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Chapter 1

Introduction

In this chapter, we introduce and provide examples of shift-invariant spaces in L2(Rd). In

Section 1.1 we present the main questions of this thesis. In Section 1.2 we state and discuss our

main theorems and the related Balian-Low Theorem.

1.1 Shift-Invariant Spaces

Definition 1.1.1. Let V ⊂ L2(Rd) be a closed subspace. For a fixed t ∈Rd define the shift operator

Tt : L2(Rd)→ L2(Rd) by Tt f (x) = f (x− t).

• Given a set Γ⊂ Rd , V is said to be Γ-invariant if TγV ⊂V for each γ ∈ Γ.

• V is called shift-invariant if V is Zd-invariant.

• V is called translation-invariant if V is Rd invariant.

Examples of shift-invariant spaces can be produced through the following procedure.

1. Fix F ⊂ L2(Rd). We say F is nontrivial if F contains a nonzero element.

2. Let T (F) denote the set of integer translates of F . That is, T (F) = {Tl f : l ∈ Zd, f ∈ F}.

3. Let V (F) be the L2(Rd)-closure of the linear span of T (F). Then, V (F) is a shift-invariant

space, and we shall call V (F) the shift-invariant space generated by F . We call F a set of

generators for V (F).

Let W ⊂ L2(Rd) be a shift-invariant space. Note that V (W ) = W . Thus, every shift-invariant

space can be generated through this procedure. However, this thesis will be focused on shift-

invarant spaces which are finitely-generated. The shift-invariant space, W , is finitely-generated if

there exists a finite set F = { fk}K
k=1 ⊂ L2(Rd) such that W = V (F) = V ( f1, ..., fK). Similary, if
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there is a singleton F = { f} ⊂ L2(Rd) such that W =V (F) =V ( f ), we say that W is principle or

singly generated.

We will now present three examples of principle shift-invariant spaces. The first two examples,

the Paley-Wiener space, PW , and the Cardinal Spline spaces, Sn, are commonly used in sampling

and approximation theory. We use these examples to emphasize three properties which we will be

interested in throughout this thesis. First, in each case, the space is generated by integer translates

of a single function f , and T ( f ) forms a strong type of basis (either an orthonomal or Riesz basis,

see Section 2.2) for V ( f ). Second, in two of the examples the resulting space V ( f ) has additional

or extra-invariance, that is, V ( f ) is invariant under some non-integer shift, while the other case

has no extra-invariance. Third, some of the spaces considered have a localized generator, while

others have a generator with slow decay.

Example 1.1.2 (Paley-Wiener Space). With the Fourier transform of f ∈ L1(Rd)∩ L2(Rd) de-

fined by f̂ (ξ ) =
∫
Rd f (x)e−2πix·ξ dx and extended to L2(Rd) by unitarity, the Paley-Wiener space

is defined as

PW =

{
f ∈ L2(R) : supp( f̂ )⊂ [−1

2
,
1
2
]

}
.

Since, {e−2πilξ}l∈Z, forms an orthonormal basis for L2[−1
2 ,

1
2 ], we have that {e−2πilξ χ[− 1

2 ,
1
2 ]
}l∈Z

forms an orthonormal basis for P̂W = { f̂ : f ∈ PW}. By the unitarity of the Fourier transform on

L2(R), the set {Tlsinc}l∈Z must form an orthonormal basis for PW , where sinc(x) = χ̂[− 1
2 ,

1
2 ]
(x) =

sin(πx)
πx . Thus, PW = V (sinc). A graph of sinc is given in figure 1.1. Note the slow decay of sinc:

sinc is not integrable and
∫
R |x|sinc(x)dx = ∞. Note also that PW is translation invariant due to the

fact that for any γ ∈ R and any f ∈ L2(R) we have T̂γ f (ξ ) = e2πiξ γ f̂ (ξ ).

Example 1.1.3 (Cardinal Splines). The Cardinal Spline Space, Sn, consist of all f ∈ Cn−1(R)∩

L2(R) such that for each integer j ∈Z, f restricted to the interval [ j, j+1] agrees with a polynomial

of degree at most n. Let b0 = χ[0,1] and iteratively define

bn(x) = b0 ∗bn−1(x) =
∫
R

b0(y)bn−1(x− y)dx.

2
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Figure 1.1: Graph of the sinc function

It is known that for each n ∈ N, Sn =V (bn), and T (bn) forms a Riesz basis for Sn. Graphs of the

first few bn functions are given in figure 1.2. Note that although the support of bn increases in size

with n, each bn is compactly supported. Also, due to the fact that Sn functions have less regularity

at the integers than in intervals of the form ( j, j+ 1) for j ∈ Z, Sn cannot be invariant under any

non-integer shift.
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Figure 1.2: Graph of bn

Example 1.1.4 (Strict 1
2Z-invariance). Here we construct an example which shows that it is possi-
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ble to have a principle shift-invariant space which has extra-invariance but which is not translation-

invariant like the Paley-Wiener space. We start by defining the Fourier transform of the generator,

f , by

f̂ (ξ ) =

 ck ξ ∈ [2k− 1
2 ,2k+ 1

2 ],k ∈ Z

0 otherwise,

where c0 = 0 and ck = c−k =
√

3
−k

for k ∈N. A graph of f̂ is given in figure 1.3. The coefficients

ck were chosen such that ‖ f‖L2(Rd) = ‖ f̂‖L2(Rd) = ∑k∈Z c2
k = 1. Let m be the Z-periodic function

with Fourier coefficients (see Section 2.3) m̂(k) = ck. Then, a brief calculation shows that f (x) =

m(2x)sinc(x). Note that f has similar localization to the sinc function since m is periodic. A graph

of f is given in figure 1.3 with the graph of 1
|x| superimposed.
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Figure 1.3: Graph of f̂ and f

We introduce tools (for example Equation (3.5) and Theorem 3.3.1) later in the thesis which

allow us to prove more rigorously that V ( f ) has the following properties. For any n ∈ Z, T̂n f (ξ ) =

e2πinξ f̂ (ξ ). Then,

〈 f ,Tn f 〉= 〈 f̂ ,e2πinξ f̂ 〉=

(
∑
k∈Z

c2
k

)∫ 1
2

− 1
2

e2πinξ dξ = δ0,n.

Thus, T ( f ) forms an orthonormal basis for V ( f ). Also, we see that any g ∈ span(T ( f )) satisfies,
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ĝ(ξ ) = w(ξ ) f̂ (ξ ) where w is some Z-periodic function. It can be shown (see Proposition 3.1.1)

that this is also true for any g ∈ V ( f ). Note, that T̂1/2 f (ξ ) = eπiξ f̂ (ξ ), and eπiξ is 2Z-periodic.

However, due to the support of f̂ , eπiξ f̂ (ξ ) = w(ξ ) f̂ (ξ ) for all ξ where w(ξ ) is the Z-periodic

function which satisfies w(ξ ) = eπiξ for all |ξ | ≤ 1/2. Thus, T1
2

f ∈V ( f ). The same is not true for

Tτ f for any τ /∈ 1
2Z, and thus, V ( f ) is 1

2Z-invariant, but is not invariant under any other shifts.

In summary, each example is a principle shift-invariant space, and the integer translates of

the generator form a strong basis for the resulting space. However, these spaces differ greatly

when considering extra-invariance properties and generator localization. The Paley-Wiener space

is translation-invariant, and Example 1.1.4 is 1
2Z-invariant, but they both have poorly localized gen-

erators, whereas the Cardinal Splines have compactly supported generators but no extra-invariance.

It turns out, that this negative relationship between extra-invariance and generator localization ex-

tends past these two examples, and understanding this relationship is the main focus of this thesis.

Finitely generated shift-invariant spaces are often used as approximation spaces. In this setting,

it is often desirable that such a space have extra-invariance. Assuming that a shift-invariant space

V is endowed with translation-invariance implies that if one can approximate a function g well by

a function in V then one can also approximate Ttg for any t ∈ Rd to the same accuracy. Shift-

invariant spaces with high levels of extra-invariance, mimick this property in that Ttg can be well

approximated for all t in some fine lattice. In [37, 38], the authors examine the difficulties of using

non-translation-invariant shift invariant spaces as approximation spaces. In this setting, much care

has to be taken to “synchronize” the approxmiated function g with the non-translation-invariant

space V .

Localized generators are also advantageous when trying to approximate a function using a

shift-invariant space. Consider a principle shift-invariant space V ( f ). For a function g, we would

like to say that

‖g− ∑
k∈Zd

ckTk f‖

is small for some collection {ck}k∈Zd which is well-behaved (i.e. T ( f ) has a basis-type property

5



which relates a norm of {ck} to some norm of g), perhaps for a variety of norms. In particular, if

we would like to estimate, for some x ∈ Rd ,

|g(x)− ∑
k∈Zd

ckTk f (x)|,

then the knowledge that f is well-localized implies that only a few of the terms ckTk f (x) actually

contribute to the sum. If f is not localized (like the sinc function) then many of these terms can

contribute to the sum, and it is much harder to analyze this error. This also leads to problems when

trying to approximate g by a truncted series such as Sn(x) = ∑|k|≤n ckTk f (x), which is desirable in

any real world application.

This discussion leads directly to the main questions of the thesis.

Question 1.1.5. Is it possible to construct finitely-generated shift-invariant spaces with extra in-

variance which also have localized generators?

Extra-invariance properties of shift-invariant spaces were studied in [1, 3, 4], and in [2, 49]

theorems are proven which show that if T (F) forms certain types of bases or generalizations of

bases for V (F), there are restrictions on the localization of the functions in F . We will prove sharp

versions of these results, and generalize the results to new settings.

As Example 1.1.4 shows, it is possible for a finitely-generated shift-invariant space V (F) to

be invariant under some non-integer shift, but to also not be fully translation-invariant. Some of

the existing results in the literature find different conclusions when the assumption of translation-

invariance is replaced with the weaker assumption of extra-invariance. This leads to our second

main question.

Question 1.1.6. Is there truly a difference in the restrictions on the localization of generators if

V (F) is only assumed to be invariant under some non-integer shift as compared to if V (F) is

assumed to be fully translation-invariant? Are the previous results sharp or best possible?

Our first main result, Theorem 1.2.1, is a sharp result proven in the setting of extra-invariance.

Existing results in the literature either reached a weaker conclusion or had to assume translation-

6



invariance to reach the same conclusion. Thus, in the setting of Theorem 1.2.1, the best possible

results are the same in the extra-invariant case as in the translation-invariant case. However, we

also present an example in Section 6.3, which proves that the known result, Theorem 1.2.6, is

sharp. With the extra-invariance assumption in Theorem 1.2.6 replaced with translation-invariance,

a stronger result is possible as seen in 1.2.7. Thus, in this setting, the best possible results differ

based on the two assumptions.

Our third main question is the following.

Question 1.1.7. How does the relative “strength” of the basis property affect the localization of

the generators?

In Theorem 1.2.9, we consider frame-like properties called (Cq)-systems which depend on a

continuous parameter q and are such that as q increases, the (Cq)-property weakens. Theorem 1.2.9

is sharp and shows that if T (F) is a (Cq)-system for V (F), the amount of localization allowed

by the elements of F is increased as q increases. Thus, as the basis-type property considered is

weakened, the best possible localization result is also weakened.

Our final main question is the following.

Question 1.1.8. Are there other properties besides extra-invariance for which similar localization

restrictions can be proven for the generators of a shift-invariant space possessing these properties?

It is not possible to prove localization type results for the generators of shift-invariant spaces

without some additional assumption on the space, such as the extra-invariance or translation-

invariance considered in many of our theorems. We will see in Theorem 1.2.4 that replacing

an extra-invariance assumption for V (F) with the assumption that T (F) forms a redundant (non-

minimal) frame for V (F) can lead to similar results.

1.2 Main Theorems

Several of the results in this section appear in [32], while the unreferenced results will appear

in a future paper with co-authors Shahaf Nitzan and Alexander Powell. Our results will show

7



that under certain conditions on the basis properties of the generators, extra-invariance in finitely-

generated shift-invariant spaces is incompatible with the spaces posessing well-localized genera-

tors. Consider, however, the following example. Let f ∈C∞(R) be supported in
[
0, 1

4

]
and have

‖ f‖2 = 1 . Let fk = Tk
4

f for k = 0,1,2,3, and F = { f0, f1, f2, f3}. Then, T (F) is an orthonormal

system for V (F), V (F) is 1
2Z-invariant (in fact, the space is 1

4Z-invariant), and the generators of

V (F) are compactly supported.

For an arbitrary shift-invariant space V , let ρ(V ) denote the minimal number of generators of

V . In other words,

ρ(V ) = min{#G : ∃G⊂ L2(Rd) such that V =V (G)}. (1.1)

For the example above, it can be shown that ρ(V (F)) = 4. Note that in this case, [1
2Z,Z] = 2

where [1
2Z,Z] is the index of Z in the extra-invariance lattice 1

2Z (see Section 2.1). Thus, [1
2Z,Z]

divides ρ(V (F)). In many of our theorems involving finitely-generated shift-invariant spaces, we

must exclude cases in which this divisibility occurs to avoid such examples.

1.2.1 Frame and Riesz Basis Results and the Balian-Low Theorem

We first recall the definition of frames and Riesz bases for Hilbert spaces. We refer the reader

to Section 2.2 for a more detailed discussion of basis and frame-type properties in Hilbert spaces.

A sequence {hn}n∈N in a Hilbert space H is a frame for H if there exist 0 < A≤ B < ∞ such that

for each g ∈H ,

A‖g‖2 ≤ ∑
n∈N
|〈g,hn〉|2 ≤ B‖g‖2. (1.2)

A Riesz basis for H is the image of an orthonormal basis for H under a bounded, invertible linear

operator on H . Every Riesz basis is a frame, but there exist frames which are not Riesz bases. We

refer to such frames as redundant frames.

Our first main result is the following. This result addresses Questions 1.1.5 and 1.1.6, and it

resolves a question posed in [49].

8



Theorem 1.2.1 (Frame SIS BLT, Theorem 1.3, [32]). Fix a lattice Γ ⊂ Rd with Zd ( Γ and [Γ :

Zd] > 1. Suppose that F = { fk}K
k=1 ⊂ L2(Rd) is nontrivial and that T (F) is a frame (or Riesz

Basis) for V (F). If [Γ : Zd] is not a divisor of ρ(V (F)) and V (F) is Γ-invariant, then

∃1≤ k ≤ K such that
∫
Rd
|x| | fk(x)|2dx = ∞.

For singly generated shift-invariant spaces the divisibility condition is unnecessary, and Theo-

rem 1.2.1 takes the following form.

Corollary 1.2.2. Fix a lattice Γ⊂Rd with Zd (Γ and [Γ :Zd]> 1. Suppose f ∈ L2(Rd), ‖ f‖2 6= 0,

and T ( f ) forms a frame for V ( f ). If V ( f ) is Γ-invariant, then
∫
Rd |x| | f (x)|2dx = ∞.

The conclusion of Theorem 1.2.1 (and similarly Corollary 1.2.2) can be restated in terms of the

Fractional Sobolev Spaces or Bessel Potential Spaces,

Hs(Rd) = {g ∈ L2(Rd) :
∫
Rd
|ξ |2s|ĝ(ξ )|2dξ < ∞},

which we introduce in detail in Section 2.3. In particular, the conclusion of the Theorem 1.2.1

could be written as: at least one of the generators satisfies f̂k /∈ H1/2(Rd).

To put Theorem 1.2.1 in perspective, note that existing results in the literature, see [2, 49], either

give a weaker conclusion or require stronger hypotheses. In particular, the foundational Theorem

1.2 in [2] addresses singly generated shift-invariant spaces in dimension d = 1 which posess extra-

invariance and gives the weaker conclusion that the generator f ∈ L2(R) satisfies f̂ /∈ H1/2+ε(R)

whenever ε > 0. In higher dimensions and finitely many generators, the previous best results were

given in [49]. Theorem 1.3 in [49] gives the weaker conclusion that at least one generator satisfies

f̂k /∈ Hd/2+ε(Rd). On the other hand, Theorem 1.2 in [49] shows if the hypothesis of Γ-invariance

is replaced by the notably stronger hypothesis of translation-invariance, then at least one generator

satisfies f̂k /∈ H1/2(Rd).

It should be noted that the spaces considered in [49] are constructed in the following way. For
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a generating set F ⊂ L2(Rd), take a full rank lattice Λ ⊂ Rd , let T Λ(F) = {Tλ f : λ ∈ Λ, f ∈ F},

and let V Λ(F) be the span closure of T Λ(F). Then, it is assumed that V Λ(F) is invariant under a

larger lattice Γ. Note, however, that Λ = DZd for some invertible matrix D, (see Section 2.1) and

if we let FD = { f (D·) : f ∈ F}, then V (FD) is D−1Γ-invariant, and all the localization and basis

properties of F are transferred to FD. Thus, our results are no less general than the results in [49].

Theorem 1.2.1 is sharp in the sense that H1/2(Rd) cannot be replaced by Hs(Rd) when s< 1/2.

For example, if χI is the characteristic function of the set I = [−1/2,1/2]d and f (x) = χ̂I(x), then

the space V ( f ) is translation invariant and f̂ ∈ Hs(Rd) for all 0 < s < 1/2, cf. Proposition 1.5 in

[2] and Proposition 1.5 in [49].

Theorem 1.2.1 is also precise in the sense that it is possible for only one generator in a

finitely-generated system to suffer from the localization constraint fk /∈ H1/2(Rd). In particular,

we construct examples of F = { fk}K
k=1 that satisfy the hypotheses of Theorem 1.2.1, and where

fK /∈ H1/2(Rd) but all other generators f1, · · · , fK−1 are in H1/2(Rd). This answers a question

posed in [49] about the proportion of generators with good localization. See Section 6.2 for the

examples.

Note that we have titled Theorem 1.2.1 as the Frame SIS BLT. Here SIS stands for shift-

invariant space, and BLT stands for the Balian-Low Theorem. The Balian-Low Theorem is a

famous result in time-frequncy analysis, which is related to Theorem 1.2.1. Given f ∈ L2(R) the

associated Gabor system G ( f ,a,b) = { fm,n}m,n∈Z is defined by fm,n(x) = e2πimbx f (x− na). The

original Balian-Low Theorem states that if G ( f ,a,b) is an orthonormal basis for L2(R) then f

must be poorly localized in either time or frequency.

Theorem 1.2.3 (Balian-Low Theorem). Let f ∈ L2(R) and suppose that G ( f ,a,b) with ab = 1 is

an orthonormal basis for L2(R).

(∫
R
|x|2| f (x)|2dx

)(∫
R
|ξ |2| f̂ (ξ )|2dξ

)
= ∞.

Theorem 1.2.1 is structured similar to the Balian-Low Theorem, but we substitute T (F) for

10



G ( f ,a,b), frames for orthonormal bases, V (F) for L2(R), and we get directly a result about the

localization of F instead of a combined result about f and f̂ . It is interesting to note that V (F)

can never be all of L2(Rd) for any finite collection F ⊂ L2(Rd), and G ( f ,a,b) is symmetric in f

and f̂ in the sense that ̂G ( f ,a,b) = G ( f̂ ,b,a), but T (F) is not symmetric in this sense. Thus, it

is reasonable that the conclusion of the Balian-Low Theorem should be symmetric in f and f̂ , and

the conclusion of Theorem 1.2.1 should not be.

The Balian-Low Theorem has had an interesting history. The above theorem was formulated

independently by Balian [7] and Low [42]. The following excerpt is taken from [13].

The proofs given by Balian and Low each contained a gap.... This gap was indepen-

dently addressed in two ways. Battle [8] provided an elegant and entirely new proof

.... Daubechies, Coifman, and Semmes [23] retained the original approach of Balian

and Low, filling the gap directly. In the process, they extended the result from Gabor

systems which form orthonormal bases for L2(R) to Gabor systems which form exact

frames [Riesz bases]- a natural generalization of orthonormal bases.

The excerpt mentions that the Balian-Low Theorem can be extended to Riesz bases. In fact, there

have been many generalizations of the Balian-Low Theorem, e.g., see the surveys [13, 22] and

articles [5, 6, 8, 9, 10, 11, 12, 24, 29, 31, 34, 35, 39, 41, 45, 46].

Our next main result is closely related to the work in [29], which considers Balian-Low type

properties for Gabor frames of subspaces. It is the only main theorem which does not contain an

extra invariance assumption as desired in Question 1.1.8. A redundant frame is a non-minimal

frame, or a frame which is not a Riesz basis.

Theorem 1.2.4 (Redundant Frame SIS BLT, Theorem 1.5, [32]). Suppose that F = { fk}K
k=1 ⊂

L2(Rd) is nontrivial and that T (F) is a redundant frame for V (F). If K = ρ(V (F)) then

∃1≤ k ≤ K such that
∫
Rd
|x| | fk(x)|2dx = ∞.

For singly generated shift-invariant spaces, Theorem 1.2.4 takes the following form.
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Corollary 1.2.5. Suppose f ∈ L2(Rd) with ‖ f‖2 6= 0. If T ( f ) is a frame for V ( f ), but is not a

Riesz basis for V ( f ), then
∫
Rd |x| | f (x)|2dx = ∞, i.e., f̂ 6∈ H1/2(Rd).

Corollary 1.2.5 stated with the weaker conclusion f̂ 6∈ Hd/2+ε(Rd) (or more generally that f

is not integrable) may be considered folklore [30]. The conclusion of Corollary 1.2.5 with the

condition f̂ 6∈ H1/2(Rd) provides a significant and sharp improvement of this.

This result is sharp, as can be seen by considering V ( f ) with f (x) = χ̂J(x) and J = [0,1/2]d ,

cf. (3.7). Moreover, Example 6.2.3 shows that it is possible for only a single generator in Theorem

1.2.4 to have poor localization.

Theorem 1.2.1 is an example of a situation where Question 1.1.6 is answered in the negative.

That is, the best possible result on the localization of F is the same with the assumption of extra-

invariance as it is with the stronger assumption of translation-invariance. We now look a case,

proven in [49], where translation-invariance actually gives a stronger result than extra-invariance.

Theorem 1.2.6 (Theorem 1.4, [49]). Fix a lattice Γ⊂ Rd with Zd ( Γ and [Γ : Zd]> 1. Suppose

that F = { fk}K
k=1 ⊂ L2(Rd) is nontrivial, f̂k is continuous for each k, and T (F) is a frame (or

Riesz Basis) for V (F). If [Γ : Zd] is not a divisor of ρ(V (F)) and V (F) is Γ-invariant, then there

exists 1≤ k ≤ K such that for any ε > 0,

esssupξ∈Rd | f̂k(ξ )||ξ |
d
2+ε = ∞.

In [49], the authors suspect that the exponent on the weight, |ξ | d2+ε , in this theorem should

be independent of the dimension d, and that the result should hold with d
2 replaced by 1

2 for all

dimensions d. In Proposition 1.6 of [49], the authors construct a function f ∈ L2(Rd) such that

V ( f ) is extra-invariant, f̂ is continuous, and |ξ | 12 | f̂ (ξ )| ∈ L∞(Rd).

We contribute to this result, in Section 6.3, by constructing a function which satisifes all of

these properties, but also satisfies |ξ | d2 | f̂ (ξ )| ∈ L∞(Rd). Thus, we prove that Theorem 1.2.6 is

actually sharp in its present form.

Contrary to this result, the following result for translation-invariant shift-invariant spaces is
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also known, see for example [28].

Theorem 1.2.7. Suppose F = { fk}K
k=1 ⊂ L2(Rd) is nontrivial, and T (F) is a frame for V (F). If

V (F) is translation-invariant, then there exists 1≤ k ≤ K such that f̂k is not continuous.

Therefore, in this case, translation-invariance leads to a stronger result than extra-invariance.

1.2.2 Minimal System Results

Theorems 1.2.1 is a sharp improvement of an existing theorem about frames and Riesz bases. It

is natural to question whether similar results hold for other basis-type properties instead of frames.

Our next main result is the analog of Theorem 1.2.1 in the setting of minimal systems. A sequence

{hn}n∈N in a Hilbert space H is a minimal system if for any n ∈ N,

hn /∈ span{hm : m 6= n}.

Every Riesz basis is minimal, and so the following addresses Question 1.1.7. In fact, a set is a Riesz

basis if and only if it is a minimal frame. Thus, we would expect a weaker result than Theorem

1.2.1 when we consider minimal systems in the same setting.

Theorem 1.2.8 (Minimal SIS BLT). Fix a lattice Γ ⊂ Rd with Zd ⊂ Γ and [Γ : Zd] > 1. Suppose

that F = { fk}K
k=1 ⊂ L2(Rd) is nontrivial and that T (F) is a minimal system for V (F). If [Γ : Zd]

is not a divisor of ρ(V (F)) and V (F) is Γ-invariant, then

∃1≤ k ≤ K such that
∫
Rd
|x|2 | fk(x)|2dx = ∞.

In other words, at least one of the generators satisfies f̂k /∈ H1(Rd).

Theorem 1.2.8 is sharp, which is shown in Lemma 6.1.1.
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1.2.3 (Cq)-system Results

Our final main result is also related to Question 1.1.7. It is proven under the assumption that

T (F) forms a (Cq)-system for V (F). These systems, introduced in [44, 47], are generalizations

of frames. In [45], a generalization of the Balian-Low theorem was proven in the setting that

G ( f ,a,b) forms a minimal (Cq)-system for L2(R).

Let 2 ≤ q ≤ ∞. Then, a sequence {hn}n∈N in a Hilbert space H is a (Cq)-system for H if

there is a C > 0 such that for each g ∈H , g can be approximated to arbitrary accuracy by a finite

sum ∑cnhn such that

‖cn‖q ≤C‖g‖H .

The name (Cq)-system stands for completeness with lq control on the coefficients. A Bessel (C2)-

system is exactly a frame, and if T (F) is a minimal system for V (F) then T (F) is also a (C∞)-

system for V (F). As q increases, the (Cq) property gets weaker in the sense that a (Cq)-system

is also a (Cq′)-system for all q′ ≥ q. Thus, in some sense, (Cq)-systems for shift invariant spaces

form a continuous bridge between frames, which have l2 control over the coefficients, and minimal

systems, which have little control over the coefficients. Section 2.2 contains more information on

(Cq)-systems.

Note that unlike Theorems 1.2.1 and 1.2.8, the following theorem is only proven for dimension

d = 1 and with the restriction that our generating set is of minimal size.

Theorem 1.2.9 ((Cq)-system SIS BLT). Let 1 < N ∈N and 2 < q < ∞. Suppose F = { f1, ..., fK} ∈

L2(R) is nontrivial, V (F) is 1
NZ-invariant, and N does not divide ρ(V (F)). If K = ρ(V (F)), and

T (F) is a (Cq)-system in V (F), then there exists 1 ≤ k ≤ K such that f̂k /∈ H
q−1

q (R). In other

words, ∫
R
|x|

2(q−1)
q | fk(x)|2dx = ∞.

Lemma 6.1.1 also proves that this result is sharp. In the limit as q→ 2, the exponent on the

weight in Theorem 1.2.9 tends to 1, the same exponent as in Theorem 1.2.1. Similarly, as q→ ∞,

the exponent tends to 2, which agrees with Theorem 1.2.8. The proof of Theorem 1.2.9 does not
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directly extend to these cases, but those results can be viewed as limiting cases of Theorem 1.2.9.
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Chapter 2

Background Information

In this chapter, we introduce and collect facts about several topics which will be used through-

out this thesis. In Section 2.1, we define lattices and other topics related to periodic functions.

Section 2.2 reviews the basis and basis-like properties which are used in our main theorems. Sec-

tion 2.3 introduces fractional Sobolev spaces on Rd and Td , and Section 2.4 introduces the dis-

crete Hilbert transform, the discrete conjugate transform, and other related Fourier multipliers, and

proves their boundedness on certain sequence spaces.

2.1 Miscellaneous Background

A set Γ ⊂ Rd is a (full-rank) lattice if there exists a d × d nonsingular matrix D such that

Γ = D(Zd). The dual lattice associated to Γ is defined as Γ∗ = {ξ ∈ Rd : ∀x ∈ Γ,e2πix·ξ = 1}. In

terms of the matrix D, the dual lattice can equivalently be defined as Γ∗ = (D∗)−1(Zd).

Given nested lattices Λ ⊂ Γ, the index of Λ in Γ is denoted by [Γ : Λ], and is defined as the

order of the quotient group Γ/Λ when Γ and Λ are viewed as discrete subgroups of Rd . Moreover,

[Γ : Λ]> 1 if and only if the inclusion Λ⊂ Γ is strict, i.e., Λ ( Γ.

A function f defined on Rd will be said to be Γ-periodic if f (x+ γ) = f (x) for all x ∈ Rd and

γ ∈ Γ. We will typically only be interested in Zd-periodic functions, since an arbitrary lattice in

Rd can be linearly mapped to Zd . We let Td = Rd/Zd denote the d-dimensional torus.

2.2 Basis-type Properties in Hilbert Spaces

Given a separable Hilbert space, H , and a collection of vectors, {hn}n∈N ⊂H , {hn}n∈N is

called complete in H if the span of {hn}n∈N is dense in H . Thus, if {hn}n∈N is complete in

H , any vector g ∈H can be approximated to arbitrary accuracy by a finite linear combination of

elements of {hn}n∈N. However, without stronger conditions imposed on {hn}n∈N, the coefficients
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of these linear combinations can be erratic and not useful in applications.

A common property imposed on {hn}n∈N is orthogonality, i.e. for any n 6= m,

〈hn,hm〉= 〈hn,hm〉H = 0.

When {hn}n∈N is complete, orthogonal, and for each n ∈ N, ‖hn‖ = ‖hn‖H = 1, then {hn}n∈N is

called an orthonormal basis for H . If {hn}n∈N is an orthonormal basis for H , then each g ∈H

satisfies,

g = ∑
n∈N
〈g,hn〉hn,

where the convergence is in the norm of H and is unconditional. These coefficients {〈g,hn〉}n∈N

satisfy Parseval’s equality,

‖g‖2 = ∑
n∈N
|〈g,hn〉|2. (2.1)

Parseval’s equality shows that small perturbations of a vector g ∈H lead to small changes in

the coefficients of the perturbation’s expansion in the orthonormal basis.

2.2.1 Riesz Bases, Frames, and Minimality

The material in this subsection can be found in several sources. For example, see [21, 33].

A Riesz basis for H is the image of an orthonormal basis for H under a bounded, invertible

linear operator on H . Thus, if {hn}n∈N is a Riesz basis, then there exists an orthonormal basis

{en}n∈N and a bounded, invertible linear operator T such that Ten = hn for each n. For any square

summable sequence, {cn}n∈N, the vector g = ∑n∈N cnen ∈H and ‖g‖ = ‖cn‖l2(N). Then T g =

∑n∈N cnhn ∈H and there exist constants 0 < A ≤ B < ∞ only depending on the operator T such

that

A‖g‖ ≤ ‖T g‖ ≤ B‖g‖.
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In other words, for any sequence {cn} ∈ l2(N),

A‖cn‖l2(N) ≤ ‖∑
n∈N

cnhn‖ ≤ B‖cn‖l2(N). (2.2)

It is straightforward to verify that {hn}n∈N is a Riesz basis for H if and only if Equation 2.2

holds for each {cn} ∈ l2(N). Thus, Riesz bases are characterized by a weaker version of Parseval’s

equality (2.1).

A frame can be defined with a different weakening of Parseval’s equality. A sequence {hn}n∈N

is a frame for H if there exist 0 < A≤ B < ∞ such that for each g ∈H ,

A‖g‖2 ≤ ∑
n∈N
|〈g,hn〉|2 ≤ B‖g‖2. (2.3)

In Equations (2.2) and (2.3), A and B are referred to as the lower and upper frame bounds, re-

spectively. If only the upper inequality in Equation (2.3) holds, then {hn}n∈N is called a Bessel

sequence for H .

Although frames need not even be finitely linearly independent, they have proven to be useful

tools in signal processing and approximation theory due to the following. If {hn}n∈N is a frame for

H , then there exists a dual frame {h̃n}n∈N such that any g ∈H can be represented as

g = ∑
n∈N

< g,hn > h̃n = ∑
n∈N

< g, h̃n > hn.

Therefore, an arbitrary function can be reconstructed from its frame coefficients, {< g,hn >}n∈N,

and the l2(N) norms of the frame coefficients is equivalent to ‖g‖.

Every Riesz basis is a frame, but there exist frames which are not Riesz bases. For example, let

{en}n∈N be an orthornormal basis for H , and let {hn}n∈N be defined by h2n = h2n+1 = en. Thus,

{hn}n∈N consists of two copies of {en}n∈N. It is straightforward to see that {hn}n∈N forms a frame

(A and B can be chosen to equal 2), but {hn}n∈N cannot be a Riesz basis since the elements are

not finitely linearly independent. In fact, a strong version of linear independence is exactly what is
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needed to guarantee that a given frame is a Riesz basis.

The collection {hn}n∈Z is a minimal system for H if for each j ∈ Z,

h j /∈ span{hn : n 6= j},

where the closure is taken in the norm of H . In a finite dimensional Hilbert space, this property

is equivalent to linear independence, but in infinite dimensions it can happen that any finite subset

of {hn}n∈Z is linearly independent but the collection is not minimal.

A system is called exact if it is both complete and minimal. We will be interested in cases

where T (F) is a minimal system for V (F), but by definition T (F) is complete in V (F), so T (F)

is minimial for V (F) if and only if it is exact for V (F).

Note that the definition of minimality implies that for each n ∈ N, there exist a h̃n ∈H such

that

< hm, h̃n >= δm,n.

The collection {h̃n}n∈N is called a biorthogonal dual of {hn}n∈N. It is straightforward to show

that if a collection {hn}n∈Z ⊂ H has a biorthogonal dual, then {hn}n∈Z is minimal, and thus

minimality is equivalent to the existence of a biorthogonal dual. It can be shown that if {hn}n∈N is

exact, then this biorthogonal dual is unique. This is summarized in the following proposition.

Proposition 2.2.1. Let {hn}n∈N be a sequence in a Hilbert space H .

1. {hn}n∈N is a minimal system in H if and only if there exists a biorthogonal dual of {hn}n∈N.

2. {hn}n∈N is exact in H if and only if there exists a unique biorthognal dual of {hn}n∈N.

2.2.2 (Cq)-systems

In [44, 45, 47], a generalization of frames called (Cq)-systems were introduced and used to

see if previous results which were known for frames could be extended to these systems. For

2≤ q≤ ∞, we say {hn}n∈N is a (Cq)-system for H if each g ∈H can be approximated, with an
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arbitrarily small error, by a finite linear combination ∑annn such that

‖an‖lq(N) ≤C‖g‖H ,

where C does not depend on g. It is clear from the definition that if {hn}n∈N is a (Cq)-system for

some q, then {hn}n∈N is complete. The name (Cq)-system can thus be interpreted as complete

with lq control over the coefficients. Note also that if q1 > q2 then a (Cq2)-system is always a

(Cq1)-system.

In [47], it is shown that {hn}n∈N is a (Cq)-system for H if and only if

c‖g‖H ≤ ‖〈g,hn〉H ‖p, ∀g ∈H ,

where 1
p +

1
q = 1 and 0 < c does not depend of g. Thus, (Cq)-systems obey a weaker version of the

left hand side of the frame inequality 2.3, and a Bessel (C2)-system is a frame. Similarly, an exact

Bessel (Cq)-system can be thought of as a generalization of a Riesz basis, and an exact Bessel

(C2)-system is a Riesz basis.

In [45], the following theorem is proven related to minimal (Cq)-systems.

Theorem 2.2.2 (Theorem 3 in [45]). Let 2 ≤ q ≤ ∞, and let {hn}n∈N be a sequence in a Hilbert

space H . The following are equivalent.

1. The system {hn}n∈N is an exact (Cq)-system for H .

2. The system {hn}n∈N is a exact, and for all f ∈H ,

‖< f , h̃n > ‖lq(N) ≤C‖ f‖,

where {h̃n}n∈N is the biorthogonal dual of {hn}n∈N.
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3. The system {hn}n∈N is complete, and

‖an‖lq(N) ≤C‖∑anhn‖,

for every finite sequence of numbers {an}.

Suppose T (F) is a minimal system for V (F). It is not hard to show that the biorthogonal dual

of T (F) is a set of the form T (G) where g j is the element biorthogonal to f j. Then, for some

g ∈H ,

|< g,Tng j >L2(Rd) | ≤ ‖g‖L2(Rd)‖Tng j‖L2(Rd) = ‖g‖L2(Rd)‖g j‖L2(Rd).

Therefore,

‖< g,Tng j >L2(Rd) ‖∞ ≤max
j
{‖g j‖L2(Rd)}‖g‖L2(Rd).

By part 2 of Theorem 2.2.2, we find that T (F) is a (C∞)-system for V (F).

In summary, we find that (C2)-systems are closely related to frames and Riesz bases, and if

T (F) is a minimal system for V (F), then it is a (C∞)-system for V (F). Therefore, in some sense,

(Cq) systems for a continuous interpolation between Riesz bases and minimal systems, and the

(Cq)-property becomes weaker as q increases.

2.3 Fractional Sobolev Spaces

Recall that the Fourier coefficients of f ∈ L2(Td) are defined by

∀k ∈ Zd, f̂ (k) =
∫
Td

f (x)e−2πix·kdx

where dx is Lebesgue measure on the torus Td . Also recall Parseval’s theorem

∫
Td
| f (x)|2dx = ∑

k∈Zd

| f̂ (k)|2, (2.4)

21



and the translation property

∀y ∈ Rd,∀k ∈ Zd, T̂y f (k) = f̂ (k)e−2πiy·k. (2.5)

We now define two classes of Sobolev functions which will be used throughout this thesis.

Definition 2.3.1. Given s > 0, the Sobolev space Hs(Rd) consists of all measurable functions f

defined on Rd such that ‖ f‖Hs(Rd) =
(∫

Rd(1+ |ξ |2)s| f̂ (ξ )|2dξ

)1/2
<∞. Equivalently, f ∈Hs(Rd)

if and only if f ∈ L2(Rd) and

‖ f‖ .
Hs(Rd)

=

(∫
Rd
|ξ |2s| f̂ (ξ )|2dξ

)1/2

< ∞. (2.6)

The following is an equivalent characterization of (2.6) when 0 < s < 1, e.g., [? ],

‖ f‖2.
Hs(Rd)

=C(d,s)
∫
Rd

∫
Rd

| f (x+ y)− f (x)|2

|y|d+2s dxdy. (2.7)

We do not prove this here, but we prove a simlar result for periodic Sobolev spaces.

Similar to the above definition, we now define a Sobolev space Hs(Td) of periodic functions.

Definition 2.3.2. Given s > 0, define the Sobolev space Hs(Td) = { f ∈ L2(Td) : ‖ f‖ .
Hs(Td)

< ∞},

where ‖ f‖ .
Hs(Td)

=
(

∑k∈Zd |k|2s| f̂ (k)|2
)1/2

. Similar to above, we define

‖ f‖Hs(Td) =

(
∑

k∈Zd

(1+ |k|2)s| f̂ (k)|2
)1/2

.

The following proposition gives a useful equivalent characterization of ‖ f‖ .
Hs(Td)

for 0 < s < 1.

Equation (2.8) was proven in Proposition 1.3 in [14], and equation (2.9) is an extension to Hs(Td)

of the equivalence on page 66 in [16]. We provide a proof of (2.9) below. We use the notation

X � Y to indicate that there exist absolute constants 0 <C1 ≤C2 such that C1X ≤ Y ≤C2X .
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Lemma 2.3.3. Fix 0 < s < 1, and suppose that f ∈ L2(Td). Then

‖ f‖2.
Hs(Td)

�
∫
Td

∫
[− 1

2 ,
1
2 )

d

| f (x+ y)− f (x)|2

|y|d+2s dydx. (2.8)

Moreover, if {e j}d
j=1 is the canonical basis for Rd then

‖ f‖2.
Hs(Td)

�
d

∑
j=1

∫
Td

∫
[− 1

2 ,
1
2 )

| f (x+ te j)− f (x)|2

|t|1+2s dtdx. (2.9)

The implicit constants in (2.8) and (2.9) depend only on s and d.

Proof. We prove (2.9), and remark that (2.8) can be shown with a similar argument. By Parseval’s

theorem

d

∑
j=1

∫
[− 1

2 ,
1
2 )

∫
Td

| f (x+ te j)− f (x)|2

|t|1+2s dxdt =
d

∑
j=1

∫
[− 1

2 ,
1
2 )

∑k∈Zd | f̂ (k)|2|e−2πik·te j −1|2

|t|1+2s dt

= ∑
k∈Zd

| f̂ (k)|2H(k), (2.10)

where

H(k) =
d

∑
j=1

∫
[− 1

2 ,
1
2 )

|e−2πitk·e j −1|2

|t|1+2s dt =
d

∑
j=1

∫
[− 1

2 ,
1
2 )

|e−2πitk j −1|2

|t|1+2s dt. (2.11)

If k j = 0, then
∫
[− 1

2 ,
1
2 )
|e−2πitk j−1|2
|t|1+2s dt = 0 = |k j|2s. If k j 6= 0, then,

∫ 1
2

− 1
2

|e−2πitk j −1|2

|t|1+2s dt = |k j|2s
∫ |k j |

2

−
|k j |

2

|e−2πit−1|2

|t|1+2s dt

≤ |k j|2s
∫

∞

−∞

|e−2πit−1|2

|t|1+2s dt

Using the fact that |e2πit − 1| ≤ min(2π|t|,2), it is straigtforward to see that for all 0 < s < 1,∫
∞

−∞

|e−2πit−1|2
|t|1+2s dt < ∞. Thus, there is a constant C > 0 such that

H(k)≤C
d

∑
j=1
|k j|2s ≤Cd|k|2s. (2.12)
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Next, we use the fact that (1− cos(2πθ)) ≥ θ 2/2 for all |θ | ≤ 1/4 to find a lower bound on

H(k). Note that for any nonzero component, k j, of k, we must have k j ≥ 1. Then,

∫ 1
2

− 1
2

|e−2πitk j −1|2

|t|1+2s dt = |k j|2s
∫ |k j |

2

−
|k j |

2

|e−2πit−1|2

|t|1+2s dt

= 2|k j|2s
∫ |k j |

2

−
|k j |

2

1− cos(2πt)
|t|1+2s dt

= 2|k j|2s
∫ 1

4

− 1
4

1− cos(2πt)
|t|1+2s dt

= |k j|2s
∫ 1

4

− 1
4

|t|1−2sdt

= 2−3+4s|k j|2s

Thus, using (2.11), (2.12), and the equivalence of the l1 and l
1
s norms, there exists constants

C1,C2 > 0 such that

C1|k|2s ≤ 2−3+4s
d

∑
j=1
|k j|2s ≤ H(k)≤C2|k|2s.

The following theorem shows that for large enough s, Hs(Td) embeds into a space of Hölder

continuous periodic functions Cα(Td). For 0 < α ≤ 1, let ‖ f‖ .
Cα (Td)

= supx 6=t∈Td
| f (x+t)− f (x)|

|t|α , and

‖ f‖Cα (Td) = ‖ f‖L∞(Td)+ ‖ f‖ .
Cα (Td)

. Then, Cα(Td) is the collection of functions, f , on Td such

that ‖ f‖Cα (Td) < ∞, and ‖ · ‖Cα (Td) is a norm on Cα(Td).

This theorem is well known when Td is replaced by Rd , (See Theorem 8.2 in [25]) and the

following proof is a straightforward adaptation of a version of the Rd result. We will only use the

periodic version in the remaining portion of the thesis.

Theorem 2.3.4 (Periodic Hölder Sobolev Embedding). Let s∈ (d
2 ,

d
2 +1). Then, there exists C > 0,

depending only on s such that,

‖ f‖Cs−d/2(Td) ≤C‖ f‖Hs(Td),
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and

‖ f‖ .
Cs−d/2(Td)

≤C‖ f‖ .
Hs(Td)

.

Proof. Fix s ∈ (d
2 ,

d
2 +1), and suppose f ∈ Hs(Td). Note that since s > d

2 ,

∑
k∈Zd

| f̂ (k)| ≤

(
∑

k∈Zd

| f̂ (k)|2(1+ |k|)2s

)1/2(
∑

k∈Zd

(1+ |k|)−2s

)1/2

= ‖ f‖Hs(Td)

(
∑

k∈Zd

(1+ |k|)−2s

)1/2

< ∞. (2.13)

Thus, f̂ ∈ l1(Zd), and we are guaranteed that the inversion formula f (x) = ∑k∈Zd f̂ (k)e2πix·k holds

for almost every x ∈ Td . Again using (2.13), there exists a C > 0 such that for almost every x ∈ Td ,

| f (x)| ≤ ∑
k∈Zd

| f̂ (k)| ≤C‖ f‖Hs(Td),

or ‖ f‖L∞(Td) ≤C‖ f‖Hs(Td).

Also,

| f (x+ t)− f (x)|2 =

∣∣∣∣∣ ∑
k∈Zd

f̂ (k)e2πi(x+t)·k− ∑
k∈Zd

f̂ (k)e2πix·k

∣∣∣∣∣
2

=

∣∣∣∣∣∣ ∑
k∈Zd\{0}

f̂ (k)e2πix·k(e2πit·k−1)

∣∣∣∣∣∣
2

≤

(
∑

k∈Zd

| f̂ (k)|2|k|2s

) ∑
k∈Zd\{0}

|e2πit·k−1|2

|k|2s


≤ ‖ f‖2.

Hs(Td)

 ∑
k∈Zd\{0}

|e2πit·k−1|2

|k|2s

 (2.14)
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The remaining sum can be bounded by splitting it into pieces as follows.

∑
|k|≤ 1

|t| ,k 6=0

|e2πit·k−1|2

|k|2s ≤ 4π
2|t|2 ∑

|k|≤ 1
|t| ,k 6=0

|k|2(1−s)

≤C|t|2
∫
|ξ |≤ 1

|t|

|ξ |2(1−s)dξ

≤C1|t|2s−d, (2.15)

which is finite since s < d
2 +1, and similarly

∑
|k|> 1

|t|

|e2πit·k−1|2

|k|2s ≤ 2 ∑
|k|> 1

|t|

|k|−2s

≤C2|t|2s−d. (2.16)

Combining, (2.14), (2.15), and (2.16) shows that there is a C > 0 such that

sup
x 6=t∈Td

| f (x+ t)− f (x)|
|t|s−d/2 ≤C‖ f‖ .

Hs(Td)
.

2.4 Discrete Hilbert Transform

Note that Ĥs(T) = {m̂ : m ∈ Hs(T)} is given by the collection of sequences α = {αl}l∈Z of

complex numbers such that ∑l∈Z |αl|2(1+ |l|2s)< ∞. We will be interested in studying when cer-

tain multiplication operators are bounded from Hs(T) to itself. This leads to studying boundedness

of certain convolution operators on Ĥs(T).

In fact, for a particular collection of periodic functions m ∈ Hs(T) for 1/2 < s < 1, we would

like to show that sign(x)m(x) ∈ Hs(T). Let ψ be the 1-periodic function satisfying

ψ(x) =
πi
2

sign(x) − 1
2
< x≤ 1

2
.
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Then,

ψ̂(l) =


1
l l ∈ 2Z+1

0 l ∈ 2Z.

For a sequence α = {αl}l∈Z define the discrete Hilbert transform of α , Hα by

Hα = α ? ψ̂,

so that

[Hα]n = ∑
n−l∈2Z+1

αl

n− l
.

Similarly, define the discrete conjugate function of α , T α , by

[T α]n = ∑
l∈Z,l 6=n

αl

n− l
.

We will show the following in a sequence of lemmas.

Proposition 2.4.1. If ∑l∈Zαl = 0 = ∑l∈Z(−1)lαl and 1/2 < s < 3/2 then there exists a C > 0

depending only on s such that,

∑
l∈Z
|(Hα)l|2(1+ |l|2s)≤C ∑

l∈Z
|αl|2(1+ |l|2s).

In particular, if m ∈ Hs(T) for 1/2 < s < 3/2 and m(0) = m(1/2) = 0, then m̃(x) = sign(x)m(x)

satisfies m̃ ∈ Hs(T).

Theorem 10 in [40] gives conditions under which T is a bounded operator between weighted

lp spaces. Before stating the theorem, we need the following definition. A sequence w = {wl}l∈Z

with wl ≥ 0 is a discrete Ap weight if there exists a C > 0 such that for all m ≤ n with m,n ∈ Z

there holds (
n

∑
l=m

wl

)(
n

∑
l=m

w
− 1

p−1
l

)p−1

≤C(n−m+1)p.
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Theorem 2.4.2 (Theorem 10 in [40]). If {wl}l∈Z is a discrete Ap weight then

∑
l∈Z
|(T α)l|pwl ≤C ∑

l∈Z
|αl|pwl.

Next we show that weights related to Ĥs(T) are A2 weights for certain values of s. Let wλ
l be

defined by

wλ
l =

 1 l = 0

|l|λ l 6= 0.

Lemma 2.4.3. For −1 < λ < 1, the weight, wλ = {wλ
l }l∈Z, is a discrete A2 weight.

Proof. First, when λ = 0, the claim is obvious. By symmetry it suffices to consider 0 < λ < 1.

Note that for any n,m ∈ Z, we have

(
n

∑
l=m

wλ
l

)(
n

∑
l=m

w−λ

l

)
≤ 2λ

(∫ n+1

m−1
(1+ |x|)λ dx

)(∫ n+1

m−1
(1+ |x|)−λ dx

)
. (2.17)

If 0≤ a≤ b, we have

(∫ b

a
(1+ x)λ dx

)(∫ b

a
(1+ x)−λ dx

)
=

1
1−λ 2

(
(1+b)1+λ − (1+a)1+λ

)(
(1+b)1−λ − (1+a)1−λ

)
=

1
1−λ 2

(
(1+b)2 +(1+a)2− (1+a)1+λ (1+b)1−λ − (1+a)1−λ (1+b)1+λ

)
≤ 1

1−λ 2

(
(1+b)2 +(1+a)2−2(1+a)(1+b)

)
=

1
1−λ 2 (b−a)2 ,

where we use the fact that

2(1+a)(1+b)≤ (1+a)1+λ (1+b)1−λ +(1+a)1−λ (1+b)1+λ .
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If a < 0≤ b and |a|< b, we have

(∫ b

a
(1+ |x|)λ dx

)(∫ b

a
(1+ |x|)−λ dx

)
=

(∫ b

0
(1+ x)λ dx+

∫ |a|
0

(1+ x)λ dx
)(∫ b

0
(1+ x)−λ dx+

∫ |a|
0

(1+ x)−λ dx
)

≤ 1
1−λ 2

[
b2 +a2 +

(∫ b

0
(1+ x)λ dx

)(∫ |a|
0

(1+ x)−λ dx
)

+

(∫ |a|
0

(1+ x)λ dx
)(∫ b

0
(1+ x)−λ dx

)]
≤ 1

1−λ 2

[
b2 +a2 +2

(∫ b

0
(1+ x)λ dx

)(∫ b

0
(1+ x)−λ dx

)]
≤ 3

1−λ 2

[
b2 +a2]≤ 3

1−λ 2 (b−a)2 .

The other cases for a and b follow similarly, and we find that for any a,b ∈ R with a≤ b,

(∫ b

a
(1+ |x|)λ dx

)(∫ b

a
(1+ |x|)−λ dx

)
≤ 3

1−λ 2 (b−a)2.

Combining this with equation 2.17, we find that

(
n

∑
l=m

wλ
l

)(
n

∑
l=m

w−λ

l

)
≤ 3(2)λ

1−λ 2 (n−m+2)2

≤ 12(2)λ

1−λ 2 (n−m+1)2.

Lemma 2.4.3 and Theorem 2.4.2 immediately implies that for −1/2 < s < 1/2,

∑
l∈Z\{0}

|(T α)l|2|l|2s ≤ ∑
l∈Z
|(T α)l|2w2s

l

≤C ∑
l∈Z
|αl|2w2s

l

We would like to extend this result to higher values of s, but to do so we need an extra assumption.
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Lemma 2.4.4. For 1/2 < s < 3/2, If ∑l∈Zαl = 0, then there exists a C > 0 only depending on s

such that,

∑
l∈Z
|(T α)l|2(1+ |l|2s)≤C ∑

l∈Z
|αl|2(1+ |l|2s).

Proof. First, since w0
l = 1 is a trivial A2 weight, by Theorem 2.4.2, we have that

∑
l∈Z
|(T α)l|2 ≤C ∑

l∈Z
|αl|2.

Also, by assumption we have

0 = ∑
l∈Z

αl = n ∑
l 6=n

αl

n− l
−∑

l 6=n

lαl

n− l
+αn,

or, in other words,

n[T α]n = [T ({lαl}l∈Z)]n−αn.

By assumption, −1 < 2s−2 < 1. Thus,

∑
n∈Z\{0}

|(T α)n|2|n|2s = ∑
n∈Z\{0}

|n(T α)n|2|n|2s−2

= ∑
n∈Z\{0}

|[T ({lαl}l∈Z)]n−αn|2|n|2s−2

≤ 2 ∑
n∈Z\{0}

|[T ({lαl}l∈Z)]n|2|n|2s−2 +2 ∑
n∈Z\{0}

|αn|2|n|2s−2

≤C ∑
n∈Z\{0}

|nαn|2w2s−2
n +2 ∑

n∈Z
|αn|2(1+ |n|2s)

≤C ∑
n∈Z
|αn|2(1+ |n|2s).

Therefore,

∑
l∈Z
|(T α)l|2(1+ |l|2s)≤C ∑

l∈Z
|αl|2(1+ |l|2s).
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Now we can prove Proposition 2.4.1.

Proof of 2.4.1. First we decompose the sequence α into the even (E) and odd (O) indices,

α
E
l =

αl +(−1)lαl

2
, α

O
l =

αl− (−1)lαl

2
.

Note that ∑l∈ZαE
l = 0 and ∑l∈ZαO

l = 0.

If n = 2m ∈ 2Z, then

[Hα]n = ∑
n−l∈2Z+1

αl

n− l

= ∑
l∈2Z+1

αl

n− l

= ∑
l 6=n

αO
l

n− l

= (T α
O)n.

Similarly, if n = 2m+1 ∈ 2Z+1, then

[Hα]n = (T α
E)n.

We have,

∑
n∈Z
|[Hα]n|2(1+ |n|2s) = ∑

n∈2Z
|[Hα]n|2(1+ |n|2s)+ ∑

n∈2Z+1
|[Hα]n|2(1+ |n|2s)

= ∑
n∈2Z
|[T α

O]n|2(1+ |n|2s)+ ∑
n∈2Z+1

|[T α
E ]n|2(1+ |n|2s)

≤ ∑
n∈Z
|[T α

O]n|2(1+ |n|2s)+ ∑
n∈Z
|[T α

E ]n|2(1+ |n|2s)

≤C ∑
n∈Z
|αO

n |2(1+ |n|2s)+C ∑
n∈Z
|αE

n |2(1+ |n|2s)

=C ∑
n∈Z
|αn|2(1+ |n|2s).
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Now, suppose m ∈ Hs(T) with m(0) = m(1/2) = 0. This is equivalent to saying

∑
l∈Z
|m̂(l)|2(1+ |l|2s)< ∞,

∑l∈Z m̂(l) = m(0) = 0, and ∑l∈Z m̂(l)(−1)l = m(1/2) = 0. We also know ̂̃m = Hm̂. Thus, m̃ ∈

Hs(T).

2.4.1 Fourier Multipliers on lp

The following important fact also follows from Theorem 10 in [40], with a similar argument to

Theorem 2.4.1.

Theorem 2.4.5. For 1 < p < ∞,

‖Hα‖p ≤ ‖α‖p.

Let M be the operator such that

Mm(x) = sign(x)m(x)

for any measurable m defined on T. Then, Ĥα = πi
2 M(α̂). Note then that

̂
(I− 2

πi
H)α = 2χ[0,1/2]m̂.

By Theorem 2.4.5, S = 1
2(I−

2
πiH) is a bounded Fourier multiplier from lp to lp for 1 < p < ∞

with symbol χ[0,1/2]. We will use this to show that for any interval I ⊂ T the Fourier multiplier

with symbol χI is also a bounded operator from lp to lp.

Proposition 2.4.6. Let J ⊂ T be an interval. For a sequence α = {αl}l∈Z let SJ be the operator

such that

ŜJα = χJα̂.
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Then, SJ is a bounded operator from lp to lp.

Proof. Identify the torus T with (−1/2,1/2]. For J ⊂ T, we can identify J by two points a,b ∈

[−1/2,1/2] where a is the initial point of J and b is the terminal point of J, but a is not necessarily

less than b. We say J = [a,b]. Suppose first that the length of J is 1/2. Then,

SJ = MaS[0,1/2]M−a

where [Maα]l = e−2πilaαl , and so SJ is bounded. Now suppose the length of J is less than 1/2.

Then,

SJ = S[b−1/2,b]S[a,a+1/2]

where b− 1/2 and a+ 1/2 are taken modulo Z. Then, SJ is bounded. Finally, if the length of

J = [a,b] is greater than 1/2, the complimentary interval [b,a] has length less than 1/2 and S[b,a] is

bounded. But SJ = I−S[b,a], and thus SJ is bounded.
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Chapter 3

Structure of Shift-Invariant Spaces

Shift-invariant spaces have been thoroughly studied in the literature, and many properties of

finitely-generated shift-invariant spaces can be characterized in terms of a periodic, matrix-valued

function called the Gramian. In this chapter, we explore the Gramian in detail. Section 3.1 shows

that finitely-generated shift-invariant spaces in L2(Rd) are isometrically isomorphic to vector-

valued weighted L2(Td) spaces with the weight given by the Gramian. Section 3.2 characterizes

several of the basis and frame-type properties of T (F) in V (F) through properties of the Gramian

associated to F . Section 3.3 collects other assorted facts about V (F) which can be characterized

by the Gramian matrix, and states an important result about finding generating sets of minimal size

for V (F) through linear combinations of elements of F .

3.1 The Gramian and Weighted L2(Td) Spaces

Let F = { f1, f2, ..., fk} for some f j ∈ L2(Rd). Suppose

g =
K

∑
k=1

∑
n

cn,kTn fk,

is a finite sum. Then, g ∈V (F), and we have

ĝ(ξ ) =
K

∑
k=1

∑
n

cn,ke−2πin·ξ f̂k(ξ )

=
K

∑
k=1

mk(ξ ) f̂k(ξ ),

where each mk is Zd periodic, and ∑
K
k=1 mk f̂k ∈ L2(Rd). With slight abuse of notation, for each

ξ ∈Rd , let F̂(ξ ) be the column vector F̂(ξ ) = ( f̂1(ξ ), f̂2(ξ ), ..., f̂K(ξ ))
T , and define the row vector
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M(ξ ) = (m1(ξ ),m2(ξ ), ...,mK(ξ )). Then ĝ = MF̂ , and

‖g‖2
L2(Rd) =

∫
Rd
|M(ξ )F̂(ξ )|2dξ

=
∫
Rd

M(ξ )F̂(ξ )F̂(ξ )∗M(ξ )∗dξ

=
∫
Td

M(ξ ) ∑
l∈Zd

F̂(ξ + l)F̂(ξ + l)∗M(ξ )∗dξ . (3.1)

The matrix P(F̂)(ξ ) = ∑l∈Zd F̂(ξ + l)F̂(ξ + l)∗ is called the Gramian matrix of F̂ . Note that for

almost every ξ , P( f̂ )(ξ ) is a positive semi-definite Hermitian matrix.

It will be useful to consider the individual entries of P(F̂). Define the bracket product of two

L2(Rd) functions f and g to be

[ f ,g](x) = ∑
l∈Zd

f (x+ l)g(x+ l), (3.2)

See [20] for more on bracket products. Note that [ f ,g] ∈ L1(Td), and P(F̂)(ξ ) is the matrix of

bracket products of elements of F̂ = { f̂k : fk ∈ F}.

P(F̂)(x) = ∑
k∈Zd

F̂(x+ k)F̂∗(x+ k) =



[
f̂1, f̂1

]
(x)

[
f̂1, f̂2

]
(x) · · ·

[
f̂1, f̂K

]
(x)[

f̂2, f̂1

]
(x)

[
f̂2, f̂2

]
(x) · · ·

[
f̂2, f̂K

]
(x)

...
... . . . ...[

f̂K, f̂1

]
(x)

[
f̂K, f̂2

]
(x) · · ·

[
f̂K, f̂K

]
(x).


A straightforward calculation shows that for any f ,g ∈ L2(Rd) and any k ∈ Zd , we have

[̂
ĝ, f̂
]
(k) = 〈g,Tk f 〉.

Therefore, the Grammian encodes all of the inner products of shifts of the generators as Fourier

series coefficients of its entries. Note that if F = { f}, then P(F)(x) = P( f )(x) = [ f , f ](x) =

∑k∈Zd | f (x+ k)|2 which is a scalar-valued, nonnegative, Zd-periodic function, and P( f ) is often
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called the periodization of f .

Equation (3.1) can be rewritten as

‖g‖2
L2(Rd) =

∫
Td

M(ξ )P(F̂)(ξ )M(ξ )∗dξ . (3.3)

We see an immediate connection between the span of T (F) and the collection of measurable,

Zd-periodic, vector-valued functions M = (m1, ...,mK) such that

‖M‖L2
P(F̂)

(Td) =
∫
Td

M(ξ )P(F̂)(ξ )M(ξ )∗dξ < ∞.

Define the space L2
P(F̂)

(Td) to be the collection of equivalence classes of such functions under

‖ · ‖L2
P(F̂)

(Td). Then, L2
P(Td) is a Hilbert space with inner product,

< M,N >=
∫
Td

M(x)P(x)N(x)dx.

For g∈ span{T (F)}, we find that ‖g‖L2(Rd)= ‖M‖L2
P(F̂)

(Td) for any M such that ĝ=MF̂ almost ev-

erywhere. The following proposition shows that this relationship extends to V (F) = span{T (F)}.

The following proof is an adaptation of the single-generator proof in [36]. Let P = P(F̂), and

define the operator J : L2
P(Td)→ L2(Rd) for any M ∈ L2

P(Td),

ĴM = MF̂ = m1 f̂1 +m2 f̂2 + · · ·+mk f̂k.

Proposition 3.1.1. J is an isometry between L2
P(Td) and V (F).

Proof. The calculation in Equation 3.1 remains valid for any M ∈ L2
P(Td). Thus, J is an isometry

on L2
P(Td), and JM ∈ L2(Rd). Suppose h∈V (F)⊥. Then, h is orthogonal to shifts of all generators

which is equivalent to [ĥ, f̂ j] = 0 for all j. Then, for any M ∈ L2
P(Td),

[
ĥ, Ĵm

]
= m1

[
ĥ, f̂1

]
+ · · ·+mk

[
ĥ, f̂k

]
= 0.
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Thus, Jm ∈ (V (F)⊥)⊥ =V (F).

Since J is an isometry, its range R is a closed subspace of V (F). If there exists a function

g ∈V (F)\R, then

0 = 〈g,Jm〉=
∫
Td

m1[ĝ, f̂1]+ · · ·+mk[ĝ, f̂k]dx

for any choice of m ∈ L2
P(Td). Choose m′ such that m′j[ĝ, f̂ j] = |[ĝ, f̂ j]|. Clearly, m′ ∈ L2

P(Td).

Then,

0 = 〈g,Jm′〉=
∫
Td
|[ĝ, f̂1]|+ · · ·+ |[ĝ, f̂k]|dx

and so [ĝ, f̂ j] = 0 for all j. This implies g ∈ V (F)⊥. This contradiction shows that J is surjective

onto V (F).

Fix F = { f1, ..., fk} ⊂ L2(Rd). Then, for almost every x ∈ Td , P(x) = P(F̂)(x) is positive

semidefinite, and if λ1(x)≥ λ2(x)≥ ...≥ λK(x) are the eigenvalues of P(x), there exists a unitary

matrix U(x) such that

P(x) =U(x)Λ(x)U(x)∗, (3.4)

where Λ(x) is the diagonal matrix with the eigenvalues as entries. Note that U(x) is not unique.

Fortunately, Lemma 2.3.5 in [48] shows that the eigenvalue functions λ1 ≥ λ2 ≥ ... ≥ λK are

measurable, and there exists a matrix valued function U(x) such that u j,k is measurable for each

j,k ∈ {1, ...,K}, and for almost every x ∈ Td , we have U(x) is unitary and (3.4) holds.

For almost every x ∈ Td , the trace of P(F̂)(x) is

tr
[
P(F̂)(x)

]
=

K

∑
k=1

[ f̂k, f̂k](x) =
K

∑
k=1

λk(x).

Note that [ f̂k, f̂k] ∈ L1(Td) since f̂k ∈ L2(Rd), and thus for each k, we have λk ∈ L1(Td).
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3.2 Basis and Frame Type Properties for Shift-Invariant Spaces

In this section, we find necessary and sufficient conditions for T (F) to have basis or frame

type properties for V (F).

3.2.1 Orthonormal Bases, Frames, and Riesz Bases for V (F)

The following result can be found in various forms in several sources including [17, 26, 36, 48].

For K×K matrices M,N, we use M ≤ N to denote that for all row vectors y ∈ RK , it holds that

yMy∗ ≤ yNy∗. We also denote the K×K identity matrix by IK or just I if the dimension is clear.

Theorem 3.2.1. Let F = { f1, ..., fK} for some f j ∈ L2(Rd), and let P = P(F̂).

1. T (F) forms an orthonormal basis for V (F) if and only if

P(x) = I a.e. x ∈ Td. (3.5)

2. T (F) forms a Riesz basis for V (F) if and only if there exists 0 < A≤ B < ∞ such that

AI ≤ P(x)≤ BI, a.e. x ∈ Td, (3.6)

3. T (F) forms a frame for V (F) if and only if there exists 0 < A≤ B < ∞ such that

AP(x)≤ P(x)2 ≤ BP(x), a.e. x ∈ Td. (3.7)

In the case of a single generator, F = { f}, Theorem 3.2.1 says that T (F) forms

1. an orthonormal basis for V (F) if P(x) = 1 almost everywhere,

2. a Riesz basis for V (F) if P,P−1 ∈ L∞(Td),

3. a frame for V (F) if P ∈ L∞(Td) and P is bounded away from zero whenever it is non-zero.
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For multiple generators, Theorem 3.2.1 says the same for each of the eigenvalue functions λ1 ≥

λ2 ≥ ...≥ λK of P.

To give perspective on these results and to show the usefulness of Proposition 3.1.1, we provide

a proof of the Riesz basis result below.

Proof. Based on Proposition 3.1.1, it suffices to prove that E = {e2πin·xe j}1≤ j≤K,n∈Zd , where e j is

a canonical basis row vector in RK , is a Riesz basis for L2
P(Td) if and only if the stated condition

holds. The Riesz basis property is equivalent to the existance of constants 0 <C1 ≤C2 < ∞ such

that for any c j,n ∈ l2(Zd)K , we have

C1‖c j,n‖2
l2(Zd)K ≤ ‖

K

∑
j=1

∑
n∈Zd

c j,ne2πin·xe j‖2
L2

P(Td)
≤C2‖c j,n‖2

l2(Zd)K . (3.8)

Note that for each j, {c j,n}n∈Zd ∈ l2(Zd). Thus, there exist m j ∈ L2(Td) such that m̂ j(n) = c j,n.

Letting M(x) = (m1(x), ...,mK(x)) and using Parseval’s equality, we see that the Riesz basis prop-

erty (3.8) is equivalent to saying, for all M = (m1, ...,mK) ∈ L2(Td)K we must have

C1‖M‖2
L2(Td)K ≤ ‖M‖2

L2
P(Td)

≤C2‖M‖2
L2(Td)K . (3.9)

Let U and Λ be a measurable diagonalization of P as in (3.4). For any M ∈ L2
P(Td), note that

∫
Td

M(x)P(x)M(x)∗dx =
∫
Td

M̃(x)Λ(x)M̃∗(x)dx (3.10)

where M̃(x) = M(x)U(x), and since U(x) is unitary for almost every x ∈ Td ,

‖M̃‖L2(Td)K = ‖M‖L2(Td)K . (3.11)

Combining (3.9), (3.10), and (3.11) we see that E is a Riesz basis for L2
P(Td) if and only if E is a

Riesz basis for L2
Λ
(Td).

If AI ≤ P(x)≤ BI, then for each j ∈ {1, ...,K}, we have A≤ λ j(x)≤ B for almost every x∈Td .
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This gives,

A
∫
Td

M̃(x)M̃(x)∗dx≤
∫
Td

M̃(x)Λ(x)M̃(x)∗dx≤ B
∫
Td

M̃(x)M̃(x)∗dx, (3.12)

and so E is a Riesz basis for V (F).

Now, if the lower condition is not satisfied in (3.6), then for any l ∈N, there exists a set Sl ⊂Td

of positive measure such that the smallest eigenvalue, λK , of P, satisfies λK(x)≤ 1
l for almost every

x ∈ Sl .

For each l, let Ml(x) = 1
|Sl |χSl(x)eK . Then, ‖Ml‖L2(Td)K = 1, but

‖Ml‖L2
Λ
(Td) =

1
|Sl|

∫
Sl

λK(x)dx≤ 1
l
.

Thus, the Riesz Basis condition cannot be satisfied. A similar argument shows the same result if

the upper condition is not satisfied in (3.6).

3.2.2 Minimal systems for V (F)

We now prove a characterization for T (F) forming a minimal system for V (F). A single-

generator, dimension 1 version of the following result is given in [36].

Proposition 3.2.2. Let F = { f1, ..., fK}⊂ L2(Rd), and let P = P(F̂). The following are equivalent.

1. T (F) is a minimal system for V (F).

2. P(x) is invertible for almost every x, and the diagonal elements of P−1 are integrable on Td .

3. The eigenvalue functions λ1(x)≥ λ2(x)≥ ...≥ λK(x) of P(x) satisfy

1
λ j
∈ L1(Td).

for each j.
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Note that if P(x) was diagonal for almost every x, this proposition shows that 1
P( f̂ j)

∈ L1(Td)

for each j, which agrees with the singly-generated characterization of minimality.

Proof. It suffices to replace (1) with the statement, E = {e2πin·xe j}1≤ j≤K,n∈Zd is a minimal system

for L2
P(Td).

First we show (1) implies (2). Assume E is a minimal system for L2
P(Td). From Propositon

2.2.1, E must have a biorthogonal dual system in L2
P(Td). Let g j,n be the dual element for e2πin·xe j.

Then g j,0 satisfies

δl,0δk, j = 〈g j,0,e2πil·xek〉L2
P(Td)

=
∫
Td

g j,0P(x)e∗ke−2πil·xdx

=
∫
Td

e−2πil·xg j,0(x)Pk(x)dx

= ĝ j,0Pk(l),

where Pk(x) is the kth column of P(x). Then, for any k 6= j, we must have g j,0(x)Pk(x) = 0 for

almost every x, and we also have g j,0(x)Pj(x) = 1 almost everywhere. Equivalently, g j,0(x)P(x) =

e j. If we let W be the matrix with jth row, g j,0, then we find W (x) = P(x)−1 almost everywhere.

Also, since g j,0 = (w j,1, ...w j,K) is in L2
P(Td), we have

∫
Td

w j, j(x)dx =
∫
Td

g j,0(x)P(x)g∗j,0(x)dx < ∞. (3.13)

Note that w j, j(x) must be nonnegative almost everywhere since it can be written as w j(x)P(x)w∗j(x).

Thus, w j, j ∈ L1(Td).

Next, we show (2) implies (1). Suppose P(x) is invertible for almost every x, and the diagonal

entries of the inverse are integrable. Let W (x) = P(x)−1. Let

w j(x) = (w j,1(x),w j,2(x), ...,w j,K(x)),
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be the jth row of W (x). Define g j,n(x)= e2πin·xw j(x). Equation 3.13 shows that g j,0 =w j ∈ L2
P(Td).

It is a straightforward calculation to show that g j,n is biorthogonal to e2πin·xe j, and therefore E is

minimal for L2
P(Td).

Finally, the equivalence of (2) and (3) follows from the trace formula,

tr(P(x)−1) =
K

∑
j=1

w j, j(x) =
K

∑
j=1

1
λ j(x)

.

Since, w j, j and 1
λ j

are nonnegative almost everywhere for each j, the trace formula gives both

w j, j(x)≤
K

∑
j=1

1
λ j(x)

1
λ j(x)

≤
K

∑
j=1

w j, j(x).

Therefore, if either {w j, j}K
j=1 ⊂ L1(Td) or { 1

λ j
}K

j=1 ⊂ L1(Td), then both sets are subsets of L1(Td).

3.2.3 Minimal (Cq)-systems for V (F)

Lemma 1 in [45] gives necessary and sufficient conditions for E = {e2πin·x}n∈Z2 to form a

minimal (Cq)-system in L2
W (T2), where W is a scalar-valued, almost everywhere positive weight.

This proof directly carries over to L2
W (Td) for any dimension d. We will now extend this to the case

of matrix-valued, almost everywhere positive weights to find necessary and sufficient conditions

for T (F) to form a minimal (Cq)-system for V (F).

Proposition 3.2.3. Fix q > 2. Let F = { f1, ..., fK} ⊂ L2(Rd), and let P = P(F̂).

a) T (F) forms a minimal (Cq)-system for V (F) if and only if for all M =(m1, ...,mk)∈ L2
P(Td),

we have (
k

∑
j=1

∑
l∈Zd

|m̂ j(l)|q
) 1

q

<C‖M‖L2
P(Td). (3.14)

b) Let W (x)=P(F̂)(x)−1 for almost every x if such an inverse exits. Let w j =(w j,1,w j,2, ...,w j,k)
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be the jth row of W. If

w j, j ∈ L
q

q−2 [0,1]d

for all j ∈ {1, ..,k}, then T (F) is a minimal (Cq)-system in V (F).

c) If the eigenvalue functions λ1(x)≥ λ2(x)≥ ...≥ λk(x) of P(F̂)(x) satisfy

1
λ j
∈ L

q
q−2 [0,1]d

for each j, then T (F) is a minimal (Cq)-system in V (F).

Proof. Note that if we prove part b), then part c) follows from the trace formula calculation at

the end of Proposition 3.2.2. As before, it suffices to prove these results with T (F) replaced by

E = {e2πin·xe j}1≤ j≤K,n∈Zd and V (F) replaced with L2
P(Td).

We start with a calculation which will be used for proving parts a) and b) of the proposi-

tion. Assume, T (F) is minimal for V (F). By Proposition 3.2.2, W (x) = P(x)−1 is defined al-

most everywhere, and by the proof of the same proposition, the biorthogonal dual element cor-

responding to g j,n(x) = e2πin·xe j is given by g̃ j,n(x) = e2πin·xe jP(x)−1 = e2πin·xw j(x). For any

M = (m1, ...,mK) ∈ L2
P(Td), We have

〈M, g̃ j,n〉L2
P(Td) =

∫
[0,1]d

M(x)P(x)w j(x)∗e−2πin·xdx

=
∫
[0,1]d

m j(x)e−2πin·xdx = m̂ j(n) (3.15)

a) Theorem 2.2.2 shows that E is a minimal (Cq)-system for L2
P(Td) if and only if T (F) is

minimal, and the biorthogonal dual system {g̃ j,n}1≤ j≤K,n∈Zd , satisfies

(
k

∑
j=1

∑
n∈Zd

|〈M, g̃ j,n〉L2
P(Td)|

q

)1/q

≤C‖M‖L2
P(Td), ∀M ∈ L2

P(Td)
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However, Equation 3.15 shows the following.

(
k

∑
j=1

∑
n∈Zd

|〈M, g̃ j,n〉L2
P(Td)|

q

)1/q

=

(
k

∑
j=1

∑
n∈Zd

|m̂ j(n)|q
)1/q

(3.16)

b) We will show that (3.14) holds under these assumptions. For any M ∈ L2
P(Td) and using the

Hausdorff-Young inequality, we have

k

∑
j=1

∑
l∈Zd

|m̂ j(l)|q ≤
k

∑
j=1

(∫
Td
|m j(x)|pdx

)q/p

=
k

∑
j=1

(∫
Td

∣∣M(x)P(x)w j(x)∗
∣∣p dx

)q/p

Now, by applying Cauchy-Schwartz and then Hölder’s inequality (with t = 2
p = 2(q−1)

q and r =

2
2−p = 2(q−1)

q−2 ), we have

k

∑
j=1

∑
l∈Zd

|m̂ j(l)|q ≤
k

∑
j=1

(∫
Td

∣∣M(x)P(x)w j(x)∗
∣∣p dx

) q
p

≤
k

∑
j=1

(∫
Td

∣∣∣M(x)
√

P(x)
∣∣∣p ∣∣∣√P(x)w j(x)∗

∣∣∣p dx
) q

p

≤
(∫

Td
|M(x)

√
P(x)|2dx

)q/2 k

∑
j=1

(∫
Td

∣∣∣w j(x)
√

P(x)
∣∣∣ 2q

q−2
dx

) q−2
2

= ‖M‖q
L2

P(Td)

k

∑
j=1

(∫
Td

(
w j(x)P(x)w j(x)∗

) q
q−2 dx

) q−2
2

= ‖M‖q
L2

P(Td)

k

∑
j=1

(∫
Td

w j, j(x)
q

q−2 dx
) q−2

2

.

Since w j, j ∈ L
q

q−2 (Td), Equation (3.14) holds.
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3.2.4 Nonminimal (Cq)-systems for V ( f )

Without the assumption of minimality, the situation is more difficult. In this setting we do not

have the luxury of using Propositon 3.2.2. Still, we have the following result which is similar to

Proposition 3.2.3 part (1), but which only holds for a generating set of minimal size in dimension

1 and with extra assumptions on P = P(F̂).

Theorem 3.2.4. Fix 2 ≤ q < ∞. Suppose F = { f1, ..., fK} ⊂ L2(R) is such that P = P(F̂) has

continuous eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λK , and such that for some set of positive measure λK > 0.

Suppose that λK has at least one zero in T and let I := [a,b] ⊂ T be such that, λK(a) = λK(b) =

0, and λK > 0 on (a,b). If T (F) is a (Cq)-system for V (F), then for every Z-periodic M =

(m1, ...,mK) supported on I such that
∫

I M(x)P(x)M(x)∗dx < ∞ we have

(
∑
n∈Z
|M̂(n)|q

) 1
q

<C‖M‖L2
P(I)

where C depends only on I, q, and P.

Proof. Recall that T (F) is a (Cq)-systems for V (F) if and only if E = {e2πinxe j}1≤ j≤K,n∈Z is a

(Cq)-system for L2
P(T).

Step I. For any interval I := [a,b]⊂ T such that, λK(a) = λK(b) = 0, λK(x)> 0 on (a,b), we

have λ
−1
K ∈ L1(I).

Let hε be the indicator function of Iε := [a+ ε,b− ε] (when thinking of T as an interval of

length 1 which contains [a,b] as an interval). For x ∈ Iε , W (x) = P(x)−1 exists almost everywhere,

and since λK is bounded away from zero on Iε , the elements of W (x) are bounded on this set as

well. Let w j be the jth row of W (x), and define gε, j = hεw j ∈ L∞(T)K ⊂ L2
P(T).

Since, E = {e2πinxe j}1≤ j≤K,n∈Z is a (Cq)-system in L2
P(T) it is also a (Cq)-system in L2

P(I) so

‖gε, j‖L2
P(I)
≤ ‖{〈gε, j,eke2πilx〉L2

P(I)
}1≤k≤K,l∈Z‖p 1/p+1/q = 1 (3.17)
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Note,

〈gε, j,el〉L2
P(I)

=
∫
Td

hε(x)w j(x)P(x)e∗ke−2πilxdx = δ j,kĥε(l).

So (3.17) implies that ‖gε, j‖L2
P(I)

<C for some constant not depending on ε . Since

‖gε, j‖2
L2

P(I)
=
∫ b−ε

a+ε

w j, j(x),

the lemma follows from the trace formula.

Step II. L2
P(I)⊂ L1(T)K and for Mk and M supported on I, Mk→M in L2

P(I) implies Mk→M

in L1(T)K .

Note that the operator bound λK(x)I ≤ P(x) holds for the identity matrix I. Then, for any

M ∈ L2
P(T),

∫
I
|M(x)|dx≤

(∫
I
|M(x)|2λK(x)dx

)1/2(∫
I

1
λK(x)

dx
)1/2

≤
(∫

I
M(x)P(x)M(x)∗dx

)1/2(∫
I

1
λK(x)

dx
)1/2

.

The result follows easily from this observation.

Step III. Suppose Mn,M ∈ L1(T)K are such that Mn converges to M in L1(T)K . If there

exists a C > 0 such that for all n, ‖M̂n‖q ≤C, then ‖M̂‖q ≤C.

Consider each M̂n ∈ lq(Z)K as a bounded linear functional on lp(Z)K . The Banach Alaoglu

Theorem states that the ball of radius C in lq(Z)K is weak∗ compact, and thus there exists a subse-

quence {M̂n j} which converges to some N̂ in the weak∗ topology. In particular, M̂n j(l)→ N̂(l) for

each l. However, since Mn j converges to M in L1(T)K , M̂n j(l)→ M̂(l) for each l, and thus, M̂n j

converges to M̂ in the weak∗ topology. Also, for any x ∈ lp(Z)K ,

|〈M̂,x〉| ≤ sup
j
|〈M̂n j ,x〉| ≤C‖x‖lp(Z)K .

Therefore, ‖M̂‖lq(Z)K ≤C.
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Step IV. Completing the proof.

Let I be an interval as in Step I. Clearly, if {e2πinxe j}1≤ j≤K,n∈Z is a (Cq)–system in L2
P(T) then

it is a (Cq)–system in L2
P(I).

Let M ∈ L2
P(I). Then, there exist finite sums, Pk, of terms in E which satisfy Pk→M in L2

P(I)

and ‖P̂k‖q < C‖M‖L2
P(I)

. By Proposition 2.4.6, it follows that ‖P̂kχI‖q < C1‖P̂k‖q < C′‖M‖L2
P(I)

.

By Step II we have PkχI→M in L1(I), and therefore also in L1(T), and hence ‖M̂‖q <C′‖M‖L2
P(I)

by Step III.

3.3 Extra Invariance and Minimal Number of Generators

The first result in this section shows that extra-invariance can also be characterized in terms of

Gramians. We sketch the proof below and refer the reader to [49] for a more rigorous proof. If Γ

is a lattice such that Γ ) Zd , and R⊂ Zd is a set of representatives of the quotient Zd/Γ∗, then by

rearranging terms in the sum we can always write the Grammian as

P(F̂)(x) = ∑
l∈Zd

F̂(x+ l)F̂(x+ l)∗

= ∑
k∈R

∑
γ∈Γ∗

F̂(x+ γ + k)F̂(x+ γ + k)∗

= ∑
k∈R

PΓ∗(F̂)(x+ k),

where we define PΓ∗(F̂)(x) = ∑γ∈Γ∗ F̂(x+ γ)F̂(x+ γ)∗.

Theorem 3.3.1 ([1, 3, 49]). Let Γ ⊂ Rd be a lattice with Zd ( Γ. Let R ⊂ Zd be a collection of

representatives of the quotient Zd/Γ∗. The space V (F) is Γ-invariant if and only if

rank
[
P(F̂)(x)

]
= ∑

k∈R
rank

[
PΓ∗(F̂)(x+ k)

]
, a.e. x ∈ Rd.
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Sketch of proof. Consider the operator

A(x) : Ck 7→ l2(Zd)

defined by

(A(x)u)l = u1 f1(x− l)+u2 f2(x− l)+ ...+uk fk(x− l)

for any l ∈ Zd and u = (u1, ...,uk)
T ∈ Ck. We may think of A(x) as an ∞× k matrix where the ith

column of A(x) consists of fi evaluated at x− l. Then

P(x) = P(F̂)(x) = A(x)∗A(x).

Similarly, we can define an AΓ∗ so that PΓ∗ = PΓ∗(F̂) = AΓ∗(x)AΓ∗(x). It is straightforward to show

that rank [P(x)] = rank [A], and similarly for PΓ∗. Note that

rank [A(x)] = dim
(

span
{
( f̂ j(x+ k))k∈Zd : j ∈ {1, ...,K}

})
.

Let V (x) = span
{
( f̂ j(x+ k))k∈Zd : j ∈ {1, ...,K}

}
and

W (x) = span
{
(m(x+ k) f̂ j(x+ k))k∈Zd : j ∈ {1, ...,K},m is Γ

∗−periodic
}
.

Clearly, V (x)⊂W (x), and using Proposition 3.1.1 it is possible to show that W (x)⊂V (x) for

almost every x ∈ Rd if and only if V (F) is Γ-invariant. However, the space W (x) orthogonally

decomposes into the spaces Wr(x) = span
{
(er(k) f̂ j(x+ k))k∈Zd : j ∈ {1, ...,K}

}
where er(k) = 1

for k ∈ r+Γ∗ and er(k) = 0 for other values of k. For a collection of representatives, R, as in the

statement of the theorem,

W (x) =
⊕
r∈R

Wr(x).

48



Then,

dim [V (x)] = ∑
r∈R

dim [Wr(x)] ,

for almost every x ∈ Rd , and this is equivalent to the rank condition of the theorem.

Note that |R|= [Zd : Γ∗] = [Γ : Zd]. Further, if it was known that the rank of PΓ∗ were constant

almost everywhere, say rank [PΓ∗] = J, then for almost every x we would have,

rank [P(x)] = |R|J = [Γ : Zd]J.

The following proposition shows that in this case rank [P(x)] will in fact be equal to, ρ(V (F)), the

minimal number of generators of V (F). Thus, if PΓ∗ has constant rank, we find that [Γ : Zd] divides

ρ(V (F)). In light of this, several of the proofs of main results derive a contradiction by showing

that the assumptions from the theorem imply that the rank of PΓ∗ is constant.

Proposition 3.3.2 (Proposition 4.1, [49]). Let F ⊂ L2(Rd). The minimal number of generators of

V (F) is given by

ρ(V (F)) = esssupx∈Rd

(
rank

[
P(F̂)(x)

])
.

We provide a short proof of this result.

Proof. Let P = P(F̂), and let P(x) = U(x)Λ(x)U(x)∗ be a measurable diagonalization. Let u j(x)

be the jth column of U(x). Then, u∗j ∈ L2
P(F̂)

(Td) since

∫
Td

u∗j(x)P(x)u jdx =
∫
Td

λ j(x)dx < ∞.

Then ĝ j = u∗j F̂ ∈ L2(Rd), and g j ∈ V (F). Let G be the column vector with entries g j. Then,

Ĝ =U∗F̂ . Note that P(Ĝ)(x) = Λ(x) almost everywhere.

We now show V (G) =V (F). We have that h ∈V (F) if and only if there exists an M ∈ L2
P(Td)

such that ĥ = MF̂ = MUĜ. It is straightforward to check that MU ∈ L2
P(Ĝ)

(Td), and so h ∈V (G).

Thus V (F)⊂V (G). The other inclusion follows similarly. Thus, V (G) =V (F).
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Note that g j is only nonzero if λ j is nonzero, and thus G can be reduced to a set of size

D(F) = esssupx∈Rd

(
rank

[
P(F̂)(x)

])
.

This shows that ρ(V (F))≤ D(F). For the other direction note that for almost every x ∈ Td ,

rank
[
P(F̂)(x)

]
= dim

[
span{( f̂ j(x+ l))1≤ j≤K,l∈Zd}

]

and the right hand side is independent of the particular set of generators for the space V (F). Thus,

D(F) = D(H) for any other set of generators H ⊂ L2(Rd) with V (F) = V (H), and no generating

set of size less than D(F) exists. Therefore, ρ(V (F)) = D(F).
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Chapter 4

Intermediate Results

In this chaper, we prove several results which will be used in the proofs of our main theorems.

In particular, in Section 4.1, we prove a strong embedding theorem for the Gramian matrices, and

in Section 4.2 we prove results about the restriction of Hs(Td) functions to lines and about Hs(Td)

functions which have a negative power of integrability.

4.1 Periodization and Gramian Embeddings

Theorem 4.1.1 (Periodization and Grammian Embedding). Fix 0< s≤ 1. Suppose F = { f1, f2, ..., fk}⊂

Hs(Rd) and λ1(x)≥ ·· · ≥ λk(x)≥ 0 are the eigenvalues of P = P(F)(x), then
√

λi ∈ Hs(Rd).

Proof. Let A be the operator defined by

(A(x)u)l = u1 f1(x− l)+u2 f2(x− l)+ ...+uk fk(x− l)

for any l ∈ Zd and u = (u1, ...,uk)
T ∈ Ck, as in Theorem 3.3.1, so that

P(x) = A(x)∗A(x).

The Courant-Fischer-Weyl min-max theorem, e.g., Corollary III.1.2 in [15], says that

λk(x) = max{min{〈u,P(x)u〉 : u ∈U, |u|= 1} : dim(U) = k},

51



Then, for almost every x,y ∈ Rd ,

∣∣∣√λk(x)−
√

λk(y)
∣∣∣≤ |√max{min{〈u,P(x)u〉 : u ∈U, |u|= 1} : dim(U) = k}

−
√

max{min{〈v,P(y)v〉 : v ∈V, |v|= 1} : dim(V ) = k}|.

Without loss of generality, λk(x)≥ λk(y). Choose a subspace U0 that realizes the maximum λk(x).

We have

∣∣∣√λk(x)−
√

λk(y)
∣∣∣≤√min{〈u,P(x)u〉 : u ∈U0, |u|= 1}

−
√

max{min{〈v,P(y)v〉 : v ∈V, |v|= 1} : dim(V ) = k}|

≤
√

min{〈u,P(x)u〉 : u ∈U0, |u|= 1}−
√

min{〈v,P(y)v〉 : v ∈U0, |v|= 1}.

Next, choose u0 ∈U0 with ‖u0‖ = 1 such that the minimum in the right term is achieved at u0.

Then,

∣∣∣√λk(x)−
√

λk(y)
∣∣∣≤√min{〈u,P(x)u〉 : u ∈U0, |u|= 1}−

√
〈u0,P(y)u0〉

≤
√
〈u0,P(x)u0〉−

√
〈u0,P(y)u0〉

= ‖A(x)u0‖−‖A(y)u0‖

From the triangle inequality, we hvae

∣∣∣√λk(x)−
√

λk(y)
∣∣∣≤ ‖(A(x)−A(y))u0‖

≤ ‖A(x)−A(y)‖op

≤ ‖A(x)−A(y)‖ f rob.
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Therefore, we may conclude that

∣∣∣√λk(x)−
√

λk(y)
∣∣∣2 ≤ ‖A(x)−A(y)‖2

f rob

=
K

∑
j=1

∑
l∈Zd

∣∣ f j(x− l)− f j(y− l)
∣∣2 . (4.1)

Case 1: s < 1 Using Equations (2.8) and (4.1), we find

‖
√

λk‖2.
Hs(Td)

≤C
∫
Td

∫
[− 1

2 ,
1
2 )

d

|
√

λk(x)−
√

λk(y)|2

|y|d+2s dydx

≤C
∫
Td

∫
[− 1

2 ,
1
2 )

d

∑
k
j=1 ∑l∈Zd | f j(x− l)− f j(y− l)|2

|y|d+2s dydx

=C
k

∑
j=1

∫
Rd

∫
[− 1

2 ,
1
2 )

d

| f j(x)− f j(y)|2

|y|d+2s dydx

≤C
k

∑
j=1
‖ f j‖2.

Hs(Rd)
< ∞.

Case 2: s = 1 For notational simplicity, let g =
√

λk. Equation (4.1) implies for any i ∈

{1, ...,K}

∫
Td
|g(x+ tei)−g(x)|2 dx≤

∫
Td

K

∑
j=1

∑
l∈Zd

∣∣ f j(x+ tei− l)− f j(x− l)
∣∣2 dx

=
K

∑
j=1

∫
Rd

∣∣ f j(x+ tei)− f j(x)
∣∣2 dx.

Using Parseval’s equality for L2(Rd) and L2(Td) we have

∑
k∈Zd

|ĝ(k)|2|e2πikit−1|2 ≤
K

∑
j=1

∫
Rd
| f̂ j(ξ )|2|e2πiξit−1|2dξ .

Using the fact that |e2πiξit−1| ≤ 2π|ξi||t|, for any nonzero t, we find,

∑
k∈Zd

|ĝ(k)|2
∣∣∣∣e2πikit−1

t

∣∣∣∣2 ≤ 2π

K

∑
j=1

∫
Rd
| f̂ j(ξ )|2|ξi|2dξ < ∞
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Note that |e2πikit−1|2 = 2(1− cos(2πkit)) and for any |θ | ≤ 1
4 , 1− cos(2πθ)≥ θ 2

2 . Thus, for any

|t|> 0 we have

∑
|ki|≤ 1

4|t|

|ĝ(k)|2|ki|2 ≤ ∑
k∈Zd

|ĝ(k)|2
∣∣∣∣e2πikit−1

t

∣∣∣∣2 ,
and the right hand side is uniformly bounded in t. Thus, taking the limit as t→ 0, we find

∑
k∈Zd

|ĝ(k)|2|ki|2 ≤ 2π

K

∑
j=1

∫
Rd
| f̂ j(ξ )|2|ξi|2dξ .

Summing this expression over each i ∈ {1, ...,K} we find that there is a constant C > 0 such that

‖g‖2.
H1(Td)

≤C
K

∑
j=1
‖ f j‖2.

H1(Rd)
< ∞.

4.2 Sobolev Space Properties

4.2.1 Restriction of Hs(Td) Functions to Lines

The following shows that the restriction of a periodic Sobolev function to lines typically has

the same degree of Sobolev smoothness. For x′ ∈ [0,1]d−1, let L j(x′) = {(x1, ...x j−1, t,x j, ...,xd) :

t ∈ [0,1]}.

Proposition 4.2.1. Fix 0 < s≤ 1, and suppose g ∈Hs(Td). There exists a representative of g such

that for all j and almost every x′ ∈ [0,1]d−1, the function gx′, j = g|L j(x′) satisfies gx′, j ∈ Hs(T).

Proof. Case 1: 0 < s < 1 This portion of the proof will make use of the equivalent norm (2.9). For

54



x′ ∈ [0,1]d−1, let x′j(t) = (x′1, ...,x
′
j−1, t,x

′
j, ...,x

′
d+1). We have

‖g‖2
Ḣs(Td) �

d

∑
j=1

∫
Td

∫
[0,1]

|g(x+ te j)−g(x)|2

|t|1+2s dtdx (4.2)

=
d

∑
j=1

∫
[0,1]d−1

∫
[0,1]

∫
[0,1]

|g(x′j(r+ t))−g(x′j(r))|2

|t|1+2s dtdrdx′ (4.3)

=
d

∑
j=1

∫
[0,1]d−1

‖gx′, j‖2.
Hs(T)

dx′. (4.4)

Since ‖g‖2
Ḣs(Td)

< ∞, we must have

‖gx′, j‖Ḣs(T) < ∞,

for almost every x′ ∈ [0,1]d and for each j ∈ {1, ...,d}.

Case 2: s = 1 This follows from the absolute continuity on lines characterization of H1(Rd)

(see for example [43]) which is easily carried over to the space H1(Td). The result says that if

g ∈ H1(Td), then there exist a g̃ which is equal to g almost everywhere such that g̃ is absolutely

continuous on almost every line parallel to any coordinate axis, and the classical derivative of g̃

on, say, L1(x′) agrees with the distributional partial derivative Dx1g restricted to L1(x′). Since

these partial derivatives must be in L2(Td), we must have that gx′, j is in H1(T) for almost every

x′ ∈ [0,1]d .

4.2.2 Hs(Td) Functions with a Negative Power of Integrability

It is known that if g is the characteristic function of a measurable set S ⊂ Rd with positive

finite Lebesgue measure then g /∈H1/2(Rd), e.g., see [16]. Here, we show that this result holds for

the periodic Sobolev space H1/2(Td) for S with measure strictly between 0 and 1, and we prove a

generalization of this result for Hs(T d) for 1/2 < s≤ 1. We start with a lemma which will be used

for the 1/2 < s≤ 1 portion of the proof.

Lemma 4.2.2. Suppose S ⊂ [0,1]d is measurable. Further, suppose that for each axis in Rd , the
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intersection of S with almost every line parallel to the axis has 1-dimensional Lebesgue measure

either zero or one. Then, the d-dimensional Lebesgue measure of S is either zero or one.

Proof. We will prove this by induction on d. For d = 1, the statement is trivially true. For this

proof, we use | · |d to denote the d-dimensional Lebesgue measure.

Suppose the result holds for all d < k for some k > 1. Consider now d = k. Let e1, ...,ed be the

canonical basis vectors, we can label all lines in the ed direction by L(x) = {(x, t) : t ∈ [0,1]} for

some x∈ [0,1]d−1. The condition that |S∩L(x)|1 is either zero or one for almost every x∈ [0,1]d−1,

is equivalent to saying that S differs by a set of measure zero from the set T = S′× [0,1] where

S′ = {x ∈ [0,1]d−1 : |S∩L(x)|1 = 1} is measurable in [0,1]d−1. Note, |S′|d−1 = |T |d = |S|d > 0,

and intersecting S′ with lines parallel to the axes in Rd−1 is equivalent to intersecting T with lines

parallel to the same axes in Rd . Thus, S′ satisfies the property that its intersections with lines

parallel to the axes in Rd−1 have measure either zero or one. By induction, |S|d = |S′|d−1 is either

zero or one.

For the main results in this thesis, we only need the s = 1/2 and s = 1 part of the following

theroem. The result for the other values of s can be used to prove weak results for (Cq)-systems

and might also be useful outside of this thesis. The proof must be split into two cases, which results

from the fact that the one-dimensional periodic Sobolev embedding embeds Hs(T) into Cs−1/2(T)

for 1/2 < s≤ 1, but does not hold for s = 1/2.

Proposition 4.2.3. Suppose 1/2≤ s≤ 1. Fix a nonnegative, nonzero g ∈Hs(Td), and let S = {x ∈

[0,1]d : g(x)> 0}. If 1
g ∈ L

2
2s−1 (S) (we set 2

2s−1 = ∞ for s = 1/2), then |S|= 1. In other words, g is

nonzero almost everywhere.

Proof. Case 1: s = 1/2 Without loss of generality, we can assume that ‖g−1‖L∞(S) ≤ 1. Notice

that for a.e. x,y ∈ Td ,

|g(x+ y)−g(x)| ≥ |χS(x+ y)−χS(x)|,

and so, by equation (2.8), χS ∈ H1/2(Td) since g ∈ H1/2(Td). Therefore, it suffices to prove the

lemma in the case that g = χS for some S⊂ Td .
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Step I: We begin by addressing the case d = 1. For the sake of contradiction, suppose there

exists a set S⊂ [−1
2 ,

1
2) with 0 < |S|< 1 such that g is the Z-periodic extension of χS to R and that

g ∈ H1/2(T).

For any interval I ⊂ [−1
2 ,

1
2), we have

1
|I|2

∫
I

∫
I
|g(x)−g(y)|dxdy =

1
|I|2

∫
I

∫
I−x
|g(x+ y)−g(x)|dydx

≤ 1
|I|2

(∫
I

∫
I−x

|g(x+ y)−g(x)|2

|y|2
dydx

)1/2(∫
I

∫
I−x
|y|2dydx

)1/2

≤
(∫

I

∫
I−x

|g(x+ y)−g(x)|2

|y|2
dydx

)1/2

. (4.5)

Since g is the indicator function of a set, we have

∫
I

∫
1/2≤|y|≤1

|g(x+ y)−g(x)|2

|y|2
dydx≤

∫
I

∫
1/2≤|y|≤1

1
|1/2|2

dydx≤ 4|I|. (4.6)

If x ∈ I ⊂ [−1
2 ,

1
2) then I− x⊂ [−1,1]. This, together with (4.6), implies that

∫
I

∫
I−x

|g(x+ y)−g(x)|2

|y|2
dydx≤

∫
I

∫ 1

−1

|g(x+ y)−g(x)|2

|y|2
dydx

≤
∫

I

∫ 1/2

−1/2

|g(x+ y)−g(x)|2

|y|2
dydx+4|I|. (4.7)

Using g ∈ H1/2(T), (2.8), (4.5), (4.7), and absolute continuity of the Lebesgue integral, it follows

that

lim
|I|→0

1
|I|2

∫
I

∫
I
|g(x)−g(y)|dxdy = 0. (4.8)

Since 0 < |S|< 1, for every sufficiently small ε > 0, there exists an interval Qε ⊂ [−1/2,1/2)

such that |Qε |< ε and |Qε ∩S|= |Qε ∩Sc|= |Qε |/2 (for example, this follows from the Lebesgue
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differentiation theorem). So, for every sufficiently small ε > 0,

1
|Qε |2

∫
Qε

∫
Qε

|g(x)−g(y)|dxdy≥ 1
|Qε |2

∫
Qε∩S

∫
Qε∩Sc

|g(x)−g(y)|dxdy

=
1
|Qε |2

∫
Qε∩S

∫
Qε∩Sc

1 dxdy

=
|Qε ∩S| |Qε ∩Sc|

|Qε |2
= 1/4. (4.9)

On the other hand, by (4.8),

lim
ε→0

1
|Qε |2

∫
Qε

∫
Qε

|g(x)−g(y)|dxdy = 0. (4.10)

Since (4.9) and (4.10) form a contradiction, it follows that either |S|= 0 or |S|= 1.

Step II: Next, we address the case where d ≥ 2. Suppose that S ⊂ [−1
2 ,

1
2)

d and that g is the

Zd-periodic extension of χS to Rd . Let {e j}d
j=1 be a the canonical basis vectors for Rd . Define for

t ∈ [−1/2,1/2)

ψx,k(t) = g(x+ tek).

Note that for a.e. x ∈ [−1
2 ,

1
2)

d , ψx,k is 1-periodic and ψx,k ∈ L2(T). Also, by Proposition 4.2.1, for

all k and almost every x ∈ Td , ψx,k ∈ H1/2(T). However, since g(x) ∈ {0,1} for almost every x,

we also have that for each 1≤ k ≤ d and almost every x ∈ Td ,

ψx,k(t) ∈ {0,1}, for a.e. t ∈ R. (4.11)

It follows from Case 1 that for each 1≤ k ≤ d and almost every x ∈ Td

g(x+ tek) = 0 for a.e. t ∈ R, or g(x+ tek)(t) = 1 for a.e. t ∈ R. (4.12)

To complete the proof it now suffices to show that g(x) = g(y) for a.e. x,y ∈ Td . For this, it
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suffices to show that g(x) = g(y) for almost every x,y ∈ [−1/2,1/2)d . Similarly to Lemma 2 in

[19], and using (4.12), one has

∫
[−1/2,1/2)d

∫
[−1/2,1/2)d

|g(x1, ...,xd)−g(y1, ...,yd)|dxdy

≤
∫
[−1/2,1/2)d

∫
[−1/2,1/2)d

|g(x1, ...,xd)−g(y1,x2, ...,xd)|dxdy

+
∫
[−1/2,1/2)d

∫
[−1/2,1/2)d

|g(y1,x2, ...,xd)−g(y1,y2,x3...,xd)|dxdy

...

+
∫
[−1/2,1/2)d

∫
[−1/2,1/2)d

|g(y1,y2, ...,yd−1,xd)−g(y1, ...,yd)|dxdy

= 0.

Thus, g(x) = g(y) for almost every x,y ∈ Td .

Case 2: s > 1/2 Step 1: As in Case 1, we first consider the d = 1 case. By the Hölder embed-

ding, we have g∈Cs−1/2(T). Thus, S is an open set. If S 6= [0,1], then g must have a zero. Without

loss of generality, assume g(0) = 0 and g is nonzero for all x ∈ (0, t0) for some t0 > 0. From the

Hölder conditon, we have

|g(x)|= |g(x)−g(0)| ≤C|x|s−1/2.

Then,

∫
S

(
1

g(x)

)2/(2s−1)

dx≥
∫ t0

0

(
1

g(x)

)2/(2s−1)

dx

≥
∫ t0

0

1
|x|

dx = ∞.

Thus, for d = 1, we actually find the stronger result that under the assumptions, S = [0,1].

Step 2: Now we prove the result for d > 1. Assume |S|< 1. Lemma 4.2.2 shows that in some

axis direction (without loss of generality, say in the direction of ed), for a set of positive measure

A⊂ [0,1]d−1, 0 < |S∩L(x)|< 1 for each x ∈ A.
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Since g ∈ Hs(Td), then for almost every x ∈ [0,1]d−1, the function gx(t) = g(x, t) satisfies

gx ∈ Hs(T). Since Hs(T) embeds into Cs−1/2(T), we can find a representative of g for which gx ∈

Cs−1/2(T) for almost every x ∈ [0,1]d−1. We denote this representative of g by g′, and we denote

S′ = {x ∈ [0,1]d : g′(x)> 0}. Note that the symmetric difference of S and S′ satisfies |S
a

S′|= 0.

By Fubini’s Theorem, we must have for almost every x ∈ A, 0 < |S′∩L(x)|= |S∩L(x)|< 1.

Then, for almsot every x ∈ A, we have g′x ∈Hs(T), and 1
g′x
∈ L

2
2s−1 (S′∩L(x)) (again by Fubini’s

Theorem), and S′∩L(x) = {t ∈ [0,1] : g′x(t)> 0}. By the d = 1 case, we must have that |S′∩L(x)|

is either zero or one for almost every x ∈ A, which is a contradiction. Therefore, |S|= 1.
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Chapter 5

Proofs of Main Theorems

In this chapter, we give proofs of the main theorems of this thesis. Section 5.1 contains an im-

portant lemma about Gramians of H1/2(Rd) functions which is then used in the proof of Theorem

1.2.1 and Theorem 1.2.4. Section 5.2 proves a generalization of Theorem 1.2.8 which can be used

to provide a weak version of the (Cq)-system result which holds in all dimensions. In Section 5.3

we prove Theorem 1.2.9.

5.1 Proof of Theorems 1.2.1 and 1.2.4

We first prove a lemma about Gramian’s of H1/2(Rd) functions, which is crucial to both The-

orems 1.2.1 and 1.2.4.

Lemma 5.1.1. Suppose F = { f1, ..., fK}⊂H1/2(Rd)⊂ L2(Rd), and there exist a constant 0 < A <

∞ such that for almost every x ∈ Td , P(x) = P(F)(x) satisfies

AP(x)≤ (P(x))2.

Then, there exists an integer 1≤ J ≤ K such that the rank of P(x) equals J almost everywhere. (In

short, we say that the rank of P is constant almost everywhere.)

Proof. Let λ1(x) ≥ λ2(x) ≥ ... ≥ λK(x) be the eigenvalues of P(x), and for some 1 ≤ k ≤ K, let

Uk(x) be a unit-norm eigenvector of P(x) corresponding to λk(x). Then, for almost every x ∈ Td ,

we have

A〈Uk(x),P(x)Uk(x)〉 ≤ 〈Uk(x),(P(x))2Uk(x)〉,

which is equivalent to

Aλk(x)≤ λk(x)2.
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However, this bound shows that when λk(x) is nonzero, 0 < A≤ λk.

By Theorem 4.1.1,
√

λk ∈ H1/2(Td) and by Proposition 4.2.3, λk must be either zero almost

everywhere in Td or λk must be positive almost everywhere on Td . Since this holds for all k, the

rank of P must be constant almost everywhere in Td .

We also use the following lemma from [49] in all proofs of theorems involving extra-invariance.

For a Hermitian postive semidefinite matrix M, let µ−(M) be the smallest non-zero eigenvalue of

M.

Lemma 5.1.2 (Lemma 3.1 in [49]). Suppose C,A1, ...,Al are all Hermitian positive semidefinite

matrices such that C = A1 + ...+Al and rank [C] = ∑
l
j=1 rank

[
A j
]
. Then,

µ
−(C)≤min

j
[µ−(A j)].

Now we are ready to prove the theorem.

Proof of Theorem 1.2.1. Assume, for the sake of contradiction, that f̂k ∈ H1/2(Rd) for all 1≤ k ≤

K.

Recall the extra-invariance condition from Theorem 3.3.1 shows that for almost every x ∈ Rd ,

rank [P(x)] = ∑
k∈R

rank [PΓ∗(x+ k)] ,

where PΓ∗(x) = ∑γ∈Γ∗ F̂(x + γ)F̂(x + γ)∗, and R ⊂ Zd is a collection of representatives of the

quotient group Zd/Γ∗. Later in the proof we will use the fact that |R|= [Zd : Γ∗] = [Γ : Zd].

We first show that P and PΓ∗ have constant rank almost everywhere. The frame characterization

(3.7) shows that there exist constants 0 < A ≤ B < ∞ such that for almost every x ∈ Td , P(x) =

P(F̂)(x) satisfies

AP(x)≤ (P(x))2 ≤ BP(x).

Then, Lemma 5.1.1 implies that P has constant rank almost everywhere.
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Let D be an invertible matrix such that Γ∗ = DZd . Then,

T (x) = PΓ∗(Dx)

= ∑
γ∈Γ∗

F̂(Dx+ γ))F̂(Dx+ γ)∗

= ∑
l∈Zd

F̂(D(x+ l)))F̂(D(x+ l))∗

is Zd invariant, and is exactly the Gramian matrix of F̂(Dx) = ( f̂1(Dx), ..., f̂K(Dx))T . Since D is

invertible, F̂(D·)⊂ H1/2(Rd).

Also, Lemma 5.1.2 shows that for almost every x, the minimum nonzero eigenvalue (if one

exists) of PΓ∗(x) is greater than or equal to the minimum nonzero eigenvalue of P(x), which we

know from the frame condition is bounded below by A > 0. Since PΓ∗ is positive semi-definite,

this is equivalent to saying that for almost every x ∈ Rd ,

APΓ∗(x)≤ (PΓ∗(x))2.

This property is uneffected by rescaling by D, and thus for almost every x ∈ Td , we have

AT (x)≤ (T (x))2.

Lemma 5.1.1 shows that T , and thus PΓ∗ must have constant rank almost everywhere.

Note that Proposition 3.3.2, combined with the fact that P(x) has constant rank almost every-

where, implies that for almost every x ∈ Td ,

ρ(V (F)) = rank [P(x)] .

Let J be the integer such that rank [PΓ∗] = J almost everywhere. Then, the extra-invariance condi-
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tion gives

ρ(V (F)) = rank [P(x)] = ∑
k∈R

rank [PΓ∗(x+ k)] = |R|J = [Γ : Zd]J.

We have reached a contradiction since we assumed that [Γ : Zd] does not divide ρ(V (F)). There-

fore, at least one generator must not be in H1/2(Rd).

Theorem 1.2.4 can be proven using similar techniques to the proof of Theorem 1.2.1.

Proof of Theorem 1.2.4. Assume, for the sake of contradiction, that f̂k ∈ H1/2(Rd) for all 1≤ k ≤

K. Using Lemma 5.1.1 and similar reasoning as in the proof of Theorem 1.2.1 we find that the

rank of P(x) must be constant almost everywhere. The assumption that K = ρ(V (F)), along with

Proposition 3.3.2 implies that P is full rank almost everywhere. This forces the eigenvalue func-

tions, λk, of P to be nonzero almost everywhere for all 1≤ k ≤ K = ρ(V (F)). However, equation

(3.7) shows that the eigenvalue functions are then bounded below by A > 0 almost everywhere.

This is equivalent to P satisfying the lower bound in equation (3.6). The upper bound also follows

from (3.7). Thus, T (F) forms a Riesz basis for V (F) which gives a contradiction.

5.2 Proof of Theorem 1.2.8

We will actually prove a slightly more general theorem, which gives a weak result for (Cq)-

systems as well as the full result for minimal systems.

Theorem 5.2.1. Fix 1
2 < s≤ 1, a lattice Γ ) Zd , and some nontrivial F = { f1, ..., fK} ⊂ Hs(Rd).

Suppose V (F) is Γ-invariant and [Γ : Zd] does not divide ρ(V (F)). If λ1(x) ≥ ... ≥ λK(x) denote

the eigenvalues of P(x), then for some 1≤ k ≤ K,

1
λk

/∈ L
1

2s−1 (Td).

Note that Theorem 5.2.1 implies Theorem 1.2.8 since part 3 of Proposition 3.2.2 shows that if

T (F) forms a minimal system for V (F), we must have λ
−1
k ∈ L1(Td) for all 1≤ k ≤ K.
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Part c of Theorem 3.2.3 shows that if λ
−1
k ∈ L

q
q−2 (Td), then T (F) is a minimal (Cq)-system

for V (F). Theorem 5.2.1 shows that under the assumptions of the theorem, the eigenvalues cannot

satisfy this property for s = q−1
q . Theorem 5.2.1 is not enough to say that T (F) cannot form a

minimal (Cq)-system for V (F) under these assumptions, but it can be seen as a partial result in that

direction.

Proof of Theorem 5.2.1. We assume for contradiction that for all 1 ≤ k ≤ K, λ
−1
k ∈ L

1
2s−1 (Td).

Theorem 3.3.1 gives

rank [P(x)] = ∑
k∈R

rank [PΓ∗(x+ k)] , a.e. x ∈ Rd

Applying Lemma 5.1.2, for almost every x we have,

λK(x) = µ
−(P(x))≤min

k
µ
−(PΓ∗(x+ k))≤ µ

−(PΓ∗(x)),

where µ−(A) is the smallest nonzero eigenvalue of A. Denote the eigenvalues of PΓ∗(x) by γ1(x)≥

γ2(x)≥ ·· · ≥ γK(x). We have,

λK(x)≤ max
i:γi(x)>0

γi(x).

Let J be the largest value such that γJ is not equal to zero almost everywhere. As in the proof of

Theorem 1.2.1, let D be an inveritble matrix such that Γ∗ = DZd , and let g(x) =
√

γJ(Dx). Then,

on S = {x ∈ Td : g(x)> 0}, we have

λK(Dx)≤ g(x),

Thus, we must have

∫
S

∣∣∣∣ 1
g(x)

∣∣∣∣ 1
2s−1

dx≤
∫

S

∣∣∣∣ 1
λK(Dx)

∣∣∣∣ 1
2s−1

dx≤ 1
detD

∫
D−1Td

∣∣∣∣ 1
λK(x)

∣∣∣∣ 1
2s−1

dx < ∞.

This shows that g−1 ∈ L
1

2s−1 (S), and Theorem 4.1.1 shows that g ∈ Hs(Td). Combining these
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conditions on g, Proposition 4.2.3 shows that g must be positive almost everywhere. Then, γJ must

be positive almost everywhere. This is equivalent to saying rank [PΓ∗ ] = J almost everywhere.

Finally, the extra invariance rank formula gives

ρ(V (F)) = rank P(x) = ∑
k∈R

rank PΓ∗(x+ k) = J|R|= J[Γ : Zd],

which contradicts the assumptions of the theorem.

5.3 Proof of Theorem 1.2.9

In this section, we will prove Theorem 1.2.9 and we will discuss some of the difficulties with

extending this result to higher dimensions, non-minimal (Cq)-systems, and multiple generators.

We start with a lemma which concerns Hs(T) functions which have a zero.

Lemma 5.3.1. Let 1
2 < s< 1. Suppose λ is a nonnegative function with

√
λ ∈Hs(T) and λ (0) = 0.

Then, the Z-periodic function which is defined by m(x) = |x|−s for x ∈ [−1
2 ,

1
2), is such that

∫
T
|m(x)|2λ (x)dx < ∞.

Proof. Step I: Special case λ (x) = 0 for x < 0. Suppose that in addition to having λ (0) = 0 we

also know λ (x) = 0 for all x ∈ [−1/2,0]. Since
√

λ ∈ Hs(T), we have

∞ >
∫ 1/2

−1/2

∫ 1/2

−1/2

|
√

λ (x+ t)−
√

λ (x)|2

|t|2s+1 dxdt

≥
∫ 1/2

0

∫ 0

−t

|
√

λ (x+ t)−
√

λ (x)|2

|t|2s+1 dxdt

=
∫ 1/2

0

1
t2s+1

∫ t

0
λ (x)dxdt.
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Next, using integration by parts, we see

∫ 1/2

0

1
t2s+1

∫ t

0
λ (x)dxdt

=

[
−t−2s

2s

∫ t

0
λ (x)dx

]t=1/2

t=0
+

1
2s

∫ 1/2

0

λ (t)
t2s dt (5.1)

By Theorem 2.3.4,
√

λ ∈Cs−1/2(T), and since λ (0) = 0, we have λ (x)<C|x|2s−1. Thus,

t−2s

2s

∫ t

0
λ (x)dx≤ C

4s2

for all t ∈ [0,1/2]. This shows that the left term in equation (5.1) is finite, and we must have that

∫ 1/2

0

λ (t)
t2s dt =

∫
T

λ (t)
|t|2s dt < ∞.

Step II: General case. Now, we will show the result for a general λ by a reduction to the case

above.

Let g =
√

λ ∈ Hs(T). Define h to be the 1-periodic function satisfying

h(x) =

 g(2x) 0≤ x≤ 1/2

g(2x+1) −1/2≤ x≤ 0.

Then, h satisfies h(0) = h(1/2) = 0, and the Fourier coefficients of h are

ĥ(l) =

 0 l ∈ 2Z+1

ĝ(l/2) l ∈ 2Z,

which implies h ∈ Hs(T). By Theorem 2.4.2, we have that h̃(x) = sign(x)h(x) ∈ Hs(T). Note that

b = h+h̃
2 ∈ Hs(T), but

b(x) =


√

λ (2x) 0≤ x≤ 1/2

0 −1/2≤ x≤ 0.
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By Step I of this proof,

22s−1
∫ 1/2

0

λ (t)
|t|2s dt ≤

∫ 1/2

0

λ (2t)
|t|2s dt < ∞.

A similar argument shows that ∫ 0

−1/2

λ (t)
|t|2s dx < ∞.

We find that ∫
T

λ (t)
|t|2s dx < ∞.

Next we show that functions like m from the previous lemma have slowly decaying Fourier

series. Based on Proposition 3.2.3 and Theorem 3.2.4, to prove that T (F) is not a (Cq)-system

for V (F), it suffices to find a Z-periodic function M = (m1, ...,mK) ∈ L2
P(T) such that ‖M̂‖q = ∞

and such that M is supported on some interval. In the proof of Theorem 1.2.9, we will build such

a function using the following class of examples.

For 0 < β < 1, and for some 0 < a≤ 1/2, let ma,β be the Z-periodic function whose values on

[−1
2 ,

1
2) are given by

ma,β (ξ ) =


1

ξ β
: 0≤ ξ < a

0 : otherwise

Lemma 5.3.2. Fix 1
2 < β ≤ 1. Then, there exist C > 0 (depending on a) such that Ckβ−1 ≤

|m̂a,β (k)| for all such that k≥ 1
2a . In particular, if β = q−1

q for some 2 < q < ∞, then ‖m̂a,β‖q = ∞.

Proof. For any k > 0, we have

|m̂a,β (k)|=
∣∣∣∣∫ a

0
e−2πikξ 1

ξ β
dξ

∣∣∣∣
= (2k)β−1

∣∣∣∣∫ 2ka

0

cos(πξ )− isin(πξ )

ξ β
dξ

∣∣∣∣
≥ (2k)β−1

∣∣∣∣∫ 2ka

0

sin(πξ )

ξ β
dξ

∣∣∣∣
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It suffices to show that there exists a C > 0 such that for all x≥ 1

C ≤
∫ x

0

sin(πξ )

ξ β
dξ .

For any integer j ≥ 1, let

a j =

∣∣∣∣∫ j

j−1

sin(πξ )

ξ β
dξ

∣∣∣∣= ∫ j

j−1

|sin(πξ )|
ξ β

dξ ,

and note that for any integer k ≥ 1,

∫ k

0

sin(πξ )

ξ β
dξ = a1−a2 +a3− ...+(−1)k−1ak.

It’s straightforward to check that each 0 < a j < ∞, and a j+1 > a j. Then, we have a1− a2 ≤∫ k
0

sin(πξ )

ξ β
dξ ≤ a1 for all k > 0. Now, when bxc is even we have,

∫ bxc
0

sin(πξ )

ξ β
dξ ≤

∫ x

0

sin(πξ )

ξ β
dξ ≤

∫ dxe
0

sin(πξ )

ξ β
dξ .

This inequality is reversed with bxc is odd. In either case, we find that

0 <
∫ 2

0

sin(πξ )

ξ β
dξ ≤

∫ x

0

sin(πξ )

ξ β
dξ ,

for any x≥ 1.

We now prove the theorem.

Proof of Theorem 1.2.9. Let s = q−1
q and suppose for contradiction that F ⊂ Hs(R). Since K =

ρ(V (F)), by Proposition 3.3.2 we have that the smallest eigenvalue of P(x) = P(F̂)(x) satisfies

λK(x) > 0 on some set of positive measure. By Theorem 4.1.1, for each k,
√

λk ⊂ Hs(T) ⊂

Cs−1/2(T), and so λk is continuous. We will show that λK must have a zero, and thus Theorem

3.2.4 will apply.

69



In this case, the lattice of extra-invariance is Γ = 1
NZ, and Γ∗ = NZ. From the proofs of

Theorem 1.2.1 and Theorem 1.2.8, we have seen that to derive a contradiction, it is enough to

prove that the rank of PNZ = PNZ(F̂) is constant almost everywhere. For the rest of the proof, we

assume that rank [PNZ] is non-constant, and show that this leads to contradictions. Let γ1(x)≥ ·· · ≥

γK(x)≥ 0 be the eigenvalues of PNZ(F̂)(x) and λ1(x)≥ λ2(x)≥ ·· · ≥ λK(x)≥ 0 be the eigenvalues

of P(x).

Step 1: λK has a zero. Without loss of generality, we may assume λK(0) = 0, and λK(x)> 0

for x ∈ I = (0,a), where 0 < x < a≤ 1/2.

Using the scaling argument from the proof of Theorem 1.2.1, we can find a representative for
√

γi(N·) ∈Cs−1/2(T) for all i (and similarly for
√

λi). Let J be the smallest index such that γJ is

not equal to zero almost everywhere. Since rank [PNZ] is nonconstant, γJ must have a zero.

Let O = {x ∈ [0,N] : γJ(x)> 0}. Then, O is an open proper subset of [0,N], and is non-empty

by the choice of index J. Note that by the ordering of eigenvalues λK(x) is always less than the

smallest non-zero eigenvalue of P(x). Then, Lemma 5.1.2 shows that λK(x) ≤ γJ(x) for almost

every x ∈ O. Since both functions are continuous, the inequality holds on all of O and extends to

O, the closure of O.

By the continuity of γJ and the definition of O, γJ must have a zero in O. However, this implies

λK also has a zero. By shifting all of the generators, we can ensure λK(0) = 0, and λK(x)> 0 for

0 < x < a≤ 1/2 for some a > 0.

Note that now all of the assumptions of Theorem 3.2.4 are satisfied. Thus, Step 2 below is

sufficient to prove the theorem.

Step 2: There is an m ∈ L2
P(T) supported on I = [0,a], such that ‖m̂‖q = ∞. Let h be the

Z-periodic function such that h(x) = x−s for 0 < x < a and h(x) = 0 otherwise for 1
2 ≤ x < 1

2 .

Lemma 5.3.1 shows that
∫
T |h(x)|2λK(x)dx < ∞. Lemma 5.3.2 shows that ‖ĥ‖q = ∞.

Consider a measurable diagonalization of P = P(F̂),

P(x) =U(x)Λ(x)U(x)∗,
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where Λ(x) is the diagonal matrix with entries {λ1,λ2, ...,λK}. By the unitarity of U(x), for the

function h above we have,

h(x) = |u1,K(x)|2h(x)+ |u2,K(x)|2h(x)+ · · ·+ |uK,K(x)|2h(x).

The triangle inequality shows that for some 1≤ l ≤ K, we have

‖|ul,K|2h‖q = ∞.

Define m(x) by

m(x) = (0,0, ...,ul,K(x)h(x))U(x)∗

= (u1,K(x)ul,K(x)h(x), ..., |ul,K(x)|2h(x), ...,uK,K(x)ul,K(x)h(x)).

Note, ‖m̂‖q = ∞. Also,

∫
T

m(x)P(x)m(x)∗dx =
∫
T
|uK,l(x)|2|h(x)|2λK(x)dx≤

∫
T
|h(x)|2λK(x)dx < ∞

This contradicts the (Cq)-system necessary condition in Theorem 3.2.4. Therefore, we must

have F 6⊂ Hs(R).
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Chapter 6

Examples

In this chapter, we present several examples which show that the main theorems are sharp in

various senses. We start by proving, in Section 6.1, that the exponent on the weight in Theorems

1.2.8, and 1.2.9 are the best possible exponents. Then, in Section 6.2, we construct examples

showing that shift-invariant spaces exist which satisfy all the assumptions of Theorem 1.2.1, and

for which only a single generator has poor localization. Similar results are proven for Theorem

1.2.4. Finally, in Section 6.3, we show that the exponent in Theorem 1.2.6 is sharp.

6.1 Sharpness of Exponent in Theorems 1.2.8, and 1.2.9

Recall from the discussion in Section 1.2, that Theorem 1.2.1 is sharp and one such example

showing this is given by f0 = χ̂[− 1
2 ,

1
2 ]
= sinc(x). We will see that smoother versions of f0 will

provide counterexamples which show sharpness for the minimal and (Cq)-system results. Higher

dimesional counterexamples can be constructed by taking tensor products of copies of the one

dimensional examples in each direction. Define fα by its Fourier Transform.

f̂α(ξ ) =


0 : ξ ≥ 1

2

(1
2 −ξ )α/2 : 0≤ ξ ≤ 1

2

(1
2 +ξ )α/2 :−1

2 ≤ ξ ≤ 0

Then, fα has the following properties.

Lemma 6.1.1. Fix 0 < α < 1.

1) V ( f ) is translation invariant.

2) 1
P( f̂α )

∈ L
q

q−2 (T) for all q > 2
1−α

, and so T ( f ) is a minimal (Cq)-system for V ( f ) for all

q > 2
1−α

.

3) f̂α ∈ Hs(R) for all s < 1+α

2 .
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To see that this implies sharpness in Theorem 1.2.8, Lemma 6.1.1 gives an example of a mini-

mal system T ( fα) for V ( fα), each of which generates a translation-invariant space, and such that

f̂α ∈ Hs(Rd) for s arbitrarily close to 1 as α goes to 1. Similarly, to see that Theorem 1.2.9 is

sharp, for a fixed q, Lemma 6.1.1 gives examples of translation-invariant, shift-invariant spaces

with a minimal (Cq)-system generator, fα , for any α < 1− 2
q , and f̂α ∈Hs(R) for any α > 2s−1.

Let α = 1− 2
q − ε so that T ( fα) is a minimal (Cq)-system for V ( fα). Then, f̂α ∈ Hs(R) for any

1− 2
q−ε > 2s−1, which is equivalent to q−1

q −
ε

2 > s. Letting ε→ 0, we find examples of minimal

(Cq)-systems with generators in Hs(R) for all s < q−1
q .

Proof. 1) This follows from the fact that supp( f̂α) = [−1/2,1/2].

2) Note, P( f̂α) restricted to [−1
2 ,

1
2 ] is simply given by f̂α

2
restricted to this interval. Then,

∫
T

1

P( f̂α)(ξ )
q

q−2
dx = 2

∫ 1/2

0

1

(1
2 −ξ )

αq
q−2

dx,

and this integral is finite only when αq
q−2 < 1, which is equivalent to q > 2

1−α
.

3) Since f̂α ∈ L1(R), we have

fα(x) =
∫ 1

2

0
e2πixξ (

1
2
−ξ )α/2dξ +

∫ 0

− 1
2

e2πixξ (
1
2
+ξ )α/2dξ

=
∫ 1

2

0
(e2πixξ + e−2πixξ )(

1
2
−ξ )α/2dξ

= 2
∫ 1

2

0
cos(2πxξ )(

1
2
−ξ )α/2dξ
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Note that fα must be an even function. Then, for x > 0 we have .

fα(x) = 2
∫ 1

2

0
cos(2πxξ )(

1
2
−ξ )α/2dξ

=
2
x

∫ x
2

0
cos(2πw)(

1
2
− w

x
)α/2dw

=
21−α/2

x1+α/2

∫ x
2

0
cos(2πw)(x−2w)α/2dw

=
1

x1+α/22α/2

∫ x

0
cos(πy)(x− y)α/2dy

Now we show that |
∫ x

0 cos(πy)(x−y)α/2dy| is bounded by a constant (which depends on α) for all

x > 1. First,

|
∫ x

x−1
cos(πy)(x− y)α/2dy| ≤

∫ x

x−1
(x− y)α/2dy

=
2

2+α

Second, using integration by parts twice,

∫ x−1

0
cos(πy)(x− y)α/2dy =

sin(π(x−1))
π

+
α

2π

∫ x−1

0
sin(πy)(x− y)α/2−1dy

=
sin(π(x−1))

π
+

α

2π

[
−cos(π(x−1))

π
+

1
πx1−α/2

+
α−2

2π

∫ x−1

0
cos(πy)(x− y)α/2−2dy

]
≤ π +α

π2 +
α(α−2)

4π2

∫ x−1

0
cos(πy)(x− y)α/2−2dy

Note,

|
∫ x−1

0
cos(πy)(x− y)α/2−2dy| ≤

∫ x−1

0
(x− y)α/2−2dy

=
2

α−2
− 2

(α−2)xα/2−1 ≤
2

α−2
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Finally, we have the bound for x > 1

|
∫ x

0
cos(πy)(x− y)α/2dy| ≤ 2

2+α
+

π +α

π2 +
α

2π2

Then,

| fα(x)|2 ≤
C(α)

|x|2+α
, |x|> 1

We have

∫
R
|x|2s| fα(x)|2dx < ∞

whenever 2+α−2s > 1 =⇒ s < 1+α

2 .

6.2 Finitely Generated Examples

The examples in this section first appeared in [32]. The first two examples show that there are

multiply generated shift-invariant spaces for which the hypotheses of Theorem 1.2.1 hold, but for

which the conclusion of the theorem only holds for a single generator. The collection of smooth

compactly supported functions on Rd will be denoted by C∞
c (Rd).

Example 6.2.1. Let I = [−1/2,1/2)d . Define f1 ∈ L2(Rd) by f̂1 = χI . Take any g ∈C∞
c (Rd) that

is supported on I and satisfies ‖g‖2 = 1, and define f2 ∈ L2(Rd) by f̂2 = g.

Let F = { f1, f2} and Γ = (1
2Z)×Zd−1. The space V (F) =V ( f1, f2) has the following proper-

ties:

• T (F) is a frame for V (F);

• V (F) is Γ-invariant (it is actually translation invariant);

• f̂1 /∈ H1/2(Rd) and f̂2 ∈C∞
c (Rd)⊂ H1/2(Rd);
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• ρ(V (F)) = 1 and [Γ : Zd] = 2, so that [Γ : Zd] does not divide ρ(V (F)).

This can be verified by computing the Gramian P(F̂)(x). Since P(F̂)(x) is Z-periodic, it suffices

to only consider x ∈ I in the subsequent discussion. A computation shows that for x ∈ I

P(F̂)(x) =

[ f̂1, f̂1](x) [ f̂1, f̂2](x)

[ f̂2, f̂1](x) [ f̂2, f̂2](x)

=

 1 g(x)

g(x) |g(x)|2

 .

A further computation shows that

(
P(F̂)(x)

)2
= (1+ |g(x)|2)

 1 g(x)

g(x) |g(x)|2

= (1+ |g(x)|2) P(F̂)(x)

Since g ∈C∞
c (Rd)⊂ L∞(Rd), we have the operator inequality

P(F̂)(x)≤
(

P(F̂)(x)
)2
≤ (1+‖g‖2

∞)P(F̂)(x).

So, by (3.7), T (F) is a frame for V (F).

The remaining properties can also be checked easily. Similar computations as above, to-

gether with Theorem 3.3.1, show that V (F) is Γ-invariant. A direct computation shows that

f̂1 /∈ H1/2(Rd). The condition ρ(V (F)) = 1 can be seen by using Proposition 3.3.2 and noting

that P(F̂)(x) has rank 1 for all x ∈ I. Finally, it is easily verified that [Λ : Zd] = 2.

Example 6.2.2. Fix any integer N ≥ 2. Let I = [−1/2,1/2) and define fN+1 ∈ L2(R) by f̂N+1 = χI .

Fix 0 < ε < 1
2N . Select f ∈C∞

c (R) with ‖ f‖2 = 1 such that f is supported on [0,1/N], and such

that | f̂ (x)| ≤ ε for all x ∈ I. For example, such an f can be constructed by suitably dilating

and translating a given smooth compactly supported function. For 1 ≤ n ≤ N, define fn(x) =

f (x−n/N).

Define F = { fn}N+1
n=1 ⊂ L2(R) and Γ = 1

NZ. The space V (F) satisfies the following properties

• T (F) is a Riesz basis for V (F);
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• V (F) is invariant under Γ;

• ρ(V (F)) = N +1 and [Γ : Z] = N, so that [Γ : Z] does not divide ρ(V (F));

• f̂n ∈ H1/2(R) for each 1≤ n≤ N;

• f̂N+1 /∈ H1/2(R).

The singly generated system V ( fN+1) is easily seen to be 1
NZ-invariant by Theorem 3.3.1 (in

fact, V ( fN+1) is translation invariant). Moreover, the space V ( f1, · · · , fN) is 1
NZ-invariant by con-

struction. It follows that V (F) = V ( f1, · · · , fN+1) is 1
NZ-invariant. Also, f̂n ∈ H1/2(R) for each

1≤ n≤ N since fn ∈C∞
c (R).

Since T ({ fn}N
n=1) is an orthonormal basis for V ({ fn}N

n=1), one has for 1 ≤ j,k ≤ N that

[ f̂ j, f̂k](x) = δ j,k for almost every x ∈ R. Also, if 1≤ n≤ N, then for x ∈ I,

[ f̂n, f̂N+1](x) = ∑
j∈Z

f̂n(x− j)χI(x− j) = f̂n(x) = e−2πinx/N f̂ (x).

By our assumptions on f , we have that for 1≤ n≤ N, and x ∈ I,

∣∣∣[ f̂N+1, f̂n](x)
∣∣∣= ∣∣∣[ f̂n, f̂N+1](x)

∣∣∣= | f̂ (x)| ≤ ε. (6.1)

Recalling that P(F̂)(x) is Z-periodic, we have that for all x ∈ I,

PZ(F̂)(x) =



1 0 · · · 0 [ f̂1, f̂N+1]Z(x)

0 1 · · · 0 [ f̂2, f̂N+1]Z(x)
...

... . . . ...
...

0 0 · · · 1 [ f̂N , f̂N+1]Z(x)

[ f̂N+1, f̂1]Z(x) [ f̂N+1, f̂2]Z(x) · · · [ f̂N+1, f̂N ]Z(x) 1


.

The Gershgorin circle theorem, together with (6.1), shows that all eigenvalues of P(F̂)(x) lie in the

interval [1−Nε,1+Nε]. Since 0 < ε < 1
2N , the condition (3.6) holds, and hence T (F) is a Riesz
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basis for V (F). Moreover, since P(F̂)(x) is full rank for a.e. x ∈ I, Proposition 3.3.2 shows that

ρ(V (F)) = N +1.

The next example shows that there are multiply generated shift-invariant spaces for which the

hypotheses of Theorem 1.2.4 hold and for which the conclusion only holds for a single generator.

Example 6.2.3. Let J = [−1/4,1/4]. Define f1 ∈ L2(R) by f̂1 = χJ . Select f2 ∈C∞
c (R) such that

f2 is supported in [−1/2,1/2], ‖ f2‖2 = 1, and | f̂2(x)|< 1/2 for all x ∈ J.

Define F = { f1, f2}. The space V (F) satisfies the following properties:

• T (F) is a frame, but not a Riesz basis, for V (F);

• The minimal number of generators ρ(V (F)) = 2;

• f̂1 /∈ H1/2(R) and f̂2 ∈ H1/2(R).

Recall that P(F̂)(x) is Z-periodic. A computation shows that for x ∈ [−1/2,1/2]

P(F̂)(x) =

 χJ(x) χJ(x) f̂2(x)

χJ(x) f̂2(x) 1

 .

For 1/4 < |x|< 1/2, we have

P(F̂)(x) =

0 0

0 1

 ,

so that λ1(x) = 1 and λ2(x) = 0, and for |x|< 1/4, we have

P(F̂)(x) =

 1 f̂2(x)

f̂2(x) 1


so that λ1(x) = 1+ | f̂2(x)| and λ2(x) = 1−| f̂2(x)|.

By (3.6), T (F) is not a Riesz basis for V (F). However Proposition 3.3.2, (3.7), and | f̂2(x)|<

1/2 for x ∈ J, show that T (F) is a frame for V (F) and ρ(V (F)) = 2.
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6.3 Sharpness for Theorem 1.2.6

For this example, we will consider Γ = 1
2Z

d , but by considering maps from the unit cube to the

fundamental domains of the lattice Γ, we could produce examples for arbitrary lattices.

6.3.1 Construction for d = 1

For clarity in understanding the construction, we first consider d = 1, although this case has

already been shown to be sharp in [2, 49]. Let I = [−1
2 ,

1
2). We will construct a partition of unity

for χI , and then we will shift the pieces of this partition and scale them to construct a function

h ∈ L1(R)∩C(R). We will do this in such a way that f̂ =
√

h ∈ L2(R)∩C(R) will be a function

which satisfies

esssup
ξ∈R

| f̂ (ξ )||ξ |1/2 < ∞,

T ( f ) forms an orthonormal basis for V ( f ), and V ( f ) is 1
2Z-invariant. (i.e. we outline the con-

struction of f̂ 2 for the generator f which we are looking for.)

We start with a simple symmetric trapezoid function with height 1, top width 1
2 , and bottom

width 3
4 . Next, we consider a similar trapezoid with height 1, top width 3

4 , and bottom width 7
8 . In

fact, we will consider the sequence of trapezoid functions {Tn} with height 1, top width 2n−1
2n and

bottom width 2n+1−1
2n+1 . A graph of the first five Tn functions is given in Figure 6.1.
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Figure 6.1: Tn and tn Functions

It’s clear that Tn→ χIo pointwise on R (By Io I mean the interior of I). Thus, the telescoping
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sum ∑
∞
n=0(Tn+1−Tn), where we define T0(x) = 0 for all x ∈ R, converges pointwise to χIo . The

functions tn = Tn+1−Tn form an infinite partition of unity for χI , and note that each of these is

continuous and for any x ∈ I, tn(x)> 0 for at most two values of n.

We can write Tn explicitly as

Tn(x) =


1 : |x| ≤ 2n−1

2n+1

−2n+2|x|+2n+1−1 : 2n−1
2n+1 < |x|< 2n+1−1

2n+2

0 : |x| ≥ 2n+1−1
2n+2 .

From this we can find that tn for n > 0 is given by

tn(x) =



0 : |x| ≤ 2n−1
2n+1

2n+2|x|−2n+1 +2 : 2n−1
2n+1 < |x|< 2n+1−1

2n+2

−2n+3|x|+2n+2−1 : 2n+1−1
2n+2 < |x|< 2n+2−1

2n+3

0 : |x| ≥ 2n+2−1
2n+3 .

Figure 6.1 shows the first 5 tn functions.

Our function f̂ 2 is defined as

f̂ 2(ξ ) =
∞

∑
n=0

1
2n+1

n

∑
j=−n

tn(ξ −2 j).

A graph is given in Figure 6.2. This function essentially consists of taking 2n+ 1 copies of tn,

dividing each of these by 2n+1, and then shifting those pieces by the even integers which are less

than or equal to 2n in absolute value.

We have already seen that ∑
∞
n=0 tn(x) = 1 on (−1/2,1/2) and ∑

∞
n=0 tn(x) = 0 outside of this

interval. Then, using Monotone Convergence Theoerm,

∞

∑
n=0

∫
R

tn(x)dx =
∫
R

∞

∑
n=0

tn(x)dx = 1.
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Figure 6.2: Graph of f̂

This immediately shows that f̂ ∈ L2(R) since

∫
R
| f̂ (ξ )|2dξ =

∫
R

∞

∑
n=0

1
2n+1

n

∑
j=−n

tn(ξ −2 j)dξ

=
∞

∑
n=0

1
2n+1

n

∑
j=−n

∫
R

tn(ξ −2 j)dξ

=
∞

∑
n=0

∫
R

tn(ξ )dξ = 1.

By Theorem 3.3.1, f̂ is such that V ( f ) is 1
2Z-invariant. Also, for almost every ξ ∈ T,

P( f̂ )(ξ ) = ∑
k∈Z
| f̂ (ξ − k)|2

= ∑
k∈Z

∞

∑
n=0

1
2n+1

n

∑
j=−n

tn(ξ −2 j− k)

= ∑
k∈Z

∞

∑
n=0

tn(ξ − k) = 1

The only piece left to check is that esssupξ∈R | f̂ (ξ )||ξ |1/2 < ∞. Note that on intervals of the form

[2k + 1− 1
2 ,2k + 1+ 1

2 ] for any k ∈ Z, f̂ = 0, and on intervals of the form [2k− 1
2 ,2k + 1

2 ] for

any k ∈ Z, f̂ is bounded above by
√

1
2|k|+1 . Let ξ ∈ R be such that there exist a k ∈ Z such that
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ξ = 2k+β where −1/2 < β ≤ 1/2. Then,

| f̂ (ξ )||ξ |1/2 ≤ (
1

2|k|+1
)1/2(2|k|+ 1

2
)1/2

≤ 1.

Therefore, esssupξ∈R | f̂ (ξ )||ξ |1/2 < ∞.

6.3.2 Construction for d > 1

Fix a dimension d > 1. We define a sequence {Tn}∞
n=0 which will play a role analogous to the

role of Tn in the one dimensional case. In fact,

Tn(x1,x2, ...,xd) = Tn(x1)Tn(x2) · · ·Tn(xd).

A graph of the two dimensional T1 is given in Figure 6.4. Note, that for any d, Tn will be equal

to 1 on the symmetric hypercube of width 2n−1
2n , and will be supported in the symmetric hypercube

of width 2n+1−1
2n+1 . Just like the dimension 1 case, Tn→ χ(Id)o pointwise in R. Next, we construct

the sequence {τn}∞
n=0 which will be similar to tn. Specifically, we define

τn(x) = Tn+1(x)−Tn(x).

A graph of the two-dimensional version of τ1 is given in Figure 6.3. The support of τn is H(2n+2−1
2n+2 )\

H(2n−1
2n ), where H(t) is the symmetric hypercube of width t. Any x ∈ Id is such that at most 2 val-

ues of n ∈ N satisfy tn(x)> 0.

Now we define our function f̂ in similar fashion to the one dimensional case. We let α =

(α1, ...,αd) denote a vector in Zd , and ‖α‖∞ = max1≤i≤d |αi|. Then, we define f̂ to be the positive

function satisfying

f̂ 2(ξ ) =
∞

∑
n=0

(
1

2n+1

)d

∑
||α||∞≤n

τn(ξ −2α).
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Figure 6.3: Graph of T1 and τ1 Function in R2

A graph of f̂ in the two dimensional case is given in Figure 6.4.

Next we show that f is truely a counterexample.

Proposition 6.3.1. Let f̂ be defined as above. Then, the following statements hold.

1. f̂ ∈ L2(Rd)∩C(Rd).

2. V ( f ) is 1
2Z

d-invariant.

3. T ( f ) forms an orthonormal basis for V ( f ).

4. esssupξ∈Rd | f̂ (ξ )||ξ |d/2 < ∞

Proof. 1. First, we show that f̂ ∈ L2(Rd). By construction, we have

∞

∑
n=0

τn(x) =
∞

∑
n=0

(Tn+1(x)−Tn(x))

= lim
n→∞

Tn(x)

= χ(Id)o(x)
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Figure 6.4: Graph of f̂ in R2

By the Monotone Convergence Theorem, we have

∞

∑
n=0

∫
Rd

τn(x)dx =
∫
Rd

∞

∑
n=0

τn(x)dx

= 1

Now, we can calculate ‖ f̂‖2.

∫
Rd
| f̂ (ξ )|2dξ =

∞

∑
n=0

(
1

2n+1

)d

∑
||α||∞≤n

∫
Rd

τn(ξ −2α)dξ

=
∞

∑
n=0

∫
Rd

τn(ξ )dξ = 1
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Next, we show that f̂ is continuous. From the definition of f̂ 2, we have see that

| f̂ 2(ξ )−
N−1

∑
n=0

(
1

2n+1

)d

∑
||α||∞≤n

τn(ξ −2α)| ≤
∞

∑
n=N

(
1

2n+1

)d

∑
||α||∞≤n

τn(ξ −2α).

each of the functions
( 1

2n+1

)d
∑||α||∞≤n τn(ξ − 2α) is continuous, and it is an easy conse-

quence of the definition of τn that

||
∞

∑
n=N

(
1

2n+1

)d

∑
||α||∞≤n

τn(ξ −2α)||∞ = (
1

2N +1
)d

Thus, ∑
N−1
n=0

( 1
2n+1

)d
∑||α||∞≤n τn(ξ − 2α) converges uniformly to f̂ 2(ξ ). Therefore, f̂ 2 and

f̂ are continuous.

2. This follows from Theorem 3.3.1.

3. Equation (3.5) shows that T ( f ) forms an orthonormal basis for V ( f ) if and only if P( f̂ ) is

equal to 1 almost everywhere. We have,

P( f̂ )(ξ ) = ∑
k∈Zd

| f̂ (ξ − k)|2

= ∑
k∈Zd

∞

∑
n=0

(
1

2n+1

)d

∑
||α||∞≤n

τn(ξ −2α− k)

= ∑
k∈Zd

∞

∑
n=0

τn(ξ − k)

= ∑
k∈Zd

χId(ξ − k)

= 1

and this holds almost everywhere in Rd .

4. Due to the fact that all norms on finite dimensional vector spaces are equivalent, it is equiv-
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alent to show that

esssup
ξ∈Rd

| f̂ (ξ )|‖ξ‖d/2
∞ < ∞.

In the definition of f̂ , there are (2n+ 1)d copies of τn which are shifted to hypercubes of

width less than 1 centered at each of the vectors 2α where α ∈ Zd satisfies ‖α‖∞ ≤ n. The

maximum of f̂ restricted to any of the cubes with ‖α‖∞ = n is ( 1
2n+1)

d/2. For any ξ in a

cube of width one centered at an α with |α|= n, we have

| f̂ (ξ )|‖ξ‖2
∞ ≤

(
1

2n+1

)d/2

(2n+1/2)d/2

< 1

Therefore,

esssup
ξ∈Rd

| f̂ (ξ )|‖ξ‖d/2
∞ ≤ 1.
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