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CHAPTER 1 

Introduction 

Recent advances in computing are transforming our lives at an astonishing pace by unleashing the 

potential of technology to solve various pressing global problems. This has allowed researchers in 

all disciplines to envision new and innovative problem-solving strategies, which can be 

systematically tested and evaluated virtually before actual deployment. This influence of 

computing naturally gives an upper hand to those who learn to utilize computational methods and 

tools to understand, formulate, and solve problems in different disciplines over those who lack 

such skills. Computational Thinking (CT) is a term used to describe a broad range of mental 

processes fundamental to computer science that help people find effective methods to solve 

problems, design systems, understand human behavior, and engage the power of computing to 

automate a wide range of intellectual processes (Wing, 2006; NRC, 2010). Driven by the needs of 

a 21st century workforce, CT now routinely features as an essential element of K-12 curricula 

worldwide (ISTE, 2007; UKEd13), and there is a great emphasis on teaching students to think 

computationally from an early age. 

In order to make CT accessible to all students and to successfully embed CT into the K-12 

curricula, it needs to be integrated with existing K-12 curricula or introduced as new curricular 

material. Science, Technology, Engineering, and Mathematics (STEM) disciplines lend 

themselves particularly well to integration with CT. CT is considered a vital ingredient of STEM 

learning (Wing, 2006; Barr & Stephenson, 2011; Grover & Pea, 2013; Sengupta et. al., 2013; Jona 

et. al., 2014), and has been included as a key feature in K-12 science education frameworks (NRC, 

2011). However, efforts to integrate CT with science learning or learning in other STEM 

disciplines have been limited, especially at the elementary and middle school level. Also, 

curricular integration of CT requires development of systematic CT assessments, an area that is 

under-investigated despite its importance being well recognized (ACM and CSTA report, 2011; 

Grover & Pea, 2013). Similarly, there is dearth of research studying students’ learning and 

developmental processes while learning CT skills and using CT-based learning environments, and 

developing scaffolds for CT learning. 
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It is within this context that the present dissertation research is situated. In particular, this 

research provides a novel approach for the systematic design and implementation of a CT-based 

science learning environment for middle school students, which can be integrated into the middle 

school curricula by teachers with little prior programming experience. We also develop a set of 

assessments to measure students’ learning of science and CT content in this environment. In the 

last phase of our work, we use some of the assessment metrics online to interpret and analyze 

student behavior and performance, and then adaptively scaffold students to help them become 

better learners. 

1.1 Problem overview: Integrating CT into middle school science curricula 

Wing (2006) promoted the term ‘Computational Thinking’ and voiced that CT “represents a 

universally applicable attitude and skill set everyone, not just computer scientists, would be eager 

to learn and use.” CT skills include reformulating seemingly difficult problems into solvable forms 

using reduction, transformation, recursion, and simulation, choosing appropriate representations 

for problems, and modeling relevant aspects (and ignoring irrelevant aspects) of problems to make 

them tractable. These skills also provide features that support using different levels of abstraction 

for problem solving, and decomposing large complex tasks into manageable modular subtasks that 

supports parallel execution and multiple problem solvers (Wing, 2008).  

Wing argued that CT should be included as a determinant of every child’s analytical ability 

along with reading, writing, and arithmetic by the middle of the 21st century. Just like young 

students initially learn to read so that they can later read to learn, they also need to learn to think 

computationally so they might later use it to learn complex concepts, represent solutions as 

computational steps, and solve problems using computational models and methods. Developing 

CT skills is also believed to lead to increased abilities to deal with open-ended and complex 

problems, and to communicate and collaborate to achieve common goals (CSTA, 2011). With the 

proliferation of computing concepts and computational devices, it is no longer sufficient to wait 

until students are in college to introduce them to CT concepts. Students must begin to work with 

algorithmic problem solving and computational methods and tools during their K-12 years, 

preferably starting at the middle school level (Barr & Stephenson, 2011).  
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An approach to addressing the absence of CT concepts in standard middle school curricula 

can be seamlessly integrating CT with existing components of the middle school curricula. CT 

skills lend themselves particularly well to STEM learning, since several of the epistemic and 

representational practices central to the development of expertise in STEM disciplines (e.g., 

characterizing problems and designing solutions, developing and using models, analyzing and 

interpreting data) are also primary components of CT (NRC, 2011). With decades of use of 

computational modeling and simulation, and today’s use of data mining and machine learning 

algorithms to analyze massive amounts of data, computation is recognized as the third pillar of 

science, along with theory and experimentation (PITAC, 2005). Computational modeling and 

abstraction not only parallel core practices of science education, but can also serve as effective 

vehicles for learning challenging science concepts, and modeling and analyzing complex, multi-

dimensional scientific models (Guzdial, 1995; Sherin, 2001; Kynigos, 2007; Hambrusch et al., 

2009; Blikstein & Wilensky, 2009).  

While the synergy between CT and science learning is well recognized, leveraging the 

synergy successfully in middle school classrooms is a challenging task. Leveraging the synergy 

involves choosing topics in the existing science curriculum, and then developing newer approaches 

to learning and problem solving that seamlessly incorporate the use of CT skills, while ensuring 

minimal overhead for students and teachers in terms of time, effort, training and other resources. 

Further, the introduction of CT into the curriculum drives the need for developing systematic 

assessments for CT. Such assessments can provide a thorough understanding of students’ 

difficulties in using computational methods and tools, which can then lead to the development of 

systematic scaffolds to support students’ development and use of CT skills. These areas are 

currently under-investigated and under-developed, especially at the middle school level.  

Therefore, it is not surprising that efforts to integrate CT skills with science learning have 

been limited, especially at the elementary and middle school levels. Today, several CT-based 

learning environments used by middle school students (graphical programming environments, 

such as Scratch, Alice, Game Maker, Kodu and Greenfoot; and robotic kits and tangible media, 

such as Arduino and Gogo Boards - Grover and Pea, 2013) do little to leverage the synergy 

between CT and science. They engage students through motivating contexts like game-design, 

story-telling, and app-design, and generally find use in after-school workshops, summer camps, or 
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as part of other extra-curricular activities where the primary focus is increasing students’ interest 

in and engagement with computational tools, but not on learning of science or other STEM 

concepts. There are some exceptions like AgentSheets (Repenning, 2000), EcoScienceWorks 

(Allan et. al., 2010), CT-STEM (Jona et. al., 2014), and Project GUTS (http://projectguts.org/), 

which focus on integrating CT with middle school curricular topics through computational 

modeling of science topics. But, even in these environments, assessments for measuring learning 

of CT concepts and skills are lacking, as are scaffolds for helping students with their modeling 

tasks. Some efforts have also been made for integrating CT with STEM learning in high school 

and undergraduate classrooms, and they have generally involved exposing students to a general 

purpose high level programming language like Python or Scheme for a few weeks before giving 

students assignments to model scientific phenomena using the programming language 

(Hambrusch, et. al, 2009, Google’s exploring Computational Thinking website). Unsurprisingly, 

such approaches have not been adopted in K-12 classrooms with younger children – learning 

languages like Python creates a large overhead for both young students and their instructors, who 

have had no prior programming experience, and spending substantial chunks of time on learning 

these languages is not feasible given curriculum constraints.  

Integrating CT with middle school STEM curricula is, therefore an important but non-

trivial task. Promoting CT in extra-curricular activities or elective classes cannot be a long-term 

solution, since it makes CT accessible to only a selected few. While curricular integration with 

science topics may be a particularly effective way to introduce CT concepts and practices into 

middle school curricula, we also need to ensure that the approach is manageable and adds 

pedagogical value for teachers and students by creating a framework for synergistic and 

simultaneous science and CT learning. In addition, to support teachers and demonstrate 

pedagogical value, standardized CT assessments need to be developed, and teachers need to be 

made aware of the potential challenges faced by students in the combined CT and science learning 

curriculum. In this dissertation research, we address these limitations by developing a sequence of 

curricular units that demonstrate the synergistic learning of science and CT concepts as part of 

middle school science curricula.  To facilitate learning of CT and science content and to support 

the classroom science teachers, we have developed a computer-based learning environment that 

combines a visual programming language for computational modeling of science phenomena with 

simulation and visualization tools that help students study science processes through model 

http://projectguts.org/
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building, testing, analysis and verification. Furthermore, we have developed standardized, 

objective, and holistic assessments to study student competency in CT concepts and practices that 

are supported in this learning environment, and developed adaptive scaffolding mechanisms to 

help students overcome difficulties they have with their learning and problem solving tasks in this 

environment.  

1.2 Research Approach and Contributions 

This dissertation research evolved in two primary phases of work, each of which has produced a 

number of research contributions. 

The first phase of research involved the design, development, and evaluation of an initial 

version of the computer-based Computational Thinking using Simulation and modeling (CTSiM) 

learning environment for combined CT and science learning in middle school classrooms. The 

initial design and implementation of CTSiM, and the design and execution of a research study 

using the initial version of CTSiM were both performed collaboratively by a research team that 

included Computer Science and Peabody College of Education researchers at Vanderbilt 

University (Basu et. al., 2012; Sengupta et. al., 2013; Basu et. al., 2013). Students used CTSiM to 

learn by constructing, evaluating, and revising computational models of science processes in two 

domains – Kinematics and Ecology. 

Building computational models of science phenomena is, however, a complex and 

challenging task for middle school students who may not be well-versed in the science topic and 

have little experience in applying the abstract thinking processes associated with constructing 

computational models. In addition, students may be unaware of practices that encompass 

debugging and verification of models. The primary goal of the first research study was to 

understand the difficulties students faced when simultaneously learning science and CT concepts, 

and how to support these learning processes and help students develop effective learning 

behaviors. The study was conducted as a think-aloud study, where researchers worked one-on-one 

with students building simulation models in CTSiM. The researchers provided verbal scaffolds to 

help students overcome difficulties that impeded their learning processes. Results from the study 

revealed that the intervention involving computational modeling using CTSiM helped students 
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learn science concepts, but students faced a number of difficulties in understanding and applying 

domain knowledge and CT constructs as well as systematically debugging their models, and 

required various scaffolds to help overcome their difficulties (Basu et. al., 2013).  

Lessons learned from the first phase motivated the second phase of our research, where we 

made modifications and improvements to the CTSiM environment based on students’ difficulties 

that we documented in the first phase of the research. We developed a new version of CTSiM that 

involved the design and implementation of new CTSiM interfaces, and modifications to improve 

some developed in Phase 1. Additional tools and functionalities were developed to scaffold student 

learning (Basu et. al., 2015; Basu, Biswas & Kinnebrew, 2016). Some of the scaffolds were made 

available to students at all times, while others were provided adaptively based on students’ actions 

in the CTSiM environment. The effectiveness of our adaptive scaffolding framework was 

evaluated through a controlled classroom study with ninety-eight 6th grade students from a 

Tennessee middle school. We defined a set of online and offline measures to assess students’ 

science and CT learning, and characterize their learning behaviors and use of CT practices, and 

used these measures to establish the effectiveness of our adaptive scaffolding framework. 

In summary, the proposed research contributes to advancing research in the field of CT-

based learning environments in the following ways:  

1. A theoretical understanding of the different facets involved in designing synergistic CT 

and science learning environments and supporting curricula, along with a novel framework 

for analyzing CT-based environments in terms of these facets.  

2. A theoretically grounded justification for the design and implementation of a computer-

based learning environment that promotes simultaneous learning of CT and middle school 

science.  

3. The use of empirical think-aloud studies to discover challenges faced by students working 

in CT-based science learning environments. Understanding these challenges helped inform 

development of supporting tools, adaptive scaffolds, and assessments for such learning 

environments.  

4. The development of a novel approach for quantifying and assessing students’ science and 

CT learning and use of CT skills in CT-based science learning environments using multiple 



 7 

assessment modes, some external to the system and some based on measures derived from 

students’ actions in the system.  

5. The development and evaluation of an adaptive scaffolding strategy for CT-based science 

learning environments. 

1.3 Organization of the rest of the dissertation 

The remainder of this dissertation is organized as follows. Chapter 2 reviews the field of 

Computational Thinking and related literature on existing CT-based learning environments and 

curricula. It highlights under-investigated areas in the field, which, in turn, motivates this 

dissertation research. Chapter 3 presents a theoretical grounding for the initial design and 

architecture of the CTSiM learning environment, along with a progression of learning activities 

designed to align with middle school curricular requirements in science. Chapter 4 details a 

research study conducted with the initial version of CTSiM, and identifies and analyzes the 

different categories of difficulties students faced in the different learning activities, and the types 

of scaffolds which helped overcome the difficulties. Based on observed student difficulties 

described in Chapter 4, Chapter 5 discusses the changes made to the CTSiM architecture and 

interfaces, while Chapter 6 presents the generalized adaptive scaffolding framework adopted in 

CTSiM, the process of modeling learners based on their modeling performances and learning 

behaviors, and the principles governing delivery of feedback via a pedagogical agent in the system. 

Chapter 7 describes the classroom study we conducted with a version of the system that included 

adaptive scaffolding. The results establish the effectiveness of the adaptive scaffolding framework. 

This is demonstrated through different forms of science and CT assessments, some external to the 

system and some based on an analysis of students’ actions logged by the system. Chapter 8 

summarizes the contributions of this research, and discusses future research directions.  
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CHAPTER 2 

Background review: Computational Thinking in K-12 Curricula 

This chapter presents operational definitions of CT and describe the advantages of integrating CT 

and science learning in the K-12 curricula. We also present a novel framework for describing and 

analyzing CT-based learning environments and use this framework to review existing efforts to 

introduce CT to K-12 students. 

2.1 Computational Thinking: Definition and role  

When the term ‘Computational Thinking’ was coined in 2006, it was used to represent a 

universally applicable set of mental processes fundamental to computer science that involve 

leveraging the power of computing to solve problems, design systems, and understand human 

behavior (Wing, 2006). According to Wing (2008), the “nuts and bolts” of CT involve defining 

multiple layers of abstraction, understanding the relationships between the layers, and deciding 

which details need to be highlighted (and complementarily, which details can be ignored) in each 

layer when trying to understand, explain, and solve problems in a particular domain. Computing 

processes, whether executed by humans or by machines or by a combination of humans and 

machines, help automate these abstractions and the relationships between the abstraction layers 

(Wing, 2008). Recently, Aho (2012) simplified the original definition of CT to thought processes 

involved in formulating problems so that “their solutions can be represented as computational 

steps and algorithms”.  

While most existing definitions of CT describe it as a ‘thought process’, Hemmendinger 

(2010) suggested that “we talk less about computational thinking, and focus more on 

computational doings”. Sengupta et. al. (2013) also posited that “CT becomes evident only in 

particular forms of epistemic and representational practices that involve the generation and use 

of external representations (i.e., representations that are external to the mind) by computational 

scientists”. This pedagogical perspective is important since it means that engaging students in the 

process of developing abstractions and engaging in other computational representational practices 

is required in order to support the development of their CT skills. This perspective also aligns with 

the ‘learning-by-design pedagogy’, which suggests that students learn best when they engage in 
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the design and consequential use of external representations for modeling and reasoning (Papert, 

1991; Kolodner et al., 2003; Blikstein and Wilensky, 2009).  

Currently, there are a number of operational definitions of CT used by researchers to 

describe or analyze their work in this area. For example, several researchers refer to the definition 

of CT offered by the Carnegie Mellon Center for Computational Thinking which identifies the 3 

important aspects of CT as: (1) thinking algorithmically, (2) making effective use of abstraction 

and modeling, and (3) considering and understanding scale 

(http://www.cs.cmu.edu/~CompThink/). In 2009, the Computer Science Teachers Association 

(CSTA) and the International Society for Technology in Education (ISTE) developed an 

operational definition of CT for K-12, identifying the core CT concepts and capabilities as data 

collection, data analysis, data representation, problem decomposition, abstraction, algorithms and 

procedures, automation, parallelization, and simulation (Barr & Stephenson, 2011). Grover and 

Pea (2013) expanded this list of core CT elements by adding algorithmic notions of flow of control; 

iterative and recursive thinking; conditional logic; efficiency and performance constraints; and 

debugging and systematic error detection.  

Recently, Brennan and Resnick (2012) described CT as a three-dimensional framework 

comprising computational concepts, practices, and perspectives. Computational concepts refer to 

elements, such as sequences, loops, parallelism, events, conditionals, operators, and data structures 

that are present in many programming languages. Computational practices refer to activities, such 

as being incremental, reusing and remixing, testing and debugging, and modularizing and 

abstracting that designers use to create programs. Computational perspectives, such as expressing, 

connecting, questioning, potential study and career path in computing, and personal relevancy of 

computing refer to worldviews that designers develop as they engage with digital media, and how 

they see themselves within the field and the realm of future careers. In this dissertation research, 

we adopt the three-dimensional CT framework (Brennan and Resnick, 2012) to describe CT skills 

fostered by our learning environment and compare them against those promoted in other CT-based 

environments.  

It is noteworthy that though CT is defined to draw on concepts fundamental to computer 

science, it is distinct from computer science in that it only involves seeking algorithmic approaches 

to problem solving. There is an important distinction between CT and traditional programming in 

that CT focuses on conceptualization and developing ideas on how to solve a problem rather than 

http://www.cs.cmu.edu/~CompThink/
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dealing with the rigid syntax of programming languages for producing artifacts that represent the 

solution to the problem. Another question that inevitably arises while describing what CT involves 

is: How and to what extent are computers essential for developing and working with CT skills? 

Since CT skills involve representing, simplifying and solving problems, can CT be taught divorced 

from the use of computers? Though some CT concepts and principles can be introduced and 

explored without the use of computers, as is done in programs like CS Unplugged 

(http://csunplugged.org/), such an approach deprives learners of crucial computational experiences 

(NRC, 2010). In other words, computers and other computational devices may not be synonymous 

with CT, but they are enablers of CT. 

Also, several CT skills might be synonymous with concepts fundamental to computer 

science, but they are definitely not exclusive to the field. Hemmendinger (2010) points out that the 

elements of CT like constructing models, finding and correcting errors, and creating 

representations are shared across multiple disciplines. For example, abstractions are used in all 

disciplines where modeling is a key enabler for conceptualization and problem solving, such as in 

science, engineering, mathematics, and economics. Furthermore, reformulating hard problems and 

separation of concerns are typical of all domains of problem solving. Also, CT is often compared 

with other forms of thinking, since it shares common features with many of them. For example, 

algorithmic thinking involves a detail-oriented way of thinking about how to accomplish a 

particular task or solve a particular problem. CT surely involves algorithmic thinking, but CT also 

encompasses the representation and interpretation of data, with algorithms providing the tools for 

analysis and interpretation (Guzdial, 2010). Similarly, CT is clearly related to, but not identical 

with, mathematical thinking. Both CT and mathematical thinking have an underlying linguistic 

structure for precisely describing how to do things (algorithms), and both use abstraction and 

reasoning with simplified models to solve problems. But, mathematical thinking is more about 

abstract structure than abstract methodology (NRC, 2010). In CT, the layers of abstractions are 

tightly coupled such that their generation and analysis can be automated. CT also parallels 

engineering problem solving in several ways since they both deal with design, constraints, 

modifiability, scalability, cost, performance, and efficiency. However, engineering thinking 

requires accounting for errors and computing tolerance levels, whereas CT allows building virtual 

worlds that can be unconstrained by physical reality (Wing, 2006). Procedural thinking is also 

emphasized in CT, though CT further involves declarative models. Procedural thinking includes 

http://csunplugged.org/
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developing, representing, testing, and debugging procedures, and an effective procedure is a 

detailed step-by-step set of instructions that can be mechanically interpreted and carried out by a 

specified agent, such as a computer or automated equipment.  

Today, the wide spectrum of CT applications encompasses disciplines as diverse as 

science, mathematics, music, poetry, archaeology, and law (NRC, 2011). CT skills are believed to 

support inquiry and working with complex open-ended problems (CSTA, 2011), and most 

disciplines involve problem solving, information retrieval and representation, modeling, 

debugging, testing, and efficiency considerations in some form or the other. Further, CT provides 

a basis for developing powerful representational practices and can help create representational 

shifts, producing better modelers among students, and enabling wider access to models across 

several domains (NRC, 2011). In summary, we see that the ideas behind CT have existed for 

several years and shares elements with several existing forms of thinking discussed in the 

literature. However, features like abstraction, automation, algorithm development, modeling and 

simulation, and making sense of data are some of CT’s core ideas, distinguishing it from other 

types of thinking (NRC, 2010). The ultimate goal of CT should, therefore, not be to teach everyone 

to think like a computer scientist, but rather to teach them to apply the common set of core elements 

to solve problems within and across a wide variety of disciplines (Hemmendinger, 2010). In the 

next section, we discuss the synergy between CT and science learning and the pedagogical benefits 

and implications of integrating the two.  

2.2 Integrating CT and science learning  

CT is considered to be at the core of all STEM disciplines (Henderson, Cortina, & Wing, 2007), 

and several researchers have shown that programming and computational modeling can serve as 

effective vehicles for learning challenging science concepts (Guzdial, 1995; Sherin, 2001; 

Kynigos, 2007; Hambrusch et al., 2009; Blikstein & Wilensky, 2009). Complementarily, Harel 

and Papert (1991) argued that programming is reflexive with other domains, i.e., learning 

programming in concert with concepts from another domain can be easier than learning each 

separately. Along similar lines, the ACM K-12 Taskforce (2003) also recommends integrating 

programming and computational methods with curricular domains, such as science, rather than 

teaching programming as a separate topic at the K-12 levels. This notion of using computing as a 
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medium for teaching other subjects is not new either. In the context of K–12 education, ‘computing 

as a medium for exploring STEM domains’ was popularized by Papert (1980). Papert pioneered 

the idea of children developing procedural thinking and learning about fractions through LOGO 

programming (Papert, 1980, 1991). Similarly, Guzdial (1994) developed Emile - a scaffolded 

graphical programming interface to help students learn Physics – and stated that its goal was not 

to make students learn about programming, but to have students learn through programming since 

“programming is a good lever for understanding many domains.” 

Leveraging the synergy between CT and K-12 science requires engaging students in 

scientific inquiry that involves computational representational practices like defining abstractions, 

decomposing complex problems, and debugging or systematic error detection. At the broadest 

level, the process of scientific inquiry involves the generalizable practice of generating models, 

which are abstractions or generalizable mathematical and formal representations of scientific 

phenomena (Sengupta et. al., 2013). Similarly, evidence based explanations of any scientific 

phenomenon involve the generalizable practices of development of hypotheses from theories or 

models and testing these against evidence derived from observations and experiments (Lehrer and 

Schauble 2006). Modeling - i.e., the collective action of developing, testing and refining models 

(NRC, 2008) - involves carefully selecting aspects of the phenomenon to be modeled, identifying 

relevant variables, developing formal representations, and verifying and validating these 

representations with the putative phenomenon (Penner et al. 1998; Lehrer and Schauble 2006; 

Sengupta and Farris 2012). Developing a computational model of a physical phenomenon, 

therefore, involves key aspects of CT: identifying appropriate abstractions (e.g., underlying 

mathematical rules or computational methods that govern the behavior of relevant entities or 

objects), making iterative comparisons of the generated representations and explanations with 

observations of the target phenomenon, and debugging the abstractions to generate progressively 

sophisticated explanations of the phenomenon to be modeled. 

Therefore, integrating CT and scientific modeling can be beneficial in a number of 

important ways as listed below (Sengupta et al., 2013): 

A. Lowering the learning threshold for science concepts by reorganizing them around 

intuitive computational mechanisms: Sherin (2001) and diSessa (2000) argued that 

particular forms of programming could enable novice learners to reason with their 

intuitions about the physical world. Redish and Wilson (1993) argued that computational 
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representations enable us to introduce discrete and qualitative forms of the fundamental 

laws, which can be much simpler to explain, understand, and apply, compared to the 

continuous forms traditionally presented in equation-based instruction. Furthermore, 

studies also suggest that in the domains of physics and biology, rather than organizing 

scientific phenomena in terms of abstract mathematical principles, the phenomena can be 

organized in a more intuitive fashion around computational mechanisms and principles 

(Redish and Wilson 1993; Sengupta and Wilensky 2011; Wilensky and Reisman 2006). 

B. Programming and computational modeling as representations of core scientific practices: 

Soloway (1993) argued that learning to program amounts to learning how to construct 

mechanisms and explanations. Therefore, the ability to build computational models by 

programming matches core scientific practices that include model building and 

verification, as pointed out earlier. 

C. Contextualized representations make it easier to learn programming: When computational 

mechanisms are anchored in real-world problem contexts, programming and 

computational modeling become easier to learn. Hambrusch et al. (2009) found that 

introducing computer programming to undergraduate students who were non-CS majors, 

in the context of modeling phenomena in their respective domains (physics and chemistry) 

resulted in higher learning gains (in programming), as well as a higher level of engagement 

in the task domain. 

 However, integrating computational modelling and programming with K-12 science 

curricula can be challenging for a number of reasons. The integration requires development of a 

sustained and systematic learning progression, which encompasses CT concepts and practices of 

varying complexities across different science disciplines. Also, it can lead to a high teaching 

overhead for existing science teachers with no programming experience. Complementarily, 

learning a programming language and then using it to model a science topic can be challenging 

and time consuming for students. Therefore, the design of programming-based learning 

environments needs to be rethought for seamless integration with science education (Guzdial 1995; 

diSessa 2000; Sengupta 2011). Integrating CT with science in a manner that supports the 

development of students’ scientific expertise requires the design of coherent curricula in which 

CT, programming, and modeling are not taught as separate topics, but are interwoven with learning 

in the science domains (Sengupta et. al., 2013). With the recent resurgence in CT based research 
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and the policy attention to STEM learning, there has been an escalated interest in finding ways to 

tap into the synergy between CT and science education starting at the K-12 level. In the next 

section, we review efforts to introduce K-12 students to CT concepts and practices, and contrast 

environments that leverage the synergy between CT and science learning against others that do 

not.  

2.3 CT-based learning environments for K-12 students  

With the recognition of the importance of teaching students to think computationally from an early 

age, strategies for embedding CT across the K-12 curriculum have been proposed, and methods 

for building CT tools that can be embedded in the K-12 curricula are being recommended by a 

number of researchers. For example, Repenning, et. al. (2010) present a list of conditions which 

any CT tool needs to fulfil in order to be successfully integrated into K-12 classrooms: 1) has low 

threshold or allows students to produce simple working models quickly; 2) has high ceiling or 

allows students to build highly sophisticated models; 3) scaffolds flow of learning or includes a 

curriculum that gradually increases complexity to manage skills and challenges associated with 

the tool; 4) enables transfer to subsequent computer science applications ; 5) supports equity or 

ensures accessibility and motivation across gender and ethnicity boundaries; and 6) is systemic 

and sustainable for all teachers and students meaning the tool should support teacher training and 

align with curricular standards. Also, the Computer Science Teachers Association (CSTA) and the 

International Society for Technology in Education (ISTE) identify strategic areas to be addressed 

for integrating CT with K-12 STEM subject areas. These areas includes helping policy makers 

connect CT to existing learning goals and standards, providing professional development to K-12 

teachers and encouraging them to change courses and curricula by providing them with models 

and simulations, modeling activities and web sites to support such changes (Barr & Stephenson, 

2011). However, in reality, the process of embedding CT in the K-12 curricula has not progressed 

much, and it leaves a lot to be desired in terms of construction of learning environments which 

combine CT with STEM learning and existing curricular standards, and development of 

standardized formative and summative assessments for CT.  

In the following sections, we review existing efforts to introduce K-12 students to CT 

concepts, practices and perspectives. Our literature review shows that only a few of the currently 
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implemented environments attempt to leverage the synergy between CT and science learning. 

There is also a dearth of systematic CT assessments. To continue our review, we present a 

comprehensive framework comprising the primary factors that need to be considered when 

designing a CT-based learning environment or curricula. We then apply this framework to review 

and analyze existing environments that foster CT skills at the K-12 level. We look at systems that 

have been developed for formal and informal settings.  

2.3.1 CoLPACT – A framework for designing and analyzing CT-based learning 

environments  

Fox (NRC, 2010) proposed that building a CT-based learning environment was a three-

dimensional problem with (1) aspects of CT, (2) the disciplines CT is connected with, and (3) 

pedagogy constituting the three dimensions. In this dissertation research, we extend the Fox 

framework, and argue that building a CT-based learning environment is a five-dimensional 

problem with the two added dimensions being (4) the computational language used, and (5) the 

CT assessments employed in the environment. Taking all five dimensions into account we have 

developed a novel framework (CoLPACT – Context, Computational Language, Pedagogy, and 

Assessments for Computational Thinking) that represents the primary dimensions one has to 

consider when designing and developing CT-based systems for K-12 education, and for analyzing 

existing CT-based environments for pedagogical applications.  

CT is at the heart of the CoLPACT framework and we use Brennan & Resnick’s (2012) 

three-dimensional framework comprising computational concepts, practices, and perspectives (see 

Section 2.1) to capture and analyze the different aspects of CT fostered in different learning 

environments. Along with identifying the target CT skills, deciding the context or the domain in 

which the CT skills will be taught is fundamental to designing a CT-based system. Generating 

contexts that are personally relevant and meaningful to learners and/or provide bridges to real-

world applications help motivate learners and broaden their participation in such systems. At the 

K-12 level, robotics (Martin et. al., 2013), game design (Kafai, 1995, Repenning et.al., 2010), 

storytelling (Kelleher, 2008), designing mobile apps (Wolber et. al., 2011), programming 

multimedia applications (Forte & Guzdial, 2004), and integration of CT with different school 

subjects, such as science (Basu et. al., 2012; Repenning et.al., 2010; Allan et.al., 2010; Jona et. al., 

2014), language arts (Buechley et. al., 2013), as well as music and art (Disalvo & Bruckman, 2011) 



 16 

are examples of contexts that have been employed in broadening students’ participation in and 

perceptions of programming. The context employed is likely to be guided by the target audience 

and the goals of the learning environment, and may in turn influence the choice of language and 

pedagogy used in fostering CT skills.  

The computational language used is an important aspect of a CT-based learning 

environment and is likely to be influenced by the context in which CT skills are fostered in the 

environment including the target audience for the environment. The language is used to point out 

CT concepts to students and students use it to apply CT concepts and practices to generate 

computational artifacts like games, digital stories, models and simulations. For example, if the 

context is a curricular discipline, like science or mathematics, a domain-specific programming 

language (Sengupta et. al., 2013) that emphasizes the domain concepts along with highlighting the 

generality of CT concepts across domains could be more appropriate as opposed to a general-

purpose programming language. Also, systems could employ visual programming languages 

versus text-based or graphical ones, or agent-based modeling languages versus object-oriented or 

system-based ones based on the age group of the target audience or the goal of the learning 

environment. Visual drag-and-drop languages are believed to alleviate syntax problems that young 

students face when assembling programs or computational models (Soloway, Guzdial, & Hay, 

1994). Some research has also claimed that visual programming languages can make the 

understanding of computational processes more accessible by making the logic associated with 

complex elements of flow of control, such as loops and conditionals, easier to grasp (Parsons & 

Haden, 2007). Similarly, agent-based modeling languages are considered more intuitive for 

younger children and serve as powerful representations when CT is promoted in the context of 

complex systems. We use the agent-based modeling paradigm in building our CT-based learning 

environment and review important research in this area in Section 3.2.  

Like the computational language used, the pedagogy guiding the design of a CT-based 

learning environment is also likely to be influenced by the target users and expected setting for the 

environment. Several CT-based environments follow the learning-by-design pedagogy, where 

students design and build their own computational models for curriculum-related topics, games, 

and stories. Examples of other pedagogies followed include learning by remixing and reusing code, 

learning by debugging, and collaborative learning. For example, simple remixing of given code 

might require just a few mouse-clicks to copy programs and not involve thinking computationally, 
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but selective remixing and deciding what to modify in selected code segments versus what to keep 

and where to add or delete procedures or variables within a program require a deep understanding 

of CT skills (Kafai & Burke, 2010). Learning by debugging involves a thorough understanding of 

computational processes – how the control flows and how variables are updated – in order to detect 

bugs in the given code and correct them generating a computational artifact with the desired 

behavior. Collaborative learning or computational participation (Kafai &Burke, 2010) generally 

associates CT-based environments with open source sites in the style of communities where 

learners can share, comment on, and contribute to each other’s coded creations. This learning 

paradigm builds on insights from educational research that fruitful learning is not done in isolation 

but in conjunction with others. Also, learning how to program collaboratively involves other CT 

elements, such as decomposing complex tasks between collaborators and coordinating control 

flow between different components.  

Assessments for measuring students’ CT skills, the final dimension of the CoLPACT 

framework, are believed to be quintessential for a CT-based environment to be integrated into the 

K-12 curriculum (NRC, 2011), but standardized CT assessment are still lacking (Grover & Pea, 

2013; Basu, Kinnebrew, & Biswas, 2014). Assessments in several environments focus on studying 

the frequency of different computational concepts students use in their computational models and 

how the frequencies vary with time. More frequent use of CT concepts like loops and conditionals 

is favored, irrespective of the correctness of the final computational artifacts designed. Assessment 

of artifacts and computational practices employed during construction of the artifacts is generally 

performed using researchers’ observation notes (Kafai et. al., 2013) and artifact-based interviews 

(Brennan & Resnick, 2012), which are logged and analyzed. Some environments also include pre- 

and post-assessments for testing algorithmic thinking and use of abstractions by making students 

perform small modeling and debugging tasks. Some of these assessments are dependent on the 

specifics of the system and are, hence not administered before the intervention, making them non-

generalizable, and, thus making pre-post comparisons impossible. Very few environments include 

generalizable pre-post tests for assessing computational concepts and problem solving skills, 

especially in the context of STEM problems (Basu et. al., 2014; Jona et. al., 2014). Some 

environments also only include assessments of computational perspectives, which are generally 

conducted through pre-post surveys focusing on measuring changes in students’ attitude towards 

and awareness about the term CT, without measuring proficiency in CT skills.  
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We believe that the CoLPACT framework acts a suitable platform for characterizing and 

comparing different CT-based learning environments and provides valuable pointers for the design 

of new CT learning environments. The five dimensions of the framework are not completely 

independent; choices made with respect to one dimension can influence choices made in other 

dimensions. For example, the choice of modeling language and pedagogy can vary between those 

used with younger children and the ones employed with high school students, or based on whether 

the learning context is open-ended or constrained. Similarly, curricular contexts tend to have a 

stronger emphasis on assessments, though it has been seen that when the curricular context is 

something other than CS, assessments tend to focus more on the curricular topic, rather than CT 

concepts and practices. In the next section, we review some well-known CT-based learning 

environments and their use in K-12 using the CoLPACT framework.   

2.3.2 Using the CoLPACT framework to review CT-based learning environments  

In this section, we use the CoLPACT framework to analyze some of the widely used CT-systems. 

We limit our reviews to CT-based learning environments, which have been and are used primarily 

in K-12 settings. We study both curricular and extra-curricular use of these environments, since a 

majority of the well-known CT-based environments are still used primarily as part of extra-

curricular activities.  

Scratch (Resnick, 2007) is one of the most popular and widely used CT-based systems 

today. Scratch users are primarily K-12 students between the ages of 8 and 16, though Scratch has 

been used in some introductory-level college courses as well. Scratch uses a general-purpose, 

visual block-based language where students snap together different blocks to generate their own 

computational models or programs. Since Scratch is inspired by how students build with Lego 

blocks, its blocks have connectors like Lego bricks, suggesting how the blocks fit together to 

describe a larger system. The blocks are shaped to fit together only in ways that make syntactic 

sense. Scratch also allows users to personalize their programs by importing photos and music clips, 

recording voices, and creating graphics (Resnick et. al., 2009). Though Scratch itself uses a 

general-purpose language, extensions are being currently developed that will enable anyone to 

extend the vocabulary of the Scratch programming language through custom programming blocks 

including domain-specific programming primitives written in JavaScript (Dasgupta et. al., 2015). 
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Scratch is an open-ended system and not tied to any learning domain (context) in particular. 

Students’ working with the system have generated diverse products that include video games, 

stories, interactive newsletters, science simulations, virtual tours, birthday cards, and animated 

dance contests. Currently, Scratch has primarily been used in after-school computer clubs and 

summer camps as an open-ended CT-based environment not tied to any specific curricular topic 

in order to introduce students to programming and foster their creative thinking skills. When 

Scratch is used in-class, its primary use has been in elective computer classes. Various context-

independent curricula have been developed revolving around the use of Scratch by different 

researchers. Leading the effort is the ScratchEd team, whose Scratch curriculum guide provides 

an introduction to creative computing with Scratch, using a design-based learning approach 

(http://scratched.gse.harvard.edu/resources/scratch-curriculum-guide). The guide is organized as 

a series of twenty 60-minute sessions, and includes session plans, handouts, projects, and videos. 

Each session is organized into 5 topics: introduction, arts, stories, games, and final project. The 

guide is both subject-neutral and grade-neutral to accommodate different settings for any teacher 

who wants to support students’ development of CT through explorations with Scratch.  

Irrespective of the context, programs involve use of some subset of the following seven 

computational concepts – sequences, loops, parallelism, events, conditionals, operators, and data. 

Scratch claims to foster four main sets of computational practices: being incremental and iterative, 

testing and debugging, reusing and remixing, and abstracting and modularizing; and three primary 

computational perspectives: being expressive, questioning, and connecting with others (Brennan 

& Resnick, 2012). Along with the learning-by-design pedagogy, Scratch is also largely based on 

the collaborative learning pedagogy allowing students to reuse and remix others’ programs. It has 

developed a vibrant online community, where Scratchers worldwide share their programs and 

comment on and remix existing programs.  

Scratch itself does not include assessment for CT skills. Assessments with Scratch tend to 

vary based on the setting in which it is used. When used in curricular contexts, assessments tend 

to include pre- and post-tests on computational definitions and students’ understanding of basic 

CT concepts like loops, sequences and conditionals (Grover, Cooper & Pea, 2014). Other forms 

of assessments involve interviewing students about their programs and computational 

perspectives, studying use of CT concepts in students’ Scratch programs over time (Brennan & 

http://scratched.gse.harvard.edu/resources/scratch-curriculum-guide
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Resnick, 2012), and measuring students’ abilities to transfer CT skills from Scratch to text-based 

languages (Grover, Pea & Cooper, 2014).  

Alice is another well-known CT-based learning environment that uses the context of 

creating animations and storytelling using 3D models to promote CT skills (Pausch et. al., 1995). 

Alice also uses a visual drag-and-drop language, but follows an object-based, event-driven 

programming paradigm. Learners place objects from Alice's gallery into the virtual world that they 

have imagined, and then program each of the objects’ properties and event-based behaviors. Alice 

also targets the same computational concepts, practices and perspectives as Scratch. Though the 

initial versions of Alice (Alice 1.0 and Alice 2.0) were developed for and used by high school and 

first-year college students, Storytelling Alice (SA) was later developed and tested with middle 

school students to tap into storytelling’s motivational effects for younger students (Kelleher & 

Pausch, 2007). SA contains a gallery of 3D characters and scenery with custom animations, 

allowing users to program social interactions between characters using high-level animations. 

Using a context like storytelling has been reported to be particularly beneficial in increasing 

interest in programming among girls and women. Alice 3.0 is again geared towards elder students, 

allowing them to switch between Java programming and object-oriented drag-and-drop 

programming.  

In general, Alice adopts a learning-by-design pedagogy with some studies following a use-

modify-create cycle (Werner, Denner & Campe, 2012) where learners first understand provided 

Alice programs and modify them as needed before creating their own programs. Alice also has its 

own online community, like Scratch where learners can share and collaborate on their Alice 

animations and stories. Also, similar to Scratch, Alice is used predominantly in after-school 

settings with K-12 students, and less often in curricular settings. But, instructional materials, 

tutorials videos, and textbooks have been developed as part of a CS curriculum using Alice, and 

are readily available for educators who choose to use Alice to teach CT concepts.  

The Fairy Assessment (Werner, Denner & Campe, 2012) has been developed for Alice and 

requires students to modify or add methods to existing code to accomplish given tasks, thus 

displaying their understanding of abstraction, conditional logic, algorithmic thinking, and other 

CT concepts to solve problems. However, this assessment is Alice-based and requires subjective 

and time-consuming grading (Grover, Cooper & Pea, 2014). Other multiple-choice assessments 

have been used for measuring learning of Alice programming concepts (Moskal, Lurie, & Cooper, 
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2004), but not in K-12 settings. Recently, Cooper, Nam, & Si (2012) incorporated an Intelligent 

Tutoring System (ITS) into the Alice environment using stencils (Kelleher & Pausch, 2005), a 

graphical overlay system, to detect students’ mastery of different CT skills and interactively 

provide instruction. The ITS tries to help students master a set of CT skills by providing tutorials 

for each, where tutorials are built as a series of missteps, forcing students to make common errors 

associated with the use of the skills, and observe the outcomes. For each CT skill, a tutorial is 

followed by an alternate activity assessing the same skill. The alternate assessment activities 

involve showing students a YouTube video that represents the correct desired solution and asks 

students to write code corresponding to the desired solution.  Students’ solutions are assessed using 

stencils, which Cooper, Nam, & Si (2012) point out is somewhat problematic, since it requires 

students’ code to be an exact match to the solution specified in the stencil, and results in correct 

student code sometimes being flagged as incorrect.  

AgentSheets (Repenning, 2000) is another CT-based system that teaches students 

programming and CT skills through game design and creation of simulations. It also adopts a 

visual drag-and-drop language, but the language is based on an agent-based modeling paradigm 

(Wilensky & Resnick, 1999; Chi, 2005). Similar to a spreadsheet, an agentsheet is a computational 

grid, but the grid comprises agents in this case. Users create the different type of agents and specify 

how each agent looks and behaves in different situations. All agent behaviors are implemented 

using “If-Then” conditional statements (Koh et. al., 2010). AgentSheets enables the use of 16 

different conditions and 23 different actions, in combination, to create behaviors for any given 

agent. It allows up to tens of thousands of agents, thus making it suitable for modeling and 

exploring complex scientific phenomena like ecological systems, spread of diseases, etc. This 

ability to support games as well as computational science applications distinguishes AgentSheets 

from Scratch and Alice, and makes it suitable for use in both CS and STEM education. 

AgentSheets supports a middle and high school curriculum, called Scalable Game Design 

(Repenning, Webb & Ioannidaou, 2010) aligned with the ISTE National Educational Technology 

Standards (NETS). This project aims to motivate all students including women and 

underrepresented communities to learn about computer science through game design starting at 

the middle school level. The project consists of two modules. In 6th grade a one-week module is 

integrated into an existing required course. In 7th grade a four-week module in elective courses 

allows students to move on to more complex games or computational science simulations.  
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Assessments using Agentsheets have not been sufficiently documented in the literature. 

Metrics, like Program Behavior Similarity (PBS) and tools, like the Computational Thinking 

Pattern (CTP) graph have been developed to provide students with instant semantic evaluation 

feedback after submitting their models.  These metrics help detect transfer of CT skills between 

Agentsheets activities and across activities in related disciplines (Koh et. al., 2010). In addition, 

Retention of Flow is used as an evaluation measure of students’ engagement in open ended 

Scalable Game Design activities or similar ‘Hour of Code’ game-design activities (Repenning et. 

al., 2016). Student retention in an activity is calculated based on the program length or lines of 

code a student has created in the activity, where lines of code correspond to methods, rules, 

conditions, and actions specified for agents described in the activity. 

Agentsheets also differs from most existing systems in that it attempts to scaffold students 

as they work in the environment, though the scaffolding is somewhat elementary. For example, 

students receive feedback about the computational models or games they build through 

representations like the CTP graph (Koh et. al., 2010), which help them realize CT patterns missing 

in their models. Besides students, AgentSheets also provides real-time assessment of students’ 

models to scaffold teachers and provide them with information about individual student progress 

so they can help student who are struggling with their AgentSheets activities. A cyberlearning 

system titled REACT (Real-time Evaluation and Assessment of Computational Thinking) provides 

teachers with a sortable dashboard, consisting of data from each student, that shows the characters 

students created and used to populate their game or simulation world as well as the semantic 

meaning behind what students have programmed (Basawapatna, Repenning, & Koh, 2015). 

Further, AgentSheets 3 provides conversational programming to help students understand the 

meaning and semantics of the program they are working on.  

Other attempts to integrate CT and STEM include EcoScienceWorks (Allan, et.al., 2010), 

the Computational Thinking in STEM project (Jona et. al., 2014), and Project GUTS 

(http://projectguts.org/). EcoScienceWorks (ESW) is an ecology curriculum built for 7th grade 

students across the state of Maine that includes targeted simulations for concepts like succession, 

habitat fragmentation, species interactions, and invasive species, along with a code block 

programming module called Program a Bunny. Since the goal of the project is to increase student 

interest in CT and computer programming within the constraints of the middle school curriculum 

(where computer programming is not taught), the project re-designed existing computer 

http://projectguts.org/


 23 

simulations in ecology and added the capability for students to program their own simulations. 

Student assessments in ESW measure students’ CT perspectives and comprise of observations of 

student behavior, student interviews, and online surveys. The Computational Thinking in STEM 

(CT-STEM) project, on the other hand, emphasizes learning CT concepts and practices along with 

increasing students’ interest in CT. such that they later choose CT and CS courses, and perhaps a 

future CT career trajectory. CT activities are embedded in the context of existing high school 

STEM courses in Physics (projectile motion, Ohm’s law, resonance), Mathematics (probability, 

exponential functions, fitting real data), Chemistry (radioactivity, rusting, gas laws), and Biology 

(predator-prey relations, DNA sequencing, genetics, cell structures). CT-STEM relies heavily on 

NetLogo – an agent based modeling and simulation platform with a textual language (Wilensky, 

1999). Students work with existing PhET (Wieman et. al., 2008) and NetLogo models, and also 

create their own computational models from scratch. The project emphasizes learning data 

analysis, computational problem solving, and systems thinking in the context of modeling and 

simulations, and includes assessments encompassing each of these CT-STEM skills. Project 

GUTS (Growing Up Thinking Scientifically) is another example of an attempt to integrate CT and 

STEM. It is a summer and after-school STEM program for middle school students. Recently, 

Project GUTS has partnered with Code.org to develop a middle school science program that 

consists of curricular units to introduce CT in the context of life, physical and earth sciences, while 

addressing course standards. Students go through a use-modify-create cycle to learn about 

curricular science topics like the global climate system, ecosystems and chemical reactions, which 

are modeled as complex systems using StarLogo – an agent-based modeling language. The goal 

of the program is to prepare students to pursue formal CS courses during high school. Hence, 

assessments focus on student interest in CT, besides curricular assessments for science.  

Efforts have also been made to introduce K-12 students to CT skills in more authentic and 

tangible contexts. For example, IPRO (I can PROgram) is an iOS application designed to teach 

high school students how to program in a mobile, social programming environment (Martin et. al., 

2013). Students program virtual robots to play soccer on their iPod Touch and are also provided a 

full size physical replica of the agent environment in the classroom. They work in teams to 

program, test and debug their virtual robots, and engage in matches between their team’s robots 

and other teams’. IPRO uses a Scheme-based programming language consisting of a library of 

sensors and actions, connected by conditional statements. Conditional statements can be endlessly 
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nested and all possible programs are executable (i.e., no syntax errors are possible). Studies with 

high school students using IPRO have used attitudinal survey questions, learning questions and 

transfer questions as assessments. The learning questions are specific to programming in IPRO, 

while the transfer questions test predicate calculus skills which are important for understanding 

programming. Results have shown improved performance on programming content and 

computational content transfer, and improved attitudes towards programming and CS. Electronic 

textiles or e-textiles (Kafai et. al., 2013) is another project that uses tangible construction kits to 

teach programming and engineering concepts to high school students. E-textiles involves using the 

Lilypad Arduino language in conjunction with sewable microcontrollers, sensors and actuators. A 

primary goal of the project is to broaden participation and perceptions about computing using a 

context that can be especially appealing to women. The e-textiles curriculum focuses on both the 

basics of circuit designs and learning how to program using Lilypad Arduino. In a study with high 

school students, students’ completed artifacts, observations of their design approaches, and student 

interviews were analyzed to assess CT concepts, practices, and shifts in perspectives. The Arduino 

program codes for all projects were found to contain key CT concepts such as sequences, loops, 

conditionals, operators, and variables. Students mostly engaged in iterative CT practices of 

imagining and designing and constructing a little bit, then trying it out, and then developing it 

further, and they started considering it as a more personally relevant task.  

Several other applications have been and continue to be developed for promoting CT skills 

and interest in coding and computer science, especially for the female population of students. 

Many of them rely on a visual editor called Blockly to create a great UI for novice users 

(https://developers.google.com/blockly/?hl=en). Blockly allows users to write programs by 

plugging blocks together, and developers can integrate the Blockly editor easily into their own 

web applications. For example, the MIT App Inventor (http://appinventor.mit.edu/explore/) uses 

Blockly to provide an innovative beginner's introduction to programming and app creation that 

transforms the complex language of text-based coding into visual, drag-and-drop building blocks. 

The simple graphical interface claims to grant even an inexperienced novice the ability to create a 

basic, fully functional app within an hour or less, thus empowering all people, especially young 

people, to transition from being consumers of technology to becoming creators of it. Made with 

Code (https://www.madewithcode.com/) is another application that uses Blockly to encourage 

girls to code in diverse fields ranging from music to fashion. Some other applications that rely on 

https://developers.google.com/blockly/?hl=en
http://appinventor.mit.edu/explore/
https://www.madewithcode.com/
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Blockly to create their visual interfaces for promoting different CT skills are Blockly Games - 

Games for tomorrow's programmers, Gamefroot - Make, play and share games; OzoBlockly - 

Programming line-following robots, and Wonder Workshop - Robots for play and education. 

2.4 Critical Summary of existing CT based learning environments  

Table 1 summarizes the state of the art of CT-based environments by characterizing some of the 

common environments along the five dimensions of the CoLPACT framework.  

Table 1. A review of existing CT-based environments using the CoLPACT framework 

CT-based 

environments 

Context (Co) Modeling 

Language 

(L) 

Pedagogy (P) Assessment (A) Computational Thinking 

(CT) 

Scratch Open-ended; 

After-school 

computer 

clubs; 

Summer 

camps; 

Elective 

computer 

classes in K-

12;   College-

level CS 

courses 

General-

purpose; 

Visual, 

block-based  

Learning-by-

design; 

Collaborative 

learning; 

Learning 

through reuse 

and remix 

Pre- and post-

tests on 

definitions and 

use of CT 

concepts; 

Interviews about 

CT perspectives; 

Use of CT 

concepts in 

Scratch 

programs over 

time; Transfer of 

CT skills from 

Scratch to text-

based languages 

Concepts like sequences, 

loops, parallelism, events, 

conditionals, operators, 

and data; Practices of 

being incremental and 

iterative, testing and 

debugging, reusing and 

remixing, and abstracting 

and modularizing; 

Perspectives of being 

expressive, questioning, 

and connecting with others 

Alice Creating 

animations 

and 

storytelling 

using 3D 

models; After-

school 

computer 

clubs; 

Summer 

camps; 

Elective 

computer 

classes in K-

12;   College-

level CS 

courses 

General-

purpose; 

Visual drag-

and-drop 

language; 

Object-

based; 

Event-

driven  

Learning-by-

design based 

on a use-

modify-create 

cycle; 

Collaborative 

learning; 

Learning 

through reuse 

and remix 

System-specific 

Fairy 

Assessment 

requiring 

students to 

modify or add 

methods to 

existing code to 

accomplish 

given tasks 

Concepts of sequences, 

loops, parallelism, events, 

conditionals, operators, 

and data; Practices of  

being incremental and 

iterative, testing and 

debugging, reusing and 

remixing, and abstracting 

and modularizing; 

Perspectives of  being 

expressive, questioning, 

and connecting with others 
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AgentSheets Game design 

and creation 

of 

simulations; 

Middle and 

high school 

curriculum 

called 

Scalable 

Game Design 

General 

purpose; 

Visual drag-

and-drop 

language; 

Agent-based 

modeling 

paradigm 

Learning-by-

design; 

Conversationa

l 

programming; 

Instant 

semantic 

evaluation 

feedback 

through CTP 

graphs 

Program 

Behavior 

Similarity and 

the CTP graph 

to detect transfer 

of CT skills  

Concepts of sequences, 

loops, parallelism, 

conditionals, operators, 

and data; Practices of  

being incremental and 

iterative, testing and 

debugging, and 

abstracting and 

modularizing; 

Perspectives of  being 

expressive, questioning 

ESW Ecology 

curriculum for 

7th grade 

students 

across the state 

of Maine 

General 

purpose; 

Agent-based 

modeling 

paradigm 

Learning by 

re-designing 

existing 

computer 

simulations 

Measure  CT 

perspectives 

through 

observations of 

student behavior, 

student 

interviews and 

online surveys 

Concepts – sequences, 

loops, conditionals, 

operators; Practices -  

being incremental and 

iterative, testing and 

debugging, and 

abstracting; Perspectives -  

being expressive, 

questioning 

CT-STEM  High school 

STEM courses 

in Physics, 

Mathematics, 

Chemistry, 

and Biology  

General 

purpose; 

Agent-based 

modeling 

paradigm; 

Text-based 

language 

Learning 

using 

simulations; 

Learning-by-

design  

Assessments for 

CT concepts, 

computational 

modeling and 

problem solving, 

data analysis 

Data analysis, 

computational problem 

solving, and systems 

thinking in the context of 

modeling and simulations 

Project GUTS Summer and 

after-school 

STEM 

program for 

middle school 

students; 

Middle school 

curricular 

units in life, 

physical and 

earth sciences 

General-

purpose; 

Block-

based; 

Agent-based 

modeling 

language;  

Learning-by-

design 

through use-

modify-create 

cycles  

Assessments for 

student interest 

in CT; curricular 

assessments for 

science 

 

CT concepts of loops, 

conditionals, sequences, 

variables; CT perspectives 

of readiness to pursue 

formal CS courses during 

high school 

IPRO Playing soccer 

with virtual 

robots using 

iPod Touch in 

elective high 

school classes 

Scheme-

based 

programmin

g language 

consisting of 

a library of 

sensors and 

actions 

Learning-by-

design; 

Collaborative 

learning; 

Engage in 

inter-robot 

matches 

Attitudinal 

survey 

questions; IPRO-

specific learning 

questions; 

transfer 

questions testing 

predicate 

calculus skills  

Concepts like 

conditionals, loops,  and 

variables; Sense-act 

cycles; Computational 

modeling and problem 

solving 
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e-textiles Circuit-design 

and sewing in 

high school 

classrooms 

Lilypad 

Arduino 

language in 

conjunction 

with sewable 

microcontrol

lers, sensors 

and 

actuators 

Learning-by-

design; 

Engage in 

personally 

relevant 

context 

Study completed 

artifacts; 

Observe design 

approaches; 

Interview 

students 

Concepts like sequences, 

loops, conditionals, 

operators, and variables; 

Practices of iterative 

imagining, designing, 

constructing, testing and 

refining; Perspectives of 

considering computing 

more personally relevant 

  

We see that in spite of recognizing the need for integrating CT with the K-12 curricula, and 

the several suggestions discussed in various workshops and committees about how to achieve this, 

several CT-based learning environments today still involve extracurricular participation through 

summer camps, after-school computer clubs, and elective curricular participation. Several of these 

environments do not try to connect their activities and learning goals to existing K-12 standards or 

STEM learning concepts. Broadening participation in CS through motivational extracurricular CT-

based activities may be a good first step, but CT eventually needs to be integrated into the K-12 

curricula, possibly introducing it in middle school, since it is the age at which students start 

deciding on future career choices based on their assessments of their skills and aptitudes. Also, 

curricular integration will help remove the variables of self-selection, confidence, and willingness 

to opt for elective and extra-curricular programs from the equation. As a result, all students, 

including minorities and women will be necessarily exposed to CS-related concepts. The 

successful and sustained integration of CT concepts and skills into the K-12 curriculum requires 

providing K-12 teachers with learning environments and other resources demonstrating how to 

integrate CT with existing grade-relevant curricular topics, while keeping the learning overhead 

low (both for teachers and students).  

We notice that CT-based environments that are used in K-12 curricular contexts generally 

integrate CT with existing science topics, since it is not always feasible to accommodate CS 

curricula independently into existing K-12 curricula. In environments that integrate CT with 

existing K-12 science curricula, the choice of computational language and pedagogy employed 

appear to be similar. We find that environments promoting CT in the context of K-12 science 

topics (for example, AgentSheets, ESW, CT-STEM, and Project GUTS) often employ an agent-

based modeling paradigm, since it is believed to aid and scaffold students’ understanding of 

complex science topics. Also, such environments mostly employ the learning-by-design pedagogy, 
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sometimes as part of a use-modify-create cycle, and generally make students work independently, 

perhaps because collaboration and reusing of code make grading of curricular assessments 

difficult. As part of this dissertation research, we will develop our learning environment to 

simultaneously foster CT skills and science learning at the K-12 level.  We also adopt an agent-

based modeling paradigm and an independent learning-by-design pedagogy involving build-test-

refine cycles in the context of model building of science processes with support for model 

verification. The detailed design and implementation of our learning environment is provided in 

Chapter 3.  

We see in Table 1 that even for environments that attempt to integrate CT with existing K-

12 science curricula, assessments for measuring CT concepts and skills are severely lacking. 

Assessments in such environments generally focus on students’ interests in computing and their 

likelihood of pursuing CT courses in the future, while existing curricular assessments measure 

science learning. Currently, among the environments that integrate CT with science learning, CT-

STEM is the only one to have developed pre-post assessments for measuring students’ 

computational thinking and problem solving skills. However, even CT-STEM does not assess the 

computational models built by students for correctness or use of computational constructs. 

Assessing students’ knowledge of CT concepts and their computational models is somewhat more 

common when the context is open-ended or related to elective CS courses. Even in such cases, 

models are generally not evaluated for correctness, but merely for frequency of use of different 

computational constructs. Thus, we realize that attention needs to be paid in CT-based learning 

environments towards developing standardized, objective, and holistic assessments for CT, which 

includes developing metrics for assessing students’ computational models, and their learning 

behaviors in terms of use of CT practices. In addition to the lack of well-developed CT assessments 

in existing CT-based learning environments, the developmental processes of students as they are 

introduced to CT is little understood, and the challenges they face is not known. Attention needs 

to be paid to develop methods that detect and scaffold these challenges.  

In this dissertation research, we address the aforementioned challenges by designing and 

developing Computational Thinking using Simulation and Modeling (CTSIM) - a CT-based 

science learning environment, building a learning progression using CTSiM for middle school 

students, and developing holistic assessments for measuring students’ CT proficiency, science 

learning and modeling skills. Using interview-based observational assessments with students using 
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CTSiM, we identify and categorize students’ challenges when they work in such an environment, 

and then design a scaffolding strategy to help students deal with some of their challenges. Finally, 

we demonstrate the effectiveness of our scaffolding approach through a controlled research study 

using different assessment metrics we have developed based on students’ actions in the CTSiM 

learning environment and offline assessments administered outside CTSiM.   
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CHAPTER 3 

Initial design and development of the CTSiM learning environment 

In this chapter, we discuss the initial design, and implementation of the Computational Thinking 

using Simulation and Modeling (CTSiM) learning environment, along with the sequence of 

learning activities we have designed for synergistic learning of CT and middle school science. The 

design of CTSiM is informed by lessons learned from previous research in learning-by-design, 

educational computing, and multi-agent based modeling (Basu et. al., 2012; Sengupta et. al., 2013; 

Basu et. al., 2013). We discuss previous research and key design principles guiding the integration 

of CT and science learning in CTSiM in Sections 3.1-3.4, and describe the initial CTSiM 

architecture and interfaces, the selected curricular science topics, and the learning activity 

progression involving these topics in Sections 3.5-3.7. 

3.1 Design as a core focus of science learning using computational modeling 

In Section 2.1, we discussed the importance of ‘computational doing’, and how CT is considered 

to become evident in the form of design-based epistemic and representational practices 

(Hemmendinger, 2010; Sengupta et. al., 2013). Grover and Pea (2013) have identified examples 

of representational practices as abstractions and pattern generalizations (that include modeling and 

simulation activities); symbol systems and representations; algorithmic notions of flow of control; 

structured problem decomposition (modularizing); conditional logic; and iterative, recursive, and 

parallel thinking. Other epistemic practices include systematic processing of information; adopting 

efficiency and performance constraints; and debugging and systematic error detection. This 

‘computational doing’ perspective, in turn, aligns with the learning-by-design pedagogy in 

general, and with the science-as-practice perspective, in particular.  

The learning-by-design pedagogy applies to all domains and suggests that students learn 

best when they engage in the design and consequential use of external representations for modeling 

and reasoning (Blikstein & Wilensky, 2009; Kolodner et al., 2003; Papert, 1991). This pedagogy 

promotes active learning and greater agency for the learner by activating eight knowledge 

processes that represent distinct ways of generating knowledge and learning: experiencing the 

known and the new, conceptualizing by naming and by theorizing, analyzing functionally and 
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critically, and applying creatively and appropriately (Healy, 2008). The science as practice 

perspective (Duschl, Schweingruber, & Shouse, 2007; Lehrer & Schauble, 2006), on the other 

hand, emphasizes the importance of engaging learners in the development of epistemic and 

representational practices to help them understand how scientific knowledge is constructed, 

evaluated, and communicated. Modeling – the collective action of developing, testing, and refining 

models - has been described as the core epistemic and representational practice in the sciences 

(Lehrer & Schauble, 2006; NRC, 2010). Modeling involves carefully selecting aspects of the 

phenomenon to be modeled, identifying relevant variables, developing formal representations, and 

verifying and validating the representations. Hence, developing a model of a scientific 

phenomenon involves key aspects of CT: identifying appropriate abstractions, and iteratively 

refining the model through debugging and validation against expert or real world data.  

CTSiM adopts this learning-by-design pedagogical approach which interweaves action and 

reflection by engaging students in cycles of building computational models of given science 

phenomena, observing the behavior of their models as simulations, validating their simulations 

against provided correct simulations, and refining their models accordingly. 

3.2 Agent based modeling and simulation for learning science 

Agent-based modeling (ABM) is a form of computational modeling in which individual entities in 

a complex system (the agents) are modeled as computational objects with specific rules defining 

their behavior and their interactions with other agents. For example, fish can be considered an 

agent-type in the simulation of a pond ecosystem, while electrons can be agents when modeling 

and simulating the flow of electricity. Models can comprise a single agent-type or multiple types 

of agents, in which case they are known as Multi-Agent Based Models or MABMs (Macal & 

North, 2008). The collective interactions of the agents, each concurrently acting out its behavioral 

rules, may be used to generate known phenomena, or reveal new, emergent behaviors of the 

complex system (Wilensky, Brady & Horn, 2014). In other words, MABMs provide a framework 

for (1) understanding and explaining how system-level behaviors emerge from individual agent 

behaviors, and (2) what-if analyses, i.e., how perturbations in the system can affect and alter overall 

system behaviors. In Sections 3.2.1-3.2.3, we describe the use of ABMs and agent-based 

simulations as powerful tools to introduce CT across the K-12 science curriculum. 
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3.2.1 Pedagogical significance of agent based modeling 

A wide variety of scientific phenomena can be studied and analyzed using a complex systems 

framework (Holland 1995; Kauffman 1995; Goldstone & Wilensky, 2009), where the collective, 

global behavior of the system emerges from the properties of individual elements and their 

interactions with each other. The global or macro behaviors - known as emergent phenomena - are 

often, not easily explained by the properties of the individual elements (e.g., Bar-Yam 1997, p. 10; 

Holland 1998). Emergent phenomena are central to several domains, such as population dynamics, 

natural selection and evolution in biology, behavior of markets in economics, chemical reactions, 

and statistical mechanics, thermodynamics and electromagnetism in physics (Mitchell 2009; 

Darwin 1871; Smith 1977; Maxwell 1871). For example, in chemistry and physics, gas molecules’ 

elastic collisions at the micro level, produce the macro-level properties of pressure and 

temperature. In biology, animals interact with others of the same and different species, and the 

environment to survive, grow, and reproduce at the individual level that leads to phenomena, such 

as evolution, natural selection, and population dynamics at the ecosystem level (Wilensky, Brady 

& Horn, 2014).  

A number of studies have shown that students experience difficulty in understanding 

emergent phenomena in science (Hmelo-Silver & Pfeffer, 2004; Jacobson, 2001; Wilensky & 

Resnick, 1999; Chi, 2005). Agent based modeling holds immense potential to support learning of 

complex science phenomena, since it provides the means to build on students’ intuitive 

understandings about individual agents acting at the micro level to grasp the mechanisms of 

emergence at the aggregate, macro level. When students interact with, or construct a MABM, they 

initially engage in intuitive “agent-level thinking” (i.e., thinking about the actions and behavior of 

individual actors in the system) (Goldstone & Wilensky 2008). Thereafter, with proper scaffolding, 

students can build upon their agent level understanding and develop an understanding of 

aggregate-level or emergent outcomes by interacting with multiple complementary representations 

of the putative phenomena: agent-level rules and variables, dynamic visualization that 

simultaneously displays actions of all the agents in the microworld, and graphs that show aggregate 

level patterns over time (Tan & Biswas 2007; Wilensky & Reisman 2006; Blikstein & Wilensky, 

2009; Klopfer, 2003; Danish et al., 2011; Dickes & Sengupta 2013).  

In several science classrooms, differential equations and other mathematical formulae still 

form the most commonly used aggregate-level formalisms for teaching students how different 
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aggregate variables evolve over time (Wilensky & Reisman 2006). While mathematically 

sophisticated, these formalisms do not make explicit the underlying agent-level attributes and 

interactions in the system, and therefore, remain out of reach of most elementary, middle, and even 

high school students. It has been suggested that the lack of connection between students’ natural, 

embodied, agent-based reasoning, and the aggregate forms of reasoning and representations they 

encounter in school creates a barrier to their understanding of emergent phenomena. When 

children construct or use MABMs to learn complex scientific phenomena, this divide can be 

bridged (Dillenbourg, 1999; Jacobson & Wilensky, 2006; Tisue & Wilensky, 2004; Sengupta & 

Wilensky, 2009; Goldstone & Wilensky, 2008; Dickes & Sengupta, 2013; Basu, Sengupta & 

Biswas, 2014). Constructing and running their models helps students realize the implications of 

their ideas, provokes new conjectures, and drives motivating cycles of debugging involving 

modeling, execution, and refinement (Wilensky, Brady & Horn, 2014). Also, students can use their 

models to explore what-if questions by varying initial conditions and model parameters, or 

modifying existing behavioral rules of the agents in the model. Thus, working in MABM 

environments helps prepare them for authentic inquiry in the scientific disciplines.  

3.2.2 A review of studies and environments using ABM for learning science 

One of the earliest and best-known agent-based programming languages is LOGO (Papert, 1980). 

LOGO users learn fractions and other important STEM concepts by programming the behavior of 

a protean agent––the LOGO turtle. The Logo turtle is considered to be body syntonic, meaning 

that understanding the behaviors and the rules guiding the behaviors of a turtle is related to learners' 

understandings of their own bodies. This body-syntonicity is believed to help young leaners to 

bootstrap their intuitive knowledge in order to learn canonical science concepts (Sengupta & 

Farris, 2012).  

The LOGO language has been used and extended over the years in different MABM 

environments, like StarLogo (Resnick, 1996) and NetLogo (Wilensky, 1999). Unlike LOGO, 

which allows only a few turtles, these environments allow for modeling of thousands of agents or 

turtles, that can perform their actions concurrently. Having such large number of turtles facilitates 

the modeling of several types of complex systems, where the system behavior may show 

qualitative changes as the turtle population is changed. Also, turtles in these environments have 

better sensing properties than the traditional LOGO turtles, thus they are capable of executing more 
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complex behaviors based on interactions with other turtles and the environment. Further, the 

turtles’ environments are also modeled as agents (known as patches) in these agent-based 

environments. Patches are static, but have many of the same capabilities as turtles. For example, 

each patch could diffuse some of its “chemical” into neighboring patches, or it could grow “food” 

based on the level of chemical within its borders (Resnick, 1996).  

The current version of StarLogo - StarLogo TNG (The Next Generation) – attempts to 

lower the barrier to entry for programming by adding a block-based programming interface to the 

agent-based modeling and simulation environment (Klopfer et. al., 2009). StarLogo TNG also 

includes 3D graphics and sound to attract more young people into programming and creation of 

richer games and simulation models. Unlike StarLogo TNG, NetLogo (Wilensky, 1999) employs 

a written, text-based programming language. This is why StarLogo TNG is sometimes considered 

more user-friendly for younger users, who can focus on agent-based programming without being 

bogged down by spelling and syntax errors. However, NetLogo also has its set of added advantages 

over StarLogo TNG. NetLogo can handle more agents, model more complex behaviors, and 

simulation runs are more time-efficient. The NetLogo language is more extensive with better 

support for lists, agent sets, and local variables, and it is extendable and controllable via Java, 

making it better suited for embedding in Java-based learning environments 

(http://projectguts.org/). In CTSiM, we integrate the benefits of each of these agent-based 

environments by developing our own block-based programming interface for constructing agent-

based computational models and using NetLogo under the hood to generate simulations 

corresponding to the models.  

The described MABM environments are used extensively in elementary through 

undergraduate classrooms to help students learn about emergent phenomena in different science 

disciplines. For example, NetLogo comes with a large model library, which can form the basis for 

curricular material in several science topics. Many middle school students use the NetLogo Fire 

model to study natural disasters, such as volcanoes and forest fires, while several high school 

students use models from the NetLogo GasLab suite to understand Kinetic Molecular Theory and 

effects of molecular interactions on aggregate properties of gases like pressure and temperature. 

NIELS (NetLogo Investigations in Electromagnetism), a curriculum of multi-agent computational 

models, has been shown to help undergraduate students develop a deep, expert-like understanding 

of phenomena, such as electric current and resistance by modeling them as phenomena that emerge 

http://projectguts.org/
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from simple interactions between electrons and other charges in a circuit (Sengupta & Wilensky, 

2009). ViMAP (Sengupta & Farris, 2012) is an example of a multi-agent environment based on 

the NetLogo modeling platform. In ViMAP, students can construct a new NetLogo simulation 

model or modify an existing NetLogo simulation model using visual and tactile programming. 

Students can also dynamically generate inscriptions (e.g., graphs) of aggregate level phenomena 

using the MAGG (Measuring Aggregation) functionality. Studies using ViMAP to teach 

Kinematics have shown that elementary school students develop a deep conceptual understanding 

of the relevant physics concepts involved.  

On the other hand, Project GUTS (Growing Up Thinking Scientifically) is an example of 

a year-long STEM program for middle school students that uses StarLogo to engage students in 

agent-based modeling and scientific inquiry. During the first four weeks of the program, students 

learn about complex systems and how to create computer models from scratch. Subsequently, 

during each six-week afterschool unit, students investigate a problem, interview experts and 

community members, gather data, and run experiments on their computer models to better 

understand the problem being studied (http://projectguts.org/). Then, students upload their 

investigations to the project website and compare and discuss their models with others. Recently, 

Code.org and Project GUTS have partnered to deliver a middle school science program consisting 

of four instructional modules and professional development for the introduction of CS concepts 

into science classrooms within the context of modeling and simulation. Details about this 

collaborative project have already been presented in Section 2.3.2.  

Though MABMs have been shown to be effective pedagogical tools in learning about 

emergent phenomena in various domains (Chi, 2005; Mataric 1993; Wilensky & Reisman, 2006), 

students generally require scaffolding when learning using MABMs. For example, Wilensky and 

Reisman (2006) showed that high school students were able to develop a deep understanding of 

population dynamics in a predator-prey ecosystem by building MABMs of wolf-sheep predation, 

but they needed to be provided explicit assistance in terms of programming support and reflection 

prompts by the interviewer. Tan and Biswas (2007) reported a study where 6th grade students were 

scaffolded by the interviewer while using a multi-agent based simulation to conduct science 

experiments related to a fish tank ecosystem. The experimental study showed that students who 

used the simulation showed significantly higher pre-post test learning gains, as compared to a 

control group that were provided with the results of the simulations but did not have opportunities 

http://projectguts.org/
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to explore in the multi-agent simulation environment. In another study, Dickes and Sengupta 

(2013) showed that students as young as 4th graders can develop multi-level explanations of 

population-level dynamics in a predator-prey ecosystem after interacting with a MABM of a bird-

butterfly ecosystem through scaffolded learning activities. In our previous work, we identified and 

quantified the benefits of a set of scaffolds that can help middle school students learn the correct 

inter-species relations underlying a desert ecosystem simulation, and understand and reason about 

the concepts of interdependence and balance in such an ecosystem (Basu, Sengupta & Biswas, 

2014). Further, Kapur & Kinzer (2008) along with Pathak, et. al. (2008) have shown that learners 

who are scaffolded and provided structured steps to follow during their ABM activity, initially 

learn better than unscaffolded learners. However, if this initial activity is followed by a second 

activity where both groups of learners are scaffolded, and a third activity where both groups are 

not scaffolded, the initially unscaffolded group will perform better by the third activity. The initial 

failure of the unscaffolded group in the first study is referred to as ‘productive failure’, meaning 

that the initial failure made the students better prepared to learn when they were scaffolded in the 

second activity. 

3.2.3 Summary of existing research on ABMs and ABMs as tools for CT 

Review of the literature indicates that the agent-based modeling paradigm has shown great 

potential for helping students learn emergent phenomena in diverse domains, especially in science 

domains where a multitude of curricular topics can be modeled as a large, distributed set of agents. 

Bootstrapping students’ intuitive agent-level understandings helps them learn aggregate-level 

emergent outcomes more easily than when they are presented with aggregate level formalisms 

directly. However, in order to learn effectively using MABMs, students generally require scaffolds 

to help them structure their investigations using MABMs, reminders to pay attention to both agent-

level and aggregate outcomes, and help understanding the effects of agent-level behaviors on 

aggregate outcomes.  

In addition, we find that agent-based modeling and simulation can serve as powerful tools 

for introducing CT across the K-12 science curriculum. Modeling each agent type individually as 

a set of rules that govern its behavior and interactions with other agents encourages the CT practice 

of decomposing a complex modeling task into manageable pieces, which can be worked on in 

parallel. ABM also simplifies the process of model debugging and encourages the CT practice of 
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testing effectively by testing individual agents separately. Not surprisingly, we notice that learning 

environments that try to integrate CT with science learning at the K-12 level tend to use an agent-

based modeling paradigm. Learning using such agent-based CT environments would presumably 

necessitate scaffolding, not just for becoming proficient in CT and science concepts, but also for 

learning how to work effectively with ABMs. This approach of using ABM as a tool for integrating 

CT with curricular science topics guides our design and development of the CTSiM learning 

environment, as described in detail in Section 3.6.  

3.3 Visual Programming for middle school students 

In a visual programming (VP) environment, students construct programs using graphical objects, 

typically in a drag-and-drop interface, thus making the programming more intuitive and accessible 

to the novice programmer (Kelleher & Pausch, 2005; Hundhausen and Brown 2007). Visual 

constructs significantly reduce issues with learning program syntax and understanding textual 

structures making it easier for students to focus on the semantic meaning of the constructs 

(Hohmann, 1992; Soloway, 1993). For example, visual interfaces make it easier to interpret and 

use flow of control constructs, such as loops and conditionals (Parsons & Haden, 2007). This is an 

important affordance of VP, because prior research has shown that students in a LOGO 

programming-based high school physics curriculum faced significant challenges in writing 

programs for modeling kinematics, even after multiple weeks of programming instruction (Sherin 

et al. 1993). In the studies reported by Sherin et al. (1993) and diSessa et al. (1991a, b), middle 

and high school students required fifteen or more weeks of instruction, out of which, the first 5 

weeks of classroom instruction were devoted solely to learning programming taught by a 

programming expert. Sherin et al. (1993) pointed out that, given the time constraints already faced 

by science (in their case, physics) teachers, the additional overhead associated with teaching 

students to program may simply prove prohibitive. 

Some examples of agent-based VP environments are AgentSheets (Repenning 1993), 

StarLogo TNG (Klopfer et al. 2009), Scratch (Maloney et al. 2004), ToonTalk (Kahn 1996), 

Stagecast Creator (Smith et al. 2000), and Alice (Conway 1997). Users in all of all these 

environments can: (a) construct or design their programs by arranging icons or blocks that 

represent programming commands and (b) employ animations to represent the enactment (i.e., the 
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execution) of the user-generated algorithm (i.e., program), albeit with varying degrees of algorithm 

visualization (Hundhausen and Brown 2007).  

In the CTSiM learning environment, we focus on VP as the mode of programming and 

computational modeling to make it easier for middle school students to translate their intuitive 

knowledge of scientific phenomena (whether correct or incorrect) into executable models that they 

can then analyze through simulations. CTSiM provides a library of visual constructs that students 

can choose from and arrange spatially to generate their computational models. If students try to 

drag and drop a programming construct incorrectly, the system disallows the action, and indicates 

the error by explicitly displaying an ‘x’ sign. Therefore, CTSiM eliminates the possibility of 

generating programs (that is, models) with syntax errors.  

3.4 Integration of domain-specific primitives and domain-general abstractions 

Previous research suggests that learning a domain-general programming language and using it for 

domain-specific scientific modeling involves a significant pedagogical challenge (Guzdial, 1994; 

Sherin et al., 1993). Rather, a domain-specific modeling language (DSML) that combines domain-

general computational primitives and domain-specific primitives, can help leverage students’ 

intuitions about the domain, while emphasizing the generality of computational primitives across 

domains. Domain-general primitives are computational constructs, like “when-do-otherwise do” 

and “repeat” that represent CT concepts, like conditionals and loops. Domain-specific primitives, 

on the other hand, are designed specifically to support modeling of particular aspects of the topic 

of study. Imposing domain-specific names on the constructs creates semantically meaningful 

structures for modeling actions in the particular domain that help gain a better conceptual 

understanding of the domain. CTSiM uses a DSML to help foster synergistic science and CT 

learning. For example, CTSiM uses domain-specific primitives, like “forward”, “speed up” and 

“slow down” to represent movement, acceleration and deceleration actions in the kinematics 

domain, and primitives, like “create new” and “die” to imply birth and death of agents in the 

ecology domain. Students develop complex agent behaviors in CTSiM by meaningfully combining 

domain-general computational primitives and domain-specific primitives.  
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3.5 Initial CTSiM architecture and interfaces 

Based on the design principles described in Sections 3.1-3.4, we developed the initial version of 

the CTSiM learning environment, which we will henceforth refer to as CTSiM version 1 (CTSiM 

v1). CTSiM v1 adopted a learning-by-design pedagogy, where students built computational 

models of given science topics using an agent-based, visual programming platform and a domain-

specific modeling language. Students were also provided support for programming through tools 

for algorithm visualization and model verification. They could observe the behavior of their 

computational models as agent-based simulations at any point of time, helping them understand 

the relationships between their models and the resultant enactment of their models. Students were 

also provided with an “expert” (i.e., canonically correct) simulation, and could iteratively refine 

their models by comparing results of their simulation to the expert simulation, understanding the 

differences, and then mapping behaviors exhibited by their simulations to programming constructs 

in their computational models and vice-versa.  

The initial CTSiM learning environment comprised three primary interface modules: the 

Construction world (C-World) or the ‘Build’ interface, where students constructed their 

computational models; the Enactment world (E-World) or the ‘Run’ interface for model 

visualization as simulations; and the Envisionment world (V-World) or the ‘Compare’ interface 

for model verification. We describe each of these interfaces in more detail using examples from a 

curricular unit in ecology implemented using CTSiM v1. 

The C-World provided the VP interface for students to build computational models of 

science topics using an agent-based framework. Figure 1 illustrates the CTSiM v1 C-World drag-

and-drop interface that shows a model describing how a fish agent breathes. In this version of the 

system, students selected the agent and procedure they wanted to model from drop-down menus 

located at the top of the interface, selected primitives from a palette of programming primitives or 

blocks placed on the left panel of the interface, and dragged and dropped the selected primitives 

on the right panel of the interface, spatially arranging and parameterizing them into a structure that 

represented their computational models for the agent behaviors. For each agent, students modeled 

the different agent behaviors as separate procedures and specified the procedures to be executed 

within a procedure called ‘Go’ for the particular agent. The palette of programming primitives 

provided for modeling any agent procedure comprised both domain-general computational 

primitives, like conditionals, loops, variables and operators, as well as domain-specific primitives 
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that represent agents, agent properties, environmental elements, sensing conditions, and agent 

actions. 

 

Figure 1. The CTSiM v1 Construction World for building computational models 

The E-World represented a microworld (Papert 1980; White and Frederiksen 1990), where 

the behaviors of agents defined in the C-World could be visualized in a simulation environment. 

The CTSiM environment, implemented in Java, included an embedded instance of NetLogo 

(Wilensky 1999) to implement the visualization and mechanics of the simulation. NetLogo 

visualization and plotting/measurement functionality provided the students with a dynamic, real-

time display of how their agents operated in the microworld, thus making explicit the emergence 

of aggregate system behaviors (e.g., from graphs of the population of a species over time). Students 

could also view the different agent procedures they modeled alongside the aggregate simulation to 

better understand the relations between the models they constructed and the resultant simulations. 

Figure 2 depicts the CTSiM v1 E-World interface. 

The visual blocks, or programming primitives used by students as they built their 

computational models were internally translated to an intermediate language and represented as 

code graphs of parameterized computational primitives. These code graphs remained hidden from 

the learner, and were translated into NetLogo code by the model translator. The generated NetLogo 

code was combined with the domain base model to generate the simulations corresponding to the 
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user models. The base model provided NetLogo code for visualization and other housekeeping 

aspects of the simulation that were not directly relevant to the learning goals of the unit. 

 

Figure 2. The CTSiM v1 Enactment World for model vizualization 

 

Figure 3. The CTSiM v1 Envisionment World for model verification 

The CTSiM v1 V-World provided students with a space where they could systematically 

design experiments to test their constructed models and compare their model behaviors against 

behaviors generated by an “expert” model, which ran in lock step with the student-generated 

model. Although the expert model was hidden, students could observe its generated behaviors and 

compare them to the corresponding behaviors generated by their model with side-by-side plots and 

microworld visualizations. This comparison allowed students to make decisions on what 

components of their models they needed to investigate, develop further, or check to correct for 
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errors. With proper support and scaffolding, we believed that the overall process of model 

construction, analysis, comparison, and refinement would help students gain a better 

understanding of science phenomena and the scientific reasoning process, while also learning 

computational constructs and methods. 

3.6 Designing learning activities and a learning progression using CTSiM v1 

Kinematics (physics) and ecology (biology) were chosen as the curricular topics for synergistic 

learning of science and CT using CTSiM v1. They are common and important curricular topics in 

the middle school curriculum, and researchers have shown that K-12 students have difficulties in 

understanding and interpreting concepts in these domains (Chi et al. 1994). Furthermore, it has 

been argued that students’ difficulties in both the domains have similar epistemological origins, in 

that both kinematics phenomena (e.g., change of speed over time in an acceleration field) and 

system-level behaviors in an ecosystem (e.g., population dynamics) involve understanding 

aggregation of interactions over time (Reiner et al. 2000; Chi 2005). For example, physics 

educators have shown that understanding and representing motion as a process of continuous 

change is challenging for novice learners (Halloun and Hestenes 1985; Elby 2000; Larkin et al. 

1980; Leinhardt et al. 1990; McCloskey 1983). Novices tend to describe or explain any speed 

change(s) in terms of differences or relative size of the change(s), rather than describing speeding 

up or slowing down as a continuous process (Dykstra & Sweet 2009). Similarly, in the domain of 

ecology, biology educators have shown that while students have intuitive understandings of 

individual-level actions and behaviors, they find aggregate-level patterns that involve continuous 

dynamic processes—such as interdependence between species and population dynamics—

challenging to understand without pedagogical support (Chi et al. 1994; Jacobson & Wilensky, 

2006; Wilensky & Novak 2010; Dickes & Sengupta, 2012). 

Also, as discussed in Section 3.2, agent-based modeling is well suited for representing such 

phenomena, as it enables learners to invoke their intuitions about agent-level behaviors and 

organize them through design-based learning activities (Kolodner et al. 2003), in order to explain 

aggregate-level outcomes. Studies have shown that pedagogical approaches based on agent-based 

models and modeling can allow novice learners to develop a deep understanding of dynamic, 

aggregate-level phenomena— both in kinematics and ecological systems by bootstrapping, rather 



 43 

than discarding their agent-level intuitions (Dickes & Sengupta, 2012; Wilensky & Reisman, 2006; 

Levy & Wilensky, 2008). 

We developed a learning activity progression using CTSiM v1 where students worked on 

Kinematics unit activities first and then proceeded to work on activities associated with the 

Ecology unit (Sengupta et. al., 2013). The Kinematics unit focused on modeling Newtonian 

mechanics phenomena, the relations between speed, distance and acceleration, and graphical 

representations of motion.  The Ecology unit, on the other hand, emulated a simplified fish tank 

environment, and focused on the concepts of dynamic equilibrium and interdependence among 

species in the ecosystem. In terms of programming concepts, activities in both the domains 

required understanding and use of common CT concepts like conditionals, loops, variables. 

However, the Ecology unit activities involved modeling more complex topics and hence required 

a greater use of CT practices, like decomposition and modularization. In fact, our rationale behind 

sequencing the two domains in the curriculum was guided by the programming complexities 

involved in modeling phenomena in the two domains (Sengupta et. al., 2013). For example, while 

the kinematics learning activities described below required the students to program the behavior 

of a single computational agent, modeling the fish tank ecosystem required students to program 

the behaviors of and interactions between multiple agents. We introduced students to single-agent 

programming before introducing them to multi-agent programming—therefore, in our curricular 

sequence, students learnt kinematics first, and then ecology.  

For the kinematics unit, we extended previous research by Sengupta & Farris (2012) to 

design the learning activities in three phases. 

Kinematics Phase 1: This covered Activities 1 and 2, where students used Turtle graphics 

to construct geometric shapes that represented: (1) constant speed and (2) constant acceleration. 

In Activity 1, students were introduced to programming primitives such as “forward”, “right turn”, 

and “left turn” that dealt with the kinematics of motion, primitives like “repeat”, which 

corresponded to a computational construct (independent of a domain construct), and primitives 

like “pen down”, and “pen up,” which were Netlogo-specific drawing primitives. The students 

were given the task of generating procedures that described the movement of a turtle for drawing 

n-sided regular shapes, such as squares and hexagons. Each segment of the regular shape was 

walked by the turtle in unit time indicating constant speed. Therefore, Activity 1 focused on 

students learning the relationship between speed, time, and distance for constant-speed motion. In 
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Activity 2, students were given the task of extending the turtle behavior to generate shapes that 

represented increasing and decreasing spirals. In this unit, segments walked by the turtle, i.e., its 

speed per unit time, increased (or decreased) by a constant amount, which represented a positive 

(or negative) acceleration. Activity 2, thus introduced students to the relations between 

acceleration, speed, and distance using the “speed up” and “slow down” commands to command 

the motion of the turtle.  

Kinematics Phase 2 corresponded to Activity 3, where students interpreted a speed-time 

graph to construct a representative turtle trajectory. Starting from the speed-time graph shown in 

Figure 4 students developed a procedure where the length of segments the turtle traveled during a 

time interval corresponded to the speed value on the graph for that time interval. For example, it 

was expected that students would recognize and model the initial segment of increasing speed by 

a growing spiral, followed by the decrease in speed by a shrinking spiral, whose initial segment 

length equaled the final segment length of the last spiral. Students were given the freedom to 

choose the shapes associated with the increasing and decreasing spirals. A possible solution output 

is provided in Figure 4. We hypothesized this reverse engineering problem would help students 

gain a deeper understanding of the relations between acceleration, speed, distance, and time.  

 

Figure 4. Acceleration represented in a speed-time graph (left) and turtle graphics (right) 

 

Figure 5. A roller-coaster car moving along different segments of a pre-specified track 
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Kinematics Phase 3, represented by Activity 4 involved modeling the motion of a 

rollercoaster car along a pre-specified track with multiple segments (see Figure 5). In more detail, 

students were asked to model a rollercoaster as it moved through different segments of a track: (1) 

up (pulled by a motor) at constant speed, (2) down (with gravitational pull), (3) flat (cruising), and 

then (4) up again (moving against gravity). The students had to build their own model of 

rollercoaster behavior to match the observed expert behavior for all of the segments. 

For the Ecology unit, students modeled a closed fish tank system in two phases, represented 

by Activities 5, 6, and 7.  

Ecology Phase 1 corresponded to Activity 5, where students constructed a macro-level, 

semi-stable model of the fish tank ecosystem by modeling the fish and duckweed species as two 

agent types (see Figures 2 and 3). Activity 5 required students to model the food chain, respiration, 

locomotion, excretion, and the reproductive behaviors for the fish and duckweed. The inability to 

develop a sustained macro-model, where the fish and the duckweed could be kept alive for 

extended periods of time, even though all of the macro processes associated with the two agents 

were correctly modeled (that is, the behaviors generated by the students’ computational model 

matched the behaviors generated by the expert model), encouraged students to reflect on what may 

be missing from the macro model. Students realized the need to model the waste cycle and its 

entities, primarily the two forms of bacteria and their behaviors. This prompted the transition to 

the second phase where students identified the continuously increasing fish waste as the culprit for 

the lack of sustainability of the fish tank. 

Ecology Phase 2, represented by Activity 6, involved building the waste cycle model for 

the fish tank, with the Nitrosomonas bacteria that converts the toxic ammonia in fish waste into 

nitrites, which is also toxic, and the Nitrobacter bacteria that converts the nitrites into nitrates. 

Nitrates are consumed by the duckweed (as nutrients), thus preventing an excessive buildup of 

toxic chemicals in the fish tank environment. The combination of graphs from the micro- and 

macro-world visualizations was intended to help the students develop an aggregate-level 

understanding of the interdependence and balance among the different agents (fish, duckweed, and 

bacteria) in the system. After completing the ecology micro unit, students worked on Activity 7, 

where they discussed the combined micro-macro model with their assigned researcher and how 

the macro-micro model phenomena could be combined into an aggregated causal model describing 

the sustainability of the fish tank ecosystem. 
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CHAPTER 4 

Assessing students’ use of the initial version of the CTSiM learning environment 

We conducted a semi-clinical interview-based study (Piaget, 1929) using the initial version of 

CTSiM described in Chapter 3 to assess the effectiveness of our pedagogical approach and study 

students’ interactions with the system (Basu et. al., 2013; Sengupta et. al., 2013). We wanted to 

see if students could model science topics and learn using CTSiM v1, and study what problems 

and questions they had while working using the system. This chapter lays out the particulars of 

this initial study and our findings which influence future re-design of the CTSiM environment. 

4.1 Research study setting and procedure 

We conducted an initial study using CTSiM v1 with one 6th-grade classroom comprising 24 

students (age ranges between 11 and 13) from an ethnically diverse middle school in central 

Tennessee in the United States. Since this was our first study with the CTSiM v1 system, our 

primary goals were to gain a detailed understanding of how students interacted with the system, 

the approaches they used in constructing their models, the problems they faced while building and 

debugging their models, how they discovered and responded to errors in their models, and 

scaffolds that could help them deal with their challenges and complete their modeling activities. 

Towards this end, 15 of the 24 students in the class were chosen by the science teacher to work on 

CTSiM v1 with one-on-one individualized verbal guidance from members of our research team. 

The teacher ensured that the chosen students were representative of different genders, ethnicities, 

and performance levels. We refer to these students as the Scaffolded or S-Group. While the 

majority of the class participated in the pull-out study, the remainder of the class (9 students) was 

allowed to explore the same set of units in the CTSiM v1 environment on their own without the 

one-on-one guidance. However, these students did get some guidance from the teacher and 

members of our research team during their science period. We refer to these nine students as the 

Classroom or C-Group.  

The 15 students in the S-Group were paired one-on-one with one of five members of our 

research team. Thus, each researcher from our team worked with 3 students for the study with 

three 1-hour sessions daily (9am-10am, 10am-11am, 12:30pm-1:30pm), one for each student 
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assigned to them. All five members of our research team who conducted the one-on-one interviews 

had prior experience with running similar studies. The members met before the study and decided 

on a common framework for questioning and interacting with students as students worked with 

CTSiM v1. While the interviews were not strictly scripted, since the conversations would depend 

on individual student actions and thought processes, a common flexible interview script was 

prepared and shared among the researchers. The interview script ensured that all of the researchers’ 

interview formats and structures were similar (similar questions asked and similar examples to 

illustrate a concept) during each of the CTSiM learning activities. As part of the intervention, the 

researchers introduced the CTSiM v1 system and its features to their students individually, and 

introduced each of the learning activities before the student started them. However, students were 

not told what to do; they had complete control over how they would go about their modeling and 

debugging tasks. But the researchers did intervene to help students when they were stuck or 

frustrated by their own lack of progress. An important component of the researchers’ interactions 

with the students involved targeted prompts, where they got students to focus on specific parts of 

the simulation results and verify the correctness of their model. When needed, the researchers also 

asked leading questions to direct the students to look for differences between the expert simulation 

results and their own results, and then reflect on possible causes for observed differences. These 

questions often required students to predict the outcome of changes they had made to their models 

and then check if their predictions were supported by the simulation results. In addition, the 

researchers prompted the students periodically to make them think aloud and explain what they 

were currently doing on the system. They also provided pointers about how to decompose large 

complex modeling problems into smaller manageable parts, and at appropriate times, reminded 

students about how students had tackled similar situations in past work. All of the student and 

researcher conversations during the one-on-one interviews were recorded using the Camtasia 

software. These videos also included recordings of the screen, so we could determine what actions 

the students performed in the environment, and what the consequences of the actions were.  

Since this study was primarily targeted toward understanding how students’ used the 

system, and how their learning and understanding of the science processes evolved, we only 

assessed science learning as a result of our intervention and did not include assessments for CT. 

The science assessments included paper-based kinematics and ecology questions (the pre- and 

post-tests design included repeated items), which comprised a combination of multiple choice and 
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short answer questions. On Day 1 of the study, we administered pre-tests for both the Kinematics 

and Ecology units. Students took between 25 and 40 minutes to finish each test. Then students 

worked on the kinematics units (Activities 1-4) in daily hour-long sessions from Day 2 through 

Day 4 and took the kinematics post-test on Day 5. On Days 6-8, students worked in daily hour-

long sessions on the ecology units (Activities 5-7) and then took the ecology posttest on Day 9. 

The entire study took place over a span of two weeks towards the end of the school year, after the 

students had completed their annual state-level assessments (Tennessee Comprehensive 

Assessment Program or TCAP). 

The Kinematics pre/post-tests were designed to assess students’ understanding of concepts 

like speed, distance, and acceleration and their relations, along with their reasoning using 

mathematical representations of motion (e.g., graphs). Our goal was to assess whether 

computational modeling improved their abilities to generate and explain these representations. 

Specifically, students were asked to interpret and explain speed versus time graphs, and to generate 

diagrammatic representations to explain motion in a constant acceleration field, such as gravity. 

For example, one question asked students to diagrammatically represent the time trajectory of a 

ball dropped from the same height on the earth and the moon. The students were asked to explain 

their drawings and generate graphs of speed versus time for the two scenarios.  

For the Ecology unit, the pre- and post-tests focused on students’ understanding of roles of 

species in the fish-tank ecosystem, interdependence among the species, the food chain, the waste 

and respiration cycles, and how a specific change in one species affected the others. Some of the 

questions required students to use declarative knowledge about the fish tank system while other 

questions required causal reasoning about entities using the declarative knowledge. An example 

question asked was “Your fish tank is currently healthy and in a stable state. Now, you decide to 

remove all traces of nitrobacter bacteria from your fish tank. Would this affect a) Duckweed, b) 

Goldfish, c) Nitrosomonas bacteria? Explain your answers.”  

4.2 Science learning gains using CTSiM 

We assessed students’ science learning in this initial study based on their kinematics and ecology 

pre-to-post learning gains. Two members of our research team (including myself) came up with 

initial rubrics for grading the tests, which were then iteratively refined based on student responses. 
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The initial rubric focused on correct answers for multiple choice questions and keywords and 

important concepts for questions requiring short answer responses. A systematic grading scheme 

was developed after studying a subset of the student responses. The short answer grading scheme 

attempted to account for different ways a question could be answered correctly, and was updated 

if we found a student response which could not be graded adequately using the current rubric.  

Students belonging to both the S and C groups showed learning gains in both the curricular 

units (Basu et. al., 2012; Sengupta et. al., 2012). The pre-test scores and the state-level TCAP 

science scores from the previous academic year suggested differences in prior knowledge and 

abilities of students in the S and C groups. Hence, we computed repeated measures ANCOVA 

with TCAP science scores as a covariate of the pretest scores to study the interaction between time 

and condition. Not surprisingly, there was a significant effect of condition (i.e., S-Group versus C-

Group) on pre-post learning gains in kinematics (F(1,21) = 4.101, p<0.06), as well as ecology 

(F(1,21) = 37.012, p<0.001). Figure 6 shows that the S group’s adjusted gains were higher than 

that of the C group in both the curricular units.  

 

Figure 6. Comparison of learning gains between groups using TCAP scores as a covariate in the 

first CTSiM study 
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We also conducted paired sample t-tests to study pre-to-post gains for each group. Table 2 

shows that for the ecology unit, the intervention produced statistically significant pre-to-post gains 

for both groups (p<0.001 for S-group; p<0.01 for C-Group), but for the kinematics unit, the gains 

were significant only for the S-Group (p<0.05 for S-group, p>0.5 for C-group). The reduction in 

statistical significance for the kinematics unit may be attributed to a ceiling effect in students’ pre-

test scores, given that students entered the instructional setting with a significantly higher score in 

the kinematics pre-test than the ecology pre-test.  

Table 2. Paired t-test results comparing Kinematics and Ecology pre and post test scores from the 

first CTSiM study 

4.3 Identifying students’ difficulties while working with CTSiM 

Besides assessing students’ science learning through their performance on pre- and post- tests, we 

also analyzed the Camtasia-generated videos for all fifteen students of the S-group to characterize 

the types of challenges students faced when working with CTSiM and the scaffolds that were 

provided to help them overcome these challenges.  

4.3.1 Analysis and coding of study data 

The video data was coded along two dimensions: first, the type and frequency of challenges faced 

during each activity, and second, the scaffolds that were used to help the students overcome the 

challenges. Initial codes were established using the constant comparison method by two 

 Kinematics Ecology 

 Pre  

Mean (S.D.) 

(max=24) 

Post  

Mean (S.D.) 

(max=24) 

P-value 

(2-tailed) 

Effect size 

(Cohen’s d) 

Pre  

Mean (S.D.) 

(max=35.5) 

Post  

Mean (S.D.) 

(max=35.5) 

P-value 

(2-tailed) 

Effect size 

(Cohen’s d) 

S-Group 

(n=15) 

18.07 (2.1) 19.6 (2.3) <0.05 0.71 13.03(5.4) 29.4(5.0) <0.001 3.16 

C-Group 

(n=9) 

15.56 (4.1) 15.78 (4.4) >0.5 0.05 9.61(3.1) 13.78(4.4) <0.01 1.09 
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researchers involved in the study (including myself). To do so, we chose data from two 

participants, whom we will call Sara and Jim (not their real names). Sara and Jim were selected as 

representative cases, because they had the lowest and highest state standardized assessment 

(TCAP) scores in science among the 15 participants of the pull-out study. Fourteen challenge 

categories were identified, which we further grouped into four broad categories: (1) Programming 

Challenges, (2) Modeling Challenges, (3) Domain Challenges, and (4) Agent-Based Reasoning 

Challenges – to aid in the interpretation of the aggregate data set. Henceforth, we refer to the 14 

initial categories as ‘sub-categories’ of these four broad categories. Definitions and examples of 

the different types of challenges are explained in detail in Section 4.3.2. 

To establish reliability, two researchers unaffiliated with the study coded all the interviews 

independently, using the described coding scheme. To determine inter-rater reliability, the 

researchers were first asked to determine the challenges and frequency counts for Activity 3, 4, 

and 5 from Sara’s video data. Both coders reached good agreement with the researcher-developed 

codes (91.15% and 96.46% agreement). Once reliability with the researcher codes was established, 

the coders were asked to code a different student to test their inter-rater reliability. The inter-rater 

reliability between Coder 1 and Coder 2 yielded a Cohen’s Kappa of 0.895 (93.1% agreement), 

implying a ‘very good’ inter-rater reliability rating. Then, the coders divided up the work of coding 

the remaining 12 student videos. Once the challenges faced and scaffolds received for all 15 

students were extracted from the video files, we computed the average number of challenges of 

each type per activity in order to better understand the relations between different types of 

challenges and how the challenges varied across learning activities spanning two domains. 

4.3.2 Challenges faced and scaffolds required 

Our analysis of the one-on-one interviews produced four primary categories and 14 subcategories 

of challenges students faced when developing and testing their models using CTSiM v1 (Basu et. 

al, 2013; Basu et.al., in review), which are summarized as follows: 

a. Domain knowledge challenges related to difficulties attributed to missing or incorrect 

domain knowledge in science. Given that these challenges were non-computational in 

nature, they were not studied in further detail.  

b. Modeling and simulation challenges were associated with representing scientific concepts 

and processes as computational models, and refining constructed models (partial or full) 
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based on observed simulations. More specifically, these challenges included difficulties in 

identifying the relevant entities in the phenomenon being modeled; specifying how the 

entities interact; choosing correct preconditions and initial conditions, model parameters, 

and boundary conditions; understanding dependencies between different parts of the model 

and their effect on the overall behavior; and verifying model correctness by comparing its 

behavior with that of an expert model. Subcategories of these challenges could be classified 

as: (1) challenges in identifying relevant entities and their interactions; (2) challenges in 

choosing correct preconditions; (3) systematicity challenges; (4) challenges with 

specifying model parameters and component behaviors; and (5) model verification 

challenges).  

c. Agent-based thinking challenges – Students faced difficulties in expressing agent behaviors 

as computational models, difficulties in understanding how individual agent interactions 

lead to aggregate-level behaviors and the consequences of agent behavior changes on the 

aggregate behavior. Therefore, the subcategories of challenges have been called: (1) 

thinking like an agent challenges; and (2) agent-aggregate relationship challenges.  

d. Programming challenges – Students had difficulties in understanding the meaning and use 

of computational constructs and other visual primitives (for example, variables, 

conditionals, and loops). They had difficulties in conceptualizing agent behaviors as 

distinct procedures, and some could not figure out how to compose constructs visually to 

define an agent behavior. Additional difficulties were linked to the inability to reuse code, 

and to methodically detect incorrect agent behavior, find root causes, and then figure out 

how to correct them. The programming challenge subcategories were: (1) challenges in 

understanding the semantics of domain-specific primitives; (2) challenges in using 

computational primitives like variables, conditionals, nesting, and loops to build programs 

(i.e., behaviors); (3) procedurality challenges; (4) modularity challenges; (5) code reuse 

challenges; and (6) debugging challenges).  

These four types of challenges are not mutually exclusive. For example, agent-based thinking 

challenges could also be considered as modeling and simulation challenges, but specific to the 

agent-based modeling paradigm we have employed in CTSiM. However, this categorization still 

offers ease of analysis and reporting. Tables 3, 4, 5 and 6 describe the domain knowledge, 

modeling, agent-based-thinking, and programming challenges respectively, along with sub-
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categories of challenges where applicable, examples of occurrence of the challenges from the 

kinematics and ecology units, and scaffolds provided by the experimenters to help students 

overcome these challenges. 

Table 3. Domain knowledge challenges and scaffolds 

Challenge Description Kinematics unit 

examples 

Ecology unit 

examples 

Scaffolds provided 

Domain 

knowledge 

related 

challenges 

Difficulties 

caused by 

missing or 

incorrect 

domain 

knowledge 

Difficulty 

understanding 

acceleration and its 

relation to speed, 

how speed depends 

on the rollercoaster 

segment slope 

Lack of prior 

knowledge 

about the waste 

cycle in the fish 

tank, the 

chemicals and 

the role of 

bacteria 

Explain formal procedures for calculations, 

provides definitions, explanations, and 

examples of different scientific terms and 

concepts; Help connect domain-related 

theoretical concepts to learning tasks in the 

CTSiM environment; Rectify incorrect 

knowledge using contrasting cases for 

creating cognitive conflict 

Table 4. Types of modeling and simulation challenges and scaffolds. 

Types of 

challenges 

Description Kinematics unit 

examples 

Ecology unit 

examples 

Scaffolds provided 

Challenges 

with 

identifying 

relevant 

entities and 

their 

interactions  

Difficulty identifying the 

agents, their properties and 

their behaviors; which 

properties a behavior 

depends on and which 

properties a behavior 

affects, and how different 

agents interact with each 

other 

Modeling work 

done and energy 

consumed instead 

of speed of the 

roller  coaster; 

Difficulty 

understanding 

relation between 

steepness and speed  

Difficulty 

identifying types 

of environmental 

components (in 

this cases, gases) 

that are needed to 

model procedures 

like ‘breathe’ and 

‘eat’ 

Interviewer points out 

the aspects of the 

phenomena that need to 

be modeled; Interviewer 

prompts students to 

think about the agents to 

be modeled, their 

properties and 

behaviors, and the 

interactions between 

agents, and agents and 

their environment 

Challenges 

with choosing 

correct 

preconditions 

Difficulty in identifying 

and setting appropriate 

initial conditions and 

preconditions for different 

processes and actions 

Difficulty 

understanding that 

modeling 

acceleration 

requires specifying 

an initial velocity 

Difficulty 

understanding that 

a fish needs to be 

hungry and needs 

to have duckweed 

Prompt students to think 

about the preconditions 

necessary for certain 

functions/behaviors; 

Encourage students to 
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present to be able 

to eat  

vary initial conditions 

and test outcomes 

Systematicity 

challenges 

Difficulty in methodical 

exploration; Guessing and 

modifying the code 

arbitrarily instead of using 

the output behaviors to 

inform changes 

Non-systematic 

exploration and 

testing of different 

turn angles to 

generate a triangle 

or circle 

Lack of 

confidence about 

model being built; 

Changing model 

arbitrarily in an 

attempt to correct 

errors 

Encourage students to 

think about their goals, 

the starting points, and 

their plans of action 

Challenges 

with 

specifying 

model 

parameters 

and 

component 

behaviors 

Difficulty determining 

parameters for the visual 

primitive blocks in the C-

World to produce 

measurable and observable 

outcomes, and 

understanding individual 

effects of different 

components of a code 

segment on the behavior of 

the entire code segment 

Difficulty choosing 

optimal input 

parameters to 

generate clearly 

visible outputs; 

Confusion 

understanding 

effects of turn 

angle, speed up 

factor, and number 

of repeats on figure 

dimensions 

Inability to specify 

outcomes when a 

condition is true 

and when it is not, 

for example a fish 

dies when there is 

no oxygen 

Prompt students to 

make changes in 

parameter values to 

produce clearly visible 

outputs; Encourage 

testing outcomes by 

varying parameter 

values 

Model 

verification 

challenges 

Difficulty verifying and 

validating the model by 

comparing its behavior 

with that of the given 

expert model and 

identifying differences 

between the models 

Difficulty 

comparing user and 

expert rollercoaster 

models; Difficulty 

correlating model 

with simulation 

Difficulty 

comparing user 

and expert fish 

tank models; 

Difficulty 

correlating 

changes in the 

model and 

changes in user 

model output 

Ask students to slow 

down the simulation to 

make agent actions 

more visible; Point out 

the differences between 

the user and expert 

models 

Table 5. Types of Agent-based thinking challenges and scaffolds 

Types of 

challenges 

Description Kinematics 

unit examples 

Ecology unit 

examples 

Scaffolds provided 

Thinking 

like an 

Difficulty in modeling a 

phenomenon in terms of one or 

Problem 

delinking turn 

Difficulty 

modeling 

Drawing on paper and 

explaining; Making the 
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agent 

challenges 

more agents, their properties 

and their associated sets of 

distinct rules 

angle and 

forward 

movement to 

generate 

shapes; 

Difficulty 

understanding 

effects of 

turning with 

respect to 

different 

headings 

how an agent 

gains and 

loses energy; 

Problem 

delinking 

related 

actions – 

‘face nearest’ 

does not mean 

going forward 

as well 

students imagine themselves 

as agents; Providing external 

tools and artifacts to help 

understand and replicate agent 

behavior; Enacting agent 

behavior and making students 

predict such behavior; 

Prompts to visualize agent 

behavior mentally; Reminder 

that an agent does only what it 

is programmed to do 

Agent-

aggregate 

relationship 

challenges 

Difficulty understanding that 

aggregate level outcomes can be 

dependent on multiple agent 

procedures and debugging such 

a procedure requires checking 

each of the associated agent 

procedures; Difficulty 

reasoning about the role and 

importance of individual agents 

in an aggregate system 

Did not occur Difficult 

understanding 

that aggregate 

outcomes like 

o2 levels may 

depend on 

multiple 

agent 

procedures 

Reminder about different 

agents which can affect a 

particular aggregate level 

outcome 

Table 6. Types of programming challenges and scaffolds 

Types of 

challenges 

Description Kinematics unit 

examples 

Ecology unit 

examples 

Scaffolds provided 

Challenges 

with semantics 

and execution 

of domain-

specific 

primitives  

Difficulty understanding 

the functionality and role of 

various visual primitives 

and their execution 

semantics 

Difficulty 

understanding 

how ‘right_’, 

‘speed up’ 

blocks work and 

how to use them 

correctly  

Did not occur Step through the code 

and explain the 

functionality of 

primitives by showing 

their behavior in the 

E-World; Explain 

correct syntax for 

primitives 

Challenges 

with 

computational 

Difficultly in understanding 

the concept of variables, 

iterative-structures or 

Difficulty 

coordinating 

loops and turn 

Difficulty with 

conditionals and 

nesting conditionals 

 Explain concept of a 

variable using 

examples; Explain 
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primitives like 

variables, 

conditionals, 

nesting, and 

loops 

loops, conditionals and how 

and when to nest 

conditionals within other 

conditional statements 

angles to 

generate shapes, 

understanding 

what it means to 

increase the 

speed by the 

‘steepness’ 

variable 

to represent multiple 

preconditions which 

needed to be satisfied 

simultaneously 

syntax and semantics 

of loops and nested 

conditions using code 

snippets and their 

enactment 

Procedurality 

challenges  

Difficulty specifying a 

modeling task as a finite set 

of distinct steps, and 

ordering the steps correctly 

to model a desired behavior 

Did not occur Difficulty specifying 

behaviors like eat, 

breathe as a 

computational 

structure made up of a 

small set of primitive 

elements 

Prompt students to 

describe the 

phenomena, and break 

the phenomena into 

subparts and the 

individual steps 

within each subpart 

Code reuse 

challenges 

Difficulty identifying 

already written similar code 

to reuse and understanding 

which parts of the similar 

code to keep intact and 

which to modify 

Did not occur Difficulty 

understanding that 

‘breathe’ procedures 

for Nitrosomonas and 

Nitrobacter bacteria 

are similar and can be 

reused 

Prompts encouraging 

analogous reasoning; 

Making students think 

about what similar 

procedures they have 

already written 

Modularity 

challenges 

Difficulty in separating the 

behavior of the agents into 

independent procedures 

such that each procedure 

executes only one 

functionality or aspect of 

the desired agent behavior, 

independent of other 

functionalities in other 

procedures, along with 

difficulty remembering to 

call/invoke each of the 

procedures from the main 

procedure or program 

Did not occur Difficulty modeling 

the fish ‘eat’ and 

‘swim’ behaviors 

separately in different 

procedures (Though 

eating and swimming 

together is possible in 

real life, modeling 

calls for distinct 

procedures);  

Forgetting to call 

procedures from the 

main ‘Go’ method 

Prompt students to 

think about which 

function/behavior 

they are currently 

modeling and whether 

their code pertains to 

only that function 
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Debugging 

challenges 

Difficulty in methodically 

identifying ‘bugs’ or 

unexpected outcomes in the 

program, determining their 

underlying causes, 

removing the bugs and 

testing to verify the 

removal of the bugs 

Difficulty 

testing and 

correcting 

behavior of one 

rollercoaster 

segment at a 

time 

Did not occur Prompt students to 

walk through their 

codes and think about 

which part of their 

code might be 

responsible for the 

bug; Help break down 

the task by trying to 

get one code segment 

to work before 

moving onto another 

4.3.3 Number of challenges and their evolution across activities 

As further analysis beyond the different types of difficulties students faced when working with 

CTSiM, and the scaffolds which helped them in such situations, we also studied how the frequency 

of challenges varied across learning activities in one domain and across domains. This analysis 

helped understand the complexities associated with different learning activities and the variation 

in support required in these activities. 

First, we ran an agglomerative complete-link hierarchical clustering algorithm to see how 

the students grouped based on their challenge frequency profiles per activity. The results showed 

that the students generally exhibited similar challenge profiles with the exception of one student. 

Figure 7 shows the challenge profiles of the two clusters – the average challenge profile for the 

similar group of 14 students, and one outlier, a single student who seemed to face many more 

challenges than the rest of the students. This student needed more scaffolding than the other 

students, and several challenges had to be scaffolded more than once before the student could 

overcome those difficulties. This student’s pre-test and standardized state-level test scores were 

much lower than that of the other students, which may explain why the student had a significantly 

higher number of challenges initially. Though this student had multiple challenges that persisted 

through multiple activities, the number of challenges the student faced came closer to the number 

of challenges the others faced at the end of the kinematics (Activity 4) and ecology units (Activity 

7). Similarly, the student’s post-test scores also matched that of the others, making this student’s 

pre-post gains higher than most of the students.  
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Figure 7. Students clustered according to their number of challenges per activity in the initial 

CTSiM study 

Next, we analyzed how the average number of challenges per student varied across the 

kinematics and ecology units and across the activities in each unit. The average number of 

challenges for an activity is calculated as the total number of challenges for all 15 students for an 

activity divided by 15. This number depends on new challenges that students face in an activity, 

as well as the effectiveness of scaffolds received in previous activities. Whenever students faced 

challenges in an activity, the researchers provided scaffolds through conversations to help them 

overcome their challenges. If the scaffolding was successful, students would be more likely to 

overcome future occurrences of these challenges in their model building and checking tasks. 

However, we did observe students encountering similar challenges later in the same activity or in 

subsequent activities, and, therefore, students received the same or similar scaffolding more than 

once. Latter conversations associated with scaffolds often started with a reminder that the scaffold 

had been provided earlier when the student faced the same challenge.  

 

Figure 8. Variation of average number of challenges over activities in the initial CTSiM study 
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Figure 8 shows how the average number of challenges varied across the different activities. 

The number of challenges generally decreased across similar activities in the same domain. For 

example, the number of challenges decreased through the progression of shape drawing activities 

(Activities 1-3); similarly, the challenges decreased from Activity 5 through Activity 7 for the 

ecology units. The challenges increased when there was a transition from one domain to another 

(Activity 4 in kinematics to Activity 5 in ecology) and between problem types in a domain 

(Activity 3 to Activity 4 in the Kinematics domain). The increase in challenges was because 

Activity 4 (the rollercoaster activity) introduced a number of new modeling and programming 

challenges that the students had not encountered in the previous units. The complexities of 

modeling a real world phenomenon required that the students account for all of the relevant 

variables, such as the steepness of the roller-coaster ramp. In addition, this was the first activity 

where the students’ simulation model behaviors had to match that of an expert model behavior. 

Students required a better understanding of the simulation output, which was presented as a 

combination of an animation and graphs. Moreover, this activity was more challenging from a 

computational modeling viewpoint, because model building required the use of nested conditionals 

and variables. Students were experiencing these computational concepts for the first time, and this 

explained the increase in the difficulties they faced. Similarly, when students progressed from the 

Kinematics domain to the Ecology domain, Activity 5 (the fish-tank macro model) introduced 

additional complexities attributed to the change in domain. For example, students had to scale up 

from a single-agent to a multi-agent model. Activity 5 also involved modeling multiple behaviors 

for each agent, and students had to figure out how to modularize behaviors, for example, what to 

include in the fish ‘eat’ behavior versus the fish ‘swim’ behavior. (The two are related – a fish has 

to swim to its food before it can eat the food). 

The average number of challenges students faced in an activity is, thus a function of the 

complexity of the activity and the effectiveness of the scaffolds received in previous activities. 

Since we found an increase in average number of challenges in Activities 4 and 5, we further 

reviewed the coded student videos to analyze whether the challenges were new ones related to the 

new complexities introduced in the activities, or whether they were old ones resurfacing despite 

previous scaffolding. Our analysis showed that a number of new challenges were introduced in 

Activities 4 and 5, though a few previously observed challenges also resurfaced in the context of 
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the more complex activities. For Activity 4 (RC activity), students faced several new challenges 

in: 

 Modeling – Difficulties in comparing user and expert models, difficulties in setting 

preconditions and initial conditions, and modeling aspects that did not need to be modeled;  

 Programming – New challenges included difficulties in understanding the concept of 

‘variables’, difficulties in understanding the semantics of conditionals and nesting of 

conditionals, difficulties in debugging and testing the code in parts;  

 Domain knowledge - difficulties included understanding that speed varies based on angle 

of the roller coaster track segment, and difficulties in understanding how rollercoaster 

motion can be characterized by acceleration and speed.  

Similarly, the increase in challenges from Activity 4 to Activity 5 can be attributed to 

a set of new challenges in:  

 Programming – difficulties covered the inability to decompose behaviors into separate 

procedures, define procedures, but forget to call them from the ‘Go’ procedure, and 

challenges in decomposing a behavior into a sequence of steps;  

 Domain – difficulties included missing or incorrect knowledge about what duckweed feed 

on, and what increases and decreases fish and duckweed energy;  

 Agent-based thinking – difficulties in understanding energy states of agents, difficulties in 

understanding that aggregate outcomes may depend on multiple agent procedures.  

Next, we looked at previously observed challenge categories which resurfaced and 

increased in Activities 4 and 5. In Activity 4, the only previously observed challenges that 

increased with time were the programming challenge related to understanding the syntax and 

semantics of domain specific primitives, and the modeling challenge related to model validation. 

Facing challenges with respect to understanding domain specific primitives seems understandable 

in the wake of new domain knowledge and related domain knowledge challenges. Also, Activity 

4 marked the first time students had to perform model validation by comparing their model 

simulations against expert simulations, and had to compare the two sets of animations and plots to 

assess the correctness of their models. Similarly, in Activity 5, there were a few challenges 

previously observed in Activity 4 which resurfaced and increased. For example, programming 

challenges related to use of CT primitives increased, as did modeling challenges related to 

identifying relevant entities and their interactions, choosing correct preconditions, and specifying 
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model parameters and component behaviors. A new domain, increase in domain complexity, and 

dealing with modeling multiple agents and multiple behaviors for each agent seem to have been 

the primary contributors. Further, the size (number of blocks contained) of the fish-macro expert 

model was about thrice that of the expert roller-coaster model, increasing the probability of facing 

various difficulties in this activity (Activity 5). Challenges with using CT constructs, like 

conditionals resurfacing in the context of complex domain content emphasize the need for further 

practice and a more holistic understanding of the constructs. Unfortunately, we did not study 

computational learning gains using pre- and post-tests in this initial study, but they may have 

indicated that students needed repeated practice in different contexts to gain a deep understanding 

of the computational constructs. Using Figures 8-11, we investigate these issues further, by 

analyzing the data available from this study to study how the four primary categories of challenges 

individually varied across activities. 

Figure 9 shows that students generally had fewer difficulties with domain knowledge in 

kinematics (Activities 1-4), than in ecology (Activities 5-7). For kinematics activities, the 

challenges did increase with the introduction of new domain-specific concepts, like acceleration 

and the operation of a roller-coaster. But there was a sharp increase in the number of challenges 

when students had to deal with multiple agents and their interactions in the macro and micro fish 

tank activities. The difficulties were further compounded by students’ low prior knowledge in 

ecology as indicated by their low ecology pre-test scores.  

 

Figure 9. Average number of domain knowledge challenges over time 

Programming challenges show a similar trend as seen for average number of challenges in 

general in Figure 8. Figure 10 shows that students initially had problems with understanding 

computational primitives, such as conditionals, loops, nesting, and variables, but these 

programming challenges decreased from Activity 1-3. Activity 4 introduced a new type of 

programming challenge related to checking and debugging one’s model using the results from an 
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expert simulation. Also, challenges with understanding primitives increased due to the number of 

new primitives (domain-based and computational) introduced in Activity 4. Another big challenge 

in Activity 4 was constructing nested conditionals to model roller coaster behavior on different 

segments of the track. In Activity 5, there were new types of programming challenges related to 

modularity and procedurality, since the fish tank macro-model required students to specify 

component behaviors as separate procedures that were invoked from one main “Go” procedure. 

However, challenges with understanding conditionals, loops, nesting, and variables also increased, 

though these concepts were not new to this activity. The reason for the resurfacing of old 

challenges may be explained by the increase in the complexity of the domain content in this activity 

(see Figure 9), making it harder for the students to translate the domain content into computational 

structures. Overall, for both kinematics and ecology units, the programming challenges decreased 

over time across activities in the unit unless an activity introduced addition complexities.  

Similarly, modeling challenges (see Figure 11) increase in number in Activity 4 for 

kinematics and Activity 5 for ecology. Initial difficulties were related to systematicity, specifying 

component behaviors, identifying entities and interactions, and model validation. In Activity 4, 

modeling a real-world system introduced new challenges related to choosing correct initial 

conditions. Students also had the additional task of verifying the correctness of their models by 

comparing against expert simulation behaviors. For Activity 5, although the average number of 

challenges increased there were no new types of modeling challenges. Existing modeling 

challenges resurfaced in light of the sharp increase in domain-knowledge related challenges. 

However, when students switched to the fish-tank micro-unit (Activity 6), they had overcome most 

of these challenges. 

 

Figure 10. Average number and type of programming challenges over time 
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Figure 11. Average number and type of modeling challenges over time 

For the agent-based thinking challenges (see Figure 12), challenges went down with time 

in both the kinematics and ecology units. Since the kinematics models had single agents, the 

challenges related to agent-aggregate relationships did not occur in Activities 1-4. Unlike the other 

three categories of challenges, the number of challenges did not increase in Activity 4, possibly 

because Activity 4 did not introduce any new agent-based thinking related challenges. However, 

the agent based thinking challenges resurfaced in Activity 5 when students were required to model 

multiple new agents, and modeling multiple agents caused the number of challenges to increase 

sharply. Like other types of challenges, students were also able to overcome most of these 

challenges by Activities 6 and 7. 

 

Figure 12. Average number and type of agent-based thinking challenges over time 
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4.4 Critical summary and implications for modifications to the CTSiM environment 

In summary, this research study played an important role in evaluating the initial version of 

CTSiM, and documenting and analyzing the challenges faced by students when integrating CT 

with middle school science curricula using CTSiM v1. We showed that the intervention produced 

significant science learning gains in kinematics and ecology domains, especially when students 

were individually scaffolded by members of our research team based on their challenges in the 

CTSiM v1 environment. These gains could be considered a combined result of a number of factors 

like the CTSiM v1 system design, the activity progression from more simple, single-agent 

modeling activities to more complex, multi-agent modeling activities, and the one-on-one 

scaffolds provided to students whenever they faced difficulties. Our analyses show that the 

scaffolds generally helped reduce the challenges faced by students as they worked through a 

progression of activities in one domain, though some challenges resurfaced after initial 

scaffolding, primarily in activities where the number of complexities increased in comparison to 

previous activities.  

Our results also contribute to the literature on CT at the K-12 level, where little is known 

about students’ difficulties and developmental processes as they work in CT-based environments, 

especially CT-based environments that promote synergistic learning. Our results show that any 

learning-by-design CT-based environment needs to build in support for programming, domain 

knowledge acquisition, and modeling tasks. Also, challenges are not mutually exclusive, and 

taking this account may lead to developing more effective scaffolds. Programming and modeling 

challenges can be compounded by domain knowledge related challenges and can resurface in the 

context of new domain content. Therefore, scaffolds also need to focus on contextualizing 

programming and modeling scaffolds in terms of domain content.  

In spite of being an initial usability study with a small sample size, this study served as an 

important first step towards making decisions on directions for redesign and further development 

of CTSiM v1. While the challenges identified may not be a comprehensive list and could possibly 

be categorized differently, the specific challenges and scaffolds we identified in this study played 

a vital role in laying the groundwork for redesigning the CTSiM v1 environment and integrating 

adaptive scaffolding to help students simultaneously develop a strong understanding of both CT 

and science concepts. We have substantially modified the CTSiM v1 interfaces and added new 

tools and features to help alleviate some of the students’ challenges that we identified in this study. 
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 For example, to help students deal with their modeling challenges related to representing 

a science domain in the multi-agent based modeling paradigm (MABM) and identifying the 

entities in the science domain and their interactions, we have modified the model construction 

process in CTSiM by making students model at two levels of abstraction, starting with a more 

abstract conceptual model of the domain. We have developed new interfaces to help students 

conceptualize science phenomena in the MABM paradigm, before they start constructing their 

computational models in the Build interface. The existing ‘Build’ interface has also been modified 

requiring students to conceptualize each agent behavior as a sense-act process (properties that are 

sensed and properties that are acted on) before building the block based computational model for 

the behavior. We have added dynamic linking between these representations for conceptual and 

computational modeling, emphasizing important CT practices of decomposing a task, modeling at 

different levels of abstractions and understanding relations between abstractions.  

Also, to help students overcome their domain knowledge challenges, we have developed 

hypertext science resources for the kinematics and ecology units, and made them available in the 

CTSiM environment. Similarly, to help students with understanding programming constructs, flow 

of control, and the agent based modeling paradigm, we have made available a second set of 

hypertext resources, which we call the ‘Programming guide’. In addition, we have added tools to 

help students check their understanding of important science and CT concepts through multiple-

choice based formative quizzes. 

 Further, we have been working on adding scaffolding tools to support students in their 

model validation and debugging tasks. For instance, we have added model tracing capabilities so 

that students can step through each programming construct in their models and observe the 

individual effects of each of the constructs on the student model generated simulations. Similarly, 

we have added a code commenting feature, where students can opt to uncheck or comment out 

certain sections of their model to observe effects of individual programming constructs or code 

snippets. Also, we now provide students with the opportunity to compare their model in parts by 

comparing one or more agent behaviors at a time. 

Finally, besides making substantial modifications to the CTSiM environment by adding 

new interfaces and tools, we have designed adaptive scaffolding that accounts for how students 

use the different tools and combine information from the different interfaces, and helps students, 

based on their observed deficiencies, in using good modeling strategies and building correct 
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science models. We have conducted research studies with this newer version of CTSiM used in 

classroom settings, and found that the modified environment along with the adaptive scaffolds 

result in higher learning gains than those in our initial study where students received individualized 

one-on-one verbal scaffolds from human researchers. We have also compared students’ behaviors 

and performances with and without the adaptive scaffolding, and demonstrated the effectiveness 

of the adaptive scaffolding framework in terms of students’ science and CT learning, and their 

modeling performances and behaviors. Chapters 5 and 6 describe the modifications made to the 

initial CTSiM environment based on challenges observed in this initial interview-based study, and 

Chapter 7 reports the research study conducted to evaluate the effectiveness of the newly designed 

adaptive scaffolding framework.   
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CHAPTER 5 

Modifications to the CTSiM environment: System-based scaffolds 

In order to help alleviate some of students’ difficulties identified in the previous chapter, we made 

a number of design revisions to the existing CTSiM environment. This included implementing 

new interfaces, modifying old ones, and adding a pedagogical mentor agent and new tools and 

features to scaffold different aspects of students’ learning-by-modeling processes, i.e., information 

acquisition, model construction, and model verification. In addition, logging functionalities were 

added so that more details of students’ actions with the different tools provided in the CTSiM 

environment, such as temporal information and context in which the actions were performed could 

be captured for post hoc analyses. We will, henceforth, refer to this new version of the system as 

CTSiM v2. We developed CTSiM v2 by iterative refinement of CTSiM v1, influenced by 

observations and analyses from research studies using CTSiM v1 and intermediate versions of the 

CTSiM environment. 

5.1 Multiple linked representations for model building in CTSiM 

We modified the model building task in CTSiM to help students overcome their modeling 

challenges identified in the previous chapter. These challenges related to identifying relevant 

entities, their properties, and their behaviors, and choosing the correct preconditions to model 

agent behaviors and interactions among the entities in the system. To deter students from using a 

trial-and-error approach to modeling the agent behaviors using programming blocks, we extended 

the model building task to include two linked representations (Basu, Biswas & Kinnebrew, 2016). 

Students start with an abstract conceptual representation of the domain, where students explicitly 

identify the entities that make up the domain, and define their behaviors and interactions. As a 

second step, students leverage the conceptual model structures to construct block-based 

computational models that represent individual agent behaviors. Though there exists an implied 

hierarchical structure between the two representations, we allow students to switch between the 

representations so that they can construct and refine their models in parts. 

It has been hypothesized that multiple external representations (MERs) facilitate the 

development of a deeper understanding of science phenomena, something that is harder to achieve 
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with single representations (Ainsworth, 2006). The ability to construct and switch between 

multiple perspectives in a domain helps learners build abstractions that are fundamental to 

successful learning in the domain (Ainsworth & van Labeke, 2004). Furthermore, insights 

achieved through the use of MERs increases the likelihood of transfer to new situations (Bransford 

& Schwartz, 1999). However, studies on the benefits of MERs have produced mixed results, 

possibly due to the cognitive load that is imposed on novices when they work with MERs (Mayer 

& Moreno, 2002; Ainsworth, 2006). Learners have to understand the constructs and semantics 

associated with each representation, while also discovering the relations between these 

representations. Studies have shown that learners tend to treat representations in isolation and find 

it difficult to relate, translate between, and integrate information from MERs, (van der Meij & de 

Jong, 2006). To derive benefits from MERs, learners need additional support. Some common 

forms of support include an integrated presentation of the MERs that includes dynamic linking or 

translation between them (Ainsworth, 2006; Goldman, 2003). In CTSiM v2, we provide support 

for integrating and maintaining correspondence between the conceptual and computational 

modeling representations in a number of ways as explained below.  

 

Figure 13. The conceptual modeling representation in CTSiM v2 for structuring the domain in 

terms of entities, their properties, and behaviors 
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In the CTSiM v2 conceptual model representation, shown in part in Figure 13, students 

model the science domain using a visual editor to identify the primary entities (agents and 

environmental elements) in the domain of study, along with the relevant properties associated with 

these entities. Students also identify agent behaviors and represent the behaviors in an abstract 

form as sense-act models by specifying the agent and environment properties that trigger the agent 

behavior, and the agent and environment properties that are affected as a result of the behavior. 

Representing agent behaviors as sense-act models helps identify the different interactions between 

agents, as well as between agents and environment elements. In the Ecology activity involving 

modeling a fish tank, ‘fish’ represents an agent with relevant properties like ‘hunger’ and ‘energy’ 

and behaviors like ‘feed’ and ‘swim’; and ‘water’ represents an environment element with 

properties like ‘amount’ and ‘cleanliness’. The ‘fish-feed’ behavior can be defined as: sense the 

properties ‘fish-hunger’ and ‘duckweed-existence’, and act on properties, such as ‘fish-energy’ 

and ‘duckweed-death.’ However, this representation abstracts several details of agent behaviors, 

e.g., how and when the different properties are acted on. These details are captured in the agent 

behaviors modeled using the block-based visual computational language we have developed for 

CTSiM.  

Students construct their computational models in CTSiM v2, using the same block 

structures and drag and drop interface as in CTSiM v1. Also, like in CTSiM v1, the palette of 

programming blocks includes domain-specific and domain-general constructs. However, a 

primary difference in CTSiM v2 is that the properties specified in the sense-act conceptual model 

representation for an agent behavior determine the set of domain-specific primitives available in 

the programming palette for constructing the computational model for that behavior. This explicit 

link helps students take a top-down approach to building behavior models, which in turn, helps 

them gain a deeper understanding of the representations and their relationships. For example, the 

‘wander’ block is available in the ‘fish-swim’ behavior, only if ‘fish-location’ is specified as an 

acted on property for the behavior. CTSiM adopts a single internal representation for specifying 

the agent-based conceptual and computational modeling constructs, and a sense-act framework 

that help students focus on concepts associated with a specific science topic, while also 

accommodating CT constructs that apply across multiple science domains. 

Figures 13 and 14 depict the modeling representations. Figure 13 represents a part of the 

conceptual modeling interface known as the ‘Model’ interface, where students structure the science 
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topic in terms of its entities, and their properties and behaviors. Figure 14 represents a combined 

conceptual-computational interface, known as the ‘Build’ interface for modeling agent behaviors 

(‘fish-feed’ in this case). The leftmost panel depicts the sense-act conceptual representation, while 

the middle panel shows the computational palette, and the right panel contains the student-

generated computational model. The side-by-side placement of the representations is a conscious 

design decision to provide integrated presentation support and is based on the fact that learners 

find it easy to understand physically-integrated material, rather than separately presented material 

(Chandler & Sweller, 1992).  

 

Figure 14. The linked conceptual-computational interface for modeling agent behaviors in 

CTSiM v2 

To further aid the integration, the red/green coloring of the sense-act properties (see Figure 

14) provides students with visual feedback about how closely their computational models for an 

agent behavior correspond to their conceptual model for that behavior. Initially, the sense-act 

properties are colored red. As students build their computational model and add sensing and action 

blocks that correspond to these properties, they change color from red to green (another example 

of support provided by the dynamic-linking). For example, in Figure 14, the student has 

conceptualized that O2-amount needs to be sensed for the fish-feed behavior. However, the 

computational model does not include this information and hence, the property is colored red. In 
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such cases, students can verify individual agent behaviors and decide how to refine their 

computational and/or conceptual models. 

Besides emphasizing conceptual understanding of science topics before modeling them 

computationally, this interface redesign operationalizes the important CT concepts of 

decomposition, abstraction, and understanding relations between abstractions. It provides a 

system-based scaffold for helping students understand two modeling representation at different 

levels of abstraction, decompose their modeling task between the two representations, and 

maintain correspondence between the two representations.   

5.2 Information acquisition tools 

In addition to providing system-based scaffolds for the model construction process, the CTSiM v2 

environment also contains tools for acquiring information needed for successful model 

construction. In past work, we observed that students faced challenges (see Section 4.3.2) in 

understanding science content (domain knowledge challenges) as well as the semantics and use of 

computational constructs (programming challenges). To facilitate and support student learning, we 

developed separate resources for providing students with the relevant science and programming 

information. CTSiM v2 includes two sets of searchable hypertext resources, a ‘Science Book’ with 

information about the science topic being modeled, and a ‘Programming Guide’ with information 

about agent-based conceptual and computational modeling and use of CT programming constructs. 

While the contents of the ‘Programming Guide’ remain constant across different domains and 

learning activities, the contents of the ‘Science Book’ vary in accordance with the science topic 

being modeled. Figure 15 illustrates a page from the ‘Programming Guide’ resources, while Figure 

16 shows a sample page from the ‘Science Book’ for the Ecology unit. 

Currently, both sets of resources contain age-appropriate text with embedded hyperlinks 

and images. Some of the resource materials also include simulation code or animations that 

students can run. Both sets of resources also include a search functionality where students can 

search for pages with information about a particular term or phrase. Students can navigate to 

resource pages by following the table of contents, the hyperlinks on pages, or the search results. 

Details of the CTSiM v2 science and CT resources are contained in Appendix A. Students need to 
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combine and apply information from both these resources to successfully build their agent-based 

computational models of science topics.  

 

Figure 15. A screenshot from the CTSiM v2 ‘Programming Guide’ 

 

Figure 16. A screenshot from the CTSiM v2 ‘Science Book’ for the Ecology unit 

CTSiM v2 also offers students opportunities for checking their science and CT 

understanding through formative quizzes administered by a mentor agent introduced in the system 

named Ms. Mendoza. This mentor agent is positioned on the leftmost panel of the CTSiM v2 
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environment (see Figures 12-15), and students can opt to seek help and talk to her at any point 

during the modeling activity by clicking on the ‘Let’s talk’ button below the mentor agent avatar. 

During a conversation between a student and Ms. Mendoza, all other CTSiM functionalities are 

temporarily made unavailable to the student till the conversation is over.  

If a student decides to take a new quiz during a learning activity, Ms. Mendoza chooses a 

set of multiple-choice questions based on science and CT knowledge needed for the activity the 

student is working on, and grades students’ responses. Figure 17 illustrates an example formative 

quiz question administered by Ms. Mendoza. If the student makes a mistake on a question, she 

points out the relevant page from the science or CT resources that needs to be read. Students can 

choose to take none or multiple formative quizzes in each unit. They can also review their last quiz 

taken and agent feedback received, or retake the questions they got wrong on their last quiz to 

improve their score.  

 

Figure 17. An example formative assessment quiz question administered by Ms. Mendoza in the 

CTSiM v2 environment  

Based on students’ responses during an activity, Ms. Mendoza maintains a record of 

students’ proficiencies on the different set of science and CT concepts and knowledge components 

needed for the activity. Students’ proficiencies in any science or CT concept are determined 

through their answers to questions testing the concept. Once a student demonstrates understanding 

of a concept by answering three questions related to the concept correctly, Ms. Mendoza infers 

that the student understands that concept, and moves the student to another concept. If a student 



 74 

demonstrates proficiency on the entire set of science and CT concepts linked to an activity, Ms. 

Mendoza informs the student that s/he has mastered the necessary concepts and needs to focus on 

applying them to build the correct model.  

5.3 Model debugging tools 

In order to help students with a number of their challenges described in Section 4.3.2 (Basu et. al., 

2013) related to modularizing and debugging agent behaviors (programming challenges), 

specifying model parameters, understanding model component behaviors, systematically verifying 

models (modeling challenges), and understanding agent-aggregate relationships (agent-based-

thinking challenges), CTSiM v2 provides students with a number of tools in the ‘Build’, ‘Run’, 

and ‘Compare’ interfaces. All the tools are designed to help students debug their models in parts, 

understand the effects of individual agents, agent behaviors, and individual programming 

constructs within an agent behavior.  

When students build their computational models in the ‘Build’ interface, each block they 

drag from the programming palette onto the model building pane is appended with a checkbox 

containing a tick mark (see Figure 14). Programming blocks with a ticked checkbox are included 

in the student model to be executed. CTSiM v2 offers students the opportunity to comment out 

one or more programming blocks by unchecking the boxes, thus supporting execution of subsets 

of the student model. This commenting feature helps students easily modify their models and better 

understand the effects of particular programming blocks or code snippets, without having to 

physically add and remove blocks.  

In addition, the CTSiM v2 ‘Run’ interface supports model tracing, meaning that the system 

can highlight each primitive in the student’s model, as it is executed and visualized as an agent-

based simulation. Figure 18 illustrates the current ‘Run’ interface with an option for turning the 

‘Trace’ functionality on or off. Once the ‘Trace’ checkbox is ticked and set to true, students are 

allowed to choose whether they want to trace all their code or a particular procedure, and whether 

they want to trace all agents, or one of each modeled agent-type, or a particular watched agent. For 

example, in Figure 18, the tracing option has been set to trace the ‘fish-breathe’ procedure and one 

of each agent-type. In order to achieve normal speed of execution during model tracing, each visual 

primitive is translated separately to NetLogo code via a model interpreter, instead of the entire user 
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model being translated to NetLogo code. Such system-scaffolds for making algorithms “live” are 

directed at helping students better understand the correspondence between their models and 

simulations, and the effects of specific model components and parameter values, in turn supporting 

identification and correction of model errors. 

 

Figure 18. The CTSiM v2 ‘Run’ interface with model tracing functionality 

Furthermore, we updated the ‘Compare’ interface where students verify their science 

models by comparing their model simulations against provided expert simulations. CTSiM v2 

allows students to compare one or more agent behaviors at a time against the corresponding set of 

expert behavior(s), instead of having to always compare their entire model against the entire expert 

model. We believe this feature will be particularly useful in complex units with multiple agents 

and multiple agent behaviors where testing in parts can prove to be a useful model verification and 

debugging strategy. Figure 19 illustrates the modified ‘Compare’ interface in CTSiM v2 with a 

checkbox allowing students to compare a subset of agent behaviors. The checkbox is not ticked 

(set to false) by default, meaning the entire student model will be compared against the entire 

expert model. If a student chooses this option, they are provided with a list of agent behaviors they 

have specified in the ‘Model’ interface, and are required to choose one or more agent behaviors to 

compare from this list. 
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Figure 19. The CTSiM v2 ‘Compare’ interface with functionality for verifying the model in parts 

5.4 Summary 

In summary, extensive design modifications were made to the initial CTSiM v1 interface based on 

students’ observed challenges (Basu et. al., 2013; Basu et. al., in review), which resulted in the 

development of CTSiM v2. The modified learning environment scaffolds students’ model-

building processes using desired CT practices, provides students with the information required for 

building agent-based conceptual and computational models of science topics, and supports 

students with their model verification and debugging tasks. Additionally, CTSiM v2 added 

functionality for more detailed logging of student actions. As students use the different interfaces 

and tools available to them and interact with the mentor agent, all their actions are logged in 

sequence along with associated temporal information and other contextual information relevant to 

analyzing student behavior that can be inferred from the action sequences.  For example, if a 

student drags and adds a block to her model, a ‘Block added’ action is logged and captures the 

system-time when the action occurred, the agent-procedure which was being modeled, the name 

and category of the block added, whether the block was added as a parent block or as a parameter 

for another block, and the resultant state of the student-model. This log data will help analyze 

students’ learning behaviors and modeling processes and strategies, providing additional 

assessment measures beyond conventional pre- and post-tests. Details of post-hoc assessments 

using students’ log data are provided in Chapter 7.   
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CHAPTER 6 

Modifications to the CTSiM environment: Introducing adaptive scaffolds 

While the CTSiM v2 design incorporates a number of scaffolds for information acquisition, model 

conceptualization and construction, and model assessment, novice learners may still find it 

difficult to use all of the tools and scaffolds in an effective manner to build and verify their models. 

The learning environment is open-ended, meaning that students can exercise their choices in the 

way they decompose, plan, sequence, and solve their given tasks.  

Open-ended learning environments or OELEs (Clarebout & Elen 2008; Land et al., 2012; 

Land, 2000) are learner-centered computer environments designed to support thinking-intensive 

interactions with limited external direction. OELEs typically provide a learning context and a set 

of tools to help students explore, hypothesize, and build solutions to authentic and complex 

problems. The complex nature of the problems requires students to develop strategies for 

decomposing their problem solving tasks, apply them to develop and manage generated plans, and 

then monitor and evaluate the solutions that evolve from their plans. Thus, OELEs offer powerful 

learning opportunities for developing metacognitive and self-regulation strategies (Schwartz & 

Arena, 2013), all important components to prepare students for future learning (Bransford 

&Schwartz, 1999). However, the open-ended nature of these environments and the large number 

of choices for generating solutions available to novice learners produces significant challenges. 

Novice learners may lack proficiency in using system tools and the experience and understanding 

necessary to regulate their learning and problem solving in the environment. As a result, learners 

tend to adopt suboptimal learning strategies and make ineffective use of system tools, often failing 

in their open-ended learning tasks (Land, 2000). Hence, adaptive scaffolding is essential to help 

learners overcome these difficulties (Puntambekar and Hubscher, 2005). 

In this chapter, we describe a task- and strategy-based scaffolding framework for 

interpreting and analyzing students’ actions and activity sequences in OELEs, and how we use it 

to provide adaptive scaffolding in the CTSiM v2 environment. The goal of our adaptive scaffolds 

in CTSiM v2 is not to merely provide corrective feedback on the science models students build, 

but also to offer useful strategies for students’ model building, model checking, and information 

acquisition behaviors. For example, when needed, CTSiM may scaffold students on model 
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building strategies, such as seeking information relevant to the part of the model being built or 

tested, building and testing the model in parts, and modeling a topic conceptually to understand 

the scope of the model and the interactions between its components before trying to construct more 

detailed computational models. Going beyond several existing environments, our emphasis is on 

helping students gain insights into systematically building and testing their models, conducting 

meaningful analyses to discover the reason(s) behind their incorrect model behaviors, and applying 

systematic approaches to correcting their models. Systematic model building, debugging, and 

model correction skills are transferrable to a variety of scenarios and domains, thus making the 

learning generalizable. 

6.1 Background review on adaptive scaffolding in OELEs for science or CT 

Despite the well-recognized need for adaptive scaffolding in OELEs, a number of OELEs merely 

include non-adaptive support - tools and system-based scaffolds, like guiding questions, 

argumentation interfaces, workspaces for structuring tasks, data comparison tools, and tools for 

observing effects of plans made or models built. As Puntambekar and Hubscher (2005) point out, 

such tools are described as scaffolds, and they provide novel techniques to support student 

learning. However, such tools neglect important features of scaffolding, such as ongoing diagnosis, 

calibrated support, and fading. As a result, these tools are often unable to support the low 

performing novice learners who may be overwhelmed by the complexity of the task(s). 

Even in OELEs with adaptive scaffolding, most do not provide scaffolds that target 

students’ understanding of domain knowledge, cognitive processes, and metacognitive strategies 

in a unified framework. For example, MetaTutor (Azevedo, 2005) measures student behaviors in 

terms of a set of factors, such as the number of hypermedia pages learners have visited and the 

length of time spent on each page, to decide when to provide adaptive scaffolds in the form of 

suggestions (e.g., “You should re-read the page about the components of the heart”). In Ecolab 

(Luckin and du Boulay, 1999) - a modeling and simulation based OELE, the scaffolding agent 

intervenes whenever students specify an incorrect relationship in their models and provides a 

progression of five hints, each more specific than the previous one, with the final hint providing 

the answer. Similarly, in AgentSheets – one of the very few CT-based environments that includes 

adaptive scaffolds, students are supported by an automatic assessment of the computational 
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artifacts they build (games or science simulations). The CT patterns present in students’ artifacts 

are compared against desired CT patterns for the artifacts and represented in terms of what is 

known as the Computational Thinking Pattern (CTP) graph. Co-Lab (Duque et. al., 2012), on the 

other hand, tracks student actions to provide feedback about students’ solutions (the models built 

by students) and work processes, but its feedback is limited to reminding students about specific 

actions they have not taken or should employ more frequently for model building and testing tasks. 

Action sequences or relations between actions are not analyzed and actions are not evaluated in 

terms of their consequences on the nature of the models constructed by the students. 

Providing relevant adaptive scaffolding in OELEs requires interpreting learners’ activities 

in terms of their cognitive skill proficiency and their use of metacognitive strategies for planning 

and monitoring. To facilitate adaptive scaffolding in OELEs and provide a framework that 

encompasses the cognitive and metacognitive processes associated with students’ learning and 

problem solving tasks, we use a task- and strategy-based modeling framework combined with 

coherence analysis to interpret and analyze students’ actions and action sequences in OELEs 

(Kinnebrew, Segedy, & Biswas, 2016 (in press); Segedy, Kinnebrew & Biswas, 2015). Our 

adaptive scaffolding framework is not based just on student performance (the accuracy of the 

models students build), and is not designed to provide students with bottom-out-hints if they fail 

to accomplish a task step (Koedinger & Aleven, 2007).  

6.2 A task and strategy based adaptive scaffolding framework for OELEs 

As discussed earlier, OELEs allow learners to exercise their choices in applying skills and 

strategies for decomposing their learning and problem solving tasks, and developing and managing 

their plans for accomplishing the learning tasks. The large solution spaces that can be attributed to 

the open-ended nature of such environments and the complexities of the search space clearly make 

the application of traditional overlay and perturbation modeling techniques (Sison & Shimura, 

1998; Weber & Specht, 1997) intractable in such scenarios. The overlay approach to student 

modeling assumes that the student’s knowledge is a strict subset of the expert knowledge included 

in the domain module, while the perturbation based modeling approach extends overlay modeling 

to account for bugs and misconceptions the student may have. Learner-based modeling approaches 

(Elsom-Cook, 1993) that focus more on learning behaviors and their impact on learning and 
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evolution of the problem solution are likely to be more appropriate for OELEs. To facilitate 

learner-based modeling, and provide a framework that encompasses the cognitive and 

metacognitive processes associated with students’ learning and problem solving tasks, we use a 

task- and strategy-based modeling framework to interpret and analyze students’ actions and 

activity sequences in OELEs (Kinnebrew, Segedy, & Biswas, 2016 (in press);Segedy, Kinnebrew 

& Biswas, 2015).  

At the core of this representational approach is a hierarchical task model, illustrated in the 

right half of Figure 20. The task model relates specific OELE activities to relevant tasks and 

ultimately to general tasks applicable across a variety of domains. Thus, the highest layers in this 

model include domain-general tasks that the learner has to be proficient in to succeed in a variety 

of OELE environments; and the middle layers linked to the higher layer, focus on approaches for 

successfully executing a set of subtasks, which may be specific to a particular OELE or genre of 

OELEs. Lower levels of the hierarchy map onto actions that are defined with respect to the tools 

and interfaces in a specific OELE. These actions are directly observable, and are typically captured 

in log files as students work on the system. Thus, the task model, which is represented as a directed 

acyclic graph, provides a successive, hierarchical breakdown of the tasks into their component 

subtasks and individual OELE actions. However, the task model does not indicate whether (or in 

what circumstances) multiple subtasks need to be completed to effectively perform a higher-level 

task, nor whether there are any necessary relations (such as an ordering) among them.  

 

Figure 20. A task- and strategy-based modeling framework for OELEs  
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Instead, the strategy model, illustrated in the left half of Figure 20, captures information 

about action sequences and ordering between actions in a form that can be directly leveraged for 

online interpretation of a student’s actions. The strategy model complements the task model by 

describing how actions, or higher-level tasks and subtasks, can be combined and/or associated with 

conceptual relationships to provide different approaches or strategies for accomplishing learning 

and problem-solving goals. By specifying a temporal order and conceptual relationships among 

elements of the task model that define a strategy, the strategy model codifies the semantics that 

provide the basis for interpreting a student’s actions beyond the categorical information available 

in the task model. 

Strategies have been defined as consciously-controllable processes for completing tasks 

(Pressley et al., 1989) and comprise a large portion of metacognitive knowledge; they consist of 

declarative, procedural, and conditional knowledge that describe the strategy, its purpose, and how 

and when to employ it (Schraw et al., 2006). How to perform a particular task in the OELE 

describes a cognitive strategy, while strategies for choosing and monitoring one’s own cognitive 

operations describe metacognitive strategies. In this task-and-strategy modeling approach, 

strategies manifest as partially-ordered sets of elements from the task model with additional 

relationships among those elements determining whether a particular, observed learner behavior 

can be interpreted as matching the specified strategy. Figure 20 illustrates unary relationships that 

describe specific features or characterizations of a single strategy element, binary relationships 

among pairs of elements, and the temporal ordering among elements of the strategy. Further, if a 

relationship is not specified between any two elements in a strategy, then the strategy is agnostic 

to the existence or non-existence of that relationship. Because the elements of the task model used 

in the definition of strategies are hierarchically related, strategies may also naturally be related 

from more general strategy definitions to more specific variants. In this representation, specifying 

additional relationships, additional elements, or more specific elements (e.g., a specific action 

replacing a more general task/subtask) derive a more specific strategy from a general one, as 

illustrated in Figure 20.  

An important implication of the hierarchical relationships among the strategy process 

definitions is that multiple variations on a more general process can automatically be related to 

each other. In particular, the hierarchical relations enable relating a set of desired and suboptimal 

implementations of a general strategy process for use in the learner model. As illustrated in Figure 
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20, the general outline of the strategy is hierarchically linked to a variety of more detailed versions 

of the process that represent either desired variants or suboptimal ones. By analyzing a student’s 

behavior, the system can compare strategy matches to desired versus suboptimal variants in order 

to estimate the student’s proficiency (and need for scaffolding) with respect to the strategy, as 

illustrated in Figure 21. 

 

Figure 21. Strategy matching in OELEs  

6.3 The CTSiM task and strategy models 

We apply the generalized task- and strategy-based modeling framework described in Section 6.2 

to interpret and analyze students’ actions in the CTSiM v2 environment and accordingly provide 

them with adaptive scaffolds. The CTSiM task model hierarchy is shown in Figure 22. The top 

level of the model covers three broad classes of tasks that are relevant to a large number of OELEs: 

(i) information seeking and acquisition, (ii) solution construction and refinement, and (iii) solution 

assessment. Each of these OELE task categories is further broken down into three levels that 

represent: (i) general task and subtask descriptions that are common across the specific class of 
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OELEs that involve learning by modeling; (ii) CTSiM specific descriptors for these tasks; and (iii) 

actions within the CTSiM v2 environment that students use to execute the various tasks.  

Information acquisition (IA) involves identifying relevant information, interpreting that 

information in the context of a current task or subtask (e.g., solution construction and refinement), 

and checking one’s understanding of the information acquired in terms of the overall task of 

building correct models. In CTSiM v2, students are provided with separate searchable hypertext 

resources that contains the relevant science content information, and information and examples 

about conceptual and computational modeling and uses of CT constructs (see Section 5.2 for 

details). Students combine information from the two types of resources to build their science 

models using an agent based modeling approach, and use computational constructs to model agent 

behaviors using a sense-act framework. Students can check their understanding of the information 

acquired by taking quizzes provided in the system by the mentor agent, Ms. Mendoza, and can 

then use the quiz feedback to identify science and CT concepts they need to work on, and the 

relevant sources of information (specific resource pages) for learning about the concepts.  

Solution construction (SC) tasks apply information gained through information seeking 

and solution assessment activities to construct and refine the required solution. In CTSiM v2, the 

solution refers to the science model that the student can build in parts using linked conceptual and 

computational representations. As described in Section 5.1, conceptual model construction 

involves structuring the domain in terms of agents, environment elements, their properties and 

behaviors, as well as representing agent behaviors as sense-act processes. The computational 

model construction, which is linked to the conceptual model, represents the simulation model that 

comprises agent behaviors created by selecting and arranging domain-specific and computational 

programming blocks.  
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Figure 22. The CTSiM task model 
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Solution assessment (SA) tasks involve running simulation experiments, either in the ‘Run’ 

interface where students can step through their simulation code, and check the evolving model 

behavior by observing the animation and plots, or in the ‘Compare’ interface where students 

compare their model behaviors against an expert model behavior. The goal is to observe the 

behavior of the constructed model, and verify its correctness. SA tasks may involve testing the 

model in parts, comparing the results generated by the student’s model against the behaviors 

generated by a corresponding expert model, and using this comparison to identify the correct and 

incorrect parts of the model. As discussed earlier, the student and the expert models are executed 

in lock step as NetLogo simulations. Observing and comparing the simulations helps infer 

incorrectly modeled agent behaviors, which students can combine with relevant information 

seeking actions to refine their existing solutions.  

We use different sequences of these tasks, subtasks and actions described in the CTSiM 

task model, and combine them with information characterizing individual actions (unary relations) 

and relationships between different action sequences (binary relations) to specify a set of desired 

and suboptimal strategies or a ‘strategy model’ for CTSiM. While different unary relations can be 

used to characterize learners’ cognitive processes, we use a unary measure called ‘effectiveness’ 

(Segedy, Kinnebrew & Biswas, 2015) to evaluate learners’ actions in the CTSiM v2 environment. 

Actions are considered effective if they move the learner closer to their corresponding task goal. 

For example, effective IA actions should result in an improvement in the learner’s understanding 

of science and CT concepts required for model building in CTSiM. Likewise, effective SC actions 

improve the accuracy of learners’ conceptual and computational models, and effective SA actions 

generate information about the correctness (and incorrectness) of individual agent behaviors 

modeled by the learner. Overall, students with higher proportions of effective actions are 

considered to have achieved higher mastery of the corresponding tasks and cognitive skills.  

Similarly, many types of binary relations can be defined among tasks/actions to represent 

strategies. We adopt ‘coherence’ metrics for defining effective strategies comprising action 

sequences (Segedy, Kinnebrew & Biswas, 2015). Two temporally ordered actions or tasks               

(x → y), i.e., x before y, taken by a learner exhibit the coherence relationship (x ⇒ y) if x and y 

share contexts, i.e., the context for y contains information contained in the context for x. The 

context for an action comprises the specifics and details of the action, such as the specific science 

or CT page read for a ‘Science Read’ or ‘CT Read’ IA action, the particular conceptual or 
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computational components edited and the part of the model worked on for SC actions, or the agent 

behaviors compared for SA actions. We can assume that students are more likely demonstrating 

effective metacognitive regulation when an action or task they perform is coherent with or relevant 

to information that was available in one of their previous actions or tasks.  

In this version of CTSiM, we chose a set of five desired strategies (S1-S5), and analyzed 

students’ actions to detect when students were not making optimal use of these strategies and 

needed scaffolding. Since there can be numerous ways in which a strategy may not be used 

optimally, we defined specific suboptimal variants of the strategies that we wanted to detect in 

students’ learning behaviors, and provided feedback to help students overcome their deficiencies. 

For desired strategies associated with single actions, a suboptimal strategy use can involve an 

ineffective instance of the action or a lack of the action altogether. Similarly, for desired strategies 

involving coherent action sequences, suboptimal strategy use can be defined by the action 

sequence with component actions that are not coherent with each other, or by the lack of the action 

sequence itself.  

We realize that the five strategies do not define a complete set of useful strategies for 

CTSiM, and several other strategies can be defined using actions and action sequences from the 

CTSiM task model. One way to define which strategies to detect and monitor could be using offline 

sequence mining techniques to analyze student behaviors, and then using frequent patterns of 

behavior derived from the offline analyses as strategies to detect in student behavior in future 

versions of the system (Kinnebrew, Loretz, & Biswas, 2013; Kinnebrew, Segedy, & Biswas, 

2014). Our selection of strategies is based on our previous observations of challenges commonly 

faced by students (Basu et. al., 2013; Basu et. al., in review). Like we described in Section 4.3, we 

noticed that students needed repeated help with identifying the agents and their interactions in a 

science topic, understanding domain concepts and connecting them to the different CTSiM tasks, 

understanding how to represent science concepts using CT constructs, observing effects of partial 

code snippets, identifying differences between the user model simulations and the expert 

simulation, and debugging by decomposing the task into manageable pieces. While we have 

considerably modified the CTSiM interface based on our observations, we wanted to ensure we 

could provide addition individualized scaffolds when we detected that students were not using the 

tools and information sources in an efficient manner. In other words, information derived was not 
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being used in an effective way for model building, combining conceptual and computational 

modeling, or debugging their model in parts.  

Hence, three of the desired strategies, S1, S2, and S3, link SC and SA actions to IA actions. 

S4 focuses on the complexities of SA for larger models, and describes a strategy for testing the 

model in parts. S5 pertains to SC, and how to effectively use multiple linked representations to 

build the science model. Each of the desired strategies along with their suboptimal variants is 

discussed below.  

Desired S1. Solution construction followed by relevant information acquisition strategy 

(SC-IA): This strategy relates to seeking information relevant to the part of the model currently 

being constructed by the student. It can be specified as a SC action (conceptual domain-structure 

edits, conceptual sense-act edits, or computational model edits) temporally followed by a coherent 

‘Science read’ action (SC ⇒ Science Read). Coherence implies that the science resource page 

accessed contains information relevant to the agent or agent behavior being modeled in the SC 

action. For example, if a student switches to the science resources while modeling the sense-act 

structure of the ‘fish-breathe’ behavior, we can observe the desired (SC ⇒ Science Read) strategy 

only if the science resource pages read contain information about the ‘fish-breathe’ behavior.  

Suboptimal S1: Suboptimal use of this strategy occurs when the part of the model the 

learner constructs has errors, and this is followed by the learner seeking information that does not 

correspond to the part of the model s/he was constructing. It can be specified as an ineffective SC 

action that is followed by a ‘Science read’ action (ineffective SC → Science Read), which is 

incoherent with the previous SC action. 

Desired S2. Solution assessment followed by relevant information acquisition strategy (SA-

IA): This strategy relates to seeking information relevant to the agent behaviors that were just 

assessed using a SA task (test model, compare entire model, or compare partial model). The IA 

that follows is required to be a coherent ‘Science read’ action (SA ⇒ Science Read), i.e., the science 

resource page contains information relevant to at least one of the agent behaviors assessed in the 

SA action.  

Suboptimal S2: Suboptimal use of this strategy occurs when a SA action helps determine 

that one or more agent behaviors are incorrect, and the subsequent ‘Science read’ action (effective 

SA detecting incorrect agent behaviors → Science Read) is incoherent, i.e., it does not involve the 

reading of resource pages that are linked to the behaviors assessed to be incorrect.  
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Desired S3. Information acquisition prior to solution construction or assessment strategy 

(IA-SC/SA): This strategy involves acquiring information about an agent behavior before modeling 

it or checking that behavior of the agent. A ‘Science Read’ action that is followed by a coherent 

SC or SA action (Science Read ⇒ SC|SA) defines this strategy.  

Suboptimal S3: Suboptimal occurrence of this strategy occurs when a SA action finds an 

incorrect agent behavior, but this action is not temporally preceded by a ‘Science Read’ action for 

the incorrect agent behavior. The SA action can be temporally preceded by a ‘Science Read’ action 

for other agent behaviors (incoherent variant of the strategy), or it may not be preceded by any 

‘Science Read’ action at all (lack of the action sequence).  

Desired S4. Test in parts strategy: When a student’s CTSiM model includes multiple agent 

behaviors, this strategy represents an approach where the student decides to assess a subset of the 

modeled behaviors at a time to make it easier to compare their model behaviors against the expert 

simulation. This strategy is characterized by the effectiveness of a single action, ‘Compare partial 

model’ in case of complex models where the expert model contains greater than 2 agent behaviors. 

An effective ‘Compare partial model’ action generates information about the correctness or 

incorrectness of individual or subsets of agent behaviors as opposed to the entire set of agent 

behaviors. We specify an effective ‘Compare partial model’ action as one that compares a 

maximum of 2 agent behaviors.  

Suboptimal S4: A suboptimal use of this strategy occurs when a ‘Compare’ action during 

SA of a complex model with multiple erroneous agent behaviors does not provide sufficient 

information to find the source(s) of the errors. It can involve an ineffective ‘Compare entire model’ 

action or even an ineffective ‘Compare partial model’ action, which does not provide enough 

information to pin point errors to specific agent behaviors. An ineffective ‘Compare’ action 

involves a comparison of 3 or more agent behaviors for a student model with multiple incorrectly 

modeled agent behaviors. 

Desired S5. Coherence of Conceptual and Computational models strategy (Model-Build): 

This strategy involves maintaining the correspondence between the conceptual and computational 

models for each agent behavior. It can be represented as a ‘Conceptual sense-act build’ action 

followed by a coherent (linked) ‘Computational model build’ action (Sense-act build ⇒ 

Computational build), i.e., the computational edit adds a sensing block corresponding to a sensed 

property or an action block corresponding to an acted property for the same agent behavior. As 
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described in Section 5.1, we provide students with visual feedback about their conceptual-

computational model coherence by coloring sense-act properties green or red based on whether 

the properties are coherently used or not used in their computational models. This visual 

information provides students feedback on how well they are employing the Model-Build strategy.  

Suboptimal S5: Suboptimal uses of this strategy involve a conceptual sense-act edit action 

that is either not temporally followed by a computational edit action or is followed by an incoherent 

computational edit. An ineffective use of this strategy is detected through system based visual 

feedback about the sense-act properties for the agent behaviors. If the properties are colored red, 

it implies that this strategy was used in an ineffective manner.  

6.4 Learner modeling for adaptive scaffolding in CTSiM 

The primary goals of the adaptive scaffolding in CTSiM are to help students become proficient in 

the cognitive processes related to CTSiM tasks and subtasks, and the metacognitive processes 

represented as strategies that support efficient task execution. This form of feedback goes beyond 

the purely corrective and diagnostic approaches to feedback by shifting students’ focus to 

monitoring their model building processes, leveraging the links between conceptual and 

computational models to systematically build complex models in parts, and developing the abilities 

to effectively test their evolving models by comparing against behaviors generated by a 

corresponding, but correct expert model. 

To support this form of scaffolding, the CTSiM learner modeling framework is derived 

from the task and strategy based modeling framework discussed in Section 6.2. Our learner model 

represents a data-driven scheme that keeps track of students’ performances on various tasks and 

related actions defined in the hierarchical task model, as well as the strategies they use to combine 

and co-ordinate the different tasks. Figure 23 illustrates a comprehensive learner modeling 

approach for CTSiM where the learner model maintains information about students’ effectiveness 

on each of the IA, SC, and SA tasks, as well as their use of strategies that combine the IA, SC, and 

SA tasks in different meaningful ways. In the current CTSiM v2 system, we have designed 

detectors for and maintained information on a limited set of strategies, namely S1-S5 as described 

in Section 6.3. Also, our current learner model primarily focuses on students’ task performances 

for the SC tasks, i.e., conceptual and computational model building.  
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Learner actions in CTSiM, combined with information about the state of students’ 

conceptual and computational models, are used to evaluate students’ strategy use for S1-S5. For 

each of the five strategies, the ‘strategy matcher’ function in the ‘learner modeling module’ 

compares the corresponding suboptimal strategy variant against online learner information to 

calculate each learner’s frequency of suboptimal strategy use. However, these frequency 

calculations are local, and count the frequency for suboptimal strategy use, since the last time the 

student was scaffolded on the particular strategy. The scaffolding module can directly use this 

information to decide when to provide strategy-based scaffolds. Our longer-term plan, however, 

is to store global information about students’ strategy use, both for the desired and the suboptimal 

variants.  

 

 

Figure 23. Learner modeling and adaptive scaffolding framework for CTSiM 

Besides maintaining a measure of learners’ strategy use, the CTSiM learner model also 

maintains a local history of learners’ SC task performances, i.e., conceptual and computational 

modeling skills. This helps detect ineffective SC actions and the aspects of the modeling tasks that 

learners are struggling with. Since ineffective SC edits can either remove model elements required 

in the expert model from the student model or add model elements not required in the expert model 
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to the student’s model, separate measures of ‘missing/correctness’ and ‘extra/incorrectness’ are 

maintained for students’ conceptual and computational models and their various components. 

Learners’ modeling skills are defined by measures comparing different aspects of their models 

against the corresponding expert models. Conceptual modeling skills are defined separately for 

different conceptual model components so that the scaffolds can focus on specific aspects of the 

modeling task. The different conceptual components include agents, environment elements, 

properties, and behaviors chosen, as well as the sensed and acted-on properties specified for each 

agent behavior. The conceptual model comparator in the learner modeling module performs a 

simple set comparison between students’ conceptual models for a topic and the expert conceptual 

model for the topic to compute ‘missing’ and ‘extra’ measures for each of the conceptual model 

components, which are stored in the learner model. The ‘missing’ measure for a conceptual 

component counts the number of elements of the component that are present in the expert model, 

but are missing in the student model. Similarly, the ‘extra’ measure for a component counts the 

number of elements of the component that are present in the student model, but not present in the 

conceptual model.  

On the other hand, defining computational modeling skills involve more nuanced measures 

beyond ‘missing’ and ‘extra’ blocks, since merely having the same set of programming blocks as 

the expert model does not guarantee semantic correctness of the student model. The same 

information can be modeled in a number of ways using different sets of blocks. While we cannot 

possibly account for all possible correct solutions, we have added a number of functions to our 

computational model comparator to minimize false positives (same set of blocks as expert model, 

but different semantic meaning) and false negatives (blocks do not match those in the expert model, 

but similar semantic meaning). For example, students can represent the correct information in 

different ways using different sets of blocks. If a conditional in a student model senses a property 

instead of its complement, or vice versa (e.g., using a ‘some-left’ block instead of a ‘none-left’ 

block), the consequent and alternative blocks can be interchanged to represent the same 

information. Another example of a false negative occurs when the expert model for an agent 

behavior contains a conditional and an action block that is independent of any condition and is 

hence placed outside the conditional block. If a student places two instances of the action block 

inside the conditional, once under the consequent and once under the alternative, the solution is 

less elegant, but conveys the same semantic meaning as the expert. The model comparator takes 
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these possibilities into account, while determining ‘missing’ and ‘extra’ blocks. In order to account 

for false positives, the model comparator checks whether action blocks in the student models occur 

under the correct set of conditions as defined in the expert model (irrespective of any condition, 

under a particular sensing condition, or under multiple simultaneous sensing conditions). The 

comparator also checks properties whose values are increased or decreased in an expert agent 

behavior to make sure their direction of change is the same in the student model for the agent 

behavior. Otherwise, an expert model with blocks ‘Increase(CO2-amount), Decrease(O2-amount)’ 

will be equated to a student model with blocks ‘Increase(O2-amount), Decrease(CO2-amount)’, 

since both models have the same set of four blocks. In summary, the computational model 

comparator defines computational modeling skills for each agent behavior in terms of the 

following: (a) number of missing blocks in the behavior as compared to the expert model, (b) 

number of extra blocks in the behavior as compared to the expert model, (c) whether all actions in 

the behavior occur under the correct set of conditions (yes/no), and (d) whether all property values 

modified in the behavior were changed in the correct direction (yes/no).  

While we can capture the state of students’ conceptual and computational models as they 

work in the CTSiM environment, we calculate and update the measures describing students’ 

conceptual and computational modeling skills in the learner model only when students assess their 

models. This design decision was made so that the scaffolds for the model building tasks were not 

sensitive to the effects of individual SC edits, but depended on the evolution of students’ models 

between model assessments. Also, since we have designed our scaffolds to depend on how 

students’ models evolve since the last model assessment, the learner model only maintains a local 

history of students’ modeling skills instead of maintaining a global one. In this version, the learner 

model stores a history of a student’s conceptual and computational modeling skills since the last 

time s/he was provided a scaffold for the particular model construction task. 

6.5 Designing and Delivering adaptive scaffolds 

Students’ task performance and strategy use information captured in the leaner model is used by 

the scaffolding module and combined with information about triggering conditions (frequency 

threshold for triggering particular scaffolds and priority and ordering of scaffolds) to decide which 

task based or strategy based scaffold to provide. Each scaffold is delivered in the form of a mixed-
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initiative conversational dialog initiated by the mentor agent - Ms. Mendoza, and is anchored in 

the context of students’ modeling goals, their recent actions, and information that is available to 

students at that point of time (e.g., simulation information or domain information). The mixed-

initiative, back-and-forth dialogues between the student and Ms. Mendoza are implemented as 

conversation trees. The root node of the tree represents Ms. Mendoza’s initial dialogue, which then 

branches based on conversational choices available to the student. Ms. Mendoza can respond to 

students’ choices using conversational prompts or by taking specific actions in the system. Such a 

structure captures the possible directions that a single conversation might take once it has been 

initiated. This conversation format engages students in a more authentic social interaction with 

Ms. Mendoza, and allows them to control the depth and direction of the conversation within the 

space of possible conversations provided by the dialogue and response choices (Segedy, 

Kinnebrew & Biswas, 2013). Figure 24 provides an example of a scaffolding conversation tree for 

the IA-SC/SA scaffold asking students to read about incorrectly modeled agent behaviors that they 

have modeled and assessed without reading. It illustrates how Ms. Mendoza and students can 

together negotiate goals and plans using such mixed-initiative conversational dialogues. 

 

Figure 24. A scaffolding conversation tree asking students to read about incorrect agent 

behaviors  
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Our scaffolding approach is based on helping students with a task or strategy only we detect 

that they are persistently facing problems, instead of correcting them every time we detect a 

problem. Hence, the scaffolding reasoner maintains a frequency threshold for triggering each 

scaffold. In case of strategy scaffolds, the reasoner reads in the frequencies of suboptimal use of 

each strategy from the learner model and compares them with the corresponding strategy scaffold 

triggering frequency thresholds. When the suboptimal strategy use reaches the critical frequency, 

the scaffolding reasoner can choose to deliver scaffolds for the particular strategy if it fits with the 

stored priority or ordering of scaffolds. Similarly, the scaffolding reasoner stores frequency 

thresholds for triggering task based scaffolds for conceptual and computational modeling. It takes 

the frequency (say, ‘n’) for triggering a particular modeling scaffold and looks at the history of a 

student’s corresponding modeling skills to see if it can find ‘n’ instances where the modeling skill 

has not shown improvement. Like we described in Section 6.4, students’ modeling skills are 

captured locally in the learner model every time they perform a model assessment action. No 

improvement in modeling skill between model assessments is denoted by no improvement in any 

of the factors defining the modeling skill. For example, conceptual modeling skills comprise two 

factors: missing conceptual elements, and extra conceptual elements. Computational modeling 

skills, on the other hand, are defined by four factors: missing blocks, extra blocks, actions under 

correct conditions, and property values modified correctly (see Section 6.4 for details).  

While we do not maintain a strict ordering between all of the task and strategy based 

scaffolds, we do maintain a priority list for situations where multiple scaffolds can be triggered 

simultaneously. For example, when a student performs a SA action where multiple compared agent 

behaviors have been modeled incorrectly, the ‘Test-in-parts’ strategy scaffold gets triggered first 

if it meets its triggering requirements, followed by the ‘Information acquisition prior to solution 

construction and assessment’ strategy scaffold. We first ensure that a student is not trying to com-

pare too many incorrect behaviors simultaneously, because analyzing multiple errors at the same 

time may make it hard to pinpoint specific ones. When students test their model in parts, we pro-

vide scaffolds when we detect students have found incorrect agent behaviors, but they have not 

looked for information that will help them correct the error. If students have previously read about 

agent behaviors, but cannot correct incomplete or incorrect behaviors when testing in parts, we 

provide them with task-based model building scaffolds that hint at using information they have 

read to correct specific aspects of their model behaviors.  
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The model building scaffolding itself uses a top-down approach by providing conceptual 

modeling scaffolds as long as the ‘missing’ score for any of the conceptual components in the 

learner model is greater than zero. Specifically, the scaffolds point students to specific levels in 

the conceptual modeling hierarchy they need to focus on (starting with the set of entities, followed 

by the set of agent behaviors, and the sense-act properties for the behaviors) and suggest consulting 

relevant resource pages to acquire the required information for correct conceptual modeling. Once 

a student’s conceptual model contains all the elements contained in the expert conceptual model 

(it may still contain extra elements beyond those in the expert model), the coherence measure be-

tween the student’s conceptual sense-act models and computational models trigger the Model-

Build strategy scaffolds, when applicable. The Model-Build scaffold leverages the visual feed-

back about conceptual-computational coherence provided by the system through the green or red 

coloring of the sense-act properties. The scaffold draws students’ attention to the properties 

colored red in their models, and reminds students that they can either delete the red properties from 

their conceptual model or add computational blocks that match the properties. Once there are no 

more sense-act properties colored red, the computational modeling scaffolds help point out 

whether there are missing or extra blocks in students’ computational models, or action blocks that 

have not been modeled under the correct set of conditions. The suggestions for rectifying the 

various types of computational modeling errors for different agent behaviors are similar – 

acquiring information about the agent behavior by carefully reading the science resources. A few 

examples of scaffolding dialogues are as follows: “The fish-breathe behavior requires interaction 

of the fish with other entities. Have you considered all the entities in this science topic?”; “You 

have all the necessary blocks for the rollercoaster-update speed behavior, but are you sure that 

all the actions occur under the right set of conditions?”; “You have unused properties colored red 

in the fish-feed behavior. Do you want to use them in your program or do you want to delete the 

properties?” 

The SC-IA and SA-IA strategy scaffolds are mutually exclusive and do not share triggering 

conditions with any of the other strategy or task-based scaffolds; hence, they are triggered 

whenever their respective critical frequencies are reached. These scaffolds remind students about 

agents or agent behaviors recently modeled or assessed and ask if students are trying to gather 

information about any of them. Accordingly, students are provided suggestions on pages to read 

and reminded about how they can use the search feature to find relevant resource pages by 
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themselves. All the other scaffolds are provided in the context of SA actions and start by asking 

students to evaluate the correctness of the simulations they just observed. They offer suggestions 

for testing a few agent behaviors at a time (Test in parts), or reading about the incorrectly modeled 

agent behaviors before trying to correct them (IA-SA).  

While our scaffolds are triggered by possible sources of errors in students’ modeling tasks, 

and they offer suggestions on how the students can debug and rectify these errors by efficiently 

integrating information available to them in the CTSiM environment, none of our scaffolds provide 

‘bottom-out-hints’ by telling students exactly what to correct in their model (Koedinger & Aleven, 

2007). Also, though all our scaffolds are provided only when we detect students making multiple 

errors on a particular task, or multiple ineffective uses of a strategy, they often start with a positive 

message about students’ previous successes in applying actions and strategies correctly. 

In summary, modeling science topics using the CTSiM v2 environment is a complex 

process. The environment provides students with a number of supporting tools, but planning and 

using the tools effectively and combining information from them in a meaningful fashion is a non-

trivial task. The large solution space implied by the open-ended nature of the environment and the 

variety of choices available to students make interpreting students’ actions extremely difficult. 

Hence, we adopt a learner modeling and adaptive scaffolding approach that interprets students’ 

actions in the CTSiM v2 system based on their performances on different system tasks and how 

they combine information from different tasks. We believe that this approach will help students 

become more effective learners and help them develop better modeling strategies.  
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CHAPTER 7 

Experimental evaluation of the modified CTSiM environment with adaptive scaffolding 

This chapter presents a research study designed to investigate the effectiveness of the CTSiM v2 

environment with adaptive scaffolding. While experimental evaluation of each newly added tool 

and interface feature in the CTSiM v2 environment is possible, this dissertation focuses 

specifically on studying the effects of the adaptive scaffolding on students’ science and CT 

learning, their modeling performance, and their learning behaviors. We discuss a recent controlled 

classroom study using CTSiM v2 with four sections of 6th grade students from a middle Tennessee 

middle school. Students, in this study, were divided into two approximately equal groups – a 

control group that used a version of the CTSiM v2 system without adaptive scaffolding, and an 

experimental group that used the full version of the CTSiM v2 system with adaptive scaffolding 

provided by Ms. Mendoza. Both groups had access to the new modeling and information 

acquisition interfaces, and model verification tools described in Chapter 5. Since these tools and 

interface features were available to all students at all times during this research study, they can be 

considered as ‘blanket scaffolds’ (Puntambekar and Hubscher, 2005), as opposed to the ‘adaptive 

scaffolds,’ which were only provided to students in the experimental group based on their observed 

modeling deficiencies. 

7.1 Materials and Method 

7.1.1 Research questions 

We assess the effectiveness of the CTSiM v2 adaptive scaffolding framework by analyzing data 

generated from the controlled research study to answer the following six research questions. 

Research questions 1-5 are related to the effects of the adaptive scaffolds on students’ learning 

gains, modeling performance and behaviors, while the 6th research question relates to studying the 

amount of adaptive scaffolding provided.   

1. What effects do the adaptive scaffolds have on students’ (a) science and (b) CT learning? 

2. How do the adaptive scaffolds impact students’ conceptual and computational modeling 

performances?  
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3. What effects do the adaptive scaffolds have on students’ abilities to transfer conceptual 

and computational modeling skills to model other science domains outside CTSiM?  

4. How do the adaptive scaffolds impact students’ modeling behaviors and use of effective 

strategies? 

5. How do students’ modeling performance and modeling behaviors including strategy use 

relate to their learning of the science concepts in the different modeling activities?  

6. How do the requirements for different types of adaptive scaffolds vary during the course 

of the intervention, and do the scaffolds follow a desired ‘fading’ principle? 

7.1.2 Participants 

We conducted the controlled classroom study with 98 6th grade students (average age = 11.5) from 

four sections of the same middle school in middle Tennessee. All students provided parental and 

personal consent to participate in the research study. The 6th grade science teachers assigned 

students from two of the sections to the control condition and students from the other two sections 

to the experimental condition. The teachers’ looked at students’ state level science scores from the 

previous year (5th grade TCAP scores) to make sure the two conditions were balanced in terms of 

their prior knowledge. The control condition (n = 46) used a version of the CTSiM system with no 

adaptive scaffolding provided by the mentor agent, Ms. Mendoza, and the experimental condition 

(n = 52) used the full version of the CTSiM system, i.e., the system used by the control condition, 

plus the learner modeling scheme and adaptive scaffolding based on the learner model provided 

by Ms. Mendoza. 

7.1.3 Learning activities 

The learning activities used in this research study with the CTSiM v2 environment are a slight 

modification of the initial learning activity progression used with the CTSiM v1 environment and 

described in Section 3.6. The learning activities still span topics in two curricular units – 

Kinematics followed by Ecology, but some of the initial activities now serve as introductory 

training activities. Students were not assessed on their training activities. In the study reported 

here, the CTSiM v2 learning progression comprises an introductory training activity and three 

primary modeling activities across two domains - Kinematics and Ecology.  
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Students start with an introductory shape drawing activity for training and practice. In this 

activity, students model a single tortoise agent and use simple CT concepts like the use of variables 

and the iteration construct to build closed shapes and spirals. The purpose of this activity is to 

explore the relations among distance, speed, and acceleration in relation to the shapes generated 

by the tortoise agent. The students start with an exercise where they program their tortoise to create 

a simple closed shape (square). This task is a collaborative activity in which the whole class 

participates. Students then move on to working individually, to construct other closed shapes (any 

regular polygon). All these activities represent constant speed movements of the tortoise. Then 

students are introduced to the concept of acceleration, and the effect of acceleration on speed is 

shown by shapes that represent growing and shrinking spirals. Since the shape drawing activities 

are treated as training and practice activities, students are allowed to seek help from and discuss 

solutions with their peers, teachers and researchers in the classroom.  

In their first primary modeling activity, students progress to modeling a real-world 

phenomenon that introduces a more complex computational construct, like a conditional. Activity 

1 models a roller coaster (RC) car moving along a pre-defined track with four segments - up at 

constant speed (pulled by a motor); down (free fall along the track under gravity); flat (constant 

speed on a flat track); and up against gravity (moving against gravity on a track). Section 3.6 and 

Figure 5 provide details. The plots generated depict how the speed, acceleration, and distance 

travelled by the RC car vary on the different segments of the track. In Activity 1 (as well as 

activities 2 and 3), students can compare the behavior of their model against an expert model 

behavior to verify whether their generated model is correct. 

In Activities 2 and 3, students progress from modeling a domain with a single agent (the 

RC activity) to modeling ecological processes in a fish tank system, which represents a domain 

with multiple agents with multiple behaviors. These activities are the fish-tank macro and micro 

activities described in Section 3.6. In Activity 2, students build a macro-level, semi-stable model 

of a fish tank with two types of agents: fish and duckweed, and behaviors associated with the food 

chain, respiration, locomotion, and reproduction of these agents. Since the waste cycle is not 

modeled, the build-up of toxic fish waste creates a non-sustainable macro-model, where the fish 

and the duckweed gradually die off. In Activity 3, students address this lack of sustainability by 

introducing micro-level entities (agents), i.e., Nitrosomonas and Nitrobacter bacteria, which 

together support the waste cycle, by converting the ammonia in the fish waste to nutrients (nitrates) 
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for the duckweed. The plots generated by the simulation models help students gain an aggregate 

level understanding of the different cycles in the fish tank ecosystem, and their role in establishing 

the interdependence and balance among the different agents in the system. 

7.1.4 Study procedure 

Students in both the control and experimental groups worked individually on the same learning 

activity progression, described in Section 7.1.3. The study was run daily over a span of three weeks 

during the students’ science periods (one hour daily for each 6th grade section).  

On Day 1, students took 3 paper-based tests that assessed their knowledge of (1) 

Kinematics, (2) Ecology, and (3) CT concepts. More details on the test questions are presented in 

Section 7.1.5. On day 2, students were introduced to agent based modeling concepts, and got a 

hands on introduction to the CTSiM v2 system. The whole class worked together on an 

introductory shape drawing activity – modeling a square. From Day 3, students worked 

individually in the CTSiM environment. On days 3 and 4, they worked on generating growing and 

shrinking spiral shapes, which emphasized the relations between distance, speed, and acceleration. 

Since the drawing tasks were considered a part of training and practice activities, students were 

allowed to help each other and seek help from their science teacher and the research team. From 

Day 5 students worked on the three primary modeling activities, and were not provided any 

individual help external to the system. Students worked on Activity 1, the Rollercoaster (RC) unit 

on days 5 and 6, after which they took paper-based post-tests for Kinematics and CT on Day 7. On 

days 8-12, students worked on modeling the ecological processes in a fish tank ecosystem. This 

model was built in two parts, as described earlier: modeling the macro (Activity 2) and micro 

(Activity 3) environments in the fish tank. Students took their Ecology and CT-final post-tests on 

Day 13. Finally, on Day 14, students worked on a paper-based transfer activity, where they had to 

build conceptual and block-based models for a new science topic described to them as part of the 

activity.   

As students worked on the CTSiM system, all their actions on the system, along with the 

associated context were logged for future analysis. We analyzed the action logs to study the 

evolution of students’ models for different learning activities, students’ overall modeling 

performances at the end of the activities, the learning behaviors they exhibited, and the specifics 

of the feedback that was triggered and delivered by the mentor agent in the experimental condition. 
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One of our primary goals in this study was to assess the effectiveness of our adaptive scaffolds by 

comparing students in the control and experimental groups based on their (i) modeling 

performances and behaviors and (ii) science and CT learning gains, as measured by their actions 

in the system and performances on paper and pencil assessment artifacts outside the system, 

respectively. 

7.1.5 CT and Science Assessments and the Transfer test 

We designed paper based assessment instruments to evaluate students’ science and CT learning 

and their abilities to transfer their conceptual and computational modeling skills to new scenarios. 

We measured students’ learning gains for science content in the kinematics and ecology domains, 

and CT content as the differences between their pre- and post-test scores for the individual tests. 

The questions contained in the pre/post tests for (i) Kinematics, (ii) Ecology, and (iii) CT, as well 

as the paper-based transfer test for modeling skills are listed in Appendix B.  

The Kinematics pre/post-test assessed whether students understood the concepts of 

acceleration, speed, and distance and their relations. The test required interpreting and generating 

speed-time and position-time graphs and generating diagrammatic representations to explain 

motion in a constant acceleration field. An example question asked students to diagrammatically 

represent the time trajectories of a ball dropped from the same height on the earth and the moon, 

and then to generate the corresponding speed-time graphs.  

For the Ecology test, questions focused on students’ understanding of the concepts of 

interdependence and balance in an ecosystem, and how a change in the population of one species 

in an ecosystem affects the other species. An example question asked was “Your fish tank is 

currently healthy and in a stable state. Now, you decide to remove all traces of Nitrobacter 

bacteria from your fish tank. Would this affect a) Duckweed, b) Goldfish, c) Nitrosomonas 

bacteria? Explain your answer.”  

CT skills were assessed by asking students to predict program segment outputs, and model 

scenarios using CT constructs. This tested students’ abilities to develop meaningful algorithms 

using programmatic elements like conditionals, loops and variables. Simple questions tested use 

of a single CT construct, while modeling complex scenarios involved use of CT constructs, like 

conditionals and loops and domain-specific constructs. 
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For the paper-based learning transfer activity, students were provided with a detailed 

textual description of a wolf-sheep-grass ecosystem. Based on this description, students had to first 

build conceptual models for the agents in the system, much like the fish tank ecosystem. Then they 

had to build the block-based (computational) models of agent behaviors using computational and 

domain-specific modeling primitives that were specified in the question. This model building 

exercise was similar to the fish tank eco-system model they had built in CTSiM, except that the 

science domain was different and it was all done with pencil and paper. Therefore, unlike the 

CTSiM v2 environment, students did not have access to any of the online tools, nor did they get 

feedback from the system by simulating their model or from the mentor agent.  

7.1.6 Log file analysis and Assessment metrics 

Besides assessing students using paper-based assessment artifacts external to the CTSiM 

environment, we defined a set of assessment metrics to analyze the log data generated from this 

research study and use it to evaluate students’ conceptual and computational modeling 

performances and behaviors, and use of desired and suboptimal learning strategies. The log data 

contained information about the different actions the students took in the CTSiM v2 environment 

along with the associated context in which the actions were taken, the models students built along 

with model revision history, and the scaffolds they received along with the ensuing conversations 

with Ms. Mendoza.  

We assess a student’s conceptual and computational modeling performance for an activity 

by defining distance metrics similar to those used online in the model comparator functions in the 

learner modeling module (see Section 6.4). The metrics specify the distances between the student’s 

final models and the corresponding expert models, and a model distance of 0 implies that the 

student’s model perfectly matches the expert model (no missing elements and no extraneous 

elements).  

The conceptual model distance is calculated by normalizing the sum of the distances for 

the individual conceptual model components, i.e., agents, environment elements, agent properties, 

environment properties, agent behaviors, and sensed and acted-on properties for each agent 

behavior, by the size of the expert conceptual model. The distance metric is computed for any 

individual component by performing a simple set comparison between the elements of the 

component in a student’s conceptual model and those contained in the corresponding expert 
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conceptual model. The set difference provides the number of ‘missing’ and ‘extra’ elements for 

the component (see Equations 1 and 2). The ‘missing’ measure for a component counts the number 

of elements of that component that are present in the expert model, but missing in the student 

model. Similarly, the ‘extra’ measure for a component counts the number of elements of that 

component that are present in the student model, but not present in the expert conceptual model. 

The ‘distance’ measure (see Equation 3), computed as the sum of the ‘missing’ and ‘extra’ 

measures across all conceptual model components, is normalized by the size of the expert 

conceptual model (i.e., the sum of the number of elements of each type of conceptual component) 

to make the ‘distance’ measure independent of the size of the expert conceptual model.  

𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 =  ∑ |𝑒𝑥𝑝𝑒𝑟𝑡 − 𝑢𝑠𝑒𝑟|
𝑒𝑎𝑐ℎ 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

                                       (1) 

𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑒𝑥𝑡𝑟𝑎 𝑠𝑐𝑜𝑟𝑒 =  ∑ |𝑢𝑠𝑒𝑟 − 𝑒𝑥𝑝𝑒𝑟𝑡|
𝑒𝑎𝑐ℎ 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

                                             (2) 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 + 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑒𝑥𝑡𝑟𝑎 𝑠𝑐𝑜𝑟𝑒

∑ |𝑒𝑥𝑝𝑒𝑟𝑡|𝑒𝑎𝑐ℎ 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
         (3) 

The computational model distance is calculated by computing separate ‘correctness’ and 

‘incorrectness’ measures for a student’s computational model (see Equations 4 and 5), and 

measuring the vector distance (see Equation 6) between the two-dimensional vector (correctness, 

incorrectness) to the target vector (1,0) (Basu et. al., 2014; Basu, Kinnebrew & Biswas, 2014). The 

total correctness and incorrectness measures are calculated by combining the respective measures 

from the individual agent behaviors using a weighted average based on the size of each behavior’s 

expert model. The correctness measure for a single agent behavior is computed as the size of the 

intersection of the collection of visual primitives used in the student and expert models for the 

behavior. Similarly, the incorrectness measure for an agent behavior is computed as the number of 

extra primitives in the student computational model as compared to the expert model. In Section 

6.4, while describing the computational model comparator function of the learner modeling 

module, we detailed how we went beyond a mere block-based comparison of student and expert 

computational models and accounted for various false positives and false negatives. We follow a 

similar approach in our offline log-data based analysis of students’ computational modeling 

performance. When we detect instances of false positives (for example, actions under incorrect 

conditions), we do not consider corresponding blocks (action blocks in this example) as part of the 
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user model, thus adjusting the correctness score. Similarly, in case of false negatives, we match 

the blocks used by students to semantically similar expert model blocks, thus adjusting the 

correctness and incorrectness scores. 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =  
∑ |𝑢𝑠𝑒𝑟 ∩ 𝑒𝑥𝑝𝑒𝑟𝑡|𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

∑ |𝑒𝑥𝑝𝑒𝑟𝑡|𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒
                                (4) 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =  
∑ (|𝑢𝑠𝑒𝑟| − |𝑢𝑠𝑒𝑟 ∩ 𝑒𝑥𝑝𝑒𝑟𝑡|)𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

∑ |𝑒𝑥𝑝𝑒𝑟𝑡|𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒
       (5) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠2 + (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 − 1)2                                                            (6) 

Besides using log data to study students’ modeling performances for each learning activity, 

we also study students’ modeling behaviors for each activity in terms of the following: (i) 

conceptual and computational model evolution over the course of the activity, (ii) how the 

conceptual and computational representations are combined during the activity, and (iii) frequency 

of use of the desired and suboptimal strategies S1-S5 described in Section 6.3. 

With respect to both conceptual and computational modeling, we describe students’ model 

evolution during an activity by calculating the model distances at each model revision (actions 

performed as part of the SC task defined in the CTSiM task model, see Section 6.3) and then 

characterizing the model evolution using 3 metrics:  

(1) Effectiveness- the proportion of model edits during the activity that bring the model closer to 

the expert model for the activity;  

(2) Slope – the rate and direction of change in the model distance over time as students build their 

models for the activity; and 

(3) Consistency – How closely the model distance evolution over time in an activity matches a 

linear trend.  

We assess students’ modeling behavior in terms of how they combined the linked 

conceptual and computational modeling representations to build their models (Basu, Biswas, & 

Kinnebrew, 2016) using the following metrics:  

(1) Number of switches - We look at conceptual and computational activity chunks (successive 

actions in one type of representation) and use the total number of chunks as a measure of how 

many times a student switched between the two representations;  

(2) Average conceptual chunk size - The average number of consecutive conceptual modeling 

actions taken before a switch is made to the computational modeling representation; 
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(3) Average computational chunk size - The average number of consecutive computational 

modeling actions taken before a switch is made to the conceptual modeling representation; 

(4) Weighted ratio of chunk sizes – The ratio of conceptual and computational chunk sizes divided 

by the ratio of the sizes of the conceptual and computational expert models; and 

(5) Coherence - the fraction of conceptual edits that were followed by related (coherent) 

computational edits at some future time. 

Further, in addition to assessing students’ modeling behaviors in terms of their model 

evolutions for each learning activity and how they integrate the conceptual and computational 

modeling representations, we characterize students’ modeling behaviors in terms of their 

frequency of use of the desired strategies S1-S5 (see Section 6.3), and their suboptimal variants.  

7.2 Results 

We analyzed students’ responses on the paper-based assessment artifacts and the data logged as 

they used the CTSiM v2 environment to answer the six research questions presented in Section 

7.1.1. The effectiveness of our adaptive scaffolding framework is demonstrated by comparing 

students in the control and experimental groups based on their learning gains, modeling 

performances and behaviors, and abilities to transfer modeling skills to new scenarios.  

7.2.1 Science and CT learning gains 

To answer our 1st research question, we analyzed the impact of our task and strategy based 

scaffolds on students’ overall science and CT learning, as measured by the differences between 

their performance on the corresponding pre- and post-tests. Table 7 reports the pre- and post-scores 

and pre-post gains for students in both conditions for the paper-based science (Kinematics and 

Ecology) assessments as well as for the CT assessment. The CT post-test score refers to scores on 

the CT tests administered on Day 13 of the study at the end of the ecology unit. 

Students in both conditions showed significant pre-post learning gains for kinematics and 

ecology science content, as well as CT concepts and skills. However, the gains and effect sizes 

(Cohen’s d) were higher in each case for students in the experimental group (n = 52) compared to 

those in the control group (n = 46). Also, though we made every effort to balance the control and 

the experimental groups using scores from the previous year’s standardized tests (TCAP scores), 
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we notice that students in the experimental group had higher pre-test scores, hence we computed 

ANCOVAs comparing the gains between control and experimental conditions taking pre-test 

scores as covariates. Factoring out the effect of initial knowledge differences implied by the pre-

test scores, we found significant differences in science learning gains between the two conditions 

with medium to high effect sizes: kinematics gains (F = 18.91, p < 0.0001, ηp2 = 0.17) and ecology 

gains (F = 52.29, p < 0.0001, ηp2 = 0.36). Similarly, we factored out CT pre-test effects to find a 

significant effect of condition on CT learning gains (F = 40.69, p < 0.0001, ηp2 = 0.31). We also 

assessed students’ performances on the first CT post-test taken at the end of kinematics unit, and 

found that students in the experimental group showed higher learning gains from the pre-test to 

the first post-test (F = 18.16, p < 0.0001, ηp2 = 0.16) , and gained further from the intermediate to 

the final CT post-test administered at the end of the ecology unit (F = 18.85, p < 0.0001, ηp2 = 

0.17). Therefore, in answering our first research question we conclude that the adaptive scaffolding 

described in Sections 6.4 and 6.5 helped students achieve higher science and CT learning gains.  

Table 7. Science and CT learning gains for students in the control and experimental conditions 

  Pre Post 
Pre-to-post 

gains 

Pre-to-post 

p-value 

Pre-to-post 

Cohen’s d 

Kinematics 

(max = 45) 

Control 12.52 (6.32) 15.55 (5.72) 3.03 (4.78) <0.0001 0.55 

Experimental 16.65 (6.61) 22.38 (6.39) 5.72 (5.62) <0.0001 0.88 

Ecology 

(max = 39.5) 

Control 7.40 (3.90) 16.19 (8.35) 8.78 (7.17) <0.0001 1.35 

Experimental 9.39 (4.47) 27.91 (6.70) 18.53 (6.31) <0.0001 3.25 

CT 

(max = 60) 

Control 16.49 (5.68) 22.53 (5.70) 6.04 (5.44) <0.0001 1.06 

Experimental 22.72 (7.68) 32.24 (5.86) 9.52 (5.23) <0.0001 1.39 

 

We also noticed that the average of the control condition’s post-test scores turned out to be 

lower than the experimental condition’s average pre-test scores for the science and CT units.  In 

order to probe deeper into why this occurred, we calculated the average pre- and post-test scores 

for students in each of the four 6th grade sections to check whether any section was an outlier in 

terms of pretest performance. Our results (see Table 8) showed that both sections assigned to the 

experimental condition performed at par on the pre-tests, and the two sections assigned to the 

control condition performed similarly on the pre-tests. Therefore, we were left to answer the 

question: did the students in the experimental condition learn more because they already knew 

more than the students in the control condition? 
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Table 8. Science and CT learning gains by section 

  Pre Post Pre-to-post p-value 

Kinematics 

(max = 45) 

Section1 – Control (n=22) 13.64 (6.9) 16.41 (6.2) <0.01 

Section3 – Control (n=24) 11.5 (5.7) 14.77 (5.24) <0.01 

Section 2 – Experimental (n=26) 17.12 (6.6) 21.4 (6.6) <0.0005 

Section 4 –Experimental (n=26) 16.19 (6.7) 23.35 (6.13) <0.0001 

Ecology 

(max = 39.5) 

Section1 – Control (n=22) 8.25 (4.6) 18.75 (9.4) <0.0001 

Section3 –Control (n=24) 6.63 (3.0) 13.83 (6.7) <0.0001 

Section 2 – Experimental (n=26) 9.0 (5.4) 25.58 (7.5) <0.0001 

Section 4 –Experimental (n=26) 9.77 (3.4) 28.25 (5.9) <0.0001 

CT 

(max = 60) 

Section1 – Control (n=22) 14.89 (5.7) 22.55 (6.4) <0.0001 

Section3 –Control (n=24) 17.96 (5.4) 22.52 (5.1) <0.0001 

Section 2 – Experimental (n=26) 22.87 (8.6) 32.77 (6.6) <0.0001 

Section 4 –Experimental (n=26) 22.58 (6.8) 31.71 (5.2) <0.0001 

 

To investigate the question above, we divided students in each condition into two groups 

(‘Low pre scores’ and ‘High pre scores’) based on their pre-test performances using the median 

score as the divider, and compared learning for students who started with low pre-test scores 

against those who started with high pre-test scores. Table 9 shows the learning gains for both the 

groups in each condition. The effect sizes reported in Table 9 and the slope of the plots in Figure 

25 show that the students in both control and experimental conditions who start with lower pre test 

scores have higher pre-to-post learning gains compared to students in the same condition who start 

with high pre-test scores. This result holds good for both science and CT learning, and 

demonstrates that CTSiM is not biased toward the students who are more knowledgeable initially. 

Instead, students who initially have low knowledge tend to learn more, and this helps reduce the 

gap between students who start with differing levels of prior knowledge. 

Also, we observe that the experimental group students with low pre score show higher 

learning gains than the control group students with low pre scores, and the experimental group 

students with high pre-test scores show higher learning gains than the control group students with 

high pre-test scores.  In addition, we find that experimental group students with low pre-test scores 

generally have pre-test scores much lower than that of control group students with high pre-test 

scores. However, by the post-test, this ‘experimental – low pre score’ group not only catches up, 

but also performs better than the ‘control-high pre score’ group. 
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Table 9. Gains by low and high pre-test performance for each condition 

  Pre Post 
Pre-to-post 

p-value 

Cohen’s d 

Effect size 

Kinematics 

(max = 45) 

Control – Low pre scores(n=23) 7.63 (2.9) 12.5 (4.8) <0.0001 1.23 

Control – High pre scores(n=23) 17.41 (4.8) 18.61 (4.9) >0.05 0.25 

Experimental – Low pre scores (n=26) 11.38 (3.8) 18.98 (6.0) <0.0001 1.51 

Experimental – High pre scores (n=26) 21.92 (4.1) 25.77 (4.8) <0.0001 0.86 

Ecology 

(max = 39.5) 

Control – Low pre scores(n=20) 4.80 (1.2) 12.98 (6.5) <0.0001 1.75 

Control – High pre scores(n=21) 10.09 (4.3) 19.41 (9.4) <0.0001 1.27 

Experimental – Low pre scores (n=22) 5.64 (1.6) 25.93 (7.0) <0.0001 4.0 

Experimental – High pre scores (n=25) 12.86 (3.8) 29.66 (5.8) <0.0001 3.43 

CT 

(max = 60) 

Control – Low pre scores(n=23) 11.81 (2.8) 19.59 (4.8) <0.0001 1.98 

Control – High pre scores(n=23) 21.17 (3.5) 25.48 (5.1) <0.001 0.99 

Experimental – Low pre scores (n=26) 16.39 (4.7) 28.7 (4.8) <0.0001 2.59 

Experimental – High pre scores (n=26) 29.06 (3.8) 35.77 (4.6) <0.0001 1.59 

 

 

Figure 25. Science and CT learning gains by condition and initial pre-test scores 

7.2.2 Modeling performance 

In order to address our 2nd research question, we assess the effectiveness of our adaptive 

scaffolding framework by comparing the model building performance of students in the control (n 

= 46) and the experimental (n = 52) groups. Modeling performance for an activity is measured in 

terms of the accuracy of students’ final conceptual and computational models using ‘distance’ 
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metrics outlined in Section 7.1.6. Table 10 and Figure 26 illustrate students’ conceptual and 

computational modeling performance, where a lower distance score indicates better model 

performance. 

 

Figure 26. Modeling performance across conditions 

Figure 26 shows that students in the experimental condition built more accurate conceptual 

models for the Rollercoaster, Fish-macro, and Fish-micro activities (the final model distance 

scores were significantly lower) compared to students in the control condition who did not receive 

any scaffolding from Ms. Mendoza. Breaking down the aggregate distance scores, Table 10 shows 

that the two component scores of ‘missing’ and ‘extra’ constructs were also significantly lower for 

the experimental condition, implying that the experimental group’s models included more of the 

conceptual model elements from the expert model (significantly lower ‘missing’ score) and fewer 

redundant and incorrect conceptual elements (significantly lower ‘extra’ score), compared to the 

control group’s models. 

Similarly, students in the experimental condition built more accurate computational models 

compared to students in the control condition (the differences in final model distances for the two 

groups were statistically significant) for the Rollercoaster, Fish-macro and Fish-micro modeling 

activities. Similar to conceptual modeling, the experimental group’s computational models 

included more of the expert model elements (significantly higher correctness score) and fewer 

redundant and incorrect computational elements (significantly lower incorrect score) than the 

control group’s models. 
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In summary, the answer to our 2nd research question is that the adaptive scaffolding through 

conversational feedback provided to students in the experimental condition resulted in 

significantly better conceptual and computational modeling task performance compared to 

students in the control group. 

Table 10. A comparison of modeling performances across conditions (Note: *p < 0.05, **p < 

0.001, ***p < 0.0001) 

   Rollercoaster Fish-macro Fish-micro 

Final  

conceptual 

model  

accuracy 

Missing score Control 0.09 (0.12) 0.23 (0.14) 0.19 (0.16) 

Experimental 0. 02 (0.05)* 0.04 (0.05)*** 0.04 (0.02)*** 

Extra score Control 0.90 (0.59) 1.53 (1.52) 1.38 (1.60) 

Experimental 0.17 (0.18)*** 0.09 (0.09)*** 0.10 (0.07)*** 

Distance score Control 0.99 (0.53) 1.76 (1.48) 1.56 (1.58) 

Experimental 0.20 (0.20)*** 0.13 (0.13)*** 0.14 (0.08)*** 

Final 

computational 

model 

accuracy 

Correctness 

score 

Control 0.66 (0.23) 0.48 (0.21) 0.53 (0.27) 

Experimental 0.85 (0.21)*** 0.93 (0.1)*** 0.97 (0.07)*** 

Incorrectness 

score 

Control 0.24 (0.21) 0.15 (0.13) 0.21 (0.23) 

Experimental 0.15 (0.18)* 0.04 (0.03)*** 0.02 (0.05)*** 

Distance score Control 0.48 (0.19) 0.57 (0.17) 0.56 (0.28) 

Experimental 0.24 (0.25)*** 0.09 (0.1)*** 0.04 (0.08)*** 

 

7.2.3 Transfer of modeling skills 

Next, we analyzed students’ performances on the transfer task where they were provided with a 

detailed description of a wolf-sheep-grass ecosystem and were asked to (i) build a conceptual 

model using an agent based sense-act framework, similar to the one students used while working 

in the CTSiM environment, and (ii) build a computational model using domain-specific and 

domain-general computational primitives provided in the question. We scored students’ 

conceptual and block-based computational models of the wolf-sheep-grass ecosystem separately, 

and report our results in Table 11. The conceptual modeling score was determined by the number 

of conceptual elements (agents, environment elements, properties, behaviors, sense-act properties) 

required to correctly and completely describe the given wolf-sheep-grass ecosystem, minus the 

number of redundant conceptual elements. The computational modeling score also took into 

account required and extra blocks, as well as whether actions occurred under the correct set of 
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conditions. We found that students in the experimental condition were able to apply their modeling 

skills better to the wolf-sheep-grass scenario, and built significantly more accurate conceptual and 

computational models compared to students in the control condition. This answers our 3rd research 

question. 

Table 11. A comparison of learning transfer between conditions 

  Control Experimental p-value 
Cohen’s 

d 

Conceptual 

modeling 

score 

Conceptual entities (max = 5) 4.66 (0.79) 4.92 (0.39) <0.05 0.43 

Conceptual sense-act (max = 41) 11.54 (5.29) 20.93 (6.70) <0.001 1.56 

Total score (max=46) 16.21 (5.45) 25.86 (6.73) <0.001 1.58 

Computational modeling score (max=48) 17.33 (9.23) 30.50 (8.98) <0.001 1.46 

Total transfer test score (max=94) 
33.53 

(13.80) 
53.36 (14.49) <0.001 1.63 

 

7.2.4 Modeling behaviors 

We assessed students’ modeling behaviors in each activity based on their: (i) model evolutions 

over time during the course of the activity, (ii) integration of the conceptual and computational 

modeling representations during the activity, and (iii) frequency of use of desired strategies S1-S5 

and their suboptimal variants. 

In addition to building more accurate final models, the experimental group’s progress 

towards building their final models was significantly better than that of the control group (see 

Table 12). For example, the experimental group demonstrated better conceptual modeling behavior 

as evidenced by three metrics: (1) higher percentage of effective (i.e., correct) conceptual edits in 

all three activities; (2) conceptual model accuracy improved with time in each activity, i.e., the 

slope for model distance over time was negative, whereas the distance slope for the control group 

was positive. (The control group kept adding unnecessary elements to their models, and their 

conceptual models became more inaccurate in each activity as time progressed); and (3) modeling 

consistency was higher for the experimental group in the fish-micro unit. Also, the experimental 

group’s computational model progressions within each unit were more consistent and improved 

more rapidly. Both conditions had negative computational model evolution slopes, i.e., their model 
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accuracy improved over time in each of the activities. However, the rate of improvement was 

significantly higher for the experimental group in all the activities. 

Table 12. A comparison of model evolutions across conditions (Note: *p < 0.05, **p < 0.001, ***p 

< 0.0001) 

   Rollercoaster Fish-macro Fish-micro 

Conceptual 

model  

progression 

Edit  

Effectiveness 

Control 0.497 (0.060) 0.445 (0.101) 0.483 (0.164) 

Experimental 0.567 (0.038)*** 0.592 (0.044)*** 0.676 (0.062)*** 

Model 

evolution slope 

Control 0.005 (0.007) 0.003 (0.003) 0.002 (0.006) 

Experimental -0.003 (0.003)*** -0.002 (0.002)*** -0.005 (0.004)*** 

Model 

evolution 

consistency 

Control 0.334 (0.291) 0.500 (0.336) 0.585 (0.340) 

Experimental 0.304 (0.221) 0.591 (0.310) 0.796 (0.225)** 

Computational 

model 

progression 

Edit 

effectiveness 

Control .43 (.09) .47 (.07) .55 (.12) 

Experimental .43 (.08) .58 (.08)*** .69 (.11)*** 

Model 

evolution slope 

Control -.004 (.004) -.002 (.001) -.005 (.004) 

Experimental -.006 (.005)* -.004 (.002)*** -.009 (.004)*** 

Model 

evolution 

consistency 

Control .41 (.31) .78 (.21) .78 (.24) 

Experimental .6 (.25)** .95 (.04)** .95 (.05)** 

Table 13. A comparison of modeling behaviors across conditions with respect to combining the 

conceptual and computational representations       

(Note: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)  

  Rollercoaster Fish-macro Fish-micro 

Number of conceptual/ 

computational chunks 

Control 20.13 (10.25) 55.02 (26.09) 30.07 (15.2) 

Experimental 33.23 (11.57)**** 93.52 (30.11)**** 56.17 (13.56)**** 

Average size of conceptual 

chunks 

Control 10.24 (4.48) 18.54 (13.01) 20.29 (16.21) 

Experimental 8.24 (2.44)** 8.12 (3.33)**** 5.65 (1.6)**** 

Average size of computational 

chunks 

Control 16.72 (18.08) 8.82 (4.14) 7.2 (4.47) 

Experimental 7.92 (2.78)*** 5.11 (1.25)**** 4.2 (1.26)**** 

Normalized ratio of conceptual 

to computational chunk sizes 

Control 0.83 (0.5) 2.66 (1.6) 2.73 (1.7) 

Experimental 1.1 (0.52)** 2.02 (0.87)* 1.38 (0.42)**** 

Fraction of conceptual edits with 

coherent computational edits 

Control .28 (.07) .17 (.08) .25 (.15) 

Experimental .3 (.08) .33 (.11)**** .56 (.12)**** 
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Besides comparing students’ use of the conceptual and computational representations 

separately, we also compared students’ modeling behaviors with respect to how they combined 

the two representations using the metrics described in Section 7.1.6. Table 13 shows that the 

average sizes (number of edits) of the conceptual and computational chunks was significantly 

smaller for students in the experimental condition, while the number of switches between the 

conceptual and computational modeling representations was significantly higher for the 

experimental group. These results indicate that students in the experimental condition were better 

at decomposing their modeling tasks into smaller and more manageable chunks, and they switched 

frequently to take advantage of the coupled representations (Basu, Biswas & Kinnebrew, 2016; 

Basu, Kinnebrew, & Biswas, in review). This difference was consistent and statistically significant 

across all three modeling activities, but the disparity in both conceptual and computational chunk 

sizes became more pronounced in the later activities. In addition to decomposing their modeling 

tasks better, the students in the experimental condition also demonstrated a better understanding 

of the relations between the two levels of modeling abstractions, as evidenced by a higher number 

of conceptual edits followed by coherent computational edits.  

The normalized ratio of conceptual and computational chunk sizes provides a 

complementary measure with respect to integration of the modeling representations. For each of 

the modeling activities, we noticed a significant difference in this normalized ratio between 

students in the two conditions, and found that the ratio was always closer to 1 for students in the 

experimental condition. A normalized chunk size ratio of 1 for an activity implies that it is equal 

to the ratio of the number of conceptual and computational elements in the expert model for the 

activity. This ratio increased from the RC to the fish-macro activity for both conditions, implying 

that students’ conceptual edits increased as compared to their computational edits with respect to 

the expert models. However, the increase was significantly greater for the control group. Perhaps, 

the complexity of the fish-macro activity resulted in students spending more effort (i.e., more edits, 

because they made more errors) in conceptualizing the models (multiple entities, their properties, 

and behaviors) than in the RC unit. For the experimental condition, the normalized ratio decreased 

from the macro to the micro unit, implying that students had to spend less effort in conceptualizing 

the domain model. However, the ratio increased further from macro to micro activities for the 

control group.  
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Finally, we computed the impact of the adaptive scaffolding on students’ modeling 

behaviors by comparing students in the control and experimental groups in terms of their effective 

and suboptimal strategy usage. Table 14 presents the average number of times each of the five 

strategies was used in each modeling activity, as well as the percentage of students who used the 

strategy at least once in each activity. We note two general trends in the effective use of all the 

strategies across the three modeling activities: (1) the fraction of students in the experimental group 

who used the strategies effectively was always greater than or equal to the fraction that used the 

same strategy effectively in the control group, and (2) the average effective uses of the strategies 

was also higher in the experimental group. As shown in Table 14, a number of the differences 

between average uses of strategies in the two conditions were statistically significant at different 

confidence levels. While most of the differences had low to medium effect sizes (Cohen’s d in the 

range of 0.2 to 0.7), the differences in use of the coherent Model-Build strategy had much larger 

effect sizes in all three modeling activities (Cohen’s d in the range of 1.36 to 1.75).  

Table 14. A comparison of the use of desired strategies across conditions  

(Note: *p < 0.05, **p < 0.01, ***p < 0.001) 
  RC Fish-macro Fish-micro 

Strategy  Fraction 

of 

students 

Mean (s.d.) Fraction 

of students 

Mean (s.d.) Fraction 

of 

students 

Mean (s.d.) 

S1. SC action followed by 

relevant science reads 

C 37% 1.33 (2.99) 54% 2.43 (4.8) 70% 1.93 (2.05) 

E 63% 2.23 (4.71) 83% 4.75 (4.97)* 85% 3.4 (4.51)* 

S2. SA actions followed by 

relevant science reads 

C 4% 0.07 (0.33) 26% 0.76 (1.66) 26% 0.85 (9.31) 

E 38% 1.37 (2.69)** 44% 1.66 (2.29)* 44% 1.06 (0.24) 

S3. Fraction of assessed 

behaviors that were read 

about before being assessed 

C 80% .73 (.42) 93% .5 (.33) 83% 0.89 (0.27) 

E 92% .86 (.28) 96% .77 (.32)*** 100% 0.96 (0.16) 

S4. Number of partial-

model comparisons 

C 0% na 48% 2.65 (5.79) 15% 0.57 (1.98) 

E 0% na 58% 5.42 (7.16)* 19% 1.97 (3.22)* 

S5. Fraction of sense-act 

properties  removed or 

followed by a coherent 

computational edit 

C 100% 0.67 (0.27) 100% 0.69 (0.31) 98% 0.59(0.31) 

E 100% 0.97 (0.1)*** 100% 0.99 

(0.03)*** 

100% 0.98 

(0.06)*** 

 

We also performed more fine grained analysis of effects of the scaffolds on effective uses 

of strategies by counting the number of effective uses before and after feedback instances. Our 
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results show a general trend for students who needed scaffolding, their effective uses of strategies 

became more frequent as they received feedback for their suboptimal uses (Basu & Biswas, 2016). 

For example, for S4 (the test-in-parts strategy) in the fish-macro unit, 10 of the 52 experimental 

group students never received feedback on S4 and made 0.8 (1.5) effective uses of S4 on an 

average. 15 students received feedback exactly once, and made an average of 2.0 (4.7) partial 

model comparisons before receiving feedback, which increased to 2.73 (6.24) after receiving 

feedback. The other 27 students received feedback on S4 two or more times; they used S4 an 

average of 0.93 (2.4) times before receiving any feedback, 1.93 (4.2) times between the first and 

second feedback instances, and 4.7 (7.43) times after receiving feedback twice. 

Table 15. Comparing suboptimal uses of strategies in terms of feedback received or would be 

received (Note: *p < 0.05, **p < 0.005, ***p < 0.0001) 
  RC Fish-macro Fish-micro 

 
 

n 
Min-

max 
Mean(s.d.) n 

Min-

max  
Mean(s.d.) n 

Min-

max  
Mean(s.d.) 

S1: SC-IA 

strategy 

C 4 0-1 0.09 (0.28) 19 0-28 1.93 (4.46) 15 0-7 1.13 (1.98) 

E 3 0-1 0.06 (0.2) 22 0-4 0.69 (1.02) 8 0-1 0.15 (0.36)** 

S2: SA-IA 

strategy 

C 0 0 0(0) 0 0 0(0) 3 0-10 0.28 (1.5) 

E 0 0 0(0) 0 0 0(0) 0 0 0(0) 

S3: IA-

SC/SA 

strategy 

C 16 0-57 8.43 (15.8) 41 0-62 18.8 (15.7) 8 0-14 1.11 (2.94) 

E 
18 0-15 1.37 (3.11)** 19 0-14 1.81 (3.27)*** 4 0-3 0.13 (0.52)* 

S4: Test-in-

parts 

strategy 

C 0 0 0(0) 46 1-26 9.57 (6.77) 37 0-30 3.85 (5.27) 

E 
0 0 0(0) 42 0-9 2.23 (2.13)*** 23 0-6 0.83 (1.26)*** 

S5: Model-

Build 

strategy 

C 41 0-32 7.17 (6.19) 45 0-130 34.83 (28.87) 36 0-150 18.85 (26.95) 

E 
32 0-8 1.79 (2.17)*** 35 0-10 2.04 (2.43)*** 30 0-10 1.33 (1.82)*** 

 

We also studied the effect of our adaptive scaffolds on students’ suboptimal uses of 

strategies. Since the strategy oriented scaffolds were triggered based on the suboptimal strategy 

uses, we counted the feedback received in the experimental group and calculated the feedback that 

would be received by the control group. For each of the five types of strategy feedback, Table 15 

provides for each activity: (1) n, which represents the number of students who receive the feedback 

at least once in the activity, (2) min-max, where min represents the lowest number of times 

feedback is received by a student in the group during the activity (correspondingly, max represents 



 116 

the highest number of feedback instances received by a student in that group), and (3) mean (s.d.) 

represent the average number of times (and standard deviation) the feedback was received during 

the activity. We see that the students in the experimental group need significantly lower amount 

of strategy feedback than the control group would have needed, especially for the Model-Build 

strategy, the test-in-parts strategy, and the IA-SC/SA strategy, implying that the adaptive scaffolds 

helped improve effective uses of the strategies, and reduced their suboptimal uses.  

In summary, the results imply that the adaptive scaffolding had a strong effect on students’ 

modeling behaviors, and helped improve students’ use and integration of the conceptual and 

computational modeling representations, and effective strategy usage. 

7.2.5 Relations between modeling performances and behaviors, and science learning  

To investigate our 5th research question, we analyzed the correlations between (a) the modeling 

performances and behaviors and strategy use for each activity, and (b) students’ post-test scores 

for the corresponding science domain.  

First, we correlated students’ science post-test scores with their modeling performances, 

model evolution metrics, and how they integrated the conceptual and computational 

representations (see Table 16). We did not find any significant correlations between students’ 

modeling measures in the Rollercoaster activity and their Kinematics post-test performances. A 

likely reason is that the RC conceptual representation, with a single agent type, did not provide a 

lot of scaffolding for designing the corresponding computational models. Therefore, the benefits 

of the linked representation were not as apparent. Besides, the students may not have become 

proficient with the representations in Activity 1, therefore, modeling alone did not perhaps help 

the students to better understand domain knowledge. However, Table 16 shows that students’ 

modeling metrics in the fish-macro and fish-micro activities were correlated with their ecology 

post-test scores. 

We find that the macro and micro final model distances were negatively correlated with 

ecology post-test scores, implying that lower distances to expert models or more accurate student 

models were associated with higher post test scores. For students in the experimental group, the 

correlations between their Ecology post-test scores and their computational performance measures 

for the fish-micro unit do not reach significance, possibly due to the homogeneity of their final 

model distances in the micro unit. Also, in the Ecology units, model evolution slopes, especially 
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for conceptual modeling, appears to be a strong predictor of science post-test scores. The more 

negative the slope (i.e., faster the progression towards a more accurate final model), the higher the 

Ecology post-test score.  

Table 16. Correlations of modeling performances and behaviors with science learning  

(Note: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001) 

Correlations with Kinematics post test scores 

 Control Experimental 

 Conceptual Computational Conceptual Computational 

RC final distance -0.16 -0.16 -0.208 -0.151 

RC effectiveness -0.17 -0.18 0.258 -0.013 

RC slope -0.09 -0.2 0.008 -0.111 

RC consistency -0.07 0.1 -0.158 0.096 

RC number of chunks 0.06 0.028 

RC ratio of chunk sizes 0.02 0.055 

RC coherent edits 0.06 -0.005 

Correlations with Ecology post test scores 

Macro final distance -0.35* -0.56*** -0.476** -0.393** 

Macro effectiveness -0.02 0.09 0.334* 0.225 

Macro slope -0.43** -0.12 -0.204 -0.265 

Macro consistency -0.24 0.18 0.31162* 0.264 

Macro number of chunks 0.61**** 0.076 

Macro ratio of chunk sizes -0.25 0.27 

Macro coherent edits 0.48*** 0.293* 

Micro final distance -0.43** -0.62**** -0.393** -0.182 

Micro effectiveness 0.03 0.38** 0.275* 0.131 

Micro slope -0.53*** -0.46** -0.286* -0.155 

Micro consistency -0.08 0.22 0.281* 0.104 

Micro number of chunks 0.51*** 0.125 

Micro ratio of chunk sizes -0.22 0.031 

Micro coherent edits 0.63**** 0.275* 

 

In terms of linked representation integration metrics, we found that a higher number of 

chunks (greater number of switches between the conceptual and computational representations) 

and lower average chunk sizes were correlated with higher post-test scores for students in both 

conditions, suggesting that effective coordination between the linked modeling representations 

appeared to have a positive effect on science learning. Specifically, decomposing the modeling 

task and going back-and-forth between representations in relatively small sized chunks appeared 
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to be useful behaviors that supported greater learning. Also, greater coherence between the 

conceptual and computational modeling representations in the fish-macro and fish-micro units 

strongly correlated with higher Ecology post-test scores for students in both conditions.  

Furthermore, we also analyzed the correlations between students’ strategy use in each 

activity and their post test scores in the corresponding science domain. While we found use of 

certain strategies to be significantly positively correlated to learning in particular units (for 

example, the Model-Build strategy in fish-macro and fish-micro activities), we did not generally 

find use of an individual strategy to be correlated with learning across all activities or across 

conditions. This result speaks for the importance of using a combination of the strategies for 

efficiently integrating the different CTSiM tasks and sub-tasks, since we have found that the 

experimental group students who displayed a better overall usage of the desired strategies also 

displayed higher learning gains. 

7.2.6 Fading effect of scaffolds across modeling activities 

Finally, to answer our 6th research question, we studied how often students in the experimental 

group received scaffolding, and how the scaffolding frequency varied across the three modeling 

activities. Figure 27 illustrates how the strategy-based and task-oriented feedback received by 

students in the experimental condition varied across learning activities. 

 

Figure 27. Frequency of feedback received across learning activities 

Table 17 shows the feedback received for different strategies and different aspects of the modeling 

task in each activity. For each type of task-based and strategy-oriented feedback, Table 17 provides 

3 values for each activity: (1) n represents the number of students who received the feedback at 

least once in the activity, (2) range represents the lowest and highest number of times the feedback 
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was received by any student during the activity, and (3) mean (s.d.) represent the average number 

of times the feedback was received during the activity along with its standard deviation value.  

Table 17. Variation of frequency and types of scaffolds required across modeling activities 

  RC Fish-macro Fish-micro 

  n Range 
Mean

(s.d.) 
n Range 

Mean

(s.d.) 
n Range 

Mean

(s.d.) 

Strategy 

feedback 

SC-IA strategy 3 0-1 
0.06 

(0.2) 
22 0-4 

0.69 

(1.02) 
8 0-1 

0.15 

(0.36) 

SA-IA strategy 0 0 0(0) 0 0 0(0) 0 0 0(0) 

IA-SC/SA strategy 18 0-15 
1.37 

(3.11) 
19 0-14 

1.81 

(3.27) 
4 0-3 

0.13 

(0.52) 

Test-in-parts strategy 0 0 0(0) 42 0-9 
2.23 

(2.13) 
23 0-6 

0.83 

(1.26) 

Model-Build strategy 32 0-8 
1.79 

(2.17) 
35 0-10 

2.04 

(2.43) 
30 0-10 

1.33 

(1.82) 

Total strategy feedback 38 0-20 
3.2 

(3.9) 
50 0-18 

6.77 

(5.05) 
39 0-16 

2.44 

(2.9) 

Task 

oriented 

feedback 

Conceptual 

model 

building 

Conceptual 

entities 
4 0-8 

0.29 

(1.26) 
43 0-22 

4.77 

(4.31) 

31 

 
0-13 

2.5 

(3.3) 

Conceptual 

set of 

behaviors 

0 0 0(0) 7 0-5 
0.29 

(0.99) 

1 

 
0-1 

0.02 

(0.1) 

Sense-act 

framework 
52 2-37 

11.86 

(8.0) 
22 0-12 

1.98 

(3.05) 
21 0-7 

1.17 

(1.7) 

Total 

conceptual 

modeling 

feedback 

52 2-37 
12.15 

(7.94) 
49 0-24 

7.04 

(5.85) 
46 0-14 

3.69 

(3.3) 

Computational model 

building 
37 0-11 

2.23 

(2.56) 
42 0-16 

3.46 

(4.03) 

10 

 
0-5 

0.35 

(0.9) 

Total task based feedback 52 2-45 
14.38 

(8.69) 
50 0-37 

10.5 

(8.52) 
46 0-16 

4.04 

(3.5) 

 

We found that students needed a combination of task and strategy feedback in all the 

modeling activities. In the initial rollercoaster activity, students received more task oriented 
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feedback than in the other two activities. In the more complex fish-macro activity with multiple 

agents and behaviors, students needed more strategy feedback than in the rollercoaster activity, 

but less task oriented feedback than in the rollercoaster activity, implying that the effects of the 

feedback persisted across units. However, students found it challenging to manage and integrate 

the different tasks in a complex modeling activity involving a new domain. Finally, in the fish-

micro activity, the task feedback received was further reduced, and the strategy feedback also 

decreased (to a smaller number than in the initial rollercoaster activity). This result provides 

preliminary evidence that our scaffolding effects persisted, and, therefore, a fading effect occurred 

naturally as students worked across units. Further, the resulting conceptual and computational 

models in the fish-micro activity were the most accurate of any activity, even though the students 

received less feedback in each category of scaffolds than in the earlier activities. 

For the task oriented feedback, we noticed that students needed a combination of 

conceptual and computational model building feedback in all the activities. Looking specifically 

at the conceptual modeling scaffolds, we find that almost all of the feedback in the rollercoaster 

activity was directed at correctly conceptualizing sense-act processes. However, students got 

significantly better in conceptualizing sense-act processes in the fish macro and fish micro 

activities. In these activities, most of the conceptual model building scaffolds were directed at 

correctly conceptualizing the right set of entities in the domain, which may be attributed to 

students’ low prior knowledge in the ecology domain (see pre-test scores in Table 7). Students 

were faced with learning and modeling new domain content with multiple agents and environment 

elements in the fish macro and fish micro activities.  

With respect to strategy feedback, we see that students needed a combination of the 

different scaffolds except that for the SA-IA strategy. The value 0 across all activities for the SA-

IA feedback is unusual, but that was because the condition under which this strategy was triggered 

was rarely assessed. This result implies that this assessment needs to be further refined in the 

learner model in the future. In general, students needed a lot of scaffolding for the Model-Build 

strategy, the test-in-parts strategy, which was applicable for the larger ecology activities, and the 

IA-SC/SA strategy. Again, these results show that the feedback on the five strategies and different 

aspects of the modeling tasks was effective, in that students learned how to use the strategies, and 

there was a general fading effect on the need for feedback across activities. 
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7.3 Discussion 

In summary, this research study demonstrates the effectiveness of the CTSiM v2 environment with 

adaptive scaffolding, and provides valuable insight into the six research questions that this study 

was designed to investigate. We compare students who receive and who do not receive adaptive 

scaffolding and draw the following conclusions about the impact of the adaptive scaffolding: 

i. Students who receive the adaptive scaffolding show higher science and CT learning gains 

compared to students who do not receive the adaptive scaffolding.  

ii. Students who are provided adaptive scaffolding build more accurate conceptual and 

computational models, and are better able to transfer their modeling skills to new scenarios, 

in comparison to students who are not provided with adaptive scaffolding 

iii. Students who are adaptively scaffolded display more proficient modeling behaviors, better 

use of CT practices, and a higher frequency of effective strategy use, compared to students 

who are not adaptively scaffolded 

Moreover, our results show that students’ modeling performances and modeling behaviors in the 

CTSiM v2 environment are correlated with their science learning. In particular, we find strong 

correlations between science learning and the use of important CT practices, like decomposing 

modeling tasks and understanding and relating representations at different levels of abstraction. 

This correlation clearly demonstrates the synergy between CT and science learning, which we 

have tried to leverage in the CTSiM environment to foster CT skills and science learning 

simultaneously. 

Besides comparing students who received and did not receive scaffolding, we also analyzed 

how the type and frequency of scaffolds needed by students varied across time. We have shown 

that students needed a combination of task-based and strategy-based scaffolds in all activities, and 

that the average number of scaffolds required of each type decreased with time across activities. 

This result, combined with students’ modeling proficiency in the final activity and their high 

learning gains, demonstrates the fading effect of our scaffolds.  
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CHAPTER 8 

Discussion, Conclusions, and Future Work 

Computational Thinking (CT) represents a fundamental set of skills that can be linked to problem 

formulation and solving, such as representing problems at different levels of abstraction, 

decomposing complex problems into manageable parts, and reformulating problems in terms of 

ones with known solutions. CT engages the power of computing to provide the framework for 

representing, analyzing, and solving problems in diverse disciplines. Of particular interest to us 

are the links between CT and STEM learning. CT is considered to be at the core of all STEM 

disciplines, and they share several common epistemic and representational practices. While 

computational mechanisms are better learned when contextualized in real-world problem contexts 

including those related to STEM domains, STEM concepts and fundamental science laws also 

become easier to understand and apply using computational representations and mechanisms. With 

the current emphasis on promoting both CT skills and STEM awareness for developing a globally 

competitive 21st century workforce, finding ways to leverage the synergy between CT and STEM 

becomes critical. 

In today’s world, it is imperative that students learn CT skills and be able to apply them 

starting at an early age. While the importance of introducing CT in the K-12 curricula has been 

emphasized by several researchers, the field of CT research has concentrated a lot of its effort into 

motivating and encouraging students to pursue computer science and use of computational tools 

through extra-curricular game-design or app-design activities. Such activities generally do not try 

to connect their activities and learning goals to existing K-12 standards or STEM learning 

concepts. Broadening participation in CS through motivational extracurricular CT-based activities 

may be a good first step, but CT eventually needs to be integrated into the K-12 curricula to make 

it accessible to everybody, including minorities and women.  Also, curricular integration of CT 

requires development of systematic assessments for evaluating students and scaffolds for helping 

students with their difficulties, areas which both require further research and development.  

This dissertation research makes significant contributions to the field of CT in K-12 

education by demonstrating how to successfully leverage the synergy between CT and middle 
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school science learning.  We have developed CTSiM – a computer-based learning environment 

that middle school students use to build computational models of science topics. Running a study 

with an initial version of the CTSiM, we found that computational modeling of science topics 

helped students learn the relevant science content, but students faced a number of challenges and 

required continual individualized scaffolding for overcoming the challenges. By analyzing 

students’ challenges, we were able to design and implement a number of modifications to the 

CTSiM system, and add adaptive scaffolds to help students become better learners and problem 

solvers. Our results show that the science learning gains for the experimental group that received 

adaptive scaffolding while working in the CTSiM v2 environment were higher than that of students 

who received one-on-one individualized scaffolding from members of our research team when 

working with the initial CTSiM system (the Effect size for the kinematics learning gains was 0.88 

for CTSiM v2 versus 0.71 for the initial system, and the Effect size for ecology learning gains 

increased to 3.25 in CTSiM v2 from 3.16 in CTSiM v1)1. This shows that the modifications made 

to the CTSiM v2 environment to facilitate model building and model verification, along with the 

adaptive scaffolds helped achieve similar, or better learning gains than that achieved with the initial 

version of CTSiM where students received dedicated and individualized assistance from 

researchers to overcome their challenges. Also, the science learning gains of students who used 

the CTSiM v2 environment without adaptive scaffolding were higher than that of students who 

used CTSiM v1 without individualized assistance (the Effect size for the kinematics learning gains 

was 0.55 in CTSiM v2 as opposed to 0.05 in the initial version; the Effect size for ecology learning 

gains was 1.35 for CTSiM v2 versus 1.09 for CTSiM v1). From this, we concluded that the 

additional scaffolding and tools we provided through system redesign (see Chapter 5) had a 

positive effect on student learning. 

                                                 

 

 

1 (The comparison of the effect sizes across the two studies is presented merely as a qualitative 

measure, since the research methodologies were not identical in the two studies, and the test 

questions in the second study were a refined version of those used in the first study. Also, we did 

not compare students in the two studies using measures external to the CTSiM environment.  
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Overall, the primary contributions of this dissertation can be summarized as follows:  

i. Designing and Developing CTSiM - a computer-based learning environment that adopts 

the learning by modeling paradigm, and combines agent-based modeling paradigm with 

visual programming to simultaneously fosters CT skills and middle school science 

learning,  

ii. Designing and Developing adaptive scaffolds for CT-based science learning  - the need for 

scaffolding is determined using a combination of the  students’ modeling behaviors and 

their modeling performance, and  

iii. Developing multiple modes of assessments for CT-based science learning and evaluating 

the effectiveness of the adaptive scaffolds using these assessments. 

8.1 Contributions to the development of CT-based learning environments which can be 

integrated into middle school science classrooms 

Unlike several CT-based environments and activities that are anchored in contexts like game-

design, storytelling, and app-design, the CTSiM learning environment requires students to 

construct simulation models of science topics by carefully combining information acquisition, 

solution construction, and solution assessment tasks. The CTSiM design provides an example of 

how CT principles can be operationalized and successfully integrated with existing science 

curricula to help students simultaneously learn  

(i) science concepts in kinematics and ecology, 

(ii) computational concepts like conditional logic, use of sequences, loops, operators, and 

variables, and  

(iii) important CT practices such as algorithmic thinking, abstraction, modularization, 

decomposition, incremental and iterative problem solving, and model verification using 

testing and debugging. 

For example, the linked conceptual and computational modeling representations support 

decomposition and using abstractions to deal with complex modeling tasks. Similarly, the feature 

that supports checking and comparing subsets of modeled behaviors highlights CT practices like 

testing in parts.  
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Further, the intuitive agent-based, visual programming paradigm, and the domain specific 

modeling language support seamless integration into existing middle school science classrooms. 

CTSiM has been used successfully by a number of middle school science teachers in different 

cities in U.S.A., with and without researchers from our team being present when it was used in the 

classroom. All the teachers reported that they had no prior programming experience, but found 

computational modeling using CTSiM intuitive, and the ‘Programming Guide’ resources included 

in CTSiM extremely helpful for introducing their students to agent-based conceptual and 

computational modeling, and the use of common computational constructs for building models of 

scientific processes. Teacher reports and our observations in classrooms also confirm that students 

generally find modeling using CTSiM intuitive, enjoyable, and engaging. 

Not only do students find working in the CTSiM environment enjoyable, they also 

demonstrate strong learning gains in both the science and CT domains. While our results in Chapter 

7 illustrate that adaptive scaffolding can improve learning gains, we notice that even students who 

do not receive adaptive scaffolding while working with CTSiM show significant (p < 0.0001) pre-

to-post learning gains for CT content as well as science content in Kinematics and Ecology. In 

addition, we also found that all students’ science learning gains were correlated with their CT 

learning gains (r = 0.2, p < 0.05). Further, students’ use of desired CT practices were also correlated 

with their science learning, especially in the Ecology units (see Table 14 in Section 7.2.5), again 

establishing the synergy between science and CT learning using CTSiM.  

8.2 Contributions to the development of adaptive scaffolds for CT-based science learning 

environments 

Model building in CTSiM v2 is a complex task. The environment provides a number of supporting 

tools, such as hypertext based searchable domain and CT resources, linked conceptual and 

computational modeling representations that help students decompose the complex model and 

build it in parts, a block-structured visual language to build the computational models, the ability 

to step through blocks to test the evolving simulation function, and a compare function that lets 

students compare the behaviors generated by their model against the behaviors generated by an 

expert model in parts. However, novice students find it difficult to combine all of the tools and 

scaffolds provided in the environment in an effective manner. Thus, we have developed a task- 
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and strategy-oriented learner modeling scheme that tracks and interprets students’ actions in the 

CTSiM v2 environment by combining information about students’ modeling behaviors and 

performances using ‘coherence’ and ‘effectiveness’ measures. The learner model then forms the 

basis for providing students with adaptive task and strategy based feedback contextualized in 

science domain content using a mixed initiative conversational dialog framework. We have 

demonstrated the effectiveness of our approach through a study run with control (no adaptive 

scaffolds) and experimental (with adaptive scaffolds) conditions. The experimental group 

outperformed the control group in (i) domain and CT learning gains, (ii) constructing correct 

science models, (iii) integrating the provided modeling representations, (iv) transferring modeling 

skills to a new scenario,  and (v) use of the set of desired strategies we tracked in the system. 

Further, we noticed that students in the experimental condition required less task and strategy 

scaffolds across activities from the rollercoaster modeling activity to the fish-micro activity. The 

fact that the scaffolds can be ‘faded’ further substantiates their effectiveness.  

Overall, our approach to learner modeling and scaffolding differs from the work of other 

researchers in a number of ways. Other learning-by-modeling environments for science domains 

generally scaffold students by (i) providing them with an assessment of their science models 

through model-driven simulations, or (ii) using learner models to give feedback on specific 

incorrect relationships modeled by students or specific modeling actions not taken. With respect 

to CT-based learning environments, very few provide any adaptive scaffolding at all. 

Environments like AgentSheets, which provide scaffolds are an exception, but even they merely 

provide automated assessments of students’ computational artifacts by comparing CT patterns in 

students’ artifacts with expected CT patterns.  

Also, our task- and strategy-based learner modeling and adaptive scaffolding framework is 

not specific to CTSiM, but is generalizable for any OELE. Some researchers like Gobert et al. 

(2013) have claimed that using pre-determined metrics to assess learner actions in an OELE is 

problematic, and, to overcome this, they have applied educational data mining techniques to 

develop assessment metrics to evaluate student work. While it is true that students may use a 

variety of strategies to select and apply skills, and engineering metrics that take into account all 

potential corner cases is difficult, our end-goal in CTSiM is not merely developing an accurate 

assessment metric for students’ task performance or strategy use. Rather, the assessment 
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information that forms the basis of our learner models, is used primarily to provide feedback to 

students online and in the context of their current task, but only when it is clear that their 

performance metrics (i.e., effectiveness) is below pre-specified thresholds. Hence, our focus in this 

dissertation has not been on developing a comprehensive list of rules for specifying effective and 

ineffective task performance and strategy use. Our approach concedes that there can be various 

strategies and multiple ineffective variants of a strategy, but we chose ineffective strategy variants 

to detect and scaffold based on our observations in previous studies conducted with CTSiM v1. In 

the future, we also plan to use offline sequence mining techniques to derive common behavior 

patterns, and then use the patterns to track student behavior in future versions of CTSiM.  

8.3 Contributions to the development of assessments for CT-based learning environments 

Another contribution of this dissertation is the development of various assessments artifacts and 

metrics for the CTSiM learning environment. While we have used these assessments in the CTSiM 

environment to evaluate the effectiveness of our adaptive scaffolding framework, many of them 

can be generalized to CT-based learning environments in general. For example, our paper-based 

CT pre/post tests can be used as assessments for any CT-based environments where the target CT 

concepts include algorithmic thinking, conditional logic, use of loops, operators and variables, and 

understanding flow of control in a program. For CT–based environments that emphasize additional 

CT concepts like parallel and recursive thinking, efficiency and performance constraints, and data 

visualizations and analysis, additional assessment questions will be required. Similarly, our task- 

and strategy-based learner modeling and adaptive scaffolding framework using ‘effectiveness’ and 

‘coherence’ relations can be applied to any OELE, and the modeling behavior metrics for 

frequency of use of desired and suboptimal strategies can be generalized to other OELEs including 

CT-based learning environments. While our model performance metrics are influenced by the 

specifics of the domain-specific modeling language used to build CTSiM models, our model 

evolution metrics can be used to assess how students build their computational artifacts in any CT-

based environment as long as the correct or expected artifact is well defined.  

Overall, the assessments we have developed for the CTSiM environment have been able 

to demonstrate the effectiveness of this dissertation research. We report strong and synergistic 

learning gains for science and CT, and show how the CTSiM modeling interfaces naturally 
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promote important CT practices, which are also synergistic with science learning. The linked 

conceptual and computational modeling interfaces in CTSiM promote modeling at different levels 

of abstraction and decomposing the modeling task into modeling individual agent behaviors 

separately. The interfaces for observing whole or partial student models as simulations, on the 

other hand, promote systematic testing, debugging, and iterative refinement practices. In addition, 

we demonstrate that interpreting students’ actions in CTSiM by combining information about their 

modeling behaviors and performance, and adaptively providing context-relevant conversational 

scaffolds helps students with their model building process. Adaptive scaffolding provided by a 

computer-based pedagogical mentor agent helps students build more accurate science models 

using the CTSiM environment, and combine information from their information acquisition, model 

construction, and model assessment tasks more effectively, which in turn results in higher science 

and CT learning gains. 

8.4 Future research directions 

This dissertation research represents a starting point for developing more advanced CT-based 

science learning environments with adaptive scaffolding that can be integrated into middle school 

classrooms. Additional research is needed in order to develop a more encompassing set of adaptive 

scaffolding strategies by making more productive use of the information derived about students’ 

learning behaviors. In addition, lessons learned from the experiments conducted with the current 

version of CTSiM provides us with a framework to develop curricular units in other science 

domains. It is also important that we extend the use of CTSiM to more diverse populations, 

especially in schools that have a predominantly minority student population. We summarize some 

of these promising research directions below.  

Refining the learner modeling and adaptive scaffolding strategy - In future versions of 

CTSiM, we plan to develop and maintain a more nuanced learner model which captures global 

information about students’ modeling performance, and effective and ineffective uses of a more 

comprehensive list of strategies. We plan to define new strategies by looking at action sequences 

from our task model, and also using offline sequence mining techniques to identify common action 

patterns.  Also, based on the nuanced learner model, we plan to refine our adaptive scaffolding 

strategy. Instead of providing scaffolds based on a simplified frequency count of ineffective 
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strategies, we plan to trigger scaffolding feedback based on students’ global behavior and 

distribution of effective and ineffective strategies.  In addition, we plan to analyze students’ action 

logs further to study students’ responses to individual feedback instances and how well they were 

able to engage with the feedback and apply it to their model building and problem solving tasks. 

This will help us understand which forms of feedback students considered most useful, and how 

best to provide such feedback prompts and hints in the context of the students’ current tasks.  

Developing scaffolds for assisting teachers – Currently, we use information about 

students’ modeling performances and behaviors to adaptively scaffold students. In classroom 

settings, it would also be helpful to provide teachers with assessments of how their class is doing, 

common challenges being faced, and point out specific students who seem to require 

individualized assistance. Developing a teacher dashboard with aggregate class data as well as 

information about individual students can scaffold teachers and assist them in managing classroom 

instruction in a more effective manner. The teacher can discuss common mistakes and problems 

with the whole class, and individually help students who are performing below the class average.  

Emphasizing new CT concepts and practices – Currently, CTSiM learning activities 

focus on several important CT concepts and practices like algorithmic flow of control, conditional 

and iterative logic, use of variables, modularization and decomposition, abstraction, and testing 

and refining. However, we could also incorporate some other essential CT skills into CTSiM like 

data collection, visualization and analysis of collected data or data generated by simulating the 

models, systematic debugging of computational modules, and reusing and remixing of code. Data 

collection could involve real-world experiments or even running simulations in the CTSiM 

environment with different initial conditions. Providing an interface for students to systematically 

record their collected data, visualize it using multiple representations and understand the 

affordances of different representations, and draw conclusions and answer questions based on the 

collected data, could help foster some essential CT skills. Debugging is another important CT skill 

which is now implicit in the CTSiM environment, but we could promote it explicitly by developing 

an interface to help students with systematic debugging, testing in parts, and recording experiments 

run, conclusions drawn, and corresponding plans of action. Also, recognizing and understanding 

commonalities between program segments and being able to reuse old code by changing 

parameters, is an essential CT skill we could try and promote in the CTSiM environment. If we 
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allow students to copy and paste blocks or import blocks from one procedure to another in an 

activity, or between activities, we can promote this skill and track students’ actions to further 

provide feedback on how to reuse code efficiently.  

Using CTSiM to teach more diverse science topics – Developing new learning activities 

for CTSiM which align with middle school science curricular standards will help demonstrate the 

generalizability of the CTSiM design and make the learning environment more useful for a wider 

population of teachers. Also, a number of CTSiM activities could entail a longer learning activity 

progression interspersed with non-CTSiM classroom activities. Exposing students to 

computational modeling and CT practices over a period of time across different science topics can 

help students develop a deeper understanding of computational methods and practices. In order to 

make developing new CTSiM activities easy, we plan to build authoring tools for the same. This 

would also allow teachers to design and develop their own learning activities.  

Testing whether the effectiveness of CTSiM is generalizable to diverse student and 

teacher populations – We have currently evaluated CTSiM in a limited number of middle school 

classrooms with a small number of science teachers. We plan to expand our scope by testing 

CTSiM in many more middle schools spanning more diverse student and teacher populations, 

since the eventual goal is to make CT accessible to all students irrespective of their socio-economic 

demographics and academic proficiencies. A large scale testing of CTSiM also requires more 

attention to developing and validating CT assessments – a vital research area we plan to continue 

working on.  
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APPENDIX A 

Information acquisition resources for CTSiM v2 

A.1 Science resources 

A.1.1 Kinematics unit 

The hypertext resources used as part of the CTSiM v2 ‘Science Book’ for the Kinematics unit are 

included on the following pages. 

Motion 

In physics, motion is a change in position of an object with respect to both time and the starting 

point of the object. In general terms, motion can be thought of as a process of continual change.  

In more specific terms, the motion of an object can de described in terms of the objects’ position, 

speed and acceleration.  

If we look at the figure below, we see a hand dropping a ball.  The motion of this ball can be 

described in terms of its position, speed and acceleration.  The total distance traveled is the distance 

between the starting point of the ball in the hand and the final recorded position (last picture of the 

ball).  If we wanted to, we could measure the distance at different points in time, for instance 

between position 1 and position 2.  This distance would be one part of the total distance traveled.  

Similarly, if we measure both the distance between positions of the ball and how long it takes to 

travel from one position to another, we can determine the speed of the ball. Speed describes how 

fast an object is moving. The speed of an object can remain constant with time or can increase or 

decrease with time. In the figure below, we can see that the speed of the ball at position 1, 2, 3 and 

4 is different because the ball travels further in the same amount of time.  This means that the 

speed is not constant.  If the ball was traveling at a constant speed the size of the gaps for Speed 

2, Speed 3 and Speed 4 would be of the same size.  This speed up is due to acceleration caused by 

gravity.   Please follow the links for position, speed and acceleration above to learn more about 

these concepts. 
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Position 

The distance of an object is the total path length it has traveled from one position to another.  For 

instance, if an object located along a number line started at position zero and traveled to position 

20, the final position of that object would be 20 units of distance.  In this example the unit of 

distance is undefined; however, if we had specified that the object had traveled from mile 0 to mile 

20, the total distance traveled would be 20 miles.   If you look at the figure below, you can see the 

car’s starting position of zero and its final position of 20 illustrated. 
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Speed 

The speed of an object is related to its position.  Speed is equal to the total distance traveled per 

unit time.  In other words, speed is the rate of change of an object’s position.  For instance, if the 

object described above traveled 20 units of distance in 1 unit time, the speed of that object would 

be equal to 20 units of distance per unit time, or 20 distance units/time unit.  As in the above 

example, units have been left undefined; however, if the object had traveled 20 miles in 1 second, 

the speed of that object would be 20miles/second.  On the other hand, if the car had traveled 20 

miles in 1 hour, its speed would be 20miles/hour 

 

 

 

 

Speed can be either constant or non-constant.  Constant speed indicates that the speed of an object 

does not change.  This is similar to setting “cruise control” on a car.  If you set a car’s cruise control 

to 20miles/hour, the car will never travel faster or slower than 20miles/hour.  If we know the 

constant speed of an object, we can easily predict the position of the object in the future.  For 

instance, if we set a car’s cruise control to 20miles/hour, we can predict that, starting from zero, 

the car will have traveled 40 miles in two hours and 80 miles in four hours.  The figure below 

indicates constant speed as it is related to position and time.  Notice that the spaces between 

positions of the car are the same length.  Equal distance gaps indicate a constant speed.  
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Non-constant or variable speed indicates a changing speed.  The amount of change, either or 

positive or negative, of the speed of an object is referred to as acceleration. 

To learn about non-zero acceleration, follow the link to the page on acceleration. 

 

Acceleration:  

Acceleration is the rate of change of speed.  Acceleration can either be increasing or decreasing 

depending on whether or not the object is increasing in speed or decreasing in speed.  

Using the example of the car again, imagine that the driver of the car increased their speed linearly 

by 10miles/hour every hour.  This means that the car has a positive constant acceleration of 

10miles/hour per hour.  The positive acceleration of the car means that during hour one the car 

increased in speed by 10 miles/hour, from 20miles/hour to 30miles/hour.  Similarly, during hour 

two the car increased in speed from 30miles/hour to 40 miles/hour, still by 10 miles/hour.   

Constant acceleration also affects the distance of an object.  In the above example, the distance 

traveled increases by 10 miles each hour.  After two hours, the car has traveled 20miles+30miles 

for a total of 50miles.  By contrast, if the car had no acceleration and a constant speed of 

20miles/hour, the car would have only traveled 40miles.  The figure below illustrates acceleration 

as it is related to position and speed.  Notice how the spaces between the positions of the car are 

getting bigger.  This indicates the car has a positive acceleration. 
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Acceleration can also be negative to indicate that an object is getting slower.  Negative acceleration 

is called deceleration.  Imagine the driver of the car needs to stop at a red light.  As the driver 

applies the brakes, the speed of the car will continue to slow the car down until it reaches a stop.   

Imagine that the brakes of the car apply a deceleration of 10miles/minute every minute.  If the car 

is traveling at 20 miles per hour, after two hours the car would reach a full stop.   The figure below 

shows deceleration.  Notice how the spaces between the positions of the car get smaller as the car 

slows down. 

 

 

 

 

Heading of an Object 

When we learned about an object’s position, we thought about the position of an object as traveling 

in only two directions: right (positive) or left (negative).  However, an object in the real world can 
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travel in more than two directions.  For our purposes, we are only going to think about two-

dimensional movement although objects in the real world can move in three-dimensions.   

A heading is the relative position of one point with respect to another point.  In the CTSiM 

simulations you have been interacting with, the heading of the tortoise is the direction the tortoise 

is moving with respect to its current position.  The figure below will help explain this concept.  In 

the figure below, the tortoise’s initial heading with respect to its current position is 0/360 degrees. 

Note that 0/360 degrees in CTSiM refers to 90 degrees on the Cartesian coordinates. If we wanted 

to change the heading of the tortoise we could do that by asking the tortoise to move at a different 

angle.  In the 2nd figure, we’ve asked the tortoise to move in a heading of 45 degrees.  If we wanted 

to, we could ask the tortoise to move in any direction on the circle. 

 

 

 

 

 

When you build your shapes in the CTSiM simulation, you will need to ask your tortoise to move 

in successive directions.  For instance, you may want to ask your tortoise to move forward at a 

heading of 45 degrees and then change directions and head in a different direction.  To do this, we 

need to think about the change in the tortoise’s heading. In other words, we need to think about 

how many degrees we want the tortoise to turn. tortoiseThe figure below will help you think 

through how to ask the tortoise to change headings. 
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In the figure below, we first ask the tortoise to change its heading from 0/360 degrees to a heading 

of 45 degrees.  After the tortoise changes its heading, we ask the tortoise to move forward a 

distance of 25 steps.  After the tortoise moves 25 steps, we want the tortoise to change its heading 

again so that the interior angle formed by the path of the tortoise is 90 degrees.  To do this we ask 

the tortoise to turn at an angle of 90 degrees.  It is important to notice that the tortoise turns at 90 

degrees from its current heading, not from its starting heading of 0/360 degrees.  After the tortoise 

has turned 90 degrees, we then have asked the tortoise to continue forward for another 25 steps to 

produce the desired heading change and interior angle. 

 

 

Motion of a Roller Coaster: 

The mechanics of motion of a roller coaster are the work of several forces. The cars on a typical 

roller coaster are pulled up the first hill with a chain powered by a motor.  As is shown in the figure 

below, the cars travel up the first hill at a constant speed that is equal to the speed of the motorized 

chain pulling them.  

After the cars make it up the first hill of the coaster track, the motorized chain stops pulling them, 

and gravity takes over and pulls the cars down the hill. As the cars go downhill, their speed 

increases gradually. This acceleration is caused by gravity.  How much the speed increases as the 

cars travel down the hill is related to the steepness of the hill.  The steeper the hill, the faster the 

car accelerates when going down it.   This phenomenon can be seen in the first downhill of the 

figure below. 
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When the cars reach the bottom of the first hill, they start slowing down as they climb up the 

second hill in the figure below. Just as gravity pulls the cars downhill at an increasing speed, 

gravity also makes the cars decelerate as they travel uphill without the help of a motor.  Gravity 

causes the speed of the cars to slow down when climbing uphill.  Just as the steepness of a hill 

affects how fast the speed of the car increases as it travels down the hill, so does it affect how much 

a car slows down traveling up the hill. A steeper uphill slope will cause the car to slow down more 

than a less steep hill.  

What happens when the cars are going neither downhill nor uphill, but on a flat segment? On a flat 

segment, there is no force that makes the cars either speed up or slow down, so the cars will travel 

at a constant speed. That is to say, there will be no acceleration. 

 

  

Gravity pulls against the car on the 

uphill and decreases cars’ speed.  

The steepness of the hill determines 

how much the car slows down. 

Gravity pulls car downhill 

and increases cars’ speed.  

The steepness of the hill 

determines how much the 

car speeds up. 

Car is pulled up hill 

by motor at a 

constant speed 
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Drawing Polygons 

A polygon is a shape with straight sides. It has the same number of sides and corners. Triangles 

are polygons with 3 sides and 3 corners. Squares and rectangles are polygons with 4 sides and 4 

corners.  

Each corner of a polygon has an interior angle and an exterior angle. The corner on the right 

triangle below has an interior angle of 30 degrees, and an exterior angle of 150 degrees. The 

interior angle and exterior angle of a corner always adds up to 180 degrees. 

 

 

 

The sum of interior angles for any polygon is equal to 180 degrees * (number of sides – 2). A 

triangle has 3 sides, so the sum of its interior angles is 180 degrees (= 180 degrees * 1). A square 

or rectangle has 4 sides, so the sum of its interior angles is 360 degrees (= 180 degrees * 2). 

For any polygon, if all of its sides are of equal lengths, then all of its interior angles are also equal. 

So each of its interior angle is equal to 
180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠∗(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑑𝑒𝑠−2)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑑𝑒𝑠
. For example, in an 

equilateral triangle, the sum of its interior angles is 180 degrees, so each interior angle is 60 

degrees. In a square, the sum of its interior angles is 360 degrees, so each interior angle is 90 

degrees. 

In CTSiM, when we want to draw a polygon with equal sides, we need to specify how many 

degrees we want the tortoise to turn. The turn angle is the exterior angle, which is equal to (180 

degrees – interior angle). For example, if we want to draw an equilateral triangle in CTSiM, we 

need to program our tortoise to turn by 180-60 = 120 degrees. 
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We can also calculate this exterior turn angle in CTSiM using a simple formula = 360/number of 

sides. For example, the turn angle for an equilateral triangle can simply be calculated as 360/3 = 

120 degrees. Similarly, in a hexagon, each exterior turn angle is equal to 360/6 = 60 degrees, as 

you can see in the figure below. 

 

 

Modeling time in CTSiM simulations using ticks 

We have many ways to measure time: years, months, days, hours, minutes, and seconds. We use 

these units to represent speed, such as 10m/s, and acceleration, such as 2m/s2. 

In CTSiM, we use ticks as our unit of  time. For example, we can set the speed of a car to 10 

units/tick. This means that every tick, the car moves forward by 10 units of distance. Similarly, we 

can set the acceleration of the car to 2 units/tick2, meaning that every tick, the speed of the car 

increases by 2 units/tick. 

When modeling shapes in CTSiM, we also need to use the “tick” block to specify the passage of 

time, so that we can see the speed and distance graph when we run the model. The placement of 

the “tick” block in the program can affect the speed and distance graph that is generated. 

Here is an example. Suppose we want to draw a square. We set the speed to 50 units/tick. We use 

the “Repeat” block to tell the tortoise to repeat the actions (go forward and turn right 90 degrees) 

4 times. If we run this program now, we will see that the tortoise draws a square. However, there 
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is nothing in the speed and distance graph. This is because we did not put the “tick” block in our 

program. So in our program, time never elapses. 

 

If we add a “tick” block at the end of the program, outside the “Repeat” block, and run the program 

again, we will see that now the graph shows that the speed of the tortoise (green line) is 200 

units/tick. This is because we tell the model that 1 tick elapses at the end of the program. Since the 

tortoise moved a total of 200 units (50 units for each side of the square), the speed is 200 units/tick. 

 

What if we put the “tick” block inside the “Repeat” block? Now, we are telling our model that 1 

tick elapses every time the tortoise goes forward and turns right once. Because the tortoise repeats 

the actions “Move forward by 50 and turn right by 90 degrees” 4 times, a total of 4 ticks elapse 

when the program finishes running. The tortoise still moves a total of 200 units in the program. So 

the speed of the tortoise now is 200/4 = 50 units/tick. And this is exactly what the speed graph 

shows us.  
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We can also think about this in another way. Each time the “Repeat” block runs, the tortoise goes 

forward by 50 units. We tell our model that 1 tick elapses every time a “Repeat” block is 

completed. So the tortoise goes forward by 50 units every tick. This means that the tortoise’s speed 

is 50 units/tick. 

A.1.2 Ecology unit 

The hypertext resources used as part of the CTSiM v2 ‘Science Book’ for the Ecology unit are 

included on the following pages. 

Aquaponics System 

A fish tank is an example of an aquaponics ecosystem.  In an aquaponics ecosystem, a sustainable 

food production cycle is created through the interaction of the animals and plants within the 

system.  In the fish tank, the interactions between the fish, aquatic plants and bacteria keep the 

water clean and the animals and plants healthy.  

Life inside the fish tank does not need to rely on anything outside of the tank in order to sustain 

itself.  Systems that are self-sustaining are called closed ecological systems.  In a closed system, 

all life depends on the mutual survival of the organisms in the system. In the fish tank, the fish, 

aquatic plants and bacteria depend on each other to survive.  If one plant or animal is removed 

from the tank, the other plants and animals will no longer be able to survive and will eventually 

die.  In order to survive, any waste products and excess carbon dioxide must be converted 

into oxygen, food and water by other organisms in the system. 
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Sustainable Food Production Cycle 

In ecological systems, ecosystems are considered sustainable if they are able to indefinitely 

maintain populations of plants and animals by consistently providing those plants and animals the 

resources they need to survive and reproduce.  In the fish tank, the fish tank is considered 

sustainable when the fish, aquatic plants and bacteria are able to survive for a very long time. 

The means by which the fish tank becomes sustainable is through a process called the Nitrogen 

Cycle.  A cycle is a sequence of events that repeats itself in the same order.  In an ecological cycle, 

all of the animals or plants that play a role in the cycle are interdependent with each other.  In the 

fish tank, this means that the fish, aquatic plants and bacteria depend on each other for their mutual 

survival.  If one plant or animal is removed, the cycle stops and the other plants and animals in the 

system die.   

In the fish tank nitrogen cycle shown in the figure below, the duckweed provides food for the fish.  

Any food the fish is unable to metabolize is excreted as waste.  Bacteria within the fish tank act 

upon the fish waste to produce nutrients for the duckweed.  The figure below provides an example 

of an aquaponics nitrogen cycle.   
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Fish 

A fish is an aquatic animal that survives in water by breathing in dissolved oxygen using its gills 

and breathing out carbon dioxide that gets dissolved in the water.  Like all animals, fish require 

energy to support their biological systems and enable them to swim and stay alive.  If fish have no 

energy, they will die.  Fish gain energy by feeding on aquatic plants like the duckweed.  When fish 

are hungry, they swim towards the nearest aquatic plants and eat. When they eat, their energy 

increases, and the food source decreases. If fish are hungry but cannot find aquatic plants, they 

cannot eat. When fish are not hungry, they just swim randomly from one area of the fish tank to 

the other. Swimming decreases fish energy. It does not matter whether fish swim randomly or in 

a fixed direction towards food, energy is always used up in swimming.  

Like all other organisms, fish produce waste.  Any food that cannot be converted into energy for 

the fish is eliminated from the body in the form of metabolic waste.  Fish waste contains high 

amounts of a chemical called ammonia. If fish waste is allowed to accumulate in the fish tank, the 

high amount of ammonia will begin to pollute the water and over time can make the water toxic 

file:///C:/Users/Satabdi/Documents/Dissertation/CTSiM%20Ecology%20Resources.docx
file:///C:/Users/Satabdi/Documents/Dissertation/CTSiM%20Ecology%20Resources.docx
file:///C:/Users/Satabdi/Documents/Dissertation/CTSiM%20Ecology%20Resources.docx
file:///C:/Users/Satabdi/Documents/Dissertation/CTSiM%20Ecology%20Resources.docx


 159 

for the fish.  Water that is toxic is unhealthy for the fish and can make them sick.  If the amount of 

toxic chemicals from the fish waste reaches a poisonous level, the fish will die even if the fish have 

access to food and oxygen.  Conversely, if the level of toxic chemicals from the fish waste is low, 

the fish will remain healthy.   

Below you will find pictures of different types of fish you may find in a fish tank. 

 

 

 

 

 

 

 

 

 

 

 

Aquatic Plants 

An aquatic plant is a plant that lives in or near water. Duckweed is a type of aquatic plant that 

many fish use as a food source.  Like all plants, aquatic plants also need to breathe. They utilize 

photosynthesis to convert carbon dioxide dissolved in the water into dissolved oxygen.   

Plants also need energy. Plants on land can obtain necessary energy from soil and water in the 

form of fertilizers.  Many fertilizers contain a chemical called nitrate that the plant can use as a 

food source to gain energy.  Aquatic plants like duckweed also obtain energy from nitrates and the 

photosynthesis process. Unlike fish, which needs to be hungry and have food available in order to 

Common Goldfish Neon Tetra 

Gourami Beta 
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eat, aquatic plants consume food whenever food is available, and they do not produce waste. 

Consuming nitrates increases plant energy and decreases the food source, that is the amount of 

nitrates. Plants use this energy for reproduction and other essential life processes.  Plant can 

reproduce only if they have enough energy, since reproduction causes their energy levels to 

decrease a lot. If plants have no energy left, they die.  

Below you will find examples of several aquatic plants you may see in a fish tank. 

 

 

 

 

 

 

 

   

 

 

 

 

Breathing 

In living organisms, breathing is process of gas exchange within the body of the organism.  As one 

gas in taken into the body, another is removed.  Which gases enter and exit the organism depends 

on the type of organism.   

Duckweed Egeria 

Hydrilla Amazon Swords 
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In animals, breathing is a process that moves oxygen over the respiratory organs (such as lungs or 

gills) of an animal.  Breathing does two things for an animal: 1) it gives animals the oxygen they 

need to stay alive and support necessary bodily functions, and 2) helps the animal remove harmful 

carbon dioxide from their bodies.  

Plants also ‘breathe’, although the mechanism of breathing is different for plants than it is for 

animals.  In plants, carbon dioxide is taken into the plant through small holes called stoma.  This 

carbon dioxide is then converted into oxygen and released in a process called photosynthesis. 

Oxygen and carbon dioxide both play important roles in animal and plant health.  In animals, 

oxygen is an essential component of survival.  Without oxygen, animals would not be able to 

perform necessary functions and would die. Similarly, plants would die in the absence of carbon-

dioxide. 

For example, in a fish tank, the fish will die in the absence of dissolved oxygen. Fish breathe in 

the dissolved oxygen and breathe out carbon-dioxide which gets dissolved in the water. This 

decreases the amount of dissolved oxygen and increases the amount of dissolved carbon-dioxide 

in the fish tank. Aquatic plants like the duckweed breathe in this dissolved carbon-dioxide and 

breathe out oxygen which is needed by the fish. This increases the amount of dissolved oxygen 

and decreased the amount of dissolved carbon-dioxide in the fish tank. Together, the breathing 

processes of the fish and the duckweed keep the amount of dissolved oxygen and carbon-dioxide 

in the fish tank in balance. Thus, the respiration cycle is important in maintaining balance in a fish 

tank and keeping its organisms alive.  The figure below summarizes which gases plants and 

animals in the fish tank take in, and which gases are expelled. 

 

  

Aquatic Plants Fish 

Oxygen 

Oxygen 

Carbon 

Dioxide 

Carbon 

Dioxide 
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Water 

Water is an essential component of life on Earth.  Scientists currently do not know what percentage 

of life lives in water but the estimates are anywhere between 30 to 70% of life lives in water.  

In order for organisms to thrive in water, the water must be conducive to life.  Most aquatic 

organisms, such as freshwater fish in the fish tank, require access to oxygen and water that is clean 

to keep them healthy and alive.  Oxygen is produced through aquatic plants.  Clean water is water 

that is low in both natural and artificial toxins.  Artificial toxins can enter water through manmade 

pollution; however, natural toxins occur as well. Waste produced by aquatic organisms like the 

fish contains chemicals like ammonia.  If those chemicals like ammonia are allowed to accumulate, 

the water can become poisonous.  Water that is too high in toxins is unhealthy for aquatic 

organisms like the fish and can lead to sickness and finally death. Thus, bacteria play an important 

role in the fish tank by keeping the water clean and pollution-free. 

 

Reproduction 

Reproduction is a fundamental feature of all life and is the process by which new individual 

organisms are produced from parent organisms.  In fish, new fish are created through sexual 

reproduction, which is the combining of genetic material of two parent organisms.  In plants, new 

plants are created through either sexual (two parents) or asexual (one parent) reproduction.  In the 

fish tank, duckweed reproduces both asexually through budding (shown below) as well as sexually. 

 

 

 

 

 

 

Budding in Duckweed 
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The process of reproduction requires a great deal of energy and only healthy organisms are able to 

reproduce. If an organism does not have enough energy, it will not be able to reproduce. 

Reproduction decreases the organism’s energy significantly. 

The length of time an organism needs to reproduce is highly variable and depends on the type of 

organism.  For instance, humans require 9 months to produce an offspring.  Fish, on the other hand, 

may hatch from their eggs in 1-3 weeks. Even faster than fish, asexual plant reproduction may 

require only a few days to produce a functional new plant.  The fish tank simulation in CTSiM 

provides only a brief glimpse of life in the fish tank.  For this reason, the duckweed appears to 

reproduce while the fish do not.  This is because the simulation is only showing a few days in a 

fish tank rather than several weeks. 

Bacteria also reproduce faster than fish and can reproduce as long as they have enough energy. 

When they reproduce, their energy decreases significantly like in the case of the duckweed.  

 

Bacteria 

Bacteria are very small organisms that are generally not visible to the naked eye. Some varieties 

of bacteria are harmful and cause diseases in humans. But, some types of bacteria are good and 

useful. For example, we find two types of bacteria in a fish tank – Nitrosomonas bacteria and 

Nitrobacter bacteria. They are both needed to maintain a healthy fish tank and fish will die in their 

absence. Let us see why these two types of bacteria are so important in the fish tank. 

Nitrosomonas is a type of bacteria that gains energy by consuming the ammonia contained in fish 

waste. They convert the ammonia consumed to another chemical called nitrites. Thus, 

Nitrosomonas is important to the fish tank because they clean the tank by decreasing toxic 

ammonia that can be poisonous to the fish. .  

But, Nitrosomonas cause amount of nitrites in the fish tank to increase, and nitrites are also toxic 

and can be poisonous for the fish. The Nitrobacter bacteria help by removing the nitrites from the 

fish tank. Nitrobacter gain energy by consuming the nitrites produced by the Nitrosomonas 

bacteria. They convert the nitrites into a new chemical called nitrates. In a fish tank, these nitrates 

serve as a food source for the aquatic plants like duckweeds.  Without these bacteria, fish waste 
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would keep increasing in the fish tank making the water poisonous for the fish, and duckweed 

would have no food available.  

Hence, we can see how all the species in a fish tank depend on each other. Duckweed acts as food 

for fish. Fish waste contains ammonia which is consumed by the Nitrosomas bacteria and 

converted into nitrites. Nitrites are consumed by the Nitrobacter bacteria and converted into 

nitrates. These nitrates act as food for the duckweed. 

Bacteria can also feel hungry like other organisms. For example, Nitrosomonas eat when they are 

hungry and have ammonia available. Similarly, Nitrobacter eat when they are hungry and have 

nitrites available.  

Both Nitrosomonas and Nitrobacter swim around randomly; they don’t swim in any particular 

direction. When they swim, their energy decreases. 

Nitrosomonas and Nitrobacter can both reproduce as long as they have enough energy. When they 

reproduce, their energy decreases significantly. Nitrosomonas and Nitrobacter die when they have 

no energy left. 

 

 

Energy 

All living organisms rely on external (outside of the body) sources of energy to stay alive.  In 

animals like mammals, birds and fish, energy comes from the meat or plant food that the animal 

Nitrosomonas Bacteria Nitrobacter Bacteria 
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eats.  For example, fish gain energy by eating aquatic plants like duckweed. In organisms like 

bacteria, chemicals such as ammonia and nitrites can be used as form of energy.  For example, the 

nitrosomonas bacteria gain energy by consuming ammonia, while the nitrobacter bacteria gain 

energy by consuming nitrites. Plants obtain energy through fertilizers in the soil and water.  For 

example, duckweed gain energy by consuming a chemical called nitrates which is present in 

fertilizers. 

Energy provides an organism the means to perform necessary functions such as moving and 

reproducing.  For example, fish and bacteria use up their energy when they swim around. Plants 

like duckweed and bacteria use a lot of energy in reproduction. Reproduction generally causes a 

greater decrease in energy than other life processes. Without enough energy, an organism would 

not be able to survive and would die.  The figure below summarizes which process give energy to 

the organisms in the CTSiM fish tank and which cost them energy. 

 

 

Glossary of Terms 

 Aquaponics: A sustainable food production system that combines aquaculture (raising 

aquatic animals such as fish, snails or crayfish) with hydroponics (growing plants in water) 

in a symbiotic environment.  
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 Dissolved Oxygen: the amount of oxygen that is carried within a medium.  In the case of 

the fish tank, the level of dissolved oxygen is that amount of oxygen that has been 

incorporated into the water. 

 

 Interdependence: A relationship wherein each member – either plant or animal – is 

mutually dependent on other members. 

 

  Metabolize: A chemical transformation that happens within the cells of living organisms.  

Metabolism is the process whereby food is transformed into usable energy for the 

organism. 

 

 Nitrogen Cycle: The nitrogen cycle is the process whereby nitrogen is converted into its 

various chemical forms.  In the fish tank, ammonia, nitrite and nitrate are all chemical 

forms of nitrogen. 

 

 Organism: An organism is an individual form of life, such as plants, animals, protists, 

bacterium, or fungi. Organisms have bodies made up of organs, organelles, or other parts 

that work together to carry on the various processes of life.  

 

 Prokaryote: A group of organisms whose cells lack a membrane bound nucleus.  Organisms 

whose cells have a nucleus are called eukaryotes.   

 

 Photosynthesis: a process used by plants to convert light energy – normally from the sun – 

into chemical energy that can be used to fuel the plants’ activities. 

 

 Resource: a substance or object required by a living organism for normal growth, 

maintenance and reproduction. 

 

 Sustainable: the capacity to endure.  In ecology, sustainability refers to the capacity of 

biological systems to remain diverse and productive over a long period of time. 
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A.2 Programming Guide 

The hypertext resources used as part of the CTSiM v2 ‘Programming Guide’ are included on the 

following pages. 

Modeling a science topic in CTSiM 

A good way to think of how to build a model for a science topic starts with identifying the entities 

that are part of the science topic and actively do something in the topic. For example, if we are 

building a model for the traffic outside your school, cars, school-buses and pedestrians would be 

examples of such entities. 

These entities are called agents. Once we have identified the agents in the model, we need to 

describe properties of the agents that are of interest to us, and what the agents do. We refer to each 

feature describing an agent as an agent property, and each thing that an agent does as part of an 

agent’s behavior. In other words, an agent may have more than one behavior. For example, if we 

consider the school-bus agent, we could describe it using properties like speed, number of seats, 

and color. The bus would have different behaviors like ‘Move at a constant speed’, ‘Slow down’, 

and ‘Speed up’. 

After specifying the properties and behaviors for each agent, we need to describe what happens in 

each agent behavior. An agent behavior describes how the agent interacts with other agents and 

also with its surrounding environment. The entities in the environment are called environment 

elements and features describing them are known as environment element properties. An agent’s 

behavior can act on and change its own properties or properties of other agents or environment 

element properties. The behavior might also depend on different agent and environment element 

properties and will have to sense those properties.  

For example, in the bus agent’s ‘Slow down’ behavior, the speed of the bus decreases and we say 

that the ‘speed’ property of the bus is acted upon. But, when does the speed of the bus decrease? 

It could decrease when the bus is approaching a red light or stop sign, or when the road is icy, or 

when there is a car moving slowly in front of it. Thus, the ‘Slow down’ behavior for the bus agent 

will have to sense environment properties like traffic-light color and road condition and agent 

properties like car speed. 
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The chart below shows what we have discussed above. 

 

Read the pages on agents, environment elements, properties, and behaviors for specific examples 

and more information on how to describe a science topic in CTSiM.  

 

Agents 

When modeling a science topic, we need to first identify the entities that actively do something in 

the topic. These entities are called agents. 

For example, suppose we want to describe the traffic on the road in front of your school. Here, the 

cars on the road are agents because they actively move at different speeds and in different 

directions. If there are school-buses, bicycles and pedestrians on the road, they are other types of 

agents that participate in our traffic model. So we see that a model can have one agent or multiple 

agents. 
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Agent type 1: car 

Agent type 2: school-bus 

Agent type 3: bicycle 

Agent type 4: pedestrian 

Once we have identified the agents in the model, we need to describe features of the agents and 

what the agents do. We refer to each feature describing the agent as an agent property, and each 

thing that the agent does as an agent behavior. Agents interact with other agents, as well as other 

things around them that are not agents. These surrounding entities are called environment 

elements. 

 

Environment elements 

Unlike agents, there are entities in a topic that do not actively do anything. We call them 

environment elements.  
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For example, suppose we want to describe the traffic on the road in front of your school. Here, the 

road is an example of an environment element. A model can have more than one type of 

environment element. In our traffic model, traffic lights can be considered as another type of 

environment element.  

 

Environment element type 1: road 

Environment element type 2: traffic light 

Once we have identified the types of environment elements in a topic, we need to specify features 

to describe each of the types. We refer to each feature describing an environment element as an 

environment element property. 

 

Properties – Agent properties and Environment element properties 

When describing a science topic, we need to specify properties for all the entities in the topic. 

These properties help describe an entity and distinguish it from other entities.  
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In any topic, there are broadly two kinds of entities - agents which actively do something, and 

environment elements which surround the agents and do not actively do anything. Both agents and 

environment elements have properties. For example, if we are describing the traffic on the road, 

cars are a type of agent, and the roads and traffic lights are types of environment elements. Cars’ 

properties include color, size, and speed. Road’s properties would be number of lanes, speed limits 

and condition (ice or dry, for example), and an example of a traffic light’s property is color (for 

example, red, yellow, and green). 

 

Most properties have values. For example, if a red car is running at 45 mph, we say that its “color” 

property has the value “red”, and its “speed” property has the value “40”. Similarly, if a road is 

icy, we say its “condition” property has the value “icy”. 
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Once we have set the value of a property, we can refer to the property using just its property name, 

rather than its value. For example, we can set the speed of our car by saying “set speed = 50”. Now 

we can just say “forward (speed)” which will make the car move forward 50 units. When we run 

our program, the computer will automatically look at the value of the property “speed” and move 

forward at that speed. 

 

Agent behaviors 

Agents are entities that actively do something. We call each thing that an agent does a behavior. 

When we are specifying an agent’s behaviors, we separate different things that the agent does into 

different behaviors. Continuing our previous example with the traffic scenario, let us think of 

examples of a car’s behaviors in a traffic model. A car stops when it sees a stop sign or when the 

traffic light is red. When the traffic light is green, the car moves forward. A car will slow down if 

the road is icy or if there is a slow moving vehicle in front of the car. In each of these scenarios, 

do you recognize the car’s behaviors? The car’s behaviors include stopping, moving forward, and 

slowing down. 

 

Once you specify an agent’s behaviors, you need to think about each behavior in terms of the 

properties it needs to sense and the properties it needs to act on. Read the next page for examples 

on how to do this.  
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Modeling agent behaviors using sensed and acted on properties 

Once you specify an agent’s behaviors, you need to think about what are the things a behavior 

needs to know and what are the things it changes. A behavior changes or acts on certain properties 

and senses certain other properties in order to make these changes. An agent behavior can both 

sense and act on own properties, as well as other agent properties or environment properties.  

 

For example, think about a car’s “Stop at red light” behavior. When the car senses that the traffic 

light color is red, it slows down and finally stops by changing or acting on its speed. The figure 

below shows how to represent the car’s behavior in terms of its sensed and acted on properties.   
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Examples of Conceptual Modeling for Different Topics 

Let’s think of another example from real life and try to model it conceptually using the agent 

framework we read about in the previous pages. Consider a scenario that involves a human and 

the vacuum-cleaning robot, Roomba, in a room. Roomba moves around the room to clean floors 

and carpets. Roomba is also able to change direction when it encounters humans and walls in the 

room. When Roomba’s charge runs out, it goes to a charging station positioned on a wall to 

recharge itself. Although Roomba can clean, move and recharge by itself, humans are responsible 

for turning Roomba on and off. 

To model this scenario, we can consider humans and Roomba as two types of agents with different 

sets of behaviors, and we can consider the floor, the walls and Roomba’s charging station as 

environment elements. First, we need to think about the properties of each agent and environment 

element in this scenario. Examples of human agents’ properties are location and energy, while 

examples of the Roomba agent’s properties are location, direction, charge, and its On/Off switch. 

Examples of the floor’s property could be its cleanliness, the wall’s property its location, and 

Roomba’s charging station’s property its position.  
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Next, we need to think about the agent behaviors. Human behaviors are switching Roomba on and 

off, and moving around the house. Roomba’s behaviors are cleaning and recharging. We could 

represent this conceptual model as shown below. 

 

Now that we have specified the agent behaviors, let us try to describe all the behaviors in terms of 

what the behavior needs to sense and what properties it acts upon. When a human notices that the 

floor is dirty, what happens? Well, the human senses the cleanliness property of the floor and acts 

on Roomba’s On/Off property by turning it on. Then, when Roomba senses its own On/Off switch 

property has turned On, it cleans the room, which means it acts upon its own location and direction 

properties as well as the floor’s cleanliness property. What else does Roomba sense while it is 

cleaning? Humans’ and walls’ locations! Humans move around the house, acting upon on their 

own location and their energy. So when Roomba senses that a human or a wall is in its way, it acts 

upon its direction property by changing direction. Finally, when Roomba senses that it has run out 

of charge, it will act upon its own charge property by recharging itself. Also, it will sense where 

the charging station is located and act upon its location property by moving to the charging station.  
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Programming an agent model 

While writing a program to model a science topic, we need to follow two steps. First, we write a 

procedure or sub-program to describe each agent behavior. While writing the procedures, we will 

need to express how the agent interacts with other agents and the environment in that procedure.  

To express these, we will need to learn about some computer-science commands like “Repeat” 

and “When…Do…Otherwise do…” Then, we need to specify each of the procedures under a “Go” 

procedure. The “Go” procedure is where our program starts running and only the procedures 

specified there will be included while generating simulations for our program.  

Let us consider the scenario on the previous page with humans and Roomba, the vacuum-cleaning 

robot in a room. Roomba cleans the room and recharges its own battery. Humans do not have to 

clean the room but they move around and they switch Roomba on and off as needed. So, if we 

want to write a program for this scenario, we will need to write 2 procedures for Human agents – 

one called “Switch Roomba On and Off” and another called “Move around the room”, and 2 

procedures for the Roomba agent – one called “Clean” and another called “Recharge”. 

We also need to write a main “Go” procedure for each agent that calls the different procedures for 

that agent. In our example, both Humans and Roomba will have a main “Go” procedure that calls 

their respective procedures, as shown in the figure below. 

 

For example, for describing the “Switch Roomba On and Off” procedure for humans, the behavior 

will check if the floor is clean or dirty. If the floor is dirty, humans will turn on Roomba’s On/Off 

switch. Otherwise, they will turn it off. We can represent this using the 

“When…Do…Otherwise…” block.  
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Similarly, the “Recharge” behavior for Roomba will use the “When…Do…Otherwise do…” block 

to sense if its battery charge is low. When the battery charge is low, Roomba can use the “Repeat” 

block to specify the following action multiple times: “Battery charge is low, so move backwards” 

till it reaches its charging station. 

So, how do you write a program for each agent procedure? You need to drag and drop different 

blocks which will be provided to you and arrange them in a way that makes sense for the 

procedures. The blocks can be of different types like Agents, Agent Properties, Actions, Sensing 

conditions, Sensing amounts, Controls, and Chemicals. Each type of block is generally color coded 

differently. For example, all Sensing Condition blocks may be purple, while all Action blocks may 

be blue in color. So, what do each of these types of blocks express? 

Block type Description Examples 

Agents Entities that actively do 

something 

Humans, Cars 

Agent properties Features describing an agent Human energy, Car speed 

Actions Things that agents do Move forward; Stop, Eat a 

cookie 

Chemicals A form of matter that has 

constant chemical 

composition and properties 

Dissolved Oxygen; 

Dissolved Carbon Dioxide 

(CO2) 

Sensing conditions Conditions for sensing an 

agent’s or environment’s 

properties 

“Is it sunny outside?”; “Is 

thirsty?” 

Sensing amounts Property values sensed Number, Color, Weight, 

Time 

Controls Used to write programs and 

express conditionals, 

iterations, etc. 

“When…Do…Otherwise”; 

“Repeat” 

 

When you’re dragging and dropping blocks, you need to remember that all blocks cannot be 

randomly dropped into other blocks. For example, you cannot put an Action block into the “When” 
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block of a “When…Do…Otherwise” block, and you cannot put a Sensing Condition block into 

the “Do” part of a “When…Do…Otherwise” block. You also can only drop one block into another 

block if both of those blocks are of the same color. For example, in the figure below, the blocks in 

the left pane were provided and they have been dragged to the right pane and arranged to describe 

a swim procedure for human agents.  Notice how you can only drop a pink sensing condition block 

into the pink “When” block, and you can only drop a yellow Properties block into the yellow block 

within the sensing condition block.  

 

 

Representing sense-act processes using “When… Do… Otherwise do…” 

We use the “When … Do … Otherwise do …” block to measure a property, and act in one way or 

another based on the measurement. Basically, we represent a “sense-act” process—we “sense” 

whether a property satisfies a certain condition, and decide to “act” in some way based on what 

we sense. 
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Imagine you are told to play video games indoors if it is raining outside. We can express this using 

the “When … Do … Otherwise do …” block like this: 

 

As we can see from this example, we first check whether a condition is satisfied. In this case, we 

sense whether it is raining. When the condition is satisfied, we act in some way. In this case, the 

decision is to “play video games indoors.” 

Notice that we can leave “Otherwise do …” blank if we don’t want to do anything when the 

condition is not satisfied. However, we cannot leave “Do” blank. 

A lot of times, we want to do something when a condition is satisfied, but do something else when 

the condition is not satisfied. For example, we may decide to stay indoors when it is raining. 

Otherwise (when it’s not raining), we may decide to go play football. 

Now we can express this using “When … Do … Otherwise do …” like this: 
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We can also put this in another way and say “When it is not raining, play football. Otherwise, play 

video games indoors.” 

 

Similarly, think of the scenario described on the previous page where Roomba cleans the floor 

when humans switch Roomba on. We describe the “Clean” procedure for Roomba using the 

“When…Do…Otherwise do…” block as shown below. 
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Sometimes, you may need multiple “When…Do…Otherwise do” blocks to represent more 

complex sense-act processes. 

 

Representing multiple actions under one condition 

Sometimes, when one condition is true, we act in multiple ways. For example, when it’s hot 

outside, we may decide to go swimming at the beach and eat ice cream. One way to represent these 

two actions is how we did in the previous page.  

 

 

But we can also represent two actions under one condition using only one 

“When…Do…Otherwise Do” block instead of two. To do this, we simply need to drag and drop 

multiple actions under “Do:” and it will look like the block below. This block tells us that when 

the condition, “It is hot outside,” is satisfied, we go swim at the beach and we also eat ice cream. 
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We can also decide to do something else when the condition is not satisfied. For example, if it not 

hot outside, we may decide to swim indoors instead. See the block below. It says that when it is 

hot outside, we go swim at the beach and eat ice cream; but if it not hot outside, we swim indoors.  

 

 

Representing actions which happen when multiple conditions are true 

So far, we have seen that when one condition is true, we act in one way or in multiple ways; and 

when that condition is not true, we act in a completely different way. But what if multiple 

conditions need to be true before we can act? For example, if you want to go swim at the beach, 

these two conditions need to be satisfied: (1) It is daylight and (2) It is not raining.  

You could try representing the scenario using two sets of “When…Do…Otherwise do” blocks as 

shown below, but do you think they correctly represent the scenario in which multiple conditions 

need to be satisfied before an action can happen? 
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Actually, the two “When…Do…Otherwise do” blocks above are incorrect. Why? Well, if it is 

daylight outside but it is raining, you cannot go swim at the beach. Similarly, if it is not daylight 

outside, you cannot go swim at the beach, whether or not it is raining. Thus, both of the conditions 

above need to be true at the same time. In other words, when it is daylight, we need to make sure 

it is not raining outside, and if it is not raining outside, then we go swim at the beach. So how can 

we represent these multiple conditions in “When…Do…Otherwise do” blocks correctly? Look at 

the nested blocks below.  

 

What we have done here is dragged one “When…Do…Otherwise do” block into the “Do” segment 

of another “When…Do…Otherwise do” block. We will need to do this every time we need to 

represent actions which take place when multiple conditions are true at the same time. 

 

Representing complex “Sense-Act” processes  

In the previous example, we said “When it is raining outside, play video games indoors. Otherwise, 

play football.” So we play football whenever it is not raining, that is to say, when it is cloudy or 

sunny. 

But what if we only want to play football only when it is cloudy? What if we want to go to the 

beach when it is sunny? There are many situations like this, where we want to sense more than 1 

condition. Is there a way to express these complex “sense-acts” with the “When … Do … 

Otherwise do …” block? Yes, like this: 
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In this “When … Do … Otherwise do …” block, we first check whether it is raining outside. When 

it is raining outside, we play video games indoors. When it is not raining outside, we check whether 

it is sunny. When it is sunny, we go to the beach. Otherwise, when it is neither raining nor sunny 

outside, we go play football. 

 

The “Repeat” command 

We use the “Repeat” block to perform an action multiple times repeatedly. 

 

For example, your fitness coach may tell you to run around the baseball field 3 times. Here’s how 

we would express this: 
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As we can see from this example, first we put in the number of times that we want to repeat the 

action, and then we put in the action that we want to repeat. 

We can also repeat multiple actions in a “Repeat” block. For example, if you had to run around 

the baseball field and then take a water break before running another round and had to do this 

exercise 3 times, you could express it as follows: 

 

Can you predict what would happen if we used the Repeat command in this way instead: 
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APPENDIX B 

Paper-based assessment artifacts used with CTSiM v2 

B.1 Pre/post tests 

B.1.1 Kinematics pre/post test questions 

1. Sophia and Jill start running at the same time and run in the same direction. In the diagram 

below, Sophia’s and Jill’s starting positions are marked. Their positions at every second after they 

start running are also shown. Each small hash mark represents one foot, and “s” means seconds. 

 

a. Who is running faster, Sophia or Jill?  Be sure to explain your answer using the numbers in the 

diagram. 

b. Do Sophia and Jill accelerate as they run?  

Sophia accelerates:   (A) YES            (B) No 

Jill accelerates:         (A) YES            (B) No 

c. Whose acceleration is greater?     

(A) Sophia         (B) Jill       (C) Both accelerate at same rate   (D) Neither accelerate 
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2. Mary and Keisha start running at the same time from left to right as shown in the diagram below. 

Their positions as they run are marked and numbered at every second. Each small hash mark in 

the picture represents 1 foot, and “s” means seconds.  

Do Mary and Keisha ever have the same speed? 

(A)   No, they do not. 

(B)  Yes, at time = 1s. 

(C)  Yes, at time = 4s.   

(D)  Yes, at time = 1s and time = 4s. 

(E)  Yes, during the time period from 2s to 3s. 

3. The graph below tells us how a ball’s position changed with time. Which of the 

following best describes the ball’s motion? 

 

 



 189 

a. The ball moves along a flat surface. Then it moves forward down a hill, and then finally 

stops. 

b. The ball is moving at constant velocity. Then it slows down and stops. 

c. The ball doesn’t move at first. Then it moves backwards and then finally stops. 

d. The ball moves along a flat area, moves backwards down a hill and then it keeps moving. 

 

4. The speed-time graph below describes the motion of a moving object.  Use the graph to answer 

some questions about the motion of the object. 

 

 

5. A man starts at the origin (position =0 at origin) and walks backwards slowly at a constant speed 

for 6 seconds. Then he stands still for 6 seconds, and then walks forward at a constant speed that 

is twice as fast as before for 6 seconds.  

i. Circle the velocity time graph which best depicts the man’s motion. 

a. What happens to the speed of the object over time?  

b. What happens to the acceleration of the object over time?  

c. What happens to the distance travelled by the object per time unit?  
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ii. Circle the position-time graph which best depicts the man’s motion 

 

6. A car is moving forward and applying its brakes. Circle the position-time graph which best 

depicts this motion. 
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7. Consider a traffic scenario. A car arrives at a traffic-light at time=0 second, and sits at the red 

light for 5 seconds. After 5 seconds, when the light turns green, the car starts increasing its speed 

until it reaches a velocity of 10m/s at time = 12 seconds. After that, the car maintains its speed at 

10m/s. Can you predict what the position-time and velocity-time graphs will look like for this 

scenario? 

Velocity-time  

(x-axis=time, y-axis=velocity) 

Position-time  

(x-axis=time, y-axis=position) 
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8. A ball is dropped from the top of a building on the Earth and takes 5 seconds to reach the ground. 

A second ball, identical to the first one, is dropped from the top of a tall rock on the surface of the 

moon that is of same height as the building. It takes more than 5 seconds for the second ball to 

reach the moon’s surface. 

Predict the position of the ball after 1, 2, and 3 seconds on the Earth and also on the moon by 

drawing on the figures below. 

The acceleration due to gravity on the ball is greater on the Earth than it is on the moon, so 

the ball dropped on Earth will speed up faster than the ball dropped on the moon.  
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9. Draw graphs to show how the speeds of the balls in Question 8 vary with time.   

 

 

B.1.2 Ecology pre/post test questions 

You are provided with a fish tank which contains the following: 

Living species Chemicals 

1. Goldfish 5. Oxygen (O2) 

2. Duckweed 6. Carbon-dioxide (CO2) 

3. Nitrosomonas bacteria 7. Ammonia 

4. Nitrobacter bacteria 8. Nitrites 

 9. Nitrates 

 

Now, answer questions 1-5 with respect to this fish tank. 

1. For each of the following species in the fish tank, mention which of 1-9 it directly needs to stay 

alive.  The first species, goldfish, has been filled in as an example. 

Example  Goldfish     __2, 5_____ 
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            Duckweed     __________ 

  Nitrosomonas bacteria   __________ 

  Nitrobacter bacteria    __________ 

2. Explain the roles of the bacteria in the fish tank.  

a. Give 2 reasons why the Nitrosomonas bacteria are important in the fish tank. 

b. Give 2 reasons why the Nitrobacter bacteria are important in the fish tank.  

 

3. Your fish tank is currently healthy and in a stable state. Now, you decide to remove all traces of 

Nitrobacter bacteria from your fish tank. Would this affect 

a) Duckweed:   Yes         No 

If you answered Yes, explain how duckweed would be affected:  

b) Goldfish:       Yes       No 

If you answered Yes, explain how goldfish would be affected:   

c) Nitrosomonas bacteria:  Yes          No 

If you answered Yes, explain how Nitrosomonas bacteria would be affected:   

 

4. Imagine a fish tank with only one fish, some duckweed and some bacteria. The fish tank is in 

balance and all the species have sufficient food to consume and enough oxygen and carbon-dioxide 

to breathe at all times. 

a. If you add a second fish to this fish tank, what do you think will happen? Will it disturb the 

balance? Will the living species in the fish tank still be able to survive? Explain your answer. 

b. Now, think of what will happen to the fish tank if you add 20 more fish. Explain what will 

happen to the different living species and chemicals in the fish tank 
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5. Two organisms are said to have a symbiotic relationship when they mutually benefit each other. 

In the fish tank provided to you, the goldfish and the duckweed have a symbiotic relationship. 

a. How do the goldfish and the duckweed benefit from each other’s respiration processes? 

b. Other than the respiration process, there is another way in which the goldfish and duckweed 

benefit each other. As shown in the figure below, the duckweed directly acts as a source of food 

for the goldfish that helps them gain energy, but the goldfish also indirectly provides nutrients for 

the duckweed. Describe how the goldfish indirectly produces nutrients for the duckweed 

helping the duckweed gain energy. Note that this answer may require more than one step. 

                  

 

B.1.3 CT pre/post test questions 

1. Emma writes code which says 

Repeat 2 

    [Do a math problem] 

Write an essay 

 

while, 

John writes code which says 
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Repeat 2 

   [Do a math problem 

    Write an essay] 

 

Which of the following statements is correct? 

a. Both Emma’s and John’s code say: Do 2 Math problems and then write 2 essays. 

b. Emma’s code says: Do 2 Math problems and then write one essay, while John’s code says: 

Do 2 Math problems and then write 2 essays 

c. Emma’s code says: Do 2 Math problems and then write an essay, while John’s code says: 

Do a Math problem, write an essay, then Do a 2nd Math problem and then write a 2nd essay 

d. Emma’s code says: Do a Math problem, then write an essay, and then Do a 2nd Math 

problem, while John’s code says: Do a Math problem, then write an essay, then Do a 2nd 

Math problem and then write a 2nd essay 
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2. Consider the following program  

 If (quiz-score is equal to 10) 

  Then: Get the ‘You’re a pro’ sticker 

  Else: _____ 

 If (quiz-score is greater than 7) 

  Then: Get the ‘Good job’ sticker 

  Else: _____ 

 

Bill gets a score of 9 on the quiz while Janet scores 10 points on the quiz. What stickers should 

Bill and Janet receive based on the above program? 

 

a. Bill: ‘Good job’ sticker; Janet: ‘You’re a pro’ sticker 

b. Bill: ‘Good job’ sticker; Janet: ‘Good job’ sticker 

c. Bill: ‘Good job’ and ‘You’re a pro’ stickers; Janet: Good job’ and ‘You’re a pro’ stickers 

d. Bill: ‘Good job’ sticker; Janet: Good job’ and ‘You’re a pro’ stickers 

 

3. Consider the following program  

 If (quiz-score is greater than 7) 

  Then: If (quiz-score is equal to 10) 

    Then: Get the ‘You’re a pro’ sticker 

    Else: Get the ‘Good job’ sticker 
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  Else: Get the ‘Try harder’ sticker 

 

Bill gets a score of 9 on the quiz while Janet scores 10 points and Kim scores 5 points on the quiz. 

What stickers should they receive? 

a. Bill: __________________________________________________________ 

b. Janet:_________________________________________________________ 

c. Kim:__________________________________________________________ 

4. Consider the following program: 

 If (time is after 6 pm) 

  Then: Work on science project 

  Else: If (time is after 3 pm) 

    Then: Play with friends 

    Else:_________ 

 

Jonah is in California and it is 4 pm, while Betty is in New York and it is 7 pm. What are Jonah 

and Betty doing based on the given code above? 

 

a. Jonah: work on science project; Betty: play with friends. 

b. Jonah: play with friends; Betty: work on science project. 

c. Jonah: work on science project and play with friends; Betty: play with friends. 

d. Jonah: work on science project; Betty: work on science project and play with friends. 
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5. You are training a robot to avoid obstacles as it moves. To make things more interesting you 

tell the robot to turn right to go around the obstacle if the color of the obstacle is red. If the obstacle 

is of any color other than red, the robot should turn left to go around the obstacle. How will you 

program your robot to follow these instructions using a When-Do-Otherwise do structure? 

When: _____________________________________________________________ 

 Do: __________________________________________________________ 

        __________________________________________________________ 

 Otherwise do: _________________________________________________ 

        __________________________________________________________ 

 

6. Imagine you have established a colony on the moon, and have robots helping you with your 

tasks. Today you need to program your robot to go test an instrument that is 5 miles away. Your 

robot can only travel 1 mile on a fully charged battery. Fortunately, you have a charging station 

every mile long the way. Using the loop structure (the Repeat command), write a program to 

command your robot to successfully reach the instrument so it can conduct the test. Assume your 

robot is fully charged when it starts its mission. 

 

7. Do you know how ant colonies gather food? Each ant has two primary tasks: looking for food 

and returning to the nest with the food. When an ant finds a piece of food, it returns to its nest with 

the food and releases a chemical as it moves. Ant nests have a specific smell which helps ants find 

their way back to the nest. When ants look for food, they sniff the scent of the chemical and follow 

the scent toward the food. As more ants carry food to the nest, the chemical trail becomes well 

defined. 

Can you conceptualize how to describe the ant colony using an agent based framework? 

Agent type(s) and properties for each agent: 
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Environment element(s) and properties for each environment element: 

Agent behavior(s): 

1. Behavior name:  

Sensed properties:  

Acted on properties:  

2. Behavior name:  

Sensed properties:  

Acted on properties:  

 

 

8. You are given the task of modeling the motion of a car shown in the figure below and how its 

speed varies on a given path.  

The motion of the car can be broken down into 5 different segments. For each segment, specify 

what things the car will need to sense and what things it will change or act on. Then write a small 

program to describe the motion in each segment using some or all of the constructs/building blocks 

provided below. Do NOT create your own constructs. 

The first two segments have been filled in as an example for you. 
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Do NOT write in the blanks inside the boxes. Use the constructs in your program. 

 

 

 

 

 

 

 

 

 

 

Segment 1: The car initially has cruise control on and is travelling in a straight line at a constant 

speed of 10 meters/second.  

Sense: ______none___________________________________________________ 

Action constructs: 

Set speed = _______ meters/second 

Forward ________ meters 

Forward at increasing speed till speed reaches 

_________ mph 

Forward at decreasing speed till speed reaches 

_________ mph  

Turn right by ______ degrees 

Turn left by _______ degrees 

Pause for _______ seconds 

 

Sensing condition constructs: 

Stop-sign-visible? 

Traffic-light-is-visible? 

Traffic-light-is-green? 

Car properties: 

Speed 

Conditional constructs: 

When ______________ 

 Do: ________________ 

 Otherwise do: ________ 
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Act on: ____car-location_______________________________________________ 

Program: _________Set speed = 10 meters/second_________________________ 

_____________________Forward speed meters___________________________ 

___________________________________________________________________ 

Segment 2: The driver sees a STOP sign at about 10 meters before the stop sign, and begins 

slowing down the car to come to a stop. Then, she pauses for 5 seconds at the Stop sign. 

Sense: ______stop-sign-visibility________________________________________ 

Act on: ____car-location, car-speed______________________________________ 

Program: ___When: Stop-sign-visible?________________________________ 

______________Do: Forward at decreasing speed till speed reaches 0 mph______ 

__________________Pause for 5 seconds________________________________ 

______________Otherwise do:_________________________________________ 

 

Segment 3: The driver then picks up speed to reach the speed limit of 15 meters/second for that 

stretch of the road.  

Sense:  

Act on:  

Program:  

 

Segment 4: The car needs to turn right at the next intersection. However, the rules say that the car 

must come to a complete halt at the intersection with traffic lights before it can turn right.  

Sense:  
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Act on:  

Program:  

 

Segment 5: There is a No-turn-on-red sign at the intersection. So, the car waits for the traffic signal 

at the intersection to turn green in order to make a right turn.  

Sense:  

Act on:  

Program:  

 

B.2 Modeling skill transfer test 

1. In the following paragraphs, you will read about an ecosystem containing wolf, sheep and grass. 

You are given the task of modeling this ecosystem and the relations between its species based on 

what you read. Remember, modeling involves first identifying the agents and environment 

elements which make up the ecosystem, followed by describing each agent behavior using a sense-

act framework and writing a program for each behavior. 

First of all, let us read carefully about the ecosystem. 

The wolf-sheep ecosystem consists of wolves, sheep, and grass where the wolves prey on sheep to 

gain energy and the sheep eat grass to gain energy. The wolves prey on sheep whenever they are 

hungry and sheep are available, and gain 5 units of energy every time they consume a sheep. The 

sheep, on the other hand, can eat grass whenever they are hungry since grass is always available, 

and they gain 2 units of energy every time they eat grass. 

 Other than energy from their food, the wolves and sheep need oxygen to stay alive. They die when 

they run out of energy or when there is no oxygen present in the atmosphere. Both the animals 

breathe in oxygen and breathe out carbon dioxide. The grass on the other hand breathes in carbon 
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dioxide and breathes out oxygen. The grass withers and dies if there is no carbon dioxide in the 

atmosphere. 

Wolves and sheep wander randomly in their landscape. Each step they take costs them 1 unit of 

energy. When they run out of energy they die. Also, each wolf or sheep can reproduce if it has 

sufficient energy and thus help their populations to continue. Reproduction causes energy to 

decrease by 4 units for wolves, and by 3 units in case of the sheep population. 

 

(a) Agent type(s) in the ecosystem: 

1. _________________________________________________________________ 

2. _________________________________________________________________ 

3. _________________________________________________________________ 

 

(b) Environment element(s) in the ecosystem: 

1. _________________________________________________________________ 

2. _________________________________________________________________ 

3._________________________________________________________________ 

 

(c) Identify agent behaviors, model them using a sense-act framework, and use some or all of the 

constructs provided in the boxes below to write programs describing the behaviors. 
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Agent 1 – Behavior 1:  

Agent name - Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 

Entities: 

Sheep         Wolves          Grass 

Conditional constructs: 

When ______________ 

 Do: ________________ 

 Otherwise do: ________ 

Action constructs: 

Wander 

Eat _____________ 

Die 

Create new ________________ 

Set current energy = previous energy + ___________ 

Set current energy = previous energy - ___________ 

Increase __________________________ 

Decrease _________________________ 

Sensing condition constructs: 

The wolf is hungry? 

The sheep is hungry? 

There are sheep available here? 

Some _________ left? 

No ________ left? 

Enough energy to reproduce? 

Agent and Environment properties: 

Energy        Amount of oxygen      Amount of carbon dioxide 
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Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Agent 1 – Behavior 2:  

Agent name: Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 

Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Agent 1 – Behavior 3:  

Agent name - Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 
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Acted on properties: 

___________________________________________________________________ 

Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Agent 1 – Behavior 4:  

Agent name - Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 

Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Agent 2 – Behavior 1:  

Agent name - Behavior name: ________________________________________ 
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Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 

Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Agent 2 – Behavior 2:  

Agent name - Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 

Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 
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Agent 2 – Behavior 3:  

Agent name - Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 

Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Agent 2 – Behavior 4:  

Agent name - Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 

Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 
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___________________________________________________________________ 

___________________________________________________________________ 

Agent 3 – Behavior 1:  

Agent name - Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 

Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Agent 3 – Behavior 2:  

Agent name - Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 

Program: 

___________________________________________________________________ 
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___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Agent 3 – Behavior 3:  

Agent name - Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 

Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

Agent 3 – Behavior 4:  

Agent name - Behavior name: ________________________________________ 

Sensed properties: 

___________________________________________________________________ 

Acted on properties: 

___________________________________________________________________ 



 212 

Program: 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

 


