tracked laser range scanner. This device acquires both 3D range data and 2D 

photographic images. 3D cortical brain movement can be estimated if 2D photographic 

images acquired over time can be registered. In Chapter II and Chapter III, we have 

developed a method, which permits this registration using vessels visible in the images. 

But, vessel segmentation required the localization of starting and ending points for each 

vessel segment. In this chapter, we propose a method, which automates the segmentation 

process further. This method involves several steps: (1) correction of lighting artifacts, 

(2) vessel enhancement, and (3) vessels’ centerline extraction. Result obtained on 5 

images obtained in the operating room suggests that our method is robust and is able to 

segment vessels reliably. 

 

 

4.1. Introduction 

Estimating cortical surface shift accurately during surgery is of great importance 

in image guided neurosurgery. Although interventional MR method can be used, they are 

expensive and therefore not widely available. Tracked ultrasound-based methods are an 

alternative but they suffer from relatively poor spatial resolution.  Vessel- and sulci-based 

registration methods have been proposed to estimate brain shift after opening of the dura 

from video images as early as 1997 by Nakajima et al. [45]. In their work, vessels 

segmented in preoperative MR images (using a threshold) were registered to surface 
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vessels from the intraoperative video images. However, the vessels were manually 

segmented from the video images. This approach was extended by Sun et al. [37] who 

used a pair of cameras. They demonstrate their ability to track the shape of the cortical 

surface after the opening of the dura on two neurosurgical cases. A similar approach is 

followed by Skrinjar et al. [36]. More recently, Delorenzo et al. [34, 35] have used a pair 

of stereo images and they register preoperative images with intraoperative video images 

using a combination of sulcal and intensity features. They propose a method by which 

registration and camera calibration are performed simultaneously and they show that this 

approach permits to correct calibration errors. In their work, sulcal grooves were 

segmented by hand and the system was applied to patients undergoing stage 1 epilepsy 

surgery. This is a procedure, which requires the opening of the dura for the placement of 

an array of intracranial electrode on the surface of the brain but it does not require 

resection.  

As discussed above, a number of methods have been proposed to measure brain 

shift during surgery but, to the best of our knowledge, these have not been evaluated on 

data sets acquired after tumor resection. Previous clinical evaluation has been largely 

limited to measuring cortical or tumor shift following craniotomy or opening of the dura. 

Although difficult, this is considerably less challenging than attempting to measure shift 

during the case after resection because the resection alters the appearance of the images 

substantially. Indeed, the resection creates a hole in the images and induces brain sagging. 

As a result, parts of the cortex visible through the craniotomy before the resection 

become invisible after the resection, and vice versa. Furthermore, bleeding that occurs 

during the procedure alters the image contrast. To address these issues we have proposed 
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a method based on manually extracted vessels, which is described in Chapter II. 

At our institution, we use a tracked laser range scanner, which acquires 

simultaneously 2D images and 3D point clouds.  

Through calibration, these data sets are registered. The 3D coordinates of any 

points in the 2D image are thus available. Intraoperative brain displacement measurement 

can thus be achieved by registering 2D images acquired over time during the procedure. 

We are particularly interested in measuring brain displacement after tumor resection.  

In Chapter II, we have shown that using cortical vessels visible in the pre- and 

post- tumor resection images is a possible solution to register the images based on 

manually extracted vessels. We expanded this work by proposing a semi-automatic vessel 

extraction method in Chapter III. This method requires labeling of homologous starting 

and ending points for each vessel segment for both pre- and post- resection images. A 

minimal-cost path algorithm is then used to connect these points automatically. In this 

chapter, we present our efforts to further automate the task and we focus on the automatic 

segmentation of the vessels. Challenges that need to be overcome include lighting 

conditions that create reflections and the appearance of blood, which reduces the contrast 

between the vessels and brain tissue. The method we propose consist in three steps: (1) 

correction of lighting artifacts, (2) vessel enhancement, and (3) vessel segmentation. 

These are detailed in section 4.3. Section 4.4 presents segmentation results we have 

obtained on a number of pre- and post-operative images. 
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4.2. Data Acquisition  

In this study, a high resolution commercial LRS (RealScan3D USB, 3D Digital 

Inc., Bethel, CT, USA) system is used. This device is capable of generating 500,000 

points with a resolution of 0.15mm-0.2mm at the approximate range used during 

neurosurgery. The resolution varies slightly according to the distance between the camera 

and the patient. The 3D position of each point on the scan is calculated via triangulation. 

At the same time, a digital camera (Canon Optix 400) acquires a texture image with a 

resolution up to 2592 by 1944 pixels. The texture image and the 3D point cloud are 

registered. A complete data set thus includes a set of image pixels with coordinates (u, v) 

and a series of points with coordinates (x, y, z). The (u, v) coordinates of any (x, y, z) 

point can be computed and vice-versa. In this study, the obtained texture images will be 

used to segment cortical surface vessels. 

The following protocol, which was approved by the Vanderbilt Institutional 

Review Board, was used to acquire data from consented patients. After opening of the 

dura, the LRS system, which is mounted on adjustable arm or a monopod, is placed 

within 20-30cm of the patient. A pre-resection scan is taken, which takes on the order of 

1 minute. This includes moving into the field, and collecting the data. The system is 

removed from the field and the procedure proceeds normally. After tumor extraction, a 

post-resection scan is acquired by moving the scanner back into place above the 

craniotomy. Because the scanner is tracked, the pre- and post-resection positions do not 

need to be exactly the same. More details about the data acquisition procedure can be 

found in [40]. Fig.IV.1 shows a patient in the OR with the tracked laser range scanner 

positioned on the top of the craniotomy.  
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Fig.IV.1: shows a laser range scanner acquiring data in the operating room. The height and angle of 

the scanner are both adjustable. A built-in digital camera inside the scanner acquires high resolution 

digital images immediately after the range data has been acquired. 

 

 

4.3. Method 

As discussed in the previous section, images acquired intra-operatively are 

affected by two major sources of artifacts: lighting and bleeding. Lighting artifacts area 

caused by the reflection of the intraoperative lights on the surface of the brain. Bleeding, 

which occurs during the procedure, affects the contrast in the images and makes vessels 

more difficult to segment. In this chapter, we propose a three-step approach to 

segmenting surface vessels. These steps are (1) correction of the lighting artifacts, (2) 

enhancement of the images, and (3) segmentation. 
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4.3.1. Correction of lighting artifacts 

Elimination of lighting artifacts involves first localizing regions in the image, 

which are affected. This is done via clustering of the points in the RGB space. The 

images are classified into several classes using an unsupervised K-means clustering 

algorithm, which aims at minimizing 
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The 3D feature vector xj is constructed using values in the R, G and B channels. Si 

is the label of class i, and k is the number of classes. µi is the centroid of each class. Since 

there are only background, tissue, vessels, and artifacts in our image, four points are 

randomly chosen as centroids for each class and iteratively updated until converge. Every 

point in the image is assigned to the class, which has a center closest to its own. This 

unsupervised clustering method is not good enough for segmenting the vessels or the 

tissue but the class with the brightest centroid captures the artifact pixels. This is shown 

in Fig.IV.2. Panel (a) shows one original intraoperative image; the very bright regions are 

regions affected by the lighting artifact. Panel (b) shows the clustering results. The 

brightest pixels correspond to regions that have been identified as being affected by 

reflection and that need to be corrected. The other three classes are not used in 

subsequent steps. 
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            (a)                                                            (b) 

  
          (c)                               (d) 

Fig.IV.2: shows the results after clustering and the results after correction of artifacts. Panel (a) 

shows one intraoperative image, which is degraded by lighting artifacts.  Some of the pixels affected 

by these artifacts are inside the vessels, and some of them are outside the vessels; Panel (b) is the 

labeled map obtained with k-means clustering, and the very bright regions are dilated by 3 pixels and 

shown in (c); (d) is the image after artifacts correction. 

The artifact regions are then expanded by dilating them by three pixels to 

incorporate edge pixels, which may not have been classified as artifact. Panel (c) in 

Fig.IV.2 is the artifact regions after dilation. Finally, the R, G, B values of the pixels in 

these regions are replaced by new R, G, B values obtained by extrapolating the R, G, and 

B values using surrounding pixels. Panel (d) shows the results after correction. Most of 

the lighting artifacts are automatically identified and removed in this image. The quality 

of the image is greatly improved for later processing.  
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4.3.2. Vessel enhancement 

Vessels in the image are enhanced using a line searching algorithm akin to the 

line detection filter proposed in [94]. Here, we do not use the filter to segment the vessels 

but to reduce intensity variations within the vessels and to eliminate very small vessels 

for which finding a homologous vessel in another image may be difficult. 

 
        (a) 

    (b)                                  (c) 

Fig.IV.3: Panel (a) illustrates the neighborhood and searching directions used for vessel enhancement. 

The center of the circle is the pixel of interest. Panel (b) shows an intraoperative image before vessel 

enhancement. Panel (c) shows the result after vessel enhancement. 

To filter the image, a circular window of radius w is first placed on a foreground 

pixel. Straight lines oriented in increment of α  degrees are then defined (see Fig.IV.3 (a)). 

The average intensity along these lines is computed and the line with the smallest average 
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values is identified. For each pixel in the foreground of the image, the direction of the 

vessels is the direction of the line with the lowest mean value (vessels are dark in our 

images), and the intensity value of the pixel on which the window is centered is 

substituted by this minimal mean intensity value. 

Values of  7=w  and  o15=α  were chosen experimentally. 

 

 

4.3.3. Vessel segmentation  

4.3.3.1. Multiscale vesselness 

 
(a)                                                            (b) 

Fig.IV.4: Panel (a) shows one intraoperative image after vessel enhancement; Panel (b) shows the 

vesselness map. 

Vessels in the enhanced images are segmented in two steps (more details can be 

found in Chapter III). First, the images are filtered with the vesselness filter propose by 

Frangi et al. [67]. In their work, they propose a multi-scale filter based on the Hessian of 

the image, which can be used to enhance tubular structures. The approach they propose is 

to (1) convolve the image with Gaussian filters with various standard deviations, (2) 
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compute the Hessian of the smoothed images, defined as 
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in which Iij is the second spatial derivative of the image in the i and then j 

directions, and (3) compute the eigenvalues of the Hessian. An analysis of the values of 

these eigenvalues permits to determine the type of structure a particular pixel belongs to. 

Pixels, which pertain to tubular-like structures that are bright on a dark background, will 

satisfy the following conditions: 
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Based on this observation, the vesselness filter Frangi et al. proposed, is as 

follows: 

              .
))

2

)),((),(
exp(1)(

),(2

),(
exp(

0),(when                                    0

),(
2

2
2

2
1

22
2

2
1

2









+
−−−

>

=

c

jiji

ji

ji

ji

jiV λλ
βλ

λ

λ
        (12) 

The first term in this equation is large when λ1 is small and λ2 is large. The second 

term, which is called the “second order structureness”, is large for non-background 

pixels. To detect vessels of various dimensions, the filter is applied to images that have 

been convolved with Gaussian filters whose standard deviation is changed from small to 

large. The vesselness filter responds to small vessels in an image blurred with a Gaussian 

filter with a small standard deviation. It responds to large vessels in an image blurred 

with a Gaussian filter with a large standard deviation. The coefficient β and c are chosen 

experimentally. Here, β was chosen as 0.5, and c was chosen as 0.05 times the maximum 

intensity value in the image. In this application, we use six scales with variances ranging 
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from one to six pixels. The response of the filter at the scale with the maximum response 

is used as the filter’s output 
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in which the value of the weight wk  is -1 for the standard deviation that produces 

the largest response and zero for all the others. This produces a gray scale image V(x,y) in 

which tubular structures are enhanced.  The darker the pixel is, the more likely it belongs 

to a vessel structure.  

4.3.3.2. Centerline extraction 

 

(a) 

 
(b)                                                                  (c) 

Fig.IV.5: Panel (a) shows the edge map of the image shown in Fig.IV.4 (b); Panel (b) shows the 

distance map of (a); (c) is the magnitude of the gradient of (b). 

Next, we detect edges in the vesselness image using a Canny edge detector to 

create a binary edge map E(x,y) as shown in Fig.IV.5. (a). A distance map is then created 
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from this image using a fast marching method [95]. In the distance map shown in 

Fig.IV.5 (b), pixels on the vessels’ edges are local minima and pixels on the vessels’ 

centerlines are local maxima; the gradient of the distance map is thus small for these 

pixels, as shown in Fig.IV.5. (c). In this image, black corresponds to small values of the 

gradient magnitude.  

Centerline pixels are localized by first taking the gradient of the distance map and 

keeping the voxels in the gradient image below a threshold (here we have an 

experimentally determined value of 0.7) to create a binary image S(x,y). The edge image 

E(x,y) is then subtracted from this image and shown in Fig.IV.6 (a). This results in an 

image which contains all the pixels that are localized midway between two edges. Some 

of these pixels are inside the vessels, others outside. To eliminate outside pixels, those 

pixels with a vesselness value lower than 0.1 are eliminated. This creates the result shown 

in Fig.IV.6 (b). Finally, we apply an eight connected component labeling algorithm. 

Regions, which are smaller than 5 pixels are eliminated. 
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(a)    

 
(b)                                    (c) 

Fig.IV.6: Panel (a) shows S(x,y), which is obtained from thresholding the image in Fig.IV.5 (c), after 

the edge map E(x,y) has been subtracted.  Panel (b) shows a better image than Panel(a), because we 

eliminate the pixels with very low vesselness value, some of which are pointed by green arrows in (a). 

(c) is the final results after eliminating small connected regions, some of which are pointed by green 

arrows in (b). 

 

 

4.4. Results  

The proposed automatic vessel segmentation method has been tested on clinical 

digital images obtained intra-operatively. Fig.IV.7 shows representative results. Panel (a) 

shows the original vesselness image obtained from the image shown in Fig.IV.2 without 

any pre-processing. Panels (b) shows the same when the lighting artifact is removed. 

Panel (c) shows the results when the lighting artifact is removed and the vessels are 

enhanced. As seen in this figure, removal of the lighting artifact helps in preserving the 
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integrity of the vessels. Without correction, some of the large vessels are split in two 

because they reflect the light. The vesselness map obtained after vessel enhancement is 

clearly less noisy than the map obtained without enhancement. Panels (d) and (e) show 

the vesselness map for another intraoperative image without and with lighting artifact 

removal, respectively.  

Fig.IV.8 illustrates the results obtained without (panel a) and with (panel b) 

lighting artifact removal and vessel enhancement overlaid on the original image. As can 

be seen, the artifact and vessel enhancement method we propose improve the 

segmentation of the large vessels and reduces the number of spurious vessels. As can also 

be seen, this comes at the expense of the number of small vessels that can be segmented. 

This is, however, not a significant issue for our application because it is difficult to 

establish a correspondence between small vessels in the pre- and post-resection images.  

Registration between these images will thus be based on the largest vessels. 

Fig.IV.9 shows the final results on four images obtained intra-operatively. The 

left panels show pre-resection images, and the right panels show post-resection images. 

Note the holes left by the resection of the tumor.  
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(a)          (b)       (c) 

 
(d)                                               (e)  

Fig.IV.7: Panels (a) and (d) show results when the vesselness filter is applied to the original images; 

Panels (b) and (e) show the vesselness images obtained by applying the vesselness filter on the image 

after lighting artifact correction. Panel (c) shows the vesselness image after both lighting artifact 

removal and vessel enhancement. 

 

Fig.IV.8: The left panel shows vessels extracted without lighting artifact removal and vessel 

enhancement. The right panel shows vessels extracted using the method proposed in this chapter. 
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Fig.IV.9: This figure shows the extracted vessels overlaid on the original images. The left two images 

were acquired before tumor resection; the right two images were obtained after tumor resection. 

 

 

4.5. Conclusion 

Updating preoperative tomographic information is critical for image guided 

surgery. Systems designed to solve this problem typically rely on mechanical models 

driven by intraoperative measurements. Clinical acceptance of these systems will require 

solutions, which are fast, robust, and minimally intrusive. Acquiring images with our 

tracked laser range scanner is fast (on the order of one minute) and minimally intrusive 

because the scanner can be moved in and out of the operating field. The work presented 
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in this chapter indicates that automatic segmentation of cortical vessels is achievable. 

However, since automatically detected vessels in pre- and post- resection LRS images 

may be too different to be registered automatically, we will introduce microscope video 

sequences in the next two chapters. Since the pre-resection LRS image may be taken at 

about the same time as the first frame of a pre-resection video sequence, we could 

register the pre-resection LRS image to the first frame of the pre-resection video 

sequence easily. Then, if we could track each of the video sequence, as introduced in 

Chapter V, and register between video sequences, as demonstrated in Chapter VI, we will 

be able to integrate all the transformations and apply it to the pre-resection LRS image, it 

will make the deformed pre-resection LRS image very close to post-resection LRS image. 

Thus, automatic registration between this two are realistic, and the major purpose of this 

dissertation, automatic intraoperative brain displacement measurement, will be achieved.  
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Abstract 

This chapter presents a method designed to track automatically cortical vessels in 

intraoperative microscope video sequences. The main application of this method is the 

estimation of cortical displacement occurring during tumor resection procedures. The 

method works in three steps. First, models of vessels selected in the first frame of the 

sequence are built. These models are then used to track vessels across frames in the video 

sequence. Finally, displacements estimated using the vessels are extrapolated to the entire 

image. The method has been tested on images simulating large displacement, tumor 

resection, and partial occlusion by surgical instruments and on 21 video sequences 

comprising several thousand frames acquired from three patients. Qualitative results 

show that the method is accurate, robust to the appearance and disappearance of surgical 

instruments, and capable of dealing with large differences in images caused by resection. 

Quantitative results show a mean Vessel Tracking Error (VTE) of 2.4 pixels (0.3 or 0. 6 

millimeters, depending on the spatial resolution of the images) and an average Target 

Registration Error (TRE) of 3.3 pixels (0.4 or 0.8 millimeters). 

 

 

5.1. Introduction 

Most image-guided surgery systems in current clinical use only address the rigid 

body alignment of preoperative images to the patient in the operating room despite the 

fact that substantial brain shift happens as soon as the dura is opened [2, 4, 96, 97]. The 

problem is even more acute for cases that involve tumor resection. A possible solution to 

this problem is to use models [97-99] that can predict brain shift and deformation based 
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on cortical surface data acquired intra-operatively such as laser range scans [40-42, 46, 

93, 100], or video images [34-37, 45, 101-104]. 

Video images acquired with cameras attached or integrated with the operating 

microscope have been proposed to register pre- and intra-operative data as early as 1997 

by Nakajima et al. [45]. This approach has been extended in [37] and [36] by using a pair 

of cameras. In 2006, DeLorenzo et al. have used both sulcal and intensity features [34, 35] 

to register preoperative images with intraoperative video images. However, all of those 

studies were carried out on data acquired just after the opening of the dura [35] or on 

procedures such as epileptic surgery for which brain shift is relatively small compared to 

tumor resection surgeries [46, 100]. 

The objective of the work described in this dissertation is to develop a system that 

can be deployed in the Operating Room (OR) to update preoperative images and thus 

provide deformation-corrected guidance to the surgical team. To estimate surface 

deformation during the surgery a tracked laser range scanner [46, 100] has been 

employed. This device acquires simultaneously 3D physical coordinates of scanned 

object surfaces using traditional laser triangulation techniques and a color image of the 

field of view. Because the color image and the 3D cloud of points are registered through 

2D-to-3D texture calibration, the 3D coordinates of the image pixels are known. Tracking 

the 3D displacement of the cortical surface can thus be achieved by registering the 2D 

color images acquired over time. This can be achieved by placing the laser range scanner 

in the operating room and acquiring data during the procedure. While feasible, this 

approach is somewhat difficult to use in practice, at least in our OR setting, because it 

requires positioning the scanner above the resection site and acquiring the data, which 
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takes on the order of one minute. One possibility is to acquire one laser range data set just 

after the opening of the dura and one or more additional scans during the procedure, 

typically after partial tumor resection. But, because substantial changes occur during the 

surgery, developing automatic techniques for the registration of the 2D static images that 

are acquired at different phases of the procedure by the scanner is challenging. As a 

partial solution, we have developed a semi-automatic method that only requires selecting 

starting and ending points on vessel segments that are visible in the scanner images that 

need to be registered [100]. Using this method, we have shown that it is possible to 

estimate the displacement of points on cortical surfaces with a sub-millimetric accuracy. 

These results were obtained on images acquired from 10 patients with mean cortical shift 

of about 9mm and range from 2mm to 23mm. In this chapter, we describe an effort to 

automate the registration of the laser range scanner images that uses video streams 

acquired with an operating microscope.  

Operating microscopes are typically used during the procedure and these are often 

equipped with video cameras. Clearly, the video sequences have a much higher temporal 

resolution than images acquired with the tracked laser range scanner. Changes occurring 

between video frames are thus substantially smaller and automatic tracking of vessels 

through the video sequence may be possible. Estimating cortical shift during the 

procedure could thus be done as follows: (1) acquire a 2D image/3D point cloud laser 

scanner data set at time t0; (2) register the 2D image acquired with the scanner to the first 

frame of a video sequence started  shortly after t0; (3) estimate 2D 

displacement/deformation occurring in the video sequence; (4) stop the video sequence at 

time t1; (5) acquire a 2D image/3D point cloud laser scanner data set shortly after time t1; 
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(6) register the 2D image acquired with the scanner at time t1 with the last frame in the 

video sequence to establish a correspondence between laser range scanner image 1 and 

laser range scanner image 2; (7) compute 3D displacements for each pixel in the images 

through their associated 3D coordinates.  

Recently, Paul et al. [103, 104] have proposed a technique to estimate cortical 

shift from video sequences but their approach is substantially different from ours. In their 

approach a pair of microscope images is used to create a surface at time t1. At this time, a 

number of points are also localized in one of the video images. These points are tracked 

in one of the sequences until time t2. At time t2 another pair of images is acquired and 

another surface computed. Computation of cortical displacement requires the registration 

of the two surfaces. This is inherently a difficult problem because the appearance and 

shape of the surfaces changes through the surgery. In their work, they use a similarity 

measure to register these surfaces that relies on intensity, inter-surface distance, and on 

displacement information provided by the tracked points. Because we use a laser range 

scanner that provides us with the 3D coordinates of the pixels in the images it acquires, 

we do not need to estimate the 3D surface, nor do we need to register surfaces directly. 

The entire problem can be handled using much simpler 2D registrations.  

The remainder of this chapter is organized as follows. First, the data that has been 

used is described. The technique that has been used to model and track the vessels is 

explained next. This is followed by a discussion on how vessel displacement is used to 

estimate displacements over the entire image. Simulated results show the robustness of 

the proposed method to displacement, partial occlusions, or changes caused by the 
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resection. Results obtained on real images confirm the simulated results and show overall 

submillimetric registration accuracy.  

 

 

5.2. Data 

A Zeiss OPMI®Neuro/NC4 microscope equipped with a video camera was used 

to acquire the video sequences. The frame rate of the video is 29 fps. A total of 21 

sequences were acquired from 3 patients (7sequences/patient) with IRB approval. The 

images of patient 1 have 352 x 240 pixels, while the images of patient 2 and 3 have 768 x 

576 pixels. The approximate pixel dimension in the video images of patient 1 is .06 mm2, 

while it is .01 mm2 for the other two patients. At those resolutions, cortical capillaries and 

small vessels can be seen in the images and used for tracking. Between sequences 

acquired for a particular patient the camera can be translated, rotated or its focus adjusted 

to suit the needs of the neurosurgeon. 

To show the feasibility of registering video and laser range scanner images, one 

additional data set was acquired. This data set includes a laser range scanner image and 

one video sequence started 5 min after the acquisition of this image. 
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5.3. Method 

A number of methods can be used to register sequential frames in video streams. 

For example, non-rigid intensity-based algorithm has been used to estimate heart motion 

in video streams [105]. However, as also reported by Paul et al. [104], this approach is 

not adapted to the current problem because surgical instruments appear and disappear 

from the field of view. To address this issue, a feature-based method, which requires 

finding homologous structures in sequential frames, has been adopted in this work. These 

structures are used to compute transformations that are subsequently utilized to register 

the entire image. Because the most visible structures in the video images are the blood 

vessels, they are employed as tracked features.  

In the approach described herein, vessel segments are identified by the user in the 

first frame of a video sequence. This is done by selecting starting and ending points on 

these segments. A minimum cost path finding algorithm is then used to join the starting 

and ending points and segment the vessels (more details on this approach can be found in 

Chapter III). 

 

 

5.3.1. Features used for tracking 

Once the vessels are identified, their centerline is sampled to produce a number of 

points, which we call active points. In the current version of the algorithm this is done by 

downsampling the centerlines by a factor of four, which was found to be a good 
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compromise between speed and accuracy. For each of the active points, a line 

perpendicular to the centerline passing through the point is computed as shown in Fig.V.1. 

 

Fig.V.1: Active points along the curve. 

 Next, a feature matrix F (14) is associated with each point. To create this matrix, 

the R, G, B, and vesselness values are extracted from the image along the perpendicular 

lines. Vesselness, defined as in [67], is a feature computed from the Hessian of the image 

obtained at different scales (here scales ranging from 1 to 8 pixels have been used). It is 

commonly used to enhance tubular structures. 

Because the R, G, and B values are intensity features while vesselness is a shape 

feature within the [0,1] interval, the R, G, B values are first normalized between 0-1, 

while the vesselness value is multiplied by 3 to avoid weighing one type of feature over 

another.  

The length r of the perpendicular lines on either side of the centerline is a free 

parameter. Each active point is thus associated with the following matrix:  
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5.3.2. Finding homologous points in consecutive frames 

To match one frame to the other, homologous points need to be localized. This is 

done as follows. First, one feature matrix as defined above is associated with every pixel 

in the new frame. Second, the active points and the centerlines found in the previous 

frame are projected onto the new frame. Then the similarity between (a) the feature 

matrix of every pixel in the new frame along lines perpendicular to the centerlines and 

passing through the active points and (b) the feature matrix of the corresponding active 

point in the previous frame is computed as:  
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in which i refers to the ith point on the centerline and j is the position on the line 

perpendicular to the centerline at that point with 
rr sjs ≤≤− , i.e., the computation is 

done in bands of width 2sr+1. Fai is the feature matrix in the previous frame of the ith 

active point and Fpi,j is the feature matrix in the new frame of the jth point along the 

perpendicular passing through the ith active point.  

The point bi with the feature matrix most similar to the feature matrix of the active 

point ai in the previous frame is selected as the homologous point for this active point. 

However, if the maximum similarity between some ai and all the pi,j  is small, it indicates 

that no reliable homologous point bi can be found along the search line. When the 

maximum similarity falls below a threshold for a point ai, it is deactivated and not used to 

estimate the transformation that registers consecutive frames.  

This process is illustrated in Fig.V.2. In this figure, the dotted line represents the 

projection of the centerline from the previous frame to the current frame. The red dots are 
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the active points. The lines perpendicular to the dotted lines are the search direction for 

each active point. The continuous line represents the position of the vessel in the new 

frame. In the left image, all the active points found their homologous points, which are 

shown as red star. In the right image, an object appears and covers part of the vessel. For 

some active point ai, this results in  
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Fig.V.2: Strategy used to search for homologous points in the next frame. 

 

 

5.3.3. Smoothing TPS 

Smoothing Thin Plate Splines (TPS) are regularized TPS, which minimize the 

following functional  
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Here, smoothing TPS are used to compute the transformation that registers the active 

points {a1, a2,…,al} in one frame to the corresponding points {b1,b2,…,bl} in the next 

frame. For a fixed λ  there exists a unique minimizer f. To solve this variational problem, 

QR decomposition as proposed by Wahba [106] has been used. The parameter λ  is used 

to control the rigidity of the deformation. When ∞→λ , the transformation is 

constrained the most and is almost affine. Through experimentation, λ  = 1 has been 

shown to produce transformations that are smooth, regular, and forgiving to local errors 

in point correspondence while being able to capture the observed inter-frame 

deformations/displacements. The transformation computed with the homologous points is 

then extrapolated over the entire frame. The algorithm developed is summarized in 

Table.V.1. All the results obtained have been computed with tracking one out of every 5 

frames in the sequence to speed up the process. This downsampling did not affect the 

results.  

Table.V.1: Automatic intra-video tracking in intraoperative videos 

Step 1. Select features Ck in the first frame. k = 1; r = 15; sr = 75; λ =1. 

Step 2. Downsample Ck into active points ai.. For each active point, compute Fai,  

Step 3. In frame k + 1, search for the homologous point bi for each active point ai. 

If 92.0),(max <
−=

jis
r

r

s

sj
, deactivate ai for the current frame. 

 Step 4. Calculate the transformation Tk that registers the active ai, bi  pairs.  

 Step 5. Ck+1 = T(Ck ); k = k+1.  

             If k is not the last frame n, go to step 2, else end the tracking. 
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5.4. Results 

 

5.4.1. Registration of laser scanner and microscope images 

   

 

 

 

 

Fig.V.3: Example of registration of a 2D laser range scanner image (left panel) and one microscope 

image (right panel). 

Fig.V.3 illustrates the feasibility of registering 2D images acquired with our laser 

range scanner (left panel) to a microscope image (right panel) acquired 5min after the 

scanner image.  These images have been registered non-rigidly using vessels segmented 

semi-automatically. Yellow points have been selected on the microscope image and 

projected onto the laser image through the computed transformation.  
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5.4.2. Simulated results 

To show the robustness of the algorithm to various challenging situations 

observed in clinical images, we have generated simulated sequences. First, we show its 

robustness to translation; then to occlusion and to changes produced by resection.  

 

Fig.V.4: Simulation of a diagonal translation of 90 pixels in the x and y directions over 90 frames. 

Selected vessels are shown in yellow. Estimated vessel location produced by our algorithm is shown 

in green. 

In clinical sequences, translation is observed when parts of the brain sag, causing 

portions of the cortical surface initially visible through the craniotomy to disappear under 

the skull. To simulate this situation, we have selected one video frame in one of patient 

#3 sequences, and we have translated it by 90 pixels in the x and y direction over 90 

frames. Fig.V.4 shows four frames in this sequence. Tracked vessels are selected in frame 
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410 and shown in yellow in the top left panel of Fig.V.4. The location of the tracked 

vessels estimated by our algorithms on the frames 440, 470, and 500 are shown in green. 

Blue segments in the green traces are segments over which homologous active point were 

not found. When active points fall outside the image, they are deactivated and not used to 

compute the transformations.  

Surgical instruments appear in the video sequence from time to time during the 

surgery. In order to show the robustness of the approach to the sudden appearance of 

objects in the field of view, one video sequence was selected and simulated instruments 

were inserted into the field of view to mask various parts of the image during portions of 

the sequence.  The top left panel of Fig.V.5 shows frame 410 of patient #3. The vessels 

selected in frame 410 are shown in yellow. Tracking results are shown in green on the 

other frames.  One point shown in white and indicated by an arrow on the first frame has 

been selected in the image to show overall displacement. The bottom right panel shows 

the Euclidean distance of the point to its original position in consecutive frames.  

The oscillations observed in this plot are caused by small displacements of the 

cortical surface caused by brain pulsatility. In these simulations, an object is inserted on 

the left side of the image at frame 420 and disappears at frame 430, another object 

appears on the right side of the image at frame 470 and disappears at frame 480, and a 

third object appears in the top at frame 520 and disappears at frame 530. In the same 

sequence, a cavity induced by the resection has also been simulated.  This was achieved 

by placing a small cavity in an incision visible in the image and progressively growing it. 

To achieve this, the image was expanded linearly within the cavity. Outside the cavity the 

magnitude of the deformation was reduced exponentially. The radius of the cavity was 
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increased from frame to frame. This results in images in which tissues surrounding the 

cavity are both displaced and compressed.   

As was the case in the previous figure, vessel segments that appear in blue are 

segments over which active points were not found. The transformation used to register 

the frames was thus computed without them. But because the remaining segments are 

sufficient to compute a transformation that is accurate enough over the entire image, the 

computed position of the vessel during occlusion is approximately correct. As soon as the 

instrument disappears, the algorithm reacquires the vessels. This is possible because the 

vesselness component of the feature matrix is defined on the first frame and fixed for the 

entire sequence. When a surgical instrument appears in the field of view, it dramatically 

changes the vesselness value of the pixels it covers. Because of this, the similarity 

between these pixels and the centerline pixels projected from the previous frame falls 

below the threshold and no correspondence is found. As soon as the vessels become 

apparent again, the similarity value is above the threshold and the vessels are used. This 

will work well as long as the transformation computed without the covered vessels is a 

reasonable approximation over the covered regions, i.e., the vessel remains within the 

search window of the purple trace. One also observes that the presence of the cavity does 

not affect tracking results.  
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Fig.V.5: Simulation of occlusions caused by surgical instruments entering and leaving the field of 

view and of a cavity caused by a resection. Selected vessels are shown in yellow on the first frame. 

Estimated vessel location is shown in green on the other frames. The blue segments indicate segments 

for which no correspondence was found. The bottom right panel shows the displacement of the white 

point indicated by an arrow on the upper left frame. 
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5.4.3. Qualitative results obtained on real image sequences 

In this section results obtained for selected patient sequences are presented to 

illustrate the type of images included in the study. Fig.V.6 shows several frames in one 

sequence acquired for the first patient. In this sequence, a surgical instrument appears in 

the field of view. The vessels selected in the first frame are shown in yellow. Tracking 

results are shown in green in the other frames. Points shown in yellow are points that are 

not used for registration purposes but define targets used in the quantitative study (see 

next section). As was the case in the simulated images, the algorithm is capable of 

tracking selected vessels despite the partial occlusion caused by the surgical instruments 

and the cortical deformation caused by the resection. A close inspection of frame 120 in 

Fig.V.6 shows a light yellow square on the right corner of the image. This is the logo of 

the Zeiss microscope, which is occasionally projected onto the image and causes artifacts. 

As discussed above, the vesselness component of the feature matrix is evaluated on the 

first frame of the video sequence and fixed for the entire sequence. This is done because 

it is assumed that the shape characteristics of the vessels do not change from frame to 

frame. The R, G, and B values, on the other hand, are updated as the algorithms moves 

from one frame to the other. This permits the adaptation of the color characteristics to, for 

instance, change in lighting conditions. Here, the algorithm is immune to the artifact 

caused by the Zeiss logo because it appears in the video gradually and the R, G, and B 

values of the similarity matrix are adapted.  

Fig.V.7 shows several frames in one of the second patient’s sequences. In this 

sequence, a relatively fast, medium amplitude motion was observed between frames. 

Vessel segments identified on the first frame and shown in yellow are tracked over 400 
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frames. Here, the algorithm was able to track all the active points and tracking results are 

shown in green. Again, the yellow points designate the intersection of small vessels not 

used in the registration process. Visual inspection shows that the yellow target points are 

tracked accurately and demonstrate the accuracy of the method over the entire frame. As 

was the case in the previous sequence, a surgical instrument appears in the last sample 

frame without affecting the tracking process. 

 

Fig.V.6: Tracking of sample frames in one video sequence of patient 1. 
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Fig.V.7: Tracking of sample frames in one video sequence of patient 2. 

 

Fig.V.8: Frame-to-frame displacement of one landmark point in three sequences pertaining to 

patient 1 (sequences 1, 2, and 5). 
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To provider the reader with a sense of the inter-frame and total motion observed 

in the sequences used herein, which is difficult to convey with static images, Fig.V.8. 

plots the displacement of one voxel in each of three sequences pertaining to patient 1 

(sequences 1, 2, and 5). 

 

 

5.4.4. Quantitative evaluation 

  To evaluate the approach quantitatively, two measures have been used: the 

Vessel Tracking Error (VTE) and the Target Registration Error (TRE). The vessel 

tracking error is computed for vessel segments tracked from frame to frame and is 

defined as the average distance between the true vessel position and the position of the 

vessel found by the algorithm. To compute this error, a human operator first selects 

starting and ending points of vessels segments in the first frame of the sequence. These 

vessel segments are chosen such that they cover a major portion of the image. The vessel 

segmentation algorithm in Chapter III connects the starting and ending points to create 

the set of vessel segments that are tracked. The human operator also selects the starting 

and ending points for the same vessel segments in four additional frames positioned at 

25%, 50%, 75%, and 100% of the sequence. Both the vessel segments selected by the 

human rater and those produced by the algorithm on these frames are then parameterized. 

N equidistant samples with N equal to the number of active points for a segment are 

subsequently selected on corresponding segments. This produces two sets of homologous 

points Vi  and Ui . The Vessel Tracking Error is defined as  
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i.e., it is the mean Euclidean distance between homologous points on vessel segments. 

The target registration error [86] is the registration error obtained for points that are not 

used to register the frames. These are points, typically intersections of small vessels, 

which are selected by the human operator in the first frame and then in the four other 

frames in which the vessels have been selected (see selected points in Fig.V.6 and 

Fig.V.7). While selecting the target points, magnification of the images was allowed. To 

evaluate target localization error, a few sequences were selected on which landmarks 

were selected several time. Target localization error was sub-voxel and considered to be 

negligible. For those points, the target registration error is defined as follows: 

))(())(( iiii YXTYXT −−= T

iTRE ,                                          (19) 

in which Xi and Yi are the points selected in the first frame and the four sampled 

frames, respectively. T is the transformation obtained by concatenating all the elementary 

transformations obtained from tracking each frames.                

Table.V.2 lists the vessel tracking errors computed for the 21 video sequences. 

Sequences 1 to 7 pertain to patient 1, sequences 8 to 14 are to patient 2, and sequences 15 

to 21 to patient 3. Results pertaining to patient 3 have been computed differently than 

those of patient 1 and 2. Rather than parameterizing vessel segments, we computed 

correspondence between manually segmented and automatically localized vessel 

segments using closest point distance. This metric is not sensitive to vessel translation. 

Unfortunately, data pertaining to patient 3 was lost and could not be reprocessed. Based 

on our observations for the other two patients, our current distance measure adds, in 

average, one pixel to our previous measure. Overall statistics have thus been reported in 
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two groups. The first contains patient 1 and 2, the other contains patients 3. The tracking 

error for each video sequence reported in the “mean” column is computed as the mean of 

the vessel tracking errors in the 4 sampled frames.  

Across the 14 sequences for which we compute the VTE as described above, the 

mean VTE is 2.45 pixels with a standard deviation of 0.58 pixels. With the spatial 

resolution of the images, this leads to a mean VTE of 0.3 (high resolution sequences) or 

0.6 (low resolution sequences) mm. The second column from the right shows the number 

of vessel segments tracked in each of the video sequences. This number varies from 11 in 

sequences in which a large number of vessels are visible, e.g., sequence 3, to 5 in 

sequences in which only a few vessels are visible, e.g., sequence 13. The number of 

vessel segments across sequences for a particular subject may change, e.g., from 

sequence 1 to sequence 7. This is due to the fact that videos are taken over long periods 

of time at different phases of the procedure. Because of this, some vessels may disappear 

because of the resection or be covered by cotton pads during the entire sequence; these 

vessels cannot be tracked in the sequence. The last column in the table is the number of 

frames in each video sequence.  

In Table.V.3, the target registration error is reported for all the video sequences. 

As was done above, the average TRE for each video sequence reported in the “mean” 

column is computed as the mean of the target registration errors in the 4 sampled frames. 

The overall mean (3.34 pixels), median (2.88 pixels), standard deviation (1.52 pixels) 

TRE are also reported. The overall mean TRE is thus approximately 0.4 or 0.8 mm, 

depending on the spatial resolution of the images. As expected, the TRE is larger than the 

VTE because it is computed with points that are not used to estimate the transformations 
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used to register the frames. The last column of the table shows the number of target 

points that have been selected for each of the video sequences. Again, more points have 

been selected on some sequences than others because some sequences have more vessels 

and thus identifiable target points than others. As many as 15 points have been selected 

for some sequence, e.g. sequence 19. The lowest number of target points is 6 for 

sequence 10.  For this sequence, one also observes that the TRE is relatively large. In this 

sequence, the microscope was focused on the bottom of the cavity left after the resection. 

The cortical surface was thus blurry, which affected the accuracy of the tracking 

algorithm.   

Table.V.2: VTE (IN PIXELS) for 21 video sequences 

 
25 
% 

50 
% 

75 
% 

100 
% 

Mean 
 

Std 
 

# 
V 

# 
Frames 

1 2.26 2.47 2.78 2.55 2.51 0.21 9 285 
2 1.48 2.48 2.09 2.67 2.18 0.52 10 350 
3 2.46 1.89 2.46 2.93 2.43 0.42 11 680 
4 2.03 2.18 3.18 2.48 2.46 0.51 9 520 
5 1.6 2.50 3.52 2.36 2.49 0.78 6 470 
6 1.84 3.64 3.00 2.54 2.75 0.75 8 435 
7 1.84 2.67 3.19 2.56 2.56 0.55 6 485 
8 2.71 2.14 2.35 2.00 2.3 0.39 8 990 
9 1.42 2.11 2.22 1.73 1.87 0.36 7 1190 
10 2.46 2.0 3.64 4.54 3.16 1.15 6 585 
11 2.79 2.83 2.14 2.63 2.59 0.31 6 815 
12 2.40 2.12 1.44 1.71 1.91 0.42 6 945 
13 2.11 2.56 2.95 2.29 2.47 0.36 5 925 
14 3.11 2.04 2.58 2.71 2.61 0.44 8 1275 
15 1.18 1.15 1.71 1.59 1.41 0.29 7 160 
16 0.44 0.84 1.37 1.31 0.99 0.35 7 210 
17 1.16 1.24 1.65 1.36 1.35 0.39 7 180 
18 1.54 1.42 1.79 3.39 2.04 0.15 5 165 
19 0.85 1.49 2.08 1.15 1.38 0.53 6 180 
20 1.02 1.69 1.05 1.17 1.23 0.17 7 220 
21 0.82 0.94 1.04 0.97 0.94 0.32 8 340 

patient 1 and 2 Overall mean  2.45 overall  std 0.58 
patient 3 Overall mean 1.33 overall  std 0.54 
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Table.V.3: TRE (IN PIXELS) for 21 video sequences 

 25% 50%    75% 100% Mean Std 
# 

Targets 
1 1.77 2.1 2.54 2.29 2.18 0.32 11 
2 1.85 2.19 2.9 2.09 2.26 0.45 13 
3 1.97 2.36 2.83 1.43 2.15 0.59 11 
4 3.32 4.2 2.76 5.5 3.95 1.19 8 
5 1.97 2.3 2.61 2.37 2.31 0.26 8 
6 2.34 4.17 2.94 3.28 3.18 0.76 10 
7 2.13 2.74 2.33 2.57 2.44 0.27 10 
8 2.05 5.91 5.11 4.06 4.28 1.67 8 
9 1.86 2.91 3.72 4.79 3.32 1.24 9 
10 7.79 9.7 8.62 6.26 8.09 1.45 6 
11 3.24 3.03 2.77 3.09 3.03 0.2 7 
12 2.18 2.57 2.62 2.7 2.52 0.23 9 
13 2.88 5.09 4.88 3.72 4.14 1.04 8 
14 2.04 3.46 5.82 5.34 4.17 1.74 6 
15 1.86 2.11 2.91 2.84 2.43 0.52 13 
16 2.55 3.64 2.3 2.39 2.72 0.62 13 
17 3.67 1.67 3.49 4.13 3.24 1.08 13 
18 3.52 2.81 2.85 3.44 3.16 0.38 13 
19 4.51 3.99 1.98 1.99 3.12 1.32 15 
20 3.47 3.13 2.88 2.71 3.05 0.33 14 
21 2.95 5.04 4.88 4.79 4.42 0.98 13 
overall mean 3.34 overall median 2.88 
overall std 1.52 average # of targets 10 

 

 

5.4.5. Parameter sensitivity test 

Three main parameters need to be selected in our approach, i.e., the profile radius 

r, the searching threshold sr, and the similarity threshold. These were selected 

heuristically on a few sequences and then used without modifications on the others. To 

illustrate the sensitivity of the results on the parameter values one sequence was first 

selected (sequence # 3). The algorithm was then applied to this sequence with parameter 

values ranging from 80% to 120% of the original values. Parameter values were 

perturbed sequentially. Fig.V.9 shows the TRE values that were obtained on the four 
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evaluation frames used for this sequence. These results show that, albeit some variations 

can be observed when the parameters are adjusted, the results remain within a tight range.  

 

 

 

 

Fig.V.9: TRE values obtained for sequence #3 when perturbing the value of the three main 

parameters used in the algorithm: the profile radius (top panel), the searching radius (middle panel), 

and the threshold (bottom panel). In each case values were perturbed in a 80%-120% range. 

 

 

EFFECT OF PARAMETER 

PERTURBATION ON TRE (IN PIXELS) 
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5.5. Discussion 

In this chapter, a method has been proposed to track brain motion in video 

streams. Coupled with a laser range scanner, this could permit estimating intraoperative 

brain shift automatically. The results we have presented indicate that this method is 

capable of tracking vessels even when surgical instruments obscure parts of the images. It 

is relatively simple, which makes it fast and applicable in real time (a MATLAB 

implementation takes about 1sec./frame but the algorithm does not need to be applied to 

every frame). The method has been used on 21 video sequences comprising 11405 frames. 

As the results demonstrate, the method is able to track the features in all of these 

sequences accurately. Tracking was less accurate in one of the sequences in which the 

cortical surface was blurry because the microscope was focused on deeper brain 

structures. 

The closest work to ours is the work by Paul et al. [103, 104] and comparison 

with published work is difficult without being able to apply techniques on the same data 

sets. But, as discussed in the introduction section, their approach and ours is substantially 

different. They need to create a surface from video pairs and then register surfaces 

acquired at different times. We circumvent the need for surface registration by using a 

laser range scanner that provides us with both a 2D image and the 3D coordinates of the 

pixels in this image. Another difference is the fact that we rely on the entire vessels and 

on frame to frame registration for tracking rather than on a few isolated pixels. The fact 

that we register the entire frame based on the available information allows us to compute 

a transformation that is relatively accurate over occluded regions and wait for points to 

become visible again to refine the transformation over these regions. Paul et al. report 
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that their method is robust to occlusion. Again, we found it difficult to compare their 

results with ours because we could not ascertain from the results they report which points 

were occluded and for how long.  

As discussed in the background section, the goal of this work is to use 

intraoperative video sequences to register laser range scanner images obtained at 

somewhat distant intervals during the procedure. To the best of our knowledge, this is the 

first attempt at doing so and the method described herein is a step in that realization but 

work remains. For example, while it has been shown that tracking vessels within a 

continuous video stream is achievable, tracking discontinuous sequences that are 

separated by relatively long intervals may require an additional inter-sequence 

registration step. Because the intraoperative microscope is currently not tracked, inter-

sequence registration necessitates first computing a transformation to correct for 

differences in pose or magnification between sequences, which can be done by localizing 

a few common points in both sequences and computing a global transformation. If the 

last frame in a sequence and the first frame in the next sequence are very different, e.g., if 

the first sequence is acquired with the cortex intact and the next one after tumor resection, 

manual localization of a few vessels visible in both sequences may also be required.  

While challenges remain, the results presented in this chapter suggest the value of 

intraoperative surgical microscope data. Coupling the tracking of  microscope video 

sequences with 3D laser range scan data to characterize deformation during surgery could 

provide a detailed understanding of the changes in the ‘active surgical’ surface that are at 

the focus of therapy. 
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 CHAPTER VI 

  

 

 SUMMARY AND FUTURE WORK 

 

 

This dissertation presents several innovative methods in the area of intraoperative 

brain shift estimation. In Chapter II, it starts by showing, on five image volumes, that a 

2D registration method is preferable to a 3D registration method when LRS data is used 

to estimate displacement. Then, it proposes a semi-automatic method for the registration 

of images acquired before and after tumor resection. This method, which relies on the 

registration of vessels that can be visualized in the pre- and the post-resection images, 

only requires the identification of starting and ending points for each vessel segment. An 

optimal path finding algorithm connects those vessel segments automatically using a cost 

map built with intensity information. Once vessels are identified, they are registered 

using a robust point-based nonrigid registration algorithm. The transformation computed 

with the vessels is then applied to the entire image. This permits to establish a complete 

correspondence between the pre- and post-resection three-dimensional LRS data. 

Experiments show that this semi-automatic method is robust to operator errors in 

localizing homologous points and a quantitative evaluation performed on 10 surgical 

cases show submillimetric registration accuracy. In Chapter IV, a method is presented to 
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automate the vessel segmentation process further. This method involves several steps: (1) 

correction of lighting artifacts, (2) vessel enhancement, and (3) vessels’ centerline 

extraction. Results obtained on 5 images acquired in the operating room suggest that our 

method is robust and is able to segment vessels reliably.  Although the original purpose 

of this technique was to permit the fully automatic registration of the pre- and post-

resection images, it was realized that the very large differences in these images caused by 

the surgical process made their registration very difficult. A possible solution is to use 

intraoperative video images as a means to establish correspondence between static LRS 

images because inter-frame differences are relatively small in the video sequences, which 

facilitates vessel tracking. In Chapter V, a new video tracking algorithm is designed to 

track automatically cortical vessels in intraoperative microscope video sequences. This 

method works in three steps. First, models of vessels selected in the first frame of the 

sequence are built. These models are then used to track vessels across frames in the video 

sequence. Finally, displacements estimated using the vessels are extrapolated to the entire 

image. This tracking method has been tested on images simulating large displacement, 

tumor resection, and partial occlusion by surgical instruments and on 21 video sequences 

comprising several thousand frames acquired from three patients. Qualitative results 

show that it is accurate, robust to the appearance and disappearance of surgical 

instruments, and capable of dealing with large differences in images caused by resection. 

Quantitative results show a mean vessel tracking error of 2.4 pixels (0.3 or 0. 6 

millimeters, depending on the spatial resolution of the images) and an average target 

registration error of 3.3 pixels (0.4 or 0.8 millimeters).  
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Even though we have made substantial progress towards developing a method 

that will permit the estimation of intraoperative cortical brain shift, work remains. In 

current practice, videos are not acquired as a continuous stream throughout the procedure. 

Between video segments, the appearance of the images may change greatly, i.e., some of 

the vessels may have been resected, cotton pads or other surgical instrument may obscure 

parts of the tracking vessels permanently, or the color of the images may change because 

of bleeding. All these differences make the registration of inter-video sequences difficult 

and the automation of this process has not been achieved. As a partial solution, a 

graphical user interface described below has been developed to permit the semi-

automatic registration of these sequences.   

 

Fig.VI.1: Vessel tracking in the inter-video tracking GUI. 
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Fig.VI.2: Editing vessels in the inter-video tracking GUI. 

Fig.VI.1 shows a screenshot of the semi-automatic inter-video registration system. 

The top left panel shows the first frame in a video sequence. Starting and ending points 

for the vessels are localized and the vessels are segmented. Yellow points are the target 

points used for evaluation. The top middle panel shows the results of the tracking, i.e., it 

is a dynamic panel that shows the tracked vessels on successive frames as the algorithm 

progresses through the sequence. The top right panel shows the last frame of this 

sequence and the bottom left panel shows the first frame of the next video sequence. Four 

points visible both in the top right and the bottom left panels are selected. A projective 

registration is computed between the 4 points shown on the top right panel and the 4 

points shown on the bottom left panel. The vessels used for tracking are projected from 

the last frame in the first sequence to the first frame on the next one using this projective 

transformation, and displayed on the bottom left panel. But the projective registration is 
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not always sufficient to compensate for the nonrigid deformation occurring between 

video sequences. In addition, parts of some vessel may be occluded, or new ones may 

appear in the field of view. To compensate for these differences, starting and ending 

points for the vessels can be adjusted, vessel segments can be deleted, or new ones added 

using GUI tools developed for this purpose.   

The bottom left panel of Fig.VI.2, illustrates the process. To delete a curve or part 

of a curve, one simply draws a closed contour around. If the curve is translated, one can 

drag the starting or ending point to a new position (blue points and lines) and reconnect 

them using the minimal cost path method presented in Chapter III. The bottom middle 

panel in this image shows the progress of the algorithm as it works from frame to frame 

in video sequence 2. The bottom right panel shows the last frame of this sequence. The 

interface permits scrolling to accommodate the third sequence, and the process is 

repeated until the end of the last sequence in a series.  

In Fig.VI.3, we illustrate tracking across seven video sequences for one of 

patients. The top left image shows the tracked vessels in yellow. Those vessels are 

successfully tracked until the very last frame of that sequence, which is shown in the top 

middle panel. The top right panel is also the last frame of that sequence with four green 

points chosen to compute the projective transformation to register the first sequence to 

the next. The second row shows the second video sequence. A cotton pad enters the 

craniotomy, and one of the vessels is occluded so it could be deleted from tracking. The 

middle image in that row shows the last frame in sequence two with the vessels that have 

been tracked. In the third row, another cotton pad and a retractor appear and occlude 

more vessels, but one more vessel is spotted and added to the set of tracked vessels. The 
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fourth sequence tracks the same vessels the third sequence does, but this sequence is a 

little bit out of focus, as one could tell from the images. In the fifth row, two more vessels 

are added. In the last row, three vessels could be deleted but two more vessels could be 

added, as shown in the figure. 

Although such an interface shows the feasibility of tracking vessels through long 

periods of time it is not ideal for clinical use. Several things could be done to improve the 

process further. First, the microscope could be tracked. This would alleviate the need to 

localize homologous points on successive sequences to register those. Another possibility 

is to gather a continuous video stream. In current practice, recordings are not made during 

the entire procedure even when the microscope is. This is so because videos are stored in 

the microscope and capacity of the storing device is limited. A possibility is to connect a 

computer with a frame grabber to the video output of the microscope. This approach is 

currently being investigated.  

Before they become clinically useable, the various methods proposed in this work 

also need to be better integrated and the complete process validated. In particular, the 

accuracy of the complete LRS-video-LRS process for cortical displacement estimation 

needs to be assessed. This could be done, for instance, by using a tracked probe in the 

operating room. This would permit localizing a few points on the cortical surface prior to 

resection and the same points after resection. Displacements measured with the tracked 

probe could thus be compared to the displacements measured with the method we 

propose. 
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Even though, the solution that has been presented in this work is not the final one, 

it is hoped that it will be a valuable contribution toward solving the problem of 

intraoperative brain shift estimation and to the broader image-guided therapy field.  
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Fig.VI.3: Inter-video tracking of 7 video sequences acquired for a subject. 
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