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OVERVIEW

In signal processing, an essential problem is to encode an analog signal by using finite-

ly many bits in an efficient and robust manner. To achieve this propose, there are two

things we are interested in. The first is how to choose a “nice basis”. Finite frames provide

redundant, stable and usually non-unique representations of signals. A second important

issue is the quantization algorithm. Sigma-Delta(Σ∆) quantization is an efficient method

for analog-to-digital (A/D) conversion. Daubechies and DeVore in [DD03] established

an approximation theoretical framework and provided rigorous results on the relationship

between robustness of Σ∆ schemes, redundancy of signal representations and the approxi-

mation error. Moreover, another problem is how to reconstruct a signal from the quantized

coefficients, which is called digital-to-analog (D/A) conversion. In [BLPY10], the authors

use rth-order Σ∆ quantization with finite frame theory to obtain the error bounds equal to

O(N−r) in (D/A) conversion for a wide class of finite frames of size N with special dual

frames called Sobolev duals. However, observing the definition of Sobolev duals, we can

find it is constructed depend the frame we choose. Hence, a natural problem is to ask: Is

O(N−r) the best error bound possible for all frames? In chapter 3, we will answer this

question.

Finite frame theory is a widely used tool, but it may not be suitable for all applications,

see [CKL08]. For instance, see Figure 1, in wireless sensor networks, the sensors which

have limited capacity and power are spread in a large area to measure physical quantities,

such as temperature, sound, vibration or pressure. Such a sensor system is typically re-

dundant, and there is no orthogonality among sensors, therefore each sensor functions as

a frame element in the system. However, for practical and cost reasons, sensors employed

in such applications have severe constraints in their processing power and transmission

bandwidth. They often have limited power supply as well. Consequently, a typical large

sensor network necessarily divides the network into redundant sub-networks forming a set
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of subspaces(Wi). The primary goal is to have local measurements transmitted to a local

sub-station within a subspace. These local sub-stations can transmit a high bits local sig-

nal(analog signal ui) to the other nearby sub-stations and can send a low bit signal(digital

signal qi) to the central processing station. An entire sensor system in such applications

could have a number of such local processing centers. They function as relay stations, and

have the gathered information further submitted to a central processing station for final as-

sembly.

u1

u2

w1

w2 w3

q1

q2 q3

w2P u)1 (,

Analog signal
Digital signal

w1 ,w2 ,w3

Figure 1: Wireless Sensor Network

For these situations, we have two problems to solve. The first one is how to perform

data fusion among a set of overlapping, non-orthogonal and redundant data measurements

and the answer is fusion frame systems which are created for the situation, see [CKL08].

Secondly, we need to find an efficient and robust method to do (A/D) conversion in local

sub-stations and (D/A) conversion in the central processing station to reconstruct the signal

with a fusion frame system. Hence, we get the idea of applying Σ∆ quantization in fusion

frames.
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Chapter 1

Introduction to frame theory

In this chapter, we give a brief introduction to frame and fusion frame theory. Frames

are a system which provide redundant and usually non-unique representations of vectors.

Frame theory has been used in filter bank theory, signal and image processing, and wire-

less communications. Redundant frames are used in these applications because they yield

representations that are robust and stable under:

• additive noise [D+92] (in the setting of Gabor and wavelet frames for L2(Rd)),

[BT01] (in the setting of oversampled bandlimited functions), and [Mun92](in the

setting of tight Gabor frames)

• quantization [DD03, GLV01, Yil02a] (in the setting of oversampled bandlimited

functions), [Yıl03](in the setting of tight Gabor frames) and [LPY10, BLPY10, BYP04,

GVT98a, GLP+10] (in the setting of finite frames).

• partial data loss [GKK01, RG02] (in the setting of finite frames)

We shall mainly focus on introducing the basic definitions and properties of finite frames

in finite dimensional space Rd . More information can be found in these articles and books,

such as [Cas99, Chr02, Hei10, Zim01, CKP13]

For certain applications, such as sensor networks, physical considerations require build-

ing frames ”locally” and then piecing them together to obtain frames for the whole space.

This idea led to a distributed frame theory known as fusion frames, see [CK03, CKL08]. In

this thesis, a main result is constructing a Sigma-Delta Quantization algorithm for fusion

frames. Before that, we will state the basic knowledge of fusion frames in this chapter.
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1.1 Frame operator and dual frame

Definition 1.1.1. A finite collection of vectors {en}N
n=1 ⊆ Rd is a frame with frame bounds

0 < A≤ B < ∞ if

∀x ∈ Rd, A‖x‖2 ≤
N

∑
n=1
|〈x,en〉|2 ≤ B‖x‖2. (1.1.1)

where ‖ · ‖ denotes the Euclidean norm. The frame bounds are taken to be the respective

largest and smallest values of A and B such that (1.1.1) holds. If A = B then the frame

is said to be tight. If ‖en‖ = 1 holds for each n = 1, ...,N, then the frame is said to be

unit-norm.

Definition 1.1.2. Given a frame {en}N
n=1 ⊆ Rd , we define the analysis operator by:

L : Rd −→ l2(N), (Lx)n = 〈x,en〉.

and the synthesis operator which defined to be the adjoint operator by

L∗ : l2(N)−→ Rd, L∗({xn}N
n=1) =

N

∑
i=1

xnen.

The associated frame operator S : Rd → Rd , is defined by

S(x) = L∗L =
N

∑
n=1
〈x,en〉en,

and it satisfies

AI ≤ S≤ BI,

where I is the identity operator on Rd . The inverse of S, S−1 is called the dual frame

operator, and it satisfies:

B−1I ≤ S−1 ≤ A−1I,

The following theorem shows that frames can be used to provide signal decompositions

2



in signal processing.

Theorem 1.1.3. If {en}N
n=1 ⊆ Rd is a frame with frame bounds A and B and S is the frame

operator, then S is positive and invertible. Moreover, there exists a dual frame { fn}N
n=1⊆Rd

such that

∀x ∈ Rd, x =
N

∑
n=1
〈x,en〉 fn =

N

∑
n=1
〈x, fn〉en. (1.1.2)

In particular one may take fn = S−1en when { fn} is called the canonical dual fame. If

N > d then the frame {en}N
n=1 ⊂ Rd is an overcomplete collection and the choice of dual

frame { fn}N
n=1 is not unique. If { fn}N

n=1 is not the canonical dual frame then we refer to it

as an alternative or non-canonical dual frame.

Tight frames have the property that the dual frame can be chosen as fn = A−1en, where

A is the frame bound. For more background on tight frames see [BF03, GKK01]. There

are many examples of unit-norm tight frames. Here is an example for Rd:

Example 1.1.4. (Harmonic Frames). The harmonic frames are constructed using columns

of the Fourier matrix, e.g., see[GKK01, GVT98a, Zim01] The definition of the harmonic

frame Hd
N = {hN

n }N
n=1, N ≥ d, depends on whether the dimension d is even or odd.

If d is even, let

hN
n =

√
2
d

[
cos(

2πn
N

),sin(
2πn
N

), · · · ,cos(
2π

d
2 n

N
),sin(

2π
d
2 n

N
)

]T

(1.1.3)

for n = 1,2, ...,N.

If d is odd, let

hN
n =

√
2
d

[
1√
2
,cos(

2πn
N

), · · · ,cos(
2π

d−1
2 n

N
),sin(

2π
d−1

2 n
N

)

]T

(1.1.4)

for n = 1,2, ...,N.
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It is shown in [Zim01] that Hd
N , as defined above, is a unit-norm tight frame for Rd . The

frame Rd is built by uniformly sampling a smooth vector valued function whose compo-

nents are sines and cosines. Generalizations of this property are important in the study of

Sigma-Delta quantization, see [BLPY10, BPA07a]

We say a function f : [0,1]→ Rd is piecewise C1 if it is C1 except at finitely many

points in [0,1], and the left and right limits of f and f ′ exist at all of these point.

Definition 1.1.5. A vector valued function E : [0,1]→ Rd given by

E(t) = [e1(t),e2(t), ...,ed(t)]∗,

is a piecewise C1 uniformly-sampled frame path if the following three conditions hold:

1. For 1≤ n≤ N, en : [0,1]→ R is piecewise−C1 on [0,1]

2. The functions {en}d
n=1 are linearly independent.

3. There exists N0 such that for each N ≥ N0 the collection {E(n/N)}N
n=1 is a frame for

Rd .

Frame vectors generated by a frame path are uniformly bounded in norm which means

there exists M such that ‖E(n/N)‖ ≤M holds for all n and N.

Here are some examples of frame paths:

Example 1.1.6. (Roots of unity frame path). Consider the frame path defined by E(t) =

[cos(2πt),sin(2πt)]∗. For each N ≥ 3, the collection UN = {E(n/N)}N
n=1 ⊂ R2 given by:

E(n/N) = [cos(2πn/N),sin(2πn/N)]∗, 1≤ n≤ N, (1.1.5)

is a unit-norm tight frame for R2.
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Example 1.1.7. (Repetition frame path). Consider the frame path defined by

E(t) = [χ[0, 1
d ]
(t),χ( 1

d ,
2
d ]
(t), ...,χ( d−1

d ,1](t)]
∗, (1.1.6)

where χS denotes the characteristic function of S. Note that RN = {E(n/N)N
n=1} is a frame

for Rd for all N ≥ d.

5



1.2 Finite frames in matrix form

For finite frames in Rd , the basic definitions can be conveniently reformulated in terms

of matrices.

Definition 1.2.1. Given a frame {en}N
n=1 ⊂ Rd we define the associated frame matrix E to

be the d×N matrix:

E = [e1 e2 ... eN ]

where e j is the jth column. Note that the columns of a d×N matrix E form a frame for Rd

if and only if E has rank d.

If E is a frame matrix then the associated canonical dual frame has frame matrix

Ẽ = (EE∗)−1E

In particular, ẼE∗ = EẼ∗ = Id , where Id is d×d identity matrix.

Moreover, an alternative dual frame to {en}N
n=1 is simply a set of frame vectors { fn}N

n=1⊂

Rd . Let F be the corresponding d×N frame matrix. Then the frame expansions (1.1.2)

can be expressed in terms of E and F as:

FE∗ = EF∗ = Id, (1.2.1)

see [Li95] and [EC06, LO04] for more information on dual frames.

Definition 1.2.2. Given a d×N matrix E with the vectors {en}N
n=1 as its columns, then we

respectively define the Frobenius norm and operator norm of E by

‖E‖F =
√

tr(EE∗) =

(
N

∑
n=1
‖en‖2

) 1
2

and ‖E‖op = sup
‖x‖=1

‖Ex‖.

Here tr()̇ denotes the trace of a square matrix.

6



Theorem 1.2.3. Let E be a fixed d×N frame matrix and let F be an arbitrary dual frame

to E. The two quantities ‖F‖op,‖F‖F are minimized when F is taken to be the canonical

dual frame of E, namely F = (EE∗)−1E.

The theorem stated above is a basic property of canonical duals and the proof follows

easily from Theorem 3.6 in [Li95]. Moreover, the property is also used to construct Sobolev

duals which we will introduce in next chapter.

7



1.3 Fusion frames and the fusion frame operator

In frame theory the signal is represented by a collection of scalar coefficients that mea-

sure the projection of that signal onto one dimensional subspaces spanned by each frame

vector. The representation space employed in this theory equals `2(I). However, in fusion

frame theory the signal is represented by collection of vector coefficients that represen-

t the projections onto higher dimensional subspaces. Therefore the representation space

employed in this setting is defined as follows.

Definition 1.3.1.

∑
i∈I

⊕
Wi = {{ fi}i∈I : fi ∈Wi,and{‖ fi‖}i∈I ∈ l2(I)}. (1.3.1)

With the inner product

〈{ fi}i∈I,{gi}i∈I〉= ∑
i∈I
〈 fi,gi〉.

the space ∑i∈I
⊕

Wi can be considered as a Hilbert space.

Definition 1.3.2. Let I be a countable index set, let {Wi}i∈I be a family of closed subspaces

in Hilbert space H, and let {wi}i∈I be a family of positive weights, i.e., wi > 0 for all i ∈ I.

Then {(Wi,wi)}i∈I is a fusion frame for H, if there exist constants 0 <C≤D < ∞ such that

∀ f ∈H, C‖ f‖2 ≤∑
n∈I

w2
i ‖πWi( f )‖2 ≤ D‖ f‖2. (1.3.2)

here πWi is the orthogonal projection onto the subspace Wi. We call C and D the fusion

frame bounds. The family {(Wi,wi)}i∈I is called a C-tight fusion frame, if in (1.3.2) the

constants C = D, and it is called an orthonormal fusion basis if H is the orthogonal sum of

the subspaces Wi. If {(Wi,wi)}i∈I satisfies upper fusion frame bound in (1.3.2), we call it a

Bessel fusion sequence with Bessel fusion bound D.

8



Definition 1.3.3. If {(Wi,wi)}i∈I is a fusion frame for H, then we can define the bounded

linear operator, called the synthesis operator by

TW,w : ∑
i∈I

⊕
Wi −→H,TW,w({ fi}i∈I) = ∑

i∈I
wi fi

The adjoint of TW,wis called the analysis operator,

T ∗W,w : H−→∑
i∈I

⊕
Wi,

T ∗W,w( f ) = {wiπWi( f )}.

The fusion frame operator is

SW,w = TW,wT ∗W,w : H−→H,

SW,w( f ) = TW,wT ∗W,w( f ) = ∑
i∈I

w2
i πWi( f ).

SW,w is positive, self-adjoint and invertible. The fusion frame operator has similar prop-

erties to the frame operator. If {(Wi,wi)}i∈I is the fusion frame for H with fusion frame

bounds C and D, then

CIH ≤ SW,w ≤ DIH.

Moreover, if {(Wi,wi)}i∈I is a C-tight fusion frame, then SW,w =CIH.

Fusion frames are closed related to the idea of combining local frames for a collection

of subspaces.

Definition 1.3.4. Let {(Wi,wi)}i∈I be a fusion frame for H, and let { fi j} j∈Ji be a frame for

Wi for each i ∈ I. Then we call {Wi,wi,{ fi j} j∈Ji}i∈I a fusion frame system for H. C and D

are the associated fusion frame bounds if they are the fusion frame bounds for {(Wi,wi)}i∈I ,

and Ai and Bi are the local frame bounds if these are the common frame bound for the local

9



frames { fi j} j∈Ji . A collection of dual frames { f̃i j} j∈Ji associated with the local frames will

be called local dual frames.

Now we state the following theorem from [CK03] that provides a relation between

properties of the associated fusion frame and the sequence consisting of all local frame

vectors.

Theorem 1.3.5. For each i∈ I, let wi > 0, let Wi be a closed subspace of H, and let { fi j} j∈Ji

be a frame for Wi with frame bounds Ai and Bi. Suppose that

0 < A = inf
i∈I

(Ai)≤ sup
i∈I

(Bi) = B < ∞.

Then the following conditions are equivalent.

1. {(Wi,wi)}i∈I is a fusion frame for H.

2. {wi fi j} j∈Ji,i∈I is a frame for H.

In particular, if {Wi,wi,{ fi j} j∈Ji}i∈I is a fusion frame system for H with fusion frame

bounds C and D, then {wi fi j} j∈Ji,i∈I is a frame for H with frame bounds AC and BD. Also

if {wi fi j} j∈Ji,i∈I is a frame for H with frame bounds C and D, then {Wi,wi,{ fi j} j∈Ji}i∈I is

a fusion frame system for H with fusion frame bounds C
B and D

A . Moreover, {(Wi,wi)}i∈I is

a C-tight fusion frame for H if and only if {wi fi j} j∈Ji,i∈I is a C-tight frame for H.

Besides, the following proposition shows that the fusion frame bound C of a C-tight

fusion frame can be interpreted as the redundancy of his fusion frame.

Proposition 1.3.6. Let {(Wi,wi)}i∈I be a C-tight fusion frame for H with dim(H) < ∞.

Then we have:

C =
∑

n
i=1 w2

i dim(Wi)

dim(H)
(1.3.3)

A different expression for the fusion frame operator can be defined by the local frame

operators as follows, see [CK03].

10



Proposition 1.3.7. Let {Wi,wi,Fi}i∈I be a fusion frame system for H with Fi = { fi j} j∈Ji ,

and let F̃i = { fi j} j∈Ji, i ∈ I be associated local dual frames. Then the associated fusion

frame operator SW,w can be written as:

SW,w = ∑
i∈I

w2
i L∗

F̃i
LFi = ∑

i∈I
w2

i L∗Fi
LF̃i

Definition 1.3.8. Assume that {(Wi,wi)}i∈I is fusion frame for H. Then {S−1
W,wWi,wi}i∈I is

called the canonical dual fusion frame of {(Wi,wi)}i∈I . And we have the following canoni-

cal fusion frame representation:

f = S−1
W,wSW,w f = ∑

j∈I
w2

jS
−1
W,wπW j( f ), f or all f ∈H (1.3.4)

If we want to use the expression 1.3.4 in terms of operators as in 1.2.1. We find that

the range of T ∗W,w is a subset in∑i∈I
⊕

Wi, but the domain of TS−1
W,wW,w is ∑i∈I

⊕
S−1Wi, so

TS−1
W,wW,wT ∗W,w is not always well defined and this requires a different definition in terms of

operators. In [HMBZ13], the authors give a new definition of dual fusion frame which can

solve the domain problem. Also, if we only want to find a way to reconstruct or represent

the signal, in [CKL08], the authors give the definition of distributed reconstruction and

global dual frames which depend on the frame system. Moreover, in this thesis, instead of

using dual fusion frame or global dual frames, we define the left inverse operator of fusion

frame which can be easily applied in quantization problems.

11



Chapter 2

Introduction to Sigma-Delta (Σ∆) Quantization

In the previous chapter, we reviewed the basic definitions and properties of frame theo-

ry. By using frame theory, we can give robust, stable and redundant signal representations.

More precisely, one expands a given signal x over a finite dictionary {en}N
n=1 such that:

x =
N

∑
n=1

cnen (2.0.1)

where cn are real or complex numbers or vectors in the case of fusion frame represents.

Usually, the choice of cn is not unique since frames are redundant.

However, even (2.0.1) is a discrete representation, it is not a digital representation since

the coefficient sequence {cn}N
n=1 is real, complex or vector valued. Hence, we have to

reduce the continuous range of the sequence to a discrete and finite set. We call this step

quantization or A/D (analog to digital) conversion.

Definition 2.0.9. A quantizer maps each expansion (2.0.1) to an element of:

ΓA = {
N

∑
n=1

qnen : qn ∈A }

where the quantization alphabet A is a given discrete and finite set. The performance of a

quantizer is reflected in the approximation error ‖x− x̃‖, where ‖ · ‖ is any suitable norm,

and:

x̃ =
N

∑
n=1

qnen

is the quantized expansion.

There are other more general approaches to quantization, such as consistent reconstruc-

tion, e.g., [TV94, GVT98b], using nonlinear reconstruction. However, in this thesis, we

12



only focus on linear reconstruction as in (2.0.1).

A simple method of quantization, for a given expansion 2.0.1 is to choose qn to be

the closest point in the alphabet A to cn. Quantizers defined this way are usually called

memory less quantization or pulse code modulation(PCM) algorithms. For example, we

may use a truncated binary expansion to replace cn. If we know a priori that |cn| ≤ A < ∞

for all n, then we can write:

qn =−A+A
K

∑
k=0

bn
k2−k, (2.0.2)

with bn
k ∈ {0,1} for all k. Here we spend K bits per coefficient cn. Following the construct-

ing of x̃, we have:

‖x− x̃‖ ≤C2−K+1A,

where C is a independent constant. The quantization method we just gave is widely used

but also has shortcomings.

• The quantization method we just gave is widely used but also has shortcomings.

• In practice, it is difficult to build analog devices that can divide the amplitude range

[−A, A] into 2−K+1 precisely equal bins.

• If we use a redundant representation of the signal, for example, a frame expansion,

then the error will not generally decrease as a function of frame size N.

• The algorithm performs poorly for 1-bit or low-bit quantization.

• Not robust against bit-flips.

• PCM quantization often requires an analysis under the white noise assumption. More

details about the noise model can be find in [Ben48, JWW07, Gra90].

Since the reasons we state above, in this chapter, we introduce Sigma-delta quantization

schemes which are a popular way to quantize the signal. We will show that the algorithm

spend few bits on each quantized coefficient and the overall error ‖x− x̃‖ will decrease as

13



the frame size increases. Information about noise models for Σ∆ algorithms can be find in

[ST05, Wan08, BH01, BYP04].
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2.1 First-order Sigma-Delta quantization with finite frames

Definition 2.1.1. Fix δ > 0 and K ∈N . Given the 2K-level midrise quantization alphabet

with stepsize δ ,

A δ
K = {(−K +1/2)δ ,(−K +3/2)δ , ...,(−1/2)δ ,(1/2)δ , ...,(K−3/2)δ ,(K−1/2)δ}

define the associated scalar quantizer:

Q(u) = arg min
q∈A δ

K

‖u−q‖. (2.1.1)

Now, we can define first order Sigma-Delta quantization. Let A δ
K be the 2K-level

midrise quantization alphabet with stepsize δ , and let Q be the associated scalar quantizer

from 2.1.1. Let {en}N
n=1 ∈ Rd be a unit-norm frame for Rd with frame operator S. Let

{ fn}N
n=1 ∈ Rd be any, not necessarily unit-norm, dual frame.

Given x ∈ Rd satisfying ‖x‖ ≤ (K−1/2)δ , and having frame coefficients xn = 〈x,en〉,

the first order Σ∆ algorithm quantizes frame coefficients qn by running the iteration:

qn = Q(un−1 + xn),

un = un−1 + xn−qn. (2.1.2)

for n = 1,2, ...,N, and with u0 = 0. The un are internal state variables of the Σ∆ scheme,

and qn are the quantized frame coefficients from which we linearly reconstruct:

x̃ =
N

∑
n=1

qn fn. (2.1.3)

The Σ∆ scheme is stable, by [DD03] page 4. In particular,

For any n ∈ {1,2, ...,N}, |xn| ≤ (K−1/2)δ ⇒ |un| ≤ δ/2, f or n = 1,2, ...N. (2.1.4)
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For unit-norm frames, it is easy to prove that ‖x‖ ≤ (K− 1/2)δ implies |xn| = |〈x,en〉| ≤

(K−1/2)δ . Hence, |un| ≤ δ/2 holds.

Error estimates for Σ∆ quantization in the setting of finite frames are given in [BYP04,

BPY06b, BPY06a], see also [BP07, BPA07b]. For instance, if we use the canonical dual

frame in reconstruction (2.1.3), then we have:

‖x− x̃‖ ≤ δ

2
‖S−1‖op(

N

∑
n=1
‖en− en+1‖+1) (2.1.5)

Here the ordering of the frame {en}N
n=1 is quite important. For example, for the frame

(1.1.4) in its natural ordering (same as the definition), the frame variation is bounded by 2π

and the error (2.1.5) yields:

‖x− x̃‖ ≤ δ

N
(2π +1)

which is clearly showing that the error will decreases by the frame size N.

The following notation will help simplify the error analysis of Σ∆ schemes. Let D be

the N×N first-order difference matrix given by

D =



1 −1 0 · · · 0

0 1 −1 · · · 0
. . . . . .

0 · · · 0 1 −1

0 · · · 0 0 1


(2.1.6)

If one linearly reconstructs from the Σ∆ quantized coefficients qn, obtained via (2.2.1), as

in (2.2.2) using a dual frame { fn}N
n=1, then the reconstruction error equals,

‖x− x̃‖= ‖
N

∑
n=1

(xn−qn) fn‖= ‖
N

∑
n=1

(un−un−1) fn‖= ‖FD∗(u)‖ (2.1.7)

where u = [u1,u2, ...,uN ]
∗ and F is the frame matrix associated to { fn}N

n=1. Observing the

16



error estimate (2.1.7), it will be important to improve the error by choosing a suitable dual

frame which we will introduce in section 3.
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2.2 High order Sigma-Delta quantization with finite frames

High order Σ∆ schemes works analogously to (2.1.2) by controlling high order differ-

ence operators. Suppose that {en}N
n=1 is a frame for Rd and x ∈ Rd . Let xn = 〈x,en〉, then

the general rth order sigma-delta scheme with alphabet A δ
K runs the following iteration:

qn = Q(G(u1
n−1,u

2
n−1, . . . ,u

r
n−1,xn)),

u1
n = u1

n−1 + xn−qn,

u2
n = u2

n−1 +u1
n,

...

ur
n = ur

n−1 +ur−1
n (2.2.1)

where u1
0 = u2

0 = . . .= ur
0 = 0 and the iteration runs for n = 1,2, . . . ,N.

We may equivalent by define the iteration using:

u j
n = ∆u j+1

n , j = 1,2, ...,r−1

and

xn−qn = ∆
rur

n,

where ∆r is the rth order backwards difference operator defined by

∆ωn = ωn−ωn−1 and ∆
r = ∆

r−1
∆

Here G : Rr+1→ R is a fixed function called the quantization rule. The algorithm above

gives qn ∈A as the output coefficients. One can linearly reconstruct a signal x̃ from the qn

18



with a dual frame { fn}N
n=1 by

x̃ =
N

∑
n=1

qn fn. (2.2.2)

A main issue of Sigma-Delta quantization with finite frame is to make the reconstruction

error ‖x− x̃‖ decay faster as the frame size N increase.

It is important for Sigma-Delta algorithms to be stable in the following sense:

∃C1,C2,such that f or any N > 0 and any {xn}N
n=1 ∈ R

we have,

∀1≤ n≤ N, xn ≤C1 =⇒∀1≤ n≤ N, ∀ j = 1,2, . . . ,r, |u j
n| ≤C2

Here the constants C1,C2 depend on the quantization alphabet A δ
K and the quantization

rule G.

The construction of high order 1-bit Σ∆ schemes (when A δ
K has K = 1) is a difficult

problem. In fact, the existence of arbitrary order stable 1-bit Σ∆ schemes was only recently

proven by Daubechies and DeVore in [DD03]. Also there is other related work on 1-bit Σ∆

such as [Gün03, PL93, Yil02b].

Example 2.2.1. The following 1-bit second order Σ∆ scheme is stable, in [Yil02a]

qn = sign(u1
n−1 +

1
2

u2
n−1),

u1
n = u1

n−1 + xn−qn,

u2
n = u2

n−1 +u1
n,

19



where u1
0 = u2

0 = 0 and n = 1,2, ...,N. Here,

sign(x) =

 1, x≥ 0

−1, x < 0
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2.3 Sobolev duals

The main result in this section is according to [BLPY10]. If we define the discrete

Laplacian ∇ = D∗D, note that D and ∇ are invertible, obtained via 2.1.7, as in 2.2.2 using

a dual frame { fn}N
n=1, then the rth order Σ∆ reconstruction error equals:

‖x− x̃‖= ‖
N

∑
n=1

(xn−qn) fn‖= ‖
N

∑
n=1
4rur

n fn‖= ‖FDr∗(u)‖ (2.3.1)

where u = [ur
1,u

r
2, ...,u

r
N ]
∗ and F is the frame matrix associated to { fn}N

n=1.

Definition 2.3.1. Let F be an d×N matrix. Define

‖F‖r,op = ‖FDr∗‖op = ‖DrF∗‖op

‖F‖r,F = ‖FDr∗‖F = ‖DrF∗‖F

Now we introduce the class of Sobolev dual frames:

Definition 2.3.2. (Sobolev dual)Fix a positive integer r. Let {en}N
n=1 ⊂ Rd be a frame for

Rd and let E be the associated d×N frame matrix. The r-th order Sobolev dual { fn}N
n=1 ⊂

Rd of E is defined so that f j is the j-th column of the matrix:

F̃ = (ED−r(D∗)−rE∗)−1ED−r(D∗)−r

Theorem 2.3.3. Let E be an d×N frame matrix. The r-th order Sobolev dual F̃ is the dual

frame F of E for which ‖F‖r,op,‖F‖r,F are minimal.

Theorem 2.3.3 shows that Sobolev duals lead the minimal value of the error bound of r-

th order Σ∆ quantization for a fix frame. The proof can be found in section 4 in [BLPY10].

Also in section 5, the authors gave the specific bound for frames constructed by a frame

path:
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Theorem 2.3.4. Let r be a positive integer, and suppose that one is given an r-th order Σ∆

scheme, with quantization alphabet A δ
K , that is stable for all inputs x ∈ Rd with ‖x‖ ≤ η

for some η > 0. Let E(t) be a frame path for Rd defined as 1.1.5 and EN = E(n/N)N
n=1

is a frame for Rd . Given x ∈ Rd , ‖x‖ ≤ η , with frame coefficients {〈x,E(n/N)〉}N
n=1, let

{qN
n }N

n=1 ⊂ A be the sequence of quantized frame coefficients that are generated by the

r-th order Σ∆ scheme. If one uses the r-th order Sobolev dual frame F̃N of EN to linearly

reconstruct an approximation x̃ to x from the quantized frame coefficients via:

x̃ = F̃Nq

where q = [qN
1 ,q

N
2 , ...,q

N
N ]
∗, then

‖x− x̃‖ ≤ ‖FDr∗(u)‖= O(N−r). (2.3.2)

The implicit constant may be taken independent of x.
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Chapter 3

Optimizing Σ∆ quantization error with finite unit-norm frames

In previous chapter, we introduced Sigma-Delta(Σ∆) quantization for finite frames.

Given a fixed frame, the definition 2.3.2 and Theorem 2.3.3 shows that the Sobolev du-

al gives the minimal value of the error bound, the Sobolev dual depends on the frame itself.

Here, we consider three questions:

1. Is ‖x− x̃‖= O(N−r) the best error bound we can get for rth order Σ∆ quantization?

2. If no, then what is the best order of the error bound?

3. If yes, then can we get the same error bound by using other frames? Can one optimize

the constant?

We will explore how to optimize quantization error bounds for unit-norm finite frames

related to Sobolev duals and will answer the first two questions.
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3.1 Optimizing the operator norm

Since in Theorem 2.3.4. we assume that the Σ∆ scheme is stable, there exists C > 0

such that Σ∆ state variables satisfy ‖u j
n‖ ≤ C for 1 ≤ n ≤ N. Letting u = [ur

1,u
r
2, ...,u

r
N ]
∗

gives ‖u‖2 ≤C
√

N and it follows from 2.3.1 that:

‖x− x̃‖= ‖FDr∗(u)‖ ≤ ‖FDr∗‖op‖u‖ ≤C
√

N‖FDr∗‖op (3.1.1)

Thus,we shall consider the problem of minimizing ‖FDr∗‖op instead of the original error

bound.

Lemma 3.1.1. Fix a positive integer r. Let {en}N
n=1 ⊂ Rd be a unit-norm frame and let

E be the associated d×N frame matrix. Moreover, let { fn}N
n=1 ⊂ Rd be the r-th order

Sobolev dual of E and let F be the associated d×N frame matrix. Then:

‖FDr∗‖2
op = ‖((ED−r)(ED−r)∗)−1‖op. (3.1.2)

Proof. By the definition of Soblev dual, we have:

‖FDr∗‖2
op

= ‖(FDr∗)(FDr∗)∗‖op

= ‖(ED−r(D∗)−rE∗)−1ED−r((ED−r(D∗)−rE∗)−1ED−r)∗‖op

= ‖(ED−r(D∗)−rE∗)−1ED−r(D∗)−rE∗(ED−r(D∗)−rE∗)−1)∗‖op

= ‖(ED−r(D∗)−rE∗)−1)∗‖op

= ‖(ED−r(ED−r)∗)−1‖op

Lemma 3.1.2. Let A be a invertible matrix with inverse A−1. If λ is an eigenvalue of A,

then 1/λ is an eigenvalue of A−1.

Proof. Since λ is a eigenvalue of A, then there are exist a nonezero vector u such that,

Au = λu
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which is equivalent to

A−1Au = A−1
λu

Thus

A−1u = (1/λ )u

Hence, 1/λ is a eigenvalue of A−1.

Let {λi}d
i=1 be the eigenvalues of ED−r(ED−r)∗. Since ED−r(ED−r)∗ is the inverse

matrix of (ED−r(ED−r)∗)−1, by Lemma 3.1.2, we have {1/λi}d
i=1 are the eigenvalues of

(ED−r(ED−r)∗)−1.

Moreover, by Lemma 3.1.1, we know:

‖FDr∗‖2
op = ‖(ED−r(ED−r)∗)−1‖op = max

i=1,2,...,d
{1/λi}

which means, if we fix the order r, and we choose Sobolev dual, then the error ‖x− x̃‖ only

depends on the frame matrix E. To answer question 1 in the beginning of this chapter, now

we focus on

min
E
‖(ED−r(ED−r)∗)−1‖op = min

E
{ max

i=1,2,...,d
{1/λi}} (3.1.3)

where E is the frame matrix associated to a unit-norm frames {en}N
n=1 ⊂ Rd .

Lemma 3.1.3. Let E be the d×N frame matrix associated to any unit-norm frames {en}N
n=1⊂

Rd , D is defined as in (2.1.6), then:

min
E
‖(ED−r(ED−r)∗)−1‖op ≥ 1/(

1
d

max
E
{tr((ED−r(ED−r)∗)}

Proof. Since

min
E
‖(ED−r(ED−r)∗)−1‖op = min

E
{ max

i=1,2,...,d
{1/λi}}
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Besides,

min
E
{ max

i=1,2,...,d
{1/λi}}= min

E
{1/ min

i=1,2,...,d
{λi}}= 1/max

E
{ min

i=1,2,...,d
{λi}}.

Moreover,

max
E
{ min

i=1,2,...,d
{λi}} ≤max

E
{1

d

d

∑
i=1

λi}=
1
d

max
E
{tr((ED−r(ED−r)∗)}

Hence,

min
E
‖(ED−r(ED−r)∗)−1‖op ≥ 1/(

1
d

max
E
{tr((ED−r(ED−r)∗)}.

By Lemma 3.1.3, instead of focusing on min‖(ED−r(ED−r)∗)−1‖op, we start to look

at max{tr((ED−r(ED−r)∗)}. Firstly, recall the definition of D as:

D =



1 −1 0 · · · 0

0 1 −1 · · · 0
. . . . . .

0 · · · 0 1 −1

0 · · · 0 0 1


= I− J

here I is the N×N identity matrix and

J =



0 −1 0 · · · 0

0 0 −1 · · · 0
. . . . . .

0 · · · 0 0 −1

0 · · · 0 0 0


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Now, for a fixed r, we define:

D−r =



a1,1 a1,2 · · · a1,N−1 a1,N

a2,1 a2,2 · · · a2,N−1 a2,N

...
... · · · ...

...

ad−1,1 ad−1,2 · · · ad−1,N−1 ad−1,N

ad,1 ad,2 · · · ad,N−1 ad,N


Then we state:

Lemma 3.1.4. For a fixed r, N is the size of the unit-norm frame and N� r. Let matric E

and D be defined as above, then:

max
E
{tr((ED−r(ED−r)∗)} ≤Cr

N2r+1

(r!)2(2r+1)
.

where Cr� (r!)2 is a constant related to r.

Proof. Since E = [e1 e2 ... eN ] and following the definition of D−r we gave above, we have:

ED−r = [
N

∑
i=1

a1,iei

N

∑
i=1

a2,iei ...
N

∑
i=1

aN,iei] (3.1.4)

Hence,

tr(ED−r(ED−r)∗) =
N

∑
j=1
‖

N

∑
i=1

ai, jei‖2 ≤
N

∑
j=1

N

∑
i=1
‖ai, jei‖2 =

N

∑
j=1

N

∑
i=1

(ai, j)
2

The last equality holds since {ei}N
i=1 are unit-norm frames. The inequality follows from the

triangle inequality for vectors and the inequality holds with equality if and only if all of the

vectors ai, jei are in the same direction. Since {ei}N
i=1 are unit-norm frames, then equality

holds in 3.1.4 if and only if:

ei = e j f or any i, j ∈ {1,2, ...,N} (3.1.5)
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We shall use that

(1− x)−r = 1+ rx+
(

r+1
2

)
x2 +

(
r+2

3

)
x3 + ...

The sequence above converges if and only if when |x| < 1, and if we switch 1 to identify

matrix I and switch x to any other matrix X . Then the matrix sequence converges if and

only if the spectral radius of X is less then 1.

By induction, for any N, we have the spectral radius of J is 0. Moreover, since JN = 0,

then:

D−r = (I− J)−r = I + rJ+
(

r+1
2

)
J2 + ...+

(
r+N−2

N−1

)
JN−1

Let Jk
i, j denote the elements of Jk, where k = 1,2, ...,N−1. If i> j, then Jk

i, j = 0. Moreover,

if i≤ j, then,

Jk
i,i+l =

 1, l = k;

0, l 6= k.

Thus, we have:

ai, j =

 0, i > j;(r+ j−i−1
j−i

)
, i≤ j.

Hence,

N

∑
i=1

ai, j =
j

∑
i=1

(
r+ j− i−1

j− i

)
=

(
r+ j−1

j−1

)
=

(
r+ j−1

r

)
.

Now, we get:

max
E
{tr((ED−r(ED−r)∗)} ≤

N

∑
j=1

N

∑
i=1

(ai, j)
2 =

N

∑
j=1

N

∑
i=1

(

(
r+ j−1

r

)
)2
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Since we fix r and we always assume N� r, we have:

N

∑
j=1

N

∑
i=1

(
r+ j−1

r

)2

=
1

(r!)2

N

∑
j=1

( j( j+1) · · ·( j+ r−1))2

Moreover, for a small positive integer j, we have

( j+ r−1)< j(r−1),

which implies,

( j( j+1) · · ·( j+ r−1))2 < (r!)2 j2r,

and when j� r, we have

( j+ r−1)< c j j,

here c j is constant related to j and greater but close to 1, Thus

( j( j+1) · · ·( j+ r−1))2 < (c j)
2r j2r,

Hence, there exists a constant Cr related to r, such that,

1
(r!)2

N

∑
j=1

( j( j+1) · · ·( j+ r−1))2 ≤Cr
1

(r!)2

N

∑
j=1

j2r,

and if N� r, for most j, we have (c j)
2r� (r!)2, then Cr� (r!)2. Then,

Cr
1

(r!)2

N

∑
j=1

j2r ≤Cr
1

(r!)2

∫ N

0
x2rdx =Cr

N2r+1

(r!)2(2r+1)

Theorem 3.1.5. Fix a positive integer r. Let {en}N
n=1 ⊂ Rd be a unit-norm frame and let

E be the associated d×N frame matrix. Moreover, Let { fn}N
n=1 ⊂ Rd is the r-th order
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Sobolev dual of E and let F be the associated d×N frame matrix. Then:

min
E
{‖FDr∗‖op}= O(N−(r+

1
2 ))

Proof. By the proof for Theorem 2.3.4 in [BLPY10], we have:

min
E
{‖FDr∗‖op} ≤ O(N−(r+

1
2 ))

On the other hand, by Lemma 3.1.3, we have :

min
E
{‖FDr∗‖op}= min

E
‖(ED−r(ED−r)∗)−1‖op ≥ 1/(

1
d

max
E
{tr((ED−r(ED−r)∗)}

Since in Lemma 3.1.4, we get:

max
E
{tr((ED−r(ED−r)∗)} ≤Cr

N2r+1

(r!)2(2r+1)

Then we have:

1/(
1
d

max
E
{tr((ED−r(ED−r)∗)} ≥ (r!)2(2r+1)

dCrN2r+1

Since we assume N� r and N� d, we have:

(r!)2(2r+1)
dCrN2r+1 = O(N−(r+

1
2 ))

Which implies:

min
E
{‖FDr∗‖op} ≥ O(N−(r+

1
2 ))

Hence,

min
E
{‖FDr∗‖op}= O(N−(r+

1
2 ))
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3.2 Optimizing the Frobenius norm

If the Σ∆ state variables are modeled as i.i.d. random variables with zero mean and

variance σ2 than the expected error squared in (2.3.1) become

E‖F(D∗)r(u)‖2 = σ
2‖FDr∗‖2

F .

Motivated by this, in this section we shall analyze ‖F‖r,F is a similar manner as ‖F‖r,op in

previous section.

Lemma 3.2.1. Fix a positive integer r. Let {en}N
n=1 ⊂ Rd be a unit-norm frame and let

E be the associated d×N frame matrix. Moreover, let { fn}N
n=1 ⊂ Rd be the r-th order

Sobolev dual of E and let F be the associated d×N frame matrix. Then:

‖FDr∗‖2
F = tr((ED−r(ED−r)∗)−1) (3.2.1)

Proof. By the definition of Soblev dual, we have:

‖FDr∗‖2
F

= tr((FDr∗)(FDr∗)∗)

= tr((ED−r(D∗)−rE∗)−1ED−r((ED−r(D∗)−rE∗)−1ED−r)∗)

= tr((ED−r(D∗)−rE∗)−1)∗)

= tr((ED−r(ED−r)∗)−1)

We still let {λi}d
i=1 be the eigenvalues of ED−r(ED−r)∗. By lemma 3.1.2, we have

{1/λi}d
i=1 are the eigenvalues of (ED−r(ED−r)∗)−1.

Moreover, by lemma 3.2.1, we know:

‖FDr∗‖2
F = tr((ED−r(ED−r)∗)−1) =

d

∑
i=1

1/λi
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Hence, now we focus on

min
E
{tr((ED−r(ED−r)∗)−1}= min

E
{

d

∑
i=1

1/λi} (3.2.2)

where E is the frame matrix associated to a unit-norm frames {en}N
n=1 ⊂ Rd .

Lemma 3.2.2. Let E be the d×N frame matrix associated to any unit-norm frame {en}N
n=1⊂

Rd , D is defined as in (2.1.6), then:

min
E
{tr((ED−r(ED−r)∗)−1} ≥ 1/(

1
d

max
E
{tr((ED−r(ED−r)∗)}.

The proof follows from
d

∑
i=1

1/λi ≥ max
i=1,2,...,d

{1/λi}

Hence,

min
E
{tr((ED−r(ED−r)∗)−1}≥min

E
‖(ED−r(ED−r)∗)−1‖op≥ 1/(

1
d

max
E
{tr((ED−r(ED−r)∗)}

Theorem 3.2.3. Fix a positive integer r. Let {en}N
n=1 ⊂ Rd be a unit-norm frame and let

E be the associated d×N frame matrix. Moreover, Let { fn}N
n=1 ⊂ Rd is the r-th order

Sobolev dual of E and let F be the associated d×N frame matrix. Then:

min
E
{‖FDr∗‖F}= O(N−(r+

1
2 ))

Proof. Since,

‖FDr∗‖2
op = ‖(ED−r(ED−r)∗)−1‖op = max

i=1,2,...,d
{1/λi}
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Then following the proof for Theorem 2.3.4 in [BLPY10], we have:

min
E
{‖FDr∗‖op} ≤ O(N−(r+

1
2 ))

which means,

min
E
{ max

i=1,2,...,d
{1/λi}} ≤ O(N−(r+

1
2 ))

Since,

min
E
{

d

∑
i=1

1/λi} ≤ d min
E
{ max

i=1,2,...,d
{1/λi}}

Following the equation3.2.2 and as we assume d� N, we have

min
E
{‖FDr∗‖F} ≤ dO(N−(r+

1
2 )) = O(N−(r+

1
2 ))

Then, combining the result of Lemma 3.2.2 and Lemma 3.1.4, we get,

min
E
{‖FDr∗‖F} ≥ O(N−(r+

1
2 )).

Hence,

min
E
{‖FDr∗‖F}= O(N−(r+

1
2 )).
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Chapter 4

Sigma-Delta Quantization with Fusion Frames

In Chapter 1, we gave a review for finite frame theory and fusion frame theory. Then, in

Chapter 2 we gave motivation for using Sigma-Delta (Σ∆) quantization in A/D conversion

instead of PCM quantization. We also introduced how to apply Σ∆ quantization in the set-

ting of finite frames. In this chapter, we shall develop and analyze Sigma-Delta algorithms

for fusion frames.

In [CKL08], the authors gave the following distributed reconstruction formula that de-

pends on the equation (1.3.4).

Definition 4.0.4. Let {Wi,wi,{ fi j} j∈Ji}i∈I be a fusion frame system for H with fusion frame

bounds C and D, and let {{ f̃i j} j∈Ji}i∈I be associated local dual frames. Then for any signal

x ∈H, we could reconstruct the signal as:

x = ∑
i∈I

∑
j∈Ji

〈x,wi fi, j〉(S−1
W,wwi f̃i j). (4.0.1)

For the distributed reconstruction in (4.0.1), we can easily apply Σ∆ quantization since

it is essentially the same we using Σ∆ quantization with the frame {{wi fi j} j∈Ji}i∈I and the

associated dual frame {{S−1
W,wwi f̃i j} j∈Ji}i∈I .

However, sometimes it is difficult to construct the fusion frame system in practical prob-

lems. We might only have access to the vector πWi(x) instead of its frame representation.

In these situations, we do not have the analog scalar coefficients 〈x,wi fi, j〉 and are not able

to directly apply Σ∆ quantization to fusion frames as we did with finite frames.

An important property of Σ∆ quantization is that there exist stable 1-bit Σ∆ algorithms.

This issue become more complicated in the setting of fusion frames. For each subspace

Wi, suppose we apply 1-bit Σ∆ quantization to a frame for Wi, then at least dim(Wi) bits are

needed. Then for the whole fusion frame, we have to spend ∑i∈I dim(Wi) bits. But actually,
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we can spend less bits if we quantize the vector coefficients πWi(x).

Following the reasons above, in this chapter, instead of using dual fusion frame or dis-

tributed reconstruction, we define the left inverse operator of a fusion frame and will apply

this to the quantization problem. By defining the left inverse and the canonical left inverse

for fusion frames, we prove the property that the canonical left inverse has the minimal

‖ · ‖OP and ‖ · ‖F . Then we construct a stable first-order and high-order Σ∆ quantization

algorithm to quantize vector valued fusion frame coefficients. Then we will prove our

first-order Σ∆ quantization algorithm can offer an improvement in providing low bit rep-

resentation for each subspace. Besides, we will give a algorithm to calculate the Kashin

representations for fusion frames to improve the performance of the high-order Σ∆ quanti-

zation algorithm. In the last subsection, we will give the definition of Sobolev left inverse

and prove it leads to the minimal squared error.
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4.1 Left inverse operator of fusion frames

Let {(Wi,wi)}i∈I be a fusion frames. Recall that SW,w is a positive, selfadjoint invertible

operator on H, see [CK03]. Also since S−1
W,wSW,w = IH, we have the following reconstruction

formula (1.3.4).

f = ∑
j∈I

w2
jS
−1
W,wπW j( f ), f or all f ∈H.

It can be also written in this way:

(S−1
W,wTW,w)T ∗W,w = IH.

Here S−1
W,wTW,w is a left inverse of T ∗W,w.

Definition 4.1.1. Let {(Wi,wi)}i∈I be a fusion frame for H. T ∗W,w is the analysis operator.

Let F be a bounded linear operator from ∑i∈I
⊕

Wi to H. If F satisfies:

FT ∗W,w = IH,

then we call F a left inverse of the fusion frame {(Wi,wi)}. Also, let F̃ = (TW,wT ∗W,w)
−1TW,w.

Then we call F̃ the canonical left inverse of T ∗W,w.

About the canonical left inverse of T ∗W,w, there are some properties about it can be

checked in [HMBZ13].

Theorem 4.1.2. Let {(Wi,wi)}i∈I be a fusion frames for H. T ∗W,w is the analysis operator.

A general formula for F which is the left inverse of T ∗W,w is given by

F = (TW,wT ∗W,w)
−1TW,w +G∗(I−T ∗W,w(TW,wT ∗W,w)

−1TW,w), (4.1.1)

where G∗ is the adjoint operator of an arbitrary bounded linear operator

G∗ : ∑
i∈I

⊕
Wi −→H
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.

Proof. Since TW,wT ∗W,w = S and as we know S−1
W,wTW,w is the Left Inverse of T ∗W,w, we mul-

tiply T ∗W,w on the right of (4.1.1), then we obtain

FT ∗W,w = (TW,wT ∗W,w)
−1TW,wT ∗W,w +G∗(T ∗W,w−T ∗W,w(TW,wT ∗W,w)

−1TW,wT ∗W,w)

which implies,

FT ∗W,w = IH+G∗(T ∗W,w−T ∗W,w) = IH.

And to see why (4.1.1) is the most general formula for the left inverse of T ∗W,w. Let F0 be

any bounded left inverse of T ∗W,w, we shall show that there is a G∗ such that (4.1.1) yields

F0. For doing this, take G∗ = F0, then the right hand side of (4.1.1) becomes

(TW,wT ∗W,w)
−1TW,w +F0(I−T ∗W,w(TW,wT ∗W,w)

−1TW,w) = F0

Theorem 4.1.3. Let {(Wi,wi)}i∈I be a fusion frame for H. T ∗W,w is the analysis operator.

F̃ = (TW,wT ∗W,w)
−1TW,w is the canonical left inverse of T ∗W,w. Then for any left inverse F of

T ∗W,w, We have ‖F̃‖OP ≤ ‖F‖OP. Here ‖F‖OP = sup‖x‖=1 ‖Fx‖

Proof. By Theorem 4.1.2, F has the general form

F = (TW,wT ∗W,w)
−1TW,w +G∗(I−T ∗W,w(TW,wT ∗W,w)

−1TW,w).

We can write F in the form F = F̃ +Z, where Z satisfies ZT ∗W,w = 0. It also follows that

F̃Z∗ = 0 and ZF̃∗ = 0.
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Thus, by Theorem 2.13 in [Hei10]

‖F‖2
OP = ‖(F̃ +Z)(F̃∗+Z∗)‖OP = ‖F̃F̃∗+ZF̃∗+ F̃Z∗+ZZ∗‖OP = ‖F̃F̃∗+ZZ∗‖OP.

Therefore,

‖F‖2
OP = ‖F̃F̃∗+ZZ∗‖OP ≤ ‖F̃F̃∗‖OP +‖ZZ∗‖OP.

Moreover, since F̃F̃∗ and ZZ∗ are both positive operator, then by Theorem 2.15 in [Hei10],

we know

‖F̃F̃∗+ZZ∗‖OP = sup
‖x‖=1

|〈(F̃F̃∗+ZZ∗)(x),x〉|

Let ‖F̃F̃∗‖OP = |〈F̃F̃∗(x0),x0〉|, where ‖x0‖= 1 and x0 ∈H, then

‖F‖2
OP = sup

‖x‖=1
|〈(F̃F̃∗+ZZ∗)(x0),x〉| ≥ |〈F̃F̃∗(x0),x0〉+ 〈ZZ∗(x0),x0〉| ≥ ‖F̃F̃∗‖OP.

Hence,‖F‖OP is minimal when ZZ∗(x0) = 0 and F = F̃ is the canonical left inverse. Thus

the minimized left inverse for operator norm is not unique.

Following the similar idea, we state the theorem for the Frobenius norm of canonical

left inverse

Theorem 4.1.4. Let {(Wi,wi)}i∈I be a fusion frame for H. T ∗W,w is the analysis operator.

F̃ = (TW,wT ∗W,w)
−1TW,w is the canonical left inverse of T ∗W,w. Then for any left inverse F of

T ∗W,w, we have ‖F̃‖F ≤ ‖F‖F . Here the Frobenius norm if defined by

‖F‖F =
√

trace(F∗F) =
√

trace(FF∗).

Proof. By Theorem 4.1.2, F has the form

F = (TW,wT ∗W,w)
−1TW,w +G∗(I−T ∗W,w(TW,wT ∗W,w)

−1TW,w).
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We can write F by the form F = F̃ +Z, where Z satisfies ZT ∗W,w = 0. It also follows that

F̃Z∗ = 0 and ZF̃∗ = 0.

Thus,

‖F‖2
F = trace(FF∗) = trace

(
(F̃ +Z)(F̃∗+Z∗)

)
= trace(F̃F̃∗+ZF̃∗+ F̃Z∗+ZZ∗)

which implies,

‖F‖2
F = trace(F̃F̃∗+ZZ∗).

Therefore, following the property of Frobenius norm, we have

‖F‖2
F = trace(F̃F̃∗+ZZ∗) = ‖F̃‖F +‖Z‖F

Hence,‖F‖F is minimal when Z = 0 and F = F̃ is the canonical dual left inverse. Thus the

minimized left inverse for Frobenius norm is unique.
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4.2 First-order sigma-delta quantization for fusion frames

After we define the left inverse operator of fusion frame, now we can start to consider a

nontrivial Σ∆ quantization with fusion frame. Here we always assume the set I is finite and

H is a finite Hilbert space(Rd).

Let {(Wn,wn)}n∈I be a fusion frame for H, πWn is the orthogonal projection from H to

the subspace Wn and f ∈ H is the signal we want to quantize. We give the algorithm for

first-order Σ∆ quantization of fusion frames as following:

qn = Qn(πWn(un−1)+ xn),

un = πWn(un−1)+ xn−qn, (4.2.1)

Here, xn = πWn( f ) and Qn : Wn → An is a vector quantizer, where An ∈ Wn is the

quantization alphabet of vectors, and u0 = 0.

For Σ∆ quantization of fusion frames, the question is how to define the scalar quantizer

Qn. Our goal is to define Qn so that un is uniform bounded and so that |R(Qn)|as small as

possible (|R(·)| means cardinality of the range of the image of Qn). Suppose the subspace

Wn is an Mn dimension subspace of H. We firstly prove that when |R(Qn)| ≈ 1.57Mn , we can

keep un uniformly bounded. For proving this, we need to give the concept of epsilon-nets.

Definition 4.2.1. Let (X ,d) be a metric space and let ε > 0. A subset Nε of X is called

an ε − net of X if every point x ∈ X can be approximated to within ε by some point

y ∈Nε , i.e so that d(x,y)≤ ε .

Theorem 4.2.2. Given ε > 0, the unit Euclidean sphere Sn−1 equipped with the Euclidean

metric has an ε−net of cardinality at most (1+ 2
ε
)n.

The proof and more details about nets can be checked in [Ver10].

Corollary 4.2.3. In Rn, for any angle θ > 0, there exists a set of unit vectors Nθ , such that
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for any vector v ∈ Rn, there exits a vector u ∈Nθ , such that the angle between v and u is

less than θ , and the cardinality of Nθ is at most (1+ 2
sin(θ))

n.

Proof. Let ε = sin(θ), then by Theorem 4.2.2 there exists an ε − net Nε with cardinality

N (RN ,θ) at most (1+ 2
sin(θ))

n. Then let

Nθ = {u|u =
−−→
x−0,x ∈Nε}.

By the definition of ε−net, we know for any vector v ∈ Rn and any u ∈Nθ , we have

|u− v| ≤ sin(θ),

which means the angle between between v and u at most θ .

After we have the concept of nets, we can give the first definition of quantizer Qn as

following:

Theorem 4.2.4. Let {(Wn,wn)}n∈I be a fusion frame for H and N π

3 ,n
= {ei,n}

N (Rn, π

3 )
i=1 be

unit vectors set in Wn constructed in Corollary 4.2.3. The algorithm is defined by (4.2.1).

For any x ∈Wn, we define:

Qn(x) = ei,n, i = min{k ∈N (Rn,
π

3
) : 〈x/|x|,ek,n〉 ≥ 〈x/|x|,e j,n〉 f or all j 6= k}

and

Qn(x) = e1,n, i f x = 0.

Then if ‖x‖ ≤ δ < 1
2 , for all n, we have:

‖un‖ ≤C = max{δ 2−δ +1
1−2δ

,1}

Proof. Let ak = ‖πWk(uk−1)+ xk‖, bk = ‖qk‖, ck = ‖uk‖, θk is the angle between vector

41



πWk(uk−1)+ xk and vector qk. Then by the definition of N π

3 ,n
, we know θk ≤ π

3 .

We prove the theorem by induction. When n = 1, since u0 = 0 and θ1 <
π

3 , then by the

law of cosines, we have:

c2
1 = a2

1 +b2
1−2cos(θ1)a1b1 ≤ a2

1 +b2
1−a1b1.

Since |a1| ≤ |δ +0|= δ < 1
2 and b1 = 1. Thus:

a2
1 +b2

1−a1b1 = a2
1 +1−a1 = (a1−

1
2
)2 +

3
4
≤ 1

4
+

3
4
= 1

then we get

|u1| ≤C = max{δ 2−δ +1
1−2δ

,1}

so when n = 1 the result is true.

Suppose for all n ≤ k− 1, the result is true, then when n = k, by Law of cosines, we

have:

c2
k = a2

k +b2
k−2cos(θk)akbk.

Since θk ≤ π

3 and bk = 1, so we have:

c2
k = a2

k +1−2cos(θk)ak ≤ a2
k +1−2cos(

π

3
)ak ≤ a2

k +1−ak.

Consider about the function: f (x) = x2 + 1− x, since f ′(x) = 2x− 1 and f ′′(x) = 2 > 0,

then f(x) has minimum at x = 1
2 . By the inductive assumption, 0 < ak ≤ C + δ , so for

x ∈ [0,C+δ ], f (x) has its maximum value at f (0) or f (C+δ ). Now, we claim

f (x)≤C = max{δ 2−δ +1
1−2δ

,1}, f or x ∈ (0,C+δ ). (4.2.2)

For f (0), we have f (0) = 1.
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For f (C+δ ), if we can prove:

C2 ≥ (C+δ )2 +1− (C+δ ) (4.2.3)

then we know our claim (4.2.2) is true. Since the inequality (4.2.3) is equivalent to:

C2 +δ
2 +2Cδ +1− (C+δ )≤C2

which is equivalent to:

2C(δ − 1
2
)≤−δ

2 +δ −1

we know (δ − 1
2)< 0, then the inequality (4.2.3) becomes:

C ≥ δ 2−δ +1
1−2δ

,

which follows from the definition of C:

C = max{δ 2−δ +1
1−2δ

,1}.

Thus we have C ≥ |uk|. Hence by induction, we prove the Theorem.

By Corollary 4.2.3, we know

|RQn|= N (RMn,
π

3
)≤ (1+

2
√

3
2

)Mn ≈ 3.3Mn.

Thus for each subspace we need log2(3.3
Mn) � 1.7Mn bits to quantize the signal. Actu-

ally, we can show that to keep |un| have uniform bound, we just need log2(Mn + 1) bits.

Moreover, it is the best we can get. For proving this, we need several lemmas.
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Lemma 4.2.5. In Rd , there exists a set of vectors {ei}d+1
i=1 such that:

〈ei,ei〉= 1, 〈ei,e j〉= c = cosθ , f or any i 6= j,
d+1

∑
i=1

ei = 0

Moreover, θ = arccos(− 1
d ).

X

Y

X

Z

Y

Figure 4.1: Example in R2 and R3

Proof. Consider the subspace

A = {(x1,x2, . . . ,xd+1)|
d+1

∑
i=1

xi = 0} ∈ Rd+1.

There exists a 1-to-1 invertible mapping from A to Rd which preserves the Euclidean met-

ric. Hence, A is isomorphic to Rd . Then let

Vi = (0,0, . . . ,1, . . . ,0) f or i = 1,2, . . . ,d +1

where the i-th coordinate is 1 and the rest are all 0, and let

V0 = (
1

d +1
,

1
d +1

, . . . ,
1

d +1
).

Let ui =Vi−V0 for i = 1,2, . . . ,d +1, then we know {ui} is a subset in A.
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For any i 6= j,

〈ui,u j〉= 〈Vi−V0,Vj−V0〉= 〈Vi,Vj〉−〈Vi,V0〉−〈V0,Vj〉+ 〈V0,V0〉=−
1

d +1
=C1,

here C1 is a constant.

For all i = 1,2, . . . ,d +1,

〈ui,ui〉= (1− 1
d +1

)2 +
d

(d +1)2 =
d

d +1
=C2,

here C2 is a constant.

Also,
d+1

∑
i=1

ui =
d+1

∑
i=1

Vi− (d +1)V0 = (1,1, . . . ,1)− (1,1, . . . ,1) = 0.

Let ei =
ui
|ui| =

ui√
C2
.

Firstly, {ei} is also a subset in A, and for all i = 1,2, . . . ,d +1, we know |ei|= 1.

Secondly, for any i 6= j,

〈ei,e j〉= 〈
ui

|ui|
,

u j

|u j|
〉= C1

C2
=C.

Lastly,
d+1

∑
i=1

ei =
d+1

∑
i=1

ui√
C2

= 0∗
√

C2 = 0

Hence, {ei} exists has the designed properties. Additionally, since ∑
d+1
i=1 ei = 0, then for

any e j, ∑
d+1
i=1 〈ei,e j〉= 0 which is equivalent to:

dc+1 = 0

.

Hence c =− 1
d , which implies θ = arccos(− 1

d ).

Lemma 4.2.6. Let {ei}d+1
i=1 ∈ Rd be the vectors set in Lemma 4.2.5. For any unit vector
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u ∈ Rd , we define the vector function Q(u) as following:

Q(u) = ei, i f 〈x,ei〉 ≥ 〈x,e j〉 f or all i 6= j

Let θ = arccos〈u,Q(u)〉, then θ ≤ π− arccos(− 1
d ).

Proof. Let u = (x1,x2, . . . ,xd+1) be a unit vector in A, here A is the same as in Lemma

4.2.5. As we know, there exists a 1-to-1 invertible mapping from A to Rd which preserves

the Euclidean metric, thus we can consider u as a unit vector in Rd . Then we have:

d+1

∑
i=1

xi = 0;
d+1

∑
i=1

x2
i = 1 (4.2.4)

Let {ei} be the same as in Lemma 4.2.5. For i = 1,2, . . . ,d +1, let

〈u,ei〉= (− 1
d +1

d+1

∑
j=1

x j + xi)/C2 = xi/C2.

Then by definition of Q(u), we have

〈u,Q(u)〉= max{xi}/C2.

Since u is a unit vector, then

θ = arccos〈u,Q(u)〉 ≤ π− arccos(−1
d
),

if and only if,

〈u,Q(u)〉= max{xi}/C2 ≥
1
d
.

Hence, to prove θ ≤ π− arccos(− 1
d ) is equivalent to prove

minmax{xi}=
C2

d
=

√
1

d(d +1)
,
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here {xi} satisfy equation (4.2.4).

Without loss of generality, we suppose x1 ≥ x2 ≥ . . .≥ xd+1.

First step, if x1 6= x2, then we let

x′1 =
x1 + x2

2
, x′2 =

x1 + x2

2
, x′i = xi, f or i = 3,4, . . . ,d +1.

Firstly we know
d+1

∑
i=1

x′i =
d+1

∑
i=1

xi = 0.

Also since x2
1 + x2

2 ≥ x′21 + x′22 , we get

d+1

∑
i=1

x′2i ≤
d+1

∑
i=1

x2
i = 1.

Let

c =
d+1

∑
i=1

x′2i and let x1
i = x′i/c f or i = 1,2, . . . ,d +1.

Then for {x1
i }, we know ∑

d+1
i=1 x1

i =
1
c ∑

d+1
i=1 x1

i = 0 and ∑
d+1
i=1 x1

i
2
= 1. Since c ≤ 1, also we

still have x1
1 ≥ x1

2 ≥ . . .≥ x1
d+1, then we get x1

i ≥ xi for all i = 2,3, . . . ,d+1, Hence x1
1 ≤ x1.

Thus max{xi} ≥max{x1
i }.

If x1 = x2, we just let x1
i = xi for all i = 1,2, . . . ,d +1. Thus we have

max{xi} ≥max{x1
i }.

Second step, by same method we can get {x2
i }

d+1
i=1 satisfy that equation(4.2.4), x2

1 = x2
2 =

x2
3 ≥ x2

4 ≥ . . .≥ x2
d+1 and max{x1

i } ≥max{x2
i }.

We can keep doing the same thing for d − 1 times until we get {xd−1
i }d+1

i=1 satisfy that

equation(4.2.4), xd−1
1 = xd−1

2 = . . . = xd−1
d ≥ x2

d+1 and max{xd−1
i } ≤ max{x j

i } for all j =

1,2, . . . ,d−2. Since ∑
d+1
i=1 xd−1

i = 0, then we can not do the next step. Thus minmax{xi}=

max{xd−1
i }.
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Let a = xd−1
1 and b = xd−1

d+1, by equation (4.2.4), we have:

da2 +b2 = 1, ad +b = 0

By solving the equations above, we get a =
√

1
d(d+1) which is we want.

After all the preparation, now we give the definition of the new quantizer Qn as follow-

ing and prove the stability of the scheme.

Theorem 4.2.7. Let {(Wn,wn)}n∈I be a fusion frame for H where dim(Wn) = Mn and let

{ei,n}Mn+1
i=1 be the set of unit vectors in Wn which we constructed in Lemma 4.2.5. The

algorithm is defined as (4.2.1). For any x ∈Wn, we define:

Qn(x) = ei,n, i = min{k ∈ {1,2, ...,Mn +1} : 〈x/‖x‖,ek,n〉 ≥ 〈x/‖x‖,e j,n〉 f or all j 6= k}

and

Qn(x) = e1,n, i f x = 0

Let d = max{dim(Wn)}, θ = π−arccos(− 1
d ). If ‖x‖ ≤ δ < cos(θ) = 1

d . Then for all n, we

have:

‖un‖ ≤C = max{δ 2−2cos(θ)δ +1
2(cos(θ)−δ )

,1}

Proof. Let ak = ‖πWk(uk−1)+ xk‖, bk = ‖qk‖ ,ck = ‖uk‖, θk is the angle between vector

πWk(uk−1)+ xk and vector qk. Then by Lemma 4.2.6, we know θk ≤ θ = π− arccos(− 1
d ).

Since d ≥ 2, thus θ ∈ [π

3 ,
π

2 )

We prove the theorem by induction, when n = 1, since u0 = 0 and θ1 <
π

2 ,then by the

law of cosines,we have:

c2
1 = a2

1 +b2
1−2cos(θ1)a1b1 ≤ a2

1 +b2
1−2cos(θ)a1b1
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Since |a1| ≤ |δ +0|= δ < cos(θ) and b1 = 1, then

a2
1 +b2

1−2cos(θ)a1b1 = a2
1 +1−2cos(θ)a1 = (a1− cos(θ))2 +1− cos2(θ)

which implies,

a2
1 +b2

1−2cos(θ)a1b1 ≤ cos2(θ)+1− cos2(θ) = 1

which means:

|u1| ≤C = max{δ 2−2cos(θ)δ +1
2(cos(θ)−δ )

,1}

so when n = 1 the result is true.

Suppose for all n≤ k−1, the result is true, then when n = k, by the Law of cosines, we

have:

c2
k = a2

k +b2
k−2cos(θk)akbk.

Since θk ≤ θ < π

2 and bk = 1, then we get:

|ck|2 = a2
k +1−2cos(θk)ak ≤ a2

k +1−2cos(θ)ak

Consider the function: f (x) = x2 +1−2cos(θ)x, since f ′(x) = 2x−2cos(θ) and f ′′(x) =

cos(θ) > 0, then f(x) has its minimum at x = cos(θ). Since 0 < ak ≤ C + δ , then for

x ∈ [0,C+δ ], f is maximal at f (0) or f (C+δ ). Now we claim:

f (x)≤C2, f or x ∈ [0,C+δ ] (4.2.5)

For f (0), we have f (0) = 1.

For f (C+δ ), if we can prove:

C2 ≥ (C+δ )2 +1−2cos(θ)(C+δ ), (4.2.6)
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then we know our claim (4.2.5) is true. The inequality (4.2.6) is equivalent to:

C2 +δ
2 +2Cδ +1−2cos(θ)(C+δ )≤C2,

which is equivalent to:

2C(δ − cos(θ))≤−δ
2 +2cos(θ)δ −1.

Since δ < cos(θ), then (δ − cos(θ))< 0, hence the inequality (4.2.6) is equivalent to:

C ≥ δ 2−2cos(θ)δ +1
2(cos(θ)−δ )

which holds by the definition of C. Hence by induction, we have proven the Theorem.

Remark 4.2.8. Suppose for every subspace Wn, the cardinality |R(Qn)| is less then Mn+1,

for example, R(Qn) = Mn. Then no matter how we define the quantize Qn, the situation

θk ≥ π/2 will happen, then cos(θk) < 0, so for any δ > 0 we have 2(δ − cos(θk)) > 0.

Hence we can only get

C ≤ δ 2−2cos(θk)δ +1
2(cos(θk)−δ )

which is always false since the right part of the inequality is negative, so we cannot get a

positive uniform bound C.

Actually, if we suppose all θk = π/2, by the law of cosine we can get that |uk+1|2 =

|πWk+1(uk) + xk+1|2 + 1 for all k, and we can easily get |uk+1| ≥ |uk|+σ , where σ is a

positive constant. Hence {|un|} is increasing with n, which means {|un|} does not have

uniform bound. Hence |R(Qn)|= Mn +1 is the best we can hope for Theorem 4.2.7.

However, in practice, quantizers are never perfect. In [DD03], the authors assume the

quantizer q(x)= sign(x+ρ), where ρ is unknown noise except for the specification |ρ|< τ .
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Then the authors define the non-ideal Q as following:

Q(x) = sign(x), f or ‖x‖ ≥ τ;

or

Q(x)≤ 1, f or ‖x‖ ≤ τ.

and proved the 1-bit Σ∆ quantization scheme is still stable.

Here, we will show the robustness of the quantizers Qn in Theorem 4.2.7. Observe the

definition of the quantizer Qn in Theorem 4.2.7, not same as the quantizer Q above, Qn

mapping the vector x ∈Rd to alphabet vectors not depend on the ‖x‖ but on the 〈x/|x|,ek,n〉

which is the angle between x and each alphabet vector ei,n. Now, define the non-ideal

quantizer Qn with a noise ρ as following:

Qn(x) = ei,n, i = min{k ∈ {1,2, ...,Mn+1} : 〈x/|x|,ek,n〉−〈x/|x|,e j,n〉 ≥ ρ f or all j 6= k},

(4.2.7)

Qn(x) = ei,n, i = {k ∈ {1,2, ...,Mn+1} : 0 < 〈x/|x|,ek,n〉−〈x/|x|,e j,n〉 ≤ ρ f or all j 6= k}.

(4.2.8)

In equation (4.2.8), we just let i be any vector which satisfies the condition:

0 < 〈x/|x|,ek,n〉−〈x/|x|,e j,n〉 ≤ ρ f or all j 6= k.

Then we have the proposition for our new quantizer Qn as:

Proposition 4.2.9. Let {(Wn,wn)}n∈I be fusion frame for H and {ei,n}Mn+1
i=1 be the set of

unit vectors in Wn which we constructed in Lemma 4.2.5. The algorithm is defined as 4.2.1.

For any x ∈Wn, we define Qn by equation (4.2.7) and (4.2.8). Let d = max{dim(Wn)},

θ = π− arccos(− 1
d ). If ‖x‖ ≤ δ < cos(θ + arccos(ρ)) and arccos(ρ) < arccos(− 1

d )−
π

2 .
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Then for all n, we have:

‖un‖ ≤max{δ 2−2cos(θ + arccos(ρ))δ +1
2(cos(θ + arccos(ρ))−δ )

,1}.

Proof. Let ak = ‖πWk(uk−1)+ xk‖, bk = ‖qk‖, ck = ‖uk‖, θk is the angle between vector

πWk(uk−1)+ xk and vector qk. Notice that we assume arccos(ρ) < arccos(− 1
d )−

π

2 . Then

by Lemma 4.2.6 and the definition of Qn, we have

θk ≤ θ + arccos(ρ) = π− arccos(−1
d
)+ arccos(ρ)<

π

2

thus we still have θ +arccos(ρ)∈ [π

3 ,
π

2 ). Since every thing else is the same as Theorem4.2.7,

following the same method, we have:

‖un‖ ≤C = max{δ 2−2cos(θ + arccos(ρ))δ +1
2(cos(θ + arccos(ρ))−δ )

,1}.

In [DD03], the noise ρ do not have any limitation. Unlike as [DD03], in Proposition

4.2.9, we assume the noise ρ should satisfy arccos(ρ) < arccos(− 1
d )−

π

2 which is equiv-

alent to ρ < |cos(arccos(− 1
d )−

π

2 )|. However, since d = max{dim(Wn)}, in practice, the

dimension of the subspace Wn is always far less the the dimension of the whole space H, for

example, when d = 10, we only need arccos(ρ)< π

15 which is a reasonable noise. Hence,

Qn is robust for a acceptable noise.

In Theorem 4.2.7, we know

|RQn |= Mn +1.

Thus for each subspace we need log2(Mn +1)�Mn bit to quantize the signal. Compared

to the algorithm (4.0.4) we gave in the beginning of this section and the first algorithm

(4.2.4) we gave before, it is a big improvement.
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Now we give a example to show the error bound of the fisrt-order Sigma-Delta quanti-

zation with fusion frame:

Example 4.2.10. Let {E(n/N)}N
n=1 ⊂ R3 be defined as following:

E(n/N) = [cos(2πn/N),sin(2πn/N),0]∗, 1≤ n≤ N, (4.2.9)

Let Wn be the two dimensional subspace of R3 with normal vector E(n/N). By Theorem

1.3.5, we know there exists a constant w, such that {Wn,w} is a C− tight fusion frame.

Moreover, by Proposition 1.3.6, we have:

‖SW,w‖op =C =
∑

N
n=1 w2

n dim(Wn)

dim(R3)
=

w22N
3

Suppose f is a signal in R3 that satisfies ‖ f‖ ≤ 1
2 , then we know,

f = S−1
W,wSW,w f =

N

∑
n=1

w2S−1
W,wπWn( f )

Now we use the fisrt-order Sigma-Delta quantization as in Theorem 4.2.7, then we have the

reconstructed signal,

f̃ =
N

∑
n=1

w2S−1
W,wqn
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Thus, the error is equal to:

‖ f − f̃‖= ‖
N

∑
n=1

w2S−1
W,wπWn( f )−

N

∑
n=1

w2S−1
W,wqn‖

= w2‖
N

∑
n=1

S−1
W,w(πWn( f )−qn)‖

= w2‖
N

∑
n=1

S−1
W,w(un−πWn(un−1))‖

≤ w2‖S−1
W,w‖op‖

N

∑
n=1

(un−πWn(un−1))‖

= w2‖S−1
W,w‖op‖

N−1

∑
n=1

(un−πWn+1(un))+uN‖

By the definition of Wn, we have:

un−πWn+1(un) = un sin(
2π

N
),

and by Theorem 4.2.7 we have ‖un‖ ≤C. Thus,

‖
N−1

∑
n=1

(un−πWn+1(un))+uN‖= ‖
N−1

∑
n=1

C sin(
2π

N
)+C‖= ‖C(N−1)sin(

2π

N
)+C‖

Since when N is large enough, we have sin( N
2π
)≈ 2π

N . Then,

‖C(N−1)sin(
N
2π

)+C‖ ≈ ‖C(N−1)
2π

N
+C‖= O(1),

which means ‖∑
N−1
n=1 (un−πWn+1(un))+uN‖ is equivalent to a constant C′. Hence,

w2‖S−1
W,w‖op‖

N−1

∑
n=1

(un−πWn+1(un))+uN‖=C′w2 3
w22N

= O(N−1).

So the error ‖ f − f̃‖ is equal to O(N−1).
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4.3 High-order sigma-delta quantization for fusion frames

Definition 4.3.1. For showing the definition clearly, we first give the basic idea for second-

order Σ∆ quantization of fusion frames. Consider the following recursion:

vn = un−πWn(un−1),

vn−πWn(vn−1) = xn−qn,

qn = Qn(U(πWn(un−1),πWn(vn−2),xn)), (4.3.1)

where vector function U : (u,v,x)→Wn is called the quantization rule, Qn : Wn→An is a

vector valued quantizer and An ∈Wn is the alphabet of vectors.

Equation (4.3.1) is the definition for second order Σ∆ quantization for fusion frames.

As for the finite frame Σ∆ problem, constructing a stable Σ∆ scheme requires carefully

choosing the quantization rule U in (4.3.1). Stability analysis of Σ∆ schemes can be quite

complicated, especially for lower bit schemes in higher order schemes (even for second

order). Moreover, for fusion frames, the problem becomes even more complicated since

we need to make the vectors bounded. Hence for higher order Σ∆ fusion frames, we now

just deal with the general case which A is allow to have O(2(Mn+2)r) alphabet, where r

is the order. Hence we next give the definition for the alphabet Aδ , where δ is our step

length:

Definition 4.3.2. For rth-order Σ∆ quantization, let θ = arcsin( 1
2r+1 ).Then by Corollary

4.2.3, let vectors set L = Nθ j Rn and Aδ ,n = {u ∈ Rn|u = kδv,v ∈L ,k = 1,2, . . . ,2r}.

Next, we give the definition for high order Σ∆ quantization of fusion frames, then we

give the proof of the scheme stability:

Definition 4.3.3.

∆
0
n = un, ∆

1
n = ∆

0
n−πWn(∆

0
n−1)
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∆
r
n = ∆

r−1
n −πWn(∆

r−1
n−1)

or we can define,

∆
r
n =

r

∑
i=0

(−1)i−1
(

r
i

)
πWnπWn−1 . . .πWn−i+1(un−i)

∆
r
n = xn−qn

qn = arg min
a∈Aδ ,n

{|
r

∑
i=0

(−1)i−1
(

r
i

)
πWnπWn−1 . . .πWn−i+1(un−i)+ xn−a|} (4.3.2)

Theorem 4.3.4. Let {(Wn,wn)}n∈I be a fusion frame for H and Aδ ,Mn be the set of alphabet

vectors for Wn which we constructed in definition 4.3.2, where dimWn = Mn. The algorithm

is defined by (4.3.2). If ‖xn‖ ≤ δ for all n, then we have ‖un‖ ≤ δ , for all n.

Proof. We prove the theorem by induction, when n = 1, since u0 = 0 and x1 ≤ δ , by

definition of Aδ ,M1 , we know

‖u1‖= ‖u0 + x1−q1‖ ≤ δ

Hence for n = 1 the result holds.

Suppose for all n≤ k−1, the result is true, and consider n = k. Firstly we know:

‖uk‖= ‖
r

∑
i=0

(−1)i−1
(

r
i

)
un−i + xk−qk‖.

Let ak = ∑
r
i=0(−1)i−1(r

i

)
un−i + xk, bk = qk and ck = uk, θk is the angle between ak and bk.

Then by law of cosine we know:

‖ck‖2 = a2
k +b2

k−2cos(θk)akbk = (cos(θk)ak)
2 +b2

k−2cos(θk)akbk +(sin(θk)ak)
2,

which implies,

‖ck‖2 = (cos(θk)ak−bk)
2 +(sin(θk)ak)

2.
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By our assumption, since |ak| ≤ |(2r− 1) ∗ δ |+ |δ | = 2rδ and by definition of Aδ ,Mk
, we

know |cos(θk)ak−bk| ≤ δ

2 , then

|ck|2 ≤ (sin(θk)2r
δ )2 +(

δ

2
)2

Now, we claim:

(sin(θk)2r
δ )2 +(

δ

2
)2 ≤ δ

2 (4.3.3)

Inequality (4.3.3) is equivalent to:

sin(θk)≤
√

3
2r+1

which means we need inequality θk ≤ arcsin(
√

3
2r+1 ) to be true. By definition of Aδ ,Mk

we

know:

θk ≤ arcsin(
1

2r+1 )≤ arcsin(

√
3

2r+1 ).

Hence |uk|= |ck| ≤ δ . Thus by induction we have proven the Theorem.
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4.4 Converting canonical representations to Kashin representations

By Theorem 4.3.4, we have proven the stability for high-order Σ∆ quantization with

fusion frames. However, unlike 1st-order, in high order, we need log2((1+ 2r+1)Mn2r) ≈

O((Mn+2)r) bits for each subspace. Moreover, in Theorem 4.3.4, we assume ‖xn‖≤ δ for

all n. But in practice, ‖xn‖ ≤ δ may not be always true. Generally, suppose ‖xn‖ ≤ α =Cδ

for all n, then to keep the alphabet Aδ ,n has the same ”step” δ , we have to spend C times

more bits in each subspace. Hence, having the coefficients ‖xn‖ with a smaller uninform

bound is important. We call this representation a Kashin’s representation in frame theory,

see [LV10, Pis99, Kas77]. According to the algorithm in [LV10], we will give a similar

algorithm to find a Kashin’s representation for fusion frames.

Without loss of generality, suppose I = {1,2, ...N}, H=Rd and wi = 1 for i= 1,2, ...,N.

Since the canonical expansion x = ∑
N
n=1 S−1πWn(x) need not be unique, and there will gen-

erally exist other representations x = ∑
N
n=1 fn where fn ∈Wn. We will be interested in

balanced or democratic representations where max1≤n≤N ‖ fn‖ is as small as possible.

Suppose {Wn}N
n=1 is an A-tight fusion frame. Note that if the canonical fusion frame

representation is used, then taking x ∈Wn gives

∃x ∈ Rd, max
1≤n≤N

S−1‖πWn(x)‖= A−1‖x‖=
(

d

∑
N
n=1 dim(Wn)

)
‖x‖. (4.4.1)

Lemma 4.4.1. If {Wn}N
n=1 is an A-tight fusion frame for Rd and x = ∑

N
n=1 fn with fn ∈Wn

then

max
1≤n≤N

‖ fn‖ ≥
(

d
N ∑

N
n=1 dim(Wn)

)1/2

‖x‖. (4.4.2)

Proof. Let {bn
j}

dim(Wn)
j=1 ⊂Wn be an orthonormal basis for Wn. So

x =
N

∑
n=1

fn =
N

∑
n=1

dim(Wn)

∑
j=1
〈 fn,bn

j〉bn
j .
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Since {bn
j : 1≤ j ≤ dim(Wn) and 1≤ n≤ N} is an A-tight frame for Rd we have

‖x‖2 = A
N

∑
n=1

dim(Wn)

∑
j=1
|〈x,A−1bn

j〉|2

≤ A
N

∑
n=1

dim(Wn)

∑
j=1
|〈 fn,bn

j〉|2

= A
N

∑
n=1
‖PWn( fn)‖2 = A

N

∑
n=1
‖ fn‖2. (4.4.3)

Here we have used that if {ϕn}N
n=1 ⊂ Rd is an A-tight frame and x = ∑

N
n=1 anϕn then

∑
N
n=1 |〈x,A−1ϕn〉|2 = ∑

N
n=1 |an|2. The conclusion (4.4.1) now follows from (4.4.3).

Remark 4.4.2. 1. To compare the bounds in (4.4.1) and (4.4.2), note that since 0 ≤

dim(Wn)≤ d, we have:

(
d

∑
N
n=1 dim(Wn)

)
≥
(

d
N ∑

N
n=1 dim(Wn)

)1/2

.

2. In the special case when each subspace Wn has the same dimension, dim(Wn) = k, the

right side of (4.4.2) becomes ‖x‖
( d

Nk

)
, whereas the lower bound in (4.4.2) becomes

‖x‖
√

d
N
√

k
.

Definition 4.4.3. Given subspaces {Wn}N
n=1 ⊂ Rd and x ∈ Rd we shall say that the repre-

sentation x = ∑
N
n=1 fn with fn ∈Wn is a Kashin representation with level K ≥ 1 if

max
1≤n≤N

‖ fn‖ ≤ K‖x‖
(

d
N ∑

N
n=1 dim(Wn)

)1/2

.

Definition 4.4.4. The collection of subspaces {Wn}N
n=1 ⊂Rd satisfies the uncertainty prin-

ciple with parameters 0 < δ < 1 and 0 < η , if

‖ ∑
n∈Ω

fn‖2 ≤ η
2

∑
n∈Ω

‖ fn‖2,
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whenever |Ω| ≤ δN and fn ∈Wn.

Definition 4.4.5. Let {Wn}N
n=1 be an A-tight fusion frame for Rd . Given C > 0, define

T (x) = TC(x) =
N

∑
n=1

gn

where

gn =


A−1PWn(x), if ‖A−1PWn(x)‖ ≤C‖x‖;

C‖x‖
‖PWn(x)‖

PWn(x), if ‖A−1PWn(x)‖>C‖x‖.

Lemma 4.4.6. If {Wn}N
n=1 is an A-tight fusion frame and satisfies the uncertainty principle

with parameters 0 < δ < 1 and 0 < η <
√

A and C = (δNA)−1/2 then

‖x−TC(x)‖ ≤ (η/
√

A)‖x‖.

Proof. Let Ω = {1≤ n≤ N : ‖A−1PWn(x)‖>C‖x‖}. First, note that |Ω| ≤ δN since

‖x‖2 = A
N

∑
n=1
‖A−1PWn(x)‖2 ≥ A|Ω|C2‖x‖2 =

|Ω| ‖x‖2

δN
.

Next, note that

x−TC(x) = ∑
n∈Ω

(
A−1PWn(x)−

C‖x‖
‖PWn(x)‖

PWn(x)
)

= ∑
n∈Ω

(
A−1− C‖x‖

‖PWn(x)‖

)
PWn(x).
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Since |Ω| ≤ δN, the uncertainty principle gives

‖x−TC(x)‖2 ≤ η
2

∑
n∈Ω

‖
(

A−1− C‖x‖
‖PWn(x)‖

)
PWn(x)‖2

= η
2

∑
n∈Ω

(
A−1− C‖x‖

‖PWn(x)‖

)2

‖PWn(x)‖2

≤ η
2

∑
n∈Ω

A−2‖PWn(x)‖2

≤ η
2A−2

N

∑
n=1
‖PWn(x)‖2

≤ (η)2A−2A‖x‖2

= (η2/A)‖x‖2.

Theorem 4.4.7. Let {Wn}N
n=1 be an A-tight fusion frame that satisfies the uncertainty prin-

ciple with parameters 0 < δ < 1 and 0 < η <
√

A and C = (δNA)−1/2. Then each vector

x ∈ Rd admits a Kashin representation of level K = (1−η/
√

A)−1 (δA)−1/2.

Proof. Let x0 = x and xk = xk−1−TC(xk−1). This gives

x =
r

∑
k=0

T xk + xr+1.

It follows from Lemma 4.4.6 by induction that ‖xk‖2 ≤ (η2/A)k, thus

x =
∞

∑
k=0

T xk.

Moreover, by the definition of the operator T , each vecotr T xk has an expansion {gn}N
n=1

in the subspaces {Wn}N
n=1 and ‖gn‖2 ≤ C‖xk‖2 ≤ C(η2/A)k‖x‖2. Summing up these ex-

pansions for k = 0,1,2, . . ., we obtain an expansion of x with coefficients bounded by

(1− η/
√

A)−1 (δNA)−1/2 ‖x‖. Thus x admits Ksshin’s representation with level K =

(1−η/
√

A)−1 (δA)−1/2.
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Now we give the algorithm to compute Kashin’s Representations:

Input:

1. Let {Wn}N
n=1 be an A-tight fusion frame that satisfies uncertainty principle with parame-

ters 0 < δ < 1 and 0 < η <
√

A

2. A vector x ∈ Rd and a number of iterations r.

Initialize the coefficients and truncation level

fi = 0, i = 1, · · · ,N; C = (δNA)−1/2; x0 = x

Repeat the following r times:

1.Compute the {gi}N
i=1 with truncation level C for xk.

2.Reconstruct and compute the error.

T (xk)←
N

∑
i=1

gi;xk+1← xk−T (xk)

3.Update Kashin’s coefficients

fi← fi +gi, i = 1,2, . . . ,N

C← η/
√

AC

Output:

Kashin’s decomposition of x with level K = (1−η/
√

A)−1 (δA)−1/2 and with accuracy

(η/
√

A)r‖x‖. Thus the algorithm finds coefficients f1, f2, . . . , fN such that:

‖x−
N

∑
i=1

fi‖ ≤ (η/
√

A)r‖x‖

with,

max‖ fi‖ ≤ K/
√

N‖x‖
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4.5 Sobolev Left inverse operator for fusion frames

Definition 4.5.1. Let {(Wn,wn)}N
n=1 be a fusion frame for H, T ∗W,w is the analysis operator,

TW,w is the synthesis operator, D is the operator matrix defined in (4.5.1). The Sobolev left

inverse operator of the fusion frame is define as:

F = (TW,wD−r(D∗)−rT ∗W,w)
−1TW,wD−r(D∗)−r.

Theorem 4.5.2. Let {(Wn,wn)}N
n=1 be a fusion frame for H. Then the Sobolev left inverse

operator F is the left inverse of T ∗W,w for which operator norm ‖F(D∗)r‖OP and Frobenius

norm ‖F(D∗)r‖F are minimal.

Proof. Note that FT ∗W,w = (TW,wD−r(D∗)−rT ∗W,w)
−1TW,wD−r(D∗)−rT ∗W,w = IH, Thus F is

left inverse of T ∗W,w.

Since D is invertible, U is left inverse of T ∗W,w if and only if U(D∗)r(D∗)−rT ∗W,w =

UT ∗W,w = IH. It means U is left inverse of T ∗W,w if and only if U(D∗)r is left inverse of

TW,wD−r. Since F is Sobolev left inverse operator of T ∗W,w ,then

F(D∗)r = (TW,wD−r(D∗)−rT ∗W,w)
−1TW,wD−r

is the canonical Left Inverse of TW,wD−r. Following the theorem 4.1.3 and 4.1.4, F(D∗)r is

the left inverse of T ∗W,wD−r with minimal operator norm and Frobenius norm. Hence, the

Sobolev left inverse operator F(D∗)r is the left inverse of T ∗W,wD−r which minimizes ‖·‖OP

and ‖ · ‖F .

Let {(Wn,wn)}N
n=1 be a fusion frame for H, πWn is the projection from H to subspace Wn

and f ∈H is the signal. T ∗W,w is the analysis operator and F is the left inverse Operator. Here

we suppose all wn = 1. Then we reconstruct a signal f̃ from the qn which are produced by
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rth-order Σ∆ quantization with F by:

f̃ = F({qn}).

And we also know that,

f = FT ∗W,w( f ) = F({πWn( f )}) = F({xn}).

Hence, the error can be written as:

‖ f − f̃‖2 = ‖F({xn}−F({qn})‖2 = ‖F({xn−qn})‖2 = ‖F(∆r
n)‖2 = ‖F(D∗)r(u)‖2.

Here, u = [u1,u2, . . . ,un]
∗ and

D =



I −πW2 0 · · · 0

0 I −πW3 · · · 0
. . . . . .

0 · · · 0 I −πWn

0 · · · 0 0 I


. (4.5.1)

Note that D is invertible and

D−1 =



I πW2 πW2πW3 · · · πW2πW3 · · ·πWn

0 I πW3 · · · πW3πW4 · · ·πWn

. . . . . .

0 · · · 0 I πWn

0 · · · 0 0 I


.

Hence we get ‖F(D∗)r(u)‖2 ≤ ‖F(D∗)r‖OP‖u‖2 ≤ C
√

N‖F(D∗)r‖OP, where C is a

positive constant by Theorem 4.2.7 and Theorem 4.3.4. Thus by Theorem 4.5.2 we know
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(a) (b)

Figure 4.2: Numerical experiment

Sobolev left inverse leads the minimal squared error.

For now we can not give a accurate estimation for the error bound ‖F(D∗)r‖OP. Instead,

we give the following numerical experiment for the error performance of rth order Σ∆

quantization with Sobolev left inverse. The figure (a) and (b) shows the result when r = 2

and r = 3. In each figure, the x-coordinate is always the size N of the fusion frame. In the

top graph, the y-coordinate is the operator norm of F(D∗)r which is the upper bound of the

error. In the middle graph, the y-coordinate is the operator norm of F(D∗)r times N2r, and

in the bottom graph, y-coordinate is ln((F(D∗)r)) divided by ln(N), which shows the order

of decay speed. We can observe the error is almost equal to O(N−r).
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