
 

MOLECULAR MECHANISMS OF ADAR2 LOCALIZATION 

AND SUBSTRATE SPECIFICITY 

 

By 

 

Ming Xu 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Pharmacology 

May, 2006 

Nashville, Tennessee 

Approved: 

Professor Ronald B. Emeson 

Professor Alfred L. George, Jr. 

Professor Randy D. Blakely 

Professor P. Jeffrey Conn 

Professor David W. Piston 



ii 

ACKNOWLEDGEMENTS 

 

I can still smell the excitement and nervousness when the airplane was 

landing at Detroit Metro Airport on June, 28th 2001. Since then I have devoted 

myself to the hard work for this degree, Doctor of Philosophy, in the United States. 

I think the naming of this degree makes perfect sense because after a few 

successes and many failures during these five years, I need to move on and work 

on a brand new scientific field and the only thing left for me is this document and 

better understanding of philosophy. 

I would like to thank my mentor, Dr. Ronald Emeson, for taking me into his 

laboratory and allowing me to choose the projects I am interested in to work on. 

He is very patient to me when the initial projects did not work; he is also very 

supportive when the projects are working. He teaches me how to think and work 

as a scientist, as well as how to speak and write like a scientist. I enjoy my staying 

in his laboratory very much. 

I have an extremely busy but absolutely intelligent committee. I want to thank 

all my committee members, Dr. Alfred George, Dr. Randy Blakely, Dr. Jeff Conn 

and Dr. Dave Piston. They have given me a lot of great suggestions and 

directions on my thesis projects and future career. Without their enormous help, it 

is impossible for me to finish the degree in five years. 

My labmates are simply fantastic and I enjoy every minute working with them. 

I will remember all the fun we had during these years. They are Dr. Minati Singh, 

Dr. Jongho Lee, Dr. Renee Dawson, Dr. Chris Sansam, Dr. Brent Thompson, Dr. 



iii 

Yi Feng, Linda Hutchinson, Mike Morabito, Michelle Jacobs, Elizabeth Rula, 

Jennifer Veale and Usha Kurre. I wish the best for all of them. 

I am the only child of my family so I consider myself selfish to leave my 

parents on the other side of the planet and only visit them twice during the five 

years. I remember seeing them crying every time I leave China. My parents 

support every decision I made and care about me in any conditions. I can not 

thank my parents enough and I wish them health and happiness. I would also like 

to thank my girlfriend for the happy time she brings to my life during the last two 

years. I want to be with her forever. 

At last, I want to thank you for spending your precious time to read this 

document. 



iv 

TABLE OF CONTENTS 
 
 

 
                                                                   Page 
 
ACKNOWLEDGEMENTS……………………………………………………………...ii 

 
LIST OF TABLES……………………………………………………………………….vii 

 
LIST OF FIGURES………….…………………………………………………………viii 

 
LIST OF ABBREVIATIONS……………………………………………………………..x 
 
Chapter 
 
I. INTRODUCTION…………………………………………………………………….1 

 
dsRNA binding motif and dsRNA binding protein………………….............1 

Double-stranded RNA binding motif (dsRBM)………………………….2 
Recognition of an A-form RNA helix by the dsRBM………….......2 
Recognition of specific structured RNA by the dsRBM……………5 
Interactions of dsRBMs with non-dsRNA binding partners……….6 

Double-stranded RNA binding proteins (dsRBPs)...............................8 
PKR…………………………………………………………...............8 
Staufen……………………………………………………………….11 
NFAR…………………………………………………………………13 
RNase III family……………………………………………………...13 
ADAR…………………………………………………………………15 

A-to-I RNA editing and ADARs…………………………………………….15 
Functional domains of ADARs………………………………………….20 

The N-terminal region……………………………………………….20 
The dsRBMs…………………………………………………………22 
The deaminase domain…………………………………………….22 

Substrate specificity of ADARs…………………………………………23 
Functional consequences of specific A-to-I editing events…………..28 

RNA editing on Q/R site of GluR transcripts……………………...30 
RNA editing of R/G site in GluR transcripts…………….………...33 
RNA editing of 5-HT2CR transcripts…………………………..…...33 
RNA editing on -1 site of ADAR2 pre-mRNA transcript………….35 

Physiological significance of ADARs……………………..……………36 
Mammalian ADARs…………………………………………………36 
Drosophila dADAR………………………………………………….38 
C.elegans ADRs…………………………………………………….39 

Regulation of ADAR function..………………………………………………40 
Transcriptional regulation……………………………………………….40 



v 

Alternative splicing……………………………………………………….41 
ADAR autoediting………………………………………………………..43 
Dimerization………………………………………………………………44 
Sumoylation………………………………………………………………47 
Nucleolar sequestration…………………………………………………48 

The compartmentalization of the nucleus…………………………49 
Functional sequestration of ADARs by the nucleolus……………51 
Molecular mechanisms for ADARs nucleolar localization………53 

Summary and specific aims…………………………………………………53 
 
II. IDENTIFICATION OF C-TERMINAL LOCALIZATION SIGNAL IN ADAR2…...55 

 
Introduction……………………………………………………………………55 
Materials and Methods……………………………………………………….57 

Plasmids…………………………………………………………………..57 
Cell culture and transfection…………………………………………….57 
Fluorescence microscopy……………………………………………….58 
In vitro editing assay……………………………………………………..58 

Results…………………………………………………………………………59 
Altered localization by C-terminal region deletion…………………….59 
Insufficiency of C-terminal region for nucleolar localization…………61 
Altered localization by deleting the deaminase domain……………...61 
Lack of dissectible localization signal in the C-terminal region……...61 
The sufficiency of the dsRBMs for nucleolar localization…………….64 
Loss of enzymatic activity by mutations in the C-terminal region…...64 

Discussion……………………………………………………………………..65 
The highly structured C-terminal region……..………………………...67 
The IP6 and dsRBM-mediated nucleolar localization………………...68 

 
III. STRUCTURE AND SPECIFIC RNA BINDING OF ADAR2 DSRBMS………..70 
 

Introduction……………………………………………………………………70 
Materials and Methods……………………………………………………….72 

Plasmids…………………………………………………………………..72 
Recombinant protein expression and purification…………………….72 
Cell culture and protein preparation for in vitro editing assay……….73 
RNA preparation for in vitro RNA editing assay……………………….73 
In vitro editing assay and quantification of R/G site editing………….74 
More materials and methods……………………………………………74 

Results…………………………………………………………………………75 
ADAR2 dsRBMs are independent domains…………………………..75 
ADAR2 dsRBMs structures are not identical………………………….77 
Mapping of RNA-binding surface on the ADAR2 dsRBMs…………..77 
Mapping of protein-binding surface on the R/G stem-loop…………..81 
NMR model of ADAR2 dsRBM1/2 in complex with R/G stem-loop... 82 
Both dsRBMs are important for efficient editing of the R/G site…….84 



vi 

Functional importance of R/G stem-loop secondary structure………86 
Discussion……………………………………………………………………..88 

Structure of ADAR2 dsRBMs…………………………………………...88 
ADAR2 dsRBMs specifically recognized the R/G stem-loop………..88 
Implication for ADAR editing……………………………………………91 

 
IV. DIFFERENTIAL ROLES OF DSRBMS IN REGULATING 

 ADAR2 FUNCTION………………………………………………..………………93 
 

Introduction……………………………………………………………………93 
Materials and Methods……………………………………………………….95 

Plasmids…………………………………………………………………..95 
Cell culture and transfection…………………………………………….96 
Quantitative fluorescence microscopy...............................................97 
Quantitative analysis of editing on transfected ADAR substrates......98 
Western blotting analysis..................................................................99 
In vitro editing assay..........................................................................99 
Quantitative analysis of in vitro RNA editing activitiy........................101 

Results...................................................................................................102 
Differential roles of dsRBMs in nucleolar localization………..……..102 
Differential roles for dsRBM in the site-selective editing…………. .108 
Substrate-specific contributions from each dsRBM…………………111 
Substrate-specific contributions from K281………..………………….116 
Function-dependent interchangeability of ADAR2 dsRBMs………..119 

Discussion.............................................................................................123 
 dsRBMs and ADAR2 substrate specificity…………………………...124 
 dsRBMs and nucleolar localization…………………………………...127 
 The inequality of dsRBMs……………………………………………..128 

 
V. CONCLUSIONS AND FUTURE DIRECTIONS..……………………………….130 

 
Potential rRNA editing by ADARs………………………………………….132 
Proposed model for ADAR substrate recognition………………………..134 

 
Appendix 
 
SEQUENCE OF PRIMERS USED IN THE STUDY..……………………………..141 
 
REFERENCES……………………………………………………………………….143 



vii 

LIST OF TABLES 
 
 

 
Table                                                              Page 
 
1. Features and functions of dsRBP family members……………………………..10 

 
2. A summary of characterized A-to-I RNA editing events……………….……….19 
 
3. Summary of experimental conditions for in vitro RNA editing and  

primer extension analysis………………………………………………………100 
 



viii 

LIST OF FIGURES 
 
 

 
Figure                                                             Page 
 
1. Sequences alignment of double-stranded RNA-binding motifs (dsRBM).…….3 

 
2. Structures of complexes formed by dsRBM and dsRNA………………………..4 

 
3. Schematic diagram of dsRBP domain structures………………………………..9 

 
4. Functional domains of ADARs from different species………………………….21 

 
5. The conserved mechanism for deamination…………………………………….24 
 
6. Predicted secondary structures for pre-mRNA substrates modified by  

A-to-I editing………………………………………………………………………..25 
 

7. Specific interaction of ADAR2 dsRBM1 and GluR-2 RNA (Q/R site)...............29 
 

8. The functional consequences of A-to-I RNA editing……………………………32 
 

9. Model of ADAR2 autoregulation………………………………………………….45 
 

10.  Dynamic association of ADAR2 with the nucleolus…………………………...52 
 

11.  Loss of nucleolar localization by deleting C-terminal region…………………60 
 
12.  A summary of subcellular localization and enzymatic activity of 

 C-terminal mutants……………………………………………………………….62 
 

13.  Subcellular localization of C-terminal mutants…………………………………63 
 

14.  Loss of enzymatic activity by C-terminal deletions……………………………66 
 

15.  Purification of His-dsRBM1 and His-dsRBM2 protein to homogenerity…….76 
 

16.  ADAR2 dsRBM protein structure……………………………….......................78 
 

17.  The structure and protein binding surface of R/G stem-loop…………………80 
 

18.  Model for interaction between ADAR2 dsRBMs and R/G RNA duplex……..83 
 

19.  The importance of dsRBMs for R/G site editing……………………………….85 
 



ix 

20.  The importance of the pentaloop structure…………………………………….87 
 
21.  eGFP-ADAR2 fusion constructs for analysis of subnuclear localization 

 and site-specific RNA editing…………………………………………………..103 
 
22.  Differential contributions of dsRBM1 and dsRBM2 to ADAR2 

 nucleolar localization…………………………………………..………………105 
 
23.  Ability of ADAR2 dsRBMs to localize eYFP to the nucleolus……………….107 
 
24. Differential roles of dsRBM1 and dsRBM2 on editing of transfeted  

ADAR substrates………………………………………………………………...110 
 
25. Quantification of wild-type and mutant eGFP-ADAR2 protein levels in  

HEK293 nuclear extracts………………………………………………………..112 
 

26. In vitro time course analysis of site-specific editing for the  
wile-type eGFP-ADAR2 protein…………………………………….................114 

 
27. Differential contributions of dsRBM1 and dsRBM2 to site-specific 

editing activity…………………………………………………………………….115 
 
28. Quantitative analysis of dsRBM1 and dsRBM2 contributions to  

site-specific editing activity……………………………………………………...117 
 

29. Quantitative analysis of K127 and K281 contributions to site-specific 
 editing activity……………………………………………………………………..118 

 
30. Lack of interchangeability between ADAR2 dsRBMs for editing activity…...120 

 
31. Analysis of eGFP-dsRBM2/1 function………………………………………….121 

 
32. Proposed model for ADAR2 site-selective targeting………………………….136 



x 

LIST OF ABBREVIATIONS 
 
 
 
5-HT2CR   2C subtype serotonin receptor 
A     adenosine 
aa     amino acid 
ACF    APOBEC-1 complementation factor 
ADAR    vertebrate adenosine deaminase that act on RNA 
ADAT    adenosine deaminase that acts on RNA 
ADR    C. elegans adenosine deaminase acts on RNA 
AMP    adenosine 5’-monophophate 
AMPA    alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
ApoB    apolipoprotein B 
APOBEC-1   ApoB editing catalytic subunit 1 
A-to-I    adenosine to inosine 
bp     base pairs 
C     cytidine 
CDA    cytidine deaminase 
cDNA    complementary DNA 
CNS    central nervous system 
CTD    C-terminal domain 
C-6     carbon number 6 of the purine ring 
C-terminal   carboxyl-terminal 
C-to-U    citidine to uridine 
dADAR    Drosophila ADAR 
DNA    deoxyribonucleic acid 
dsDNA    double-stranded DNA 
dsRBM    double-stranded RNA binding motif 
dsRBP    dsRNA binding protein 
dsRNA    double-stranded RNA 
eIF     eukaryotic initiation factor 
Fn     average nucleolar fluorescence intensity 
Fo     average nucleoplasmic fluorescence intensity 
G     guarnosine 
GluR    glutamate receptor subunit 
GPCR    G-protein coupled receptor 
HDV    hepatitis delta virus 
IFN         interferon 
IMP    inosine 5’-monophosphate  
IP6     inositol hexaphosphate 
kD     kilo Dalton 
LDL    low density lipoprotein 
mRNA    messenger RNA 
NMR    nuclear magnetic resonance 
NES    nuclear export signal 



xi 

NFAR    nuclear factor associated with RNA 
NLS    nuclear localization signal 
NMDA    N-methyl-D-asparate 
nt     nucleotide 
N-terminal   amino-terminal 
OH     hydroxyl group 
PCR    polymerase chain reaction 
PKR    RNA-dependent protein kinase 
PACT    protein activator 
pre-mRNA   precursor messenger RNA 
pre-rRNA   precursor ribosomal RNA 
pre-miRNA   precursor microRNA 
pri-miRNA   primary microRNA 
Q/R site   glutamine/arginine editing site 
RDE-4    RNAi-deficient 4 
RHA    RNA helicase A 
RNA    ribonucleic acid 
RNAi    RNA interference 
rRNA    ribosomal RNA 
RT     reverse transcription 
R/G site   arginine/glycine editing site 
snoRNA   small nucleolar RNA 
snRNA    small nuclear RNA 
SUMO    small ubiquitinlike modifier 
TENR    testis nuclear RNA binding protein 
TRBP    TAR-RNA binding protein 
tRNA    transfer RNA 
Xlrbpa    Xenopus laevis RNA binding protein A 
U      uridine 
UTR    untranslated region 
 



CHAPTER I 

 

INTRODUCTION 

 

dsRNA binding motif and dsRNA binding protein 

RNA (mRNA, tRNA and rRNA) represents the messenger and a component of 

the machinery necessary to convey the genetic information from DNA into variety 

of functional proteins in the cells (Crick, 1958). However, many viruses use RNA 

as their genomes and perform RNA-dependent RNA synthesis for replication or 

transcription (Lawton et al., 2000; Patton and Spencer, 2000) and the presence of 

double-stranded (ds) RNA used to be considered as a sign of viral invasion 

(Jacobs and Langland, 1996). Recent discoveries of RNA interference (RNAi) and 

microRNA signaling pathways have illustrated the importance of cellular dsRNA in 

regulating gene expression (Lee et al., 1993; Napoli et al., 1990; van der Krol et 

al., 1990). Therefore, the comprehensive understanding of dsRNA biology is of 

great interest. 

Double-stranded RNAs (dsRNAs) interact with dsRNA-binding proteins 

(dsRBPs), the great majority of which contain a sequence called the 

dsRNA-binding motif (dsRBM). The interaction between dsRNA with different 

dsRBPs may cause diverse biological outcomes, including cleavage or covalent 

modification of dsRNA, the phosphorylation of translational machinery and the 

transcriptional activation of specific genes (Fierro-Monti and Mathews, 2000). 
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Double-stranded RNA binding motif (dsRBM) 

All dsRBMs are ~70 amino acids in length and the alignment of their primary 

sequences revealed a high level of sequence homology (Fierro-Monti and 

Mathews, 2000) (Figure 1). The structures of the dsRBMs present in several 

proteins from different organisms have been solved by nuclear magnetic 

resonance (NMR) and X-ray crystallography, with a conserved fold comprising an 

overall α-helix 1, β-strand 1, β-strand 2, β-strand 3 and α-helix 2 topology. The two 

α-helices are packed along the face of a three-stranded antiparallel β sheet 

(Bycroft et al., 1995; Kharrat et al., 1995; Nanduri et al., 1998) (Figure 2). There 

are three regions that are highly conserved, α1, loop2 (between β1 and β2) and 

loop 4 (between β3 and α2); all three regions are exposed on one side of the motif 

and form the potential RNA-binding surface. 

Recognition of an A-form RNA helix by the dsRBM 

The dsRBM was initially named for its ability to recognize dsRNA, yet this 

ability is not universal to all dsRBMs. For instance, dsRBM1, dsRBM3 and 

dsRBM4, but not dsRBM2 and dsRBM5, of Drosophila Staufen bind to dsRNA in 

vitro (Micklem et al., 2000). To date, no good correlation between the dsRNA 

binding affinity and the sequence of dsRBM has been established (Chang and 

Ramos, 2005). 

The structure of dsRBM2 from Xenopus laevis RNA-binding protein A (XlrbpA) 

bound to a non-physiological dsRNA molecule provided the first molecular 

insights into dsRBM-dsRNA recognition (Ryter and Schultz, 1998) (Figure 2A). 

The dsRNA forms a nearly ideal A-form helix, whose major groove is deep and 
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Figure 1. Sequence alignment of double-stranded RNA-binding motifs (dsRBM).
The panel displays a multiple alignment of 70 dsRBM sequences clustered into protein
sequence families using the PFAM domain alignment database. Residues that are
>50%, >70% and >80% conserved are shown in light blue, dark blue and red,
respectively. The full consensus is defined as residues that are >50% conserved
among all dsRBM sequences; the (+) consensus consists of residues that are >70%
conserved among those sequences that are known to bind dsRNA strongly. A
schematic representation of the dsRBM sequence fold, its component structural
elements and the three regions involved in RNA interactions are shown at the bottom
of the alignment, (adapted from Fierro-Monti and Mathews, 2000).
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inaccessible while the minor groove is shallow. The dsRBM binds across 16 RNA 

base pairs (bp) and interacts with successive minor, major, minor grooves. The α1 

and loop2 regions interact with two minor grooves and the loop 4 region binds to 

the intervening major groove. Almost all the interactions to dsRNA are made by 

direct or water-mediated contacts to 2’-OH and phosphate group. These 

interactions explain dsRBM specificity for dsRNA (over ssRNA or dsDNA) and the 

apparent lack of sequence specificity. Structures of two other dsRBM-dsRNA 

complexes, one with Drosophila Staufen dsRBM3, one with the dsRBM from E. 

Coli RNase III, confirmed this common pattern of dsRBM-dsRNA recognition 

(Blaszczyk et al., 2004; Ramos et al., 2000).  

A very interesting phenomenon was revealed by analysis of Drosophila 

Staufen dsRBM3-dsRNA interaction. Initial NMR analysis detected high 

frequency motions in loop 2 and loop 4 of the dsRBM, and later this flexibility was 

rationalized by a molecular dynamics study which demonstrated that the 

positively charged lysine side chains of loop2 and loop 4 do not make single, well 

defined interactions with RNA molecule, but rather switch between different polar 

interactions on a very fast timescale (Castrignano et al., 2002). This special 

feature gives rise to the tolerance for non-identical positions of the negatively 

charged acceptor on RNA, and may explain the negligible effect of the small 

variations in the helix geometry resulted from different primary RNA sequences. 

Recognition of specific structured RNA by the dsRBM 

Studies with a number of dsRBPs have shown clearly that a single dsRBM is 

sufficient to provide a dsRBP with the specificity to distinguish between different 
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dsRNAs (Doyle and Jantsch, 2002; Doyle and Jantsch, 2003; Liu et al., 2000; 

Nagel and Ares, 2000). Since it is unlikely that the primary sequences of the 

A-form RNA helix provides such specificity, the recognition of particular 

sequences or secondary structure elements flanking the helix could indeed be the 

key determination of dsRNA targeting. 

Interactions between the dsRBM and non-helical structural determinants, 

were observed in the structural studies of the complex between S. cerevisiae 

RNase III 1 protein (Rnt1p) and its physiological target, an AGNN (N: A or C or G 

or U) RNA hairpin (Leulliot et al., 2004; Wu et al., 2004) (Figure 2B). The α-helix 1 

of the dsRBM recognizes the bases in the distorted minor groove of the RNA 

tetraloop. The recognition is considered structure-specific, rather than 

sequence-specific, because the α1 helix of dsRBM makes contacts with the 

non-conserved nucleotides (nt) in the tetraloop only. In contrast to the α1 helix, 

residues in loop 2 and loop 4 still make contact with the 2’-OH and phosphate 

groups of sequential minor and major grooves. 

A similar binding theme was detected in the complex between Staufen 

dsRBM3 and a non-physiological UUCG RNA hairpin, where α-helix-1 contributes 

to the binding specificity (Ramos et al., 2000). The outstanding question raised by 

these studies is whether the specific recognition patterns described here are 

common for all dsRBM-RNA complexes. 

Interactions of dsRBMs with non-dsRNA binding partners 

Although dsRNA-binding is the major defining feature of dsRBMs, other 

binding partners have been identified. For example, in addition to their 

6



dsRNA-binding activity, the isolated dsRBMs of RNA-dependent protein kinase 

(PKR) can form a heterodimer with full-length protein mediated by dsRBM-dsRBM 

interactions (Patel and Sen, 1998). This interaction is thought to inactivate PKR 

when no dsRNA target is present. Similar dsRBM-dsRBM interactions are 

observed in protein activator (PACT) and TAR-RNA binding protein (TRBP) whose 

dsRBMs are capable to form dsRNA-independent heterodimers with the dsRBMs 

of PKR and affecting PKR kinase activity (Daher et al., 2001; Peters et al., 2001). 

Double-stranded RNA binding motifs are not only able to interact with another 

dsRBM, but also able to bind other functional domains using either intra- or 

intermolecular interactions. The dsRBM2 of PKR binds to its kinase domain and 

blocks the enzymatic activity in the absence of dsRNA (Romano et al., 1998). In a 

similar way, the dsRBM in RNase III has also been shown to interact with the 

catalytic domain (Blaszczyk et al., 2004). The dsRBM5 of Drosophila Staufen 

does not bind to dsRNA, but it has been shown to interact with protein Miranda, 

which mediates protein and RNA localization in the developing nervous system 

(Schuldt et al., 1998). 

The amino-terminal 250 amino acids of RNA helicase A (RHA) contain two 

dsRBMs, yet the dsDNA binding activity of this protein has also been mapped to 

this region (Hung et al., 2003). It is not clear that how the dsRBMs can 

accommodate both A-form dsRNA and B-form dsDNA, although some data have 

suggested that distinct but overlapping sets of amino acids are involved in each 

binding activity. Highly conserved in primary sequence and tertiary structure, 

dsRBMs work as a versatile macromolecular docking platform to mediate the 

7



regulation of dsRNA functions. 

 

Double-stranded RNA binding proteins (dsRBPs) 

Almost all dsRBPs contains dsRBMs, with only one copy in the RNase III 

family and five copies in Drosophila Staufen (Figure 3). Previously, the dsRBPs 

were divided into two groups based upon whether they possessed a catalytic 

domain (Fierro-Monti and Mathews, 2000); the first group included protein 

families containing a catalytic domain, such as PKR, RHA, RNase III and ADAR 

(adenosine deaminase that act on RNA), while the second group included protein 

families with Staufen, TRBP, NFAR (nuclear factors associated with dsRNA) and 

RDE-4 (RNAi-deficient 4). The functions of identified dsRBPs involve the 

regulations of dsRNA localization, RNA processing and modification, or to 

modulate the dsRNA-dependent signal pathways (Saunders and Barber, 2003) 

(Table 1). 

PKR 

PKR contains two dsRBMs in the N-terminus and one serine/threonine kinase 

domain in the C-terminus (Green and Mathews, 1992; Meurs et al., 1990). The 

expression of PKR is induced by the antiviral cytokine interferon, consistent with 

its key role in the cellular antiviral response (Clemens and Elia, 1997).  

The dsRBMs of PKR function as a molecular switch during PKR activation by 

dsRNA. In the absence of dsRNA, dsRBM2 interacts with the catalytic domain 

and negatively regulates the kinase activity of PKR (Vattem et al., 2001; Wu and 

Kaufman, 1997). Upon viral infection, dsRNA will induce a dsRBM-mediated 
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Abbreviation : dsRBP, double-stranded RNA binding protein; ADAR,
adenosine deaminase that act on RNA; NFAR, nuclear factors associated
with dsRNA; PACT, protein activator; PKR, RNA-dependent protein
k inase; RDE4, RNAi-def ic ient 4; RHA, RNA hel icase A; TAR,
transactivator RNA; TRBP, TAR RNA-binding protein; SPNR, spermatid
perinuclear RNA binding protein; TENR, testis nuclear RNA binding
protein,(adapted from Saunders and Barber, 2003).

Table 1. Features and Functions of dsRBP family members.
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homodimerization and unmask the kinase domain (Patel and Sen, 1998). As a 

consequence of dimerization, PKR will autophosphorylate, its dimer partner on 

multiple serine and threonine residues to become activated (Galabru and 

Hovanessian, 1987; Thomis and Samuel, 1995). 

The most well characterized PKR substrate is eukaryotic initiation factor 2α 

(eIF2α); phosphorylated eIF2α sequesters eIF2B, a rate-limiting component in 

protein translation, leading to a dramatic inhibition of protein synthesis in the cell 

and subsequent apoptosis (Choi et al., 1992; Levin and London, 1978). Several 

less well-established PKR substrates, including IκB (the inhibitory subunit of 

transcription factor NF-κB), Tat (the HIV-1 transcription factor), p53 (a tumor 

suppressor gene), NFARs and RHA, may also contribute to the cellular 

consequences of PKR activation.  

Since PKR is a great threat to the replication of dsRNA viruses, some viruses 

have developed strategies to counteract PKR activation. For example, vaccinia 

virus encodes two proteins, E3L and K3L; E3L contains one dsRBM and 

competes dsRNA-binding with PKR in the nucleus (Chang et al., 1992; Kibler et 

al., 1997), and K3L shares homology to eIF2α, and is thought to competitively 

inhibit eIF2α phosphorylation (Beattie et al., 1991; Carroll et al., 1993; Davies et 

al., 1993). PKR appears to be the dsRNA sensor and regulates protein synthesis 

and cell apoptosis mostly through the phosphorylation of eIF2α. 

Staufen 

Staufen was originally discovered as a protein necessary for normal oocyte 

development in Drosophila (St Johnston et al., 1991). Now it is known that this 
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Staufen anchors bicoid mRNA at the anterior pole and oskar mRNA at the 

posterior pole of the oocyte, but at different stages of development (St Johnston et 

al., 1991; St Johnston et al., 1989). The recognition between Staufen and these 

maternal mRNAs is mediated by interactions between the dsRBMs of Staufen and 

the 3’-UTRs of the target RNAs (Ferrandon et al., 1994). Drosophila Staufen 

contains five dsRBMs, but only three of them have demonstrated dsRNA-binding 

activity (Micklem et al., 2000; St Johnston et al., 1992); dsRBM2 and dsRBM5 

cannot bind dsRNA but they are necessary for Staufen function, probably through 

protein-protein interactions. It was reported that dsRBM2 is necessary for 

microtubule-dependent localization of oskar mRNA, while dsRBM5 is required for 

the activation of oskar mRNA translation after localization. In addition, both motifs 

are required for correct bicoid mRNA anchoring and dsRBM5 is also involved in 

actin-dependent localization of prospero mRNA (Micklem et al., 2000).  

Homologues of Drosophila Staufen (dStau) have been cloned from humans 

(hStau), mice (mStau) and rats (rStau). The hStau possesses only four dsRBMs, 

corresponding to dsRBM2-5 in dStau, and a putative microtubule binding domain 

which has been reported to bind to tubulin (Wickham et al., 1999). The hStau is 

ubiquitously expressed and detected on the rough endoplasmic reticulum, 

microtubules and polysomes, indicating that hStau may transport mRNA to the 

site of translation in the cell (Marion et al., 1999; Wickham et al., 1999). The 

mStau and rStau have also been found in RNA-protein complexes and have been 

suggested to be involved in assembly of large RNP particles and RNA transport 

(Kiebler et al., 1999; Kohrmann et al., 1999). Staufen, in both Drosophila and 
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mammals, appears to be involved in anchoring specific mRNAs to distinct 

subcellular locations to achieve their desired distribution.  

NFAR 

Two protein isoforms of NFAR are generated from a single human gene by 

alternative splicing. NFAR-2 (110kD) is 20kD larger than NFAR-1, due to an 

extended C-terminus. Both proteins contain two dsRBMs, as well as UCSR 

(upstream conserved region) and RGG (arginine/glycine-rich areas) domains. 

Besides the physical association with PKR, NFARs appear to be substrates of 

PKR in vitro, indicating that NFAR may function in PKR-mediated antiviral 

responses in the cell (Saunders et al., 2001). Both NFARs were found to regulate 

transcription in tissue culture studies, probably at the level of mRNA elongation or 

splicing. The extended C-terminus, unique to NFAR-2, has been shown to interact 

with proteins, such as p68, SMN and FUS, which are involved in mRNA splicing. 

In agreement with these observations, NFAR-2 has been identified as a 

component of the spliceosome, suggesting that NFARs are involved in mRNA 

splicing too (Hartmuth et al., 2002; Ogilvie et al., 2003; Saunders et al., 2001; 

Zhou et al., 2002). 

RNase III family 

Members of the RNase III family have been found in multiple organisms and 

are all characterized as endoribonucleases that selectively cleave dsRNAs 

(Nicholson, 1996; Robertson et al., 1968). E. coli RNase III has an N-terminal 

endonuclease domain and single C-terminal dsRBM. It is reported that the 

dsRBM is dispensable for the catalytic activity, but required for cleavage 
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specificity (Conrad et al., 2001; Sun et al., 2001). E.coli RNase III has been shown 

to participate in the processing of pre-rRNA, tRNA and phage mRNA and has 

been suggested to have a global role in gene regulation (Gitelman and Apirion, 

1980). The homologues of RNase III in E. coli have been identified in 

Saccharomyces cerevisiae (Rnt1) and Schizosaccharomyces pombe (Pac1) and 

have been shown to be required for the processing of pre-rRNA, small nuclear 

RNA (snRNA) and small nucleolar RNA (snoRNA) (Iino et al., 1991; Rotondo and 

Frendewey, 1996; Xu et al., 1990). An RNase III family member, Drosha, in C. 

elegans and Drosophila has been shown to contain an additional RNase III 

signature sequence, comparing to E.coli homologue. This feature suggests that 

Drosha in C. elegans and Drosophila may be able to work as a monomer, 

whereas RNase III in E. coli forms a homodimer and requires a divalent metal ion 

(Mg2+) to catalyze the cleavage (Dunn, 1976; Filippov et al., 2000; Sun and 

Nicholson, 2001). The human homologue of Drosha has also been also been 

identified and characterized. It has an amino-terminal region that is proline-rich, 

followed by a serine/arginine-rich domain, and two RNase III signature motifs as 

well as a dsRBM at the C-terminus. It is expressed ubiquitously and has been 

shown to be required for pre-rRNA processing (Wu et al., 2000). Recently, Drosha 

has also been shown to be important for microRNA processing. It cleaves 

pri-miRNA and releases a 60-70 nt pre-miRNA hairpin; this specific cleavage is 

critical for determining the sequence of the mature microRNA and contributes to 

the specificity of microRNA (Lee et al., 2003). 

Another RNase III-like endoribonuclease, Dicer, has been found in S. pombe, 
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C. elegans, Drosophila, mice and humans. Dicer contains an amino-terminal 

helicase domain, a PAZ (Pinwheel, Argonaut, Zwille) domain, two RNase III motifs 

and a single dsRBM. Dicer is also involved in the microRNA processing pathway, 

downstream of Drosha, by cleaving 22 nt from the ends on both strands of the 

pre-miRNA (Bernstein et al., 2001; Knight and Bass, 2001; Nicholson and 

Nicholson, 2002; Zhang et al., 2004a). Dicer is also required for the cleavage of 

long dsRNAs into 21-23 bps small interfering RNAs (siRNAs) that represent a 

critical component of RNA interference (Bernstein et al., 2001). RNase III family is 

required for numerous RNA processing events and may serve as a regulatory 

step for gene expression. 

ADAR 

ADARs are dsRNA-specific adenosine deaminases that involved in RNA 

editing of adenosine (A) to inosine (I) in cellular mRNAs and viral RNAs (Chen et 

al., 2000; O'Connell et al., 1995). ADAR family members have been found in 

numerous species including C. elegans, Drosophila, fish, Xenopus, rats, mice and 

humans (Bass, 2002). All ADARs contain one to three copies of the dsRBM and a 

conserved adenosine deaminase domain at the C-terminus. The functions and 

regulation of ADARs have been studied extensively and will be discussed later in 

this chapter. 

 

A-to-I RNA editing and ADARs 

Although the central dogma of molecular biology states that genetic 

information flows from DNA through RNA to the encoded proteins, in most cases 
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one cannot accurately predict the nucleotide sequences of the mRNA or the 

amino acid sequence of protein only based on the sequence of genomic DNA 

(Crick, 1958). This is because eukaryotic mRNAs undergo numerous 

post-transcriptional modifications including capping, polyadenylation, alternative 

splicing and RNA editing before they can become mature mRNAs that serve as 

templates for translation (Emeson et al., 1989; Kable et al., 1996; Keller and 

Minvielle-Sebastia, 1997; Varani, 1997; Wang and Manley, 1997). 

The term “RNA editing” is used to describe a number of mechanistically 

distinct RNA modifications, including post-transcriptional insertion/deletion (Kable 

et al., 1996), co-transcriptional insertion (Visomirski-Robic and Gott, 1997), 

nucleotide exchange (Price and Gray, 1999) and base modification/substitution 

(Auxilien et al., 1996; Sommer et al., 1991). Notably, all RNA editing events 

discovered in mammals are base modification/substitution events and within this 

category, a great majority of the known RNA editing events result from nucleoside 

deamination [cytidine-to-uridine (C-to-U) or adenosine-to-inosine (A-to-I)] (Backus 

and Smith, 1991; Rueter et al., 1995). 

The first identified RNA editing in mammals was a C-to-U conversion in mRNA 

transcripts encoding apoplipoprotein B (ApoB), where a glutamate codon (CAA) is 

converted into a stop codon (UAA) by RNA editing (Chen et al., 1987). In the liver, 

the non-edited mRNA transcript encodes a full-length protein, ApoB-100, which is 

secreted as a component of lipoproteins and binds to the LDL receptor, delivering 

cholesterol to the cells by receptor-mediated endocytosis. In the intestine, the 

RNA editing-dependent generation of a stop codon terminates translation 
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prematurely and gives rise to a truncated protein, ApoB-48, which lacks the LDL 

receptor binding domain and functions in the absorption and transport of dietary 

lipid (Wang et al., 2003; Yao and McLeod, 1994). Conversion of C-to-U in the 

intestine is catalyzed by a complex of proteins including a zinc-dependent cytidine 

deaminase (APOBEC-1) and an accessory protein (ACF), which specifically 

interacts with an 11 nt mooring sequence downstream of the editing site (Backus 

and Smith, 1991; Mehta et al., 1996). Overexpression of APOBEC-1 in the livers 

of mice and rabbits results in liver dysplasia and hepatocellular carcinoma. In this 

case, aberrant C-to-U editing was found in the transcripts normally not modified,  

suggesting that uncontrolled RNA editing can aberrantly modify RNAs and lead to 

disease (Yamanaka et al., 1995; Yamanaka et al., 1997). 

The most widespread base-modification type of RNA editing is the conversion 

of adenosine to inosine (A-to-I) (Auxilien et al., 1996), where the amino group on 

the C-6 position of the adenine ring is replaced by a ketone, changing the 

corresponding adenosine to inosine. Since inosine has base-pairing properties 

similar to guanosine, it is read as guanosine during translation, splicing and 

reverse transcription. Inosine was first discovered at position 34 and 37 of yeast 

alanine tRNA (tRNAAla), where inosine 34 in the wobble position of the anticodon 

loop is essential for base-paring with cytosine, adenosine or uridine to degenerate 

codons during translation (Holley et al., 1965). A-to-I RNA editing events have 

also been found to be able to change the coding potentials of mRNAs and viral 

RNAs, including transcripts encoding glutamate-gated ion channel subunits 

(GluRs), the 2C-subtype of serotonin receptor (5-HT2CR), the voltage-gated 
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potassium channel subunit (KV1.1) and the hepatitis delta virus antigen (HDAg) 

(Brusa et al., 1995; Burns et al., 1997; Higuchi et al., 2000; Sommer et al., 1991) 

(Table 2). Despite the identification of these editing events that play a critical role 

in the function of the encoded protein products, the great majority of identified 

A-to-I RNA editing events are located in non-coding regions of RNAs and 

non-translated RNA species, and the functional consequences for most of these 

editing events have not been examined (Athanasiadis et al., 2004; Blow et al., 

2004; Kim et al., 2004; Levanon et al., 2004; Luciano et al., 2004; Morse et al., 

2002; Yang et al., 2006). It is speculated that such RNA modifications may affect a 

variety of RNA functions, including splicing, localization, translation efficiency and 

stability. 

Except for tRNAs, all A-to-I RNA editing events are catalyzed by a family of 

enzymes known as adenosine deaminases that act on RNA (ADARs) (Bass et al., 

1997). ADARs were initially identified as the activity to “unwind” dsRNA when 

injected into Xenopus oocytes (Bass and Weintraub, 1988), resulting from the 

conversion of stable A-U base-pairs to unstable I-U base-pairs (Wagner et al., 

1989). Based on this activity, the first ADAR was purified from Xenopus (Hough 

and Bass, 1994). Later, the mammalian homologue was identified and named 

ADAR1 (Kim et al., 1994b). Meanwhile, A-to-I conversion was discovered in 

transcripts encoding the second subunit of the α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionate (AMPA) subtype glutamate receptor (GluR-2) and this 

modification was shown to alter the ion permeability of heteromeric glutamate 

receptors (Rueter et al., 1995; Sommer et al., 1991). These studies lead to the 
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identification of the second ADAR family member, ADAR2 (Melcher et al., 1996b). 

Subsequent biochemical purification and molecular cloning has allowed the 

identification and characterization of ADARs from variety of organisms, including 

three ADAR genes in mammals (Melcher et al., 1996a), two ADR genes in C. 

elegans (Tonkin et al., 2002), one dADAR gene in Drosophila (Palladino et al., 

2000b; Slavov et al., 2000) (Figure 4). 

 

Functional domains of ADARs 

ADAR proteins from different organisms have a common modular domain 

organization, including a variable N-terminal region followed by one or several 

copies of dsRBMs and one highly conserved adenosine deaminase domain at the 

C-terminus. 

The N-terminal region 

Full-length ADAR1 contains two Z-DNA binding motifs, which specifically 

binds to the left-handed Z-DNA/Z-RNA with high affinity (Herbert et al., 1998). The 

exact role of these Z-DNA binding motifs in ADAR1 is not fully understood, 

although some data have suggested that ADAR1 editing activity can be 

modulated by Z-RNA in vitro (Koeris et al., 2005). In ADAR3, an arginine-rich 

single-stranded RNA (ssRNA) binding domain is found in N-terminal region, 

making ADAR3 unique within the ADAR family by possessing the ability to bind to 

ssRNA (Chen et al., 2000; Melcher et al., 1996a). 
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Vertebrate ADARs and ADAR-like Enzymes

Drosophila melanogaster

Caenorhabditis elegans

ADAR1

ADAR2

dADAR

ADR-1

ADR-2

ADAR3

Z-DNA-Binding Domain Double-strand RNA Binding Motif

Deaminase Domain Single-strand RNA Binding Domain

Figure 4. Functional domains of ADARs from different species.
Schematic diagram of domain structures for ADAR proteins from
vertebrates and invertebrates are presented to depict the
organization and phylogenetic conservation of functional domains in
the enzymes that catalyze A-to-I conversion in RNA substrates. The
positions for nuclear export signal (NES) and nuclear localization
signal (NLS) for vertebrate ADARs are indicated.

NES NLS

NLS

ADAT1

TENR

Invertebrate ADARs
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The dsRBMs 

ADAR1 contains three copies of dsRBMs, while ADAR2 and ADAR3 each 

contain two copies. The dsRBMs provide ADARs with the ability to bind dsRNA 

over ssRNA, and consistent with this observation, ADAR-mediated editing can be 

found only within extended RNA duplexes (Bass, 2002; Higuchi et al., 1993; 

Rueter et al., 1999). The dsRBMs have also been demonstrated to be required to 

target nuclear ADAR1 or ADAR2 to the nucleolus in mammalian cell lines 

(Desterro et al., 2003; Sansam et al., 2003). 

Although dsRBMs of ADARs are highly conserved in sequence and structure, 

they seem to play differential roles in regulating ADAR functions. While the 

deletion/mutation of the first and the third dsRBM from ADAR1 inhibited editing, 

the second dsRBM seemed to be dispensable (Lai et al., 1995; Liu and Samuel, 

1996). In addition, the dsRBMs can target ADAR1 to the chromosome in Xenopus 

laevis but individual dsRBMs are capable of recognizing distinct chromosome 

sites in an apparently specific manner (Doyle and Jantsch, 2003). 

The deaminase domain 

Phylogenetic studies have suggested that the catalytic mechanism of ADAR is 

similar to the ancestral mononucleotide cytidine deaminase (CDA) in E. coli 

(Carter, 1995). A recently structure study of the human ADAR2 deaminase 

domain confirmed this similarity (Macbeth et al., 2005). The active site has an 

ordered zinc ion that coordinates a water molecule, presumably displacing 

ammonia during the deamination reaction. The positions of the zinc ion 

coordinated by His 394, Cys 451, and Cys 516, and hydrogen bonding of the 
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water molecule by the proton-shuttling residue, Glu 396, are essentially identical 

to the geometry seen at the catalytic centers of CDA (Figure 5A and B). The 

residues that are important to form the active site are also highly conserved 

throughout the ADAR family and ADAT, which catalyzes A-to-I editing of tRNAs, 

further supporting the existence of a conserved catalytic mechanism (Gott and 

Emeson, 2000) (Figure 5C). Presumably, the zinc-bound water molecule will 

perform nucleophilic attack on the C-6 position of the adenine ring to generate a 

tetrahedral intermediate, followed by the release of ammonia to produce the 

inosine (Bass, 2002) (Figure 5D). 

Surprisingly, an inositol hexaphosphate (IP6) molecule is found buried within 

the enzyme core mostly surrounded by C-terminal residues. This feature is unique 

and is not presented in CDA. The ADAR2 expressed in an IP6-deficient yeast 

strain was not active, suggesting that IP6 is required for ADAR2 activity, most 

likely by defining and stabilizing the folding of the deaminase domain (Macbeth et 

al., 2005).  

 

Substrate specificity of ADARs 

Numerous studies have been performed to understand the substrate 

specificity of ADARs and why they edit specific adenosines over others in RNA 

targets. Some of the specificity comes from the RNA substrates themselves as all 

editing sites are found in highly structured imperfect RNA duplexes (Figure 6). 

RNA duplex structures are required for editing since disruption of the secondary 

structure ablates the A-to-I conversion (Bhalla et al., 2004; Burns et al., 1997; 
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A B

D

C ** * *

Figure 5. The conserved mechanism for deamination. (A) Ribbon
model of human ADAR2 deaminase domain. The zinc atom is represented
by a magenta sphere. The N-terminal domain is colored cyan, with the
region that shares structural similarity with CDA and TadA colored dark
blue. The C-terminal helical domain, which with contributions from the
deamination motif makes the major contacts to IP , is colored red. (B)

Residue interactions at the active site. Shown are the zinc ion,
coordinating residues, the nucleophilic water (blue sphere), and the
proposed proton-shuttling residue, E396. The hydrogen-bond relay that
connects the active site to the IP is also indicated. (C) An amino acid

sequence comparison within the catalytic domain of ADARs and ADAT
proteins is presented with asterisks indicating the residues thought to be
critical for active-site zinc coordination. (D) The stereochemistry of the
proposed tetrahedral intermediate. The intermediate is drawn as if water
attacks from the same side of the base as observed with the CDA enzymes,
(adapted from Bass, 2002; Gott and Emeson, 2000 and Macbeth et al.,
2005).
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Figure 6. Predicted secondary structures for pre-mRNA substrates modified
by A-to-I editing.
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Double stranded RNA structures are required for ADAR-
mediated editing. The predicted secondary structure of pre-mRNA transcripts
encoding non-NMDA receptor subunits (GluR-2), ADAR2 and the 2C-subtype of
serotonin receptor (5-HT R), in the regions of major editing modifications, are

presented using an RNA folding algorithm [ ; Science :48-52 (1989)]. The
positions of edited adenosine residues are indicated with inverse lettering; exon
and intron sequences are represented with uppercase and lowercase lettering,
respectively, and the number of nucleotides omitted from the figure are indicated
in the loops.
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Feng et al., 2006; Higuchi et al., 1993; Rueter et al., 1999). The detailed structure 

of the ADAR target also influences editing specificity. Adenosines in a long, 

perfect A-form RNA duplex can be deaminated non-selectively (Nishikura et al., 

1991; Polson and Bass, 1994); while naturally-occurring RNAs with mismatches, 

bulges, or loops within a duplex region undergo more selective deamination. It 

was suggested that small disruptions within the duplex contribute to ADAR 

selectivity by limiting the ability of these enzymes to bind short, perfect-matched 

A-form RNA duplex regions (Lehmann and Bass, 1999). In RNA duplexes, all the 

bases are surrounded by the sugar-phosphate backbone and are largely 

inaccessible to proteins. It is speculated that the one adenosine needs to flip out 

of the duplex to be edited by ADARs (Hough and Bass, 1997). Recent molecular 

dynamic analysis has suggested that the adenosine at the R/G editing site in 

GluR-2 transcripts needs less energy to flip out compared to neighboring, 

editing-incompetent adenosines and this may contribute to determining the 

specificity of A-to-I conversion too (Hart et al., 2005).  

On the other hand, editing specificity also rises from the ADARs themselves 

as ADAR1 and ADAR2 have distinct but overlapping editing specificity. For 

example, on the pre-mRNA of GluR-2, the Q/R site is edited only by ADAR2 and 

the +60 site is edited primarily by ADAR1, although both ADARs can efficiently 

deaminate the R/G site (Melcher et al., 1996b). Using a long perfect dsRNA as the 

substrate, ADARs have also been shown to have different preferred neighboring 

sequence for targeting. ADAR1 and ADAR2 both prefer a uridine as 5’-neighbor to 

the targeted adenosine. ADAR1 rarely edits adenosine moieties close to either 

26



end of a synthetic dsRNA substrate, whereas ADAR2 can target adenosines as 

close as 3 nt from either terminus, and ADAR2 also has a unique 3’ neighbor 

preference for uridine (Lehmann and Bass, 2000; Polson and Bass, 1994). 

It is not fully understood whether the dsRBMs contribute to defining ADAR 

substrate specificity. Since a highly conserved deaminase domain is also found in 

ADAT, which can specifically edit adenosines in tRNA without the presence of any 

dsRBMs, it is believed that the deaminase domains themselves can confer both 

substrate specificity and activity. In agreement with this idea, ADAR1, lacking all 

three dsRBMs, showed editing activity and some specificity in tissue culture cells 

(Herbert and Rich, 2001). In another study, the dsRBMs of ADAR1 and ADAR2 

were swapped, and the authors claimed that the deaminase domain is the major 

determinant of the specificity, since they observed that a chimeric protein 

containing the ADAR1 deaminase domain displayed similar specificity to ADAR1 

while a chimeric enzyme containing the ADAR2 deaminase domain displayed 

similar specificity to ADAR2 (Wong et al., 2001). In addition, the dsRBMs of 

ADARs have also been shown to have good affinity for nonspecific binding to long 

perfect dsRNA, enabling ADAR1 and ADAR2 to edit over 50% of adenosines on 

those dsRNAs (Cho et al., 2003; Dawson et al., 2004; Lehmann and Bass, 2000; 

Liu et al., 1999). Therefore, dsRBMs were thought to contribute to 

ADAR-mediated editing only by increasing the affinity to the substrates by 

nonspecific binding to perfect dsRNA regions.  

However, recent biochemical work has demonstrated that the dsRBMs of 

ADAR2 can bind specifically on natural RNA substrates and may contribute to 
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editing specificity (Stephens et al., 2004). In this study, each amino acid (M84 or 

T96) in dsRBM1 of rat ADAR2 was replaced by cysteine to direct hydroxyl radical 

cleavage upon binding to the target RNA. The cleavage sites on RNA therefore 

indicate the position(s) of these mutated amino acid residues on the RNA duplex 

(Figure 7A and B). The pattern generated was used to develop a model for the 

ADAR2 dsRBM1-RNA interaction (Figure 7C). To functionally test this model, 

benzyl modification at guanosine 2-amino groups was introduced at three sites on 

RNA, where two of them specifically block the binding of dsRBM1 (A6GN2Bn, 

A12GN2Bn) and the other one does not (G9GN2Bn) (Figure 7D). The mutation of 

A6GN2Bn, A12GN2Bn dramatically decreased ADAR2 editing efficiency while 

G9GN2Bn had no effect, supporting their specific binding model and further 

suggesting the specific binding of dsRBMs may contribute to substrate specificity 

(Stephens et al., 2004).  

 

Functional consequences of specific A-to-I editing events 

After the targeted adenosines are converted to inosines by ADARs in the 

nucleus, the modified transcripts are transported into the cytoplasm where they 

serve as templates for translation. Several extensively studied A-to-I modifications 

result in non-synonymous codon changes in mRNA sequences and the 

production of proteins with altered functional properties. Examples in this category 

include the editing of transcripts encoding subunits of ionotropic glutamate 

receptors (GluR-2 to 6) and the 2C-subtype of serotonin receptor (5-HT2CR) 

(Burns et al., 1997; Niswender et al., 1999; Sommer et al., 1991) (Table 2). 
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Figure 7. Specific interaction of ADAR2 dsRBM1 and GluR-2
RNA (Q/R site). (A) Directed hydroxyl radical cleavage of the Q/R
substrate using the EDTA Fe modified M84C mutant. The mapping of
the major cleavage sites on the Q/R substrate secondary structure is
shown. Lines indicate sites of cleavage and line lengths indicate
relative cleavage efficiencies. (B) Directed hydroxyl radical cleavage
of the Q/R substrate using of T96C-EDTA•Fe. (C) Models generated
in Insight II using the α carbon skeleton from the Xlrbpa dsRBM II
structure to model potential binding sites identified by the cleavage
exper iments . Nuc leot ides c leaved by M84C-EDTA•Fe are
highlighted in purple. Nucleotides cleaved by T96C-EDTA•Fe are
highlighted in red. The Q/R editing site is depicted in green. (D) The
relative location of the benzyl modifications to the two binding sites
for ADAR2 dsRBMs are depicted in yellow. (E) A bar graph describing
the relative rate constants for deamination assays on the GluR-B
Q/R editing site substrate analogs. All rates are normalized to that of
the native Q/R substrate,(adapted from

•

Stephens , 2004).et al.

Q/R Native G9G
N2Bn

A6G
N2Bn

A12G
N2Bn

0.0

0.5

1.0

1.5

2.0

K
re

l

A

B

C

ED

29



Recent studies also demonstrate that A-to-I RNA editing in non-coding regions 

can affect alternative splicing pattern or the nuclear retention of modified RNA 

transcripts (Kumar and Carmichael, 1997; Prasanth et al., 2005; Rueter et al., 

1999). 

RNA editing on Q/R site of GluR transcripts 

Glutamate is the major excitatory neurotransmitter in the CNS of the 

vertebrates and is critical for fast excitatory neurotransmission, synaptic plasticity 

and has been shown play a role is both chronic and acute neural disorder 

including stroke, epilepsy, amyotrophic lateral sclerosis and Parkinson’s Disease 

(Wisden and Seeburg, 1993). The impact of glutamate is mediated by either 

ionotropic (iGluR) or metabotropic receptors (mGluR) (Ozawa et al., 1998). The 

ionotropic glutamate receptors can be divided to into three subtypes, AMPA, 

NMDA and kainate, based upon specific agonist for each receptor subtype. They 

are all tetrameric cation channels and four subunits contribute to the inner channel 

lining a pore loop structure (Seeburg and Hartner, 2003). A-to-I editing events 

have been identified in transcripts encoding 5 subunits (GluR2-6) of the GluRs 

which are involved in the assembly of AMPA or kainate receptors, but not the 

NMDA receptor. 

Editing of the Q/R site in GluR-2 transcripts represents the earliest and the 

most well characterized example of A-to-I editing in mammals. The glutamine 

residue, located in the second hydrophobic domain of the GluR-2 subunit, is 

essential for forming the narrow constriction of the channel and in determining the 

ion permeation and electrophysiologic properties of heteromeric AMPA receptors. 
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RNA editing by ADAR2 converts the genomically encoded CAG (glutamine, Q 

codon) into CIG and translated as CGG (arginine, R codon), which makes the 

channel impermeable to calcium ions and also helps the channel assemble in the 

endoplasmic reticulum (Greger et al., 2003; Higuchi et al., 2000; Melcher et al., 

1996b; Sommer et al., 1991) (Figure 8A). The Q/R site is edited essentially to 

completion in whole brain, except subsets of striatal and cortical neurons. 

Decreased Q/R site editing in these neurons is consistent with their high 

vulnerability to excitotoxicity due to calcium excess (Kim et al., 2001). Genetically 

modified mice expressing one copy of an editing-incompetent GluR-2 allele die of 

epileptic seizure three weeks after birth, further emphasizing the importance of 

Q/R site editing for normal brain function (Brusa et al., 1995). Interestingly, 

ADAR2-null mice demonstrated a very similar phenotype to mice lacking Q/R site 

editing. The adverse effects observed in ADAR2-null mice can be rescued by 

introducing mutant GluR-2 alleles which encode an arginine residue at the Q/R 

site, suggesting the seizure and lethal phenotype in ADAR2-deficient mice is 

primarily due to the lack of editing at the GluR-2 Q/R site (Higuchi et al., 2000). It 

is still puzzling as to why evolution has developed editing at the Q/R site rather 

than encoding an arginine-codon in the genomic DNA, since mice expressing 

GluR-2 with a genomically encoded arginine at this site demonstrated no 

discernable phenotype (Kask et al., 1998).  

At the analogous position to the GluR-2 Q/R site, Q/R site editing has also 

been discovered in transcripts encoding GluR-5 and GluR-6, the subunits of 

heteromeric kainate receptors. Unlike GluR-2 Q/R site, which is edited almost 

31



h
e
te

ro
tr

im
e
ri

c
G

-p
ro

te
in

P
L

C
P

I

G
T

P

�
�

G
�

q

N
H

2

H
O

O
C

D
A

G
IP

3

P
K

C
C

a
2
+

F
ig

u
re

8
.

T
h

e
fu

n
c

ti
o

n
a

l
c

o
n

s
e

q
u

e
n

c
e

s
o

f
A

-t
o

-I
R

N
A

e
d

it
in

g
.

(A
)

(B
)

A
c
u

rr
e

n
t

tr
a

c
e

in
d

ic
a

ti
n

g
th

e
re

c
o

v
e

ry
o

f
A

M
P

A
re

c
e

p
to

rs
c
o

n
ta

in
in

g
G

lu
R

-2
s
u

b
u

n
it

e
n

c
o

d
e

b
y

n
o

n
e

d
it

e
d

(R
)

o
r

e
d

it
e

d
(G

)
tr

a
n

s
c
ri

p
ts

a
t

th
e

7
6

4
a

m
in

o
a

c
id

p
o

s
it

io
n

.
(C

)
.

(D
)

A
s
c
h

e
m

a
ti

c
d

ia
g

ra
m

s
h

o
w

in
g

a
n

a
lt

e
ra

ti
o

n
in

s
p

l i
c
in

g
p

a
tt

e
rn

a
n

d
p

ro
te

in
e

x
p

re
s
s
io

n
d

u
e

to
th

e
e

d
it

in
g

a
t
-1

s
it

e
,
(B

,
a

d
a

p
te

d
fr

o
m

L
o

m
e

li
.,

1
9

9
4

).

A
c
a

rt
o

o
n

d
ia

g
ra

m
o

f
th

e
io

n
p

e
rm

e
a

ti
o

n
p

ro
p

e
rt

ie
s

o
f

h
e

te
ro

m
e

ri
c

A
M

P
A

re
c
e

p
to

r
c
o

n
ta

in
in

g
G

lu
R

-2
s
u

b
u

n
it

s
e

n
c
o

d
e

d
b

y
th

e
n

o
n

e
d

it
e

d
(Q

)
a

n
d

e
d

it
e

d
(R

)
tr

a
n

s
c
ri

p
ts

,
re

s
p

e
c
ti

v
e

ly
.

A
s
c
h

e
m

a
ti

c
d

ia
g

ra
m

o
f

th
e

p
re

d
ic

te
d

to
p

o
lo

g
y

o
f

th
e

5
-H

T
re

c
e

p
to

r
a

n
d

s
ig

n
a

li
n

g
p

a
th

w
a

y
T

h
e

a
p

p
ro

x
im

a
te

p
o

s
it

io
n

s
o

f
a

m
in

o
a

c
id

a
lt

e
ra

ti
o

n
s

w
it

h
in

th
e

s
e

c
o

n
d

in
tr

a
c
e

ll
u

la
r

lo
o

p
o

f
th

e
re

c
e

p
to

r,
re

s
u

lt
in

g
fr

o
m

R
N

A
e

d
it

in
g

,
a

re
in

d
ic

a
te

d
.

2
C

e
t
a

l

4
7

n
t

3
.3

K
b

T
T

A
C

A
A

C
C

A
C

A
G

C
D

K
K

G
lu

N
a

N
a

C
a

G
lu

Q
R

A

C
A

G
(Q

)
to

C
IG

(R
)

G
lu

R
-A

/B
(7

6
4

G
)

i
i

G
lu

R
-A

/B
(7

6
4

R
)

i
i

1
m

M
g

lu
ta

m
a

te

2
0

m
s

200pA

B

A
G

A
(R

)
to

IG
A

(G
)

p
ro

te
in

:
IN

I(
n

o
n

-e
d

it
e

d
)

to
V

G
V

(f
u

ll
y
-e

d
it

e
d

)

E
C

(V
G

V
)=

4
0

E
C

(I
N

I)
in

5
-H

T
s
ti

m
u

la
te

d
P

I
h

y
d

ro
ly

s
is

5
0

5
0

A
A

to
A

I(
s
p

li
c
e

a
c
c
e

p
to

r)

m
R

N
A fu

n
c
ti

o
n

a
l
p

ro
te

in
e

a
rl

y
tr

a
n

s
la

ti
o

n
te

rm
in

a
ti

o
n

32



completely, both nonedited and edited isoforms of the GluR-5 and GluR-6 RNAs 

are expressed and the editing at these sites is developmentally regulated. Mutant 

mice in which the GluR-6 Q/R site cannot be edited display NMDA 

receptor-independent long-term potentiation (LTP) in the medial perforant 

path-dentate gyrus synapse. Both heterozygous and homozygous mutant animal 

were more vulnerable to kainate-induced seizures, indicating a role for GluR-6 

Q/R site editing in synaptic plasticity and circuit excitability (Vissel et al., 2001).  

RNA editing of the R/G site in GluR transcripts 

A-to-I RNA editing was also been found in another RNA duplex structure of 

the GluR-2 transcript, referred as R/G site, since the adenosine to inosine 

conversion replaced the genomically encoded AGA (arginine, R codon) with IGA 

(glycine, G codon). The AMPA receptor containing the edited GluR-2 subunit 

recovers more rapidly from receptor desensitization than receptors harboring the 

non-edited isoform, demonstrating that RNA editing at R/G site plays a role in 

regulating receptor kinetics (Lomeli et al., 1994) (Figure 8B). Recent in vitro 

studies also have suggested that R/G site editing affects the splicing of GluR-2 

transcripts since the editing site is next to a splice junction (Bratt and Ohman, 

2003). The R/G site of GluR-2 pre-mRNA is often used as a model system to 

study A-to-I editing as it forms a small and conserved 70 nt stem-loop with three 

mismatches (Aruscavage and Bass, 2000; Macbeth et al., 2004; Ohman et al., 

2000; Stefl et al., 2006; Stephens et al., 2000) A similar R/G site editing was 

identified on GluR-3 and GluR-4, yet the functional consequences of these 

modifications remain unknown. 
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RNA editing of 5-HT2CR transcripts 

Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter that 

modulates numerous sensory and motor processes as well as a wide variety of 

behavior including locomotion, thermoregulation, pain perception, sleep, appetite 

and sexual behavior (Sanders-Bush et al., 2003). 5-HT exerts its biological 

functions by activating at least 14 distinct receptor subtypes that differ in their 

tissue distribution, binding affinity and coupling to intracellular signaling pathways 

(Hoyer et al., 1994). The 5-HT2 family of receptors contains three members 

(5-HT2AR, 5-HT2BR, 5-HT2CR), all of which mediate Gq-coupled phospholipase C 

(PLC) activation, which leads to the increasing intracellular inositol phosphates 

(IPs) and diacylglycerol (DAG) (Figure 8C). In addition, it is reported that both 

5-HT2AR and 5-HT2CR can activate phospholipase D (PLD) and phospholipase A2 

(PLA2) through interactions with other G proteins (Sanders-Bush et al., 2003). 

5-HT2CR is the only known GPCR that undergoes A-to-I RNA editing. In its 

pre-mRNA five genomically encoded adenosines can be converted into inosines 

(termed sites A-E), generating up to 32 mRNA species, encoding as many as 24 

different protein isoforms (Burns et al., 1997; Niswender et al., 1999). Sequence 

analysis of cDNAs from rat and human brains showed the region-specific 

expression of editing-generated 5-HT2CR mRNA species, suggesting differentially 

edited 5-HT2CR may serve distinct biological functions in those regions where they 

are expressed (Burns et al., 1997; Niswender et al., 1999). The five editing sites 

can affect the identify of three amino acids in the second intracellular loop of the 

receptor, a region interacting with heterotrimeric G-protein (Pin et al., 1994; Wong 
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et al., 1990). The functional consequences of RNA editing in the 5-HT2CR 

transcript were revealed by comparing the potency of 5-HT to induce PLC 

activation in a heterologous tissue culture system, where the nonedited 5-HT2CR 

couples to the G-protein 40-fold greater than the fully edited isoform. It has also 

been reported that the fully edited receptor isoform has reduced constitutive 

activity, compared to the non-edited receptor (Niswender et al., 1999; Price et al., 

2001). 

RNA editing on -1 site of ADAR2 pre-mRNA transcript 

ADAR2 is a dsRNA specific adenosine deaminase that catalyzes numerous 

A-to-I editing events in mammals (Higuchi et al., 2000; Melcher et al., 1996b). 

Interestingly, A-to-I RNA editing sites were also discovered within intron 4 of the 

ADAR2 pre-mRNA, one of which (-1 site) has been shown to regulate alternative 

splicing of the ADAR2 transcript itself (Dawson et al., 2004; Rueter et al., 1999).  

In the absence of RNA editing, exon 3 will be spliced to exon 5 using the 

genomically-encoded 3’-splice acceptor (AG) immediately 5’ to the exon, 

subsequently producing a mature mRNA that encodes a functional ADAR2 

protein (Figure 8D, solid line). Forty-seven nucleotides upstream of the normal 

3’-splice junction, an AA dinucleotide can be converted to an AI by RNA editing 

and serve as a new 3’-splice acceptor. Editing at the -1 site allows the use of this 

proximal 3’-splice site and results in the addition of 47 nt to the ADAR2 open 

reading frame (Figure 8D, dotted line). The 47nt inclusion results in early 

translation termination and generates a 9kD protein without any functional 

domains required for A-to-I conversion (Rueter et al., 1999). Subsequent studies 
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revealed that editing of the -1 site is catalyzed by ADAR2 itself (Dawson et al., 

2004), suggesting an autoregulatory negative-feedback mechanism by which 

ADAR2 regulates its own level of expression (Feng et al., 2006). 

 

Physiological significance of ADARs 

The conversion of A-to-I by RNA editing has been shown to modulate the 

functions of specific proteins by sequestering mRNA in the nucleus, altering 

codons, or changing alternative splicing patterns. However, the functions of 

ADARs may have been underestimated since most of the newly identified 

adenosine to inosine editing events have been located in intronic or untranslated 

regions of RNA transcripts and the relevance of such modifications has not been 

examined (Levanon et al., 2004; Morse et al., 2002). In addition, ADARs can 

potentially modulate the functions of other dsRBP functions by competing for 

interactions with other targeted dsRNAs (Chen et al., 2000). Furthermore, ADARs 

may also play a role in the processing and targeting of siRNAs and microRNAs 

(Luciano et al., 2004; Yang et al., 2006; Yang et al., 2005). Therefore, genetically 

modified animals, in which ADARs are deleted or overexpressed, can provide 

more insights into the physiological roles of these editing enzymes. 

Mammalian ADARs 

In mammals three ADAR genes have been identified. ADAR1 and ADAR2 are 

ubiquitously expressed, while ADAR3 is exclusively detected in the brain (Chen et 

al., 2000). The greatest level of ADAR2 expression is found in the brain, 

consistent with the observation that brain mRNA contains the highest inosine 
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content compared to other tissues (Paul and Bass, 1998). All three ADARs 

contain nuclear localization signals (NLS) and are localized to the nucleus, with 

the exception of the interferon(IFN)-inducible isoform of ADAR1, which also 

harbors a nuclear export signal (NES) in the N-terminus and shuttles between the 

nucleus and cytoplasm (George and Samuel, 1999; Kawakubo and Samuel, 2000; 

Strehblow et al., 2002). All three ADARs contain a conserved adenosine 

deaminase domain, but only ADAR1 and ADAR2 demonstrate editing activity. 

ADAR3 is enzymatically inactive on both synthetic RNA duplexes or 

naturally-occurring A-to-I editing substrates, although it can efficiently bind to both 

ssRNA and dsRNA (Chen et al., 2000; Melcher et al., 1996a). ADAR3 can 

compete with ADAR1 or ADAR2 on natural substrates in vitro, suggesting that it 

may work as a modulator of A-to-I editing in the brain (Chen et al., 2000). 

Systematic screening for novel A-to-I editing events in the human 

transcripsome have revealed that the vast majority of editing sites occur in 

non-translated RNA species and UTRs of mRNA transcripts, especially in Alu 

repetitive elements, which comprising more than 10% of human genome 

(Athanasiadis et al., 2004; Blow et al., 2004; Levanon et al., 2004). Since inverted 

Alu elements in the same transcript can form a stable, extended RNA duplex, the 

only known requirement for ADAR editing, it is not surprising to find extensive 

RNA editing events in these regions. It has been speculated that editing in the 

UTR of RNA transcripts may affect RNA stability, localization and translation 

efficiency (Kumar and Carmichael, 1997; Prasanth et al., 2005; Scadden, 2005).  

ADAR1- and ADAR2-deficient mice have been generated by gene-targeted 
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homologous recombination, and both die during development. As early as 

embryonic day 11.5 (E11.5), mouse embryos lacking ADAR1 expression show a 

rapid disintegration of liver structure, severe defects in embryonic erythropoiesis 

and stress-induced apoptosis, suggesting ADAR1 is critically important for the 

development of non-nervous tissues, although the exact mechanism and RNA 

targets remain unknown (Hartner et al., 2004; Wang et al., 2004). In contrast, the 

knockout of ADAR2 in mice does not cause embryonic lethality, but rather, these 

mice develop progressive seizures after birth and die before postnatal day 21 

(P21). ADAR2-null mice, demonstrated a significant decrease in the extent of 

editing at numerous sites including the R/G site of GluR-2, the Q/R site of GluR-5 

and the D site of 5-HT2CR transcripts, it has been shown the lethal phenotype 

primarily results from a lack of editing at the GluR-2 Q/R site (Higuchi et al., 2000). 

Drosophila dADAR 

dADAR, the only ADAR gene identified in Drosophila, contains two dsRBMs 

and one deaminase domain, sharing 42% amino acid homology with the human 

ADAR2 protein (Palladino et al., 2000a).  

Mutant flies lack dADAR expression have been generated by 

transposon-mediated P-element excision (Palladino et al., 2000b). These flies 

show a slight decrease in viability under ideal growth condition, and the only 

morphological defect observed in young animals was a structural defect in the 

retina. However, adult mutant flies demonstrated uncoordination and paralysis 

with severe motion defects (Palladino et al., 2000b). Furthermore, vacuolated 

lesions developed in the brain of the mutant flies by day 30, and the lesions, as 
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well as the behavioral defects, become more severe during aging (Chen et al., 

2004). The behavioral similarity between dADAR null flies and flies containing 

mutations in specific ion channels, together with the later discovery of A-to-I 

editing within RNAs encoding these ion channels, suggested that the primary role 

of dADAR is to modulate neurotransmission in the CNS (Hoopengardner et al., 

2003; Littleton et al., 1999). Recent studies also found that dADAR null flies have 

a prolonged recovery from anoxia stupor and changes in gene expression for 

reactive oxygen species (ROS) scavengers, indicating that dADAR may have 

additional functions in Drosophila (Chen et al., 2004). An A-to-I editing event 

catalyzed by dADAR has also been found on dADAR mRNA transcript itself, 

where editing results in the conversion of a highly conserved serine residue within 

the deaminase domain into a glycine, with decreased enzymatic activity (Keegan 

et al., 2005). 

C. elegans ADRs 

Two ADAR genes have been identified in the C. elegans genome, ADR-1 and 

ADR-2. The ADR-1 protein contains two dsRBMs and one atypical deaminase 

domain lacking the zinc-coordination and proton-shuttling residues. In contrast, 

the ADR-2 protein has one dsRBM and a highly conserved catalytic domain. 

ADR-1 deficient strains of C. elegans have severely reduced editing activity while 

the deletion of ADR-2 totally eliminates A-to-I conversion, suggesting that ADR-2 

can function alone, but that ADR-1 may need ADR-2 for activity and they may edit 

the targeted adenosines as a heterodimer (Tonkin et al., 2002). C. elegans, which 

are deficient in either one or both ADR genes, displayed severe chemotaxis 
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defects (Tonkin et al., 2002). Interestingly, this defect can be rescued by loss of 

function mutations in genes involved in RNA interference pathway, suggesting the 

chemotaxis defect was caused by the aberrant RNAi activity normally inhibited by 

ADRs (Tonkin and Bass, 2003).  

 

Regulation of ADAR function 

ADAR-mediated RNA editing is under spatiotemporal regulation through a 

variety of mechanisms to satisfy variations in demand from the cellular 

environment (Gurevich et al., 2002; Yang et al., 2004). The inaccuracy of tight 

control over this process could result in a number of physiological alterations 

including epilepsy and lethality. 

 

Transcriptional regulation 

Two ADAR1 isoforms, different in their expression patterns, domain 

composition, subcellular localization and function, are the result of alternative 

promoter use. Initially, two alternative exon 1 structures were identified in the 

human ADAR1 gene using 5’-rapid amplification of cDNA ends (RACE) analysis 

(George and Samuel, 1999). Using the start codon in exon 1A, the 

exon1A-exon2-containing mRNA encodes an interferon-inducible 150kD protein 

(p150), which contains two Z-DNA binding domains at the N-terminus, three 

dsRBMs and one C-terminal deaminase domain. The NLS overlapping with the 

third dsRBM and the NES at the N-terminus gives p150 the capability to shuttle 

between the cytoplasm and nucleus. The exon1B-exon2-containing mRNA, using 
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the start codon in exon2, is translated into a constitutively expressed 110kD 

protein (p110), which contains an N-terminal truncation compared to p150. The 

region missing in p110 contains the first Z-DNA binding domain and NES, which 

subsequently restricts p110 to the nucleus (Patterson and Samuel, 1995; 

Strehblow et al., 2002). Recently, a very similar alternative transcription initiation 

mechanism has been reported for the mouse ADAR1 gene (George et al., 2005). 

Based on the genomic location of exon1A and exon1B, together with the 

transiently transfection analysis using reporter constructs, two functional human 

promoters were identified. Pc is the promoter for the constitutional expression of 

exon1B-exon2 mRNA, which generates ADAR1-p110; Pi is the promoter for the 

IFN-inducible expression of exon1A-exon2 mRNA, which generates ADAR1-p150 

(George and Samuel, 1999). The Pi promoter possesses an IFN-stimulated 

response element (ISRE) responsible for IFN-inducibility, as well as an upstream 

kinase conserved sequence-like (KCS-I) element, which has previously been 

found as an important IFN-responsive element in the promoter of PKR (Markle et 

al., 2003). 

 

Alternative splicing 

Alternative splicing is an important mechanism to produce functionally 

different protein isoforms from a single RNA transcript. Both ADAR1 and ADAR2 

are subject to this regulation. Three naturally occurring spliced isoforms of human 

ADAR1 have been identified by comparisons of genomic sequence and cDNA 

sequences (Liu et al., 1997). The full-length ADAR1 protein was designated as 
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ADAR1-a; the isoform containing a 26 amino acid deletion between the third 

dsRBM and the deaminase domain is designated as ADAR1-b, while ADAR1-c 

refers to the isoform possessing an additional 19 amino acid deletion between 

dsRBM2 and dsRBM3 compared to the ADAR1-b isoform. All three isoforms are 

expressed in human kidney, while only ADAR1-a and ADAR1-b were detected in 

a human placenta library. On a synthetic long RNA duplex, all three ADAR1 

isoforms displayed similar enzymatic activity. However, site-directed mutagenesis 

of the dsRBMs revealed that the shortening of the spacers between functional 

domains altered the relative importance of the dsRBMs in ADAR1 (Liu et al., 

1997). Analyses of the editing activity for these splicing variants on natural 

substrates demonstrated that the ADAR1-b and c isoforms had a consistently 

higher activity than the ADAR1-a isoform on the 5-HT2CR A site (Liu et al., 1999), 

suggesting that the alternative splicing could contribute to the regulation of 

ADAR1 cellular activity. 

Multiple alternative splicing events have also been found in transcripts 

encoding ADAR2. The first such splicing event affects the deaminase domain, 

where alternative splicing results in a 40 (human) or 10 (rat, mouse) amino acid 

insertion between the second and the third zinc-coordination motifs. This insertion 

in the catalytic domain has been shown to produce a 2-fold increase in ADAR2 

editing activity (Gerber et al., 1997; Rueter et al., 1999). A second alternative 

splicing event changes the C-terminus of the human ADAR2 protein, where the 

last 29 amino acids of the functional protein are replaced by a 2 amino acid tail, 

making the resultant ADAR2 protein inactive. It is speculated this inactive splicing 
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variant may play a regulatory role in ADAR2 cellular function (Lai et al., 1997), yet 

studies to address this issue have not been performed. 

 

ADAR autoediting 

Exon 7 of the Drosophila dADAR mRNA can form an imperfect RNA duplex, 

and within this duplex one adenosine can be specifically converted into inosine by 

dADAR itself (Keegan et al., 2005; Palladino et al., 2000a). This A-to-I editing 

event modifies an AGU codon into an IGU codon, changing the encoded serine 

residue (S) into a glycine (G). The serine is highly conserved across species and 

near the second zinc-coordination motif of the deaminase domain. The 

substitution of the serine with glycine has been shown to dramatically decrease 

enzymatic activity in vitro and in vivo on multiple substrates (Keegan et al., 2005). 

More importantly, this autoediting is developmentally regulated, where the editing 

is low in embryonic and pupal mRNAs and increases by more than 40-fold from 

embryo to adult (Palladino et al., 2000a). Ubiquitous expression in embryos and 

larvae of a dADAR transcript that is resistant to autoediting was lethal, suggesting 

the autoediting is critical for the normal development of Drosophila (Keegan et al., 

2005). 

While autoediting in Drosophila changes the amino acid identity, the 

autoediting in vertebrates affects alternative splicing. ADAR2 can edit one 

adenosine (-1 site) within intron 4 of its own pre-mRNA and convert an AA to an 

AI dinucleotide, a noncanonical 3’-splice acceptor. The alternative splicing 

product using the ADAR2-dependent splice acceptor adds 47 nt of intronic 
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sequence into the mature ADAR2 mRNA, resulting in the translation of a 9kD 

protein lacking all of the functional domains required for A-to-I conversion 

(Dawson et al., 2004; Rueter et al., 1999) (Figure 9). Similar alternative splicing 

strategies are evolutionarily conserved in all vertebrates examined incluiding 

humans, rats, mice, chickens, and fish, indicating the biological importance of this 

process (Slavov et al., 2000). In genetically-modified mice whose autoediting was 

ablated by disrupting the required RNA duplex structure, ADAR2 protein level 

increased up to 4-fold in a tissue-specific manner. Moreover, all known ADAR2 

substrates displayed an elevated editing level, suggesting autoediting is a key 

regulator of ADAR2 expression (Feng et al., 2006). 

Observations that both hyperediting and hypoediting are both lethal to an 

organism demonstrate the necessity to maintain homeostatic control of ADAR 

expression. Although different in details, dADAR and ADAR2 independently 

developed autoediting strategies to modulate their own level of activity. When 

ADAR protein is overexpressed, it will edit on its own transcript, producing a less 

active protein (dADAR) or a nonfunctional protein (ADAR2), and return the total 

ADAR activity back to normal. 

 

Dimerization 

The catalytic domain of ADAR is very similar to that of the E. coli CDA and 

APOBEC-1. Homodimerization is essential for the enzymatic activity of cytidine 

deaminases, prompting investigations into ADAR dimerization. Employing 

sequential affinity chromatography and size exclusion column chromatography, 
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Figure 9. Model of ADAR2 autoregulation. A schematic diagram of
the biosynthetic processes involved in the production of ADAR2 is
presented, showing a region of the ADAR2 pre-mRNA between exon
3 and 5, the predicted RNA duplex required for A-to-I editing, and the
position of the -1 site (*). The RNA processing pathway lacking -1
site editing, leading to the production of full-length (711aa) ADAR2
is indicated with dashed arrows; the functional domains in ADAR2
(NLS, nuclear localization signal; dsRBM, double-stranded RNA
binding motifs and adenosine deaminase domain) are indicated.
The biosynthetic pathway involving A-to-I conversion at the -1 site
(*), leading to the production of a predicted 9 kD (83aa) protein, is
indicated with solid arrows; the hatched box represents the amino
acid sequences encoded by an altered reading frame resulting from
proximal 3'-splice acceptor use and inclusion of an additional 47nt in
the mature ADAR2 transcript,(adapted from Feng et al., 2006).
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the formation of complexes between differentially epitope-tagged ADAR 

monomers expressed in insect cells was tested (Cho et al., 2003). It was found 

that both ADAR1 and ADAR2 form stable enzymatically active homodimers, while 

ADAR3 remains in a monomeric, enzymatically inactive form. In addition, no 

heterodimerization among different ADAR family members was detected. 

Interestingly, endogenous ADAR3 in brain extracts was found to form a 

homodimer, indicating the existence of a brain-specific mechanism for ADAR3 

dimerization (Cho et al., 2003). 

The kinetics of ADAR2 editing for the GluR-2 R/G site has been shown to be 

consistent with a reaction scheme in which the formation of an ADAR2-RNA 

ternary complex is required for efficient RNA editing and gel-shift analyses have 

revealed two complexes are formed on the RNA as protein concentration is 

increased. In addition, ADAR2 molecules have been cross-linked to one another 

in an RNA-dependent fashion, suggesting that ADAR2 functions as homodimer 

on their RNA substrates (Jaikaran et al., 2002). 

Taking advantage of yeast two hybrid system, dADAR has also been shown 

to form homodimers (Gallo et al., 2003). The minimum region required for 

dimerization is the N-terminal region and the first dsRBM. Although dsRBM1 is 

required for both dsRNA binding and dimerization, these two functions can be 

uncoupled by deleting the N-terminus. The mutant protein retains the ability to 

bind dsRNA, but is monomeric and enzymatically inactive, indicating the 

dimerization is essential for editing but not dsRNA binding.  

Although several studies have suggested ADAR may form homodimers, the 
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conclusions are not always consistent. While one study demonstrated that 

ADAR2 homodimerization was RNA-independent (Cho et al., 2003), a second 

study suggested it was RNA-dependent (Jaikaran et al., 2002). The first study 

showed that the ADAR homodimer is very stable and almost never dissociates, 

while the second study indicated that the homodimer only forms on RNA 

substrate and formation is transient. Therefore, the nature of the ADAR 

dimerization in vivo needs further validation. 

 

Sumoylation 

Sumoylation is a reversible and highly dynamic posttranslational modification 

in eukaryotes, where the targeted protein is conjugated with the small 

ubiquitin-like modifier, SUMO. It can affect targeted protein function by altering its 

subcellular localization, activity or stability. The modification process involves 

formation of an isopeptide bond between the C-terminus of SUMO and the amino 

group of a lysine side-chain of the targeted protein; while the removal of SUMO 

from proteins is carried out by specific cysteine proteases that have both 

hydrolase and isopeptidase activity. Three SUMO proteins have been identified as 

SUMO-1, -2 and -3 in vertebrates and sumoylation has been found in proteins 

such as RanGAP1, PCNA, IkBa, p53, c-jun, topoisomerases, promyelocytic 

leukemia protein, Sp100 and the MEKK1, most of which are nuclear proteins or 

proteins shuttling to the nucleus (Hay, 2005). In addition, since most enzymes 

involved in the SUMO pathway are also localized in the nucleus, it is believed that 

sumoylation is predominantly a nuclear process (Seeler and Dejean, 2003; Zhang 
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et al., 2002). 

Subnuclear localization of SUMO-1 was found to overlap with that of the 

ADAR1, raising questions regarding whether ADAR1 is a target for SUMO-1 

(Desterro et al., 2005). Further analyses demonstrated that ADAR1 can be 

modified by SUMO-1 at lysine residue 418. Substitution of this lysine residue with 

an arginine abolished sumoylation without affecting the nucleolar localization of 

ADAR1. However, this substitution stimulated ADAR1 editing activity both in vitro 

and in vivo. Moreover, modification of ADAR1 by SUMO-1 in vitro reduced RNA 

editing activity, indicating that sumoylation is a novel posttranslational mechanism 

to regulate ADAR1 activity. 

 

Nucleolar sequestration 

While ADAR1 p150 can shuttle between the nucleus and cytoplasm 

(Strehblow et al., 2002), ADAR1 p110 and ADAR2 are restricted to the nucleus. 

The nucleus is highly compartmentalized and the compartmentalization may play 

an important role in regulating protein function. ADAR1 p110 and ADAR2 have 

been demonstrated to highly concentrate in the nucleolus of mammalian cells, 

which is different from the proposed nucleoplasmic site where A-to-I editing is 

though to occur. The ADAR proteins dynamically shuttle between the nucleolus 

and nucleoplasm, suggesting that the nucleolar localization may represent a 

regulatory process to control ADAR cellular activity (Desterro et al., 2003; 

Sansam et al., 2003). 
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The compartmentalization of the nucleus 

The separation of the cytoplasm and nucleus is achieved by a nuclear 

envelope, but such membrane barriers do not exist in the nucleus. Based on their 

structure and function, the nucleus can be largely divided into nucleolus and 

nucleoplasm. 

Ribosomal RNA (rRNA) synthesis and ribosomal subunit assembly occur in 

the nucleolus of eukaryotic cells. The 45S pre-rRNA, transcribed by RNA 

polymerase I from the ribosomal DNA (rDNA), contains the 18S, 5.8S and 28S 

rRNAs with external and internal spacer sequences. After transcription, the 

pre-rRNA undergoes a series of cleavage events to release the 18S, 5.8S and 

28S rRNAs. The fully processed rRNAs are then assembled with 5S rRNA, which 

is transcribed by RNA polymerase III in the nucleoplasm, and at least 80 proteins 

to form complete ribosomal subunits that get exported to the cytoplasm. Besides 

their well-known role in the synthesis and assembly of ribosomes, the nucleolus 

has also been suggested to be a place for functional sequestration of proteins. 

The human telomerase protein is concentrated in the nucleolus, but functions on 

the DNA ends in the nucleoplasm. In normal cells, the release of telomerase to 

the nucleoplasm from the nucleolus is enhanced at the expected time of telomere 

replication in a cell-cycle dependent manner. However, in transformed cells, there 

is an almost complete dissociation of telomerase from nucleoli at all stages of the 

cell cycle, indicating that the telomerase activity is released from the nucleolus 

when needed and sequestrated by the nucleolus when not necessary (Wong et 

al., 2002).  
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The nucleoplasm is the compartment for mRNA transcription and processing 

and can be further divided into the chromatin and interchromatin space. Actively 

transcribed DNA has a consistent topology on chromatin, with mRNA transcription 

occurring at, or near, the surface of the compact chromatin domains (the 

perichromatin region), depositing newly synthesized RNA directly into the 

interchromatin space (Verschure et al., 1999). Before being exported from the 

nucleus to the cytoplasm for translation, the pre-mRNAs undergo extensive RNA 

processing events, including capping, splicing and polyadenylation. Abundant 

cytological and biochemical evidence supports that pre-mRNA processing occurs 

co-transcriptionally in the perichromatin region, which is mediated by the 

interaction between various RNA processing machineries and the C-terminal 

domain (CTD) of the RNA polymerase II (Cramer et al., 2001; Fong and Bentley, 

2001; Herbert et al., 1997; Hirose and Manley, 1998; Ho et al., 1999; McCracken 

et al., 1997). The co-transcriptional splicing of pre-mRNA has important 

implications for where ADAR-mediated RNA editing actually takes place. Since 

editing of many pre-mRNAs requires intronic sequence to form the RNA duplex 

necessary for A-to-I conversion (Burns et al., 1997; Higuchi et al., 1993; Rueter et 

al., 1999), editing must occur prior to intron removal by splicing. Since splicing 

occurs co-transcriptionally, it is believed that ADARs also edit their targets 

co-transcriptionally in the nucleoplasm, although direct evidence for this 

hypothesis is lacking. 
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Functional sequestration of ADARs by the nucleolus 

Since ADARs are thought to edit RNA transcripts in the nucleoplasm, it was 

surprising to find out that both ADAR1 (p110) and ADAR2 are highly concentrated 

in the nucleolus of human and mouse cells (Desterro et al., 2003; Sansam et al., 

2003) (Figure 10A).  

Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in 

photobleaching (FLIP) analyses suggested that ADARs shuttle rapidly between 

the nucleolus and nucleoplasm (Desterro et al., 2003; Sansam et al., 2003). 

When one selected nucleolus was photobleached in a cell stably expressing 

eGFP-ADAR2, the recovery of fluorescence was essentially complete within 1min 

and the fluorescence intensity of other nucleoli in the same cell decreased and 

reached a steady-state level within a similar time-scale to the recovery, indicating 

that ADAR2 is constantly moving between nucleoli through the nucleoplasm at a 

speed approaching the rate of diffusion (Sansam et al., 2003). 

Although the nucleolus contains high concentration of ADAR proteins, it does 

not seem to be the subcellular location in which editing occurs. A transiently 

expressed editing-competent RNA in the nucleus is excluded from the nucleolus, 

and overexpression of this nucleoplasmic ADAR substrate causes endogenous 

ADAR proteins to be translocated to the nucleoplasm. This translocation depends 

on whether the RNA can be edited by ADAR since a control RNA did not cause 

any change in ADAR subnuclear localization (Desterro et al., 2003) (Figure 10B). 

Furthermore, translocation of ADAR2 to the nucleoplasm, by inhibition of rRNA 

synthesis, resulted in elevated A-to-I RNA editing on multiple substrates (Sansam 
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et al., 2003). Taken together, these data indicated that A-to-I RNA editing takes 

place in the nucleoplasm and ADARs are functionally sequestered in the 

nucleolus. 

Molecular mechanisms for ADARs nucleolar localization 

Mutation of critical residues for dsRNA binding in the dsRBMs makes the 

resultant protein diffuse through the nucleus, indicating the double-stranded RNA 

binding activity is required for ADAR2 nucleolar localization (Sansam et al., 2003). 

The pre-rRNA and rRNA in the nucleolus contain extensive RNA duplexes, and 

rRNA is also essential for ADAR2 nucleolar localization, suggesting ADAR2 may 

bind to the duplex regions contained within rRNA transcripts. 

 

Summary and specific aims 

ADAR2-mediated RNA editing is able to change the ion permeability and the 

kinetics of ion channels, the coupling efficiency between receptor and G protein 

and the alternative splicing pattern of its own pre-mRNA. With over 12,000 editing 

events in Alu elements recently identified, ADAR2 may also modulate a number of 

additional cellular processes by regulating the stability, translation efficiency and 

trafficking of targeted RNAs. Moreover, ADAR2 has also been shown to affect 

siRNA and microRNA pathways. Therefore, the function and regulation of ADAR2 

is under extensive study. However, as more findings are made, even more 

questions have been raised. The molecular mechanisms underlying ADAR2 

nucleolar localization are not fully understood since some data suggests that 

dsRBMs are not sufficient to localize protein to the nucleolus. The dsRBMs have 
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been shown to bind to GluR-2 (Q/R site) RNA specifically, yet whether such 

specific binding is common to all substrates is unknown. ADAR2 contains two 

dsRBMs and these motifs are required for editing activity and nucleolar 

localization. Their sequence and structural similarity however, has raised 

questions regarding the role(s) that each dsRBM plays in ADAR2 function. In an 

effort to address these questions, this dissertation has focused upon the following 

specific aims. 

I. Identification of C-terminal localization signal in ADAR2 

II. Structure and specific RNA binding of ADAR2 dsRBMs 

III. Differential roles of dsRBMs in regulating ADAR2 function 
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CHAPTER II 

 

IDENTIFICATION OF C-TERMINAL LOCALIZATION SIGNAL IN ADAR2 

 

Introduction 

The conversion of A-to-I by RNA editing is a widespread posttranscriptional 

modification, resulting in the hydrolytic deamination of targeted adenosine 

residues to change the sequence of RNA from that encoded by the genome. Most 

of the well-characterized A-to-I editing events result in non-synonymous codon 

changes in the mRNA, to produce functionally distinct protein isoforms (Berg et al., 

2001; Bhalla et al., 2004; Burns et al., 1997; Hoopengardner et al., 2003; Kohler 

et al., 1993; Lomeli et al., 1994; Niswender et al., 1999). A-to-I modifications have 

also been described in non-translated RNA species and non-coding regions of 

RNA transcripts, suggesting that editing may also affect other aspects of cellular 

RNA function including the splicing, trafficking, stability or translation efficiency 

(Athanasiadis et al., 2004; Blow et al., 2004; Kim et al., 2004; Levanon et al., 2004; 

Morse et al., 2002; Yang et al., 2006). 

A-to-I RNA editing in mammals is mediated by a family of enzymes known as 

ADARs, including ADAR1, ADAR2 and ADAR3 (Bass et al., 1997). ADAR2 is an 

80kD protein, containing one NLS and two dsRBMs at the N-terminus and one 

conserved catalytic domain at the C-terminal portion. ADAR2 catalyzes the 

majority of known codon-altering A-to-I modifications, and the ADAR2-deficient 

mice die by three weeks after birth primarily due to the lack of editing at the Q/R 
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site of GluR-2 transcripts (Higuchi et al., 2000). 

While A-to-I RNA editing is thought to take place co-transcriptionally in the 

nucleoplasm, ADAR2 has been found to be highly concentrated to the nucleolus 

at steady-state and shuttles rapidly between nucleolus and nucleoplasm 

(Desterro et al., 2003; Sansam et al., 2003). Increased translocation of ADAR2 to 

the nucleoplasm correlates with the increased editing activity, suggesting that 

ADAR2 is functionally sequestered by the nucleolus (Sansam et al., 2003). Both 

functional dsRBMs and rRNA synthesis are required for ADAR2 nucleolar 

localization, indicating that ADAR2 may bind to the duplex regions within rRNAs. 

(Sansam et al., 2003). 

Although dsRBMs are required for nucleolar localization, whether other 

nucleolar localization signals are required for this subnuclear targeting is unknown. 

Preliminary data have indicated that deletion of the C-terminal region of ADAR2 

will result in a loss of nucleolar localization. This effect may be due to the loss of a 

specific nucleolar localization signal or a change in the overall protein structure. In 

this study, subcellular localization and enzymatic activity of a series of ADAR2 

mutants are assessed to examine whether a specific localization signal exists in 

the C-terminus.  
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Materials and Methods 

 

Plasmids 

Construction of all eGFP-ADAR2 mutants was performed using the wild-type 

eGFP-ADAR2 plasmid as a template for run-around PCR (Coolidge and Patton, 

1995), using specific primer sets as following : VU1144 and VU1152 for 

eGFP-ADAR2(1-528), VU1120 and VU1068 for eGFP-ADAR2(532-711), VU1069 

and VU1068 for eGFP-ADAR2(∆392-531), VU1144 and VU1145 for 

eGFP-ADAR2(∆529-590), VU1146 and VU1147 for eGFP-ADAR2(∆591-649), 

VU1148 and VU1152 for eGFP-ADAR2(∆648-711), VU1221 and VU1152 for 

eGFP-ADAR2(1-301). 

 

Cell culture and transfection 

Human embryonic kidney (HEK293) cells and NIH/3T3 mouse fibroblasts 

(American Type Culture Collection) were maintained in AMEM and DMEM (Life 

Technologies, Grand Island, NY), respectively, and supplemented with 10% 

(vol/vol) bovine calf serum (HyClone, Logan, UT). 

HEK293 cells (about 50% confluent in 100mm culture dish) were transiently 

transfected by calcium phosphate coprecipitation with 8 µg of plasmid encoding 

wild-type or mutant eGFP-ADAR2 fusion proteins as previously described (Rueter 

et al., 1999).  

For analysis of subcellular fluorescence, NIH/3T3 cells were plated on 35mm 

dishes and transiently transfected with 1µg of plasmids encoding wild-type or 
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mutant eGFP-ADAR2 fusion proteins using Fugene 6, according to the 

manufacture’s instruction (Boehringer Mannheim). 

 

Fluorescence microscopy 

Twenty-four hours after transfection, the subcellular localization of eGFP 

fusion proteins was determined by fluorescence microscopy (Axiovert S100, Carl 

Zeiss Inc). All images were acquired using a 20X/0.40 LD ACHROPLAN objective 

lens. 

 

In vitro editing assay 

The two strands of D79N dsRNA were transcribed in the presence of 

[α-32P]-ATP individually and hybridized, and the concentration was determined by 

scintillation spectrometry as described previously (Dawson et al., 2004). For 

preliminary studies (Figure 25A), HEK293 nuclear extracts containing the 

wild-type eGFP-ADAR2 fusion protein were diluted 15-fold for a time-course study 

to determine the linear range of enzymatic activity for D79N RNA substrate. 100 

fmoles of RNA substrate was incubated with nuclear extracts containing 

equivalent amounts of eGFP-ADAR2 protein at 30o C, in a total volume of 50 µl, 

for varying time periods and the reactions were terminated by freezing on dry ice. 

Subsequent analyses of editing activity for equivalent amounts of wild-type and 

mutant eGFP-ADAR2 fusion proteins were performed in the same system using 

60mins as reaction time. Quantification of editing activity for [α-32P]-labeled D79N 

dsRNA was performed by thin-layer chromatography (Rueter et al., 1995). 
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Results 

 

Altered localization by C-terminal region deletion 

Based on its amino acid sequence and biological function, ADAR2 is 

predicted to contain two dsRBMs at the N-terminus and a catalytic adenosine 

deaminase domain at the C-terminus. However, the precise boundaries of each 

domain have not been well defined until recently (Macbeth et al., 2005; Stefl et al., 

2006). At the time this project was initiated, it was well accepted that the 

deaminase domain extended from amino acid D392 to I530 in ADAR2, based upon 

sequence similarity to E.coli CDA, and the sequences from L301 to N391 and from 

A531 to P711 did not correspond to the structure of any characterized domain 

(Figure 11). 

A fusion protein in which ADAR2 was subcloned in-frame with the coding 

region of eGFP displayed a similar subcellular localization and comparable 

enzymatic activity to endogenous ADAR2 (Sansam et al., 2003), providing an 

ideal tool to monitor the localization and activity changes of ADAR2. A fusion 

protein (1-528) lacking the region immediately following the deaminase domain 

(C-terminal region) showed diffuse nuclear localization in transiently transfected 

NIH/3T3 cells (Figure 11). This effect may due to the loss of a specific nucleolar 

localization signal in the last 183 amino acids, but may also result from an overall 

change in the protein structure which impedes dsRBM function.  
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Insufficiency of C-terminal region for nucleolar localization 

If a peptide contains a functional nucleolar localization signal, it should be 

able to target a heterologous protein such as eGFP to the nucleolus. To test 

whether the C-terminal region of ADAR2 contains such a localization signal, the 

fusion protein eGFP-ADAR2(532-711) was made (Figure 12), yet this protein was 

detected in both the nucleus and cytoplasm (Figure 13). In the nucleus, a diffuse 

fluorescence pattern was observed, suggesting that there is no specific nucleolar 

localization signal in the last 180 amino acids of ADAR2. 

 

Altered localization by deleting the deaminase domain 

If the altered localization by deletion of the C-terminal region is due to the loss 

of specific nucleolar localization signal, we thought this effect should be rather 

specific. The deaminase domain is known to contain no nucleolar localization 

signal. Surprisingly an eGFP-ADAR2 fusion protein solely lacking the deaminase 

domain (∆392-531) was localized diffusely throughout the nucleus (Figure 

12,13),suggesting that the altered localization is not specific to the C-terminal 

region. These data is more consistent with the hypothesis that the C-terminal 

deletion resulted in an overall change in the protein structures. 

 

Lack of dissectible localization signal in the C-terminal region 

No domain structure was identified in the C-terminal region of ADAR2 based 

upon the primary amino acid sequence. To further examine the identify of specific 

nucleolar targeting sequences, the C-terminal region was equally divided into 
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three portions and each was deleted from the eGFP-ADAR2 fusion protein 

(Figure 12). All three mutant eGFP-ADAR2 proteins, eGFP-ADAR2(∆529-590), 

eGFP-ADAR2(∆591-649), eGFP-ADAR2(∆648-711), displayed a diffuse pattern 

in the nucleus (Figure 13), demonstrating the absence of a dissectible nucleolar 

localization signal (<60aa) in this region of ADAR2. 

 

The sufficiency of the dsRBMs for nucleolar localization 

While the dsRBMs of ADAR2 are required for nucleolar localization (Sansam 

et al., 2003), whether these domains are sufficient for subnuclear targeting has 

not been tested. This fact, together with the altered localization observed for the 

C-terminal region deletion, leads us to examine a putative C-terminal nucleolar 

localization signal. However, the fact that no dissectible region was identified in 

the C-terminus, urged us to go back and examine the sufficiency of the dsRBMs 

for nucleolar localization. An eGFP-ADAR2(1-301) mutant was made by deletion 

of region immediately after dsRBM2. Surprisingly, this mutant protein was highly 

concentrated in the nucleolus, similar to wild-type eGFP-ADAR2, suggesting that 

the dsRBMs are sufficient for nucleolar localization in the absence of the 

C-terminal region. 

 

Loss of enzymatic activity by mutations in the C-terminal region 

The subcellular localization of eGFP-ADAR2 mutants indicated that deletion 

of C-terminal region most likely caused an overall change in protein structure, 

thereby interfering with dsRBM function and altering subnuclear localization. To 
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further test this hypothesis, the enzymatic activity of C-terminal deletion mutants 

was examined using a synthetic RNA duplex in vitro. While the wild-type 

eGFP-ADAR2 converted 30% of the adenosine residues into inosine, both the 

entire C-terminal region deletion (1-528) and the three smaller deletions in this 

region displayed no editing activity (Figure 14). The sequence between amino 

acid R648 and P711 is far from the active site, yet deletion of this region totally 

ablated editing activity and the nucleolar localization, strongly suggesting that the 

C-terminal region is highly structured and that disruption of this region can cause 

an widespread change in protein structure, which in turn, can impede the 

dsRNA-binding activity of the dsRBMs. 

 

Discussion 

Deletion of the C-terminal 183 amino acids of ADAR2 altered its subcellular 

localization, leading us to hypothesize the existence of a specific nucleolar 

localization signal in the C-terminal region. However, the C-terminal region is not 

sufficient to localize eGFP to the nucleolus and the deletion of deaminase domain 

causes a similar change in subnuclear targeting, suggesting this effect is not 

specific to the C-terminal region. Three smaller deletions in the C-terminal region 

all eliminated nucleolar accumulation, indicating that there is no dissectible 

nucleolar localization signal in this region. A fusion protein lacking both the 

deaminase domain and C-terminal region retained its nucleolar accumulation, 

suggesting that the C-terminal region is not required for localization. Furthermore, 

all deletions in the C-terminal region ablated editing activity, suggesting that 
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Figure 14. Loss of enzymatic activity by C-terminal deletions.

perfect dsRNA
Representative autoradiograms from in vitro analyses of editing
activity for a mediated by eGFP-ADAR2 fusion
proteins are shown. Editing activity for a synthetic RNA duplex
(D79N) was determined by thin-layer chromatography (TLC); the
TLC origin (ORI) and the migration positions of adenosine 5'-
monophosphate (AMP) and inosine 5'-monophosphate (IMP) are
indicated.
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altered localization of eGFP-ADAR2(1-528) is mostly likely due to an overall 

change in protein structure which impedes dsRBM function rather than the loss of 

a specific nucleolar localization signal. 

 

The highly structured C-terminal region 

Based on the sequence similarity to E.coli CDA, the deaminase domain of 

ADAR2 is previously defined as the sequence between D392 and I531, and the 

C-terminal region is thought to be sequence without tertiary structure. However, 

our mutagenesis studies strongly suggested that the C-terminal region is highly 

structured, since small deletions (~60aa) within this region, which are far from the 

dsRBMs and catalytically active site, eliminate both ADAR2 enzymatic activity and 

nucleolar targeting. Recent X-ray crystallographic studies have confirmed this 

finding (Macbeth et al., 2005) (Figure 5A). The actual deaminase domain, 

extending from amino acid Q321 to T710, is much larger than predicted. There is an 

IP6 molecule buried in the enzyme core that has been shown to be required for 

editing activity, presumably by defining and stabilizing the folding of the 

deaminase domain. The sequence after L560 forms a number of helices and 

provides most of the IP6 binding sites (Macbeth et al., 2005). Therefore, the 

C-terminal region is highly structured and folds as an integrated part of the 

deaminase domain. 
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The IP6 and dsRBM-mediated nucleolar localization 

The dsRBMs of ADAR2 can fold correctly and are sufficient for nucleolar 

localization in the absence of the deaminase domain (Stefl et al., 2006) (Figure 23) 

and the deaminase domain can fold correctly with IP6 in the enzyme core in the 

absence of dsRBMs (Macbeth et al., 2005). The deletions in C-terminal region 

cause a misfolding of the deaminase domain, so it is not surprising that all of 

these mutants were enzymatically inactive. However, if we assume that functional 

domains fold independently, how the misfolding of the deaminase domain 

interferes with dsRBM-mediated nucleolar localization remains unknown. 

The IP6 binding residues are highly conserved in all ADARs and yeast ADAT1, 

but not found in yeast ADAT2, ADAT3 and E.coli ADAT2 and CDA (Macbeth et al., 

2005). Therefore, IP6 seems not to be essential for deaminase activity or the 

substrate preference of adenosine over cytidine. Then what is the evolutionary 

advantage of IP6 and its folding into ADAR deaminase domain? 

Sequence alignments indicate that ADAT1 is the evolutionary link between 

ADAT2/3 and ADARs (Gerber and Keller, 2001). ADAT2/3 deaminates specific 

adenosines in anticodon loop of tRNAs. Since the substrate is relatively small, 

without any RNA binding domain, the ADAT2/3 deaminase domain can accurately 

modify the targeted adenosines. To evolve to ADARs, which are designed to 

catalyze specific adenosines out of thousands of mRNAs, the presence of 

dsRBMs are required for defining the substrate specificity (Stefl et al., 2006; 

Stephens et al., 2004). We reason that the deaminase domain of ADAT2/3 has the 

intrinsic binding activity for the dsRBMs, similar to the dsRBM binding to the 
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catalytic domain observed in PKR and RNase III, hence interfering both dsRNA 

binding and catalytic activity, preventing the evolution from ADAT2/3 to ADARs 

directly. ADAT1 happened to obtain the ability to bind to IP6 with the extended 

C-terminal region through spontaneous mutations and this change may mask the 

binding activity of the original deaminase domain to the dsRBMs, making it 

possible to have the dsRBMs and the deaminase domain existing in the same 

molecule and finally evolve to ADARs. This is consistent with the fact that dsRBM 

only presents in a deaminase containing the IP6 binding residues. 

This hypothesis well explains the evolutionary advantage of the IP6 and the 

sequence conservation of IP6 binding residues in all ADARs. It is also consistent 

with the experimental evidence. When the IP6 binding is abolished by mutations in 

the C-terminal region, the original deaminase domain with the dsRBM binding 

activity is exposed. The resulting intramolecular interaction blocks the dsRBM 

accessibility to the rRNA, thus, altered the subcellular localization. Although the 

hypothesis is consistent with the experimental data, the validity needs to be tested 

directly. 
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CHAPTER III 

 

STRUCTURE AND SPECIFIC RNA BINDING OF ADAR2 DSRBMS 

 

Introduction 

ADARs convert adenosine to inosine by hydrolytic deamination in cellular and 

viral RNA transcripts containing either perfect or imperfect regions of 

double-stranded RNA (Bass, 2002; Emeson and Singh, 2001; Gerber and Keller, 

2001; Keegan et al., 2001). A-to-I modification is non-specific within perfect 

dsRNA substrates, deaminating up to 50% of the adenosine residues (Bass, 2002; 

Emeson and Singh, 2001). The majority of non-selective editing occurs in UTRs 

and introns where large regular duplexes are formed (Levanon et al., 2004; Morse 

et al., 2002; Morse and Bass, 1999; Rueter et al., 1999).  

A-to-I editing can also be highly specific within imperfect dsRNA regions 

containing bulges, loops, and mismatches, modifying a single or limited set of 

adenosine residues (Bass, 2002; Emeson and Singh, 2001). In the pre-mRNA 

encoding the GluR-2, several such specific editing sites have been found 

(Seeburg et al., 1998). One of these locations is the R/G site, where an arginine 

codon is converted to a glycine codon. This change affects the biophysical 

properties of the ion channel in which the edited isoform recovers faster from 

desensitization (Lomeli et al., 1994).  

ADARs display a modular domain organization, containing from one to three 

tandem copies of dsRBMs in its N-terminal region, and an adenosine deaminase 
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domain in its C-terminal portion. The dsRBMs of ADARs may play an important 

role in modulating the editing selectivity of ADARs (Carlson et al., 2003; Doyle 

and Jantsch, 2002; Stephens et al., 2004). The structural studies of several 

dsRBMs revealed a highly conserved αβββα protein topology in which the two 

α-helices are packed along a face of a three-stranded anti-parallel β-sheet. 

(Bycroft et al., 1995; Kharrat et al., 1995; Nanduri et al., 1998) Furthermore, 

structures of the dsRBMs in complex with non-natural or natural RNA substrates 

have been solved (Blaszczyk et al., 2004; Ramos et al., 2000; Ryter and Schultz, 

1998; Wu et al., 2004). These structures revealed not only how dsRBMs can bind 

any dsRNA, regardless of base composition, but also how structure-specific 

recognition of RNA hairpins is achieved (Stefl et al., 2005a). 

While the enzymatic activity of ADARs and their biological role(s) have 

extensively been studied (Bass, 2002; Emeson and Singh, 2001), the 

determinants that control site-selective RNA modification are poorly understood. 

Here, we report the solution structure of the two dsRBMs of ADAR2 and their 

interactions with the conserved 71 nt RNA stem-loop containing the GluR-2 R/G 

site (R/G stem-loop). Our structural study demonstrates that the dsRBMs of 

ADAR2 have the ability to discriminate specific structural features of RNA, 

suggesting their importance for the editing site selectivity. 
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Materials and Methods 

 

Plasmids 

For the expression of His-dsRBM1 and His-dsRBM2, the DNA fragments 

corresponding to rat dsRBM1 (74-147) and dsRBM2 (231-301) were PCR 

amplified from pEGFP-ADAR2b plasmid by specific primers (VU990, VU991 for 

dsRBM1; VU1024, VU1092 for dsRBM2) to introduce NdeI and BamHI restriction 

sites for in-frame subcloning into pET16b expression vector (Novagen). The 

dsRBM1/2 cDNA was cloned into pET30-GBFusion1 vector yielding N-terminal 

GB1-tagged and C-terminal His-tagged construct of GB1-dsRBD1/2. A 116 bp 

fragment containing a portion of the mouse GluR-2 gene with the complete R/G 

duplex was amplified from mouse genomic DNA using sense (VU682) and 

antisense (VU683) primers and subcloned into pBSKII- (Stratagene). Alterations 

in the sequence for the R/G stem-loop (GCUCUA, GCAA, GCACA) were made by 

PCR-based mutagenesis from the wild-type R/G stem-loop construct using the 

same antisense primer (VU1239) and individual sense primers (VU1245, VU1244, 

VU1238).  

 

Recombinant protein expression and purification 

His-dsRBM proteins were expressed in BL21 (DE3) E.coli, and cells were 

grown at 37oC in minimal medium (2L) containing [13C6] glucose and 15NH4Cl to 

OD600=0.8. After induction with 0.1mM IPTG for 7.5 hours at 30 oC, the 

His-dsRBM proteins were purified under natural condition using TALON resin. 
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The protein elution was subjected to dialysis to remove imidazole, followed by 

centrifugal concentration using MILLIPORE UFV2BCC10 system. BL21 

expressing GB1-dsRBM1/2 were grown at 37 oC in minimal medium (0.5L) to 

OD600=1. After 1mM IPTG induction, the protein was purified under denaturating 

conditions and refolded into native buffer on Ni-NTA affinity column. All proteins 

are concentrated to more than 0.8mM in 50mM sodium phosphate buffer (pH=8) 

containing 200mM NaCl. 

 

Cell culture and protein preparation for in vitro editing assay 

Human embryonic kidney (HEK293) cells (American Type Culture Collection) 

were maintained in AMEM (Life Technologies, Grand Island, NY), and 

supplemented with 10% (vol/vol) bovine calf serum (HyClone, Logan, UT). 

HEK293 cells (about 50% confluent in 100mm culture dish) were transiently 

transfected by calcium phosphate coprecipitation with 8 µg of plasmid encoding 

wild-type or mutant eGFP-ADAR2 fusion proteins as previously described (Rueter 

et al., 1999). 

 

RNA preparation for in vitro RNA editing assay 

The plasmids containing wild-type and mutant R/G stem-loop were all 

linearized with BamHI, transcribed in vitro using T3 RNA polymerase (Promega) 

and the resultant RNAs were subjected to digestion with RQ1 DNase (Promega) 

to remove the template DNA. For synthesis of the R/G stem (no loop) RNA, two 

strands were synthesized separately as follows: a 247 bp fragment was amplified 
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by PCR from the wild-type R/G stem-loop construct, using sense (VU1265) and 

antisense (VU1264) primers, to serve as a template for in vitro transcription of the 

first RNA strand, followed by digestion with RQ1 DNase. The second, synthetic 

RNA strand (VU1272) was obtained from Integrated DNA Technologies 

(Coralville, IA). The first and second strands were hybridized together at a 1:10 

ratio in RNA annealing buffer incubating at 85oC for 10mins, followed by slow 

cooling to room temperature (Dawson et al., 2004).  

 

In vitro editing assay and quantification of R/G site editing 

Analyses of editing activity for equivalent amounts of wild-type and mutant 

eGFP-ADAR2 fusion proteins (1:90 dilution for wilt-type protein) on each RNA 

substrate were performed for 30mins. For quantification of RNA editing, the in 

vitro reaction product was subject to RT-PCR amplification using sense (VU682) 

and antisense (VU1264) primers, followed by primer-extension analysis as 

described previously (Dawson et al., 2004). 

 

More materials and methods 

RNA preparation for NMR, NMR spectroscopy, structural calculations, model 

for RNA binding, uses of structure/sequence databases and sequence alignment, 

light scattering experiment, coordination and NMR restraints were performed by 

Dr. Richard Stefl in ETH, Switzerland, and have been described extensively in the 

paper (Stefl et al., 2006). 
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Results 

 

ADAR2 dsRBMs are independent domains 

We investigated the N-terminal region of rat ADAR2 (74-301) that includes the 

dsRBM1 (74-147), the interdomain linker (148-230) and dsRBM2 (231-301) using 

NMR spectroscopy. This protein construct was amino-terminally fused with 

non-cleavable solubility-enhancement tag, GB1, to improve its expression and 

solubility (Stefl et al., 2005b; Zhou et al., 2001). GB1-dsRBM1/2 and two isolated 

His-tagged dsRBMs, His-dsRBM1 and His-dsRBM2, were expressed in E.coli and 

purified to homogenerity (Figure 15). 0.8~1 mM of purified protein samples were 

used to generate the NMR spectra. The comparison between the spectrum of 

GB1-dsRBM1/2 and the spectra of His-dsRBM1 and His-dsRBM2 shows that the 

dsRBMs are identical in both contexts, except for a few N- and C-terminal 

residues. This comparison also indicates that the interdomain linker is flexible. In 

addition, when the isolated dsRBM1 and dsRBM2 were mixed in trans, the 

spectrum showed no change compared to the two spectra of the isolated domains. 

These results indicate that the ADAR2 dsRBMs are independent domains 

separated by a flexible linker, similar to the two dsRBMs of PKR (Nanduri et al., 

1998). Thus, we used separate dsRBM1 and dsRBM2 constructs to determine 

their structures by NMR. 
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Figure 15. Purification of His-dsRBM1 and His-dsRBM2 protein to
homogenerity. Aliquots of flow through (FT) or elutions of the proteins
from TALON beads by increasing concentration of imidazole were
loaded on 4-20% gradient gel for SDS-PAGE, followed by silver staining
analysis.
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ADAR2 dsRBMs structures are not identical 

Both ADAR2 dsRBM1 and dsRBM2 structures adopt the same fold as all 

other members of the dsRBM family, with an αβββα topology in which the two 

α-helices are packed along a face of a three-stranded anti-parallel β-sheet (Figure 

16). A central hydrophobic core stabilizes the fold of the domain. Although the two 

dsRBMs of ADAR2 have 50% amino acid identity, the two structures differ slightly 

in the orientation of α-helix 1 relative to the other secondary structure elements. 

This altered orientation is a result of a protein sequence difference in two amino 

acids at the C-terminus of α-helix 2 where Phe 142 and Val 143 in dsRBM1 are 

replaced by Val 296 and Phe 297 in dsRBM2. Phe 297, compared to Val 143, is 

more bulky leading to a different interaction between the two α-helices (Figure 16, 

blue in dsRBM2). We found another difference between the two dsRBMs in the 

conformation of the β1-β2 loop. The β1−β2 loop of dsRBM1 is well defined, 

whereas the β1−β2 loop of dsRBM2 is conformationally heterogeneous, which is 

probably due to the presence of two prolines in dsRBM1, not found in dsRBM2. 

Flexible β1−β2 loops were also observed in other dsRBM structures (Leulliot et al., 

2004; Ramos et al., 2000). Altogether, the longer α-helix 1 and the 

conformationally preorganized β1−β2 loop of dsRBM1 might be an important 

factor for ADAR2 RNA-recognition. 

 

Mapping of RNA-binding surface on the ADAR2 dsRBMs 

To investigate how ADAR2 dsRBMs bind RNA, we performed an NMR 

chemical shift perturbation study (looking for changes in NMR spectrum upon 
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RNA binding) with a 71 nt R/G stem-loop RNA (Figure 17A). This RNA is a 33 bp 

helix containing three mismatches (two A·C and one G·G) that is capped by a 

structured pentaloop (Stefl and Allain, 2005). A8 of this RNA can be specifically 

edited (up to 74 %) by ADAR2 in vitro, but if the mismatches are replaced by 

Watson-Crick base-pairs the editing efficiency is reduced substantially (Kallman 

et al., 2003; Ohman et al., 2000). 

First we studied the interaction between GB1-dsRBM1/2 and the 71 nt R/G 

stem-loop. Upon RNA titration up to an equimolar ratio, significant changes were 

observed. However, we could not map the RNA-binding residues using this 55 kD 

GB1-dsRBM1/2·R/G stem-loop complex due to low signal/noise ratio. As the 

dsRBMs are independent in the free form, we presumed that they could have 

different binding sites on the R/G stem-loop. Therefore, we used two truncations 

of the R/G stem-loop, a 52 nt “stem” and a 41 nt “loop”. We prepared four 

complexes (the two truncated RNAs bound to each dsRBMs) and measured the 

spectrum. The spectra of dsRBM1-loop and dsRBM2-stem complexes were 

virtually identical to the one of full-length complex. These observations indicate 

that the dsRBMs are bound in the same manner in these two subcomplexes and 

in the full-length complex (GB1-dsRBM1/2 bound to the R/G stem-loop). The two 

dsRBMs of ADAR2 bind two distinct locations on the R/G stem-loop, dsRBM1 

binding close to the pentaloop and dsRBM2 close to the editing site. The NMR 

data of the reciprocal complexes (dsRBM2-loop and dsRBM1-stem complexes) 

indicated that such subcomplexes are formed; however their spectra do not 

resemble the one observed in the full-length complex. These observations 

79



R/G site

u
c c
g a
u:a
a:u
u:g
a:u
a:u
c:g
a:u
a:u
u:a
a:u
u:a

g g
a:u
u:a
a:u

a c
g:c
g:c
u:a
g:c
g:c
g:u
u:a
g:c
G:c

c
A:u
U:g
U:a
A:u
C:g

A

G
G
C
C

:
:
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confirmed the relative position of the dsRBMs on the full length R/G stem-loop, yet 

more surprisingly indicated that the binding of both dsRBMs is specific. 

In both dsRBMs, the largest changes between the free and the bound forms 

were observed in α-helix 1 and the β1−β2 loop. In addition, changes were also 

observed for the β3−α2 loop and the N-terminus of α-helix 2 of dsRBM1, whereas 

no large changes were observed for the dsRBM2 in these two regions. These 

results are surprising since these regions of dsRBM1 and dsRBM2 are similar in 

sequence with the presence of three conserved lysines. Taken together, the 

patterns of chemical shift perturbations indicate that the protein-RNA interactions 

are different between dsRBM1 and dsRBM2 reflecting the structural differences 

already observed in the free dsRBMs structures. The RNA-binding surfaces of 

ADAR2 dsRBM1 and dsRBM2, although not identical, are similar to the ones 

observed in other dsRBMs·RNA complexes (Blaszczyk et al., 2004; Ramos et al., 

2000; Ryter and Schultz, 1998; Wu et al., 2004). 

 

Mapping of protein-binding surface on the R/G stem-loop 

To investigate the protein-binding surface, the NMR spectrum of the 71 nt R/G 

stem-loop were measured. The NMR data showed the presence of a G22·G50 

mismatch and two “open” A·C mismatches (A8·C64 and A18·C54). Based on 

these data together with our NMR structure of the central pentaloop region of 

human R/G stem-loop (Stefl and Allain, 2005), we built a structural model of the 

rat 71 nt R/G stem-loop (Figure 17B). Upon protein binding to the 71 nt R/G 

stem-loop, no significant changes of the spectrum were observed, indicating that 
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no changes in the RNA secondary structure take place upon complex formation. 

In the two subcomplexes of dsRBM1-loop and dsRBM2-stem, a precise chemical 

shift perturbations study upon protein binding was done. In the course of the 

protein titrations, the spectra move from their initial positions, corresponding to the 

free form, in a stepwise directional manner until they reached their final positions 

that correspond to the fully bound state. These data indicates that in both 

subcomplexes, the RNAs are in fast exchange between their free and bound 

forms relative to the NMR time scale. The binding of dsRBM1 to the loop RNA 

induces a significant change of C37 and U40, and the binding of dsRBM2 to the 

stem RNA causes changes of C54, C55, C56, C63, C64, and U65, where C54 

and C64 experience the largest changes (Figure 17B). These data strongly 

suggest that the above-mentioned RNA bases are interacting with the proteins 

upon protein binding. 

 

NMR model of ADAR2 dsRBM1/2 in complex with R/G stem-loop 

To understand the basic principles of this recognition, we constructed a model 

of ADAR2 dsRBMs in complex with the 71 nt R/G stem-loop based on our precise 

NMR identification of both the protein and RNA interaction surfaces and on the 

knowledge of the basic structural elements controlling dsRBMs·RNA recognition 

(Stefl et al., 2005a). The NMR model with the lowest energy of the ADAR2 

dsRBM1/2·R/G stem-loop complex is shown (Figure 18). In a similar manner to 

what was observed for Rnt1p dsRBM·AGNN tetraloop-containing RNA complex 

(Wu et al., 2004), the dsRBM1 contacts the minor groove of GCUCA pentaloop 

82



Figure 18. Model for the interaction between ADAR2 dsRBMs and
R/G RNA duplex. (A) Overall NMR model of ADAR2 dsRBM1/2 in
complex with R/G stem-loop. (B) dsRBM1 (in red) interacts with the
central part of the R/G stem-loop: -helix 1 contacts the pentaloop and
adjacent G·U base-pair. (C) dsRBM2 interacts with bulged cytosines,
opposite the editing site. K127 and K281, residues mutated to alanine in
our later functional studies, are shown in magenta and pink,
respectively. (D) Overall NMR model (top view).
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and the adjacent G·U mismatch of the central region of R/G stem-loop with the 

α-helix 1. The dsRBM2 interacts with the bulged C54 and C64 opposite to the 

editing site. Among the dsRBM·dsRNA complexes determined to date, the 

interaction of ADAR2 dsRBM2 is unique since dsRBM2 appears to recognize two 

bulged cytosines. 

 

Both dsRBMs are important for efficient editing of the R/G site 

To investigate whether both ADAR2 dsRBM-RNA interactions are important 

for ADAR2-mediated editing of the R/G site, either dsRBM1 or dsRBM2 were 

deleted from an eGFP-ADAR2 fusion protein (Figure 19), which has been 

previously shown to have a comparable enzymatic activity to wild-type ADAR2 

protein (Sansam et al., 2003). We took advantage of an in vitro editing system 

using the R/G editing substrate and wild-type or mutant eGFP-ADAR2 proteins in 

HEK293 nuclear extracts. Preliminary time course analyses with wild-type 

eGFP-ADAR2 protein were used to define the linear range of the in vitro editing 

reaction and equivalent amounts of wild-type and mutant proteins, as determined 

by quantitative Western blotting, were incubated with an in vitro transcribed R/G 

editing substrate (Dawson et al., 2004). Nuclear extracts from eGFP transfected 

cells defined background editing levels for the in vitro system, while the wild-type 

eGFP-ADAR2 protein demonstrated robust editing of the R/G site (Figure 19). 

Deletion of either dsRBM1 or dsRBM2 dramatically decreased the editing on R/G 

site by 3-10 fold, while deletion of both dsRBMs (eGFP-∆dsRBM1/2) completely 

eliminated A-to-I conversion at the R/G site. In addition, simultaneous mutations 
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of the two highly conserved K127 (dsRBM1) and K281 (dsRBM2) displayed 

significantly lower editing activity at the R/G site further confirming the importance 

of RNA binding of both domains for editing, as both side chains are predicted in 

our NMR-model to interact with the sugar-phosphate backbone (Figure 18). 

 

Functional importance of R/G stem-loop secondary structure 

Our NMR study shows that both dsRBM1 and dsRBM2 bind specific region of 

the R/G stem-loop, dsRBM1 binding near the pentaloop and dsRBM2 binding the 

stem with two A•C mismatches in the neighborhood of the R/G editing site (Figure 

18). The functional importance of the A•C mismatches was previously shown as 

their replacement by Watson-Crick base-pairs decreases the editing from 74% to 

41% (Ohman et al., 2000) and its selectivity for the R/G site from 80% to 30% 

(Kallman et al., 2003). To assess the functional importance of the pentaloop, we 

created several mutants in the loop region of the R/G stem-loop (Figure 20) and 

assayed them for editing activity at the R/G site in vitro. These mutants include a 

variation in the GCUCA pentaloop sequence (GCACA; a single mutation that 

changes the fold of the loop) (Stefl and Allain, 2005) and variations in the loop 

size (GCAA tetraloop and GCUCUA hexaloop). All these mutants display lower 

editing efficiency at the R/G site compared to the wildtype (Figure 20), indicating 

that the pentaloop sequence GCUCA and its specific structure is a functional 

determinant of the editing at the R/G site. In addition, an R/G stem-loop mutant 

lacking the entire GCUCA pentaloop (R/G stem) has also lower editing activity at 

the R/G site. Altogether, changes in the sequence or in the size of pentaloop that 
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leads to a different pentaloop topology result in lower editing efficiency at the R/G 

site, indicating the functional importance of the pentaloop structure (Stefl and 

Allain, 2005) 

 

Discussion 

 

Structure of ADAR2 dsRBMs 

In comparison to other dsRBMs, ADAR2 dsRBM1 and dsRBM2 differ from the 

canonical dsRBM fold like the ones of Xlrbpa2 (Ryter and Schultz, 1998) and 

Aquifex aeolicus RNase III (Blaszczyk et al., 2004). Interestingly, ADAR2 

dsRBM1 resembles the dsRBM of Rnt1p (Leulliot et al., 2004) albeit it lacks the 

α-helix 3, an additional element that imposes the conformation of the “recognition” 

α-helix 1 in the dsRBM of Rnt1p. ADAR2 dsRBM2 appears to be unique among 

other members of the dsRBM family. This structural difference in the relative 

orientation of the α-helix 1 may be functionally important as it may be a key 

element that modulates the RNA-binding specificity of dsRBMs (see below) 

(Ramos et al., 2000; Stefl et al., 2005a; Wu et al., 2004). 

 

ADAR2 dsRBMs specifically recognize the R/G stem-loop 

With dsRBM-containing proteins, questions regarding binding specificities 

have always been difficult to answer as this abundant RNA binding domain is 

considered to bind any dsRNA in a non-sequence specific manner. Structures of 

single dsRBM in complex with dsRNA indeed revealed that dsRBMs are not 
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sequence-specific RNA binders but raised the question of whether dsRBMs would 

rather recognize certain RNA-structures, like stem-loops or irregular duplexes 

(Ramos et al., 2000; Stefl et al., 2005a; Wu et al., 2004). Our extensive binding 

study of ADAR2 dsRBMs with the GluR-2 R/G stem-loop and our structural model 

extends further our understanding of how ADAR2 dsRBMs recognize their targets 

and more generally how dsRBMs recognize RNA. 

Double-stranded RNA binding motifs (dsRBMs) are often present in multiple 

non identical copies in proteins. In studying the two dsRBMs of ADAR2, we 

provide one of the first structural studies on how two domains work together. 

Surprisingly, although both dsRBM are essential for efficient RNA editing, they 

apparently bind the RNA independently as the interdomain linker (147-231) that 

bridges the dsRBMs of ADAR2 is found unstructured in both the free and bound 

forms of the protein and does not appear to participate in the interaction with the 

R/G stem-loop. Another surprising result is that both dsRBMs are bound in a 

well-defined location on the R/G stem-loop (dsRBM1 and dsRBM2 close to the 

pentaloop and the editing site, respectively), indicating that ADAR2 dsRBMs 

recognize this RNA substrate by themselves without the deaminase domain. This 

specific binding apparently originates from dsRBM2 that prefer an RNA duplex 

containing mismatches over a regular A-form duplex or a stem-loop, and from 

dsRBM1 that prefers a stem-loop over a regular duplex. The binding preference of 

ADAR2 dsRBM1 for a stem-loop containing a stable GCU(A/C)A pentaloop is 

reminiscent of Rnt1p dsRBM structure-specific recognition of AGNN tetraloop 

(Wu et al., 2004) and to Staufen dsRBM3 bound to a stem-loop capped by a 
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UUCG tetraloop (Ramos et al., 2000). Interestingly, all three dsRBMs have similar 

structures especially regarding the position of α-helix1. This suggests that 

dsRBMs binding preference for stem-loop over regular RNA duplexes might be 

more general than previously expected. In contrast, dsRBM2 favors RNA duplex 

substrates that contain mismatches and more particularly here two cytosines 

involved in A·C mismatches. Although we cannot tell if this recognition is 

base-specific or structure-specific (the backbone deformation around the A·C 

mismatch), this is the first structural indication that some dsRBMs specifically 

recognize RNA mismatches. 

Deletion of dsRBM1 from ADAR2 decreased the editing of R/G site by 3-fold, 

and deletion of dsRBM2 decreased the editing of R/G site by 10-fold. This 

highlights the importance of dsRBM2 and its exclusive binding to an RNA helix 

containing two A·C mismatches separated by ten base-pairs adjacent to the R/G 

site. The essential role of dsRBM2 interaction with A·C mismatches are consistent 

with several biochemical experiments showing that ADAR2 forms multiple 

non-specific complexes when bound to the R/G stem-loop lacking mismatches, 

resulting in a dramatically reduced editing efficiency and selectivity at the R/G site 

(Kallman et al., 2003; Ohman et al., 2000). The binding of dsRBM1 to the 

stem-loop region that contains structured GCUCA pentaloop is also important as 

the variations in the loop sequence and size have effect on editing efficiency. This 

interaction is likely to contribute to the overall binding affinity (Macbeth et al., 

2004). In conclusion, this structural study suggests that the dsRBMs of ADAR2 

appear to recognize preferentially certain structural elements (the stem-loop and 
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the mismatches) of the R/G stem-loop, explaining why the secondary structure of 

the R/G stem-loop is very well conserved (Aruscavage and Bass, 2000). 

 

Implication for ADAR editing 

Our structural study of the ADAR2 dsRBMs demonstrates that dsRBMs can 

specifically recognize certain secondary structure elements of the R/G stem-loop, 

a natural ADAR2 substrate encoding the 2-subunit of the AMPA-subtype of 

glutamate receptor. These observations indicate that the R/G stem-loop 

recognition by the ADAR2 dsRBMs is an important determinant for directing the 

enzyme to the R/G editing site. How is this related to other editing sites? Recent 

bioinformatics analyses have predicted more than 12,000 new A-to-I editing sites, 

located predominantly in Alu repetitive elements in the human transcriptome 

(Athanasiadis et al., 2004; Blow et al., 2004; Levanon et al., 2004). These 

analyses showed that A-to-I editing is clearly more frequent at adenosines 

involved in A·C mismatches than at any other mismatches or base-pairs. These 

findings correlate well with the binding preferences of ADAR2 dsRBM2 observed 

in our study and suggests that the dsRBM2 of ADAR2 may play a more general 

role in A-to-I editing site selection that previously expected. Of course, not all A·C 

mismatches are edited by ADAR2 indicating that dsRBM2 is not the only 

determinant for the specificity of A-to-I conversion. Our data showed that the 

dsRBM1 prefers to bind irregular RNA elements like stem-loops or 

non-Watson-Crick base-pairs over regular RNA duplexes (in contrast to the 

dsRBM2 that binds mismatches but not loop regions). The dsRBM1 of ADAR2 
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may serve to anchor the protein on long irregular RNA, consistent with the 

observation that most A-to-I editing sites are embedded within irregular RNA 

duplexes.  

92



CHAPTER IV 

 

DIFFERENTIAL ROLES OF DSRBMS IN REGULATING ADAR2 FUNCTION 

 

Introduction 

A-to-I RNA editing is mediated by a family of deaminases known as ADARs 

(Bass et al., 1997). ADAR1 and ADAR2 can catalyze the hydrolytic deamination of 

multiple sites in synthetic dsRNAs, or mediate the site-specific modification of 

naturally-occurring viral and cellular mRNA transcripts (Bass, 2002; Emeson and 

Singh, 2001). 

ADAR2 is responsible for the majority of the codon-altering A-to-I editing 

events. It displays a modular organization with two tandem dsRBMs connected by 

a flexible linker in the amino-terminal region and a conserved adenosine 

deaminase domain at the carboxyl-terminus (Macbeth et al., 2005; Stefl et al., 

2006). The two dsRBMs of ADAR2, with >80% amino acid sequence similarity, 

adopt the same fold as all other members of the dsRBM family, although the two 

domains differ slightly from one another in the orientation of α1 helix relative to the 

other secondary structural elements (Stefl et al., 2006). Like other 

dsRBM-containing proteins, ADAR2 demonstrates a high affinity for dsRNA, and 

can edit up to 50% of the adenosine moieties in perfect dsRNA (Cho et al., 2003; 

Dawson et al., 2004; Lehmann and Bass, 2000; Liu et al., 1999). However, 

ADAR2 can also demonstrate site-specific A-to-I conversion in mRNA transcripts 

(Bass, 2002; Emeson and Singh, 2001), providing a paradox by which such 
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specificity can be achieved in the absence of sequence-specific dsRBM-RNA 

contacts. Recent studies have indicated that the dsRBMs of ADAR2 bind 

selectively to imperfect RNA duplexes in a manner distinct from that of an 

PKR-derived dsRBM, suggesting that individual dsRBMs possess intrinsic binding 

selectivity that influence substrate specificity for the parent protein (Stephens et 

al., 2004). 

In addition to their role(s) in substrate recognition, the dsRBMs of ADAR2 also 

have been shown to be critical for the nucleolar localization, representing an 

important mechanism by which RNA editing can be modulated by the 

sequestration of enzymatic activity from RNA substrates in the nucleoplasm 

(Desterro et al., 2003; Sansam et al., 2003). 

The sequence similarity and conserved tertiary structures of two dsRBMs in 

ADAR2 have raised questions regarding the role(s) that each dsRBM plays in 

ADAR2 function. In this study, by deleting or introducing point mutations in each 

dsRBM, we demonstrated that each dsRBM plays a differential role in both the 

site-selective RNA editing, as well as in the localization of ADAR2 to the nucleolus. 

The observation of substrate-dependent contributions of dsRBM to ADAR2 

editing activity is consistent with a molecular mechanism by which the dsRBMs 

interact with distinct structural determinants on different target mRNAs and thus 

contribute to the editing specificity. 
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Materials and Methods 

 

Plasmids 

To generate fusion constructs encoding eGFP-ADAR2, the rat ADAR2b cDNA 

(Genbank accession # NM_012894) was subcloned into pEGFP-C1 (Clontech) as 

previously described (Sansam et al., 2003). Mutation of lysine to alanine at 

positions 127 and 281 of the open reading frame was performed by 

PCR-mediated overlap extension (Warrens et al., 1997), using primer sets as 

follows: VU1127, VU777, VU778 and VU1128 for K127A; VU1127 and VU776 for 

K281A; VU1127, VU777, VU778 and VU776 for K127A, K281A. Construction of 

eGFP-∆dsRBM mutants was performed using the wild-type eGFP-ADAR2 

plasmid as a template for “run-around” PCR (Coolidge and Patton, 1995) to delete 

amino acids 76-148 (∆dsRBM1 with VU1190 and VU1191), 230-301 (∆dsRBM2 

with VU1192 and VU1193) and 76-301 (∆dsRBM1/2 with VU1191 and VU1192) 

from the ADAR2b open reading frame. 

Plasmids expressing eYFP-dsRBM fusion proteins were constructed by PCR 

amplification of a region of the ADAR2b open reading frame encoding dsRBM1 or 

dsRBM2, corresponding to amino acids 74-147 (VU853 and VU991) or 231-301 

(VU1024 and VU1092), respectively, and subcloned into pEYFP-C1 (Clontech). 

Construction of plasmids encoding eGFP-ADAR2b isoforms with tandem 

copies of a single dsRBM was performed using PCR-mediated mutagenesis to 

delete the region encoding dsRBM2 (234-300, run-around PCR with VU1247 and 

VU1248) and replace it with amino acids 73-146 (VU1246 and VU1249) 
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(dsRBM1/1) or by deleting the region encoding dsRBM1 (76-148, run-around 

PCR with VU1190 and VU1191) and replacing it with amino acids 231-301 

(VU1220 and VU1221) (dsRBM2/2). For the dsRBM1/1 plasmid, a single amino 

acid change was introduced (L301V relative to the wild-type ADAR2b sequence) 

from subcloning dsRBM1 into the position initially occupied by dsRBM2. The 

construction of dsRBM2/1 plasmid is the same with that of dsRBM1/1 except for 

using pEGFP-ADAR2-dsRBM2/2 as the template. 

Nucleolin cDNA was amplified by PCR with sense (VU1072) and antisense 

(VU1073) primers using pSport6-nucleolin (Open Biosystems) as a template and 

introduced EcoRI and BglII restriction sites, and were used for subsequent 

subcloning into the pEYFP-C1 vector (Clontech). 

Construction of the GluR-2 (R/G site) mini-gene for transfection analysis was 

made by PCR amplification of mouse genomic DNA with sense (VU1209) and 

antisense (VU1210) primers to introduce HindIII and XbaI restriction sites for the 

subcloning into pRC/CMV2 (Invitrogen). 

 

Cell culture and transfection 

Human embryonic kidney (HEK293) cells and NIH/3T3 mouse fibroblasts 

(American Type Culture Collection) were maintained in AMEM and DMEM (Life 

Technologies, Grand Island, NY), respectively, and supplemented with 10% 

(vol/vol) bovine calf serum (HyClone, Logan, UT). 

HEK293 cells (about 50% confluent in 100mm culture dish) were transiently 

transfected by calcium phosphate coprecipitation with 8 µg of plasmid encoding 
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wild-type or mutant eGFP-ADAR2 fusion proteins and 2 µg of either a mouse 

GluR-2 (R/G site) or rat ADAR2 (-1 site) mini-gene reporter plasmid, as previously 

described (Rueter et al., 1999). For preparing the nuclear extracts used in vitro 

editing assay, 8 µg of plasmid encoding wild-type or mutant eGFP-ADAR2 fusion 

proteins was transfected using similar method. 

For analysis of subnuclear fluorescence of dsRBM point mutation or deletion 

constructs, NIH/3T3 cells were plated on 35 mm glass bottom MatTek dishes 

(MatTek Corp.) and transiently transfected (when 50% confluent) with 1µg of 

plasmids encoding wild-type or mutant eGFP-ADAR2 fusion proteins and 1µg of 

the eYFP-nucleolin plasmid using Fugene 6, according to the manufacturer's 

instruction (Boehringer Mannheim). For eYFP-dsRBM and eGFP-ADAR2 mutants 

with tandem dsRBMs, only 1µg of each plasmid is transiently transfected. 

 

Quantitative fluorescence microscopy 

Twenty-four hours after transfection, the subcelluar localization of eGFP and 

eYFP fusion proteins was determined by multi-spectral confocal microscopy 

(LSM510 Meta, Carl Zeiss Inc); eGFP and eYFP signals were simultaneously 

excited at 488 nm and the total fluorescence emission in the range of 510-628 nm 

was passed through a spectral grating and discriminated with 10.7 nm resolution 

using a multi-anode (multi-channel) array detector. Multi-channel signals for 

eGFP-only and eYFP-only samples were recorded and subsequently used as 

reference "signatures" to apply with a linear unmixing algorithm (Zimmermann et 

al., 2003) for clear discrimination of both fluorophores when mixed in the same 
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specimen. All images were acquired using a 40x/1.3 Plan Neofluar objective lens. 

Average nucleolar eGFP fluorescence intensity (Fn) was defined as the eGFP 

signal overlapping with eYFP-nucleolin and was compared to the average eGFP 

fluorescence intensity from a comparable area of the nucleoplasm (Fo) using the 

Image J image analysis software (http://rsb.info.nih.gov/ij/ ; National Institute of 

Mental Health, Bethesda, Maryland). For eYFP-dsRBM or eGFP-ADAR2 mutants 

with tandem dsRBMs, the eYFP or eGFP fluorescence images were acquired 

using the appropriate filters. The relative positions of nucleolus and nucleoplasm 

were determined based on the cell shape. 

 

Quantitative analysis of editing on transfected ADAR substrates 

Total RNA was isolated from HEK293 cells, 60 hours after transient 

transfection, using TRI Reagent (Molecular Research Center, Inc.). First-strand 

cDNA was synthesized using AMV reverse transcriptase (Promega) with 

minigene-specific primers for ADAR2 -1 site (VU343) and GluR-2 R/G site 

(VU683) using 5 µg of total RNA.  

To quantify the relative expression of ADAR2 mRNA splice variants resulting 

from editing at the -1 site, the ADAR2 cDNA was amplified by PCR with a 

6-carboxyfluorescein (6-FAM) labeled sense primer (VU1201) and a non-labeled 

antisense primer (VU343). Amplicons corresponding to alternatively spliced 

ADAR2 variants were resolved by 2.5% agarose gel electrophesis, and quantified 

by phosphorimager analysis (Amersham Biosciences). 

To quantify the editing on GluR-2 R/G site, the cDNA derived from the 
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mini-gene was PCR amplified by primer set: VU682 and VU683. The amplicons 

were used to was perform a modified primer-extension analysis, as described 

previously (Dawson et al., 2004). 

 

Western blotting analysis 

Crude nuclear extracts were prepared from HEK293 cells, 60 hours after 

transient transfection, as previously described (Schreiber et al., 1989) and diluted 

with dialysis buffer to maintain enzymatic activity (30mM HEPES pH 7.6, 300mM 

NaCl, 10% glycerol, 1mM EDTA, 0.5mM EGTA, 1mM DTT, 1mM PMSF, 2mg/ml 

leupeptin, 0.1% aprotinin) (Rueter et al., 1999). Equivalent volumes for each 

protein sample were resolved by polyacrylamide gel electrophoresis (7.5-12% 

SDS-PAGE) and transferred to a nitrocellulose membrane (Hybond-C Super; 

Amersham Biosciences). The membrane was probed with an affinity-purified 

ADAR2-specific antiserum raised against amino acids 6-66 of the rat ADAR2 

open-reading frame (Sansam et al., 2003), detected with an Alexa Fluor 

680-labeled donkey anti-sheep IgG secondary antibody (0.4ng/ml) and quantified 

using an Odyssey infrared imaging system (LI-COR Biotechnology). 

 

In vitro editing assay 

The plasmids containing the editing substrate minigenes (Burns et al., 1997; 

Dawson et al., 2004; Rueter et al., 1995; Rueter et al., 1999) were linearized with 

restriction eyzymes, followed by in vitro transcription using the Megascript T7 

transcription kit (Ambion) or T3 RNA polymerase (Promega) (Table 3). The 
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template DNA was removed by RQ1 DNase treatment (Promega) and the 

concentration of the resultant RNAs was determined by UV absorbance 

spectrometry at 260 nm. The two strands of D79N dsRNA were transcribed in the 

presence of [α-32P]-ATP individually and hybridized, and the concentration was 

determined by scintillation spectrometry as described previously (Dawson et al., 

2004). 

For preliminary studies (Figure 25), HEK293 nuclear extracts containing the 

wild-type eGFP-ADAR2 fusion protein were variably diluted for a time-course 

study to determine the linear range of enzymatic activity for each RNA substrate. 

100 fmoles of each RNA substrate was incubated with nuclear extracts containing 

equivalent amounts of eGFP-ADAR2 protein at 30o C, in a total volume of 50 µl, 

for varying time periods and the reactions were terminated by freezing on dry ice. 

Subsequent analyses of editing activity for equivalent amounts of wild-type 

and mutant eGFP-ADAR2 fusion proteins were performed in the same system 

using the empirically determined conditions based on the time course study (Table 

3). 

 

Quantitative analysis of in vitro RNA editing activity 

Quantification of editing activity for [α-32P]-labeled D79N dsRNA was 

performed by thin-layer chromatography (Rueter et al., 1995). 20 fmoles of the in 

vitro reaction products for other substrates were RT-PCR amplified and subjected 

to a modified primer-extension analysis, as described previously (Table 3) (Burns 

et al., 1997; Dawson et al., 2004; Feng et al., 2006; Rueter et al., 1995; Rueter et 
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al., 1999). 

Some RT-PCR products were also used for bulk DNA sequencing to inspect 

multiple editing sites on the same transcript, with the template specific primers 

(VU3 for Q/R site, VU183 for D site, VU331 for -1 site).  

 

Results 

 

Differential roles of dsRBMs in nucleolar localization  

Previous analyses of ADAR2 subcellular localization have taken advantage of 

enzymatically active eGFP-ADAR2 fusion proteins to demonstrate rapid shuttling 

between the nucleolus and nucleoplasm, yet deletion of both dsRBMs, or the 

mutation of highly conserved lysine moieties (K127 and K281) in each dsRBM, 

results in the translocation of ADAR2 from the nucleolar to the nucleoplasmic 

compartment (Desterro et al., 2003; Sansam et al., 2003). To further examine the 

role of individual dsRBM in maintaining the steady-state nucleolar localization of 

ADAR2 in living cells, we employed multicolor fluorescence microscopy using a 

series of eGFP-ADAR2 mutants in transfected NIH/3T3 mouse fibroblasts (Figure 

21), along with an eYFP-nucleolin fusion protein that was included to define the 

nucleolar compartment. The relative nucleolar localization of wild-type and mutant 

eGFP-ADAR2 proteins was quantified by measuring the average fluorescence 

intensity of eGFP-ADAR2 that overlapped with the eYFP-nucleolin signal in 

nucleoli (Fn) compared to the average fluorescence intensity of eGFP-ADAR2 

from a corresponding area of the nucleoplasm (Fo). Because eGFP and eYFP 
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eGFP- dsRBM1�

eGFP- dsRBM2�

eGFP-ADAR2

eGFP

dsRBM1 dsRBM2 adenosine
deaminase

NLS

eGFP- dsRBM1/2�

eGFP-K127A

eGFP-K281A

eGFP-K127A,K281A

* *

*

*

1 711

75 149

229 302

75 302

Figure 21. eGFP-ADAR2 fusion constructs for analysis of
subnuclear localization and site-specific RNA editing. A schematic
diagram indicating the domain structures of eGFP, wild-type (eGFP-
ADAR2) and mutant fusion proteins is presented showing deletion or
mutation of the double-stranded RNA-binding motifs (dsRBMs). The
positions of lysine-to-alanine (KA) mutations at positions 127 and 281
are indicated with asterisks and the coordinates for each deletion are
indicated relative to the normal ADAR2 start codon. NLS, nuclear
localization signal.

103



have strongly overlapping emission spectra, we applied a computational spectral 

separation technique to resolve the signals from each fluorophore (Zimmermann 

et al., 2003). Transfection of eGFP alone resulted in a diffuse pattern of 

fluorescence in the cytoplasm and nucleus, with no preferential concentration in 

nucleoli, whereas the pattern of eYFP-nucleolin fluorescence was highly restricted 

to the nucleolar compartment (Figure 22A). The fluorescence pattern for cells 

co-transfected with both eGFP and eYFP-nucleolin was identical to that observed 

when each fluorophore was transfected independently, with little observable bleed 

through between the emission channels for these simultaneously excited 

fluorescent proteins (Figure 22A). 

Transient expression of wild-type eGFP-ADAR2 in NIH/3T3 cells 

demonstrated the previously observed pattern of nucleolar localization (Fn/Fo = 

13.8±2.4), and deletion of both dsRBM domains and the intervening 81 aa linker 

[∆dsRBM1/2 (∆76-301)] produced the expected pattern of diffuse nuclear 

fluorescence (Figure 22A), suggesting that dsRNA-binding was required to 

maintain the steady-state localization of ADAR2 in nucleoli (Desterro et al., 2003; 

Sansam et al., 2003). Expression of a mutant eGFP-ADAR2 fusion protein 

(K127A, K281A) containing substitutions for highly conserved amino acids in the 

loop between the β3 and α2 regions for all dsRBMs (Tian et al., 2004), resulted in 

a diffuse pattern of nuclear fluorescence nearly identical to the pattern observed 

when the region containing both dsRBMs was deleted from the fusion protein 

(Figure 22A). These results further demonstrate that the localization of ADAR2 

depends upon its ability to bind dsRNA, since analogous mutations in PKR and 
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Staufen have been shown to ablate dsRNA binding activity (McMillan et al., 1995; 

Ramos et al., 2000). The expression of eGFP-ADAR2 mutants containing 

independent deletions of dsRBM1 [∆dsRBM1 (∆76-148)] or dsRBM2 [∆dsRBM2 

(∆230-301)] also resulted in reduced nucleolar fluorescence for both fusion 

proteins (Figures 21, 22), indicating that both dsRBMs are essential for the normal 

steady-state localization of ADAR2 in nucleoli. The relative nucleolar fluorescence 

for the ∆dsRBM1 mutant was significantly less than for the fusion protein lacking 

dsRBM2 (p<0.02), suggesting a greater role for dsRBM1 in the subnuclear 

compartmentalization of ADAR2. Further observation that independent 

substitutions of K127 and K281 decreased relative nucleolar fluorescence to the 

same extent (K127A and K281A), yet the magnitude of this effect was less than 

that observed for the dsRBM deletions (Figure 22), suggested that additional 

contacts between the dsRBMs and nucleolar dsRNA target(s) are required for 

normal nucleolar localization. 

Since deletion or even subtle point mutations of ADAR2 dsRBMs could result 

in structural alterations that cause ADAR2 mislocalization, we also examined the 

subcellular localization of eYFP when expressed as a fusion protein with either 

dsRBM1 (aa 74-147) or dsRBM2 (aa 231-301) alone (Figure 23); the precise 

borders for each motif were based upon amino acid sequence homology to other 

dsRBM-containing proteins and the recently resolved NMR structure for these 

domains in ADAR2 (Fierro-Monti and Mathews, 2000; Stefl et al., 2006). Both 

eYFP-dsRBM1 and eYFP-dsRBM2 were localized to the cytoplasm and nucleus, 

presumably due to the absence of a nuclear localization signal and the passive 
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Fn/Fo = 2.7 0.2� Fn/Fo = 1.4 0.1***�

eYFP-dsRBM1

74 147

eYFP-dsRBM2

231 301

Figure 23. Ability of ADAR2 dsRBMs to localize eYFP to the
nucleolus. A schematic diagram indicating the domain structures
of eYFP-dsRBM1 and eYFP-dsRBM2 fusion proteins is presented;
the coordinates of the dsRBM domain are indicated relative to the
normal ADAR2 start codon. A representative micrograph of the
subcellular localization of each fusion protein in NIH/3T3 cells is
shown with corresponding Fn/Fo values (n≥10 cells; mean±SEM;
***, p<0.001)
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diffusion of in these small fusion proteins (~40 kD) through the nuclear pore 

(Suntharalingam and Wente, 2003); however, eYFP-dsRBM1 was localized to 

nucleoli significantly better than eYFP-dsRBM2 (p<0.001; Figure 23), further 

confirming a non-equivalent role for these highly conserved domains in the 

maintenance of ADAR2 nucleolar localization. 

 

Differential roles for dsRBM in site-selective editing 

Given the differential effects that mutation or deletion of dsRBMs have on the 

nucleolar localization of ADAR2, it is unclear to what extent these domains also 

control the site-selective editing of ADAR2 substrates. To further examine the 

roles of individual dsRBMs, we employed a transiently transfected tissue culture 

model system in which a series of eGFP-ADAR2 mutants were assessed for their 

ability to catalyze site-selective A-to-I conversion in two well characterized ADAR2 

targets, the -1 and R/G sites of ADAR2 and GluR-2 transcripts, respectively 

(Dawson et al., 2004; Lomeli et al., 1994; Rueter et al., 1999). HEK293 cells were 

chosen for this analysis as previous studies demonstrated a low level of 

endogenous editing activity in this cell line (Burns et al., 1997; Maas et al., 1996; 

Rueter et al., 1999; Schaub and Keller, 2002). 

 Editing of the -1 site within ADAR2 pre-mRNAs represents a negative 

autoregulatory mechanism by which ADAR2 can modulate its own level of 

expression by generating a proximal 3'-splice site within intron 4 to direct the 

inclusion of an additional 47 nucleotides in the ADAR2 open reading-frame 

(Dawson et al., 2004; Feng et al., 2006; Rueter et al., 1999). As an indirect index 
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of -1 site editing, we quantified the relative abundance of minigne-derived ADAR2 

splice variants, containing (+47) or lacking (-47) this alternatively spliced cassette, 

using an RT-PCR-based strategy with a 6-carboxyfluorescein (6-FAM) labeled 

sense PCR primer (Feng et al., 2006). Cotransfection of eGFP and the minigene 

resulted in sole expression of the -47 RNA isoform, indicative of the absence of -1 

site editing, whereas coexpression of wild-type eGFP-ADAR2 generated the +47 

isoform almost exclusively (Figure 24A). Deletion of dsRBM1 (∆dsRBM1) or 

substitution of the conserved lysine in this domain (K127A) had little effect on the 

extent of editing-dependent alternative splicing, yet deletion of dsRBM2 

(∆dsRBM2) or deletion of both dsRBMs (∆dsRBM1/2) completely ablated use of 

the proximal 3'-splice site. These results indicate that dsRBM1 is not required, 

while dsRBM2 is critical, for site-specific editing at the -1 site of ADAR2 

pre-mRNA transcripts. Further substitution of a conserved lysine in dsRBM2 

(K281A) or conserved lysines in both dsRBMs (K127A,K281A), reduced the 

extent of alternative splicing by 44-61%, indicating K281 contributes only partially 

to dsRBM2-dependent editing at the -1 site (Figure 24A). Similar analyses, using 

a minigene derived from the GluR-2 transcript, demonstrated that while deletion of 

dsRBM1 (∆dsRBM1) caused a 19% decrease in R/G site editing (p<0.01), 

deletion of dsRBM2 resulted in a 57% reduction of ADAR2 activity (p<0.001) 

(Figure 24B). These results were quite distinct from those observed for the -1 site, 

where dsRBM1 was completely dispensable and dsRBM2 was essential for A-to-I 

conversion (Figure 24A), demonstrating the differential roles that these dsRBMs 

play in the editing of specific sites. 
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Substrate-specific contributions from each dsRBM 

While preliminary transfection studies provided insights into distinct roles for 

ADAR2 dsRBMs in defining substrate-specific A-to-I conversion, this model 

system has a number of disadvantages for comparing the relative activities of 

different eGFP-ADAR2 mutants. These disadvantages include differences in the 

levels of expression for transfected fusion proteins and minigene-derived RNA 

substrates and the fact that such cellular RNA processing events do not 

necessarily occur in the linear range for ADAR2 enzymatic activity. In addition, 

previous studies have demonstrated that A-to-I conversion takes place in the 

nucleoplasm (Desterro et al., 2003; Raitskin et al., 2001; Rueter et al., 1999; 

Sansam et al., 2003) and that translocation of ADAR2 to the nucleoplasm results 

in increased editing activity (Sansam et al., 2003), making comparisons of editing 

activity for mutations that simultaneously affect subnuclear accumulation and 

site-specific editing difficult to interpret. 

 To circumvent these problems, we employed an in vitro editing system using 

crude nuclear extracts from HEK293 cells transiently transfected with different 

eGFP-ADAR2 mutants. The relative protein level for wild-type and mutant 

eGFP-ADAR2 proteins in HEK293 nuclear extracts was determined by 

quantitative Western blotting analysis using an affinity-purified antiserum directed 

against amino acids 6-66 of wild-type ADAR2 (Figure 25) (Dawson et al., 2004; 

Sansam et al., 2003), and all proteins were diluted to achieve the same final 

concentration in the in vitro editing reaction. A band corresponding to the 

expected molecular weight for each eGFP-ADAR2 protein was observed, along 

111



e
G

F
P

-A
D

A
R

2

�
dsR

B
M

1 �
dsR

B
M

2

A
D

A
R

2

�
dsR

B
M

1/2

K
127A
K

281A
K

127A
,K

281A

re
la

ti
v
e

e
x
p

re
s
s
io

n
le

v
e

l:
1

.0
0

0
.9

0
0

.7
5

0
.6

4
1

.2
4

0
.9

7
1

.2
9

*
*

*
*

*
*

F
ig

u
re

2
5

.
Q

u
a

n
ti

fi
c

a
ti

o
n

o
f

w
il

d
-t

y
p

e
a

n
d

m
u

ta
n

t
e

G
F

P
-A

D
A

R
2

p
ro

te
in

le
v

e
ls

in
H

E
K

2
9

3
n

u
c

le
a

r
e

x
tr

a
c

ts
.

A
re

p
re

s
e

n
ta

ti
v
e

W
e

s
te

rn
b

lo
t

is
p

re
s
e

n
te

d
fo

r
q

u
a

n
ti

ta
ti

v
e

a
n

a
ly

s
is

o
f

e
G

F
P

-A
D

A
R

2
fu

s
io

n
p

ro
te

in
le

v
e

ls
;

p
a

rt
ia

ll
y

d
e

g
ra

d
e

d
p

ro
te

in
fr

a
g

m
e

n
ts

a
re

in
d

ic
a

te
d

w
it

h
a

n
a

s
te

ri
s
k
.

A
d

e
te

rm
in

a
ti

o
n

o
f

re
la

ti
v
e

p
ro

te
in

e
x
p

re
s
s
io

n
in

e
a

c
h

n
u

c
le

a
r

e
x
tr

a
c
t

w
a

s
p

e
rf

o
rm

e
d

in
tr

ip
li
c
a

te
a

n
d

n
o

rm
a

li
z
e

d
to

th
e

e
x
p

re
s
s
io

n
le

v
e

l
fo

r
w

il
d

-t
y
p

e
e

G
F

P
-A

D
A

R
2

.

112



with a minor band representing a stable degradation product (Figure 25), and no 

signal was seen for mock-transfected HEK293 cells. In addition to the RNA 

substrates previously used for transfection studies (Figure 24), the in vitro 

analyses also took advantage of a variety of ADAR2 substrates that are distinct at 

the level of both nucleotide sequence and predicted RNA secondary structure 

(Dawson et al., 2004), including RNA targets containing the D-site of 5-HT2CR 

transcripts (Burns et al., 1997), the Q/R site of GluR-2 RNAs (Higuchi et al., 1993; 

Sommer et al., 1991) and a perfect, synthetic dsRNA (D79N) derived from a 

portion of the α2A adrenergic receptor (Burns et al., 1997; Lakhlani et al., 1997). 

For each RNA editing substrate (100 fmoles), the amount of the eGFP-ADAR2 

protein and the duration of the reaction were empirically determined to assure that 

all of the editing reactions were performed in the linear range of the assay (Figure 

26). The extent of total inosine production for the perfect dsRNA was determined 

by thin-layer chromatography (Rueter et al., 1995) and site-specific editing of the 

remaining ADAR2 substrates was quantified using a modified primer-extension 

analysis (Dawson et al., 2004; Feng et al., 2006; Sansam et al., 2003). 

 Using crude nuclear extracts from mock-transfected HEK293 cells, only 

background levels of editing were observed for any of the RNA substrates (Figure 

27), consistent with previous observations regarding the low level of endogenous 

editing activity in this cell line (Burns et al., 1997; Maas et al., 1996; Rueter et al., 

1999; Schaub and Keller, 2002). Deletion of the region containing both dsRBM 

domains and the intervening linker (∆dsRBM1/2) reduced editing in all RNA 

targets to near background levels, as did deletion of dsRBM2 alone (∆dsRBM2), 
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demonstrating that dsRBM2 is essential for the editing of perfect dsRNAs as well 

as naturally occurring ADAR2 substrates containing imperfect inverted repeats. 

Interestingly, deletion of dsRBM1 (∆dsRBM1) decreased editing in a 

substrate-dependent fashion, as the extent of editing for GluR-2 (Q/R site) and 

5-HT2CR (D-site) transcripts was less than 10% of that observed for wild-type 

eGFP-ADAR2 (Figure 27, 28), whereas editing of the remaining ADAR2 

substrates was variably reduced by 30 to 70% (Figure 27, 28). These results not 

only show that the dsRBMs of ADAR2 are required for editing activity, but also 

demonstrate that the dependence upon dsRBM1 varies in a substrate-specific 

manner. 

 

Substrate-specific contributions from K281 

 Independent (K127A and K281A) or simultaneous (K127A, K281A) lysine 

substitutions also demonstrated differential effects on the various ADAR2 targets 

with the K281A mutation causing a modest decrease (13-25%) in the extent of 

editing for the perfect dsRNA (D79N) and the GluR-2 (R/G) transcript, while 

editing efficiency for the GluR-2 (Q/R), 5-HT2CR (D) and ADAR2 (-1) sites was 

reduced by greater than 85% (Figure 27, 29B). The observation that dsRBM2 was 

critical for efficient editing of all targets examined, yet only a subset of these 

substrates was affected by the K281A mutation, demonstrates the differential role 

that specific amino acid residues in dsRBM2 play in site-specific adenosine 

deamination. By contrast with the substrate-dependent effect seen in K281A, the 

K127A mutation produced a minimal decrease in editing for all RNAs examined 

116



%
w

il
d

-t
y
p

e
A

D
A

R
2

a
c
ti

v
it

y

60

80

40

20

100

0

�dsRBM1 �dsRBM2 �dsRBM1/2

dsRNA (D79N)

GluR-2 (Q/R)

GluR-2 (R/G)

5-HT R (D)2C

ADAR2 (-1)

Figure 28. Quantitative analysis of dsRBM1 and dsRBM2
contributions to site-specific editing activity. For each substrate
the relative activity is shown by normalizing mutant editing activity to
the wi ldtype eGFP-ADAR2 edi t ing act iv i ty af ter background
subtraction. (mean±SEM; n≥3)

117



Figure 29. Quantitative analysis of K and K contributions to
site-specific editing activity.

,
-

127 281

(A) The positions of K and K
dsRBM1 and dsRBM2 are shown. (B) For each RNA

substrate the relative activity for ADAR2 mutants is shown by
normalizing mutant editing activity to the wild type eGFP-ADAR2 value
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127 281
within

the structures of

±SEM; n≥3).
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(Figure 29). As K127 and K281 share the same relative position in each dsRBM 

(Figure 29A), these results further demonstrate the differential role of each 

dsRBM in site-specific A-to-I editing. 

 

Function-dependent interchangeability of ADAR2 dsRBMs 

The contribution of dsRBM1 to the site-selective editing of ADAR2 appears to 

be substrate-dependent, while dsRBM2 is critical for enzymatic activity with all 

substrates examined (Figure 28), despite the high degree of conservation at both 

the levels of amino acid sequence and protein structure (Tian et al., 2004). This 

functional inequality between dsRBM1 and dsRBM2 could result from subtle 

sequence or structural differences affecting RNA-protein interactions or the 

relative position of each motif in the ADAR2 protein. To determine if the unique 

properties of each dsRBM regarding site-specific editing and nucleolar 

localization are a function of their relative position, three additional eGFP-ADAR2 

mutants (Figure 30A, 31A) containing tandem copies of either dsRBM1 

(dsRBM1/1) or dsRBM2 (dsRBM2/2), or a mutant in which the positions of the 

dsRBMs were interchanged (dsRBM2/1), were used for in vitro editing analysis of 

the same five ADAR2 substrates. To assess the level of mutant eGFP-ADAR2 

expression in crude nuclear extracts from HEK293 cells, quantitative Western 

blotting analysis was performed (as in Figure 26) to adjust the enzyme input to 

equivalent levels for the in vitro reaction (Figure 30B). If the properties of each 

dsRBM are dependent simply upon its relative position, replacement of either 

dsRBM with the alternate motif should maintain wild-type editing activity, yet such 
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replacement mutations significantly reduced site-specific A-to-I conversion (Figure 

30). Replacement of dsRBM2 with dsRBM1 (dsRBM1/1) resulted in a near com-

plete loss of editing for all substrates examined, providing a pattern of activity that 

was quite similar to the dsRBM2 deletion mutant (∆dsRBM2). Similarly, 

replacement of dsRBM1 with dsRBM2 (dsRBM2/2) resulted in a pattern of editing 

that was nearly identical to protein lacking dsRBM1 (∆dsRBM1), suggesting that 

replacement of either RNA-binding motif was no better than deleting the domain. 

Consistent with these findings, an eGFP-ADAR2 mutant in which the positions of 

the dsRBMs were interchanged (dsRBM 2/1) also had negligible editing activity 

with any of the RNA substrates tested (Figure 29C). These results demonstrate 

that the differential properties of dsRBM1 and dsRBM2 to site-selective editing 

are related to their unique sequences/structures rather than their relative positions 

within ADAR2. 

To assess whether alterations in the identities of the dsRBMs also affected 

nucleolar accumulation of ADAR2, we used confocal microscopy to compare 

fluorescence intensity in nucleoli and the nucleoplasm (as in Figure 22) of 

wild-type eGFP-ADAR2 and the corresponding dsRBM1/1, dsRBM2/2 and 

dsRBM2/1 mutants. Although transposition or replacement of the dsRBMs 

significantly reduced site-specific editing on naturally-occurring ADAR2 substrates 

(Figure 30C, 31C), such changes had little effect on the extent of nucleolar 

localization (Figure 31B), suggesting that the precise nature of the dsRBM-RNA 

interactions associated with editing and localization were distinct. 
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Discussion 

The recognition of double-stranded RNA is a key event for a variety of 

biological processes including the production of small interfering RNAs and 

microRNAs from hairpin precursors (Sontheimer and Carthew, 2005), the 

interferon-mediated antiviral response (Williams, 2001), and the deamination of 

specific adenosine moieties as a consequence of RNA editing (Bass, 2002; 

Emeson and Singh, 2001). A majority of the proteins involved in the recognition of 

duplex RNA contain multiple copies of a highly conserved 65-75 aa 

double-stranded RNA-binding motif, providing a molecular mechanism to facilitate 

the interaction of these proteins with their dsRNA targets (Carlson et al., 2003; 

Doyle and Jantsch, 2002; Fierro-Monti and Mathews, 2000; Tian et al., 2004). 

ADAR2 is a double-stranded RNA-specific adenosine deaminase that also 

contains two tandem copies of this highly conserved motif (Tian et al., 2004). To 

determine whether these highly similar dsRBMs play equivalent roles in the 

nucleolar localization of ADAR2 and their ability to promote the deamination of 

selective adenosine residues, we have examined the subcellular localization of a 

series of wild-type and mutant eGFP-ADAR2 fusion proteins and their ability to 

catalyze site-specific editing events on multiple ADAR2 substrates. Results from 

these analyses have demonstrated a functional inequality between the two highly 

conserved dsRBMs, where dsRBM1 tends to play a greater role in localizing 

ADAR2 to the nucleolus and dsRBM2 is critical for the editing of ADAR2 targets. 

The relative nucleolar localization of ADAR2 seems to depend primarily upon the 

number of functional dsRBMs present, while site-specific A-to-I conversion is also 
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strongly affected by the nature and the organization of the dsRBMs, indicating that 

each dsRBM possesses an intrinsic ability to recognize specific determinants in 

duplex RNAs. In addition, the contributions of dsRBM1 and K281 to editing activity 

are substrate-dependent, consistent with previous findings that dsRBMs can 

specifically recognize distinct structural determinants on naturally-occurring 

ADAR2 targets (Stefl et al., 2006; Stephens et al., 2004). 

 

dsRBMs and ADAR2 substrate specificity 

ADAR2 has been shown to bind to perfect dsRNA regions and catalyze 

non-specific editing duplexes (Cho et al., 2003; Dawson et al., 2004; Lehmann 

and Bass, 2000; Liu et al., 1999), bind to specific editing sites (Ohman et al., 2000; 

Stefl et al., 2006; Stephens et al., 2004), or bind to other duplex regions with no 

productive A-to-I conversion (Klaue et al., 2003). All of these binding events 

contribute to macroscopic measurements of ADAR2 affinity for an RNA substrate 

but they do not necessarily contribute to specific editing (Klaue et al., 2003), 

thereby uncoupling binding affinity from site-selective editing. Consistent with 

these observations, previous studies have demonstrated that a mutation in 

dsRBM1 (K127A) decreased binding affinity to a GluR-2 (R/G site) substrate 

(Macbeth et al., 2004), yet this mutation had no effect on editing of the R/G site 

(Figure 29). Given the disparity between site-specific editing and dsRBM binding, 

we focused on dsRBM-RNA interactions related to site-selective editing, rather 

than ADAR2-substrate affinity, using both deletion and substitution analyses to 

compare the role(s) that each dsRBM plays in the editing of multiple ADAR2 
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substrates. While deletion analysis represents a common strategy for defining the 

functional relevance of specific domains within a protein, a caveat to this 

approach is the potential for mutant protein misfolding which can complicate 

interpretation of experimental results. To minimize this possibility, we defined each 

dsRBM deletion based upon the recently solved NMR structure of these domains 

in ADAR2 (Stefl et al., 2006). Previous analyses of the deaminase domain and 

individual dsRBMs have demonstrated that these regions can fold independently 

from one another (Macbeth et al., 2005; Stefl et al., 2006), arguing against the 

potential for broad alterations in ADAR2 protein topology resulting from the 

deletion of individual domains. Further evidence in support of this idea is the fact 

that nucleolar localization (Figure 22) and editing of the GluR-2 transcripts (R/G 

site) are only reduced by ~50% for the dsRBM2 mutant in transfected cells (Figure 

24B). Similarly, the extent of editing for the dsRBM1 mutant protein is reduced in a 

substrate-dependent fashion (Figure 28), demonstrating that deletion of this 

domain does not simply alter structure to generate a non-functional protein. 

 Previous observations that dsRBMs bind to perfect dsRNA, in a 

sequence-independent manner (Blaszczyk et al., 2004; Ramos et al., 2000; Ryter 

and Schultz, 1998), have suggested that the dsRBMs of ADAR2 may recognize 

their RNA targets in a similar fashion. Consistent with this idea, ADAR2 has been 

shown to non-specifically deaminate adenosine moieties in a wide range of 

synthetic RNA duplexes (Cho et al., 2003; Dawson et al., 2004; Lehmann and 

Bass, 2000; Liu et al., 1999). However, the substrate-specific contribution of 

dsRBM1 to editing activity (Figure 28) not only indicates that this motif makes 
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specific contacts with imperfect dsRNA targets, but also suggests that each 

dsRBM can interact with different structural determinants on each 

naturally-occurring substrate. Further support for this model of ADAR2-RNA inter-

action has been provided by recent biochemical and NMR analyses 

demonstrating that both dsRBM1 and dsRBM2 can bind to unique structural 

determinants in different RNA targets encoding either the R/G or Q/R sites of 

GluR-2 transcripts (Stefl et al., 2006; Stephens et al., 2004). 

 How can the same dsRBMs in ADAR2 specifically recognize distinct 

sequence/structural determinants in multiple RNAs? Deletion analyses have 

demonstrated that dsRBM2 is critical for the editing of all RNA substrates 

examined, yet substitution (K281A) of a highly conserved lysine residue that 

resides on the RNA-binding surface of dsRBM2 only affects editing activity on a 

subset of these transcripts (Figure 28, 29). Using a substrate containing the Q/R 

site, the K281A mutation reduced editing to background levels, suggesting that 

K281 is a key residue mediating dsRBM2-RNA interactions. By contrast, the same 

mutation had little effect on editing of the R/G site (Figure 29), indicating that 

dsRBM2 may utilize distinct amino acid residues to contact different RNA targets. 

The lack of universal importance for K281 has been further confirmed by NMR 

analysis where no chemical shift change in this residue was observed upon 

binding of a GluR-2 transcript containing the R/G site. If the ability of dsRBMs to 

utilize unique complements of amino acids to make specific RNA contacts is 

ubiquitous, this represents a powerful mechanism by which to achieve 

site-selective recognition for a broad range of potential targets. Although we 
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cannot eliminate other possible interpretations, such as K281A-mediated 

structural alterations that affect binding in a substrate-specific manner, this 

possibility is unlikely since the corresponding lysines in other dsRBMs have been 

shown to make direct contact with dsRNA (Ramos et al., 2000; Ryter and Schultz, 

1998) and that analogous mutations in PKR and Staufen ablated dsRNA binding 

(McMillan et al., 1995; Ramos et al., 2000). 

 The distinct effects observed for the deletion of dsRBM1 and dsRBM2 on 

editing activity (Figure 28) could result from the precise sequence/structure of 

each domain or their relative location within the ADAR2 protein. Replacement of 

dsRBM2 with dsRBM1 (dsRBM1/1) resulted in a near complete loss of editing for 

all substrates examined (Figure 6C), providing a pattern of activity that was quite 

similar to the dsRBM2 deletion mutant (∆dsRBM2). Similarly, replacement of 

dsRBM1 with dsRBM2 (dsRBM2/2) resulted in a pattern of editing that was nearly 

identical to protein lacking dsRBM1 (∆dsRBM1), indicating that functional 

differences in editing activity come from subtle sequence/structure difference 

between these motifs. The lack of interchangeability between these domains 

further suggests that the unique binding preferences of each dsRBM contribute to 

site-selective editing activity. 

 

dsRBMs and nucleolar localization 

 The steady-state accumulation of ADAR2 in nucleoli has been suggested to 

represent a regulatory mechanism by which to modulate editing activity at its site 

of action in the nucleoplasm (Desterro et al., 2003; Sansam et al., 2003). The 
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nucleolar localization of ADAR2 is dependent upon its dsRBMs and the presence 

of rRNA, suggesting that ADAR2 is targeted to the nucleolus by directly binding 

extended duplex regions in mature or pre-rRNA transcripts (Sansam et al., 2003). 

Several other dsRBM-containing proteins including ADAR1, PKR, Staufen, RNA 

helicase A, RNA helicase II/Gu and NF-kappaB repressing factor (NRF) have also 

been shown to accumulate in nucleoli (Desterro et al., 2003; Macchi et al., 2004; 

Niedick et al., 2004; Tian and Mathews, 2001; Valdez et al., 2002; Zhang et al., 

2004b), suggesting that dsRBM-mediated binding may serve as a general 

mechanism for nucleolar localization. Observations that deletion or mutation of 

either dsRBM can significantly affect the extent of nucleolar targeting (Figure 22) 

suggest that either both motifs are required for binding to specific dsRNA target(s) 

or that each motif binds to duplex RNAs that represent only a subset of the total 

nucleolar ADAR2 binding sites. Unlike the significant reductions in editing activity 

observed by replacement or interchange of the dsRBMs, such modifications had 

little effect on ADAR2 subnuclear localization (Figure 31B), suggesting that the 

nucleolar localization of ADAR2 results from a general dsRNA-binding activity for 

one or multiple nucleolar targets rather than the specific interactions required for 

site-selective adenosine deamination. 

 

The inequality of dsRBMs 

 The lack of obvious sequence requirements for the binding of 

dsRBM-containing proteins led to the initial conclusion that these motifs only 

confer general dsRNA-binding affinity with little sequence preference, yet most of 
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the data regarding this hypothesis focused upon model RNA substrates that 

contained a perfect RNA duplex (Blaszczyk et al., 2004; Ramos et al., 2000; Ryter 

and Schultz, 1998). By contrast, more recent studies using naturally-occurring 

dsRNAs, formed by intramolecular base-pairing between imperfect, inverted 

repeats, have indicated that dsRBMs have unique functional properties based 

upon intrinsic binding preferences and affinities (Spanggord et al., 2002; Stefl et 

al., 2006; Stephens et al., 2004). While the common features of the dsRBMs 

provide them with a general ability to interact with extended RNA duplexes, the 

subtle differences in amino acid sequence and structure between these domains 

also allow individual motifs to play diverse, substrate-specific roles that ultimately 

define the function(s) of their parent proteins. 

129



CHAPTER V 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Adenosine to inosine RNA editing is the most widespread RNA modification 

identified in animals. A-to-I editing has been shown to alter coding potential of the 

targeted RNA transcripts, generating protein isoforms with different functional 

properties, including GluR subunits, 5-HT2CR, Kv1.1 and Drosophila dADAR 

(Burns et al., 1997; Hoopengardner et al., 2003; Keegan et al., 2005; Lomeli et al., 

1994; Sommer et al., 1991). In addition, A-to-I conversion has also been 

demonstrated to change the splicing pattern of pre-mRNAs encoding ADAR2 and 

a non-receptor protein tyrosine phosphatase (Beghini et al., 2000; Rueter et al., 

1999). Moreover, the studies from C. elegans and mammals have indicated that 

A-to-I editing may also intersect with the RNAi pathway and modulate microRNA 

biogenesis (Tonkin and Bass, 2003; Yang et al., 2006; Yang et al., 2005). Recent 

systematic screening for novel A-to-I editing events revealed that a majority of 

editing events occur within non-coding regions of RNA transcripts in humans, 

mice and chickens (Blow et al., 2004; Levanon et al., 2004; Levanon et al., 2005). 

Previous studies have demonstrated that hyper-edited RNA may be selectively 

retained in the nucleus in mammalian cells and subsequently degraded by an 

inosine-specific ribonuclease (Kumar and Carmichael, 1997; Scadden and 

O'Connell, 2005; Scadden and Smith, 2001), suggesting that the extensive A-to-I 

RNA editing found in UTRs may be involved in controlling the stability and 
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localization of the edited transcripts. 

A-to-I RNA editing is catalyzed by a family of ADARs (Bass et al., 1997). All 

ADARs contains one to three copies of dsRBMs in the N-terminal region and one 

conserved deaminase domain at the C-terminus. The structures of dsRBMs and 

deaminase domain of ADAR2 have been recently solved (Macbeth et al., 2005; 

Stefl et al., 2006), providing more insight into the catalytic mechanism and 

substrate specificity of ADARs. Unexpectedly, an IP6 molecule is found buried in 

the core of the deaminase domain and is necessary for the enzymatic activity 

(Macbeth et al., 2005). However, why the IP6 binding residues are only conserved 

in ADARs, but not ADATs, and whether IP6 plays a regulatory role in modulating 

ADAR cellular activity remains unknown. 

Although the functional consequences of A-to-I RNA editing have been 

extensively studied, the molecular mechanisms of ADAR substrate specificity are 

poorly understood. Because dsRBMs exhibit sequence-independent interactions 

with A-form dsRNA, it is postulated that dsRBMs in ADARs are only used to 

increase the affinity to the substrate RNA duplexes and do not contribute to the 

substrate specificity. However, recent biochemical study suggested that dsRBMs 

of ADAR2 bind specifically to GluR-2 Q/R site RNA (Stephens et al., 2004). Later, 

ADAR2 dsRBMs were demonstrated to bind also specifically to GluR-2 R/G site 

RNA by a structural study (Stefl et al., 2006). Although both studies emphases 

that dsRBMs can specifically bind to ADAR2 substrates and contribute to the 

specificity, there is a discrepancy of which determinant dsRBM recognize on the 

substrates. For example, on the Q/R site RNA, the dsRBM1 binds near the 
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adenosine of an A-C mismatch (Figure 7), but on R/G site RNA, the same motif 

recognizes the structurally conserved pentaloop (Figure 18). This recognition 

discrepancy is supported by the observation that dsRBM1 displayed 

substrate-dependent contribution to the editing activity (Figure 28), where the 

deletion of dsRBM1 decreased the Q/R editing by 50-fold and decreased R/G 

editing by only 3-fold. We reason that interactions with different determinants by 

dsRBM1 provide ADAR2 differential affinity to the substrates and hence facilitate 

the editing to different extents. Then how can the same motif recognized totally 

different determinants on RNA? The dsRBM2 is required for the editing activity on 

all substrates, however, mutation of K281 to alanine causes 10-fold decrease in 

Q/R site editing but has almost no effect on R/G site editing (Figure 30). It seems 

possible that dsRBM2 uses one set of amino acids, including K281, to contact the 

determinant on Q/R site and uses another set of residues that do not include K281 

to contact the determinant on R/G site. The differential usage of amino acids 

should provide dsRBM the capability to specifically recognize multiple 

determinants. An emerging view on ADAR substrate specificity is that dsRBMs 

specifically recognize all natural substrates, and through the alternative usage of 

different residues the dsRBM binds to different determinants on each substrate. 

 

Potential rRNA editing by ADARs 

The nucleolus is the site of rRNA transcription and processing. The initial 

transcript, 45S pre-rRNA, contains 5.8S, 18S and 28S rRNAs, which represent 

important components of the ribosome that are critical for protein translation. In 
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addition, pre-rRNA contains two external transcribed spacers (5’-ETS and 3’-ETS) 

and two internal transcribed spacers (ITS-1 and ITS-2), that are known to play an 

important role in pre-rRNA processing. The relative nucleolar concentration of 

ADAR2 in NIH/3T3 cells is 14 times higher than in the nucleoplasm. Given the 

high levels of ADAR2 in the nucleolus, it is conceivable that ADAR2 can bind to 

pre-rRNA and catalyze the deamination of specific adenosines in pre-rRNA 

transcripts. 

ADAR2 is thought to maintain its nucleolar localization by the interaction 

between dsRBMs and rRNA precursors (Sansam et al., 2003). Using two 

complementary methods, we demonstrated that dsRBM1 is more important in 

maintaining the nucleolar localization of ADAR2 at steady-state. One possibility is 

that there are multiple binding sites, some for dsRBM1 and some for dsRBM2, but 

the average binding affinity of dsRBM1 is greater. Another possibility, which is 

more intriguing, is that there are one or several specific binding sites on pre-rRNA 

and that specific dsRBM1 binding provides more affinity than dsRBM2-specific 

binding. When the positions of dsRBM1 and dsRBM2 were interchanged, 

however, the Fn/Fo value had only a small decrease (Figure 31B), suggesting that 

overall affinity, rather than site-specific binding was responsible for nucleolar 

localization. In this case, it is unlikely that pre-rRNAs will be selectively modified 

by A-to-I conversion, unless the presence of a change in the Fn/Fo ratio upon 

dsRBM transposition represents a small percentage of ADAR2 protein involved in 

site-selective binding. 
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Proposed model for ADAR substrate recognition 

While the effect of the dsRBM1 deletion on ADAR2 editing activity is highly 

substrate-dependent, the deletion of dsRBM2 ablated editing activity on all five 

substrates tested (Figure 28). Similar analyses of ADAR1 suggested that dsRBM3 

is critical for editing activity on multiple substrates, whereas the other two dsRBMs 

plays less important roles (Lai et al., 1995; Liu et al., 1999; Liu and Samuel, 1996; 

Liu and Samuel, 1999). The critical importance of the dsRBM immediately 

adjacent to the deaminase domain indicates that there may be a common 

mechanism for ADAR substrate recognition. 

ADARs can convert up to 50% of the adenosines to inosine in synthetic, 

long dsRNAs until the duplex structure is sufficiently disrupted by the formation of 

unstable I-U base pairs (Bass and Weintraub, 1988; Lehmann and Bass, 2000), 

indicating that the deaminase domain lacks specificity. The 5’- and 3’- nearest 

neighbor preference for the ADARs (Lehmann and Bass, 2000), is likely to be 

derived from the deaminase domain per se because the nucleotides next to the 

editing site can strongly affect the ability of the targeted adenosine moiety to flip 

out of the RNA duplex and fit into the active site. Although the deaminase domain 

is very active, it lacks the ability to efficiently bind to the double-stranded RNA 

substrates (Figure 28). Therefore, the motif targeting the deaminase domain to 

the substrates plays a critical role in defining substrate specificity. 

dsRBMs of ADARs can bind to perfect dsRNA with high affinity (Kim et al., 

1994a; Ohman et al., 2000). However, work from several laboratories has shown 

that the ADAR2 dsRBMs bind specifically on naturally-occurring imperfect dsRNA 
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substrates (Stefl et al., 2006; Stephens et al., 2004). So the dsRBM has the ability 

to target other domains to the certain region on a natural RNA substrate or any 

position of a perfect dsRNA. 

In ADAR2, dsRBM2 and deaminase domain are connected by a relatively 

short (20aa), protease-inaccessible linker (Macbeth et al., 2004), indicating these 

two domains are physically restricted and dsRBM2 is likely to serve as the 

targeting motif for the deaminase domain. The binding of dsRBM2 to the RNA will 

presumably bring the enzymatically active deaminase domain to the RNA 

substrate, allowing the catalytic site to perform the deamination reaction on any 

feasible adenosine. In contrast, dsRBM1 and dsRBM2 are connected by a long 

and flexible linker (>83aa), which is protease sensitive and not visible in NMR 

structure (Macbeth et al., 2004; Stefl et al., 2006). Therefore, the dsRBM1-RNA 

interaction will not strictly restrain the location of dsRBM2 and the deaminase 

domain and will therefore contribute less to enzyme specificity. Taken together, we 

hypothesize that dsRBM1-specific binding increases the chances of 

dsRBM2-specific binding through the 83aa linker. As soon as dsRBM2 binds to 

the RNA, the deaminase domain will be targeted near the dsRBM2 binding site, 

and a local movement defined by the 20aa linker will allow the editing of all 

feasible adenosines (Figure 32A). 

In this model, the dsRBM closest to the deaminase domain (core dsRBM: 

dsRBM3 for ADAR1 and dsRBM2 for ADAR2) defines the substrate specificity by 

physical restraining the deaminase domain. In agreement with this hypothesis, 

the loss of dsRBM2 ablated ADAR2 editing on all substrates tested due to the fact 
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that the 100aa linker between dsRBM1 and the deaminase domain was not 

structurally adequate to position the deaminase domain on the RNA (Figure 32C). 

The requirement for dsRBM3 for ADAR1 activity can be explained by the same 

rationale (Lai et al., 1995; Liu and Samuel, 1996), and is further supported by the 

fact that ADAR1, containing only dsRBM3 and deaminase domain, still retains the 

editing selectivity (Maas et al., 1996). 

In this model, the length of the linker between the core dsRBM and 

deaminase domain is critical. If the linker is too short, then it prevents accessibility 

of the active site to any adenosines on RNA. If the linker is too long, then it will not 

sufficiently restrain the deaminase domain on the RNA, which can lead to a loss of 

editing activity and specificity. ADAR3 shares 50% amino acid identity with 

ADAR2, and the sequences of the dsRBMs and deaminase domain are highly 

conserved. However, ADAR3 failed to show activity on any known substrates or a 

perfect RNA duplex. One possibility is that, ADAR3 has only a 14aa linker which 

prevents the active site to contact any adenosines. A chimera protein, ADAR3-2, 

which has a 20aa linker, recovers some of the editing activity, while ADAR2-3, 

which has 14aa linker is still inactive (Melcher et al., 1996a). Naturally occurring 

ADAR1 splice variants, which differ in the length of the linker between dsRBM3 

and the deaminase domain, displayed different editing specificity (Liu et al., 1999; 

Liu et al., 1997; Liu et al., 2000), further supporting the importance of the linker 

length. 

When the core dsRBM binds to a specific site on a naturally occurring RNA, 

the deaminase domain can move locally to make contact with all the adenosines 
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within the range defined by the linker. This is further supported by the fact that the 

editing sites are always found in cluster and most of them are not functionally 

important (Burns et al., 1997; Dawson et al., 2004; Levanon et al., 2004; Maas et 

al., 1996; Rueter et al., 1999; Yang et al., 2006). More interestingly, there are two 

editing sites on the opposite side of the duplex in ADAR2 pre-mRNA and 

mutations affecting the editing on one site always have the same effect on editing 

of the other site (Dawson et al., 2004), suggesting these two editing events result 

from the same dsRBM2-RNA interaction. There is a possibility that some 

adenosines within the range, defined by dsRBM2 and the linker, cannot be edited 

because the local RNA structure/sequence does not allow the adenosine to flip 

out and fit into the active site of the deaminase domain (Hart et al., 2005). 

In this model, the function of other dsRBMs is to target ADARs to the 

transcripts which are going to be edited and increase the chance of specific 

binding of the core dsRBM. In ADAR2, dsRBM1 will bind to different determinants 

on each RNA substrate, and the strength of these interactions is likely to be 

substrate-dependent. For Q/R site, this interaction maybe is very strong, which 

can increase dsRBM2 binding by 50 times, for R/G site, this interaction is 

relatively weak, which only increase dsRBM2 binding by 3-fold. These scenarios 

would explain the substrate-dependent contribution of dsRBM1. Because 

dsRBM2 mainly defines the specificity, for some substrates, even without 

dsRBM1, ADAR2 still can direct significant editing (Figure 32B). 

The proposed model is consistent with most of the published data, but its 

validity needs to be specifically addressed. To test the importance of the linker 
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length between dsRBM2 and deaminase domain in ADAR2 editing specificity, 

further studies might involve a series of ADAR2 mutant proteins in which the 

length of the linker between dsRBM2 and deaminase domain varied. Each 

construct can be transfected into HEK293 cells and the nuclear extracts prepared 

from transfected cells can be used as the protein resource for in vitro editing 

analysis. An in vitro transcribed RNA substrate can then be incubated with 

wild-type or mutant ADAR2 proteins, and the resultant RNA can be sequenced to 

detect A-to-I RNA editing on multiple sites. If the working model is correct, when 

the linker is shortened, the deaminase domain will be anchored closer to the 

dsRBM2 binding site and may catalyze adenosine deamination closer to the 

binding site; when the linker length is increased, however, the deaminase domain 

may be allowed to reach more adenosines and may edit adenosines that are 

relatively far from the dsRBM2 binding site. If an increase or decrease in linker 

length generates new editing sites in close proximity to the original editing site, the 

result would suggest that dsRBM2 anchors the deaminase domain and the linker 

between dsRBM2 and deaminase domain contributes to site-selective A-to-I 

conversion. 

To illustrate the role of linker length between dsRBM1 and dsRBM2, a series 

of mutant ADAR2 protein with a varied linker length between the dsRBMs can be 

made. If our working model is correct, dsRBM1 and dsRBM2 will recognize 

different structural determinants on each RNA substrate, hence the linker length 

required to achieve both dsRBM-RNA interactions is likely to be 

substrate-dependent. For example, on a substrate where dsRBM1 and dsRBM2 
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binding sites are far from one another, a shortened linker may not allow the 

simultaneous binding of both dsRBMs, hence the editing activity will be similar to 

the ∆dsRBM1 protein; yet on another substrate where two dsRBM binding sites 

are relatively close, a shortened linker may still be enough to achieve both 

dsRBM-RNA interactions at the same time, hence the editing activity will be 

similar to the wild-type protein. When the linker between the dsRBMs is shortened 

further, the editing activity will be increasingly similar to the ∆dsRBM1 mutant. 

These results would further support that each dsRBM recognizes distinct 

structural determinants on different naturally-occurring RNA substrates. With 

efforts from many laboratories, I hope that the mysteries of ADAR substrate 

specificity will be clarified in the near future. 

. 
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APPENDIX 

 

SEQUENCE OF PRIMERS USED IN THE STUDY 

 

VU3:   5’- CTATCATGATCAAGAAGCCTCAGAAG -3’ 
VU35:   5’- CGAAATATCGCATCCTT -3’ 
VU38:   5’- AATCCGGATTGCCCGGAACGT -3’ 
VU97:   5’- CCTTGGGTGCCTTTA -3’ 
VU168:  5’- GACAACCGATCAAACGC -3’ 
VU183:  5’- TATTTGTGCCCCGTCTGG -3’ 
VU331:  5’- GCGTTGAGGAAGGAAATATGC -3’ 
VU343:  5’- GGATCCCCCGGGCTGCAG -3’ 
VU356:  5’- CGCCTTCGTTGCAGGAT -3’ 
VU477:  5’- AATCCGGATTGCCCGGAACGTGGAATACCCTCGCCAGGAC -3’ 
VU682:  5’- CCGGGAGCTCATCGCCACACCTAAAGGATCC -3’ 
VU683:  5’- GGCCGAATTCTACAAACCGTTAAGAGTCTTA -3’ 
VU776:  5’- CATGAAGCTTGGCGTTTCTCCCTGAGCCCTC -3’ 
VU777:  5’- AAGGCTCCGGCCCTACAGCCAAGAAGGCAAAGCTGCATG -3’ 
VU778:  5’- TGGCTGTAGGGCCGGAGCCTTCAAAGA -3’ 
VU788:  5’- GTTATACTATTCCACCC -3’ 
VU853:  5’- GGAGGATCCCCAGGGCCCGTTCTACCC -3’ 
VU990:  5’- GGAATTCCATATGCCAGGGCCCGTTCTAC -3’ 
VU991:  5’- CGGGATCCTTAGTTGGGAAACTGGACAAAA -3’ 
VU1024:  5’- GGAATTCCATATGCCAAGTGGGAAGAACCCCG -3’ 
VU1068:  5’- CGCTGGAACGTGGTGGGC -3’ 
VU1069:  5’- ATTGAGAGCCAGGCCACGGT -3’ 
VU1072:  5’- CGGAATTCCTATTCAAACTTCGTCTTCTTTCCTT -3’ 
VU1073:  5’- GAAGATCTGCATCCGCCACCATGGTGAAG -3’ 
VU1092:  5’- CGGGATCCTTACAAGTGCAAATTGAAGACAG -3’ 
VU1120:  5’- GGTAAAGCGGCCGCCAG -3’ 
VU1127:  5’- GCTCAAGCTTCCAATTCTGCAGATATCCATCACAC -3’ 
VU1128:  5’- TGGCAAGCTTCTTGTTTCTC -3’ 
VU1144:  5’- GTCACTGCAGGACATGGTGAGC -3’ 
VU1145:  5’- CTCAGCGGTATCAGCAATGCA -3’ 
VU1146:  5’- CAGGGGCTTGTTGAGGGTGTA -3’ 
VU1147:  5’- CACGGAAAGGTGCCCCC -3’ 
VU1148:  5’- CATCCAGCGACAGTACAGCG -3’ 
VU1152:  5’- TGAGCCAGGCGGAGTCGA -3’ 
VU1183:  5’- CGAATTGAACCGGCTATGCTC -3’ 
VU1190:  5’- TCTGAGGCCCACCTGG -3’ 
VU1191:  5’- CCCTGGCGTTTTCCTTCG -3’ 
VU1192:  5’- GACCAAACGCCATCTCGCC -3’ 
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VU1193:  5’- TGGGAATGGTGGTGGGATG -3’ 
VU1201:  5’- FAM-CCGCCAGTCAAGAAGCCC -3’ 
VU1209:  5’- CCGGAAGCTTATCGCCACACCTAAAGGATCC -3’ 
VU1210:  5’- GGCCTCTAGATACAAACCGTTAAGAGTCTTA -3’ 
VU1220:  5’- CCAAGTGGGAAGAACCCCG -3’ 
VU1221:  5’- CAAGTGCAAATTGAAGACAGTAGC -3’ 
VU1238:  5’- CGGGATCCTCATTAAGGTGGGTGG 

AATAGTATAACAATATGCACAATGTTGT -3’ 
VU1239:  5’- GATAAGCTTCATATCGAATTCTACAAACCGTTAAGAG -3’ 
VU1244:  5’- CGGGATCCTCATTAAGGTGGGTGG 

AATAGTATAACAATATGCAAATGTTGT -3’ 
VU1245:  5’- CGGGATCCTCATTAAGGTGGGTGG 

AATAGTATAACAATATGCTCTAATGTTGT -3’ 
VU1246:  5’- AGCTGGTACCCCAGGCCCCGTTCTACCCAAGAATGC -3’ 
VU1247:  5’- AGCTGGTACCGCTTGGGGGTGGG -3’ 
VU1248:  5’- AGCTGTCGACCAAACGCCATCTCGC -3’ 
VU1249:  5’- AGCTGTCGACGGGAAACTGGACAAAAGACC -3’ 
VU1264:  5’- ATATTGTTATACTATTCCACCCA -3’ 
VU1265:  5’- CGGGCAGTGAGCGCAAC -3’ 
VU1272:  5’- AUGUUGUUAUAGUAUCCCACCUACCCUGAUG -3’ (RNA) 
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