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Chapter I

INTRODUCTION

In this paper, we examine some connections between topological properties of

boundaries of CAT(0) spaces and amalgamated product splittings of groups that act

on these spaces. In particular, we study right-angled Artin and Coxeter groups, which

are groups that have a natural correspondence with finite graphs in that any finite

graph has a unique corresponding right-angled Artin and Coxeter group. A separator

of such a graph gives a decomposition of the corresponding group as an amalgamated

product; these are the splittings with which we are concerned. The Stallings theorem

on ends of groups, a well-known result of group theory, states that a finitely generated

group has more than one end (equivalently, has non-connected boundary) if and only

if it splits as an amalgamated product or HNN extension over a finite subgroup. The

results in this paper, in the same vein, determine connections between amalgamated

product splittings of a group (arising from separators of the graph) and local and/or

path connectivity of the group’s boundaries.

In Chapter II, we introduce the basics of CAT(0) spaces and their boundaries. In

Chapter III, we classify the right-angled Coxeter groups with no (Z2 ∗Z2)3 subgroups

that have locally/non-locally connected boundary (this was a joint result with Michael

Mihalik). It is known ([15]) that if the presentation graph of any right-angled Coxeter

group admits a certain type of separator, then the group has all of its boundaries non-

locally connected; we show that the absence of such a separator implies the group has
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all its boundaries locally connected, given that the group does not contain a visual

(Z2 ∗Z2)3 subgroup. To do this, we use a construction called a filter, first introduced

in [16], that allows us to ’fill in’ the space between two rays in ∂X. A filter is a

connected, one-ended planar graph with edges labeled by generators of our right-

angled Coxeter group, giving a natural map from the filter to the Cayley graph of our

group, and so also to any CAT(0) space X on which the group acts. The limit set of

a filter always maps to a connected set in ∂X, and so the challenge is to show that

if two rays are close in ∂X, then the filter between them can be constructed to have

small diameter in ∂X. In [16], conditions are placed on the considered groups that

allow the construction of filters with essentially hyperbolic geometry; our hypotheses

give no such guarantee.

The main theorem of this chapter is as follows:

Theorem. Suppose (W,S) is a one-ended right-angled Coxeter system that has no

visual subgroup isomorphic to (Z2 ∗ Z2)3.

1. If W visually splits as (Z2 ∗ Z2) × A then A is word hyperbolic, W has unique

boundary homeomorphic to the suspension of the boundary of A, and the bound-

ary of W is non-locally connected iff A is infinite ended.

2. Otherwise, W has locally connected boundary iff (W,S) has no virtual factor

separator.

If W has no visual (Z2 ∗ Z2)3 subgroup but splits as in item (1), then A has no

visual (Z2∗Z2)2 subgroup and is therefore word hyperbolic ([20]), and so ∂A is unique

([10]) and is locally connected iff A is one-ended (iff the presentation graph of A does

2



not split over a complete graph, see Remark 3.2.4). If W splits as (Z2 ∗Z2)×A then

any boundary of W is the suspension of a boundary of A (see [16]), and is locally

connected iff this boundary of A is locally connected. Therefore (1) is easily checked,

and the actual content of our theorem lies in (2).

In section 3, we provide examples that show boundary local connectivity cannot be

approached through any reasonable graph of groups technique. In our first example,

we demonstrate a right-angled Coxeter group that splits as A ∗C B, and there is

c ∈ C such that c∞ determines a point of non-local-connectivity in both ∂A and ∂B;

however, by our theorem, A∗CB has locally connected boundary. Our second example

splits as A ∗C B with A and B word hyperbolic (so ∂A and ∂B locally connected)

and C virtually a hyperbolic surface group with boundary S1, but A ∗C B contains a

virtual factor separator and therefore has non-locally-connected boundary.

In Chapter IV, we turn our attention to boundaries of right-angled Artin groups.

In [8] Croke and Kleiner demonstrate a group that acts geometrically on two CAT(0)

spaces with non-homeomorphic boundaries, and it was later shown ([23]) that the

same group has uncountably many distinct CAT(0) boundaries. The group is the

right-angled Artin group whose presentation graph is the path on four vertices P4,

and so has presentation

〈a, b, c, d | [a, b] = [b, c] = [c, d] = 1〉.

In [7], it is shown that the boundary of the standard CAT(0) cube complex on which

this group acts is non-path-connected. The boundary of such a cube complex is
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connected if and only if the the presentation graph of the group is connected (and

so the group is one-ended). In this chapter, the method in [7] is generalized to a

class of right-angled Artin groups whose presentation graphs admit a certain type of

splitting. The main theorem here is as follows:

Theorem. Let Γ be a connected graph. Suppose Γ contains an induced subgraph

({a, b, c, d}, {{a, b}, {b, c}, {c, d}}) (isomorphic to P4), and there are subsets B ⊂ lk(c)

and C ⊂ lk(b) with the following properties:

1. B separates c from a in Γ, with d /∈ B;

2. C separates b from d in Γ, with a /∈ C;

3. B ∩ C = ∅.

Then ∂SΓ is not path connected.

Here, SΓ is the standard CAT(0) cube complex on which the right-angled Artin

group AΓ with presentation graph Γ acts geometrically, and lk(v) is the set of vertices

of Γ sharing an edge with v. We in fact show a slightly stronger result, with the

hypothesis B ∩ C = ∅ replaced with the statement of Claim 4.2.7. The hypotheses

here essentially require a copy of P4 in Γ that is either not contained in a cycle, or

has every cycle containing it separated by chords based at b and c. It is a known

fact of graph theory that any graph that does not split as a join contains an induced

subgraph isomorphic to P4, and any graph Γ that splits as a non-trivial join has ∂SΓ

path connected, so the hypothesis that Γ contain a copy of P4 is satisfied in any

interesting case.
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If a connected boundary of a CAT(0) space is locally connected, then it is a Peano

space (a continuous image of [0,1]) and therefore path connected. The boundaries

of some right-angled Coxeter groups are therefore known to be path connected ([16]

and [6]), because they are locally connected. However, a consequence of a theorem in

[15] is that for right-angled Artin groups, ∂SΓ is locally connected iff Γ is a complete

graph; i.e. AΓ
∼= Zn and ∂SΓ

∼= Sn−1. Thus no approach involving local connectivity

works for right-angled Artin groups.

In [19], the construction of [8] is generalized to demonstrate a class of groups with

non-unique boundary. These groups are of the form

G = (G1 × Zn) ∗Zn (Zn × Zm) ∗Zm (Zm ×G2),

where G1 and G2 are infinite CAT(0) groups. It is easily verified that if G1 and G2 are

right-angled Artin groups, then G is a right-angled Artin group whose presentation

graph satisfies the conditions of the main theorem of this paper; in fact, the method

of this paper should work even if G1 and G2 are arbitrary infinite CAT(0) groups.

It seems this boundary path connectivity problem may be related to the question

of when two right-angled Artin groups are quasi-isometric. In [1], Behrstock and

Neumann show that all right-angled Artin groups whose presentation graphs are trees

of diameter greater than 2 are quasi-isometric; in [3], Bestvina, Kleiner, and Sageev

show that right-angled Artin groups with atomic presentation graphs (no valence

1 vertices, no separating vertex stars, and no cycles of length ≤ 4) have AΓ quasi-

isometric to AΓ′ iff Γ ∼= Γ′. The connection between these results and the result of this
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paper is that if Γ is a tree of diameter greater than 2, then Γ satisfies the hypotheses

of the main theorem here, and therefore ∂SΓ has non-path-connected boundary; if Γ

is atomic, then Γ cannot satisfy the hypotheses of the main theorem here.
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Chapter II

CAT(0) PRELIMINARIES

Definition 2.0.1. A metric space (X, d) is proper if each closed ball is compact.

Definition 2.0.2. Let (X, d) be a complete proper metric space. Given a geodesic

triangle 4abc in X, we consider a comparison triangle 4abc in R2 with the same

side lengths. We say X satisfies the CAT(0) inequality (and is thus a CAT(0)

space) if, given any two points p, q on a triangle 4abc in X and two corresponding

points p, q on a corresponding comparison triangle 4abc, we have

d(p, q) ≤ d(p, q).

Proposition 2.0.3. If (X, d) is a CAT(0) space, then

1. the distance function d : X ×X → R is convex,

2. X has unique geodesic segments between points, and

3. X is contractible.

Definition 2.0.4. A geodesic ray in a CAT(0) space X is an isometry [0,∞)→ X.

Definition 2.0.5. Let (X, d) be a proper CAT(0) space. Two geodesic rays c, c′ :

[0,∞)→ X are called asymptotic if for some constant K, d(c(t), c′(t)) ≤ K for all

t ∈ [0,∞). Clearly this is an equivalence relation on all geodesic rays in X, regardless
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of basepoint. We define the boundary of X (denoted ∂X) to be the set of equivalence

classes of geodesic rays in X. We denote the union X ∪ ∂X by X.

The next proposition guarantees that the topology we wish to put on the boundary

is independent of our choice of basepoint in X.

Proposition 2.0.6. Let (X, d) be a proper CAT(0) space, and let c : [0,∞)→ X be

a geodesic ray. For a given point x ∈ X, there is a unique geodesic ray based at x

which is asymptotic to c.

For a proof of this (and more details on what follows), see [5].

We wish to define a topology on X that induces the metric topology on X. Given

a point in ∂X, we define a neighborhood basis for the point as follows:

Pick a basepoint x0 ∈ X. Let c be a geodesic ray starting at x0, and let ε > 0, r > 0.

Let S(x0, r) denote the sphere of radius r based at x0, and let pr : X → S(x0, r)

denote the projection onto S(x0, r). Define

U(c, r, ε) = {x ∈ X : d(x, x0) > r, d(pr(x), c(r)) < ε}.

This consists of all points in X whose projection onto S(x0, r) is within ε of the point

of the sphere through which c passes. These sets together with the metric balls in X

form a basis for the cone topology. The set ∂X with this topology is sometimes

called the visual boundary. For our purposes, we will just call it the boundary of

X.

Definition 2.0.7. We say a finitely generated group G acts geometrically on a

proper geodesic metric space X if there is an action of G on X such that:
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1. Each element of G acts by isometries on X,

2. The action of G on X is cocompact, and

3. The action is properly discontinuous.

Definition 2.0.8. We call a group G a CAT(0) group if it acts geometrically on

a CAT(0) space.

The next theorem, due to Milnor [18], will be used in conjunction with Lemmas

3.1.26 and 4.1.17 and to identify geodesic rays in X with certain rays in a right-angled

Coxeter/Artin group which acts on X.

Theorem 2.0.9. If a group G with a finite generating set S acts geometrically on

a proper geodesic metric space X, then G with the word metric with respect to S is

quasi-isometric to X under the map g 7→ g · x0, where x0 is a fixed base point in X.

Proposition 2.0.10. If X and Y are proper CAT(0) spaces, then ∂(X × Y ) ∼=

∂X ∗ ∂Y , where ∗ denotes the spherical join.
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Chapter III

LOCAL CONNECTIVITY OF BOUNDARIES OF RIGHT-ANGLED COXETER
GROUPS

3.1 Coxeter group preliminaries

We use [4] and [9] as basic references for the results in this section.

Definition 3.1.1. A Coxeter system is a pair (W,S), where W is a group with

Coxeter presentation:

〈S : (st)m(s,t)〉

where m(s, t) ∈ {1, 2, . . . ,∞}, m(s, t) = 1 iff s = t, and m(s, t) = m(t, s). The

relation m(s, s) = 1 means each generator is of order 2, and m(s, t) = 2, iff s and t

commute.

Definition 3.1.2. We call a Coxeter group (W,S) right-angled if m(s, t) ∈ {2,∞}

for all s 6= t.

We are only interested in right-angled Coxeter groups in this chapter but we state

many of the lemmas of this section in full generality. In what follows, we will let

Λ = Λ(W,S) denote an abbreviated version of the Cayley graph for W with respect

to the generating set S. As usual, the vertices of Λ are the elements of W , and there

is an edge between the vertices w and ws for each s ∈ S, but instead of having two

edges between adjacent vertices in the graph (since each generator has order 2), we
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allow only one.

Definition 3.1.3. For a Coxeter system (W,S), the presentation graph Γ(W,S)

for (W,S) is the graph with vertex set S and an edge labeled m(s, t) connecting distinct

s, t ∈ S when m(s, t) 6=∞.

Definition 3.1.4. For a Coxeter system (W,S), a word in S is an n-tuple w =

[a1, a2, . . . , an], with each ai ∈ S. Let w ≡ a1 · · · an ∈ W . We say the word w is

geodesic if there is no word [b1, b2, . . . , bm] such that m < n and w = b1 · · · bm.

Define lett(w) ≡ {a1, . . . , an}.

Definition 3.1.5. For a Coxeter system (W,S), let e ∈ S be the label of the edge e

of Λ(W,S). An edge path α ≡ (e1, e2, . . . , en) in a graph Γ is a map α : [0, n]→ Γ

such that α maps [i, i+1] isometrically to the edge ei. For α an edge path in Λ(W,S),

let lett(α) ≡ {e1, . . . , en}, and let α ≡ e1 · · · en. If β is another geodesic with the same

initial and terminal points as α, then call β a rearrangement of α.

Lemma 3.1.6. Suppose (W,S) is a Coxeter system, and a and b are S-geodesics for

w ∈ W (so w = a = b). Then lett(a) = lett(b).

Definition 3.1.7. If (W,S) is a Coxeter system and A ⊂ S, then lk(A) ≡ {t ∈ S :

m(a, t) = 2 for all a ∈ A}. So when (W,S) is right-angled, lk(A) is the combinatorial

link of A in Γ(W,S), and the subgroups 〈A〉 and 〈lk(A)〉 of W commute.

Lemma 3.1.8. (The Deletion Condition). Suppose (W,S) is a Coxeter system.

If the S-word w = [a1, a2, . . . , an] is not geodesic, then two of the ai delete; i.e. we

have for some i < j, w = a1a2 · · · an = a1a2 · · · ai−1ai+1 · · · aj−1aj+1 · · · an.
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For a Coxeter system (W,S), an edge path α = (e1, e2, . . . , en) in Λ(W,S) is

geodesic iff the word [e1, e2, . . . , en] is geodesic. If α is not geodesic and ei deletes

with ej, for i < j, let τ be the the path beginning at the end point of ei−1 with edge

labels [ei+1, . . . , ej−1]. Then τ ends at the initial point of ej+1, so that

(e1, . . . , ei−1, τ, ej+1, . . . , en) is a path with the same end points as α. We say the

edges ei and ej delete in α.

Definition 3.1.9. If (W,S) is a Coxeter system and A ⊂ S, then the subgroup of W

generated by A is called a special (or visual) subgroup of W .

Lemma 3.1.10. Suppose (W,S) is a Coxeter system, and A ⊂ S. Then the special

subgroup 〈A〉 of W has Coxeter (sub)-presentation

〈A : (st)m(s,t); s, t ∈ A〉

In particular, distinct s, t ∈ S determine unique elements of W , and m(s, t) is the

order of st for all s, t ∈ S.

Lemma 3.1.11. Suppose (W,S) is a Coxeter system, and U, V ⊂ S, with U ∩V = ∅.

If u is a geodesic in the letters of U and v is a geodesic in the letters of V , then [u, v]

is an S-geodesic.

Definition 3.1.12. For (W,S) a Coxeter system and α a geodesic in Λ(W,S), let

B(α) ≡ {e ∈ S : e is a Λ-edge at the end of α and (α, e) is not geodesic}.

Lemma 3.1.13. Suppose (W,S) is a Coxeter system, and α a geodesic in Λ. Then

B(α) generates a finite group.
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Lemma 3.1.14. If (W,S) is a right-angled Coxeter system, and s, t ∈ S delete in

some S-word. Then s = t.

Lemma 3.1.15. Suppose (W,S) is a right-angled Coxeter system, [a1, a2, . . . , an] is

geodesic and [a1, a2, . . . , an, an+1] is not. Then an+1 deletes with some am. If i 6= n+1

is the largest integer such that ai = an+1, then an+1 deletes with ai and an+1 commutes

with each letter ai+1, ai+2, . . . , an.

Definition 3.1.16. Suppose Γ is the presentation graph of a Coxeter system (W,S),

and C ⊂ S separates the vertices of Γ. Let A′ be the vertices of a component of Γ−C

and B = S − A′. Let A = A′ ∪ C. Then W splits as 〈A〉 ∗〈C〉 〈B〉 (see [17]) and this

splitting is called a visual decomposition for (W,S).

Definition 3.1.17. Let (W,S) be a Coxeter system, and let e be an edge of Λ(W,S)

with initial vertex v ∈ W . The wall w(e) is the set of edges of Λ(W,S) each fixed

(setwise) by the action of the conjugate vev−1 on Λ.

Remark 3.1.18. Certainly e ∈ w(e) and if d is an edge of w(e), with vertices u

and w, then (vev−1)u = w and (vev−1)w = u. Also, Λ(W,S) − w(e) has exactly

two components and these components are interchanged by the action of vev−1 on

Λ(W,S).

If (W,S) is right-angled, then given an edge a of Λ(W,S) with initial vertex y1

and terminal vertex y2, a is in the same wall as e iff there is an edge path (t1, . . . , tn)

in Λ(W,S) based at w1 so that w1t1 · · · tn = y1 and w2t1 · · · tn = y2, where y1 and y2

are the vertices of e and m(e, ti) = 2 for each 1 ≤ i ≤ n.
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Definition 3.1.19. Let (W,S) be a right-angled Coxeter system. We say the walls

w(e) 6= w(d) of Λ(W,S) cross if there is a relation square in Λ(W,S) with edges in

w(e) and w(d).

Remark 3.1.20. We have the following basic properties of walls in a right-angled

Coxeter system (W,S):

1. If edges a and e of Λ(W,S) are in the same wall, then a = e.

2. Being in the same wall is an equivalence relation on the set of edges of Λ(W,S).

3. If (e1, e2, . . . , en) is an edge path in Λ(W,S) then ei and ej are in the same wall iff

ei and ej delete in the word [e1, e2, . . . , en]. Furthermore, the path (e′i+1, . . . , e
′
j−1)

that begins at the initial point of ei, and has the same labeling as (ei+1, . . . , ej−1),

ends at the end point of ej and w(ek) = w(e′k) for all i < k < j. If γ is a path

in Λ(W,S), then γ is geodesic iff no two edges of γ are in the same wall.

4. If γ and τ are geodesics in Λ(W,S) between the same two points, then the edges

of γ and τ define the same set of walls.

The basics of van Kampen diagrams can be found in Chapter 5 of [13]. Suppose

(W,S) is a right-angled Coxeter system. We need only consider relation squares with

boundary labels abab in van Kampen diagrams for right-angled Coxeter groups (since

those of the type aa are easily removed). Let (w1, . . . , wn) be an edge path loop in

Λ(W,S), so w1 . . . wn = 1 in W . Consider a van Kampen diagram D for this word.

For a given boundary edge d of D (corresponding to say wi), d can belong to at most

one relation square of D and there is an edge d1 opposite d on this square. Similarly,
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if d1 is not a boundary edge, it belongs to a unique relation square adjacent to the

one containing d and d1. Let d2 be the edge opposite d1 in the second relation square.

These relation squares define a band in D starting at d and ending at say d′ on the

boundary of D and corresponding to some wj with j 6= i. This means that wi and wj

are in the same wall. However, wk and w` being in the same wall does not necessarily

mean that they are part of the same band in D; but if (w1, . . . , wr) and (wr+1, . . . , wn)

are both geodesic, then by (3) in the above remark, bands in D correspond exactly

to walls in Λ(W,S). This is the situation we will usually consider.

Lemma 3.1.21. Let (W,S) be a right-angled Coxeter system, and let γ be a geodesic

in Λ(W,S) with initial vertex x and terminal vertex y. Let A be a set of edges of γ,

and τA be a shortest path based at x containing an edge in the same wall as a for all

a ∈ A. Then τA can be extended to a geodesic to y.

Proof. Let v denote the endpoint of τA, and let λ be a geodesic from v to y. Let τA =

(a1, . . . , an) and consider a van Kampen diagram D for (τA, λ, γ
−1). If W (aj) = W (a)

for some a ∈ A and the band for aj does not end on γ, then it must end on λ, by (3)

of Remark 3.1.20. However, then the band for a cannot end on λ, γ, or τA (which is

impossible). Therefore the band for aj must end on the edge of D corresponding to

the edge a of γ. Now suppose for some 1 ≤ i ≤ n, the band for ai ends on λ. Deleting

edges of (τA, λ) corresponding to this shared wall gives a path shorter than τA with

an edge in the same wall as a for all a ∈ A (see Remark 3.1.20 (3)), a contradiction.

Therefore, all bands on λ and τa end on γ, so (τa, λ) has the same length as γ and is

therefore geodesic.
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The following lemma has some of its underlying ideas in Lemma 5.10 of [16]. It

is an important tool for measuring the size of (connected) sets in the boundaries of

our groups and is used repeatedly in our proof of the main theorem.

Lemma 3.1.22. Suppose (W,S) is a right-angled Coxeter system, and (α1, α2) and

(β1, β2) are geodesics in Γ(W,S) between the same two points. There exist geodesics

(γ1, τ1), (γ1, δ1), (δ2, γ2), and (τ2, γ2) with the same end points as α1, β1, α2, β2 respec-

tively, such that:

1. τ1 and τ2 have the same edge labeling,

2. δ1 and δ2 have the same edge labeling, and

3. lett(τ1) and lett(δ1) are disjoint and commute.

Furthermore, the paths (τ−1
1 , δ1) and (δ2, τ

−1
2 ) are geodesic.

Proof. Consider a van Kampen diagram for the loop (α1, α2, β
−1
2 , β−1

1 ) (Figure 3.1),

and recall that since (α1, α2) and (β1, β2) are geodesic, bands in this van Kampen

diagram correspond exactly to walls in Λ(W,S). Let a1, . . . , an be the edges of α1 (in

the order they appear on α1) that are in the same wall as an edge of β1. Notice that

if e is an edge of α1 occurring before a1, then w(e) crosses w(a1). Therefore α1 can be

rearranged to begin with an edge in w(a1), since a1 commutes with every edge label

of α1 before it. Similarly, w(a2) must cross w(e) for any edge e 6= a1 of α1 occurring

before a2, so α1 can be rearranged to begin with an edge in w(a1) followed by an edge

in w(a2). Continuing for each ai gives us a rearrangement (γ1, τ1) of α1 where the
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Figure 3.1: Lemma 3.1.22

walls of γ1 are exactly w(a1), . . . , w(an). If b1, . . . , bm are the edges of β1 in the same

wall as an edge of α1, then the same process gives us a rearrangement (γ′1, δ1) of β1

where the walls of γ′1 are exactly w(b1), . . . , w(bm). However, {w(a1), . . . , w(an)} =

{w(b1), . . . , w(bm)}, so m = n and γ1 and γ′1 are geodesics between the same points,

so (γ1, δ1) is a rearrangement of β1. Construct rearrangements (δ2, γ2) and (τ2, γ2)

of α2 and β2 respectively in the same way, and note that τ1 and τ2 have the same

walls, δ1 and δ2 have the same walls, and every wall of τ1 crosses every wall of δ1. In

particular, (see Remark 3.1.20 (3)) (τ−1
1 , δ1) is geodesic.

Remark 3.1.23. For the entirety of this chapter, we will only consider the case of

Lemma 3.1.22 where |α1| = |β1|. In this case, |τ1| = |τ2| = |δ1| = |δ2|, so the

diamond formed by the loop τ−1
1 δ1τ2δ

−1
2 is actually a product square. If y is the
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Figure 3.2: Lemma 3.1.24

endpoint of α1 and µ is any other geodesic between the same points as (α1, α2), the

diamond between (α1, α2) and µ at y is therefore well defined. We call τ−1
1 the down

edge path at y and δ2 the up edge path at y of the diamond for (α1, α2) and

(β1, β2).

Lemma 3.1.24. Suppose (W,S) is a right-angled Coxeter system with no visual sub-

group isomorphic to (Z2∗Z2)3. Let λ1, λ2, λ3 be Λ(W,S)-geodesics between two points

a and b, and let x1, x2, x3 be points on λ1, λ2, λ3 respectively, such that the xi are

all equidistant from a. Let ν12 and ν13 be the down edge paths respectively of the

diamonds at x1 between λ1 and λ2 and between λ1 and λ3, as in Lemma 3.1.22, and

suppose |ν12| ≥ |ν13| ≥ 2|S|. If {a, b} ⊂ lett(ν12) ∩ lett(ν13) and m(a, b) = ∞, then

d(x2, x3) < 2(|ν12| − |ν13|) + 4|S|.

Proof. To simplify notation we use the same label for two paths with the same edge
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labeling. Let ν12 and ν13 be the up edge paths respectively of the diamonds at

x1 between λ1 and λ2 and between λ1 and λ3. Note that at x2, ν12ν12ν13ν
13 is a

path from x2 to x3. By Lemma 3.1.22, {a, b} is disjoint from and commutes with

lett(ν12)∪ lett(ν13). Thus, ν13 cannot have a pair of walls with unrelated labels cross

a pair of walls with unrelated labels from ν12, since that would give a visual (Z2 ∗Z2)3

in W . Rearrange ν12 and ν13 so they have a longest common initial segment (see

definition 3.1.5). As ν12 and ν13 are initial segments of a geodesic from x1 to b, the

walls of the unshared edges of ν13 cross those of ν12. In particular, the unshared part

of ν13 has length ≤ |S|−1, and ν12 and ν13 share two walls with unrelated labels. By

symmetry, this last part implies ν13 and ν12 at x1 can be rearranged to have a shared

initial segment so the unshared part of ν13 has length ≤ |S| − 1. Deleting edges of

the path ν12ν12ν13ν
13 (from x2 to x3) corresponding to these shared walls leaves us

with a geodesic from x2 to x3 of length less than 2(|ν12| − |ν13|) + 4|S|.

Let (W,S) be a right-angled Coxeter group acting geometrically on a CAT(0)

space X. Pick a base point ∗ ∈ X and identify a copy of the Cayley graph for (W,S)

inside X as in Theorem 2.0.9. If vertices u, v of Λ(W,S) are adjacent, then we connect

u∗ and v∗ with a CAT(0) geodesic in X. This defines a map C : Λ → X respecting

the action of W . If α is a Λ-geodesic, we call C(α) a Λ-geodesic in X.

Definition 3.1.25. Let r : [a, b]→ X be a geodesic segment in X with r(a) = x and

r(b) = y. For δ > 0, we say that a Cayley graph geodesic α δ-tracks r if every point

of C(α) is within δ of a point of the image of r and the endpoints of r and C(α) are

within δ of each other.
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Proofs of the next two lemmas can be found in section 4 of [16].

Lemma 3.1.26. There exists some δ1 > 0 such that for any geodesic ray r : [0,∞)→

X based at x0, there is a geodesic ray αr in Λ(W,S) that δ1-tracks r.

Lemma 3.1.27. There exist c, d > 0 such that, for any infinite geodesic rays r and

s and X based at x0 that are within ε of each other at distance M from x0, there are

Cayley graph geodesic rays α and β which (cε + d)-track r and s respectively, and

which share a common initial segment of length M − cε− d.

3.2 Local connectivity and filter construction

Definition 3.2.1. We say a CAT(0) group G has (non-)locally connected bound-

ary if for every CAT(0) space X on which G acts geometrically, ∂X is (non-)locally

connected.

Definition 3.2.2. Let (W,S) be a right-angled Coxeter system, and let Γ be the

presentation graph for (W,S). A virtual factor separator for (W,S) (or Γ) is

a pair (C,D) where D ⊂ C ⊂ S, C separates vertices of Γ, 〈C − D〉 is finite and

commutes with 〈D〉, and there exist s, t ∈ S − D such that m(s, t) = ∞ and {s, t}

commutes with D.

In this section we prove the following theorem:

Theorem 3.2.3. Suppose (W,S) is a one-ended right-angled Coxeter system that has

no visual subgroup isomorphic to (Z2 ∗ Z2)3.

1. If W visually splits as (Z2 ∗ Z2) × A then A is word hyperbolic, W has unique

boundary homeomorphic to the suspension of the boundary of A, and the bound-
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ary of W is non-locally connected iff A is infinite ended.

2. Otherwise, W has locally connected boundary iff (W,S) has no virtual factor

separator.

Part (1) of this result is clear; if the right angled Coxeter system (W,S) does not

visually split as a direct product (Z2 ∗ Z2) × A and has a virtual factor separator,

then W has non-locally connected boundary (see [16]). It remains to show local

connectivity of the boundaries of CAT(0) spaces acted upon geometrically by one-

ended right-angled Coxeter groups with no virtual factor separators. To do this, we

pick two rays whose end points are “close” in ∂X, and use Lemma 3.1.27 to find

two tracking Cayley geodesics which share a long initial segment. We then construct

a filter of geodesics (a way of “filling in” the space) between the branches of these

Cayley geodesics such that its limit set gives a small connected set in ∂X containing

our original rays.

In what follows, let (W,S) be a right-angled, one-ended Coxeter system with no

virtual factor separator and containing no visual subgroup isomorphic to (Z2 ∗ Z2)3.

Set N = |S|. We will show that if W acts geometrically on a CAT(0) space X, then

given ε > 0, there exists δ such that if two points x, y ∈ ∂X satisfy d(x, y) < δ, then

there is a connected set in ∂X of diameter ≤ ε containing x and y.

Remark 3.2.4. The right-angled Coxeter group W is one-ended iff Γ(W,S) contains

no complete separating subgraph (i.e., a subgraph whose vertices generate a finite

group in W ). For a proof of this, see [17].

Remark 3.2.5. If e is an edge in Λ(W,S), we let e ∈ S denote the label of e. Recall
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Figure 3.3: A fan for the geodesics (e1, . . . , em, em+1) and (e1, . . . , em, dm+1)

that for g ∈ W , B(g) is the set of s ∈ S such that gs is shorter than g, and that

〈B(g)〉 is finite (Lemma 3.1.13).

Remark 3.2.6. If α is a geodesic in Λ(W,S) from a vertex a to another vertex b,

then for any other geodesic γ from a to b, we have B(α) = B(γ). Since this set

depends only on a and b, we may use the notation B(b → a) to denote B(α), where

it is more convenient to do so.

We begin with an example that demonstrates one important idea behind our

proof. Let (W,S) be a right-angled Coxeter system where W is one-ended and acts

geometrically on a CAT(0) space X. Suppose that (e1, e2, . . . , em, em+1, em+2, . . . ) and

(e1, e2, . . . , em, dm+1, dm+2, . . . ) are Λ-geodesics in X, based at a vertex ∗, that (c+d)-

track two CAT(0) geodesics r and s in X (as in Lemma 3.1.27), and let xm denote

the endpoint of (e1, . . . , em). Set a1 = em+1 and b1 = dm+1. By the previous remarks,

B(xm → ∗) does not separate the presentation graph Γ(W,S), and a1, b1 /∈ B(xm →
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∗). Let a1, t1, . . . , tk, b1 be the vertices of a path from a1 to b1 in Γ(W,S) where each

ti /∈ B(xm → ∗). We can construct a (labeled) planar diagram (Figure 3.3) that maps

naturally into Λ (respecting labels) and then to X. As in [16], we call Figure 3.3 a

fan for the geodesics (e1, . . . , em, em+1) and (e1, . . . , em, dm+1). Each loop corresponds

to the relation given by ti and ti+1 commuting. Since each ti commutes with ti+1 and

ti, ti+1 /∈ B(xm → ∗), the path (e1, . . . , em, ti, ti+1) is geodesic for each i (this is an

easy consequence of Lemma 3.1.15). Now, let a2 = em+2, b2 = dm+2, and continue.

We overlap our original fan with fans for the pairs of geodesics (e1, . . . , em, em+1, em+2)

and (e1, . . . , em, em+1, t1), (e1, . . . , em, t1, a1) and (e1, . . . , em, t1, t2), and so on, ending

with a fan for (e1, . . . , em, dm+1, tk) and (e1, . . . , em, dm+1, dm+2).

By continuing to build fans in this manner, we construct (Figure 3.4) a connected,

one-ended, planar graph (with edge labels in S) called a filter for the geodesics

(e1, e2, . . . , em, em+1, em+2, . . . ) and (e1, e2, . . . , em, dm+1, dm+2, . . . ). Note that if v is

a vertex of the filter, then the obvious edge paths in the filter from ∗ to v define Λ-

geodesics. The limit set determined by this filter in ∂X is a connected set containing

our original rays r and s. However, this connected set may not be small. We refer to

the image of a filter, in Λ or in X, again as a filter.

If we wish for the limit set of our filter to be small in ∂X, we need to ensure that

the CAT(0) geodesics between ∗ and points in our filter are not far from the base

point xm of our filter. Using Lemma 3.1.22, we know what a wide bigon between two

geodesics in Λ must look like. Our first goal is to classify the “down edge paths”,

from xm towards ∗, of any potential diamond given by a wide bigon in Λ, and show

there are only two “types” of such paths.
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Figure 3.4: A filter for a pair of geodesics

Remark 3.2.7. For the rest of this section, we assume that Γ has no virtual factor

separators and (W,S) contains no visual subgroup isomorphic to (Z2 ∗ Z2)3.

Definition 3.2.8. Construct a geodesic from xm to ∗ in Λ as follows: let α1 be

a longest geodesic with edge labels in the finite group 〈B(xm → ∗)〉, and let y1 be

the endpoint of α1 based at xm. Let α2 be a longest geodesic in the finite group

〈B(y1 → ∗)〉. Continuing in this way, we obtain a geodesic (α1, α2, . . . , αr) from xm

to ∗. We call this a back combing geodesic from xm to ∗.

Remark 3.2.9. We have the following properties of a back combing geodesic

(α1, α2, . . . , αr) from xm to ∗:

1. Every edge label of αi commutes with every other edge label of αi.

2. No edge label of αi+1 commutes with every edge label of αi.
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3. Let (γ1, γ2) be a Λ-geodesic from xm to ∗ and let v be the endpoint of γ1. If

(β1, β2, . . . , βs) is a back combing geodesic from xm to v, then the set of walls of

βi is a subset of the set of walls of αi, for 1 ≤ i ≤ s. In particular:

4. Let (γ1, γ2) be a Λ-geodesic from xm to ∗. If γ1 has an edge in the same wall as

an edge of αj for some 1 ≤ j ≤ r, then γ1 contains an edge in the same wall as

an edge of αi for all 1 ≤ i ≤ j.

5. Let (γ1, γ2) and (τ1, τ2) be Λ-geodesics from xm to ∗. If each of τ1, γ1, and αj

(for some 1 ≤ j ≤ r) has an edge of the wall w(e), then for each 1 ≤ i ≤ j,

each of αi, τ1, and γ1 has an edge of the wall w(ei).

We will always assume that xm and ∗ are sufficiently far apart, so for now suppose

d(xm, ∗) > 7N2. Let α7N+1 = (u1, u2, . . . , uk) (note k < N), and for 1 ≤ i ≤ k, let

Ui be a shortest Λ-geodesic based at xm such that last edge of Ui is in the same wall

as ui (so by Lemma 3.1.21, Ui extends to a geodesic from xm to ∗). There may be

several such geodesics, but they all have the same set of walls.

Lemma 3.2.10. If (γ1, γ2) is a Λ-geodesic from xm to ∗ with |γ1| ≥ 7N2, then γ1 can

be rearranged to begin with exactly Ui, for some 1 ≤ i ≤ k.

Proof. Consider a van Kampen diagram (Figure 3.2.10) for the geodesic bigon de-

termined by (γ1, γ2) and a Λ-geodesic from xm to ∗ that begins with Ui. Let γ1 =

(t1, t2, . . . , ts), where s ≥ 7N2. Let j be the smallest number such that the edge tj

shares a wall with an edge ui of α7N+1, for some 1 ≤ i ≤ k (such a j exists from

Remark 3.2.9 (3) and because the lengths of α1, . . . , α7N are each less than N). Now,
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Figure 3.5: Lemma 3.2.10

choose ` maximal with 1 < ` < j where the wall of t` is not on Ui. Clearly the wall of

t` crosses the walls of t`+1, . . . , tj, so t` commutes with t`+1, . . . , tj, and so t1 · · · tj can

be rewritten t1 · · · t`−1t`+1 · · · tjt`. Repeating this process, we obtain a rearrangement

of γ1 that begins with a rearrangement of Ui, which can be replaced by Ui.

We now have a finite number k < N of “directions”, given by our Ui, in which a

bigon can be wide at xm. The next lemma (3.2.11) is a fundamental combinatorial

consequence of our no (Z2 ∗ Z2)3 hypothesis which allows us to refine this collection

to at most two directions.

We will say that Ui and Uj R-overlap if there is an edge a of αR that shares a

wall with an edge of Ui and an edge of Uj. Let τa be a shortest Λ-geodesic based at

xm that can be extended to a geodesic ending at ∗ and whose last edge is in the same

wall as a. Then Ui and Uj can be rearranged to begin with τa. We will now refine
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our list of Ui through the following five step process which at each application either

terminates the process, or removes at least one of the Ui from our list and replaces

all those that remain by geodesics with last edge in a wall of αR where R begins at

7N and is reduced by one at each successive application:

1. Choose i minimal so that for some j > i, Ui and Uj R-overlap (by sharing some

wall with an edge a of αR). If no such i exists, our process stops.

2. Replace Ui with a shortest geodesic based at xm and ending with an edge in

the wall of a (which can be extended to a geodesic to ∗ by Lemma 3.1.21), and

redefine ui to be a.

3. Eliminate Uj from the list of U`.

4. For each remaining U` with ` 6= i, choose an edge of U` in the same wall as an

edge b` of αR, replace U` with a shortest geodesic based at xm and ending with

an edge in the wall of b`, and redefine u` to be b`.

5. At this point each U` ends with an edge sharing a wall with an edge of αR. If

two U` end with edges in the same wall, remove one of them from the list. Now,

relabel the remaining U` to form a list U1, . . . , Up. Reduce R to R− 1.

When this process stops, no two Ui R-overlap, and each ui shares a wall with an

edge of αR+1. Since Ui is a shortest geodesic with last edge in the wall of ui, every

geodesic from xm to the end point of Ui ends with ui. By the minimality of Ui and

Remark 3.2.9 (3), if c is an edge of Ui in a wall of αR, then ui and c do not commute.

Note that when this process stops, 6N < R ≤ 7N .
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Lemma 3.2.11. At most two Ui survive this reduction process.

Proof. Suppose none of U1, U2, and U3 R-overlap. Let a1, a2, a3 be edges of U1, U2,

U3 respectively such that each ai shares a wall with an edge of αR. Since the process

terminated, a1, a2, a3 are distinct and commute. But ai does not commute with ui

for i = 1, 2, 3, and the pairs (ai, ui) all commute, so this gives a visual (Z2 ∗ Z2)3 in

(W,S), a contradiction.

We now have at most two directions U1 and U2 remaining. If there is no U2, then

to simplify notation for now, define U2 = U1.

If there is no geodesic extension of β = (e1, . . . , em) that can be rearranged to

form a bigon of width 16N2 with the down edge path of the diamond at xm (Lemma

3.1.22) containing every wall of U2, then we redefine U2 = U1, and similarly for U1.

If no geodesic extension of β can lead to a wide bigon in either direction, then an

arbitrary filter (built as in the example in the beginning of this section) has “small”

connected set limit set in ∂X.

Note that U1 and U2 have length at least 6N . Now, if U1 and U2 share two walls

with unrelated labels, then let (α1, α2, . . . ) be a back combing from xm to the endpoint

of U1, and choose an edge a in α2 so that U1 and U2 both have edges in the same wall

as a (such an edge exists by (5) of Remark 3.2.9). Let U1 = U2 be a shortest geodesic

at xm containing an edge in the same wall as a.

Remark 3.2.12. If U1 6= U2, then U1 and U2 share less than N walls, and the sets

lett(U1)− (lett(U1) ∩ lett(U2)) and lett(U2)− (lett(U1) ∩ lett(U2)) commute.

For this next remark, note that xm is the (m + 1)st vertex of β (since ∗ is the
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first).

Remark 3.2.13. If U1 6= U2, (β, γ) is a Λ-geodesic and γ′ is some rearrangement of

(β, γ) whose (m+1)st vertex is of distance at least 14N2 from xm, then the down edge

path τ at xm of the diamond (Lemma 3.1.22) for these two geodesics can be rearranged

to begin with either U1 or U2, by Lemma 3.2.10. Both cannot initiate rearrangements

of τ , since otherwise there is a (Z2∗Z2)2 in lett(τ), and the diamond at xm containing

τ determines a (Z2 ∗ Z2)3 in (W,S).

Recall that (e1, e2, . . . , em, em+1, em+2, . . . ) and (e1, e2, . . . , em, dm+1, dm+2, . . . ) are

geodesics in Λ (c + d)-tracking two CAT(0) geodesics in X, and xm is the endpoint

of (e1, . . . , em). Let xi denote the endpoint of (e1, . . . , ei) where i > m, and yi denote

the endpoint of di where i > m. Set Uxm
1 = U1 and construct Uxi

1 , Uxi
2 , Uyi

1 , Uyi
2

exactly as above, by replacing xm with xi or yi.

Let λ = (`1, `2, . . . , `n) be a geodesic based at some xi extending (β, em+1, . . . , ei)

(or based at yi and extending (β, dm+1, . . . , di)), but not passing through ei+1 (di+1).

Our goal is to classify the directions back toward ∗ at the endpoint of λ in a way that

gives us some correspondence between our direction(s) at xi (yi) and the direction(s)

at the endpoint of λ. We’ll do this inductively, by corresponding directions at the

endpoint of each edge of λ to the directions at the endpoint of the previous edge of

λ. For what follows, let v denote the endpoint of `1.

1. If Uxi
1 = Uxi

2 and `1 commutes with lett(U1), then let Uxi
1 (`1) = Uxi

2 (`1) be the

edge path at v with the same labeling as Uxi
1 . Note that if `1 commutes with

lett(U1), then `1 /∈ lett(U1), since (`−1
1 , U1) is geodesic.
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2. If Uxi
1 = Uxi

2 and `1 does not commute with lett(Uxi
1 ), then set Uxi

1 ((`1)) =

Uxi
2 ((`1)) = (`1

−1, Uxi
1 ).

3. If Uxi
1 6= Uxi

2 , we construct directions from v back toward ∗ just as we’ve done

from xm back toward ∗. If there is only one direction V1, set Uxi
1 (`1) = Uxi

2 (`1) =

V1. If there are two directions V1 and V2, but there is no geodesic extension of

(β, em+1, . . . , ei, `1) that can lead to a 16N2 wide bigon in the V2 direction at v,

then set Uxi
1 (`1) = Uxi

2 (`1) = V1 (and similarly for V1). If there is no geodesic

extension that can lead to a wide bigon in either direction, then building ar-

bitrary fans, as in the example at the beginning of this section, fills in this

section of the filter with rays in X that are sufficiently close to our original

two rays in X. Otherwise, take a geodesic extension γ of (β, em+1, . . . , ei, `1)

so that a rearrangement of (β, em+1, . . . , ei, `1, γ) gives a 16N2 wide bigon at

v whose down edge path of the diamond at v (Lemma 3.1.22) begins with V1.

By Remark 3.2.13, the down edge path of the diamond at xi for this bigon can

be rearranged to begin with either Uxi
1 or Uxi

2 (but not both). If it’s Uxi
1 set

Uxi
1 (`1) = V1 and Uxi

2 (`1) = V2, else set Uxi
1 (`1) = V2 and Uxi

2 (`1) = V1. It will

be made clear by Lemma 3.2.17 that this choice does not depend on the choice

of γ.

We now define Uxi
1 ((`1, `2)) and Uxi

2 ((`1, `2)) by replacing Uxi
1 by Uxi

1 (`1) and Uxi
2

by Uxi
2 (`1) in the above process, and continue repeating this process to define Uxi

1 (λ)

and Uxi
2 (λ). Note that for any geodesic extension (λ1, λ2) of (β, em+1, . . . , ei) that

does not pass through ei+1, if Uxi
1 (λ1) = Uxi

2 (λ1), then Uxi
1 ((λ1, λ2)) = Uxi

2 ((λ1, λ2)).
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Remark 3.2.14. From here on, when we mention a geodesic extension λ of

(β, em+1, . . . , ei) (or (β, dm+1, . . . , di)), we assume λ does not pass through ei+1 (di+1).

Lemma 3.2.15. Let λ be a geodesic extension of (β, em+1, . . . , ei) (or (β, dm+1, . . . , di))

with Uxi
1 (λ) 6= Uxi

2 (λ) (Uyi
1 (λ) 6= Uyi

2 (λ)), and let (γ1, γ2) be any geodesic from the end-

point of λ to ∗. If |γ1| ≥ 7N2, then (γ1, γ2) can be rearranged to begin with either

Uxi
1 (λ) or Uxi

2 (λ).

Proof. This follows from the proof of Lemma 3.2.10 and the construction of the

Uxi
i (λ).

Remark 3.2.16. Remarks 3.2.12 and 3.2.13 apply to Uxi
1 (λ) and Uxi

2 (λ), whenever

they are not equal.

Lemma 3.2.17. Suppose λ geodesically extends (β, em+1, . . . , ei), e is an edge with

(β, em+1, . . . , ei, λ, e) geodesic, and Uxi
1 ((λ, e)) 6= Uxi

2 ((λ, e)), then Uxi
j ((λ, e)) and

Uxi
j (λ) have at least 6N − 3 walls in common.

Proof. It suffices to show this for U1 (= Uxm
1 ) and U1(`1) (= Uxm

1 (`1)), as in the first

step of our Ui(λ) construction. Let γ be the geodesic extension of (β, `1) used in

the construction of the Ui(`1), so that there is a rearrangement γ′ of (β, `1, γ) whose

(m + 2)nd vertex is at least 16N2 from the endpoint of (β, `1). Let τ be the down

edge path at the endpoint of `1 for the diamond for these two geodesics, as in Lemma

3.1.22. Note |τ | ≥ 8N2. By Lemma 3.2.15 (and without loss of generality), τ can be

rearranged to begin with U1(`1). However, if τ has an edge in the same wall as `1 then

τ can be rearranged to begin with `1, and so (`1, U1). Otherwise, τ can be rearranged
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to begin with U1, so either way every edge of U1 shares a wall with an edge of τ . Let

(α1, . . . , α6N , . . . ) be a back combing from xm to ∗, choose an edge a1 of α6N−1 that

shares a wall with an edge of U1(`1), and pick an edge a2 of α6N−2 whose label does

not commute with a1 (so a2 also shares a wall with an edge of U1(`1)). Pick an edge

b1 of α6N−2 that shares a wall with an edge of U1, and pick an edge b2 of α6N−3 whose

label doesn’t commute with b1. If neither b1 nor b2 have their walls on U1(`1), then

the pair a1, a2 commutes with the pair b1, b2, and the up edge path at xm for this

diamond gives a third pair of unrelated elements that commute with the pairs a1, a2

and b1, b2, which is a contradiction. Thus the wall of b2 must cross U1(`1), and so

U1(`1) and U1 have at least 6N − 3 walls in common.

We claimed in the construction of the Uxi
j (λ) that Lemma 3.2.17 shows the asso-

ciation between Uxi
j and Uxi

j (`1) is independent of the choice of γ. If the association

depended on the choice of γ, then by the above proof, Uxi
1 (`1) would have 6N − 3

walls in common with both Uxi
1 and Uxi

2 . By Remark 3.2.12, lett(Uxi
1 (`1)) must then

contain a (Z2 ∗Z2)2, meaning the walls of Uxi
1 (`1) cannot all appear on the down edge

path at xm of the diamond for a wide bigon, which is a contradiction.

This next lemma gives an important correspondence between the directions Uxi
j (λ1)

and Uxi
j ((λ1, λ2)).

Lemma 3.2.18. Let (λ1, λ2, λ3) be a geodesic extending (β, em+1, . . . , ei) (not pass-

ing through xi+1) with endpoint v, let τ be another Λ-geodesic from ∗ and v, let zJ

and zM denote the endpoints of λ1 and λ2, respectively, and suppose Uxi
1 ((λ1, λ2)) 6=

Uxi
2 ((λ1, λ2)). Suppose R ≥ 14N2 and every vertex zJ , zJ+1, . . . , zM of λ2 is of Λ-
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Figure 3.6: Lemma 3.2.18

distance at least R from τ . If the down edge path of the diamond at zJ for τ and

(β, em+1, . . . , ei, λ1, λ2, λ3) can be rearranged to begin with Uxi
1 (λ1), then the down

edge path of the diamond at zM for these geodesics can be rearranged to begin with

Uxi
1 ((λ1, λ2)) (and similarly for U2).

Proof. It suffices to show this for Uxm
1 ((λ1, λ2)) = U1((λ1, λ2)) when (λ1, λ2, λ3) is a

geodesic based at xm, since the constructions are identical for each xi. Let γJ and γM

be the down edge paths at zJ and zM respectively of the diamonds for (β, λ1, λ2, λ3)

and τ , as given by Lemma 3.1.22. (See Figure 3.6).

For each K with J < K < M , let λK denote the initial segment of (λ1, λ2)

ending at zK . Suppose γJ can be rearranged to begin with U1(λ1) but γM cannot be

arranged to begin with U1((λ1, λ2)). There is then K with J < K < M where the
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down edge path γK at zK of the diamond for these geodesics can be rearranged to

begin with U1(λK) and the down edge path γK+1 at zK+1 can be rearranged to begin

with U2(λK+1), by Lemma 3.2.15. By Lemma 3.2.17 and since U1(λK+1) 6= U2(λK+1),

there is a pair of unrelated edge labels a1, b1 of U1(λK) that commute with some

unrelated pair of labels a2, b2 from U2(λK+1). Let νK and νK+1 be the up edge

paths of the diamonds at zK and zK+1 respectively. From Lemma 3.1.22, these paths

differ by at most two walls, and so they have two unrelated edge labels a3 and b3 in

common. But then the pairs (ai, bi) must all commute, giving a visual (Z2 ∗ Z2)3 in

W , a contradiction.

The proof of the next lemma basically follows that of Lemma 5.5 of [16].

Lemma 3.2.19. Let λ be a geodesic based at xi extending (β, em+1, . . . , ei) with end-

point v, and let s and t be vertices of Γ not in B(v → ∗). If (γ1, γ2) is any rearrange-

ment of (β, em+1, . . . , ei, λ) where 〈lett(γ2)〉 is infinite, then there is a path from s to

t of length at least two in Γ, none of whose vertices (except possibly s and t) are in

lk(lett(γ2)) ∪B(v → ∗).

Proof. Since (β, em+1, . . . , ei, λ) can be rearranged to end with γ2, for e ∈ B(v → ∗),

either e ∈ lett(γ2) or e ∈ lk(lett(γ2)). To see that lk(lett(γ2)) ∪ B(v → ∗) does not

separate Γ(W,S), observe that otherwise G is not one-ended if 〈lk(lett(γ2))〉 is finite

or (lk(lett(γ2)) ∪ B(v → ∗), lk(lett(γ2))) is a virtual factor separator for Γ if 〈lk(γ2)〉

is infinite.

If s = t and s ∈ lk(lett(γ2)), then there is a vertex a ∈ Γ adjacent to s with

a /∈ lk(lett(γ2)) ∪ B(v → ∗), since lett(γ2) generates an infinite group and B(v → ∗)
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does not. If e is the edge between s and a, we use the path e followed by e−1.

If s = t and s /∈ lk(lett(γ2)), then there is a vertex a ∈ Γ adjacent to s with

a /∈ lk(lett(γ2)) ∪ B(v → ∗), else (lk(lett(γ2)) ∪ B(v → ∗), lk(lett(γ2))) is a virtual

factor separator for Γ. We construct the path as before.

If s 6= t, s, t /∈ lk(lett(γ2)) and no such path exists, then (lk(lett(γ2)) ∪ B(v →

∗), lk(lett(γ2))) is a virtual factor separator for Γ. Note that if there is an edge e

between s and t, we use the path e, e−1, e to satisfy the length two requirement.

If s 6= t and s ∈ lk(lett(γ2)), then there is a vertex a ∈ Γ adjacent to s with

a /∈ lk(lett(γ2)) ∪ B(v → ∗), since lett(γ2) generates an infinite group and B(v → ∗)

does not. Now if t ∈ lk(lett(γ2)) ∪ B(v → ∗) we obtain a b adjacent to t with

b /∈ lk(lett(γ2))∪B(v → ∗) and we have a path between a and b as above (or, if a = b,

we already had the path), or else we connect a and t as above.

Remark 3.2.20. Edge paths in Γ of the form (e, e−1) and (e, e−1, e) may seem un-

orthodox, but as in [16], they are combinatorially useful in the filter construction.

Remark 3.2.21. Note that Uxi
1 (λ)−1 and Uxi

2 (λ)−1 satisfy the hypotheses of γ2 in the

previous lemma.

Recall the filter construction presented near the beginning of this section, and

notice that Lemma 3.2.19 gives us more control during the fan construction process:

instead of avoiding only B(v → ∗) when choosing paths in Γ(W,S) to construct a

fan based at v, we can avoid B(v → ∗) together with lk(lett(γ)), where γ could

potentially begin the down edge path of a diamond based at v. This is the key idea

that allows us to keep the Cayley geodesics in our filter “straight” (in the CAT(0)
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sense), which makes the limit set of the filter small in ∂X. We’ll now specify our

choice of γ at each vertex v in the filter.

Recall that W acts geometrically on a CAT(0) space X giving a map C : Λ→ X

(respecting the action ofW ). The Γ geodesics (β, em+1, em+2, . . . ) and (β, dm+1, dm+2, . . . )

(c+d)-track two CAT(0) geodesics in X as in Lemma 3.1.27, and xi denotes the end-

point of (β, em+1, . . . , ei), for i ≥ m.

Definition 3.2.22. For each vertex v of Λ, let ρv be a Λ-geodesic from ∗ to v such

that C(ρv) δ1-tracks the X-geodesic from C(∗) to C(v) (Lemma 3.1.26).

Definition 3.2.23. Suppose λ is a geodesic extending (β, em+1, . . . , ei) for some i ≥

m, and y and z are vertices of λ with d(z, ∗) > d(y, ∗) = k. We say z is R−wide in

the τ direction at y if the Λ-distance from y to ρz(k) is at least R, and the down

edge path at y of the diamond for (β, em+1, . . . , ei, λ) and ρz can be rearranged to begin

with τ . If z is the endpoint of λ, we say λ is R−wide in the τ direction at y.

Remark 3.2.24. Using the notation in the definition, if y = xi and d(ρz(i), xi) ≥

14N2, then z is 14N2-wide in either the Uxi
1 or Uxi

2 direction at xi, by Lemma 3.2.15.

Let δ0 = max{1, δ1, c+ d}, where δ1 is the tracking constant from Lemma 3.1.26,

and c, d are the tracking constants from Lemma 3.1.27.

Let λ be a geodesic extending (β, em+1, . . . , ei) for some i ≥ m. Set Ai = Uxi
1 , and

define Ai(λ) as follows:

1. If Uxi
1 (λ) = Uxi

2 (λ), then set Ai(λ) = Uxi
1 (λ).

2. If Uxi
1 (λ) 6= Uxi

2 (λ) and λ is not at least 20N2δ0 wide in the Uxi
1 or Uxi

2 direction

at xi, then set Ai(λ) = Uxi
1 (λ).
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3. If Uxi
1 (λ) 6= Uxi

2 (λ) and λ is at least 20N2δ0 wide in the Uxi
1 direction at xi but

less than 21N2δ0 wide in the Uxi
1 direction at xi, then set Ai(λ) = Uxi

1 (λ) (and

similarly for Uxi
2 ).

4. If Uxi
1 (λ) 6= Uxi

2 (λ) and λ is at least 21N2δ0 wide in the Uxi
1 direction at xi, then

let λ0 be the longest initial segment of λ such that λ0 is at least 20N2δ0 wide

in the Uxi
1 direction at xi but not 21N2δ0 wide in the Uxi

1 direction at xi. Then

set Ai(λ) to be a shortest geodesic based at the endpoint of λ containing an

edge in each wall of Uxi
1 (λ0) (and similarly for Uxi

2 ). By Lemma 3.1.21, Ai(λ)

geodesically extends to ∗.

At the endpoint of each such λ, we will construct fans avoiding lk(lett(Ai(λ))) ∪

B((β, em+1, . . . , ei, λ)) as in Lemma 3.2.19.

The next lemma explains why the last step in the above process is significant.

Lemma 3.2.25. Let (λ1, λ2) be a geodesic extension of (β, em+1, . . . , ei). Let τ be a

shortest geodesic based at the endpoint of λ2 containing an edge in each wall of Uxi
1 (λ1).

If e is an edge that geodesically extends (β, em+1, . . . , ei, λ1, λ2) with e /∈ lk(lett(τ)),

then for any geodesic extension γ of (β, em+1, . . . , ei, λ1, λ2, e) and any rearrangement

γ′ of (β, em+1, . . . , ei, λ1, λ2, e, γ), no edge in w(e) can appear on the up edge path at

the endpoint of λ1 of the diamond for (β, em+1, . . . , ei, λ1, λ2, e, γ) and γ′ if the down

edge path at the endpoint of λ1 contains edges in all the walls of Uxi
1 (λ1).

Proof. Suppose not; i.e. there is a geodesic extension γ of (β, em+1, . . . , ei, λ1, λ2, e)

and a rearrangement γ′ of (β, em+1, . . . , ei, λ1, λ2, e, γ) such that an edge e′ of w(e)
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appears on the up edge path at the endpoint of λ1 of the diamond for these geodesics,

and the down edge path at the endpoint of λ1 contains edges in all the walls of

Uxi
1 (λ1). Then w(e′) = w(e) crosses all walls of Uxi

1 (λ1). Let c1 be an edge of τ such

that e does not commute with c1. In particular, w(c1) is not a wall of Uxi
1 (λ1). By the

definition of τ , there is an edge c2 of τ , following c1, such that c1 does not commute

with c2. The walls w(c2) and w(e) are on opposite sides of w(c1) (see Remark 3.1.18),

so they do not cross. In particular, w(c2) is not a wall of Uxi
1 (λ1). Clearly we can

continue picking ci in such a way, but since the length of τ is finite, this process must

stop. This gives the desired contradiction.

Remark 3.2.26. Note that Lemma 3.2.25 does not require that Uxi
1 (λ1) 6= Uxi

2 (λ1)

or Uxi
1 ((λ1, λ2)) 6= Uxi

2 ((λ1, λ2)). It is easy to show from our construction that if

Uxi
1 (λ1) = Uxi

2 (λ1), then τ (as defined in Lemma 3.2.25) has the same walls as

Uxi
1 ((λ1, λ2)) = Uxi

2 ((λ1, λ2)), and so avoiding lk(lett(Ai(λ))) has the effect that no

wall of λ2 can contain an edge of an up edge path at the end point of λ1 for a dia-

mond as described in Lemma 3.2.25.

For a geodesic extension λ of (β, dm+1, . . . , di), we define Ai
d(λ) in the analagous

way. To simplify notation, we will only deal with geodesic extensions λ of

(β, em+1, . . . , ei), except where necessary.

We now return to the filter construction. Set a1 = em+1 and b1 = dm+1. We have

a1, b1 /∈ B(xm → ∗), so let a1, t1, . . . , tk, b1 be the vertices of a path of length at least 2

(Lemma 3.2.19) from a1 to b1 in Γ(W,S), where each ti /∈ lk(lett(Am))∪B(xm → ∗).

We construct a fan in Λ as before (Figure 3.7).
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Figure 3.7: A fan, again

Definition 3.2.27. The edges labeled a1 and b1 at xm in the fan are called (respec-

tively) the left and right fan edges at xm. The edges labeled t1, . . . , tk at xm are

called interior fan edges. This fan is called the first-level fan, and the vertices

at the endpoints of the edges based at xm and labeled xm+1, t1, . . . , tk, ym+1 are called

first-level vertices.

Now, let a2 = em+2, b2 = dm+2 and let wi be the edge at xm labeled ti for

1 ≤ i ≤ k. Continue constructing the filter (Figure 3.8) by constructing fans avoiding

lk(lett(Am((wi)))) ∪B((β, wi)) at the endpoint of each wi, avoiding lk(lett(Am+1)) ∪

B(xm+1 → ∗) at xm+1, and avoiding lk(lett(Am+1
d )) ∪B(ym+1 → ∗) at ym+1. Each of

these fans is called a second-level fan, and each vertex of distance 2 from xm (that

will be the base vertex of a third-level fan) is called a second-level vertex.

It could occur that two edges of this graph share a vertex and are labeled the

same; for example, we could have t1 = a2 in Figure 3.8. We do not identify these

39



...

... ...

...

a2 b2

a1

a1 b1

b1t1
t1

t2

t2

tk
tk

xm

*

xm+1 ym+1

Figure 3.8: A filter, again

edges; instead, we will construct an edge path between them as described in Lemma

3.2.19 and extend the graph between them.

In order to build the third-level fans, we must specify geodesics from xm to each

vertex defined so far, so that Ai(λ) is well-defined at each second-level vertex. We’ll

do this by picking the upper left edge from each first-level fan-loop to be a non-tree

edge. This specifies a geodesic from xm to each second-level vertex. We designate

the upper right edge from each second-level fan as a non-tree edge, and continue

alternating at each level, so the upper right edge of a n-th level fan is a non-tree edge

if n is even, and the upper left edge of a n-th level fan is a non-tree edge if n is odd.

By continuing to construct fans and designate non-tree edges, we construct a filter

for our Λ-geodesics (β, em+1, em+2, . . . ) and (β, dm+1, dm+2, . . . ).

Recall that for an edge a of Λ(W,S) with initial vertex y1 and terminal vertex y2,

an edge e with initial vertex w1 and terminal vertex w2 is in the same wall as a if
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there is an edge path (t1, . . . , tn) in Λ(W,S) based at w1 so that w1t1 · · · tn = y1 and

w2t1 · · · tn = y2, and m(e, ti) = 2 for each 1 ≤ i ≤ n. For two edges a and e of F , we

say a and e are in the same filter wall if there is such a path (t1, . . . , tn) in F .

Remark 3.2.28. The following are useful facts about a filter F for two such geodesics

((1)-(5) from [16]):

1. Each vertex v of F has exactly one or two edges beneath it, and there is a unique

fan containing all edges (a left and right fan edge, and at least one interior edge)

above v. We would not have this fact if we allowed association of same-labeled

edges at a given vertex.

2. If a vertex of F has exactly one edge below it, then the edge is either ei (for

some i), di (for some i), or an interior fan edge.

3. If a vertex of F has exactly two edges below it, then one is a right fan edge (the

one to the left), and one is a left fan edge, and both belong to a single fan loop.

4. F minus all non-tree edges is a tree containing (β, em+1, em+2, . . . ) and

(β, dm+1, dm+2, . . . ) and all interior edges of all fans.

5. If T is the tree obtained from F by removing all non-tree edges, then there are no

dead ends in T ; i.e. for every vertex v of T , there is an interior edge extending

from v.

6. No two consecutive edges of T not on (β, em+1, em+2, . . . ) or (β, dm+1, dm+2, . . . )

are right (left) fan edges.
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7. If λ is a geodesic in F extending (β, em+1, . . . , ei) (and not passing through xi+1),

then λ shares at most one filter wall with (ei+1, ei+2, . . . ), and it is the wall of

ei+1.

By rescaling, we may assume the image of each edge of Λ under C is of length at

most 1 in X. Then for vertices v and w of Λ, dΛ(v, w) ≥ dX(C(v), C(w)).

Lemma 3.2.29. If (β, em+1, . . . , ei, λ) is geodesic in the tree T with endpoint v and

Uxi
1 (λ) 6= Uxi

2 (λ), then some point on the CAT(0) geodesic between C(v) and C(∗) is

within X-distance 101N2δ0 of C(xi).

Proof. Suppose otherwise; then the endpoint v of λ is at least 100N2δ0 wide at xi,

and so suppose v is wide in the Uxi
1 direction at xi. Choose the last vertex w on λ

such that w is between 20N2δ0 and 21N2δ0 wide in the Uxi
1 direction at xi, so that

every vertex between v and w on λ is at least 21N2δ0 wide in the Uxi
1 direction at

xi. Let λw be the segment of λ starting at xi and ending at w. We will show that

v is wide in the Uxi
1 (λw) direction at w and that v cannot be wide in the Uxi

1 (λw)

direction at w, obtaining a contradiction.

Claim 1: The vertex v is wide in the Uxi
1 (λw) direction at w.

Recall that ρw and ρv are Λ-geodesics δ1-tracking the X-geodesics from C(∗) to C(w)

and C(v) respectively. By CAT(0) geometry, ρv is at least 75N2δ0 wide at w, since w

is less than 21N2δ0 wide at xi. Consider Figure 3.9, with diamonds for these geodesics

as in Lemma 3.1.22. Let y be the endpoint of the up edge path of the diamond at xi
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Figure 3.9: Lemma 3.2.29, Claim 1

for ρw and (β, em+1, . . . , ei, λw), and let γ0 be any geodesic from y to w. A simple van

Kampen diagram argument shows that there is a rearrangement γ1 of γ0 such that if

w(c1), w(c2), . . . , w(cn) are the walls of the edges of γ0, then γ1 crosses these walls in

the same order as ρw. Let γ be any geodesic from xi to y followed by γ1. By Lemma

3.1.22, it is clear that each vertex x of γ is of Λ-distance less than 21N2δ0 from the

corresponding vertex x′ of ρw (satisfying d(x, ∗) = d(x′, ∗) in Λ). Therefore γ is of

Λ-distance at least 54N2δ0 from ρv. Now, if no vertex of λw is within Λ-distance 14N2

of the corresponding vertex of ρv, then by Lemma 3.2.18 (with λ1 trivial), v is 75N2δ0

wide in the Uxi
1 (λw) direction at w, as claimed. Suppose there are vertices of λw within

Λ-distance 14N2 of the corresponding vertices on ρv, and list the consecutive points
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z1, . . . , z` of λw (with z1 closest to xi) where each zj has the property that if gj and

mj are the points on γ and ρv respectively with d(zj, ∗) = d(gj, ∗) = d(mj, ∗), then

|d(zj, gj)− d(zj,mj)| < N (so each zj is almost Λ-equidistant from its corresponding

points on γ and ρv). Let λzj denote the initial segment of λw ending at each zj. Now,

ρv (equivalently v) is wide in the Uxi
1 (λz1) direction at z1, since λw has not yet passed

close to ρv. Now consider the down edge path of the diamond at z1 for λw and γ;

this path is of length more than 7N2 and must have edges in all the walls of Uxi
2 (λz1)

(Lemma 3.2.15), else by Lemma 3.1.24, γ and ρv would be close. Now, if ρv is wide

in the Uxi
2 (λz2) direction at z2, then the down edge path at z2 for the diamond for

λw and γ must have edges in all the walls of Uxi
1 (λz2); however, by Lemma 3.2.18, at

most one of these directions could have switched, since λ does not pass close to one

of ρv or γ between z1 and z2. Continuing this argument along the zi shows that v is

wide in the Uxi
1 (λw) direction at w, as claimed.

Claim 2: The vertex v cannot be wide in the Uxi
1 (λw) direction at w.

Note that no interior fan edges on λ between v and w can have walls appearing on the

up edge path of a Uxi
1 (λw) diamond at w by Lemma 3.2.25, since all of these edges

have labels chosen to avoid lk(lett(Uxi
1 ((λw, ...)))). Also note that if the first edges of

λ after λw are a right fan edge followed by a left fan edge, the left fan edge shares

a wall with an interior fan edge adjacent to λ, and so it was also chosen to avoid

lk(lett(Uxi
1 ((λw, ...)))), and so no edge in its wall can appear on a Uxi

1 (λw) diamond

at w (and similarly for a left fan edge followed by right fan edge). The same analysis
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holds for any right or left fan edge appearing after an interior fan edge (except for

at most one edge of λ, which could share a wall with a right/left fan edge based at

w). Thus the only way λ can have enough edges in the same walls as edges on the up

edge path of a Uxi
1 (λw) diamond is if a large sequence of the edges of λ immediately

after λw are all right fan edges or all left fan edges, which cannot happen by (6) of

Remark 3.2.28. Thus v is not wide in the Uxi
1 (λw) direction at xi, which gives the

desired contradiction.

Lemma 3.2.30. If λ is a geodesic in the tree T with endpoint v that extends

(β, em+1, . . . , ei) and Uxi
1 (λ) = Uxi

2 (λ), then some point on the CAT(0) geodesic be-

tween C(v) and C(∗) is within X-distance 118N2δ0 of C(xi).

Proof. Let λw be the shortest initial segment of λ such that Uxi
1 (λw) = Uxi

2 (λw),

and let w be the endpoint of λw. By Lemma 3.2.29, the CAT(0) geodesic between

C(w) and C(∗) comes within X-distance 101N2δ0 of C(xi). Note that if the CAT(0)

geodesic between C(v) and C(∗) is more than 17N2δ0 from C(w), then v (equivalently

λ) is at least 16N2δ0 wide in the Uxi
1 (λw) direction at w. When Uxi

1 (λw) = Uxi
2 (λw)

we have the following cases:

Case 1: No geodesic extension of (β, em+1, . . . , ei, λw) leads to a bigon 16N2 wide at

w.

In this case, λ is not 16N2 wide in any direction at w, so by CAT(0) geometry,

some point on the CAT(0) geodesic between C(v) and C(∗) is within X-distance

118N2δ0 of C(xi)..

Case 2: For any geodesic µ from ∗ to the endpoint of (β, em+1, . . . , ei, λ), if the bigon
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determined by µ and (β, em+1, . . . , ei, λ) is 16N2 wide at w, then it is wide in the

Uxi
1 (λw) direction at w.

From Lemma 3.2.25, Remark 3.2.26, and our filter construction, we know that

any interior edge on λ after w cannot have its wall on the up edge path of a U1(λw)

diamond at w. If the first edges of λ after w are a right fan edge followed by a left fan

edge, the left fan edge shares a wall with an interior fan edge adjacent to λ, and so

the left fan edge also cannot have an edge in its wall on the up edge path of a U1(λw)

diamond at w. The same analysis holds for any left or right fan edge following an

interior fan edge (except for at most one edge of λ, which could share a wall with a

right/left fan edge based at w). Thus by (6) of Remark 3.2.28, λ cannot be 16N2

wide in the U1(λw) direction at w, so some point on the CAT(0) geodesic between

C(v) and C(∗) is within X-distance 118N2δ0 of C(xi).

Suppose X is a CAT(0) space, ∗ ∈ X a base point and Bn(∗) the open n-ball

about ∗. Let X be the compact metric space X ∪ ∂X. If F is a filter in X, let F be

the closure of F in X. Since F is connected, F is connected. Since F is one-ended,

F − F (the limit set of F ) is contained in Cn, a component of F − Bn(∗), for each

n > 0. Then F − F = ∩∞n=1Cn is the intersection of compact connected subsets of a

metric space and so is connected.

Theorem 3.2.31. Suppose (W,S) is a one-ended right-angled Coxeter system, Γ(W,S)

contains no visual subgroup isomorphic to (Z2 ∗Z2)3, and W does not visually split as

(Z2 ∗ Z2) × A. Then W has locally connected boundary iff Γ(W,S) does not contain

a virtual factor separator.
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Proof. If (W,S) has a virtual factor separator, then by [16], W has non-locally con-

nected boundary. Suppose W acts geometrically on a CAT(0) space X, and let r be a

CAT(0) geodesic ray based at a point ∗ of X. Let ε > 0 be given. We find δ such that

if s is a geodesic ray within δ of r in ∂X, then our filter for r and s has (connected)

limit set of diameter less than ε in ∂X. In what follows, the constants c and d are the

tracking constants from Lemma 3.1.27, δ1 is the tracking constant from Lemma 3.1.26,

and δ0 = max{1, δ1, c + d}. Recall C : Λ(W,S) → X W -equivariantly, and suppose

for simplicity C(∗) = ∗. Choose M large enough so that for all m ≥M − c− d, if s is

an X-geodesic ray based at ∗ within 120N2δ0 of C(β(m)) for any Cayley geodesic β

that δ0-tracks r, then r and s are within ε/2 in ∂X. Choose δ so that if r and s are

within δ in ∂X, then r and s satisfy d(r(M), s(M)) < 1. Now, if r and s are within

δ in ∂X, by Lemma 3.1.27, r and s can be δ0-tracked by Cayley geodesics αr and

αs sharing an initial segment of length at least M − c − d. Let m = M − c − d and

denote the “split point” of αr and αs by xm, as in the filter construction. Similarly,

let αr(i) = xi and αs(i) = yi for i ≥ m. By the previous two lemmas, for any vertex

v in the filter F for αr and αs, the X-geodesic from C(v) to ∗ passes within 118N2δ0

of C(xi) (or C(yi)), where i ≥ m. By CAT(0) geometry, this geodesic must also pass

within 119N2δ0 of C(xm). Thus every geodesic ray in the limit set of C(F ) is within

ε/2 of r in ∂X, so this set has diameter less than ε in ∂X.

3.3 Two interesting examples

Let (W,S) be the (one-ended) right-angled Coxeter system with presentation

graph Γ given by Figure 3.10. For what follows, let A = {a1, a2}, B = {b1, b2},
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Figure 3.10: Example 1
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C = {c1, c2}, D = {d1, d2} and E = {e1, e2}.

It is not hard to check that Γ has no virtual factor separator, (W,S) does not

visually split as a direct product and that (W,S) has no visual (Z2 ∗ Z2)3. However,

Γ contains product separators: for example, A∪D commutes with E, and A∪D∪E

separates xe from the rest of Γ.

Corollary 5.7 of [15] gives specific conditions for when the boundary of a right-

angled Coxeter group is non-locally connected:

Corollary 3.3.1. Suppose (W,S) is a right-angled Coxeter system. Then W has

non-locally connected boundary if there exist v, w ∈ S with the following properties:

1. v and s are unrelated in W , and

2. lk(v)∩ lk(w) separates Γ(W,S), with at least one vertex in S− lk(v)∩ lk(w) other

than v and w.

In particular, they show that if such v, w exist, then (vw)∞ is a point of non-local

connectivity in any CAT(0) space acted on geometrically by W . Note that if v, w

exist as in this corollary, then (lk(v)∩ lk(w), lk(v)∩ lk(w)) is a virtual factor separator

for Γ(W,S).

Let G1 = 〈S − xa〉. Note that lk(e1) ∩ lk(e2) = A ∪ D ∪ {xe} separates e2 from

the rest of Γ(G1, S − {xa}), so G1 has non-locally connected boundary, with (e1e2)∞

a point of non-local connectivity for G1. Similarly, let Q = A ∪ B ∪ E and let

G2 = 〈Q ∪ {xa}〉. Then lk(e1) ∩ lk(e2) = A ∪ D ∪ {xe} separates e1 from the rest

of Γ(G2, Q ∪ {xa}), and so G2 also has non-locally connected boundary, also with

(e1e2)∞ a point of non-local connectivity. Note that we now have W = G1 ∗Q G2,
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where ∂G1 and ∂G2 have (e1e2)∞ as a point of non-local connectivity and Q contains

e1 and e2, so it would seem that ∂W should also have (e1e2)∞ as a point of non-local

connectivity. However, our theorem implies W has locally connected boundary.

For our second example consider the right-angled Coxeter group (G,S) with pre-

sentation graph given by Figure 3.11. Let A = {a1, . . . , a6} and (G′, S ′) have the

same presentation graph as (G,S) but with each vertex v labeled v′. Let (W,S)

be the right-angled Coxeter group of the amalgamated product G ∗A=A′ G′ (where

S = {x, x′, y, y′z, z′, A}, and {x, x′} commutes with A). Both G and G′ are word

hyperbolic and one-ended so they have locally connected boundary. The subgroup

〈A〉 of G is virtually a hyperbolic surface group and so determines a circle boundary

in the boundary of G. Still, W has non-locally connected boundary since (A,A) is a

virtual factor separator for (W,S).

Aside from being rather paradoxical, these examples show that boundary local
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connectivity of right-angled Coxeter groups is not accessible through graphs of groups

techniques.
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Chapter IV

PATH CONNECTIVITY OF BOUNDARIES OF RIGHT-ANGLED ARTIN
GROUPS

4.1 Artin group and cube comblex preliminaries

Definition 4.1.1. Given a (undirected) graph Γ with vertex set S = a1, . . . , an, the

corresponding right-angled Artin group AΓ is the group with presentation

〈a1, . . . , an | [ai, aj] if i < j and {ai, aj} is an edge of Γ〉.

We call Γ the presentation graph for AΓ.

Definition 4.1.2. If AΓ is a right-angled Artin group with Cayley graph ΛΓ, let e ∈ S

be the label of the edge e of ΛΓ. An edge path α ≡ (e1, e2, . . . , en) in ΛΓ is a map

α : [0, n]→ ΛΓ such that α maps [i, i+ 1] isometrically to the edge ei. For α an edge

path in ΛΓ, let lett(α) ≡ {e1, . . . , en}, and let α ≡ e1 · · · en. If β is another geodesic

with the same initial and terminal points as α, then call β a rearrangement of α.

Lemma 4.1.3. If w = g1 . . . gk is a word in AΓ (with each gi ∈ S±) that is not of min-

imal length, then two letters of g1 . . . gk delete; that is, for some i < j, gi = g−1
j , the

sets {gi, gj} and {gi+1, . . . , gj−1} commute, and w = g1 . . . gi−1gi+1 . . . gj−1gj+1 . . . gk.

Proof. Let w = h1 . . . hm be a minimal length word representing w, and draw a

van Kampen diagram D for the loop g1 . . . gkh
−1
m . . . h−1

1 . For each boundary edge

ei corresponding to a gi, trace a band across the diagram by picking the opposite

52



edge of ei in the relation square containing ei, and continuing to pick opposite edges

(without going backwards). Note that such a band cannot cross itself, and so this

band must end on another boundary edge of D. Since k > m, there is some boundary

edge ei corresponding to some gi that has its band B end on a boundary edge ej

corresponding to gj, with i < j. Note this implies gi = g−1
j . Now, either all the bands

corresponding to gi+1, . . . , gj−1 cross B (implying each of gi+1, . . . , gj−1 commutes with

gi and gj), or some band corresponding to one of gi+1, . . . , gj−1 ends on a boundary

edge corresponding to another of gi+1, . . . , gj−1. Picking an “innermost” such band

and repeating the above argument gives the desired result.

Remark 4.1.4. Note that the bands in the van Kampen diagram D share the same

labels along their ‘sides’. This means that deleting the band B from the diagram and

matching up the separate parts of what remains (along paths with the same labels)

gives a van Kampen diagram D′ for the loop

w = g1 . . . gi−1gi+1 . . . gj−1gj+1 . . . gkh
−1
m . . . h−1

1 .

Remark 4.1.5. Given a non-geodesic edge path (e1, . . . , ek) in the Cayley graph ΛΓ

for AΓ, we say edges ei and ej delete if their corresponding labels delete in the word

e1 . . . ek.

Lemma 4.1.6. Suppose AΓ is a right-angled Artin group, and (α1, α2) and (β1, β2) are

geodesics between the same two points in in the Cayley graph ΛΓ for AΓ. There exist

geodesics (γ1, τ1), (γ1, δ1), (δ2, γ2), and (τ2, γ2) with the same end points as α1, β1, α2, β2

respectively, such that (see Figure 4.1):

1. τ1 and τ2 have the same labels,
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Figure 4.1: Lemma 4.1.6

2. δ1 and δ2 have the same labels, and

3. lett(τ1) and lett(δ1) are disjoint and commute.

Furthermore, the paths (τ−1
1 , δ1) and (δ2, τ

−1
2 ) are geodesic.

Proof. Let D be a van Kampen diagram for the loop (α1, α2, β
−1
2 , β−1

1 ), and let α1 =

(a1, . . . , ak), β1 = (b1, . . . , bm). Let ai1 , . . . , aij be (in order) the edges of α1 whose

bands in D end on β1. Note that by Lemma 4.1.3, β1 can be rearranged to begin

with an edge labeled ai1 , since ai1 and b`1 delete in (α−1
1 , β1) for some `1 and all the

bands based at b1, . . . , b`, a1, . . . , ai1−1 cross the band based at ai1 and ending at b`1 .

Similarly, β1 can be rearranged to begin with an edge labeled ai1 followed by an edge

labeled ai2 , and continuing in this manner, we obtain a rearrangement of β1 that
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begins with γ1 = (ai1 , . . . , aij), and we let δ1 be the remainder of this rearrangment.

This argument also implies α1 can be rearranged to begin with γ1, and we let τ1 be

the remainder of this rearrangement. Note that if e is an edge of τ1, no edge of δ1 is

labeled e or e−1, since bands with those labels must have crossed in D. We obtain

γ2, τ2 and δ2 in the analogous way from α2 and β2, and note that in a van Kampen

diagram B′ for (τ1, δ2, τ
−1
2 , δ−1

1 ), no band based on τ1 can end on δ2, since (τ1, δ2)

is geodesic, and no band based on τ1 ends on δ1, since τ1 and δ1 share no labels or

inverse labels. Therefore all bands on τ1 end on τ2, so τ1 and τ2 have the same labels,

as do δ1 and δ2.

Definition 4.1.7. Under the hypotheses of the previous lemma, we call τ1 the down

edge path at x, and we call δ2 the up edge path at x. If α1 and β1 have the same

length, we call Figure 4.1 the diamond at x for (α1, α2) and (β1, β2).

Definition 4.1.8. P4 is the (undirected) graph on four vertices a, b, c, d, with edge set

{{a, b}, {b, c}, {c, d}}.

Definition 4.1.9. The union of two graphs (V1, E1) and (V2, E2) is the graph (V1 ∪

V2, E1 ∪ E2).

Definition 4.1.10. The join of two graphs (V1, E1) and (V2, E2) is the graph (V1 ∪

V2, E1 ∪ E2 ∪ (V1 × V2)).

Definition 4.1.11. A graph is decomposable if it can be expressed as joins and

unions of isolated vertices.

The following is Theorem 9.2 in [14].
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Theorem 4.1.12. A finite graph G is decomposable iff it does not contain P4 as an

induced subgraph.

In particular, if a connected graph G does not contain P4 as an induced subgraph,

then it must split as the join G1 ∨G2, for some subgraphs G1, G2 of G.

Definition 4.1.13. For a graph Γ and a vertex a of Γ,

lk(a) = {b ∈ Γ | {a, b} is an edge of Γ}.

Let ΛΓ be the Cayley graph for the group AΓ.

Definition 4.1.14. The standard complex SΓ for the group AΓ is the CAT(0) cube

complex whose one-skeleton is ΛΓ, with each cube given the geometry of [0, 1]n for the

appropriate n.

If the graph Γ splits as a non-trivial join Γ1 ∨ Γ2, then the group AΓ splits as the

direct product AΓ1 × AΓ2 , and so we have SΓ
∼= SΓ1 × SΓ2 . Proposition 2.0.10 then

gives that ∂SΓ
∼= ∂SΓ1 ∗ ∂SΓ2 . Any non-trivial spherical join is path connected, and

so ∂SΓ is path connected.

For more on cube complexes and the definitions below, see [21].

Definition 4.1.15. A midcube in a cube complex C is the codimension 1 subspace

of an n-cube [0, 1]n obtained by restricting exactly one coordinate to 1
2
. A hyperplane

is a connected nonempty subspace of C whose intersection with each cube is either

empty or consists of one of its midcubes.
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Lemma 4.1.16. If D is a hyperplane of the cube complex C, then C−D has exactly

two components.

Given a graph Γ, a vertex v of Γ, and the corresponding standard complex SΓ,

note that if a hyperplane of SΓ intersects an edge of SΓ with label v, then every edge

intersected by this hyperplane is also labeled v. Thus we can refer to hyperplanes in

SΓ as v-hyperplanes, for v a vertex of Γ. If x is a vertex of SΓ, then xv and x are

separated by a v-hyperplane D. Let xSlk(v) denote the cube complex generated by

the coset x〈lk(v)〉; then D and xSlk(v) are isometric and parallel, of distance 1
2

apart.

A proof of the following can be found in Section 3 of [11]

Lemma 4.1.17. There is a bound δ > 0 such that if α is a CAT(0) geodesic path in

SΓ, then there is a Cayley graph geodesic path β in ΛΓ (contained naturally in SΓ)

such that each vertex of β is within distance δ of α, and each point of α is within δ

of a vertex of β.

4.2 Non-path-connectivity of some right-angled Artin boundaries

The goal of this section is to prove the following theorem:

Theorem 4.2.1. Let Γ be a connected graph. Suppose Γ contains an induced subgraph

({a, b, c, d}, {{a, b}, {b, c}, {c, d}}) (isomorphic to P4), and there are subsets B ⊂ lk(c)

and C ⊂ lk(b) with the following properties:

1. B separates c from a in Γ, with d /∈ B;

2. C separates b from d in Γ, with a /∈ C;
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3. B ∩ C = ∅.

Then ∂SΓ is not path connected.

In fact, we prove a stronger result, with the hypothesis B ∩ C = ∅ replaced by

the statement of Claim 4.2.7. For the remainder of this section, suppose a, b, c, d ∈ Γ,

B ⊂ lk(c), and C ⊂ lk(b) are as in Theorem 4.2.1. Note that b ∈ B, c ∈ C. We wish

to consider the following rays in ΛΓ (equivalently in SΓ), based at the identity vertex

∗:

r = cdab(cb)2cdab(cb)6 · · · =
∞∏
i=1

(cb)kicdab

and

s = dbcb2adbc(b2c)2b2adbc(b2c)6b2a · · · =
∞∏
i=1

dbc(b2c)kib2a

where the ki are defined recursively with k0 = −1, ki+1 = 2ki + 2.

Define the following vertices of r, for n ≥ 0:

vn =

(
n∏

i=1

(cb)kicdab

)
(cb)kn+1cd

v′n = vna

Define the following vertices of s, for n ≥ 0:
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Figure 4.2: The rays r and s

wn =

(
n∏

i=1

dbc(b2c)kib2a

)

w′n = wnd

We have v0 = cd, v′0 = cda, v1 = cdab(cb)2cd, w0 = ∗, w′0 = d, w1 = dbcb2a. It will

be helpful to refer to Figure 4.2 for many of the claims that follow.

The following is proved in [7].

Claim 4.2.2. For n ≥ 0, vn = w′nc
kn+1+1 and v′nb

kn+2+1 = wn+1.

Since b ∈ B and c ∈ C, we then have vn〈C〉 = w′n〈C〉 and wn〈B〉 = v′n−1〈B〉.
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If Qc denotes the component of c in Γ−B, and Qb denotes the component of b in

Γ−C, then AΓ can be represented as 〈Qc ∪B〉 ∗B 〈Γ−Qc〉 or 〈Qb ∪C〉 ∗C 〈Γ−Qb〉,

and so at each vertex x of ΛΓ, the cosets x〈B〉 and x〈C〉 separate ΛΓ. Therefore, if

xSB and xSC denote the cube complexes generated by 〈B〉 and 〈C〉 respectively at a

vertex x of SΓ, then xSB and xSC separate SΓ. Note that SΓ − xSB has at least two

components: one containing xc−1, and one containing xa. Similarly, SΓ− xSC has at

least two components: one containing xb−1, and one containing xd.

For each i, define the following components of SΓ:

1. V +
i is the component of SΓ − viSB containing via;

2. V −i is the component of SΓ − viSB containing vic
−1;

3. W+
i is the component of SΓ − wiSC containing wid;

4. W−
i is the component of SΓ − wiSC containing wib

−1.

Note V +
i contains the vertices of r after vi, and W+

i contains the vertices of s after

wi. For each V ±i , (respectively W±
i ), let V ±i denote the closure of V ±i in SΓ, so

V ±i = V ±i ∪viSB (W±
i = W±

i ∪wiSC). For a subset S of SΓ, let L(S) denote the limit

set of S in ∂SΓ.

Claim 4.2.3. 1. The sets V ±i , W±
i are convex.

2. L(V +
i ) ∩ L(V −i ) = L(viSB) and L(W+

i ) ∩ L(W−
i ) = L(wiSC).

3. The set L(viSB) (respectively L(wiSC)) separates L(V +
i ) and L(V −i ) (respec-

tively L(W+
i ) and L(W−

i )) in ∂X.
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Proof. For (1), the only way out of the set V +
i is through the convex subcomplex

viSB.

For (2), if q is a ray in L(V +
i ) ∩ L(V −i ), then there are geodesic rays q1 ∈ V +

i ,

q2 ∈ V −i that are a bounded distance from q, and therefore from one another. Thus

both q1 and q2 remain a bounded distance from viSB, as required.

For (3), suppose α : [0, 1]→ ∂SΓ is a path connecting x ∈ L(V +
i ) and y ∈ L(V −i ).

Choose w ∈ viSB, and for each t ∈ [0, 1], let βt : [0,∞) → SΓ be the geodesic ray

from w to α(t) ∈ ∂SΓ. This gives a continuous map H : [0, 1] × [0,∞) → SΓ where

H(t, s) = βt(s). Note H(0, s) ⊂ V +
i , H(1, s) ⊂ V −i . For each n ≥ 0, let zn be a point

of H([0, 1]× {n}) in viSB; then L(∪∞n=1{zn}) ⊂ Im(α) ∩ L(viSB) as required.

In [7], it is shown that r and s track distinct CAT(0) geodesics in SΓ, so L(r) and

L(s) are distinct one-element sets.

Claim 4.2.4. For n ≥ 1, the sets L(w2n−1SC) and L(r) are separated in ∂SΓ by

L(v2n+1SB).

Proof. First note that L(r) ∈ L(V +
i ) for each i ≥ 1. Let D2n be the d-hyperplane that

separates w2n from w′2n (and also separates v2n from the previous vertex of r), and let

A2n be the a-hyperplane that separates v2n from v′2n (and also separates w2n+1 from

the previous vertex of s). Note that w2n−1SC is contained in the same component of

SΓ −D2n as ∗ since d /∈ C and therefore no path in 〈C〉 based at w2n−1 crosses D2n.

Also note A2n ⊂ V −2n+1. Since D2n and A2n cannot cross (since d does not commute

with a), and D2n is not in the same component as v2n+1SB in SΓ−A2n, we have that

w2n−1SC ⊂ V −2n+1. The previous claim gives the result.
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Claim 4.2.5. For n ≥ 1, the sets L(v2n−1SB) and L(r) are separated in ∂SΓ by

L(w2n+1SC).

Proof. The proof is analagous to the proof of the previous claim, replacing the hy-

perplanes D2n and A2n with the hyperplanes A2n−1 and D2n respectively.

Remark 4.2.6. The previous two claims imply that if there is a path in ∂SΓ between a

point of L(w1SC) and L(r), the path must pass through (in order) L(v3SB), L(w5SC),

L(v7SB), L(w9SC), and so on.

We will now show that the sets L(viSB) (resp. L(wiSC)) are eventually ‘close’ to

L(s) (resp. L(r)), implying the path described in Remark 4.2.6 cannot exist.

Claim 4.2.7. C ∩ lk(a) ∩ lk(d) = C ∩ lk(a) ∩ lk(c) = ∅, and B ∩ lk(a) ∩ lk(d) =

B ∩ lk(d) ∩ lk(b) = ∅.

Proof. If e ∈ C ∩ lk(a) ∩ lk(d), then (a, e, d, c) is a path from a to c in Γ. Since

B separates a from c and d /∈ B, we must have e ∈ B, but B ∩ C = ∅. Similarly,

if e ∈ C ∩ lk(a) ∩ lk(c), then (a, e, c) is a path from a to c in Γ, and so e ∈ B,

contradiction. The remaining statements are proved identically.

For i ≥ 1, let ri (respectively si) be the segment of r (respectively s) between ∗

and v′i (respectively ∗ and w′i). Let βi be a Cayley graph geodesic ray based at w′i

with labels in B, and let γi be a Cayley graph geodesic ray based at v′i with labels in

C.

Claim 4.2.8. Any Cayley graph geodesic from ∗ to a point of γi must pass within

4 units of v′i. Any Cayley graph geodesic from ∗ to a point of βi must pass within 4
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units of w′i.

Proof. First observe that if (ri, γi) is not ΛΓ-geodesic, then an edge of γi must delete

with an edge of ri. Since a, b, d /∈ C, the labels of these deleting edges must be c and

c−1. However, the labels of these edges must also be in lk(a)∩ lk(d), by Lemma 4.1.3

(see Figure 4.2). Therefore (ri, γi) is a Cayley geodesic.

Now, suppose there is a ΛΓ-geodesic ρ between ∗ and a point of γi with d(ρ, v′i) > 4.

Let α denote the segment of (ri, γi) between ∗ and the endpoint of ρ. Consider a

diamond based at v′i for ρ and α as in Lemma 3.1.22. Let τ and δ be the down edge

path and up edge path respectively at v′i, and note τ and δ have length at least 3.

Every ΛΓ-geodesic from ∗ to v′i must end with an edge labeled a, so every label of δ is

in lk(a). If an edge of τ has label d, then every label of δ is in C ∩ lk(a) ∩ lk(d), but

this set is empty by Claim 4.2.7. By Lemma 4.1.3 every other edge of τ has its label in

lk(d)∩{a, b, c, d}, so the remaining edges of τ must be labeled c, but C ∩ lk(a)∩ lk(c)

is also empty. Thus d(ρ, v′i) ≤ 4. The proof of the second statement is identical.

Claim 4.2.9. ∂SΓ is not path connected.

Proof. Observe that since v′n−1b
kn+1+1 = wn by Claim 4.2.2 and C ⊂ lk(b), any

ray α based at wn with labels in C stays a bounded distance from the ray based

at v′n−1 with the same labels. Combining Claim 4.2.8 and Lemma 4.1.17, we have

that a CAT(0) geodesic from ∗ to a point of L(α) must pass within δ + 4 of v′n−1,

where δ is the tracking constant given by Lemma 4.1.17. We therefore have that

any sequence of points {pi}∞i=1 with each pi ∈ L(wiSC) ⊂ ∂SΓ must converge to

L(r) ∈ ∂SΓ. Similarly, any sequence of points {qi}∞i=1 with each qi ∈ L(viSB) ⊂ ∂SΓ

63



must converge to L(s) ∈ ∂SΓ. Therefore, by Remark 4.2.6, given any ε, any path from

a point of L(w1SC) to L(r) eventually bounces back and forth infinitely between the ε-

neighborhood of L(s) and the ε-neighborhood of L(r), which is impossible; therefore,

no such path exists.
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