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CHAPTER I 
 

INTRODUCTION 

In recent years, there has been increased interest in a new area of research:  the security 

of Supervisory Control and Data Acquisition (SCADA) systems. SCADA systems are elaborate 

computer systems which have two main functions as their name implies: (1) they manage and 

control critical infrastructure, and (2) they also collect data from critical infrastructure for 

analysis and potential response. Examples of these infrastructures include the power grid, 

chemical plants, and oil refineries [9]. Modern SCADA systems have new vulnerabilities. The 

major issue today is that malicious software, or malware, may be able to access these systems via 

the Internet since SCADA systems are now more connected and open to outside networks.  

Therefore, exposure to malware can affect the operation of SCADA systems [3], [4]. This 

exposure is especially problematic because a SCADA system, a type of cyber-physical system 

(CPS), manages critical infrastructure and affects the physical world. A CPS is defined as a 

system in which there is close interaction between computing devices and the physical world 

[30]. Because of this close interaction, malware could alter the behavior of these systems such 

that (1) they could cause the operation of the plant to run inefficiently meaning increased 

operating costs, or (2) in a worst case scenario, they endanger public safety [1].  

If a cyber-attack occurs on a SCADA system, it is possible that the behavior of the 

system can be modified to deviate from normal operation. Normal operation would be defined as 

the way that the SCADA system was designed to operate in order to meet certain objectives. 

These objectives include safety and also the production of goods or services. It is especially 

problematic for the SCADA System if safety is compromised by a cyber-attack. Because 

SCADA systems manage critical infrastructure, these attacks can have a large physical impact in 

terms of the destruction that they can cause [1].  For example, pressure in a tank could build up 

to dangerous levels if the SCADA system is hacked by an intruder. This increase in pressure, if it 

is substantial, may lead to an explosion. Also from an economic standpoint, it is important to 

understand that this critical infrastructure can take the form of industrial plants, which means that 

revenue could be at stake if the SCADA system is tampered with. This loss of revenue could be 

due to the industrial processes becoming more inefficient. An example of this may be a chemical 



2 
 

plant. A certain chemical reaction may have to take place in the chemical processes of this plant 

to produce a certain product. Therefore, the right combinations of inputs with a certain ratio must 

be applied to have the optimal yield of the product. Therefore, it can be seen from these 

examples that economic consequences or issues with safety may occur if SCADA systems that 

manage these processes are compromised [1], [2].  

The reason that research in the security of SCADA systems has become important is that 

recent incidents have in fact occurred in which SCADA systems were compromised. Because 

these types of incidents have a great impact on society, they have been brought to the attention of 

governments and research communities. Some well-known examples that have been studied are 

Stuxnet and the Slammer worm [41]. The Stuxnet worm was an elaborate piece of malware that 

took advantage of vulnerabilities of the Windows operating system in order to damage 

centrifuges in a nuclear facility in Iran. This led to economic loss since these centrifuges had to 

be replaced [31]. The Slammer worm attacked and disabled the network of Ohio’s Besse nuclear 

power plant. As a result, the monitoring system used to ensure safety of the system was unable to 

function, even though there may have been a firewall to protect the system. In this particular 

case, this attack did not cause loss of life or other harm besides economic loss, but it did 

highlight the need for increased security for these systems [8]. 

 

Developments in SCADA Security 

  To counter this threat against SCADA systems, certain measures have been studied and 

created over the course of time. Previously, a great body of literature has been developed that 

deals with computer and network security in general [2]. Some of the methods in network 

security have been applied to SCADA systems in recent work. For instance, one focus of recent 

research has been in prevention or access control by some of the standard techniques used in 

network and computer security. Access control simply means that the computer network is able 

to prevent certain access that is unwanted and allow other access that would be considered 

legitimate. This can be achieved through whitelisting and blacklisting. Whitelisting involves 

comparing applications that attempt to access a resource with a list of approved sources.  

Blacklisting, on the other hand, involves rejecting access to applications that are considered 

malicious. [7] This type of prevention is typically done using a firewall. Firewalls have been 

found to be useful for protecting the network associated with the SCADA system in addition to 
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protecting general computer networks [2]. However, protection may not always be as effective as 

desired. It is possible that malicious software can still bypass this form of security using zero-day 

attacks as in the case of Stuxnet. Zero-day attacks are attacks which take advantage of 

vulnerabilities of hardware and software that have not been discovered by the users of the 

system. These attacks have not been officially discovered by the vendors of this hardware or 

software associated with the SCADA system [2].  Since these attacks are unknown to the users 

of the SCADA system, these systems may not be truly secure, meaning a malicious entity can 

tamper with the system in potentially destructive ways. It is also important to be able to detect if 

an attack is occurring in the system in addition to protecting the system against intrusions [2]. 

Methods of detection have been used in traditional IT systems, such as intrusion detection 

systems (IDS) [28]. These methods are fairly effective.  However, even with existing IDS 

technology, it should be noted that SCADA system security has a major difference from general 

computer security in that the physical system is affected in addition to the computer systems and 

networks. As a result of the new awareness, researchers have been increasingly studying the 

effects of cyber-attacks on physical systems and how these attacks can be detected for practical 

purposes. For example, the plant operator would want to be alerted that an attack has occurred 

and he would want to respond to it appropriately to prevent or reduce any damage or loss, 

whether it is physical or economic [1], [2]. Response in addition to detection was one of the 

objectives in the paper by Cardinas et al [2]. Cardinas discussed an approach of observing the 

physical system and then determining whether there was abnormal behavior. If the plant was 

found to have abnormal behavior, the supervisory system would attempt to place the plant in a 

safe state. The system considered was the Tennessee Eastman Process Control System (TEP-

CS), which is a widely used system in the literature to study SCADA systems. The reason that it 

was studied is that it allows for situations where there could be economic loss or violations of 

safety. As in this current work, it is not the desire of that work to study how specific 

vulnerabilities in software are exploited. What is desired is to use knowledge of the physical 

system to aid in detecting attacks. Observation of the physical system for abnormalities is of 

utmost importance since the physical system is where the potential for danger is the greatest.  

 

Abnormalities in the physical system are typically detected by means of a comparison 

between an ideal system and the system under observation. This can be done using a fault 



4 
 

diagnosis method that incorporates model-based diagnosis, which is one of several fault 

diagnosis techniques that may be used [2], [3]. Model-based diagnosis compares the 

mathematical model of the ideal system with sensor data (data from the physical system) 

received by a supervisory system. The model of the nominal system is derived by first principles 

or empirical methods [13]. The comparison is useful to detect an anomaly. In fact, this work uses 

a basic form of model-based diagnosis to determine if there is an anomaly in the behavior of the 

physical system. But it should be noted that, while both of these papers [2], [3] focus on 

detection of attacks on the physical system, there appears to be somewhat of a weakness with 

their approaches for detecting attacks. To understand the weakness more clearly, it is helpful to 

realize that these methods of detection for attacks, by their very nature, would also be suitable for 

fault detection. This means that the attacks that can be observed in the physical system may be 

considered indistinguishable from faults. This would certainly be true with the experiments of 

these aforementioned papers in how the experiments are setup if faults were also introduced in 

the simulation. The faults in that case would be treated as attacks. In fact, Amin et al. [3] seem to 

lump faults and attacks together. In another paper [4], Amin et al. explicitly mentions that there 

is a difficulty in isolating faults from attacks. This inability to make a distinction between an 

attack and a fault may prove to be problematic since the system or the plant operator may need to 

respond differently depending on the situation.  

 

Contributions 

Given more information besides the sensor readings from the physical system, it may be 

hypothesized that it is possible to distinguish between faults and attacks in certain cases, even if 

there is not enough information to do so in all cases. Simply observing the physical system alone 

will probably not allow for this distinction to be made. It should be noted that what is meant by 

“observing the physical system” is that sensor data and other useful information are being sent to 

a supervisory system for analysis. The reason that faults and attacks are indistinguishable is that 

a fault can easily resemble an attack in many cases. For instance, it is quite possible that a fault 

may have an effect that is similar to false data being sent by a malicious entity as seen from 

sensor data of the physical system, which is sent to the supervisory system. The ability to 

distinguish the faults and attacks may be useful so that the SCADA system or the plant operators 

can respond to the situation in an appropriate way, depending on the nature of the anomaly, 
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whether it is a fault or attack. What may be something worthwhile from a research perspective is 

to try to understand network behavior as well in order to aid in understanding the nature of the 

anomaly. A cyber-attack would most likely have a certain effect on the network. Therefore, it 

would be reasonable to study the resulting effects on the network in addition to the physical 

system. Possible effects that could occur are as follows: There could be increased traffic on the 

network, which is something that is discussed in the literature concerning certain types of 

attacks. For instance, the flooding of packets in a network is a type of attack that can increase 

network activity. In an extreme scenario, this could lead to loss of communication, which in turn 

could lead to possibly catastrophic events if a networked control system is the target of this 

attack. Therefore, it is important to study the methods for detecting these types of attacks. It may 

be useful to understand how certain network behavior could influence the behavior of the plant. 

There has been work done to create simulations that would allow the effects of a DoS (Denial of 

Service) attack on the physical system behavior to be studied [30]. Two major types of attacks 

that have been studied which can influence the behavior of the physical system in possibly 

harmful ways are DoS attacks and Deception attacks [1], [2], [30].  

 

The major contribution of this work is to create a methodology or framework to 

distinguish faults and attacks despite the apparent similarities in how they manifest themselves in 

the physical system. Faults and attacks may not have unique enough signatures to allow for them 

to be distinguished from each other adequately in the physical system alone, i.e. using sensor 

readings of the physical system. A “signature” is a pattern or set of symptoms that characterizes 

the fault or attack. Therefore, more information is needed. It is worth considering that attacks 

may have a certain signature that can be detected on the network as well. On the other hand, 

physical faults with a similar signature as seen by the sensors may not have such a signature on 

the network. For faults associated with the network, however, the network may not even send 

any data. This might be seen in no traffic being detected. Therefore, these scenarios seem to have 

fairly unique signatures associated with them if data from both the network and the physical 

system are included. To achieve the ability to distinguish an attack from a fault or to simply 

increase the accuracy in doing so, more information associated with the SCADA system must be 

collected than what was done in previous work.  
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The rest of the thesis is organized as follows: Chapter 2 provides the background and 

covers important terms, definitions, and concepts in this work. Chapter 3 deals with the 

experiments. It describes the problem formulation and implementation of the experiments. 

Chapter 4 covers the results of the experiments and includes a discussion and an analysis. 

Chapter 5 presents the conclusions that were made based on all of the work completed. 
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CHAPTER II 

BACKGROUND 

In this work, there are several technologies studied and many concepts used. Among 

these are (1) SCADA systems, (2) Control Systems, (3) more specifically, Networked Control 

Systems, (4) Network Security, (5) Faults and Fault Diagnosis techniques, (6) Attacks, (7) 

Intrusion Detection Systems, and (8) Machine Learning techniques for classification. Some of 

these were briefly discussed in the introduction. The purpose of this chapter is to explain these 

important concepts as well as others that are applicable to this work.  

 

SCADA Systems 

SCADA systems are essentially computer systems that manage the control systems used 

in national infrastructure or industrial plants. In recent years, these systems have been found to 

be more likely to experience cyber-attacks for several reasons: (i) They are increasingly using 

technology similar to that of traditional IT systems; (ii) they may be connected to the internet; 

(iii) and they tend not to use the proprietary protocols as in the past. Instead, they use more 

common protocols. The main reason these systems are made to use this technology is to be more 

cost-effective. [3] SCADA systems typically have a main supervisory computer system that is 

connected through a network to other nodes. In computer networks, a node is a device that can 

communicate with other nodes on the network [15]. These nodes may be microcontrollers that 

control certain aspects of the industrial process associated with the SCADA system. These 

devices for SCADA systems in particular are called Remote Terminal Units (RTU), Intelligent 

Electronic Device (IED), etc. These microcontrollers may be connected to actuators or sensors 

[10].  
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Figure 2.1: Electric Power SCADA System, which may also be similar to other SCADA systems [40] (the 

labels, as shown here, were updated by the author for this paper) 

 

Control Systems 

A SCADA system is an elaborate form of a control system that typically has a hierarchy 

associated with it and uses lower-level control systems to manage certain aspects of the critical 

infrastructure. The SCADA system itself is the higher-level supervisory system in the hierarchy 

and manages the lower-level control systems. Each of these control systems would manage a 

particular aspect of the industrial process [3], [9]. A control system incorporates a plant, which is 

the physical system, and a controller, which regulates the plant’s behavior. The behavior of the 

plant can be described in terms of physical quantities associated with the plant that may change 

over time. The physical quantities associated with the plant that must be adjusted by the 

controller are called the manipulated variables in the plant and are inputs to the plant.  These 

variables are adjusted so that a certain objective is meant for the plant. This objective may 

involve these variables being adjusted so that other variables related to them reach a certain 

value known as the set-point. These other variables are the outputs of the plant, some of which 

may be referred to as the measured variables. These measured variables may also be made to 

track a certain function of time instead of a constant set-point. This function is known as the 
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reference signal [14], [16]. Sensors are the devices directly involved with the plant so that the 

measured variables can be known. This data, of course, must be sent to the controller. The 

controller will receive this data as input. Based on the control objective, the controller will send 

commands to an actuator that is directly involved with the plant. An actuator is a device that 

manipulates a physical system and receives the commands from the controller. The following 

figure illustrates a single-input/single-output feedback control system, which is used for this 

work in the interest of simplicity. 

 

 

 

Figure 2.2: Control System with Blocks that Represent the Controller and the Plant. 

 

The cloud in the diagram represents a network through which the manipulated variables 

from the controller are sent to the plant. These manipulated variables are the commands to the 

actuators. Also, the measured variables (the sensor data) from the plant must pass through this 

network in order to be received by the controller. This will be discussed in later sections in the 

chapter.  The controller, of course, sends these commands to the plant based on what it receives 

from the plant in order to meet a certain control objective.  The system is designed with a 

specific control objective to manage the plant or process. One example of a control objective is 

for the level of water in a tank to maintain a certain set-point. The actuator would be the valve to 

allow water into the tank. This valve can be opened or closed by the controller. Or the valve can 

Plant

Network

Controller

Error
Signal

Ref.
Signal

Manipulated
Variable

Measured 
Variables

Plant

Network

Controller

Error
Signal

Ref.
Signal

Manipulated
Variable

Measured 
Variables



10 
 

take on a range of positions that is neither fully closed nor fully opened. The goal of the 

controller would be to have the water reach that set-point by adjusting the valve.   

 

As was mentioned, a feedback control system is used. This involves measuring the output 

and adjusting the manipulated variable so as to influence the plant with the goal of causing the 

measured variable to track with the reference signal. 

 

Controller 

For this work, a PI controller was used. One of the reasons that it was used is that this 

type of controller is in other related work [2], [3]. The PI controller implements a specific control 

law, which is expressed as a transfer function that describes the controller. The input of this 

transfer function is the error signal. The output of this transfer function is the manipulated 

variable, which is fed as the input to the plant. The error is defined as the difference between the 

reference signal and the measured variable, which is the output from the plant. For this work, it is 

important to express this with discrete time, which is what digital systems use. The controller is 

assumed to be implemented on a digital microcontroller. The control law can be expressed by the 

following transfer function, where the input to this function is the error signal: 

  

     

 

   
 

 

 

(2.1) 

 

Where P is the proportional parameter; I is the integral constant; and Ts is the sampling period. 

These equations are in the Euler form based on the discrete PI controller block used in MATLAB 

Simulink [43]. 

This equation for the transfer function must be implemented in C++ as a simple algorithm. The 

following pseudo-code shows an algorithm that would implement the above transfer function. 

 

 

 

 



11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: C style Pseudo-Code to Show a Basic Implementation of the Transfer Function. 

 

 

Plant 

The plant is the physical system, and it must be regulated so that it meets the control 

objective. It can be mechanical, electric, hydraulic, or pneumatic, etc. and its behavior is 

generally governed by laws of physics, where the relationship of physical quantities associated 

with the plant can be described in terms of equations. There are many ways that a plant’s 

behavior can be described through mathematics. Creating these mathematical descriptions of the 

plant is a form of modeling. [34] In the case of this work, a linear discrete-time state space 

system will be used which has equations for the simulations that are in continuous form. The 

continuous-time equations are also used for the mode [33]. These are defined as follows:  

 

This is the continuous-time model of the dynamic system: 

 

 

  

{
 ̇̅    ̅    ̅
 ̅    ̅    ̅

 

 

(2.2) 

TransferFunc(ref_signal, measured_value) //called every 10ms 

    { 

error = ref_signal – measured_value; 

        integral = integral + error * dt;  

// integral = 0 for initialization 

// dt = sampling period in secs 

          

        output = Kp*error + Ki*integral 

    } 
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where  ̅ is the vector of the state variable,  ̅ is the vector of the output,  ̅ is the vector of the 

inputs. 

 

Discrete-time Model of the Equations: 

 

  

 ̅        ̅      ̅   
 ̅      ̅      ̅   

 

 

 

(2.3) 
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Networked Control Systems 

For some types of SCADA systems, the control system used has a network which 

facilitates communication between the controller and the plant (This is illustrated in Figure 2.1). 

These control systems are called networked control systems. The controller and plant are 

essentially the nodes in the network. The network, of course, has a delay and limited bandwidth 

associated with it. Delay is defined as the time that it takes for information to travel from one 

point of the network to another. It should be noted that the delay can vary in its duration. 

Bandwidth is defined as the amount of information, usually expressed in bits per second (bps) 

that can travel though the network in a given amount of time. It can be assumed that a networked 

control system or a SCADA system has a regular traffic pattern in normal operating conditions 

for the following reasons: (1) the topology remains unchanged.  (2) The nodes use the networks 

in ways that remain constant or have the same basic pattern according to their original design or 

specification [31]. Deviation from this normal pattern would therefore be indicative of an 

abnormal event or circumstance. A network facilitates the communication between the nodes. 

Communication is done through certain protocols. The information is carried by means of 

packets. A protocol is a specification on how communication will take place so that information 

can be sent from one node in the network to another. It also refers to the service that allows for 

this communication according to a certain set of rules associated with the protocol. Two main 

network protocols are UDP (User Datagram Protocol) and TCP (Transmission Control Protocol). 

UDP is a connectionless protocol. This means that packets that are dropped on the way to their 

destination are not resent. In contrast to this, TCP is another protocol which ensures the delivery 

of the packet through an elaborate method that involves a three-way hand shake for the set-up of 

the connection. Also, with this particular protocol, the recipient acknowledges to the sender that 

it has received the data as communication takes place.  For this work, UDP is used [15]. The 

UDP protocol was chosen for two main reasons: (1) It is simpler to implement than the TCP 

protocol. (2) UDP may be more suitable for real-time systems. A networked control system is a 

real-time system, in that the system must respond to sensor data in a reasonable amount of time. 

A slight advantage of UDP over TCP is that UDP will send the newest data from the plant to the 

controller without much overhead or a complicated process, regardless if some of the datagrams 

are dropped due to abnormal events on the network.  Therefore, the data is more relevant because 

the newest data arrives at the destination without trying to send somewhat older packets, which 
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TCP may attempt to do [15]. However, it should be noted that UDP does have some 

disadvantages, which may cause this protocol to be unreliable in some cases: (1) it can drop 

messages (2) it does not guarantee in-order delivery of packets. TCP on the other hand will 

ensure that all data is sent, meaning that if some packets are dropped, TCP will resend them, and 

it does allow for an in-order delivery. But these data would not be the newest data for the system. 

There is, however, a time to live associated with TCP. Time to live is defined as the length of 

time for when transmission or retransmission is allowed to take place. Beyond this period, no 

retransmission is allowed to occur [15]. Therefore, it is possible to avoid the problem that could 

occur in TCP where retransmission could occur indefinitely.  

 

Network Security 

In this work, it is important to have a basic understanding of network security since 

cyber-attacks are a possible circumstance that an NCS can experience. There are a few concepts 

that should be understood that are relevant to this work which will be discussed.  

Network security has several main components: (1) confidentiality, (2) integrity, and (3) 

availability [31]. Confidentiality involves hiding information.  This component is not dealt with 

in this work. Integrity basically means that data has not been tampered with or that there is no 

deceptive data. There are a few types of integrity: Data integrity means that the content of the 

packets are not modified in any way. Integrity also includes authentication. Authentication 

means that the process or device that desires a resource is who or what it claims to be. In this 

work authentication is not dealt with, but it is still important to understand. Data integrity is dealt 

with in this work.  Also, availability involves resources being available for use in a timely 

manner. All of these aspects of network security must be maintained in order for the network to 

function properly [21]. In the case of this work, the focus is on attacks on integrity and 

availability as far as network security is concerned. These two aspects of security are especially 

important for SCADA systems because unwanted and potentially dangerous behavior can occur 

on the physical system if these components are violated. Therefore, this work focuses on certain 

attacks that are meant to attack integrity and availability of the network such that they would 

influence the behavior of the NCS. 
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There are also three major goals of security: prevention, detection, and recovery. These 

were briefly discussed in Chapter 1 of this thesis. The focus of this work is on detection, but it is 

also important to do more than just detection. It is desired to diagnose the specific problem that 

the NCS experiences and classify it. Recovery may involve placing the system in a safe state or 

eliminating the problem altogether.  

 

Abnormal Situations Experienced by the Networked Control Systems 

As was mentioned in Chapter 1, there are two main types of abnormal situations that the NCS 

can experience: (1) Faults and (2) Attacks. What follows is a discussion for each of them.  

Faults 

Faults may occur during the operation of the NCS. Although they may be rare, it is not 

known how often they can occur as compared with attacks. Therefore, it is reasonable to 

understand the behavior of faults also. Faults are defined according to Gertler, using general 

terms, [13] as “deviations from the normal behavior of the plant or its instrumentation.” These 

faults could be the result of damage to equipment [12]. It should be noted that these faults may 

impact the physical system such that it operates inefficiently or to the point of causing harm to 

equipment or people. It is also important to understand what kinds of faults can occur. Faults 

may be mechanical, but they may also involve errors in the network or malfunctions in software. 

Some of the more standard faults are those in the physical system, which may be either additive 

faults or multiplicative faults. Additive faults entail unknown inputs being added to the inputs of 

the plant or unknown biases added to the outputs of the plant. On the other hand, multiplicative 

faults in the system may involve the system as described by a matrix to have changes. This could 

be due to changes in the plant parameters due to component faults [13]. Attacks may also exhibit 

similar behavior to faults and may be detected by standard fault diagnosis techniques. One way 

to detect a fault/attack is to use a method similar to what is used in the work by Cardinas et al. 

[3] which focuses on sensors that give incorrect information deviating from their actual readings. 

 

  



16 
 

Cyber-Attacks 

A cyber-attack, or simply an attack in this work, is an action which undermines the 

security of computer-systems and networks for malicious purposes [37]. There are a few main 

types of attacks that can occur on a network controller as described in the literature: one is the 

DoS (Denial of Service) attack, which has the goal of preventing communication on the network. 

This is an attack on availability. Another is a deception/integrity attack, which is defined as an 

attack in which a hostile entity sends intentionally incorrect information so as to manipulate the 

control system [2]. In the scope of this work, an attack is a cyber-attack and not a physical attack.  

A physical attack is one that would involve an enemy physically causing harm to the system. A 

physical attack, of course, might be considered almost totally indistinguishable from a fault from 

the standpoint of the supervisory system if the only data used comes from the physical system. It 

will be assumed that the physical security of the facility where the SCADA system performs its 

operations is sufficient to prevent any adversary from breaking in. Because the scope of these 

attacks is limited to cyber-attacks like other work in the literature of SCADA security, it should 

be understood that these attacks would require the use of networks and the compromising of 

nodes in order to go about their intended action of penetrating defenses of networks. Knowing 

this, it can be assumed that information from the network would help in detecting an attack.  Or 

at least, it would show that what is occurring within the network is correlated with the physical 

behavior seen by the SCADA system. Also, attacks can be categorized as the targeted attacks 

and the non-targeted attacks. What differentiates the targeted attacks from the non-targeted 

attacks is that with the targeted attacks, the attacker has an understanding of the system and is 

therefore able to influence the system in a more harmful way. Non-targeted attacks do not 

require such knowledge. DoS attacks many times can be considered non-targeted since these 

attacks do not require detailed knowledge of the NCS and, in particular, the physical system. All 

that is necessary is to stop communication.  Different types of DoS attacks are as follows based 

on how they work: compromising the nodes in the network, preventing the nodes from sending 

data, and flooding the network with packets [1].  
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For the scope of this work, it must be understood that the goal of the DoS attack would be 

to disable the control network. The control network connects various nodes associated with the 

process. Specifically, it links the controller to the plant. The DoS attack would thus hinder or 

completely block actuators from receiving commands from the controller. The DoS attack 

likewise impedes data sent from the sensor to the controller. As a result of this, actuators would 

not be able to respond to the plant correctly, which may lead to disastrous consequences. It 

should also be noted that the way the system responds to a DoS attack as far as the nodes are 

concerned is that the value in the last packet received in a node from another node is the one that 

is used. For instance, this might be the value for the sensor data contained in a packet that is last 

received by the controller. This was done it the work by Huang et al. [1]. 

 

Two Paradigms of Detection of Cyber-Attacks for SCADA Systems: 

In order to go about the problem of distinguishing attacks from faults, it is helpful to look 

at two main areas of research: (1) Fault Diagnosis; (2) Intrusion Detection Systems (IDS).   

Fault Diagnosis is a process of detecting the presence of faults and isolating the faults in 

the system to determine what components have faults. Fault Diagnosis may include 

identification, which involves finding a quantitative measure of the fault’s magnitude [13] Fault 

Diagnosis is important because the techniques used in fault diagnosis may be applicable to 

detection of attacks. In fact, in some of the recent research, techniques from fault diagnosis are 

used [3]. The reason that Fault Diagnosis is important to understand is that a cyber-attack may 

cause the system to deviate from normal behavior in the physical system. This ability to detect 

when such a deviation occurs is very important for SCADA system security.  

Also, there is research concerning IDS, which are defined as systems which are used to 

determine if a computer system or network is compromised by malware so that the threat can be 

dealt with. This is done with the hope that the system would be able to return to its normal 

functioning state if the threat is detected and eliminated [24]. This research involves detection of 

anomalous network behavior. These techniques can also be used for SCADA systems. There is a 

paper that shows how these systems can be adapted for SCADA systems [35]. 
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Fault Diagnosis 

 In the literature of fault diagnosis, there have been many techniques that have been 

developed. [13] Some that are of particular interest are those that use model-based diagnosis, 

which as mentioned before, involves a simulation of the plant as the real plant goes about its 

operation and a comparison between the simulation and the real plant.  Model-based diagnosis 

generally involves a residual generator for diagnosis. The residual generator allows certain 

attributes of the signal or signature to be enhanced so that isolation can be performed in addition 

to detection.  In the case of this work, it is quite possible to use a residual generator, but as far as  

model-based diagnosis is concerned for this work, only detection is necessary. As for 

distinguishing one signature from another even in the physical system, possible methods could 

involve collecting some of the data from the physical system to be used as inputs to a machine 

learning algorithm [16]. 

 

Techniques used in IDS 

Anomaly detection is one method that IDS techniques can use. The main idea behind 

anomaly detection is that if there is behavior that deviates from normal behavior, then it can be 

determined that an anomaly is occurring. This detected anomaly would be a possible sign of a 

malicious attack. Many times, a supervised learning algorithm can be trained to recognize 

normal behavior. These algorithms can also be trained to recognize malicious behavior. Many of 

these algorithms that are used involve training where certain features that are based on data from 

the network or computer system are used in the training process [15]. 

It is necessary in this work to combine these two paradigms: One way of doing this 

would be to take information from the physical system and extract some of this data to be used as 

features to train the machine learning algorithm. These features can then be combined with 

features from the network so that it is possible to establish uniqueness between circumstances 

that are different in nature, but may be similar from the perspective of the physical system only. 
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Statistical Methods of Machine Learning 

It is the desire of this work to be able to understand the situations that the NCS 

experiences so that the data can be analyzed to make distinctions between attacks and faults. One 

key feature of an attack is that it may influence the behavior of the network in addition to the 

physical system, and therefore the behavior in the physical system is correlated with the behavior 

on the network.  What is noteworthy about a control network is that it is different from a 

standard corporate network in that the network exhibits regular behavior, meaning that a change 

in the network behavior could signal that a cyber-attack may be occurring. This is certainly true 

if the control network is separate from the corporate network. It can also be assumed true if there 

is a connection between the corporate network and the control network since in normal 

circumstances, the corporate network would not be allowed to disrupt the control network, or at 

least, the interaction would be hardly noticeable in terms of the network traffic. This may allow a 

distinction to be made, which a machine learning algorithm may be able to make if there are 

unique signatures associated with the different situations experienced by the NCS. These 

different situations may be said to fall under different classes or types of scenarios that the NCS 

experiences. For instance, three classes that would be appropriate for this work would be normal, 

fault, and attack. The machine learning algorithms that would classify the circumstance 

according to the data given are simply known as classifiers. One way to create a classifier for this 

work may be to use a naïve Bayes classifier [16], which could receive certain data from the 

system as features. The rationale for using Bayesian techniques would be that these techniques 

are also used for some intrusion detection systems. It is also the desire of this work to use a 

statistical approach to classification.   

The algorithm for a naïve Bayes classifier is a supervised learning algorithm. It is fairly 

accurate, although it may not be as accurate as more advanced Bayesian classifiers. An 

advantage that this classifier has that the work in [36] discusses is that it is not very 

computationally expensive. This classifier involves Bayes rule as the name implies and relies on 

an independence condition. For this, the attributes are assumed or treated as if they are not 

related. The classifier must be trained since it is a supervised learning algorithm. For this 

algorithm, the means and the variances are calculated for the attributes of the training data for 

each class. [36].  
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Suppose that there are q classes, then the following equation is used for the classification 

process.   

  

                ̂      

 

 

(2.4) 

Where l is the class that the machine learning algorithm determines to best fit the testing data 

that it receives. Basically what the above formula means is that there is a set of functions 

calculated and the maximum is the one that is selected whose subscript is what l will equal. 

For the Naïve Bayes’s classier, 
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The above equation is based on Bayes’ rule, where z is the evidence. Fi refers to a feature i. P is 

the Gaussian distribution, which is as follows: 
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Where µ is the mean, and σ is standard deviation [37]. 
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Previous Work 

 

There are several papers in the literature that are related to this work: The paper by 

Cardinas et al. is one of the first papers that point out one of the main differences between 

SCADA security and general network and computer security. The SCADA system is different in 

that the physical system is involved, and therefore the behavior of the physical system should be 

taken into account.  In other work, it was mentioned that SCADA security is different because 

the networks and devices involved do not have the same computing capabilities as the computers 

used in general IT networks [2]. Litrico et al. discusses the isolation of faults and attacks and 

mentions the difficulties in doing so. 
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CHAPTER III 

EXPERIMENTS 

In order to go about testing the ideas of distinguishing faults from attacks, a certain 

networked control system is modeled, and an implementation is created for simulations. Also, 

the methods for classifying unknown situations are discussed. 

Problem Formulation 

The scope of the problem encompasses a networked control system that is subject to 

various circumstances. Some of these circumstances include cyber-attacks that affect the 

physical system. They also include faults and normal operating conditions.  It should be noted 

and emphasized that the cyber-attacks of interest are the attacks that have an impact on the 

physical system. This type of impact is important to study because of its potential to cause 

danger in the physical world or its potential to cause inefficient operation for the networked 

control system. The physical world includes the plant and its physical environment. Other cyber-

attacks, which do not impact the physical system, are out of scope for this work. Those other 

types of cyber-attacks may be considered more or less benign in terms of the physical destruction 

that they cause but they may involve stealing information from the system. They could be an 

attack on confidentiality in other words.  One of the objectives of this work is to be able to detect 

abnormal behavior in the system due to attacks or faults. Detecting abnormal behaviors is similar 

to other work that has been done previously [2], [3], [4]. Furthermore, this work goes beyond 

detecting abnormal behavior. If abnormal behavior is detected, then it is desired to understand 

the nature of the circumstances responsible for this behavior; that is, it is desired to know what is 

causing the abnormality. It would be useful to know this information so that a more appropriate 

response can be used according to the type of abnormal situation. Therefore, it is important to 

diagnose the system further as a primary goal of this work and gain an understanding of the 

limitations in doing so as well. There are several aspects of this problem that will be discussed in 

the following paragraphs. 
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The Networked Control System 

The hypothetical networked control system (NCS) in this problem incorporates a plant 

and a controller, each of which is able to communicate to the other by means of a network in 

ordinary operating conditions. The communication is done using datagrams, or basic units of 

information that can be sent over the network [7], [8]. The plant sends datagrams over this 

network to the controller. These datagrams originate from the sensors associated with the plant 

and contain information concerning readings from those sensors. The controller, likewise, sends 

commands for the actuator associated with the plant by means of datagrams through the network. 

These datagrams sent by the controller to the plant are sent at regular intervals. Likewise, the 

datagrams sent by the plant to the controller are also sent at regular intervals. Therefore, under 

normal operating conditions, it can be assumed that the overall network traffic will be regular as 

far as its bandwidth utilization is concerned. Bandwidth can be defined as the amount of data that 

can be sent over the network in a given amount of time. Bandwidth utilization is how much of 

the bandwidth is being used and is typically represented as a percentage. The controller would 

enable the system to meet the control objectives, which can be defined as the desired result for 

the plant or the way that the plant is required to behave as it is manipulated by the controller 

[10]. As a control objective, it may be desired to have a variable associated with the plant to 

reach a certain setpoint or to have it track a time-varying reference signal. A diagram of the setup 

for the generic networked control system can be seen as follows:  
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Figure 3.1: Generic Networked Control System with a Controller, a Plant, and a Network Represented by a 

Cloud with Arrows that Represent Streams of Data 

 

In Figure 3.1, the boxes represent the plant and the controller. Also, in the figure is a 

cloud to represent the network. There are also arrows which indicate two streams of datagrams in 

the opposite directions between the controller and the plant. One stream is from the controller to 

the plant over the network. This stream contains commands for the actuators associated with the 

plant from the controller. The other stream is from the plant to the controller. The datagrams in 

this stream come from the plant’s sensors and are sent to the controller so that the controller can 

respond to meet the control objective it was designed for. Within the sensor stream, the plant 

sends these datagrams at a fixed sampling rate, and the datagrams are time-stamped. There is 

also a delay incurred as the datagram travels through the network. In addition, the controller 

sends datagrams at a fixed sampling rate as well. Therefore, the network has regular behavior as 

far as the traffic is concerned. 

The Specific Problem Selected 

It is important to note that Figure 3.1 shows a generic networked control system and not a 

concrete one. But, of course, a concrete one is best suited for the purposes of experimentation. 

More specifically, it is desired that a relatively simple networked control system be used for the 

experiments so that there is no unnecessary complexity beyond what is reasonable for a project 

such as this.  These situations include normal operation, and different cyber-attacks and faults. 

Controller Plant

Sensor Data

Actuator 
Commands

Network



25 
 

The specific networked control system chosen involved a fairly simple two-tank water system as 

the plant. This plant was regulated by a controller, and communication was facilitated by a 

simple network. It should be noted that this particular NCS will be described in more detail in the 

paragraphs that follow as well as the various situations that it can be subject to.  This specific 

NCS was chosen as opposed to a much more complex one such as the Tennessee Eastman 

Process Control System (TEP-CS) even though the TEP-CS is widely used in the literature. Its 

widespread use is evidenced by the fact that many of the papers associated with SCADA security 

use this system [1], [2], [5]. Using an overly complex system would mean that the faults and 

attacks may become very complex to simulate and lead to a large number of simulations that 

may become intractable for this work. 

The Plant: The two-tank system 

The plant chosen for these experiments is a two-tank system for water. A model of this system 

can be seen in Figure 3.2. It should be noted that this two-tank system is similar to one used in 

the thesis by Zhou [9]:  
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Figure 3.2: Illustration of the Working Plant 

 

In Figure 3.2, there is a valve over the first tank, which opens to allow water to flow into 

the tank. This valve is the actuator for the plant that receives commands from the controller 

through the network. Also, at the bottom of the second tank is an outlet for the water. Between 

the two tanks is a pipe that links the tanks and allows water to flow from one to another. Initial 

conditions are such that both of the tanks start empty. There are two sensors associated with the 

plant, one for tank 1 and another for tank 2. These sensors measure the pressure of the water in 

the tanks. 
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The tanks have certain dimensions and quantities associated with them. These include the 

cross sectional area of the tanks (A), the mass density of water (ρ), gravitational acceleration (g). 

There are certain quantities associated with the tanks-P1 and P2-which are the pressures at the 

bottoms of the tanks 1 and 2 respectively. C1 and C2 are capacitances of the tanks. The R12 is 

the resistance of the pipe between the tanks. R2 is the resistance of the pipe attached to tank 2 

that allows water to flow out. The pressures are the state variables for the state-space model of 

the system that will be derived. First of all it, it is necessary to establish the relationship between 

the pressure (P), the volumetric flow rate (Q), and the capacitance (C) for each tank: 

  

{
         

         
 

 

(3.1) 

 

Where P1 and P2 are the pressures at the bottoms of the tanks 1 and 2 respectively, and QC1 and 

QC2 are the net flow rates of the tanks. 

The net flow rate for each tank is the following: 
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(3.2) 

 

   

For tank 1, water can flow into the tank (Q1). Water can flow through the pipe between the tanks 

as well. QR12 is the volumetric flow of water out of tank 1 and into tank 2. 

The flow rates for the two tubes associated with the plant are as follows: 
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The two-tank system is actually a non-linear system. The resistance is not a constant with respect 

to the pressures in the tanks in reality.   However, in this work, the resistance is given as a 

constant to simplify an otherwise complicated system. Because it is a dynamic system, it is 

described by a set of differential equations, which are as follows:  
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(3.4) 

 

   

These equations are written in linear state space form, Therefore P1 and P2 are the state variables. 

Also, for simulation purposes, it is necessary to use concrete values for the quantities associated 

with the model. The quantities chosen can be seen in the following table [42]:  

 Capacitance 

(m
4
s

2
/ kg) 

Resistance 

(N·s/m
5
) 

Tank C1 1.5708*10
-6 

- 

Tank C2 1.5708*10
-6 

- 

Tube R12 - 7.35*10
7 

Tube R2 - 1.45*10
8
 

Table 3.1: Values for Resistances and Capacitances 

Using the previous state space-model derived, the following equations can be determined with 

actual numerical values for the parameters. Fin is a variable that can range from 0 to 1. 
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(3.5) 

 

The above equation (3.5) is expressed in continuous-time, and can be used directly in MATLAB 

Simulink for the behavior of the plant. 

The Controller 

 The controller for this project is a PI controller. The setpoint for this controller varies as a 

function of time. The controller receives values from the sensor for tank 2 and responds to the 

plant to meet the control objective, which is to have the level of the water in tank 2 track a time 

varying reference signal. Specifically, in this work, it is the pressure of tank 2 that is to track 

with the reference signal. The PI controller is implemented as a discrete-time controller for the 

actual implementation. The sampling rate is set at 100Hz.  This rate was chosen as an academic 

example, rather than a value that may be seen in an actual system.  

The reference signal is a piece-wise function defined by a set of equations. 
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The function F(t), which is used as the reference signal can also be seen in the following plot 

(Figure 3.3). 

 

 

Figure 3.3: Plot of Reference Signal 

 

Also, within the controller is an anomaly detection module (ADM) similar to the one used in the 

paper by Cardinas et al [2]. This part of the controller is implemented by using a simulated 

mathematical model of the plant. A comparison can be made between the ideal behavior of the 

plant as represented by the model and the behavior of the plant as indicated from information in 

the datagrams sent from the plant to the controller. It should be noted that the plant used in the 

simulations is itself a mathematical model as described previously, but it can be considered to be 

the “real plant.” The mathematical model that is implemented in the controller is a model of this 

“real plant” and can be viewed as a simulation within a simulation. This model is the same as Eq. 

3.4.  
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Figure 3.4: Illustration of the NCS with Topology Used in This Work 

 

Network 

 The following (Figure 3.5) is a diagram that shows the specific network topology that 

was chosen in this work. It was chosen so that there could be multiple routers. It was also chosen 

to be relatively simple. 

 

Figure 3.5: Illustration of the NCS with Topology Used in This Work 

 

There was a certain bandwidth associated with the network and delay as well. Each channel in 

the network has the following characteristics: datarate = 1.0Mps, and delay = 10us. Also, it is 

important to understand the datagrams that are used in this work. The datagrams can carry 

certain information through the network. This information included a timestamp that indicates 

the time they were created by the sensors. Also, these datagrams contained the sensor readings 
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that are sampled every 10ms. for the plant. Therefore, the datagrams are also sent every 10ms 

once they are created. The byte length of the datagrams is 20 Bytes. 

The controller receives this information from the plant over the network, which it then uses to 

update its variables that store the last values received, which is a similar setup to what was done 

in the paper by Huang et al [1].  

Possible situations 

For this work, certain situations that the networked control system can experience are 

studied. The situations can be categorized on three different levels as is illustrated in the 

following diagram in Figure 3.6. At the high level, they can be divided into two main categories:  

normal and abnormal. The abnormal scenarios can be further divided into faults and attacks, 

which are designated as the mid-level categories.  Both faults and attacks are studied in this work 

since both of them can impact the physical system. These mid-level categories can be further 

divided into more categories on the low level: For the faults, the low-level categories consist of a 

broken pipe, the small sensor bias, the large sensor bias, and the unresponsive actuator. For the 

attacks, the low-level categories are DoS flooding attacks, injection attacks on the controller, and 

injection attacks on the plant. The next paragraphs describe all of these categories on all three 

levels. 
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Figure 3.6: Three Levels of Categories of Situations (White shapes represent normal. Black shapes represent 

abnormal. Of the black shapes, squares represent faults, and triangles represent attacks) 

Normal 

Normal behavior would simply be defined as behavior that the system is designed to have 

without any influence from attacks or faults. If normal behavior is occurring, then there would 

ideally be no deviation from the simulated plant in the controller that is large enough to be 

considered unusual or abnormal by the SCADA system. For this case, the controller would be 

able to meet the control objective. 
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Abnormal  

Abnormal scenarios are defined as those in which the networked control system 

experiences situations that cause it to deviate from normal behavior. In some cases, this may 

cause chaotic and dangerous behavior for the physical system. These abnormal scenarios are 

divided into faults and attacks. 

Faults Faults are degradations in the plant that are accidental and not caused by a 

malicious entity. These faults can be due to damage in the physical plant. In addition to the faults 

that are related to the plant itself, faults can be associated with the sensor and the actuator [9], 

[10]. The faults in this work are all persistent, meaning that once they occur they will continue to 

have their effect throughout the operation of the plant or until the operation of the plant is 

stopped. At which point, the problem can be addressed. 

Faults in the Plant: Damaged Pipe  One of the faults could be a damaged pipe between 

the two tanks. If this occurs in the plant, the model for the plant must change to account for the 

leak that is introduced, which will cause a change of behavior in the dynamics of the plant.  

Therefore, two mathematical models for this system must be used: One for a working plant and 

one for a damaged plant.  This would mean that this plant is a hybrid system. A hybrid system 

incorporates both discrete states and continuous states. The plant would start in the working 

discrete state and therefore would use the mathematical model of the plant associated with that 

state. In the event that the pipe breaks, there would be a change of state to the other discrete state.  

However, there would be no change back to the original discrete state during continuous 

operation of the plant. If the pipe is to be repaired, continuous operation would be stopped before 

the repairs can take place. It should be noted that the instant that the model changes, the state 

variables associated with the continuous model would remain unchanged. In other words, the 

water levels in the tanks remain the same at the very instant that the pipe becomes broken. But as 

time progresses, the levels in the water would change according to the new model. For the case 

of this project, since the standard state space equations were used, the parameters in this new 

model would be different than those of the working model. The model would change such that 

the pressure in tank 1 would not affect the pressure in tank 2. Likewise, the pressure in tank 2 

would no longer affect the pressure in tank 1. The reason for this is that tank 1 and tank 2 no 

longer have a pipe to link them together, which allows water to flow so that pressure is 
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transferred from one tank to another. Therefore, the plant can be visualized by the following 

figure.  

 

 

Figure 3.7: Illustration of Broken Plant 

 

where Rb1 and Rb2 are the new resistances for the broken pipe.  

 

Tank 1 Tank 2

Fin

Fout

R1 R2

Rb1

p1 p2

C1 C2

Rb2

Tank 1 Tank 2

Fin

Fout

R1 R2

Rb1

p1 p2

C1 C2

Rb2



36 
 

The state space equations would then become the following: 
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(3.8) 

It should be noted that the A matrix (This matrix found in Equation 2.3 in Chapter 2 for the 

general form of state space equation) of the state space equation has zeros on the off-diagonal 

entries. This is because pressure 1 no longer affects pressure 2 and vice-versa as was mentioned 

since there is a leak. Equation (3.8) expressed with the numerical values for the parameters is as 

follows Equation 3.9: 
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(3.9) 

Faults in the Actuator There are also faults that can occur with the actuator. One possible 

fault for the actuator is the actuator becoming stuck or a situation where it does not respond to 

commands. For this particular fault, the valve that is used as the actuator in this project remains 

at its current position. 

Faults in the Sensors Other faults include faults with the sensors. For instance, it is 

possible for there to be a bias in the sensor readings. This could be due to mis-calibration. For 

this type of fault, constant biases were added to both signals that are generated by the sensors.  

These biases are introduced at some start time, and the bias persists throughout the rest of the 

simulation. Therefore, each of these biases can be represented as a step function with a certain 

delay once the simulation starts. There were two biases that were used in this work. The signal 

due to the “small” bias was 5,000Pa (50% of the highest value of Reference Signal) less than 
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what it should have read once the fault occurs.  The signal with the “large” bias was 10000 Pa 

(100% of highest value of Ref. Signal) less than what it should have indicated. 

Attacks Some of the possible attacks that can influence the behavior of the system 

include DoS attacks, and injection attacks.    

DoS Attacks The DoS attacks can prevent the network from allowing communication 

between the plant and the controller. This can be achieved by flooding of a network with 

datagrams. Because of this flooding of datagrams, legitimate traffic would not be able to flow. 

This would mean that traffic from the real sensor to the controller would not be able to reach the 

controller.  As a result, the NCS is prevented from functioning properly. This would also be true 

for traffic from the controller to the actuator. 

Injection Attacks Injection attacks were also used in this work. For these injection attacks, 

malicious datagrams that appear to be legitimate would be sent to either the controller or the 

plant in order to manipulate the behavior of the NCS. These datagrams that are directed to the 

controller will have false information for the sensor readings. Likewise, these datagrams that are 

directed toward the actuator will have commands for malicious purposes. The plant or controller, 

of course, will respond according to the information sent to it. If the plant consists of tanks for 

water or tanks that contain some other liquid in it, it may make sense from the attacker’s 

standpoint to influence the system such that the tanks overflow. The attacker could achieve this 

by sending datagrams with commands to keep the valve open in the plant. Therefore, the attacker 

may desire to inject datagrams with values to the actuator associated with the plant to keep the 

valve open.  If the attacker is sending packets to the controller, the attacker would desire to send 

datagrams to cause the sensor readings to appear deceptively low. Therefore, the controller will 

respond by sending the datagrams to cause the valves to be opened more, which may eventually 

cause the tank to overflow.    
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Variations in Scenarios 

It should also be noted that there were variations among the different scenarios, 

specifically in the low-level categories illustrated in Figure 3.6. These scenarios were those with 

faults and attacks. If they occurred in reality, these abnormal situations could start at any time 

and end at any time.  Because of this, for a real NCS, there would be an infinite number of 

possible combinations of start times and end times even for a single occurrence of an attack or 

fault lasting for one period during the simulation. Despite this, it is still desired for the attacks to 

have different start times and end times associated with them for these different variations in the 

experiments during the operation of the NCS. Also, it is desired for the faults to have different 

start times associated with them and to persist throughout the simulation. Therefore, it is 

necessary to have a way of reducing the potentially infinite set of possibilities to a finite set for 

experimental purposes such that the whole space of possible simulations would still be covered. 

To achieve this, there were certain points designated for the start times and end times in the 

simulation period set at equal intervals from one another. It was therefore possible to create a 

finite set of all possible combinations of start times and end times restricted to these designated 

points. For the case of this work the set of designated points in terms of seconds into the 

simulation is the following: {60, 204, 348, 492, 636, 780}. Each set of start times and end times 

is such that the period of the attack or fault is at least the smallest period, which is defined as the 

period between two of these points which are adjacent. The following images illustrate these 

variations. Each of the low-level categories of the attacks had 15 variants of start times and end 

times. This is illustrated in the following table, which gives the start time, the end time, and 

period for each variant (Table 3.2).  

  



39 
 

 

 

Variant for Attack Categories 

Variant Start Time(sec) End Time (sec) Period (secs) 

1 60 204 144 

2 204 348 144 

3 348 492 144 

4 492 636 144 

5 636 780 144 

6 60 348 288 

7 204 492 288 

8 348 636 288 

9 492 780 288 

10 60 492 432 

11 204 636 432 

12 348 780 432 

13 60 636 576 

14 204 780 576 

15 60 780 720 
Table 3.2: Attack Variants based on Start Time and End Time for Each Low-Level Category. 

 

In addition to this, there are 5 variants for the faults since only the start times are varied (Table 

3.2). The end times are not varied because they are assumed to be persistent, meaning they will 

last until the end of the simulation.  

 

Varient Start Time (sec) End Time (sec)

1 60 780

2 204 780

3 348 780

4 492 780

5 636 780

Variants for Fault Categories

 

Table 3.3: Fault Variants for Each Start Time and End Time for Each Low-Level Category 
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In addition, the following table shows the number of variations for each of the low-level 

categories and their combined sum, which is referred to in the table in bold text as the “Total 

Unique Scenarios”.  

High Level Mid Level Low Level Num of Varients per low -level class

Normal Normal Normal 1

Abnormal

Faults

Damaged Plant 5

Small Sensor Bias 5

Large Sensor Bias 5

Actuator Stuck 5

Attacks

DoS Flooding 15

Injection to Plant 15

Injection to Controller 15

Total Unique Scenarios: 66

Classification Scheme

Table 3.4: All Unique Scenarios Used 

 

It is especially important to note that when using a time-varying reference signal, it is 

necessary to use attacks and faults that start at different times since they have different effects on 

the NCS. It is also reasonable to vary the end times for attacks as well so that the lengths of the 

periods of the attacks can be different. 

Symptoms 

The major goal of this work is to be able to diagnose what type of situation the SCADA 

system is experiencing if there is abnormal behavior. The recent work [2], [3], [4] that has been 

done involves observing the system in order to detect whether there is an anomaly in its behavior 

in the physical system. In this work, something similar to this was done, but more was done so 

that it can be determined whether the anomaly is due to an attack or fault.  More information 

would have to be gathered from the NCS to make this determination. Such necessary information 

would include information from the network as well, such as the inter-arrival time of packets, the 

network traffic, whether the controller was updated with new information, etc. Therefore, the 

behavior of the system can be observed by collecting information from the physical system and 

the network.  In the networked control system, it is possible that either the behavior in the 
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physical system, the network, or both may be affected. An abnormal situation, whatever it may 

be, would influence the system a certain way depending on the nature of the abnormal situation. 

By using the information that is collected, certain symptoms associated with the network control 

system may be seen. Different types of abnormalities would have different sets of symptoms 

associated with them. For the purposes of this work, these sets of symptoms can also be referred 

to as the signatures. If these signatures for the different abnormal situations are unique then it is 

possible to distinguish one abnormal situation from another. Therefore, if a specific abnormal 

situation occurs, it is possible to classify that situation into a certain category. There are several 

symptoms that are of interest. One would be a deviation of the behavior of the plant according to 

sensor data from a simulated model of the nominal plant. Other symptoms may be changes in 

network activity. In this work, there are three different levels of categories for scenarios. It would 

thus be desired ideally to categorize the status of the NCS correctly on each level. 

Implementation of the experiments 

Implementing the Models in Software 

The equations referred to in the previous section cannot be directly used in C++ very 

easily since they are in continuous form and are therefore not suitable for simulations of a digital 

system. Therefore, these equations must be transformed into discrete equations. There are 

mathematical formulas to allow for this transformation.  The author of this work did not use 

these methods directly, but instead relied on MATLAB scripts with certain commands to 

generate a new set of equations in discrete form from the continuous equations. The resulting 

equations are as follows along with the appropriate matrices: The discrete state space equations 

for the two-tank system with the pipe undamaged at 100HZ: 
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It should also be noted that equation 3.9 is also used to implement that model in the ADM of the 

controller to serve as a basis of comparison. The discrete state space equations for the two-tank 

system with the pipe damaged, also at 100HZ: 
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(3.10) 

Similarly, it was necessary to create a discrete control algorithm for the controller with the 

correct parameters for the control law. This was also done using MATLAB. Basically, a model 

of the discrete plant was made in Simulink. In addition, a discrete controller was used for it. 

MATLAB has a feature in Simulink that allows for the tuning of the parameters of the controller. 

Using this feature, the author tuned this controller as it was connected to the plant such that it 

had a certain response time. This response was chosen to be 50 seconds. As a result of this 

tuning, parameters were obtained from the MATLAB Simulink model that could be used for the 

controller in the actual implementation for the simulations. The simulations were done in 

Omnet++ and INET [17], [18]. Here is the model created in MATLAB: 

 

Figure 3.8: MATLAB Implementation of the Experiments 
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Simulation Software 

Special software was used to run simulations with the various scenarios. Omnet++ and 

INET were chosen as libraries and frameworks that are based in C++ [6]. Omnet++ is a helpful 

tool for simulating networks. It is a general purpose simulator.  INET is a library for that 

simulator that can be used for creating networks with sophisticated routers and protocols, such as 

UDP, TCP, etc.  Omnet++ was specifically used for this work because it allows for the creation 

of simulated networks with nodes whose applications can serve as the plant or the controller. 

Although it is possible to simulate the plant and the controller in MATLAB, MATLAB does not 

have the tools that Omnet++ provides for networks. It should be noted, however, that there are 

some tools that allow for something resembling network behavior for MATLAB. TrueTime is 

one of them [39]. TrueTime is a simulator made for Matlab/Simulink to allow for simulations of 

networks with delays.  Also, there has been work done with SimEvents to simulate packets being 

forwarded through a network link, experiencing DDoS Attacks [13]. But these tools were not 

quite suitable for the purposes of this work since it was desired to use a more sophisticated 

network simulator that allowed for more elaborate simulation, one that would involve routing 

packets to their destinations. Omnet++ is capable of doing such simulations. If such a simulator 

is to be used, the question of how to implement the plant and controller then arises since 

Omnet++ does not have tools that are specifically tailored for simulations of control systems like 

MATLAB. It should be noted that work has been done in the literature to integrate MATLAB 

and Omnet++ with certain simulation environments, such as C2WindTunnel that enables them to 

interface with one another [15]. However to use such an environment in this work may cause the 

simulations to be unnecessarily complex. Therefore, it was decided to add C++ code to the 

applications that would implement the behavior of the plants and the controller. The plant 

application implements the discrete equations for the plant. The state of the plant is updated at 

regular intervals of simulated time. The discrete equations are chosen using the MATLAB tools 

discussed for this specific interval of simulation time. In the case of this work, this interval of 

time that was chosen was 10ms as mentioned previously. This is referred to as the step time. 

When the controller was tuned in MATLAB, it was specified in the settings that the states of the 

plant would be updated every 10ms.  
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Omnet++, in conjunction with INET, allows for the creation of models of networks that 

can be simulated. It allows for simulations with the standard protocols found in networks, which 

include UDP and TCP, etc. The UDP protocol was used in this work. Within Omnet++ and 

INET, the user can create the topology of the network for the simulations and store them as NED 

files, which are also known as network description files. Both the controller and the plant are 

implemented in C++. This code is used as applications for the nodes that are connected to the 

network within the Omnet++ simulation environment. 

The Simulations and How They are Used 

First, the large set of the unique 66 simulations were performed using Omnet++/INET to 

generate the data associated with the NCS. This data was created in the form of CSV files. Then, 

two main things were done with the data. The first part deals with studying the data generated by 

the scenarios to gain an intuitive sense of their behavior. The reason for doing this first is to 

observe the potential harm to the system that these attacks and faults can cause. Another reason 

is to be able to understand intuitively how certain circumstances affect certain variables 

associated with the system. Then it can be understood what are the symptoms associated with a 

particular circumstance. The second part of the experiments deals with using a machine learning 

algorithm, which is included in MATLAB, so that experiments with classification can be done to 

determine how well a distinction can be made between different classes of scenarios. The 

following is a diagram that illustrates this setup: 

 

Figure 3.9: Diagram illustrating the Overall Experiments, where Omnet++/INET generates the 

simulation CSV Data; MATLAB extracts/compresses the data in the form of a matrix with features as 

columns and rows as scenarios  to be used by the Machine Learning Algorithm for diagnosis.  
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Before using the machine learning algorithm, the data must be processed so that a certain 

very small subset can be extracted from the large set of data.  This very small subset would then 

be used to train a Naïve Bayes Classifier. The data that are extracted would be fed as features to 

the classifier. The purpose of conducting experiments with a Naïve Bayes Classifier would be to 

test the ability for a well-known machine learning algorithm to classify these circumstances 

given their data. There is something that must be mentioned that is specific to the Naïve Bayes 

classifier: For this classifier, it must be trained using a set of features. These features come from 

the data. For instance, the data that is extracted from the CSV files that are created by the 

simulations. Data are written to CSV files as the simulations run. These CSV files contain 

columns of data for pressures in the tanks, the deviation of the tank 1 from the ideal tank, etc. 

The features, which are derived from this data, can then be used to train the classifier. 

It is necessary to label the simulations from which the data is produced. This is done for 

the training phase according to the categories that the simulations fall under, since this is a 

supervised learning algorithm. There are three ways that the data is labeled in this work. This is 

according to the three levels of categories discussed previously. The first way is simple in that it 

only uses “1” for normal and “2” for abnormal. It is important to be able to know whether the 

system is experiencing abnormal behavior since the possibility that such behavior is destructive 

exists, regardless of how it occurred.  The second way of labeling the data is to use “1” for 

normal, “2” for fault, and“3” for attack to have three classes. For this second way to classify the 

situations experienced by the system, attacks and faults are two separate classes in addition to 

normal behavior. It is desired that a distinction can be made between faults and attacks based on 

the features fed into the classifier. It should be noted that the signature of the attacks and faults as 

represented by the features given to the classifier must be statistically different from one another 

to allow for a diagnosis. It is also possible to break down each of the categories on the second 

level (normal, fault, attack) into subcategories. These subcategories would be on the third level 

of the tree.  Once the classifier is trained, the test set of the data can be used. It is important to 

understand how the results will be generated, in the case of the experiments. It is also important 

to understand these results for the case that there is an actual implementation. The results of the 

testing class may be considered as a form of status update in which the user of the system is told 

the most likely situation that the system appears to be experiencing. The most important piece of 

information that the user is told is whether there is abnormal behavior occurring in the system. 
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The next important thing that the user must know is whether the behavior is due to a fault or an 

attack.  What is important for the features is that the most important characteristics of the system 

are captured such that different scenarios would be seen as statistically different from the others. 

In order to determine what features should be included; it is useful to gain an intuitive sense of 

the behavior of the system. This can be achieved through observing the results of the 

simulations. As was mentioned, because there is an enormous amount of information produced 

by the simulations, a subset must be extracted from these simulations, or a small set of values 

must be calculated from the data. For the features, it would make sense to include data that 

would be most useful in determining that there is an abnormality in the system. One useful piece 

of information from the system would be the maximum deviation of the sensor values.  The 

deviation is determined by the anomaly detection module in the controller. It would make sense 

to divide the simulation into “windows.”  In the case of this project, the simulation is divided 

into 10 windows.  The maximum can be taken as a feature from each window. The following is a 

figure to illustrate this: 

 

Figure 3.10: Plot of the Reference Signal with the Simulations Divided into Windows 
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Suppose that m features are extracted from each “window” in a given simulation. Windows in 

this work will be defined as equal time intervals of the simulation. If there are n windows then 

m*n features can be fed into the classifier. This set of futures that are derived from the 

simulation data can be considered a compressed version of that data, where the features represent 

the most important or useful characteristics of that data. It may be useful to see one simulation as 

one cycle of some pattern of behavior for this system, especially if there is a time-varying 

reference signal. This signal may be periodic. The information generated by the simulations is 

from the perspective of the controller. The reason that this setup was chosen is that a similar 

setup was chosen in the paper [2]. In this paper, there was an anomaly detector, which is similar 

to what is done in this work. The anomaly detector in that work incorporated a mathematical 

model of the plant in the controller which was simulated. This was done so that a comparison 

could be made between the simulated model’s sensor readings and the sensor readings from the 

datagrams that were sent over the network. Of course, the controller would also have to feed the 

actuator commands into its simulation model that it is sending the actual plant. This difference 

between the ideal behavior and the behavior as indicated by the sensors could be recorded by the 

controller as a function of time, not a continuous function of time but a function of discrete time. 

This alone may not be perfect for analyses. It may be necessary to filter out noise from this. But 

it is important to realize that this difference gives a symptom for abnormality, which alone would 

not always allow for the distinction to be made between faults and attacks since both faults and 

attacks can cause similar deviation. A larger difference is more likely to indicate an abnormal 

situation than a smaller difference which may be seen as being within some noise margin. As 

was mentioned, other pieces of data are also needed. Such data would have to allow for a 

distinction to be made between a fault and an attack. This type of data that would allow for this 

distinction would most likely be information associated with the network. It may not be possible 

in all cases to use information from the network, but in some cases it certainly can. This 

information includes the inter-arrival time of packets received by the controller, and also the 

traffic on the network.  
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CHAPTER IV 

RESULTS 

In this chapter, the results of the experiments are presented and described so that the 

effects of various situations on the NCS can be understood and conclusions can be drawn as to 

how these different situations can be distinguished. There are two main parts to this chapter:  

In the first part, a subset of the scenarios, which are described in the previous chapter, is 

studied.  The subset contains scenarios that fall under all of the low-level categories of the 

scenarios. These scenarios are studied by observing plotted data from the simulations to gain 

insight into the various behaviors of the NCS due to the effects of various operating conditions 

that the NCS is subject to. Some of this insight is also gained through knowledge of control 

systems, networks, etc.  It is desired to understand the various signatures or symptoms that might 

be associated with these conditions, or specifically how the conditions manifest themselves to a 

supervisory system. This can be seen in the data or lack of data that this system receives. In the 

case of this project, this supervisory system would simply be the device which has the control 

algorithm implemented in it, along with the ADM, which was discussed in the previous chapter.  

In the second part, the data generated from all the scenarios were processed, and features 

were extracted from the data to train a naïve Bayes classifier. The features were chosen 

heuristically such that they capture the important aspects of the data. It is important to capture 

certain aspects of the data such that a distinction can be made between scenarios of different 

categories. The term “categories” refers to the way the scenarios are divided according to 

Chapter 3.   In order to train the supervised learning algorithm, each scenario is labeled based on 

the categories that the scenario falls under.  There are three main ways that the scenarios are 

labeled, and this is done according to the hierarchy of categories.  The goal for this part of the 

experiments is to assess how well a distinction can be made between the various types of 

circumstances that the networked control system may experience using a well known machine 

learning algorithm.  

The results of these two parts of the experiments are shown in this chapter. Also, a 

discussion and an analysis are included.  
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Part I: Behavior of the Networked Control System Subject to Various Circumstances 

 

As was mentioned, it is desired to study some of the simulated scenarios to gain an 

understanding of their various behaviors. Plots were created in order to observe this behavior 

graphically. What follows are the plots to illustrate all 8 of the low-level categories (The normal 

case and two selected scenarios from each of the seven abnormal low-level categories).  They 

were chosen such that all the abnormal cases have the same start time and end time for when the 

abnormal situation occurs. This was done so that a comparison could be made between attacks 

and faults as far as their behavior in the physical system is concerned.  The plots of the scenarios 

are broken down as follows: First, the normal scenario’s plots are shown and described. Then 

two sets of scenarios of the abnormal low-level categories are discussed with a set of plots.  The 

first set of these abnormal scenarios have the start time for the onset of the abnormal 

circumstances at 348 sec. The second set of these abnormal scenarios has the start time at 492 

sec. These times were chosen because they occur when the reference signal is sloping upward 

and downward respectively.  The pressure in Tank 2 must track the reference signal according to 

the control objective. For this part of the results, it should be noted that there are certain variables 

that are studied which are associated with the NCS. These variables are as follows and are 

indicative of the behavior of the network: (1) The Actual Behavior is the true behavior of the 

pressures of the tanks over time. (2) The perceived behavior is the behavior that the supervisory 

system observes from the sensor data that this supervisory system receives. (3) Deviation is 

defined as the difference between the perceived behavior and the nominal behavior. (4) Nominal 

behavior is defined as the simulated behavior for the ideal plant. This simulation is performed in 

the ADM of the supervisory system and serves as a basis for comparison.   
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Figure 4.1: Legend for the Following Plots of the Data Associated with Tanks 1 and 2 [(a) and (b) respectively.] 

 

Figure 4.2: Simulation 1 - Normal Operating Conditions  

 

Above is the normal scenario (Figure 4.2). On the left (a) and on the right (b) are plots of 

the actual pressures of Tanks 1 and 2 over time respectively (black line in plots (a) and (b)). It 

should be noted that these pressures can be considered the “real” pressures of the system. In 

other words, the data used is taken directly from the plant so that the true behavior of the system 

can be understood. It should be noted that the controller does not see this data directly, but only 

sees the data that it receives, which is “the perceived behavior” (red line in plots (a) and (b)). 

Also, the plots show the deviations for Tank 1 and 2 (blue line in plots (a) and (b)). The data for 

these two previously mentioned plots are data that the controller actually has or calculates based 

on the data that in receives. The deviation is defined as the difference between the perceived 

behavior of Tank 1(2) and the nominal behavior, which is simulated in the ADM. This 

simulation within the controller is implemented in the ADM, as described in the experimental 

setup in Chapter 3. Because the deviations are relatively small (Deviation < 3% of maximum 

value used for pressure in the simulations) for both tanks, they appear as noise in the plots.  Also, 

the fact that the deviations are insignificant in magnitude is a sign that there are no abnormal 

circumstances present. If, however, the data points of the plots for the deviations take positive 

values that are significantly greater than zero beyond any reasonable noise margin, then that 

would be an indication of abnormal behavior. Also the network behavior for these simulations 

remains constant throughout, meaning that the network has no abnormalities. This is an 
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indication of no network faults and no cyber-attacks. The network behavior can be characterized 

by its network utilization over time, which is steady for the normal case as would be expected for 

a networked control system as mentioned previously. Also, whether the controller is updated or 

not is also important information for characterizing the network behavior. 

As was mentioned, a set of abnormal scenarios were selected from the 66 unique 

scenarios such that the onset of the abnormal situations begins at 348 sec. What follows are the 

plots that have been generated from the simulations of these scenarios. Also, these scenarios are 

discussed. After this set, an additional set is plotted and discuss where the onset of the abnormal 

scenarios begins at 492 sec. 
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First Set of Selected Scenarios (Onset = 348 sec):  Faults – Simulations 4, 9, 14, 19   

 

Figure 4.3: Legend for the Following Plots of the Data Associated with Tanks 1 and 2 [(a) and (b) respectively.] 

 

 
Figure 4.4: Simulations 4 - Actuator Stuck (Onset of Fault = 348 sec.)  

 

 

Figure 4.5: Simulation 9 - Small Sensor Bias (Onset of Fault = 348 sec.)  
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Figure 4.6: Legend for the Following Plots of the Data Associated with Tanks 1 and 2 [(a) and (b) respectively]. 

 

 

Figure 4.7: Simulation 14 - Big Sensor Bias (Onset of Fault = 348 sec.)  

 

 
Figure 4.8: Simulation 19 – Damaged Plant (Onset of Fault = 348 sec.)  
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Faults for the First Set: 

  

These faults have a few things in common as far as their symptoms are concerned: (1) 

The network behavior is essentially the same as the normal case discussed previously. This is to 

be expected since the network is not manipulated or interfered with in any way. (2) There is 

abnormal behavior in the physical system as seen in the deviation, which is a measure of how the 

perceived behavior differs from what is expected according to the simulated behavior in the 

ADM. What should be noted is that the behavior of the deviation or the shape of its graph may 

vary for different faults. 

 

Simulation 4:  Actuator Stuck: In this scenario, (figure 4.4) where the actuator becomes 

stuck, the valve is no longer responsive and remains in the open position for the rest of the 

simulation. Therefore, water will flow into tank 1 and continue to do so during the operation of 

the NCS as seen from the actual behavior (black line (a) and (b)) and the perceived behavior (red 

line (a) and (b)). Water will also flow from Tank 1 and Tank 2. It should be noted that once the 

inflow from tank 1 to tank 2 equals the outflow, then the pressure in tank 2 will approach a 

specific constant. Because of this, the behavior diverges from the nominal behavior simulated in 

the ADM. This is evidenced by the fact that the deviation takes on positive values. At some 

points, the deviation is equal to zero. This is because the simulated behavior happens to be equal 

to the perceived behavior at some points in time. This is certainly not an indication that the 

behaviors are the same at those points since these behaviors are changing over time. In other 

words, they are dynamic in nature and not static. Therefore, it is important to understand this 

behavior over the course of time rather than at a single point only. The change of deviation with 

respect to time may also be determined so that the dynamic nature of the behavior can be 

captured. This is important for a machine learning algorithm since this information concerning 

the change of behavior can be used as a feature for this algorithm. This will be discussed in Part 

II of the results. It should also be noted that the network behavior is essentially no different than 

the normal case, meaning that the controller received updated packets and the network traffic is 

fairly constant. 
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Simulations 9, 14: Sensor Bias (Small and Large): These two scenarios are essentially 

the same in nature, but one has the effect of the fault greater than the other so that there can be 

variation in the experiments. For simulation 9 (the small bias), there is a bias that causes the 

sensor values in the packets to be 5000 Pa (Pascal) lower than they actually are. The plots of the 

deviation show these biases on the sensors. The deviation increased from being merely noise to 

having a higher value once the fault occurred. It also remained at the higher level. This 

abnormality can be detected by the ADM in the controller, which calculates the deviation. For 

simulation 14 (the large bias seen in figure 4.7), the bias causes pressure of the water to appear 

10000 PA lower than they actually are, and is similar to the previous scenario. The plots of the 

deviations show this. Like the last scenario, the values are larger than they ought to be.  

For both of these scenarios, the controller responds to the values that it receives from the 

sensors by taking the control action that would seem to be appropriate based on those values. In 

reality, the pressure is higher than what the sensors indicate. Therefore, when the controller 

receives the incorrect values for the pressure from the network, it will respond such that those 

lower values will track the reference signal. As a result, the actual pressure will not track the 

reference signal but instead will be higher. The plots of tank 1 and 2 illustrate this behavior.  

 

Simulation 19: Damaged Plant: For this simulation: The pipe is broken (figure 4.8). 

Therefore, there is a leak in the plant, meaning water cannot move from tank 1 to tank 2. As a 

result, the second tank does not have pressure that can track the reference signal. Tank 1 is 

constantly being filled, but it does not affect tank 2. If tank 2 has any water in it, then the water 

in tank 2 will simply be emptied out once the pipe has become broken. The controller is designed 

such that it will continue to send commands via the network to the actuator so that the valve is 

open because this action in normal circumstances would cause the pressure in tank 2 to track the 

reference signal. But as the water goes into tank 1, it can never reach tank 2.  Therefore tank 2 is 

not able to track with the reference signal of the controller. Tank 1 will continue to be filled with 

water as a result. 
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First Set of Selected Scenarios (Onset = 348 sec):  Attacks – Simulations 33, 48, 63 

 
Figure 4.9: Legend for the Following Plots of the Data Associated with Tanks 1 [(a) and (b) respectively].   

 

 
Figure 4.10: Simulation 33 – DoS Flooding Attack  (Onset of Fault = 348 sec)  

 

 
Figure 4.11: Simulation 48 – Injection Attack on the Controller (Onset of Fault = 348 sec.)  

 

 
Figure 4.12: Simulation 63 – Injection Attack on the Plant (Onset of Fault = 346 sec.)  

 



57 
 

 

Attacks in the First Set 

 

Cyber-attacks may influence the network in order to carry out their objective. Therefore, 

it is important to not only observe the deviation over time, but also the network behavior in terms 

of its network utilization and whether the controller is updated with a new datagram that is 

correctly formatted. For each of the discussions of the simulations, the network behavior will be 

described. 

 

Simulation 33: DoS Flooding Attack: For this attack (Figure 4.10), after the valve is 

open, the attack is started. The set-point is higher than the pressure at that point as seen by the 

controller. The controller will continue to hold that sensor reading until it is updated.  Therefore, 

the controller responds by sending commands to open the valves of the controller and keep them 

open. The valve will remain open until it receives another command to change its state. But 

during the DoS attack, communication stops for the duration of the attack. It should also be noted 

that the behavior behaves abnormally according to the deviations for the two tanks. What is also 

notable is that the controller is not updated with a new datagram from sensors of the plant during 

the duration of the attack. This can be seen by the observed network behavior in that the 

controller receives no updated packets with new sensor readings during the period of the DoS 

attack, which in the figure will be between the vertical dash-dot lines in figure 4.10. During the 

attack the network utilization goes to 0% 

 

Simulation 48: Injection attack on the Controller: For this simulation, datagrams with 

false values for the sensor readings are sent to the controller (Figure 4.11). These values are 

deceptively low, so that the controller would respond by sending a command to open the valves 

and add more water to the tanks.  The network activity as seen from the controller becomes 

higher than usual because of the increased datagrams in the network. In order for the attacker to 

be successful, there would have to be a large number of datagrams in the network in order to 

overwhelm the network preventing the legitimate data from being sent to the controller. 

Observing the network activity would aid in distinguishing this type of attack from certain types 
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of faults, such as the sensor bias, which may have a signature similar to this attack as far as the 

physical system is concerned.  

With regard to the network behavior, a few things should be noted: (1) The controller 

receives a datagram which will update the controller via the network.  It is possible that many of 

these datagrams could be from a malicious entity. (2) The network behavior has a much greater 

network utilization during the time of the attack. When the attack does occur the utilization is 

58% as opposed to 1.6% when the attacks do not occur.   

 

Simulation 63: Injection attack on the Plant: For this set of experiments, commands 

from a malicious entity are sent to the plant (4.12). The packets from the malicious entity contain 

commands that cause the valve to be open, which may be contrary to the commands that the 

controller would send. The packets coming from the malicious entity are sent at such a high 

frequency that they overwhelm any legitimate packets from the controller. Therefore, tank 1 is 

constantly filled with water. 

 As far as the network behavior is concerned, the controller is constantly updated with 

datagrams. The network utilization also is different for when the attack takes place (33.5% as 

opposed to 1.6% in the normal case) (This occurs between the dash-dot lines). 
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Second Set of Selected Scenarios (Onset = 492 sec):  Faults – Simulations 5, 10, 15, 20 

 

Figure 4.13: Legend for the Following Plots of the Data Associated with Tanks 1 and 2 [(a) and (b) respectively].   

 

 

Figure 4.14: Simulations 5 - Actuator Stuck (Onset of Fault = 492 sec.) 

 

 

 Figure 4.15: Simulation 10 - Small Sensor Bias (Onset of Fault = 492 sec.) 
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Figure 4.16: Legend for the Following Plots of the Data Associated with Tanks 1 and 2  [(a) and (b) respectively.] 

 

 
Figure 4.17: Simulation 15 - Big Sensor Bias (Onset of Fault = 492 sec.) 

 

 

Figure 4.18: Simulation 20 – Damaged Plant (Onset of Fault = 492 sec.) 
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Faults in the Second Set 

  

This is similar to the first set in that the network activity has no abnormalities, but the 

physical system does have anomalous behavior according to the plot of deviation, which takes on 

positive values that are higher than a mere noise level. The shape of the deviation may be unique 

for different faults. 

 

Simulation 5: Actuator Stuck: The plots for this simulation (Figure 4.14) show the 

actuator becoming stuck. Therefore, the flow of water going into the tank remains a constant 

because it does respond to new commands. There will be a certain point in which the pressure in 

the tanks converges such that the inflow equals the outflow for the water. 

 

Simulations 10, 15: Sensor bias (small and large): For simulation of the small sensor 

bias (Figure 4.15), the effects of a sensor bias fault are observed. It can be seen that the pressure 

becomes higher than it is supposed to. This simulation of the large sensor bias (Figure 4.17) is 

similar to the previous scenarios but the effect is greater. As far as the physical system is 

concerned when compared with that of the previous set, the difference is that the deviation is 

simply delayed more for second for when it abruptly changes to a higher value. 

 

Simulation 20: Damaged Plant: The simulation (Figure 4.18) as seen by the graphs is 

similar to the damaged plant when there was an upward slope in the reference signal. Between 

this set and the first set, the behavior for the damaged plant is similar for the physical system.  
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Second Set: The Attacks (Onset of attacks = 492 sec.)–Simulations 30, 45, 60 

 
Figure 4.19: Legend for the Following Plots of the Data Associated with Tanks 1 [(a) and (b) respectively.] 

 

  

 
Figure 4.20: Simulation 30 – DoS Flooding Attack (Onset of Fault = 492 sec.) 

 
Figure 4.21: Simulation 45 – Injection Attack on the Controller (Onset of Fault = 492 sec.) 

 

 
Figure 4.22: Simulation 60 – Injection Attack on the Plant (Onset of Fault = 492 sec.) 
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Attacks in the Second Set 

For the above attacks, like the previous set, the scenarios have various abnormal behavior 

as seen in the deviation plot. Also, because they use the network to achieve their goal, the attacks 

have behavior that can be seen on the network. 

Simulation 30: DoS Flooding Attack: The DoS flooding attack (Figure 4.20) is 

practically the same as the actuator becoming stuck in the way that it manifests itself in the 

physical system. When the DoS attack occurs, no new information is sent to the actuator. This 

means that the actuator remains in the same position according to the last command it receives 

from the controller. Also, no new information is sent to the controller, which is different than the 

actuator becoming unresponsive. 

 As far as the network behavior is concerned, the controller is not updated during the time 

of the DoS attack, which is similar to the previous set. Therefore because the controller is not 

updated it will use the last known sensor value [1]. The network utilization goes to 0%. 

  

Simulation 45: Injection Attack on the Controller: The scenario (Figure 4.21) shows 

the effects of an injection attack on the controller that involves sending deceptive data that 

indicates to the controller that there is no pressure in tank 2. As the attack occurs, the controller 

responds to the false data by opening the valves. Once the attack occurs, the sensor values of the 

datagrams sent by the malicious entity to the controller are at 0. 

As for the network behavior, it should be noted that the controller is also updated and the 

network utilization is at a higher level during the period of the attack (network utilization = 

59%). The physical system behavior is similar the previous set.  

 

Simulation 60: Injection Attack on the Plant: The injection attack on the plant causes 

the valves to be open (Figure 4.22). Therefore, the pressures in the tanks will continue to 

increase. The controller will still receive datagrams from the plant. Therefore, the perceived 

behavior will essentially be the same as the actual behavior. 

Similar to the attack on the controller, the attack on the plant has certain network 

behavior such as the following: (1) updated datagrams throughout the simulation. (2) Increased 
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network utilization during the time of the attack. The network utilization becomes 24% during 

the attack. 

 

Discussion of the Abnormal Sets 

After observing these plots, the similarities and differences of these scenarios should be 

noted. For the abnormal cases, there are similarities in the physical system for many of these 

cases. For instance, these scenarios do have deviations associated with them. It is true that the 

way these deviations may appear are different as functions of time, but it may also be possible 

that these abnormal scenarios can be constructed so that they are closer in appearance. For some 

abnormal scenarios, it is more difficult to distinguish the different abnormal situations from one 

another only using the information gained from the physical system. These abnormal situations 

include attacks and faults. For such cases more information must be included. The best example 

of this is seen in the DoS attacks (figures 4.10 and 4.20) and the unresponsive actuator (figures 

4.4 and 4.14), which are essentially identical if information from the physical system is all that is 

observed. It should be noted that these plots have deviations that are similar in shape, although 

one is larger than the other. There are some differences between these two scenarios as well. One 

difference is that the sensor value that the controller uses from the onset of the abnormality to the 

end of the simulation remains constant. Using information from the network, the controller sees 

that it is not updated because of the lack of legitimate packets that it receives. On the other hand, 

for the unresponsive actuator, it is the state of the valve that remains constant, and the network 

behavior will appear to be normal to the controller. Therefore, the different scenarios do not have 

behavior that is totally unique from the information of the physical system alone. However, they 

have different behavior of the network that causes them to be unique. Uniqueness is required in 

order to make a distinction.  It should be understood that in fault diagnosis, there is a concept 

known as insolubility. This refers to the ability to distinguish one fault from another. This is 

useful in order to be able to locate the fault in the system [20]. This work does not focus on 

distinguishing one fault from another. Instead, it focuses on distinguishing faults from attacks, 

based on certain characteristics that they have. The main characteristic that an attack has which 

differentiates it from a fault is that the network behavior is correlated with the physical behavior 

that the attack causes. When the plots are compared, it can be seen that there are similarities in 

the plots for the physical system, but there are some differences in the network behavior. This 
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network behavior that is observed by the controller includes whether it is updated, the amount of 

network activity, and the inter-arrival time between packets that are received by the controller. 

 

Part II: Experiments with Diagnosis 

For this work, a set of 66 unique simulations were performed in Omnet++ through the 

use of a batch script in the command line interface of Omnet++. The script allowed for the 

automation of multiple simulations. The break-down of these simulations according to the mid-

level categories (normal, fault, and attacks) were as follows: Simulation 1 was a simulation with 

normal operation. Simulations 2-21 were simulations with faults. Simulations 22-66 were 

simulations with attacks. Features were extracted from the simulations according to what was 

discussed in the previous chapter. Therefore, there were 66 sets of features. There are a certain 

number of features per “window”. Basically, in this work, a “window is defined as an equal 

section of the simulation time. In the case of this project there are 10 windows per simulation. 

Ten features are extracted from each window. Therefore, 100 features are used per simulation. 

The following is a table of the features of a window extracted for each simulation followed by a 

description of each (Table 4.1). 

 

Feature # 1 2 3 4 5 6 7 8 9 10 

Abbreviated 

name 

T1PMax T2PMax T1DevM T1DevM Dev1Ch Dev2Ch ErrorMax InterTime Update NetTraff 

Table 4.1: Table of the Features for a Given Window 

 

The descriptions of each of these features are as follows according their feature number: 

1. T1PMax: This is the maximum pressure in tank 1 according to the packets received by 

the controller. Specifically, it is the maximum of a set of values for pressure that the 

controller receives for a given window. 

2. T2PMax: This is the same as above except it is for tank 2 instead 

3. T1DevM: This is the deviation of tank 1. 

4. T2DevM: This is the deviation of tank 2. 

5. Dev1Ch: This feature is used to indicate whether there is a change in the deviation for a 

window compared with the previous window in tank 1. The possible values for this 

feature are -1, 0, 1. The value of -1 indicates that there is a significant decrease. The 



66 
 

value 0 indicates that there is no change or hardly any change. Basically there is a certain 

tolerance or range of values. Within this range, the deviation is considered to have no 

significant change. The value 1 indicates that there is a significant increase. 

6. Dev2Ch: This is the same as the one above except it is for tank 2. 

7. ErrorMax. This is the maximum error for a given window that is associated with the 

control system. The error is defined as the difference between the set-point and the 

measured value. This variable is useful because DoS attacks are particularly destructive 

when there is a significant error as opposed to when the system is in steady state. 

8. InterTime: This is the inter-arrival time between packets. It is specifically defined as the 

time between two consecutive incoming packets. This time is determined according to 

the clock of the controller. 

9. Update: This is a Boolean variable that indicates that the controller is updated by a 

legitimate packet from the sensor via the network. It is also possible that the controller is 

updated by a packet that appears legitimate but is really from a malicious entity. This is a 

useful feature because it allows for a way to detect whether a DoS attack is occurring. If 

this Boolean variable has a value of 0, then based on intuition it can be hypothesized that 

a DoS attack is occurring. Also, although this is not included in this work, if it is a 0, then 

it may be that there is a network failure. For this case, there would not be network 

activity in the NCS. Therefore, it can be hypothesized that a distinction can be made 

between a DoS attack and a network failure. 

10. NetTraff: This is a measure of the Network Traffic Activity that the Controller receives 

from the channel of the network that it is directly connected to. It indicates the amount of 

traffic on the network from the perspective of the controller. This is measured in bps (Bits 

per Second). 

 

 

The 66 scenarios were expanded to 125, by making copies of some of the features with noise 

added (Faults and Attacks) for several scenarios or using noise variation within experiments 

(Normal). This was done so that there was a roughly equal number of normal cases, cases with 

faults, and cases with attacks. This could be done in this work because it was not known exactly 

how often one type of situation occurs as compared to others since there is no known statistical 
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data that can be used to make this determination. The focus of this work is to instead determine 

how well different abnormal scenarios can be distinguished and classified based on a unique 

signature. The table below shows how these simulations were expanded (Table 4.2): 

 

Classification Scheme   
 High 

Level 
Mid 
Level Low Level 

Scenario 
Numbers 

Number of Scenarios  per low-
level category with noise 

Normal Normal Normal 1 40 

Abnormal         

  Faults       

    Damaged Plant sims 2-6 15 

    Small Sensor Bias sims 7-11 15 

    Large Sensor Bias sims 12-16 15 

    Actuator Stuck sims 17-21 15 

  Attacks       

    DoS Flooding sims 22-36 15 

    Injection to Plant sims 37-51 15 

    Injection to Controller sims 52-66 15 

    Total Unique Scenarios: 66 145 (125 used) 
Table 4.2: Scenarios by Classification Scheme 

 

One hundred sets of features were given as input for the classifier in order to train it. Each set of 

features consisted of 100 features.  The remaining 25 sets were used for the testing phase.  

It is important to note that the labeling of scenarios for the naïve Bayes classifier was done 

according to all of the three classification schemes, which are basically the three levels of 

categories described in the previous chapter. MATLAB provides this Naïve Bayes classifier, 

which can be used by means of MATLAB scripts. The following tables show how the categories 

for all three levels are labeled for the classifier: 

 

Label 1 2 

Class Name Normal Abnormal 

Table 4.3: Labels Used for the First Scheme (High Level) 

 

Label 1 2 3 

Class Name Normal Fault Attack 

Table 4.4: Labels used for the Second Scheme (Mid Level): 
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Label 1 2 3 4 5 6 7 8 

Class 

Name 

Normal Actuator 

Stuck 

Sensor 

Bias(small) 

Sensor 

Bias(large) 

Damaged 

Plant 

DoS 

Attack 

Injection  

Con. 

Injection  

Plant 

Table 4.5: Labels Used for the Third Scheme (Low Level): 
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Results from using the naïve Bayes classifier: 

 

After all the necessary CSV files were generated with the data that the features are based 

on, the machine learning algorithm was executed using a MATLAB script, which generated the 

results according to the three main schemes of classifying the scenarios. For this set of 

experiments with the classifier, all 10 features were used to train the classifier: 

 

The following are sets of confusion matrices. Confusion matrices are used to display the 

data and to summarize the results in concise format. Confusion matrices are useful for 

representing results from the machine learning algorithm for cases of classifying. The rows are 

actual classes for the data. The columns indicated what is predicted as a result of the 

classification of the machine learning algorithm. The numbers in the diagonal indicate correctly 

classified experiments. Off of the diagonal are the incorrectly classified experiments [22]. The 

accuracy can be calculated by dividing the correctly classified scenarios by the total numbers of 

scenarios that are used in the testing phase. It can be defined as the result of dividing the trace of 

the matrix or the sum of the diagonal elements by the total number of test cases. The result of 

this is expressed as a percentage.  These matrices show the results of using the machine 

algorithm to classify 25 sets of test data. Each of these sets has 100 features as described 

previously.  The results are according to the three classifications schemes, which are based on 

the levels in figure 3.6 found in Chapter 3.  
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Confusion Matrices for the Results where the Features from Both Physical System 

and Network are used to train the Classifier 

 

  
Predicted 

  
Normal Abnormal 

Actual 
Normal 5 0 

Abnormal 0 20 
Table 4.6: Confusion Matrix for the First Scheme of Classifying (Accuracy: 100%) 

 

  
Predicted 

  
Normal Faults Attacks 

Actual 

Normal 5 0 0 

Faults 0 9 0 

Attacks 0 1 10 
Table 4.7: Second Scheme of classifying 

(Accuracy: 96%; Accuracy for distinguishing faults and attacks (As seen from grayed area in the above 

table): 95%) 

 

  
Normal Faults Attacks 

  
1 2 3 4 5 6 7 8 

Normal 1 5 0 0 0 0 0 0 0 

Faults 

2 0 2 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 

4 0 0 0 3 0 0 0 0 

  5 0 0 0 0 3 0 0 0 

Attacks 
6 0 0 0 0 0 5 0 0 

7 0 0 0 0 0 0 2 0 

8 0 0 0 0 0 0 0 4 
Table 4.8: Third Scheme of classifying  

(Overall Accuracy: 100%, Accuracy between faults and attacks: 100%) 
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In order to calculate the accuracy for the mid-level categories when using the Third 

Classification scheme, the sub-matrices in the grey area that are separated from each other by the 

dotted lines are used. All the entries of a given sub-matrix were added together. This was done 

for each sub-matrix so that the following table could be produced. 

 

 Faults Attacks 

Faults 9 0 

Attacks 1 10 

 Table 4.9:  Submatrix-Attacks/Faults (Total abnormal scenarios: 19; Total correctly classified abnormal 

scenarios: 17; Accuracy indistinguishing faults and attacks: 95%) 

 

The accuracy for each of these matrices was fairly high. Of course, it is useful to have 

some sort of a comparison. Since there is no other work to compare with for this particular data, 

it is useful to instead compare these results with the case where the network data that is sent to 

the controller is excluded from the features fed into the machine learning algorithm. The results 

for doing this are expressed in the next set of tables. The following three confusion matrices 

show the results for the Naïve Bayes Classifier when only the first seven features are used: 
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Confusion Matrices for the Results where the Features from Both Physical System 

and Network are used to train the Classifier 

 

  
Predicted 

  
Normal Abnormal 

Actual 
Normal 5 0 

Abnnormal 0 20 
Table 4.10: First Scheme (Accuracy:  100%) 

 

  
Predicted 

  
Normal Faults Attacks 

Actual 

Normal 5 0 0 

Faults 0 9 0 

Attacks 0 3 8 
Table 4.11: Second Scheme (Overall accuracy: 88% Accuracy in distinguishing attacks from faults: 85%) 

 

  
Normal Faults Attacks 

  
1 2 3 4 5 6 7 8 

Normal 1 5 0 0 0 0 0 0 0 

Faults 

2 0 2 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 

4 0 0 0 3 0 0 0 0 

  5 0 0 0 0 3 0 0 0 

Attacks 
6 0 1 0 0 0 2 2 0 

7 0 0 0 0 0 0 2 0 

8 0 0 0 0 0 0 0 4 
Table 4.12: Third Scheme (Overall accuracy: 88% Accuracy for classifying the mid-level categories - attacks 

and faults: 95%) 
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 In order to calculate the accuracy for the mid-level categories when using the Third 

Classification scheme, the sub-matrices in the grey area that are separated from each other by the 

dotted lines are used. All the entries of a given sub-matrix were added together. This was done 

for each sub-matrix so that the following table could be produced. 

 

 Faults Attacks 

Faults 9 0 

Attacks 1 10 

 Table 4.13: Submatrix-attacks/faults (Total abnormal scenarios: 19; Total correctly classified abnormal 

scenarios: 17; Accuracy indistinguishing faults and attacks: 95%) 

 

There appears to be increased accuracy when the faults are broken down into their many 

types. The reason that there is increased accuracy is that each of the attacks and faults that were 

simulated had signatures that were somewhat distinct from the others. But when all the attacks 

were put together as one class, these signatures were obscured to the point that faults and attacks 

were not as distinguishable.  

 

Discussion 

 

From the results, certain experiments were done to calculate the accuracy for 

distinguishing faults from attacks using the Naïve Bayes Classifier. The results of using all of the 

features for this classifier are compared with the results of using the features restricted only to 

the physical system. The accuracy improved when features from the network were included. 

These results are useful for showing accuracy, but there needs to be a more practical use for this 

diagnosis. It must be understood that a plant operator or the SCADA system itself would be 

alerted of an attack or fault. Periodically, there will be a status message of the system sent to the 

plant operator that would use a machine learning algorithm to classify the behavior of the 

system. This status message may tell the user whether the system is experiencing normal 

conditions or abnormal conditions. If the user is told that abnormal conditions are occurring, the 

problem must be addressed. But it must be addressed appropriately, which means that once the 

nature of the problem (i.e. whether it is a fault, attack, etc.) is diagnosed; the problem can be 



74 
 

dealt with. For instance, if it is discovered that the problem is an attack, the situation may be 

dealt with by increasing the security of the facility and use whatever means necessary to 

eliminate the threat. On the other hand if the problem is a fault, it is important to investigate the 

plant to determine if must be shutdown. It is also necessary to identify the problem and repair it.  

Therefore, because these two types of situations are dealt with differently, it is important to be 

able to distinguish between faults and attacks. In the example of Stuxnet, it would have been 

helpful for the plant operators to know not only that an abnormal situation is occurring but that a 

cyber-attack is occurring as opposed to faults or degradations of equipment. In the case of 

Stuxnet, plant operators kept replacing the centrifuges, but this did not address the true problem. 

If it can be determined that a cyber-attack is occurring, then it may be more properly addressed. 

In general, the process of dealing with the various situations based on the information given is 

illustrated in Figure 4.23. In the figure, a supervisory system periodically analyzes data received 

from the networked control system. It then diagnoses the situation experienced by the NCS. The 

box labeled “update” in the figure is the updated diagnosis, which is done at certain intervals that 

are set according to design specifications. 
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Figure 4.23: Flow Chart showing responses to be taken based on the updated status of the NCS 

 

As far as generalizing the problem is considered, it may be useful to understand the 

systems from a qualitative sense. For instance, a DoS attack may cause a change in the behavior 

that is different from the nominal behavior, where this change can be detected. Also, the 

controller detects that it is not updated with new packets. This description for these symptoms 

may be applicable to other NCS. In addition, the actuator becoming stuck may be detected based 

on the fact that there is a change in behavior that deviates from the nominal, yet the controller 

continues to be updated. This qualitative description may be true for other NCS’s as well. 

Normal?

Normal
Response:
Wait till next update

Yes

Fault
Response:
(1)Investigate the Plant.
(2) In most cases,  shut 
down the system.
(3) Identify the problem.
(4) Repair it.

No

Fault?

Attack!
Response:
(1) determine  the best 
course of action to 
eliminate the threat.
(2) Increase the security.

Yes No

New Update
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CHAPTER V 

CONCLUSIONS 

Detection and response are two important aspects of ensuring security for SCADA 

systems. One of the aspects of this work that distinguishes this work from others is the fact that it 

takes into account the possibility of faults in more depth than other work in addition to cyber-

attacks. It also explores different scenarios with the major types of abnormal circumstances that a 

cyber-physical system may experience. It should be noted that there is some work that addressed 

the issue of faults along with cyber-attacks. This has been done to a limited degree, but in other 

cases it is done to a greater degree. For instance, the work by Litrico et al. discusses faults 

[3],[4], but it is not concerned with isolating them from attacks but instead is mainly concerned 

with finding an anomaly in the system if such an anomaly occurs. The work by Bruno Sinopoli 

[25], which is focused on integrity attacks also addresses faults and does look at faults and 

attacks based on their signature at least in the discussion of the simulation results. 

For this work, a supervisory system can analyze the data it received from the system. 

This is done to determine the most likely scenario that the system is experiencing so that the 

system or the plant operator can make a good decision on what to do with the SCADA system. 

Being able to respond appropriately to the system would ensure that safety and efficiency can be 

achieved, or to at least ensure that safety and efficiency can be achieved to some reasonable level 

with safety being the priority. It is important to note that the different plants for SCADA systems 

may be quite different in their behavior. Therefore, for every unique model, it may be necessary 

to simulate that unique model to observe the effects of certain attacks and other types of 

abnormal circumstances. However, it is possible that the problem can be generalized. In order for 

this to be done, the symptoms associated with the various anomalies can be understood in a 

qualitative sense. For instance, it may be possible that other networked control systems will have 

a similar set of symptoms present for specific types of faults or attacks.   

This work explores the basic notion that, given information from the network in addition 

to information from the plant, which can be seen through the sensor data, it may be possible to 

better understand the situation that the networked control system is experiencing. With this 

additional information, it is possible that a better distinction between faults and attacks can be 
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made. The reason that the information from the network is important is that it is possible that 

with certain common attacks, the network behavior is somehow correlated with the behavior as 

seen from the physical system. 

The results of the experiments show that the accuracy of the diagnosis can be improved if 

information can be included from the network in addition to information in the physical system 

to allow for distinguishing between faults and attacks. Previous work dealing with the security in 

SCADA systems focused on computer systems and networks alone, or it focusing on the sensor 

readings from the physical system to detect for an anomaly. One of the goals of this work was to 

collect information from both the network and the physical system in a NCS. Another goal was 

to understand symptoms in the NCS due to various circumstances that the NCS has a possibility 

of experiencing, i.e faults and attacks. It was also the goal of this work to be able to diagnose the 

given situation of the NCS based on the symptoms as detected by the supervisory system also to 

know how well various scenarios can be distinguished from the each other. 

 Future work that could be done would be to investigate other types of attacks that the 

networked control system can experience.  Simulations of these other attacks on the networked 

control system can be performed to observe their behavior and better understand various 

symptoms. Therefore, it should be noted that the scenarios used in this work may not have been 

exhaustive, meaning that all the possible attacks that the system could experience were not 

included. The scenarios only included attacks where the nodes of the control network were not 

compromised or reprogrammed. Future work could address the types of attacks where these 

nodes are compromised to understand their behavior. The focus was on attacks that send packets 

that influence the network maliciously. These attacks include injection attacks and DoS attacks. 

It may also be necessary to investigate other pattern recognition and machine learning techniques 

to experiment with other methods of diagnosis or classification. The main goal of this work was 

to investigate some of the well-known attacks, and assess how well they can be distinguished 

from common faults that could occur. One goal for future work could be to devise a new type of 

intrusion detection system that is more specific to SCADA systems. It was of the aims of this 

work to move in the direction of doing so by understanding the symptoms of various 

circumstances and determining how well they can be distinguished with the goal of being able to 

diagnose the system to some reasonable degree. 
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