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CHAPTER I 

 

INTRODUCTION 

 

Development of the Hindbrain  

 

“The primitive segmentation of the vertebrate brain is a problem which has 

probably attracted as much of the attention of morphologists as any one of the great, 

unsettled questions of the day, and many views have been advanced which have, it is 

true, reached one important point of agreement; namely, that the primitive brain was 

undoubtedly a segmented structure. But beyond this, in regard to the character of these 

segments and the number of segments of which the brain originally consisted, I think it 

can be said with perfect freedom that nothing whatever has been definitely proved.” 

  ~Charles F. W. McClure 1890  

 

Morphological observations and significance  

The hindbrain, or brain stem, controls many fundamental physiological functions 

essential for survival, such as respiration and heart beat, as well as consciousness, 

attention and coordination. Furthermore, all fiber tracts relaying information between the 

spinal cord and the brain must pass through the hindbrain, indicating its significance. In 

addition, eight of the twelve cranial nerves arise from the hindbrain, which provide the 

motor and sensory innervation for the face, neck and tongue. The unique pattering of the 

hindbrain has long fascinated embryologists because of the well-conserved 

morphological changes it undergoes during development. Shortly after the neural tube 

forms the presumptive hindbrain transiently segments along the anterioposterior axis 

into seven or eight bulges, first described by von Baer in 1828 (von Baer, 1828) and 
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originally termed “neuromeres” (Orr, 1887). Subsequent work described the appearance 

and distribution of neuromeres in various species (McClure, 1890; Neal, 1918) and 

eventually the term rhombomere was adopted. Early studies aimed to establish the 

significance of hindbrain segmentation to determine whether or not a functional 

relationship existed between specific rhombomeres and specific neurons, with 

supporters on each side (Neal, 1918; Streeter, 1933; Källén, 1956; Vaage, 1969). 

Ultimately, these rhombomeres were found to be the result of intrinsic neural 

segmentation and not merely a mechanical artifact of the neural tube and adjacent 

mesoderm (Neal, 1918; Keynes and Lumsden, 1990). More recent work demonstrated 

that cellular and molecular differentiation underlies the observed morphological pattern 

(Lumsden, 1990; Wilkinson and Krumlauf, 1990) and that this organization is conserved 

across vertebrates (Gilland and Baker, 1993). Additionally, each rhombomere contains 

restricted cell lineages with most cells incapable of migrating across rhombomeric 

boundaries (Fraser et al., 1990; Guthrie and Lumsden, 1991). This restriction persists 

resulting in each rhombomere giving rise to different structures and cell types and thus 

having a unique identity (Keynes and Krumlauf, 1994; Lumsden, 2004; Moens and 

Prince, 2002).  

 

Conservation of segmentation across species 

The reiterated pattern long observed in the hindbrain is reminiscent of the 

segmental patterning in Drosophila, which is established by the segmental expression of 

a group of related genes, termed homeotic genes (Harding et al., 1985; reviewed by 

Gehring and Hiromi, 1986). Mutations in these genes cause the transformation of one 

body structure into another, a process termed “homeosis” (reviewed by Gehring and 

Hiromi, 1986; Lawrence and Morata, 1994). Two main clusters of homeotic genes, the 

bithorax complex (BX-C) and the Antennapedia complex (ANT-C) (Lewis, 1978; 
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Kaufman et al., 1980) confer segment identity of the Drosophila body. BX-C and ANT-C 

belong to a family of genes containing a conserved DNA sequence, the homeobox 

(McGinnis et al., 1984; Scott and Weiner, 1984; Gehring, 1985). Whereas most genes 

have no observed relationship between location within the genome and location of 

expression in the body, the anterioposterior (AP) organization of BX-C and ANT-C gene 

expression within the body corresponds to their chromosomal arrangement (Lewis, 

1978; Harding et al., 1985). Homeobox genes encode transcription factors that contain a 

highly conserved domain designated “homeodomain” and they, in turn, regulate the 

expression of many other genes (Levine and Hoey, 1988; Thali et al., 1988; Gehring and 

Hiromi, 1986; Lawrence and Morata, 1994). Thus a relatively small number of genes, 

termed master control genes, are capable of regulating the developmental pathways that 

will establish the identity of each body segment (reviewed by Gehring and Hiromi, 1986). 

As the function of the Drosophila homeotic genes, collectively called HOM-C, 

were being uncovered, researches learned that functionally similar and related genes 

were expressed in the mouse hindbrain, which also contain a homeobox and were thus 

named Hox genes (Wilkinson et al., 1989b; Murphy et al., 1989). The term “Hox gene” is 

reserved for only the vertebrate homeobox genes related to the Drosophila HOM-C 

(Scott, 1992). Whereas two clusters of homeotic genes regulate Drosophila 

segmentation, most vertebrates possess four clusters of Hox genes (Graham et al., 

1989; Duboule and Dolle, 1989; reviewed by Hunt and Krumlauf, 1992; McGinnis and 

Krumlauf, 1992). These vertebrate clusters are named A-D with 13 subfamilies called 

paralogous groups in each cluster (Scott, 1992), though not all 13 paralogs are present 

in each cluster. Similar to the insect HOM-C genes, mutations in the Hox genes cause 

homeotic transformations (Balling et al., 1989; Kessel et al., 1990; Chisaka and 

Capecchi, 1991; Lufkin et al., 1991; Le Mouellic et al., 1992; Morgan et al., 1992; 

Marshall et al., 1992) and they posses the same relationship between AP body 
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expression and location on the chromosomes (Graham et al., 1989; Duboule and Dolle, 

1989; Wilkinson et al., 1989b; reviews by: Hunt and Krumlauf, 1992; Keynes and 

Krumlauf, 1994; McGinnis and Krumlauf, 1992). Additionally, the order of AP gene 

expression and chromosomal position is also related to the timing of gene expression 

with more anterior genes expressed earlier than more posterior genes (Graham et al., 

1989; van der Hoeven et al., 1996). The similarities between the HOM-C and the 

vertebrate Hox genes suggested that these genes were homologues of a common 

ancestor (Akam, 1989; Graham et al., 1989; Duboule and Dolle, 1989; Gaunt, 1991; 

Krumlauf, 1992). Evidence supports the hypothesis that Hox genes arose by two 

duplication events (Kappen et al., 1989), however the relationship between HOM-C and 

Hox genes is not one to one, suggesting independent tandem duplications (Krumlauf, 

1992; Hunt and Krumlauf, 1992). Similarly, some species such as teleost fishes have 

extra Hox clusters due to duplication events, as well as many gene losses (Amores et 

al., 1998; Moens and Prince, 2002). 

 

Molecular mechanisms leading to segmentation 

 With the great discovery of Hox genes and their importance in hindbrain 

patterning came another crucial question: what is upstream of Hox genes and how are 

they regulated? Shortly after researchers established that a Hox combinatorial code was 

necessary for a properly segemented hindbrain came the finding that retinoic acid (RA), 

a metabolic derivative of vitamin A, can regulate Hox gene expression both in culture 

(Simeone et al., 1990) as well as in vivo (reviews by Keynes and Krumlauf, 1994; Glover 

et al., 2006). This advance correlates with earlier work demonstrating that excess 

exposure to vitamin A during fetal development can cause teratogenic changes to the 

hindbrain (Morriss, 1972) in a stage dependent manner. Similar effects are seen with 

other retinoid (naturally or synthetically related to vitamin A) exposure causing the 
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affected hindbrain to be shorter due to a loss of proper segmentation; consistent with 

this many anteriorly expressed segmental genes are altered to a more posterior 

phenotype (Morriss-Kay et al., 1991; Conlon and Rossant, 1992; Marshall et al., 1992; 

Sundin and Eichele, 1992; reviewed by Glover et al., 2006). These results, in addition to 

the finding that RA is enriched in the primative streak (Hogan et al., 1992), led to the 

hypothesis that RA is a morphogen in vivo and plays a role in generating proper Hox 

gene expression boundaries (Keynes and Krumlauf, 1994). Accordingly, some of the 

molecular mechanisms of RA function in the hindbrain were soon uncovered; retinoic 

acid receptors (RAR) and retinoid receptors (RXR) transduce the retinoid signal and 

many Hox genes contain retinoic response elements (RAREs) (Giguere et al., 1987; 

Kastner et al., 1997; reviewed by Chambon, 1996; Langston and Gudas, 1992; Melton et 

al., 2004).  

 In addition to RA, fibroblast growth factor (FGF) can activate Hox genes (Isaacs 

et al., 1998; Pownall et al., 1998; Partanen et al., 1998). Subsequent work demonstrated 

the existence of two classes of Hox genes, one of which was responsive to retinoids: the 

3’ end of clusters encompassing paralogous groups 1-4, and the other sensitive to 

FGFs: the 5’ end including paralogous groups 5-9 (Melton et al., 2004). These two 

initiation cues, as well as Wnt signaling necessary for primative streak formation (Liu et 

al., 1999) where RA is enriched, encompass the first of three phases of Hox gene 

regulation, as identified by Deschamps (1999). Following the initiation phase of Hox 

gene expression is establishment and maintenance (Deschamps et al., 1999). During 

the establishment phase, which is a continuous process with the initiation phase, the 

Hox expression domains expand along the AP axis until they reach their anterior-most 

positions (Gaunt and Strachan, 1996; Deschamps et al., 1999). The Hox domains are 

further modulated and refined by RA and other transcription factors (Kessel and Gruss, 

1991; Deschamps et al., 1999), some of which are necessary for the specification of 
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individual rhombomeres. For example, Krox20 (Wilkinson et al., 1989a), a zinc-finger 

transcription factor (Chavrier et al., 1988) present in every species examined, specifies 

r3 and r5 (Schneider-Maunoury et al., 1993; Giudicelli et al., 2001) by regulating the 

expression of Hoxb2 and Hoxa2 (Sham et al., 1993; Vesque et al., 1996; Nonchev et al., 

1996). Similarly, Hoxb3 and Hoxa3 are activated by Kreisler, a basic domain-leucine 

zipper of the c-maf proto-oncogene family (Cordes and Barsh, 1994; Frohman et al., 

1993), expressed and required in r5 and r6. Kreisler is also known as valentino/mafB in 

fish (Moens et al., 1996). In the maintenance phase of Hox gene expression auto, cross 

and para-regulatory mechanisms interact to fine tune and sustain the proper expression 

patterns (Melton et al., 2004). The collective coordination of Hox genes and other 

transcription factors, such as Krox20 and Kreisler, results in a segmentally organized 

hindbrain, which will serve as a blueprint for the specification of sensory ganglia, cranial 

motor neurons, and glial cell types that make up the central and peripheral nervous 

systems.   

 

Motor Neuron Development in the Hindbrain 

 

Neuronal organization of the zebrafish hindbrain  

 The organization of many neuronal cell types is correlated with segmentation of 

the rhombomeres. By the 18 somite stage in zebrafish, the hindbrain divides into five 

prominent bulges, which are numbered r2-r6 (Kimmel et al., 1995; Moens and Prince, 

2002). Similar to early morphological observations in the chick hindbrain (Vaage, 1969), 

the anterior-most region can be subdivided into a r0 and a smaller r1, which, in fish, 

have distinct markers and fates (Moens and Prince, 2002; Koster and Fraser, 2001). The 

rhombomeric boundaries do not arise in an anterior to posterior fashion, but instead they 

develop in a seemingly irregular, though very stereotypical, fashion. The first 
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rhombomere to form is r4, consistent with its role as an early signaling center, followed 

by the r3/r4 boundary, r4/r6, r1/r2, r2/r3, r6/r7 and finally the r5/r6 boundary (Moens and 

Prince, 2002). Consistent with chick, no r7/r8 boundary exists in zebrafish, either by 

morphology or by rhombomeric boundary markers (Clarke and Lumsden, 1993; Kimmel 

et al., 1985; Hanneman et al., 1988). The zebrafish hindbrain, as well as other species 

like chick, exhibits a two-segment periodicity. Earlier work demonstrate that while cells 

do not migrate across neighboring rhombomeric boundaries, cells from even-numbered 

rhombomeres can mix with other even-numbered rhombomeres, and the same is true 

for odd-numbered rhombomeres (Guthrie et al., 1993). Consistent with this two-segment 

organization, the reticulospinal neurons located in even-numbered have a more lateral 

position while those in the odd-numbered rhombomeres are medially situated 

(Mendelson, 1986a; Mendelson, 1986b; Metcalfe et al., 1986) (Fig. 1.1). Additionally, 

commissural neurons and the cranial motor neurons exhibit a segmented arrangement 

(Gilland and Baker, 1993; Chandrasekhar et al., 1997; Moens and Prince, 2002) that is 

fairly conserved across species. The functional connections made by these neurons at 

these early developmental timepoints will persist into adulthood, long after the segmental 

organization of the hindbrain ceases.  

The patterning of the hindbrain also determines in which rhombomeres cranial 

motor neurons are born. There are three classes of cranial motor neurons: somatic 

motor neurons, visceral motor neurons, and branchiomotor (Kandel et al., 2000) (Fig. 

1.1). All three classes are found in the hindbrain, with some somatic motor neurons also 

found in the midbrain. Somatic motor neurons provide the innervation for eye and tongue 

movements, visceral motor neurons innervate parasympathetic neurons, which will in 

turn innervate various glands and the smooth muscle of the pulmonary, cardiovascular, 

and gastrointestinal systems, whereas the branchiomotor neurons innervate all of the 

muscles derived from the pharyngeal arches, which includes those required for jaw and 
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facial movements, as well as the larynx and pharynx (reviewed by Chandrasekhar, 

2004). The branchiomotor neurons leave the hindbrain through common exit points, 

located in the even-numbered rhombomeres, whereas all of the somatic motor neurons, 

except cranial nerve IV (nIV, trochlear), exit the brain via ventral rootlets (Guthrie, 2007; 

Chandrasekhar, 2004) (Table 1.1). For example, the cell bodies of the trigeminal cranial 

nerve (in the branchiomotor class) arise in r2 and r3 and all of their axons collectively 

exit out of r2 (Chandrasekhar et al., 1997); and the abducens cranial nerves (of the 

somatic motor neuron class) occupy r5 (mouse) or r5 and r6 (chick and zebrafish) and 

their axons exit ventrally out of these same rhombomeres (Guthrie, 2007; 

Chandrasekhar, 2004). Visceral motor neurons have not been definitively identified in 

zebrafish (Higashijima et al., 2000), nor have the hypoglossal motor neurons and their 

targets (Wullimann et al., 1996) (Fig. 1.1).  

 

Neuronal specification in the hindbrain 

The hindbrain is home to many different neuronal populations that arise and 

reside in particular rhombomeres. With the knowledge that each rhombomere has a 

unique combination of Hox genes, a logical hypothesis is that these Hox genes play a 

role the specification of neurons within specific rhombomeres (reviewed by Glover, 

2001). Indeed, manipulation of various Hox genes does affect the differentiation of 

neurons (Bell et al., 1999; Grapin-Botton et al., 1995; Jungbluth et al., 1999; Kessel, 

1993). However, due to the variation of location of neurons across species, as well as 

the presence of species-specific specialized populations, all-encompassing conclusions 

or correlations are hard to make. One of the best-studied neuronal populations is the 

motor neuron, due to the ability to trace their projections using retrograde and 

anterograde 
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Table 1.1. Cranial Motor Neuron Summary 

Cranial Nerve Class 

Cell Body 

Location         

(in Zebrafish) 

Axonal Exit Point 

I. Olfactory Sensory Forebrain Forebrain 

II. Optic Sensory Midbrain Midbrain 

III. Oculomotor Somatic/Visceral Midbrain Ventral Rootlets 

IV. Trochlear Somatic r0 Ventral Rootlets/r0 

V. Trigeminal Branchial r2 and r3 Dorsal r2 

VI. Abducens Somatic r5 and r6 Ventral Rootlets/r5 and r6 

VII. Facial/OLe Branchial/Visceral r6 and r7 Dorsal r4 

VIII. Vestibulocochlear Sensory r6 and 7 Dorsal r4 

IX. Glossopharyngeal Branchial/Visceral r7 Dorsal r6 

X. Vagus Branchial/Visceral Caudal Hindbrain Caudal Hindbrain 

XI. Spinal Accessory Branchial 
Caudal Hindbrain 

(mouse) 
Caudal Hindbrain (mouse)

XII. Hypoglossal Somatic 
Caudal Hindbrain 

(mouse) 
Caudal Hindbrain (mouse)
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dyes. In general, the relative rhombomeric location of these cranial nerves is the same 

across species, though there are exceptions. Although limited, relationships between 

some of these cranial nerves and various Hox genes are being established. For 

example, the facial motor neurons require Hoxb1 for their specification and subsequent 

migration across most species (Goddard et al., 1996). Hoxb3, expressed in r5 and r6, is 

required for the abducens motor neurons, which are born in those rhombomeres (Gaufo 

et al., 2003), whereas the trigeminal motor neurons require Hoxa2 (Jungbluth et al., 

1999). Because the expression of Hox genes is very dynamic over time and many motor 

neurons migrate from their rhombomere of birth, very careful and comprehensive studies 

are needed to understand the relationship between these genes and particular neuronal 

groups. 

In addition to Hox genes, many other transcription factors necessary for the 

induction of hindbrain motor neurons have been identified, including a few familiar 

players: Krox20 and Kreisler, which are required for the identity of the rhombomeres in 

which they are expressed (Moens and Prince, 2002). In the absence of these genes’ 

functions the corresponding rhombomeres and subsequent neuronal specification are 

lost, or functionally altered. For example, Kreisler is expressed in r5 and r6, the same 

rhombomeres in which the abducens motor neurons will arise. In valentino/Kreisler 

mutant fish the abducens motor neurons are lost (Chandrasekhar, 2004). These affects 

are likely indirect as the entire rhombomere is affected in mutant Krox20 or 

Kreisler/valentino animals. 

 Although the direct relationship between specific Hox genes and the specification 

of neuronal populations is limited, many necessary morphogens and transcription factors 

have been identified. One of the most broadly acting morphogens is Sonic Hedgehog 

(Shh), a glycoprotein which is expressed first in the notochord and then in the floor plate 

of the spinal cord and also induces the differentiation of the floor plate (Ericson et al., 
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1995). Shh undergoes unique post-translational processing in which the protein is 

proteolytically cleaved and a cholesterol is then added to the C-terminal end and a 

palmitoyl group is added to the N-terminal (Bumcrot et al., 1995; Porter et al., 1996a; 

Porter et al., 1996b; Chamoun et al., 2001; Pepinsky et al., 1998). These two 

modifications are necessary for Shh to properly signal and act as a morphogen 

(reviewed by Marti and Bovolenta, 2002). Because motor neurons arise in the ventral 

neural tube, which is in part patterned by the floor plate, Shh was an attractive candidate 

for the specification of motor neurons. Indeed, researchers found that Shh can induce 

motor neurons both in vitro (Marti et al., 1995; Roelink et al., 1995; Tanabe et al., 1995) 

and in vivo (Ericson et al., 1996). Additionally, motor neurons are completely lost in Shh 

knockout mice (Chiang et al., 1996; Litingtung and Chiang, 2000). Similar effects are 

seen in zebrafish, however there are multiple hedgehog signals and once all hedgehog 

signals are removed motor neurons are almost completely lost (Krauss et al., 1993; 

Ekker et al., 1995; Currie and Ingham, 1996; Chandrasekhar et al., 1998; Beattie et al., 

1997; Bingham et al., 2001).  

Shh functions by binding to its receptor, a twelve-pass transmembrane receptor 

Patched, which relieves inhibition of a seven-pass transmembrane protein Smoothened, 

with the ultimate result of transcriptional control of the Gli family of zinc finger 

transcription factors (reviewed by Lum and Beachy, 2004). There are three Gli proteins 

regulated by Shh activity, and they can have activator or repressor functions (Jacob and 

Briscoe, 2003). Work in fish demonstrates the requirement of Gli activator function for 

the induction of motor neurons (Vanderlaan et al., 2005). Additionally, some apparent 

differences exist between hindbrain and spinal cord motor neuron specification, as 

evident by the gene detour that is required for cranial motor neurons but not for spinal 

cord motor neurons. For example, detour is thought to be involved with the hedgehog 

pathway (Chandrasekhar et al., 1999).  
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 Shh also functions to establish domains along the dorsoventral axis by either 

inducing or repressing many homeodomain transcription factors, which will be described 

more in depth in a later section. These transcription factors will then specify and regulate 

neuronal and glial specification depending on their dorsoventral position. For example, 

Nkx6.1, Nkx2.2 and Pax6 are required for motor neuron induction, both in the spinal cord 

as well as the hindbrain (Muller et al., 2003; Pattyn et al., 2003; Briscoe et al., 1999; 

Ericson et al., 1997b). In the hindbrain, the different classes of motor neurons have 

unique sets of the following transcription factors: Pax6, Nkx6.1, Nkx6.2, Nkx2.2, Nkx2.9, 

Phox2a and Phox2b (Ericson et al., 1997b; Osumi et al., 1997; Muller et al., 2003; 

Pattyn et al., 2003; Briscoe et al., 1999; Pattyn et al., 1997; Pattyn et al., 2000).  

Another class of homeobox genes required for motor neuron specification and 

development in a combinatorial code is the LIM family, which in addition to its DNA 

binding domain also contains two tandem repeats of the LIM domain to facilitate protein-

protein interactions (Arber and Caroni, 1996; Tsuchida et al., 1994). These genes are 

involved in both cranial and spinal motor neuron specification and development (Varela-

Echavarria et al., 1996; Korzh et al., 1993; Appel et al., 1995). While each class of 

cranial motor neuron has its own unique combination of essential transcription factors, 

one common feature exists, they all require and express Isl1, another member of the 

LIM family (Ericson et al., 1992; Appel et al., 1995; Varela-Echavarria et al., 1996; Pfaff 

et al., 1996).   

 

Somatic motor neuron specification 

 Four of the cranial nerves are in the somatic motor neuron class; the oculomotor 

(nIII) in the midbrain; trochlear (nIV) in r0/r1 in zebrafish, mouse and chick; abducens 

(nVI) in r5 in chick or r5 and r6 in zebrafish and mouse; and the hypoglossal (nXII) 

located in r8/caudal hindbrain in chick and mouse but not identified yet in fish 
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(Chandrasekhar, 2004; Guthrie, 2007). Most studies examining the specification of 

somatic motor neurons tend to investigate either the more posterior neurons together 

(nVI and XII) or the more anterior neurons (nIII and nIV). While functionally the 

abducens, trochlear and oculomotor neurons are similar to each other, innervating the 

various muscles controlling eye movement; these neurons arise in different origins along 

the anterioposterior axis, which indicates that different factors are necessary for their 

specification. This is consistent with the overall patterning of the hindbrain by Hox genes 

in a very specific anterioposterior organization. For example, Hoxb3 is required for 

abducens motor neuron specification, but is not expressed more anteriorly where the 

oculomotor and trochlear motor neurons are born (Gaufo et al., 2003; Guidato et al., 

2003). Similarly, the bHLH transcription factor olig2, first expressed in r5 and r6, is 

required for the specification of the posterior somatic motor neurons (Lu et al., 2002; 

Zhou and Anderson, 2002; Gaufo et al., 2003). However, these genes are not expressed 

in the anterior hindbrain and thus do not play a role in the specification of the oculomotor 

or trochlear motor neurons. 

No Hox genes are expressed in the anterior-most hindbrain where trochlear 

motor neurons are born (Jungbluth et al., 1999). Instead, different genes and organizing 

centers are involving in the patterning of the midbrain and anterior hindbrain. The 

boundary between the midbrain and hindbrain is called the isthmus or the 

midbrain/hindbrain organizer (MHO) and is an essential signaling center for this region of 

the CNS (Prakash and Wurst, 2004). FGF8 is a key gene involved with the organizing 

activity of the MHO and, because the trochlear motor neurons arise just posterior to this 

boundary, FGF8 regulates the development of the trochlear motor neurons (Prakash and 

Wurst, 2004; Irving et al., 2002). The oculomotor neurons rise just anterior to the MHO 

and require Wnt-1 for their specification, along with the trochlear motor neurons (Fritzsch 

et al., 1995; Prakash and Wurst, 2004). Although these differences in anterioposterior 
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specification exist, some genes are common to all somatic motor neurons, such as 

Nkx6.1 and Isl1 (Muller et al., 2003; Ericson et al., 1992; Varela-Echavarria et al., 1996). 

Thus, some transcription factors are necessary for the somatic motor neuron class as a 

whole whereas the requirement of other factors dependents upon the anterioposterior 

position. 

 

Facial motor neuron specification 

 The facial motor neuron provides innervation to the muscles controlling facial 

expressions. Their cell bodies are born in r4 in zebrafish, mouse and chick and, 

consequently, genes required for the proper patterning of r4, such as Hoxb1, are also 

essential for the specification of the facial motor neurons (Goddard et al., 1996; 

Chandrasekhar, 2004). Additionally, Phox2b is also essential for the specification of 

facial motor neurons; knockout mice for either Phox2b or Hoxb1 fail to form facial motor 

neurons (Pattyn et al., 2000; Goddard et al., 1996). Another factor necessary for the 

proper development and maturation of the facial motor neurons is LIFRβ, a receptor 

complex necessary for signaling from the IL-6-cytokine family member LIF (Alfonsi et al., 

2008; Bauer et al., 2007).  Similar to other cells with ventral origins, facial motor neurons 

require Shh for their specification (Chandrasekhar, 2004).  

 

Facial Motor Neuron Migration 

 

Overview of the phases in facial motor neuron migration 

In addition to determining the location of neuron specification, the organization of 

the rhombomeres also influences the migration of neurons. One of the best-studied 

examples of neuronal cell body movement is the facial motor neuron, which undergoes a 

very interesting and complex migration. This migration occurs in almost every species 
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examined and the facial motor neurons will give rise to the internal genu of the facial 

nerve, a characteristic bend in axons of this tract (Altman and Bayer, 1982; McKay et al., 

1997). The cell bodies migrate from r4, where they are born, into r5 and r6 (mouse and 

chick) or r6 and r7 (zebrafish) (Lumsden and Keynes, 1989; Chandrasekhar et al., 

1997). In zebrafish and mice, the facial motor neuron cell bodies begin their journey by 

migrating posteriorly out of r4 in close proximity and parallel to the floor plate into their 

target rhombomeres (Altman and Bayer, 1982; Ashwell and Watson, 1983; Auclair et al., 

1996; Chandrasekhar, 2004; Song, 2007). As they migrate caudally, the facial motor 

neurons leave behind their axonal projections, which will ultimately exit the hindbrain 

from r4. Once in their target rhombomeres the neurons will then migrate laterally and 

later radially to ultimately reside in the dorsal neural tube (Song, 2007). Thus, there are 

three separate directional movements, each requiring a unique set of genes: 

anterioposterior from r4 into r6 and r7 (zebrafish), mediolateral (or just called lateral), 

and radial towards the pial surface (Chandrasekhar, 2004; Song, 2007).  Fig1.2 depicts 

the migration of the facial motor neurons through the neural tube and some of the genes 

they express. 

 

Caudal migration 

The initial caudal migration of facial motor neurons out of r4 involves a 

combination of transcription factors and members of the non-canonical Wnt pathway. 

Facial motor neurons require Nk6.1, which they normally express throughout their 

journey, to initiate caudal migration out of r4, however their lateral movement is 

maintained, albeit in r4 instead of the proper rhombomere (Muller et al., 2003; Pattyn et 

al., 2003). Loss of Phox2b signaling, also expressed within facial motor neurons 

throughout their migration, causes a similar phenotype, with very minimal caudal 

migration prior to a lateral turn (Coppola et al., 2005). Another intrinsic gene involved 
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with the caudal migration is Ebf1, a helix-loop-helix (HLH) transcription factor initially 

found in B lymphocytes and adipocytes (Garel et al., 2000; Hagman et al., 1995). While 

similar to Nkx6.1 and Phox2b in its expression throughout facial motor neuron migration, 

only a subset of facial motor neuron fails to complete their caudal migration and instead 

prematurely migrate radially in r5 (Garel et al., 2000).  

The rhombomeric environment also affects aspects of facial motor neuron 

migration. Studer demonstrated, using transplantation studies, that local cues in r5 and 

r6 were capable of initiating the caudal migration of facial motor neurons (Studer, 2001). 

However facial motor neurons are still capable of short caudal migrations in the absence 

of r5, such as in Krox20 and Kreisler mutant mice, into r6 followed by the correct radial 

migration (McKay et al., 1997; Manzanares et al., 1999; Garel et al., 2000). Therefore, 

while r5 and r6 contain cues sufficient to initiate the caudal migration of facial motor 

neurons, they may not be solely necessary.  

Many members of the PCP pathway have been implicated for the caudal 

migration of facial motor neurons. Many of these genes, best studied in zebrafish, are 

broadly expressed, such as trilobite, a mutant of Strabismus/Van Gogh-like 2 (Jessen et 

al., 2002), off-limits/frizzled3a, in which a putative Wnt receptor is lacking (Wada et al., 

2005; Wada et al., 2006), land-locked/scribble1 (Wada et al., 2005), off-road/celsr2 

(Wada et al., 2006) and colgate/hda1 (Nambiar et al., 2007). Cell-transplantation studies 

demonstrate that these PCP members primarily function non-autonomously, or outside 

of the cell which expresses them (Carreira-Barbosa et al., 2003; Jessen et al., 2002; 

Wada et al., 2005; Wada et al., 2006).  However, one PCP component, prickle1b (pk1b), 

functions cell-autonomously, being required for that cell’s identity, and appears to be 

specifically expressed within migrating facial motor neurons and weakly expressed 

within r4 (Rohrschneider et al., 2007).   
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Lateral migration 

 Of the three phases of facial motor neuron migration, the least is known about 

lateral migration by itself, as it is most often indistinguishable from radial migration. All 

branchiomotor neurons, other than facial motor neurons, undergo a simple dorsolateral 

migration and a few factors have been identified for this type of migration in general.  

Two such factors include Nk6.1 and Tbx20. The trigeminal motor neurons in animals 

mutant for either of these two genes are capable of initiating normal migration, but fail to 

complete their lateral migration (Muller et al., 2003; Pattyn et al., 2003; Song et al., 

2006). 

 

Radial migration 

The radial migration of neurons is best studied in the neuroepithelium that gives 

rise to the six layers of the cerebral cortex. Neurons migrate from the ventricular zone 

(VZ) along a scaffold consisting of radial glia fibers that span from the VZ to the pial 

surface (Kandel et al., 2000). One of the best-characterized mutant mouse models for 

perturbations in this migration is the reeler mouse, in which the order of the six layers is 

reversed (Frotscher, 1998). The reeler mouse is lacking proper reelin signaling 

(D'Arcangelo et al., 1995). Subsequent studies demonstrated that deficits in reelin or in 

reelin signaling, such as cdk5 or scrambler mice, also affected the radial migration of 

facial motor neurons in their target rhombomeres, while the caudal migration was normal 

(Ohshima et al., 2002; Rossel et al., 2005). Interestingly, it appears that two members of 

the Wnt/PCP pathway, Frizzled3a and Celsr2, function to inhibit premature radial 

migration during the caudal migration in more anterior regions and this inhibition is only 

relieved once the facial motor neurons reach their proper target rhombomere (Wada et 

al., 2006).  
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Intrinsic factors regulating facial motor neuron migration 

While investigators who study mutant animals uncovered many genes involved in 

facial motor neuron migration, less is know about the underlying intrinsic mechanisms. 

Three proteins expressed during specific phases of migration shed light on how theses 

neurons adopt such complicated and precise migration. TAG-1 and cadherin 8 (cdh8), 

implicated in axonal outgrowth and cell adhesion, are cell surface molecules while Ret, 

which is expressed in other migrating cells, is a GDNF-receptor subunit (Furley et al., 

1990; Redies and Takeichi, 1996; Pachnis et al., 1993). TAG-1 is expressed in facial 

motor neurons as they begin their migration in r4 and persists until r6 (mouse) where it is 

down regulated as the facial motor neurons turn to migrate dorsally. Facial motor 

neurons turn on Ret as they are exiting r4 and maintain this expression for the duration 

of their migration, while cdh8 is only expressed during the final dorsal phase of migration 

(Garel et al., 2000; Muller et al., 2003). Garel proposed that the facial motor neurons 

may follow along longitudinal fibers from r4 into r6 (mouse) where they interact with 

radial glia and that such changes in direction would require modifications in the 

appropriate adhesion molecules (Garel et al., 2000). TAG-1 interacts with L1, another 

cell adhesion molecule expressed on longitudinal fibers (Dodd et al., 1988; Kuhn et al., 

1991), and thus may mediate caudal migration of facial motor neurons (Garel et al., 

2000). Meanwhile, because cdh8 is expressed specifically in r6 (mouse) it might mediate 

the radial migration (Garel et al., 2000). Even in Nkx6.1, Krox20, and Ebf1 mutants, 

which perturb normal facial motor neuron migration, TAG-1, Ret and Cdh8 are 

expressed with their associated migration (Muller et al., 2003; Garel et al., 2000), further 

supporting this hypothesis. 
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Cranial motor neuron disorders 

 Although rare, there are developmental disorders affecting the proper cranial 

motor neuron specification and organization. Patients with Duane syndrome have limited 

or absent ability to move their eyes outward towards the ear (abduction) and often 

impaired ability to move their eyes inward toward the nose (adduction) (Duane, 1996). 

These symptoms arise from the absence of the abducens motor neuron, confirmed by 

MRI (Parsa et al., 1998), and its innervation of the lateral rectus muscle and often one 

branch of the oculomotor neuron improperly innervates the medial rectus muscle (Miller 

et al., 1982; Hotchkiss et al., 1980). The cause of Duane Syndrome is not known, but 

environmental factors may be involved at 3-8 weeks of gestation during which the cranial 

nerves and the ocular muscles are developing. Because of the long distance the 

abducens motor neuron axons travel, many external factors can damage the axons and 

cause palsy, such as elevated intracranial pressure, subarachnoid space lesions, 

metabolic or vascular problems, infections, congenital (eg, Duane Syndrome) or trauma 

(Denis et al., 2008; Calisaneller et al., 2006; Dwarakanath et al., 2006). Another disorder 

affecting cranial motor neurons is Möbius Syndrome, first described in a case of facial 

diplegia in 1880 by von Graefe and later defined by Paul Julius Möbius in 1888 and 

1892. These patients have congenital facial weakness and often abnormal ocular 

abduction due to problems with the abducens and facial motor neurons (Briegel, 2006). 

Interestingly, patients with Möbius Syndrome have a higher incidence of autistic 

spectrum disorders (Rodier et al., 1996; Briegel, 2006). As with Duane Syndrome, there 

is no known cause and no cure, only treatments. Whereas linkage studies have 

implicated some genes underlying Duane and Möbius Syndromes, the etiology of these 

disorders is largely unknown. By uncovering the genes necessary for the specification 

and migration of cranial motor neurons, we can better understand disorders that affect 

their normal development. 
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 Oligodendrocyte Specification in the Spinal Cord  

 
 

“Some accept as though it were established fact that neuroglial fibers form a 

passive support network to simply fill out and bind the tissue in a matrix that is swelled 

with nutritive substance. Any observer who wishes to form a ration opinion of the 

function of neuroglia must begin by dispelling such notions which might hamper his 

thinking.” 

Santiago Ramón y Cajal 1952 

 

The presence of non-neuronal cells types, or glial cells, in the central nervous 

system (CNS) were first identified over a century and a half ago. Though some 

controversy persisted over who truly first identified glial cells, Virchow’s term “Nervenkitt” 

meaning nerve glue, stuck (Virchow, 1858). He found a “connective substance” that 

forms a “sort of putty in which the nervous elements are embedded” (p. 890 in Virchow, 

1856). Another early researcher who identified glial calls was Deiters, defining them as 

any cell in the CNS without an axon (Deiters, 1865). However, the first scientist who 

perhaps truly identified glial cells was Golgi, with his novel staining technique (reviewed 

by Somjen, 1988). Cajal and Lugaro were the first to accurately begin describing, or 

even suggesting, the function of glial cells: serving to insulate nerve fibers, regulating the 

interstitial fluid, and removing (“chemically split or take up”) the substances by which 

nerve cells excite each other thus ending their action (Ramón y Cajal, 1909; Lugaro, 

1907). Although initially described as putty, scientists soon established glial cells as 

more than support, indeed they comprise up to 90% of the cells in the human brain 

(Rowitch, 2004), implying a much more critical function that simply the glue that holds 

neurons together.  
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Glial cells are divided into three principle classes: oligodendrocytes, astrocytes, 

and microglia. Astrocytes provide structural support, play a major role in ion homeostasis 

in the CNS, maintain the blood-brain barrier (Kandel et al., 2000) and have even been 

implicated in cell-cell signaling via calcium flux, modulating synaptic transmission and 

neuropeptide production (Bennett et al., 2003; Newman, 2003; Ubink et al., 2003).  

Similar to phagocytes in the immune system, microglia clear debris and mediate 

inflammation of the CNS (Ling and Wong, 1993). Oligodendrocytes intimately interact 

with neurons in the CNS and produce the myelin sheaths that insulate axonal projections 

allowing for salutatory conduction. While many parallels exist between the specification 

of oligodendrocytes and astrocytes, both being born early in development from the 

neural tube, it is clear that they then follow distinct routes (Rowitch, 2004). 

A considerable amount of research has focused on the development of 

oligodendrocytes in the spinal cord. The predominate view prior to the 1990s was that all 

regions of the VZ could and did give rise to oligodendrocytes (Altman, 1966). 

Additionally, some researchers also believed that radial glia could trans-differentiate into 

oligodendrocytes (Choi and Kim, 1985; Hirano and Goldman, 1988). However, soon 

much evidence arose demonstrating restricted ventral origins for oligodendrocyte 

precursors cells in the embryonic spinal cord (Warf et al., 1991; Pringle and Richardson, 

1993; Noll and Miller, 1993; Timsit et al., 1995; Lu et al., 2000; Takebayashi et al., 2000; 

Zhou et al., 2000). Once born, OPCs migrate away from the VZ laterally and dorsally to 

populate the all parts of the CNS (Rowitch, 2004). These oligodendrocytes can be 

identified early in their development by the expression of platelet-derived growth factor 

receptor α (PDGFRα) (Hall et al., 1996; Pringle and Richardson, 1993). PDGF, secreted 

from type-1 astrocytes, is involved with the proliferation and migration of OPCs (Noble 

and Murray, 1984; Noble et al., 1988). As they develop oligodendrocytes begin 

expressing other genes such as Sox10, an HGM-box transcription factor (Kuhlbrodt et 
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al., 1998); 04 (Bansal et al., 1989); Plp/Dm20, a proteolipid protein involved with 

myelination (Timsit et al., 1995), and myelin basic protein (MBP) (Brosamle and Halpern, 

2002).  

 

Oligodendrocyte origins 

Early transplantation studies further confirmed the ventral origin of OPCs and 

demonstrated the requirement of the notochord and subsequent Shh signaling for OPC 

development. The notochord, located ventral to the neural tube, is essential not only for 

the for the dorsoventral patterning of the neural tube (van Straaten et al., 1989) but also 

the specification of specific cell types, OPCs (Orentas and Miller, 1996; Pringle et al., 

1996; Trousse et al., 1995) and motor neurons (Yamada et al., 1991). Moreover, the 

notochord is also necessary for OPC production for when it is ablated or absent OPCs 

fail to form (Maier and Miller, 1997; Pringle et al., 1996). Interestingly, there is a temporal 

window for the ability of the notochord to induce OPCs (Orentas and Miller, 1996). The 

main signal mediating the effects of the notochord is Shh (Echelard et al., 1993; Roelink 

et al., 1994). in vitro studies confirmed the role of Shh from the notochord to induce the 

patterning of DV domains by a concentration gradient via regulation of homeodomain 

transcription factors (Roelink et al., 1994; Roelink et al., 1995; Jessell, 2000). Moreover 

OPCs and motor neurons require similar concentrations of Shh (Orentas et al., 1999; 

Pringle et al., 1996), which may function by inducing the transcription factor olig2 

expressed in both cell types (Lu et al., 2000; Zhou et al., 2000). Both Shh and olig2 will 

be discussed at greater lengths in following sections. Thus, both OPCs and motor 

neurons arise in the ventral neural tube and require Shh signaling indicating a link 

between the two cell types. 

While unequivocally shown to have a ventral origin, debates still existed over 

possible dorsal origins for OPCs as well as their relationship to other cell types: motor 
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neurons versus astrocytes. Based on a lacZ reporter for a myelin proteolipid protein 

(Plp) some argued for the presence of dorsal origins (Spassky et al., 1998; Spassky et 

al., 2000). However, others supposed that Plp may not always be restricted to the 

oligodendrocyte lineage (reviewed by Richardson et al., 2006). Even seemingly similar 

transplant studies gave different results with one group concluding both dorsal and 

ventral origins and other supporting ventral-only origins (Cameron-Curry and Le Douarin, 

1995; Pringle et al., 1998; Richardson et al., 2006). However, three recent labs provide 

convincing evidence for the existence of both dorsal and ventral origins (Cai et al., 2005; 

Vallstedt et al., 2005; Fogarty et al., 2005). Two of these papers used double knockout 

mice for the transcription factors Nkx6.1 and Nkx6.2, which will be discussed more 

below (Cai et al., 2005; Vallstedt et al., 2005). Furthermore, fate mapping of the dorsal 

spinal cord with the Cre-lox system for Dbx1 expression demonstrated dorsal OPCs 

(Fogarty et al., 2005). Combining these works, it appears that OPCs arise from the dP5 

domain of the dorsal spinal cord (Richardson et al., 2006). These dorsal origins may 

arise independent of Shh, as dorsal oligodendrocytes are still specified when all 

hedgehog signaling is blocked (Chandran et al., 2003; Kessaris et al., 2004). Though 

there is no evidence yet to support it, many have suggested that the different origins for 

oligodendrocytes could lead to functional differences in the mature populations. 

 Another controversy involves the relationship of OPCs to other cell types, namely 

whether they arise from precursors that also give rise to motor neurons or if they arise 

from precursors that are restricted to a glial lineage. Work in primary cell culture 

revealed the presence of glial restricted precursors (GRP), which generated 

oligodendrocytes and astrocytes, but not motor neurons (Rao et al., 1998; Liu and Rao, 

2003). These GRPs were isolated from many different parts of the neuroepithelium, 

however their in vitro competence is likely exaggerated as the local environment in the in 

vivo setting could constrain the identity of their progeny. For example, only or primarily 

 25 



oligodendrocytes generated in some locations (like the ventral spinal cord) and only 

astrocytes in other locations (Rowitch et al., 2002; Richardson et al., 2006).  Additionally, 

in culture studies the growth factor FGF2 was found to perturb the dorsoventral 

patterning and only then allowing oligodendrocytes, astrocytes and motor neurons to 

arise from the same stem cells. The following paragraphs will provide in vivo evidence of 

the relationship between OPCs and motor neurons in the ventral spinal cord. 

 

Sonic hedgehog signaling  

Previous work showed that the mitogen Shh is required for the generation of both 

motor neurons (Jessell, 2000) and oligodendrocytes (Orentas et al., 1999; Alberta et al., 

2001). Based upon the concentration gradient of Shh, with antagonistic interactions with 

BMP signaling from the roof plate, dorsoventral domains are established (Rowitch, 

2004). These domains will then give rise to specific neural cell types (Jessell, 2000). It is 

thought that Shh initially patterns these domains by regulating lineage genes (Pringle et 

al., 1996) and then cross-repression among homeodomain proteins further maintain and 

refine the domains. Motor neurons and oligodendrocytes arise in one of these domains, 

the pMN domain, which is located in the ventral spinal cord (Jessell, 2000; Briscoe et al., 

2000). Shh is not only present but required for the appearance of oligodendrocytes in the 

spinal cord (Orentas et al., 1999; Alberta et al., 2001) and it is both necessary and 

sufficient for oligodendrocyte induction (Pringle et al., 1996; Alberta et al., 2001). In 

addition, a prolonged exposure to Shh signaling is required for oligodendrocytes to arise 

from the spinal cord (Orentas et al., 1999). This indicates that Shh is not only required 

for specification but also plays a role later in differentiation. Explant studies have also 

shown that Shh can induce the formation of oligodendrocytes, and that similar Shh 

concentrations are required for oligodendrocyte and motor neuron induction (Orentas et 

al., 1999). In addition to these inductive properties, there is a continued dependence for 
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Shh (Park et al., 2004) possibly for cell survival and proliferation signals (Davies and 

Miller, 2001). Inhibition of hedgehog signaling, including Shh, by cyclopamine 

suppresses the formation of OPCs in both the spinal cord and the telencephalon (Tekki-

Kessaris et al., 2001). Shh signaling, therefore, seems to be required at several levels in 

the development of oligodendrocytes. 

 

Homeodomain protein code 

As mentioned above, one function of the Shh concentration gradient is to 

regulate the expression of homeodomain proteins that will then define domains along the 

dorsoventral axis of the spinal cord (Figure 2). After their initial expression, these 

proteins will undergo cross-repressive interactions to further define and then maintain 

the domains (Briscoe et al., 2000). For example, the homeodomain proteins Pax7, Pax3, 

Pax6, Dbx1, Dbx2, and Nkx2.2 are ultimately expressed by ventral progenitor cells 

(Melton et al., 2004; Briscoe et al., 2000). The homeodomain proteins can be organized 

into two classes, those repressed by Shh (class I: Pax7, Irx3, Dbx1, Dbx2, and Pax6) 

and those induced by Shh (class II: Nkx6.1 and Nkx2.2 (Clarke and Lumsden, 1993). 

The combination of these proteins establishes five domains in the ventral neural tube 

(Briscoe et al., 2000), named p3, pMN, p2, p1, and p0 respectively from ventral to 

dorsal. Each of these domains will give rise to a particular neural cell type (Jessell, 2000) 

(Fig. 1.3). 

The pMN domain is located in the ventral spinal cord, just dorsal to the 

expression of Nkx2.2 which has the most ventral expression in the neural tube (Briscoe 

et al., 2000; Jessell, 2000). This domain is characterized by the expression of Pax6, 

Nkx6.1, Olig2, and Isl1 (Melton et al., 2004). Nkx6.1, Nkx2.2 and Irx3 work together to 

restrict motor neuron generation to the pMN domain, with Nkx2.2 expression ventral and 

Irx3 expression dorsal to the pMN domain (Rowitch, 2004). Based on these various  
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homeodomain interactions, v3, v2, v1 and v0 interneurons will arise from the p3, p2, p1, 

and p0 domains (Briscoe et al., 2000). Many of the homeodomain proteins shown to be 

involved with motor neuron and oligodendrocyte development in the spinal cord are also 

involved with similar processes in the hindbrain, suggesting that these precursor cells 

are similar in each region. However, these defined expression domains seen in the 

spinal cord have not been established in the hindbrain. 

 

Olig2: A motor neuron and oligodendrocyte link 

A pair of bHLH proteins, olig1 and olig2, were found to identify OPCs prior to the 

expression of PDGFRα (Zhou et al., 2000; Lu et al., 2000), the earliest known marker for 

OPCs (Noble et al., 1988; Pringle and Richardson, 1993). The expression of these 

genes is similar to many of the other oligodendrocyte lineage genes, such as Sox10 (an 

HGM-box transcription factor) (Kuhlbrodt et al., 1998), 04 (Bansal et al., 1989), and 

Plp/Dm20 (proteolipid protein involved with myelination) (Timsit et al., 1995). Olig1/2 

double knockout mice exhibit an almost complete lack of oligodendrocytes as marked by 

PDGFRα, Sox10, plp/dm20 and MBP (myelin basic protein) in the spinal cord (Zhou and 

Anderson, 2002; Takebayashi et al., 2002), while ectopic olig2 expression induces 

ectopic Sox10 expression (Fu et al., 2002). In addition, the precursor cells in the pMN 

domain of olig1/2-/- mice give rise to v2 neurons and then astrocytes (Zhou and 

Anderson, 2002) instead of motor neurons and oligodendrocytes.  Shh also plays a role 

in olig1/2 expression (Park et al., 2002) being both necessary and sufficient for olig1/2 

expression (Lu et al., 2000). The location of olig1/2+ cells in the ventral ventricular zone 

in close proximity to Shh and PGFRα expression regions suggests a common lineage 

between motor neurons and oligodendrocytes (Zhou and Anderson, 2002; Lu et al., 

2002; Takebayashi et al., 2002; Park et al., 2002). Motor neurons are largely absent in 
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olig2-/- mice (Zhou and Anderson, 2002; Takebayashi et al., 2002) while astrocytes are 

not affected (Zhou and Anderson, 2002) (Zhou and Anderson, 2002) supporting the 

hypothesis of a common motor neuron-oligodendrocyte precursor population excluding 

astrocytes. In fact, Park found, using in vivo single cell labeling, that olig2+ cells can 

produce both motor neurons and oligodendrocytes and that the precursor cells are 

temporally and spatially controlled, by Shh (Park et al., 2004).  

While the expression pattern of olig1 and olig2 largely overlaps (Zhou et al., 

2000; Zhou and Anderson, 2002) these two bHLH proteins play different roles during 

oligodendrocyte development. olig1 is involved with the maturation of oligodendrocytes 

whereas olig2 is required for specification (Lu et al., 2002). However, both genes 

function as transcriptional repressors to regulate neurogenin2 (Ngn2), a bHLH factor in 

the pMN domain that can drive cell cycle exit in neurons, and with Nkx2.2 promote 

oligodendrocyte formation (Zhou et al., 2001). The Olig genes are unlike other known 

bHLH proteins in that they couple neuron glia specification while other bHLH factors 

control the neuron versus glia decision (Zhou et al., 2000).  

The homeodomain proteins also function in correlation with olig2 to determine 

cell fate.  Nkx2.2, which has the most ventral expression pattern in the spinal cord 

(Briscoe et al., 2000), is vital for sensing the Shh gradient and subsequently affecting 

neural identity (Briscoe et al., 1999). Early in the establishment of dorsoventral domains, 

Nkx2.2 expression is ventral to olig2 expression (Briscoe et al., 2000). These two 

domains then begin to overlap concurrent with a decrease in ngn2 expression, and give 

rise to oligodendrocytes (Fu et al., 2002; Zhou et al., 2001). The coexpression of Olig2 

and Nkx2.2 was sufficient to induce ectopic oligodendrocyte development, but was 

blocked by forced ngn1 expression (Zhou et al., 2001). The requirement for Nkx2.2 in 

dorsally derived oligodendrocytes has not been established.  

 30 



Nkx6.1, which is expressed in the ventral neural tube (Briscoe et al., 2000), is 

involved in motor neuron production (Pattyn et al., 2003; Liu et al., 2003) similar to its 

role in the hindbrain (Pattyn et al., 2003; Vallstedt et al., 2005). Recently, however, it has 

been implicated in oligodendrocyte induction. Nkx6.1 regulates Olig gene expression, 

and thus can influence oligodendrocyte development in the spinal cord, however not in 

the hindbrain (Liu et al., 2003). Recent evidence has found a dorsal population of cells 

expressing the olig genes independent of Nkx6 and Shh function (Cai et al., 2005). This 

population could be similar to the dorsal hindbrain populations discussed above.  

 

Oligodendrocyte Generation from the Hindbrain 

 

As described above, the development of neurons has been well studied in the 

hindbrain, whereas the generation of oligodendrocytes is not well understood.   

Oligodendrocyte generation is best characterized in the spinal cord and additional data 

have implicated many similarities between oligodendrocyte development in the spinal 

cord and hindbrain. This section will discuss what is known about hindbrain 

oligodendrocyte development compared to what is known in the spinal cord.  Additional 

information about oligodendrocyte development in the spinal cord will be discussed 

below. 

  

Origins 

Early studies have identified both ventral and dorsal origins for OPC in the 

hindbrain. Ventral OPCs arise from the midline of the ventricular zone (VZ) (Ono et al., 

1997) and later in development dorsal OPCs arise (Davies and Miller, 2001) possibly 

from the alar plate (Vallstedt et al., 2005). These domains, like other hindbrain 

components, are not continuous along the anterior/posterior axis as is seen in the spinal 
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cord. In fact, some studies show that avian oligodendrocytes remain in the rhombomere 

from which they arose, myelinating axons within their region (Olivier et al., 2001). These 

oligodendrocytes were identified by examining plp/dm20 expression, which is known to 

mark OPCs (Perez Villegas et al., 1999). In addition, they are responsive to Sonic 

Hedgehog (Shh) signaling (Davies and Miller, 2001), which is required to generate 

OPCs in the spinal cord (Orentas et al., 1999; Alberta et al., 2001; Davies and Miller, 

2001). Similar to the spinal cord, this OPCs also seem to disperse in a ventral to dorsal 

manner (Ono et al., 1997). Although previously a controversy, recent work seems to 

confirm the earlier data identifying dorsal origins for oligodendrocytes (Davies and Miller, 

2001; Vallstedt et al., 2005). Through a series of quail-chick chimera experiments, 

oligodendrocytes were found, in vivo, to arise from both the ventral and dorsal neural 

tube (Cameron-Curry and Le Douarin, 1995). In addition, the oligodendrocytes from 

each region were capable of becoming mature oligodendrocytes. While the bulk of these 

studies focused on the spinal cord, Vallstedt et al have recently shown that dorsal 

hindbrain explants can produce oligodendrocytes (Vallstedt et al., 2005). They also 

provided in vivo evidence for dorsal oligodendrocyte generation in the hindbrain, and 

spinal cord, which is dependent upon olig1/2 expression (olig2 discussed below). This 

population arises subsequent to ventral OPC production and may be influenced by the 

decreased levels of BMP (bone morphogenic protein) signaling that occurs with an 

expanding hindbrain. BMP is expressed dorsally and is known to antagonize ventral 

signals (Lee and Jessell, 1999), such as Shh. In fact, BMP was found to affect many 

stages of oligodendrocyte development (Grinspan et al., 2000). The origins of 

oligodendrocytes are beginning to be understood and it appears that, similar to motor 

neurons in the hindbrain, oligodendrocytes may also be segmentally regulated. 
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Genes 

There are several homeodomain proteins that are needed to pattern the spinal 

cord that are also required for the hindbrain, such as Nkx2 and Nkx6. These proteins 

have complementary roles in the production of visceral and somatic motor neurons (vMN 

and sMN) in both the hindbrain and spinal cord (Pattyn et al., 2003). Nkx2.2 functions 

upstream to Phox2b, a vMN determinant, while Nkx6 proteins prevent vMNs from 

adopting a different neuronal fate. These two homeodomain proteins are also involved in 

oligodendrocyte development in the spinal cord (Liu et al., 2003; Fu et al., 2002). Hoxa3 

and Hoxb3 are involved in the specification of sMN through a Pax6/Olig2 regulatory 

pathway (Gaufo et al., 2003). olig2, a basic helix-loop-helix (bHLH) transcription factor 

known to play a role in both motor neuron and oligodendrocyte development (Zhou and 

Anderson, 2002; Takebayashi et al., 2002; Park et al., 2002), functions in this case to 

promote sMN development by inhibiting its inhibitor (Pattyn et al., 2003). olig1/2 

knockouts completely lack OPC formation in the hindbrain (Zhou and Anderson, 2002). 

Therefore, olig2 appears to be involved in both motor neuron and oligodendrocyte 

formation in both the spinal cord and the hindbrain. However, olig2 appears to be 

differentially regulated in the hindbrain and spinal cord. Nkx6 is required for spinal cord 

expression of olig2 while inhibiting hindbrain expression (Pattyn et al., 2003; Vallstedt et 

al., 2005). However, all oligodendrocytes appear to require olig2 expression (Rowitch, 

2004). While there are many similarities between spinal cord and hindbrain 

oligodendrocyte development, other aspects are differentially regulated. 
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 CHAPTER II 

 

OLIG2+ PRECURSORS PRODUCE ABCUENS MOTOR NEURONS AND 

OLIGDOENDROCYTES IN THE ZEBRAFISH HINDBRAIN 

 
Abstract 

During development, a specific subset of ventral spinal cord precursors called 

pMN cells produces first motor neurons and then oligodendrocyte progenitor cells 

(OPCs), which migrate, divide and differentiate as myelinating oligodendrocytes. pMN 

cells express the Olig2 transcription factor and Olig2 function is necessary for formation 

of spinal motor neurons and OPCs. In the hindbrain and midbrain, distinct classes of 

visceral, branchiomotor and somatic motor neurons are organized as discrete nuclei and 

OPCs are broadly distributed. Mouse embryos deficient for Olig2 function lack somatic 

motor neurons and OPCs, but it is not clear whether this reflects a common origin for 

these cells, similar to spinal cord, or independent requirements for Olig2 function in 

somatic motor neuron and OPC development. We investigated cranial motor neuron and 

OPC development in zebrafish and found, using a combination of transgenic reporters 

and cell type specific antibodies, that somatic abducens motor neurons and a small 

subset of OPCs arise from common olig2+ neuroepithelial precursors in rhombomeres r5 

and r6, but that all other motor neurons and OPCs do not similarly develop from shared 

pools of olig2+ precursors. In the absence of olig2 function r5 and r6 precursors remain 

in the cell cycle and fail to produce abducens motor neurons, and OPCs are entirely 

lacking in the hindbrain. These studies therefore reveal both common and independent 

roles for olig2 in development of somatic motor neurons and oligodendrocytes of the 

hindbrain. 
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Introduction 

In the spinal cord of vertebrate embryos, motor neurons and most 

oligodendrocytes, the myelinating cell type of the central nervous system, have a 

common origin. Dividing, neuroepithelial precursors that occupy ventral spinal cord and 

express the transcription factor Olig2 produce first motor neurons and then 

oligodendrocyte progenitor cells (OPCs), as well as some ventral interneurons, 

astrocytes and ependymal cells (Lu et al., 2000; Takebayashi et al., 2000; Zhou et al., 

2000; Park et al., 2004; Masahira et al., 2006). These precursors, called pMN cells, are 

specified by graded distribution of the morphogen Sonic Hedgehog (Ericson et al., 

1997a; Briscoe and Ericson, 1999; Jessell, 2000), and Olig2 function is necessary for 

development of both motor neurons and OPCs (Park et al., 2002; Lu et al., 2002; Zhou 

and Anderson, 2002; Takebayashi et al., 2002). In mouse embryos deficient for Olig2 

and the related Olig1 gene, pMN precursors instead produce V2 interneurons and 

astrocytes (Zhou and Anderson, 2002). Some OPCs also arise within dorsal spinal cord, 

and in dorsal hindbrain, independent of motor neuron origins (Vallstedt et al., 2005; Cai 

et al., 2005; Sussman et al., 2000; Cameron-Curry and Le Douarin, 1995; Fogarty et al., 

2005). 

 The developmental relationship of motor neurons and oligodendrocytes in the 

hindbrain has not been investigated as thoroughly as in spinal cord. Hindbrain, or 

cranial, motor neurons form three classes, visceral, somatic and branchiomotor, based 

upon their synaptic targets and columnar organization, and develop as groups within 

segmentally iterated rhombomeres (r) (Guthrie, 2007; Chandrasekhar, 2004). Many 

hindbrain oligodendrocytes arise from ventral neuroepithelium (Ono et al., 1997; Davies 

and Miller, 2001; Vallstedt et al., 2005), but these cells may originate from discrete focal 

clusters rather than from a continuous longitudinal domain as in the spinal cord (Spassky 

et al., 1998; Miller, 2002; Perez Villegas et al., 1999). The correlation of these putative 
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focal clusters to hindbrain motor neuron origins is not known. Notably, somatic cranial 

motor neurons fail to develop in Olig2 mutant mouse embryos, or in embryos lacking 

functions of Olig2 and the related Olig1 gene, whereas other motor neuron classes 

appear to form normally (Zhou and Anderson, 2002; Lu et al., 2002). Olig1;Olig2 mutant 

mice also lack all hindbrain oligodendrocytes (Zhou and Anderson, 2002). Whether 

hindbrain oligodendrocytes arise from Olig+ precursors that also produce somatic motor 

neurons, or somatic motor neurons and oligodendrocytes have independent 

requirements for Olig gene function has not been resolved.         

Here we report an investigation of hindbrain motor neuron and oligodendrocyte 

development using zebrafish as a model system. Through a combination of gene 

expression analysis, fate mapping and time-lapse imaging, we determined that 

abducens motor neurons and some oligodendrocytes arise from common olig2+ 

precursors in r5 and r6, but that all other hindbrain motor neurons and oligodendrocytes 

appear to develop independently of each other. In the absence of olig2 function, r5 and 

r6 olig2+ precursors are not specified for neuronal or glial fates but maintain their 

neuroepithelial characteristics.   

 

Materials and Methods 

 

Wild-type and transgenic zebrafish 

Wild-type and transgenic fish were raised either in the Vanderbilt University 

Zebrafish Facility or the University of Colorado Denver Facility and embryos collected 

from pair matings. The embryos, raised at 28.5°C, were staged according to 

morphological criteria (Kimmel et al., 1995) and hours post-fertilization (hpf). We used 

the following transgenic lines: Tg(olig2:egfp)vu12 (Shin et al., 2003), Tg(isl1:egfp) 

(Higashijima et al., 2000), Tg(olig2:DsRed2)vu19 (Kucenas et al., 2008) and 
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Tg(nkx2.2a:megfp)vu17 (Kirby et al., 2006). The Tg(olig2:Kaede)VU85 transgenic line was 

produced using the same strategy that created the Tg(olig2:olig2) and Tg(olig2:DsRed2) 

lines (Shin et al., 2003; Kucenas et al., 2008).  

 

In situ RNA hybridization 

The following previously described RNA probes were used: egr2b (also known as 

krox20) (Oxtoby and Jowett, 1993), ngn1 (Blader et al., 1997), isl1 (Inoue et al., 1994), 

sox10 (Dutton et al., 2001), olig2 (Park et al., 2002), plp/dm20 (Park et al., 2002), mbp 

(Brosamle and Halpern, 2002), hoxb1a (McClintock et al., 2002), hoxb3a (Hadrys et al., 

2004), hoxd4a (Moens and Prince, 2002),  gfp, sdf1a and sdf1b. Embryos were fixed in 

4% paraformaldehyde (PFA) and then stored in 100% methanol at –20°C. The in situ 

RNA hybridization was performed as previously described (Hauptmann and Gerster, 

2000) followed by a color reaction with BM purple (Roche Diagnostics). For double RNA 

labeling probes were labeled with either digoxygenin or fluorescein. The first probe was 

detected with the appropriate antibody conjugated to alkaline phosphotase and followed 

by a color reaction with BM purple. Washing the embryos with 0.1M glycine, pH 2.2, 

followed by a 20 min incubation with 4% PFA inactivated the first antibody and the 

appropriate second antibody was then applied and developed with a solution of 

INT/BCIP (Roche Diagnostics). Once developed, the embryos were dissected from the 

yolk and mounted in 70% glycerol for whole mount imaging on bridged cover-slips. All 

images were captured using Openlab software (Improvision) using an Olympus AX70 

microscope equipped with DIC optics and a Retiga Exi 1300 color digital camera. Once 

captured, images were imported into Adobe Photoshop and adjustments were limited to 

contrast, levels, color matching settings and cropping. 
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Immunocytochemistry 

 

Primary and secondary antibodies used 

For immunocytochemistry we used the following primary antibodies: mouse anti-

Isl (39.4D5, 1:100; Developmental Studies Hybridoma Bank (DSHB)), mouse anti-Zn8 

(1:1000; DSHB), mouse anti-BrdU (G3G4, 1:200; DSHB), rabbit anti-Sox10 (1:500) 

(Park et al., 2004), rabbit anti-Pax2 (1:100; Berkeley Antibody Company), mouse anti-

Pax7 (1:25 DSHB), mouse anti-Nkx6.1 (1:1000; DSHB), rabbit anti-GABA (1:1000; 

Chemicon International INC), mouse anti-GFAP (1:400; Sigma), mouse anti-Zrf1 (1:250; 

DSHB), mouse anti-HuC (1;100; Molecular Probes) and rabbit anti-Calretinin (1:1000; 

Swant). For fluorescent detection, the following Alexa Fluro secondary antibodies were 

used: 568 goat anti-mouse, 568 goat anti-rabbit, 647 goat anti-mouse, and 647 goat 

anti-rabbit (all at 1:200; Molecular Probes). 

 

Single antibody or two antibodies raised in different species on section 

Embryos were fixed in 4% AB fix (4% paraformaldehyde (PFA)), 8% sucrose, 1x 

PBS) for 2 hr at room temperature (RT) or overnight at 4°C. Embryos for sectioning were 

embedded in 1.5% agar/5% sucrose, frozen with 2-methyl-butane chilled by immersion 

in liquid nitrogen, and sectioned using a cryostat microtome (10 μm). Sections were re-

hydrated with 1x PBS and pre-blocked for 30 min in 2% sheep serum/BSA-1x PBS. The 

sections were incubated with primary antibody overnight at 4°C, washed extensively with 

1x PBS and incubated with the appropriate fluorescent secondary antibody for 2 hr at 

RT. Once the secondary antibody was washed off sections were covered with 

Vectashield (Vector Laboratories) and then cover-slips. 
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Whole mount antibody labeling 

Embryos for whole mount imaging were fixed as above and pre-blocked with 

10% sheep serum/BSA-1x PBS for 1 hr at RT. The embryos were incubated in primary 

antibody for 24 hr at 4°C, washed semi-continuously with 1x PBS with 0.2x Trition 

(PBSTx) for 2 hr at RT, and then incubated with the secondary antibody for 12 hr at 4°C, 

followed by 3 hr of semi-continuous washes with 1x PBSTx. These embryos were then 

dissected from the yolk and mounted on bridged cover-slips in 70% glycerol for imaging.  

 

Two antibodies raised in the same species 

Embryos were fixed as described above. The strongest antibody was applied first 

and a 568 Alexa Fluro secondary in the appropriate animal was used. Each washing 

step was increased in time to insure all unbound antibody was removed; for labeling on 

sections the primary antibody incubation is followed by at least an hour wash with 1x 

PBS and for whole mount this wash is at least 3 hours with 1x PBSTx. The wash 

following the secondary antibody labeling was at least 45 min for sections and at least 4 

hours for whole mount embryos. The sections or whole mount embryos were imaged 

and processed as described below. 

 

Whole mount antibody labeling following in situ RNA hybridization 

Embryos for whole mount in situ RNA hybridization followed by whole mount 

antibody labeling were fixed as above in 4% AB fix for 2 hrs at RT. The in situ RNA 

hybridization was performed as described in the previous section, however the embryos 

were not treated with 100% methanol. Once the color reaction with BM purple concluded 

the embryos were washed with 1x PBS with % Tween (PBSTw) for two 5 min washes. 
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The embryos were then fixed in 4% PFA for 20 min to de-active the alkaline 

phosphotase. The fix was washed off with 1x PBSTx followed by 10% block solution for 

1 hr. The rest of the whole mount antibody was performed as described above. 

Following in situ RNA labeling and antibody labeling, embryos were dissected from the 

yolk and mounted on bridged cover-slips in 70% glycerol for imaging. The DIC in situ 

RNA hybridization image was overlapped with the fluorescent image in Photoshop. 

Images were exported and analyzed as described below. 

 

Imaging 

All imaging was conducted on a Zeiss Axiovert 200 inverted microscope 

equipped with either a 40x oil immersion objective (NA=1.3) or 20x dry objective 

(NA=0.75), mounted on a Piezo drive, and a PerkinElmer Ultraview ERS Live Cell 

Imager. Images were exported and analyzed using Volocity (Improvision) and Adobe 

Photoshop. Image adjustments were limited to level settings, contrast and cropping. 

 

Bromodeoxyuridine (BrdU) labeling 

 Embryos were manually dechorionated and incubated with 10 mM BrdU in 10% 

DMSO in embryo medium for 20 min on ice. For longer incubations, a 20 min pulse on 

ice was followed by incubation with 10 mM BrdU solution in embryo medium at 28.5°C.  

The embryos were then fixed using 4% PFA in PBS and sectioned as described above. 

Prior to anti-BrdU immunocytochemistry the sections were treated for 30 min with 2M 

HCl. All sections were imaged using the Zeiss Axiovert 200 microscope described 

above. 

For BrdU labeling in conjunction with another primary antibody labeling, embryos 

were fixed and treated with BrdU as described above. For the primary antibody labeling 
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step a second primary antibody was added at the appropriate concentration. The rest of 

the labeling procedure was conducted and imaged as described above.  

 

Antisense morpholino oligonucleotide injections 

An antisense morpholino (MO) oligonucleotide with the sequence 5’-

ACACTCGGCTCGTGTCAGAGTCCAT-3’ (Gene Tools, LLC) was designed to the olig2 

translation start site. We also used a Standard Control MO (Gene Tools, LLC).  Both 

morpholinos were re-suspended in distilled water for a stock solution of 3 mM. The stock 

solution was further diluted with water and phenyl red and 1-2 ng was injected into the 

yolk of one- to two-cell stage embryos.  

 

Conditional expression experiments 

The plasmid p(hsp70l:olig2)Tol2 was constructed by subcloning olig2 cDNA into 

a vector carrying the zebrafish hsp70l heat-responsive promoter (Shoji et al., 1998) and 

recognition sequences for Tol2 transposase (Kawakami, 2004). Newly fertilized eggs 

produced by Tg(olig2:egfp) or Tg(olig2:DsRed2) adults were injected with a solution 

containing 0.1 μg/μl of the plasmid and 0.3 μg/μl in vitro synthesized Tol2 mRNA. 

Expression was induced by transferring embryos at selected stages to egg water 

prewarmed to 39°C for 30 min.  

 

Photoconversion 

Tg(olig2:Kaede) embryos were grown in embryo medium, containing 0.003% 

phenyl-thiourea (PTU) to prevent the formation of dark pigment, at 28.5C. They were 

kept in the dark to minimize photoconversion of the Kaede protein by ambient light. To 

photoconvert the Kaede protein, embryos were lightly anesthetized with 3-aminobenzoic 

acid ethyl ester (Tricaine) and immersed in 0.8% low-melting temperature agarose. They 
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were then mounted in either lateral or dorsal orientations in glass-bottom 35 mm Petri 

dishes. Using a Zeiss Axioskop 2 FS microscope equipped with a nitrogen pulsed laser, 

405 nm dye cell, yellow beamsplitter, 40x water immersion lens and GFP filter, small 

clusters of Kaede+ cells were photoconverted with ~4s laser pulses. The live embryos 

were then imaged using the confocal microscope described above.  

 

Time-lapse imaging 

The embryos were manually dechorionated at 24 hpf and transferred to embryo 

medium containing PTU. Embryos for time-lapse imaging were anesthetized using 

Tricaine and immersed in 0.8% low-melting temperature agarose. They were then 

mounted in either lateral or dorsal orientations in glass-bottom 35mm Petri dishes. 

Images were captured using a 20x dry (NA=0.75) objective mounted on the confocal 

microscope described above. A heated stage and chamber kept the embryos at 28.5°C 

and Z image stacks were collected every 5-15 min. The data sets were analyzed using 

Volocity software and exported as QuickTime files to create movies. 

 

Results 

 

olig2 expression reveals common precursors for abducens motor neurons and 

oligodendrocytes 

We initiated our studies by using in situ hybridization to determine the distribution 

of olig2 RNA (Park et al., 2002) in the hindbrain of zebrafish embryos. olig2+ cells were 

first evident by 22 hours post fertilization (hpf) at the level of the otic vesicle (data not 

shown). By 28 hpf olig2+ cells were located in two distinct bilateral clusters at the midline 

of the posterior hindbrain (Fig. 2.1A). Using egr2b (previously known as krox20) RNA 

expression as a marker for r3 and r5 (Oxtoby and Jowett, 1993), we determined that 
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these olig2+ clusters occupy r5 and r6 (data not shown). By 40 hpf a third olig2+ 

population appeared just posterior to the original two (Fig. 2.1B). Subsequently, olig2 

expression expanded anteriorly and posteriorly along the midline of the hindbrain (Fig. 

1C,D) and by 3 days post fertilization (dpf) appeared throughout the hindbrain (data not 

shown). 

Enhanced Green Fluorescent Protein (EGFP) driven by olig2 regulatory DNA 

precisely recapitulates olig2 expression in the spinal cord (Shin et al., 2003). To 

compare reporter gene expression to endogenous olig2 expression in the hindbrain, we 

performed in situ hybridization to detect egfp RNA in Tg(olig2:egfp) transgenic embryos. 

Similar to olig2, egfp RNA was first evident in two distinct clusters in r5 and r6 and then 

along the anterioposterior length of the hindbrain (Fig. 2.1E-H). Therefore, as in the 

spinal cord, transgenic reporter gene expression is an accurate indicator of hindbrain 

olig2 expression.   

To compare the distribution of olig2+ cells to the distribution of hindbrain motor 

neurons, we examined the expression of isl1 RNA, a motor neuron marker (Korzh et al., 

1993). isl1 was first detected at 16 hpf (data not shown) in the anterior hindbrain. By 28 

hpf distinct clusters of isl1+ cells were located along the anterioposterior axis, 

corresponding to cranial nerves V, VII, and X (Fig. 2.1I), as previously described 

(Higashijima et al., 2000; Chandrasekhar et al., 1997). Cranial nerves V and X arise and 

remain in the rhombomeres of their birth, r2/3 and caudal hindbrain respectively, 

whereas the cell bodies for cranial nerve VII are born in r4 and subsequently migrate into 

r6/r7 (Chandrasekhar, 2004). At 40 hpf cranial nerve VI was present in r5 and r6 and we 

observed the cell bodies of cranial nerve VII along the midline as they migrated from r4 

to r6 and r7 (Fig. 2.1J). Migration was completed soon after and the final pattern of  
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hindbrain motor neurons, revealed by isl1 expression, was evident at 48 and 58 hpf (Fig. 

2.1K-M).   

We also used in situ RNA hybridization to detect the expression of sox10, which 

specifically marks oligodendrocyte lineage cells in the CNS, including oligodendrocyte 

progenitor cells (OPCs), dividing and migratory cells that give rise to myelinating 

oligodendrocytes (Kuhlbrodt et al., 1998). At 28 hpf, no sox10 expression was evident 

indicating that, like spinal cord, OPCs are produced after motor neurons (data not 

shown). By 40 hpf, a small cluster of sox10+ cells was apparent at about the position of 

r5 (Fig. 2.1N). Subsequently, sox10 expression expanded anteriorly and posteriorly 

similar to olig2 expression (Fig. 2.1O,P).   

 The correlation of olig2, isl1 and sox10 expression in r5 and r6 raised the 

possibility that these rhombomeres are sites of common precursors for oligodendrocytes 

and motor neurons. As a first test of this possibility, we examined the morphology of 

olig2+ cells marked by EGFP expression in Tg(olig2:egfp) embryos. EGFP fluorescence 

was evident by 33 hpf in two prominent clusters occupying r5 and r6 (Fig. 2.2A). This 

pattern is similar to that revealed by in situ RNA hybridization, but somewhat later, 

reflecting the time necessary to translate and fold EGFP. Transverse and sagittal 

sections revealed that olig2+ cells were ventral and medial within the hindbrain and 

extended fine processes to the pial surface, characteristic of neuroepithelial cells (Fig. 

2.2E,I). By 48 hpf, olig2+ cells appeared at the hindbrain midline both anterior and 

posterior to the r5 and r6 clusters and some cells with elongated morphologies occupied 

more lateral positions (Fig. 2.2B). High magnification views of sections showed some 

cells in the r5/r6 clusters with processes extending to the pial surface and others with 

thicker processes that exited the hindbrain ventrally and turned anteriorly, suggestive of 

axonal projections (Fig. 2.2F,J). Other cells, located outside the clusters, had very fine  
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processes characteristic of OPCs. By 58 hpf, the r5 and r6 clusters were less distinct 

and more olig2+ cells occupied lateral positions (Fig. 2.2C). Fewer neuroepithelial cells  

were evident within the clusters but cells with ventrally and anteriorly extending 

processes were still present (Fig. 2.2G,K). By 3 dpf, the r5 and r6 olig2+ clusters were no 

longer visible but individual cells were dispersed throughout the hindbrain (Fig. 2/2D). 

High magnification views showed that olig2+ cells had OPC-like morphologies, extending 

numerous fine processes to form a dense meshwork (Fig. 2.2H,L).   

 The static images presented above show that olig2+ cells are first at the ventral 

medial neural tube and then occupy the entire hindbrain. To better understand how 

olig2+ cells become distributed, we performed time-lapse imaging. This revealed that 

some olig2+ cells with OPC morphologies migrated from the r5 and r6 clusters and 

confirmed that other cells within the clusters were the source of apparent axons that 

extended ventrally and then anteriorly (Supplementary Movie 1). Additionally, many 

other olig2+ OPC-like cells emerged individually along the anterioposterior axis of the 

hindbrain, both within the ventral and dorsal neural tube, and subsequently migrated 

along the dorsoventral and anterioposterior axes (Supplementary Movies 1 and 2). 

These observations suggested that olig2+ neuroepithelial precursors in r5 and r6 

produce some OPCs and motor neurons but that many OPCs arise from olig2– 

precursors throughout the remainder of the hindbrain.  

 By morphology, hindbrain olig2+ cells appeared to include both motor neurons 

and OPCs. To obtain supporting evidence and determine the motor neuron identities we 

labeled Tg(olig2:egfp) embryos with various cell type specific markers. At 40 hpf, no 

cells were labeled with anti-Sox10 antibody (Park et al., 2005) indicating that OPCs were 

not yet specified (Fig. 2.3A). Sox10+ cells appeared by 48 hpf, and each cell was also 

olig2+ (Fig. 2.3B). All olig2+ multiprocess cells outside the r5 and r6 clusters were 

Sox10+, confirming their identity as OPCs. Notably, some r5 and r6 cluster cells also  
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expressed Sox10 (Fig. 2.3B), consistent with the possibility that neuroepithelial cells 

within the clusters are precursors for OPCs. By 64 hpf, nearly every olig2+ cell in the 

hindbrain was  

Sox10+, with only a few cells with long, ventrally extending processes remaining Sox10– 

(Fig. 2.3C). By 3 dpf, olig2 and Sox10 expression completely coincided (Fig. 2.3D) 

indicating that all hindbrain Sox10+ OPCs express olig2.   

 We next used anti-Isl antibody to label all motor neuron cell bodies in the 

hindbrain of Tg(olig2:egfp) embryos (Chandrasekhar et al., 1997). Whereas no olig2+ 

cells expressed Isl at 33 hpf, numerous cells within the r5 and r6 olig2+ clusters were 

labeled by anti-Isl antibody at 48 hpf (Fig. 2.3E,F). However, many Isl+ cells in r5 and r6 

did not express olig2 at 48 hpf and 56 hpf (Fig. 2.3F,G), nor did any other Isl+ motor 

neurons in midbrain or hindbrain express olig2 between 24 hpf and 3 dpf (Supplemental 

Fig. 2.1A-D), consistent with the observation that, in mice, Olig2 function is necessary for 

development of only a subset of motor neurons (Lu et al., 2002; Zhou and Anderson, 

2002; Pattyn et al., 2003; Gaufo et al., 2003). By 3 dpf double labeling was no longer 

evident (Fig. 2.3H), suggesting that, as in the spinal cord, motor neurons down-regulate 

olig2 expression.  

Isl protein is localized to nuclei and so anti-Isl labeling does not reveal other 

features of cell identity except for position within the neural tube. Consequently, to more 

definitively identify olig2+ motor neurons, we examined Tg(isl1:egfp); Tg(olig2:DsRed2) 

transgenic embryos. EGFP expressed by the isl1 transgene is cytoplasmic, permitting 

visualization of motor neuron cell bodies and their axons (Higashijima et al., 2000). 

Although this particular transgenic reporter labels most cranial motor neurons, it does 

not label abducens motor neurons (Higashijima et al., 2000), which are located in r5 and 

r6 in zebrafish (Moens et al., 1996). In contrast to our anti-Isl antibody labeling results, at 

48 hpf and 58 hpf the transgenes were not expressed in the same cells (Fig. 2.3I-J). This 
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raised the possibility that the r5 and r6 olig2+ motor neurons are abducens motor 

neurons. To test this, we next used Zn8 antibody, which recognizes the cell surface 

protein Neurolin, also known as Dm-Grasp (Kanki et al., 1994; Chandrasekhar et al., 

1997). Zn8 did not label any olig2+ cells at 32 hpf, however, by 36 hpf some double 

labeling was evident (Fig. 2.3K,N). At 48 and 60 hpf, Zn8 clearly labeled a subset of 

olig2+ cells, including their ventral projections, within the r5 and r6 clusters (Fig. 

2.3L,O,P). Consistent with the Isl antibody labeling, very little double labeling with Zn8 

persisted to 3 dpf (Fig. 2.3M,P). Therefore, olig2+ r5 and r6 cells include abducens motor 

neurons. Altogether, these data indicate that, in the zebrafish hindbrain, olig2 expression 

marks all OPCs but only abducens motor neurons.  

 The close proximity of olig2+ abducens motor neurons and some OPCs in r5 and 

r6 raised the possibility that they arise from common populations of dividing, olig2+ 

neuroepithelial precursors. To test this, we treated Tg(olig2:egfp) embryos with the 

thymidine analog BrdU to label cells in S phase. olig2+ BrdU+ cells were evident in r5 and 

r6 at 30 and 33 hpf, but by 48 hpf significantly fewer cells incorporated BrdU throughout 

the hindbrain (Fig. 2.4A–C), reflecting a dramatic reduction in the dividing cell population 

as previously reported (Lyons et al., 2003). By 56 hpf, we found no olig2+ BrdU+ cells in 

ventromedial r5 and r6, which coincides with the loss of olig2+ cells with neuroepithelial 

morphology noted above. Instead, the only olig2+ cells labeled by BrdU at this time were 

OPCs (Fig. 2.4D). These data show that olig2+ r5 and r6 cells divide, consistent with the 

possibility that these cells are precursors for both abducens motor neurons and OPCs.  

We next used fate mapping to directly investigate the fates of olig2+ r5 and r6 

cells. To do so we created a Tg(olig2:Kaede) transgenic line, which expresses the 

Kaede photoconvertable fluorescent protein under the control of olig2 regulatory DNA. 

As expected, photoconversion of either r5 or r6 clusters labeled cells with axonal 

projections characteristic of abducens motor neurons (Fig. 2.5A–D,E–H). Additionally, by  
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60 hpf a small number of photoconverted cells with OPC morphologies were outside of 

the original clusters (Fig. 2.5C–D,G–H). Notably, many OPCs expressed only the green 

form of Kaede, indicating that they did not arise from a photoconverted cluster, even 

when both clusters were photoconverted (data not shown). Therefore, r5 and r6 olig2+ 

precursors produce abducens motor neurons and a subset of hindbrain OPCs 

 

olig2 is required for OPC and abducens motor neuron specification 

To determine the requirement of olig2 in OPC and motor neuron specification in 

the hindbrain, we injected into newly fertilized Tg(olig2:egfp) eggs an olig2 antisense 

morpholino (MO) designed to block translation of endogenous olig2 transcripts but not of 

egfp mRNA driven by the transgene. This allowed us to assess the fates of cells that 

express olig2 in the absence of olig2 function. As we showed previously (Park et al., 

2002), injected embryos produced few spinal cord motor neurons and oligodendrocytes 

(data not shown). 33 and 48 hpf MO-injected embryos had few olig2+ cells in the 

hindbrain outside of the r5 and r6 clusters  (Fig. 2.6A–D), suggesting that they had a 

deficit of OPCs. The r5 and r6 olig2+ clusters were present in MO-injected embryos, 

however, most of the cells appeared to have neuroepithelial morphologies, and axonal 

morphologies characteristic of abducens motor neurons were not evident (Fig. 2.6E–H). 

Labeling MO-injected embryos with anti-Sox10 antibody confirmed the near absence of 

hindbrain OPCs, both within and outside of the r5/r6 olig2+ clusters (Fig.  2.6I–L, Fig. 

2.7A). Although the general pattern of all other Isl+ cranial motor neurons appeared 

unaffected, including the anterior somatic motor neurons, (Fig.  2.6M–P, Supplemental 

Fig. 2.1E,F), MO-injected embryos had few Isl+ olig2+ cells in r5 and r6, indicating the 

absence of only abducens motor neurons. Consistent with this, MO-injected embryos 

also had a deficit of Zn8+ olig2+ r5 and r6 cells between 48 and 56 hpf (Fig. 2.6Q–X, Fig. 

2.7B). To further confirm the loss of OPCs and abducens motor neurons in MO-injected  
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embryos, we used the Tg(olig2:Kaede) line to determine the fate of olig2+ cells. 

Consistent with the antibody labeling, we found an absence of photoconverted cells 

outside of the original r5/r6 clusters and none of the photoconverted cells had axonal 

projections characteristic of abducens motor neurons (Supplemental Fig. 2.2).  

Therefore, olig2 is required for specification of abducens motor neurons, in addition to 

OPCs.  

In mice, mutation of Olig genes alters dorsoventral patterning of the spinal cord 

so that cells that would normally have pMN precursor identity produce v2 interneurons 

and astrocytes instead of motor neurons and oligodendrocytes (Zhou and Anderson, 

2002; Lu et al., 2002). Therefore, we sought to determine whether r5 and r6 olig2+ 

precursors are similarly specified for alternative neuronal and glial fates in the absence 

of olig2 function. To test this, we first labeled embryos with anti-HuC antibody, which 

marks all newly specified neurons (Marusich et al., 1994). Consistent with anti-Isl 

labeling, a subset of r5 and r6 olig2+ cells in wild-type embryos was HuC+ at 56 hpf but 

not at 33 hpf or 3 dpf (Fig. 2.8A,C and data not shown). By contrast, MO-injected 

embryos had very few r5 and r6 olig2+ HuC+ cells at any stage (Fig. 2.8B,D and data not 

shown). Next, we labeled wild-type and MO-injected embryos with Zrf1 antibody, which 

marks radial glia (Trevarrow et al., 1990) and GFAP antibody, which marks radial glia 

and astrocytes (Marcus and Easter, Jr., 1995). Neither antibody labeled olig2+ cells in 

wild-type or MO-injected embryos (Fig. 2.8E,F and data not shown). Therefore, in the 

absence of olig2 function, r5 and r6 olig2+ precursors fail to differentiate as neurons or 

glial cells. 

We further investigated hindbrain patterning using antibodies that recognize 

Pax2 and Nkx6.1, and the transgenic reporter Tg(nkx2.2a:megfp) as markers of 

hindbrain cell populations. In wild-type embryos, nkx2.2a reporter expression marks 

ventral hindbrain cells that border olig2+ cells (Fig. 2.8G,I). Nkx6.1+ cells surround olig2+  
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cells and, in turn, are surrounded by Pax2+ cells (Fig. 2.8K,M). Although hindbrain 

patterning appears slightly perturbed in olig2 MO-injected embryos, the relationship of 

these gene expression patterns to one another remained unchanged (Fig. 2.8G–N). The 

failure of r5 and r6 olig2+ hindbrain cells to produce neurons and glial cells in the 

absence of olig2 function raised the possibility that they remain as precursor cells.  

To test this we treated wild-type and MO-injected embryos with BrdU to mark 

cells in S-phase. At 33 hpf, there was no difference in the number of olig2+ r5 and r6 

cells that incorporated BrdU in wild-type and MO-injected embryos (Fig. 2.8O,P). By 

contrast, whereas the number of olig2+ cells that incorporated BrdU in wild type declined 

by 48 hpf and 56 hpf, the number of olig2+ S-phase cells remained high in MO-injected 

embryos (Fig. 2.8Q–U). These data indicate that r5 and r6 neuroepithelial precursors 

require olig2 function to exit the cell cycle and differentiate.  

In chick spinal cord, ectopic expression of Olig2 in combination with Nkx2.2, but 

not alone, can promote premature and ectopic formation of oligodendrocytes (Zhou et 

al., 2001). Additionally, ectopic expression of Olig2 in chick and zebrafish spinal cord 

causes dorsal expansion of the motor neuron population (Mizuguchi et al., 2001; Novitch 

et al., 2001; Park et al., 2002). To test the capacity of olig2 to promote formation of 

oligodendrocytes and motor neurons in the zebrafish hindbrain, we injected newly 

fertilized eggs with a plasmid that permits time-dependent expression of olig2 controlled 

by a heat-responsive promoter. We induced expression in separate sets of embryos at 

16 and 24 hpf, fixed them either 2, 12 or 16 hr later and performed Sox10 and Isl 

immunocytochemistry to detect OPCs and motor neurons, respectively. From a total of 

66 experimental embryos, we never observed prematurely or ectopically produced 

OPCs or motor neurons (data not shown). Therefore, as in the spinal cord, olig2 is 

necessary, but apparently not sufficient, for OPC and motor neuron specification in the 

hindbrain. 
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Discussion 

 

olig2 expression identifies neural precursors that produce abducens motor neurons and 

a subset of hindbrain oligodendrocytes 

The best characterized source of OPCs are pMN precursors, which occupy 

ventral spinal cord, express Olig genes and produce motor neurons, some interneurons, 

astrocytes and ependymal cells in addition to OPCs (Zhou and Anderson, 2002; Lu et 

al., 2002; Novitch et al., 2001; Masahira et al., 2006). Subsequently, OPCs migrate 

radially, dorsoventrally and longitudinally to reach their target axons, whereupon they 

differentiate as mature oligodendrocytes. A smaller number of oligodendrocytes also 

originates from dorsal spinal cord, indicating that neither Olig gene expression by 

neuroepithelial precursors nor shared lineage with motor neurons is obligatory for OPC 

formation (Sussman et al., 2000; Cai et al., 2005; Vallstedt et al., 2005; Fogarty et al., 

2005). 

 The origins of hindbrain OPCs have not been as clearly defined as in spinal cord. 

Expression of the oligodendrocyte lineage cell marker plp/dm20 suggested that OPCs 

arise from segmentally iterated domains along the hindbrain ventral ventricular zone of 

chick and mouse embryos, reflecting a rhombomeric organization (Perez Villegas et al., 

1999; Le Bras et al., 2005; Timsit et al., 1995). Labeling of chick embryos with the O4 

antibody, which also marks oligodendrocyte lineage cells (Ono et al., 1997; Orentas and 

Miller, 1996) likewise implicated a ventral ventricular zone origin of oligodendrocytes 

within the hindbrain as well as other more lateral and dorsal origins (Davies and Miller, 

2001). At E13.5, mouse embryos express Olig1 and Olig2 within a ventral domain that 

extends along the entire anterioposterior axis of the hindbrain, with the exception of r1, 

and within the more dorsal alar plate (Vallstedt et al., 2005). Both ventral and dorsal 
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hindbrain explants produce oligodendrocytes, providing strong evidence that hindbrain 

oligodendrocytes have multiple origins (Davies and Miller, 2001; Vallstedt et al., 2005).  

 Whereas spinal motor neurons arise from pMN precursors to form columns along 

the length of the cord, cranial motor neurons have different dorsoventral origins and are 

organized as discrete nuclei within the midbrain and hindbrain (Guthrie, 2007; 

Chandrasekhar, 2004). Like spinal motor neurons, somatic cranial motor neurons 

emerge from the pMN precursor domain but branchiomotor and visceral cranial motor 

neurons originate from more ventral p3 precursors (Pattyn et al., 2003). Somatic motor 

neuron nuclei consist of three that innervate eye muscles, oculomotor, trochlear and 

abducens, and one, hypoglossal, that innervates tongue muscles (Guidato et al., 2003). 

The oculomotor and trochlear motor neurons occupy midbrain and r1, respectively, and 

abducens motor neurons are located in r5 of mice and r5 and r6 of chick and zebrafish 

(Guidato et al., 2003; Moens and Prince, 2002; Guthrie, 2007). Hypoglossal motor 

neurons form within r8 of mouse and chick but may be absent from zebrafish 

(Chandrasekhar, 2004).  

 These characterizations of oligodendrocyte and motor neuron origins reveal a 

potentially interesting difference between spinal cord and hindbrain. In the spinal cord 

apparently all spinal cord pMN precursors produce both OPCs and motor neurons (Zhou 

and Anderson, 2002; Lu et al., 2002; Masahira et al., 2006; Park et al., 2002; Park et al., 

2004). In the hindbrain, some pMN precursors, for example those in r5 and r7 in mouse, 

might similarly produce somatic motor neurons and OPCs whereas others might give 

rise only to OPCs. Our investigation of cranial motor neuron and hindbrain OPC 

development in zebrafish now provides evidence for this possibility. In the spinal cord 

expression of olig2 appears first in an uninterrupted column of dividing, neuroepithelial 

precursors and is then maintained by descendent OPCs and oligodendrocytes. By 

contrast, in the zebrafish hindbrain olig2 RNA is first evident within two clusters of cells 
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in r5 and r6. Only later do more anterior and posterior hindbrain cells begin to express 

olig2. EGFP expression driven by an olig2 transgene revealed differences in the 

morphologies of cells along the anterioposterior hindbrain axis as they initiated olig2 

expression. Only the cells that expressed olig2 earliest in r5 and r6 had morphologies 

characteristic of neuroepithelial cells, which we confirmed by showing that they 

incorporate BrdU. EGFP+ cells in all other rhombomeres had morphologies and 

migratory behaviors characteristic of OPCs. Examination of transgenic reporter gene 

expression and labeling by cell-type-specific antibodies revealed that, of the different 

cranial motor neuron classes only abducens motor neurons express olig2. The close 

association of abducens motor neurons and some OPCs to olig2+ neuroepithelial cells in 

r5 and r6 suggested that the latter serve as multipotent precursors. The results of our 

fate mapping experiments, using photoconversion of a transgenic reporter, are 

consistent with this although it is important to note that because we did not label single 

cells we do not know if the same neuroepithelial precursor can produce motor neurons 

and OPCs as they do in the spinal cord (Park et al., 2004). In all other regions of the 

hindbrain, both ventral and dorsal, olig2 expression is initiated in OPCs and not the 

neuroepithelial precursors from which they arise. Therefore, our results indicate that the 

timing of olig2 expression within a cell lineage correlates with cell fate potential. Among 

hindbrain neuroepithelial precursors, those that express olig2 produce both somatic 

motor neurons and oligodendrocytes whereas those that do not express olig2 give rise 

to OPCs but not somatic motor neurons. This raises the possibility that differences in 

expression of Olig2 genes underlie species-specific distributions of somatic motor 

neurons.         
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olig2 is required for cell cycle exit and specification of motor neuron-OPC precursors 

Olig1/Olig2 gene functions have already been shown to be necessary for 

development of oligodendrocytes and motor neurons, including hindbrain somatic motor 

neurons (Zhou and Anderson, 2002; Lu et al., 2002; Gaufo et al., 2003; Pattyn et al., 

2003). In the spinal cord of mouse embryos lacking both gene functions, pMN 

precursors give rise to V2 interneurons and astrocytes rather than motor neurons and 

oligodendrocytes (Zhou and Anderson, 2002) suggesting that pMN precursors take the 

fate of more dorsal p2 precursors. By contrast, we found that in zebrafish embryos 

lacking olig2 function, r5 and r6 precursors do not adopt alternative neuronal or glial 

fates, but instead continue to divide and maintain their neuroepithelial characteristics. 

Notably, overexpression of Olig2 in chick reduced the number of spinal cord cells that 

incorporated BrdU, and increased the number that expressed the p27 cyclin dependent 

kinase inhibitor and a pan-neuronal marker (Novitch et al., 2001). Additionally, Olig1–/–

;Olig2–/– mouse embryos had BrdU+ cells located outside the ventricular zone suggesting 

that pMN cells failed to exit the cell cycle prior to their migration to the marginal zone 

(Zhou and Anderson, 2002). Therefore, in both spinal cord and hindbrain Olig gene 

expression in neuroepithelial precursors promotes cell cycle exit and neurogenesis. This 

may occur through Ngn2, because pMN cells in Olig1–/–;Olig2–/– mouse embryos lack 

Ngn2 expression (Zhou and Anderson, 2002), over-expression of Olig2 promotes 

ectopic Ngn2 expression (Novitch et al., 2001) and Ngn2 promotes cell cycle exit and 

neurogenesis (Farah et al., 2000; Novitch et al., 2001). Formation of OPCs must then 

require that Ngn2 function is repressed within a subset of Olig+ precursors. One likely 

mechanism is signaling mediated by Notch receptors, because Notch activity is 

reiteratively required during development for specification of OPCs from pMN precursors 

(Park and Appel, 2003; Kim et al., 2008).  
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Olig2 function is required for formation of all oligodendrocytes, whether they arise 

from Olig+ or Olig– precursors. This suggests that, in addition to the role of Olig2 in 

forming the pMN precursor domain and promoting the transition of dividing precursors to 

post-mitotic motor neurons, it has an independent function in promoting differentiation of 

oligodendrocyte lineage cells. Consistent with this, over-expression studies in chick 

indicated that Olig2 can work with the zinc finger transcription factor Zfp488 to promote 

precocious Mbp expression (Wang et al., 2006). The specific roles of Olig2 genes in 

neural development are therefore likely to be determined both by transcriptional control 

elements that independently direct Olig2 expression in neural precursors and OPCs and 

cell type specific cofactors that determine the regulatory targets of Olig2 proteins.         
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CHAPTER III 

 

THE ROLE OF OLIG2 EXPRESSING CELLS IN FACIAL MOTOR NEURON 

MIGRATION 

 

Introduction 

 

 Forming a nervous system requires that cells not only be born at the right place 

and time, but often that they also migrate to their correct positions. This process, known 

as neuronal migration, begins with post-mitotic cells segregating from their progenitor 

neighbors, extending a leading process and then moving in a very stereotypical pattern 

to their target location to create the cytoarchitechture of the nervous system (Rakic, 

1990; Rakic, 1999; Hatten, 1999; Marin and Rubenstein, 2003). Neuronal migration, 

which differs from axonal extension that usually occurs after a neuron reaches its final 

location, depends upon the interaction between migrating cells and the surface of their 

neighboring cells (Pearlman et al., 1998). Whereas many of the necessary transcription 

factors and cell surface proteins expressed within migrating cells (Hatten, 1999; Jurata 

et al., 2000; Song, 2007; Guthrie, 2007), as well as the environmental cues that act as 

attractants or repellants have been identified (Ackerman et al., 1997; Robinson et al., 

1997; Birchmeier and Gherardi, 1998; Artigiani et al., 1999; Bloch-Gallego et al., 1999; 

Yee et al., 1999; Alcantara et al., 2000; Brose and Tessier-Lavigne, 2000), how the 

migrating cell actually integrates all this information to follow the correct path and make 

the appropriate directional changes is not well understood. 

 Among known populations of migrating neurons are facial motor neurons, which 

migrate from r4 into r6 and r7 (in zebrafish) (Chandrasekhar et al., 1997; Song, 2007). 

The overall trajectory of facial motor neurons can be broken down into three phases: 
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caudal, lateral, and radial migration, each requiring a unique set of transcription factors 

and cell surface proteins (Song, 2007) (Fig. 1.2). The caudal migration begins with the 

facial motor neuron cell bodes moving in a column located ventromedially from r4 into 

their posterior target rhombomeres (Altman and Bayer, 1982; Ashwell and Watson, 

1983; Auclair et al., 1996; Chandrasekhar, 2004; Song, 2007). At this point, the cell 

bodies turn and migrate out laterally and radially to eventually reach the dorsal neural 

tube (Chandrasekhar, 2004; Song, 2007; Guthrie, 2007). Thus, the facial motor neurons 

must change directions from a caudal migration towards the spinal cord to a lateral 

migration away from the midline and a radial migration toward the pial surface. The 

lateral and radial migration is common among other branchiomotor neurons, such as the 

trigeminal motor neurons, but the caudal migration is a distinctive feature to the facial 

motor neurons. Another unique aspect to the facial motor neurons is that they extend 

their axonal projections anteriorly concurrently with their cell bodies translocating 

posteriorly (Guthrie, 2007; Song, 2007; Chandrasekhar, 2004). Although all facial motor 

neurons are born in r4 and migrate caudally, their target rhombomeres can vary between 

species (Guthrie, 2007; Chandrasekhar, 2004). For example, in zebrafish the facial 

motor neurons migrate into r6 and r7 (Chandrasekhar et al., 1997; Higashijima et al., 

2000) whereas in mouse, shark, lizard and salamander they terminate primarily in r6 

with a few cell bodies located in r5 (Guthrie, 2007; Barbas-Henry, 1982; Roth et al., 

1988; Gilland and Baker, 1993). One exception exists in avian embryos, in which the 

facial motor neurons migrate laterally and radially within r4 (Lumsden and Keynes, 1989; 

Szekely and Matesz, 1993) and only a small subset will migrate caudally into r5 (Jacob 

and Guthrie, 2000). Nevertheless, many of the other aspects of their journey are 

conserved across species.  

Various studies have identified transcription factors, such as Nkx6.1 and Phox2b, 

expressed within the facial motor neurons necessary for this migration (Muller et al., 
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2003; Pattyn et al., 2000; Song et al., 2006). In addition, cell surface proteins, such as 

TAG-1 and Cadherin8, and many members of the non-canonical Wnt pathway are also 

required for proper facial motor neuron migration (Garel et al., 2000; Wada et al., 2006; 

Rohrschneider et al., 2007; Nambiar et al., 2007; Bingham et al., 2002). The majority of 

these non-canonical Wnt proteins function cell non-autonomously, with the exception of 

Prickle1b (Rohrschneider et al., 2007). On the other hand, other studies, using tissue 

transplantation experiments, demonstrate that still unknown factors from r5 and r6 are 

also sufficient for facial motor neuron migration in mouse (Studer, 2001). In addition, 

mutations that perturb theses rhombomeres, such as valentino in fish (Moens et al., 

1996) (kreisler in mouse), cause aberrant facial motor migration (Chandrasekhar et al., 

1997). 

Interestingly, we have found that olig2, which is specifically expressed in r5 and 

r6 while the facial motor neurons are migrating, has a cell non-autonomous effect on 

facial motor neuron migration. The facial motor neuron in embryos injected with a MO 

blocking olig2 translation fail to complete their migration into r6 and r7 and form the 

appropriate clusters in those respective rhombomeres. Instead some the facial motor 

neurons remain in r4 and r5 and appear disorganized. This lead us to hypothesize that 

either olig2, or the cells expressing olig2, serve as a guidepost for the facial motor 

neurons as they migrate through r5 and r6 or there is some chemoattractant 

downstream of olig2 necessary for the caudal migration of the facial motor neurons.  

 

Methods and Materials 

 

Wild-type and transgenic zebrafish 

Wild-type and transgenic fish were raised either in the Vanderbilt University 

Zebrafish Facility or the University of Colorado Denver Facility and embryos collected 

 69 



from pair matings. The embryos, raised at 28.5°C, were staged according to 

morphological criteria (Kimmel et al., 1995) and hours post-fertilization (hpf). We used 

the following transgenic lines: Tg(olig2:egfp)vu12 (Shin et al., 2003), Tg(isl1:egfp) 

(Higashijima et al., 2000) and Tg(olig2:DsRed2)vu19 (Kucenas et al., 2008). 

 

In situ RNA hybridization 

The following previously described RNA probes were used: egr2b (also known as 

krox20) (Oxtoby and Jowett, 1993), isl1 (Inoue et al., 1994), hoxb1a (McClintock et al., 

2002), hoxb3a (Hadrys et al., 2004), hoxd4a (Moens and Prince, 2002), sdf1a and 

sdf1b. Embryos were fixed in 4% paraformaldehyde (PFA) and then stored in 100% 

methanol at –20°C. The in situ RNA hybridization was performed as previously 

described (Hauptmann and Gerster, 2000) followed by a color reaction with BM purple 

(Roche Diagnostics). For double RNA labeling probes were labeled with either 

digoxygenin or fluorescein. The first probe was detected with the appropriate antibody 

conjugated to alkaline phosphotase and followed by a color reaction with BM purple. 

Washing the embryos with 0.1M glycine, pH 2.2, followed by a 20 min incubation with 

4% PFA inactivated the first antibody and the appropriate second antibody was then 

applied and developed with a solution of INT/BCIP (Roche Diagnostics). Once 

developed, the embryos were dissected from the yolk and mounted in 70% glycerol for 

whole mount imaging on bridged cover-slips. All images were captured using Openlab 

software (Improvision) using an Olympus AX70 microscope equipped with DIC optics 

and a Retiga Exi 1300 color digital camera. Once captured, images were imported into 

Adobe Photoshop and adjustments were limited to contrast, levels, color matching 

settings and cropping. 
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Immunocytochemistry 

 

Primary and secondary antibodies used 

For immunocytochemistry we used the following primary antibodies: mouse anti-

Isl (39.4D5, 1:100; Developmental Studies Hybridoma Bank (DSHB)), mouse anti-Zn8 

(1:1000; DSHB), mouse anti-HuC (A21271; 1;100; Invitrogen) and rabbit anti-GFP 

(A11122; 1:500, Invitrogen). For fluorescent detection, the following Alexa Fluro 

secondary antibodies were used: 568 goat anti-mouse, 568 goat anti-rabbit, 647 goat 

anti-mouse, and 647 goat anti-rabbit (all at 1:200; Invitrogen). 

 

Single antibody or two antibodies raised in different species on section 

Embryos were fixed in 4% AB fix (4% paraformaldehyde (PFA), 8% sucrose, 1x 

PBS) for 2 hr at room temperature (RT) or overnight at 4°C. Embryos for sectioning were 

embedded in 1.5% agar/5% sucrose, frozen with 2-methyl-butane chilled by immersion 

in liquid nitrogen, and sectioned using a cryostat microtome (10 μm). Sections were re-

hydrated with 1x PBS and pre-blocked for 30 min in 2% sheep serum/BSA-1x PBS. The 

sections were incubated with primary antibody overnight at 4°C, washed extensively with 

1x PBS and incubated with the appropriate fluorescent secondary antibody for 2 hr at 

RT. Once the secondary antibody was washed off sections were covered with 

Vectashield (Vector Laboratories) and cover-slips. 

 

Whole mount antibody labeling 

Embryos for whole mount imaging were fixed as above and pre-blocked with 10% 

sheep serum/BSA-1x PBS for 1 hr at RT. The embryos were incubated in primary 

antibody for 24 hr at 4°C, washed semi-continuously with 1x PBS with 0.2x Trition 
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(PBSTx) for 2 hr at RT, and then incubated with the secondary antibody for 12 hr at 4°C, 

followed by 3 hr of semi-continuous washes with 1x PBSTx. These embryos were then 

dissected from the yolk and mounted on bridged cover-slips in 70% glycerol for imaging.  

 

Two antibodies raised in the same species 

Embryos were fixed as described above. The strongest antibody was applied first 

and a 568 Alexa Fluro secondary in the appropriate animal was used. Each washing 

step was increased in time to insure all unbound antibody was removed; for labeling on 

sections the primary antibody incubation is followed by at least an hour wash with 1x 

PBS and for whole mount this wash is at least 3 hours with 1x PBSTx. The wash 

following the secondary antibody labeling was at least 45 min for sections and at least 4 

hours for whole mount embryos. The sections or whole mount embryos were imaged 

and processed as described below. 

 

Whole mount antibody labeling following in situ RNA hybridization 

Embryos for whole mount in situ RNA hybridization followed by whole mount 

antibody labeling were fixed as above in 4% AB fix for 2 hrs at RT. The in situ RNA 

hybridization was performed as described in the previous section, however the embryos 

were not treated with 100% methanol. Once the color reaction with BM purple concluded 

the embryos were washed with 1x PBS with % Tween (PBSTw) for two 5 min washes. 

The embryos were then fixed in 4% PFA for 20 min to de-active the alkaline 

phosphotase. The fix was washed off with 1x PBSTx followed by 10% block solution for 

1 hr. The rest of the whole mount antibody was performed as described above. 

Following in situ RNA labeling and antibody labeling, embryos were dissected from the 

yolk and mounted on bridged cover-slips in 70% glycerol for imaging. The DIC in situ 
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RNA hybridization image was overlapped with the fluorescent image in Photoshop. 

Images were exported and analyzed as described below. 

 

Imaging 

All imaging was conducted on a Zeiss Axiovert 200 inverted microscope 

equipped with either a 40x oil immersion objective (NA=1.3) or 20x dry objective 

(NA=0.75), mounted on a Piezo drive, and a PerkinElmer Ultraview ERS Live Cell 

Imager. Images were exported and analyzed using Volocity (Improvision) and Adobe 

Photoshop. Image adjustments were limited to level settings, contrast and cropping.  

 

Antisense morpholino oligonucleotide injections 

An antisense morpholino (MO) oligonucleotide with the sequence 5’-

ACACTCGGCTCGTGTCAGAGTCCAT-3’ (Gene Tools, LLC) was designed to the olig2 

translation start site. We also used a Standard Control MO (Gene Tools, LLC).  Both 

morpholinos were re-suspended in distilled water for a stock solution of 3 mM. The stock 

solution was further diluted with water and phenyl red and 1-2 ng was injected into the 

yolk of one- to two-cell stage embryos. 

 

Conditional expression experiments 

The plasmid p(hsp70l:olig2)Tol2 was constructed by subcloning olig2 cDNA into 

a vector carrying the zebrafish hsp70l heat-responsive promoter (Shoji et al., 1998) and 

recognition sequences for Tol2 transposase (Kawakami, 2004). Newly fertilized eggs 

produced by Tg(olig2:egfp) or Tg(olig2:DsRed2) adults were injected with a solution 

containing 0.1 μg/μl of the plasmid and 0.3 μg/μl in vitro synthesized Tol2 mRNA. 

Expression was induced by transferring embryos at selected stages to egg water 

prewarmed to 39°C for 30 min.   
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Time-lapse imaging 

The embryos were manually dechorionated at 24 hpf and transferred to embryo 

medium containing PTU. Embryos for time-lapse imaging were anesthetized using 

Tricaine and immersed in 0.8% low-melting temperature agarose. They were then 

mounted in either lateral or dorsal orientations in glass-bottom 35mm Petri dishes. 

Images were captured using a 20x dry (NA=0.75) objective mounted on the confocal 

microscope described above. A heated stage and chamber kept the embryos at 28.5°C 

and Z image stacks were collected every 5-15 min. The data sets were analyzed using 

Volocity software and exported as QuickTime files to create movies. 

 

Results 

 
Improper location of facial motor neuron cell bodies in olig2 MO-injected embryos 

We initiated our studies by comparing Isl antibody labeling and isl1 transgene 

expression in the hindbrain between 30 hpf and 3 dpf. The Isl antibody labels all motor 

neuron cell bodies (Korzh et al., 1993) whereas the isl1 transgene labels all motor 

neurons, except for the abducens and glossopharyngeal motor neurons, and the motor 

neuron axonal projections (Higashijima et al., 2000). By 33 hpf the trigeminal, facial and 

vagal motor neurons are visible by both the Isl antibody and the isl1 transgene. The two 

clusters of nV are located in r2 and r3 (Fig. 3.1B,C) and they are begin to extend their 

axonal projections towards their r2 exit point (Fig. 3.1CE). At this timepoint the facial 

motor neurons are migrating posteriorly and thus located in a stream at the midline 

between r4 and r6/7 (Fig. 3.1B,C). As they migrate caudally, they leave behind their 

axonal projections (Fig. 3.1C). At 50 hpf nV and nX remain largely in the same position 

while the facial motor neurons have finished their migration and now reside in large  
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cluster in r6 and smaller, looser cluster in r7 (Fig. 3.1B,F). In addition, the octavolateralis 

efferent or otic and lateral line efferent neurons (OLe) (cranial nerve nVIII) are located 

intermixed with the facial motor neurons and their axons exit from r4 (Higashijima et al., 

2000; Chandrasekhar, 2004). The cell bodies of these two nerves are indistinguishable 

from each other by molecular markers and both are labeled with retrograde dye when 

applied at the r4 exit point (Chandrasekhar et al., 1997; Higashijima et al., 2000). The Isl 

antibody, but not the isl1 transgene, allows for visualization of the abducens motor 

neurons at this timepoint in two clusters in r5 and r6 (Fig. 3.1D). Thus, the cluster of Isl+ 

cells in r6 contains a mixed population of abducens and facial motor neurons. While the 

expression pattern revealed by Isl antibody labeling looks the same at 3 dpf, the isl1 

transgene allows the visualization of axonal projections from the vagal motor neurons, 

as well as the trigeminal and facial motor neurons (Fig. 3.1F,G). Thus, both the antibody 

and transgene accurately label the cranial motor neurons. Because the cell bodies and 

their axonal projections can be observed with the isl1 transgene and it fails to label the 

abducens motor neurons which are located intermixed with the facial motor neurons, we 

will primarily use this transgenic line to study the facial motor neuron migration 

We used olig2 antisense morpholino oligonucleotides designed to block 

translation of olig2, which is expressed within precursor cells in r5 and r6, and examined 

the effects on facial motor neuron migration. The facial motor neurons are specified in 

both wild-type and MO-injected embryos and begin extending their axonal projections 

properly, however the position of the facial motor neuron cell bodies are more anterior in 

the MO-injected embryo (Fig. 3.1A,H). The wild-type facial motor neurons migrate in an 

almost single file line, bilaterally along the midline stretching from r4 into r6 and r7 (Fig. 

3.1A). However, the facial motor neurons in MO-injected embryos are clustered together 

primarily in r4 and r5 with only a few cell bodies located more posteriorly. The trigeminal 

motor neurons appear unaffected in the MO-injected embryos as compared to the wild-
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type embryos (Fig. 3.1A,H). By 33 hpf the wild-type facial motor neurons are no longer in 

r4 and are beginning to form two clusters of cells, in r6 and r7. Some of the facial motor 

neurons in MO-injected embryos at this time point still remain in r4 and few reach r7, 

instead most remain more anteriorly (Fig. 3.1C,I). Wild-type facial motor neurons, at 50 

hpf, are in their final locations; a prominent cluster in r6 and a looser cluster in r7 (Fig. 

3.1E). In addition, some of the cells within these clusters project neurites contralaterally. 

These contralateral projections are thought to be from the OLe neurons (Higashijima et 

al., 2000; Chandrasekhar, 2004). However, the facial motor neurons in the MO-injected 

embryos remained more anteriorly, many still within r4 and very few reaching to r6 and 

r7 (Fig. 3.1J). This failure of facial motor neurons in MO-injected embryos to properly 

reach r6 and r7 persists through 3 dpf (Fig. 3.1G,K).  

 

Normal expression of anterioposterior markers and the location of the facial motor 

neuron migration defect  

We used in situ RNA hybridization to detect expression of krox20, Hoxb1a, and 

Hoxb4a in Tg(isl1:egfp) embryos to ensure that the patterning of the AP axis was not 

perturbed with the olig2 MO and to more precisely determine where along the this 

axisthe deficit in facial motor neuron migration occurred. We then conducted 

immunocytochemistry to detect GFP expressed by the isl1:egfp transgene. In both wild-

type and MO-injected embryos the facial motor neurons are born around 19 hpf in r4, as 

seen with the Hoxb1a in situ RNA hybridization, which specifically labels r4 at this 

timepoint in both wild-type and MO-injected embryos (Fig. 3.2A,B). Whereas expression 

of krox20 at 22 hpf was normal, the facial motor neurons in MO-injected embryos 

displayed a deficit in their migration, residing mostly in r4 and r5 based on the krox20 

expression specifically in r3 and r5, as compared to wild-type embryos in which the facial 

motor neurons have progressed into r6 (Fig 3.2I,J). At 26 hpf the stream of facial motor  
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neurons in wild-type embryos has left r4 and extends from r5 into r7, arching out laterally 

and into clusters in r6 and r7 (Fig 3.2K,L). However, the facial motor neurons in MO-

injected embryos were predominately present in r4 and r5 with only a few cells in r6. 

Nevertheless, they also arch out laterally despite their too-anterior position. To 

determine how far posteriorly the facial motor neurons migrated we used hoxb4a, which 

is expressed from the r6/7 boundary and extends posteriorly. This hox gene is also 

expressed normally in both wild-type and MO-injected embryos (Fig. 3.2M-P). At 28 hpf 

only an occasional cell reaches r7 in the MO-injected embryo, as compared to several in 

wild-type embryos (Fig. 3.2M,N). The line of migrating facial motor neurons in wild-type 

embryos extends into r7 at 28 hpf while only an occasional facial motor neuron cell body 

in MO-injected embryos crosses the r6/7 boundary. Additionally, the wild-type facial 

motor neurons are elongated along the AP axis while the facial motor neurons in MO-

injected embryos fail to have this morphology. By 33 hpf the wild-type facial neurons 

have formed a small cluster in r7 but still few facial motor neurons in the MO-injected 

embryos are located in r7 (Fig. 3.2O,P). Using hoxb1a to mark r4, we found that at 35 

and 44 hpf wild-type facial motor neuron cell bodies are absent from r4 and only their 

axonal projections are present, exiting the neural tube from this rhombomere. Instead 

the cell bodies are located in r6 and r7 (Fig. 3.2C-F). A few cell bodies of the facial motor 

neurons from MO-injected embryos are still located in r4 at these timepoints and while 

they are also present in r6 and r7 they are reduced in number.  

As a control to ensure the effects we saw were not due to overall developmental 

delay, we examined the lateral line using an anti-HuC antibody. The cells contributing to 

the lateral line also migrate in a posterior direction and therefore their migration should 

also be affected if the olig2 MO was causing an overall developmental delay in the 

embryos. At 33 hpf both wild-type and MO-injected embryos the migration of the lateral 

line was in the normal location (Fig 3.2G,H). 
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Quantification of migration defect  

To quantify the facial motor neuron migration defect in MO-injected embryos we 

created a scale describing the various steps of migration at 33 and 50 hpf (Table 3.1). 

Using this scale the MO-injected embryos could be quantitatively compared to the wild-

type embryos and using a Chi Square the statistical significance was determined. At 33 

hpf, the facial motor neurons are mid-way through their migration, so the scale only has 

six points. By 50 hpf the migration is more complicated and thus there are more points 

on the scale. Each point represents one step of the wild-type migration path. At 33 hpf 

the MO-injected embryos exhibited a trend towards being statistically different from the 

wild type, with a chi square score of 15.1. With 12 degrees of freedom and a 0.05 

confidence interval, this is less than the chi probability of 20.0, and thus not statistically 

significant. However, at 50 hpf, when wild-type facial motor neurons are in their final 

locations, the MO-injected embryos displayed a statistically significant difference from 

the wild-type embryos with a chi square score of 78.8, which is much higher than the chi 

probably of 33.9. Graph in Fig. 3.3. represents the mean score for each timepoint.  

 

Timelapse imaging reveals facial motor neurons fail to complete their caudal migration 

and form clusters in r6 and r7 in the absence of olig2 function 

In addition to fixed images and the quantification described above, we also 

performed time-lapse imaging to better understand where and when the migration defect 

occurs in MO-injected embryos. In wild-type embryos, facial motor neurons are first 

visible by 19 hpf using the isl1:egfp transgene (Fig. 3.4A). Over the next several hours 

more facial motor neurons are born and they all begin to migrate posteriorly in a line  
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Table 3.1. Facial Motor Neuron Migration Scale 
 
 

 
33 hpf 

1) Facial motor neurons present in stream from r5 into r6/7 
2) Cluster of neurons present in r7 
3) Normal relative size of r7 cluster 
4) Cluster in r7 distinct from r6 
5) Lateral migration occurred  
6) Posterior lateral line present 

 
50 hpf 

1) Facial motor neuron cell bodies in r6  
2) Facial motor neuron cell bodies in r7 
3) Normal clustering of neurons in r6 
4) Normal clustering of neurons in r7 
5) Normal relative size of r6 cluster 
6) Normal relative size of r7 cluster 
7) Cluster in r7 distinct from r6 cluster 
8) Lateral migration 
9) Posterior lateral line present 
10) Contralateral neurites from nVII/OLe  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 81 



 82 



along the midline of the neural tube (Fig. 3.4B-F). Around 23 hpf the facial motor 

neurons’ axonal bundle is visible extending anteriorly from the migrating cells (Fig. 3.4E 

arrow). This projection continues to extend and will exit the neural tube from r4 to reach  

its target tissue (Fig. 3.4). Within a few hours the facial motor neurons begin to enter r6, 

where they turn laterally (Fig. 3.4F). By 25 hpf the vagal motor neurons begin to be 

visible, in the caudal hindbrain (Fig. 3.4G) and shortly after that the few facial motor 

neurons that arrive in r7 begin to form a cluster of cells first visible around 27 hpf (Fig. 

3.4I arrowhead). Over the next 10 hours the facial motor neuron cell bodies in r4 and r5 

continue to migrate caudally into r6 and r7, where they take a lateral turn while their 

axons extend rostrally (Fig. 3.4K-R). During this time the number of vagal motor neurons 

also increases. At approximately 34 hpf contralateral projections from the OLe neurites 

are visible (Fig. 3.4P, open arrowhead). Over the following 12 hours the facial motor 

neurons continue to move out of r4 and r5 and into r6 and r7 (data not shown). 

Similar to wild-type embryos, the facial motor neurons in MO-injected embryos 

are first visible by isl1:egfp by 19 hpf, on either side of the midline (Fig. 3.5A). Over the 

next few hours some of these cells begin to migrate posteriorly, however they do not 

extend as far posteriorly as in the wild-type embryos (fig 3.5A-F). At 24 hpf the facial 

motor neuron axon bundle begins to extend anteriorly, as in wild-type embryos (Fig. 

3.5F). While a small number of cells are able to continue their caudal migration (Fig. 3.5J 

asterisk), the majority of facial motor neuron cell bodies remain clustered in r4 and r5 

(Fig. 3.5G-R). Around 29 hpf the first vagal motor neurons become apparent and 

continue to increase in number in the following hours, as in wild-type embryos (Fig. 

3.5K-R). At the end of this timelapse, at 36 hpf, the majority of facial motor neuron cell 

bodies remain in r4 and r5 with only a few able to migrate into r6 and r7. However, they 

correctly extend their axonal projections, which properly exit from r4 (Fig. 3.5) 
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Discussion 

 

 Like many neuronal populations, facial motor neurons migrate from the location 

at which they are born to populate another region of the CNS. This migration requires 

the coordination of many transcription factors and cell surface molecules. Some of these 

function cell autonomously and others cell non-autonomously. Facial motor neurons 

express and require Nkx6.1 and Phox2b to begin their caudal migration out of r4 (Muller 

et al., 2003; Pattyn et al., 2003; Coppola et al., 2005), as well as the cell surface protein 

TAG-1, which is thought to help mediate their caudal migration (Garel et al., 2000). 

Various members of the non-canonical Wnt pathway also play a role in the caudal 

migration of the facial motor neurons, such as trilobite (Bingham et al., 2002), frizzeled3a 

(Wada et al., 2005; Wada et al., 2006), scribble1 (Wada et al., 2005), celsr2 (Wada et 

al., 2006), colgate/hda1 (Nambiar et al., 2007) and prickle1b (Rohrschneider et al., 

2007). However, only prickle1b appears to function cell autonomously. Once the facial 

motor neurons reach their target rhombomere (r6 and r7 in zebrafish or r6 and some in 

r5 in mouse), they turn and migrate both laterally and radially to reside in the dorsal 

neural tube (Guthrie, 2007; Song, 2007). At this point in their journey, the facial motor 

neurons have down-regulated TAG-1 and turned on Ret, a GDNF-receptor subunit 

(Pachnis et al., 1993) and begin to express cadherin 8 (cdh8) (Garel et al., 2000). 

Additionally, the gene reelin, essential for radial migration in the developing cortex, is 

also involved in the radial migration of the facial motor neurons. 

In addition to these specific genes, other work demonstrates that the proper 

rhombomeric environment in r5 and r6 is essential for facial motor neuron migration. 

Transplantation of these rhombomeres is sufficient to induce facial motor neuron 

migration (Studer, 2001) and the mutations  kreisler and valentino (val), which perturb r5 

and r6 (McKay et al., 1994; Moens et al., 1996), cause the facial motor neurons to 
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migrate aberrantly (McKay et al., 1997; Manzanares et al., 1999; Garel et al., 2000; 

Chandrasekhar et al., 1997). However, what specific molecules are necessary in these 

rhombomeres for proper facial motor neuron migration is not clear. Interestingly, our 

work indicates that olig2, a basic helix-loop-helix (bHLH) transcription factor (Lu et al., 

2000; Zhou et al., 2000) expressed in r5 and r6 and necessary for the specification of 

the abducens motor neurons and oligodendrocytes from the same rhombomeres, is 

required for facial motor neurons to reach their target rhombomeres and form the 

appropriate clusters. The facial motor neurons in embryos injected with an olig2 

morpholino fail to completely migrate into r6 and r7 and form their stereotypical clusters 

in zebrafish. A similar, though more severe, phenotype occurs in valentino mutant 

embryos (Chandrasekhar et al., 1997). Valentino (val) functions to subdivide a 

protosegment “rX” into r5 and r6, and in its absence a region one rhombomere’s length 

with an identity developmentally earlier persists in between r4 and r7 (Moens et al., 

1996). The facial motor neurons in val- embryos are specified, but fail to complete their 

caudal migration and form organized clusters (Chandrasekhar et al., 1997). In addition, 

many of the facial motor neuron axons in val- embryos are defasciculated, however they 

still properly turn at r4 to exit the neural tube. This defasciculation is not seen in the 

embryos injected with olig2 MO.  

One hypothesis is that the effects of the valentino mutation on facial motor 

neuron migration is due, in part, to the presumed loss of olig2 expression. In addition to 

the defects in facial motor neuron migration, the val- embryos fail to form the abducens 

motor neurons in r6 and r7 and glossopharyngeal branchiomotor neurons in r7 

(Chandrasekhar et al., 1997). The olig2-MO situation is less severe, with only the 

abducens motor neurons and some oligodendrocytes absent, while the glossopharngeal 

motor neuron is unaffected and the facial motor neuron axons are largely fasciculated. 

One way to test this hypothesis is to attempt to rescue the facial motor neuron migration 
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phenotype in val- embryos by either driving olig2 expression with a posterior hindbrain 

promoter, such as hoxb4, hoxd3 or hoxb3 which remain expressed in “rX” in val- 

embryos (Prince et al., 1998), or by transplanting olig2+ cells into the posterior val- 

hindbrain. It is also possible that olig2 has un-identified interactions with other factors in 

r5 and r6 to regulate facial motor neuron migration.  

Several controls are needed to ensure the observed phenotype is specific to the 

absence of olig2 and not general developmental delay. First, we are examining the 

migration of other migratory cells in olig2 MO-injected embryos, such as the lateral line 

using antibody labeling with HuC. An alternative to using a MO to knock down the 

expression of olig2, laser ablation can be used to specifically ablate olig2+ cells in the 

hindbrain at the appropriate timepoints. This technique, when performed on one half of 

the hindbrain, allows for an internal control on the un-ablated side. In this situation we 

would expect the facial motor neurons on the ablated side to behave similar to the facial 

motor neurons in olig2 MO-injected embryos.  

In addition to loss-of-function studies, it would be beneficial to examine the 

effects of miss or over-expression of olig2 on facial motor neuron migration. Injection of 

olig2 mRNA at the single cell stage will cause global over-expression. There are a few 

ways to induce ectopic olig2 expression. One is to make use of a heat-inducible 

promoter to drive olig2, which allows for temporal control of expression. This construct 

can be used either transiently, resulting in random ectopic expression, or can be made 

into a stable line. Alternatively, transplanting olig2-expressing cells into a wild-type 

embryo can cause ectopic olig2 expression in the hindbrain. In either of these instances, 

the effect of olig2-expressing cells outside of the normal r5 and r6 location on facial 

motor neuron migration can be determined. Two possibilities exist; one is that olig2-

expressing cells have a chemoattractant role in which case ectopic olig2 expression 

would attract the facial motor neurons to their ectopic location. Alternatively, the olig2+ 
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cells, or some factor secreted or expressed on their surface, could serve as a guidepost 

for the facial motor neurons.  

The biggest outstanding question is what is the relationship between olig2, a 

transcription factor expressed in r5 and r6 but not in facial motor neurons, and the 

migration of facial motor neurons? Most of the studies looking at the molecular 

interactions of olig2 focus on its role in astrocyte development and demonstrated that 

olig2 interacts with p300, a transcriptional coactivator, to prevent it from forming a 

complex with STAT3, signal transducer and activator of transcription 3 (Fukuda et al., 

2004; Fukuda and Taga, 2005). The p300/STAT3 complex is necessary for the 

development of astrocytes (Nakashima et al., 1999). In addition, olig2 must be 

sequestered by ID4 (inhibitor of differentiation) to allow for the generation of astrocytes 

(Samanta and Kessler, 2004). However, one candidate gene that might bridge the gap 

between olig2 and facial motor neuron migration is SDF1, which is already known to be 

required on the facial motor neuron end (Sapede et al., 2005). To test this hypothesis, 

we need to examine the expression of SDF1 in both wild-type and olig2 MO-injected 

embryos at the appropriate times.  

Another candidate gene to link olig2 and facial motor neuron migration is Ebf1 

(early B cell factor) (Garel et al., 2000), which is a helix-loop-helix (HLH) transcription 

factor (Hagman et al., 1991; Hagman et al., 1993; Wang and Reed, 1993) expressed 

and required in facial motor neurons for their proper migration (Garel et al., 1997; Pattyn 

et al., 2000). In Ebf1-/- mice, a small population of the facial motor neurons migrates out 

laterally prematurely in r5, and concurrently they express Ret and Cdh8 as they would in 

r6 (Garel et al., 2000). A similar situation is seen in the striatum, where the differentiating 

neurons in the absence of Ebf1 fail to down-regulate those genes expressed earlier, 

leading to a discrepancy between the gene expression pattern and the neurons location 

(Garel et al., 1999). The authors hypothesize that the facial motor neurons are unable to 

 89 



properly interpret their environment and migrate out laterally too soon. Or more 

specifically, that Ebf1 functions to block an r6 like phenotype while the facial motor 

neurons are in r5 and that some signal in r6 releases this inhibition (Garel et al., 2000). 

However, this mechanism maybe redundant with another system as only a subset of the 

facial motor neurons is affected.  

 Ebf1/Olf1 was found in mouse B-lymphocyte development and independently in 

the regulation of the rat olfactory marker protein gene (Hagman et al., 1993; Travis et al., 

1993; Kudrycki et al., 1993; Wang and Reed, 1993). The expression of Ebf1 is not 

limited to facial motor neurons, but is also found in other differentiating cells, such as 

motor neurons and commissural axons (Garel et al., 1997; Wang et al., 1997). Activation 

of Ebf1 requires dimerization and while it contains a unique HLH motif and novel zinc 

coordination motif, it also has limited homology with the bHLH sequence (Hagman et al., 

1993; Travis et al., 1993; Hagman et al., 1995). Interestingly, olig2 is a bHLH 

transcription factor (Lu et al., 2000; Zhou et al., 2000; Takebayashi et al., 2000) and 

therefore, if expressed in the same cells, could function to activate Ebf1. Other bHLH 

transcription factors, such as ngn1 and ngn2, are involved with Ebf1 to promote 

neurogenesis and this interaction can be blocked with an Id inhibitor of bHLH proteins 

(Garcia-Dominguez et al., 2003). The current model puts Ebf1 downstream of the 

proneural genes required for cell cycle exit, with some putative positive feedback loops, 

and upstream of various components necessary for neuronal differentiation and 

migration, such as cadherins, neurofilaments and Lim proteins (Garcia-Dominguez et al., 

2003). While a link between Efb1/Ole and bHLH proteins is best characterized in the 

mouse immune system (Sigvardsson et al., 1997; Sigvardsson, 2000; Gisler and 

Sigvardsson, 2002), other data also indicate bHLH binding sites in the Ebf1/Ole 

promoter (Smith et al., 2002). Taken together, Ebf1 is clearly involved in neurogenesis, 
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and differentiation and migration of neurons however, possible interactions with olig2 

have not been examined. 
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CHAPTER IV 

 

CONCLUSIONS 

 

 One of the fundamental questions in neural development is how a single layer of 

neuroepithelium gives rise to such a wide array of neuronal and glia cell types and form 

intricate structures, such as the hindbrain. By studying the fates of early precursor 

populations and the genes that regulate specification, we can begin to understand this 

process. One class of genes found to regulate many aspects of neural development is 

the basic helix-loop-helix (bHLH) transcription factors (Lee, 1997). While many bHLH 

members are specific for directing neurogenesis, olig2 also plays a role in glial 

development (Lu et al., 2000; Zhou et al., 2000; Takebayashi et al., 2000). This role is 

best studied in the spinal cord pMN domain where olig2 is required for both OPC and 

motor neuron specification (Lu et al., 2002; Zhou and Anderson, 2002; Park et al., 2002; 

Takebayashi et al., 2002). However the function of olig2 in the hindbrain had not been as 

carefully studied, moreover, the relationship between cranial motor neurons, hindbrain 

oligodendrocytes and olig2 had not been established. 

 

Multiple Origins of OPCs and the Role of olig2 

 The origins of hindbrain oligodendrocytes have not been as clearly defined as in 

the spinal cord. Work in the hindbrain primarily focused on the expression of the 

oligodendrocyte lineage gene plp/dm20 and the labeling with O4 antibody, which also 

marks oligodendrocyte lineage cells. Reflecting a rhombomeric organization, plp/dm20 

expression data indicated that hindbrain oligodendrocytes arose in segmentally iterated 

domains from the ventricular zone of mouse and chick embryos (Timsit et al., 1995; 

Perez Villegas et al., 1999; Le Bras et al., 2005). Labeling with the O4 antibody also 
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supported ventricular zone origins for oligodendrocytes in the hindbrain (Orentas and 

Miller, 1996; Ono et al., 1997), as well as lateral and dorsal origins (Davies and Miller, 

2001). Additionally, explant studies demonstrated that both ventral and dorsal regions of 

the hindbrain give to oligodendrocytes (Davies and Miller, 2001; Vallstedt et al., 2005). 

Olig function appears to be necessary both in the spinal cord and hindbrain for all 

oligodendrocyte development, for in olig1/2-/- double knockout mice all OPCs in both 

regions are absent (Zhou and Anderson, 2002). However, it is important to point out that 

the dorsal explants described above (Vallstedt et al., 2005) were harvested prior to 

dorsal olig2 expression and therefore it remains unclear whether the resulting 

oligodendrocytes arose from olig2+ precursors or if they turned on olig2 only after being 

specified from an olig2- precursor population. Taken together, these data support the 

hypothesis of multiple origins of oligodendrocytes in the hindbrain 

 In the spinal cord, the olig2+ precursors of the pMN produce all of the motor 

neurons, as well as many OPCs and some interneurons, astrocytes and ependymal cells 

(Lu et al., 2002; Zhou and Anderson, 2002; Novitch et al., 2001; Masahira et al., 2006). 

This ventral domain is continuous along the anterioposterior axis of the spinal cord 

(Briscoe et al., 2000; Jessell, 2000) and all regions are equally capable of giving rise to 

both motor neurons and OPCs (Lu et al., 2002; Zhou and Anderson, 2002; Park et al., 

2002; Park et al., 2004; Masahira et al., 2006). However, in the hindbrain, possible 

regional differences exist along the anterioposterior axis with the pMN precursors in r5 

and r7 of mouse capable of giving rise to both somatic motor neurons and 

oligodendrocytes but other pMN precursors only giving rise to oligodendrocytes. While 

our work examining cranial motor neuron and OPC development in the zebrafish 

hindbrain supports this hypothesis, many questions remain. Why do somatic motor 

neurons, and not other motor neurons, share a lineage with OPCs? Moreover, only two 

of the somatic motor neuron populations appear to have this relationship, the abducens 
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and hypoglossal, which is not identified in fish, whereas the trochlear and oculomotor 

arise from yet other precursor populations.  

 Several disorders, such as Duane’s Syndrome and Mobius Syndrome, 

specifically affect the development of the abducens motor neurons. In some instances, 

the abducens motor neuron is simply absent. Given that the abducens motor neurons 

arise from a precursor population that also gives rise to many OPCs, it would be 

interesting to know if patients diagnosis with these disorders had any other symptoms 

related to deficit in OPC specification, such as a lack of complete myelination. 

 In contrast to the continuous expression of olig2 along the spinal cord 

anterioposterior axis, the initial expression in the zebrafish hindbrain is limited to r5 and 

r6. Subsequent expression is seen in other anterior and posterior regions, but limited to 

OPCs as determined by morphology, migratory behavior and double labeling with anti-

Sox10 antibody. Only the early olig2 expressing cells in r5 and r6 had neuroepithelial-

like morphologies, confirmed by their ability to incorporate BrdU, similar to the pMN 

precursors of the spinal cord. Using cell specific antibody labeling and fate mapping 

techniques, we determined that these olig2+ neuroepithelial cells give rise to both OPCs 

and the abducens motor neurons. However, because we did not fate map individual 

cells, we cannot determine if the same precursor cell can produce both OPCs and motor 

neurons as shown in the spinal cord (Park et al., 2004). Interestingly, other motor 

neurons and many OPCs arise from independent origins. Thus, it appears that there are 

several different ventral domains that will give rise to OPCs in the hindbrain, those that 

express olig2 and also give rise to the abducens motor neurons, and those that do not 

express olig2 or share a lineage with abducens motor neurons. Little is known about 

potential olig2- precursors that are ventrally located and give rise to OPCs. What are the 

characteristics of this putative population, such as gene expression, precise dorsoventral 

location, and cell fate? It would be interesting to determine if these olig2- precursors give 
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rise to other motor neurons in the hindbrain in addition to OPCs, similar to the 

relationship seen with the r5 and r6 olig2+ pMN cells. In a larger scope, is a neuron/glial 

lineage relationship a common theme repeated throughout the CNS? In the spinal cord 

interneurons from other dorsoventral domains share a lineage with astrocytes 

(Muroyama et al., 2005; Hochstim et al., 2008). Nevertheless, it appears that olig2 

expression determines where along the anterioposterior axis abducens motor neurons 

arise and thus might underlie species-specific distribution of somatic motor neurons. 

While the r5 and r6 pMN domain appears functionally similar to the spinal cord 

pMN domain, expressing olig2 and giving rise to both OPCs and motor neurons, 

significant differences exist between the two domains. In mouse embryos lacking olig1/2 

function, the pMN precursors adopted a more dorsal identity and gave rise to V2 

interneurons and astrocytes (Zhou and Anderson, 2002). However, our studies showed 

that in the zebrafish hindbrain lacking olig2 function, the r5 and r6 olig2+ precursors did 

not adopt a different fate but instead maintained their neuroepithelial state and continued 

to divide. Olig2 overexpression in chick embryos reduces the number of cells in the 

spinal cord that incorporate BrdU (Novitch et al., 2001), whereas in olig1/2-/- double 

knockout mice BrdU+ cells were located outside of the ventricular zone, suggestive of 

pMN cells that failed to exit the cell cycle before migrating to the marginal zone. 

Therefore, it appears that in both the spinal cord and hindbrain olig genes function, in 

part, to promote neuroepithelial precursors to exit the cell cycle and undergo 

neurogenesis. This switch from a proliferative precursor state to neurogenesis likely 

involves ngn2, for the pMN cells in olig1-/- or olig2-/- knockout mice lack ngn2 expression 

(Zhou and Anderson, 2002) and overexpression of olig2 can cause ectopic ngn2 

expression (Novitch et al., 2001). In addition, ngn2 can also promote cell cycle exit and 

neurogenesis (Farah et al., 2000; Novitch et al., 2001). Subsequently, ngn2 function 

must be repressed within a subset of olig2+ cells to allow for OPC specification. One 
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candidate mechanism for this switch is the Notch signaling pathway, which is required 

for the specification of OPCs from the spinal cord pMN cells (Park and Appel, 2003; Kim 

et al., 2008).  

The organization of motor neurons was known to differ between the spinal cord 

and hindbrain, with the former arising from columns along the length of the spinal cord in 

the pMN domain and the latter organized as discrete nuclei in the hindbrain 

(Chandrasekhar, 2004; Guthrie, 2007). Not only are there differences in the organization 

of spinal and cranial motor neurons, but also in gene requirements, such as the gene 

detour that is required for cranial but not spinal neurons (Chandrasekhar et al., 1999). In 

addition, there are distinctions between the various cranial motor neurons. Similar to 

spinal motor neurons, somatic motor neurons arise from the pMN domain and require 

some of the same ventral homeodomain proteins, whereas the visceral and 

branchiomotor neurons arise more ventrally from the p3 domain (Pattyn et al., 2003). 

Consistent with their dorsoventral origins and similar to spinal motor neurons, only the 

somatic cranial neurons require olig2 for their specification (Gaufo et al., 2003; Lu et al., 

2002; Zhou and Anderson, 2002; Pattyn et al., 2003). Thus, somatic, but not visceral or 

branchial, motor neurons appear to be specified similar to spinal motor neurons. 

While some of the aspects and characteristics of the ventral OPCs domains are 

being uncovered, much less is known about the dorsal origins. It is thought that OPCs 

arise later in the dorsal neural tube concurrent with decrease in dorsal BMP signaling, 

which inhibits OPC specification (Vallstedt et al., 2005). These dorsal OPCs do not 

require Shh or Nk6 for their specification (Vallstedt et al., 2005). However they do 

express the homeobox gene, Dbx1, which is located in four precursor domains around 

the dorsoventral boundary of the neural tube, p1, p0, dP6 and dP5 (Fogarty et al., 2005; 

Richardson et al., 2006). When these data are combined with studies with Nkx6 

knockout mice (Cai et al., 2005), it can be concluded that the dorsal OPCs arise from the 
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dP5 domain and express the dorsal marker, Pax7 (Cai et al., 2005; Vallstedt et al., 

2005). Given the various dorsoventral and anterioposterior origins for OPCs in the 

hindbrain, it would be intriguing to determine whether any functional difference existed 

between the different origins.  

Regardless of dorsoventral or anterioposterior origin, all OPCs express and 

require olig2. This suggests that olig2, in addition to regulating cell cycle exit and 

promoting neurogenesis from the pMN domain, it also has an independent function in 

the differentiation of oligodendrocytes. These multiple roles for olig2 likely are 

determined by both transcriptional control elements in neural precursors and OPCs and 

cell type specific cofactors that will determine the regulatory targets of Olig2 proteins. 

 Other interesting questions remain about the migratory behaviors of OPCs. All 

OPCs are migratory often migrate from ventral origins into the dorsal neural tube and 

visa versa (Cameron-Curry and Le Douarin, 1995; Kirby et al., 2006; Rowitch, 2004). 

However, it is not known how far OPCs migrate along the anterioposterior axis and if 

particular origins populate only the neighboring regions. In addition, if OPC specification 

is blocked or lost from one location, can other origins compensate for the deficit? For 

example, can the dorsally derived OPCs divide and migrate enough to sufficiently fill the 

neural tube in the absence of ventral OPCs? Or, if the r5 and r6 olig2+ precursors were 

ablated in the hindbrain, could other OPC precursor populations make up for the loss? 

Work in zebrafish indicates that OPCs interact with one another to evenly distribute 

along the spinal cord and when ablated OPCs from neighboring hemi-segments divide 

and migrate in to fill the void (Kirby et al., 2006). Of course, this brings back the question 

of any functional differences between the various origins. 
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olig2 and Facial Motor Neuron Migration 

 Facial motor neurons are one of many populations of neurons that migrate from 

where they are born to occupy other regions of the CNS. The trajectory of facial motor 

neurons is unique in that it begins in a caudal direction until the cell bodies reach the 

right region if the hindbrain and then they turn and migrate laterally radially to occupy the 

dorsal neural tube (Chandrasekhar, 2004; Guthrie, 2007). As the cell bodies migrate, 

they extend axonal projections anteriorly. While significant progress has been made, we 

are only beginning to understand the various steps and factors necessary for facial 

motor neuron migration.  

 While examining embryos injected with a translation blocking MO for olig2, we 

discovered a problem in facial motor neuron migration. Many of the cell bodies in MO-

injected embryos, instead of migrating into r6 and r7 and forming clusters in each 

rhombomere, remained more anterior in r4 and r5 and the overall appearance of the cell 

bodies was disorganized. However, the cell bodies that reach r6 and r7 do appear to 

migrate out laterally and radially as the wild-type embryos. In addition, the facial motor 

neuron axonal projections in MO-injected embryos were fasciculated and correctly exited 

the hindbrain in r4. Thus, it appears that olig2 plays some role in the migration, but not 

specification or axonal guidance, of facial motor neurons. 

 This phenotype brings to light many questions, the most important being the 

molecular mechanism by which olig2 affects facial motor neuron migration. olig2 is a 

bHLH transcription factor expressed in precursors cells located in r5 and r6, but it is not 

expressed in facial motor neurons. Thus, olig2 has a cell non-autonomous effect on 

facial motor neuron migration. The downstream targets of olig2 have not been identified 

and so it is hard to determine the exact molecular mechanism. However, some 

candidate genes linking olig2 function and facial motor neuron migration exist, SDF1 and 

Ebf1.  
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 SDF1 is a chemokine necessary for facial motor neuron migration, as well as 

lateral line migration (Sapede et al., 2005). Because the facial motor neurons migrate 

caudally within the neural tube of the hindbrain and the lateral line neurons migrate in 

the periphery down the length of the body, it would be logical for each to require different 

sources of SDF1 for their migration. Previous work demonstrates that both SDF1a and 

SDF1b are expressed in the hindbrain posterior to r4 (Knaut et al., 2005), where facial 

motor neurons are born, before and during facial motor neuron migration. Thus, these 

sources of SDF1 are present at an appropriate time and location to help direct facial 

motor neuron migration. In addition, SDF1 is expressed in the same rhombomeres that 

express olig2. Therefore, one hypothesis is that SDF1 is downstream of olig2 and the 

link between olig2 function and facial motor neuron migration. An easy test of this idea is 

to examine the expression of SDF1 in wild-type embryos and olig2 MO-injected 

embryos. Furthermore, we would expect that driving the expression of SDF1 in r5 and r6 

would rescue the olig2 MO phenotype.  

 Another candidate to link olig2 function and facial motor neuron migration is the 

HLH transcription factor Ebf1. Though expressed in facial motor neurons, Ebf1 is also 

expressed in other cell populations that have not been well identified (Garel et al., 1997; 

Wang et al., 1997). Interestingly, Ebf1 activation requires dimierzation (Hagman et al., 

1995) and appears to have bHLH binding sites in its promoter (Smith et al., 2002). olig2 

is a bHLH transcription factor, and therefore, if expressed in the same cells, could 

function to activate Ebf1. Additionally, Ebf1 is known to interact with other bHLH 

proteins, best characterized in the mouse immune system (Sigvardsson et al., 1997; 

Sigvardsson, 2000; Gisler and Sigvardsson, 2002). Efb1 is upstream of several 

component required for neuronal differentiation and migration, such as cadherins, 

neurofilaments and Lim proteins (Garcia-Dominguez et al., 2003). One cadherin, cdh8, 

is expressed in facial motor neurons as they reach their target rhombomere and turn to 
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migrate laterally and radially. The hypothesis is that Ebf1 enables the facial motor 

neurons to interpret their environment and turn on the correct genes at the correct time 

(Garel et al., 2000). However, Ebf1 also regulates the chromogranin A and SCG10 

promoters (Persson et al., 2004). Chromogranin A is a glycoprotein with multiple 

functions in the CNS, many of which depend upon its location and post-translational 

modifications (Woulfe et al., 1999; Xie et al., 2008). SCG10 is GAP that is neural 

specific, developmentally regulated and capable of being induced by nerve growth factor 

(Stein et al., 1988a; Stein et al., 1988b; Mori and Morii, 2002). In addition, it functions in 

neural cytoskeletal rearrangement (Mori and Morii, 2002).   

 Other intriguing questions about the disruption of normal facial motor neuron 

migration concern the effect this perturbation has on the local connectively and 

ultimately behavior. Many studies demonstrate that regardless of abnormal cell body 

location, the axonal projections correctly exit the hindbrain from r4 (Garel et al., 2000; 

Pattyn et al., 2003; Chandrasekhar, 2004). However, do the cells that project onto facial 

motor neurons make their correct connections if the cell bodies are in the wrong 

location? Moreover, are there behavioral consequences to this possible miswiring?  

Finally, one of the most interesting possibilities raised by the multiple roles of olig2 in the 

hindbrain is a link between facial motor neurons and abducens motor neurons. Several 

disorders, including Mobius Syndrome, affect both the abducens and facial motor 

neurons. Given that these two neuronal populations arise at different times, from 

different areas of the hindbrain and require different genes, it is perplexing that the two 

would often be affected simultaneously. olig2 is required for the specification of one and 

the migration of the other, thus in its absence, both abducens and facial motor neurons 

are affected.  

 Given the scarcity of work focused on oligodendrocyte development in the 

hindbrain and the relationship with motor neurons, this work provides novel and 
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important information. We confirmed that oligodendrocytes arise from multiple origins in 

the hindbrain, only some of which express olig2. The precursors that do express olig2 

also give rise to motor neurons, the abducens motor neurons, as described in the spinal 

cord.  However, unlike the spinal cord, olig2 function is necessary for the r5 and r6 pMN 

precursors to exit the cell cycle and differentiate. In addition to known specification and 

cell cycle roles, we also observed that facial motor neuron migration requires olig2 

function. This is perhaps the most novel and interesting finding, indicating that olig2 has 

many roles in the development of the nervous system 

 

 101 



REFERENCES 
 
 

Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The 
mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386: 
838-842. 

Akam M (1989) Hox and HOM: homologous gene clusters in insects and vertebrates. 
Cell 57: 347-349. 

Alberta JA, Park SK, Mora J, Yuk D, Pawlitzky I, Iannarelli P, Vartanian T, Stiles CD, 
Rowitch DH (2001) Sonic hedgehog is required during an early phase of oligodendrocyte 
development in mammalian brain. Mol Cell Neurosci 18: 434-441. 

Alcantara S, Ruiz M, De Castro F, Soriano E, Sotelo C (2000) Netrin 1 acts as an 
attractive or as a repulsive cue for distinct migrating neurons during the development of 
the cerebellar system. Development 127: 1359-1372. 

Alfonsi F, Filippi P, Salaun D, deLapeyriere O, Durbec P (2008) LIFR beta plays a major 
role in neuronal identity determination and glial differentiation in the mouse facial 
nucleus. Dev Biol 313: 267-278. 

Altman J (1966) Proliferation and migration of undifferentiated precursor cells in the rat 
during postnatal gliogenesis. Exp Neurol 16: 263-278. 

Altman J, Bayer SA (1982) Development of the cranial nerve ganglia and related nuclei 
in the rat. Adv Anat Embryol Cell Biol 74: 1-90. 

Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, 
Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and 
vertebrate genome evolution. Science 282: 1711-1714. 

Appel B, Korzh V, Glasgow E, Thor S, Edlund T, Dawid IB, Eisen JS (1995) Motoneuron 
fate specification revealed by patterned LIM homeobox gene expression in embryonic 
zebrafish. Development 121: 4117-4125. 

Arber S, Caroni P (1996) Specificity of single LIM motifs in targeting and LIM/LIM 
interactions in situ. Genes Dev 10: 289-300. 

Artigiani S, Comoglio PM, Tamagnone L (1999) Plexins, semaphorins, and scatter factor 
receptors: a common root for cell guidance signals? IUBMB Life 48: 477-482. 

Ashwell KW, Watson CR (1983) The development of facial motoneurones in the mouse--
neuronal death and the innervation of the facial muscles. J Embryol Exp Morphol 77: 
117-141. 

Auclair F, Valdes N, Marchand R (1996) Rhombomere-specific origin of branchial and 
visceral motoneurons of the facial nerve in the rat embryo. J Comp Neurol 369: 451-461. 

 102 



Balling R, Mutter G, Gruss P, Kessel M (1989) Craniofacial abnormalities induced by 
ectopic expression of the homeobox gene Hox-1.1 in transgenic mice. Cell 58: 337-347. 

Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE (1989) Multiple and novel 
specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of 
oligodendrocyte development. J Neurosci Res 24: 548-557. 

Barbas-Henry HA (1982) The motor nuclei and primary projections of the facial nerve in 
the monitor lizard Varanus exanthematicus. J Comp Neurol 207: 105-113. 

Bauer S, Kerr BJ, Patterson PH (2007) The neuropoietic cytokine family in development, 
plasticity, disease and injury. Nat Rev Neurosci 8: 221-232. 

Beattie CE, Hatta K, Halpern ME, Liu H, Eisen JS, Kimmel CB (1997) Temporal 
separation in the specification of primary and secondary motoneurons in zebrafish. Dev 
Biol 187: 171-182. 

Bell E, Wingate RJ, Lumsden A (1999) Homeotic transformation of rhombomere identity 
after localized Hoxb1 misexpression. Science 284: 2168-2171. 

Bennett MV, Contreras JE, Bukauskas FF, Saez JC (2003) New roles for astrocytes: 
gap junction hemichannels have something to communicate. Trends Neurosci 26: 610-
617. 

Bingham S, Higashijima S, Okamoto H, Chandrasekhar A (2002) The Zebrafish trilobite 
gene is essential for tangential migration of branchiomotor neurons. Dev Biol 242: 149-
160. 

Bingham S, Nasevicius A, Ekker SC, Chandrasekhar A (2001) Sonic hedgehog and 
tiggy-winkle hedgehog cooperatively induce zebrafish branchiomotor neurons. Genesis 
30: 170-174. 

Birchmeier C, Gherardi E (1998) Developmental roles of HGF/SF and its receptor, the c-
Met tyrosine kinase. Trends Cell Biol 8: 404-410. 

Blader P, Fischer N, Gradwohl G, Guillemot F, Strahle U (1997) The activity of 
neurogenin1 is controlled by local cues in the zebrafish embryo. Development 124: 
4557-4569. 

Bloch-Gallego E, Ezan F, Tessier-Lavigne M, Sotelo C (1999) Floor plate and netrin-1 
are involved in the migration and survival of inferior olivary neurons. J Neurosci 19: 
4407-4420. 

Briegel W (2006) Neuropsychiatric findings of Mobius sequence -- a review. Clin Genet 
70: 91-97. 

Briscoe J, Ericson J (1999) The specification of neuronal identity by graded Sonic 
Hedgehog signalling. Semin Cell Dev Biol 10: 353-362. 

 103 



Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code 
specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101: 
435-445. 

Briscoe J, Sussel L, Serup P, Hartigan-O'Connor D, Jessell TM, Rubenstein JL, Ericson 
J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic 
hedgehog signalling. Nature 398: 622-627. 

Brosamle C, Halpern ME (2002) Characterization of myelination in the developing 
zebrafish. Glia 39: 47-57. 

Brose K, Tessier-Lavigne M (2000) Slit proteins: key regulators of axon guidance, axonal 
branching, and cell migration. Curr Opin Neurobiol 10: 95-102. 

Bumcrot DA, Takada R, McMahon AP (1995) Proteolytic processing yields two secreted 
forms of sonic hedgehog. Mol Cell Biol 15: 2294-2303. 

Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M, Qiu M (2005) Generation of 
oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 
regulation and Shh signaling. Neuron 45: 41-53. 

Calisaneller T, Ozdemir O, Altinors N (2006) Posttraumatic acute bilateral abducens 
nerve palsy in a child. Childs Nerv Syst 22: 726-728. 

Cameron-Curry P, Le Douarin NM (1995) Oligodendrocyte precursors originate from 
both the dorsal and the ventral parts of the spinal cord. Neuron 15: 1299-1310. 

Carreira-Barbosa F, Concha ML, Takeuchi M, Ueno N, Wilson SW, Tada M (2003) 
Prickle 1 regulates cell movements during gastrulation and neuronal migration in 
zebrafish. Development 130: 4037-4046. 

Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 
10: 940-954. 

Chamoun Z, Mann RK, Nellen D, von Kessler DP, Bellotto M, Beachy PA, Basler K 
(2001) Skinny hedgehog, an acyltransferase required for palmitoylation and activity of 
the hedgehog signal. Science 293: 2080-2084. 

Chandran S, Kato H, Gerreli D, Compston A, Svendsen CN, Allen ND (2003) FGF-
dependent generation of oligodendrocytes by a hedgehog-independent pathway. 
Development 130: 6599-6609. 

Chandrasekhar A (2004) Turning heads: development of vertebrate branchiomotor 
neurons. Dev Dyn 229: 143-161. 

Chandrasekhar A, Moens CB, Warren JT, Jr., Kimmel CB, Kuwada JY (1997) 
Development of branchiomotor neurons in zebrafish. Development 124: 2633-2644. 

Chandrasekhar A, Schauerte HE, Haffter P, Kuwada JY (1999) The zebrafish detour 
gene is essential for cranial but not spinal motor neuron induction. Development 126: 
2727-2737. 

 104 



Chandrasekhar A, Warren JT, Jr., Takahashi K, Schauerte HE, van Eeden FJ, Haffter P, 
Kuwada JY (1998) Role of sonic hedgehog in branchiomotor neuron induction in 
zebrafish. Mech Dev 76: 101-115. 

Chavrier P, Zerial M, Lemaire P, Almendral J, Bravo R, Charnay P (1988) A gene 
encoding a protein with zinc fingers is activated during G0/G1 transition in cultured cells. 
EMBO J 7: 29-35. 

Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) 
Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. 
Nature 383: 407-413. 

Chisaka O, Capecchi MR (1991) Regionally restricted developmental defects resulting 
from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350: 473-479. 

Choi BH, Kim RC (1985) Expression of glial fibrillary acidic protein by immature 
oligodendroglia and its implications. J Neuroimmunol 8: 215-235. 

Clarke JD, Lumsden A (1993) Segmental repetition of neuronal phenotype sets in the 
chick embryo hindbrain. Development 118: 151-162. 

Conlon RA, Rossant J (1992) Exogenous retinoic acid rapidly induces anterior ectopic 
expression of murine Hox-2 genes in vivo. Development 116: 357-368. 

Coppola E, Pattyn A, Guthrie SC, Goridis C, Studer M (2005) Reciprocal gene 
replacements reveal unique functions for Phox2 genes during neural differentiation. 
EMBO J 24: 4392-4403. 

Cordes SP, Barsh GS (1994) The mouse segmentation gene kr encodes a novel basic 
domain-leucine zipper transcription factor. Cell 79: 1025-1034. 

Currie PD, Ingham PW (1996) Induction of a specific muscle cell type by a hedgehog-
like protein in zebrafish. Nature 382: 452-455. 

D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein 
related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 
719-723. 

Davies JE, Miller RH (2001) Local sonic hedgehog signaling regulates oligodendrocyte 
precursor appearance in multiple ventricular zone domains in the chick metencephalon. 
Dev Biol 233: 513-525. 

Deiters O (1865) Untersuchungen über Gehirn und Rückenmark des Menschen und der 
Säugethiere. Braunschweig: F. Vieweg u. Sohn. 

Denis D, Dauletbekov D, Girard N (2008) Duane retraction syndrome: Type II with 
severe abducens nerve hypoplasia on magnetic resonance imaging. J AAPOS 12: 91-
93. 

 105 



Deschamps J, van der Akken E, Forlani S, De Graaff W, Oosterveen T, Roelen B, 
Roelfsema J (1999) Initiation, establishment and maintenance of Hox gene expression 
patterns in the mouse. Int J Dev Biol 43: 635-650. 

Dodd J, Morton SB, Karagogeos D, Yamamoto M, Jessell TM (1988) Spatial regulation 
of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron 1: 
105-116. 

Duane A (1996) Congenital deficiency of abduction, associated with impairment of 
adduction, retraction movements, contraction of the palpebral fissure and oblique 
movements of the eye. 1905. Arch Ophthalmol 114: 1255-1256. 

Duboule D, Dolle P (1989) The structural and functional organization of the murine HOX 
gene family resembles that of Drosophila homeotic genes. EMBO J 8: 1497-1505. 

Dutton KA, Pauliny A, Lopes SS, Elworthy S, Carney TJ, Rauch J, Geisler R, Haffter P, 
Kelsh RN (2001) Zebrafish colourless encodes sox10 and specifies non-
ectomesenchymal neural crest fates. Development 128: 4113-4125. 

Dwarakanath S, Gopal S, Venkataramana NK (2006) Post-traumatic bilateral abducens 
nerve palsy. Neurol India 54: 221-222. 

Echelard Y, Epstein DJ, St Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP 
(1993) Sonic hedgehog, a member of a family of putative signaling molecules, is 
implicated in the regulation of CNS polarity. Cell 75: 1417-1430. 

Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA, Moon RT, Beachy PA 
(1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and 
brain. Curr Biol 5: 944-955. 

Ericson J, Briscoe J, Rashbass P, van H, V, Jessell TM (1997a) Graded sonic hedgehog 
signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb 
Symp Quant Biol 62: 451-466. 

Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM (1996) Two critical periods of 
Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87: 
661-673. 

Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T (1995) Sonic hedgehog 
induces the differentiation of ventral forebrain neurons: a common signal for ventral 
patterning within the neural tube. Cell 81: 747-756. 

Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van H, V, Jessell TM, 
Briscoe J (1997b) Pax6 controls progenitor cell identity and neuronal fate in response to 
graded Shh signaling. Cell 90: 169-180. 

Ericson J, Thor S, Edlund T, Jessell TM, Yamada T (1992) Early stages of motor neuron 
differentiation revealed by expression of homeobox gene Islet-1. Science 256: 1555-
1560. 

 106 



Farah MH, Olson JM, Sucic HB, Hume RI, Tapscott SJ, Turner DL (2000) Generation of 
neurons by transient expression of neural bHLH proteins in mammalian cells. 
Development 127: 693-702. 

Fogarty M, Richardson WD, Kessaris N (2005) A subset of oligodendrocytes generated 
from radial glia in the dorsal spinal cord. Development 132: 1951-1959. 

Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is 
defined by cell lineage restrictions. Nature 344: 431-435. 

Fritzsch B, Nichols DH, Echelard Y, McMahon AP (1995) Development of midbrain and 
anterior hindbrain ocular motoneurons in normal and Wnt-1 knockout mice. J Neurobiol 
27: 457-469. 

Frohman MA, Martin GR, Cordes SP, Halamek LP, Barsh GS (1993) Altered 
rhombomere-specific gene expression and hyoid bone differentiation in the mouse 
segmentation mutant, kreisler (kr). Development 117: 925-936. 

Frotscher M (1998) Cajal-Retzius cells, Reelin, and the formation of layers. Curr Opin 
Neurobiol 8: 570-575. 

Fu H, Qi Y, Tan M, Cai J, Takebayashi H, Nakafuku M, Richardson W, Qiu M (2002) 
Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of 
Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129: 
681-693. 

Fukuda S, Kondo T, Takebayashi H, Taga T (2004) Negative regulatory effect of an 
oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway. Cell Death 
Differ 11: 196-202. 

Fukuda S, Taga T (2005) Cell fate determination regulated by a transcriptional signal 
network in the developing mouse brain. Anat Sci Int 80: 12-18. 

Furley AJ, Morton SB, Manalo D, Karagogeos D, Dodd J, Jessell TM (1990) The axonal 
glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-
promoting activity. Cell 61: 157-170. 

Garcia-Dominguez M, Poquet C, Garel S, Charnay P (2003) Ebf gene function is 
required for coupling neuronal differentiation and cell cycle exit. Development 130: 6013-
6025. 

Garel S, Garcia-Dominguez M, Charnay P (2000) Control of the migratory pathway of 
facial branchiomotor neurones. Development 127: 5297-5307. 

Garel S, Marin F, Grosschedl R, Charnay P (1999) Ebf1 controls early cell differentiation 
in the embryonic striatum. Development 126: 5285-5294. 

Garel S, Marin F, Mattei MG, Vesque C, Vincent A, Charnay P (1997) Family of Ebf/Olf-
1-related genes potentially involved in neuronal differentiation and regional specification 
in the central nervous system. Dev Dyn 210: 191-205. 

 107 



Gaufo GO, Thomas KR, Capecchi MR (2003) Hox3 genes coordinate mechanisms of 
genetic suppression and activation in the generation of branchial and somatic 
motoneurons. Development 130: 5191-5201. 

Gaunt SJ (1991) Expression patterns of mouse Hox genes: clues to an understanding of 
developmental and evolutionary strategies. Bioessays 13: 505-513. 

Gaunt SJ, Strachan L (1996) Temporal colinearity in expression of anterior Hox genes in 
developing chick embryos. Dev Dyn 207: 270-280. 

Gehring WJ (1985) Homeotic genes, the homeobox, and the spatial organization of the 
embryo. Harvey Lect 81: 153-172. 

Gehring WJ, Hiromi Y (1986) Homeotic genes and the homeobox. Annu Rev Genet 20: 
147-173. 

Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the 
morphogen retinoic acid. Nature 330: 624-629. 

Gilland E, Baker R (1993) Conservation of neuroepithelial and mesodermal segments in 
the embryonic vertebrate head. Acta Anat (Basel) 148: 110-123. 

Gisler R, Sigvardsson M (2002) The human V-preB promoter is a target for coordinated 
activation by early B cell factor and E47. J Immunol 168: 5130-5138. 

Giudicelli F, Taillebourg E, Charnay P, Gilardi-Hebenstreit P (2001) Krox-20 patterns the 
hindbrain through both cell-autonomous and non cell-autonomous mechanisms. Genes 
Dev 15: 567-580. 

Glover JC (2001) Correlated patterns of neuron differentiation and Hox gene expression 
in the hindbrain: a comparative analysis. Brain Res Bull 55: 683-693. 

Glover JC, Renaud JS, Rijli FM (2006) Retinoic acid and hindbrain patterning. J 
Neurobiol 66: 705-725. 

Goddard JM, Rossel M, Manley NR, Capecchi MR (1996) Mice with targeted disruption 
of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 122: 3217-
3228. 

Graham A, Papalopulu N, Krumlauf R (1989) The murine and Drosophila homeobox 
gene complexes have common features of organization and expression. Cell 57: 367-
378. 

Grapin-Botton A, Bonnin MA, McNaughton LA, Krumlauf R, Le Douarin NM (1995) 
Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic 
modifications. Development 121: 2707-2721. 

Grinspan JB, Edell E, Carpio DF, Beesley JS, Lavy L, Pleasure D, Golden JA (2000) 
Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. J 
Neurobiol 43: 1-17. 

 108 



Guidato S, Prin F, Guthrie S (2003) Somatic motoneurone specification in the hindbrain: 
the influence of somite-derived signals, retinoic acid and Hoxa3. Development 130: 
2981-2996. 

Guthrie S (2007) Patterning and axon guidance of cranial motor neurons. Nat Rev 
Neurosci 8: 859-871. 

Guthrie S, Lumsden A (1991) Formation and regeneration of rhombomere boundaries in 
the developing chick hindbrain. Development 112: 221-229. 

Guthrie S, Prince V, Lumsden A (1993) Selective dispersal of avian rhombomere cells in 
orthotopic and heterotopic grafts. Development 118: 527-538. 

Hadrys T, Prince V, Hunter M, Baker R, Rinkwitz S (2004) Comparative genomic 
analysis of vertebrate Hox3 and Hox4 genes. J Exp Zoolog B Mol Dev Evol 302: 147-
164. 

Hagman J, Belanger C, Travis A, Turck CW, Grosschedl R (1993) Cloning and 
functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene 
expression. Genes Dev 7: 760-773. 

Hagman J, Gutch MJ, Lin H, Grosschedl R (1995) EBF contains a novel zinc 
coordination motif and multiple dimerization and transcriptional activation domains. 
EMBO J 14: 2907-2916. 

Hagman J, Travis A, Grosschedl R (1991) A novel lineage-specific nuclear factor 
regulates mb-1 gene transcription at the early stages of B cell differentiation. EMBO J 
10: 3409-3417. 

Hall A, Giese NA, Richardson WD (1996) Spinal cord oligodendrocytes develop from 
ventrally derived progenitor cells that express PDGF alpha-receptors. Development 122: 
4085-4094. 

Hanneman E, Trevarrow B, Metcalfe WK, Kimmel CB, Westerfield M (1988) Segmental 
pattern of development of the hindbrain and spinal cord of the zebrafish embryo. 
Development 103: 49-58. 

Harding K, Wedeen C, McGinnis W, Levine M (1985) Spatially regulated expression of 
homeotic genes in Drosophila. Science 229: 1236-1242. 

Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22: 
511-539. 

Hauptmann G, Gerster T (2000) Multicolor whole-mount in situ hybridization. Methods 
Mol Biol 137: 139-148. 

Higashijima S, Hotta Y, Okamoto H (2000) Visualization of cranial motor neurons in live 
transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 
promoter/enhancer. J Neurosci 20: 206-218. 

 109 



Hirano M, Goldman JE (1988) Gliogenesis in rat spinal cord: evidence for origin of 
astrocytes and oligodendrocytes from radial precursors. J Neurosci Res 21: 155-167. 

Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ (2008) Identification of 
positionally distinct astrocyte subtypes whose identities are specified by a homeodomain 
code. Cell 133: 510-522. 

Hogan BL, Thaller C, Eichele G (1992) Evidence that Hensen's node is a site of retinoic 
acid synthesis. Nature 359: 237-241. 

Hotchkiss MG, Miller NR, Clark AW, Green WR (1980) Bilateral Duane's retraction 
syndrome. A clinical-pathologic case report. Arch Ophthalmol 98: 870-874. 

Hunt P, Krumlauf R (1992) Hox codes and positional specification in vertebrate 
embryonic axes. Annu Rev Cell Biol 8: 227-256. 

Inoue A, Takahashi M, Hatta K, Hotta Y, Okamoto H (1994) Developmental regulation of 
islet-1 mRNA expression during neuronal differentiation in embryonic zebrafish. Dev Dyn 
199: 1-11. 

Irving C, Malhas A, Guthrie S, Mason I (2002) Establishing the trochlear motor axon 
trajectory: role of the isthmic organiser and Fgf8. Development 129: 5389-5398. 

Isaacs HV, Pownall ME, Slack JM (1998) Regulation of Hox gene expression and 
posterior development by the Xenopus caudal homologue Xcad3. EMBO J 17: 3413-
3427. 

Jacob J, Briscoe J (2003) Gli proteins and the control of spinal-cord patterning. EMBO 
Rep 4: 761-765. 

Jacob J, Guthrie S (2000) Facial visceral motor neurons display specific rhombomere 
origin and axon pathfinding behavior in the chick. J Neurosci 20: 7664-7671. 

Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and 
transcriptional codes. Nat Rev Genet 1: 20-29. 

Jessen JR, Topczewski J, Bingham S, Sepich DS, Marlow F, Chandrasekhar A, Solnica-
Krezel L (2002) Zebrafish trilobite identifies new roles for Strabismus in gastrulation and 
neuronal movements. Nat Cell Biol 4: 610-615. 

Jungbluth S, Bell E, Lumsden A (1999) Specification of distinct motor neuron identities 
by the singular activities of individual Hox genes. Development 126: 2751-2758. 

Jurata LW, Thomas JB, Pfaff SL (2000) Transcriptional mechanisms in the development 
of motor control. Curr Opin Neurobiol 10: 72-79. 

Källén B (1956) Contribution of the knowledge of the regulation of the proliferation 
processes in the vertebrate brain during ontogenesis. Acta Anat (Basel) 27: 351-360. 

Kandel E, Schwartz, Jessel TM (2000) Principles of neural science. New York: McGraw 
Hill. 

 110 



Kanki JP, Chang S, Kuwada JY (1994) The molecular cloning and characterization of 
potential chick DM-GRASP homologs in zebrafish and mouse. J Neurobiol 25: 831-845. 

Kappen C, Schughart K, Ruddle FH (1989) Two steps in the evolution of Antennapedia-
class vertebrate homeobox genes. Proc Natl Acad Sci U S A 86: 5459-5463. 

Kastner P, Mark M, Ghyselinck N, Krezel W, Dupe V, Grondona JM, Chambon P (1997) 
Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR 
functional units during mouse development. Development 124: 313-326. 

Kaufman TC, Lewis R, Wakimoto B (1980) Cytogenetic Analysis of Chromosome 3 in 
DROSOPHILA MELANOGASTER: The Homoeotic Gene Complex in Polytene 
Chromosome Interval 84a-B. Genetics 94: 115-133. 

Kessaris N, Jamen F, Rubin LL, Richardson WD (2004) Cooperation between sonic 
hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical 
precursors. Development 131: 1289-1298. 

Kessel M (1993) Reversal of axonal pathways from rhombomere 3 correlates with extra 
Hox expression domains. Neuron 10: 379-393. 

Kessel M, Balling R, Gruss P (1990) Variations of cervical vertebrae after expression of 
a Hox-1.1 transgene in mice. Cell 61: 301-308. 

Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and 
concomitant alteration of Hox codes induced by retinoic acid. Cell 67: 89-104. 

Keynes R, Krumlauf R (1994) Hox genes and regionalization of the nervous system. 
Annu Rev Neurosci 17: 109-132. 

Keynes R, Lumsden A (1990) Segmentation and the origin of regional diversity in the 
vertebrate central nervous system. Neuron 4: 1-9. 

Kim H, Shin J, Kim S, Poling J, Park HC, Appel B (2008) Notch-regulated 
oligodendrocyte specification from radial glia in the spinal cord of zebrafish embryos. 
Dev Dyn. 

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of 
embryonic development of the zebrafish. Dev Dyn 203: 253-310. 

Kimmel CB, Metcalfe WK, Schabtach E (1985) T reticular interneurons: a class of 
serially repeating cells in the zebrafish hindbrain. J Comp Neurol 233: 365-376. 

Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B (2006) In vivo 
time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish 
development. Nat Neurosci 9: 1506-1511. 

Knaut H, Blader P, Strahle U, Schier AF (2005) Assembly of trigeminal sensory ganglia 
by chemokine signaling. Neuron 47: 653-666. 

 111 



Korzh V, Edlund T, Thor S (1993) Zebrafish primary neurons initiate expression of the 
LIM homeodomain protein Isl-1 at the end of gastrulation. Development 118: 417-425. 

Koster RW, Fraser SE (2001) Direct imaging of in vivo neuronal migration in the 
developing cerebellum. Curr Biol 11: 1858-1863. 

Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the 
Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in 
zebrafish embryos. Cell 75: 1431-1444. 

Krumlauf R (1992) Evolution of the vertebrate Hox homeobox genes. Bioessays 14: 245-
252. 

Kucenas S, Takada N, Park HC, Woodruff E, Broadie K, Appel B (2008) CNS-derived 
glia ensheath peripheral nerves and mediate motor root development. Nat Neurosci 11: 
143-151. 

Kudrycki K, Stein-Izsak C, Behn C, Grillo M, Akeson R, Margolis FL (1993) Olf-1-binding 
site: characterization of an olfactory neuron-specific promoter motif. Mol Cell Biol 13: 
3002-3014. 

Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a 
novel transcriptional modulator in glial cells. J Neurosci 18: 237-250. 

Kuhn TB, Stoeckli ET, Condrau MA, Rathjen FG, Sonderegger P (1991) Neurite 
outgrowth on immobilized axonin-1 is mediated by a heterophilic interaction with L1(G4). 
J Cell Biol 115: 1113-1126. 

Langston AW, Gudas LJ (1992) Identification of a retinoic acid responsive enhancer 3' of 
the murine homeobox gene Hox-1.6. Mech Dev 38: 217-227. 

Lawrence PA, Morata G (1994) Homeobox genes: their function in Drosophila 
segmentation and pattern formation. Cell 78: 181-189. 

Le Bras B, Chatzopoulou E, Heydon K, Martinez S, Ikenaka K, Prestoz L, Spassky N, 
Zalc B, Thomas JL (2005) Oligodendrocyte development in the embryonic brain: the 
contribution of the plp lineage. Int J Dev Biol 49: 209-220. 

Le Mouellic H, Lallemand Y, Brulet P (1992) Homeosis in the mouse induced by a null 
mutation in the Hox-3.1 gene. Cell 69: 251-264. 

Lee JE (1997) Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 
7: 13-20. 

Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central 
nervous system. Annu Rev Neurosci 22: 261-294. 

Levine M, Hoey T (1988) Homeobox proteins as sequence-specific transcription factors. 
Cell 55: 537-540. 

 112 



Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276: 
565-570. 

Ling EA, Wong WC (1993) The origin and nature of ramified and amoeboid microglia: a 
historical review and current concepts. Glia 7: 9-18. 

Litingtung Y, Chiang C (2000) Control of Shh activity and signaling in the neural tube. 
Dev Dyn 219: 143-154. 

Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement 
for Wnt3 in vertebrate axis formation. Nat Genet 22: 361-365. 

Liu R, Cai J, Hu X, Tan M, Qi Y, German M, Rubenstein J, Sander M, Qiu M (2003) 
Region-specific and stage-dependent regulation of Olig gene expression and 
oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development 130: 
6221-6231. 

Liu Y, Rao M (2003) Oligodendrocytes, GRPs and MNOPs. Trends Neurosci 26: 410-
412. 

Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH (2002) Common 
developmental requirement for Olig function indicates a motor neuron/oligodendrocyte 
connection. Cell 109: 75-86. 

Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch 
DH (2000) Sonic hedgehog--regulated oligodendrocyte lineage genes encoding bHLH 
proteins in the mammalian central nervous system. Neuron 25: 317-329. 

Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P (1991) Disruption of the Hox-1.6 
homeobox gene results in defects in a region corresponding to its rostral domain of 
expression. Cell 66: 1105-1119. 

Lugaro E (1907) Sulle funzioni della nevroglia. Riv Pat Nerv Ment 12: 225-233. 

Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and 
routers. Science 304: 1755-1759. 

Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. 
Trends Neurosci 13: 329-335. 

Lumsden A (2004) Segmentation and compartition in the early avian hindbrain. Mech 
Dev 121: 1081-1088. 

Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick 
hindbrain. Nature 337: 424-428. 

Lyons DA, Guy AT, Clarke JD (2003) Monitoring neural progenitor fate through multiple 
rounds of division in an intact vertebrate brain. Development 130: 3427-3436. 

Maier CE, Miller RH (1997) Notochord is essential for oligodendrocyte development in 
Xenopus spinal cord. J Neurosci Res 47: 361-371. 

 113 



Manzanares M, Trainor PA, Nonchev S, Ariza-McNaughton L, Brodie J, Gould A, 
Marshall H, Morrison A, Kwan CT, Sham MH, Wilkinson DG, Krumlauf R (1999) The role 
of kreisler in segmentation during hindbrain development. Dev Biol 211: 220-237. 

Marcus RC, Easter SS, Jr. (1995) Expression of glial fibrillary acidic protein and its 
relation to tract formation in embryonic zebrafish (Danio rerio). J Comp Neurol 359: 365-
381. 

Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26: 
441-483. 

Marshall H, Nonchev S, Sham MH, Muchamore I, Lumsden A, Krumlauf R (1992) 
Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 
into a 4/5 identity. Nature 360: 737-741. 

Marti E, Bovolenta P (2002) Sonic hedgehog in CNS development: one signal, multiple 
outputs. Trends Neurosci 25: 89-96. 

Marti E, Bumcrot DA, Takada R, McMahon AP (1995) Requirement of 19K form of Sonic 
hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375: 322-
325. 

Marusich MF, Furneaux HM, Henion PD, Weston JA (1994) Hu neuronal proteins are 
expressed in proliferating neurogenic cells. J Neurobiol 25: 143-155. 

Masahira N, Takebayashi H, Ono K, Watanabe K, Ding L, Furusho M, Ogawa Y, 
Nabeshima Y, Alvarez-Buylla A, Shimizu K, Ikenaka K (2006) Olig2-positive progenitors 
in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but 
also to a subset of astrocytes and ependymal cells. Dev Biol 293: 358-369. 

McClintock JM, Kheirbek MA, Prince VE (2002) Knockdown of duplicated zebrafish 
hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of 
duplicate gene retention. Development 129: 2339-2354. 

McClure CFW (1890) The segmentation of the primitive vertebrate brain. Journal of 
Morphology 4: 35-56. 

McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ (1984) A homologous protein-
coding sequence in Drosophila homeotic genes and its conservation in other metazoans. 
Cell 37: 403-408. 

McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68: 283-
302. 

McKay IJ, Lewis J, Lumsden A (1997) Organization and development of facial motor 
neurons in the kreisler mutant mouse. Eur J Neurosci 9: 1499-1506. 

McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J (1994) The kreisler 
mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 
120: 2199-2211. 

 114 



Melton KR, Iulianella A, Trainor PA (2004) Gene expression and regulation of hindbrain 
and spinal cord development. Front Biosci 9: 117-138. 

Mendelson B (1986a) Development of reticulospinal neurons of the zebrafish. I. Time of 
origin. J Comp Neurol 251: 160-171. 

Mendelson B (1986b) Development of reticulospinal neurons of the zebrafish. II. Early 
axonal outgrowth and cell body position. J Comp Neurol 251: 172-184. 

Metcalfe WK, Mendelson B, Kimmel CB (1986) Segmental homologies among 
reticulospinal neurons in the hindbrain of the zebrafish larva. J Comp Neurol 251: 147-
159. 

Miller NR, Kiel SM, Green WR, Clark AW (1982) Unilateral Duane's retraction syndrome 
(Type 1). Arch Ophthalmol 100: 1468-1472. 

Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. 
Prog Neurobiol 67: 451-467. 

Moens CB, Prince VE (2002) Constructing the hindbrain: insights from the zebrafish. 
Dev Dyn 224: 1-17. 

Moens CB, Yan YL, Appel B, Force AG, Kimmel CB (1996) valentino: a zebrafish gene 
required for normal hindbrain segmentation. Development 122: 3981-3990. 

Morgan BA, Izpisua-Belmonte JC, Duboule D, Tabin CJ (1992) Targeted misexpression 
of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358: 
236-239. 

Mori N, Morii H (2002) SCG10-related neuronal growth-associated proteins in neural 
development, plasticity, degeneration, and aging. J Neurosci Res 70: 264-273. 

Morriss GM (1972) Morphogenesis of the malformations induced in rat embryos by 
maternal hypervitaminosis A. J Anat 113: 241-250. 

Morriss-Kay GM, Murphy P, Hill RE, Davidson DR (1991) Effects of retinoic acid excess 
on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the 
hindbrain of mouse embryos. EMBO J 10: 2985-2995. 

Muller M, Jabs N, Lorke DE, Fritzsch B, Sander M (2003) Nkx6.1 controls migration and 
axon pathfinding of cranial branchio-motoneurons. Development 130: 5815-5826. 

Muroyama Y, Fujiwara Y, Orkin SH, Rowitch DH (2005) Specification of astrocytes by 
bHLH protein SCL in a restricted region of the neural tube. Nature 438: 360-363. 

Murphy P, Davidson DR, Hill RE (1989) Segment-specific expression of a homoeobox-
containing gene in the mouse hindbrain. Nature 341: 156-159. 

Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, 
Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 
complex bridged by p300. Science 284: 479-482. 

 115 



Nambiar RM, Ignatius MS, Henion PD (2007) Zebrafish colgate/hdac1 functions in the 
non-canonical Wnt pathway during axial extension and in Wnt-independent 
branchiomotor neuron migration. Mech Dev 124: 682-698. 

Neal HV (1918) Neuromeres and metameres. Journal of Morphology 31: 293-315. 

Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. 
Trends Neurosci 26: 536-542. 

Noble M, Murray K (1984) Purified astrocytes promote the in vitro division of a bipotential 
glial progenitor cell. EMBO J 3: 2243-2247. 

Noble M, Murray K, Stroobant P, Waterfield MD, Riddle P (1988) Platelet-derived growth 
factor promotes division and motility and inhibits premature differentiation of the 
oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333: 560-562. 

Noll E, Miller RH (1993) Oligodendrocyte precursors originate at the ventral ventricular 
zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development 
118: 563-573. 

Nonchev S, Maconochie M, Vesque C, Aparicio S, Ariza-McNaughton L, Manzanares M, 
Maruthainar K, Kuroiwa A, Brenner S, Charnay P, Krumlauf R (1996) The conserved 
role of Krox-20 in directing Hox gene expression during vertebrate hindbrain 
segmentation. Proc Natl Acad Sci U S A 93: 9339-9345. 

Novitch BG, Chen AI, Jessell TM (2001) Coordinate regulation of motor neuron subtype 
identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31: 773-789. 

Ohshima T, Ogawa M, Takeuchi K, Takahashi S, Kulkarni AB, Mikoshiba K (2002) 
Cyclin-dependent kinase 5/p35 contributes synergistically with Reelin/Dab1 to the 
positioning of facial branchiomotor and inferior olive neurons in the developing mouse 
hindbrain. J Neurosci 22: 4036-4044. 

Olivier C, Cobos I, Perez Villegas EM, Spassky N, Zalc B, Martinez S, Thomas JL 
(2001) Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular 
area of the chick embryo. Development 128: 1757-1769. 

Ono K, Fujisawa H, Hirano S, Norita M, Tsumori T, Yasui Y (1997) Early development of 
the oligodendrocyte in the embryonic chick metencephalon. J Neurosci Res 48: 212-225. 

Orentas DM, Hayes JE, Dyer KL, Miller RH (1999) Sonic hedgehog signaling is required 
during the appearance of spinal cord oligodendrocyte precursors. Development 126: 
2419-2429. 

Orentas DM, Miller RH (1996) The origin of spinal cord oligodendrocytes is dependent 
on local influences from the notochord. Dev Biol 177: 43-53. 

Orr H (1887) Contribution to the Embryology of the Lizard. Journal of Morphology 1: 311-
372. 

 116 



Osumi N, Hirota A, Ohuchi H, Nakafuku M, Iimura T, Kuratani S, Fujiwara M, Noji S, Eto 
K (1997) Pax-6 is involved in the specification of hindbrain motor neuron subtype. 
Development 124: 2961-2972. 

Oxtoby E, Jowett T (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its 
expression during hindbrain development. Nucleic Acids Res 21: 1087-1095. 

Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during 
mouse embryogenesis. Development 119: 1005-1017. 

Park HC, Appel B (2003) Delta-Notch signaling regulates oligodendrocyte specification. 
Development 130: 3747-3755. 

Park HC, Boyce J, Shin J, Appel B (2005) Oligodendrocyte specification in zebrafish 
requires notch-regulated cyclin-dependent kinase inhibitor function. J Neurosci 25: 6836-
6844. 

Park HC, Mehta A, Richardson JS, Appel B (2002) olig2 is required for zebrafish primary 
motor neuron and oligodendrocyte development. Dev Biol 248: 356-368. 

Park HC, Shin J, Appel B (2004) Spatial and temporal regulation of ventral spinal cord 
precursor specification by Hedgehog signaling. Development 131: 5959-5969. 

Parsa CF, Grant E, Dillon WP, Jr., du LS, Hoyt WF (1998) Absence of the abducens 
nerve in Duane syndrome verified by magnetic resonance imaging. Am J Ophthalmol 
125: 399-401. 

Partanen J, Schwartz L, Rossant J (1998) Opposite phenotypes of hypomorphic and 
Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior 
patterning of mouse embryos. Genes Dev 12: 2332-2344. 

Pattyn A, Hirsch M, Goridis C, Brunet JF (2000) Control of hindbrain motor neuron 
differentiation by the homeobox gene Phox2b. Development 127: 1349-1358. 

Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1997) Expression and interactions of 
the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. 
Development 124: 4065-4075. 

Pattyn A, Vallstedt A, Dias JM, Sander M, Ericson J (2003) Complementary roles for 
Nkx6 and Nkx2 class proteins in the establishment of motoneuron identity in the 
hindbrain. Development 130: 4149-4159. 

Pearlman AL, Faust PL, Hatten ME, Brunstrom JE (1998) New directions for neuronal 
migration. Curr Opin Neurobiol 8: 45-54. 

Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, Bixler SA, Ambrose 
CM, Garber EA, Miatkowski K, Taylor FR, Wang EA, Galdes A (1998) Identification of a 
palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 273: 14037-14045. 

 117 



Perez Villegas EM, Olivier C, Spassky N, Poncet C, Cochard P, Zalc B, Thomas JL, 
Martinez S (1999) Early specification of oligodendrocytes in the chick embryonic brain. 
Dev Biol 216: 98-113. 

Persson P, Manetopoulos C, Lagergren A, Nygren J, Gisler R, Axelson H, Sigvardsson 
M (2004) Olf/EBF proteins are expressed in neuroblastoma cells: potential regulators of 
the Chromogranin A and SCG10 promoters. Int J Cancer 110: 22-30. 

Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM (1996) Requirement for LIM 
homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step 
in interneuron differentiation. Cell 84: 309-320. 

Porter JA, Ekker SC, Park WJ, von Kessler DP, Young KE, Chen CH, Ma Y, Woods AS, 
Cotter RJ, Koonin EV, Beachy PA (1996a) Hedgehog patterning activity: role of a 
lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86: 
21-34. 

Porter JA, Young KE, Beachy PA (1996b) Cholesterol modification of hedgehog 
signaling proteins in animal development. Science 274: 255-259. 

Pownall ME, Isaacs HV, Slack JM (1998) Two phases of Hox gene regulation during 
early Xenopus development. Curr Biol 8: 673-676. 

Prakash N, Wurst W (2004) Specification of midbrain territory. Cell Tissue Res 318: 5-
14. 

Prince VE, Moens CB, Kimmel CB, Ho RK (1998) Zebrafish hox genes: expression in 
the hindbrain region of wild-type and mutants of the segmentation gene, valentino. 
Development 125: 393-406. 

Pringle NP, Guthrie S, Lumsden A, Richardson WD (1998) Dorsal spinal cord 
neuroepithelium generates astrocytes but not oligodendrocytes. Neuron 20: 883-893. 

Pringle NP, Richardson WD (1993) A singularity of PDGF alpha-receptor expression in 
the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte 
lineage. Development 117: 525-533. 

Pringle NP, Yu WP, Guthrie S, Roelink H, Lumsden A, Peterson AC, Richardson WD 
(1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage 
by ventral midline cells and sonic hedgehog. Dev Biol 177: 30-42. 

Rakic P (1990) Principles of neural cell migration. Experientia 46: 882-891. 

Rakic P (1999) Neurobiology. Discriminating migrations. Nature 400: 315-316. 

Ramón y Cajal S (1909) Histologie du système nerveux de l'homme et des vertébrés. 
Paris. 

Rao MS, Noble M, Mayer-Proschel M (1998) A tripotential glial precursor cell is present 
in the developing spinal cord. Proc Natl Acad Sci U S A 95: 3996-4001. 

 118 



Redies C, Takeichi M (1996) Cadherins in the developing central nervous system: an 
adhesive code for segmental and functional subdivisions. Dev Biol 180: 413-423. 

Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 
7: 11-18. 

Robinson V, Smith A, Flenniken AM, Wilkinson DG (1997) Roles of Eph receptors and 
ephrins in neural crest pathfinding. Cell Tissue Res 290: 265-274. 

Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J (1996) Embryological origin for 
autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 370: 
247-261. 

Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Altaba A, Tanabe Y, Placzek 
M, Edlund T, Jessell TM, . (1994) Floor plate and motor neuron induction by vhh-1, a 
vertebrate homolog of hedgehog expressed by the notochord. Cell 76: 761-775. 

Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT, Beachy PA, Jessell TM (1995) 
Floor plate and motor neuron induction by different concentrations of the amino-terminal 
cleavage product of sonic hedgehog autoproteolysis. Cell 81: 445-455. 

Rohrschneider MR, Elsen GE, Prince VE (2007) Zebrafish Hoxb1a regulates multiple 
downstream genes including prickle1b. Dev Biol 309: 358-372. 

Rossel M, Loulier K, Feuillet C, Alonso S, Carroll P (2005) Reelin signaling is necessary 
for a specific step in the migration of hindbrain efferent neurons. Development 132: 
1175-1185. 

Roth G, Nishikawa K, Dicke U, Wake DB (1988) Topography and cytoarchitecture of the 
motor nuclei in the brainstem of salamanders. J Comp Neurol 278: 181-194. 

Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5: 
409-419. 

Rowitch DH, Lu QR, Kessaris N, Richardson WD (2002) An 'oligarchy' rules neural 
development. Trends Neurosci 25: 417-422. 

Samanta J, Kessler JA (2004) Interactions between ID and OLIG proteins mediate the 
inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131: 4131-
4142. 

Sapede D, Rossel M, Dambly-Chaudiere C, Ghysen A (2005) Role of SDF1 chemokine 
in the development of lateral line efferent and facial motor neurons. Proc Natl Acad Sci U 
S A 102: 1714-1718. 

Schneider-Maunoury S, Topilko P, Seitandou T, Levi G, Cohen-Tannoudji M, Pournin S, 
Babinet C, Charnay P (1993) Disruption of Krox-20 results in alteration of rhombomeres 
3 and 5 in the developing hindbrain. Cell 75: 1199-1214. 

Scott MP (1992) Vertebrate homeobox gene nomenclature. Cell 71: 551-553. 

 119 



Scott MP, Weiner AJ (1984) Structural relationships among genes that control 
development: sequence homology between the Antennapedia, Ultrabithorax, and fushi 
tarazu loci of Drosophila. Proc Natl Acad Sci U S A 81: 4115-4119. 

Sham MH, Vesque C, Nonchev S, Marshall H, Frain M, Gupta RD, Whiting J, Wilkinson 
D, Charnay P, Krumlauf R (1993) The zinc finger gene Krox20 regulates HoxB2 
(Hox2.8) during hindbrain segmentation. Cell 72: 183-196. 

Shin J, Park HC, Topczewska JM, Mawdsley DJ, Appel B (2003) Neural cell fate 
analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci 25: 7-14. 

Sigvardsson M (2000) Overlapping expression of early B-cell factor and basic helix-loop-
helix proteins as a mechanism to dictate B-lineage-specific activity of the lambda5 
promoter. Mol Cell Biol 20: 3640-3654. 

Sigvardsson M, O'Riordan M, Grosschedl R (1997) EBF and E47 collaborate to induce 
expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 7: 
25-36. 

Simeone A, Acampora D, Arcioni L, Andrews PW, Boncinelli E, Mavilio F (1990) 
Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal 
carcinoma cells. Nature 346: 763-766. 

Smith EM, Gisler R, Sigvardsson M (2002) Cloning and characterization of a promoter 
flanking the early B cell factor (EBF) gene indicates roles for E-proteins and 
autoregulation in the control of EBF expression. J Immunol 169: 261-270. 

Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1: 2-
9. 

Song MR (2007) Moving cell bodies: understanding the migratory mechanism of facial 
motor neurons. Arch Pharm Res 30: 1273-1282. 

Song MR, Shirasaki R, Cai CL, Ruiz EC, Evans SM, Lee SK, Pfaff SL (2006) T-Box 
transcription factor Tbx20 regulates a genetic program for cranial motor neuron cell body 
migration. Development 133: 4945-4955. 

Spassky N, Goujet-Zalc C, Parmantier E, Olivier C, Martinez S, Ivanova A, Ikenaka K, 
Macklin W, Cerruti I, Zalc B, Thomas JL (1998) Multiple restricted origin of 
oligodendrocytes. J Neurosci 18: 8331-8343. 

Spassky N, Olivier C, Perez-Villegas E, Goujet-Zalc C, Martinez S, Thomas J, Zalc B 
(2000) Single or multiple oligodendroglial lineages: a controversy. Glia 29: 143-148. 

Stein R, Mori N, Matthews K, Lo LC, Anderson DJ (1988a) The NGF-inducible SCG10 
mRNA encodes a novel membrane-bound protein present in growth cones and 
abundant in developing neurons. Neuron 1: 463-476. 

Stein R, Orit S, Anderson DJ (1988b) The induction of a neural-specific gene, SCG10, 
by nerve growth factor in PC12 cells is transcriptional, protein synthesis dependent, and 
glucocorticoid inhibitable. Dev Biol 127: 316-325. 

 120 



Streeter GL (1933) The status of metamerism in the central nervous system of chick 
embryos. Journal of Comparative Neurology 57: 455. 

Studer M (2001) Initiation of facial motoneurone migration is dependent on 
rhombomeres 5 and 6. Development 128: 3707-3716. 

Sundin O, Eichele G (1992) An early marker of axial pattern in the chick embryo and its 
respecification by retinoic acid. Development 114: 841-852. 

Sussman CR, Dyer KL, Marchionni M, Miller RH (2000) Local control of oligodendrocyte 
development in isolated dorsal mouse spinal cord. J Neurosci Res 59: 413-420. 

Szekely G, Matesz C (1993) The efferent system of cranial nerve nuclei: a comparative 
neuromorphological study. Adv Anat Embryol Cell Biol 128: 1-92. 

Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y (2002) 
The basic helix-loop-helix factor olig2 is essential for the development of motoneuron 
and oligodendrocyte lineages. Curr Biol 12: 1157-1163. 

Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, 
Nabeshima Y (2000) Dynamic expression of basic helix-loop-helix Olig family members: 
implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a 
new member, Olig3. Mech Dev 99: 143-148. 

Tanabe Y, Roelink H, Jessell TM (1995) Induction of motor neurons by Sonic hedgehog 
is independent of floor plate differentiation. Curr Biol 5: 651-658. 

Tekki-Kessaris N, Woodruff R, Hall AC, Gaffield W, Kimura S, Stiles CD, Rowitch DH, 
Richardson WD (2001) Hedgehog-dependent oligodendrocyte lineage specification in 
the telencephalon. Development 128: 2545-2554. 

Thali M, Muller MM, DeLorenzi M, Matthias P, Bienz M (1988) Drosophila homoeotic 
genes encode transcriptional activators similar to mammalian OTF-2. Nature 336: 598-
601. 

Timsit S, Martinez S, Allinquant B, Peyron F, Puelles L, Zalc B (1995) Oligodendrocytes 
originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 
mRNA expression. J Neurosci 15: 1012-1024. 

Travis A, Hagman J, Hwang L, Grosschedl R (1993) Purification of early-B-cell factor 
and characterization of its DNA-binding specificity. Mol Cell Biol 13: 3392-3400. 

Trevarrow B, Marks DL, Kimmel CB (1990) Organization of hindbrain segments in the 
zebrafish embryo. Neuron 4: 669-679. 

Trousse F, Giess MC, Soula C, Ghandour S, Duprat AM, Cochard P (1995) Notochord 
and floor plate stimulate oligodendrocyte differentiation in cultures of the chick dorsal 
neural tube. J Neurosci Res 41: 552-560. 

 121 



Tsuchida T, Ensini M, Morton SB, Baldassare M, Edlund T, Jessell TM, Pfaff SL (1994) 
Topographic organization of embryonic motor neurons defined by expression of LIM 
homeobox genes. Cell 79: 957-970. 

Ubink R, Calza L, Hokfelt T (2003) 'Neuro'-peptides in glia: focus on NPY and galanin. 
Trends Neurosci 26: 604-609. 

Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus 
domesticus). A morphological, histochemical and autoradiographical investigation. Ergeb 
Anat Entwicklungsgesch 41: 3-87. 

Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte 
generation in the spinal cord and hindbrain. Neuron 45: 55-67. 

van der Hoeven F, Zakany J, Duboule D (1996) Gene transpositions in the HoxD 
complex reveal a hierarchy of regulatory controls. Cell 85: 1025-1035. 

van Straaten HW, Hekking JW, Beursgens JP, Terwindt-Rouwenhorst E, Drukker J 
(1989) Effect of the notochord on proliferation and differentiation in the neural tube of the 
chick embryo. Development 107: 793-803. 

Vanderlaan G, Tyurina OV, Karlstrom RO, Chandrasekhar A (2005) Gli function is 
essential for motor neuron induction in zebrafish. Dev Biol 282: 550-570. 

Varela-Echavarria A, Pfaff SL, Guthrie S (1996) Differential expression of LIM homeobox 
genes among motor neuron subpopulations in the developing chick brain stem. Mol Cell 
Neurosci 8: 242-257. 

Vesque C, Maconochie M, Nonchev S, Ariza-McNaughton L, Kuroiwa A, Charnay P, 
Krumlauf R (1996) Hoxb-2 transcriptional activation in rhombomeres 3 and 5 requires an 
evolutionarily conserved cis-acting element in addition to the Krox-20 binding site. 
EMBO J 15: 5383-5396. 

Virchow R (1858) Die Cellularpathologie in ihrer Begründung auf physiologische und 
pathologische Gewebelehre. Berlin: A. Hirschwald. 

Virchow R (1856) Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Frankfurt 
A.M.: Hamm. 

von Baer KE (1828) Ueber die Entwickelungsgeschichte der Thiere. Königsberg. 

Wada H, Iwasaki M, Sato T, Masai I, Nishiwaki Y, Tanaka H, Sato A, Nojima Y, 
Okamoto H (2005) Dual roles of zygotic and maternal Scribble1 in neural migration and 
convergent extension movements in zebrafish embryos. Development 132: 2273-2285. 

Wada H, Tanaka H, Nakayama S, Iwasaki M, Okamoto H (2006) Frizzled3a and Celsr2 
function in the neuroepithelium to regulate migration of facial motor neurons in the 
developing zebrafish hindbrain. Development 133: 4749-4759. 

Wang MM, Reed RR (1993) Molecular cloning of the olfactory neuronal transcription 
factor Olf-1 by genetic selection in yeast. Nature 364: 121-126. 

 122 



 123 

Wang SS, Tsai RY, Reed RR (1997) The characterization of the Olf-1/EBF-like HLH 
transcription factor family: implications in olfactory gene regulation and neuronal 
development. J Neurosci 17: 4149-4158. 

Warf BC, Fok-Seang J, Miller RH (1991) Evidence for the ventral origin of 
oligodendrocyte precursors in the rat spinal cord. J Neurosci 11: 2477-2488. 

Wilkinson DG, Bhatt S, Chavrier P, Bravo R, Charnay P (1989a) Segment-specific 
expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 
337: 461-464. 

Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R (1989b) Segmental expression 
of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341: 
405-409. 

Wilkinson DG, Krumlauf R (1990) Molecular approaches to the segmentation of the 
hindbrain. Trends Neurosci 13: 335-339. 

Woulfe J, Deng D, Munoz D (1999) Chromogranin A in the central nervous system of the 
rat: pan-neuronal expression of its mRNA and selective expression of the protein. 
Neuropeptides 33: 285-300. 

Wullimann MF, Rupp B, Reichert H (1996) Neruoanatomy of the zebrafish brain. Basel: 
Birkhauser. 

Xie J, Wang WQ, Liu TX, Deng M, Ning G (2008) Spatio-temporal expression of 
chromogranin A during zebrafish embryogenesis. J Endocrinol 198: 451-458. 

Yamada T, Placzek M, Tanaka H, Dodd J, Jessell TM (1991) Control of cell pattern in 
the developing nervous system: polarizing activity of the floor plate and notochord. Cell 
64: 635-647. 

Yee KT, Simon HH, Tessier-Lavigne M, O'Leary DM (1999) Extension of long leading 
processes and neuronal migration in the mammalian brain directed by the 
chemoattractant netrin-1. Neuron 24: 607-622. 

Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple 
neuronal and glial subtype specification. Cell 109: 61-73. 

Zhou Q, Choi G, Anderson DJ (2001) The bHLH transcription factor Olig2 promotes 
oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31: 791-807. 

Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte 
lineage-specific basic helix-loop-helix transcription factors. Neuron 25: 331-343. 
 
 
 


	final title
	copyright
	Dedication and Acknowledgements
	whole thing
	Table 1.1. Cranial Motor Neuron Summary
	Cranial Nerve
	Class
	Cell Body Location            (in Zebrafish)

	 Oligodendrocyte Specification in the Spinal Cord 
	Origins
	Discussion


	Introduction
	Results
	Normal expression of anterioposterior markers and the location of the facial motor neuron migration defect 



