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CHAPTER I 

 

Introduction 

 

This thesis is centered around the antigen-recognition molecules produced by human B 

cells, known as immunoglobulins (Fröland and Natvig, 1972). Immunoglobulins are found in two 

forms, either as membrane bound B cell receptors or the secreted effector molecules known as 

antibodies (Hoffman, 2015). Antibodies bind foreign peptides, glycans, and proteins mediating the 

adaptive immune response by circulating throughout the body and adhering to their specific 

antigen, thus allowing it to be cleared from circulation (Kirkeby, 2000). In this thesis, I will 

describe the ternary nature of antibody/antigen interactions and how antigen-distal residues 

contribute to binding affinity, especially in the context of antibody affinity maturation. This first 

chapter discusses the mechanisms through which the immune repertoire gains diversity, revolving 

around the mechanisms that produce antibodies and allow B cells to proliferate. I will introduce 

HIV as a means through which we can better understand affinity maturation. Finally, I will 

describe technologies used to explore the relationship between conformational entropy and 

antibody affinity maturation. 

  The second chapter of this thesis focuses on techniques for identifying the mechanisms 

through which non-contact residues contribute to affinity maturation. Prior to my work, dozens of 

studies had identified the heavy chain/light chain (HC/LC) interface as the primary mediator of 

the geometry of the paratope (Chailyan, 2011; Masuda, 2006; Hsu, 2014; Dunbar, 2014). 

Additionally, several studies have attempted to predict the range of motion through 
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computationally expensive means, and many others have sought to identify a single heavy chain – 

light chain orientation for any given sequence (Bujotzek, 2016; Marze, 2016; Dunbar, 2013). Here, 

I utilize a novel pipeline that pairs the Rosetta modeling suite with antibody orientation analysis 

software to interrogates how the composition of the HC/LC interface affects thermodynamic 

stability and range of HC/LC orientations. In the final chapter, I discuss the results and the 

thermodynamic implications. I propose several experiments to complement the work presented in 

this thesis, inform the development of future technologies, and aid engineering endeavors.   

 

Introduction to Antibodies 

In humans, B cells begin their development in the bone marrow and complete their 

maturation in the spleen. This development is delineated by marked changes in surface phenotype, 

levels of gene expression, and the generation of a unique immunoglobulin molecule comprised of 

a heavy chain and light chain (HC and LC) (Hardy, 2001).  In the bone marrow, hematopoietic 

stem cells (HSCs) in the bone marrow differentiate into multipotent progenitor cells, then to 

lymphoid progenitor cells, which receive signals from bone marrow stromal cells and begin B cell 

development.   

Lymphoid progenitor cells become early pro-B cells by beginning the rearrangement of the 

heavy chain diversity (D) and joining (J) segments, leaving the heavy variable (V) and all light 

chain gene segments remain in their unrearranged configuration (Allman, 1999). The V(D)J 

recombination process continues in late pro B cells, which appends a VH gene segment to the 

partially rearranged gene to form a fully functional HC gene (Nutt, 1999). A successful V(D)J 

recombination results in the synthesis of the heavy chain and tested for functionality by binding to 

the binding immunoglobulin protein (Bip) in the endoplasmic reticulum (ER) (Fritz, 2011). This 
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step of the selection process ensures that the heavy chain folds correctly; nascent heavy chains that 

fail to bind Bip become targets for degradation, while successful heavy chains associate with a 

surrogate light chain formed by the VpreB and  l5 proteins, which displace Bip from the CH1 

domain, causing that domain to fold (Taduchi, 2018). At this juncture, they are classified as large 

pre-B cells and express the rearranged HC alongside the proteins VpreB and l5, which act as a 

surrogate light chain, on their surface (Mains, 1983). This trimer, known as the pre-BCR complex 

(Zhang, 2004), signals the cell to undergo several rounds of proliferation.  

The subsequent daughter cells, known as small pre-B cells, then rearrange V and J 

segments to form light chains. The pre-BCR complex is internalized, and the newly formed light 

chain replaces the surrogate light chain (Allende 2010). The newly formed B cell receptor, or BCR, 

is expressed on the surface of the B cell, and the cell is tested for tolerance. Stromal cells and 

hematopoietic cells express self-antigen on their surface; immature B cells that do not interact with 

self-antigen are allowed to leave the bone marrow and circulate through the blood, the lymph, and 

secondary lymphoid organs (SLOs) like lymph nodes and the spleen (Fritz 2014). Immature B 

cells that bind self-antigen are retained in the bone marrow and undergo receptor editing. Binding 

to self-antigen signals the B cell to maintain production of the RAG complex (Teigs, 1993). The 

B cells halt the production of the old light chain, continue VJ recombination to form a new light 

chain, attempt to form a functional BCR, and are tested against self-antigen again. This process 

continues until either a new, functional BCR is produced and the B cell avoids interaction with 

self-antigen, or all light chain VJ rearrangements are exhausted and the B cell undergoes apoptosis 

(Luring Prak, 2011).  Additionally, B cells that bind to soluble self-antigen cease their development 

and become anergic. Anergic cells no longer continue to express functional BCR and die shortly 

after. These two tolerance mechanisms are known as “central tolerance” as they occur in the bone 
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marrow (Nemazee, 2017). After leaving the bone marrow, B cells may encounter soluble-self 

antigen. Upon recognition of self-antigen, auto-reactive B cells become anergic. This mechanism 

is known and “peripheral tolerance”, as it occurs outside of the bone marrow in the periphery 

(Pelanda, 2012). When immature B cells leave the bone marrow, they begin to circulate through 

secondary lymphoid organs, blood, and the lymph. Upon entering the lymph node, B cells are led 

into primary lymphoid follicles by a gradient of chemokines where they interact with follicular 

dendritic cells and are stimulated with BAFF, which ensures survival of the B cell and completes 

the development process (Beyer, 2008). Secondary lymphoid organs also house sites where these 

mature, naïve B cells are introduced to their specific antigen. Antigen from infected tissue migrates 

to SLOs and either freely circulates or is presented on follicular dendritic cells (Janeway, 2001). B 

cells specific for this antigen bind to and internalize it, processing it for presentation to T cells that 

have T cell receptors specific to the same antigen. Interaction with T cells completes the activation 

process causing the B cell to proliferate undergo somatic hypermutation, which I will discuss in 

the next segment.  

  

Antibody Diversity 

As one might imagine, recognition of a virtually unlimited number of foreign pathogens 

and particles requires an incredible amount of antibody diversity. This diversity is determined 

through four mechanisms. First, during B cell development the immunoglobulin domains are 

assembled through a process called somatic recombination (Arya, 2018). The variable domains 

are pieced together from gene segments called the variable (V), diversity (D), and joining (J) 

segments. The heavy chain is assembled by combining a segment from each of the V, D, and J, 
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genes, whereas the light chain contains only V and J fragments (Figure I.1). The heavy chain is 

encoded by one each of 69 VH, 27 DH, and 6 JH gene segments (Lefranc, 2001).  

The second mechanism of diversity occurs during V(D)J recombination as a result of 

junctional diversity (Alt and Baltimore, 1982). Here, diversity is generated through the removal of 

nucleotides at the recombination site and subsequent repair to join the segments (Jeske, 1984). 

These genes have specific sequence motifs adjacent to them called Recombination Signal 

Sequences, or RSSss. A protein complex containing RAG1 and RAG2 bind specifically to these 

RSS motifs. The RAG protein complexes bring the the gene segments together and introduce nicks 

in the dsDNA, cleaving the DNA at the junction which creates hairpin at the end of the gene 

segments (Jones and Gellert, 2004). Cleavage of the hairpin leaves one side of each gene with a 

single strand of DNA – an overhang known as Palindromic nucleotides (stemming from the pattern 

of nucleotides left in the overhang) (Lafaille, 1989). The enzyme terminal deoxynucleotidyl 

transferase (TdT) processes these overhangs, inserting up to 20 non-templated nucleotides (Figure 

I.1) into the cleaved junctions (Motea and Berdis, 2010). While the exact mechanism through 

which ligation occurs is still unknown, DNA ligases, protein kinases, and the Artemis nuclease are 

incorporated into the RAG complex to join the ends of the gene segments together (Malu, 2012). 

As the name implies, junctional diversity is limited to the junctions formed during recombination. 

This in turn only generates diversity for the V(D)J junctions, which comprise the CDR3s of both 

the heavy and the light chains (LeFranc, 2011). 

The third mechanism of antibody diversity occurs with heavy chain – light chain pairing, 

as the light chain is derived from either kappa or lambda genes (Smith, 2016). This light chain 

diversity is generated through 31 IGKV genes, 5 IGKJ genes, 45 IGLV genes, and 7 IGLJ genes 

(Lefranc, 2011). While in theory the number of potential light chains (470) when multiplied by the 
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number of potential unique heavy chains (~11,000) gives a total of around 5.2 x 106 unique V(D)J 

HC/LC combinations, the reality is that the combinational diversity may not contribute as much to 

diversity as expected. Many studies have shown that VH gene usage can be restricted during 

infections, and the heterodimeric form that antibodies inhabit provides a means to bind engage a 

wide variety of antigens, but even if the response were completely random, it is constrained to the 

immunoglobulin fold by selection mechanisms during B cell development (Wang, 2013).  

To compensate for this, additional diversity is garnered through a processes known as 

somatic hypermutation (SHM), also known as affinity maturation (Maul, 2010), and antibody 

isotype switching. After B cell activation via antigen recognition and T cell interaction, the enzyme 

activation-induced cytidine deaminase, or AID, induces point mutations and causes a spike in the 

rate of mutation by a factor of one million. AID deaminates cytosine nucleotides to uracil, which 

 

 

 
Figure I.1. Junctional diversity is generated during V(D)J recombination. Cartoon 

representation junctional diversity in naïve B cells.. The heavy chain is built by recombining V 
(blue), D (green), and J (purple) segments. Cleavage of the RAG-mediated hairpin loops leaves 
palindromic residues, shown in grey. TdT adds a series of random, non-templated nucleotides 
(orange) at the junction of each cleaved segment. The segments are ligated together and 
translated, resulting in an antibody with random amino acids in the VDJ junctions. 
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causes a uracil-guanine mismatch (Maul 2010). The mechanism through which this results in an 

error-prone mismatch is still not fully understood (Baretto and Magor, 2011). The DNA is then 

replicated, and the cells begin to divide. This population of B cells expresses these mutated BCRs 

with a range of affinity for any given target and has undergone class switching. During proliferation, 

these genomic rearrangements result in the expression of IgA, IgG, or rarely, IgE isotype 

antibodies, each of which possesses unique characteristics, function, and structure (Stavnezer, 

2004). Activated B cells in follicles change the morphology to secondary follicles containing 

specialized SLO regions called “germinal centers” (Banerjee, 2016). In germinal centers, B cells 

that have undergone SHM and class switching continually compete for the antigen presented on 

FDCs, causing the activation cycle of proliferation and inclusion of mutations to continue 

(Janeway, 2001). This process can last for weeks, and selects for the BCRs with the highest affinity 

for their antigen. Some of the surviving B cells migrate to other host SLOs or return to the bone 

marrow, where they differentiate into plasma cells and secrete high affinity antibody (Chang, 2015), 

while others become resting, memory B cells that maintain a high affinity BCR (Budeus, 2015).  

 

Antibody Structure 

The most common of circulating antibodies is the IgG isotype, which is a homodimer that 

consists of four polypeptides – two heavy chains, each of which is bound to each other, and 

identical light chains (Figure I.2). The general structure of an IgG molecule can be divided into 

three segments: The fragment crystallizable (Fc), which contains only the constant regions of the 

two heavy chains; the fragment antigen-binding (Fab) which contains the variable domain of the 

heavy and light chain, as well a constant domain for each of the chains; and the fragment variable 

(Fv), which consists of the variable domains for a heavy chain and it’s light chain.  This work 
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centers around the Fv region, which consists of two immunoglobulin folds named VH & VL, each 

of whom is made up of a pair of β sheets (Figure I.3). These are built of antiparallel β strands that 

surround a central hydrophobic core, while VH-VL regions are held together by a series of 

hydrophobic interactions and sparse hydrogen bonds. The properties inherent to the fold allow for 

loops to be present at each end (Bork, 1994).  Both the heavy and light variable domains contain 

the complementarity-determining regions – CDRH1, CDRH2, and CDRH3 for the heavy chain 

and CDRL1, CDRL2, and CDRL3 for the light chain (Schroeder, 2010). Together, these six loops 

are largely responsible for binding to  and recognizing foreign targets or “antigens” (Dondelinger, 

2018).  

 

 

 

 

Figure I.2 IgG molecules are homodimers of heterodimers. Cartoon representation 
of a human IgG molecule. The heavy chain is shown in dark grey, the light chain is shown in 
light grey. The paratope is shown in blue and red in the Fv region for the light chain and heavy 
chain, respectively.  
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Introduction to HIV 

The HIV pandemic is a devastating and potentially incurable global health risk. Since the 

discovery of Human Immunodeficiency Virus as the causative agent of Acquired 

Immunodeficiency Syndrome, or AIDS, roughly 35 million people have died AIDS-related deaths 

(UNAIDS,2017). In 2017, it was estimated that 36.9 million infected people were living HIV in 

2017, two-thirds of whom do not have access to antiretroviral therapy (UNAIDS, 2017). Nearly 

2.0 million people previously uninfected people contracted the virus last year, and 940,000 

individuals died AIDS-related deaths (UNAIDS, 2017). The virus is spread through unprotected 

sexual contact and the bodily fluids associated with it, from mother to child through breastmilk 

 

Figure I.3. Structure of the Fv region. Cartoon representation of the CH65 variable 
region (PDB 3SM5). The heavy chain is shown in dark grey (left), the light chain is shown in 
light grey (right). CDRH1-3 are shown in red from light red to dark red, and CDRL1-3 is shown 
in blue from light blue to dark blue, respectively. This representation was reconstructed using 
PyMol (DeLano, 2002). 
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and contact with blood during childbirth, and through penetration of the skin or contact with 

mucosal membranes by HIV contaminated materials (such as used needles). 

HIV is an enveloped retrovirus with a positive strand single-stranded RNA. The virus 

infects human CD4+ T cells, macrophages, and dendritic cells with its Env glycoprotein. Cell entry 

centers around  the CD4 receptor and a co-receptor, either CCR5 or CXCR4. The envelope 

glycoprotein forms a trimeric protein called gp160, which contains a transmembrane domain, a 

series of highly glycosylated, highly variable loops named V1-V5, and the CD4 binding site. In 

functional virions, gp160 is cleaved into to parts. The first, gp120, is highly glycosylated, contains 

the variable loops V1-V5, and the CD4 binding site. This protein is responsible for cell adhesion 

(Figure I.4) and initiates a conformational change after binding host CD4 that allows it to interact 

 

Figure I.4. HIV mechanisms of entry. HIV gp120 (purple) binds host CD4 (red) and 
undergoes a conformational change that allows it to bind to host-co receptor CCR5 or CRCX4. 
This change brings gp41 into close proximity with the cell membrane, and initiates 
gp41machinery involved in membrane fusion. The viral genome and associated proteins enter 
the cell. Created using Microsoft PowerPoint. 
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with the host co-receptor (Wilen, 2012). The second product of cleavage, gp41, contains the 

transmembrane domain and mediates membrane fusion.  Like all retroviruses, HIV encodes a 

reverse transcriptase to create double stranded DNA from its RNA genome This newly synthesized 

dsDNA genome is eventually integrated into the host genome using integrase, an enzyme that aids 

the insertion of the viral DNA. HIV maintains a mutation rate of (4.1 ± 1.7) × 10−3 per base per 

cell, which is higher than any reported rate for a virus (Cuevas, 2015). Because of this, the initial 

antibody response to an HIV infection is highly mutated and polyreactive (Liao, 2011), though 

typically incapable of neutralizing virions.  Occasionally, either through the polyreactivity 

generated by the initial response or random association and continued somatic hypermutation 

(Mouquet, 2010), antibodies are generated against the HIV CD4 binding site (CD4BS). Broadly 

neutralizing antibodies to the HIV CD4BS  can prevent infection in cells as they target the primary 

site associated with cell entry. Recent clinical studies have shown that some broadly neutralizing 

antibodies have the potential to protect against infection or suppress viremia (Scheid, 2016; Bar-

on, 2018). These antibodies bind by mimicking host-CD4; the immunoglobulin fold of the heavy 

chain is strikingly similar to that of host CD4, and uses part of the framework region to interact 

with the CD4 binding loop (Zhao, 2010) (Figure I.5).  

 

 

  



 
 

12 

 

 

 

Figure I.5. Structural mimicry of CD4 interaction by antibody VRC01. VRC01 
shows how a double-headed antibody can mimic the interactions with HIV-1 gp120 of a single-
headed member of the immunoglobulin superfamily such as CD4. A) Comparison of HIV-1 gp120 
binding to CD4 (N-terminal domain) and VRC01 (heavy chain-variable domain). Polypeptide chains 
are depicted in ribbon representation for the VRC01 complex (right) and the CD4 complex with the 
lowest gp120 RMSD (left). The CD4 complex (3JWD) is colored yellow for CD4 and red for gp120, 
except for the CDR-binding loop (purple). The VRC01 complex is colored as in Fig. 1. 
Immunoglobulin domains are composed of two β-sheets, and the top sheet of both ligands is labeled 
with the standard immunoglobulin-strand topology (strands G, F, C, C’, C”). B,C) Interface details 
for CD4 (B) and VRC01 (C). Close-ups are shown of critical interactions between the CD4-binding 
loop (purple) and the C” strand as well as between Asp368gp120 and either Arg59CD4 or 
Arg71VRC01. Hydrogen bonds with good geometry are depicted by blue dotted lines, and those 
with poor geometry in gray. Atoms from which hydrogen bonds extend are depicted in stick 
representation and colored blue for nitrogen and red for oxygen. In the left panel of C, the β15-strand 
of gp120 is depicted to aid comparison with B, though because of the poor hydrogen-bond geometry, 
it is only a loop. D) Comparison of VRC01- and CD4-binding orientations. Polypeptides are shown 
in ribbon representation, with gp120 colored the same as in (A) and VRC01 depicted with heavy 
chain in dark yellow and light chain in dark gray. When the heavy chain of VRC01 is superimposed 
onto CD4 in the CD4- gp120 complex, the position assumed by the light chain evinces numerous 
clashes with gp120 (left). The VRC01-binding orientation (right) avoids clashes by adopting an 
orientation rotated by 43° and translated by 6-Å. Adapted from (Zhao, 2010). 
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The Rosetta Software Modeling Suite 

The Rosetta software modeling suite is a collection of computational tools designed to 

create biologically relevant protein models and simulate their interactions with other proteins, 

peptides, small molecules, and DNA. The Rosetta energy function estimates in silico the total free 

energy of the complex and also the binding free energy of an antibody. Rosetta includes tools to 

construct comparative models for antibodies and antigens of interest. One of the most commonly 

used applications of Rosetta is prediction of the structure of a complex between antibody and 

antigen via docking. This application samples all possible interactions between the two protein 

partners to identify the biologically relevant interface (Weitzner, 2017). It simultaneously 

optimizes the conformation of the bound state. The docking algorithm is Monte-Carlo based, and 

starts with a centroid-mode stage to interrogate the potential docking poses and is followed by an 

all-atom refinement stage intended to optimize the docked pose and side chain conformations 

(Gray, 2003), though the flexibility of the docking application allows for either of those steps to 

be enacted individually. The protocol used for docking is determined by the user, and can be either 

local or global. In global docking Rosetta randomly orients the two partner proteins; this method 

is particularly useful when little biological information is known. Alternately, the application can 

initiate local perturbations, which assumes the pose provided in the input PDB file is close to 

optimal, and restricts the movements to small perturbations.  

One of Rosetta’s most notable successes is the design of Top7, a 93 residue protein with a 

topology previously undiscovered in nature (Kuhlman, 2003). The RosettaDesign algorithm 

identifies the lowest-energy sequence for any given target structure by iteratively alternating 

between optimizing the sequence for a static backbone and energetically minimizing the backbone 

to accommodate the new sequence. Each designable position samples every amino acid (provided 
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that the user does not limit this) using rotamers from the Dunbrack library (Dunbrack and Karplus, 

1993). This robust process can be applied in several ways; common applications of this algorithm 

include the redesign of existing interfaces to alter specificity and deriving the optimal sequence 

for any given structure. In the following sections I review the Rosetta methods critical for the 

research I performed in my thesis, centering around docking and design.  

 

Rosetta Energy Function and Relax Protocol 

Since its onset, the Rosetta protein modeling suite has been employed to inform a variety 

of biological studies. Rosetta has been used to successfully design Top7, a 93 residue protein with 

a topology previously undiscovered in nature (Kuhlman, 2003), redesign protein interfaces for 

altered specificity (Lewis, 2013), engineer small antibody-mimetic proteins against viral proteins 

(Fleishman, 2011), determine the structure of proteins from sparse experimental data (Thornburg, 

2013; Wang, 2016; Sangha, 2017), create comparative models of antibodies (Weitzner, 2014), and 

determine the antibody-antigen interface via docking (Weitzner, 2017). These feats are achieved 

using the Rosetta energy function, which is responsible for scoring the models generated by the 

aforementioned applications. This energy function is derived from the statistical distribution of 

geometric parameters in proteins whose structure is known (knowledge-based) and, in some 

instances, physics-based potentials (Alford, 2017). This is known as a knowledge-based energy 

function, as it’s score terms are generated by analyzing experimental data.  The total energy of a 

system is calculated as a linear combination of van der Waals interaction, hydrogen bonds, 

solvation using an implicit water model, electrostatic interactions, among a number of additional 

terms (Leaver-Fay, 2013). Over the decades the scoring function has been succeeded by a series 

of incarnations, each derived from and designed to more closely resemble the ever-growing 
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collection of experimental data generated by the scientific community. This is made possible by 

the continued efforts of the Rosetta community; Rosetta is co-developed by over 50 laboratories 

around the world, comprised of protein engineers, structural biologists, computational biologists, 

computer scientists, and experimental biologists. 

For many applications, computational modeling using Rosetta centers around modifying a 

naturally occurring protein backbone structure to accommodate new interactions, create new 

functional sites, or alter biological activity (Nivón, 2013). Although Rosetta energy functions are 

constantly being improved, experimental input protein structures almost always have regions that 

are in a sub-optimal conformation according to the Rosetta energy function. This could be because 

of inaccuracies in the energy function or in the input structure. Regardless, such frustrations must 

be removed prior to docking or designing a protein to avoid artefacts in the calculation. For this 

reason, it is often necessary to energetically minimize an input structure. This energetic 

minimization, known as “relax”, explores the immediate conformational space – iteratively 

optimizing the sidechain interactions and backbone angles of the protein (Figure I.6B) (Tyka, 

2011). These small structural changes are made stochastically and evaluated using the all-atom 

energy function with the aim of identifying the lowest free energy conformation (Figure I.6A). 

This protocol has been shown to both lower the overall energy of a Rosetta model (Bradley, 2005; 

Conway, 2014) and improve low-resolution crystal structure by refining interactions to more 

closely mirror nature (Bender, 2016). 
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Figure I.6 An overview of Rosetta energetic minimization and all-atom refinement via the 
relax protocol. (a) Simplified energy landscape of a protein structure. The relax protocol 
combines small backbone perturbations with side-chain repacking. The coupling of Monte 
Carlo sampling with the Metropolis selection criterion36 allows for sampling of diverse 
conformations on the energy landscape. The final step is a gradient-based minimization of all 
torsion angles to move the model into the closest local energy minimum. (b) Comparison of 
structural perturbations introduced by the repack and minimization steps. During repacking, the 
backbone of the input model is fixed, whereas side-chain conformations from the rotamer 
library33 are sampled. Comparison of the initial (transparent yellow) and final (light blue) 
models reveals conservation of the R135 rotamer but changes to the R11 and E15 rotamers. 
Minimization affects all angles and changes the backbone conformation. Adapted from (Combs, 
2013). 
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Antibody Comparative Modeling including RosettaAntibody Server 

High-resolution comparative modeling is crucial for biological engineering applications 

for which no crystallographic structure is readily available. Comparative modeling in antibodies 

merges three distinct protocols. The first, called “threading”, involves identifying homologous 

antibody frameworks from existing crystal for a target sequence and aligning a target sequence to 

that structure. The framework regions are highly conserved across antibodies, which aids the 

production of biologically relevant models. Rosetta assesses the extent to which the sequence fits 

that structure. The next step involves grafting non-HCDR3 complementarity determining regions 

are grafted onto the framework regions. Previous studies have characterized the CDRs found in 

known antibody structures in an effort to identify patterns in loop structure (Al-Lazikani, 1997; 

North, 2011). Using a dataset of over 300 non-redundant antibody structures, North et al. found 

that 85% on non-HCDR3 CDRs can be assigned to one of 72 clusters. Comparative modeling 

protocols leverage the ordered, canonical nature of the non-HCDR3 CDRs, grafting loops from 

other known structures onto the models based on the desired length and sequence. Unlike the other 

CDRs, the HCDR3 does not inhabit “canonical” structures, and is often modelled using a de novo 

approach. These methods often employ a modified kinematic closure (KIC) method, which 

calculates the all of the conformations for the 6 torsion angles of a peptide chain, and samples N-

Cα-C bond angles (Mandell, 2009) (Figure I.7). Recently, this modeling method has been paired 

with HC/LC docking in an effort to modify the HC/LC orientation of the models, thus allowing 

the HCDR3 to sample conformations across a spectrum of orientations (Sivasubramanian, 2009). 

In an effort to streamline this process, several labs have generated optimized, standalone 

algorithms or protocols that can produce comparative models (Adolf-Bryfogle, 2018; Norn, 2017) 
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given when amino acid sequences for the heavy and light chain, the most notable of which is the 

ROSIE webserver which houses the RosettaAntibody methodology (Sivasubramanian, 2009).  

 

Rosetta antibody docking 

While the generation of structurally accurate comparative models in informative, their 

significance is dependent on establishing how they interact with antigen. High-resolution 

antibody/antigen co-crystals provide insight into the molecular determinants of binding and 

 

Figure I.7 Loop reconstruction with KIC. (a) In the KIC move, 3 Cα atoms of an N-
residue chain are designated as pivots (green spheres); the remaining N – 3 are non-pivot Cα 
atoms (cyan spheres; left). In a 12-residue loop, 24 torsions are modeled. Non-pivot torsions 
are sampled from a residue type-specific Ramachandran map, opening the chain (middle). KIC 
then finds all values for the pivot torsions that close the loop, if any exist, keeping the endpoints 
fixed (right). The previous state is shown in outline. (b) Performance of the Rosetta KIC 
protocol and standard protocols on a 12-residue loop (Protein Data Bank (PDB): 1srp). Only 
KIC densely sampled regions < 1.0 Å r.m.s. deviation from the crystallographic loop. Asterisks 
mark the lowest-scoring reconstructions from the two methods. The Rosetta all-atom score 
includes the enthalpy plus the solvation contribution to the entropy but not the configurational 
entropy. (c) The lowest scoring reconstructions from b are shown. KIC improved reconstruction 
accuracy to 0.6 Å from 2.6 Å using the standard protocol. Figure adapted from (Mandell, 2009). 
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neutralization, which in turn informs vaccine design and the development of therapeutic antibodies. 

Occasionally, experimental methodology fails to produce a viable antibody/antigen co-crystal; the 

discovery of novel antibody/antigen interactions and the subsequent elucidation of a viable 

structure of the interaction is limited in throughput, and not all antibody/antigen interactions 

produce viable, high-resolution structures. In these circumstances, protein-protein docking can be 

used to predict the biologically relevant interface. This method, previously described in detail, was 

developed to extensively sample potential interactions between two proteins. Although de novo 

prediction of protein-protein interactions is difficult, antibodies interact with antigens using a 

limited set of loops and framework regions – the epitope may still need to be determined, but the 

sample space concerning the paratope is relatively limited. This process is greatly enhanced by the 

inclusion of known experimental data; the Rosetta docking algorithm has been successfully used 

to dock an anti-dengue antibody using NMR to limit search space to the predicted epitope 

(Simonelli, 2013), predict the epitope and binding orientation of de novo modeled anti-inflenza 

proteins against a conserved epitope (Fleishman, 2011), and determine the antibody-antibody, 

idiotype-anti-idiotype complex by conserving known interface contacts (Vangone, 2014).  

 

Rosetta multi-state and germline polyspecificity  

During somatic hypermutation, antibodies gain mutations that either directly increase 

binding affinity to a target by adding complementary interactions (increasing the enthalpic gain) 

or pre-configure the paratope for binding (mitigating entropic loss). As described earlier in the 

introduction, one of the defining features of the human antibody repertoire is its ability to recognize 

an astonishing number of pathogens with a limited number of unique antigen-naïve BCRs; 

germline antibodies are polyspecific, and add diversity to our immune system through 
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conformational flexibility. The polyspecificity of germline-encoded antibodies can be 

recapitulated using a Rosetta design application termed “multi-state design”. Where traditional 

design optimizes the sequence for a single antibody that binds a specific target, multi-state design 

can be used to design an antibody that binds to multiple targets simultaneously (Leaver-Fay, 2011). 

Using this method, Willis et al. showed that in contrast to antibodies that have accumulated 

mutations during affinity maturation, germline-gene encoded antibodies are inherently better 

suited for polyspecificity (Willis, 2013). The authors selected three mature antibodies each 

targeting a different antigen but derived from VH 5-51, and sought to design the antibodies against 

the three antigens simultaneously. The germline sequence was favored when binding to multiple 

antigens was a requirement of the design (Figure I.8). Additionally, the positions that were 

reverted to the germline residue during the simulation showed greater deviation in their phi-psi 

torsion angles when compared to the mature residues – an indication that the germline sequence is 

inherently more flexible.  

 

Rosetta design recapitulates antibody maturation 

In contrast, the RosettaDesign algorithm provides a means to improve upon antibodies, and 

given the stochastic nature of both antibody affinity maturation and “design”, sufficiently 

recapitulate somatic hypermutation. The study performed by Willis et al. concerning germline 

residues also revealed that allowing Rosetta to design somatically mutated positions often returned 

the residue of the mature antibody (Figure I.8) (Willis, 2013). While somatic mutations incurred 

in vivo might be optimal at their respective positions for a particular interaction, the variable nature 

of antibodies means that some known antibody/antigen interactions are potentially sub-optimal 

and therefore prime targets for in silico maturation. Willis et al. re-designed the HCDR3 of PG9, 
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an anti-HIV antibody with secondary structure in the HCDR3 (Willis, 2015). The authors used 

Rosetta to re-design the HCDR3 loop in order to identify variants with an increased affinity to the 

V1/V2 loops. While the majority of the HCDR3 residues were recovered in sequence (an 

indication that these residues were already optimal), the authors isolated a variant that 

demonstrated increased potency and neutralization of HIV by altering a single residue. Sevy et al.  

employed multi-state design to redesign the HCDR3-mediated, anti-influenza antibody C05 with 

increased potency and breadth across strains (Sevy, 2019). The resulting variants exhibited 

improved binding affinity and an increase of breadth with respect to the binding profile of C05. 

These studies demonstrate how the RosettaDesign algorithm, in conjunction with stochastic 

mutations and a robust energy function, can both mimic somatic hypermutation in antibodies and 

continue where it left off. 
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Figure I.8 Multi-state designs toward the germline sequence, single-state to mature 

sequences. Antibodies encoded by the same inferred germline VH gene preferred germline 
sequences when considered in the multi-state design, inferring a more flexible combining site. 
(A) The bar graph shows the bit-score for each of the three different inferred germline groups 
and then the sum of the scores in a grouped bar. A perfect design would have a normalized bit-
score of 1.0, and summated score of 3.0 for three germline groups. Multi-state design preferred 
germline sequences for all complexes, while in contrast single-state design preferred mature 
sequences (p<0.0001). (B) The change in bit-score is determined to be the proclivity to either 
the mature (positive score) or the germline (negative score) sequence. Each complex was 
assigned a change in bit-score. The change in proclivity between design protocols was 
significant (p<0.0001). (C) Each complex was scored against mature and germline sequences 
and a difference was calculated (Δbit-score). Positive numbers returned showed a proclivity 
towards mature sequences, while a negative score suggested a design toward germline. A tight 
correlation was observed (r2 = 0.8263) for the in silico predicted optimization for specificity 
versus polyspecificity (Δbit-score) and the in vivo maturation process (plotted as the mutation 
percentage away from VH gene sequence). Adapted from (Willis, 2013). 
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Computational derivation of HC/LC relative orientation 

The relationship between the amino acid composition and the relative orientation between 

heavy and light chain remains a point of interest among both computational biologists and antibody 

engineers. Many previous studies have indicated that the interface between the heavy and light 

chain determines the geometry of the paratope, and the relative orientation between the two 

domains may act as an additional form of antibody diversity in naïve B cells (Chothia, 1985; 

Davies and Metzger, 1983; Stanfield, 1993). While each of these studies pointed out the 

importance of the relative HC/LC orientation , they were unable to identify the determinants of 

orientation. Early attempts at describing the HC/LC orientation from crystal structures ranged from 

calculating a single packing angle (Abhinandan, 2010) to deriving four angles that account for 

various metrics (Marze, 2016). Dunbar et al. developed software known as ABangle, which 

calculates HC/LC orientation from the six degrees of freedom generated by the association of two 

proteins (Figure I.9D). ABangle uses consensus domains generated from structurally invariant 

positions across all antibody crystals –  these positions were the most conserved in relation to one 

another, and provide the basis for the rest of the ABangle calculations (Figure I.9A). This method 

provides the greatest description HC/LC orientation as it accounts for all of the degrees of freedom 

associated with the orientation of two rigid-body objects, and is the basis for the angle calculations 

in Chapter II.  

 

 



 
 

24 

 

 

 

 

Figure I.9. Construction of consensus domains. A) Superposition of 30 representative 
VH (green) domains showing the coreset positions (spheres) and the eight positions (red), 240 
coordinates sets, used to generate the VH plane. In cyan is the corresponding image for VL. B) 
The average coreset positions (consensus structure) and VH and VL reference planes aligned to 
the antibody Fv 1B4J_HL. C) Calculation of vector C, which runs through the points on the VH 
and VL reference planes that have the most conserved distance over the 351 Fv structures in the 
non-redundant set. D) Our coordinate system mapped onto 1B4J_HL. H1 and H2 are vectors that 
are parallel to the principal components used to create the VH reference plane in (B). L1 and L2 
are similarly defined for VL. Adapted from (Dunbar, 2013). 
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Significance 

Previous studies have inferred that non-contact residues contribute to overall binding 

affinity and activity of HIV antibodies, however they were not focused on the unique role of heavy 

chain/light chain interactions in governing binding affinity or the thermodynamic implications 

behind such a mechanism (Klein, 2013). In this work I apply a novel pipeline to observe and 

interpret the changes in orientation that can be attributed to mutations in the HC/LC interface by 

computational modeling and docking. The models generated for the HC/LC interface reversion 

exhibited a shift in the range of HC/LC orientations sampled during docking, which is consistent 

with the concept of mutations in the HC/LC interface as a means of mitigating entropic loss upon 

binding and increasing the enthalpy for the bound conformation. The results show that highly 

mutated HIV-specific CD4 binding site antibodies achieve unusual orientation features that are 

distinguishable from most human antibody heavy chain/light chain orientations in order to bind 

their epitope and that mutations in the HC/LC interface govern the overall orientation of the CDRs 

by modulating the range of accessible orientations. 

The mechanisms involved in B cell development and subsequently in affinity maturation 

require a conserved HC/LC interface in order to achieve HC/LC pairing. As previously described 

in the introduction, B cells undergo somatic hypermutation, incorporating random mutations in 

their BCRs in order to increase the affinity of their receptors for antigen and compete for survival. 

Traditionally, mutations in the HC/LC interface have been seen as disruptive to the aforementioned 

process, as they may prevent efficient HC/LC pairing (Koenig, 2017). The work presented in this 

thesis challenges this conventional notion of antibody affinity maturation. The findings show that 

antigen-distal somatic mutations in the HC/LC interface indirectly affect binding affinity through 
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mitigation of entropic loss and pre-configuration for the bound conformation of the antibody, and 

extends the known molecular determinants of antibody/antigen binding and neutralization to 

include non-contact residues, thus discerning an additional mechanism through which binding 

affinity is mediated.  

Additionally, while an increasing number of co-crystal structures become available, it is 

still unknown whether the antibodies in complex are optimal in sequence and structure in terms of 

affinity for the target. The work defined in this thesis suggests that antibodies devoid of mutations 

in HC/LC interface can be improved using their bound conformation as a template for in silico 

affinity maturation. The studies defined in chapter II and those proposed in chapter III are of critical 

importance to antibody engineers that design high affinity interactions and computational 

biologists looking to create stable proteins. 
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CHAPTER II 

 Role of antibody heavy and light chain interface residues in affinity maturation of binding 

to HIV envelope glycoprotein 

 

Adapted from Cisneros 3rd A, Nargi RS, Parrish EH, Haliburton CM, Meiler J,  Crowe Jr. JE.  

Role of antibody heavy and light chain interface residues in affinity maturation of binding to 

HIV envelope glycoprotein. Mol. Syst. Des. Eng., 2019; Advance Article 

 

Author contributions: I designed and ran all the experiments outlined in this chapter under the 

mentorship of James Crowe and Jens Meiler. I analyzed all of the data with my mentors and created 

all of the figures presented in this chapter. 

 

Abstract 

The FV region of an antibody consists of the heavy chain (HC) and light chain (LC) variable 

domains whose association is maintained by a series of conserved, non-polar interactions. During 

chronic infections, somatic mutations are induced, often in the HC/LC interface. Sequence 

variation in these interactions allows the HC and LC domains to inhabit a range of orientations 

relative to one another. Thus, we hypothesize that these interface mutations are critical to orient 

and rigidify the HC/LC interface to arrange the paratope for optimal interaction with the antigen, 

thereby affecting antigen binding affinity allosterically. To test this hypothesis, we measured the 

HC/LC orientation of a set of broad and potent human HIV neutralizing antibodies. The HC/LC 

interface of these antibodies contained a large number of mutations and achieved unusual relative 
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orientations compared to other human antibodies. We expressed and characterized a panel of 

recombinant HIV CD4 binding site antibodies as the fully matured variant and compared these 

with variants mutated to the HC/LC interface of the inferred unmutated common ancestor 

antibody. We found that HC/LC interface reverted antibodies have a reduced affinity, confirming 

that introduction of somatic mutations in the HC/LC interface was one of the critical steps in 

affinity maturation. We then used the Rosetta software suite to examine the mechanisms through 

which these mutations affect binding affinity. We determined to what extent the mutations were 

critical in altering the relative orientation of HC/LC domains to a conformation that is competent 

to bind the antigen. We further determined whether the mutations excluded alternative HC/LC 

conformations that would be incompetent to bind the antigen. These findings suggest that somatic 

mutations in the HC/LC interface, distant from the antigen/antibody contact region, play a critical 

role in affinity maturation of HIV antibodies by preconfiguring the bound conformation of the 

antibody in the orientation required for high affinity recognition of the antigen. Thus, optimization 

of HC/LC interface could serve as an important tool for maximizing antibody/antigen binding 

affinity without altering antigen contact residues. 

 

Introduction 

The adaptive immune response (occasionally referred to as the “acquired immune 

response”), is the mechanism through which humans eliminate both bacterial and viral infections 

(Alberts, 2002) The strength of the adaptive immune response lies in its ability to recognize a vast 

number of foreign pathogens given a limited number of gene segments and options for gene 

segment recombination (Koonin, 2015). Prior to B cell activation, the diversity of the antibody 

repertoire is generated by V(D)J gene segment recombination (Roth 2014); using 69 VH, 27 DH, 
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and 6 JH gene segments, the immune system generates over 11,000 unique VDJ recombination 

events for the heavy chain alone.  Taking into account the 31 IGKV genes, 5 IGKJ genes, 45 IGLV 

genes, and 7 IGLJ genes that comprise light chains in conjunction with the junctional diversity that 

stems from recombination, an estimated 1011 antibodies can populate an individual’s antibody 

repertoire (Glanville, 2009). These antibodies, while dwarfed in number by the theoretical possible 

number of epitopes on pathogens that the immune system might encounter, provides compensatory 

protection through structural flexibility. Germline antibodies that have yet to undergo affinity 

maturation often are polyspecific and bind multiple targets at low affinity through a flexible 

binding surface – the paratope (Willis, 2013). However, antibody/antigen complexes are ternary 

structures (Sherrif, 1987). Since antibodies are formed by the combination of a heavy chain (HC) 

and a light chain (LC), the complex with the antigen constitutes a three-way interaction (Figure 

II.1). This secondary interface in the Fv region of the antibody allows the variable HCs and variable 

LCs to take on a wide range of orientations relative to one another and is responsible for 

determining the geometry of the paratope (Chailyan, 2011; Abhinandan and Martin, 2011).   

Additionally, activated B cells undergo affinity maturation – an iterative process involving 

somatic hyper-mutation (Hwang, 2015), the process by which mutations are made in the rapidly 

proliferating B cell, diversifying the B cell receptor, and positive selection that ultimately leads to 

target-specific antibodies (Tiller, 2017). Antibodies that evolve in response to lifelong infections 

like HIV are often mutated beyond what we see in transient infections (Burton, 2005); upwards of 

48% of amino acids in the VH gene for anti-HIV antibodies like VRC01 are mutated from their 

germline precursor (Georgiev, 2014). Fera et al. discerned that some anti-HIV CD4 binding-site 

(CD4BS) antibodies incorporate somatic mutations in the VH-VL interface to alter the geometry 
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of the combining site, accommodating for the insertion of the HIV V5 loop (Fera, 2014) (Figure 

II.1). This change in orientation is thought to mediate breadth of binding and neutralization. 

Several recent studies have shown that antigen-distal somatic mutations accumulated in the 

framework regions (describe framework) of an antibody can drastically affect the breadth of 

neutralization and binding affinity profile (Georgiev, 2014; Julien, 2017), though the mechanism 

 

 

Figure II.1. The ternary nature of antibody/Antigen interfaces. Cartoon 
representation of antibody-antigen and HC/LC interface using VRC03 and 93TH057 gp120 
(PDBID:3SE8). The gp120 is shown in purple, the V5 loop is shown in yellow, the heavy chain 
is shown in dark grey, and the light chain is shown light grey. The paratope was defined as 
residues within a Cβ-Cβ cutoff of 8 Å or a pair of non-hydrogen atoms within 5.5 Å across the 
antibody/antigen interface, and is shown in red. The HC/LC interface was defined using the 
same interface parameters but excludes residues that are included in the paratope and is shown 
in blue. (Explain method?) 
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through which these antigen-distal mutations increase binding affinity remains unknown. 

Understanding the mechanism through which antigen-distal somatic mutations affect binding 

affinity offers a new venue through which therapeutic antibodies may be improved and can aid 

vaccine design. We postulate that a constrained relative orientation between the HC and LC is 

needed for an antibody to engage its target with maximum affinity, as the relative orientation of 

this interaction defines the geometry of the antibody paratope. We hypothesize further, that 

mutations in the interface that enhance affinity of antibody/antigen interaction are introduced in 

an allosteric manner during antibody maturation. We distinguish two principal mechanisms: A) 

The HC/LC orientation needed to engage the antigen has an increased energy compared to the 

most likely conformation in the germline antibody. Mutations in the HC/LC interface are needed 

to ‘shift’ the HC/LC orientation in a binding competent conformation (Figure II.2A). This change 

largely would confer an enthalpic effect on antigen binding, stabilizing the HC/LC interface in an 

orientation that allows optimal engagement of the antigen. B) In the second scenario, while the 

germline antibody has its lowest free energy HC/LC orientation at the conformation needed to 

engage the antigen, a large number of alternative conformations are possible. Mutations in the 

HC/LC interface are needed to disfavor binding incompetent HC/LC arrangements, i.e., 

‘tightening’ of the conformational ensemble of HC/LC arrangements, thereby reducing the 

entropic cost of binding by locking the HC/LC orientation in a preconfigured state optimal for 

binding the antigen (Figure II.2B). This concept is consistent with our understanding that 

recombined germline gene-encoded antibodies are capable of binding to a wide variety of epitopes 

(Willis, 2013). We appreciate that in reality mixtures of both scenarios are not only possible but 

also likely. To begin testing this hypothesis, we reverted the HC/LC interface of CD4BS antibodies 

that contained a large number of somatic mutations. We then characterized the antibodies and their 
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reverted counterparts. We found that mature antibodies bound to gp120 with an increased binding 

affinity. We employed a structure-based computational approach to predict the amplitude of 

‘shifting’, ‘tightening’, and ‘interface stabilization’, as illustrated in Figure II.2. The models 

generated for the HC/LC interface reversion exhibited a different range of HC/LC orientations 

consistent with the concept of shifting. We also observed weaker and broader minima in the HC/LC 

interaction, consistent with the concept of tightening. These findings suggest that selection of 

clones with somatic mutations in the HC/LC interface that preconfigure high-affinity binding sites 

can act as critical mechanistic component of affinity maturation. 

 

 

 

Figure II.2. Energy landscape for the HC/LC complex before and after Somatic 
Hypermutation. A) The germline antibody has one conformation for which the free energy is 
minimal at CGermline (shown in blue). After affinity maturation (shown in red), this lowest 
energy conformation is shifted to create the optimal paratope conformation for the 
antibody/antigen interaction at CMature. Somatic mutations that shift this free energy minimum 
optimize the enthaplic gain for the antibody/antigen interaction. B) The germline antibody 
(shown in blue) has its lowest free energy conformation already at the optimal conformation 
for antibody/antigen interaction (CGermline) but is flexible, alternative low energy conformations 
exist. After affinity maturation (shown in red), this flexibility is reduced to limit entropic cost 
of binding and increased stability of the mature conformation for the antibody/antigen 
interaction (∆∆∆G). 
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Results 

Definition of the HC/LC interface. In order to define the HC/LC interface, we obtained the 

coordinates of all available human antibody/antigen co-crystal structures with a resolution better 

than 3Å in the Protein Data Bank (PDB). The complete set of 466 human antibody/antigen 

complex structures was downloaded from the PDB in February 2018. After eliminating redundant 

structures, single-domain antibodies, and point mutants, 301 structures were used for this analysis. 

We determined the structural parameters of the HC/LC interface for a representative structure 

using in-house software, using PDB ID: 4M5Z containing the structure of human influenza-

specific mAb 5J8 that exhibited ABangle scores near the average for each parameter (Table S1-

S4). As interface residues, we counted all amino acids that had 1) Cβ atoms of two amino acids i 

and j within 8 Å across the HC/LC interface or 2) any pair of non-hydrogen atoms within 5.5 Å 

across the HC/LC interface or 3) a Cβi-Cαi-Cαj angle of less than 75° across the HC/LC interface. 

Using these criteria, we identified 18 HC and 17 LC interface residues in PDB ID: 4M5Z.  Amino 

acid sequences for the HC and LC variable regions for each antibody were curated from the PDB 

and numbered with the AHo numbering scheme (Honegger and Plückthun, 2011) using the 

Antigen receptor Numbering And Receptor Classification (ANARCI) webserver (Dunbar and 

Deane, 2016). The AHo numbering scheme then was mapped onto the structurally derived 

interface positions, providing a structurally conserved, sequence-based definition of the HC/LC 

interface (Table S2, Figure II.3). We used this definition to create multiple sequence alignments 

(Crooks, 2004) for antibodies that fail to bind CD4BS (Figure S2A) compared to antibodies that 

bind CD4BS (Figure S2B).  
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Maturation in the HC/LC interface stabilizes variable domain interactions. In order to test 

the effect of somatic mutations in the HC/LC interface, we first determined the range of 

orientations of HC and LC that have been described to date in high-resolution structures of ternary 

antibody/antigen complexes. We used the ABangle software (Dunbar, 2013) to evaluate the 

relative HC/LC orientation of each of the 301 antibody/antigen co-crystal structures. ABangle 

determines six features of orientation of heavy and light chain, five angles (designated HL, HC1, 

LC1, HC2 and LC2) and a distance (dc). The program uses the most structurally conserved residue 

positions in HC and LC to define domain location and then maps a HC and LC frame plane onto 

the Fv structure. The tool measures HC/LC orientation essentially by measuring the angles 

between these two plane segments using a vector with the most conserved length in PDB Fv 

 

Figure II.3. Definition of HC/LC interface. Cartoon representations of the heavy 

chain (left) and light chain (right) domains. The CDR3 of each domain has been colored red 

(HCDR3) or blue (LCDR3) for reference. Interface positions are colored light grey and have 

been numbered for clarity. 
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structures (designated C) as the pivot axis of HC/LC orientation. H1 is the vector running parallel 

to the first principal component of the HC plane, while H2 runs parallel to the second principal 

component. L1 and L2 are defined in a similar way on the LC domain. HL is the torsion angle 

between H1 and L1; HC2 is the bend angle between H2 and C; LC1 is the bend angle between L1 

and C; LC2 is the bend angle between L2 and C; dc is the length of C. 

 The ABangle angle distributions identified antibodies that deviate significantly from the 

typical HC/LC interface features, i.e., by one to two standard deviations. The distribution of the 

six ABangle features for human antibody co-crystals is shown in Figure S1. We found that the 

structure of anti-HIV gp120 CD4BS-specific antibodies represented a class of antibodies with 

unusual features in interface orientation angle HC1 (Table 1, Figure II.4). The average non-

CD4BS antibody had an HC1 angle of 71.3 ± 1.72, while the CD4BS antibodies exhibited an 

average HC1 angle of 74.0 ± 2.69. These HIV antibodies exhibited a tighter HC/LC interface in 

 

Figure II.4. Comparison of antibody HC1 angle orientations. Histogram showing 
HC1 angle for CD4BS antibodies (magenta), and non-CD4BS antibodies (teal). CD4BS 
antibodies possess a larger HC1 angle and smaller dc (distance between domains) than non-
CD4BS antibodies. 

 

 

 

 

P<0.0001
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terms of proximity of the heavy and light immunoglobulin domains. Also, the number of somatic 

mutations from the inferred germline amino acid sequence in the HC/LC interface with a distance 

over 5 Å from the antigen ranged from 5 to 12 mutations, with an average of ~9 mutations per 

antibody (Table 2). Unfortunately, the total number of antibody/antigen co-crystal structures is 

still too small to confidently determine biases in the six ABangle parameters introduced by the 

germline gene segments. Thus, while CD4BS-specific antibodies deviate statistically significantly 

from non-CD4BS antibodies, it remains unclear how much of this bias is introduced by the 

selection of specific germline gene segments.  

 

Construction of Rosetta models of interface-reverted CD4BS antibodies. To determine the 

effects that these naturally occurring somatic mutations had on the antibody bound conformation, 

we used Rosetta to construct ensembles of models for the HC/LC interface germline-reverted 

antibodies. In order to maintain the bound conformation, the protocol was limited to a rigid-body 

threading, which fixes the backbone coordinates and replaces the side chains in question, followed 

by a constrained minimization (Nivón,) that allows the structure to adjust to its new sequence while 

Table 1.  Angle distribution for non-CD4BS and CD4BS antibodies 

Angle Non-CD4BS 
N=281 

CD4BS 
n=20 

HL -58.7 ± 3.74 -57.6 ± 3.97 
HC1  71.3 ± 1.72 74.0 ± 2.69 

LC1  120.2 ± 2.30 123.1 ± 2.75 
HC2  118.4 ± 2.75 114.8 ± 3.22 
LC2  82.9 ± 2.01 83.9 ± 3.56 
Dc  16.2 ± 0.27 15.9 ± 0.56 
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preserving the relative HC/LC orientation. The Rosetta total energy of a system is calculated as a 

linear combination a series of weighted terms, such as van der Waals interactions, electrostatic 

interactions, hydrogen bonds, and the Lazaridis-Karplus solvation energy. Using the Rosetta 

scoring function as a surrogate for free energy, we calculated the HC/LC interface energy (ΔΔG) 

for both the mature and interface-reverted models. Computing !!!" = !!"$%&'() −

!!"+),)(&)-, we found that that mutations in the HC/LC interface of CD4BS-specific antibodies 

stabilized the bound conformation (Table 2). This finding was true in every case of HIV-specific 

CD4BS antibody except that of VRC01. This particular mAb differs from the others in that 

reversion of one somatic mutation restored a canonical glutamine-glutamine interaction in the 

interface upon reversion. 
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Table 2.  Quantification of differences in orientation between reverted and mature 
antibodies  

Antibody Tighteninga Shiftb ΔΔΔGc Mutationsd 

VRC01 0.76 ± 0.12 1.05 ± 0.05 6.28e ± 0.34 7 

VRC03 1.09 ± 0.18 1.68 ± 0.05 -1.77 ± 0.31 12 

VRC-PG04 0.61 ± 0.15 1.33 ± 0.04 -5.79 ± 0.28 9 

VRC23 1.64 ± 0.32 1.54 ± 0.06 -3.65 ± 0.45 8 

VRC06 0.92 ± 0.13 0.47 ± 0.07 -0.05 ± 0.35 9 

12a12 2.48 ± 0.86 0.92 ± 0.12 -3.49 ± 0.25 8 

VRC-PG20 0.53 ± 0.04 0.66 ± 0.02 -1.62 ± 0.48 11 

VRC07 0.92 ± 0.06 0.91 ± 0.08 -2.50 ± 0.36 5 

8ANC131 10.9 ± 2.96 1.53 ± 0.17 -2.23 ± 0.33 12 

3BNC117 N/Af N/A -11.89 ± 0.50 6 
 

a The average tightening for each of the ABangle parameters generated by HC/LC docking.  

Error was calculated for the average of the six ratios for each antibody. 

b Normalized shift value for each set of distributions generated by HC/LC docking 

c Change in stability at HC/LC interface. ΔΔΔG = Mature ΔΔG – Reverted ΔΔG. 

d Number of mutations in the HC/LC interface that do not interact with the antigen 

e Positive value can be attributed to re-establishing canonical Q-Q interaction in HC/LC interface 

f Reverted models did not conform to requirements of ABangle software 
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Mutations in the HC/LC interface shift orientation towards the antigen-bound conformation. 

Tightly-packed protein cores and interfaces are integral to overall protein stability and the free 

energy of folding (Kellis, 1988; Geiger-Schuller, 2018). In order to determine how maturation of 

the HC/LC interface affects the geometry of the paratope, we performed an iterative, small-

perturbation docking protocol using the RosettaDock algorithm (Gray, 2003) (Figure II.5). Here, 

we used an all-atom, rigid-body refinement method that incorporated small perturbations in terms 

of translating and rotating, allowing the structure to explore conformations close to the starting 

 

Figure II.5. Flowchart representing methods of HC/LC interface interrogation. The 
path on the left describes the process through which biophysical characterization of the antibodies 
takes place; the mature antibodies are expressed in ExpiCHO cells alongside reverted antibodies, 
and binding to YU2 gp120 is measured through BLI.  The center path portrays a simplified 
overview of the rigid-body modeling process: using a CD4BS antibody structure (cartoon 
representation of PDB ID: 3se8) as a template, the corresponding reverted amino acid sequence 
is threaded onto the structure. The reverted model and CD4BS structure are then subjected to 
constrained minimization, and analysis of the HC/LC interface. The path on the right depicts an 
overview of the HC/LC docking process. A CD4BS antibody structure and the corresponding 
reverted model individually undergo small perturbation docking at the HC/LC interface to 
identify changes in preferred orientation. The docked models are analyzed using ABangle, and 
the resulting angles are used to identify shifts in orientation and tightening of distribution. 
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point while preserving the structure of each domain (Figure II.6). This procedure was followed 

by a constrained minimization step that allowed for small adjustments to structure but did not alter 

the structure enough to affect orientation. These small movements generate models with a wide 

range of orientations; as the HC/LC interface is reorganized, the structure explores new 

conformations and the models may converge on a different energetic minimum, generating 

differences in observed angle distributions.  

 

Figure II.6. Affinity maturation in HC/LC interface makes bound conformation 
more favorable. The top scoring 5% docked models for 8ANC131 were aligned to the light 
chain (light grey) of the Fv found in the crystal structure (PDBID: 4RWY). A) The mature 
models, shown in dark red (heavy chain) and light red (light chain), maintain the bound 
conformation after docking, resulting in a “tighter” distribution of angles. B) The reverted 
models, shown in dark blue (heavy chain) and light blue (light chain), vary in HC/LC orientation 
more than the mature counterpart, resulting in a higher value for the Tightening metric (Table 2). 
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The changes in orientation were calculated as follows: 

(1) Normalized shift = 

.
/0

123+),)(&)-(56,)&8… ) −	23$%&'()(56,)&8… )1
<+),)(&)-(56,)&8… ) +	<$%&'()(56,)&8… )	

 

where 23+),)(&)-(56,)&8… )  is the mean ABangle value for any angle distribution generated by 

docking a reverted HC/LC interface, 23$%&'()(56,)&8… )	is the corresponding mean ABangle value 

for the mature antibody, where <+),)(&)-(56,)&8… ) is the standard deviation for any given angle 

distribution generated by HC/LC docking at a reverted interface, and <$%&'()(56,)&8… ) is the 

standard deviation for the corresponding mature antibody distribution. The Normalized Shift 

metric provides an estimate of how much the orientation distributions differ between any given 

mature antibody and its reverted counterpart as a whole. Values greater than one suggest a shift in 

each category by an average of 1 standard deviation.  

(2) Tightening = 

<+),)(&)-(56,)&8… )
<$%&'()(56,)&8… )

 

The tightening equation generates a ratio of standard deviations. Values greater than 1 suggest that 

the mature antibody models embody a tighter angle distribution during HC/LC docking. The 

standard error (SE) for the shift was calculated using error propagation rules for addition: where 

shift in HL angle = 

123+),)(&)-(56,)&8… ) −	23$%&'()(56,)&8… )1 

SE(HL) = 

>?@+),)(&)-(56)A +	?@$%&'()(56)A  
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normalized SE(HL) = 

>?@+),)(&)-(56)A +	?@$%&'()(56)A

<+),)(&)-(56) +	<$%&'()(56)	
 

and SE(Normalized Shift) = 

.
/>?@(56)

A +	?@(5B.)…A  

 

A total of 1,000 models was constructed, and the top scoring 5% models were used to evaluate the 

magnitude of shift in mean angle and the tightening of each distribution (Table S2). We calculated 

the changes in a normalized value for the shift in orientation (Equation 1), and the average 

tightening between distributions for each angle (Table 2).  While some variation was observed in 

the details of how individual mature antibodies differed from their reverted counterparts, we 

observed two distinct mechanisms through which changes in angle distributions were established: 

1) Antibodies whose germline interfaces are not optimized for the orientation needed to interact 

with the CD4 binding site shift their range of motion by accumulating somatic mutations that lock 

in the necessary orientation – the optimal orientation is achieved by establishing new electrostatic 

bonds and van der Waal’s interactions that pre-configure the paratope without necessarily 

restricting the range of conformations accessible to the HC and LC domains, increasing affinity 

through enthalpic contribution (Table 2, mAb VRC-PG04); 2) Antibodies with a range of 

conformations optimized for the orientation needed to interact with the CD4 binding site 

accumulate mutations in the HC/LC interface that disfavor suboptimal orientations, tightening the 

range of accessible conformations – greater affinity for the target is achieved by mitigating the 

entropic loss upon binding (Table 2, mAb 12a12). In some cases, affinity maturation in the HC/LC 

interface caused both a shift in the optimal orientation and limited the range of favorable 
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conformations (Table 3, mAb 8ANC131 and mAb VRC23). 8ANC131 has a noticeably tighter 

distribution than the other antibodies in the study. This can be attributed to the tight angle  

 distribution produced by docking at the mature HC/LC interface, whose average standard 

deviation was ~0.13 (Table S2). 

 

Binding Studies. We tested our hypotheses using binding assays with recombinant proteins (Table 

3) to elucidate any change in binding affinity upon reversion to a germline HC/LC interface.  We 

compiled the sequences of the three pairs of antibodies, synthesized cDNAs encoding the antibody 

variable regions, cloned them into a mammalian expression vector, and expressed each clone as a 

full-length IgG protein in ExpiCHO cells followed by Protein G column purification. We expressed 

a panel of three pairs of antibodies (each pair containing the wild-type and the interface-reverted 

variants). We were able to express both variants for three pairs of antibodies at levels high enough 

to test accurately in affinity of binding assays. While the antibodies used in this study bind to, and 

neutralize, a wide variety of HIV strains, their breadth of reactivity for diverse strains converge on 

select gp120 molecules. We used bio-layer interferometry (Octet RED96, Pall FortéBio) to 

measure the apparent KD, Ka, and Kd for the interaction of each antibody with recombinant gp120 

protein. In every case, the presence of inferred germline gene residues in the HC/LC interface 

dramatically decreased binding affinity to HIV gp120 (Table 3). This apparent loss of binding 

affinity was caused by a decrease in Ka, while the Kd remained relatively unchanged. 
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Table 3. Binding affinity KD (nM) for reverted or mature antibodies using bio-layer 

interferometry 

Antibody KD (nM) KD error (nM) Ka (1/Ms) Kd (1/s) 

VRC-PG04 reverted 42.8 5.30 3.8 x 103 1.4 x 10-4 

VRC-PG04 mature 38.4 0.04 1.2 x 105 2.6 x 10-4 

VRC-PG20 reverted 86.4 47.20 1.5 x 105 1.0 x 10-2 

VRC-PG20 mature 7.1 0.05 1.5 x 106 1.3 x 10-2 

8ANC131 reverted n.d. n.d. n.d. n.d. 

8ANC131 mature 51.1 48.30 3.2 x 105 1.7 x 10-2 
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Discussion 

Antibodies are increasingly used as therapeutic agents, and optimization of antibody 

structure and function remains a chief concern for biochemical engineers (Chames and Batey, 

2009; Leavy, 2010; Beck, 2010). Traditionally, the induction of somatic mutations during antibody 

maturation was thought to increase binding affinity and specificity to a target by altering the 

composition of the combining site and creating complementary interactions; pre-configuration of 

the paratope is not an entirely new concept, but previous analyses have been limited to identifying 

molecular determinants involved in stabilizing the CDRs (Xu, 2015; Ofek, 2010; Mishra, 2018) 

or inducing mutations in the HC/LC interface and characterizing the mutants (Chetallier, 1996; 

Huge, 2003). Many aspects of an antibody-antigen interaction are well-studied upon discovery of 

a biologically interesting antibody: Da Silva and colleagues demonstrated that the light chain can 

play in integral part of binding by performing a comprehensive mutagenesis study on the LCDRs 

of the antibody D5 (Da Silva, 2010);  Fera et al. found that the HIV V5 loop alters the orientation 

of heavy and light domains in CD4BS antibodies by comparing the crystal structures of unbound 

inferred germline precursors of CH103 antibodies to mature CH103-gp120 complexes; and 

analysis of the near-pan broadly neutralizing antibody by Huang et al. revealed that N6 adopts a 

unique heavy chain orientation relative to the binding mode of CD4 and other CD4BS antibodies 

in order to avoid steric clashes stemming from glycosylation (Huang, 2016). While studies 

centered around an antibody-antigen interaction often acknowledge unusual bound HC/LC 

orientations and mention the inclusion of somatic, antigen-distal mutations, the relationship 

between the two is often unexplored.  
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Identifying the molecular determinants of binding affinity will facilitate the development 

of new therapeutic antibodies and may provide an additional target for antibody optimization. In 

this study, we determined that affinity maturation can take place in the HC/LC interface by 

introducing mutations that shift the range conformational flexibility towards the optimal 

configuration by establishing new interactions (enthalpic gain) or by introducing mutations that 

restrict the conformational space of the VH and VL domains, mitigating the entropic loss associated 

with binding. The concept of antibodies “shifting” the range of energetically favorable in response 

to the affinity maturation is compatible with the induced fit model of protein-protein interactions 

(Koshland, 1958). Conformational entropy provides the diversity needed to ensure that a limited 

antibody repertoire can target and eliminate a virtually limitless number of foreign particles. Upon 

binding to a target that selects for an orientation that strays from the most energetically favorable 

apo conformation, internalization of the BCR-antigen complex, and successful B cell activation, 

the B cell gains random mutations in the frameworks that may make the required interaction more 

favorable.   

In principle, the entropic contribution in a binding event involving an antibody and an 

antigen involves changes in the internal conformational entropy of each participant, the entropy of 

the solvent, and the entropy involved in association. Some antibodies may encounter an antigen 

that selects for a conformation near the energetic minimum of the apo antibody. Affinity 

maturation in this scenario centers around “tightening” the range of energetically favorable 

conformations, minimizing the entropic loss associated binding to the antigen. While some new 

interactions may be made in the HC/LC interface, this concept is consistent with the 

conformational selection model of protein-protein interactions (Bosshard, 2001; Chakrabarti, 

2016), our understanding that germline-encoded antibodies are inherently more flexible, allowing 
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the paratope to explore a wide range of geometries but become more rigid during affinity 

maturation (Wong, 2011) , and that mitigating the entropic loss upon binding is an effective means 

of increasing binding affinity (Lafont, 2007).  

This study shows that antibodies that undergo a change in range of favorable HC/LC 

orientations during affinity maturation experience conformational changes that fit the description 

for both “shift” and “tightening” (Table S2). Although we observed that the HC1 angle for CD4BS 

antibodies is significantly different from the average HC1 angle for non-CD4BS antibodies, we 

see additional changes in many aspects of orientation between individual antibodies and their 

germline-reverted counterparts. For instance, docking of the HC/LC interface in VRC-PG04 and 

its reverted counterpart revealed changes in the HC1 and HC2 angles, as well as a narrowing in 

the distribution of the HL, HC1, and HC2 angles.  

We measured the effects of mutations in the HC/LC interface on antibody/antigen binding 

affinity, Fv region thermodynamic stability, and relative orientation of the heavy and light chain. 

Through a combination of in vitro BLI kinetic assays and computational experiments, we found 

that antibody/antigen binding affinity can be increased by inducing mutations in the HC/LC 

interface that preconfigure the combining site of the antibody. The antibodies used in this study 

inhabit an unusual orientation; these antibodies neutralize HIV by inserting the HC domain into 

the CD4-binding site on HIV gp120, causing the heavy chain to pull away from the light chain 

slightly in order to accommodate the gp120 V5 loop (Figure II.1).  

There are several limitations with this study. First, we assumed that the germline-reverted 

heavy and light chain interfaces were compatible with otherwise heavily mutated antibodies. By 

focusing on reversions in the HC/LC interface of the antibodies used in this study, we created a 

chimeric antibody that may disrupt heavy and light interactions in an unexpected manner. Second, 
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we assume that Rosetta can find the optimal apo conformation during a docking simulation given 

the bound conformation. Our computational approach only approximates antibody flexibility 

through the range of orientations that the heavy and light chains can access through small 

perturbation docking. While a direct comparison of the flexibility for each antibody is preferred, a 

comprehensive sampling with techniques like nuclear magnetic resonance (Soares, 2004) or 

molecular dynamics analysis (Margreitter, 2016) through conformational space for a molecule as 

large as the antibody FV region is both difficult and computationally expensive. To compensate for 

this limitation, we adopted a method that truncates the computational time and can parallelize 

experiments for multiple antibodies. Third, the Rosetta software can only approximate the 

thermodynamic stability of a structure. The software uses an implicit water model, which may not 

accurately account for hydrogen bonding networks formed in the interface (Alford, 2017).  Water 

coordination in an interface can contribute to the affinity of the interaction (Marino, 2016), though 

in the case of the HC/LC interface, the disruption of intermolecular hydrophobic interactions may 

lead to destabilization; the presence of water in the HC/LC interface may change the optimal 

HC/LC orientation (Herold, 2017). Finally, the study was limited to the collection of relative KD 

of mature and germline-reverted antibodies. While a thermodynamic approach is preferred, the 

reverted antibodies did not express at a high enough concentration for an accurate determination 

of enthalpy and entropy through a resource demanding technique like isothermal titration 

calorimetry.  

Our findings suggest that during chronic infections such as HIV, as B cells in germinal 

centers are exposed to repetitive rounds of somatic mutation of the antigen receptor and positive 

selection, they incorporate mutations in the heavy and light chain interface that may indirectly 

improve binding affinity. Though we did not see a universal trend in rigidification, or “tightening”, 
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upon affinity maturation, a recent study by Jeliazkov et al. suggests that affinity maturation of the 

HCDR3 loop does not always result in rigidification (Jeliazkov, 2018), which is consistent with 

our results. Additionally, our findings suggest that the typically well-conserved HC/LC interface 

can tolerate mutations and could serve as a hotspot for engineering antibodies with maximal 

affinity.   

Methods 

Selection of antibody/antigen complexes. Every published, human antibody/antigen (protein) 

complex was collected from the Protein Data Bank. The HC/LC orientation of each complex was 

assessed using the downloadable version of the ABangle software (Dunbar, 2013) and angle 

distributions were plotted using the Prism version 7 software (GraphPad). The complexes that 

comprised the tails of each distribution were examined for mutations in the HC/LC interface, and 

a subset of complexes that bound the same antigen was selected based on two criteria: 1) the 

average angle of these complexes must be at least one standard deviation than the average angle 

across all antibodies in at least one of the six ABangle metrics used to determine orientation, and 

2) every antibody in the subset chosen must have at least one amino acid mutation from germline 

in the HC/LC interface. Residues appropriate for consideration as HC/LC mutants were selected 

using the Rosetta InterfaceAnalyzer module (Lewis, 2011). These interfaces were inspected 

manually using PyMOL (version 1.8.4.0) to ensure that the residues in question do not make 

contact the antigen. Mutations in the HC/LC interface were detected by submitting the nucleotide 

sequence, found at GenBank ® (Benson, 2012) for the heavy and light chains to the international 

ImMunoGeneTics information system (Lefranc, 2011) for alignment.  
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Rigid-body analysis of HC/LC interfaces in gp120-CD4BS co-crystal structures. The PDB 

files of each co-crystal were altered to isolate the FV region of the antibody, removing all other 

components of the antibody/antigen interaction, and Rosetta was used to revert mutated residues 

in the HC/LC interface. This procedure was accomplished through rigid-body modeling, which 

prevents perturbation of the backbone and preserves the HC/LC orientation. Minimization was 

limited to repacking of the amino acids and 100 models were made for each antibody and its 

HC/LC germline-reverted form using this protocol. Models were ranked according to the total 

score assigned by Rosetta in Rosetta Energy Units (REU), and the top five models for each 

antibody were used to calculate the change that these mutations have on the stability of the 

interface (ΔΔΔG). 

 

Docking and measuring change in HC/LC orientation. We used rigid-body docking to explore 

the effects of mutations in the HC/LC interface on relative orientation on the heavy and light chains. 

Briefly, using the RosettaDock algorithm (Chaudhury, 2011), iterative rounds of docking and 

repacking were performed on the template PDB files. 1,500 models were generated using the 

protocol, and the top scoring (total REU) 50 models were used for further analysis. ABangle 

software was used to evaluate the orientation of each model, and the resulting angle distributions 

were compared using the previously described equations.  

 

Antibodies and gp120 expression. cDNAs encoding antibody heavy and light chains were 

cloned into IgG expression vectors for mammalian cells (McLean, 2003). The DNA of the two 

vectors was mixed together at a 1:1 molar ratio and transfected into ExpiCHO cells (Thermo-

Fischer) with a 1:1 ratio of DNA to ExpiFectamine CHO (Thermo-Fischer). Antibodies and their 
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variants were cultured at a 1-liter volume, and the supernatant was collected at day 14. 

Antibodies were purified from supernatant on MabSelect SuRe columns (GE Healthcare). cDNA 

encoding the HIV envelope protein YU2 gp120 was cloned into the pCDNA3.4 plasmid vector 

and transfected into 293-F HEK cells, as previously described (Willis, 2015).  

 

Biolayer interferometry (BLI). The binding affinity for the panel of mature and interface reverted 

CD4BS IgG to monomeric YU2 gp120 core was determined by BLI using an Octet RED96 

instrument (Pall FortéBio, CA, USA). The antibodies were diluted in PBS with 0.05% Tween 20 

at pH 7.4, then captured using anti-human IgG Fc capture (AHC) tips. Testing using a series of 

YU2 gp120 protein concentrations (60, 30 or 15 µg/mL) was used to calculate the equilibrium 

dissociation constant (KD). An unliganded sensor (devoid of CD4BS IgG) was used as a reference 

sensor in order to correct for non-specific gp120 binding. The binding traces were processed using 

the FortéBio Data Analysis Software v9.0, and the processed binding curves were fitted using the 

“Heterogeneous Ligand 2:1 interaction” model. 
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CHAPTER III 

 

Conclusions and future directions 

 

Concluding remarks 

Antibody affinity maturation is an integral part of the adaptive immune system. During a 

chronic infection or persistent disease like HIV, somatic mutations are accumulated not only in the 

interface between antibody and viral protein but also throughout the interface between the 

antibody’s heavy and light chain (HC/LC interface). We find that these mutations can radically 

change the relative orientation of the variable domains, preconfiguring the paratope for its bound 

conformation. Additionally, these mutations indirectly affect binding affinity; for example, 

CD4BS antibodies with a germline-reverted HC/LC interface have a dampened binding affinity to 

HIV YU2 gp120 when compared to their mature antibody counterparts. I hypothesized that these 

mutations induce alternate orientations through a combination of shifting the energetic minimum 

and limiting the amount of conformational entropy by stabilizing the HC/LC interface in a way 

that favours the bound conformation.  

This study began by making an effort to determine the conformational diversity of bound 

antibodies found in all the human, antibody-antigen co-crystals represented in the Protein Data 

Bank.  Prior to this study, we knew that the difference in HC/LC orientation between the apo and 

bound conformations of an antibody differed by ~5 degrees when comparing the HL value as long 

as the antibodies in question bind proteins (Dunbar, 2013). This suggests that most (if not all) 

protein-binding, antibody/antigen interactions include some re-orientation of the heavy chain with 
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respect to the light chain. The study presented in this thesis focuses on antibodies against the HIV 

gp120 CD4 binding site. The reason for this is fourfold: 1) These antibodies are heavily mutated; 

reverting the mutations in the interface back to their germline residue is less likely to cause 

dissociation of the HC/LC interface than re-designing a germline interface as both mature and 

reverted interfaces are known to have existed in nature; 2) these antibodies have been well-studied 

it was known that a blanket reversion of all antigen-distal somatic mutations disrupts binding and 

neutralization (Klein, 2013); 3) in order to bind the CD4 binding site, these antibodies inhabit a 

unique orientation that resolves clashes with V5 loop (Fera, 2014); 4) high-resolution co-crystal 

structures depicting the antibodies in complex with gp120 were readily available at the Protein 

Data Bank. These conditions were optimal for the study, but it is unclear whether mutations in the 

HC/LC interface affect all antibodies in the same way. Given the diversity of the results in Chapter 

II, it is likely that the “potency” associated with mutations that increase affinity allosterically is 

conditional. Even amongst the CD4 antibodies studied in this thesis, we see a mixture of shift and 

tightening during maturation. This may be caused by subtle differences between these antibodies 

in CD4 buried surface area (Figure III.1) and types of interactions with gp120 (Figure III.2). This 

raises one important future questions to be studied: Are these observations, i.e. the shift and 

tightening in orientation that was observed in Chapter II, translatable to other antibody/antigen 

interactions?  

As a ternary complex, antibody/antigen interactions can be divided into two categories 

concerning the mode of binding. The first, which consists of antibodies that only interact with 

antigen using the heavy chain, can take a variety of forms. For example, the interaction between 

influenza hemagglutinin (HA1) head domain and the anti-influenza antibody C05 is mediated 

entirely by the HCDR3 (Ekiert, 2012), while the HA stem domain targeting antibody CR6261 
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interacts with the antigen using HCDR1, HCDR2, and HCDR3. These antibodies differ in the 

 

 
Figure III.1 The CD4 supersite. A) Antibodies from 14 donors define an 

immunological supersite of HIV-vulnerability. A composite of how the breadth-coded epitope 
surfaces shown in B are mapped to the gp120 surface. The yellow outline defines the outer-
domain contact of the CD4 receptor. B) Epitopes of CD4bs antibodies colored by breadth. C) 
Dendrogram constructed from similarities in neutralization fingerprint based on serologic 
analysis with a 178-virus panel; insert shows the HIV-1 viral spike, with membrane at top, with 
major epitopes labeled; epitope colors correspond to antibody colors in the dendrogram. D) 
Potency of CD4-binding site antibodies mapped to the supersite. The worm representation of 
HIV-1 gp120 is colored by averaged antibody potency, with thickness representing average 
buried binding surface area of corresponding residues; notably, in addition to the outer domain 
contact on gp120 for CD4, neighboring regions in the inner domain and on strands β20/21 
contribute to the supersite. Adapted from (Zhao, 2015). 
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engagement of the light chain to the heavy chain; CR6261 moves the light chain out of the way to 

prevent clashes with glycosylation at the base of the helix (Ekiert, 2012), while the C05 light chain 

is 12 Å from the antigen in its bound conformation . The second mode of binding uses both heavy 

and light chains to bind to the antigen. The paratope of CD4BS antibodies like 8ANC131 includes 

both heavy and light chains, but the degree to which light chains are incorporated into the paratope 

is highly variable, even among antibodies that target the same epitope due to small differences in 

binding orientation (Huang, 2016).  

 

 

 
Figure III.2 Paratopes of Effective CD4bs Antibodies Are Extremely Diverse A) 

Antibodies from 14 donors define an immunological supersite of HIV-vulnerability. A 
composite of how the breadth-coded epitope surfaces shown in B are mapped to the gp120 
surface. The yellow outline defines the outer-domain contact of the CD4 receptor. B) Epitopes 
of CD4bs antibodies colored by breadth. C) Dendrogram constructed from similarities in 
neutralization fingerprint based on serologic analysis with a 178-virus panel; insert shows the 
HIV-1 viral spike, with membrane at top, with major epitopes labeled; epitope colors 
correspond to antibody colors in the dendrogram. D) Potency of CD4-binding site antibodies 
mapped to the supersite. The worm representation of HIV-1 gp120 is colored by averaged 
antibody potency, with thickness representing average buried binding surface area of 
corresponding residues; notably, in addition to the outer domain contact on gp120 for CD4, 
neighboring regions in the inner domain and on strands β20/21 contribute to the supersite 
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These differences in binding modes likely alter how mutation in the HC/LC interface might 

affect binding affinity. Antibodies like C05 do not need to shift the HC/LC orientation, as binding 

is mediated entirely by HCDR3; antigen distal mutations in the HC/LC interface are likely geared 

toward mitigating entropic loss. In contrast, CR6261 must rotate its light chain in order to engage 

its target optimally (Ekiert, 2012), and mutations in the HC/LC might contribute more to shifting 

the optimal orientation in order to interact with the epitope (increasing enthalpic gain). Antibodies 

that utilize both heavy and light chains, however, may require a combination of shifting and 

tightening like the panel of CD4BS antibodies in Chapter II. 

Additionally, the conformational selection model of protein-protein interactions is not 

limited to antibody/antigen interactions; flexible, conformationally diverse interactions may 

benefit from mutations that mitigate the entropic loss upon binding. A recent study by Li et al. 

suggests that an alignment of the conformational entropy of the partner proteins is one of the most 

important determinants of protein-protein interaction (Li, 2019). The authors use molecular 

dynamics to interrogate the interactions between HIV gp120 and host CD4 in an effort to determine 

the effects of CD4 binding on the conformational entropy and molecular motions of gp120. They 

found that the association of gp120 and CD4 greatly reduces conformational fluctuations of gp120 

while simultaneously increasing the stability of the bound conformation. Additionally, the 

gp120/CD4 interaction greatly restricts the movement of the V1/V2 loops, preventing gp120 from 

returning to its closed, unbound state. In this case, the authors conclude that the development of 

small molecules to lock in the “open” conformation of gp120 would aid in viral neutralization, as 

the interaction between CD4 and gp120 is completely dominated by conformational selection. One 

future direction of this research could be to take this temporal aspect of dynamics into account as 
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the study presented in this thesis  exclusively modelled the structural dynamics excluding the time 

scale.  

An additional study that can be performed with existing technology involves creating and 

characterizing antibodies with a “synthetic interface”, wherein the HC/LC is re-designed using the 

mutated positions as mutational hotspots. Using the mature antibody in the bound conformation, 

Rosetta can search for the “optimal” sequence of mutations in those positions. Should Rosetta 

design a better (or different) HC/LC interface than the mature antibody, the in silico maturation 

results will result in models with angle distributions that resemble the mature antibodies’ ranges 

of orientation, as the stabilizing effects preconfigure the antibody for the bound conformation. In 

order to determine how stabilizing mutations might affect the binding affinity and thermodynamic 

profile of an antibody with an HC/LC orientation closer to the means of distributions for all human 

antibody co-crystal structures, it is imperative that in silico maturation is enacted on a variety of 

non-HIV interactions that reflect the “average” bound antibody structure in the PDB. After 

expressing and testing these Rosetta-generated mutants, we should have a clearer picture of the 

ternary nature of antibody/antigen interactions.  
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APPENDIX 

 

Protocol capture for Chapter II 

 

Introduction 

The following is a protocol capture that demonstrates how to determine the stability at the 

HC/LC interface using an antibody/antigen co-crystal and generate an ensemble of HC/LC 

docked models. In this example, we will be making models of the antibody VRC-PG04. 

 

The version of Rosetta used for the entirety of this study is: Rosetta_2015.12.57698, 

released on May 5th, 2015. 

 

All input materials for this protocol capture can be downloaded from 

https://github.com/ac1546/HC_LC_docking. 

 

The ABangle software can be found at http://www.stats.ox.ac.uk/~dunbar/abangle/.  

 

Preparing input structures 

The PDB structure 3se9 was downloaded from the Protein Data Bank 

(https:www.rcsb.org/) and processed manually in PyMol. The gp120 component (Chain G), waters, 

and salt ions were removed. Next, we remove the constant region of the Fab in order to lessen the 

time needed to generate models. Here, we removed residues 113-216 of the heavy chain and 
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residues 108-214 of the light chain. The molecule was saved as 3se9_Fv_clean.pdb to denote the 

type of fragment the pdb contains and whether or not this contains atoms that Rosetta cannot 

process. 

 

Defining the HC/LC interface 

Here, we use the InterfaceAnalyzer application to define an HC/LC interface using the 

following command:  

 

/path_to_rosetta/rosetta/main/source/bin/InterfaceAnalyzer.linuxgccrelease -s 

3se9_Fv_clean.pdb -tracer_data_print true -pack_input true -pack_separated true -

score:weights talaris2013.wts  

 

Near the end of the output is a PyMol selection defining the residues that comprise the 

HC/LC interface:  

 

select 3se9_Fv_clean_interface, 

/3se9_Fv_clean//H/1+3+4+6+35+37+39+43+44+45+46+47+48+49+50+57+58+59+89+

91+92+93+94+99+100+100+100+100+100+100+100+101+102+103+104+105+106+1

08+ + 

/3se9_Fv_clean//L/31+32+33+34+35+36+38+41+42+43+44+45+46+47+48+49+50+51

+52+53+55+56+57+58+85+87+89+90+91+96+97+98+99+100+101+ 
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In order to determine which of the HC/LC interface residues do not interact with the 

antigen, this selection is modified so that it works with the unmodified 3se9 structure: 

 

select 3se9_Fv_clean_interface, /3se9 

//H/1+3+4+6+35+37+39+43+44+45+46+47+48+49+50+57+58+59+89+91+92+93+94+

99+100+100+100+100+100+100+100+101+102+103+104+105+106+108+ + /3se9 

//L/31+32+33+34+35+36+38+41+42+43+44+45+46+47+48+49+50+51+52+53+55+56

+57+58+85+87+89+90+91+96+97+98+99+100+101+ 

 

To ensure that only antigen-distal residues are considered, the paratope residues are 

defined using the following commands: 

 

select paratope, byres(chain H+L within 5.5 of chain G) 

color red, paratope 

 

Next, we identified mutations in the HC/LC interface. To do this, we downloaded the 

nucleotide sequences for VRC-PG04 from GenBank (accession numbers JN159466.1 – light 

chain, and JN159464.1 – heavy chain). The nucleotide sequences are then entered into IMGT V-

Quest (http://www.imgt.org/IMGT_vquest/vquest), and the mutations from germline in the HC/LC 

interface were identified manually using the resulting alignments. Additionally, we only selected 

for mutations whose side chains face the interface. The resulting mutations were formatted into a 

residue file or “resfile”, which tells Rosetta which residue to place at any given position in a model. 
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The mutations in the HC/LC interface of VRC-PG04 were reverted to their inferred germline 

residue using 3se9_germline.resfile:  

 

 

NATAA 

EX 1 EX 2 

start 

91 H PIKAA Y #F 

32 L PIKAA Y #H 

34 L PIKAA A #T 

38 L PIKAA Q #K 

43 L PIKAA A #P 

44 L PIKAA R #K 

49 L PIKAA Y #F 

46 L PIKAA G #A 

53 L PIKAA S #K 

 

Construction of Rosetta models of interface-reverted CD4BS antibodies 

  

To determine the effects that these naturally occurring somatic mutations had on the 

antibody bound conformation, we used Rosetta to construct ensembles of models for the HC/LC 

interface germline-reverted antibodies. Since we want to understand how antigen-distal mutations 
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contribute to the bound conformation, the protocol was limited to a rigid-body threading. The 

following command was used to generate models for the mature antibody: 

 

/path_to_rosetta/rosetta/main/source/bin/relax.default.linuxgccrelease -flip_HNQ 

-no_optH false -relax:constrain_relax_to_start_coords -score:weights talaris2013.wts -

relax:ramp_constraints false -s 3se8_Fv_clean.pdb -nstruct 100 -scorefile 3se9.fasc -

out:suffix "_mature” 

 

 

Interface reverted models were generated using the following command: 

/path_to_rosetta/rosetta/main/source/bin/relax.default.linuxgccrelease -flip_HNQ 

-no_optH false -relax:constrain_relax_to_start_coords -score:weights talaris2013.wts -

relax:ramp_constraints false -s 3se9_Fv_clean.pdb -nstruct 100 -out:suffix "_revert" -

relax:respect_resfile 1 -packing:resfile 3se9_germline.resfile -scorefile 

3se9_reverted.fasc 

 

At this point, both the mature and interface reverted models have been generated, but we 

still want to evaluate the effect that the mutations have on the interface. To ensure that we calculate 

across the same interface that we defined earlier, we’re going to use the Interface Analyzer 

application again, but in the form of a mover. For the sake of this example, it isn’t necessary, but 

it makes batch processing much easier. This method takes a “flags” or “options” file, an xml file, 

and the input pdb, all of which are available in the “inputs” folder on the github page. The interface 

energy, ΔΔG, was calculated for each model using the following commands: 
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/dors/meilerlab/apps/rosetta/rosetta_2015.12.57698/main/source/bin/rosetta_sc

ripts.default.linuxgccrelease @iface_analyzer.flags -s *mature*pdb -parser:protocol 

iface_analyzer_VH_VL.xml -out:file:score_only -scorefile iface_3se9_mature.fasc 

 

/dors/meilerlab/apps/rosetta/rosetta_2015.12.57698/main/source/bin/rosetta_sc

ripts.default.linuxgccrelease @iface_analyzer.flags -s *revert*pdb -parser:protocol 

iface_analyzer_VH_VL.xml -out:file:score_only -scorefile iface_3se9_reverted.fasc 

 

Next, the top 10 scoring models for each treatment were identified and their metrics 

collected using these commands: 

 

cat iface_3se9_mature.fasc | sort –nk 2 | head -10 > top10_mature.fasc 

cat iface_3se9_reverted.fasc| sort –nk 2 | head -10 > top10_reverted.fasc 

 

The sixth column in these “top10” scorefiles represents the value for interface energy. The 

change in average interface energy, ΔΔΔG, is equal to Mature ΔΔG – Reverted ΔΔG. Negative 

values indicate a more favourable interface in the bound conformation. 

 

HC/LC docking 

 

Next, we determined how the mutations in the HC/LC interface affect HC/LC orientation 

by performing small perturbation docking. The docking step also takes an options file, and xml, 
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and the starting model. In order to provide a direct comparison between mature and reverted 

interfaces, we restricted the docking protocol so that it does not alter the structural integrity of the 

domains; the minimization step employed an atom coordinate constraint, ensuring that the relax 

protocol itself would not skew angle measurements. We use this to generate 1000 models for each 

category, and analyse the top %5 for each, ranking by ΔΔG. Small perturbation docking was 

enacted using the following commands for the mature and reverted models: 

 

Mature 

/path_to_rosetta/rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease 

@docking.flags -s 3se9_Fv_clean.pdb -parser:protocol small_pert.xml -out:file:scorefile 

3se9_dock_mature.fasc -nstruct 1000 -out:suffix “_mature” 

 

Reverted 

          /path_to_rosetta/rosetta/main 

/source/bin/rosetta_scripts.default.linuxgccrelease @docking.flags -s 

3se9_Fv_clean.pdb -resfile 3se9_germline.resfile -parser:protocol small_pert_revert.xml 

-out:file:scorefile 3se9_dock_revert.fasc -nstruct 1000 -out:suffix _dock_revert 

 

The models are then ranked by ΔΔG, and the top %5 are used to evaluate change in 

orientation.  

 

cat 3se9_dock_mature.fasc | sort –nk 10 | head -50 > 3se9Top50Mature.fasc 

cat 3se9_dock_revert.fasc | sort –nk 10 | head -50 > 3se9Top50Revert.fasc 
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In order to determine how somatic mutations in the HC/LC interface affect heavy and light 

chain relative orientation, we used ABangle to calculate the relative HC/LC orientation for each 

of the top-scoring models. This software calculates six parameters by mapping two reference 

planes onto the Fv domains, drawing a distance vector between them, and measuring five angles 

– a torsion angle and four bend angles, between the two planes while using the distance vector as 

a pivot axis. Additionally, ABangle can take in a list of PDB files to evaluate in the form of .dat 

files. Generating the .dat file is accomplished through the following commands: 

 

cat 3se9Top50*fasc | grep dock | awk ‘{print($NF”.pdb”}’ > 3se9Top50.dat  

 

ABangle was used to calculate relative orientation through the following command:  

 

ABangle –i 3se9top50.dat –usernumbered  

 

The resulting angles are found in /path_to_ABangle/ABangleData/UserAngles.dat. 

The average values, standard deviations, and standard error were calculated for each type of model 

(mature and revertant) across the six ABangle parameters. The resulting values were used in the 

following equations to calculate the shift in average angle and tightening of each distribution. 

 

(3) Normalized shift = 

.
/0

123+),)(&)-(56,)&8… ) −	23$%&'()(56,)&8… )1
<+),)(&)-(56,)&8… ) +	<$%&'()(56,)&8… )	
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where 23+),)(&)-(56,)&8…) is the mean ABangle value for any angle distribution generated by 

docking a reverted HC/LC interface, 23$%&'()(56,)&8…)	is the corresponding mean ABangle value for 

the mature antibody, where <+),)(&)-(56,)&8…)  is the standard deviation for any given angle 

distribution generated by HC/LC docking at a reverted interface, and <$%&'()(56,)&8…)is the standard 

deviation for the corresponding mature antibody distribution. The Normalized Shift metric 

provides an estimate of how much the orientation distributions differ between any given mature 

antibody and its reverted counterpart as a whole. Values greater than one suggest a shift in each 

category by an average of 1 standard deviation. 

 

(4) Tightening = 
 

<+),)(&)-(56,)&8… )
<$%&'()(56,)&8… )

 

 
The tightening equation generates a ratio of standard deviations. Values greater than 1 

suggest that the mature antibody models embody a tighter angle distribution during HC/LC 
docking. 

 
The standard error (SE) for the shift was calculated using error propagation rules for 

addition where:  
shift in HL angle =  123+),)(&)-(56,)&8… ) −	23$%&'()(56,)&8… )1 

SE(HL) = 

>?@+),)(&)-(56)A +	?@$%&'()(56)A  

normalized SE(HL) = 

>?@+),)(&)-(56)A +	?@$%&'()(56)A

<+),)(&)-(56) +	<$%&'()(56)	
 

and SE(Normalized Shift)   = 
.
/>?@(56)

A +	?@(5B.)…A  
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Supplementary Data 

 

Supplementary tables can be downloaded at:  

https://github.com/ac1546/Dissertation
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Figure S1. Distribution of human antibody/antigen co-crystals. Human antibody/antigen co-crystals were analyzed with 

ABangle. The resulting angle distributions for the HL (purple), HC1 (teal), LC1 (blue), HC2 (orange), LC2 (green), and dc (grey) 

values were produced using Prism. These metrics have a mean value of -58.6 (HL), 71.33 (HC1), 120.32 (LC1), 118.236 (HC2), 

82.9 (LC2), and 16.15 (dc).  
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Figure S2. Sequence variation at the HC/LC interface. (A) WebLogos11 showing frequency of amino acids in the 

HC/LC interface for antibodies that fail to bind to the CD4 binding site (CD4BS) epitope. (B) WebLogos showing the frequency of 

amino acids in the HC/LC interface for CD4BS antibodies. 
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APPENDIX II 

 

Publications and contributions 

 

Bender, B. J., Cisneros, A., Duran, A. M., Finn, J. A., Fu, D., Lokits, A. D., Mueller, B. K., 

Sangha, A. K., Sauer, M. F., Sevy, A. M., Sliwoski, G., Sheehan, J. H., DiMaio, F., Meiler, J., … 

Moretti, R. (2016). Protocols for Molecular Modeling with Rosetta3 and 

RosettaScripts. Biochemistry, 55(34), 4748-63. 

Abstract: 

Previously, we published an article providing an overview of the Rosetta suite of 

biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et 

al. (2010) Biochemistry 49, 2987–2998]. The overwhelming positive response to this publication 

we received motivates us to here share the next iteration of these tutorials that feature de 

novo folding, comparative modeling, loop construction, protein docking, small molecule docking, 

and protein design. This updated and expanded set of tutorials is needed, as since 2010 Rosetta has 

been fully redesigned into an object-oriented protein modeling program Rosetta3. Notable 

improvements include a substantially improved energy function, an XML-like language termed 

“RosettaScripts” for flexibly specifying modeling task, new analysis tools, the addition of the 

TopologyBroker to control conformational sampling, and support for multiple templates in 

comparative modeling. Rosetta’s ability to model systems with symmetric proteins, membrane 

proteins, noncanonical amino acids, and RNA has also been greatly expanded and improved. 

 

My contribution to this publication as co-author centered around describing caveats that a 

user encounters while employing Rosetta as a modeling tool. I delineate the stochastic, abbreviated 

nature of the score function and note that exhaustive sampling may be required in order to approach 
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the local energy minimum (much less global energy minimum) for a structure or complex through 

any given application.  
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Bangaru, S., Nieusma, T., Kose, N., Thornburg, N. J., Finn, J. A., Kaplan, B. S., King, H. G., Singh, 

V., Lampley, R. M., Sapparapu, G., Cisneros, A., Edwards, K. M., Slaughter, J. C., Edupuganti, S., 

Lai, L., Richt, J. A., Webby, R. J., Ward, A. B., … Crowe, J. E. (2016). Recognition of influenza 

H3N2 variant virus by human neutralizing antibodies. JCI insight, 1(10), e86673. 

 

Abstract: 

Since 2011, over 300 human cases of infection, especially in exposed children, with the influenza 
A H3N2 variant (H3N2v) virus that circulates in swine in the US have been reported. The structural 
and genetic basis for the lack of protection against H3N2v induced by vaccines containing seasonal 
H3N2 antigens is poorly understood. We isolated 17 human monoclonal antibodies (mAbs) that 
neutralized H3N2v virus from subjects experimentally immunized with an H3N2v candidate 
vaccine. Six mAbs exhibited very potent neutralizing activity (IC50 < 200 ng/ml) against the 
H3N2v virus but not against current human H3N2 circulating strains. Fine epitope mapping and 
structural characterization of antigen-antibody complexes revealed that H3N2v specificity was 
attributable to amino acid polymorphisms in the 150-loop and the 190-helix antigenic sites on the 
hemagglutinin protein. H3N2v-specific antibodies also neutralized human H3N2 influenza strains 
naturally circulating between 1995 and 2005. These results reveal a high level of antigenic 
relatedness between the swine H3N2v virus and previously circulating human strains, consistent 
with the fact that early human H3 seasonal strains entered the porcine population in the 1990s and 
reentered the human population, where they had not been circulating, as H3N2v about a decade 
later. The data also explain the increased susceptibility to H3N2v viruses in young children, who 
lack prior exposure to human seasonal strains from the 1990s. 
 

Acquiring co-crystal structures for each of the biologically-interesting HA-antibody interactions 

depicted in the study would be a time-consuming and expensive task. My contribution to this work 

centered around the homology modeling of various H3 hemagglutinin head domains using Rosetta. 

These models were used to visualize the epitopes for interpreting in-vitro binding data and 

inferring the mechanism through which antibodies that target HA head can neutralize the virus 

without inhibiting cell entry.  After careful study we determined that antibodies like H3v-47 

neutralize the virus by preventing budding. 
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Finn, J. A., Koehler Leman, J., Willis, J. R., Cisneros, A., Crowe, J. E., & Meiler, J. 

(2016). Improving Loop Modeling of the Antibody Complementarity-Determining Region 3 

Using Knowledge-Based Restraints. PloS one, 11(5), e0154811. 

doi:10.1371/journal.pone.0154811 

 

Abstract:  

Structural restrictions are present even in the most sequence diverse portions of antibodies, the 
complementary determining region (CDR) loops. Previous studies identified robust rules that 
define canonical structures for five of the six CDR loops, however the heavy chain CDR 3 
(HCDR3) defies standard classification attempts. The HCDR3 loop can be subdivided into two 
domains referred to as the “torso” and the “head” domains and two major families of canonical 
torso structures have been identified; the more prevalent “bulged” and less frequent “non-bulged” 
torsos. In the present study, we found that Rosetta loop modeling of 28 benchmark bulged HCDR3 
loops is improved with knowledge-based structural restraints developed from available antibody 
crystal structures in the PDB. These restraints restrict the sampling space Rosetta searches in the 
torso domain, limiting the φ and ψ angles of these residues to conformations that have been 
experimentally observed. The application of these restraints in Rosetta result in more native-like 
structure sampling and improved score-based differentiation of native-like HCDR3 models, 
significantly improving our ability to model antibody HCDR3 loops. 
 

My contribution to this study involved building and preparing the benchmark set and the design 

of the experiment. The initial, PDB-derived structures were processed, in some cases repacked, 

before they were used as templates for the de novo modeling of HCD3 loops. 
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Abstract
Structural restrictions are present even in the most sequence diverse portions of antibodies,
the complementary determining region (CDR) loops. Previous studies identified robust
rules that define canonical structures for five of the six CDR loops, however the heavy chain
CDR 3 (HCDR3) defies standard classification attempts. The HCDR3 loop can be subdi-
vided into two domains referred to as the “torso” and the “head” domains and two major fam-
ilies of canonical torso structures have been identified; the more prevalent “bulged” and less
frequent “non-bulged” torsos. In the present study, we found that Rosetta loop modeling of
28 benchmark bulged HCDR3 loops is improved with knowledge-based structural restraints
developed from available antibody crystal structures in the PDB. These restraints restrict
the sampling space Rosetta searches in the torso domain, limiting the φ and ψ angles of
these residues to conformations that have been experimentally observed. The application
of these restraints in Rosetta result in more native-like structure sampling and improved
score-based differentiation of native-like HCDR3 models, significantly improving our ability
to model antibody HCDR3 loops.

Introduction
The field of antibody-mediated immunity has long benefited from structural studies of pro-
tein-protein interactions, in most cases through the determination of co-crystal structures of
antibodies in complex with their antigens. Such studies often reveal the molecular mechanism
of pathogen neutralization [1–4]. However, the size and complexity of the antibody repertoire
coupled with the substantial resources needed for experimental structure determination
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prohibit such studies on a comprehensive scale. B cell development leads to the generation of a
large population of unique antibody proteins, and it is theorized that this diverse antibody rep-
ertoire may contain 1011 or more different protein sequences [5,6]. Recent studies determined
that the circulating antibody repertoire contains at least 106 unique sequences, a number still
far too large for comprehensive experimental structural studies [7,8].

Analysis of antibody structures determined by X-ray crystallography revealed conservation
of structural features even in the regions of the antibody with the most sequence diversity, the
six complementarity determining region (CDR) loops, which are responsible for antigen bind-
ing. Three of these loops are contributed by the heavy chain component of the fragment vari-
able (Fv) domain of the antibody (HCDRs), and three are contributed by the light chain Fv
domain (LCDRs). Two studies have identified robust rules that define canonical structures for
five of the six CDR loops [9,10]. However, the HCDR3 defies classification attempts. The
HCDR3 is encoded by the junction of three gene segments (V, D and J genes) connected by
random nucleotide additions or deletions that are not encoded in the antibody germline gene
segments, but rather introduced by the host enzyme terminal deoxynucleotidyl transferase dur-
ing antibody gene recombination. The HCDR3 is therefore significantly more diverse in
sequence length and composition than the other CDR loops, which are encoded by either a sin-
gle gene segment (heavy and light chain CDRs 1 and 2) or by a simplified junction (LCDR3)
[11–13]. As a result a large and diverse conformational space is observed for HCDR3s. Accord-
ingly, HCDR3 is often especially important for antigen recognition and binding as has been
revealed in previous structural studies [14].

The Rosetta software suite for macromolecular modeling can de novo predict the structure
of a protein or portions thereof. The tertiary structure of a protein is determined from its pri-
mary sequence by pairing effective sampling techniques with knowledge-based energy func-
tions. These energy functions for the most part assume that optimal geometries within proteins
can be derived from a statistical analysis of the available structural information stored in the
Protein Data Bank [15,16]. Similar approaches are used during comparative modeling, when
structurally divergent regions (typically loops) of otherwise homologous proteins must be pre-
dicted [17]. Rosetta is capable of predicting antibody structures with low root mean square
deviation (RMSD) to experimental structures outside the HCDR3; however accurately model-
ing the HCDR3 loop remains a challenge [18–21].

In an effort to classify canonical structures of the HCDR3 loop, prior work has subdivided it
into two domains: the less diverse “torso” and the more variable “head” (Fig 1) [9,10]. Two
major families of canonical torso structures have been identified, and are referred to as
“bulged” and “non-bulged” torsos [10]. In this study, the geometries of the bulged torso
domain have been used to develop restraints that restrict the sampling space of the HCDR3
torso and result in more native-like models when de novomodeling the entire HCDR3 loop.

Previous studies have used restraints to model the bulged HCDR3 torso, following rules pre-
viously described by Shirai et al. wherein a pseudodihedral angle restraint was calculated from
the Cα atoms of residues T5, T6, T7 and the following initial residue of Framework 4 to define
the bulged or non-bulged torso [18,21–24]. Weitzner et al. [18] utilized RosettaAntibody
implemented within the Rosetta 3 framework to predict the structures of 11 previously unpub-
lished antibody structures for the second antibody modeling assessment (AMA-II) [21]. The
longest HCDR3 loop in AMA-II contained 16 residues, and was predicted by the RosettaAnti-
body team with an RMSD of 3.70Å to the native HCDR3 loop [18, 21]. Shirai et al. also com-
peted in AMA-II, and used their torso restraint rules to filter results generated by a pipeline
that includes both Spanner and OSCAR for loop structure prediction; in comparison to the
RosettaAntibody team described above, their best model for the longest HCDR3 loop had an
RMSD of 3.29Å to the native HCDR3 loop [21, 23].
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In this study, a novel set of restraints was tested on 28 previously crystallized human anti-
bodies with HCDR3 loops of increasing length and structural complexity. We expect that these
restraints will improve modeling of antibodies for which no structural information is available,
providing a means by which comprehensive structural studies of antibodies may be
accomplished.

Results
Measuring bulged and non-bulged torso dihedral angles
An annotated list of antibodies was used to cull experimentally derived structures from the
Protein Data Bank (PDB), expanding upon the list published by North et al. [10]. Following
the IMGT conventions for defining the HCDR3, where the first HCDR3 residue occurs imme-
diately following the V-gene residue Cys104 and the last HCDR3 residue occurs immediately
preceding the J-gene residue Trp118, the torso is defined as the first three and the last four resi-
dues of the HCDR3 [10,25]. Accordingly, torso domain regions were pulled from these struc-
tures as two short peptide fragments (T1-T3 and T4-T7) and clustered using Rosetta at a
threshold of 2 Å to separate bulged and non-bulged torsos. Previous studies identified a
sequence motif (Arg or Lys at T2 and Asp at T6) that contributes to bulged torso formation in
some but not all cases; these key residues were conserved in our bulged cluster, with 80% of
bulged structures presenting Arg or Lys at T2, 73% presenting Asp at T6, and 65% retaining
the complete T2/T6 sequence motif (S1 Fig) [9,10]. We found that germline-encoded regions
of the antibody sequence often contribute these critical residues, as the end of the V gene seg-
ment contributes the first two to three torso residues while the J gene segment contributes the
last four torso residues. The T2/T6 sequence motif that is often found in bulged torsos is pres-
ent in 73% of naïve V and 92% of J germline gene allele segments (S1 Fig).

The φ and ψ angles of the seven torso residues of each antibody structure were measured,
with key differences between bulged and non-bulged torsos identified in the ψ angles of resi-
dues T4 and T6 (Table 1). However, upon further study of previously defined torso clusters we

Fig 1. Defining the HCDR3 torso. The torso is defined as the first three and last four residues of the HCDR3
loop, numbered from T1 to T7. Main chain atoms are shown for bulged (panel A; PDBID 1UYW) and non-
bulged (panel B; PDBID 2J88) torsos. In many (but not all) bulged torsos, a side-chain interaction between T2
and T6 causes the C-terminal side of the torso to bulge outward; the lack of such an interaction in non-bulged
torsos leaves the beta-strand structure intact.

doi:10.1371/journal.pone.0154811.g001
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observed that the ψ angle of T4 is able to form two distinct conformations in both bulged and
non-bulged torso clusters, and the T4 ψ angle does not distinguish between bulged and non-
bulged torso clusters; the differences we observed when comparing all bulged antibodies to all
non-bulged antibodies were due to the limited sample size of structures available in the PDB
for these sub-conformations (S2 Fig) [10]. This is in contrast to for example T5, where a larger
standard deviation is observed but still a statistically significant preference for a smaller ψ angle
in a bulged torso exists. Average φ and ψ angles were calculated as follows:

atan2
P

sina
n

;

P
cosa
n

! "
ð1Þ

An approximate standard deviation was found using the following equations. For the vector
v:

v
! ¼ sina

n
;
cosa
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Approximate standard deviation is calculated using:
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!'
q

ð3Þ

It is worth noting that straightforward average and standard deviation calculations are
insufficient when handling circular values such as dihedral angles.

Derivation of restraints for bulged torso conformation
It has been observed that Rosetta rarely samples the bulged torso conformation when modeling
HCDR3 loops [14]. Due to this limitation, coupled with the greater amount of experimentally
derived structural data available for bulged torsos than non-bulged torsos and the fact that
bulged torsos are more prevalent in the human antibody repertoire, we chose to focus on devel-
oping restraints to improve modeling of HCDR3 loops with bulged torsos. Rosetta uses a
defined format to read in experimentally derived restraints. We used our measurements to gen-
erate dihedral angle restraints following a circular harmonic scoring function. Since the ψ angle
measurement of T4 varies by 180 degrees between known bulged torso clusters, this measure-
ment was omitted from our calculated restraints (S2 Fig).

Table 1. Bulged and non-bulged dihedral angle measurements.

Torso Residue Bulged Non-bulged

φ ψ φ ψ

T1 -145 ± 9 148 ± 12 -146 ± 12 145 ± 16

T2 -101 ± 22 142 ± 13 -109 ± 20 136 ± 26

T3 -107 ± 32 137 ± 33 -119 ± 44 138 ± 51

T4 -121 ± 49 161 ± 48 -82 ± 49 3 ± 59

T5 -95 ± 35 98 ± 26 -126 ± 43 136 ± 53

T6 -87 ± 18 -30 ± 26 -118 ± 34 129 ± 24

T7 -126 ± 14 134 ± 10 -125 ± 19 136 ± 11

The average and standard deviation of φ and ψ angles were calculated from existing human and mouse antibody crystal structures available in the PDB.
Torso structures were clustered as bulged (n = 218) and non-bulged (n = 38) using a cluster radius of 2 Å.

doi:10.1371/journal.pone.0154811.t001
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Modeling HCDR3 loops using bulged torso restraints
Following the protocol capture outlined in Supplemental Information, these restraints were
used to model and score the HCDR3 loops from 28 benchmark antibodies whose structures
had been previously determined by X-ray crystallography (Table 2). These 28 benchmark
structures represent HCDR3 lengths from 11 to 26 residues, with a mean length of 16 residues,
spanning a range regularly observed in human antibody repertoires that also have a mean
HCDR3 length of 16 amino acids [26]. Each of the benchmark antibodies was crystallized in
the absence of an antigen (i.e., apo) in order to avoid attempts to model conformations
achieved by induced fit with a binding partner.

Restraints function as a penalty during Rosetta’s scoring protocol, i.e., a positive energy
value is added when a dihedral angle leaves the allowed range. In this case, models formed with
native-like bulged torso dihedral angles would have no (or only a very small) penalty from the
restraint term, whereas models that deviated from the bulged torso dihedral angles would be
penalized with a positive energy score. When restraints were applied during modeling, we

Table 2. Experimentally derived antibodies used to benchmark bulged torso restraints.

PDB ID HCDR3 Length Resolution (Å) Source

1WT5 11 2.10 Humanized
2G75 11 2.28 Human
4G5Z 11 1.83 Human
3QRG 12 1.70 Human
4G6K 12 1.90 Humanized
4LLU 12 2.16 Human
1FVC 13 2.20 Humanized
3HI5 13 2.50 Human
4HFW 13 2.60 Human
4FQH 14 2.05 Human
4NM4 14 2.65 Human
8FAB 14 1.80 Human
3G6A 15 2.10 Human
3TNM 15 1.85 Human
3W9D 15 2.32 Human
1AQK 16 1.84 Human
1DQL 16 2.60 Human
1OM3 16 2.20 Human
1U6A 17 2.81 Human
3AAZ 17 2.20 Humanized
4M5Y 17 1.55 Human
3INU 18 2.50 Human
3QEH 18 2.59 Human
4F58 18 2.49 Human
1HZH 20 2.70 Human
4LKC 22 2.20 Human
1RHH 24 1.90 Human
4FNL 26 2.30 Human

28 high-resolution antibody structures solved by X-ray crystallography were used to benchmark the bulged torso restraints. Each of these antibody
structures was solved in the absence of antigen (i.e., apo structures) and all residues in the HCDR3 loops were resolved.

doi:10.1371/journal.pone.0154811.t002
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observed a higher density of low-scoring, low-RMSDmodels (Fig 2C, blue circles, n = 26) than
when modeling without restraints (Fig 2A, blue circles, n = 2). These low-scoring, low-RMSD
models are defined as scoring in the top 10% of models, with Cα RMSD16 to the native struc-
ture of! 2 Å (represented as blue circles, whereas models scoring below the top 10% of models
with Cα RMSD16> 2 Å are represented as red circles in Fig 2 and S2 Fig. When restraints
were applied during scoring but not during modeling (Fig 2B) we found that the resulting mod-
els incur substantial restraint penalties due to non-native-like sampling of the torso domain,
however the correlation between score and RMSD16 is improved. During application of this
protocol wherein a native structure is unavailable, the ability to identify native-like models by
score alone is extremely valuable. When applying restraints during both modeling and scoring,
Rosetta generates a model population where an increased number of native-like structures cor-
relate with low scores (Fig 2D, blue circles, n = 30; also see S1 File) as compared to experiments
modeled and scored without restraints (Fig 2A, blue circles, n = 2; also see S1 File). Finally, we
found that the application of these restraints results in more models whose backbone structures
agree with bulged torso measurements defined in the literature (n = 719 with restraints, n = 33
without restraints; see S3 Fig) [14,22].

Fig 2. Bulged torso restraints improve native-like HCDR3 sampling and recovery.Using Rosetta LoopModel,
1,000 models of the benchmark antibody 4G5Z (circles) were generated with or without bulged restraints and these
models were then scored with or without bulged restraints (panel A, modeled and scored without restraints; panel B,
modeled without but scored with restraints; panel C, modeled with but scored without restraints; panel D, modeled
and scored with restraints). The native crystal structure 4G5Z was also minimized using Rosetta FastRelax,
generating 20 structures (black x’s). The total HCDR3 score (in Rosetta Energy Units, or REU) is shown versus the
Cα root mean square deviation of the HCDR3 loop, normalized to that of a protein loop containing 16 residues
(RMSD16, in Å) to the native crystal structure. Models with scores ranked in the top 10% and RMSD16! 2 Å have
been colored blue, while models with scores ranked below the top 10% and RMSD16 > 2 Å have been colored red.
Improved native-like HCDR3 sampling is observed as a greater density of low RMSD16 models (blue circles) in
comparison to Panel A, while improved model recovery is defined as a greater correlation between RMSD16 and
score (colored vs. gray circles) in comparison to Panel A, as seen in panels C and D.

doi:10.1371/journal.pone.0154811.g002
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The results of modeling the 28 benchmark HCDR3 loops with or without bulged torso
restraints can be found in Figs 3–5. We observed changes in both conformational sampling
and in model discretion by score when restraints were applied. To analyze improvements in
conformational sampling, models were ranked by RMSD16 to their native structure (Fig 3)
and to study changes in scoring discretion the models were ranked by HCDR3 score (Fig 4).
Finally, models were clustered using a package called Calibur and the best cluster by average
HCDR3 score was analyzed (Fig 5).

Bulged HCDR3 restraints improve native-like conformational sampling
Modeling with bulged torso restraints improved native-like conformational sampling (the num-
ber of models with RMSD16 below 2 Å) in 26 out of 28 benchmark cases (Fig 3); in the remain-
ing case of benchmark antibody 1RHH with an HCDR3 loop of 24 residues, no models below
2 Å were observed when modeling with or without restraints, and in the case of 4FNL with an
HCDR3 loop of 26 residues, 2 models below 2 Å were observed when modeling without
restraints, compared to no models sampled below 2 A when modeling with restraints. On aver-
age, 90 models below 2 Å were generated with restraints, compared to only 12 models below 2 Å
without restraints. The best RMSD sampled using bulged torso restraints was below 1 Å in 18
out of 28 cases with restraints, compared to 10 out of 28 cases without restraints. The average dif-
ference in the best RMSD sampled was 0.33 Å lower when restraints were applied during model-
ing. Furthermore, the average RMSD16 of the most native-like 10% of models (when ranked by
RMSD16) is below 1 Å in 11 out of 28 cases when restraints are applied, compared to just 1 of 28
cases without restraints, revealing improved depth of high-resolution native-like sampling.

State-of-the-art computational methods to construct loop regions in proteins work reliably
until about eight residues, and provide good results from some loops up to twelve residues [18–
21]. Beyond this limit, the conformational space often becomes too large to be sampled exhaus-
tively. Many HCDR3 loops are longer and specialized methods are needed to limit the confor-
mational space. Our analyses describe better sampling of native-like structures during
modeling of these diverse HCDR3 loops when our torso restraints are used, with qualitative
changes in performance observed at 14 and 18 amino acids.

Bulged HCDR3 restraints improve scoring discretion
The ability to identify native-like HCDR3 loops by score when de novomodeling using Rosetta is
of critical importance. Unfortunately, we found the predictive ability of Rosetta’s scoring function
in the absence of restraints to be lacking; when ranking models by HCDR3 score, only 2 of 28
benchmark cases resulted in a top-scoring model with RMSD16< 2 Å (Fig 4). However when
restraints were applied, ranking models by score resulted in 7 of 28 cases with an RMSD16 below
2 Å and two of those with RMSD16 below 1 Å (antibody 3QRG, 12 amino acids long and 4FQH,
14 amino acids long). On average, the RMSD16 of the best scoring model improved by 0.84 Å
when restraints were used during modeling and scoring. Because restraints improve sampling,
there was also a marked improvement in the average RMSD16 of the top 10 models ranked by
score; when restraints are applied, the average is below 2 Å in 9 out of 28 cases, but no results
below 2 Å were found when restraints were not used. On average, there is an improvement of
1.22 Å in the average RMSD16 of the top 10 models ranked by score. The average rank of the
first model below 2 Å is 17 when restraints are applied and in 8 of 28 cases the first-ranking
model is below 2 Å, compared to only 2 out of 28 cases resulting in a first-ranking model below
2 Å and an average rank of 82 when restraints are not used. Altogether these analyses reveal that
the bulged torso restraints improve scoring discretion of native-like structures, but that further
improvement to the scoring of HCDR3 loops is needed [27].
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Fig 3. Torso restraints improve sampling of bulged HCDR3 loops. For each benchmark antibody
structure, 1,000 models were generated with or without bulged torso restraints. The number of models below
2 Å RMSD16 to the native structure, the best RMSD16 sampled, and the average RMSD16 of the best 10
models ranked by RMSD16 are provided. For RMSD16-containing cells, blue shading represents
RMSD16! 1 Å ; yellow shading represents RMSD16 between 1 and 2 Å ; red represents RMSD16 > 2 Å . For
cells containing the number of models below 2 Å , blue shading represents" 100 models; yellow shading
represents" 10 models; red shading represents fewer than 10 models.

doi:10.1371/journal.pone.0154811.g003
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Fig 4. Torso restraints improve recovery of native-like bulged HCDR3 loops. For each benchmark
antibody structure, 1,000 models were generated with or without bulged torso restraints. The number of
models below 2 Å RMSD16 to the native structure, best RMSD16 sampled, average RMSD16 of the best 10
models ranked by RMSD16, RMSD16 of the best model ranked by Rosetta score, average RMSD16 of the
top 10 models ranked by Rosetta score, and the rank of the first model below 2 Å when sorted by Rosetta
score are provided. For RMSD16-containing cells, blue shading represents RMSD16! 1 Å ; yellow shading
represents RMSD16 between 1 and 2 Å ; red represents RMSD16 > 2 Å . For rank-containing cells, blue
shading represents rank 1; yellow shading represents ranks 2 to 10; red shading represents ranks > 10.

doi:10.1371/journal.pone.0154811.g004

Improving Antibody Loop Modeling with Restraints

PLOS ONE | DOI:10.1371/journal.pone.0154811 May 16, 2016 9 / 15



 

 
 

127 

 

  

Clustering bulged HCDR3 loop models
Using the clustering package Calibur [28], we analyzed the HCDR3 models generated with and
without bulged restraints (Fig 5). Only clusters containing>1% of models (10 or more) were

Fig 5. Cluster analysis of bulged HCDR3 loopmodeling. Calibur was used to cluster the 1,000 models generated with or
without bulged torso restraints for each antibody, using a threshold of 2.0. Clusters containing less than 1% of the total models
were omitted from analysis; models generated for benchmark antibodies 4F58, 1HZH, 4LKC, 1RHH and 4FNL did not produce
any large clusters upon analysis (N/A). Average Rosetta score was calculated for each cluster, and the cluster with the lowest
average score was selected as the “correct” cluster. The size of this correct cluster (and it’s rank among cluster sizes), its average
RMSD16 to the native structure (and rank among average RMSD16measurements) are provided. Cells containing rank data are
shaded blue if the value represents the top rank, yellow for ranks 2–3, and red for ranks >3; if only one cluster (1*) was found, the
cell is shaded gray. For RMSD16-containing cells, blue shading represents RMSD16! 1 Å; yellow shading represents RMSD16
between 1 and 2 Å ; red represents RMSD16 > 2 Å . Values were omitted from column averages if!1 cluster was found.

doi:10.1371/journal.pone.0154811.g005
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considered. For models made based on structures with 20 or more amino acids in the HCDR3
loop, no sufficiently large clusters were found. For the other benchmark structures, clusters
were sorted by average cluster HCDR3 score, with the lowest average HCDR3 score being cho-
sen as the “correct” cluster. This approach to selecting the “correct” conformation is common
when de novomodeling HCDR3 loops, as the native structure of the loop is not known outside
of benchmark studies. When restraints were used during modeling, the rank of the cluster size
(how large a cluster is compared to other clusters) improved in 18 out of 24 cases over experi-
ments where restraints were not used. When restraints were applied during modeling, the aver-
age RMSD16 of the correct cluster improved in 21 out of 24 cases. The average RMSD16 for
the best cluster by score was top-ranking in 9 out of 24 cases when restraints were applied dur-
ing modeling, compared to just 3 out of 24 cases when restraints were not used, which reveals
the predictive power of our scoring metrics when restraints are applied.

Discussion
There is a growing body of work surrounding canonical structures of antibody CDR loops, first
described by Chothia and colleagues and updated as recently at 2011 by the Dunbrack group
[9,10]. These groups have shown that that five of the six CDR loops take on canonical struc-
tures, and that the remaining HCDR3 forms only a few canonical classes of structure in its
torso domain. Our work builds upon this background, and has led to the development of
knowledge-based structural restraints from available crystal structures of HCDR3 loops with
bulged torsos. We have shown that these restraints can be used to restrict the sampling space
Rosetta searches during de novo loop modeling, limiting the torso domain to the φ and ψ angles
of these residues that have been experimentally observed. These torso restraints improve
native-like structure sampling and score-based differentiation of native-like HCDR3 models.
We have also shown that such structural restraints improve Rosetta’s ability to model longer
HCDR3 loops than previously possible, extending the range of the technique to cover more
biologically relevant HCDR3 loop lengths.

While this study focuses on benchmarking new knowledge-based restraints against antibod-
ies whose structures have been experimentally determined, the true value of these restraints is
in their ability to improve de novo antibody modeling. Such antibody structural predictions are
a more rapid approach than experimental structural techniques, and can improve our under-
standing of host-pathogen interactions, provide insight into mechanisms of viral infection, and
may lead to new monoclonal antibody therapeutics or vaccine candidates. Combined with our
prior understanding of canonical CDR loops, which had made it possible to homology model
much of the functional surface of the antibody (the “paratope”) using Rosetta, we can now pre-
dict the remaining HCDR3 which is critical in many antibody-antigen interactions. The central
dogma of structural biology, that structure dictates function, lets us expect that improved accu-
racy in modeling HCDR3 will lead to improved accuracy in modeling antibody/antigen inter-
actions which in turn leads to improved prediction of antibody function. We recognize that
further experiments would be needed to prove this. Finally, upcoming advances in antibody
sequencing, including the ability to sequence endogenously paired heavy and light chains, will
provide the last critical insight in antibody modeling; we must now come to understand restric-
tions at the heavy and light chain interface that alter the paratope, and incorporate such restric-
tions into our structural predictions.

Although we have applied this approach to improving human antibody modeling, we recog-
nize that this approach to structural restraint development is applicable to many other protein
families in which structurally diverse surface loops with key functional importance are sup-
ported upon more structurally restricted framework regions [27]. Obvious examples include
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proteins with the PDZ domain and peptidase C1 domain protein families, which were found to
use bulged HCDR3-like loops to recognize and bind their substrates [14]. Finally, we have
shown that knowledge-based structural restraints can be calculated easily and applied to
improve modeling of novel loops not previously solved by experimental techniques, provided
enough experimentally derived structural data is available for framework regions of functional
loops in other protein families, and that canonical classes of those regions can be defined.

Materials and Methods
Calculating bulged and non-bulged torso dihedral angles
A collection of antibody heavy chain variable domains was manually curated from the PDB,
building upon a published list [10] (S2 File). The torso residues of these structures were
extracted from the PDB files and were clustered using Rosetta Cluster with a cluster radius of
2 Å to separate bulged and non-bulged antibody torsos. φ and ψ dihedral angles of the seven
torso residues were found using Biopython [29], with average and approximate standard devia-
tion calculated using Eqs 1 and 2 (Table 1).

Generating HCDR3 loop models
The complete protocol for generating the HCDR3 loop models using Rosetta is described in S3
File and example file input and output is provided in S4 File. In brief, structure files for each
benchmark antibody were downloaded from the PDB and were cleaned such that only a single
variable domain remained. Input files for loop modeling were generated with the assistance of
a suite of python scripts, and fragments were selected using the fragment picker. Centroid loop
modeling was accomplished using cyclic coordinate descent (CCD), followed by a kinematic
closure (KIC) full-atom refinement [30–32].

HCDR3 torso sequence analysis
Sequences of the seven torso residues were taken from each of the PDB files of the bulged anti-
body torso cluster found above and used to generate a WebLogo using the default webserver
settings [33] (S1 Fig). A second WebLogo was generated using the sequences of the torso resi-
dues taken from the IMGT human VH and JH gene segments [34] (S1 Fig).

Supporting Information
S1 Fig. Bulged torso structures share similar sequences, which are germline-encoded. Previ-
ous studies identified a sequence motif in bulged torso structures, which are formed primarily
via a side-chain interaction between either Arg or Lys (R/K) at T2 and Asp (D) at T6. A con-
sensus sequence from bulged torsos culled from the PDB shows the prevalence of these resi-
dues at these positions (panel A). These residues are germline-encoded, as observed in a
consensus sequence of the VH and JH gene segments that contribute to the torso domain (panel
B).
(TIF)

S2 Fig. Average φ and ψ angles observed for each torso residue in known bulged and non-
bulged clusters.North et al. [10] defined seven canonical torso conformations from experi-
mentally-determined antibody structures. Two of these clusters are considered bulged
(H3-anchor-1 and H3-anchor-3; blue) and two are considered non-bulged (H3-anchor-2 and
H3-anchor-5; red). φ and ψ angles are well defined for both bulged and non-bulged HCDR3
torso residues. Bulged and non-bulged torsos are differentiated by their ψ angle at T6. The ψ
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angle at T4 is bimodal for both bulged and non-bulged HCDR3 torsos, with ~180 degrees sepa-
rating the two clusters within each definition.
(TIF)

S3 Fig. Bulged torso restraints improve sampling of HCDR3 torso angles. Using Rosetta
LoopModel, 1,000 models of the benchmark antibody 4G5Z were generated without (red) or
with (blue) bulged restraints. The τ101 angle and α101 dihedral angle defined by Weitzner et al.
[14] were calculated for each model. Gray regions of the plot denote ± 3σ of the mean angles
calculated for bulged HCDR3 torsos by Weitzner et al. [14]. Improved recovery of bulged tor-
sos was observed as a greater density of points in the center gray region when restraints were
applied (n = 719), versus when no restraints were applied (n = 33).
(TIF)

S1 File. Bulged torso restraints improve native-like HCDR3 sampling and recovery. As in
Fig 2, 1,000 models of each benchmark antibody were generated and scored with or without
bulged restraints using Rosetta LoopModel (comparable to Fig 2A and 2D). Models with scores
ranked in the top 10% and RMSD16! 2 Å have been colored blue, while models with scores
ranked below the top 10% and RMSD16> 2 Å have been colored red. The native crystal struc-
ture was also minimized using Rosetta FastRelax, generating 20 structures (black x’s). The total
HCDR3 score vs. the HCDR3 Cα RMSD16 to the native crystal structure is shown.
(PDF)

S2 File. HCDR3 definitions file. This file contains two comma separated value tables. The
first table represents the non-bulged antibody structures used to calculate dihedral angle values,
and lists the PDB file, chain ID, HCDR3 start residue and HCDR3 end residue when each
chain in the PDB file has been renumbered sequentially starting from 1. The second file lists
these values for the bulged antibody structures used to calculate the dihedral angle values.
(TXT)

S3 File. Rosetta protocol. A complete protocol has been provided, including Rosetta version
number, for individuals who wish to utilize our methodology.
(PDF)

S4 File. Rosetta protocol capture. This archive contains example input and output files
needed to run the Rosetta protocol described in S3 File.
(ZIP)
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