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CHAPTER 1

INTRODUCTION

The overall goal of this dissertation, presented in partial fulfillment of a doctoral degree in
Pharmacologys, is to characterize the structural, post-translational, and protein-protein mediated regulation
of antidepressant-sensitive serotonin (5-HT, 5-hydroxytryptamine) transporter (solute carrier 6a4; SLC6A44,
SERT) variants associated with neuropsychiatric disorders. Herein, I will provide an overview of 5-HT and
SERT and their contribution to neuropsychiatric disorders. I will focus largely on structural conformations
that support the activity of members of the SLC6 family, including the dopamine (DA) transporter (DAT)
and the norepinephrine (NE) transporter (NET), their transport cycles, and how the amino-(N) and
carboxyl-(C) termini are impacted by post-translational modifications and protein-protein interactions.
Overall, I seek to investigate the hypothesis that wildtype (WT) SERT can be regulated by endogenous
signaling pathways as well as disease-associated variants that alter post-translational modifications and

structural conformational states, ultimately changing SERT transport kinetics in vitro and in vivo.

5-HT svnthesis and expression

5-HT is a chemical synthesized in both the brain and periphery, deriving its name from the word
serum as a consequence of gut synthesis and secretion into the bloodstream, and tone, referring to the impact
of 5-HT on the vasculature (Rapport et al., 1948). 5-HT is widely produced in many tissues from its
precursor, tryptophan, with ~90% of the whole body 5-HT synthesized in intestinal enterochromaffin cells
from the amino acid tryptophan in a two-step enzymatic process involving, tryptophan hydroxylase 1
(Tphl) and aromatic amino acid decarboxylase (AADC) (Gershon and Tack, 2007). Once released in
response to physical stretch of the intestine, 5-HT supports peristaltic contractions of the intestinal smooth
muscle. Appreciable quantities of 5-HT move into the bloodstream where the molecule is actively

accumulated into blood platelets by the 5-HT transporter (SLC6A44, SERT), the same gene product that is



produced in the brain to support efficient synaptic 5-HT clearance (Blakely et al., 1991; Lesch et al., 1993;
Ramamoorthy et al., 1993).

In the periphery, besides its role in the gut and vasculature, 5-HT also plays a vital role in systemic
energy homeostasis (Namkung, Kim, & Park, 2015). In the brain, 5-HT exerts important modulatory control
over a number of circuits that regulate sleep, appetite, libido, mood, anxiety and social behavior (Frazer
and Hensler, 1999). In the CNS, synthesis of 5-HT utilizes tryptophan hydroxylase 2 (Tph2) rather than
Tphl (Walther et al., 2003).

5-HT is packaged for release by platelets and neurons into an acidic (pH ~5.5) cytoplasmic vesicle
by the vesicular monoamine transporter 2 (Slc/8a2; VMAT2). VMAT2, a H'/monoamine” antiporter is
energized by the transvesicular proton gradient established by an ATP-driven proton pump, leading to
transport of one molecule of 5-HT for each effluxed proton (Eiden and Weihe, 2011). At synapses, the
release of 5-HT is stimulated by membrane depolarization that leads to opening of voltage-gated Ca*"
channels. The rapid elevation of cytosolic Ca**leads to binding to, and conformational changes in, the Ca*'-
sensing protein, synaptotagmin, preassembled with SNARE proteins on synaptic vesicles that are docked
at the plasma membrane. Ca’’-dependent conformational changes in synaptotagmin promote changes in
associations of the SNARE complex with the lipid bilayer that overcome the energy barrier needed for

fusion of vesicle and plasma membranes, resulting in the release of neurotransmitters into the synaptic cleft

(Jahn and Scheller, 2006).

5-HT receptors

With the pervasive and varied function of 5-HT, it is no surprise that there is widespread and diverse
expression of 5-HT receptors to support the assorted roles of 5-HT. There are 18 different types of 5-HT
receptors subdivided into 7 families (5-HT;.7) containing a total of 14 distinct receptors (Nichols and
Nichols, 2008). All 5-HT receptors are G-protein coupled receptors (GPCRs), except for the 5-HT;
subtype, which is a ligand-gated ion channel (Nichols and Nichols, 2008). The most well-studied of these
receptors are the 5-HT and 5-HT, receptor subtypes, highlighted in greater detail below.
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The 5-HT; family of receptors are both autoreceptors, located on the cell soma of 5-HT secreting
neurons, and classical post-synaptic receptors (Azmitia et al., 1996; Drago et al., 2008). Both types of 5-
HT, receptors inhibit the cyclic adenosine monophosphate (cAMP) signaling pathway, being specifically
coupled to heterotrimeric G proteins containing Gain. When these receptors bind 5-HT, conformational
changes lead to disassociation of Gai,, Which then inhibits the enzyme adenylyl cyclase, leading to a
reduction of cAMP levels. There are 5 types of 5-HT; receptors: 5-HTa, 5-HTis, 5-HT1p, 5-HTg, and 5-
HTr (Nichols and Nichols, 2008). Elucidation of SHT4 receptor signaling, and the receptor’s role in
physiology was facilitated by identification of the brain-penetrant, full 5-HT 14 agonist 8-hydroxy-2-(di-n-
propylamino)tetralin (8-OH-DPAT). Administration of 8-OH-DPAT to rodents leads to a number of
physiological responses, including a reduction in 5-HT neuron firing (Evard et al., 1999) and a decrease in
core body temperature (Martin et al., 1992). The activation of somatodendritic 5-HT4 autoreceptors
provides a negative feedback reduction in 5-HT neuron firing via G protein-mediated activation of K"
channels, an action that has been linked to the delayed actions of a class of antidepressants, the selective 5-
HT reuptake inhibitors (SSRIs). Increased extracellular 5-HT caused by blockade of SERT within the
midbrain, where cell bodies of 5-HT neurons originate, leads to increased activation of 5-HTia
autoreceptors, decreased 5-HT neuron firing, and a reduction of 5-HT release in target regions (Artigas,
1993). In support of this model, co-administration of an SSRI with the partial 5-HT4 antagonist (Pindolol)
has been shown to accelerate SSRI-induced responses (Ballesteros and Callado, 2004). 5-HT;z receptors
are primarily expressed on axon terminals (Boschert et al., 1994) and act in a negative feedback loop to
limit the vesicular release of 5-HT (Sari, 2004). 5-HTis receptors can also lead to decreased 5-HT
concentration in the synapse by increasing 5-HT uptake through SERT (Daws et al., 2000). Whether the
mechanism of SERT regulation involves changes in SERT activity or surface trafficking, or both, has yet
to be explored in depth. Hagan and colleagues have provided evidence for a reduction in 5-HT transport
Kwm in synaptosomes from 5-HT;g KO mice, suggesting kinetic versus trafficking effects that lead to

enhanced 5-HT uptake (Hagan et al., 2012). Another GPCR, the kappa opiate receptor, acts presynaptically



as a heteroreceptor to elevate SERT function, in this case by increasing transporter trafficking
(Sundaramurthy et al., 2017).

5-HT> receptors, which are generally expressed post-synaptically, activate the phosphatidylinositol
transduction pathway (Roth, 2011) via the Gqq/11 subunit stimulate phospholipase C, leading to cleavage of
phosphatidylinositol 4,5-bisphosphate (PIP») from the membrane into inositol (1,4,5) triphosphate (IP3)
and diacylglycerol (DAG). These second messengers act downstream to increase cytosolic levels of Ca®*
that leads to activation of protein kinase C (PKC) and Ca?®"/calmodulin activated protein kinase (CaMK)
isoforms and phosphorylation of membrane, cytosolic and nuclear targets. 5-HT> receptors of the SHT2ac
family are the target of hallucinogenic drugs, such as lysergic acid diethylamide (LSD) and 2,5-dimethoxy-
4-iodoamphetamine (DOI) (Nichols and Sanders-Bush, 2001). In keeping with this idea, the hallucinogenic

potency of a drug positively correlates with the affinity for SHT, type receptors (Glennon et al., 1984).

SERT: Critical determinant of 5-HT accumulation and clearance

After 5-HT is released into the extracellular space, the capacity for signaling may need to be
constrained in space and time. As noted above, 5-HT neurons express a high-affinity, low capacity
transporter, SERT, to achieve rapid clearance of 5-HT from the extracellular environment, maintaining low
extracellular 5-HT levels in the nM range. Neurons and glia also express low affinity, high capacity
monoamine transporters, known as organic cation transporters (S/lc224; OCTs) that also play a role in
clearing 5-HT, particularly with high volume transmission and most evident in the context of
pharmacological SERT blockade or genetic elimination (Couroussé and Gautron, 2015). Once 5-HT has
been transported back into the presynaptic terminal, the neurotransmitter can either be degraded by
mitochondrial monoamine oxidase (MAQO) isoforms (MAOa and MAQOg) or 5-HT can be recycled back
into secretory vesicles for future release (Shih et al., 1999; Eiden and Weihe, 2011; Yaffe et al., 2018). An
analogous process allows for platelets to capture 5-HT by SERT and store 5-HT in secretory granules

(Rudnick, 1977; Rudnick and Nelson, 1978; Anderson et al., 1987). Storage and stabilization of 5-HT in



platelets established the major reservoir of 5-HT in the bloodstream as free 5-HT in the blood is rapidly
eliminated (Anderson et al., 1987).

Within the nervous system, SERT is most commonly depicted as residing pre-synaptically in axon
terminals of serotonergic neurons (Figure 1), though somatodendritic SERT has been well documented
(Lau et al., 2010; Ye et al., 2016). 5-HT neurons originating in midbrain raphe nuclei send diffuse
projections to a number of brain regions, including the basal lateral amygdala, hippocampus basal ganglia,
hypothalamus, olfactory tubercle, medial septum, substantia nigra, ventral tegmental area, periaqutal gray,
superficial layer of the superior colliculus and locus coeruleus (Jacobs and Azmitia, 1992; Charnay and
Léger, 2010). Brainstem 5-HT neurons are involved in the regulation of autonomic responses and send
axons to the spinal cord where they gait the flow of pain information to higher brain centers (Jacobs and
Azmitia, 1992). Midbrain 5-HT neurons are innervated by 5-HT secreting axons to mediate negative
feedback control of neuronal firing via somatodendritic 5-HT receptors, as noted above. SERT protein is
translated like all membrane proteins, in the cell bodies of the neuron and then translocated to synaptic
terminals or varicosities or dendrites (Hensler et al., 1994; Qian et al., 1995b; Lau et al., 2010; Colgan et
al., 2012) in transport vesicles for eventual insertion into the plasma membrane. Although most of the
research on SERT has focused on the role of the transporter in neurons, evidence also exists that SERT is
expressed by glia (Kimelberg and Katz, 1985; Inazu et al., 2001; Kubota et al., 2001; Malynn et al., 2013),
though the level of expression is low and functional importance is unclear.

Considering that 90% of 5-HT is located peripherally, it is no surprise that SERT is also widely
expressed in several different tissues. SERT has been found in blood platelets (Mercado and Kilic, 2010),
lymphoblasts (Faraj et al., 1994), enterochromaffin cells of the gastrointestinal tract (Wade et al., 1996;
Gershon and Tack, 2007), epithelial cells of the intestine (Gill et al., 2007), adrenal gland (Schroeter and
Blakely, 1996; Brindley et al., 2018), pulmonary endothelium (Strum and Junod, 1972), placenta
(Balkovetzs et al., 1989), and the immune system (Baganz and Blakely, 2013). Given the broad expression

of SERT and utilization in several different physiological functions, it is no surprise that genetic elimination
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of the transporter (SERT KO; SERT™"), leads to a number of behavioral and physiological changes. SERT
KO mice exhibit anxiety-like behavior, abnormal response to inescapable stress, hyperactive 5-HT
receptors, decreased home cage activity, increased REM sleep, GI dysfunction and a hyperactive
neuroendocrine system (Holmes et al., 2003). Many of the phenotypes exhibited by SERT KO mice were
recapitulated in SERT KO rats, highlight the conserved role of SERT across species (Kalueft et al., 2010).
However, it is important to note that SERT KO animals are viable and do not express any obvious physical
abnormalities, indicating that SERT is not necessary for survival, growth, and reproduction, but play
essential roles in regulating and modulating responses to environmental and synaptic stimuli. Tolerance of
loss of SERT is also not surprising as genetic elimination of the rate-limiting enzymes that produce 5-HT,
Tphl and Tph2, similarly does not result in overt phenotypes (Savelieva et al., 2008), further supporting the

role of 5-HT as a modulatory molecule.

Structural characterization of SERT

The SERT gene lacks alternative splicing of coding exons and thus the brain and periphery contain
the same SERT protein. SERT was first cloned independently by both Blakely from rat brain (Blakely et
al., 1991) and by Hoffman in RBL cells (Hoffman et al., 1991). Soon after, SERT was cloned from the rat
spinal cord (Mayser et al., 1991) and intestine (Wade et al., 1996). SERT comprises 630 amino acids that
form 12 transmembrane (TM) domains with a long cytoplasmic N-terminus (81 amino acids) and shorter
C-terminus (30 amino acids).

In 2005, a bacterial homologue of the monoamine transporters, the Aquifex aeolicus Leucine
Transporter (LeuT), was crystallized (Yamashita et al., 2005). Initiating a structural era of study of the
SLC6 family, work that has formed the basis for many of our hypotheses regarding SERT function,
dynamics and drug binding. One key finding of this initial study was that SLC6 transporters consist of two
repeated, inverted bundles that bring the residues forming the binding site for ions and organic substrates

together. The initial LeuT structure reported by Yamashita and colleagues was of a transporter in a
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substrate-bound state with both external and internal states closed (occluded state). Additional structures of
LeuT and mammalian SLC6 members have provided structures in outward facing and inward facing
configurations (Krishnamurthy and Gouaux, 2012) to aid in the modeling of the transport cycle.

In 2013, a Drosophila melanogaster DAT (dDAT), which has a 45% sequence homology with
SERT, was crystallized at a 3.0 A resolution (Yamashita et al., 2005). In 2016, the human SERT (hSERT)
was crystallized in the absence and presence of the antidepressant, S-citalopram (Coleman et al., 2016).
All these crystal structures validated and supported many previous biochemical studies that detailed
structure-function relationships of the SLC6 transporters. It is important to note that a major caveat of
crystallization experiments is the need to stabilize the structure of the transporter to promote crystal growth,
where highly mobile and unstructured regions of the N- & C-termini had to be cleaved, and the introduction
of mutants to make the transporter thermostable, making the transporter unable to properly function. One
way to assess the structure of the N-& C-termini is through homology modeling, based on amino acid
sequence. Fenollar-Ferrer et al. (2014) accomplished this effort utilizing several modeling techniques
including the bioinformatics program PSIPRED to predict the secondary structure of the N- and C-termini,
supported by nuclear magnetic resonance (NMR), circular dichroism (CD), and FRET assays. From these
studies, these investigators were able to predict multiple models of SERT in different conformational states
(Fenollar-Ferrer et al., 2014). While these studies predicted the N-terminus of SERT to be comprised of a
few alpha helical sections, many models predict a more undefined structure, suggesting that interactions

with one or more proteins may impose structure.

Alternating access model of transport by SERT

SERT is able to overcome the inability of 5-HT to cross the plasma membrane by secondary active
transport, tapping into the Na" gradient generated by the Na'/K" ATPase, an enzyme also utilized to set the
cell’s resting membrane potential. Kinetic analysis of SERT uptake shows that for 5-HT to bind, 1 or 2 Na"
ions must first bind along with a Cl ion. Ion binding poises the transporter in a state where the binding

pocket is available for 5-HT to bind with high-affinity. 5-HT binding leads to a large structural transition
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of a four-helix bundle TM1, TM2, TM6 and TM7 (scaffold by TM3-5 and TM8-10) to close extracellular
gates and the opening of intracellular gates to allow the Na" ions and 5-HT to be released into the cytoplasm
(Rudnick, 2006). For SERT, but not with other SLC6 transporters studied to date, return to an outward-
facing state requires binding of 1 K" ion (Figure 2) (Nelson and Rudnick, 1979). Because the amine group
of 5-HT is protonated at physiological pH, the transport of all substrates across the transport cycle results
in an electroneutral model of 5-HT transport across SERT, for which direct evidence is available (Rudnick
and Nelson, 1978). Interestingly, SERT transport of 5-HT can be accompanied by net, uncoupled current
flow (Mager et al., 1994; Lin et al., 1996; Adams and DeFelice, 2003; Schicker et al., 2012) that is
dependent on interactions of the presynaptic SNARE protein syntaxin 1A (Quick, 2003).

The cyclic structural movements of the transmembrane domain inverted repeat bundles is a modern
elaboration of the schematized “alterrnating access model of transport”, sometimes referred to as the
“rocking bundle mechanism of transport” due to modeling studies that predict the inverted repeat of helices
to allow four helices forming the 5-HT binding site to move against other, relatively stable helices (Forrest
et al., 2008; Forrest and Rudnick, 2009). This is in contrast to other transporters, such as the glutamate
transporter, which involves the upward and downward moving of substrate-bound helices, a so-called
“elevator” mechanism (Ruan et al., 2017).

There are several gating residues that form interactions to occlude the extracellular milieu from the
cytosolic space as the transporter moves from the outward-facing to an inward facing state (Figure 3).
These residues have been identified from x-ray crystal structures of SLC6 transporters in different states,
mutagenesis studies, and studies utilizing the substituted cysteine accessibility method (SCAM). 1le179 in
TM3 is thought to be an extracellular gating residue, which is just 6 residues from Ile172, which is critical
for 5-HT binding and transportation (Chen and Rudnick, 2000). Tryl176 in TM3 forms the lower portion
of the extracellular gate, with Phe335 (extracellular loop 4; ECL4) and a salt-bridge between Argl04
(ECL1) and Glu493 (TM10) shielding 5-HT from the extracellular milieu after binding (Coleman et al.,
2016). For intracellular gating, residues Arg79 (N-terminus) and Asp452 (TM10) form an ionic bond
while Tyr350 (TM6) forms and hydrogen bond with Glu444 (TM3) of hSERT (Koldsg et al., 2013).

9
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For Cl ion binding, residues Tyr121, Ser336, Asn368, and Ser 372 were found to be critical (Forrest
et al., 2007). Evidence suggests that Cl" remains bound during the entire transport cycle (Hasenhuetl et al.,
2016). Interestingly, Cl” binding is also critical for the binding of some antidepressants, specifically
imipramine, citalopram, sertraline, and fluoxetine, but does not affect cocaine or paroxetine binding
(Tavoulari et al., 2009). There are two Na'ion binding sites within the transporter, however, evidence
suggests that 5-HT uptake is only coupled to the influx of one Na" ion (Sneddon, 1969) and the Nal and
Na2 are shown to have separate functions (Felts et al., 2014; Tavoulari et al.,, 2016). Tavoulari and
colleagues found that the occupation of Na” in the Na2 site supports an outward facing conformation while
Nal binding induces the conformational shift in the transporter (Tavoulari et al., 2016). Molecular dynamic
simulation reveal that 5-HT binding destabilized Na" binding to the Na2 site (Felts et al., 2014), potentially
suggesting that Na"binding in the Na2 site only primes the transporter in an outward facing conformation
for substrate binding and then once 5-HT is bound, Na"is released from the Na2 site, allowing for transport
but is not translocated. Although K™ has been shown to be required for SERT, inferred to be involved in
reconfiguring transition of the inward to outward facing conformation (Nelson and Rudnick, 1979; Schicker
et al., 2012), there is currently a lack of knowledge regarding which residues mediate K* binding and the
full functional importance of this coupling.

Although the N- and C-termini are positioned far away from the substrate and ionic binding sites,
and are not present in the crystalized SLC6 family member structures, these regions are well established to
play a critical role in regulating transport kinetics and mode of transport (influx vs efflux), as well as
specificity of substrate binding to the transporter (Sucic et al., 2010; Fenollar-Ferrer et al., 2014; Sweeney
et al., 2017). During the transport cycle, molecular dynamic simulation studies suggest that as the
transporter moves from the outward to inward facing conformation, the termini move farther apart, with
most of the movement suggested to arise from movement of the N-terminus (Fenollar-Ferrer et al., 2014).
The unstructured aspect of the N-& C-termini may allow for dynamic regulation of protein-protein
interactions and post-translational modifications (PTMs) that ultimately lead to changes in SERT activity.
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Kinase-dependent regulation of SERT

As 5-HT neuron activity and the need for serotonergic modulation depend on multiple variables,
including both intrinsic and extrinsic stimuli, SERT uptake kinetics would also be predicted by
environmental demands (Blakely and Bauman, 2000; Steiner et al., 2008; Ramamoorthy et al., 2011).
Indeed, the transporter is highly regulated by several protein kinases that are sensitive to various stimuli,
such as stress or immune activation. These kinases can either act directly on the transporter to facilitate
phosphorylation of the transporter (discussed in more detail below) or indirectly by activating a downstream
protein that can then interact with the transporter to affect the structural conformation and/or PTM.

An extensive review from the Blakely lab highlights the similarities and differences in the kinase-
mediated regulation of monoamine transporters (SERT, DAT, and NET) (Bermingham and Blakely, 2016).
Below I will focus mainly on SERT-dependent regulation by three kinases: protein kinase C (PKC), cGMP-
dependent protein kinase (PKG), and p38 mitogen-activated protein kinase (p38 MAPK). CaMKII has also
been shown to directly interact with SERT and to regulate amphetamine-induced substrate efflux, but will
be discussed in later sections. [ will also provide a brief overview of SERT modulation by cAMP-dependent
protein kinase (PKA), ERK1/2, phosphatidylinositol 3-kinase (PI3K)/Akt, and tyrosine kinases. Table 1
outlines the main role of each kinase in mediating SERT function and potential phosphorylation sites if

known.

Protein Kinase C (PKC)

The classical protein kinase C (PKC) isoforms are activated by the second messengers Ca*" and
diacylglycerol (DAG). The canonical signaling cascade triggered by PKC activation begins with
stimulation of a GPCR that leads to the release of the Gqq subunit to activate phospholipase C (PLC), which
cleaves the membrane lipid PIP; into inositol 1,4,5-triphosphate (IP3) and DAG. IP3 is released into the
cytosol to release Ca®>" from intracellular stores. The Ca?* and membrane-bound DAG to activate PKC,

which can then act on downstream targets to affect protein function.
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PKC was first shown to phosphorylate SERT domains in 1995 by the Blakely lab using purified rat SERT
N-& C-termini fused to glutathione S-transferase (GST) fusion proteins (Qian et al., 1995a). In 1997, the
same group showed that activation of PKC by B-PMA in HEK293 cells transfected with rat SERT (rfSERT)
resulted in a decrease in the maximal velocity (Vmax) of 5-HT transport as well as decreased SERT-
mediated currents (Qian et al., 1997). Moreover, PKC activation led to a decrease in SERT surface
expression, consistent with the loss of 5-HT transport capacity (Ramamoorthy et al., 1998; Ramamoorthy
and Blakely, 1999). Jayanthi and colleagues subsequently found that PKC affects SERT in a time-
dependent manner, by first rapidly decreasing SERT uptake independent of surface expression (5 minutes),
followed by internalization of SERT (30 minutes) (Jayanthi et al., 2005). Conversely, inhibition of PKC
has been shown to modulate SERT-mediated 5-HT efflux (Buchmayer et al., 2013). Mutation of a PKC
consensus site at Thr81to Ala or Asp in the transporter N-terminus eliminated the ability of SERT to exhibit
amphetamine-induced efflux (Sucic et al., 2010). Several studies have reported that PKC activation
increases phosphorylation of serine residues on SERT. By utilizing purified peptides of the intracellular
regions of hSERT Serensen et al. nominated Ser149, Ser277, and Thr603 as hSERT PKC sites (Serensen
et al., 2014).

PKC activation also impacts SERT interacting proteins. Activation of PKC has been shown to
reduce interaction of hSERT with both the catalytic subunit of protein phosphatase 2A (PP2Ac) in
transiently transfected HEK-293 cells (Bauman et al., 2000) and syntaxin 1A in both transiently transfected
HEK-293 cells and cultured rat thalamocortical neurons and synaptosomes (Haase et al., 2001; Quick,
2002a, 2003; Samuvel et al., 2005), but increased interaction with Hic-5, studies performed in human blood

platelets (Carneiro and Blakely, 2006).

c¢GMP-Dependent Protein Kinase (PKG)
Another kinase that regulates SERT is the 3°,5’-cyclic guanosine monophosphate (cGMP)
dependent protein kinase (PKG). PKG is activated upon the binding of two ¢cGMP molecules that are

produced from guanosine triphosphate (GTP) by guanylyl cyclase (GC). Guanylyl cyclase produces cGMP
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in response to gaseous membrane-permeant nitric oxide (NO) which is produced from L-arginine by nitric
oxidase synthase (NOS) dependent on Ca’/calmodulin binding. NO production can be stimulated by a
number of receptors such as the A3 adenosine receptor (A3AR) (Miller and Hoffman, 1994; Zhu et al.,
2004, 2007, 2011) discussed more in the next section, and the SHT2g receptor (Launay et al., 2006). Both
receptors have also been linked to PKG-mediated SERT modulation as well (Miller and Hoffman, 1994;
Zhu et al., 2004; Launay et al., 2006).

Evidence exists that PKG activation drives enhanced 5-HT uptake through an elevation of
transporter surface expression in RBL-2H3 cells (Miller and Hoffman, 1994; Zhu et al., 2004), however,
another study found in rat synaptosomes PKG increased SERT kinetics in a trafficking-independent manner
(Ramamoorthy et al., 2007). The lateral mobility of SERT within the plasma membrane has also been
shown to increase after PKG stimulation (Chang et al., 2012). Activation of PKG in transfected cells leads
to increased SERT phosphorylation (Ramamoorthy et al., 1998), specifically at residue Thr276
(Ramamoorthy et al., 2007), discussed more in detail in “SERT phosphorylation” section below.

Steiner and colleagues found that PKGla isoform, but not PKGII, forms a complex with SERT
(Steiner et al., 2009; Zhang and Rudnick, 2011). The main difference between the PKG isoforms is that
PKGII is anchored to the membrane by myristylation whereas PKGla is cytoplasmic where it can interact
with membrane proteins in a regulated fashion. PKGII lipid modification precludes it from forming a
functional complex with SERT, as disruption of PKGII myristylation domain allowed PKGII dependent
regulation of SERT (Zhang and Rudnick, 2011), consistent with PKGIa as the major isoform regulating
SERT endogenously. Despite evidence of a SERT:PKG interaction, later studies showed that PKGla does
not directly phosphorylate SERT transporter in cultured heterologous cells (Wong et al., 2012), suggesting

that other kinases may act downstream of, or in parallel with PKG. to phosphorylate and regulate SERT.
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p38 Mitogen-Activated Protein Kinase (p38 MAPK)

Isoforms of the p38 MAPK family (p38a, B, y, &) are activated by the MAPK kinases MKK3/6,
enzymes that lie downstream of a complex signaling cascade activated by cellular stress that can be induced
by reactive oxygen species or inflammatory cytokines (Huang et al., 2009b). One example of a cytokine
that leads to activation of p38 MAPKs and that regulates SERT activity is interleukin-1f, acting through
the interleukin 1 receptor (IL1R) (Zhu et al., 2006; Baganz et al., 2015) and described in more detail below.
Activation of kappa opioid receptor (KOP) (Bruchas et al., 2011; Schindler et al., 2012) and A3AR (Zhu et
al., 2004) have also been shown to stimulate p38 MAPK isoforms to modulate SERT function, discussed
in more detail in the next section.

Activation of p38a MAPK has been shown to increase SERT activity in both trafficking and
trafficking-independent mechanism in various sample preparations: the rat basophilic leukemia cell (RBL-
2H3 cells) that endogenously express SERT (Zhu et al., 2005), in rat serotonergic RN46A cells (Zhu et al.,
2005), transfected HeLa cells with hSERT (Prasad et al., 2005, 2009), mouse synaptosomes (Zhu et al.,
2006), human platelets (Zhu et al., 2005), and human lymphoblast cells (Sutcliffe et al., 2005). The
trafficking-independent mechanism of p38 MAPK regulation of SERT is supported by an increase in 5-HT
affinity (decreased 5-HT Kw) and labeled the SERT* state (Quinlan et al., 2019). Consistent with this
model, a decreased 5-HT K; for displacement of surface antagonist binding RTI-55 is observed after p38
MAPK-dependent SERT regulation (Zhu et al., 2005). Inhibition of p38 MAPK pathway also appears to
affect SERT protein interactions, leading to a loss of PP2Ac and syntaxin 1A associations (Samuvel et al.,
2005), discussed more in detail in the “SERT Interacting Protein” section.

The expression of p38a MAPK in serotonergic neurons was found by Baganz and colleagues to be
essential for the depressive effects of acute immune activation by intraperitoneal injection (IP) of
lipopolysaccharide (Baganz et al., 2015), as well as by stress (Bruchas et al., 2011; Schindler et al., 2012).
These data suggest the possibility of p38 MAPK as a therapeutic target in disorders that show SERT
hyperfunction. In this regard, the use of brain-penetrant p38a MAPK inhibitors (MW 108 and MW 150)

was shown to reverse autism spectrum disorder (ASD)-like behaviors in adult mice that express the
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hyperactive SERT variant Ala56 (Robson et al., 2018), a mutant shown previously to be
hyperphosphorylated in vitro and in vivo in a p38 MAPK dependent manner (Prasad et al., 2005; Veenstra-
VanderWeele et al., 2012). These findings are described in more detail in the section Role of 5-HT and

SERT in Neuropsychiatric Disorders below.

SERT Regulation by Other Kinases

Other serine/threonine kinases reported to impact SERT function are PKA (Cool et al., 1991;
Yammamoto et al., 2013), ERK 1/2 (Benmansour et al., 2014), and PI3K/Akt (Rajamanickam et al., 2015).
The functional role of each of these kinases is briefly outlined in Table 1 and in the detailed review on
kinase-dependent regulation of monoamine transporter (Bermingham and Blakely, 2016). All the kinases
discussed above are serine/threonine kinases, however, it should also be noted that there are a number of
tyrosine residues in SERT that are the target of tyrosine kinases, such as Srk (Annamalai et al., 2012) and

Syk (Pavanetto et al., 2011).

Receptor-dependent regulation of SERT function

Kinase/phosphatase signaling cascades that regulate protein function are downstream of
autoreceptor and heteroreceptor activation. It is well known that a number of receptors activate downstream
kinases, such as those described in the above section, and act to modulate SERT function, These include 5-
HT g receptors (Daws et al., 2000), adenosine receptors (Miller and Hoffman, 1994; Zhu et al., 2004, 2007),
a2-adrenergic receptors (Ansah et al., 2003), atypical histamine receptors (Launay et al., 1994),
Tropomyosin-related kinase B receptors (TrkB) (Benmansour et al., 2008), interleukin 1 receptors (IL1R)
(Zhu et al., 2006, 2010) and kappa opioid receptors (KOP) (Sundaramurthy et al., 2017). Below I highlight

three important receptors that are linked to kinase-dependent regulation SERT function.
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Interleukin 1 Receptor (ILIR)

There is a strong link between immune dysfunction and neuropsychiatric diseases including major
depressive disorder (MDD), known as the sickness hypothesis of MDD (Charlton, 2000). Increased serum
levels of proinflammatory cytokines, IL-1p, IL-6, and TNF-a have been found in depressed patients (Maes,
1999). Activation of the immune system by lipopolysaccharide (LPS) in healthy human volunteers causes
depressive-like phenotypes that positively correlate with TNF-a and IL-1p levels (Yirmiya et al., 2000).
The major treatment for MDD is SSRIs, which specifically target SERT (Goodnick and Goldstein, 1998).
Thus, it is possible that elevations of some cytokines, such as IL-1f, IL-6, TNF-a, may produce their effects
by increasing SERT activity.

Proinflammatory cytokines, like IL-1p and TNF-a, activate p38 MAPK (Clerk et al., 1999; Pantouli
et al., 2005), and activation of the p38 MAPK pathway has been shown to rapidly enhance SERT-mediated
5-HT uptake (see above). In 2006, Zhu and colleagues showed that IL-1f in a dose- and time-dependent
manner, over the course of minutes, increased SERT function as measured by a decrease in 5-HT Ky with
no change in Vmax (Zhu et al., 2006). IL-1p also was also shown to increase surface SERT lateral mobility
within the plasma membrane (Chang et al., 2012). Inhibition of the IL1R and p38 MAPK both eliminated
the IL-1p mediated increase in 5-HT uptake (Zhu et al., 2006). To link the regulation of SERT within the
CNS driven by a peripheral immune response to behavioral changes, the Blakely lab employed a low dose
LPS intraperitoneally injection (0.2 mg/kg) to avoid sickness induced changes in behaviors. LPS induced
an increase in synaptosomal 5-HT uptake, as well as depressive-like phenotypes, 1-hour post injection.
However, these effects were lost in IL1R constitutive KO mice (Zhu et al., 2010). It was also found that
the LPS induced depression and increased 5-HT uptake was due to the serotonergic expression of p38a
MAPK (Baganz et al., 2015). It is postulated that LPS increases IL-1p (either peripherally or centrally) to
act on IL1Rs expressed in 5-HT neurons. IL-1R stimulation triggers singling cascaded to activate p38a
MAPK which then acts on SERT to increased 5-HT clearance and diminished 5-HT receptor activation to

elicit depressive-like phenotypes. To elucidate whether serotonergic IL1IR expression is necessary for
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modulating both SERT function and LPS induced depressive-like effects, the Blakely lab recently generated
an ILIR™™ mouse line (Robson et al., 2016) that has been crossed with ePET1 Cre mice to selectively
eliminate IL1R within serotonergic neurons. Conversely, the lab plans to utilize “IL1R restore mice”,
where IL-1Rs are selectively expressed in specific neurons in an otherwise IL-1R KO background (Liu et
al., 2015), to assess if ILIR expression in 5-HT neurons is sufficient for these biochemical and behavioral

effects.

Kappa Opioid Receptor (KOP)

Kappa opioid receptors belong to the G-protein coupled receptor (GPCR) family and are expressed
in nerve terminals of serotonergic neurons (Berger et al., 2006; Kalyuzhny & Wessendorf, 1999). These
studies show that treatment with KOR antagonists has antidepressant-like effects, while KOR agonist
produced depressive-like phenotypes in rodent models. One of the links between KOR and depressive
behavior has been suggested to be SERT since activation of KOR with the KOR agonists U69,593 or
U50,488 in transfected cells decreases 5-HT uptake, specifically by decreasing SERT Vmax with no change
in Ky (Sundaramurthy et al., 2017). This decrease in Vmax is due to lower SERT surface levels caused by
decreased trafficking and increased internalization of SERT from the plasma membrane. This decrease in
SERT function is dependent on protein kinase B (PKB)/Akt and CaMKII, as inhibition of these kinases
blocked KOP agonist-mediated decrease in 5-HT uptake (Sundaramurthy et al., 2017). SERT regulation
by KOP also extended to ex vivo ventral and dorsal striatal synaptosomes preparations (Sundaramurthy et
al., 2017).

Stimulation of KOR has also been shown to produce enhanced SERT phosphorylation
(Sundaramurthy et al., 2017). Interestingly, in addition to PKB/Akt and CaMKII, KOR activation has also
been linked to p38 MAPK pathways. For example, Bruchas and colleagues found that social defeat
(Bruchas et al., 2011) and forced swim stress (Schindler et al., 2012) lead to an increased surface trafficking
of SERT in a p38a MAPK dependent manner and that this effect could be blocked the KOR antagonist,

norBNI (Bruchas et al., 2011; Schindler et al., 2012). The authors propose that stress-related behaviors are
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induced by an increase in dynorphin release that acts through the KOR/p38a MAPK pathway to upregulate
SERT surface levels and thus reduce extracellular 5-HT availability. The intersection of KOR and IL-1R

mediate effects will likely be a fascinating chapter in the story of SERT regulation-dependent behaviors.

A3 Adenosine Receptor (A3AR)

In 1994, Miller and Hoffman showed that addition of the adenosine receptor (AR) agonist, NECA,
rapidly increased SERT mediated 5-HT uptake in RBL-2H3. This AR-mediated increase in uptake was
blocked by inhibition of PKG (HS), suggesting AR stimulation is acting through a PKG pathway (Miller
and Hoffman, 1994). Zhu and colleagues later showed that the A3 subtype of the AR (A3AR) mediated
NECA increases in 5-HT uptake and that receptor activation induced both a trafficking-dependent (PKG
pathway) and independent mechanism (PKG-p38 MAPK pathways) (Zhu et al., 2004). The A3AR-PKG
pathway regulation leads to an increase in SERT Vmax, with no change in 5-HT Ky, and was recapitulated
in vivo (Zhu et al., 2007). Interestingly, Zhao et al. reported that the LPS induced increase in 5-HT uptake
seen in RBL-2H3 cells was blocked by A3AR inhibition (Zhao et al., 2015), though a specific mechanism
for this effect has not been identified. Finally, the A3 adenosine receptor has been shown to form a
functional complex with SERT in vivo, which increases upon A3AR stimulation (Zhu et al., 2011).

In 2013, the laboratory of James Sutcliff identified two ASD-associated rare coding variations in
the A3AR gene: Leu90Val and Vall71lle. In collaboration with the Blakely lab this group showed that
A3AR Val90 activation more strongly increased cGMP levels and increased SERT function than WT
A3AR (Campbell et al., 2013), mimicking the enhanced uptake shown in the ASD-associated SERT
variants (Sutcliffe et al., 2005), further supporting that variation in genes that are part of the SERT regulome

may impact ASD risk.
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Reverse transport of SERT by amphetamine and amphetamine-like derivatives

Although transporters are most commonly known for their role in uptake, transporters can also act
in the reverse to efflux neurotransmitter from the cytoplasm to the extracellular space. Mutant transporters
have been shown to exhibit anomalous transmitter efflux, such as in the case for the ADHD and ASD
associated DAT variant, DAT Val559 (Mazei-Robison et al., 2008). However, efflux of neurotransmitters
from transporters is mostly studied in the context of amphetamine analogs. In this regard, there are many
derivatives of D-amphetamine, the active isomer, that vary in selectivity across the various monoamine
transporters. D-amphetamine, also known as “speed” has a higher affinity for DAT and NET compared to
SERT, whereas SERT has a higher affinity for 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”)
and fenfluramine (Green et al., 2003).

Amphetamines are psychostimulants that act as competitive substrates for DAT, NET, and SERT
as well as VMAT2. Once amphetamine enters the cytoplasm either through the transporter or through
passive diffusion through the membrane, the intracellular concentration of monoamines rapidly rises, as
VMAT?2 uptake of amine can no longer package monoamines into vesicles and outward leak of transmitter
from vesicles is not attenuated by vesicle uptake (Heal, Smith, Gosden, & Nutt, 2013). Amphetamines also
induce a Na" inward current across the plasma membrane (Schicker et al., 2012). This increase in Na" and
monoamine levels leads to the reverse transport of monoamines, causing excess neurotransmitter in the
synapse (Heal et al., 2013). The mechanism by which monoamine transporters switch from uptake mode to
an efflux capacity is still not well-elucidated.

Some evidence suggests that amphetamine actions require an oligomeric state of the transporter, in
which each transporter of the complex acts in distinct modes: one transporter functions in the forward
transport whereas the other acts in the reverse or efflux state (Seidel et al., 2005). Many other interacting
proteins and lipid moieties have also been implicated in amphetamine’s ability to trigger reverse transport.
For example, PIP, has been shown to interact with SERT and to be required for amphetamine action, but
has no effect on 5-HT uptake (Buchmayer et al., 2013). More mechanistic detail for DAT:PIP, has been
determined showing that PIP, interacts with DAT N-terminus to coordinates N-terminal interactions with
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intracellular loop 4 (ICL4) leading to a conformational transition to an inward facing state (Khelashvili et
al., 2015), a state required for substrate efflux. These ideas support a model whereby amphetamines impact
the ability of the N-terminus of monoamine transporters to interact with intracellular loops governing the
direction of substrate flux, effects that may be mimicked by N-terminal mutations.

As noted above, the phosphorylation of the DAT N-terminus, most likely through the C-terminal
interacting CaMKII protein, is required for amphetamine-induced efflux (Khoshbouei et al., 2004; Fog et
al., 2006). CaMKIla has been shown to interact with the C-terminus of SERT and modulate reverse
transport (Steinkellner et al., 2015). A sperate experiment demonstrates that CaMKII phosphorylates the
N-terminus (Serl3) (Serensen et al., 2014) although it has yet to be determined if phosphorylation at this
site is required for amphetamine-induced efflux. That being said, we know that truncation of the first 32
amino acids of SERT (which includes the putative CaMKII phosphorylation site Serl13) significantly
diminishes the ability to efflux substrate (Kern et al., 2017). It is thought that the N-terminus acts as a
lever to support amphetamine function, as tethering the N-terminus to the plasma membrane inhibits the
ability of SERT to support the efflux mode (Sucic et al., 2010). This data supports that idea the N-terminus
plays a critical role in modulating amphetamine-induced efflux.

Interestingly, syntaxin 1A stabilizes DAT phosphorylation (Cervinski et al., 2010) and
amphetamine increases DAT:syntaxin 1A interaction in a CaMKII-dependent manner (Binda et al., 2008),
therefore suggesting syntaxinl 1A:DAT:CaMKII form an important functional complex in mediating
reversal of DA transport. Similarly, syntaxin 1A also form a complex with SERT N-terminus as well,
however, in contrast to DAT, syntaxin 1A decreases amphetamine-induced 5-HT efflux in murine
catecholaminergic cells (CAD cells) (Montgomery et al., 2011). This discrepancy between DAT and SERT
in the requirement of syntaxin 1A in mediating amphetamine-induced efflux may be useful in targeting
amphetamine actions in either a DAT or SERT specific manner.

Intriguingly, amphetamine has been shown to increase SERT phosphorylation in a p38 MAPK
dependent manner (Samuvel et al., 2005). However, p38 MAPK inhibition destabilizes SERT:syntaxin 1A
interactions in rat midbrain synaptosomes (Samuvel et al., 2005), suggesting that p38 MAPK activation
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may stabilize or enhance SERT:syntaxin 1A interaction, which was previously found to prevent SERT
mediated efflux (Montgomery et al., 2011). This may be due to the various sample preparations or
indicative of a complex SIP network of SERT mediated efflux that requires further investigation.

Finally, Ca**-dependent PKCP also enhances amphetamine-induced efflux for both SERT
(Buchmayer et al., 2013) and DAT (Johnson et al., 2005). A novel inhibitor of PKC has even been found
to be effective in eliminating amphetamine-induced DA efflux and amphetamine mediated increase in
locomotion behavior (Newman, 2017). Interestingly, both PKC and amphetamine increase phosphorylation
of the N-terminal amino acid 53 (Thr53 in mouse DAT and Ser53 in hDAT) and mutation of this residue
blocks amphetamine-induced efflux (Foster et al., 2012; Challasivakanaka et al., 2017). However, Thr53
is followed by Pro54, indicating PKC is the not the substrate, but instead the target of the proline-directed
kinase, such as p38 MAPK, however, this has yet to be determined (Foster et al., 2012; Challasivakanaka
et al., 2017). It was also shown that when a potential PKC phosphorylation site (Thr81) located at the
juxtaposition between the N-terminus and TM 1, when mutated to alanine, the transporter favored an inward
facing conformation, but also significantly decreased amphetamine-induced efflux (Sucic et al., 2010).

While the exact mechanism of amphetamine-induced efflux is still under active investigation, the
evidence suggests reversal of transport involves the orchestration of several SERT interacting protein,

kinases, phosphorylation, and the N- and C-termini.

Protein-protein interactions with SERT

Another means by which the SERT function is regulated is through interaction with neighboring
proteins (SERT-interacting proteins, SIPs). Over the past 20 years, a number of SIPs have been reported
to modulate both SERT function and/or surface expression (Table 2) (Haase et al., 2001; Gonzalez and
Robinson, 2004; Sung et al., 2005; Sager and Torres, 2011; Zhong et al., 2012). A recent publication
detailed a full proteomic analysis of rat SIPs via affinity-purification tandem mass spectrometry (AP-
MS/MS) from total rat brain lysate, yeast two-hybrid screen and GST-pulldown method with rSERT N-

and C-termini.
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(Haase et al., 2017). A few SIPs identified in this screen were previously identified to interact with SERT,
verifying the method employed. Many novel SIPs were also found, including many mitochondrial-
associated proteins

It is important to note that in general where SIPs interact at different stages of translation,
trafficking and endocytosis and activity regulation is not well characterized for most SIPs. As SIP
identification is an effort pursued in my thesis studies, I outline below the methods that are utilized to
identify and verify SIPs. I will also highlight a few SIPs that have been shown to affect SERT function in

relation to kinase of interest to our lab, p38 MAPK, PKG, and PKC.

Methods to Identify and Verify SIPs

There are several starting points in the identification of SERT interacting proteins. First, one
initiate studies via a candidate approach, in which one identifies likely interactors based on knowledge of
a specific protein that regulates SERT (e.g. a kinase), that it is co-expressed with SERT (Ye et al., 2014,
2016), and/or has been known to interact and regulate other members of the SLC family. A second way to
identify novel SERT interacting proteins is through an unbiased approach, such as through a yeast two-
hybrid screen or through transporter purification approaches, followed by identification of partners by mass
spectrometry-based approaches. The most common of the latter strategies is via transporter co-
immunoprecipitation (co-IP) based approaches, in which the protein of interest is purified from a native or
transfected cell sample via an antibody against the primary protein (or against an engineered tag).
Alternatively, as in the AP-MS/MS approach noted above, the protein can be purified by binding to a drug
with high affinity and specificity, such as with SERT using citalopram-conjugated to beads. One must of
course deal with the possibility of identifying false positives interacting proteins bind non-specifically to
the beads utilized in the assay. To control for this, it is important to use a negative control, such as the use
of a KO mouse from which to repeat interaction studies. There is also the possibility that co-IPs lead to
false negatives, as can be seen in proteins that only interacts with the target of interest transiently or the

interactors are of low abundance, are unstable or aggregate in detergents, and thus are not detectable by this
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method. Low-affinity interactions may be stabilized by chemical cross-linking approaches and the use of
detergents that are known to permit structural studies or support other protein interactions may also give
confidence that false negatives are being avoided.

Another way to detect and verify protein-protein interactions is through imaging techniques such
as fluorescence resonance energy transfer (FRET) or bioluminescence resonance energy transfer (BRET)
analysis. In these studies, SERT and SIP of interest are tagged with compatible fluorophores where the
emission wavelength of one fluorophore is the excitation wavelength of the other fluorophore (Brzostowski
et al., 2009). The excitation of the latter fluorophore is thus dependent on the orientation and proximity of
the former fluorophore, which typically occurs at ~10 nm or closer. For example, excitation of cyan
fluorescent protein (CFP; donor fluorophore) at ~430 nm leads to an emission of ~500 nm which can excite
yellow fluorescent protein (YFP; acceptor fluorophore) to emit a ~530 nm wavelength. Therefore, if SERT
and SIP are in close enough proximity, excitation of CFP will lead to the detection of a YFP signal
(Brzostowski et al., 2009). BRET is a similar concept, except instead of utilizing donor fluorescent proteins,
a bioluminescence donor protein is used to excite an acceptor fluorophore, avoiding the problems of

photobleaching and autofluorescence (Dimri et al., 2016).

Syntaxin 14 and CaMKII

Syntaxin 1A is most well known as a member of the SNARE complex which mediates vesicular
fusion and release of neurotransmitters (Bennett et al., 1993). Syntaxin 1A has also been shown to interact
and regulate a number of other members of the neurotransmitter transporters, including SERT (Quick,
2002a), such as the GABA transporter type 1 (SLC641,GAT1) (Quick, 2002b), NET (SLC6A42, Sung et al.,
2003) and DAT (SLC6A43, Binda et al., 2008).

Syntaxin 1A was first shown to interact with SERT in 2002 via a candidate-based co-IP strategy
using thalamocortical neuron cultures (note SERT is expressed by neurons of the embryonic thalamus
whereas in the adult SERT is restricted to raphe serotonergic neurons). Cleavage of syntaxin 1A by

treatment of in thalamocortical cultures with botulinum toxin C1 led to a decreased surface expression of
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SERT and reduced the capacity for 5-HT uptake, as measured by a lower SERT Vmax for 5-HT but
equivalent Ky (Quick, 2002a). The interaction with syntaxin 1A may be relevant to PKC mediated
downregulation of SERT uptake, as activation of PKC has been reported to decrease SERT:syntaxin 1A
interactions (Haase et al., 2001; Quick, 2002a, 2003; Samuvel et al., 2005). Interestingly, inhibition of p38
MAPK by PD169316 has also been reported to diminish SERT:syntaxin 1A interactions in rat midbrain
synaptosomes (Samuvel et al., 2005), and thus conditions that elevate SERT activity may involve
stabilization of SERT:syntaxin 1A interactions. The syntaxin 1A interaction also dictates the presence or
absence of uncoupled ion conduction by SERT, revealing that syntaxin 1A couples Na" flux to substrate
uptake and eliminates the ability of SERT to support substrate independent Na™ flux (Quick, 2003). The
syntaxin 1A interaction appears to be dependent on CaMKII activity, as inhibition of CaMKII promotes
SERT-mediated Na" currents and prevents SERT:syntaxin 1A interaction (Ciccone et al., 2008). CaMKIIa
was also shown to interact with SERT and modulated amphetamine-induced efflux (Steinkellner et al.,
2014, 2015), effects that are known to require the SERT N-terminus (Sucic et al., 2010; Kern et al., 2017).
Syntaxin 1A physically interacts with the N-terminus of SERT (specifically Serl13-Glu23) (Quick, 2003)
whereas CaMKII interacts with the C-terminus (Steinkellner et al., 2015), but is predicted to phosphorylate
the N-terminus of SERT (Ser13) (Serensen et al., 2014). As noted above, modeling studies indicate that the
N- and C-termini of SERT approach each other during the transport cycle, which could facilitate CaMKII
phosphorylation of the N-terminus.

Similar CaMKII, amphetamine, and syntaxin 1A-dependent interactions and regulation of
transporter surface expression and efflux propensity also appear with the other monoamine transporters.
For example, syntaxin 1A was also shown to interact with the NET N-terminus, but here appears to play a
contradictory role as syntaxin 1A supports the trafficking of NET to the plasma membrane, but also limits
NE uptake, suggesting that stages of the transporter:syntaxin 1A interactions may have different functional
consequences. PKC activation disrupts syntaxin 1A:NET interaction to downregulate NET uptake (Sung et
al., 2003). Interestingly, amphetamine appears to rapidly increase NET:syntaxin 1A interaction at the
surface in a CaMKII dependent manner (Dipace et al., 2007). Syntaxin 1A also interacts with DAT N-
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terminus (Lee et al., 2004), specifically the first 33 amino acids, and amphetamine also promotes
DAT:syntaxin 1 A interaction at the cell surface, also in a CaMKII manner (Binda et al., 2008). As described
for SERT above, CaMKII also has been shown to interact with the C-terminus of DAT and mediate
amphetamine-induced efflux and modulate N-terminal phosphorylation (Fog et al., 2006). Moreover,
syntaxin 1A stabilizes DAT phosphorylation levels as cleavage of syntaxin 1A by botulinum toxin C
decreased basal DAT phosphorylation levels (Cervinski et al., 2010). However, the residues supporting
syntaxin 1A-sensitive DAT phosphorylation are unknown. Similar to SERT and NET, DAT interaction
with syntaxin 1A suppress channel activity of Caenorhabditis elegans (C. elegans) DAT (Carvelli et al.,
2008). However, in contrast to SERT, cleavage of syntaxin by botulinum toxin C in rat striatal tissue led to
increased DAT activity, and co-expression with syntaxin la in heterologous expression systems decreased
DAT surface expression, consequently decreasing DAT Vmax (Cervinski et al., 2010). Also, unlike NET,
DAT regulation by PKC is not controlled by syntaxin la (Cervinski et al., 2010). The opposing effects of
syntaxin la on DAT and SERT mediated uptake and surface expression might be due to the divergences in
sequences of the N-and C-terminus. Additionally, the effect of syntaxin 1A on SERT phosphorylation

levels has also not been determined.

Protein Phosphatase 2A (PP2A)

Inhibition of protein phosphatases by okadaic acid (OA) and calyculin A, increases SERT
phosphorylation levels and leads to a decrease in SERT function, suggesting that phosphorylation of SERT
dictates transporter activity (Ramamoorthy et al., 1998). In 2000, Bauman and colleagues found that SERT
formed a functional complex with the active catalytic subunit of PP2A (PP2Ac) in transiently transfected
HEK-293 cells (Bauman et al., 2000). PP2Ac:SERT interaction was disrupted by activation of PKC by
phorbol ester, an effect that could be prevented by co-incubation with PKC inhibitor or 5-HT. Inhibition
of PP2A by OA or calyculin A also prevented PP2Ac:SERT interaction increased SERT phosphorylation

levels and decreased surface expression and 5-HT uptake (Bauman et al., 2000; Blakely and Bauman,
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2000). The PP2Ac interaction is not limited to SERT, as co-IP studies with NET and DAT also shows
PP2Ac:transporter association (Bauman et al., 2000).

PP2Ac:SERT associations have been linked to p38 MAPK dependent regulation of the transporter.
PP2A can be activated by p38 MAPK (Westermarck et al., 2001) and inhibition of PP2A by calyculin A
and fostriecin prevents the anisomycin-dependent increase in 5-HT uptake (Zhu et al., 2005). Conversely,
inhibition of p38 MAPK disrupts the association between PP2Ac and SERT in transfected cells (Samuvel
et al., 2005). Interesting, hyperfunctional SERT variants are insensitive to regulation by p38 MAPK, PKG,
and PP2Ac, and show alteration in PP2Ac:SERT interactions (Prasad et al., 2009). Thus, PP2A plays an
important role both in maintaining SERT phosphorylation levels and in mediating kinase-dependent
regulation of 5-HT uptake, where p38 MAPK may lead to activation of PP2Ac, stimulating SERT:PP2Ac
interaction to maintain SERT at the surface, while PKC activation disrupts this association, leading to

internalization and decreased uptake.

Calcineurin/PP2B

Inhibitors of the Ca”"-activated protein phosphatase calcineurin (CaN; PP2B), such as Tacrolimus
(FK506) and cyclosporine A (CsA), are used clinically in transplant patients as immunosuppressants to
prevent organ rejection. Interestingly, transplant patients are at an increased risk of developing mood
disorders and approximately 60% of organ transplant patients develop depression (Corbett et al., 2013).
Both FK506 and CsA have been shown to cause a number of neuropsychiatric side effects that reduce the
patient’s quality of life and negatively influence their clinical outcome (Corbett et al., 2013). Transplant
patients are commonly prescribed SSRIs to combat depressive symptoms that develop after organ graft
(Corbett et al., 2013), providing evidence that targeting SERT is effective in treating immunosuppressant-
induced depression. Seimandi et al have identified a possible molecular cause for this immunosuppressant-

induced depression — an interaction between CaN and SERT (Seimandi et al., 2013).

31



Characterization of the SERT:CaN interaction via GST-pull down and MS analysis revealed that
both the catalytic (CaNA) and regulatory (CaNB) subunits of CaN interact with the C-terminus of SERT
from whole mouse brain lysates. Seimandi and colleagues (2013) identified four residues of SERT required
for CaN binding: R595-1IT600. These amino acids reside on the intracellular C- terminal tail of SERT at
the interface of the plasma membrane. This motif'is similar to the CaN binding site of other protein partners,
such as the transcription factor, nuclear factor of activated T cell, NFAT (Takeuchi et al., 2007). However,
the specific residues of CaN that are required for these interactions with SERT have not been determined.
Knowledge of the protein motif located within CaN responsible for SERT:CaN interactions may reveal
amino acid sequences important for interactions of other protein partners with SERT.

Although the CaN motif necessary to interact with SERT is unknown, Seimandi et al. (2013)
presented evidence that the activity of CaN regulates the SERT/CaN interaction. A constitutively active
CaNA (CA-CaNA) mutant resulted in an increase in SERT:CaN association as compared to a phosphatase-
dead CaNA (PD-CaNA) mutant, assessed in vitro by co-IP (Seimandi et al., 2013). This finding provides
evidence that CaN activity may act either through post-translational modifications or protein associations
to alter the transport capacity of SERT, an effect that could have profound implications on serotonergic
signaling and behaviors.

As noted, the SERT:CaN interaction occurs on the transporter C-terminus, which is crucial to the
activity state and localization of SERT (Larsen et al., 2006). Co-expression of SERT and CA:CaNA in
HEK-293 cells significantly increased the velocity of 5-HT uptake and the surface expression of SERT.
Pharmacological inhibition of CA:CaNA with increasing concentrations of FK506 was found to decrease
5-HT uptake in a dose-dependent manner (Seimandi et al., 2013). This revealed that the SERT:CaN
interaction is functional in nature, with the enzymatic activity of CaN regulating SERT trafficking.

Interestingly, the active state of CaN has also been linked to the mechanism of action of SSRIs
(Crozatier et al., 2007), suggesting that CaN-mediated dephosphorylation may play a role in modulating
SERT activity. Although expression of CA-CaNA was found to increase SERT activity in HEK-293 cells,
it did not alter the phosphorylation state of SERT. Yet, activation of PKC with B-phorbol 12-myristate 13-
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acetate (PMA) in the presence CA-CaNA reduces N- terminal phosphorylation of a serine residue (Ser48
or Ser52) on SERT (Seimandi et al., 2013) This provides evidence that a C-terminal interaction can affect
the state of the distal N-terminus of the protein; an effect that may have significant implications for the
regulation of SERT transport activity.

This functional SERT:CaN interaction was confirmed in vivo using mice that expressed inducible
CA-CaNA in forebrain neurons. Consistent with in vitro experiments, synaptosomes from these mice
exhibit an increase in 5-HT uptake and surface expression of SERT (Seimandi et al., 2013). Interestingly,
mice that express inducible CA-CaNA not only in the forebrain, but also in the Dentate gyrus of the
hippocampus, are more sensitive to SSRI-induced antidepressant-like effects (Crozatier et al., 2007).
Behavioral studies in mice suggest that the activation of CaN results in antidepressant-like effects, which
is congruent with the increased incidence of depression observed in patients receiving CaN inhibitors for
immunosuppressive therapy. Further investigation of CaN:SERT interaction role in modulating depressive-
like phenotypes may reveal a mechanism by which immunosuppressant drug therapy elicit the adverse side

effect of depression.

Neuronal Nitric Oxide Synthase (nNOS)

It has been well established that the gaseous second messenger NO, produced by neuronal nitric
oxide synthase (nNOS), regulates the release of 5-HT in different brain regions (Prast and Philippu, 2001).
NO has been shown to activate guanylyl cyclase to produce cGMP, which can then bind to PKG and act on
SERT to increase 5-HT surface expression and uptake (Miller and Hoffman, 1994; Zhu et al., 2004).
Interestingly nNOS has been reported to be a critical SIP in modulating SERT activity (Chanrion et al.,
2007). Despite the fact that PKG increases SERT trafficking (Steiner et al., 2008), it was found that co-
expression of nNOS with SERT in transfected cells led to a decrease in SERT surface expression and 5-HT
uptake, and this effect was blocked if the PDZ-binding domain of SERT (C-terminal NAV sequences;
amino acid 628-630) was mutated (Chanrion et al., 2007)., suggesting the C-terminus as the site of

interaction. Additionally, a genetic loss of nNOS in vivo leads to an increase in 5-HT uptake in
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synaptosomes, further supporting the role of nNOS inhibiting SERT activity. Conversely, it was found that
5-HT uptake via SERT stimulated nNOS activity as NO production increased in the presence of 5-HT and
this effect was blocked by SERT inhibition (Chanrion et al., 2007). These findings may be indicative of a
feed-forward mechanism in which SERT-mediated 5-HT uptake and increased NO production leads to

activation of PKG to further increase SERT activity (Garthwaite, 2007).

Flotillin-1 (FLOTI)

Flotillin-1 (FLOT1), a membrane-raft protein, was initially linked to regulation and interaction with
DAT (Cremonaet al.,2011; Gabriel et al., 2013). DAT, like SERT, partitions between microdomains within
the plasma membrane, and it has been found that FLOT1 retains DAT in lipid rafts and is necessary for
PKC-dependent endocytosis of the transporter (Cremona et al., 2011; Gabriel et al., 2013). However, other
work has indicated that depletion of FLOT1 from the plasma membrane does not affect PKC-mediated
endocytosis of DAT, but rather enhances diffusion of DAT in the plasma membrane (Sorkina et al., 2012).
The Blakely lab found that the ADHD-associated DAT variant (R615C), which exhibits disrupted
localization to membrane microdomains and constitutive endocytosis, demonstrates decreased interactions
with Flot-1 compared to WT DAT (Sakrikar et al., 2012). FLOT1 interaction with DAT has also been linked
to amphetamine action. DAT R615C variant with disrupted FLOT]1 interaction was also differentially
regulated by amphetamine (Sakrikar et al., 2012). Finally, FLOT1 expression in Drosophila DA neurons
was also found to be required for amphetamine-enhanced locomotion (Pizzo et al., 2013).

Recently, FLOT1 was reported shown to interact with SERT (Reisinger et al., 2018). Genetic
knock out of Flot in mice did not affect SERT expression or function. However, the loss of FLOTT1 in the
depressogenic chronic corticosterone paradigm increased depressive behavior, as measured in the tail
suspension test. Chronic corticosterone also led to a significant decrease in SERT mRNA production,
however, in FLOT1 KO mice, this effect was blunted, leading to increased SERT expression relative to

WT under this stress paradigm (Reisinger et al., 2018).
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Post-translational modifications of SERT

PTMs of proteins are direct and often reversible means by which to alter the conformational state
of a protein, thus impacting functional kinetics and/or protein trafficking or compartmentation. Major PTMs

that have been studied in relation to SERT are N-glycosylation, ubiquitination, and phosphorylation.

SERT N-Glycosylation

Most PTM studied are predicted to occur on intracellular residues of SERT. However, the large
second extracellular loop (ECL2) plays a critical role in regulating SERT function and expression and is
known to undergo N-linked glycosylation (Tate and Blakely, 1994). Glycosylation of both human and
rodent SERT as Asn208 and Asn217 (Figure 3), by high-mannose-type oligosaccharides, occurs in the
endoplasmic reticulum (ER) shortly after SERT is translated and appropriately folded. SERT is then
trafficked to the Golgi apparatus where it can undergo mature-glycosylation, followed by export to the
plasma membrane. N-glycosylation of SERT is tissue-dependent, as revealed in studies of brain and platelet
SERT (Qian et al., 1995b). It is thought that proper glycosylation of the transporter facilitates chaperone
binding, a sign that the transporter is properly folded and ready to be targeted to the cell surface. Tate and
Blakely reported that N-glycosylation of SERT is required to maintain the stability and steady-state levels
of the protein, but does not affect SERT function (Tate and Blakely, 1994). N-glycosylation can be further
modified by that addition of sialic acid. Mutations of rfSERT Asn208GIn/Asn217GIn to disrupt N-linked
glycosylation on SERT, impairs SERT interaction with myosin IIA, functional oligomerization, 5-HT
uptake, and the ability of SERT to be regulated by PKG (Ozaslan et al., 2003). Surprisingly, Nobukuni and
colleagues have reported that the C-terminus of SERT can modulate N-glycosylation of the rat, human and
mouse SERT (Nobukuni et al., 2009), most likely through protein-protein interactions that are important in

the trafficking of SERT from the ER to Golgi apparatus and finally to the plasma membrane.
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SERT Ubiquitination

Ubiquitination refers to the addition of the protein ubiquitin to the amino group of lysine residues
or the N-terminal methionine residue. Ubiquitination of a protein can target the protein for degradation by
the proteasome, alter the structural conformation and function of a protein and/or localization of the protein
within the cell (Schnell and Hicke, 2003; Mukhopadhyay and Riezman, 2007). Two studies have appeared
within the past five years that have highlighted the potential roles of SERT ubiquitination. The first study
reports an interaction of the E3 ubiquitin ligase melanoma antigen D1 (MAGE-D1) with SERT that
evidence suggests increases SERT ubiquitination and decreases SERT protein levels, suggesting that SERT
ubiquitination may target the transporter for increased degradation (Mouri et al., 2012). MAGE-D1 KO
mice exhibit depressive phenotypes, suggested by the authors to be due to increases in SERT expression
levels, though many other explanations are possible. The same lab then explored the role of SERT
ubiquitination in lymphoblasts derived from MDD patients and found that samples originating from
fluvoxamine-resistant patients had lower levels of ubiquitinated SERT, suggesting that SERT
ubiquitination (or SERT protein levels) may be utilized a biomarker for antidepressant efficacy in MDD
(Mouri et al., 2016). It is currently unknown which residues of SERT are ubiquitinated. The UbPred

(www.ubpred.org) website (Radivojac et al., 2010), a software that predicts ubiquitinated residues based

on protein sequence, nominates K10 (0.91 score), K29 (0.89 score), and K37 (0.89 score) in hSERT with
high confidence (Figure 3). Interestingly, three N-terminal lysine residues of DAT (Lys19, Lys27, and
Lys3) have been identified as ubiquitination sites that are involved in PKC mediated endocytosis (Miranda
et al., 2005, 2007).

There are two studies within the past five years that have highlighted potential roles of SERT
ubiquitination. The first study linking the E3 ubiquin ligase melanoma antigen D1 (MAGE-D1) interacts
with SERT and increases SERT ubiquitination and decreases SERT expression. MAGE-D1 KO mice
exhibited depressive phenotypes, thought to be due to increase in SERT expression levels, suggesting that
SERT ubiquitination may target it for more rapid degradation and turnover (Mouri et al., 2012). The same
lab then explored the role of SERT ubiquitination in lymphoblasts derived MDD patients and found that
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samples originating from fluvoxamine-resistant patients had lower levels of ubiquitinated SERT and thus
higher SERT protein levels compared to fluvoxamine-responsive samples, suggesting that SERT
ubiquitination or SERT protein levels may be utilized a biomarker for antidepressant efficacy in MDD

patients (Mouri et al., 2016).

SERT Phosphorylation

It is now well established that phosphorylation of monoamine transporters regulates transport
kinetics (Ramamoorthy et al., 2011). The first defined phosphorylation site in SERT is Thr276, a residue
located in the second intracellular loop (ICL2) between TM4 and TMS. This residue derives from work by
Ramamoorthy et al. 2007 in an effort to identify mouse SERT residues that are phosphorylated in
synaptosomes and transfected cells upon PKG activation, which at the time had been reported to increase
SERT mediated 5-HT uptake. SERT phosphorylation levels were determined by an autoradiogram of 8-
Br-cGMP treated mouse midbrain synaptosomes subjected to metabolic labeling with [**P]orthophosphate
followed by SERT immunoprecipitation. SERT was found to be basally phosphorylated with the addition
of 8-Br-cGMP leading to increased SERT phosphorylation (Ramamoorthy et al., 2007). PKG is a
serine/threonine kinase, so to determine which residue was phosphorylated, a phosphoamino acid analysis
was performed by subjecting metabolically labeled SERT to acid hydrolysis and high voltage thin layer
chromatography. Under these conditions, the phosphorylation induced by 8-Br-cGMP was found to be
derived from the labeling of a threonine residue. Each of the 18 intracellular threonine residues located in
SERT was then mutated to alanine, and only the Thr276Ala mutant lost the ability to be regulated by PKG
in transfected CHO cells (Ramamoorthy et al., 2007). More recently, a Thr276 phospho-specific antibody
has been developed. This antibody has been used to establish that phosphorylation at Thr276 is
conformationally-sensitive, with evidence that phosphorylation of IL2 increases when the residue becomes
solvent exposed in an inward-facing conformation (Zhang et al., 2016). Additionally, Rosenthal’s lab
reported that human SERT Thr276 phosphorylation depends on the lipid membrane environment, showing
that depletion of cholesterol by MBCD and mevastatin increased the abundance of SERT p-Thr276 (Bailey
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et al., 2018). This is in line with previous work also showing that cholesterol depletion promotes SERT to
an inward facing conformation (Laursen et al., 2018), the conformation required for SERT phosphorylation
of Thr276 (Zhang et al., 2016). In addition, loss of cholesterol decreases SERT activity (Scanlon et al.,
2001), perhaps due to an increase in transporters in the inward facing conformation. A cholesterol binding
site was found to be located in a hydrophobic grove between TM1a, TM5 and TM7 (Laursen et al., 2018),
potentially stabilizing SERT into specific conformational states that regulates SERT PTMs and function.

Since the identification of Thr276, there has been increasing efforts to identify the other phospho-
residues within in SERT. In 2014, Serensen and colleagues performed a comprehensive analysis of
potential SERT phosphorylated residues. To accomplish this, the authors synthesized peptides of all the
intracellular regions of SERT and incubated the peptides in vitro with various purified kinases known to
regulate SERT: PKG, p38 MAPK, PKA, CaMKII, and PKC (specific isoforms of kinases were not noted
in this study). They then subjected each peptide to LC-MS/MS analysis, efforts that revealed 5 novel SERT
phosphorylation sites: Serl3 (CaMKII), Ser149 (PKC), Ser277 (PKC), Thr603 (PKC), Thr616 (p38
MAPK). Interestingly PKG was not found to phosphorylate any residue, which supports Wong et al.
findings that PKG does not directly phosphorylate SERT (Wong et al., 2012). While the use of peptides
allowed for the identification of novel phosphorylation sites, one of the major drawbacks to this approach
is the lack of structural restriction imposed by interaction with other domains and residues of the transporter
and the lack of other proteins and lipids that interact with the full-length transporter in the membrane that
can expose or mask these residues (or others) during the transport cycle. This idea is highlighted in the
2016 paper by Zhang et al. noted above in which Thr276 is part of the second intracellular loop that forms
an alpha-helical loop in the outward facing conformation and then unwinds as the transporter moves to the
inward-facing state, making Thr276 accessible at that point to modification by protein kinases for
phosphorylation (Zhang et al., 2016).

There is also evidence of tyrosine phosphorylation in SERT: specifically, hASERT Y47 (N-terminus)
and Y142 (ICL1) (Annamalai et al., 2012) (Figure 3). Mutation of these tyrosine residues to phenylalanine
(F; to maintain aromaticity) reduces basal phospho-tyrosine levels in human trophoblast cells. These
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residues are thought to be the target of the tyrosine kinase, Src, as co-expression of Src with these hSERT
tyrosine mutants, unlike wildtype SERT, did not show an increase in tyrosine phosphorylation.
Interestingly, phosphorylation of these residues was linked to SERT protein stability, as activation of Src
led to reduced protein levels. Moreover, the hSERT Y47F and Y 142F mutants demonstrated increased total
and surface levels, despite a decrease in 5-HT uptake (Annamalai et al., 2012). This discrepancy may be

explained by epitope unmasking due to PTM changes as a result of the Y47F and Y 142F mutations.

Role of 5-HT and SERT in neuropsychiatric disorders

5-HT and SERT have been linked to a number of neuropsychiatric diseases, especially disorders
that affect mood, such as major depressive disorder (MDD) (Plaznik et al., 1989; Meltzer, 1990).
Additionally, anxiety (Iversen, 1984), aggression (Francesco Ferrari et al., 2005; Duke et al., 2013)),
suicidal behavior (Mann et al., 1990), obsessive-compulsive disorder (OCD) (Sinopoli et al., 2017),
schizophrenia (Blelch et al., 1988; Meltzer, 1999), and autism spectrum disorder (ASD) (Muller et al.,

2016) have been considered to involve changes in CNS serotonergic signaling.

Major Depressive Disorder (MDD)

The most common disorder associated with 5-HT and SERT is MDD, which impacts as many as
20% of individuals during their lifetime. Indeed, a tenet of the monoamine hypothesis for MDD states that
a key underlying biological basis for depression involves diminished 5-HT and/or NE signaling (Hirschfeld,
2000), in large part, but not exclusively, based on major antidepressant medications acting through their
chronic targeting of SERT and NET, respectively.

SSRIs, including fluoxetine (Prozac), citalopram (Celexa) and paroxetine (Paxil), act to rapidly
block SERT activity, and are often the first line of treatment for MDD (Goodnick and Goldstein, 1998).
To test the efficacy of drugs for the treatment of depression, two behavioral tests in rodent models have

been implemented, the forced swim test (FST) and the tail suspension test (TST) (Castagné et al., 2011).
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While these tests are sensitive to acute SSRI treatment, in human populations there is a two or more week
delayed onset of antidepressant effects (Wong and Licinio, 2001). Additionally, SSRIs have a number of
off-target effects (Carrasco and Sandner, 2005) and so the necessity of SERT blockade in antidepressant
efficacy has been questioned. However, utilizing a model that is insensitive to SSRI mediated SERT
blockade, Nackenoff and colleagues demonstrated that the SERT Met172 mouse, shows that SERT
inhibition is necessary for the antidepressant effect of fluoxetine and citalopram in both the acute models
noted above, as well as in tests of novelty-suppressed feeding and hippocampal stem cell density and
survival, which require chronic SSRI administration (Nackenoff et al., 2016). Interestingly, this research
also demonstrates that SERT antagonism is dispensable, at least in the mouse, for the antidepressant-like
actions of vortioxetine (Trintellix), which not only blocks SERT but also targets a number of 5-HT receptors
(Nackenoff et al., 2017). The SERT Ilel72Met variant was identified as a consequence of the
pharmacological difference in SSRI potency exhibited between hSERT (Ile172) and Drosophila
melanogaster SERT (dSERT; Metl167). Substitution to convert Ile172 (located in TM2) to Metl72 in
hSERT or mSERT induced a 100-to 1,000-fold reduction in potency for a number of SERT inhibitors,
including SSRIs and cocaine, both in vitro (Henry et al., 2006) and in vivo (Thompson et al., 2011; Simmler
et al., 2017).

It is reasonable, based on the findings with the SERT Ile172Met substitution, to wonder whether
SERT coding variants contribute to treatment-resistant depression. However, to date, all coding variants
identified in SERT are rare and no coding variants in SERT have been associated with depression, although
these have been associated with OCD and ASD (see below). That being said, there has been a link to a
common functional polymorphism in the promotor region of Sic6a4 (5-HTTLPR) has also been linked to
depression and stressful life events (Caspi et al., 2003). The 5-HTTLPR is a 44-base pair insertion or
deletion sequence located in the promoter that gives rise to a long (/) or short (s) allele, respectively (Heils
et al., 2002). The s allele has been reported to confer lower transcriptional activity of the SLC644 gene and
consequently reduced SERT protein expression, compared to the / allele (Lesch et al., 1996). Differences
in brain function observed in patients with 5S-HTTLPR polymorphism, for example with cortico-amygdala
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interactions, could contribute to depression (Pezawas et al., 2005). The contribution of 5S-HTTLPR status
to depression risk suggests that carriers of the s allele (s// or s/s) have an increased risk for developing
depression in response to stressful life events compared to carries SHTLPR /// individuals (Caspi et al.,

2003). Interestingly the s allele has been reported to lead to a reduced response to SSRIs (Rausch, 2005).

Obsessive Compulsive Disorder (OCD)

OCD is a neuropsychiatric syndrome characterized by repetitive thoughts that manifest into
obsessions and ritualistic like behaviors that are meant to decrease stress. One of the strongest links to
serotonergic involvement in OCD is the ability of SSRIs, selectively, in improving OCD symptoms, with a
lack of therapeutic response to norepinephrine reuptake inhibitors and dopamine agonists (Kellner, 2010)
as well as a more rapid onset of action than for SSRIs and depression. A number of serotonergic genes
variants have also been associated with OCD, including Sic6a4 (SERT), Htr2a (5-HT24 receptor), Htrlb
(5-HT2s receptor), and Htr2c¢ (5-HT,c receptor) (Sinopoli et al., 2017).

Importantly, a non-synonymous SNP in SLC644 was identified in a subset of patients with OCD,
anorexia nervous, and Asperger syndrome that changes an isoleucine at residue 425 to valine in TM5 (Ozaki
et al., 2003; Delorme et al., 2005). Subsequently, Kilic and colleagues found that the [le425Val substitution
5-HT transport with no change in surface expression (Kilic et al., 2003). Interestingly, another variation at
this site, [le425Leu, was identified in ASD and found to also increase 5-HT uptake, but through increases
in SERT surface expression (Sutcliffe et al., 2005; Prasad et al., 2009). The differences here may reflect
differences in the cell model for heterologous expression (COS-7 vs HeLa as the latter cells confer much
less protein expression after transfection, less likely to saturate trafficking mechanisms). Additionally, the
[le425Val variant was found to be insensitive to further increase in 5-HT uptake upon PKG activation,
however inhibition of PKG decreases the naturally elevated 5-HT uptake, suggesting that Val425 is
stabilized in a conformation that allows for phosphorylation and constitutive activation by PKG and/or an
inability of protein phosphatases such as PP2A to dephosphorylate the transporter. In this regard, Zhang

and colleagues examined the contribution of Thr276, the site required for PKG modulation of SERT
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activity, mutating this site to alanine or aspartic acid, and found that Thr276 was critical for SERT Val425

uptake activity to be down-regulated by PKG inhibitors (Zhang and Rudnick, 2005a).

Autism Spectrum Disorder (ASD)

5-HT and SERT are well known to be expressed early in development, studies first shown by in
situ hybridization studies in the mid-gestation mouse embryo (Schroeter and Blakely, 1996). Therefore, it
is no surprise that disruptions in 5-HT signaling have been linked to increasing the risk of developing
neurodevelopmental disorders, such as ASD. The first link to ASD and 5-HT dates back to 1961, in which
elevated 5-HT was found in blood platelets in a subset of ASD patients (Schain and Freedman, 1961).
Decreased plasma levels of a 5-HT metabolite, melatonin, has also been identified in a group of ASD
patients, thought to be due to disruptions in the serotonin-N-acetyl serotonin-melatonin pathway (Pagan et
al., 2014). In 1996, it was also found that depletion of the 5-HT precursor, tryptophan, in the diet worsen
ASD symptoms (McDougle et al., 1996a). In PET images, boys with ASD demonstrated decreased
[''C]methyl-tryptophan levels in both the frontal cortex and thalamus compared to their male sibling
counterpart, indicating that altered 5-HT synthesis may be associated with ASD (Chugani et al., 1997).

Below, I present an in-depth review on ASD and its link to SERT coding variants.

ASD and autism-associated SERT coding variants

ASD was first described by Leo Kanner in 1943 in a paper published in Pathology entitled “Autistic
Disturbances of Affective Contact.” In this paper, Kanner presented 11 cases of children with what he
labeled “infantile autism” which was a term originally used to depict a phenotype in schizophrenic patients
that were withdrawn from the outside world (Leo Kanner, 1943). Since the first description of autism, the
American Psychiatric Association has classified autism in the Diagnostic and Statistical Manual of Mental
Disorders (DSM). Today, the most recent DSM (DSM-V) describes ASD by two major behavioral

characterizations: deficits in both social communication and interaction, and repetitive restricted behaviors.
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Over the past few years, there has been a rapid increase in the prevalence, with estimates now indicating 1
in 59 children in the United States are diagnosed with ASD with a skewed 4:1 male dominance (Baio et al.,
2018).

While there is no biomarker that encompasses everyone diagnosed with ASD, the oldest
biochemical feature found in a significant proportion of ASD subjects (about 25-30%) is elevated 5-HT in
blood platelets, called hyperserotonemia (Hanley et al., 1977; Mulder et al., 2004; Kolevzon et al., 2010).
As mentioned above, blood platelets do not express the necessary machinery to produce 5-HT, but instead
take up 5-HT, produced by gut enterochromaffin cells, through SERT (Lesch et al., 1993). Therefore, a
few means by which patients with ASD may exhibit hyperserotonemia is through increased expression of
hyperactivity SERT, or through a decreased release of 5-HT from blood platelets.

Interestingly, SSRIs are often prescribed off-label to ASD patients and found to be effective in
treating repetitive behaviors (McDougle et al., 1996b; Hollander et al., 2012; Williams et al., 2013; Ji and
Findling, 2015). In 2005, the Blakely lab, in collaboration with James Sutcliff at Vanderbilt University,
identified 5 nonsynonymous single nucleotide polymorphisms (SNPs) within the SLC644 gene from 120
families with multiple children affected with ASD, specifically in male-only affected families (Figure 3)
(Sutcliffe et al., 2005). Four of these variants (Gly56Ala, Ile425Leu, Phe465Leu, and Leu550Val)
conferred enhanced 5-HT uptake when transfected into cells while the C-terminal Lys605Asn showed no
effect on SERT activity (Prasad et al., 2005, 2009). The Ile425Leu, Phe465Leu, and Leu550Val SERT
variants caused an increase in Vmax relative to WT SERT which could be explained by the enhanced surface
expression of these variant transporters. On the other hand, Gly56Ala (SERT Ala56 here on out) did not
impact Vimax Or surface expression, yet did decrease SERT Kv compared to WT SERT (Prasad et al., 2009),
suggesting a possible increase in 5-HT affinity as the explanation for elevated initial rates of 5-HT uptake.
Interestingly, SERT Ala56 was also insensitive to stimulation by activators of p38 MAPK and PKG, yet
had increased sensitivity to PKC-mediated downregulation. Although the Lys605Asn variant did not affect

5-HT uptake, it did prove insensitive to p38 MAPK and PKG-mediated increase in 5-HT uptake (Prasad et
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al., 2005) suggesting that the mutation may impose common structural changes as seen with the Gly56Ala

variant.

Characterization of SERT Ala56 Knock-In Mouse Model

Moving forward, our lab decided to focus its efforts on understanding the basis of the SERT Ala56
hyperfunction, as it may provide insight into SERT regulation. Furthermore, SERT Ala56 is the most
common variant, existing in about 1% of the US population, is highly conserved across mammalian species,
was over-transmitted 3:1 to subjects with ASD, and displayed a male gender bias (Veenstra-VanderWeele
et al., 2009). We, therefore, developed a knock-in (KI) mouse model expressing the SERT Ala56 variant
to study the effects of the variant in vivo (Veenstra-VanderWeele et al., 2009).

SERT Ala56 KI mice exhibit the core ASD-like behaviors: decreased communication as assessed
through ultrasonic vocalizations, increased repetitive behaviors as measured by bouts of wire hanging in
the home cage, and decreased social behaviors as assessed by the tube test of social dominance and the
three-chamber social assay (Veenstra-VanderWeele et al., 2012). As mentioned above there are a number
of comorbid disorders associated with ASD, including altered sensory processing. SERT Ala56 KI mice
showed no defects in learning behavioral responses to auditory and visual cues independently, however,
showed deficits in multisensory processing (Siemann et al., 2017). Thus, the SERT Ala56 KI mouse model
provided a new avenue for investigation of the functional impact of a hypermorphic SERT variant on the
manifestations of ASD-like behavior.

Mimicking the enhanced uptake seen in vitro, SERT Ala56 KI mice display elevated 5-HT
clearance rates compared to WT mice in the CA3 region of the hippocampus as measured by in vivo
chronoamperometry (Veenstra-VanderWeele et al., 2012; Robson et al., 2018). Elevated 5-HT in the blood,
or hyperserotonemia, was also found in the SERT Ala56 KI mice. The increased 5-HT clearance could be
hypothesized to lead to decreased extracellular 5-HT levels (later confirmed in Quinlan et al. 2019 by
microdialysis measures), leading to hypersensitive 5-HT receptors, which was evident by SERT Ala56 KI
mice heightened response to DOI-induced head twitch (hallucinogenic 5-HT24 receptor agonist) and 8-

OH-DPAT induced hypothermia (5-HT 4 receptor agonist). It is important to note that these mice display
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no difference in total tissue levels of 5-HT nor changes in other neurotransmitter levels relative to WT mice.
No differences were detected in total SERT expression (Veenstra-VanderWeele et al., 2009, 2012), though
it is unknown if SERT Ala56 affects in vivo surface expression that could account as well for increased
rates of clearance, though changes in surface expression were not seen in vitro.

Considering that 5-HT and SERT play important roles in gut motility and gastrointestinal distress,
and is a comorbid disorder with ASD, we examined the gut health of the SERT Ala56 KI mice and found
disruption in GI transit, hypoplasia of the enteric nervous system, reduced peristaltic reflex activity, and
proliferation of crypt epithelial cells (Margolis et al., 2016). Moreover, the GI phenotypes are prevented
by administration of a 5-HT4 agonist in utero (Margolis et al., 2016). These findings suggest that the SERT
Ala56 mutation confers both brain and peripheral phenotypes, and some of these may be initiated during
early development.

SERT is hyperphosphorylated in a p38 MAPK dependent manner in the SERT Ala56 KI mice
(Veenstra-VanderWeele et al., 2012). Thus, we wanted to test the hypothesis that SERT Ala56 traits can
be reversed through inhibition of p38 MAPK, specifically focusing on the alpha isoform as past studies
have revealed SERT regulation by p38a MAPK (Baganz et al., 2015). Chronic (5 mg/kg 1-week once
daily (QD) L.P. injection), but not acute (one 5 mg/kg injection) treatment with the p38a MAPK inhibitor
(MW150) reversed the social deficits and GI distress in adult (8-10 weeks) mice (Robson et al., 2018). Due
to SERT being present throughout the body, it is possible that behavioral manifestations of the mutant mice
could arise peripherally. In this regard, Robson and colleagues reported that genetic deletion of p38a
MAPK from CNS serotonergic neurons (p38a MAPK flx/flx::ePetl Cre) also reversed the social deficits
in these mice (Robson et al., 2018), suggesting that CNS SERT plays a role in mediating at least some of
the SERT Ala56 phenotypes.

It is important to note that all the above studies were performed with homozygous SERTAla56
mice derived from heterozygous breeding (Het X Het) breeding. Since SERT is expressed in the placenta
and 5-HT is essential to normal fetal development, there is also the possibility that the heterozygous SERT

Ala56 could alter 5-HT signaling between dam and embryos, though these mothers also gave rise to the
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homozygous Gly56 tested in parallel. However, Muller and colleagues found that if the mother was
homozygous for the SERT Ala56 allele, placental mRNA related to immune and metabolic-related
pathways are altered and there are decreased levels of 5-HT in the placenta and embryonic forebrain at
E14.5 which may contribute to a broadening of 5-HT sensitive thalamocortical axonal projections (Muller
et al., 2017).

Finally, all the experiments noted above with the SERT Ala56 mice were performed on a mixed,
but predominantly 12956/S4 background. Some of the SERT Ala56 behavioral phenotypes (except for
social deficits) are altered when the mutation was placed on a C57BL/6 background (Kerr et al., 2013).
Unfortunately, the mechanism for this strain-dependent difference remains elusive, although it supports the
idea that genetic variations such as Ala56 impose risk as opposed to acting deterministically, and will thus
manifest their effects in the context of a permissive genetic background or under specific environmental

conditions.

Summary

As described above, SERT-mediated 5-HT uptake and clearance dictates a number of physiological
responses by tightly controlling the levels of extracellular 5-HT available to signal. SERT is regulated by
multiple signaling pathways that can either act directly or indirectly to modulate SERT surface levels and/or
activity. These regulatory influences are thought to be imposed transiently as a consequence of receptor
activation that activates signaling cascades, including PKG and p38 MAPK, that can act on the transporter
to alter PTMs and SIPs, ultimately affecting SERT function. The changes in surface trafficking and activity
arising from regulatory signaling pathways can be mimicked by engineered and inherited mutations that
change SERT coding sequences. Several of the ASD-associated inherited variants, including SERT Ala56
and SERT Asn605, modulate function and/or regulation in the absence of apparent changes in surface
trafficking. Engineered mutations to eliminate or mimic SERT phosphorylation at Thr276 also alters the

regulation of SERT by kinase-dependent pathways (Figure 4).
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Figure 4. Structural and functional dynamics of SERT coding and engineered variants
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My hypothesis is that these mutations impose structural constraints that shift the conformational

equilibrium and affects SIPs and PTM, which results in altered SERT function . To test this hypothesis, |

propose the following Specific Aims:

Aim 1: Determine whether SERT coding variants identified in ASD subjects alter transporter
conformational equilibrium that leads to changes in SERT function in vitro and in vivo.

Aim 2: Determine whether SERT Ala56 alters protein associations compared to WT SERT.

Aim 3: Establish a novel in vivo model that precludes phosphorylation of Thr276 in vivo and

determine initial biochemical and behavioral phenotypes.
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CHAPTER 2

BIASED CONFORMATIONAL STATE OF ASD-ASSOCIATED SERT CODING VARIANTS

Adapted with permission from:

Quinlan MA, Krout D, Katamish R, Robson MJ, Nettesheim C, Gresch PJ, Mash D, Henry K, Blakely RD
(2019) Human Serotonin Transporter Coding Variation Establishes Conformational Bias with Functional
Consequences. ACS Chem Neurosci 14:acschemneuro.8b00689. Copyright 2019 Americal Chemical
Society.

Introduction

ASD, a neurobehavioral condition with high prevalence and significant, but heterogeneous genetic
contributions (Waye and Cheng, 2018), has been linked to disruptions in 5-HT signaling (Muller et al.,
2016). More than 50 years ago, Schain and Freedman (Schain and Freedman, 1961) reported elevated whole
blood 5-HT levels (hyperserotonemia) in subjects with ASD. Multiple studies since this time have
demonstrated hyperserotonemia in a subset (25-30%) of ASD subjects, primarily derived from elevated 5-
HT stores in platelets (Schain and Freedman, 1961; Cook et al., 1993). These stores of 5-HT arise from
platelet SERT accumulation of enterochromaffin cell-derived 5-HT (Lesch et al., 1993). Genetic studies of
multiplex ASD families identified a region centered over 17q11.2 that harbors SLC644, the SERT gene
(Stone et al., 2004; Cantor et al., 2005; Sutcliffe et al., 2005), as bearing significant linkage to ASD. Since
ASD has been associated with hyperserotonemia, and the coding sequence of human SERT is identical in
the brain and platelets (Lesch et al.,, 1993), we hypothesized that the linkage signal might reflect the
transmission of ASD-associated SERT coding variants that could elevate risk for ASD. Indeed, our efforts
revealed multiple, rare functional SERT coding variants (Sutcliffe et al., 2005), as well as multiple, novel
noncoding variants. Remarkably, a common feature of the SERT coding variants in both subject
lymphoblasts and transfected cells was a capacity to confer elevated 5-HT transport activity as compared

to 5-HT transport conferred by the reference (WT) alleles at the respective position (Prasad et al., 2005;



Sutcliffe et al., 2005; Prasad et al., 2009). Further studies revealed that the most common of these variants,
SERT Ala56, induces elevated 5-HT transport (Prasad et al., 2005; Sutcliffe et al., 2005) in the absence of
changes in either total or surface SERT protein (Prasad et al., 2005, 2009). Rather, SERT Ala56
demonstrates a reduction in 5-HT Ky compared to SERT Gly56, the WT allele (Prasad et al., 2005),
suggesting an increased efficiency for 5-HT uptake at sub-saturating 5-HT concentrations. Importantly, the
stimulatory impact of the SERT Ala56 variant on 5-HT transport has been demonstrated in the brain of
SERT Ala56 KI mice in vivo (Veenstra-VanderWeele et al., 2009, 2012). Moreover, these mice exhibited
hyperserotonemia, consistent with a model where the variant imposes a peripheral biochemical trait that
correlates with the presence of behavioral and comorbid physiological changes arising from the variant
expressed elsewhere (Veenstra-VanderWeele et al., 2012; Margolis et al., 2016; Robson et al., 2018).

Mechanistic studies of SERT Ala56 hyperfunction indicates that the variant may exist
constitutively in a conformation normally transiently induced by activation of protein kinase G (PKG)
(Ramamoorthy et al., 2007) and p38a MAPK (Zhu et al., 2004, 2005). Consistent with this hypothesis,
SERT Ala56 demonstrates no further increase in 5-HT uptake activity when expressed heterologously
(Prasad et al., 2005) or natively (Prasad et al., 2009) and treated with activators of PKG or p38 MAPK.
SERT Ala56 is also hyperphosphorylated under basal conditions in these preparations in a p38 MAPK-
dependent manner (Veenstra-VanderWeele et al., 2009, 2012). Finally, the elevated 5-HT clearance
observed in SERT Ala56 mice, as well as multiple physiological and behavioral phenotypes, can be
reversed by treatment of these animals with the p38a MAPK inhibitors, MW 108 and MW 150 (Robson et
al., 2018). Another SERT missense variant identified in the 2005 ASD study that promoted the study of
SERT Ala56, the C-terminal variant SERT Asn605, also displays reduced PKG/p38 MAPK sensitivity
(Prasad et al., 2005). A structural basis, however, for the kinetic and regulatory changes of either SERT
Ala56 or SERT Asn605 has not been established.

SERT, like other members of the Na'/Cl" dependent neurotransmitter transporter family (SLC6)
(Kristensen et al., 2011), translocates substrates across the membrane via an alternating access mechanism
(Forrest et al., 2008; Adhikary et al., 2017). In this model, 5-HT and co-transported ions bind to SERT
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when bindings sites become exposed to the extracellular space via an “outward-facing conformation” Upon
the binding of substrates, the transporter changes conformation such that the substrate binding sites are
shielded from the extracellular space, yielding a “substrate-occluded conformation”. Further
conformational changes lead to exposure of the substrate binding sites to the cytoplasm and release of 5-
HT and co-transported ions, a state termed the “open-inward conformation” (Forrest et al., 2008). Following
5-HT release intracellularly, and the binding of a single K" ion, the 5-HT unbound carrier reorients to
reestablish the outward-facing conformation, preparing the transporter for the next transport cycle. High
resolution structure and modeling studies (Chen and Rudnick, 2000; Forrest et al., 2008; Fenollar-Ferrer et
al., 2014; Coleman et al., 2016) suggest that during the transport cycle, the transporter undergoes a
conformational shift of sets of helices, referred to as a “rocking bundle” mechanism (Forrest et al., 2008).
In this model, transmembrane (TM) segments 1-5 and 6-10, which form two inverted repeat bundles, move
in relation to each other to open and close internal and external gates that grant or occlude access to the
substrate binding site. Whereas residues within SERT transmembrane domains comprise sites of substrate
binding, residues within the transporter’s intracellular N- and C-termini appear to contribute to the
regulation of transporter trafficking and function. Moreover, these domains have become increasingly
recognized as determinants of substrate binding affinity, the directionality of transport (i.e. influx versus
efflux), and the rate of substrate translocation (Khoshbouei et al., 2004; Sucic et al., 2010; Khelashvili et
al., 2015; Kern et al., 2017; Sweeney et al., 2017; Razavi et al., 2018). Herein, I report functional and
structural evidence that the N-terminal SERT Ala56 coding variant imposes conformations that, with
greater probability than seen with the WT transporter, orients SERT in an outward-facing state. Somewhat
similar findings are evident for the C-terminal Asn605 variant, indicating that modest structural changes in
either cytoplasmic tails can result in both local and global changes in conformation that for some individuals

may impact disease risk.
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Results

Conformational Bias of SERT Ala56 Evaluated by Studies of Fenfluramine-Mediated 5-HT Efflux In Vitro
and In Vivo.

The alternation of conformations that drives neurotransmitter uptake from the extracellular space
also participates (Fischer and Cho, 1979; Sulzer et al., 2005), with qualifications (Sitte et al., 2001; Kern et
al., 2017), in the ability of transporters to support movement of elevated intracellular substrate (efflux) from
the cytoplasm to the extracellular space (Sulzer et al., 2005). The mutually sequential nature of the
alternating access model predicts that alterations in conformational stability that enhance outward-facing
conformations and 5-HT uptake rates will reduce the population of inward-facing conformations, and
reduce transporter-mediated 5-HT efflux. Moreover, amphetamines are well known to enhance efflux of
substrates by monoamine transporters, including SERT (Sulzer et al., 2005), with D-fenfluramine being
relatively SERT-selective (Rothman et al., 2001) and commonly used to drive SERT-mediated 5-HT efflux
in vitro (Rudnick and Wall, 1992; Sitte et al., 2001; Hilber et al., 2005) and ir vivo (Gobbi et al., 1993;
Balcioglu and Wurtman, 1998). In this regard, the SERT Ala56 variant lies in the SERT N-terminus, which
has been shown to dictate the capacity for SERT-mediated 5-HT efflux induced by amphetamine
derivatives (Kern et al., 2017).

To examine whether SERT Ala56 displays altered 5-HT efflux rates, we first loaded CHO cells
stably expressing WT or SERT Ala56 to equilibrium with [*’H]5-HT (20 nM, 1 hr at 37°C). Both WT and
SERT Ala56 cells loaded to equivalent levels (Figure 5A) in keeping with the equilibrium nature of the
incubations and the equivalent surface expression of WT and SERT Ala56. We then rapidly removed
external substrate prior to incubation of cells with 10 uM D-fenfluramine for 1, 3, or 5 min, collecting and
quantifying radiolabel in the extracellular media, as described in Experimental Procedures. When cells were
exposed to D-fenfluramine, WT cells supported significant (~80%) 5-HT efflux that was consistent from
1-5 min (Figure 6A). However, at both 1 and 3 min, SERT Ala56 cells supported significantly less 5-HT
efflux in response to the D-fenfluramine challenge, amounting to ~60-70% 5-HT efflux, which is 10-20%

less than the efflux generated by WT cells (Figure 6A). A longer, 5 min incubation with D-fenfluramine,
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Figure 5. High concentration of D-fenfluramine mediated [*H]|5-HT efflux

Equal loading of [*H]5-HT in both (A) Flp-In CHO cells and (B) hippocampal slices (unpaired t-test,
n.s., n = 4-5). (C-D) There is also no difference in [’H]5-HT efflux in response to high concentrations,
10 and 20 uM, D-fenfluramine between WT and SERT Ala56 littermate controls (two-way repeated-
measures ANOVA; Bonferroni post-hoc test of genotype differences, n.s., n = 4-5).
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Figure 6. Fenfluramine mediated 5-HT efflux of SERT AlaS6

(A) CHO cells stably expressing hSERT (WT) or hSERT Ala56 were loaded for 1 hour with 20 nM
[*H]5-HT and then subjected to 10 uM D-fenfluramine for 1,3, or 5 minutes. Cells expressing SERT
Ala56 efflux less [’H]5-HT at 1- and 3-min incubation with D-fenfluramine compared to WT expressing
cells (two-way repeated-measures ANOVA; Bonferroni post-hoc test of genotype differences, **P <
0.01; n=4). (B) Hippocampal slices were assessed for D-fenfluramine mediated [*H]5-HT efflux loaded
with 400 nM [*H]5-HT for 30 minutes and then perfused with KRB buffer for 15 min to establish baseline
followed by 15 min 3 uM D-fenfluramine pulse and then a 15 min wash out with KRB. Slices prepared
from SERT Ala56 mice showed a blunted D-fenfluramine mediated [*’H]5-HT efflux compared to
WT (two-way repeated-measures ANOVA; Bonferroni post-hoc test of genotype differences, *P <0.05,
**P < 0.01, ***P < 0.001; n=5). (C) In vivo microdialysis data also show SERT Ala56 mice have a
significant decrease in extracellular 5-HT levels in response to fenfluramine infusion (10 pM for 20 min
at ImL/min flow rate) compared to WT in CA3 region of the hippocampus. (D) SERT Ala56 shows
decreased extracellular 5-HT levels measured at baseline (average from 0-80 minutes, in nM) compared
to WT (unpaired t-test; **P <0.01; n=7-8). (E) Area under the microdialysis peak from 80-200 min also
shows blunted 5-HT efflux in response to D-fenfluramine in SERT Ala56 mice compared to WT
(unpaired t-test; *P < 0.05; n=7-8).

54



however, resulted in SERT Ala56 efflux reaching WT levels, consistent with reduced kinetic efficiency
loading or transporting 5-HT, versus a difference in intrinsic efflux capacity.

To determine whether diminished 5-HT efflux activity is evident in native preparations, we
examined the ability of hippocampal slices prepared from WT (SERT Gly56) and SERT Ala56 knock-in
(KI) littermate mice to efflux preloaded [*’H]5-HT in response to D-fenfluramine. No differences were
obtained in total amount of [*’H]5-HT accumulated in the cell following our equilibrium loading protocol
(Figure 5B), consistent with a lack of effect of the SERT Ala56 mutation on transporter protein levels in
vitro and in vivo (Prasad et al., 2005; Veenstra-VanderWeele et al., 2012). At low D-fenfluramine
concentrations (3 pM), [*’H]5-HT efflux was significantly blunted in slices from SERT Ala56 mice
compared to efflux obtained with WT preparations (Figure 6B). However, at higher concentrations of D-
fenfluramine (10 and 20 pM), equivalent efflux of [*’H]5-HT was observed between the WT and variant
(Figure 5C-D). These findings are consistent with a biased conformation of SERT Ala56 in the mouse brain
slice preparation that is evident at lower substrate concentrations, but negated at higher substrate
concentrations. Another explanation for the observed reduced efflux capacity of SERT Ala56 is an altered
affinity for fenfluramine, however in a [*H]citalopram competition binding assay from hippocampal
membranes, we found no difference between genotypes in fenfluramine affinity (Figure 7).

Finally, to test whether genotype differences are evident for D-fenfluramine-induced 5-HT efflux
in vivo, we assessed extracellular 5-HT levels by microdialysis in the CA3 region of the hippocampus
following reverse dialysis of D-fenfluramine in sifu (Figure 6C). Across the first 80 minutes of collection,
we found baseline extracellular 5-HT levels to be decreased in the SERT Ala56 mice, relative to levels in
WT mice (Figure 6D), consistent with the enhanced basal 5-HT clearance observed in the SERT Ala56
mice in the same brain region (Veenstra-VanderWeele et al., 2012; Robson et al., 2018). It is important to
note that past studies have found no difference in total 5-HT levels between genotypes in various brain
regions, including the hippocampus (Veenstra-VanderWeele et al., 2012; Robson et al., 2018). At 80 min,
we infused 10 pM D-fenfluramine through the dialysis probe, a concentration chosen based on an
expectation of ~10% exchange across the dialysis membrane and an effort, established by our ex vivo
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post-hoc test of genotype differences, n.s.; n=3).
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studies, to deliver a subsaturating D-fenfluramine concentration. As expected (Rocher et al., 1999), we
observed a significant time-dependent rise in extracellular 5-HT levels in WT mice. Parallel experiments
with SERT Ala56 littermates demonstrated a significantly blunted response to D-fenfluramine compared
to WT, analyzed as the area under the peak from 80-200 min, relative to the average baseline calculated for
each genotype (Figure 6E). These data provide in vivo evidence supporting the hypothesis that SERT Ala56
biases transporter conformation, most likely outward-facing, that can promote an enhanced rate of
extracellular 5-HT clearance while yielding a reduced rate of D-fenfluramine stimulated 5-HT efflux. These
findings are also consistent with prior studies with larger SERT N-terminal deletions revealing that this
region is critical in modulating efflux potential (Kern et al., 2017). This observation is further strengthened
by studies of the dopamine (DA) and norepinephrine (NE) transporters (DAT and NET, respectively) where
findings indicate that amphetamine-induced substrate efflux is influenced by N-terminal residues that can

support transporter phosphorylation and or protein interactions (Khoshbouei et al., 2004; Dipace et al.,

2007; Binda et al., 2008; Guptaroy et al., 2009).

SERT Ala56 Conformation Assessed through Noribogaine Uptake Inhibition.

Ibogaine, a psychoactive molecule derived from the plant Tabernathe iboga, and its active
metabolite noribogaine, have been reported to stabilize SERT in an inward-facing conformation (Staley et
al., 1996; Jacobs et al., 2007; Bulling et al., 2012). If SERT Ala56 more frequently assumes an outward-
facing conformation, the potency of noribogaine could be observed to be reduced. To examine this issue,
we determined the potency of noribogaine for inhibition of [*’H]5-HT uptake in transporter-transfected CHO
cells as described in Experimental Procedures. Since noribogaine is a non-competitive inhibitor of SERT
(Koldse et al., 2013), work by Cheng and Prusoft (Cheng and Prusoff, 1973) indicates that the ICso equals
the K; and is not dependent on the Ky of the transporter, which is important considering that SERT Ala56
demonstrates a decreased 5-HT Ky compared to WT SERT (Prasad et al., 2009). We found that the 1Cs
for noribogaine to block 5-HT uptake from hSERT transfected CHO cells was modestly, but significantly,
increased for SERT Ala56 as compared to WT SERT (SERT Ala56 = 0.507 nM; R?>=0.91;95% CI [0.37,
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0.68]; WT SERT = 0.315 nM; R* = 0.87; 95% CI [0.22, 0.45]; P < 0.05), consistent with the mutant
transporter having an increased probability to rest in an outward-facing conformation during noribogaine

binding.

SERT Ala56 Impact on Cytoplasmic Domain Apposition Assessed by Fluorescence Resonance Energy
Transfer.

Fluorescence resonance energy transfer (FRET) approaches allow for a measurement of the relative
distance between proteins or their domains (Piston and Kremers, 2007), with caveats relating to the
orientation of fluorophores potentially appearing as changes in distance (Bermey and Danuser, 2003).
Biochemical and modeling studies indicate that as biogenic amine transporters cycle from inward to
outward-facing conformations, the N- and C-termini move closer to each other (Schicker et al., 2012;
Fenollar-Ferrer et al., 2014). We hypothesized that if SERT Ala56 biases the transporter toward an outward-
facing conformation, the N- and C-termini of SERT should more often lie closer together than with WT
SERT, which might be evident with FRET studies of dually-tagged transporters. We, therefore, transfected
CHO cells individually with either WT or SERT Ala56 constructs that were tagged with a cyan fluorescent
protein (CFP) and a yellow fluorescent protein (YFP), on the N- and C-termini, respectively. The dual
addition of CFP and YFP (C-SERT-Y) did not compromise the ability of Ala56 to elevate 5-HT uptake
(Figure 8A), nor alter protein expression levels, as assessed by western blot analysis (Figure 9).
Unfortunately, we were not able to verify equivalent surface expression of the tagged mutant and WT SERT
constructs due to, we believe, the low levels of expression or loss of antibody epitope at the surface.
However, past studies did reveal that untagged SERT Ala56 did not alter SERT surface expression
compared to WT SERT in transfected cells (Sutcliffe et al., 2005). Also, the total protein of C-SERT-Y
constructs detected in cells migrated as expected of mature, glycosylated SERT, so we do not believe that
the tagged constructs are misfolded, although we cannot rule out that a greater propensity for this leads to

more of the transporter being degraded. As predicted, cells transfected with C-Ala56-Y demonstrated a
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Figure 8. FRET efficiency of SERT N- and C-terminal proximity

(A) The addition of CFP and YFP tag to the N & C-terminus respectively, does not impact the ability to
SERT Ala56 to enhance [*’H]5-HT uptake (20 nM for 10 min at 37°C in transfected CHO cells), one-way
ANOVA followed by Tukey’s post-hoc test, *P<0.05, n= 6-9; Error bars represent £ SEM. (B)
Representative FRET images of transfected CHO cells with indicated CFP-YFP dual tagged constructs
with CFP excitation/emission, YFP excitation/emission, calculated FRET efficiency (CFP excitation/YFP
emission). (C) FRET efficiency, calculated as described in Methods. (Error Bars £ SEM, One-way
ANOVA followed by Tukey’s post hoc test, *P < 0.05, n=22). (D) Histogram of FRET efficiency show
C-Ala56-Y distribution is significantly shifted to the right compared to WT (Kruskal-Wallis ANOVA
followed by Dunn’s post hoc analysis, P <0.05, n=22) and C-Asn605-Y split into two Gaussian’s curves.
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Figure 9. Western blot of total C-SERT-Y and variant constructs

(A) Representative immunoblot of C-SERT-Y constructs probed with CFP antibody. (B) No difference
between C-SERT-Y, C-Ala56-Y, and C-Asn605-N total protein expression as assess by densitometry of
western blot bands normalized to B-actin levels (ordinary one-way ANOVA, followed by Dunnett’s post-
hoc analysis, n.s., P>.05, n=4-7)
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significant increase in FRET efficiency compared to cells transfected with WT C-SERT-Y (Figure 8B-C).
Moreover, a population analysis of the distribution of FRET efficiency from C-Ala56-Y transfected cells
revealed a much tighter distribution than observed for C-SERT-Y (Figure 8D).

The naturally-occurring, C-terminal SERT coding substitution Lys605Asn (SERT Asn605) was
also found to be transmitted to affected probands in our prior ASD study (Sutcliffe et al., 2005). As shown
in our previous work, this variant demonstrates normal 5-HT uptake activity in transfected cells, but like
the Ala56 variant, exhibits a complete insensitivity to PKG and p38 MAPK stimulation (Prasad et al., 2005).
When the C-SERT-Y construct bearing the Lys605Asn substitution was transfected into CHO cells, we
detected no difference from C-SERT-Y in resulting 5-HT uptake (Figure 8A) nor did we observe an
increase in the average FRET signal (Figure 8B-C). However, the sum of two Gaussians better fit the
distribution of C-Asn605-Y FRET efficiencies (Figure 8D) than a single distribution (two-tailed unpaired
t-test; P <0.001), with the distribution associated with greater FRET efficiencies underlying the distribution
that fits the C-Ala56-Y data. These findings suggest that SERT Asn605 may populate one of two distinct
conformations, either outward-facing or inward facing, with a limited population of intermediate states,
unlike WT SERT. We do not know whether the conformations that these ASD associated variants confer
are mimicked in FRET assays using WT SERT treated with compounds that alter SERT conformation and

activity, such as fenfluramine or noribogaine, but consider this an important future study.

Sensitivity of 5-HT Transport to Methanethionsulfonates Supports an Increased Propensity for both SERT
Ala56 and SERT Asn605 to Reside in an Outward-facing Conformation.

The Substituted Cysteine Accessibility Method (SCAM) (Karlin et al., 1998), where the aqueous
exposure of cysteine (Cys) residues of functional relevance are queried using inactivating
methanethiosulfonate (MTS) reagents, has been commonly used to infer conformation of transporter
domains, including those belonging to SERT (Sato et al., 2004; Zhang and Rudnick, 2005b; Henry et al.,
2006, 2011; Rudnick, 2011). In SERT, the rate of transport inactivation achieved by a membrane permeant
MTS reagent such as MTSEA, at an engineered Cys (Ser277Cys) in intracellular loop 2 (ILC2) (substituted

61



on an otherwise reactive Cys depleted transporter (SERT X5C)), provides a quantitative estimate of
transporters present in inward-facing conformations (Zhang and Rudnick, 2005b, 2006). When we
compared the sensitivity of SERT X5C to SERT X5C/Cys277 to MTSEA in transfected HEK-MSR cells,
we found the expected increase in transport inactivation for the latter construct due to the addition of solvent
exposed Cys277 in a loop critical for conformational cycling (Figure 10A and D). On the X5C/Cys277
background, substitution of either Ala56 or Asn605 for their WT counterparts rendered the Cys277 residue
on these transporters less sensitive to MTSEA than SERT X5C/Cys277 (Figure 10A and D), consistent
with the terminal variants having a reduction in the population of inward-facing conformations. Inactivation
of 5-HT uptake at the endogenous residue Cys109 by a membrane impermeant MTS reagent, such as
MTSET or MTSES, has been used successfully to indicate the fraction of transporters in an outward-facing
state (Chen et al., 1997). When the sensitivity to MTSES or MTSET of WT SERT (containing Cys109)
was compared to SERT Ala56 (Figure 10B-D), we observed an increased rate of inactivation of the latter
construct by both MTS reagents. These findings support an increased propensity for Cys109 in either the
Ala56 or the Asn605 constructs to reside in an outward-facing conformation across the duration of the
assay. Together, the SCAM analysis assessed the exposure of conformationally-sensitive Cys residues and
provided evidence that the conformational equilibrium of both naturally-occurring SERT coding variants

shifts to favor an outward-facing state.

Evidence from Limited Proteolysis Studies that SERT Ala56 and SERT Asn605 Favor Outward-Facing
Conformations.

The data presented thus far suggest that the Ala56 and the Asn605 variant SERT proteins exhibit a
global change in structure that favors an open-outward conformation. SERT is a large, 630 amino acid
protein, comprised of 12 transmembrane domains and cytoplasmic N- and C-termini (Ramamoorthy et al.,
1993). Given the location of SERT Ala56 in the N-terminus, it seemed unlikely to us that, without a local
structural alteration, the single methyl group that distinguishes Ala56 from Gly56 (WT) would be able to

exert global, conformational effects. Gly56 lies in a region of the N-terminus predicted to be unfolded,
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Figure 10. Sensitivity of N and C termini ASD SERT variants to MTS inactivation of uptake
supports outward-facing conformation

(A) To determine accessibility of the cytoplasmic permeation pathway HEK-MSR cells expressing
terminal ASD-associated mutants (SERT Ala56 and Asn605) in the S277C/X5C background were
treated with 2 mM MTSEA for the indicated time. Following treatment, cells were assayed for [*H]5-
HT uptake (50 nM for 10 min at 37°C). Remaining activity is plotted as a percent of untreated cells and
the values represent the mean + SEM from four or more independent experiments. SERT Ala56 and
Asn605 were less sensitive to MTSEA inactivation, suggesting that Cys277 was less accessible. (B&C)
Cys109, located on the extracellular end of TM1, is an extracellular probe for the membrane impermeant
thiol-reactive reagent, MTSES (B) and MTSET (C). Both the terminal ASVs (SERT Ala56 and Asn605)
are more sensitive to MTSES and MTSET inactivation, suggesting that Cys109 is more accessible in
these mutants compared to control cells. (D) Table with time for MTS reagent to decrease total 5-HT
uptake in each mutant by 50% (t12). One-way ANOVA, Dunnett’s, *P <0.05, **P <0.01, ***P <0.001,

n=_8.




possibly allowing conformational alterations of this domain during and throughout the transport cycle
(Fenollar-Ferrer et al., 2014). Alternatively, N-terminal interacting proteins could stabilize conformations
locally and globally by differentially interacting with the Ala56 substituted domain. To examine mutation-
induced changes in local N-terminal conformation, we implemented a trypsin accessibility protocol
(Fontana et al., 2004) using membranes from CHO cells transfected with either WT or mutant SERTs. An
N-terminal HA tag was present in WT and mutant constructs to allow us to monitor exposure and trypsin
digestion of the N-terminus as a function of time. Importantly, the N-terminus of SERT has been reported
to demonstrate differential sensitivity to trypsin cleavage as a result of ionic, substrate or antagonist
interactions (Kern et al., 2017), with the N-termini of outwardly-oriented transporters being relatively
protected against trypsin digestion. As shown in Figure 11A, HA-tagged SERT Ala56 demonstrated a
greater degree of trypsin resistance as compared to HA-tagged WT SERT. Interestingly, the HA-tagged
SERT Asn605 variant also displayed significantly reduced N-terminal trypsin sensitivity (Figure 11B).

Whether a global change in conformation impacts the structure of the N-terminus or vice-versa,
cannot be assessed from the trypsin sensitivity data noted above. However, previous studies (Kern et al.,
2017) have demonstrated that the presence or absence of NaCl alters N-terminus trypsin sensitivity in a
manner that might be useful to distinguish whether the SERT Ala56 exerts conformational effects
independent of changes in global structure. In support of this idea, the N-terminus of WT SERT exhibits
reduced trypsin sensitivity when Na" in the buffer is substituted with impermeant cations, presumably due
to a requirement for Na" interactions at the intramembrane substrate binding site to stabilize transporters in
an open-outward conformation (Kern et al., 2017). We, therefore, evaluated the trypsin sensitivity of WT
HA-SERT and HA-SERT Ala56 in media where Na" was substituted by choline chloride (ChCl). In these
studies, we found that the N-terminus of HA-SERT Ala56 remained less trypsin-sensitive than WT HA-
SERT, despite the absence of Na' (Figure 11C). These findings indicate that the Ala56 substitution imposes
local changes in conformation of the SERT N-terminus and/or the differential binding of associated proteins
to this domain, in addition to the more global conformational changes revealed by measures of 5-HT
uptake/efflux, FRET or transporter functional inactivation by MTS reagents.
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Figure 11. Tryptic digestion of the N-terminus of terminal ASD SERT coding variants

Membranes (50 pg total) isolated from CHO cells expressing (A) HA-SERT or HA-SERT Ala56 or (B)
HA-SERT Asn605 were incubated in buffer containing 150 mM NaCl. Trypsin (4 pg) was added at room
temperature for 5, 10, or 15 minutes. Samples were subjected to western blot analysis of HA tag.
Percentage of SERT cleaved by trypsin was calculated by dividing the band density of the trypsin sample
by the total (labeled as “T” on blot). (Error bars indicate = SEM Paired t-test. *P < 0.05, **P < 0.01,
n=6-9). (C) lonic substitution of NaCl with 150 mM ChCl did not affect the increased protection of SERT
Ala56 N-terminal tryptic digestion at 5 min. Paired t-test. *P < 0.05, n=6-9. (D) Addition of 10 uM D-
fenfluramine to membranes normalized SERT Ala56 digestion to WT levels at 5 min (Paired t-test. *P
<0.05, n=10).
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Finally, we explored the effects of D-fenfluramine at saturating concentrations on the protection of
the SERT N-terminus to tryptic digestion (in the presence of NaCl). We found that the addition of 10 uM
D-fenfluramine to membrane preparations had no effect on proteolysis of WT SERT (Figure 11D),
consistent with findings of Kern and colleagues using the SERT-targeted amphetamine, p-
chloroamphetamine (Kern et al., 2017). However, D-fenfluramine incubation with HA-SERT Ala56
expressing membranes increased N-terminal trypsin sensitivity to that seen with WT HA-SERT (Figure
11D). These findings indicate that the binding of substrates to SERT is sufficient to relieve N-terminal
conformational changes induced by SERT Ala56, suggesting bi-directional communication between the N-

terminus and residues forming the substrate binding pocket.

Discussion

Altogether, the studies in our report reveal a remarkable ability of small changes in the sequence
of cytoplasmic N- and C-termini to affect both local and global SERT conformations. SERT Ala56 confers
elevated 5-HT uptake at sub-saturating substrate concentrations relative to WT SERT, mimicking transient
5-HT transport changes following PKG and p38 MAPK activation (Zhu et al., 2004, 2005). Consistent with
this idea, SERT Ala56 (as well as SERT Asn605) interferes with the ability of PKG and p38 MAPK
activators to elevate transporter activity further (Prasad et al., 2005, 2009). Ala56 lies in the middle of the
N-terminus, which has the potential, based on models, to interact with intracellular loop 2 (ICL2) that lies
between transmembrane domains 4 and 5. ICL2 has been shown to be conformationally dynamic and bears
a site, Thr276, that becomes phosphorylated following PKG activation (Ramamoorthy et al., 2007; Zhang
et al.,, 2016; Bailey et al., 2018). Thr276 has been shown to be phosphorylated in the inward-facing
conformation upon the activation of PKG which leads to enhanced uptake kinetics (Blakely et al., 1998;
Ramamoorthy et al., 1998, 2007). Because SERT Ala56 is insensitive to increase 5-HT uptake upon PKG
activation, we speculate that the Ala56 substitution alters an N-terminus:ICL2 interaction to bias
conformation in a manner similar to that arising from PKG-dependent Thr276 phosphorylation. Such a
model can explain the reduction in 5-HT Ky observed with SERT Ala56 (Prasad et al., 2009). The ability
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of the Ala56 substitution to induce N-terminal conformational changes, along with the ability of p38a
MAPK inhibition to reduce SERT Ala56 hyperphosphorylation and hyperactivity (Prasad et al., 2005;
Veenstra-VanderWeele et al., 2012; Robson et al., 2018), suggests that the phosphorylation of one or more
sites, such as Thr276, arises following changes in either N-terminal conformation or kinase activation.
Further studies are needed to identify these sites and examine their responsiveness to changes in N-terminus
structure.

Surprisingly, the Asn605 substitution of the SERT C-terminus impacts both the sensitivity of the
N-terminus to trypsin and biases the transporter globally to an outward-facing conformation as seen with
the Ala56 variant, without increasing 5-HT uptake. Our FRET studies indicate that the C-terminal mutation
may stabilize SERT in either outward-facing or inward-facing conformations, though this results in no net
gain in 5-HT uptake. Nonetheless, the Asn605 mutation imparts, like Ala56, an insensitivity of SERT to
activators of both PKG and p38 MAPK. A putative p38 MAPK site has been identified in the SERT C-
terminus at Thr616 (Serensen et al., 2014). Interestingly, Asn605 lies in a critical alpha helical loop which
interacts with ICL1 to promote proper folding of SERT in an inward-facing conformation ready to traffic
to the surface (Koban et al., 2015).

A model worth exploring further is that SERT Ala56 facilitates transporter phosphorylation, such
as at Thr276, that stabilizes an outward-facing conformation whereas the Asn605 substitution has bimodal
conformational effects, one that enhances N- and C-terminal interactions to stabilize an outward-facing
conformation, and another that disrupts p38 MAPK phosphorylation of the C-terminus, stabilizing an
inward-facing conformation. Clearly, additional biochemical, structural and modeling studies are needed
to clarify these possibilities. Regardless, our findings reveal a capacity for relatively small changes in SERT
cytoplasmic domains to drive alterations in transporter conformation, underlying functional and regulatory

changes.
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Methods

Animals and Materials

All experiments using animal subjects were conducted according to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. All experiments involving animal subjects were
conducted as pre-approved by the Vanderbilt University and Florida Atlantic University Institutional
Animal Care and Use Committees. SERT Ala56 and SERT Gly56 (WT) littermate males (129/sv
background) 8-12 weeks old were generated from heterozygous breeding. Mouse genotyping was
conducted as previously described (Veenstra-VanderWeele et al., 2012). All reagents, salts and buffers,

unless otherwise specified, were obtained from Sigma-Aldrich (St. Louis, MO, USA).

CHO Cell Culture and Transfection

Chinese hamster ovary (CHO) cells used for transfection of human SERT (hSERT) constructs were
obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) maintained in
Dulbecco’s Modified Eagle’s Medium (DMEM, Invitrogen, Carlsbad, CA, USA), 10% fetal bovine serum
(FBS; Thermo Fisher, Waltham, MA, USA) 2 mM L-glutamine, 100 units/mL penicillin and 100 pg/mL
streptomycin at 37°C in a 5% CO; humidified incubator.
Culture of the stably expressing Flp-In"™-Cho hSERT and hSERT Ala56 were used as described in Prasad
et al. 2009. However, to overcome the lower total and surface expression of SERT Ala56 compared to WT,
which is believe to be due to 5-HT levels in the FBS in the media (although not shown directly), cells were
grown as described above except the DMEM was supplemented with dialyzed FBS (Cat # F0392, Millipore

Sigma, Burlington, MA, USA).

D-fenfluramine-Mediated [PH]5-HT EffTux
In vitro D-fenfluramine release, Flp-In"™-CHO-stable cell lines expressing SERT Ala56 or WT

SERT, previously described,(Prasad et al., 2009) were plated at 100,000 cells per well on a 24 well poly-D
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lysine coated plate. At 24-48 hrs after plating, cells were washed 2X with warmed Krebs-Ringers-HEPES
(KRH) assay buffer (130 mM NaCl, 1.3 mM KCl, 2.2 mM CaCl,, 1.2 mM MgSOs, 1.2 mM KH,PO4, 10
mM HEPES, 10 mM glucose, 100 uM pargyline, 100 uM ascorbic acid, pH 7.4) and then loaded with 20
nM [*H]5-HT (Hydroxytryptamine Creatinine Sulfate; Specific activity 28 Ci-mmol"; Perkin-Elmer,
NET498, Waltham, MA, USA) for 1 hr at 37°C followed by 2X wash with warmed KRH to remove excess
[*H]5-HT. Cells were then subjected to 500 pL total volume of 10 pM D-fenfluramine or vehicle for the
indicated time. The supernatant was then collected and 0.1% SDS was added to the wells to lyse the cells
to account for unreleased [*’H]5-HT. 250 pL of EcoScint XR scintillation fluid (National Diagnostics,
Atlanta, GA, USA) was added to the supernatant and the cell lysates and counted using a TriCarb 2900TR
scintillation counter (Perkin-Elmer, Waltham, MA, USA). Efflux was calculated by the counts in
supernatant divided by the total number of counts (supernatant + cell lysis) in both the presence and absence
of D-fenfluramine. To obtain D-fenfluramine mediated efflux, efflux in the absence of D-fenfluramine was
subtracted from efflux in the presence D-fenfluramine. Data were analyzed by an ordinary one-way
ANOVA followed by Sidak’s multiple comparison test of genotype differences.

Ex vivo D-fenfluramine induced [*H]5-HT efflux was conducted as previously described (Ansah et
al., 2003). Briefly, the hippocampus of a mouse was dissected after rapid decapitation and chopped on a
cold plate into ~300 um slices with a razor blade. Slices were placed in 300 pL of oxygenated Krebs’ Ringer
Bicarbonate (KRB) buffer (126 mM NaCl, 2.5 mM KCIl, 2.4 mM CaCl, 1.2 mM MgCl, 1.2 mM NaH,POs,
10 mM D-glucose, and 21.4 mM NaHCO;3, pH 7.4) supplemented with 50 uM pargyline, 50 uM ascorbic
acid, and 10 nM nisoxetine and 100nM nomifensine to block NET and DAT, respectively. The slices were
incubated with 400 nM [*H]5-HT for 30 minutes at 37°C. The slices were then loaded into the perfusion
chamber of the Brandel SF-12 Suprafusion system (Brandel, Gaithersburg, MD, USA), sandwiched
between GF/B glass fiber filter discs (Whatman, Maidstone, UK). Chambers containing filter-immobilized
brain slices were perfused at a flow rate of 0.7 mL/min with oxygenated KRB buffer for 45 min to remove
unloaded [*H]5-HT. Then samples were collected every 2 minutes, with the first 16 min used to establish
baseline release, followed by a 16 min perfusion with the indicated concentration of D-fenfluramine, and
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then an 8 min wash out with KRB buffer. At the end of the experiment, the filters and tissue were collected
and lysed in 2 mL of 20% SDS. Five mL of EcoScint XR scintillation fluid (National Diagnostics, Atlanta,
GA, USA) was added to each fraction and radioactivity was counted using a TriCarb 2900TR scintillation
counter (Perkin-Elmer, Waltham, MA, USA). Data for release is presented as a fraction of the total [*H]5-
HT loaded into each sample (amount released + amount remaining in the tissue), normalized as a percent
of baseline. Two-way repeated measure ANOVA followed by Bonferroni post-hoc test of genotype

differences was used to analyze statistical significance.

D-fenfluramine Competition Binding Assay with [>H]Citalopram

Hippocampal membrane samples from SERT Ala56 mice and their WT littermate controls were
prepared as previously described (Veenstra-VanderWeele et al., 2012). Briefly, after rapid decapitation, the
hippocampus was extracted and homogenized utilizing a Teflon-glass homogenizer in 3 mL of 50 mM Tris,
pH 7.4 followed by a 20-minute centrifugation at 15,000 X g. The resulting pellet was washed again in 50
mM Tris, pH 7.4 and re-centrifuged for 20 minutes at 15,000 X g. The supernatant was discarded and the
pellet was resuspended in 50 mM Tris with 120 mM NaCl, pH 7.4. 200 pg of membranes were preincubated
with various concentrations of fenfluramine (0.1 nM, 1 nM, 10 nM, 100 nM, 500 nM, 1 uM, 5 uM, 10
uM,100 pM, 1 mM) for 10 min at 37°C followed by the addition of 5 nM [*H]citalopram (Perkin Elmer,
Specific activity 74.5 Ci-mmol™, NET1039, Waltham, MA, USA) for 1 hr at room temp. Samples were
then harvested using a Brandel 48-sample Harvester (Brandel, Gaithersburg, MD, USA) onto GF/B
Whatman filters (Whatman, Maidstone, UK). The filters were washed three times with ice-cold PBS buffer
and then placed into 7 mL of EcoScint H scintillation fluid (National Diagnostics, Atlanta, GA, USA)
overnight. Radioactivity was counted using a TriCarb 2900TR scintillation counter (Perkin-Elmer,
Waltham, MA, USA). Binding was calculated and the non-linear fit of log ICso inhibition was calculated

using Prism 7.
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In Vivo Microdialysis Assessment of D-fenfluramine Mediated 5-HT Efflux

Mice were anesthetized with isoflurane and placed in a stereotaxic frame using mouse-specific ear
bars (Kopf Instruments, Tujunga, CA, USA). A guide cannula (Synaptech, Marquette, MI, USA) was
placed 1 mm above the dorsal hippocampus (-1.94 AP from Bregma, + 2.0 ML and -1.0 DV from dura and
secured to the skull with glass ionomer cement (Instech Solomon, Plymouth Meeting, PA, USA). After
recovery from surgery, animals were placed in individual dialysis chambers. A microdialysis probe
(Synaptech, Marquette, MI, USA) with the active length of 1 mm was inserted into the guide cannula. One
end of the tether was attached to the headpiece and the other end attached to a liquid swivel (Instech
Solomon, Plymouth Meeting, PA, USA) that was mounted on a counterbalanced arm above the dialysis
chamber. The probe was perfused at a flow rate of 1.0 uL/min with artificial cerebral spinal fluid (aCSF)
containing 149 mM NaCl, 2.8 mM KCI, 1.2 mM CaCl, 1.2 mM MgCl,, pH 7.2 at a flow rate of 1.0 pL/min
overnight. On the day of the experiment, four baseline dialysis fractions (20 min each) were collected. After
the 4th baseline, sample the aCSF was switched to aCSF containing 10 uM D-fenfluramine for 20 min.
Dialysate samples were stored at -80°C and analyzed by HPLC-EC for 5-HT levels. After the dialysis
session, animals were overdosed with sodium pentobarbital, brains removed and post-fixed in 4%
paraformaldehyde in 0.1 M phosphate buffer, sectioned, stained, and examined for acceptable probe
placement. Extracellular 5-HT levels from 0-80 min at the beginning of the experiment are reported as
“Baseline Levels” and reported in nM concentration. The area under the peak was calculated utilizing Prism

7 “Area Under the Curve” function taking the mean from 0-80 min as the baseline for each genotype.

5-HT Transport Assay in SERT Transiently-Transfected CHO Cells

CHO cells were plated on clear bottom 96 well poly-D lysine coated plates at 20,000 cells per well.
The next day, cells were transfected with 0.1 pg of DNA per well utilizing TransIT®-LT1 (Mirus, Madison,
WI, USA). Forty-eight hours later, cell culture media was removed and plates were washed 3X with 300
uL warmed phosphate buffered saline (PBS) with an ELX microplate washer (Biotek, Winooski, VT,
USA). [*H]5-HT uptake assays were performed in 200 pL final volume of KRH assay buffer. Inhibitors
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were added and incubated at 37°C for 10 min followed by the addition of 20 nM (final concentration) [*H]5-
HT. For the uptake inhibition studies, noribogaine HCL was custom manufacture under cGMP conditions
performed by Ajimoto Omnichem (Lot number: 606950001). Eight serial dilutions of noribogaine from 10
mM to 1 nM were used. After 10 min at 37°C, transport assays were stopped by rapid wash 3X with ice-
cold PBS using the ELX microplate washer. MicroScint scintillation cocktail (200 uL) was added to each
well and agitated for 1 hr. Counts representing total and non-specific 5-HT uptake were measured using a
MicroBeta2 Microplate counter (Perkin-Elmer, Waltham, MA, USA). Specific uptake was determined by
subtracting the counts from wells incubated with 10 uM paroxetine for 10 min at 37°C prior to the addition
of [’H]5-HT. The non-linear fit of log ICs inhibition was calculated using Prism 7 to determine statistical

significance.

Assessment of SERT N- and C-termini Apposition using Fluorescence Resonance Energy Transfer (FRET)
CFP, YFP, CFP-YFP, and CFP-SERT-YFP constructs were generously provided by Sonja Sucic
and Harald Sitte, Medical University of Vienna. CFP-Ala56-YFP and CFP-Asn605-YFP constructs were
generated from these vectors using the Q5 site-directed mutagenesis kit (New England Biolabs, Ipswich,
MA, USA). Each construct was individually transfected into CHO cells plated (20,000 cells per dish) onto
35 mm MatTek poly-d-lysine coated dishes (No. 1.5 cover glass, Ashland, MA, USA). Cells were washed
2X with warmed PBS and then imaged in KRH buffer over 5 min in a Tokai Hit Stage top incubator set to
37°C and 5% CO». We used a 60X oil immersion objective (Plan Apo Lambda, NA 1.4) on an A1R confocal
Ti inverted microscope at the Florida Atlantic University Cell Imaging Core. All FRET images were
captured utilizing the FRET plugin of NIS Elements Imaging Software (Nikon, Tokyo, Japan). The scan
head dichroic mirror optical configurations were set up to acquire the donor alone (Dd: excite CFP at 440nm
and dichromatic mirror set to capture CFP 485/35 nm), acceptor alone (Aa; excite YFP at 514 and
dichromatic mirror set to capture YFP at 538/33 nm), FRET (Da; excite CFP at 440 nm and dichromatic
mirror set to capture YFP at 538/33nm) and bleed through (Ad; excite YPF at 514 nm and dichromatic

mirror set to capture CFP 485/35 nm). Negative controls of CFP and YFP constructs were imaged alone to
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acquire CoA (Acceptor in FRET or Daaccerror) and CoB (Donor in FRET or Daponer). As a positive FRET
control, a fused CFP-YFP construct was also imaged. Images were thresholded manually to regions of
interest that were defined by the membrane of the cells and the corrected FRET (Corr FRET) and FRET
efficiency (FRET eff) for each image was averaged over the 5 min by the FRET plugin in NIS Elements as

followed:

Corr FRET = [Darrer — Ddrrer X (Daponer/Ddponer) — Aarrer X (Daacerror/Aaacertor)] / Ddrrer

FRET Eff = Corr FRET /Ddgrer *100

Total expression of C-SERT-Y and variant constructs were assessed by western blot analysis.
Briefly, CHO cells were lysed in RIPA buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1%
Triton X-100, 1% sodium deoxycholate, 0.1% SDS) for 1 hr at 4° C and then centrifuged for 20 min at
17,000 X g. 50 pg of the resulting supernatant was incubated with 4X Laemmle buffer (Bio-Rad
Laboratories, Hercules, CA, USA) at room temp for 30 min and then separated on a NuPAGE 10% Bis-
Tris protein gel (Invitrogen, Carlsbad, CA, USA) and transferred to Immobilon-FL PVDF membrane
(Millipore Sigma, Burlington, MA, USA). Protein was visualized by immunoblotting with a rabbit-CFP
antibody (BioRad, Hercules, CA, USA) then probed with IRDye 680RD secondary antibody (LI-COR
Biosciences, Lincoln, NE, USA). Immunoreactive bands were imaged using the Odyssey Fc (LI-COR
Biosciences, Lincoln, NE, USA). Actin levels were measured as a loading control using an HRP-labeled f3-
actin antibody (Sigma-Aldrich (St. Louis, MO, USA). Densitometry was performed using Image Studio

software (LI-COR Biosciences, Lincoln, NE USA).

Sensitivity to Transport Inactivation by Methanethiosulfonate Reagents

ASD variants were introduced into native or cysteine-reduced SERT backgrounds of pcDNA3-
hSERT using the Stratagene QuikChange® kit (Agilent Technologies, Santa Clara, CA, USA) and verified
by sequencing (Eurofins MWG Operon, Huntsville, AL, USA). Analysis of the intracellular Cys277 probe
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required introduction of the ASDs into the X5C background (C15A, C21A, C109A, C3571, and C622A)
(Sato et al., 2004) prior to transient expression in HEK-MSR cells (Thermo Fisher, Waltham, MA, USA)
using TransIT®-LT1 (1 pl per 200 ng of DNA; Mirus, Madison, WI, USA). Cells were maintained in a
humidified chamber with 5% CO2 at 37°C in DMEM supplemented with 10% FBS and 600 pg/ml G418.
HEK-MSR cells were plated at a density of 10,000 or 50,000 cells/well in 24-well culture plates, allowed
to settle and attach for 24 hrs, and then transfected with the mutant plasmids. After 24 hr, cells were washed
with 37°C PBS/CM buffer (137 mM NaCl, 2.7 mM KCI, 10.1 mM Na;HPOs, 1.8 mM KH,PO4, 0.1 mM
CaCl,, 1.0 mM MgCly, pH 7.4) or NMDG-CI buffer (120 mM NMDG-CI, 5.4 mM KCI, 1.2 mM CaCl,, 10
mM glucose, 7.5 mM HEPES, pH 7.4) and incubated with 1 mM MTSET, 10 mM MTSES, or 2 mM
MTSEA (Biotium, Fremont CA, USA) for 1-10 min at room temp. Post-treatment, cells were washed with
PBS/CM or NMDG-CI buffer and assayed for transport activity by incubation with 50 nM [*H]5-HT for 5
min at 37°C in MKRHG buffer (5 mM Tris, 7.5 mM HEPES, 120 mM NaCl, 5.4 mM KCI, 1.2 mM CaCl,,
1.2 mM MgSO4, 10 mM glucose, pH 7.4). Cells were dissolved in MicroScint™-20 (Perkin-Elmer,
Waltham, MA, USA) scintillation fluid and counts/min of radioactivity were determined using a TopCount
NXT scintillation counter (Perkin-Elmer, Waltham, MA, USA). Specific uptake was determined by
subtracting uptake observed in non-transfected cells. All experiments were repeated in three or more
separate assays and data fit to a one-phase decay curve. Half-life values estimated from inactivation were

analyzed using a one-way ANOVA followed by a post-hoc Dunnett’s test (GraphPad Software Prism 5).

Limited Proteolysis of SERT N-terminus

CHO cells transfected with HA-tagged SERT constructs were washed with PBS to remove media
and then scraped in 1 mL of Trypsin Homogenization Buffer (20 mM HEPES, 2 mM MgCl,, 0.5 M EDTA,
pH 7.4). Cells were incubated on ice for 30 min followed by five, 1-sec sonication pulses using a Q125
Sonicator (Fisher Scientific, Waltham, MA, USA). Samples were centrifuged for 10 minutes at 17,000 X g
and the resulting pellet was resuspended in trypsin homogenization buffer substituted with 150 mM NaCl

or ChCl. For digestion assays, 50 pg of protein was incubated with 4 ug of trypsin (Promega, Madison, W1,
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USA) for 5, 10 or 15 min on ice. The reaction was stopped by the addition of 8 pg of soybean inhibitor
(Sigma-Aldrich, St. Louis, MO, USA). Then, 2X Laemmle buffer (Bio-Rad Laboratories, Hercules, CA,
USA) was added to the sample and boiled at 95°C for 3 min. Samples were separated using a NuPAGE
10% Bis-Tris protein gel (Invitrogen, Carlsbad, CA, USA) and transferred to Immobilon-FL. PVDF
membrane (Millipore Sigma, Burlington, MA, USA). HA-tagged SERT protein was visualized using a
mouse anti-HA antibody (BioLegend, San Diego, CA, USA) probed with IRDye 680RD secondary
antibody (LI-COR Biosciences, Lincoln, NE, USA). Immunoreactive bands were imaged using the
Odyssey Fc (LI-COR Biosciences, Lincoln, NE, USA) and densitometry was performed using Image Studio
software (LI-COR Biosciences, Lincoln, NE USA). Tryptic digestion efficiency was determined by
calculating the percent uncleaved as the band intensity of tryptic digestion divided by the total band
intensity. If there was a 2-fold difference in total SERT expression across genotypes or less than 90% of
the protein remained after digestion, the blot was not analyzed. To account for variation in band intensity

across blots, paired Student’s t-tests at each time point were used for statistical analysis.

Statistical and Graphical Analyses
Data from experiments were analyzed and graphed using Prism 7.0 (GraphPad Software, Inc., La
Jolla, CA, USA). For all analyses, a P < 0.05 was used to infer statistical significance. Specific details of

statistical tests are given in each figure legend.
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CHAPTER 3

PROTEOMIC ANALYSIS OF HYPERACTIVE SERT INTERACTING PROTEINS

Ran Ye, Matthew J. Robson, Kristie Rose, and Randy D. Blakely
contributed to the studies reported in this chapter

Introduction

Disruptions in serotonergic signaling have been implicated in a wide array of neurological
disorders, including depression (Plaznik et al., 1989; Meltzer, 1990), ASD (Cook et al., 1997; Muller et al.,
2016) and OCD (Sinopoli et al., 2017), among others. The primary regulator of the termination of 5-HT
signaling is the high-affinity 5-HT transporter SERT, which rapidly clears 5-HT from the extracellular
space. Evidence suggests that SERT responds to environmental demands of the system to modulate 5-HT
uptake activity, ultimately to regulate the availability, in space and time, of extracellular 5-HT. For example,
activation of the interleukin 1 receptor (IL-1R), signaling through p38 MAPK pathway elevates SERT
activity (SERT?*), decreasing extracellular 5-HT levels (Zhu et al., 2010). Interestingly, stimulation of
kinase pathways linked to increase SERT activity, such as p38 MAPK and PKG (Zhu et al., 2004) has also
been shown to modulate SERT interacting proteins (SIPs) (Bauman et al., 2000; Samuvel et al., 2005; Zhu
et al., 2011). Thus, it is hypothesized SERT exists in multiple activity states, defined and mediated by
distinct SIP complexes. Clearly defining the protein complexes of the different SERT conformational states
will be useful in identifying possible novel drug targets beyond SERT to manage 5-HT associated disorders,
particularly as therapeutic targeting of SERT has delayed efficacy and is achieved only with relatively
complete transporter blockade. More subtle therapeutics that alter or overcome the actions of SIPs may
allow for a restoration of SERT activity versus a complete blockade. However, identifying these
macromolecular complexes is technically challenging, as SERT does not exist in a static state with a defined

and constitutive set of proteins (Steiner et al., 2008). Were we to have SERT stabilized in a distinct
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conformation, one particularly associated with medical complications, we could hope to identify complexes
that interact only transiently with WT SERT and that might be of disease relevance to explore. In this
regard, the Blakely lab identified a gain-of-function, autism-associate coding variant, SERT Ala56 (Prasad
et al., 2005, 2009; Sutcliffe et al., 2005), which our evidence from Chapter 2 indicates to be stabilized in a
state distinct from WT SERT and associated with increased activity (SERT*). The availability of this SERT
Ala56 knock-in mouse model (Veenstra-VanderWeele et al., 2009, 2012) provides a natively-expressed
pool of stabilized SERT* from which we can search for proteins that prefer (or not) the SERT* state.

I present here my efforts to pursue candidate and proteomic analyses of SIPs differentially associated with
a functional SERT coding variant. This data provides insight into novel pathways and proteins that may

mediate SERT activity state.

Results

Identification of SERT Complexes by Immunoprecipitation

In order to identify novel SIPs using an unbiased approach, we optimized a SERT affinity-
purification (AP) protocol of midbrain synaptosomes from male WT, SERT Ala56 and SERT KO mice.
Importantly, we decided to only focus on male mice for this study as the past characterization of these mice
has been exclusively done in males (Veenstra-VanderWeele et al., 2012; Robson et al., 2018), mostly due
to the fact that that there is a 4:1 male bias found in ASD (Baio et al., 2018) . However, future studies
would clearly benefit from understanding sex difference in SERT functional regulation, which may provide
evidence to explains the male dominates exhibited by ASD. We also selected the midbrain region to identify
SERT complexes as the midbrain has the highest expression of SERT and also contains SERT in both
somatodendritic and axonal compartments (Ye et al., 2016). However, it is thought that SERT protein
complexes vary in target brain areas, such as the hippocampus or prefrontal cortex, which act to modulate
the distinct regulation of the transporter required of each brain region. Differences in transporter proteins

interactions in various brain regions has been previously been reported in our lab for both SERT (Ye et al.,
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2016) and DAT (Gowrishankar et al., 2018). Mapping the SERT interactome in various brain regions will
be critical to understand SERT function in different contexts.

SERT was immunoprecipitated from midbrain synaptosomes utilizing a C-terminal SERT anti-
serum #48 (epitope developed against amino acid 596-622 of rat SERT and detects both hSERT and rodent
SERT; (Qian et al., 1995b)) that was covalently cross-linked to magnetic protein A beads, as described in
Methods (Figure 12). Since the SERT Ala56 mutation is located within the N-terminus, we wanted to avoid
using an antibody directed against the N-terminus, as the mutation may affect antibody recognition. This
approach allows us to isolate and characterize SERT complexes from native tissue and identify both direct
and indirect protein-protein interactions.

SERT-associated protein complexes were determined by using Multi-dimensional Protein
Identification Technology (MudPIT) (Wolters et al., 2001), an application that allows for increased
detection of peptides from LC-MS/MS. The resulting peptides match to a total of 1050 proteins. To
quantify the amount of protein interacting with SERT in the different conditions, two label-free quantifying
techniques were employed, normalized spectral counts and precursor ion intensity. To eliminate non-
specific proteins, proteins that were only identified in samples from SERT KO midbrain, as well as proteins
with a 1.5-fold enrichment in SERT KO compared to WT or SERT Ala56 by either normalized spectral
counts or precursor ion intensity, were removed from final analysis, narrowing the list of specific SIPs to
459 proteins (Table 7). Importantly, SERT was identified only in WT SERT and SERT Ala56 samples
and there was no difference in SERT levels estimated between these samples in ion intensity or normalized
spectral counts, indicating the utility of our methods for identifying and quantifying proteins in our
immunocomplexes. Also, several proteins that were previously described SIPs were identified in by this
study (noted by * in Table 7) as well as proteins found in a separate proteomic analysis from another lab
(noted by ** in Table 7) (Haase et al., 2017), further supporting the utility of our methods. In order to
uncover SIPs that differentially interact with WT SERT compared to SERT Ala56, the log, fold change in
SIP levels from the WT/Ala56 ratio was calculated for both normalized spectral counts and precursor ion
intensity (fold change < -1 means increased interaction with SERT Ala56, fold change > 1 means decreased
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Figure 12. SERT co-immunoprecipitation followed by LC-MS/MS
(A) Midbrain synaptosomes from WT, SERT KO (negative control), and SERT Ala56 mice were affinity
purified for SERT (n=3). Western blot confirms efficient SERT IP. (B) Coomassie-blue stain of eluate
from SERT IP confirms altered protein association profiles (red and blue arrow indicate increase and
decrease, respectively, protein band intensities in SERT Ala56 compared to WT). (C) In gel tropic
digestion was followed by an 8§ step MudPIT. Eluting peptides were mass analyzed on an LTQ Orbitrap
Velos (Thermo Scientific). Scaffold (version 4.7.3) was used to validate MS/MS based peptide and
protein identifications.




interaction with SERT Ala56 and fold change between -1 and 1 means no difference between genotype;
Table 7). Due to the exploratory nature of our effort, and the complementary aspects of these methods of
quantification, we only required differences in only one of the two approaches to consider for further
analysis. As seen in Figure 13 most proteins show overlap between normalized spectral count and
precursor ion intensity in quantifying differential SIPs across conditions, with only a few exceptions.

For example, CaMKIIP by normalized spectral count analysis shows log, fold-change of 2.57
indicating decreased interaction with SERT Ala56, but by ion intensity, the log, fold-change WT/SERT
Ala56 is -0.37 indicating no differences between genotypes. Previous studies identified CaMKIIf and
CaMKIla as a SIP and found that CaMKIla played an important in mediating D-amphetamine-induced 5-
HT efflux, with no further follow up on the role of CaMKIIp (Steinkellner et al., 2015). This is of interest
considering that SERT Ala56 was shown to blunt efflux in response to the D-amphetamine derivative, D-
fenfluramine (Quinlan et al., 2019), potentially suggesting that SERT Ala56:CaMKII association is also
affected.

Interestingly, significantly more proteins were nominated as SIPs with WT SERT (302 proteins;
65.8%) compared to SERT Ala56 (66 proteins; 14.38%) based on the log, fold change of precursor ion
intensity (Chi-square test P < 0.01). To provide some clarity on the association of the proteins within this
list of 459 proteins, network and functional clustering analysis was performed based on log, fold change of
precursor ion intensity proteins with increased and decreased interaction with SERT Ala56 as well as with
proteins that showed no difference in interaction between genotypes (91 proteins; 19.83%), and all proteins

combined (459 proteins).

Network Analysis of SIPs with Increased Interaction with SERT Ala56
There were 66 proteins with increased interaction with SERT Ala56 compared to WT SERT as
defined by log, ion intensity of WT/Ala56 of less than -1. Functional annotation clustering from DAVID

bioinformatics resource identified enrichment in proteins assigned to the cytoskeleton (GO:0005856), GTP
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Figure 13. Log: fold change of SIPs between SERT Ala56 and WT SERT

(A) Log; fold change of (A) precursor ion intensity and (B) normalized spectral counts. Proteins in red
indicated proteins increased interaction with SERT Ala56 compared to WT and blue labeled proteins
show increased association with WT SERT compared to SERT Ala56 based on precursor ion intensity.
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binding (GO:0005525) and cell-cell adherens junction (GO:0005913) (Table 3). The input of these proteins
into the STRING program found this network has significantly more interactions than expected (protein-
protein enrichment, Fisher’s exact test P = (0.00827) (Figure 14).

Three proteins that have been previously identified as SIPs were included in this list of proteins
with increased interaction with SERT Ala56 compare to WT SERT: serine/threonine protein phosphatase
2A (PP2A) regulatory subunit B (Ppp2r2c), protein transport protein Sec23a, and 14-3-31.

PP2A is a holoenzyme consisting of a catalytic “C” subunit coupled to “A” scaffolding subunit and
a regulatory “B” subunit (Kremmer et al., 2015). The catalytic subunit of PP2A (PP2Ac) has been
previously shown to form a functional interaction with SERT (Bauman et al., 2000). Interestingly, the “C”
subunit interacted less with SERT Ala56 compared to WT SERT, discussed more below. One possibility
to explain the differential binding of the “B” subunit versus the “C” subunit is that the “B” regulatory
subunit of PP2A binds to SERT Ala56 in a conformation that does not allow PP2Ac to bind.

Sec23A/24C, PDZ containing proteins, are members of coat protein complex II (COPII) that bind
to the C-terminus of SERT at amino acids Arg607-Iso608 (Chanrion et al., 2007; Sucic et al., 2011), and
have been reported to mediate SERT transport from the endoplasmic reticulum (ER) to the membrane
surface (Sucic et al., 2011). SERT Ala56 in transfected cells does not affect SERT surface expression
(Prasad et al., 2009), and thus no effort has been expended to assess changes in membrane trafficking that
could arise from heterologous expression of SERT Ala56. There may be cause to revisit this idea given that
the DAT Cys615 coding variant associated with ADHD has been found to undergo a different mode of
membrane recycling once transferred to the cell surface (Sakrikar et al., 2012). It should also be noted that
SERT surface levels from SERT Ala56 KI mice have yet to be determined and may be different from in
vitro studies, a phenomenon seen with another ADHD-associated DAT variant, DAT Val559
(Gowrishankar et al., 2018), where surface expression is not altered in transfected cells, but is impacted in

vivo.
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Annotation
Cluster

Enrichment
Score

Protein # Protein IDs

p Value

Cytoskeleton

GTP Binding

Cell-Cell
Adherens
Junction

3.05

1.72

3.05

2
= Pitpnm2, Septl1, Sept5, Sept8, Sptal

4 Agapl, Septll, Sept5, Sept8

7 Mark2, Arglul, Capzal, DIgl, Eeflg, Hspa5, Puf60

Mark1, Mark2, Add3, Capzal, Cepl31, Corolc, Cro2b,

2.2E-04

1.5E-01

4.7E-04

Table 3. DAVID Functional Analysis of SIPs Increased with SERT Ala56
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Figure 14. STRING network analysis of SIPs increased with SERT Ala56
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14-3-3 are adaptor proteins that stabilize a number of protein-protein interactions (Aitken et al.,
2004). 14-3-37 has been shown to interact with the N-terminus of SERT and decreased SERT Vmax
potentially through a PKC dependent pathway (Haase et al., 2001). However, there are multiple isoforms
of 14-3-3 and two other 14-3-3 isoforms (o/p and y) were shown to have increased interaction with WT
SERT while 14-3-3n showed increased interaction with SERT Ala56. These findings, if confirmed, may
indicate the use of 14-3-3 isoforms in different cellular compartments of 5-HT neurons (i.e. soma, dendrites,
axons). Further studies will be needed to tease apart the complexity of the interactions of the various 14-
3-3 isoforms with SERT, which may play very different roles in regulating SERT activity.

One novel family of proteins shown to interact with SERT Ala56 are the septin family. Septins are
a cytoskeletal GTPases which play a role in vesicle trafficking and compartmentalization of the plasma
membrane. Some studies suggest that septins may regulate exocytosis (Tokhtaecva et al., 2015).
Interestingly, Sept5 interacts with Sept11 (Bléser et al., 2010), which was also identified as a SIP and Sept5
(also referred to as CDCrel-1) which has been shown to bind to syntaxin 1A and inhibit exocytosis (Beites
et al., 1999). Syntaxin 1A has been shown to form a functional complex with SERT (Quick, 2002a), so
potentially these findings may suggest the presence of a Sep5:Sep11:Syntaxin 1A:SERT macromolecular
complex. As to the broader relevance of this work, it is interesting that Sept5 has been implicated in a
number of diseases, including ASD (Harper et al., 2012; Hiroi et al., 2012).

Haase and colleagues found in their proteomic analysis of SIPs an enrichment in synaptic vesicle
proteins (Haase et al., 2017). We identified two vesicular proteins, synaptophysin (Syp) and synaptotagmin-
11 (Sytl1) in the list of proteins which have increased interaction with SERT Ala56. However, synaptic
vesicles proteins were not found enriched in our specific network analysis, though it is well known that
vesicle protein complexes are dynamic interactors and some components may simply not have been
assembled in the extracts analyzed. Nonetheless, it seems reasonable to speculate that associations of a
more active SERT Ala56 might enhance proximity of the transporter to synaptic vesicles as a means of

enhancing the repacking of 5-HT. In this regard, a close association of DAT with the vesicle protein

&5



synaptogyrin-3 protein has been described by Egana et al. and suggested to play a role in DAT-dependent
refilling of DA synaptic vesicles (Egana et al., 2009).

Another novel interesting SIP shown to interact with SERT Ala56 is the fragile X mental
retardation 1 protein (FMR1). We also identified the fragile X-related protein (Fxrl). Fragile X syndrome
(FXS), a single gene disorder that results in the silencing of Fmrl, has considerable overlap in
symptomology with ASD (Belmonte and Bourgeron, 2006) and has been linked to 5-HT dysregulation
(Hanson and Hagerman, 2015). Treatment with the SSRI sertraline has been found to be beneficial for
some patients with FSX (Hanson and Hagerman, 2015). FMRI1 proteins are known to be RNA binding
proteins that tightly regulate the translation of proteins at an active synapse (Dockendorff and Labrador,
2019), such as the metabotropic glutamate receptor mGlur5 (Bear et al., 2004). Since the function of
FMR1/FXR1 is most often considered in relation to post-synaptic compartments where translational control
of protein expression can be manifested, it may be necessary to consider a somatodendritic site of SERT

expression and functions therein for the SIPs.

Network Analysis of SIPs with Decreased Interactions with SERT Ala56

Of the 459 proteins nominated from my studies as SIPs, 302 (or 66% of total proteins recovered)
were shown to have decreased interactions with SERT Ala56 compared to WT SERT. Functional
annotation clustering from DAVID online resource tool identified enrichment of proteins in this network
that are assigned to kinase activity (GO:0016301), specifically serine/threonine kinases (GO:0004674),
amphetamine addition (KEGG pathway) and Arp2/3 protein complex (GO:0005885) (Table 4). The input
of these proteins into the STRING program found this network has significantly more interactions than
expected (protein-protein enrichment, Fisher’s exact test P < 1.0e-16) (Figure 15).

In support of the findings related to kinase networks, several serine/threonine kinases were
identified to demonstrate a decreased association with SERT Ala56, including Mapk3, also known as the

extracellular signal-regulated kinase 1 (ERK-1). Not much is known about ERK-1 regulation of SERT,
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Cluster

Enrichment
Score

Protein # Protein IDs p Value

Kinase Activity

Ampehtamine
Addiction

Arp2/3 Protein
Complex

Serine/
Threonine
Protein Kinase

541

3.66

3.62

Araf, Cdc42bpb, Mark3, Mark4, Tnik, Agk, Cask, Csnld,
Csnkld, Csnk2al, Cerk, Cdkl18, Cdkl5, Dgkz, Dgkb,

28 TR e . 7.4E-06
Ddrl, Fn3k, Gk, Gsk3b, Magi3, Mastl, Mapk3,
Mapk8ip2, Map2kl, Map3kl13, Pfkl, Phkgl, Prkg2, Pdk3
6 Grial, Gria2, Gria3, Gria4, Crin2a, Ppplca 9.4E-03
> Actr3, Arpc2, Arpc3, Arpc4, ArpcSl 1.5E-05

Araf, Cdc42bpb, Mark3, Mark4, Tnik, Cask, Csnkld,
17 Csnk2al, Cdk18, Cdkl5, Gsk3b, Mastl, Mapk3, 1.1E-04
Map3k13, Phkgl, Prkg2

Table 4. DAVID Functional Analysis of SIPs Decreased with SERT Ala56
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Figure 15. STRING network analysis of SIPs decreased with SERT Ala56
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except for one study that reported that inhibition of ERK-1 prevented an estradiol-induced decrease in 5-
HT clearance in the rat hippocampus (Benmansour et al., 2014). However, the role of ERK-1 in regulating
DAT activity, surface expression and N-terminal phosphorylation have been well studied (Moron et al.,
2003; Bolan et al., 2007; Foster et al., 2012; Owens et al., 2012). Given that SERT is regulated by other
MAPK family members, specifically p38a MAPK, further studies are warranted to validate and determine
the functional significance of this association.

The Arp2/3 protein complex regulates and binds to the intricate branched actin network that plays
an important role in the maturation of dendritic spines (Korobova and Kvitkina, 2010), especially during
development (Chou and Wang, 2016). Disruptions in actin cytoskeleton networks may be involved in some
of the mechanisms purported to contribute to neuropsychic disorders (Yan et al., 2016), specifically spine
morphology has been found to be disrupted in ASD (Martinez-Cerdefio, 2017) and schizophrenia (Datta et
al., 2017). Given the presence of SERT in somatodendritic compartments, and our own work indicating a
physical association with NLGN2 in this compartment (Ye et al., 2016), the Arp3/3 protein complex is
worth further study as a potential determinant of SERT localization or trafficking in this compartment.

Interestingly, a significant number of proteins that are involved in a KEGG pathway ascribed to
amphetamine addiction were also identified to be less associated with SERT Ala56 compared to WT SERT.
Our finding of a decreased fenfluramine (a SERT-specific amphetamine) induced 5-HT efflux in cells
expressing SERT Ala56 vs WT SERT (Quinlan et al., 2019) may relate to an inability of proteins in this
network to properly regulate the process of transporter-mediated 5-HT efflux.

Many previously described SIPs are also found in this list, including PP2Ac, PKG, NLGN2 and
FLOT1, which are described in more detail below.

PP2Ac was also shown to have decreased interaction with SERT Ala56, despite increased
interactions of the mutant SERT with the regulatory subunit B (Ppp2r2C). Although this converse profile
for two subunits of the same complex are unclear, since PP2A is a Ser/Thr protein phosphatase that has

already been implicated in the control of SERT phosphorylation (Bauman et al., 2000), the decreased
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interaction of PP2Ac may speak to the hyperphosphorylation of SERT Ala56 seen in vivo (Veenstra-
VanderWeele et al., 2012).

PKGII was also identified to be reduced in SERT Ala56 complexes. Interestingly, past studies have
shown that PKGII does not interact with SERT due to the myristoylation domain that anchors PKGII to the
membrane (Zhang and Rudnick, 2011). However, these studies were performed in vitro (HeLa cells) and
perhaps in vivo SERT may localize to different lipid raft domains that allow SERT to engage in PKGII-
dependent regulation. The reduced interaction seen with SERT Ala56 may relate to the inability to further
activate the mutant transporter with PKG activators.

As noted above, NLGN2 forms a functional interaction with SERT in somatodendritic
compartments, specifically within the midbrain (Ye et al., 2016), most likely at dendritic sites that support
GABAergic synapses. Interestingly Nign2 KO mice exhibit social deficits that are mimicked in SERT
Ala56 mice (Ye et al., 2016), suggesting that NLGN2 may exhibit some of its perturbations of social
behavior through SERT and 5-HT-dependent mechanism. We have speculated that SERT, 5-HTia
receptors, NLGN2 and GABA receptors may form a complex to spatially co-organize inhibitory control
mechanisms that regulate 5-HT neuron excitability.

The protein that demonstrates the greatest reduction in associations with SERT Ala56, based on
precursor ion intensity, is FLOT1, which has been previously shown to interact with DAT (Cremona et al.,
2011; Sorkina et al., 2012) and SERT (Reisinger et al., 2018). Flotillin has been identified as a risk gene
for MDD (Zhong et al., 2019), though the wide distribution of the protein makes it difficult to attribute
specific behavioral changes to simply a serotonergic site of expression. In regard to DAT, our lab found
that an ADHD-associated DAT variant (Arg615Cys) also showed decreased interaction with Flot-1 and this
change coincided with altered DAT localization within membrane lipid rafts (Sakrikar et al., 2012). SERT
Ala56 has been found to localize to lipid raft compartments and to exhibit dynamic, regulated mobility
within these domains (Magnani et al., 2004). Interestingly, FLOT1 interaction with DAT is also necessary
for amphetamine-induced changes in DAT function (Sakrikar et al., 2012; Pizzo et al., 2013). Considering
SERT Ala56 shows a blunted fenfluramine-induced 5-HT efflux (Quinlan et al., 2019), SERT
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Ala56:FLOT] interactions may be constitutively diminished, supporting changes in transporter functional
states. Altogether, these studies in the context of our proteomic findings support the need for further analysis

of mutation-induced alterations in FLOT1:SERT Ala56 associations.

Network Analysis of SIPs that Shown Similar Interaction with Both WT SERT and SERT Ala56

In the proteomic analysis, 91 of the 459 proteins identified showed no difference in interaction with
WT SERT and SERT Ala56, though these proteins were assessed to have some degree of SERT specificity
since they were not present in SERT KO samples. Functional annotation clustering of these proteins
utilizing the online DAVID platform showed enrichment in proteins assigned to Src Homology 3 (SH3)
domain contacting proteins (UniProt keyword), GTPase activation (UniProt keyword), ATP binding (GO:
0005524), PDZ domain binding (GO: 0030165), and kinase activity (GO:0016301) (Table 5). Analysis of
the network by the online STRING platform showed significantly more interactions than expected (protein-
protein enrichment, Fisher’s exact test P = 2.8e-08) (Figure 16).

Proteins within the PDZ domain network represent scaffolding proteins that regulate multiprotein
complexes within the plasma membrane of both presynaptic active and postsynaptic density zones (Garner
et al., 2000; Nourry et al., 2003). The very C-terminal end of SERT contains a conserved, nonclassical
PDZ binding motif (NAV; amino acids 628-630), and thus it is not a surprise that a number PDZ domain
binding proteins were found to interact with SERT, including nNOS, PICK1, and the channel interacting
PDZ protein (Chanrion et al., 2007). PDZ domain is also referred to as the Drosophila discs-large (DLG)
homology domain as genetic disruptions of these proteins in Drosophila have been found to cause
significant changes to the morphology of synapses (Budnik, 1996). Interestingly, a number of variants of
the Dlg and Dlg associated protein (DIgap) have been found in ASD patients (Li et al., 2014). Genetically
elimination of Dlgap1 from mice decreases sociability (Coba et al., 2018). Considering 5-HT plays a critical
role in modulating social behavior (Muller et al., 2016; Walsh et al., 2018), perhaps some of the behavioral

effects of Dlgap mutations involves disruptions in SERT function. Often, PZD domains are found in
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Enrichment

Annotation Cluster . Protein # Protein IDs p Value
Score

Arhgap26, Arhgap32, Shank3, Srgap3, Yesl, Dlg2,

SH3 Domain 6.51 1l Dlgd, Macfl, Sorbsl, Tjp2, Tnk2 1.0E-08
yap2, Arhgap21. Arhgap23, Arhgap26,
GTPase Activation 4.81 8 Agap2, Arhgap21. Arhgap23, Arhgap26 3.9E-06

Arhgap32,Srgap3, Myo9a,Sipalll

Actr2, Abcd3, Atp9a, Agap2, Bmp2k, Yesl, Adckl,
ATP Binding 4 19 Acsl6, Camk2b, Csnklal, Csnkld, Gak, Dgke, 1.1E-04
Mthfdl, Myo9a, Myo18a, Pcx, Stk39, Tnk2

Guanylate Kinase/
PDZ Domain 3.16 4 Dlg2, Dlg4, Magi2, Tjp2 1.1E-04
Binding
Bmp2k, Yesl, Adckl, Camk2b, Csnlal, Csnkle,
Gak, Dgke, Prkar2a, Stk39.Tnk2

[
[
o0

Kinase Activity 11 9.0E-04

Table 5. DAVID Functional Analysis of SIPs of Similar Interaction with WT SERT and SERT
Ala56
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Figure 16. STRING network analysis of SIPs that show no difference between WT SERT Ala56 and
SERT Ala56
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combination with other interaction domains, including SH3 (Nourry et al., 2003), features of another
network shown to be enriched in our SIP analysis.

There is only one SH3 domain (PXXP) (Kurochkina and Guha, 2013) located within the C-terminus
of SERT, amino acids 614-617 (PETP). Interestingly, Thr616 has been shown to support SERT
phosphorylation in vitro by p38a MAPK (Serensen et al., 2014). The role of this SH3 domain is currently
unknown, however, could function as a scaffold for protein binding. Such a role has been suggested for
the SH3 domain located in the DAT N-terminus, which also contains a MAPK phosphorylation site (Thr53)
(Vaughan and Foster, 2013) that our lab has shown to be phosphorylated in response to D2 autoreceptor
activation (Gowrishankar et al., 2018).

One protein identified as unaffected by the Ala56 mutation that contains both an SH3 domain and
PDZ domain is the membrane scaffolding protein Shank3, another gene where mutations have been
associated with ASD (Moessner et al., 2007). Shank3 is expressed post-synaptically in excitatory synapses
and binds with neuroligins (another protein associated with ASD (Singh and Eroglu, 2013) and found on
this list), and accumulating evidence suggests that ASD is in part due to dysfunction of glutamatergic
synapses (Arons et al., 2012; Rojas, 2014). A number of other proteins in this list are found at excitatory
synapses including a glutamate receptor (Grial,2,3,4), glutamate receptor-interacting protein 1 (Gripl),
NMDA receptor 2 (Grin2a) and a glutamate transporter (Slcla3) isoform (Table 7) that has been implicated
in amphetamine action on DA neurons (Underhill et al., 2014). 5-HT is a modulatory molecular and forms
tripartite synapses with glutamatergic synapses (Belmer et al., 2017). Potentially SERT Ala56 differentially
interacts with scaffolding proteins linked to glutamatergic synapses that may at least partially explain some
of the ASD-linked effects exhibited by these mice. Additionally, the presence of SERT in somatodendritic
compartments where glutamate synapses are formed on 5-HT neurons may better explain these findings
since the extracts used for proteomic studies were taken from the midbrain where 5-HT neuron cell nodes
are localized. In this regard, the Amara lab has implicated SLC1A3 glutamate transporters in amphetamine

action through a somatodendritic site of action (Underhill et al., 2014).
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Network Analysis of All Identified SIPs

Functional annotation clustering of these proteins utilizing the online DAVID platform showed
enrichment in proteins assigned to SH3 domain-containing proteins (UniProt keyword), PDZ domain
(UniProt sequence feature), kinase activity (GO:0016301) and receptor clustering (GO:0043113) (Table
6). Input of these proteins into the STRING program found this network has significantly more interactions
than expected (protein-protein enrichment, Fisher’s exact test P < 1.0e-16 (Figure 17).

STRING analysis also identifies reference publications that contain genes or proteins that show a
significant overlap with the input list. Interestingly, three reviews on ASD showed significant overlap of
cited proteins and SIPs identified in the study: review of ionotropic glutamate receptors in ASD and FXS
(Uzunova et al., 2014) found that 20 of the 65 proteins listed overlapped with SIPs identified in the study
(FDR= 8.35¢e-11), and a review on monogenic mouse models of ASD (Hulbert and Jiang, 2016) reported
16 of 39 genes mentioned were found in our proteomic analysis (FDR = 9.88e-10). Together, these studies
point to the possibility that the finding of rare mutations in SERT in association with ASD may point to
many other protein complexes, some linked to and affected by SERT mutations, that also drive risk for
ASD, at least in part, through disruptions in 5-HT signaling.

Additionally, considering genes that are associated with structural connectivity of neurons (Lin et
al., 2016), 16 of 73 genes mentioned overlap with proteins identified in my study (FDR = 4.45e-07). This
suggests that several ASD related proteins with SERT regulation and activity may lead to a broader impact
than simple single synapse considerations, and may provide novel targets for a more circuit level treatment

of disorders associated with serotonergic dysfunction.
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Annotation
Cluster

Enrichment
Score

Protein # Protein IDs p Value

SH3 Domain

PDZ Domain

Kinase

Receptor
Clustering

Caskinl, Arhgap26, Arhgap32, Arhgap42, Arhgef7,
Shank3, Srgap3, Yesl, Baiap2, Binl, Cask, Cttn, Digl,
Dlg2, Dlg3, Dlg4, Dbnl, Macf1, Mapk8ip2, Myolf, Sorbsl,
Sorbs2, Sptal, Tjp2, Tnk2

9.36 25 6.6E-12

Dlgl, Dlg2, DIg3, Dlg4, Gripl, Magil, Magi2, Magi3,

2E-
Pard3, Ptpnl3, Tjp2 1.2E-10

8.83 11

Araf, Bmp2k, Cdc42bpb, Mark1, Mark2, Mark3, Mark4,
Tnik, Yesl, Adckl, Agk, Camk2b, Cask, Csnklal, Csnkld,
Csnkle, Csnk2al, Cerk, Gak, Cdk18, Cdkl5, Dgkz, Dgkb,

Dgke, Ddrl, Fn3k, Gk, Gsk3b, Magi3, Mastl, Mapk3,
Mapk8ip2, Map2k1, Map3k13, Pfkl, Phkgl, Prpf4b,
Prkar2a, Prkg2, Pdk3, Stk39, Tnk2

6.72 42 1.6E-09
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Dlgl, Dgl2, Dlg3, Dlg4, Magi2 3.8E-03

Table 6. DAVID Functional Analysis of All Identified SIPs
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Figure 17. STRING network analysis of all identified SIPs



Discussion

SERT is a dynamically regulated protein that relies on a growing list of SIPs to traffic, stabilize
and functionally regulate the transporter. Past studies have identified several SIPs that regulate SERT
function. However, the identification of large molecular complexes that mediate SERT function and that
are impacted by functional mutations has yet to be identified.

In our analysis of SIPs, a number of previously described proteins, such as CaMKII (Steinkellner
et al., 2015), FLOT1 (Reisinger et al., 2018), PP2Ac (Bauman et al., 2000), and NLGN2 (Ye et al., 2016)
were identified in this proteomic analysis of SIPs (*proteins in Table 7). Additionally, a number novel
interacting proteins, many of which have been linked to ASD, such as septin proteins (Harper et al., 2012;
Hiroi et al., 2012), DLGN (Li et al., 2014; Coba et al., 2018), FMR1 (Belmonte and Bourgeron, 2006),
NLGN3 (Singh and Eroglu, 2013) and SHANK3 (Moessner et al., 2007) were also identified in this
proteomic analysis of SIPs.

It was clear from this study that several SIPs associated with synapse and membrane localization
were identified, which is no surprise considering SERT functions at the synapse. However, how SERT in
different activity states compartmentalizes into different raft domains within the plasma membrane is still
not well elucidated. Of interesting note, a peptide targeted against the C-terminus of SERT, disrupting SIPs
(Chanrion et al., 2007), increases SERT lateral mobility within the membrane, an effect mimicked by
activation of p38 MAPK and PKG (Chang et al., 2012). It is believed that increased mobility is due to an
untethering of SERT from scaffolding proteins, increasing SERT motility (Chang et al., 2012). One
hypothesis that emerges from this observation is that SERT Ala56 has enhanced membrane lateral mobility,
which is supported by the decreased number of proteins that interact with SERT Ala56 compared to WT
SERT.

This study provides novel insights into proteins that may regulate SERT activity state, and future
studies aim to verify differential interaction with SERT and the role of these proteins in regulating SERT

functional state. Importantly, this list also provides potential novel targets that might act in a network to

98



regulate SERT and thus may be useful in generating therapeutics for diseases that exhibit serotonergic

dysfunction, such as ASD.

Methods

Animal Usage

All experiments conducted using animal subjects were conducted according to the National
Institutes of Health Guide for the Care and Use of Laboratory Animals. All experiments involving animal
subjects were conducted as pre-approved by the Vanderbilt University and Florida Atlantic University
Institutional Animal Care and Use Committees. SERT Ala56 and WT littermate males (129/sv background)
8-12 weeks old generated from heterozygous breeding while SERT KO mice on a C57BL/6J background
were breed from homozygous breeding. Mouse genotyping was conducted as previously described

(Veenstra-VanderWeele et al., 2012).

Antibodies
SERT: guinea pig anti-5-HTT (#HTT-GP-Af1400, Frontier Institute, Japan; 1:2,000 for western
blots); SERT anti-serum #48 (for co-immunoprecipitation (Qian et al., 1995b)); HRP-labeled B-actin

antibody (Sigma-Aldrich (St. Louis, MO, USA).

Serotonin Transporter Co-Immunoprecipitation and Western Blot

To increase SERT pull down for proteomic analysis, freshly dissected midbrain tissue from 4 mice
were homogenized in 10% (w/v) of 0.32 M sucrose, 10 mM HEPES, 2 mM EDTA utilizing a Teflon-glass
tissue homogenizer. The resulting midbrain homogenate was centrifuged for 10 minutes at 800 X g and
the supernatant was then subjected to 10,000 x g spin for 10 min. Pellets were lysed for 1 hr rotating in
PBS + 0.7% n-Dodecyl-beta-Maltoside (DDM; Thermo Fisher Waltham, MA, USA) detergent containing

protease inhibitors (P8340, 1:100; Sigma, St. Louis, MO, USA) at 4°C. Protein lysates were centrifuged
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for 15 min at 16,060 X g to obtain soluble material. Protein concentrations were determined by the BCA
method (Thermo Fisher, Waltham, MA, USA). 1 mg of supernatant was then added to 50 uL protein A
Dynabeads (Invitrogen, Carlsbad, CA) that were previously cross-linked with an anti-SERT serum #48
using dimethyl pimelimidate (DMP) (Schneider et al., 1982). Briefly, beads were washed 3X in PBS at
room temp followed by incubation with #48 anti-SERT serum at 4°C for 1 h. Antibody-bound beads were
then incubated with 6.5 mg/mL DMP in 0.2 M Triethylamine (TEA) buffer for 30 min at room temperature.
The incubation step was repeated 3X with freshly made DMP buffer each time. Cross-linked beads were
then quenched in 50 mM ethanolamine (EA) buffer for 5 min at room temp, washed 2X in 1 M glycine (pH
= 3) buffer, and then 3X in PBS (10 min, room temp) and then stored at 4C until use. Immunocomplexes
were eluted by incubating beads with 2X Laemmli sample buffer at 70°C for 10 min. Eluted samples were
subjected were separated by 10% SDS-PAGE, blotted to PVDF (Millipore, Billerica, MA) membrane and
then incubated with primary and secondary antibodies at dilutions noted above. Immunoreactive bands
were identified by band visualization and quantitation by enhanced chemiluminescence (BioRad Clarity
ECL, Hercules, CA) using an ImageQuant LAS 4000 imager (GE Healthcare Life Sciences, Chicago, IL)

or an Odyssey FC imager (Li-Cor Biosciences, Lincoln, NE).

Liquid Chromatography-Tandem Mass Spectrometry

Proteomic analysis was performed in the Vanderbilt Proteomics Core Facility of the Mass
Spectrometry Research Center. SERT immunocomplexes eluted from the antibody-conjugated Dynabeads
were first resolved for 6 cm using a 10% Novex® precast gel. Protein bands were excised from the gel and
cut into 1 mm?® pieces. The gel pieces were then treated with 4SmM DTT for 30 minutes, and available Cys
residues were carbamidomethylated with 100mM iodoacetamide for 45 minutes. After destaining the gel
pieces with 50% MeCN in 25 mM ammonium bicarbonate, proteins were digested with trypsin (10 ng/uL)
in 25 mM ammonium bicarbonate overnight at 37°C. Peptides were extracted by gel dehydration (60%
MeCN, 0.1% TFA), the extract was dried by speed vacuum centrifugation, and peptides were reconstituted

in 0.1% formic acid. The peptide solutions were then loaded onto a capillary reverse phase analytical
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column (360 pm O.D. x 100 um I.D.) using an Eksigent NanoLC Ultra HPLC and autosampler. The
analytical column was packed with 20 cm of C18 reverse phase material (Jupiter, 3 um beads, 300A,
Phenomenox), directly into a laser-pulled emitter tip. Peptides were gradient-eluted at a flow rate of 500
nL./min, and the mobile phase solvents consisted of 0.1% formic acid, 99.9% water (solvent A) and 0.1%
formic acid, 99.9% acetonitrile (solvent B). A 90 min gradient was performed, consisting of the following:
0-15 min (sample loading via autosampler onto column), 2% B; 15-65 min, 2-40% B; 65-74 min, 40-90%
B; 74-75 min, 90% B; 75-76 min 90-2% B; 76-90 min (column equilibration), 2% B. Eluting peptides were
mass analyzed on an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific), equipped with a
nanoelectrospray ionization source. The instrument was operated using a data-dependent method with
dynamic exclusion enabled. Full scan (m/z 300-2000) spectra were acquired with the Orbitrap (resolution
60,000), and the top 16 most abundant ions in each MS scan were selected for fragmentation via collision-
induced dissociation (CID) in the LTQ. An isolation width of 2 m/z, activation time of 10 ms, and 35%
normalized collision energy were used to generate MS2 spectra. Dynamic exclusion settings allowed for a
repeat count of 1 within a repeat duration of 10 sec, and the exclusion duration time was set to 15sec. For
identification of peptides, tandem mass spectra were searched with Sequest (Thermo Fisher Scientific)

against a mouse subset database created from the UniProtKB protein database (www.uniprot.org). Variable

modifications of +57.0214 on Cys (carbamidomethylation) and +15.9949 on Met (oxidation) were included

for database searching. Search results were assembled using Scaffold 3.6.4 (Proteome Software).

Sequest and Mascot Protein Identification

Charge state deconvolution and deisotoping were not performed. All MS/MS samples were
analyzed using Mascot (Matrix Science, London, UK; version 1.4.1.14) and Sequest (Thermo Fisher
Scientific, San Jose, CA, USA; version 1.4.1.14) by The Scripps Research Institute, Jupiter Florida. Mascot
was set up to search Mouse2016_08 BSA (16918 entries) assuming the digestion enzyme trypsin. Sequest
was set up to search Mouse2016 08 BSA.fasta (16918 entries) also assuming trypsin. Mascot was searched

with a fragment ion mass tolerance of 20 PPM and a parent ion tolerance of 10.0 PPM. Sequest was searched
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with a fragment ion mass tolerance of 0.020 Da and a parent ion tolerance of 10.0 PPM. Carbamidomethyl
of cysteine was specified in Mascot and Sequest as a fixed modification. Deamidated ion of asparagine and
glutamine and oxidation of methionine were specified in Mascot and Sequest as variable modifications.
Scaffold (version Scaffold 4.7.3, Proteome Software Inc., Portland, OR) was used to validate MS/MS
based peptide and protein identifications. Peptide identifications were accepted if they could be established
at greater than 89.0% probability to achieve an FDR less than 1.0% by the Scaffold Local FDR algorithm.
Protein identifications were accepted if they could be established at greater than 99.0% probability to
achieve an FDR less than 1.0% and contained at least 2 identified peptides. Protein probabilities were
assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contained similar peptides
and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of

parsimony. A total of 1050 proteins were identified.

Label-Free Quantification by Precursor lon Intensity and Normalized Spectral Counts

Spectral counts or the number of peptides observed per protein have been found to correlate with
protein abundance and therefore has been utilized a label-free quantification method (Wong and Cagney,
2009). However, there are many factors that can skew the number of spectral counts, including protein
length, protein abundance and variation across sample MS analyses (Miteva et al., 2013). Therefore
normalization of spectral counts has been developed as previously described (Paoletti et al., 2006; Tsai et
al., 2012). Briefly, normalized spectral abundance factor (NSAF) is calculated by dividing by the number
of spectra for each protein +1 (to avoid 0 spectral counts) by the length of the protein and the total number
of spectra from all proteins identified in the sample then multiplying by 100. This NSAF value is divided

the estimated proteome abundance (PAX) value from the PAX Database (www.pax-db.org) to assess the

relative enrichment of proteins within an isolated complex correcting for the possible bias resulting from
highly abundant proteins. This forms the normalized spectral count.
Another label-free quantification method is the measurement of the precursor ion intensity of the

MSTI spectra (Wong and Cagney, 2009). Scaffold Q+ (version Scaffold 4.7.3, Proteome Software Inc.,
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Portland, OR) was used to quantitate. Normalization was performed iteratively (across samples) on
intensities. Medians were used for averaging. Spectra data were log-transformed, pruned of those matched
to multiple proteins, and weighted by an adaptive intensity weighting algorithm. Of 22133 spectra in the
experiment at the given thresholds, 5672 (26%) were included in quantitation. Differentially expressed
proteins were determined by applying Mann-Whitney Test with unadjusted significance level p < 0.05.

To enrich for specific protein interactions, any protein only identified in SERT KO samples or were 1.5
times greater normalized spectral counts or precursor ion intensity of SERT KO compared to either WT or
SERT Ala56 samples were eliminated. Also, all ribosomal proteins were removed from the list to eliminate
proteins that are involved in the translation of SERT, which was not of interest for this analysis. This
narrowed the final list of SERT interacting proteins from 1050 proteins to 459 proteins. To determine
differential protein interactions, the log, fold change of WT/Ala56 was calculated for both spectral counts

and precursor ion intensity.

Functional Clustering Analysis of SIPs by DAVID and STRING

Functional clustering was broken up into 4 lists of proteins: Increased interaction with SERT Ala56
(log: ion intensity less than -1); Decreased interaction with SERT Ala56 (log; ion intensity greater than 1);
Similar interaction between WT SERT and SERT Ala56 (log. ion intensity between -1 and 1); and all
identified proteins.

The Database for Annotation, Visualization and Integrated Discovery (DAVID v.6.8;

https://david.ncifcrf.gov/) is a platform that allows for the identification of biological themes and gene
ontology terms from a list of genes (Huang et al., 2009a). The mouse genome was selected as the population
background. Functional Annotation Clustering was performed as described in Haase et al. 2017 with a few
exceptions. For the list of proteins with increased interaction with SERT Ala56 medium-stringency
classification stringency were utilized. For the other three lists, high stringency was used.

The Search Tool for the Retrieval of INteracting Genes/Proteins (STRING; https://string-db.org)

analysis was utilized to build functional networks of known and predicted interacting proteins. Interaction
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networks were generated using all five sources: genomic context predictions, high-throughput lab
experiments, co-expression, automated text mining, and previous knowledge in databases. The protein-
protein enrichment analysis is based on the number of edges detected compared to the expected number
edges based on the number of nodes presented (Fisher’s exact test followed by a correction for multiple
testing) (Szklarczyk et al., 2017). Network edges depict confidence with the line thickness indicating the

strength of data support.

Statistical and Graphical Analyses
Data from experiments were analyzed and graphed using Prism 7.0 (GraphPad Software, Inc., La
Jolla, CA, USA). For all analyses, a P < 0.05 was taken to infer statistical significance. Specific details of

statistical tests are given in Figure Legends.
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CHAPTER 4

GENETIC MANIPULATION OF MICE TO INTERFERE WITH CONFORMATION AND
SIGNALING DEPENDENT SERT REGULATION: CREATION AND ANALYSIS OF THE
SERT ALA276 AND SERT GLU276 MOUSE

Krista Paffenroth, Paula A. Kurdziel, Ran Ye, Isabel Stillman, Mathew J. Robson, Fiona Harrison,
Sammanda Ramamoorthy, and Randy D. Blakely contributed to the studies reported in this chapter.

Introduction

The transporter is a highly dynamic membrane protein, manipulated by a number of kinases,
including p38 MAPK, PKC, PKG and CaMKII signaling pathways (Bermingham and Blakely, 2016).
Many of these pathways have also been linked to mediating SERT phosphorylation levels. While there are
a number of predicted phosphorylation sites located along the cytoplasmic regions of SERT (Serensen et
al., 2014), Thr276 located on ICL2, was the first SERT phosphorylation site characterized (Ramamoorthy
et al., 2007).

SERT Thr276 was first investigated in relation to its role as a key mediator of PKG-dependent
regulation of SERT (Ramamoorthy et al., 2007). It was well known that activation of PKG pathways led
to both enhanced SERT mediate 5-HT uptake and SERT phosphorylation levels (Ramamoorthy et al.,
1998). Moreover, when Thr276 was mutated to Ala, SERT becomes insensitive to PKG activators, such as
8-Br-cGMP, in terms of activity and phosphorylation (Ramamoorthy et al., 2007). This work implicated
Thr276 as being the key amino acid required for PKG-dependent regulation of the transporter in both mouse
and human SERT. Notably, Wong and colleagues reported that although 8-Br-cGMP treatment of hSERT-
transfected cells leads to transporter phosphorylation, PKG is not the direct kinase that phosphorylates
SERT, suggesting that a different Ser/Thr kinase is activated through PKG-dependent pathways to
phosphorylate SERT Thr276 (Wong et al., 2012).

Data generated by Zhang et al. indicates that SERT Thr276 becomes accessible for phosphorylation

when the transporter is cycling through the inward-facing conformation (Zhang et al., 2016), most likely in
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the conformation assumed by the transporter as it releases its substrate 5-HT into the cytoplasm. These
findings are consistent with ICL2, where Thr276 resides, unwinding and becoming solvent exposed and
accessible for modulation as it enters the inward-facing conformation (Zhang and Rudnick, 2005b).
Recently, SERT Thr276 phosphorylation has also been found to be sensitive to membrane lipid
environments, with phosphorylation at Thr276 increasing when cholesterol is depleted from the membrane
in rat midbrain primary neuronal cultures, which also leads to an enhanced lateral movement of SERT
through the membrane (Bailey et al., 2018). Currently the role of phosphorylation at SERT Thr26 in vivo
is unknown. To investigate this issue, we developed a mouse line that is incapable of phosphorylation at
amino acid 276 by mutating the Thr to an Ala using CRISPR/Cas 9 technology, generating a SERT Ala276
KI mouse. We also generated a Thr 276 phosphomimetic line where the Thr at 276 was mutated to encode
a Glu residue, although through a currently unknown mechanism, the SERT Glu276 lost both SERT mRNA
and protein production. Herein, I describe our initial characterization of the SERT Ala276 mouse, finding
that many phenotypes do not appear to be different in comparison with WT animals. However, we identified
interesting sex-dependent behavioral changes in the SERT Ala276 KI mice that may indicate that SERT

regulation in males and females is different.

Results

Generation of SERT Ala276/Glu276 Mice by CRISPR/Cas9 and Baseline Characterizations

To study the in vivo impact of SERT Thr276, we sought to both eliminate the ability of Thr276 to be
phosphorylated by mutating the Thr residue to Ala in the native mouse SERT locus and to generate a
constitutive mimic of Thr276 phosphorylation by changing the Thr codon to Glu. Using the CRISPR/Cas9
approach, we developed a guide RNA targeted to chromosome 11 of the 6™ exon of the Slc6a4 gene and
donor oligonucleotides that possesses sequences leading to change changes of the codon at SERT 276 from Thr
(ACQG) to Ala (GCQG) or Glu (GAG) (Figure 18A). One male SERT Ala276 and one female SERT Glu276

founder mouse was identified via Sanger sequencing (Figure 18B) and was used to generate heterozygous (Het)
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mice that were subsequently backcrossed to the C57Bl/6J background 4 generations to eliminate any off-
target genes affected by CRISPR.

From 25 separate Het breeding pairs of SERT Ala276 of 69 litters across two institutions
(Vanderbilt University and Florida Atlantic University), which resulted in 458 pups total, we tabulated
offspring genotype and sex. The SERT Ala56 allele knock-in mice exhibited normal Mendelian segregation
(Figure 18C) when animals of both sexes were examined. Interestingly, we found a significant bias in the
sex of offspring from Het breeders, with fewer males recovered than females although genotype distribution
within each sex-maintained expectation for Mendelian transmission (Figure 18C), suggesting an issue of
a Het SERT Ala276 maternal genotype in the generation or growth of male vs female embryos (or that
mothers selectively kill males in immediately after birth, which we would miss). The weights between
genotypes of both sexes do not differ at any point from weening to adulthood (3-12 weeks of age) (Figure

18D).

Biogenic Amine Levels in SERT Ala276 Mice are Unaltered.

We next assessed if SERT Ala276 affected the levels of 5-HT and other biogenic amines and
metabolites in four different brain regions of adult (8-12 weeks) animals: midbrain, hippocampus, forebrain
and cerebellum. 5-HT and the main 5-HT metabolite, 5-hydroxyindoleacetic acid (5-HIAA), demonstrated
no difference across genotypes (Table 8A-B). We also measured catecholamine levels, finding again
normal levels across all genotypes in all brain regions assessed for DA and NE and two metabolites of these
neurotransmitters, 3,4-dihydroxyphenyl-acetic acid (DOPAC) and homovanillic acid (HVA), respectively.
Finally, we evaluated the main excitatory and inhibitory neurotransmitters, Glu and y-aminobutyric acid
(GABA), respectively, and again found no differences between SERT Ala56, heterozygous (Het), and WT

littermates for both males and females.
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Sicéad

SERT Thr276 (WT) SERT Ala276
Chromosome 11 Val Llys Thr Ser Val Lys Ala Ser

GTC AAA ACG TCT GTC AAA GCG TCT

Cc
Ala276
21%
WT Het Ala276 Total -
CllRs
57.25 114.5 57.25 229 -’g’,
? (12.5%)  (25%)  (12.5%)  (50%) ]
o F 57.25 114.5 57.25 229 s 16 - WT
g (12.5%)  (25%) (12.5%)  (50%)
Iﬁ wa= Het
Total 1145 229 114.5 458 14
(25%) (50%) (25%) (100%) - Ala276
- 67 121 51 180
g (14.63%) (26.42%) (11.14%) (30.3%)*** 12 . . . . .
@ F 62 110 47 278 4 6 8 10 12
3 (13.54%) (24.02%) (10.26%) (60.7%)*** Age (Week)
Total 129 231 98 458

(28.17%) (50.44%) (21.4%) (100%)

Figure 18. Generation of SERT Ala276 mice and baseline characterizations

(A) SERT Ala276 mice were generated by CRISPR/Cas9 technology utilizing a guide RNA targeted
against the 6th exon of SERT on chromosome 11 with a donor oligo that contained the SNP from “ACG”
encoding threonine to “GCG” encoding alanine at amino acid 276. (B) DNA sequencing of the founder
mouse showing threonine mutation (ACG) to alanine (GCG) mutation. (C) SERT Ala276 shows normal
Mendelian genetics from heterozygous breeders (Chi square, genotypes n.s.; male vs. female
**%P<0.001; n=458). (D) SERT Ala276 and heterozygous mice show normal body weights compared to
WT mice measured from 4 to 12 weeks (Two-way ANOVA, n.s.; n=5-10).
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Midbrain

Hippocampus

Male Female Male Female
WT Kl WT Kl WT Kl WT Kl
n 7 4 6 4 7 4 6 4
= 5.HT 24 64 2525 32.83 31.12 19.57 15.05 21.01 2210
‘® = +0.70 +6.398 +1.07 +1.83 +1.04 +3.79 +0.88 2.1
-
S lsuma 14.24 15.03 17.95 22.00 7.90 7.40 9.11 11.65
@ +0.56 +0.54 +0.85 +3.03 +0.39 +0.83 +0.44 +1.60
3 DA 1.53 1.90 237 1.75 0.36 0.26 0.23 0.49
o +0.10 +0.35 +0.21 +0.27 +0.07 +0.03 +0.02 +0.19
% DOPAC 1.06 1.25 1.41 1.41 0.32 0.34 0.28 0.49
c +0.08 +0.13 +0.13 +0.22 +0.03 +0.08 +0.03 +0.15
P T 1.84 2.19 2.50 2.3 0.76 0.81 0.81 1.29
E +0.16 +0.12 +0.13 + 047 +0.07 +0.19 +0.08 + 043
< NE 148 16.97 16.51 16.93 11.43 12.7 12.16 14.14
Q + 046 +1.25 + 0.58 + 1.22 + 0.57 +0.83 + 047 +1.13
c GABA 66.81 69.07 72.52 66.52 3485 36.27 40.09 49.28
§, +1.38 + 2.35 +11.40 +1.68 +1.87 +1.51 +1.20 +5.98
- Glutamat 184.80 204.60 196.4 210.80 228.20 237.50 268.30 201.50
[ uamats - 851 +6.96 £7.02 +4.21 £+203 | +1556 | 1525 | +3229
Frontal Cortex Cerebellum
Male Female Male Female
WT Kl WT Kl WT Kl WT Kl
n 7 4 6 4 7 4 6 4
— 5-HT 17.56 14.38 17.10 15.00 563 5.01 5.38 12.43
.E - +0.79 +3.02 +0.99 +1.08 +0.54 +1.82 +043 +4.16
° |shaa 4.43 4.79 4.78 6.04 3.01 267 3.45 7.77
a +0.21 +0.63 +0.42 +0.64 +0.31 +0.57 +0.16 +3.13
S DA 53.77 37.39 43.88 26.59 0.25 0.23 0.24 0.35
E, +8.22 +9.48 +5.13 +17.77 +0.01 +0.02 +0.03 +0.05
5.55 5.46 4.42 4.08 0.23 0.18 0.25 0.39
? 23eet +0.74 +1.45 +0.53 +2.16 +0.02 +0.04 +0.02 +0.11
~ HVA 6.372 5.98 6.37 5.98 0.34 0.32 0.32 0.69
2 +0.83 +262 +0.83 + 262 +0.02 +0.04 +0.03 +0.27
E NE 10.1 1241 10.45 11.37 10.45 1.17 11.65 15.36
o + 0.28 sl +0.24 + 0.77 +0.32 + 0.63 + 0.58 e
c GABA 33.02 2868 273 ar.70 29.40 25.99 27.29 31.38
& +1.22 +4.74 +1.15 +1.97 +272 +0.80 +1.19 +227
S Glutamate | 248.90 258.30 236.70 274860 161.50 214.50 211.90 205.10
"] +12.48 +10.15 +4.61 + 29.65 +32.83 +13.43 + 9,66 +10.84

Table 8. Biogenic Amine Levels of SERT Ala276 Mice are Normal

HPLC analysis of biogenic amine levels in WT and SERT Ala276 littermates, both male and female, in
the (A) midbrain and hippocampus and (B) frontal cortex and cerebellum. 5-HT and the main metabolite
of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) were not significantly different between genotypes.
Catecholamine levels, like DA and its metabolites, DOPAC and HVA, and NE were also not significantly
different between genotypes in all brain regions. Also, the major inhibitory and excitatory
neurotransmitters, GABA and Glu, respectively, were also not different between genotypes in all brain

regions. Ordinary one-way ANOVA followed by Tukey’s multiple comparison test, n.s. (n=4-7).
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SERT mRNA, Protein Levels, and Uptake Kinetics in SERT Ala276.

To determine whether SERT Ala276 or SERT Glu276 resulted in any changes in the expression of
SERT mRNA or protein, we performed qPCR and Western blot analyses, respectively. In both midbrain
and hippocampal extracts, we observed no effect of SERT Ala276 genotype on transporter mRNA
expression (Figure 19A). Since mRNA levels do not always directly correlate with protein expression,
we also performed Western blot analysis from midbrain detergent (RIPA, see Methods) extracts and again
found no differences across genotypes (Figure 19B).

A proxy to measure SERT protein expression, and one that can also reveal conformational changes,
is the use of radioligand binding assays with isolated membranes, incubated with a radiolabeled antagonist.
We pursued these assays (see Methods), using [*H]citalopram as the radiolabel. Surprisingly, we found a
significant, genotype-dependent decrease in SERT Ala276 [*H]citalopram binding compared to WT
littermates (Figure 19C). Since total protein levels were found to be normal, these data could mean that
either the Ala56 containing transporter adopts a conformation with reduced binding affinity for citalopram,
or that the allele impacts membrane trafficking as we may have not recovered intracellular, non-surface
trafficked vesicles containing the transporter when isolating membranes. If the latter observation is the
case, we would expect to see changes in 5-HT uptake kinetics that reflect the changes in radioligand
binding. We expected no change in 5-HT uptake kinetics as a result of the Thr276Ala substitution since in
vitro studies with transfected hSERT Ala276 showed no difference in SERT-mediated 5-HT uptake
(Ramamoorthy et al., 2007), and as expected, SERT Ala276 did not alter the Ky or Vimax of SERT mediated
5-HT uptake in midbrain synaptosomes (Figure 19D). These findings suggest that while the transporter
can cycle through transport conformations at normal rates, the binding site for citalopram may be impacted

by the allele, reducing antagonist affinity.
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Figure 19. Midbrain mRNA and protein levels of SERT Ala276 mice

(A) gqPCR analysis revels no significant difference in mRNA levels between genotypes in both the
midbrain and hippocampus (One-way ANOVA, n.s.; n= 7-10) (B) Midbrain membranes from SERT
Ala276 has decreased [*H]citalopram binding compared to membranes prepared from WT mice
(Ordinary one-way ANOVA, ** P <(.01) (C) Western blot analysis of whole midbrain lysed in RIPA
reveals no difference in protein levels across genotypes. (D) [*’H]5-HT uptake kinetic analysis shows no
difference in SERT mediated uptake between genotypes as assessed by both Vmax and K. (Ordinary
one-way ANOVA, n.s, £SEM, n=5)
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SERT mRNA, Protein Levels, and Uptake Kinetics in SERT Glu276

Unlike SERT Ala276, [*H]5-HT uptake from midbrain synaptosomes was completely abolished in the
SERT Glu276 mouse (Figure 20A). Western blot of SERT from RIPA-lysed midbrain synaptosomes
reveals a loss of SERT protein (Figure 20B). In another assay, [*H]citalopram binding from both midbrain
and hippocampal membrane preparations (Figure 20C&D) confirmed a loss of SERT protein expression
in the SERT Glu276 mice. This loss in protein expression is explained by the loss of SERT mRNA
expression in SERT Glu276 KI mice as assessed by gqPRC analysis (Figure 20E). For this reason, we have
not pursued further analysis of the SERT Glu276 mouse model until a mechanism for this loss of SERT

mRNA and protein are determined.

No Gross Abnormalities Observed with SERT Ala276 Mice

An extensive Irwin screen (Irwin, 1968) of SERT Ala276 mice and their littermates revealed no
gross abnormalities. Briefly, we measured several physical factors and gross appearances, including
whisker length, fur, piloerection and wounds. Additionally, we observed behavior in a novel environment
and noticed no differences between genotypes (Table 9). Importantly, SERT Ala276 exhibit normal
locomotion as measured in open field travel distance (data not shown), indicating that further tests that use
locomotor activity as a variable will not be confounded by locomotor ability. Reflex and reactions to simple
stimuli such as touch were also found to be equivalent comparing WT to SERT Ala276 mice. Finally,
multiple measures were collected when mice were subject to supine restraint, and SERT Ala276 exhibited

were found to exhibit behavior and physiological changes comparable to WT littermates (Table 9).

Anxiety- and Expression-like Behaviors in SERT Ala276 are Not Different from WT Animals

Since both 5-HT and SERT have been extensively studied for their role in depression and anxiety-

linked behaviors, we sought to assess if the expression of SERT Ala276 affected measures often used to
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Figure 20. Loss of SERT Glu276 5-HT uptake, protein and mRNA

(A) [’H]5-HT uptake kinetic analysis shows SERT Glu276 loses substrate mediated uptake (n=3-5) (B)
Western blot analysis of midbrain lysed synaptosomes reveals loss of SERT protein in both HET and
SERT Glu276, supported by loss of [*H]citalopram binding in both (C) midbrain and (D) hippocampus
membrane (One-way ANOVA, * P <0.05, ** P <0.01, *** P<0.001.; n=3) (E) qPCR analysis revels
loss of SERT mRNA (n=2-3).
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WT HET Ala276
Male Female Male Female Male Female
Sample Size (n) 14 1 6 7 9 6
. 24.56 19.05 24.58 18.74 22.97 17.37
Body Weight (g) +0.89 +0.38 +1.63 +0.64 +0.97 +0.92
Presence of Score: 3 Score: 3 Score: 3 Score: 3 Score: 3 Score: 3
Whiskers 14/14 1111 6/6 717 9/9 6/6
Score: 2 Score: 2 Score: 2 Score: 2 Score: 2 Score: 2
Appearance of fur
Physical 14/14 1111 6/6 7 9/9 6/6
Factors and . . Score:1 Score:1 Score:1 Score:1 Score:1 Score:1
Gross | Filoerection 714 5/11 5/6 317 519 516
i S R G e Score: 2 Score 2: Score 2: Score 2 Score 2: Score 2:
9 0/14 111 0/6 0/7 0/9 0/6
tagd Score 2: Score 2: Score 2: Score 2 Score 2: Score 2:
Fur missing on body 0/14 0/11 0/6 o7 0/9 0/6
Score: 0 Score: 0 Score: 0 Score: 0 Score: 0 Score: 0
Bt L 14114 0/11 0/6 o7 09 0/6
. Score: 5 Score: 5 Score: 5 Score: 5 Score: 5 Score: 5
Transfer Benavios 14/14 1111 6/6 M 9/9 6/6
- Score 4: Score 4: Score 4: Score 4 Score 4: Score 4:
Rt 14/14 1M1 6/6 707 919 616
Spontaneous activity Score 2: 3/14 Score 3: Sig?erezzszjlzsle Score 3 Score 2.5: 1/9 Score 3:
Score 3: 11/14 1111 Score 3: 3/6 717 Score 3: 8/9 6/6
- Score 2: Score 2: Score 2: Score 2: Score 2: Score 2:
R 14114 1M1 6/6 7 919 616
Tremor Score 0: Score 0: Score 0: Score 0: Score 0: Score 0:
. 14/14 1111 6/6 717 9/9 6/6
Observation of s 0 s 0 s 3 S 5 s 0 s 0
Behavior in core 0: core 0: core 0: core 0: core 0: core 0:
Novel il 14/14 1111 6/6 m 9/9 6/6
Environment [ . Score 0: Score 0: Score 0: Score 0: Score 0: Score 0:
e 14/14 1111 6/6 71 9/9 6/6
Gait Score 0: Score 0: Score 0: Score 0: Score 0: Score 0:
14/14 1111 6/6 77 9/9 6/6
: " Score 2: Score 2: Score 2: Score 2: Score 2: Score 2:
FEivio elevation 14/14 11111 6/6 M 9/9 6/6
. . Score 1: Score 1: Score 1: Score 1: Score 1: Score 1:
oSS 14114 mr 6/6 77 919 6/6
- Score 1: Score 1: Score 1: Score 1: Score 1: Score 1:
hiaion 14/14 1111 6/6 M 9/9 6/6
Defecation 3 3 2 2 3 4
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Score 2: Score 2: Score 2: Score 2: Score 2: Score 2:
fouch escape 14114 11/11 6/6 717 9/9 6/6
- o Score 0: Score 0: Score 0: Score 0: Score 0: Score 0:
e S e e 14/14 11111 6/6 7 9/9 6/6
Reactions Trunk curl Score 1: Score 1: Score 1: Score 1: Score 1: Score 1:
to Simple 14/14 1M1 6/6 77 9/9 6/6
L Body tone Score 1: Score 1: Score 1: Score 1: Score 1: Score 1:
Y 14/14 11/11 6/6 77 9/9 6/6
. Score 1: Score 1: Score 1: Score 1: Score 1: Score 1:
NG RS 14114 111 6/6 717 9/9 6/6
: Score 1: Score 1: Score 1: Score 1: Score 1: Score 1:
2AuEn 14/14 11/11 6/6 717 9/9 6/6
Behavior Score 1: Score 1: Score 1: Score 1: Score 1: Score 1:
Recorded | 227 1 14/14 111 6/6 717 9/9 6/6
During Supine . Score 1: Score 1: Score 1: Score 1: Score 1: Score 1:
Restraint | Abdominal tone 14/14 11/11 6/6 77 9/9 6/6
- Score 1: Score 1: Score 1: Score 1: Score 1: Score 1:
Provaad biing 8/14 5/11 1/6 2/5 416 0/6

Table 9. Irwin Screen of SERT Ala276 Mice
Mice showed no deficiencies in the following tests: physical and gross appearance, behaviors in a novel

environment, reflexes and reaction to simple stimuli, and behavior recorded during supine restraint.

Score numbers for each test are defined in the method section. Each test was analyzed by ordinary one-

way ANOVA, P < 0.05, n.s. (n= 6-14).
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examine these traits. To assess anxiety-like behavior, we measured both the time spent in the periphery of
an open field arena and time spent in the open arms of the elevated zero maze.

Expression of the SERT Ala276 allele does not affect the total distance travel in the open field (data
not shown), nor does it affect the time spent in the outer edges of the open field area (thigmotaxis) (Figure
21A), a measure often interpreted as an indication of anxiety. In the elevated zero maze test, another
measure of anxiety behavior, all mice, regardless of sex or genotype, spent the same percentage of time in
the open arms (Figure 21B), indicating no effect of Ala276 on anxiety behavior.

To assess depressive-like behaviors, we measured the time immobile in the tail suspension test and
the forced swim test. For both male and females, all mice displayed similar times spent immobile in the
forced swim test (Figure 21C). To avoid any forced swim-induced stress that may carry over to the tail
suspension test, a separate cohort of mice was used for the tail suspension test. Due to the allocation of
animals to other studies, only male WT and SERT Ala276 KI mice were assessed. Male SERT Ala276
mice showed no difference in the time spend immobile compared to their wildtype (WT) littermates during

the tail suspension (Figure 21D).

Sex-dependent Deficits in SERT Ala276

Interestingly, SERT Ala276 mice exhibited sex-dependent behavioral changes in a few assays. In
the inverted screen, males but not females demonstrated a decreased latency to fall from hanging on a wire
screen (Figure 22A). In the tube test of social dominance, in which two mice of the same sex meet in the
middle of the tube to determine which mouse will back out first, male SERT Ala276, but not females, won
significantly less compared to WT littermates (Figure 22B). Female SERT Ala276 mice, however, appear
to show deficits in marble burying (Figure 22C), whereas male SERT Ala276 mice bury a similar amount

of marbles as male WT animals during a 20-minute session.
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Figure 21. Normal anxiety and depressive like behaviors in SERT Ala276 mice

(A) SERT Ala276 mice spend similar percent of time in the periphery of the open field chamber (One-
way ANOVA n.s.; n=6-20). (B) There is no difference in time SERT Ala276 mice spend in the open
arms of the elevated zero maze compared to WT littermate (One-way ANOVA n.s.; n=6-20) (C&D)
Time spend immobile in both the FST and TST was not different between genotypes for both males and
females(One-way ANOVA n.s.; n=7-13).
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A Inverted Screen B Tube Test
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Figure 22. Sex dependent deficits in SERT Ala276 mice

(A) Male SERT Ala276 have a decreased latency to fall from an inverted wire screen compared to WT
male mice, with no difference between genotypes in females (Ordinary One-way ANOVA followed by
Tukey’s multiple comparison test, *P <0.05. (n=6-14) B) In an assessment of social interaction, male
SERT Ala276 win less in the tube test compared to WT littermate (28 bouts, n=4-5; Chi square test
**%p<(0.001). (C) Female SERT Ala276 heterozygous and homozygous mice bury less marbles in 20
minutes compared to WT female mice. (Ordinary one-way ANOVA followed by Sidak’s multiple
comparisons test, *P < (0.05, n= 3-9)
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Discussion

SERT amino acid Thr276 has been identified as phosphorylation site that participates in transporter
conformational dynamics (Zhang et al., 2016), as well as PKG-dependent regulation of the transporter
(Ramamoorthy et al., 2007). However, up until this point, the role of this phosphorylation site in vivo has
gone unexplored. The generation of a SERT Ala276 knock-in mouse model via CRISPR/Cas 9 technology,
provides a platform to address the function of SERT Thr276 phosphorylation with respect to transporter
function, 5-HT signaling, physiology and circuit-dependent effects in vivo, including actions on behavior
The data presented here provides an initial characterization of the SERT Ala276 mouse model from which
further investigations can be based to determine the functional aspects of SERT phosphorylation at amino
acid Thr276.

While most characteristics of the SERT Ala276 model proved equivalent to WT animals, such as
growth (as assessed by gross inspection and body weight) and transmission of the Ala276 allele met
Mendelian expectations, there was an interesting sex bias towards females in animals tabulated at weening,
however each sex showed equivalent allele distribution, thus we do not believe that the sex-genotype
interaction occurs at the level of pup genotype, but rather reflects a deficit in male viability, either in utero
or after birth. While we do not currently know the reason for this sex bias, there a recent publication
attributed exposure of the dam and sire to the selective SSRI paroxetine, skewing litters toward a female
bias (Gaukler et al., 2016). We also must take into consideration the possibility the SERT genotype of the
mother (in this case Het) could bias the sex distribution of the offspring. SERT is expressed in the placenta
(Balkovetzs et al., 1989) and a recent paper showed that maternal genotype of another SERT coding variant,
SERT Ala56, impacts 5-HT levels in the developing pup forebrain and the organization of thalamocortical
projections (Muller et al., 2017). This effect could be due to maternal behavior or the role of SERT in the
placenta that results in death selectively of males. This potentially suggests that changes to SERT function
and activity may influence either sex determination or pup survival.

In parallel to the generation of the SERT Ala276 mouse, the phosphomimetic SERT Glu276 mouse
was also created via CRISPR/Cas9 technology. Surprisingly, expression of SERT Glu276 leads to a loss of
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both SERT mRNA and protein expression, though a currently unknown mechanism. One possible
explanation is during the CRISPR/Cas9 process another mutation was introduced, shutting down the
promoter or damaging coding or noncoding sequences that by some mechanism causes the shutdown of
SERT RNA production. On the other hand, there is the possibility that the point mutation from Thr to Glu
destabilized the RNA that leads to nonsense-mediated RNA decay.

As expected, we detected no differences in biogenic amine levels across genotypes in four different
brain regions, midbrain, hippocampus, frontal cortex, and cerebellum. While other brain regions should be
assessed, the absence of changes in biogenic amine levels across these regions suggests that expression of
the SERT Ala276 mutation does not disrupt the density of serotonergic projections and their
neurotransmitter synthetic and storage machinery.

We also found no discrepancies in mRNA and protein levels as assessed by qPCR and Western
blot analysis, respectively. Surprisingly, we found that SERT Ala276 midbrain membranes displayed a
decrease in [*H]citalopram binding with statistical significance reached in Homo animals and a trend
evident in Het mice. This may be an indication that SERT Ala276 alters citalopram binding or it may be
indicative of a decrease in SERT surface expression of the SERT Ala276. This finding has possible
translational relevance, as many individuals diagnosed with depression do not find relief after treatment
with SSRIs (Warden et al., 2007). If this mutation is indeed causing an altered binding of citalopram to
SERT, and not simply changing its surface expression levels, it will be essential for future studies to further
define the structural changes that Ala276 may be having on SERT in relation to SSRI interactions, with
more SSRIs tested, and the potency assessed for SSRIs in suppressing SERT-dependent behaviors, such as
behavior in the tail suspension and forced swim test.

Interestingly, we found sex-dependent differences in specific behaviors comparing WT and Ala276
mice. Although more work is needed to define the exact cause(s) of these sex differences, it has become
increasingly clear that 5-HT has opposing actions in males and females in social behaviors (Terranova et
al., 2016). SERT Ala276 male mice showed a deficit in the inverted screen, in which the mouse hangs
upside from a wire mesh screen and the time to fall is recorded. This may be an indication of decreased
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grip strength in the SERT Ala276 mice. There is a substantial amount of literature addressing the link
between 5-HT, SERT, and spinal motor reflex (Machacek et al., 2001; Sibille et al., 2007; Horvath et al.,
2011, 2017; Enjin et al., 2012; Gourab et al., 2015; Gurel et al., 2015), which may explain the deficit in this
task.

Although we have focused most of our efforts on understanding the role of SERT phosphorylation
in the brain, we must recognize that SERT is more widely expressed with important functions in blood
platelets (Mercado and Kilic, 2010), in the gastrointestinal tract (Wade et al., 1996), in the adrenal gland
(Brindley et al., 2018), and in the immune system (Baganz and Blakely, 2013). The regulation and role of
SERT phosphorylation may have distinct functions in the periphery compared to the central nervous system.
The SERT Ala276 mouse model affords us the opportunity to assess the role of SERT phosphorylation in
these non-CNS tissues and systems.

Future studies aim to further characterize the impact of the Ala276 mutation in vivo and ex vivo on
SERT phosphorylation states, SERT membrane surface levels and response to drug perturbations.
Importantly, we would also like to assess the effect of SERT Ala276 on PKG-dependent regulation of the
transporter. Another area of interest is assessing the role of phosphorylation on biasing structural
conformational dynamics of the transporter. We will also assess the altered regulation of the SERT Ala276
in more complex behavior and drug responses. These studies offer opportunities to assess the contribution

of SERT conformational modulation in vivo and its physiological significance.

Methods
Generation of SERT Ala276/Glu276 Mice and Animal Usage

All experiments using animal subjects were conducted according to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and were pre-approved by the Vanderbilt
University and Florida Atlantic University Institutional Animal Care and Use Committees. To generate the

SERT Ala276 and Glu275 KI mouse model, we utilized CRISPR/Cas9 technology. Briefly, by using the online
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CRISPR design software developed in the Zhang laboratory (Massachusetts Institute of Technology,
http://crispr.mit.edu) we identified and generated oligos to insert our guide RNA (Sense RB5167:
CACCGAGGAGTCAAAACGTCTGGCA; Antisense RB5216: AAACTGCCAGACGTTTTGACTCCTC)
into the pX330 plasmid, a generous gift from Feng Zhang (Addgene plasmid #42230) that also encodes CAS9.
Donor oligos were also generated to knock-in a non-synonymous SNP from threonine (ACG) to alanine (GCG)
at amino acid 276 (bolded and underlined below; RB5192: GCATCATGCTCATCTTCACCATTA
TCTACTTCAGCATCTGGAAAGGAGTCAAAGCGTCTGGCAAGTTGAGGACTCTGCAGCTTGTCCT
GAACTGCCCAGGGCCCCGCAQG). The plasmid and donor oligo were injected into C57BL6/J embryos by the
Vanderbilt ES/Transgenic Mouse Core. The founder heterozygous male mouse labeled #9 (Figure 18B) was
breed with a C57Bl/6J female to produce pups. Pups that were verified to contain the mutation via
sequencing were then backcrossed for 10 generations on a C57BIl/6] background to remove off target
CRISPR events. For all experiments, SERT Ala276 and WT littermate males and females (C57BL/6J) 8-
12 weeks old were generated from heterozygous breeding. Mouse genotyping was conducted by
Transnetyx, Inc. using real-time PCR (Slc6a4-10 MUT; Forward Primer:

TGCAGATCCATCAGTCAAAGG; Reverse Primer: CCCTTGAACCTTCTAACAGATGTG).

Assessment of Mendelian Genetics and Growth of SERT Ala276

To determine genotype and gender distribution, we compared the expectation derived from Hardy—
Weinberg equilibrium to the observed outcome using y* tests set to P < .05 as an indication of statistical
significance. To compare the growth of the animals from development to adulthood, both male and female
mice of all three genotypes were weighed weekly from 3 to 12 weeks of age. One-way ANOVA was used

to determine statistical significance across genotypes.
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HPLC of Monoamine and Amino Acid Levels

Following rapid decapitation, the midbrain, hippocampus, frontal cortex and cerebellum were
dissected and flash frozen in liquid nitrogen. Biogenic amine levels were detected utilizing HPLC through
the Vanderbilt Molecular Neuroscience core facility as previously described (Veenstra-VanderWeele et al.,
2012). Biogenic amines were eluted with a mobile phase consisting of 89.5% 0.1M TCA, 10% M sodium
acetate, 10* M EDTA, and 10.5% (vol/vol) methanol (pH 3.8). Concentrations were determined using

comparisons to injections with known standards.

Quantitative Real-Time PRC Analysis of SERT mRNA expression

Quantitative PCR (qPCR) was utilized to determine Slc6a4 mRNA expression in wild type (WT)
and SERT Ala276 heterozygous and homozygous animals. Midbrain and hippocampus samples were
collected from both male and female mice that were sacrificed by rapid decapitation, with tissues
immediately frozen on dry ice, prior to storage at -80°C. RNA isolations were conducted from tissue
samples using Trizol reagent (Thermo Fisher, Catalog no. 15596018) according to the manufacturer’s
instructions. The total RNA concentration for each sample was quantified by spectrophotometry using the
LVis plate (BMG LabTech, FLUOstar Omega Plate Reader, Omega Software Version 5.11), with the purity
of samples checked to confirm that the 260/280 ratio was in the range of 1.8-2.1. Reverse Transcription
PCR was conducted on 1pg of RNA using a High Capacity cDNA Reverse Transcription Kit according to
the manufacturer’s instructions (Applied Biosystems, Catalog no. 4368814). gPCR was conducted on the
cDNA using a TagMan Gene Expression assay consisting of the TagMan Gene Expression Master Mix,
and appropriate TagMan probes (Master Max: Thermo Fisher Scientific, Applied Biosystems, Catalog no.
4369016, TagMan probes: Slc6a4 Mm00439391 m1, Catalog no. 4331182; 18S HS99999901, Catalog no.
4331182). All experiments were conducted using a Bio-Rad qPCR machine (Bio-Rad CFX96 Real-Time
System, C1000 Touch Thermal Cycler). Sample mRNA levels from qPCR assays were calculated using the
AACt method (Schmittgen and Livak, 2008) and normalized compared to WT littermates and the threshold

cycle (Ct value) of each gene was then normalized to 18S rRNA expression.
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Western Blot Analysis

Detection of SERT protein by western blot was performed as previously described(Brindley et al.,
2018) with minor revisions. Briefly, freshly dissected midbrain samples were homogenized in 50 mM Tris
pH 7.4 and then centrifuged at 15,000 X g for 20 minutes. The resulting pellet was resuspended RIPA
buffer (50 mM Tris-HCI, pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate and 0.1% sodium
dodecyl sulfate (SDS); Sigma-Aldrich, St Louis, MO) containing protease inhibitor cocktail (Sigma-
Aldrich, St Louis, MO, USA). Homogenates were nutated for 1 hour at 4 °C and the resulting protein lysates
were cleared of any insoluble material by centrifuging for 20 min at 15,000 x gand 4 °C. Protein
concentrations of the resulting supernatant were determined by the bicinchoninic acid (BCA) assay
(Thermo Fisher Scientific, Waltham, MA). 2X Laemmli loading buffer (Bio-Rad Laboratories, Hercules,
CA) was added to 50 ug of protein and then incubated at 37 °C for 12 minutes. The protein was separated
by a NuPAGE 10% Bis-Tris protein gel (Invitrogen, Carlsbad, CA) and then transfer to Immobilon-FL
PVDF membrane (Millipore Sigma, Burlington, MA). Membranes were blocked for 1 hour at room
temperature in 5% non-fat milk in Tris-buffered saline, 0.1% Tween 20 (TBST). Primary SERT antibody
(1:1000 dilution, Guinea pig anti-SHTT, Cat # HTT-GP-Af1400, RRID: AB2571777 Frontier Institute,
Japan) was incubated overnight at 4°C with constant agitation. The next day, membranes were subjected
to 4, 5 min washes, in TBST and then probed with IRDye 800RD Donkey anti Guinea Pig secondary
antibody (LI-COR Biosciences, Lincoln, NE). Immunoreactivity was detected using the Odyssey Fc (LI-
COR Biosciences, Lincoln, NE) followed by densitometry analysis using was using Image Studio software

(LI-COR Biosciences, Lincoln, NE).

Synaptosomes [PH]5-HT Uptake

Radioactive 5-HT uptake in midbrain synaptosomes was conducted as previously described
(Thompson et al., 2011). Briefly, mice were rapidly decapitated followed by dissection of the midbrain
into 3 mL of ice-cold 0.32 M sucrose and homogenized. Samples were then centrifuged at 800 X g for 10

minutes at 4°C. The resulting supernatant was then centrifuged at 15,000 X g for 20 minutes at 4°C. Pellets
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were resuspended in Krebs-Ringers-HEPES (KRH) assay buffer (130 mM NaCl, 1.3 mM KCI, 2.2 mM
CaCl,, 1.2 mM MgSOs, 1.2 mM KH;PO4, 10 mM HEPES, 10 mM glucose, 100 uM pargyline, 100 pM
ascorbic acid, pH 7.4). Protein concentrations were then determined by the BCA method (Thermo Fisher,
Waltham, MA). Radiolabeled [3H]5—HT (Perkin Elmer, Waltham, Ma) at 1, 5, 10, 50, 100, and 500 nM
(100 and 500 nM was 10% hot and 90% cold 5-HT) uptake into synaptosomes (50 pg) was conducted for
10 min at 37°C and terminated by rapid washing with ice-cold PBS onto Whatman filters (coated with 0.3%
PEI) using a Brandel Cell Harvester (Brandel). Non-specific uptake was calculated by subtracting the
counts from samples incubated in parallel with 10 uM paroxetine for 10 minutes at 37°C prior to the
addition of [*’H]5-HT, from total counts without paroxetine to yield specific uptake activity. Michaelis-

Menten curve fit in Prism 7.0 was used to calculate Ky and Viax values.

Membrane [°H] Citalopram Binding

Membrane [*H]citalopram binding was conducted as previously described (Veenstra-VanderWeele
et al., 2012). Briefly, after rapid decapitation, the midbrain was dissected and homogenized in 3 mL of 50
mM Tris-HCI, pH 7.4 using a glass Teflon homogenizer (Wheaton Science Products, Millville, NJ). Tissue
samples were then centrifuged at 17,000 X g for 15 minutes at 4°C. The pellet was washed by resuspending
in 50 mM Tris-HCI and centrifuged again. The resulting pellet was resuspended in 50 mM Tris + 150 mM
NaCl. Protein concentration was determined by the BCA method as described above. In a 250 pL final
volume, 200 pug of membranes were added to 5 nM [*H]citalopram (Perkin Elmer, Waltham, MA) for 1
hour at room temperature. Binding was terminated by rapid washing with ice-cold Phosphate buffer saline
(137 mM NaCl, 2.7 mM KCl, 1.8 mM KH,PO4, 10 mM Na,HPO4; PBS) onto Whatman filters (coated with
0.3% polyethylenimine) using a Brandel Cell Harvester (Brandel). Non-specific binding was calculated by
subtracting the counts determined from samples incubated in parallel with 10 uM paroxetine, from total

counts without paroxetine.

141



Irwin Behavioral Screen

Irwin behavioral screen, as previously described (Irwin, 1968), was conducted by the Vanderbilt
Murine Neurobehavioral core. First, physical factors and gross appearance were recorded by: coat color,
body weight, presence of whiskers (0-3 with 3 is a full set), appearance of fur (0-2 with 2 being well
groomed, normal), piloerection (0 = none, 1 = most hair standing on end); patches of missing fur on face
and body (2 = extensive), wounds (0 = none). Next, the mice were monitored and scored in a novel
environment (3 minutes in a clean tub cage) by: transfer behavior (5 = no freeze, immediate movement),
body position ( 4 = rearing on hind legs), spontaneous activity (0 = none, resting); respiration rate (2 =
normal), tremor (0 = none), palpebral closure (0 = eyes wide open), piloerection (0 = none), gait (0 =
normal), pelvic elevation (2 = normal, 3mm elevation), tail elevation during forward motion (1 = horizontal
extended), urination (1 = little), and defecation (number of fecal boli emitted during 3 minute period). Then,
reflexes and reactions to simple stimuli were observed and scored by: touch escape (finger stroke from light
to firm; 2 = moderate rapid response to light stroke), positional passivity (struggle response to sequential
handling; 0 = struggles when restrained by tail), trunk curl (grip tail and lift about 30 cm; 1 = present), body
tone (compress both sides of the mouse between thumb and index finger; 1 = slight resistance), and pinna
reflex (while the mouse is gently restrained, the auditory meatus is lightly touched with the tip of a 31 gauge
stainless-steel wire probe and ear retraction or head movement was recorded; 1 = active retraction,
moderately brisk flick). Finally, during supine restraint, the following was scored: skin color (color
gradations of plantar surface and digits of forelimbs, 1 = pink), heart rate (felt by palpation below sternum;
1 = normal), abdominal tone (palpation of abdomen, 1 = slightly resistance), and proved biting (gently

inserted dowel between the teeth at the side of the mouse, 1 = present).

Open Field
To determine locomotor activity, mice were placed in an open field locomotor chamber (11.0 x
11.0 inches, MedAssociates OFA-510, St. Albans, VT) containing 16 infrared photobeam detectors for 1

hour. Activity was assessed by the Med Associated software.
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Elevated Zero Maze

A mouse is placed on an open zone of the zero maze (Stoelting, Wood Dale, IL) and permitted to
explore freely while being videotaped from above. At the end of the trial, the mouse is removed from the
maze and returned to their home cage. Maze 'arms' are approximately 5-cm wide, with a 0.5 cm lip in the
open zones to prevent the mouse from falling. The closed 'arms' of the maze are 20-30 c¢m tall. The maze is
elevated approx. 2 feet from the floor. The maze is cleaned before and after each animal with either 10%

ethanol solution. AnyMaze was used to detect and analyze the mouse position during the 5-min trail.

Forced Swim Test

Mice are placed in a large beaker, filled with 25-27° C water such that they cannot escape from the
beaker and cannot touch the bottom. On each of two consecutive days, the mouse is placed in the beaker
for 5-15 min. Latency to float and the amount of time spent struggling are measured. The experimenter
monitors the mouse during the task, either by being within the same room or in an adjacent room with a
live video feed. If there is any indication that the mouse is struggling to keep its mouth above water or is in
danger of drowning, it is removed from the beaker immediately and excluded from the study. At the
completion of the test, the animal is removed from the beaker, towel dried and recovered for 10-20 min in

a warm cage (~35-37°C) sitting on a heating pad. Experimenters were blind to genotype during the test.

Tail Suspension Test

The tail of a mouse is taped to a vertical aluminum bar connected to a strain gauge inside a
commercial tail suspension test chamber (Med Associates, Fairfax, VT). Mice are hung directly vertically
to minimize chances of injury and to decrease the propensity for mice to climb their tail during the test.
Mice were monitored by two independent researchers for a total of 6 minutes to measures time spent

struggling. Experimenters were blind to genotype during the test.
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Inverted Screen

Mice are placed on a hardware wire cloth screen measuring approximately 15 cm x 15 cm. To
ensure the mice grip onto the wires, the screen is waved gently in the air three times. The screen is then
turned upside down, approximately 60 cm above a tub cage containing soft bedding material, and latency
to fall into the cage is measured. Maximal trial length is 60 seconds. If a mouse is observed to be abnormally
fatigued, distressed, or injured, it is immediately removed from the apparatus. Mice are given 3 trials per

session with an inter-trial interval of at least 5-mins between trials.

Tube Test

The tube test was conducted as previously described (Veenstra-VanderWeele et al., 2012; Robson
et al., 2018). For two consecutive days prior to testing, mice are introduced and allowed to enter and exit
the tube apparatus, a 30 cm long, 3.5 cm-diameter clear acrylic tube with small, acrylic funnels attached to
each end to aid in entry into the tube. On testing day, pairings were run in both directions as previously
described to avoid positional bias and were paired off against all counterparts present in opposing home
cage (Veenstra-VanderWeele et al., 2012). For each testing bout, randomized mice from the same sex and
age cohorts but separate and distinct home cages were placed at the opposite ends of the tube and released.
Each subject was declared a “winner” when their respective opponent backed out of the tube. If neither
animal backed out of the tube after a period of 2 minutes, a draw was declared. Draws were excluded from

analysis. All wins and losses were included in the analysis of tube test data.

Marble Burying

Mice are placed in individual cages containing ~5 cm of beta chip sawdust bedding or similar
(including Harlan, diamond soft bedding) for 15 minutes to acclimate to the test conditions. After 15
minutes each mouse is briefly removed from its cage, the bedding is smoothed and slightly compacted, and

up to twenty-five marbles (~1.5 cm) are placed in the cage in 5 rows. The mice are returned to the cage and
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allowed 20-60 minutes (most typically 30 minutes) to investigate the marbles. At the end of the study, the
mice are returned to their home cages and the number of marbles buried at least two-thirds of the way in

the bedding is recorded.

Statistical and Graphical Analysis
Data from experiments were analyzed and graphed using Prism 7.0 (GraphPad Software, Inc., La
Jolla, CA, USA). For all analyses, a P < 0.05 was taken to infer statistical significance. Specific details of

statistical tests are given in Figure Legends.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

While the work complied herein has added to the current knowledge of the role of SERT variants

in regulation of 5-HT uptake, several new questions have now arisen that need to be addressed to fully

understand the role of disease-associated variants in altering the regulation of SERT structure-function.

Structure-function relationship of ASD-associated SERT variants

The structure-function relationship is the basis of understanding how alterations in one aspect have
the ability to impact change in the other. One of the main hypotheses overarching in the field is that
disruptions in the structural conformation of a protein, either through genetic variation of the protein itself
or variation of another protein that acts on and/or with the protein of interest, will in turn affect the function
and/or regulation of the protein. This is evident of the ASD-associated SERT coding variants, SERT Ala56
and SERT Asn605, as described in Chapter 2 in which we demonstrated these variants exhibited
conformational equilibrium to a more outward-facing conformation and in Chapter 3 where we showed
SERT Ala56 affected protein complexes. Full understanding of the relationship between SERT protein
structure and function and its role in a larger signaling network can have much broader implications in
providing clues for potential targets for therapeutics that may be beneficial in disorders linked to 5-HT

disruption.

p38 MAPK Effect on SERT Conformational Equilibrium

As discussed in Chapter 2, the ASD-associated SERT variants insensitive to p38 MAPK dependent

upregulation of 5-HT uptake show altered conformational states (Quinlan et al., 2019). One question that
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remains, is if the stabilization of these variants is dependent on p38 MAPK signaling and does p38 MAPK
activation exhibit similar changes in SERT conformational states (Figure 23).

In light of the ability of a p38a MAPK inhibitor, MW150 and MW 108, to reverse SERT Ala56
increase in 5-HT clearance in vivo (Robson et al., 2018) it is hypothesized that inhibition of p38 MAPK
will also reverse the stabilization of SERT Ala56 in an outward facing conformation. However, it is
important to keep in mind, that only chronic one-week treatment of MW 150 showed normalization of 5-
HT uptake as this was the treatment paradigm required for reversal of the ASD-like behavioral phenotypes
(Robson et al., 2018). It would be necessary to test the ability of local administration of MW 150 to reduce
the enhanced 5-HT clearance in vivo as in vitro studies show that inhibition of p38 MAPK with SB203580
had no effect on SERT Ala56 transport (Prasad et al., 2009). However, the elevated SERT phosphorylation
seen in vivo in SERT Ala56 mice was rapidly (10 minutes) reversed by inhibition of p38 MAPK with the
compound PD169316 directly to synaptosomes (Veenstra-VanderWeele et al., 2012). Elucidation of this
time dependent reversal of uptake and phosphorylation by p38 MAPK inhibition is necessary to understand
the potential effects on SERT conformational states

It is currently unknown how p38 MAPK activation affects the conformational equilibrium of
SERT. If the hypothesis that SERT Ala56 mimics the SERT* state (trafficking independent enhanced 5-
HT affinity state) induced by p38 MAPK activation (Zhu et al., 2005, 2007), one would expect that p38
MAPK activation would show similar changes in the SERT conformational equilibrium as seen for SERT
Ala56. Preliminary data from out lab shows that activation of p38 MAPK with 10 pM anisomysin in
hippocampal brain slices decreases fenfluramine mediated [*H]5-HT efflux (Figure 24), mimicking what
seen in SERT Ala56 mice (Figure 6). One past study has linked p38 MAPK to amphetamine mediated
efflux showing that amphetamine increases SERT phosphorylation in a p38 MAPK dependent manner
(Samuvel et al., 2005). So, while this effect on p38 MAPK on efflux capacity does show that p38 MAPK
has the capability to mediated SERT conformational equilibrium. Repeating the MTS, FRET, and tryptic
digestion experiments as described in Chapter 2 in the presence of p38 MAPK activators and inhibitors
would shed light onto the role of p38 MAPK on regulating SERT structural conformation.
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Figure 23. Hypothesized model of p38 MAPK effect on SERT conformational equilibrium
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Figure 24. Anisomycin decreases D-Fenfluramine mediated [*H]5-HT efflux from hippocampal
slices

Hippocampal slices from WT mice were pre-incubated with 10 uM anisomycin or vehicle 30 minutes
prior to D-fenfluramine mediated [*H]5-HT efflux assay. Slices were loaded with 400 nM [*H]5-HT for
30 minutes and then perfused with KRB buffer for 15 min to establish baseline followed by 15 min 3
uM D-fenfluramine pulse and then a 15 min wash out with KRB. Slices pre-treated with anisomycin
showed a blunted D-fenfluramine mediated [*H]5-HT efflux compared vehicle treated slices (two-way
repeated-measures ANOVA; Bonferroni post-hoc test of genotype differences, *P < 0.05, **P < 0.01,
kP <0.001; n=5).
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Another question that also remains to be unanswered is if SERT Ala56 is in a conformation that
allows for basal p38 MAPK activity to act on the transporter or if SERT Ala56, through a currently
unknown mechanism, constitutively activates p38 MAPK, which then in a feedforward loop sustains the
enhanced uptake. If this hypothesis were true, it would be expected that the SERT Ala56 KI mice and cells
expressing SERT Ala56 would show enhanced p38 MAPK activation and phosphorylation. It would further
have to be shown that 5-HT uptake through SERT could activate p38 MAPK, which can be done comparing
cells transfected or not transfected with SERT and measuring p38 MAPK activation. This paradigm is
analogous to SERT mediated activation of nNOS, which was shown to interact and modulate SERT

function (Chanrion et al., 2007).

Turnover rate of SERT Ala56 uptake

Under basal conditions, it is thought that SERT takes up 5-HT at a rate of one 5-HT per second
(Talvenheimo et al., 1979; Ross and Hall, 1983; Qian et al., 1997). This rate is dependent on several factors
including the rate of 5-HT and ion binding as well as the rate of transition from the outward-facing to inward
facing conformation. It is possible that SERT Ala56 increase in 5-HT uptake is either through affecting
substrate binding affinities (discussed below) and/or though accelerating the rate of transition. One way to
test this hypothesis is through a 5-HT pair-pulsed assay as described by Kern and colleagues (Kern et al.,
2017). In this assay, the time it takes to recover 5-HT induced current after the initial addition of 5-HT is
measured from patched cells expressing SERT Ala56 or WT SERT. If SERT Ala56 does increase the rate
of transport, it would be expected that the recovery of 5-HT induced second current would be shorter
compared to WT. Interestingly, this assay would also provide evidence to test the hypothesis that SERT
Ala56 increase in 5-HT uptake is due to a shift in the SERT population to a more outward-facing
conformation. It is reasoned that if more of the transporters are in an outward facing conformation, the
current induced by the first pulse of 5-HT would also be greater (Hasenhuetl et al., 2018), therefore it would
be expected if that SERT Ala56 would have a significantly increased current compared to WT SERT in

response to 5-HT. A major caveat to these electrophysiological experiments, however, is the requirement
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of high expression of SERT to generate a detectable signal, and therefore often use preparations of
overexpressed SERT such as in transfected HEK-293T cells or oocytes. The Blakley lab has found that
kinase-dependent regulation of SERT is lost in systems that overexpress SERT likely due to the improper
stoichiometric ratio of SERT to kinase (Ramamoorthy et al., 1998).

Another proxy to measure the rate of 5-HT uptake would be a measurement of the N- and C-
terminus proximity utilizing FRET-based assay as described in Chapter 2. As it is thought that as SERT
moves through the transport cycle, the distance between the N-and C- termini change (Fenollar-Ferrer et
al., 2014), one may expect the rate change may be different between SERT Ala56 and WT expressing cells
depending on the addition of substrate and activation/inhibition of key regulatory kinases, like p38 MAPK
and PKG. In this assay, using the C-SERT-Y and C-Ala56-Y construct transfected into CHO cells, one
could track FRET intensity over time in the presence and absence of SERT substrates, such as 5-HT,

noribogaine, or fenfluramine.

SERT Ala56 Affinity for 5-HT and lon Dependency

Since SERT Ala56 is stabilized in an outward-facing conformation (Quinlan et al., 2019), one may
expect 5-HT and/or Na'/ClI  affinity may also be affected as the outward-facing conformation is required
for these substrates to bind under basal conditions. To test 5-HT affinity of SERT Ala56 one could perform
a radioactive displacement a SERT substrate, such as the cocaine analog RTI-55, in the presence of various
concentrations of 5-HT. This assay demonstrated that activation of p38 MAPK increased 5-HT affinity for
SERT (Zhu et al., 2005) and therefore it is hypothesized that SERT Ala56 would show a similar decreased
5-HT Kj, which may explain the decreased 5-HT Kwmin SERT uptake assay(Prasad et al., 2009). However,
it should be noted midbrain synaptosomal preparation from SERT Ala56 mice showed no difference in Na*
uptake when Na" was replaced with either Li" or NMDG (Figure 25). That being said, SERT Ala56 does
not show an increase in [’H]5-HT uptake in synaptosomes (data not shown), suggesting that the reduced
preparation of synaptosomes does not contain the necessary machinery to sustain elevated SERT Ala56

uptake.
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Figure 25. Na" dependent 5-HT uptake in SERT Ala56 midbrain synaptosomes

Midbrain synaptosomal [*H]5-HT uptake with various concentrations of NaCl replace with either
NMDG" or LiCl to maintain ionic concentration. WT and SERT Ala56 show no difference in the
concentration of Na" required for 5-HT uptake.
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Another possibility to explore is SERT Ala56 sensitivity to K™. K' binding to the inward facing
conformation is required for SERT reorientation to the outward facing conformation, a requirement not
found for other monoamine transporters. Considering the N terminus shows the most sequences divergence
between the monoamine transporters, potentially the N-terminus plays a role in K binding to the inward
facing conformation. Since the N-terminal SERT Ala56 variant is stabilized in an outward facing
conformation, this may be caused by an enhanced affinity of K" to the transporter and then reorientation to
the outward facing conformation. A difference between SERT Ala56 and WT on K loading may provide

a clue to understanding the role of the N-terminus and K+ in SERT mediated transport.

Surface Expression of SERT Ala56 In Vivo
Another important unexplained molecular mechanism of SERT Ala56 is the enhanced sensitivity

to PKC mediated downregulation of 5-HT uptake as well as SERT Ala56 unexpected PKG mediated
decrease in surface expression with no congruent change in SERT uptake activity (Prasad et al., 2009). In
transfected cells under basal conditions SERT Ala56 does not affect SERT surface expression; however, in
SERT Ala56 KI mice, SERT biotinylating studies have not been done. Based on the in vitro data, it would
be expected that SERT Ala56 in vivo also shows no difference in surface expression. However, there are
many instances where in vitro data do not match in vivo data, such as with the ADHD-associated DAT
variant, Val559, which showed no difference in DAT uptake and surface level in vitro (Mazei-Robison et
al., 2008), but in vivo, DAT Val559 mice showed decreased DA uptake and paradoxical increase in DAT
surface expression (Gowrishankar et al., 2018). Utilizing a surface biotinylation assay from brain slices of
different regions, as described in Gowrishankar et al. 2018, of SERT Ala56 mice compared to WT mice
may determine if SERT surface levels vary across brain regions in a genotype-dependent manner, which

may provide insight into region-specific modulation of SERT.
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SERT Ala56 Lateral Mobility within the Plasma Membrane

The lateral mobility of transporters within lipid rafts of the plasma membrane has been extensively
studied utilizing quantum dots conjugated to a cognate substrate that allows the tracking of single
transporters under physiologic conditions (Chang and Rosenthal, 2013). It has been shown that activation
of p38 MAPK and PKG pathways increases SERT mobility in plasma membranes (Chang et al., 2012).
Considering these kinase pathways increase SERT uptake it is hypothesized that the hyperactive SERT
Ala56 may also have enhanced lateral mobility. Interestingly, a C-terminal peptide against the C-terminus
of SERT that disrupts C-terminal interacting proteins, also increases SERT mobility within the membrane.
It is thought that the increased mobility is due to an untethering of SERT from scaffolding proteins,
increasing SERT motility (Chang et al., 2012). Proteomic analysis of SERT Ala56 also shows a decrease
in SIPs compared to WT, which may support the increased motility. Another means to increase SERT
lateral mobility is by changing the lipid composition of the plasma membrane, as Bailey and colleagues
found that depletion of cholesterol also increased SERT lateral diffusion within the membrane and
increased phosphorylation at Thr276 (Bailey et al., 2018). Interestingly, cholesterol has been shown to play
arole in regulating SERT conformational dynamics and SERT phosphorylation state (Scanlon et al., 2001;

Magnani et al., 2004).

Interacting proteins of ASD-associated SERT variants

SERT is part of a dynamic network of proteins connected to a number of scaffolding proteins that
mediate SERT’s location within the membrane as well as signaling cascades that affect the SERT PTM and
regulation of SERT activity. To identify proteins that interact with SERT in a state-dependent manner, our
lab employed a proteomic analysis from SERT affinity purified midbrain synaptosomes from WT, SERT
Ala 56 and SERT KO mice (Chapter 3). Several novel SIPs were identified as well as several previously
described SIPs. Below I discuss some of the interesting novel SIPs identified from our proteomic analysis
as well as some preliminary data on candidate proteins, either identified in the proteomic screen or proteins
that were of interest due to their link to p38 MAPK and PKG pathways.
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Novel SERT Interacting Proteins

One novel family of proteins identified from our proteomic analysis of SIPs is the septin (Sept)
family, Sept5, Sept8, Sept 10, Septl1. Sept 7 and Septl1 were also found in Haase et al. analysis of SIPs,
shown to interact with GST-SERT C-terminal fusion proteins (Haase et al., 2017). Septins are a cytoskeletal
GTPases that regulate vesicle trafficking and compartmentalization of the plasma membrane (Tokhtaeva et
al., 2015). Accumulating evidence suggests that septins impact the exocytosis process (Tokhtaeva et al.,
2015). Interestingly Sept5 (also referred to as CDCrel-1) has been shown to bind to syntaxin 1A, a
previously identified SIP (Quick, 2002a), and inhibit exocytosis (Beites et al., 1999). Sept5 is located on
human chromosome 22q11.2, a region with copy number variation (CNV) that has been associated with
increased risk to develop ASD. Mouse models that knock-out Sept5 gene show reduced social interaction
compared to WT mice (Harper et al., 2012; Hiroi et al., 2012). Our proteomic analysis reveals that Sept5
has an increased interaction with SERT Ala56, a mouse model that also shows deficits in social interactions
paradigms (Veenstra-VanderWeele et al., 2012). Future studies need to verify septin:SERT interaction and

determine if septins regulate SERT function.

Protein Phosphatase 24

Two proteins linked to PKG and p38 MAPK regulation of SERT are PP2A and syntaxin 1A, and
thus are of interest in regards to SERT Ala56 variant. It is known that inhibition of PP2A decreases SERT
uptake in transfected HeLa; however, this effect is lost with SERT Ala56 (as well as 1435L) (Prasad et al.,
2009). Surprisingly though, preliminary data from the Ramamoorthy lab shows that SERT Ala56 increases
interaction with PP2A compared to SERT (Figure 26), which is in contrast to the proteomic analysis
(Chapter 3) which shows that SERT Ala56 decreases interactions with PP2Ac. However, it was also found
from the same proteomic analysis that SERT Ala56 increases interaction with PP2A regulatory subunit B
compared to WT (Chapter 3), potentially explaining Ramamoorthy’s data. Being that PP2A is a

phosphatase and considering that SERT Ala56 is hyperphosphorylated in a p38 MAPK dependent manner
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Figure 26. SERT Ala56 interaction with PP2A and syntaxin 1A

Figure courtesy of Sammanda Ramamoorthy Ph.D. Preliminary data shows previously described SIPs,
PP2A and syntaxin 1A differentially interact with SERT Ala56 compared to WT from mouse midbrain

lysates.
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(Veenstra-VanderWeele et al.,, 2012) and the PP2A has been shown to be activated by p38 MAPK
(Westermarck et al., 2001) it might be expected that SERT Ala56 would show less interaction with PP2A.
However, it has been shown that inhibition of p38 MAPK disrupts SERT:PP2A interaction (Samuvel et al.,
2005), potentially suggesting that activation of p38 MAPK enhances and/or stabilizes the interaction and
thus explains the increased interaction seen with SERT Ala56. Interestingly, SERT Ala56 is insensitive to
PP2A mediated downregulation by calyculin A and fostriecin (PP2A inhibitors) (Prasad et al., 2009),
potentially suggesting a loss of PP2Ac:SERT Ala56 interaction. Most likely, PP2A interacts with SERT in
a large signaling complex and plays a complicated role in regulating SERT kinetics that still needs further

analysis.

Syntaxin 14

Another protein of interest, syntaxin 1A, showed disrupted interaction with SERT Ala56 compared
to WT SERT (Figure 26). This is somewhat surprising in the context that a protein that interacts with
syntaxin 1A, Sep5 (Beites et al., 1999), showed enhanced association with SERT Ala56 compared to WT
in proteomic analysis of SIPs (Chapter 3). Disruptions of syntaxin 1A interaction with SERT have also
been shown to decrease SERT Vmax (Quick, 2002a), which does not align with the decreased Ky exhibited
by SERT Ala56. Also, it was previously found that inhibition of p38 MAPK disrupts syntaxin 1A:SERT
interaction (Samuvel et al., 2005), suggesting that p38 MAPK activity stabilizes syntaxin 1A:SERT
interaction and therefore it might be expected that if SERT Ala56 would have an enhanced interaction with
syntaxin 1A if SERT Ala56 is hyperactive and hyperphosphorylated in a p38 MAPK manner (Veenstra-
VanderWeele et al., 2012; Robson et al., 2018). However, uncoupling of syntaxin 1A from SERT has also
been shown to induce a Na" conducting state of SERT independent of substrate (Quick, 2003), which has

yet to be examined in SERT Ala56.
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Flotillin-1

A previous study has shown that FLOT1, a membrane-raft protein, interacts with SERT in a state-
dependent manner (Reisinger et al., 2018). FLOT]1 has been linked to DAT localization to membrane
microdomains (Sakrikar et al., 2012); however, the role of FLOT1 on SERT compartmentalization within
the membrane has not been explored. On the same note, it is not known if SERT Ala56 or other SERT
variants co-localize to membrane microdomains and/or certain biosynthetic compartments. Proteomic
analysis of SIPs shows that SERT Ala56 decreases interaction with FLOT1 (Chapter 3). This is somewhat
analogous to the ADHD-associated DAT variant (R615C), which also showed impaired regulation by
amphetamine and decreased interaction with FLOT1. Also of interesting note, FLOT1 depletion has been
shown to enhance diffusion of DAT within the plasma membrane (Sorkina et al., 2012). Therefore, it may
be expected untethering of SERT from FLOT1 would also increase SERT lateral diffusion within the

membrane, a hypothesis suggested above.

Post-translational modifications of SERT

It was shown that SERT from Ala56 KI mice is hyperphosphorylated in a p38 MAPK dependent
manner (Veenstra-VanderWeele et al., 2012), and shows insensitivity to further stimulation by PKG and
p38 MAPK. However, which specific residues are phosphorylated in the presence of Ala56 substitution
are currently unknown. One possibility is that SERT Ala56 places the transporter in a conformation to be
more accessible for phosphorylation at Thr276 considering it has been shown to be mediated by both PKG
(Ramamoorthy et al., 2007) and p38 MAPK pathways (unpublished data). Thr276 is located in a
conformationally sensitive alpha helical loop (ICL2) that unwinds as the transporter transitions from the
outward-facing conformation to inward-facing conformation (Zhang et al., 2016). Thr276 becomes
accessible for modification as the transporter transitions into the inward-facing state. One hypothesis is
that the bulky phosphate group at Thr276 forms electrostatic interactions or repulsions with key residues,

perhaps on the N-terminus, that ultimately impact the ability of the ILC2 from completing the entire

158



winding and unwinding process as the transporter completes the transporter cycle and essentially shorting
the transition time from outward to inward facing conformation, thus leading to increase uptake.

Another post-translational modification that may affect SERT function and has been understudied
is ubiquitination. While ubiquitination is most commonly thought of labeling a protein for degradation,
there are several ubiquitination patterns that affect protein function independent from degradation. Several
ubiquitin ligases were shown to interact with SERT in the proteomic analysis (see chapter 3). In the
appendix, I highlight an E3 ubiquitin ligase (melanoma antigen E1; MAGE-E1) as a SERT interacting
protein, showing increased interaction with Ala56 expression. One hypothesis is the SERT Ala56 is
differentially ubiquitinated in a MAGE-E1 dependent manner, which can be tested utilizing a Ub-pull-down
method from SERT Ala56 expressing tissue or cells followed by immunoblot for SERT. Three putative
lysine residues in the SERT N-terminus were identified, K10, K29, K37 via the UbPred website.
Examining the effects of mutating these lysine residues to alanine on SERT protein expression and 5-HT
uptake on both the WT and Ala56 background would elucidate a potential role of ubiquitination on SERT

regulation.

SERT Ala276 KI mouse model

Amino acid Thr276 of SERT is a conformationally sensitive phosphorylation site (Zhang et al.,
2016), implicated in PKG (Ramamoorthy et al., 2007) and p38 MAPK (unpublished data) dependent
regulation of the transporter. To explore the role of this phosphorylation site in vivo we generated a
phospho-insensitive SERT Ala276 KI mouse via CRISPR/Cas 9 technology. The data presented in Chapter
4 establishes a baseline characterization of the SERT Ala276 mouse model that allows for these further
investigations to determine the functional aspects of SERT phosphorylation at amino acid Thr276.

There are no gross abnormalities exhibited by the SERT Ala276 mice. These mice show normal
locomotor activity, body weights, neurochemical levels, SERT mRNA and protein levels, and uptake
kinetics. Interestingly, SERT Ala276 showed significantly less [*H]citalopram binding from midbrain

membrane samples compared to WT. It is currently not known if this is due to decrease in the surface level
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expression of SERT Ala276 or if the affinity for citalopram is affected by the Ala276 mutation. In order to
address this, we need to perform a surface biotinylation assay from SERT Ala56 and WT littermates. In
vitro evidence of SERT Ala276 (Ramamoorthy et al., 2007) and the lack of SERT Vmax effect suggests
that SERT Ala276 does not affect surface levels. However, if there is a difference in surface expression,
this may point to PKG pathway as past studies have shown that activation of PKG increases SERT surface
expression (Miller and Hoffman, 1994; Zhu et al., 2004). The other possibility explaining the difference in
[*H]citalopram binding is a difference in citalopram affinity. To determine the equilibrium dissociation
constant (Kp) of citalopram requires saturation binding assay with [*H]citalopram.

Behaviorally, these mice under baseline conditions did not show any depressive- and anxiety-like
behavior. Considering the difference in the [*H]citalopram binding assay as mentioned above, there is the
possibility that there is an altered sensitivity of SSRI to decrease immobility time in the TST and FST in
the SERT Ala276 mice compared to WT.

Future studies aim to probe the effect of SERT Ala276 mutation on the ability to respond to stimuli
that act on p38 MAPK and PKG pathways identified in past studies to regulate transporter activity in vivo
and ex vivo and its effect on relevant behaviors. First and foremost is to assess the sensitivity of SERT
Ala276 compared to WT mice to p38 MAPK and PKG mediated simulation of SERT activity, assessed by
synaptosomal [*H]5-HT uptake assays and in vivo chronoamperometry based studies. If phosphorylation
at Thr276 is critical for SERT activation stimulated by activation of these pathways, it is expected, as seen
in vitro, that SERT Ala276 mice will be insensitive to p38 MAPK- and PKG-dependent increase in 5-HT
uptake.

Several studies have shown environmental and physiological relevance of these pathways acting
on SERT activity. Of particular interest to our lab is the effect of SERT Ala276 on SERT uptake and
depressive-like behaviors in response to low dose peripheral immune activation by LPS. Previous studies
from our lab have shown that 0.2 mg/kg I.P. injection of LPS rapidly (1-hr post injection) increases SERT
activity and induces depressive-like phenotypes (Zhu et al., 2010), which is dependent on p38a MAPK
expression within serotonergic neurons (Baganz et al., 2015). Unpublished data from our lab indicate that
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p38 MAPK dependent increase in 5-HT uptake in vitro is dependent on the expression of Thr276 within
SERT, suggesting Thr276 as a critical phosphorylation site for p38 MAPK dependent effects. Therefore,
we hypothesize that SERT Ala276 mice will be insensitive to or blunts LPS dependent increase in 5-HT
uptake and depressive-like phenotypes. If SERT Ala276 shows no difference between WT on LPS mediated
changes there is the possibility that p38 MAPK signaling cascade activated by LPS affects SERT through
a yet unknown mechanism. SERT has multiple phosphorylation sites, including Thr616 which has been
shown to be phosphorylated in the presence of p38 MAPK (Serensen et al., 2014) and a number of other
kinase and proteins act on the transporter which may be also affected by LPS.

Other pathways of interest involve KOR (Sundaramurthy et al., 2017) and A3AR (Zhu et al., 2004),
which have both been linked to p38 MAPK- and PKG-dependent regulation of SERT (see Chapter 1). The
availability of the first SERT Ala276 KI mouse provides for the first time the opportunity to assess the

contribution of SERT phosphorylation modulation in vivo and its physiological significance.

Conclusion

Overall, we hypothesize that SERT exists in distinct conformational states that dictate the
transporters activity and that SIPs and post-translational modifications can shift the population of SERT to
a hyperactive state (SERT*). Environmental factors and/or genetic variations can either directly or
indirectly impact SIPs and PTMs ultimately affecting SERT conformational dynamics and function. In this
dissertation, we provided evidence that two ASD-associated SERT variants, SERT Ala56 and SERT
Asn605, that are insensitive to p38 MAPK- and PKG-dependent upregulation, stabilized SERT in an
outward-facing conformation. We also generated a functional network analysis of SIPs that differentially
interact with SERT Ala56. In addition, we characterized a new KI mouse model, SERT Ala276, to study
the effect of the conformationally sensitive PKG/p38a MAPK dependent phosphorylation site Thr276. The
goal of'this dissertation was to explore the structural and functional dynamics of previously identified SERT
variants. Of great scope, the work presented here demonstrates that remarkably minor coding variation can

have profound effects on structural and functional regulation of a protein and understanding how these
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genetic variations function in a complex network of proteins has the potential to identify novel targets for

pharmacotherapies that can be beneficial in the treatment of diseases.
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APPENDIX

Interaction between SERT and MAGE-E1

The N-terminus of SERT has become increasingly appreciated for its important role in modulating
SERT activity and is of particular interest to our lab, as a hyperfunctional and regulationally insensitive
variant associated with ASD was identified in this region, SERT Ala56 (Sutcliffe et al., 2005; Prasad et al.,
2009). To identify novel proteins that differentially interacted between WT and SERT Ala56 N-terminus,
I performed a GST pull-down with the fusion protein containing the N-terminus of rSERT that possesses
either Gly56 (WT) or Ala56 using mouse midbrain detergent extracts followed by LC-MS/MS analysis.
This study identified a number of novel proteins that interacted with N-terminus; however, one protein that
we decided to pursue further was the melanoma antigen E1 (MAGE-E1) as this protein showed enhanced
interaction with GST-SERT N-terminus expressing Ala56 compared to Gly56. Interestingly, MAGE-E1
was also identified in two separate LC-MS/MS experiment directed at characterizing the SERT interactome
from affinity purified (AP) full-length SERT from mouse midbrain samples as previously described (Ye et
al., 2016). Verification of this interaction by western blot analysis reveals that MAGE-E1 interacts with N-
terminal tail expressing both Ala56 and Gly56 as well as the C-terminal tail (Figure 27A). Subsequently, I
verified the enriched nature of SERT Ala56:MAGE-E1 interactions by co-IP followed by western-blot
analysis (Figure 27B). These results provide strong evidence that SERT forms a complex with MAGE-E1,
potentially in an activity-dependent manner.

MAGE-EI is of particular interest as a novel SIP for a number of reasons. For one, other MAGE
family members have been implicated in neuropsychiatric disorders linked to altered 5-HT signaling.
MAGE-EI is a member of the melanoma antigen family, which all share a common ~170 amino acid long
MAGE homology domain (MHD; MAGE-E!1 contains two MHDs), originally identified as a cell surface
antigen in melanoma cancer cells (Barker and Salehi, 2002). However, MAGE-E1, along with most other

MAGE family members, are classified as Type II ubiquitous MAGE proteins, which are expressed in
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Figure 27. SERT:MAGE-E1 complex verified by Western blot

(A) MAGE-EI from midbrain lysate of WT mice interacts with N- (both WT and Ala56) and C-terminus
of SERT as demonstrated by GST-pull down. (B) SERT co-IP (as described in Chapter 3) shows SERT
Ala56 and WT SERT interact with MAGE-E1 but not SERT KO (negative control).
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normal somatic cells. Other members of the MAGE Type II family include MAGE-L2, -D1, and Necidin,
have been implicated in neurodevelopmental disorders associated with 5-HT dysfunction, such as Prader-
Willi Syndrome and autism (Barker and Salehi, 2002; Lee et al., 2005; Zanella et al., 2008; Dombret et al.,
2012; Schaaf et al., 2013). Importantly for our studies, MAGE-E1 has also been found to be highly
expressed in the brain (Albrecht and Froehner, 2004). Specifically, MAGE-E1 was found to be enriched in
microarray profiled embryonic 5-HT neurons (Wylie et al., 2010) (Figure 28) and is expressed in adult MB
5-HT neurons (Figure 29). Also, MAGE-E1 is part of a complex that contains proteins previously
described to interact with SERT. While the functional role of MAGE-E1 in this complex is still not clearly
defined, it has been shown to directly interact with a-dystrobrevin, giving MAGE-E1 its cognate name,
DAMAGE (o-dystrobrevin-associated MAGE protein) (Albrecht and Froehner, 2004). Alpha-dystrobrevin
associates with dysbindin (Benson et al., 2001), a protein that has also been implicated in 5-HT-linked
neuropsychiatric disorders, including schizophrenia and depression (Numakawa et al., 2004; Owen et al.,
2004; Zill et al., 2004; Domschke et al., 2011). In addition, a-dystrobrevin, MAGE-E1, and dysbindin are
members of the dystrophin-associated protein complex (DPC), which also includes nitric oxide synthase
(NOS), a previously described SERT partner (Chanrion et al., 2007). The DPC functions to anchor the
cytoskeleton to the extracellular matrix (ECM) (Michalak and Opas, 1997). Many other scaffolding proteins
have been shown to interact with SERT, including integrin BIII, HIC-5, and NLGN2 (Carneiro and Blakely,
2006; Carneiro et al., 2008; Ye et al., 2016).

Another MAGE family protein, MAGE-D1, also forms a functional interaction with SERT.
MAGE-D1 KO mice exhibit increases SERT expression and exhibit depressive-like behaviors, which are
reversed by SSRI administration. Conversely, MAGE-D1 overexpression increases SERT ubiquitylation
and 26S-proteasome-dependent degradation of SERT (Mouri et al., 2012). MAGE-D1 interacts with SERT
via the MHD (Mouri et al., 2012), which shares 46% sequence homology with the MHDs of MAGE-E1

(Doyle et al., 2010).
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Figure 28. MAGE-E1 mRNA expression is enriched in ePET1 positive neurons

Microarray profiled from flow sorted ePET+ neurons (transcription factor of 5-HT neurons) and ePET-
neurons from embryonic mice as described in Wylie et al. 2010. MAGE-EI mRNA expression is
enriched in serotonergic neurons in both the rostral and caudal brain.
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Figure 29. MAGE-E1 is localize in serotonergic midbrain neurons
Immunohistochemistry of midbrain slices from WT mice stained with antibody against MAGE-E1 and
5-HT shows that some MAGE-EI positive cells are co-labeled with 5-HT.
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One hypothesis is that MAGE-D1 reduces SERT activity by facilitating endocytosis and
degradation, whereas MAGE-E1 stabilizes SERT*, ensuring surface retention and/or a shift in 5-HT
recognition, for efficient 5-HT clearance. Clearly, future studies are needed to parcel out the MAGE-D1/E1

interaction with SERT and SERT Ala56.

Novel SERT phosphorylation Ser8 identified by LC-MS/MS

Contained within all mass spectra generated from the AP-MS/MS experiments utilized to
characterize SERT interactome, is a rich data set that allows for the identification of PTMs, such as
phosphorylation and ubiquitination A few programs have been developed to search for shifts in MS2
spectra that account for the PTM of interest. For example, X! Tandem refinement search within Scaffold
can be performed (Kertész-Farkas et al., 2014). In this method, only proteins that have been previously
defined by Sequest (or Mascot) are utilized to generate the reference database of spectra to match onto the
experimental spectra and now allow for variable modification of phosphorylation (+79.97 of Ser, Thr, or
Tyr) and ubiquitination (+144.04293 of K). Unfortunately, X! Tandem refinement search from the
proteomic analysis described in Chapter 3 did not identify any modified peptides in SERT. However, in a
preliminary study to optimize the conditions for the SERT co-IP for LC-MS/MS analysis, this refinement
search identified an N-terminal peptide within SERT phosphorylated at Ser8 (Figure 30). Future studies

need to verify Ser8 as a phosphorylation site and determine its role in the regulation of SERT function.

D-fenfluramine mediated prolactin release, hypothermia, and FLOT1:SERT interaction

SERT Ala56 mice show blunted 5-HT mediated efflux to D-fenfluramine both in vitro and in vivo
(Quinlan et al., 2019). D-fenfluramine has long been used as a means to assess the overall serotonergic tone
of a system, both in humans and rodents, as D-fenfluramine challenge results in a number of easily
measured physiological responses, such as prolactin release (Quattrone et al., 1983) and hypothermia

(Cryan et al., 2000).
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Figure 30. Identification of p-Ser8 in SERT from AP-MS/MS data
Immunoprecipitated SERT from mouse midbrain synaptosomes was subjected to MS/MS analysis.

MS/MS spectra were first matched against the SEQUEST database to identify peptide and then the
MS/MS spectra were reanalyzed against the X! Tandem database containing only proteins previously
defined by SEQUEST to query for a shift in mass of 80 Da (the mass of a phospho group) at serine,
threonine, and tyrosine residues. Fragmentation patterns defined Ser8 in the peptide METTPLNSQK as

phosphorylated.
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Therefore, we decided to evaluate SERT Ala56 mice response to D-fenfluramine challenge. SERT
Ala56 mice show increased serum prolactin levels 30 minutes post IP injection at 3 mg/kg D-fenfluramine
compared to WT mice; however, there was no difference between genotypes at the 10 mg/kg dose (Figure
31A). On the other hand, at the 10 mg/kg dose, SERT Ala56 exhibit a trend for enhanced response to D-
fenfluramine-induced hypothermia, while it appears the 3 mg/kg dose was too low to induced hypothermia
(Figure 31B). Even though our previous report shows that SERT Ala56 bunts D-fenfluramine mediated 5-
HT efflux, this elevated response to D-fenfluramine prolactin release and hyperthermia is most likely due
to the hypersensitivity of 5-HT receptors in these mice. Prolactin release stems from stimulation of SHTa/c
receptors expressed in the paraventricular nucleus of the hypothalamus through (Quattrone et al., 1983;
Emiliano and Fudge, 2004), while hyperthermia is driven in part by SHT1a receptor activation (Cryan et
al., 2000). Previous studies have shown that SERT Ala56 mice are also hypersensitive to §-OH-DPAT
(5HTa agonist) induced hyperthermia and DOI (SHT2ac agonist) induced head twitch (Veenstra-
VanderWeele et al., 2012). This hypersensitivity of 5-HT receptors is thought to be due to a chronic
decrease in extracellular 5-HT levels due to the enhance 5-HT uptake.

In a parallel study, we identified by proteomic analysis that SERT Ala56 has decreased interaction
with FLOT1 compared to WT SERT (Chapter 3). Previous studies have shown that DAT:FLOTI1
interaction is linked to amphetamine action (Sakrikar et al., 2012). Therefore, we decided to assess the
association of SERT:FLOT1 in response to 10 mg/kg challenge of D-fenfluramine or saline injection.
Interestingly, saline-treated animals showed no difference between genotype for SERT:Flot-1 interaction
(Figure 32). This may be due to the stress of saline injection, as SERT:FLOT!1 interaction was shown to
critical in response to corticosterone stress paradigm (Reisinger et al., 2018). D-fenfluramine injection
significantly enhances SERT:FLOT]1 interaction in SERT Ala56 mice compared to WT mice (Figure 32).
This may suggest that SERT Ala56 under normal conditions does not interact with FLOT1, however, SERT
Ala56 is located or more easily relocates into a FLOT1 containing raft compartment in response to certain

environmental demands which increases its probability to interact with FLOT]I.
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Figure 31. Fenfluramine mediated prolactin release and hypothermia in SERT Ala56 KI Mice
(A) WT and SERT Ala56 treated IP with 3 mg/kg or 10 mg/kg with fenfluramine 30 minutes prior to
dissection. Prolactin levels from blood serum in SERT Ala56 mice injected with 3 mg/kg of fenfluramine
is increased compared to WT mice (n=7, unpaired t test, P < 0.001), but no difference between genotypes
at 10 mg/kg fenfluramine. (B) 30 minutes post injection of fenfluramine body temperature was measures.

Preliminary data shows SERT Ala56 mice injected with 10 mg/kg fenfluramine trends toward enhanced
hypothermia compared to WT mice (n = 3).
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Figure 32. SERT:FLOT]1 interaction increases in response to fenfluramine in vivo

WT and SERT Ala56 mice were I.P. injected with 10 mg/kg fenfluramine or saline. After 30 minutes
midbrain synaptosomes were immunoprecipitated for SERT (n=3). Western blot shows SERT:FLOT1
interaction increases in the presence of fenfluramine.
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SERT Ala56 vesicular release

Parallel studies in our lab identified that the ADHD-associated DAT Val559 variant impaired
vesicular [’H]DA release from striatal slices (Mergy et al., 2014). With the enhanced uptake exhibited by
SERT Ala56, it was hypothesized the loading of vesicles may be altered, leading to changes in 5-HT release.
To determine if SERT Ala56 mice affected vesicular release, midbrain slices preloaded with [*'H]5-HT were
challenged with the 50 pM 4-aminopyridine (4-AP) to block voltage-gated K+ channels. However, no
difference between genotypes in 4-AP stimulated vesicular release of 5-HT was detected in the midbrain
(Figure 33). Future studies will need to determine if other brain regions, such as the hippocampus and

prefrontal cortex, also show no difference in vesicular release between WT and SERT Ala56 mice.

Effects of LPS on SERT interacting proteins and SERT phosphorylation

There are many similarities between LPS mediated increase in 5-HT uptake and SERT Ala56
hyperfunction. The main link being p38a MAPK, as both LPS and SERT Ala56 enhanced 5-HT is
dependent on p38a MAPK signaling (Baganz et al., 2015; Robson et al., 2018), a state we have labeled as
SERT*. SERT Ala56 was also shown to be hyperphosphorylated in a p38 MAPK dependent manner
(Veenstra-VanderWeele et al., 2012); however, it was not known if p38 MAPK also induced
hyperphosphorylation of SERT in response to the low dose LPS challenge. In collaboration with the
Ramamoorthy lab, we assessed in LPS or saline-treated mice (0.2 mg/kg, 1 hr post-LP. injection) *’P
labeling of SERT in hippocampal synaptosomes in the presence and absence of a p38 MAPK inhibitor,
PD169316. Preliminary data shows a trend that LPS treatment increases SERT phosphorylation levels
which can be prevented through the inhibition of p38 MAPK (Figure 34), mimicking the results found for

SERT Ala5é.
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Figure 33. 4-AP mediated vesicular release of [FH]5-HT from SERT Ala56 mice

Midbrain slices from WT and SERT Ala56 mice were (n=3) show no difference in 4-AP stimulated
vesicular release of [*’H]5-HT.
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Figure 34. LPS induced SERT phosphorylation dependent on p38 MAPK

Autoradiogram immunoprecipitated SERT from hippocampal synaptosomes metabolically labeled with
orthophosphate **P from mice pretreated one hour before dissection with 200 ng/kg LPS or saline.
Synaptosomes were pretreated 10 minutes before **P labeling with p38 MAPK inhibitor PD166931.
Preliminary data (n=1-2) shows under basal conditions SERT is hyperphosphorylated in a p38 MAPK
dependent manner in LPS treated animals compared to saline treated mice.
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We also aimed to identify SIPs that may modulate both SERT Ala56 and LPS treated animals. To
address this, we injected WT and SERT Ala56 mice with 0.2 mg/kg dose of LPS (or saline vehicle) and
then 1 hour later harvest midbrain synaptosomes followed by a co-IP with SERT antibody #48 (as described
in Chapter 3). Interestingly, WT SERT only interacted with nNOS in the LPS condition, while SERT Ala56
was shown to interact with nNOS, independent of drug treatment (Figure 35). This might suggest that
nNOS preferentially interacts with SERT* state. Future studies need to determine if this interaction is

dependent on p38 MAPK signaling.

Identification of de novo missense variation SERT Ile576Val Variant in ASD cohort

Recently, a collaborator, Jim Sutcliffe at Vanderbilt University, who identified the original five
ASD-associated SERT coding variants, found deposited in a database of ASD sequences, a novel de novo
missense variant, SERT Ile576Val. Interestingly, de novo mutations in gene coding sequences are rare and
are thought if functional, that the gene targeted is a relevant one for the clinical features exhibited in the
carrier (Alonso-Gonzalez et al., 2018). SERT Is0576 is found at the extracellular facing side of TM12.
This is of interest as Iso576 in hSERT aligns with the ADHD/ASD associated variant Val559 in hDAT.
DAT Val559 has been shown to exhibit anomalous domain efflux, DA uptake capacity and altered
behavioral phenotypes in vivo (Mazei-Robison et al., 2008; Mergy et al., 2014; Gowrishankar et al., 2018).
Future studies aim to determine if this variant, SERT Val576 confers a similar or distinct phenotype from
DAT Val559 and might open a new line of investigation, or complement our ongoing work on

understanding the role of SERT variants in regulating 5-HT uptake and homeostasis.
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Figure 35. State dependent nNOS interaction with SERT
SERT Ala56 and WT mice were treated one hour before dissection with 200 ng/kg LPS or saline.

Midbrain synaptosomes from WT and SERT Ala56 treated mic and SERT KO (negative control) were
then subjected to SERT IP.
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