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CHAPTER I

Introduction

I.1 Problem Statement

Robotic systems have proven effective with recent deployments of unmanned robots in a number of mis-

sion situations (e.g., search and rescue, first response, space) (Liu and Nejat, 2013; Pedersen et al., 2003).

Moreover, unmanned systems are increasingly leveraged in the military domain for diverse applications (e.g.,

surveillance, reconnaissance) (Sparrow, 2009). Complex mission requirements are often greater than the

capabilities of a single agent (human or robotic asset); therefore, multi-agent coalition formation, which in-

telligently groups agents, is necessary to perform tasks collectively. Exploiting the diverse capabilities of

heterogeneous members in such coalitions can result in a significant improvement in the team’s performance

when executing a mission.

Teaming multiple agents requires efficient coalition formation techniques. Coalition formation is an NP-

complete problem (Sandholm et al., 1999) that is also hard to approximate within a reasonable factor (Service

and Adams, 2011a). The computational complexity of the problem, owing to an exponential search space

has led to the development of a number of greedy algorithms (Shehory and Kraus, 1998; Vig and Adams,

2006b), approximation approaches (Dang and Jennings, 2004a; Rahwan et al., 2009a; Sandholm et al., 1999),

and market-based techniques (Dias, 2004; Shiroma and Campos, 2009; Vig and Adams, 2006a); however, all

these categories of algorithms have their respective drawbacks. Greedy algorithms generate solutions quickly,

but do not guarantee solution quality and often result in suboptimal solutions. Conversely, approximation al-

gorithms guarantee solution quality, but are rendered inapplicable for real-time mission scenarios due to their

exorbitant worst-case run-time complexity (O(nn) for anytime and O(3n) for design-to-time algorithms).

Market-based approaches provide a robust and fault-tolerant distributed infrastructure, but have high com-

munication bandwidth requirements. Therefore, a single class of algorithms will not be robust and flexible

enough to handle a wide spectrum of highly dynamic real-world missions. Greedy algorithms leverage some

heuristics that only perform well when the relevant information is available. The dynamics and uncertainties

of real-world environments do not guarantee the availability of such information in every mission scenario;

therefore, rendering a particular heuristic-based algorithm less applicable. Heuristic algorithms have been

shown experimentally to be effective only in compatible real-world missions (DeJong, 2005).

The primary contribution of this dissertation is the development of a state-of-the-art unified framework,

called the intelligent-Coalition Formation framework for Humans and Robots (i-CiFHaR), the first of its

1



kind, which incorporates a library of diverse coalition formation algorithms, each employing a different

problem solving mechanism. The framework employs unsupervised learning to mine crucial patterns and

intricate relationships among the algorithms that result in important clusters of algorithms. Equipped with

Bayesian reasoning, i-CiFHaR makes intelligent and optimized decisions over the library and selects the most

appropriate algorithm(s) to apply in accordance with multiple mission criteria and environmental constraints

in order to generate task coalitions. The library of diverse algorithms, coupled with the intelligent algorithm

selection capability enables i-CiFHaR to generate robust solutions and handle contingencies in a wide variety

of dynamic, real-world missions; thereby, rendering it as an effective decision support system for mission

supervisors.

Real-world missions may have a greater propensity towards using greedy algorithms, which can generate

solutions of acceptable quality within the stipulated time. A commonly leveraged heuristic in many existing

heuristic-based coalition formation algorithms is one that constrains the coalition size up to a maximum

limit, k (Shehory and Kraus, 1998; Tošić and Agha, 2005; Vig and Adams, 2006b). Despite this restriction,

the coalition formation problem remains NP-complete and the algorithms are rendered inapplicable when the

task requirements exceed the collective capabilities of all coalitions up to size, k. There exists a void in the

field of multi-agent systems for heuristic algorithms that can scale well for large teams of agents (robots and

human assets) without the use of such limited heuristics. The second major contribution of this dissertation

fills this gap by presenting two hybrid simulated Annealing-inspired ANT colony optimization algorithms,

called the sA-ANT and the sA-ANT* that are applicable to a wide spectrum of combinatorial optimization

problems, including the coalition formation problem.

Ant colony optimization (ACO) algorithms are swarm-based, biologically inspired search algorithms that

simulate the collective foraging behavior commonly exhibited by biological swarms of ants. Real ants, while

searching for food use an indirect, local, and environment-based communication mode in order to exchange

information through the use of pheromones. However, ACO approaches suffer from two major drawbacks:

(1) search stagnation, which often results in sub-optimal solutions, and (2) higher computational time. The

sA-ANT and sA-ANT* algorithms are important contributions to the swarm intelligence community, because

they address the search stagnation drawback by introducing two novel pheromone update policies that in-

corporate the simulated annealing methodology. These pheromone update policies deviate significantly from

existing state-of-the-art ACO algorithms that employ varying strategies to deposit pheromones including:

using a set of elitist ants, Elitist Ant System (Dorigo et al., 2006); leveraging solution quality-based ranked

ants, Rank-Based Ant System (Bullnheimer et al., 1997); depositing pheromones using the single best ant,

Ant Colony System (Dorigo and Gambardella, 1997); and bounding of the pheromone levels, Max-Min Ant

System (Stutzle and Hoos, 2000). sA-ANT dynamically modulates the number of ants responsible for de-
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positing pheromones at the end of each iteration, while sA-ANT* stochastically selects the best fit solution

from a repository of good solutions to deposit pheromones. Both depositing policies result in the algorithms’

enhanced search exploration in the initial phases, and improved exploitation during the later stages. The

high initial annealing temperature, coupled with a gradual annealing schedule prohibits the algorithms from

stagnating in local optima.

The effectiveness of the two variants of sA-ANT as generic search algorithms was demonstrated by ap-

plying them to the Traveling Salesman Problem (TSP), the maximal clique problem, and the multi-agent

coalition formation problem. The performance of sA-ANT* and sA-ANT for the TSP is very promising, be-

cause it generates significantly shorter tour lengths for several TSP instances, when benchmarked against

existing state-of-the-art ACO approaches. Furthermore, the potential of the developed swarm algorithms as

an efficient greedy coalition formation algorithm for large teams of agents up to a size of 200 has also been

successfully demonstrated. Considering real-world applications, the algorithms when applied to the coali-

tion formation problem optimize the robots’ traveling cost to the assigned task, communication cost among

coalition members, and the loss of resources (e.g., battery, camera). Therefore, this dissertation provides a

swarm-based algorithm that contributes to the multi-agent systems community as an effective greedy coalition

formation algorithm that computes high quality coalitions for very large teams of robots and humans without

constraining coalition sizes. Aiming to address the drawbacks of the centralized algorithms that are inherently

brittle and unresponsive to dynamic environments, this dissertation also presents the distributed variant of sA-

ANT*, which creates robust coalitions of heterogeneous robots for real-world missions. The decentralized

algorithm, d-sA-ANT* employs an information propagation mechanism that facilitates information sharing

among the robots based on their immediate local neighborhood. Experimental results demonstrate that the

distributed algorithm generates coalitions of virtually identical quality as that of its centralized version, but

requiring a significantly higher computational time.

A mission supervisor’s performance, efficiency, and awareness are adversely affected during mission de-

ployments that cause immense stress and fatigue, which can detrimentally affect his/her decision making

ability, thus jeopardizing mission success. Therefore, the ability of i-CiFHaR to provide effective decision

support to the human supervisor is crucial. The role of i-CiFHaR’s decision support is to help the human

supervisor make effective decisions during critical missions in uncertain and dynamic environments. The

coalition formation algorithm(s) selected by i-CiFHaR may not always satisfy all the criteria and constraints

provided by the human supervisor. When the framework is unable to select a single best algorithm satisfying

all mission requirements, it may select a subset of algorithms suitable for the mission. The decision support

feature presents the supervisor with necessary metrics, such as the expected utility score of each coalition

formed by the selected algorithm(s). Given the ranking of algorithms, the supervisor can either select the
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algorithm deemed to be most appropriate according to the missions’ needs, or provide further mission speci-

fications, so that the system can revise and refine its algorithm selection.

An important part of a decision support system for coalition formation is an efficient interaction tool

between the human mission supervisor and the deployed human-robot teams. A decision support system

interface is indispensable for deployed missions for two main reasons. First, it facilitates the transfer of

mission specifications, constraints, and criteria to the available team. Second, the interface enables the human

supervisor to view crucial information about the progress of tasks (e.g., ongoing, standby, completed), status

of the deployed agents (e.g., idle, engaged, faulty), discovery of new tasks, task-coalition allocations, and

other contingencies. This dissertation integrates i-CiFHaR with the Human-Machine Teaming Laboratory’s

human-robot interface to further enhance its effectiveness.

I.1.1 Dissertation Roadmap

The subsequent chapters are organized as follows. Chapter II provides a background covering research in the

fields of multi-agent coalition formation and ant colony optimization. Chapter III presents the two variants of

the hybrid ant colony optimization algorithms, namely the sA-ANT and the sA-ANT*. The chapter discusses

the effectiveness of sA-ANT and sA-ANT* in addressing the search stagnation drawback of contemporary

ACO approaches. The experimental design and results of applying the algorithms to three combinatorial

optimization problems are provided and discussed. Furthermore, the chapter presents a distributed variant

of the sA-ANT*, which leverages an information propagation mechanism through real-world communication

networks to compute multi-robot coalitions in a decentralized fashion. Chapter IV presents the i-CiFHaR

framework and discusses each of its components that contributes to the decision making process. The chap-

ter also provides the methodology to incorporate unsupervised learning techniques in order to partition the

algorithms in its library, which improves i-CiFHaR’s computation time by 67%. i-CiFHaR was applied to 24

missions scenarios for evaluating its decision making capability and the results are provided in the chapter.

The dissertation concludes in Chapter V, which summarizes the contributions and potential future research

direction in the field of multi-agent systems.
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CHAPTER II

Literature Review

Developing a multi-agent coalition formation framework to accomplish a set of tasks cooperatively in real-

world settings is a challenging problem that requires: (1) effective task allocation, (2) agent coalition for-

mation, (3) team coordination, (4) task execution monitoring, and (5) contingency handling. This chapter

summarizes several state-of-the-art multi-agent/robot coalition formation and coordination architectures.

II.1 Multi-agent Coalition Formation

A primary focus of this dissertation is on multi-agent coalition formation, an NP-complete problem (Sand-

holm et al., 1999) that is also hard to approximate within a reasonable factor (Service and Adams, 2011a).

Given a set of n agents, the exponential number of possible coalitions makes the problem extremely challeng-

ing to solve. The multi-agent coalition formation problem is synonymous to the coalition structure generation

problem in characteristic function games, where a coalition structure consists of multiple, disjoint partitions

(coalitions) of the agents (Sandholm et al., 1999). The objective of the coalition structure generation problem

is to realize the best coalition structure that maximizes the total social welfare or utility value.

II.1.1 Problem Formulation

Given a set of agents along with their resources and capabilities, and a set of tasks specified with their require-

ments and parameters (e.g., task location, priority, dependencies, utility), the coalition formation problem

objective is to compute the best fit agent coalition for a given task.

Definition 1. Let a team of n agents, A = {A1,A2, ...,An} attempt to complete a set of tasks, T that is com-

prised of m tasks, T = {T1,T2, ...,Tm}, with each task requiring a set of r resource types to be accomplished.

Each robot is equipped with a set of r resources (e.g., camera, sonar, laser), denoted by ResAi or a set of r

services (e.g., sentry-duty, box-pushing, mapping), denoted by SerAi such that:

∀Ai ∈ A,∃ResAi = {ResAi
j } | 1≤ i≤ n,1≤ j ≤ r. (II.1)

∀Ai ∈ A,∃SerAi = {SerAi
j } | 1≤ i≤ n,1≤ j ≤ r. (II.2)

Definition 2. A robot coalition, Sc ⊆ A can only accomplish a given task, Tk ∈ T , if and only if the combined
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resource or service capabilities of the team, Scap
c = {SRcap,1

c ,SRcap,2
c , ...,SRcap,r

c } exceed the task’s require-

ments, i.e., ∀1≤ j ≤ r,Scap, j
c ≥ ResTk

j or ∀1≤ j ≤ r,Scap, j
c ≥ SerTk

j .

The existing coalition formation algorithms can be broadly classified into three major categories: (1)

greedy, (2) market-based, and (3) approximation approaches. Given a set of tasks, the coalition formation

problem evolves into a special case of the coalition structure generation problem, where the agents are parti-

tioned into disjoint coalitions, each assigned to a specific task. This similarity between the coalition formation

problem for task allocation and the generic coalition structure generation problem motivates the discussion

of existing approximation algorithms designed for the latter that can be tailored for the coalition formation

problem.

II.1.2 Greedy Coalition Formation Algorithms

One of the earliest distributed, heuristic based coalition formation algorithms was proposed for multi-agent

task allocation in a Distributed Problem Solving environment (Shehory and Kraus, 1998). The heuristic

permitted coalitions upto a maximum size, k. Smaller, restricted coalition sizes were justified for multi-robot

systems by virtue of lower communication costs and computational complexities. The greedy algorithm

used group-rational agents, generated both overlapping and disjoint coalitions, and minimized the overall

system cost. The algorithm handled tasks with precedence constraints by employing a separate pre-processing

sub-algorithm to allocate only those tasks that had no dependencies at a given time; however, the coalition

formation problem still remained NP-hard despite the usage of a maximum upper limit on the coalition sizes.

Inherent differences between multi-agent and multi-robot domains restrict the applicability of Shehory

and Kraus’ coalition formation algorithm in real-world environments. Addressing this issue, Vig and Adams

(2006b) extended the heuristic algorithm (Shehory and Kraus, 1998) to apply to multi-robot domains. The

extended algorithm modeled resources as non-transferable owing to the fact that robot resources (e.g., laser,

sonar, camera, gripper) are physical entities. Each task was defined as a constraint graph with edges rep-

resenting the sensor constraints and nodes representing the required sensors and actuators. The improved

coalition algorithm utilized arc-consistency to validate each potential task coalition and achieve valid as-

signments of coalition members to respective sub-tasks. Robust coalitions were calculated for each mission

task by introducing a fault-tolerance coefficient, which was a function of the coalition imbalance coefficient

and the coalition size. The degree of unevenness in resource contribution of the coalition members defined

the coalition imbalance coefficient. The extended algorithm used Shehory and Kraus’ heuristic of allowing

coalitions of a maximum size, k and minimized the total system cost; however, only non-overlapping task

coalitions were permitted.

Service and Adams (2011a) proposed a resource/service model based coalition formation algorithm that
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is very similar to the previous heuristic algorithms (Shehory and Kraus, 1998; Vig and Adams, 2006b) in that

it employed the same greedy task allocation procedure and used the same heuristic of limiting coalition sizes;

however, it maximizes the system utility, rather than minimizing the total system cost.

A coalition formation algorithm was presented that utilized an underlying organization hierarchy as the

heuristic to compute task coalitions in polynomial time (Abdallah and Lesser, 2004). The leaf nodes in the

organization represent the robots and the non-leaf nodes represent computational units (managers). Each

manager controls its corresponding sub-tree in the organization containing a subset of robots. A task arriving

at a particular manager, M is accomplished successfully only if the leaf nodes (robots) in the manager’s

sub-tree have enough resources. Otherwise, the discovered task is handed over to its parent manager, which

decomposes the task into sub-tasks and assigns its children managers to accomplish the task. The managers

used Q-learning with neural networks to optimize local decisions within the organization and as a result the

coalition algorithm generated improved coalitions over time as each manager gained more experience.

A clique-based, distributed coalition formation algorithm was proposed (Tošić and Agha, 2005) that

bounded the sizes of agent coalitions to a maximum upper limit, k and leveraged a topology network that

captured inter-agent communications. Agent coalitions of modest sizes were generated that formed maximal

cliques in the topology network. The major advantage of this algorithm is its low communication bandwidth

requirements, given a sparse topology network.

Weerdt et al. (2007) presented a greedy, distributed coalition formation algorithm for the social network

based task allocation problem, a variant of the general task allocation problem. The agent coalitions were

computed based on an underlying social network that was derived from inter-agent communication links.

A task defined by its required resources, utility, and task location arrives at a particular agent (manager),

which recruits its directly connected neighboring agents (contractors) in the network to form coalitions. The

task allocation problem, even in the presence of a social network (serving as a heuristic) with node degrees

greater than three proved to be a NP-complete problem. Therefore, a greedy algorithm was proposed to find

coalitions in O(nm) run-time that required O(n2m) number of communication messages for n tasks and m

agents.

Gaston and desJardins (2005) proposed a greedy algorithm also leveraging an agent-oriented network that

was based on inter-agent communications to calculate effective coalitions. Each agent formed a node in the

network, possessed a single skill set, and acquired one of the three agent states: Uncommitted, Committed,

and Active. Tasks were introduced at fixed time intervals and globally advertised with the required skill sets

for a fixed time length. The performance of the proposed greedy algorithm was determined by two measures:

(1) global performance, defined as a ratio of the number of successful task coalitions formed to the total

number of tasks introduced, and (2) local performance of each agent. The algorithm allowed time-extended
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task allocations.

A two-stage, distributed coalition formation algorithm specific to unmanned aerial vehicles (UAVs) was

proposed that concentrated on: (1) minimizing coalition sizes, and (2) minimizing task completion time (Sujit

et al., 2008). The UAV that discovers a given task becomes the task leader and broadcasts the task’s resource

requirements to all other UAVs, following which the available UAVs respond with their resource contents and

traveling costs. Each UAV calculates its traveling cost by using the Dubin’s curve based on its location and

the task location. The available UAVs are sorted based on their traveling costs and the UAV leader computes

small sized coalitions of aerial vehicles to accomplish the task.

Real-world tasks involve inter-task constraints (precedence dependencies), intra-task constraints (task

deadlines), and spatial constraints. The previous coalition formation algorithms do not address well the real-

world constraints that require complete satisfaction when creating task coalitions. The system robots need

to perform planning and scheduling in order to accomplish tasks. A centralized anytime algorithm based on

Mixed Integer Linear Programming (MILP) was developed to solve the multi-robot coordination problem

and was applied to search and rescue (Koes et al., 2005). This work bridged a major gap in the multi-agent

community by finding near optimal solutions for problems involving path planning, online scheduling, and

tasks with temporal and spatial constraints. Task environments were discretized into grids and represented

as nodes in a weighted graph, where each edge weight represented the robot’s traveling cost between the

associated nodes. Floyd and Warshalls’ shortest path algorithm (Floyd, 1962) was applied to the weighted

graph to compute shortest routes to the assigned tasks. The framework generated: (1) high quality task

coalitions for midsized robot teams, and (2) optimal task schedules satisfying temporal and spatial constraints,

given enough computational time.

Ramchurn et al. (2010) presented the Coalition Formation with Spatial and Temporal constraints problem

and demonstrated that the problem is NP-hard. Ramchurn et al.’s algorithm is similar to Koes et al.’s cen-

tralized multi-robot coordination architecture in that it solved the constraint problem using MILP; however,

the former approach addresses task deadlines that are not considered in the latter. An anytime algorithm was

devised to calculate agent coalitions in real-time.

The challenging task of searching an exponential search space to find the optimal coalition for a given task

motivated research to draw cues from nature-inspired biological systems that offer distributed fault-tolerance

and adaptive responsiveness towards dynamic environments. This increasing trend of solving complex, op-

timization problems by employing biologically inspired, metaheuristic algorithms are inspired by social be-

haviors of insects (e.g., bees, ants, wasps) (Ren et al., 2008; Xia et al., 2004), flocking in birds, school of fish,

and social animals (e.g., dolphins) (Haque and Egerstedt, 2009). The next subsection highlights such greedy,

swarm-based coalition formation algorithms.
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II.1.2.1 Biologically inspired Coalition Formation Algorithms

Particle swarm optimization, a swarm-based technique mimicking behaviors, such as bird-flocking has been

used for coalition formation. A collection of potential problem solutions (called particles) move through the

problem search space, with some domain specific mathematical models governing the particles’ positions and

velocities, to ultimately converge towards the optimal solution. A two-dimensional discrete particle swarm

based coalition formation algorithm was presented that derived agent coalitions and permitted overlapping

coalitions (Xu and Li, 2008). Zhang et al. (2010) recently presented another particle swarm based coalition

formation algorithm that also allows overlapping coalitions, but improves upon its predecessor (Xu and Li,

2008) by proposing a new technique to repair a large number of invalid encodings that appear during the

optimization process. Zhang et al.’s algorithm outperformed Xu and Li’s approach in relation to solution

quality and computational time.

Ant colony optimization techniques are probabilistic approaches based on the social behavior of ants

(Dorigo et al., 2006). The first coalition formation algorithm based on ant colony optimization used the in-

verse of the distance between each agent as a heuristic component (Xia et al., 2004). This heuristic motivates

agents that are spatially close to create coalitions. The algorithm was shown to generate coalitions of higher

utilities in similar computational time when compared to those computed by a heuristic based coalition al-

gorithm (Shehory and Kraus, 1998). An extended and improved ant colony based coalition algorithm was

proposed to generate high quality agent coalitions (Ren et al., 2008). This algorithm attempted to minimize

the loss of robot resources and the heuristic is dependent on the task and the communication cost between

every pair of connected robots. Compared to the coalitions produced by the previous algorithm (Xia et al.,

2004), Ren et al.’s algorithm generated coalitions of higher quality.

Evolutionary algorithms are stochastic, population-based algorithms that replicate biological evolution

(e.g., cell reproduction, gene selection) (Ashlock, 2006). Two coalition formation algorithms have been

proposed based on cooperative coevolution and the distributed island based approach, respectively (Service,

2009). When benchmarked against RACHNA (Vig and Adams, 2006a), a market-based coalition formation

algorithm, the evolutionary algorithms required an order of magnitude fewer communication messages. How-

ever, RACHNA outperformed both the proposed distributed evolutionary algorithms in terms of the solution

quality (coalition structure utility) and computational time.

Haque and Egerstedt (2009) proposed a decentralized framework for multi-level robot coalitions that

emulates the alliance formation process in social animals, such as the bottlenose dolphins. The dynamic

interaction of agents (i.e., dolphins) are modeled using hybrid automatons, where agents form dynamic prox-

imity graphs based on nearest neighbor connections. The agent coalitions or alliances are computed based
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on three coefficient factors: (1) association, (2) rejection, and (3) familiarity. The experimental simulations

showed coalition formation among only five agents.

The aforementioned heuristic algorithms sacrifice coalition quality in order to reduce computational time.

Another major drawback is that the applicability of heuristics is contingent upon the availability of the re-

quired knowledge, which restricts the applicability of heuristic-based algorithms in a wide variety of real-

world situations. This shortcoming of any heuristic algorithm inspires the discussion of approximation algo-

rithms that guarantee solution quality.

II.1.3 Approximation Algorithms

This section briefly describes the state-of-the-art approximation algorithms in the multi-agent literature. De-

spite the close correlation between the coalition formation and the coalition structure generation problems,

the former differs in some aspects: (1) specific mission tasks need to be accomplished, and (2) unlike the

characteristics function games, the complete set of all possible coalition values is not available. Coarsely, the

approximation algorithms can be partitioned into anytime and design-to-time algorithms.

II.1.3.1 Anytime Algorithms

Anytime algorithms are guaranteed to generate quality solutions within some error bounds and permit pre-

mature termination. These algorithms generate initial solutions that are within a bound from the optimal

solution, but given more time, the solution quality increases progressively as more and more search spaces

are examined. However, anytime algorithms suffer from a very high worst case run-time of O(nn), where n

represents the number of agents (Sandholm et al., 1999).

One of the first anytime algorithms for the coalition structure generation problem showed that the problem

is NP-complete because O(2n−1) coalition structures are examined in order to generate guaranteed quality

solutions (Sandholm et al., 1999). The coalition structure space was represented as a graph, with each node

representing a particular coalition structure that comprised of multiple agent coalitions. The anytime algo-

rithm searched the two lowest levels of the coalition structure graph and performed a depth first search from

the root of the graph to generate solutions.

Another anytime algorithm for coalition structure generation was proposed that produced solutions within

a finite bound from the optimal solution (Dang and Jennings, 2004b). The algorithm was similar to Sandholm

et al.’s anytime algorithm in that it leveraged the same coalition structure graph. However, Dang and Jennings’

anytime algorithm was shown to be extremely fast during the generation of quality solutions with tighter

bounds.

A novel, integer-partition based anytime algorithm was proposed by Rahwan et al. (2009b) for coalition
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structure generation that guaranteed high quality solutions quickly. The algorithm used a new integer-partition

based search space representation, where possible coalition structures were categorized based on the sizes of

the contained coalitions. Moreover, a branch and bound technique was leveraged to prune large portions of

the search space based on the calculated upper and lower value bounds on each coalition structure sub-space,

given the coalition values.

II.1.3.2 Design-to-time Approaches

Unlike anytime algorithms, design-to-time algorithms are required to run to completion in order to generate

optimal solutions. However, design-to-time algorithms have a better worst case run-time of O(3n), where

n represents the number of agents (Rothkopf et al., 1998). One of the earliest design-to-time algorithms

for characteristic function games modeled the computational problem as an evaluation of combinational bids

(Rothkopf et al., 1998). The advantage of this algorithm is that, given n agents, the optimal coalition structure

is generated in O(3n) run-time by leveraging the Dynamic Programming construct. However, the algorithm

suffers from two disadvantages: (1) necessity to run to completion, and (2) significant amount of memory

space requirements.

Rahwan and Jennings (2008a) proposed a design-to-time algorithm that addressed the memory issues

by leveraging the Improved Dynamic Programming construct. Experiments showed that Rahwan and Jen-

nings’ algorithm generated quality solutions using fewer operations that required a significantly lower mem-

ory space. However, the Improved Dynamic Programming algorithm does not permit premature termination

and needs to run to completion to compute optimal solutions.

A hybrid approach exploiting the advantages of both the design-to-time and anytime algorithms was

proposed (Rahwan and Jennings, 2008b). More recently, a design-to-time, r (r > 2) factor approximation

algorithm was presented that generates high quality coalition structures with better worst case run-time (Ser-

vice and Adams, 2011b). Service and Adams’ algorithm can also be used as an anytime algorithm by using

standard dynamic programming and extracting approximate solutions at appropriate times, thereby giving

rise to an anytime algorithm that is capable of generating optimal solutions in O(3n) time.

Owing to the exorbitant worst case run-time complexities, approximation algorithms are inadequate for

real-time critical mission situations. For instance, the Anytime Integer Partition Algorithm requires about

2.3 hours to compute optimal coalition structures for just 27 agents, while a Dynamic Programming-based

approach takes about 2 months for the same computation (Rahwan, 2007).
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II.1.4 Market-based Distributed Architectures

Market-based, multi-robot architectures offer effective task allocations in a distributed fashion by leveraging

auctions and the most commonly used auctioning approach is based on the Contract Net Protocol (Smith,

1980). The protocol is modeled on the contracting mechanism that is widely used in real-life economics. The

agent that discovers a task acts as the manager/auctioneer and announces the task details to potential agents

(contractors) that are connected in the contract net. The contractors submit their cost bids for the announced

task; the manager evaluates the bids and selects the contractor with the lowest bid for the task.

One of the earliest market-based distributed, fault-tolerant architectures was MURDOCH (Gerkey and

Matarić, 2002), an auction-based task allocation system. MURDOCH incorporated a resource centric pub-

lish/subscribe messaging protocol, where messages are addressed by subject, rather than destination. The

subject namespace contained physical robot resources (e.g., camera, gripper, laser), high-level roles (e.g.,

door-opener, foraging), and abstracted robot states (e.g., busy, idle). Each robot subscribed to a set of subjects

that represented their respective capabilities/resources. Task allocations were calculated through auctioning,

with the auctioneer robot broadcasting the list of required subjects. The system robots (contractors) submit-

ted their cost bids for the task and the best bidder is assigned the task. A major limitation was MURDOCH’s

assumption that real-world tasks can be sub-divided into multiple single-robot, independent tasks.

The Contract Net Protocol (Smith, 1980), when applied to a multi-agent settings does not hold any in-

formation (who and when) regarding the particular agent that can initiate the auctioning process. This issue

was addressed in a distributed task allocation system for unmanned aerial vehicles by leveraging a token-

ring methodology (Lemaire et al., 2004). Uniform distribution of task workload across all the robots was

achieved by introducing the equity coefficient factor, which ensured the minimization of the traveling time

and task workload. A random agent initiated the auctioning process for a task by creating a token, thereby

becoming the temporary auction leader (manager). A token circulation process in order to pass the token was

performed when another agent with a higher equity coefficient was available to bid for the same task. There-

fore, the task allocation was achieved using standard auctions, but with no static auctioneer. The agent that

minimized the traveling cost and task workload was awarded a given task. The system addressed inter-task

constraints by employing hierarchical, constraint task trees and the decentralized planning was modeled as a

time constrained Multiple Traveling Salesman Problem. Similar to MURDOCH, this system considered only

single-robot task.

CoMutaR (Coalition formation based on Multi-tasking Robots), a distributed fault-tolerant framework

was proposed to handle multi-robot coordination and task allocation (Shiroma and Campos, 2009). The

robots’ capabilities were expressed as actions, while tasks were expressed as a set of robot actions. The
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framework allowed virtual sensor sharing by incorporating share-restricted resources, which is very similar

to ASyMTRe’s schema-based approach (Tang and Parker, 2005). Share-restricted resources can either belong

to robots (e.g., processing power, battery energy level, robot’s pose) or to task environments (e.g., commu-

nication bandwidth). Single-round auctioning was used to compute robot coalitions for tasks. Robots, by

virtue of their actions, were capable of generating overlapping coalitions. Once coalitions were formed, co-

ordination among robots was maintained by incorporating constraint functions. Absence of a central planner

rendered CoMutaR fault-tolerant and scalable, two important requirements of real-world missions with a

large number of heterogeneous robots.

DEMiR-CF (Distributed and Efficient Multi-Robot-Cooperation Framework) was presented as an auction-

based, incremental multi-robot framework designed for dynamic task allocation in complex real-world set-

tings that involved inter-related tasks (Sariel-Talay et al., 2011). The distributed framework formulated the

Cooperative Mission Achievement Problem and the Coordinated Task Selection Problem, both motivated by

models in Operations Research. The key features of DEMiR-CF include: (1) an efficient representation of

missions, (2) online task scheduling and planning, (3) task allocation based on auctions, and (4) task reallo-

cation and team reorganization during contingencies. Modeled as finite state machines, each robot possessed

information of the world, mission tasks, and every other robot. DEMiR-CF offered fault tolerance by in-

corporating Plan B Precaution Routines to check validation of coalitions continuously. The framework was

successfully demonstrated in Navy missions. The major limitation of auction-based architectures is that there

is no guarantee on the solution quality.

The first, auction-based distributed task allocation scheme that guaranteed solution quality was Prim

Allocation, a simple and fast 2-approximation algorithm for allocating multi-robot tasks (Lagoudakis et al.,

2004). Multi-round auctions were held with robots bidding for mission tasks by utilizing their traveling costs

as bid amounts. Prim Allocation leveraged Prim’s algorithm (Prim, 1957), a greedy approach to compute

the minimum spanning tree of a given weighted graph. Each robot modeled the task allocation problem

as a Traveling Salesman Problem with the tasks as nodes in a weighted graph. The execution of the Prim

Allocation algorithm generated a minimum spanning forest, which was a collection of minimum-cost trees

computed by each agent for the given tasks. The scalability and applicability of Prim Allocation to real-

world domains with a large number of robots and tasks was justified by its low time complexity, which was

formulated as O((n+m)mlog2m) for n robots and m tasks. However, Prim Allocation was demonstrated to

work only with virtual agents in static and dynamic simulated environments.

Crucial to the auctioning procedure is the bidding process. All of the reviewed market-based architectures

feature robots as the bidders for a set of tasks. Auction bidders need to have a global view of the available

resources in order to improve their individual profits. During complex missions, the global information is
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often unavailable; therefore, RACHNA (Robot Allocation through Coalitions using Heterogeneous Non-

Cooperative Agents) (Vig and Adams, 2006a) reversed the traditional bidding process by having the tasks

bid for robots using their utilities. Moreover, RACHNA exploited the resource redundancies in real robots to

generate more computationally tractable task allocation solutions. The resource redundancies of robots en-

abled RACHNA to categorize resources (e.g., laser, camera, bumpers) as services/capabilities (e.g., pushing,

foraging, object-tracking). Tasks bid on a set of required services, rather than individual robots. The smaller

number of service classes reduced RACHNA’s computational time. The task allocation process comprised

of two types of software agents: (1) Service Agents that served as mediator agents through which tasks bid

for services, and (2) Task Agents that bid for services on behalf of respective tasks. RACHNA allows task

preemption by rerunning the bidding process, but suffers from high communication bandwidth requirements.

Distributed auctioning architectures are not always a panacea because market-based auctioning introduces

added complexities involving negotiation protocols, definition of cost functions, and higher communication

overhead. TraderBots (Dias, 2004), a novel market-based multi-robot coordination architecture chose a hy-

brid solution by exploiting the advantages of both centralized and distributed architectures in an opportunistic

fashion. The system consisted of a team of self-interested robots aimed at maximizing individual profit. Each

robot housed a Robot Trader that traded on behalf of the robot for the tasks in the auctioning process and

each task had an assigned reward that was achieved on the task’s completion. An operator trader (OpTrader)

played the role of a computational agent and a central software interface between a human operator and

the robot team. Under normal circumstances, the robots used their corresponding Robot Traders to bid for

real-world tasks in a decentralized fashion; thereby, rendering TraderBots highly robust to robot failures and

improving scalability. When sufficient time is available, TraderBots appointed either the OpTrader or any one

particular Robot Trader with sufficient processing power as a leader to generate optimal global team plans

from individual robots’ sub-plans. Therefore, in order to maximize overall utility, TraderBots exploited the

advantages of both the centralized and distributed approaches in an opportunistic fashion. Moreover, Trader-

Bots achieved fault tolerance by incorporating escape clauses/broken deals in trading during the auctioning

process, while allowing task reallocation under contingencies through rebidding processes.

Market-based approaches require high communication bandwidth, and therefore are inappropriate in real-

world environments with constrained communications. Given the disadvantages of existing approaches, real-

world missions may have a greater propensity towards using greedy algorithms that can generate solutions

of acceptable quality within the stipulated time. This dissertation develops two greedy, swarm-based search

algorithms that are applicable to NP-complete optimization problems, including the multi-agent coalition

formation for real-world applications, but without using common heuristics, such as constraining the coalition

sizes.
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II.2 Ant Colony Optimization Algorithms

ACO algorithms have been investigated thoroughly for several NP-complete problems, such as Traveling

Salesman Problem (TSP) (Dorigo and Gambardella, 1997; Dorigo et al., 1996; Stutzle and Hoos, 2000),

resource-constrained scheduling (Merkle et al., 2002), classification (Martens et al., 2007), multi-robot coali-

tion formation (Ren et al., 2008; Xia et al., 2004), and data mining (Xie and Mei, 2007). Forager ants wander

around the nest searching for food and upon finding good food, they retrieve the food and travel back to their

nest, while depositing chemicals, pheromones. Additional forager ants retrace the path to the food source by

sensing the pheromones, and over time more and more ants converge on the shortest path from the nest to the

food source. Ant colony based algorithms utilize this foraging behavior to generate shortest path solutions in

optimization problems satisfying various constraints.

The effectiveness of most ACO algorithms has been demonstrated via applying them to the TSP, which is

one of the most widely studied combinatorial optimization problems. Given n cities modeled as a weighted,

undirected graph, G(V,E,W ), with the cities represented as the graph nodes, the objective is to identify a

closed tour of the shortest length that visits each city once and only once. Each edge, Ei j ∈ E connecting two

cities, Vi,Vj ∈ V is associated with a non-negative weight, wi j ∈W that represents the distance between the

two cities. A symmetric TSP is a special variant of the problem, where ∀i, j wi j = w ji.

Ant System, the first ACO algorithm developed, simulated a set of artificial ants with limited memory and

computational capabilities that emulate the foraging behavior in ant swarms (Dorigo et al., 1996). Each ant,

φ starts at a random city or node in the graph, G(V,E,W ) and incrementally generates a city tour. The φ th ant

located at city i utilizes the transitional probability, Pφ

i j to probabilistically select the next city, j to be added

to its current tour. The transitional probability is defined as

Pφ

i j =


τα

i j×η
β

i j

∑ j∈N i τα
i j×η

β

i j

if j ∈N i

0 otherwise,
(II.3)

where τi j and ηi j represent the pheromone level on the edge Ei j ∈ E and the heuristic information that

motivates the transition, respectively. The parameters α and β regulate the impact of the pheromone and

heuristic values during the transition process. N i denotes the unvisited neighborhood of city i. After the end

of each iteration, the pheromone levels on all the graph edges are lowered by using the pheromone evaporation

rate, 0 < ρ < 1 that emulates the natural pheromone evaporation in the real-world due to sunlight. All the

ants deposit a small quantity of pheromone (∆φ

i j) on their respective tour edges, in accordance with the ant’s
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solution quality (tour length). The pheromone update process at time t +1 is defined as

τi j(t +1)← ρ ∗ τi j(t)+
m

∑
φ=1

∆
φ

i j, (II.4)

and

∆
φ

i j =


Q
Lφ

if ant tour has edge, Ei j

0 otherwise,
(II.5)

where m is the number of ants, Q is a constant and Lφ is the length of the tour generated by the φ th ant. This

algorithm was investigated for a TSP instance with 30 cities.

The Elitist Ant System extended the Ant System and leveraged an elite set of additional ants for depositing

pheromones that replicated the current global best solution (Dorigo et al., 1996). The Elitist Ant System

performed better than the tabu search and simulated annealing approaches, when applied to a TSP instance

comprising 30 cities. The number of elite ants was demonstrated to be equal to the number of cities in the

tested problem instance.

The Rank-based Ant System incorporated the Elitist Ant System’s elitist strategy and a technique that ranks

the ants based on their solution quality after every iteration (Bullnheimer et al., 1997). The pheromone update

policy uses the current global best solution along with the top ω solutions in the ranking that are weighted

according to the respective ant’s rank. The Rank-based Ant System was compared with the predecessors on

five TSP instances with city counts ranging from 30 to 132. The Rank-based Ant System performed notably

better than the Ant System, but comparable to the Elitist Ant System.

The Ant Colony System (ACS) was the first to leverage only the single best solution for pheromone

depositing (Dorigo and Gambardella, 1997). ACS differs from its predecessors in a number of ways. First, a

pseudo-random-proportional transition rule is leveraged when the φ th ant on node i selects the next node, S∗

by applying

S∗ =

 argmax j∈N i{τα
i j ×η

β

i j} if q≤ q0

s otherwise,
(II.6)

where 0≤ q0 ≤ 1 is a algorithm parameter, q is a random number uniformly distributed in the range [0,1], and

s ∈N i is probabilistically selected according to Equation II.3. When q≤ q0, ACS exploits knowledge from

the previous iterations, otherwise the algorithm exhibits an exploration behavior. Second, only the current

global-best solution is used to deposit pheromones. Furthermore, a local pheromone update procedure is

integrated into the incremental search that encourages search exploration. ACS experimentally generated

better solutions, when compared to three heuristics algorithms (e.g., simulated annealing, elastic nets (Durbin

and Willshaw, 1987), self-organizing maps) on three TSP instances with city counts ranging from 50 to 100.
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Pheromone updates using a single best ant solution (either the current global-best or iteration-best) of-

ten result in rapid intensification of the associated edge pheromones in the search graph. The exponential

pheromone evaporation further constrains the search process. This rapid change in the pheromone levels

often results in search stagnation, in which case the algorithm becomes stuck in local optima. The Max-Min

Ant System (MMAS) bounds the pheromone levels on each graph edge within set limits in order to address

search stagnation (Stutzle and Hoos, 2000). MMAS features three major components: (1) pheromone de-

positing by leveraging the single best ant (either the best-so-far or the iteration best), (2) bounded pheromone

trails within [τmin,τmax], and (3) initializing the algorithm by setting the initial edge pheromones to τmax to

promote search exploration. Theoretical proofs illustrate that τmax =
1

(1−ρ)× f (sgb)
, where f (sgb) is the current

best solution and ρ is the evaporation rate. MMAS outperformed the ACS, Rank-based Ant System, Elitist Ant

System, and the original Ant System on TSP instances with up to 198 cities.

Motivated by evolutionary algorithms, the Best-Worst Ant System (Cordon et al., 2000) incorporates a

dual update policy, where graph edges belonging to the current global-best solution receive positive rein-

forcements, while those belonging to the iteration-worst solution, but not in the global best, are negatively

reinforced. The Population-based Ant Colony Optimization algorithm (Oliveira et al., 2011) leverages a fixed

sized population of solutions, similar to Genetic Algorithms (Grefenstette et al., 1985). The graph edges

belonging to an ant’s solution that enters this population are positively reinforced; however, the components

of the solution exiting the population receive negative updates. The pheromone modifications are only per-

formed during the insertion or removal of solutions from the population; therefore, this algorithm has a O(n)

pheromone update step, instead of the conventional O(n2). Despite the reduced computational time and com-

parable performance to MMAS, the performance of the Population-based Ant Colony Optimization approach

is dependent on the size and update strategy of its population archive and the pheromone re-initialization

intervals. Such constraints restrict the algorithm’s applicability to a broad spectrum of combinatorial opti-

mization problems.

II.2.1 Decentralized Ant Colony Optimization Algorithms

Contemporary ant colony optimization algorithms are primarily centralized, and thus suffer from longer con-

vergence time and brittleness. Randall and Lewis (2002) presented a master-slave configuration to parallelize

the ACO approach, where a cluster of ant(s) acts as a slave and assigned a separate processor. After each

iteration, each cluster broadcasts its local solution to a master processor to ensure a global pheromone update.

The updated pheromone structure is communicated back to each slave to resume processing. The naive, dis-

tributed approach was successfully applied to eight TSP instances, but the achieved speed improvement was

neutralized by the high communication overhead.
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A more sophisticated, distributed architecture for the optimization technique was presented as the ACODA

(Ant Colony Optimization on a Distributed Architecture) framework and applied to the TSP (Ilie and Bădică,

2013). ACODA models the cities as software agents (node) and partitions clusters of the connected cities

across multiple computing servers. Ants are modeled as software objects that can be exchanged asyn-

chronously across the software nodes. Each node keeps information about every other city node(s) that

are directly connected to it in the traveling map. Preliminary results corroborated the scalability of ACODA,

where the computational time reduced with an increase in the number of processing servers.

Another promising method to decentralize ACO is to leverage a set of cooperating multiple ant colonies,

where each colony independently attempts to solve the same problem search space, and communicate crucial

information among themselves in order to concentrate on the promising search space. Middendorf et al.

(2000) proposed and investigated four communication policies that are imperative to the execution time and

convergence of this approach. The communication strategies were applied to an instance of TSP with 101

cities. Results show that better quality solutions can be achieved through sharing of the local best solution

among colonies that are connected in an unidirectional ring topology. An extensive empirical evaluation

for multiple ant colony parallelism with statistical analysis was conducted to investigate the role of various

factors, such as number of colonies, communication strategy and topology, and information sharing schedule

(Twomey et al., 2010).

II.3 Multi-agent Coordination Architectures

Coordination plays a very crucial role in a team of agents in order to accomplish a given task and coordi-

nation architectures provide such solutions for the heterogeneous agents through information exchanges via

sensor sharing and behavior coordination. One of the earliest fault-tolerant, distributed, and behavior-based

multi-robot coordination architectures was ALLIANCE (Parker, 1998). The software architecture leveraged

mathematically modeled motivations, such as impatience and acquiescence to motivate the robots to per-

form tasks during contingencies. The motivations enabled the robots to achieve adaptive behavior selection;

thereby, rendering the framework responsive to unexpected changes in the environments and robot failures.

Impatience and acquiescence are synonymous to exogenous (a robot detecting faults in neighboring robots)

and endogenous (a robot detecting a fault in itself) fault detection techniques, respectively (Christensen et al.,

2009). Each robot in the system was pre-programmed with a set of behaviors and the behavior activation

was triggered by the motivation models. The architecture was successfully implemented on a robot team

performing a hazardous waste cleanup task.

ASyMTRe (Automated Synthesis of Multi-robot Task solutions through software Reconfiguration) of-

fered sensor sharing across networked robots by utilizing schemas (Tang and Parker, 2005). Schemas repre-
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sent fundamental robot behaviors that are pre-programmed into robots at design time. The architecture used

four categories of schemas: (1) environmental, (2) perceptual, (3) motor, and (4) communication. Tasks were

defined as a set of required motor schemas along with task specific parameters (e.g., goal position, pushing

direction). ASyMTRe leveraged an anytime algorithm to automatically compute necessary connections be-

tween sensors and schemas across multiple robots based on information invariant theory. A few drawbacks of

ASyMTRe include its centralized implementation and its failure to address the sensor constraints introduced

when sharing sensor capabilities during task execution.

Zhang and Parker (2010) proposed the IQ-ASyMTRe (Information Quality based ASyMTRe), a dis-

tributed framework for tightly-coupled tasks that extended ASyMTRe to address the latter’s introduction of

sensor constraints during the sensor sharing process by incorporating information quality to model the sensor

constraints.

Chaimowicz et al. (2003) presented ROCI (Remote Objects Control Interface), a distributed program-

ming framework designed for multi-robot perception and control. Each robot was considered to be a compu-

tational node containing several ROCI modules (e.g., processing, sensing). The modules can be considered

as data processing blocks encapsulating specific functions. A ROCI kernel running on every robot had three

responsibilities: (1) acquiring updated information from the rest of the robots and the environment, (2) pro-

viding inter-agent communication, and (3) facilitating dynamic connections between several ROCI modules

across the robot nodes. The ROCI modules were connected using the ROCI pin architecture, a network trans-

parent wiring construct that provided abstracted communication endpoints for the modules based on data

types (similar to ASyMTRe). Complex tasks were expressed as instances of collections of ROCI modules

and accomplished by connecting the inputs and outputs of the required modules across the available robots.

The effectiveness of the ROCI architecture was successfully demonstrated by deploying a team of air and

ground robots in urban environments (Chaimowicz et al., 2005).

A highly adaptable architecture, TeamCore was presented for heterogeneous human-robot teams (Tambe

et al., 2000). Each agent (robot, agent, or person) in the team was represented by TeamCore proxy, which

comprised STEAM (a Shell for TEAMwork) (Tambe, 1997), a generic teamwork model for automating co-

ordination among agent proxies. The TeamCore proxies enabled agents to adapt to dynamic teams comprised

of multiple heterogeneous agents. Team adaptation was provided by four methods: (1) adaptive autonomy,

(2) adaptive execution, (3) adaptive monitoring, and (4) adaptive information delivery. Human developers

interacted with the agents using the Team-Oriented programming interface to provide a hierarchical mis-

sion decomposition. The interface facilitated the interaction with KARMA (Knowledgable Agent Resources

Manager Assistant), an agent resource manager that managed agents and their resources. Given the Team-

Oriented program, the agent proxies collectively derived plans to accomplish the mission tasks.
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Freedy et al. (2008) proposed the multi-agent framework, MAAF (Multiagent Adjustable Autonomy

Framework) for human-robot teams to accomplish complex, tactical missions that leveraged the TeamCore ar-

chitecture. MAAF exploits diverse capabilities of heterogeneous team agents that comprises Robots, Agents,

and Persons (RAP) and uses an organization hierarchy to capture the team agents depending on their author-

ity. Moreover, MAAF proposes to employ standard artificial intelligence models, such a Markov Decision

Process to address uncertainties in real-world missions. However, MAAF has been proposed as a concept,

with simulation results showing humans in supervisory roles.

II.4 Multi-robot System Taxonomy

A major contribution of this dissertation is i-CiFHaR, which selects the most appropriate coalition formation

algorithm(s) to apply to a given mission by leveraging influence diagrams that compare the algorithms across

multiple mission criteria. A multi-robot system taxonomy is necessary that defines multiple dimensions/fea-

tures along which algorithms can be classified and compared. This section describes some of the taxonomies

designed for multi-robot systems.

Gerkey and Matarić proposed one of the earliest and most widely cited taxonomies that was designed

for task allocation in multi-robot systems (Gerkey and Matarić, 2004). However, the taxonomy dimensions

are highly abstracted and not broad enough to classify coalition algorithms effectively. The three taxonomy

dimensions are:

1. single-task (ST) versus multi-tasks (MT) robots, depending on whether a robot can perform a single

task or multiple tasks simultaneously;

2. single-robot (SR) versus multi-robots (MR) tasks, based on whether a task requires a single robot or

multiple robots to get accomplished; and

3. instantaneous assignment (IA) versus time-extended (TE) assignments of tasks, with the time-extended

allocations requiring long term planning and scheduling for future tasks.

A more effective multi-robot systems’ taxonomy was presented that classifies situations based on com-

munication and computational capabilities (Dudek et al., 1996). The taxonomy dimensions are:

1. collective size, denoting the number of agents in the system;

2. communication range, denoting the maximum communication range between two agents;

3. communication topology, the connectivity network of the agents;

4. communication bandwidth, representing the maximum number of messages permitted;
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5. collective reconfigurability, the rate at which coalition agents can reconfigure themselves during con-

tingencies;

6. processing ability, the computation model of each robot; and

7. team composition, specifying whether coalition agents are homogeneous or heterogeneous.

A taxonomy approach providing theoretical bases for cooperative multiple robots was presented (Cao

et al., 1997). The taxonomy dimensions include:

1. group architecture, capturing the characteristics of the system agents (e.g., homogeneous, heteroge-

neous, aware, unaware) and the agents’ communication structure;

2. resolve conflicts, enabling multiple robots to coordinate and cooperate during task execution, while

sharing a common workspace;

3. cooperation origin, the agent cooperation structure (e.g., social animals, game theory);

4. learning, rendering systems adaptive to environment dynamics; and

5. geometric aspect (e.g., path planning, group formations).

A task oriented multi-robot taxonomy was proposed that was motivated by three task dependent factors

(Lau and Zhang, 2003). The dimensions are: (1) task demands, (2) resource constraints, and (3) profit

objective. When the agent resources are constrained or limited, then all the tasks cannot be accomplished;

therefore, the best sub-set of tasks needs to be selected that maximizes system utility.

A hierarchical taxonomy was proposed that comprised of two major dimensions (coordination and sys-

tem) at the top level (Farinelli et al., 2004). The coordination dimension, which captures the degree of agent

cooperation is further divided into three classes:

1. knowledge, capturing agent awareness;

2. coordination, required in tightly coupled tasks; and

3. organization level, denoting the centralized or distributed robot architecture.

The system dimension is divided into four classes:

1. communication topology;

2. team composition, denoting agent types;
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3. system architecture, representing system’s level of responsiveness towards environmental changes; and

4. team size.

While these taxonomies exist, they do not provide a comprehensive taxonomy capturing a board set of

axes/dimensions for the multi-robot task allocation problem. Service and Adams (2010) presented such a

taxonomy with dimensions that were partitioned into four major relation-based groups: (1) agent, (2) task,

(3) domain, and (4) algorithm. Additionally, Service and Adams classified a number of coalition formation

algorithms according to the taxonomy dimensions. This broad set of dimensions motivated the use of Service

and Adams’s taxonomy for classifying the coalition formation algorithms for the research presented in this

dissertation. The taxonomy dimensions are:

1. agent orientation, describing whether an agent is group-rational or self-interested;

2. agent heterogeneity, denoting the types of agents (e.g., homogeneous, heterogeneous);

3. agent capability, representing whether the capabilities of an agent are described in terms of resources

(e.g., sonars, lasers, camera) or services/roles (e.g., foraging, watching, box-pushing);

4. agent awareness, the ability of an agent to understand other team agents and their activities;

5. agent structure, the agents’ connectivity network;

6. inter-task constraint, describing whether tasks have inter-dependencies, such as precedence ordering;

7. task preemption, denoting whether an algorithm allows the preemption of an ongoing task upon the

arrival of a high priority task;

8. task requirement, describing the requirements based on a resource/service model;

9. intra-task constraint, denoting that tasks have duration times and completion deadlines;

10. task coupling, the degree of coordination required by the team to accomplish a given task;

11. performance criterion, the objective function that needs to be optimized to find quality task coalition

solutions;

12. communication requirements, denoting the bounds on the number of inter-agent messages;

13. task allocation, describing whether an instantaneous or time-extended task assignment is required;

14. spatial constraints between real-world robots and tasks;
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15. overlapping coalition, requirement of overlapping teams to reduce resource losses;

16. algorithm technique, describing whether the coalition formation algorithm employs a greedy, approxi-

mation, or an auction-based approach to calculate task coalitions;

17. algorithm implementation, denoting whether the system agents calculate task coalitions in a distributed

fashion or a single, central agent computed the coalitions (centralized technique); and

18. algorithm constraints, such as constraints on coalition sizes.
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CHAPTER III

The Hybrid Ant Colony Optimization Algorithms

This chapter introduces two hybrid swarm based search algorithms, called the sA-ANT and sA-ANT* (simulated

Annealing-inspired ANT colony optimization) that leverage novel pheromone update policies, which deviate

significantly from the conventional techniques in order to address the search stagnation drawback of existing

state-of-the-art ACO algorithms. Search stagnation in ACO approaches lead to sub-optimal solutions. The

pheromone update methodology is an important aspect in any ACO approach, because it incorporates positive

reinforcements of the promising regions in the search space. Such positive reinforcements lead to incremental

learning that guides the search process towards better solutions, as an ACO algorithm progresses.

This dissertation develops two pheromone depositing policies by integrating the simulated annealing

technique that result in enhanced search exploration during the initial phase of the algorithm, followed by

improved exploitation during the later phases. The effectiveness of the developed ant algorithms has been

demonstrated by successful application to three combinatorial optimization problems, the Traveling Salesman

Problem, maximal clique problem, and the multi-agent coalition formation problem. A distributed variant of

sA-ANT* was also developed and applied for the multi-robot coalition formation problem.

III.1 The sA-ANT algorithm

sA-ANT employs Dynamic Searching, where a dynamically modulating number of ants explore a larger search

area during the initial algorithm iterations and gradually converge towards good solutions over time; thereby,

effectively resulting in a balanced search exploration and exploitation. The pheromone update policies of the

state-of-the-art ACO algorithms (Dorigo and Gambardella, 1997; Ren et al., 2008; Stutzle and Hoos, 2000)

leverage either the iteration-best or the current global-best solution for updating the pheromones. However,

positive reinforcements by the single best solution, along with the exponential pheromone evaporation quickly

results in search stagnation, i.e., the search space surrounding these current best solutions are only exploited

in later iterations, which results in a sub-optimal solution. sA-ANT incorporates the simulated annealing

technique to dynamically modulate the number of ants that deposit pheromones, which increases exploration

during the initial iterations, and exploitation during the later phases. Moreover, this dynamic pheromone

deposit scheme increases the likelihood of generating higher quality solutions, without stagnating in local

optima.

Simulated annealing (Kirkpatrick et al., 1983) is an iterative, stochastic search method for optimization

problems and is motivated by annealing in metallurgy, where metals are heated and cooled in a controlled
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fashion in an attempt to increase their strength. The simulated annealing algorithm begins with an initial

random solution, St−1 in the search space, followed by the random selection of a new solution, St in the

neighborhood of the previous solution during every iteration. The new random solution is accepted with a

probability Pr(St−1,St ,Temp)1, which is defined as,

Pr(St−1,St ,Temp) =

 1 f (St)> f (St−1)

exp−∆E/Temp otherwise,
(III.1)

where ∆E = f (St−1)− f (St) is the energy difference in the solution qualities; f (x) : x→R is the function that

provides the solution quality; and Temp is the annealing temperature. The annealing temperature is initialized

to a high value and is lowered in a controlled fashion using the annealing schedule after each iteration. The

high annealing temperature allows lower quality solutions to be accepted stochastically initially; however,

with the gradual lowering of the temperature, more poor solutions are discarded. The high initial temperature

allows the search process to avoid local optima and to widely explore the search space. Despite allowing a

wide exploration of the search space, the simulated annealing technique’s randomness suffers from longer

computational time for solution convergence.

sA-ANT is presented in Algorithm 1. The algorithm starts by initializing the pheromone levels of every

edge in a search graph, G(V,E,W ) to an initial value, τ0. During each iteration of the algorithm, a set of ants

generates a collection of nAnts solutions. Each ant, φ starts with a random graph node, random node ∈ V

and incrementally generates its solution, Sφ by stochastically adding graph nodes (next node) to Sφ , until the

ant solution satisfies the given problem. During each incremental addition, the φ th ant selects the most appro-

priate graph node, next node to add to its partial coalition Sφ in accordance with the transitional probability,

which is defined as

Pφ

current, j =


τα

current, j×η
β

current, j

∑ j∈N current τα
current, j×η

β

current, j

if j ∈N current

0 otherwise,
(III.2)

where α , β are the ACO parameters that control the impact of the pheromone (τ) and heuristic (η) in-

formation, respectively; and N current represents the neighboring nodes of the current graph node, current.

The original sA-ANT algorithm (Sen and Adams, 2013a), developed for the multi-robot coalition formation

problem, leveraged a very aggressive transitional probability, similar to the Ant Colony System (Dorigo and

Gambardella, 1997) that was defined as:

R∗j = argmax
R j∈N current\Sφ

(τα
current, j×η

β

current, j), (III.3)

1Pr(St−1,St ,Temp) is defined for a maximization problem

25



where R∗j is the next node in the graph that is selected in a greedy fashion; α , β are the ACO parameters;

τcurrent, j and ηcurrent, j denote the pheromone and heuristic values, respectively for the current graph node,

current. The disadvantage of this approach is that the search becomes restricted very quickly and results in

poor search exploration. Therefore, the current sA-ANT algorithm (Algorithm 1) leverages Equation III.2

in order to enhance the search exploration, as used in contemporary ACO approaches, in addition to the

integration of the simulated annealing technique.

At the end of each iteration, all the ant solutions generated during the present iteration are evaluated for

pheromone updates. Each ant, φ calculates the acceptance probability (Prφ ) of its solution, Sφ , which is

calculated for a maximization problem as,

Prφ =

 1 f (Sφ )> f (Sglobal best)

exp∆Eφ /anneal temperature otherwise,
(III.4)

where ∆Eφ = f (Sφ )− f (Sglobal best), Sglobal best is the current global best solution, and anneal temperature

is the annealing temperature. Similarly, Prφ for a minimization problem is derived as,

Prφ =

 1 f (Sφ )< f (Sglobal best)

exp∆Eφ /anneal temperature otherwise,
(III.5)

where ∆Eφ = f (Sglobal best)− f (Sφ ), and anneal temperature is the annealing temperature. Based on the

acceptance probability, Prφ , the φ th ant updates or positively reinforces the pheromones of all the members

of its solution, Sφ .

When an ant generates a better solution than the current global best solution, then the ant always updates

the pheromone levels of its solution’s members with probability 1; thereby, ensuring that the members of the

most current global best solution are reinforced. Otherwise, if the quality of an ant’s solution is lower than the

current global best solution, then this solution is accepted with an acceptance probability value, Prφ less than

1, which is proportional to the energy difference, ∆Eφ and the annealing temperature, anneal temperature.

During the initial iterations, the annealing temperature is high; therefore, almost all ant solutions are accepted

owing to their high probabilities. This high annealing temperature facilitates rapid exploration of a large

search space, without stagnating in a local optima. The annealing temperature is lowered in a controlled

fashion with every iteration resulting, over time in only the acceptance of high quality solutions and enhanced

exploitation. The φ th ant updates the pheromones of all its solution members according to:
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Algorithm 1 The sA-ANT algorithm

Input: α; β ; Evaporation rate, ρ; Number of iterations, nIter; Number of ants, nAnts; Initial annealing
temperature, Temp0; Annealing schedule rate, γ; AMG- Adjacency Matrix of graph, G(V,E,W ); Number
of nodes in graph, n

Output: Anytime solution, Sglobal best
1: Initialize pheromone on each graph edge, Ei j ∈ E for edge based transition strategy OR each graph node,

Vi ∈V for vertex based transition strategy
2: iteration solution list← /0 // Stores all ant solutions during an iteration
3: Siteration best ← /0 // Iteration-best solution
4: Sglobal best ← /0 // Global-best solution
5: Sφ ← /0 // φ th-ant solution
6: number o f ants depositing← 0 // Number of ants depositing pheromones
7: anneal temperature← Temp0 // Simulated annealing temperature
8: for iterations = 1 to nIter do
9: for φ = 1 to nAnts do

10: random node← rand(1,n)
11: // Each ant incrementally creates a solution, Sφ

12: Sφ ← random node
13: current← random node
14: while (!IsSolutionComplete(Sφ )) do
15: next node←V ′j ∈V \Sφ

16: current← next node
17: Sφ ← Sφ ∪next node
18: end while
19: Update Siteration best // Modify the iteration best solution
20: iteration solution list← iteration solution list ∪{(φ ,Sφ )}
21: Sφ ← /0
22: end for
23: Update Sglobal best // Modify the global best solution
24: Evaporate pheromones of all graph edges
25: for i = 1 to iteration solution list.size() do
26: Prφ ← CalculateAcceptanceProbability(iteration solution list[i])
27: acceptφ ← Prφ > rand(0,1)
28: if acceptφ then
29: Update pheromone trails using this ant solution
30: number o f ants depositing← number o f ants depositing+1
31: end if
32: end for
33: if number o f ants depositing == 0 then
34: Update pheromone trails using Sglobal best
35: end if
36: Pheromone Bounding within τmax and τmin
37: iteration solution list← /0
38: anneal temperature← anneal temperature× γ // Lowering of annealing temperature
39: number o f ants depositing← 0
40: end for
41: Return Sglobal best
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τi j =

 τi j +Prφ ×ψ (i, j) ∈ Sφ

0 otherwise,
(III.6)

where τi j is the pheromone level of the graph edge and ψ is the amount of pheromone deposited by φ th ant.

For instance, ψ = 1
Lφ

for the TSP, where Lφ is the length of the tour generated by the φ th ant. Since, the

acceptance of an ant’s solution is probabilistic, the amount of pheromone deposited is proportional to the ac-

ceptance probability. During the initial algorithm phases, a poor solution, even when accepted stochastically

is allowed to deposit a large amount of pheromones on its members. However, during the later phases, as

the annealing temperature is reduced, despite a stochastic selection of such a poor solution, the amount of

pheromone deposited will be curtailed substantially based on the solution’s acceptance probability.

An additional pheromone deposit is performed occasionally on the members of Sglobal best , which ensures

that the respective members of the current global best solution are reinforced, even when no ant solution

is stochastically selected during a particular iteration. Finally, the pheromone levels of the graph edges are

bounded within an upper and lower threshold, τMax and τMin, as defined for the Max-Min Ant System (Stutzle

and Hoos, 2000). The bounding of pheromones avoids both excessive depositing and the evaporation of the

pheromones.

III.2 The sA-ANT* algorithm

The sA-ANT* algorithm incorporates a completely different pheromone update policy than sA-ANT’s update

policy. sA-ANT* draws cues from evolutionary algorithms, specifically genetic algorithms that emulate the

natural evolution through selection, crossover, and mutation (Grefenstette et al., 1985). Genetic algorithms

leverage a fixed sized population of candidate solutions, each consisting of specified properties. During

each iteration, the candidate solutions are evaluated based on quality, and the superior solutions are proba-

bilistically selected to generate new child candidate solutions through crossover and mutation. The pool of

candidate solutions are iteratively refreshed to accommodate better solutions over time. However, a major

shortcoming of genetic algorithms lies in the population size, which heavily affects their performance and

requires careful tailoring depending on the problem domains.

sA-ANT* maintains a repository of good solutions whose size is dynamically modulated during the search

process. Each ant solution has an associated fitness value that is computed using the simulated anneal-

ing mechanism. Unlike sA-ANT, where a dynamically modulating number of ants are permitted to deposit

pheromones, sA-ANT* probabilistically selects the single best fit ant solution to deposit pheromone based on

its solution quality. Furthermore, the algorithm permits quality based stochastic forgetting of poor solutions

in the repository. Equipped with a high initial annealing temperature and a slow annealing schedule, the
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algorithm avoids stagnating in a local optima; thereby, addressing the undesirable search stagnation problem

commonly encountered with existing ACO approaches.

The sA-ANT* algorithm is presented in Algorithm 2. At the end of each iteration, the current iteration-

best solution is inserted into the repository and is characterized by a fitness or quality metric, which is defined

as the acceptance probability and is computed using the Simulated Annealing technique (see Equations III.4

and III.5). The iteration-best solution is only inserted into the repository, provided it is not in the current

repository (i.e., only unique solutions are maintained in the repository).

At the end of each iteration, sA-ANT* performs two procedures. First, a forgetting process is performed,

where bad solutions are eliminated stochastically from the repository based on their quality (acceptance prob-

abilities) with respect to the current global best solution. Second, the acceptance probabilities for the remain-

ing solutions are updated based on the current global-best solution, and the simulated annealing temperature

and schedule. The forgetting of poor solutions serves two crucial objectives: (1) it prevents probabilistic

selection of poor solutions for updating pheromones over time, and (2) prohibits the continuous increase in

the repository size. Thus, sA-ANT*’s repository is dynamically modulated. Finally, only the single best fit

ant solution from the repository is selected stochastically for depositing pheromones based on each solution’s

acceptance probability. sA-ANT* begins with a high annealing temperature; therefore, during the initial al-

gorithm phase, all the ant solutions have very high and mostly equivalent fitness qualities. This mechanism

allows the flexibility of using even a poor solution during the initial iterations, which avoids constraining the

search based on the current global or iteration best solution. Due to the gradual annealing schedule, the search

exploration is enhanced by prohibiting the concentration of pheromone levels of the graph edges belonging

to the single best ant solution. As the annealing temperature gradually decreases, over time only good solu-

tions in the repository will have higher acceptance probabilities; thereby, increasing their likelihood of being

stochastically selected for pheromone deposits.

III.3 Modeling Appropriate Annealing Parameters

The performance of sA-ANT* and sA-ANT, like any other existing ACO algorithm is dependent on multiple

ACO parameters. A number of existing ACO algorithms have identified good ranges for these ACO param-

eters (e.g., α , β , ρ); therefore, this dissertation leveraged these existing parameter values. However, the

performance of both sA-ANT and sA-ANT* depends on their integrated simulated annealing mechanism, thus

models for calculating good approximate values of the annealing parameters (e.g., initial annealing tempera-

ture, annealing schedule, γ) are presented in order to ensure that both hybrid algorithms can be applied to a

wide range of optimization problems.
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Algorithm 2 The sA-ANT* algorithm

Input: α; β ; Evaporation rate, ρ; Number of iterations, nIter; Number of ants, nAnts; Initial annealing
temperature, Temp0; Annealing schedule rate, γ; AMG- Adjacency Matrix of graph, G(V,E,W ); Number
of nodes in graph, n

Output: Anytime solution, Sglobal best
1: Initialize pheromone on each graph edge, Ei j ∈ E for edge based transition strategy OR each graph node,

Vi ∈V for vertex based transition strategy
2: Repository0← /0 // Dynamically modulated repository of solutions
3: Siteration best ← /0 // Iteration-best solution
4: Sglobal best ← /0 // Global-best solution
5: Sφ ← /0 // φ th-ant solution
6: anneal temperature← Temp0 // Simulated annealing temperature
7: for iterations = 1 to nIter do
8: for φ = 1 to nAnts do
9: random node← rand(1,n)

10: // Each ant incrementally creates a solution, Sφ

11: Sφ ← random node
12: current← random node
13: while (!IsSolutionComplete(Sφ )) do
14: next node←V ′j ∈V \Sφ

15: current← next node
16: Sφ ← Sφ ∪next node
17: end while
18: Update Siteration best // Modify the iteration best solution
19: Sφ ← /0
20: end for
21: Update Sglobal best // Modify the global best solution
22: Evaporate pheromones of all graph edges
23: Priteration best ← CalculateAcceptanceProbability(Siteration best )
24: // Check for duplicate solutions in repository
25: if !IsSolutionPresentInRepository(Siteration best ) then
26: Repositoryiterations← Repositoryiterations−1∪{(Siteration best , Priteration best)}
27: end if
28: //Stochastic Forgetting of bad solutions from Repository
29: for k = 1 to Repositoryiterations.size() do
30: Repositoryiterations[k].Probability← UpdateAcceptProbability(Repositoryiterations[k].Solution)
31: if Repositoryiterations[k].Probability < rand(0,1) then
32: Delete Repositoryiterations[k]
33: end if
34: end for
35: Select S+ ∈ Repositoryiterations // Stochastic solution selection for pheromone update
36: Update pheromone trails using S+

37: Pheromone Bounding within τMax and τMin
38: anneal temperature← anneal temperature× γ // Lowering of annealing temperature
39: end for
40: Return Sglobal best
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Definition 3. Let the initial annealing temperature be Temp0, and Sglobal best and Sapprox be the best known

global solution and an approximate solution, respectively for a given optimization problem. The acceptance

probability of an approximate solution with respect to the best known problem solution is given by Equations

III.4 and III.5. An ideal initial value of Temp0 permits the acceptance probability of Sapprox with respect

to Sglobal best to be equal to an admission ratio, θ . Therefore, Temp0 =
Sglobal best−Sapprox

lnθ
for a minimization

problem, and Temp0 =
Sapprox−Sglobal best

lnθ
for a maximization problem.

Lemma 1. Let the number of algorithm iterations be nIter, the simulated annealing schedule rate be γ , and

the starting annealing temperature be Temp0. Then γ = expln(Temp−1
0 )/nIter.

Proof. The annealing schedule rate is derived by constraining the annealing temperature to be reduced to 1 at

algorithm completion. The gradual lowering of the annealing temperature is defined by Temp0× γnIter = 1,

which leads to γ = expln(Temp−1
0 )/nIter.

Example 1. Consider a TSP instance eil51 (Reinelt, 2014) that defines a TSP of 51 cities. Let Sapprox =

600 be an approximate tour length solution for the problem, as computed by the nearest neighbor algorithm.

The best known solution for this instance is Sglobal best = 426 (obtained from the TSPLIB library (Reinelt,

2014)). Assume an admission ratio, θ = 0.95. Therefore, from Definition 1, the initial annealing temperature

is calculated as, Temp0 = 426−600
ln0.95 = 3392.2. Once the initial temperature is calculated, its corresponding

annealing schedule is derived using Lemma 1 as, γ = expln(3392.2−1)/5000 = 0.998, assuming the number of

algorithm iterations is 5000.

III.4 Experimental Design and Results

The performance of sA-ANT* and sA-ANT is demonstrated for three classes of optimization problems that

include a minimization problem, the Traveling Salesman Problem, and two maximization problems: maximal

clique and multi-agent coalition formation.

III.4.1 Experimental Design for the Traveling Salesman Problem

The performance of the sA-ANT* and sA-ANT algorithms for the TSP was compared to three state-of-the-art

ACO algorithms that leverage a single ant depositing policy, similar to sA-ANT*. The three algorithms are:

Max-Min Ant System (MMAS) (Stutzle and Hoos, 2000), Ant Colony System (ACS) (Dorigo and Gambardella,

1997), and Best-Worst Ant System (BWAS)2 (Cordon et al., 2000). The standard ACO software package,

ACOTSP.V1.03 (ACO-Software, 2014) provides implementations for several ACO algorithms, including the

MMAS, ACS, and BWAS. However, the MMAS and ACS algorithms were also implemented separately in C++

2BWAS leverages two ants to deposit pheromones, the iteration best and the iteration worst ants
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using the Qt framework on an Ubuntu machine. ACOTSP.V1.03’s implementations of the MMAS, ACS, and

the BWAS use several integrated methods, such as local search (e.g., 2-OPT, 3-OPT) techniques to address

any search stagnation. Since, sA-ANT* and sA-ANT seek to maximize the search exploration capability of

ACO approaches without leveraging any such techniques, the local searches were disabled for all three ACO

algorithms. The Qt-implementation of the MMAS and ACS did not incorporate any local search mechanisms

for the said reasons.

The TSPLIB library (Reinelt, 2014) provides several symmetric TSP instances with various city counts in

XML format along with their optimal solutions. A TSP instance from TSPLIB has the format “nameXXX”,

where name is the instance name, while XXX indicates the number of cities in the instance. Five TSP

instances (bays29, eil51, eil76, kroA100, and d198) were used for the experiments, with the number of

cities ranging from 29 to 198. sA-ANT* and sA-ANT were compared to both the Qt-implementation and

ACOTSP.V1.03’s implementation of the MMAS and ACS; however, only ACOTSP.V1.03’s implementation

of BWAS was used for the experiments.

A number of parameters required careful tuning for the best performance of each algorithm. The parame-

ters of each of the three ACO algorithms (for both the Qt-implementation and ACOTSP.V1.03’s implementa-

tion) were set to values as defined in their respective original implementations. The parameters α and β were

set to 1.0 and 2.0 for each of the three algorithms in accordance with their original implementations. The

remaining parameters for the MMAS were set as defined in its original implementation (Stutzle and Hoos,

2000), with m = n, where m is the number of ants and n is the number of cities in the problem instance,

evaporation rate, ρ= 0.98, ρbest = 0.05 for the calculation of τmin, and τ0 =
1

(1−ρ)×Lnn
, where Lnn is the tour

length generated by the nearest-neighbor heuristic. The ACS algorithm parameters were set according to the

original publication (Dorigo and Gambardella, 1997), with ρ = 0.9, q0 = 0.9, m = 10, and τ0 = (n×Lnn)
−1.

The parameter settings for the BWAS were ρ = 0.8, q0 = 0.8, m = 25, and τ0 = n
Lnn

, based on its original

implementation (Cordon et al., 2000). The MMAS algorithm is currently the most efficient ACO algorithm;

therefore, the parameters for sA-ANT* and sA-ANT were chosen to match those of MMAS, with α = 1.0,

β = 2.0, ρ = 0.98, m = n, ρbest = 0.05, and τ0 = 1
(1−ρ)×Lnn

. The same number of tours were constructed

for each of the five algorithms, which was fixed to 10000×n, where n is the number of cities in the instance

and a candidate list of size 20 was leveraged for all the algorithms, as defined in the original MMAS imple-

mentation (Stutzle and Hoos, 2000). Moreover, sA-ANT* and sA-ANT require annealing parameters. The

initial annealing temperature (Temp0) and annealing schedule (γ) during every trial were calculated based

on Definition 1 and Lemma 1 with admission ratio, θ = 0.95 and Sapprox = Lnn. Since ACO algorithms are

stochastic in nature, all algorithms were run 25 times and the means and standard deviations were averaged

over all trials. Two hypotheses are analyzed for the TSP experiments.
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• H1 : The mean tour lengths of sA-ANT* and sA-ANT will be significantly lower than the remaining

three ACO algorithms.

• H2 : sA-ANT* and sA-ANT will exhibit higher search exploration capabilities than MMAS.

III.4.1.1 Experimental Results

The hybrid algorithms and the three ACO algorithms for the TSP experiments were compared based on (1)

Generated tour lengths, and (2) Search exploration capability.

III.4.1.1.1 Tour Lengths

The mean tour lengths and standard deviations for each ACO algorithm across the five TSP instances over 25

trial runs are shown in Table III.1. Both sA-ANT* and sA-ANT outperformed all other algorithms consistently

over all instances by providing the lowest mean tour lengths and the minimum standard deviation. MMAS

performed third best. The results in Table III.1 demonstrate that for the four problem instances with city

counts ranging from 29 to 100, sA-ANT* successfully generated tour lengths within 0.15% of the optimal

solution, and within 0.86% of the optimal tour for the largest instance with 198 cities. These percentage

deviations are calculated by subtracting the optimal tour lengths for each TSP instance from the mean tour

lengths provided by sA-ANT* and dividing the result with respective optimal tour lengths that are obtained

from the TSPLIB library (Reinelt, 2014).

The tour lengths generated by the Qt-implementations of MMAS and ACS were either better or on par with

those computed by ACOT SP.V 1.03’s MMAS and ACS; therefore, the statistical tests were conducted using

the results from the Qt-implementation of MMAS and ACS. Shapiro-Wilk Normality Test was conducted to

determine the normality distribution of the results over the 25 trials. Since the distribution was not normal,

a Kruskal-Wallis one-way analysis of variance determined that there is a significant main effect of algorithm

on the generated tour lengths (χ2 = 14.86,d f = 3, p < 0.001). Individual comparisons were performed using

the Wilcoxon rank-sum test, and the results are provided in Table III.2. sA-ANT* generated significantly

shorter tour lengths for all five TSP instances, while sA-ANT generated significantly shorter tour lengths for

all the problem instances, but eil51. Compared to sA-ANT, sA-ANT* generated shorter tour lengths for all the

instances, except bays29, where both computed the optimal tours. The standard deviations of the tour lengths

generated by sA-ANT* were the smallest when compared to remaining algorithms.
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Problem Qt-Implementation ACOTSP.V1.03
Instances sA-ANT* sA-ANT MMAS ACS MMAS ACS BWAS

bays29 2020 2020 2021.9 2022 2021.9 2022.1 2023.1
Opt: 2020 (0) (0) (3.46) (3.98) (3.5) (3.8) (5.1)

eil51 426.7 427.3 427.4 428.3 427.6 428.1 429.4
Opt: 426 (0.85) (0.98) (1.42) (2.93) (1.5) (2.5) (3.6)

eil76 538.3 538.72 539.3 541.6 539.6 541.5 543.3
Opt: 538 (0.98) (1.6) (1.6) (3.6) (2.2) (3.9) (3.8)

kroA100 21295.5 21296.52 21330.2 21405.3 21330.3 21379.3 21405.4
Opt: 21282 (28.0) (32.1) (49.2) (145.5) (43.2) (160.3) (152.6)

d198 15919.3 15937.48 15984.6 15988.9 15993.8 16127.9 16276.5
Opt: 15780 (44.3) (59.3) (55.9) (82.1) (58.8) (113.9) (226.9)

Table III.1: Mean tour lengths for the Traveling Salesman Problem instances. The standard deviation is
presented in parenthesis. The best solutions are highlighted in bold.

Problem
Instances

sA-ANT*
vs MMAS

sA-ANT vs
MMAS

sA-ANT*
vs ACS

sA-ANT vs
ACS

sA-ANT*
vs BWAS

sA-ANT vs
BWAS

bays29
W = 400.0,
z =−2.8,
p < 0.01

W = 400.0,
z =−2.8,
p < 0.01

W = 387.5,
z =−2.5,
p < 0.01

W = 387.5,
z =−2.5,
p < 0.01

W = 458.5,
z =−2.9,
p < 0.01

W = 458.5,
z =−2.9,
p < 0.01

eil51
W = 419,
z =−2.2,
p = 0.014

W = 300,
z =−0.2,
p = 0.39

W = 432,
z =−2.4,
p < 0.01

W = 306.5,
z =−1.3,
p = 0.4

W = 458,
z =−2.9,
p < 0.01

W = 380.5,
z =−1.3,
p < 0.01

eil76
W = 480,
z =−3.7,
p < 0.01

W = 442,
z =−2.8,
p < 0.01

W = 533,
z =−4.5,
p < 0.01

W = 491,
z =−3.73,
p < 0.01

W = 570,
z =−5.3,
p < 0.01

W = 550,
z =−4.9,
p < 0.01

kroA100
W = 432,
z =−2.5,
p < 0.01

W = 428,
z =−2.5,
p < 0.01

W = 538.5,
z =−4.5,
p < 0.01

W = 540.3,
z =−4.6,
p < 0.01

W = 501,
z =−3.8,
p < 0.01

W = 499,
z =−3.8,
p < 0.01

d198
W = 512,
z =−3.86,
p < 0.01

W = 459.5,
z =−2.9,
p < 0.01

W = 475.5,
z =−3.1,
p < 0.01

W = 428.5,
z =−2.2,
p < 0.01

W = 622,
z =−6.0,
p < 0.01

W = 618,
z =−5.93,
p < 0.01

Table III.2: Wilcoxon Rank Sum test results for comparing tour lengths generated by the algorithms. p <
0.05 is significant, while p < 0.01 is highly significant.

III.4.1.1.2 Search Exploration Capability

The efficiency of each ACO algorithm is determined by the effectiveness of its search capability. The

pheromone update policies of sA-ANT* and sA-ANT incorporate simulated annealing and seek to enhance

the search exploration capability of the algorithms. A key metric that highlights the search exploration capa-

bility is λ−branching factor (b f actor(r)) of a node, r (Gambardella et al., 1995), which is defined as

b f actor(r)λ =
|N r |

∑
s=1

τrs > (min(τr)+λ × (max(τr)−min(τr))), (III.7)
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where λ ∈ {0.04,0.06,0.08} is a constant, τrs is the pheromone amount of the edge that connects nodes r

and s ∈N r, N r represents the neighbors of node r, while min(τr) and max(τr) denote the minimum and

maximum pheromone values of all the edges connected to node r. The average branching factor is calculated

as ∑
n
r=1 b f actor(r)λ

2×n , where n is the number of cities in the graph. The extensiveness of the search exploration of

sA-ANT* and sA-ANT was compared only to the MMAS algorithm, because MMAS performed best among the

previously existing ACO algorithms, and the same pheromone bounding mechanism is leveraged to address

search stagnation, thereby providing a fair comparison.

sA-ANT and sA-ANT* provide superior search exploration capability over MMAS on TSP instances, eil51

(Fig. III.1), eil76 (Fig. III.2), kroA100 (Fig. III.3), and d198 (Fig. III.4). MMAS enters search stagnation,

which is identified by the average branching factor of 1.00 after ≈ 300 iterations for the eil51, eil76, and

kroA100 instances. Similarly, MMAS enters stagnation at ≈ 500 iterations for the d198 instance. sA-ANT*

continues to search, even beyond 1000 iterations.

Compared to sA-ANT*, the average branching factor of sA-ANT remains very high for a longer duration

of the algorithm. Unlike sA-ANT*, which leverages a stochastically selected single best fit ant to deposit

pheromones in every iteration, sA-ANT dynamically modulates the number of ants that deposit pheromones.

During the initial phase of the algorithm, a larger number of ants are used to deposit pheromone that facili-

tates higher search exploration; however, with the gradual decrease in the annealing temperature, the number

of ants responsible for depositing pheromones is reduced, thereby shifting the focus to search exploitation.

Figure III.5 demonstrates that the number of ants depositing pheromones for three TSP instances are dynami-

cally modulated during the progress of the algorithm, which prevents sA-ANT from stagnating in local optima

during the initial search phase.
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Figure III.1: sA-ANT, sA-ANT*, and MMAS are compared based on the Average branching factor vs. itera-
tions for TSP instance, eil51 (λ = 0.04).
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Figure III.2: sA-ANT, sA-ANT*, and MMAS are compared based on the Average branching factor vs. itera-
tions for TSP instance, eil76 (λ = 0.04).
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Figure III.3: sA-ANT, sA-ANT*, and MMAS are compared based on the Average branching factor vs. itera-
tions for TSP instance, kroA100 (λ = 0.04).
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Figure III.4: sA-ANT, sA-ANT*, and MMAS are compared based on the Average branching factor vs. itera-
tions for TSP instance, d198 (λ = 0.04).
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Figure III.5: Illustration of the dynamically modulated number of ants depositing pheromones for sA-ANT
for three TSP instances.

III.4.1.2 Discussion of TSP results

sA-ANT* generated significantly shorter tour lengths for all the problem instances with city counts ranging

from 29 to 198, while sA-ANT computed significantly shorter tour solutions for four TSP instances; thereby,

supporting H1. The results of sA-ANT* and sA-ANT show that both algorithms effectively address the search

stagnation drawback of existing ACO algorithms; thereby, supporting hypothesis, H2. Both the hybrid algo-

rithms maintained a high exploration quotient for a higher number of iterations, when compared to MMAS,

the best known prior ACO approach.

III.4.2 Experimental Design for Multi-agent Coalition Formation problem

The sA-ANT* and sA-ANT algorithms were compared with two ant-based coalition formation algorithms (Ren

et al., 2008; Xia et al., 2004). The Ant-Coalition algorithm (Ren et al., 2008) improved upon an existing ACO-

based coalition formation approach (Xia et al., 2004), which is henceforth termed as Ant-Coalition-Basic.

The number of robots was set to n = 50,100,150,200 for each mission scenario. Ten mission scenarios were
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randomly generated, each comprised of a single task requiring five resource types. The resource requirements

remained fixed for a particular mission across all the trials. The first mission scenario began with each

resource type value set to 15. Each scenario increased the resource type values by 5, to a maximum of 60 for

each task requirement value during the final mission. The ACO-based algorithms are non-deterministic, thus

the experimental results were averaged over all trials of the same mission.

Twenty five trials of each mission scenario were conducted for each algorithm at each value of n. Each

trial for a particular mission and n value used the same task requirements. The robot locations, task locations

and robot capabilities were randomly generated for a particular mission trial and n value, but remained the

same across all the algorithms. The task and robot locations were generated to lie within a 5000m x 5000m

area. The task reward or utility was assigned to U(Tj) = 5000×∑
5
i=1 T R ji in order to maintain uniformity

across all missions, trials, and algorithms (Tj is the jth task and T R ji is the ith resource requirement of jth

task). The utility of a coalition, Sc is defined as V (Sc) = U(Tj)−RE(Sc)−CC(Sc)−TC(Sc), where U(Tj)

is the task reward, RE(Sc) is the resource expenditure of the coalition, CC(Sc) is the communication cost for

the coalition members, and TC(Sc) is the total travel distance for the coalition.

Multiple parameters require careful setting in order to achieve better performance. The first set of param-

eters (α , β , ρ , ε) that regulate the performance of ACO algorithms were set to α=1, β=2, ρ=0.99, ε=0.005,

nAnts=50, and nIter=2000 for sA-ANT, sA-ANT*, and Ant-Coalition, as defined in the original implemen-

tation of the Ant-Coalition algorithm (Ren et al., 2008). The parameter settings for Ant-Coalition-Basic

included α=1, β=2, ρ=0.90, and nAnts=10, along with two additional parameters for its inner hormone fac-

tor that were set to gmax = 10 and Ncircles = 30 according to its original implementation (Xia et al., 2004).

The values for these parameters were consistent with the prior experiments (Ren et al., 2008; Xia et al., 2004)

in order to ensure a valid comparison with the prior results.

Four hypotheses are considered for the TSP experiments.

• H3 : sA-ANT* and sA-ANT will exhibit a significantly higher search exploration capabilities.

• H4 : sA-ANT* and sA-ANT will generate significantly higher quality coalitions owing to their greater

search exploration capability, compared to Ant-Coalition and Ant-Coalition-Basic.

• H5 : sA-ANT* and sA-ANT will generate coalitions that with significantly lower traveling cost for the

coalition members, compared to Ant-Coalition and Ant-Coalition-Basic.

• H6 : sA-ANT* and sA-ANT will require higher computational time, compared to Ant-Coalition and

Ant-Coalition-Basic.
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III.4.2.1 Experimental Results

Four primary metrics were leveraged to compare the results: (1) Unique Coalition Counts, (2) Coalition

quality, (3) Traveling distance, and (4) Computational time.

III.4.2.1.1 Number of Unique Coalitions

The number of unique coalitions generated by each algorithm is an important metric that implicitly indicates

the extensiveness of an algorithm’s search capability. Figure III.6 shows the mean number of unique coali-

tions generated by each algorithm as the number of robots increases. Both sA-ANT and sA-ANT* generated

a significantly higher number of unique coalitions than the Ant-Coalition and the Ant-Coalition-Basic algo-

rithms, as n increased. A Kruskal-Wallis one-way analysis of variance determined that there is a significant

main effect of algorithm on the number of unique coalitions generated (χ2 = 50.95, d f = 3, p < 0.001). Indi-

vidual comparisons were performed using the Wilcoxon rank-sum test. When compared to the Ant-Coalition

and Ant-Coalition-Basic, the number of coalitions generated by both sA-ANT and sA-ANT* was significantly

higher for n = 50, 100, 150, 200 (Table III.3); thereby, indicating that the presented variants of sA-ANT

exhibit more efficient exploration.

Number
of Robots

sA-ANT* vs
Ant-

Coalition

sA-ANT vs
Ant-

Coalition

sA-ANT* vs
AntCoalition-

Basic

sA-ANT vs
AntCoalition-

Basic

50
W = 0,

z =−4.6,
p < 0.001

W = 0,
z =−5.7,
p < 0.001

W = 0,
z =−5.7,
p < 0.001

W = 0,
z =−5.8,
p < 0.001

100
W = 0,

z =−4.6,
p < 0.001

W = 0,
z =−5.8,
p < 0.001

W = 0,
z =−5.7,
p < 0.001

W = 0,
z =−5.8,
p < 0.001

150
W = 14,
z =−4.6,
p < 0.001

W = 0,
z =−5.6,
p < 0.001

W = 0,
z =−5.7,
p < 0.001

W = 0,
z =−5.7,
p < 0.001

200
W = 61,
z =−2.5,
p = 0.012

W = 0,
z =−5.6,
p < 0.001

W = 0,
z =−5.6,
p < 0.001

W = 0,
z =−5.6,
p < 0.001

Table III.3: Wilcoxon Rank Sum test results for comparing the unique number of coalitions generated by the
algorithms. p < 0.05 is significant, while p < 0.01 is highly significant.
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Figure III.6: The mean number of unique coalition generated by the algorithms with increasing number of
robots.
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Figure III.7: The total node factor with increasing iterations of the algorithms for 150 robots (λ = 0.04).

III.4.2.1.1.1 Node factor measure

The significantly higher number of unique coalitions generated by sA-ANT and sA-ANT* for the coalition

formation problem is due to the extensiveness of the hybrid algorithms’ search capability. An explicit measure

of this search exploration is each algorithms’ total node factor, which is calculated based on the average

branching factor metric used in the TSP experiments. All the ACO algorithms for the coalition formation

problem utilize the node pheromone depositing model; therefore, the node factor (node f actor(r)) is defined

as:

node f actor(r)λ =
|N r |

∑
k=1

τ
r
k > (min(τr)+λ × (max(τr)−min(τr)), (III.8)

where λ ∈ {0.04,0.06,0.08}, τr
k denotes the pheromone amount on node k ∈ N r that is connected to r,

N r represents the set of neighboring nodes of r, while min(τr) and max(τr) denote the minimum and max-

imum pheromone values of all the nodes that are connected to node r. The total node factor is computed as

∑
n
r=1 node f actor(r)λ , where n is the number of agents in the system.
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Figures III.7 and III.8 illustrate the higher searching capability of sA-ANT* and sA-ANT, as compared to

Ant-Coalition, which leverages only the single best ant to deposit pheromones. The total node branching fac-

tor for Ant-Coalition-Basic is not discussed, because unlike the remaining three algorithms, Ant-Coalition-

Basic does not bound the pheromones; therefore, the algorithm experiences an exponential evaporation of

node pheromone levels. Owing to the high number of ants responsible for depositing pheromones during

the initial phases of the algorithm, sA-ANT maintains a very high total node factor. However, with a gradual

decrease in the annealing temperature, the node factor for sA-ANT is lowered. Both sA-ANT* and sA-ANT

explore a greater search area, as compared to the Ant-Coalition algorithm, which is captured by their higher

total node factor. Due to this enhanced searching, the hybrid algorithms generated a significantly higher

number of unique coalitions, as compared to Ant-Coalition and Ant-Coalition-Basic. However, all the algo-

rithms converged to the same number of nodes that denotes the final coalition size computed by each of the

algorithm3.
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Figure III.8: The total node factor with increasing iterations of the algorithms for 200 robots (λ = 0.04).

3A same coalition size does not indicate the same coalition
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III.4.2.1.2 Coalition Utility

The coalition utility metric demonstrates the quality of the generated coalitions. Table III.4 provides the mean

coalition utilities for the algorithms averaged over all mission scenarios and trials for increasing n values.

Both sA-ANT* and sA-ANT generated coalitions of higher utility for all values of n, when compared to Ant-

Coalition and Ant-Coalition-Basic. A Kruskal-Wallis one-way analysis of variance determined that there is a

significant main effect of algorithm on coalition utility (χ2 = 57.4, d f = 3, p < 0.01). Individual Wilcoxon

rank-sum test comparisons were performed and the results are provided in Table III.5. Compared to Ant-

Coalition, sA-ANT* and sA-ANT generated significantly higher utility coalitions for n = 150,200. However,

for n= 50,100, the improvement of the coalition utilities for sA-ANT* and sA-ANT was not significant. When

compared to Ant-Coalition-Basic, both sA-ANT* and sA-ANT generated significantly higher utility coalitions

for all values of n.

Number of
Robots sA-ANT* sA-ANT Ant-Coalition AntCoalition-

Basic
50 810374.5 809937.2 809863.6 794579.7

(267368.2) (267025) (266950.4) (257218.1)

100 852925.8 852477.4 851856.3 831905.1
(298048.8 ) (297425.3 ) (297711.4) (284525.4)

150 868749.9 868401.0 867204.6 845189.4
(310622.1) (310549.6) (309878.2) (296827.6)

200 876508.8 876351.7 874357.4 853228.0
(314720.2) (314608.9) (313277.7) (300436.0)

Table III.4: The mean coalition utility of the algorithms for the coalition formation problem. The standard
deviations are provided in parenthesis and the best solutions are highlighted in bold.
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Number
of Robots

sA-ANT* vs
Ant-

Coalition

sA-ANT vs
Ant-

Coalition

sA-ANT* vs
AntCoalition-

Basic

sA-ANT vs
AntCoalition-

Basic

50
W = 301.5,
z =−0.3,
p = 0.4

W = 315.5,
z =−0.07,
p = 0.48

W = 72,
z =−5.1,
p < 0.01

W = 75,
z =−4.9,
p < 0.01

100
W = 261,
z =−1.1,
p = 0.16

W = 281,
z =−0.6,
p = 0.26

W = 0,
z =−7.6,
p < 0.01

W = 0,
z =−7.68,
p < 0.01

150
W = 231,
z =−1.6,
p = 0.031

W = 245,
z =−1.3,
p = 0.038

W = 0,
z =−7.6,
p < 0.01

W = 0,
z =−7.68,
p < 0.01

200
W = 181,
z =−2.5,
p < 0.01

W = 196,
z =−2.26,
p < 0.01

W = 0,
z =−7.68,
p < 0.01

W = 0,
z =−7.68,
p < 0.01

Table III.5: Wilcoxon Rank Sum test results for comparing coalition utilities generated by the algorithms. p
< 0.05 is significant, while p < 0.01 is highly significant.

III.4.2.1.3 Total Travel Distance

The robot traveling distance metric measures the total traversal distance for the coalition’s robots to navigate

to the task’s location. Figure III.9 shows the mean traveling distance for the algorithms’ coalition members

averaged over mission scenarios and trials for all n values. Both sA-ANT and sA-ANT* produced higher utility

solutions with significantly smaller traveling distances for all values of n. sA-ANT* generated higher quality

solutions requiring even lower traveling cost when n = 200, as compared to sA-ANT. A Kruskal-Wallis one-

way analysis of variance determined that there is a significant main effect for the algorithms based on the

travel distance (χ2 = 57.49, d f = 3, p < 0.01). A Wilcoxon rank-sum test was conducted for individual

comparisons and the results are delineated in Table III.6. Both sA-ANT and sA-ANT* resulted in coalitions

that required significantly shorter traveling distances to the task location when compared to the Ant-Coalition

and Ant-Coalition-Basic algorithms for all values of n.
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Figure III.9: The mean traveling cost for the missions with increasing number of robots.
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Number
of Robots

sA-ANT* vs
Ant-

Coalition

sA-ANT vs
Ant-

Coalition

sA-ANT* vs
AntCoalition-

Basic

sA-ANT vs
AntCoalition-

Basic

50
W = 250,
z =−1.33,
p < 0.01

W = 250,
z =−1.3,
p < 0.01

W = 253,
z =−4.23,
p < 0.01

W = 252,
z =−4.2,
p < 0.01

100
W = 340,
z =−3.9,
p < 0.01

W = 337,
z =−3.8,
p < 0.01

W = 394,
z =−6.24,
p < 0.01

W = 393,
z =−6.21,
p < 0.01

150
W = 337,
z =−3.9,
p < 0.01

W = 330,
z =−3.6,
p < 0.01

W = 399,
z =−6.6,
p < 0.01

W = 397,
z =−6.5,
p < 0.01

200
W = 368,
z =−4.9,
p < 0.01

W = 359,
z =−4.76,
p < 0.01

W = 400,
z =−6.75,
p < 0.01

W = 386,
z =−6.2,
p < 0.01

Table III.6: Wilcoxon Rank-Sum test results for traveling distances for coalition members computed by the
algorithms. p < 0.05 is significant, while p < 0.01 is highly significant.

III.4.2.1.4 Computation Time

The time to calculate the robot coalitions is measured by the computation time metric. Figure III.10 provides

the computational time of each algorithm as n increases, which increases for all the algorithms. A Kruskal-

Wallis one-way analysis of variance determined that there is a significant main effect of algorithm on the

computation time (χ2 = 79.9, d f = 3, p < 0.01). A Wilcoxon rank-sum test was conducted for individual

comparisons and the results are provided in Table III.7. The computational time of sA-ANT is significantly

greater than that of sA-ANT*, because sA-ANT generates a significantly higher number of unique coalitions.

Moreover, the computational times of both the variants of sA-ANT are significantly higher than that of the

Ant-Coalition algorithm. Ant-Coalition leverages only the single global best coalition for pheromone update;

therefore, requiring lower computational time. The Ant-Coalition-Basic algorithm uses only ten ants during

the iterations compared to fifty ants for the other three algorithms, thus its computational time is significantly

lower.
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Figure III.10: The mean computational time (in seconds) with increasing number of robots.
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Number
of Robots

sA-ANT* vs
sA-ANT

sA-ANT* vs
Ant-

Coalition

sA-ANT vs
Ant-

Coalition

sA-ANT* vs
AntCoalition-

Basic

sA-ANT vs
AntCoalition-

Basic

50
W = 583,
z =−5.24,
p < 0.01

W = 0,
z =−6.06,
p < 0.01

W = 0,
z =−6.06,
p < 0.01

W = 0,
z =−6.05,
p < 0.01

W = 0,
z =−6.05,
p < 0.01

100
W = 540.5,
z =−4.42,
p < 0.01

W = 0,
z =−6.05,
p < 0.01

W = 0,
z =−6.05,
p < 0.01

W = 0,
z =−6.06,
p < 0.01

W = 0,
z =−6.06,
p < 0.01

150
W = 460.5,
z =−2.8,
p < 0.01

W = 0.5,
z =−6.0,
p < 0.01

W = 0,
z =−6.0,
p < 0.01

W = 0,
z =−6.0,
p < 0.01

W = 0,
z =−6.0,
p < 0.01

200
W = 455,
z =−2.75,
p < 0.01

W = 47,
z =−5.1,
p < 0.01

W = 23,
z =−5.6,
p < 0.01

W = 0,
z =−6.0,
p < 0.01

W = 0,
z =−6.0,
p < 0.01

Table III.7: Wilcoxon Rank-Sum test results for comparing the computation time of the algorithms.

III.4.2.2 Discussion of coalition formation results

The sA-ANT and sA-ANT* algorithms were tailored as greedy coalition formation algorithms that can gen-

erate high quality coalitions with the least traveling cost for the coalition members in a multi-agent settings.

Both algorithms provide improved searching capability, as demonstrated by the significantly higher number

of unique coalition generated, which supports hypothesis H3. The qualities of the coalitions generated by

sA-ANT and sA-ANT* were significantly higher than that by Ant-Coalition for n = 150,200 and those by Ant-

Coalition-Basic for all n values; therefore, supporting hypothesis H4. The traveling distances of the coalition

members, as computed by sA-ANT and sA-ANT* were significantly shorter than that of the other two algo-

rithms; thereby, supporting hypothesis H5. sA-ANT leverages a large number of ants to deposit pheromones;

therefore, requiring the highest computational time. Despite using a single best fit ant for pheromone deposit-

ing, sA-ANT* maintains and modifies a dynamically modulated repository of solutions; thereby, requiring

significantly higher computational time, as compared to Ant-Coalition and Ant-Coalition-Basic as hypothe-

sized in H6. However, all the algorithms are very scalable when it comes to large scale teams of robots. The

mean computational time to generate a coalition for a team of 200 robots was 130 seconds for sA-ANT, 127

seconds for sA-ANT*, and 120 seconds for Ant-Coalition.

III.4.3 Experimental Design for the Maximal Clique Problem

The maximal clique problem experiment involved comparing the performance of sA-ANT* and sA-ANT to

the Ant-Clique algorithm (Solnon and Fenet, 2006), which was implemented in C++ using Qt. The Maximal

Clique maximization problem seeks to generate cliques of a maximum size. The DIMACS BENCHMARK
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LIBRARY (Mascia, 2014) was used for the experiments. The benchmark library contains a number of in-

stances of the Maximal Clique problem and their respective optimal maximal clique sizes. A total of fifteen

problem instances were selected. Four problem instances (C125.9, C250.9, C500.9, C1000.9), with graphs

containing 125 to 1000 nodes are defined in the format “CXXX.9”, where XXX indicates the number of nodes

in the undirected graphs and 0.9 denotes the edge density of each graph. Six other instances (brock200 2,

brock200 4, brock400 2, brock400 4, brock800 2, brock800 4), with node counts ranging from 200 to 800

have the format “brockXXX Y”, where XXX denotes the number of nodes in the graph, and Y is either 2 or

4. Finally, the remaining five instances (gen200 p0.9 44, gen200 p0.9 55, gen400 p0.9 55, gen400 p0.9 65,

gen400 p0.9 75), with node counts of 200 and 400 are in the format “genXXX p0.9 ZZ”, where XXX repre-

sents the number of graph nodes, p0.9 indicates an edge density of 0.9 for each graph, and ZZ denotes the

optimal clique size for the respective instance. The performance of sA-ANT* and sA-ANT was compared to

the Ant-Clique algorithm (Solnon and Fenet, 2006), the only existing ACO-based clique solver. The Ant-

Clique parameter values were set to α = 1, ρ = 0.99, m = 30, τmax = 6.0, τmin = 0.01, as defined in its

original implementation (Solnon and Fenet, 2006). The parameter settings for sA-ANT* and sA-ANT were

α = 1, ρ = 0.99, m = 30, the same as that of the Ant-Clique. The upper bound for the edge pheromones was

set as τmax =
1

(1−ρ)×(1+|CgBest |−|CiterBest |) (CgBest and CiterBest represent the current global best and iteration best

clique sizes, respectively), as theoretically proved for any pheromone bounded ACO approach (Stutzle and

Hoos, 2000). Twenty five trials, each consisting 10,000 iterations were conducted for each algorithm. The

associated hypotheses are:

• H7 : The search exploration capability of sA-ANT* and sA-ANT will be greater than that of Ant-Clique.

• H8 : The maximal clique sizes computed by sA-ANT* and sA-ANT will be significantly greater than

that generated by Ant-Clique.

III.4.3.1 Maximal Clique Results

The performance of sA-ANT*, sA-ANT, and Ant-Clique was compared based on the extensiveness of their

search capability and the mean sizes of the computed maximal cliques.

III.4.3.1.1 Search Exploration

The search exploration capability of the algorithms (sA-ANT*, sA-ANT, and Ant-Clique) was measured using

the number of active edges metric (Eactv(λ )), which is defined as

Eactv(λ ) =
n

∑
r=1

|N r |

∑
k=1

τrk > (min(τr)+λ × (max(τr)−min(τr)), (III.9)
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where λ is a constant, n is the number of graph nodes, τrk denotes the pheromone amount on the edge that

connects nodes r and k ∈N r, N r represents the set of neighboring nodes of r, while min(τr) and max(τr)

denote the minimum and maximum pheromone values of all the edges that are incident on node r. The

maximum value of Eactv(λ ) for a given problem instance is 2× e, where e is the number of edges in the

clique graph.

Each algorithm begins by initializing every edge pheromone to τ0. The pheromone levels of the edges

belonging to good solutions are increased via positive reinforcements by depositing additional pheromones

as each algorithm progresses. Moreover, due to the exponential evaporation that occurs during the algorithm

iterations, the pheromone amounts of several graph edges decrease when they are not reinforced. The edges

with higher pheromones attract more ants during the search process; thereby, facilitating a greater explo-

ration of the search space. The number of active edges metric accounts for the number of graph edges with

pheromone values greater than a particular threshold that continue to remain active for further exploration by

the ant colony.

A high value of Eactv(λ ) signifies a high fraction of the total number of graph edges that have been

explored by the ants during the search process. Figures III.11, III.12, and III.13 illustrate the number of active

edges for each algorithm. sA-ANT exhibits the highest number of active edges, because it employs a much

higher number of ants to deposit pheromones during the early algorithm phases. Compared to sA-ANT, sA-

ANT* and Ant-Clique leverage only a single ant for pheromone depositing; therefore, each results in a lower

value of Eactv(λ ). Despite this single ant depositing policy, sA-ANT* exhibits higher search exploration than

the Ant-Clique due to the diversity of solutions in its repository during the initial iterations, thus sA-ANT*

generates greater Eactv(λ ) values.

For example, consider the C125.9 problem instance that contains 125 nodes and 6963 edges (e) with an

edge density of 0.9. The maximum value of Eactv(λ ) = 2×e, because each edge can be counted at most twice

for its respective nodes; therefore, Emax
actv(λ ) = 2×6963 = 13926. Figure III.11 demonstrates that the number

of active edges peaked to 13200 very rapidly during the initial iterations for sA-ANT. sA-ANT* and Ant-Clique

achieved Emax
actv(λ ) = 9139 and Emax

actv(λ ) = 8955, respectively. Both sA-ANT and sA-ANT* maintain greater

search exploration for a larger number of iterations before converging to the final maximal clique solution. A

more aggressive search exploration example is observed for instances C250.9 and gen400 p0.9 55, as shown

in Figures III.12 and III.13, respectively. The remaining problem instances demonstrated a similar trend for

Eactv(λ ).
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Figure III.11: The change in the number of active edges for sA-ANT*, sA-ANT, and Ant-Clique for problem
instance C125.9. The number of edges in graph is 6963 and Emax

actv(λ ) = 13926.
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Figure III.12: The change in the number of active edges for sA-ANT*, sA-ANT, and Ant-Clique for problem
instance C250.9. The number of edges in graph is 27984 and Emax

actv(λ ) = 55968.
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Figure III.13: The change in the number of active edges for sA-ANT*, sA-ANT, and Ant-Clique for problem
instance gen400 p0.9 55. The number of edges in graph is 71820 and Emax

actv(λ ) = 143640.

III.4.3.1.2 Clique Sizes

The best and the mean maximal cliques obtained by the three algorithms for each of the fifteen clique in-

stances are highlighted in Table III.8, which also highlights the frequency, or the number of times each algo-

rithm achieved its best maximal clique size. The results demonstrate that both hybrid algorithms performed

better than Ant-Clique on six problem instances (C500.9, C1000.9, brock200 4, brock400 4, brock800 2,

brock800 4), and performed identically on six other instances (C125.9, C250.9, brock200 2, gen200 p0.9 55,

gen400 p0.9 65, gen400 p0.9 75), where all algorithms generated the optimal clique sizes over 25 trials. sA-

ANT* generated maximal cliques with the largest mean sizes on five instances (C500.9, C1000.9, brock200 4,

brock400 4, gen400 p0.9 55), as highlighted in Table III.8. Moreover, sA-ANT*’s frequency in attaining

its best solution is high when compared to sA-ANT and Ant-Clique, as demonstrated for instances: (1)

brock200 4, (2) brock400 4, and (3) gen400 p0.9 55. A Kruskal-Wallis one-way analysis determined that

there was no significant main effect of algorithm on the mean clique sizes. Individual Wilcoxon rank-sum
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sA-ANT* sA-ANT Ant-Clique

Problem
Instances Optimal

Best
Found
[freq.]

Mean
(stdv.)

Best
Found
[freq.]

Mean
(stdv.)

Best
Found
[freq.]

Mean
(stdv.)

C125.9 34 34 [25] 34 (0.0) 34 [25] 34 (0.0) 34 [25] 34 (0.0)
C250.9 44 44 [25] 44 (0.0) 44 [25] 44 (0.0) 44 [25] 44 (0.0)
C500.9 >=57 57 [2] 55.9 (0.4) 56 [17] 55.7 (0.7) 57 [1] 55.6 (0.6)

C1000.9 >=68 68 [1] 66.4 (0.8) 67 [9] 66.2 (0.7) 67 [2] 65.9 (0.7)
brock200 2 12 12 [25] 12 (0.0) 12 [25] 12 (0.0) 12 [25] 12 (0.0)
brock200 4 17 17 [25] 17 (0.0) 17 [24] 16.96 (0.2) 17 [17] 16.7 (0.5)
brock400 2 29 29 [1] 24.6 (0.4) 25 [24] 24.97 (0.2) 29 [2] 25.0 (1.2)
brock400 4 33 33 [10] 27.7 (4.3) 33 [8] 27.1 (4.1) 33 [7] 26.7 (4.1)
brock800 2 24 21 [3] 19.9 (0.6) 24 [1] 20.5 (0.9) 21 [2] 19.8 (0.5)
brock800 4 26 21 [1] 19.8 (0.5) 26 [1] 19.9 (1.3) 21 [2] 19.7 (0.6)

gen200 p0.9 44 44 44 [25] 44.0 (0.0) 44 [20] 43.3 (1.6) 44 [22] 43.5 (1.3)
gen200 p0.9 55 55 55 [25] 55 (0.0) 55 [25] 55 (0.0) 55 [25] 55 (0.0)
gen400 p0.9 55 55 53 [21] 52.8 (0.6) 52 [6] 51.3 (0.4) 53 [7] 51.9 (0.9)
gen400 p0.9 65 65 65 [25] 65 (0.0) 65 [25] 65 (0.0) 65 [25] 65 (0.0)
gen400 p0.9 75 75 75 [25] 75 (0.0) 75 [25] 75 (0.0) 75 [25] 75 (0.0)

Table III.8: The Best and Mean clique sizes for the Maximal Clique problem as computed by sA-ANT*, sA-
ANT, and Ant-Clique for fifteen clique instances. The standard deviation (stdv.) and the frequency (freq.) are
provided alongside the mean and best found clique sizes, respectively. The best solutions are highlighted in
bold.

tests found no statistically significant differences in performance across the three algorithms for any of the

graph sizes.

III.4.3.2 Discussion of maximal clique results

The experimental results demonstrate that both sA-ANT* and sA-ANT provide a more extensive search capa-

bility by integrating the simulated annealing methodology, which supports hypothesis H7. There was a small

difference in the mean maximal clique sizes generated across the three algorithms, with sA-ANT* and sA-

ANT performing better than the Ant-Clique. Compared to the results of the Ant-Clique variant that integrated

local search (Solnon and Fenet, 2006), sA-ANT* generated slightly better solutions for five clique instances

without requiring local search techniques. All three algorithms computed maximal cliques that are either the

optimal solutions or extremely close to the optimal sizes. However, since there was no significant difference

between the results, hypothesis H8 was not supported.

III.4.4 Overall Discussion

The effectiveness of sA-ANT and sA-ANT* in addressing the search stagnation shortcoming of the existing

state-of-the-art ACO approaches has been illustrated. Both algorithms exhibit enhanced search exploration

capabilities, without stagnating in a local optima. The initial high annealing temperature and the gradual
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annealing schedule contribute to an improved search exploration during the initial phases of the algorithm

that is demonstrated by their higher average branching and node factors compared to Max-Min Ant System,

the current best ACO approach. The enhanced search capability of sA-ANT* and its better computational

time render it more potent than sA-ANT with the former generating the best results for the three problems that

were investigated. The application of sA-ANT* and sA-ANT to the three diverse combinatorial optimization

problems clearly illustrates that the presented approach is a generic search algorithm capable of computing

better solutions when compared to existing state-of-the-art ACO algorithms.

III.5 Distributed sA-ANT*

Distributed intelligent systems that autonomously create robust coalitions of heterogeneous robots are gain-

ing incredible impetus for future critical and real-world missions. Real robots in unstructured, dynamic

real-world missions suffer from frequent communication interruptions, robot failures, and lack of global

information. The presented sA-ANT and sA-ANT* algorithms are centralized, and thus will not support real-

world, distributed multi-robot systems. Centralized algorithm can suffer from brittleness, unresponsiveness

to dynamic environments, high communication requirements, and unscalability. This section presents the

distributed variant of the sA-ANT* algorithm, called d-sA-ANT* which exploits the advantages of both the

ant colony optimization and the simulated annealing techniques. The distributed algorithm incorporates an

information diffusion methodology in large scale networks in order to propagate crucial robot information

across a time-varying communication topology.

III.5.1 System Design

The presented decentralized algorithm falls into the category of cooperative multicolony optimization, ac-

cording to an existing taxonomy (Pedemonte et al., 2011). Each robot in the team acts as an independent

processor and concurrently computes the most appropriate coalition of robots that can accomplish a given

task. Additionally, each robot deploys its own set of ants to search the problem space semi-independently,

i.e., each robot manages its own ant colony. Each robot publishes its local best solution to the neighboring

robots, such that every other robot can update its estimated global best solution. Each robot consists of sev-

eral attributes: (1) robot identifier, (2) a set of time-varying neighboring robots, denoted by Γt
i , (3) local and

global coalition information, and (4) a colony of ants whose size is determined by the processing power of

the robot’s onboard processor.

Unstructured and dynamic mission domains may intermittently disrupt the continuous communication

between the robots in multi-robot settings; therefore, the robots form a time-varying communication network

represented by an undirected graph, Gt(V,E(t)). Each robot contains only local information that is com-

58



prised of its immediate neighbors connected via a communication network. The use of just the neighboring

robot information for deriving coalitions will either lead to lower quality solutions, or no solutions at all due

to each robot having a restricted perspective and lack of information. Thus, d-sA-ANT* incorporates infor-

mation propagation based only on neighboring robots. Each robot, Ri ∈ R publishes its local knowledge of

its neighboring robots and their respective state information (e.g., resources, position, engagement status)

to every other robot in its immediate neighborhood by means of information packets. During information

sharing with each neighboring robot, Ri waits for a certain timeout time (κ(Ri)), which accounts for any

communication latency in real-world networks. Each robot is assumed to detect faults in itself (endogenous

fault detection (Christensen et al., 2009)) and publishes its health status (e.g., faulty, working) to every neigh-

boring robot; therefore, in case of any robot failure, its neighbors will be updated. This propagation of fault

information via neighboring robots renders d-sA-ANT* robust during robot failures. When a robot, Ri detects

any change in the network, i.e., a robot moves out of its communication range or a new robot comes within its

communication vicinity, it either deletes or adds the particular robot to its list of neighboring robots, respec-

tively. During every such event, Ri immediately publishes this new information to its immediate neighbors

and information propagation occurs. Based on the acquired information of the robots in the team, each robot

computes its forwarding table using the Dijkstra’s shortest path algorithm.

The information propagation for d-sA-ANT* is illustrated using Figures III.14 and III.15. Consider a sit-

uation, where seven heterogeneous robots are connected in a communication topology, as shown in Figure

III.14. Each robot maintains an adjacency list to capture the network. At time step t = 0, each robot’s ad-

jacency list is shown alongside. Based on each robot’s κ(Ri), the modified adjacency lists of every robot is

shown in Figure III.15. Each robot propagates only its neighbors’ information to every robot in its neigh-

borhood, which in turn is used by every other robot to update its adjacency list. Due to the information

propagation, every robot converges to the overall network structure.
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Figure III.14: Seven robots connected in a network topology. The adjacency list capturing the partial topology
is provided alongside each robot node.

1

2

3

4

5

6

7

1: 2,3
2: 1, 4
3: 1, 4

1: 2
2: 1,4
3: 1, 4
4: 2, 5, 6

1: 3
2: 1, 4
3: 1,4
4: 3, 5, 6

4: 5, 2, 3, 6
5: 4,7
7: 5

5: 7
7: 5

1: 2
2: 4, 1
3: 4, 1
4: 2,3,5,6
5: 4, 7
6: 4

4: 6, 2, 3, 5
6: 4

Figure III.15: Each robot propagates it own list to its neighbors as highlighted in their respective colors.
Every robot updates its adjacency list accordingly.

The distributed sA-ANT* algorithm is provided in Algorithm 3. Each robot deploys its own colony of
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ants to search the solution space in order to determine potential robot coalitions that can satisfy task require-

ments. The processing is very similar to that of the centralized sA-ANT*; however, there are several key

differences. At the start of every iteration, each robot, Ri ∈ R propagates any updated information to its im-

mediate neighbors in Γt
i (Line 4 in Algorithm 3). This step is crucial, because each robot maintains the most

updated knowledge of the other robots and aids robustness, because any faulty robot can be removed during

the coalition computation. After every iteration, each robot compares the individual solution of each ant and

computes the local best coalition. Each ant then propagates its local best solution to its immediate neighbors,

and each robot compares its current local best coalition with that of its neighboring robots. When a higher

quality solution is realized, each robot updates its current global best solution. This updated global solu-

tion is leveraged by the ants of each robot to deposit and update the respective pheromone matrix. Once the

pheromone update is performed, the ant colonies resume the computations until a global coalition is achieved.

Once a coalition is formed, each member robot updates its task engagement status to assigned and publishes

this information to its immediate neighbors. Every robot updates this information and does not consider the

assigned robots for coalition calculations for additional tasks.

Algorithm 3 The d-sA-ANT* algorithm, ∀Ri ∈ R

Input: Set of ACO parameters (α , β , ρ); Set of simulated annealing parameters (γ , Annealing Temperature,
anneal temperature); Task M j ∈M; Number of iterations, nIter; Number of ants, nAnts

1: Slocal best ← /0
2: Sglobal best ← /0
3: for iteration=1 to nIter do
4: PropagateIn f o(Ri,Γ

t
i)

5: for λ=1 to nAnts do
6: randRobot← rand(R\ (Sc,λ ∪ f aultyRobot)
7: while !isTaskFul f illed(M j,Sc,λ ) do
8: candidateRobot← R′j ∈ R\ (Sc,λ ∪ f aultyRobot)
9: Sc,λ ← Sc,λ ∪ candidateRobot

10: end while
11: Update Slocal best
12: end for
13: Publish(Slocal best ,Γ

t
i)

14: Update Sglobal best
15: Update repository using Slocal best and Sglobal best
16: Select S∗ for local pheromone update
17: anneal temperature← anneal temperature× γ

18: end for
19: Update robot engagement status

III.5.2 Experimental Design

The primary objective of the evaluation was to test the efficacy of d-sA-ANT* when compared to its centralized

variant, sA-ANT*. The d-sA-ANT* algorithm was implemented using the Qt framework that provided the

QThreadpool for generating parallel threads to simulate each robot. Each thread leverages Qt’s signal and
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slot mechanism to implement a publish-subscribe messaging framework via which the robots perform the

information propagation with their respective neighbors. The number of robots was set to n = 20 and 50. A

total of seven mission scenarios were used and were randomly generated, each comprised of a single task

requiring five resource types. The resource requirements were fixed for a particular mission across all trials.

The first mission scenario began with each resource type value set to ten. Each additional scenario increased

the resource type values by five, to a maximum of forty for each task requirement value during the final

mission. The communication range for each robot was set to 100m, 250m, and 1000m based on the existing

wireless communication protocols IEEE 802.11.a, IEEE 802.11.n, and IEEE 802.11y, respectively. Each

robot, based on the selected communication range, thus had a restricted ability to communicate with all other

robots. The robots that fall into the communication range of a particular robot are considered to be the latter’s

immediate neighbors. The robots are instantiated at random locations in the environment, and remained

stationary during each trial during the computation of the coalitions. Each robot propagates messages that

include its resource capabilities, location, and immediate neighbor information.

Up to twenty trials were run for each of the seven mission scenarios for each communication range and

number of robots until ten successful coalition allocations were collected. Each trial for a particular mission

and n value used the same task requirements. The robot locations, task locations and robot capabilities were

randomly generated for a particular mission trial and n value, but remained the same across algorithms. The

task and robot locations were generated to lie within a 1000m x 1000m area. The task utility, or reward was

set as U(Tj) = 5000×∑
5
i=1 T R ji in order to maintain uniformity across all missions, trials, and algorithms.

Three hypotheses were analyzed during the experiments:

• H9 d-sA-ANT*’s computation time will be significantly higher than that of sA-ANT*.

• H10: d-sA-ANT* will generate coalitions of similar utility as that computed by sA-ANT*.

• H11: The traveling distance of the members of the coalitions generated by d-sA-ANT* and sA-ANT*

will be similar.

III.5.2.1 Experimental Results

A total of 20 trials were performed with the communication range of 100m for n = 20 and 50. Coalitions

were obtained during only 3 out of 20 trials with n = 20 for the first mission scenario, where the resource

requirements were set to ten for every resource type. Out of the 20 trials, for n = 50, only seven trials resulted

in coalitions for the first mission with resource requirements set to ten units. None of the 20 trials for any of

the remaining six missions for either value of n generated any coalitions. The 100m communication range
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in an arena of size 1000m × 1000m resulted in no robot clusters (coalitions) that were connected via the

communication topology having the necessary resources to meet the task requirements.

Communication Range (m)
250 1000

Number of 20 11 14
Robots 50 16 18

Table III.9: Number of trials of out 20 that resulted in coalitions for the 250m and 1000m communication
ranges with d-sA-ANT*.

Both sA-ANT* and d-sA-ANT* generated coalitions when the communication range was increased to

250m and 1000m. Table III.9 provides the number of successful trials out of twenty for which coalitions

were obtained, given the number of robots and communication ranges. The ten trials with the highest coalition

utilities were used for the analysis presented in this section. Four metrics were used to compare the coalitions

generated by the algorithms: (1) Computation time, (2) Coalition utility, (3) Traveling distance, and (4)

Coalition size and composition.

III.5.2.1.1 Computation time

The coalition generation computation time using the algorithms when n = 20 with the 250m and 1000m

communications ranges are provided in Figure III.16. The same comparisons for n = 50 are presented in

Figure III.17. Generally speaking, d-sA-ANT* has higher computation time than sA-ANT* for a particular

communication range, independent of the number of robots.

A Kruskal-Wallis one-way analysis of variance determined that there is a significant main effect of al-

gorithm on the computational time for both communication ranges for n = 20 (χ2 = 6.3,d f = 1, p < 0.01).

Wilcoxon rank-sum tests were conducted for individual comparisons and the results are provided in Table

III.10. d-sA-ANT* required significantly higher computational time, compared to sA-ANT* for n = 20 and

the 250m communication range for all missions. The computation time of d-sA-ANT* was significantly

higher than sA-ANT* with communication range of 1000m for six mission scenarios. The general trend in

the computation time for d-sA-ANT* and sA-ANT* is that both increase with the increase in the number of

task requirements across the mission scenarios.
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Figure III.16: The mean computation time for coalition formation for both the 250m and 1000m communi-
cation ranges and 20 robots.
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Comm. Range = 250m Comm. Range = 1000m
Mission Scenarios sA-ANT* vs d-sA-ANT* sA-ANT* vs d-sA-ANT*

1 W = 101.5, z =−3.0, p < 0.01 W = 138, z =−2.9, p < 0.01
2 W = 149.5, z =−3.6, p < 0.01 W = 57, z =−0.5, p = 0.29

3 W = 164.5, z =−3.3, p < 0.01 W = 74, z =−1.9, p = 0.02
4 W = 83.5, z =−2.5, p < 0.01 W = 72.3, z =−1.8, p = 0.03
5 W = 73, z =−2.2, p < 0.01 W = 103.5, z =−2.4, p = 0.018
6 W = 143, z =−3.0, p < 0.01 W = 77.5, z =−2.1, p < 0.01
7 W = 90.5, z =−3.1, p < 0.01 W = 88.5, z =−2.9, p < 0.01

Table III.10: Wilcoxon Rank Sum test results comparing computation time of the algorithms for the two
communication ranges and 20 robots.

The computation times of d-sA-ANT* and sA-ANT* for n = 50 are analyzed. A Kruskal-Wallis one-way

analysis of variance determined that there is a significant main effect of algorithm on the computational time

for both the communication ranges when n= 50 (χ2 = 15.12,d f = 1, p< 0.01). Individual comparisons were

performed using the Wilcoxon rank-sum test and the results are provided in Table III.11. The computation

time of d-sA-ANT* was significantly higher than that of sA-ANT* for both the communication ranges across

all the mission scenarios. The computation times of d-sA-ANT* and sA-ANT* for the communication ranges

of 250m to 1000m are provided in Figure III.17.

Comm. Range = 250m Comm. Range = 1000m
Mission Scenarios sA-ANT* vs d-sA-ANT* sA-ANT* vs d-sA-ANT*

1 W = 49, z =−3.1, p < 0.01 W = 100, z =−3.8, p < 0.01
2 W = 64, z =−3.3, p < 0.01 W = 100, z =−3.8, p < 0.01
3 W = 100, z =−3.8, p < 0.01 W = 256, z =−4.8, p < 0.01
4 W = 97.5, z =−3.5, p < 0.01 W = 121, z =−3.9, p < 0.01
5 W = 49, z =−3.1, p < 0.01 W = 100, z =−3.7, p < 0.01
6 W = 81, z =−3.55, p < 0.01 W = 131, z =−4.0, p < 0.01
7 W = 100, z =−3.8, p < 0.01 W = 100, z =−3.6, p < 0.01

Table III.11: Wilcoxon Rank Sum test results comparing computation time of the algorithms for the two
communication ranges and 50 robots.
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Figure III.17: The mean computation time for coalition formation for both the 250m and 1000m communi-
cation ranges and 50 robots.

III.5.2.1.2 Coalition utility

Despite being decentralized, d-sA-ANT* generated coalitions that had virtually identical mean utilities to

those computed by sA-ANT*, irrespective of the number of robots and the communication ranges. There

was no significant difference in the mean coalition utilities generated by the algorithms. Figures III.18 and

III.19 provide the comparison of coalition utilities for the two communication ranges of 250m and 1000m

and n = 20 and 50, respectively.
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Figure III.18: The mean coalition utility for the communication ranges of 250m and 1000m (n = 20).
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Figure III.19: The mean coalition utility for the communication ranges of 250m and 1000m (n = 50).

III.5.2.1.3 Travel distance

The mean traveling distance for all members of each coalition generated by sA-ANT* and d-sA-ANT* was

virtually identical irrespective of the number of robots and the communication ranges of 250m and 1000m, as

shown in Figures III.20 and III.21. A Kruskal-Wallis one-way analysis of variance determined that there was

no significant main effect of algorithm on the traveling distance across the communication ranges and number

of robots. It is noted that the traveling distance is lower when n= 50 irrespective of the communication range,

which is due to a higher likelihood of finding robots that are closer to the task location.
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Figure III.20: The mean traveling distance across the missions for the 1000m communication range and
n = 20 and 50.
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Figure III.21: The mean traveling distance across the missions for the 250m communication range and n = 20
and 50.

III.5.2.1.4 Coalition sizes and composition

The utilities of the coalitions generated by sA-ANT* and d-sA-ANT* were virtually identically, as shown

in Figures III.18 and III.19. Therefore, the coalition sizes and their composition were investigated. The

computed coalitions were identical both in size and composition in≈ 72% of the ten trials across the missions,

communication ranges, and robot counts. However, for≈ 16%, the coalition composition differed, even when

the coalition sizes were identical. The coalition sizes differed for the remaining ≈ 12% of trials, in which the

sizes differed by one or two robots.

For example, consider a trial for the mission scenario 7, where each resource type was set to 40, the

70



number of robots was 50, and the communication range was 1000m. d-sA-ANT* and sA-ANT* both generated

coalitions of size 10, but the former was comprised of {3,11,14,26,29,32,36,37,47,48}, while the latter

consisted of {3,11,13,14,29,32,36,38,47,48} (here the number refers to robot identifier). The generated

coalition utility for d-sA-ANT* was 504552, and 505493 for sA-ANT* with computation times of 91 seconds

and 28 seconds, respectively.

Now consider another trial for the same mission, with the same number of robots and the same communi-

cation range. The coalitions generated by d-sA-ANT* and sA-ANT* were of the sizes 10 and 9, with the former

comprised of {1,6,8,22,26,30,31,37,46,47}, while the latter contained {3,22,26,30,31,37,38,46,47}. d-

sA-ANT*’s coalition had a utility of 506893 and a 90 second computation time, while sA-ANT*’s utility was

507872 and required 25 seconds to compute the coalition.

III.5.3 Discussion of results

The implementation of d-sA-ANT* leverages concurrent threads in Qt, which results in an algorithm that can

be ported to real robots conveniently. The communication ranges used in the experiments are based on the

ranges of real wireless routers commonly used in robot systems. Such an emulation of multiple robots using

parallel threads replicates realistic real-world mission situations with multiple robots distributed across an

environment, where they may be unable to communicate with all other robots or a centralized agent due to

communication range constraints or communication failures, while concurrently computing coalitions. The

decentralization of sA-ANT* renders it applicable to real-world settings, when robot failures can occur at

random. Since the algorithm requires an information exchange during every iteration, the knowledge pertain-

ing to robot failures is propagated throughout the network by means of local information publishing, which

provides a graceful performance degradation in such an event. However, a shortcoming of d-sA-ANT* is its

dependence on high communication bandwidth due to the heavy message passing on the existing network.

Moreover, as demonstrated in the experiments, d-sA-ANT* requires significantly higher computation time

due to the information propagation overhead, as compared to sA-ANT*, as hypothesized in H9. The hypothe-

sis H10 is supported given that the quality of the coalitions generated by d-sA-ANT* are virtually identical to

that of the centralized version, because each robot leverages a collective information, rather than just its local

knowledge. The experimental results demonstrate that the total travel distance for the members of the coali-

tions generated by d-sA-ANT* and sA-ANT* were virtually identical, irrespective of the communication range

and robot counts; thereby, supporting hypothesis H11. It has been shown that the centralized sA-ANT and sA-

ANT* computed coalitions that required significantly lower travel cost when compared to Ant-Coalition and

Ant-Coalition-Basic. The traveling distance is an important metric for real-world robots. The results are

important, because d-sA-ANT* is a potential coalition formation algorithm for the real-world situations.
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III.6 Chapter Summary

This chapter presented two centralized variants of the hybrid ant colony optimization algorithm that incor-

porate the simulated annealing technique to enhance the search exploration capability of conventional ACO

approaches. The algorithms introduced two novel pheromone depositing policies that prohibit the algorithms

from stagnating in a local optima, a serious impediment in existing ACO algorithms. The algorithms were ap-

plied to three combinatorial optimization problems and the experimental results have shown that sA-ANT and

sA-ANT* outperformed existing state-of-the-art ACO algorithms when it comes to solution quality. The algo-

rithms exhibited enhanced search exploration capability, which contributed to their improved performance.

A distributed variant of sA-ANT* has also been provided that can be applied to the multi-robot coalition for-

mation problem. Experimental results illustrate that the computational time of d-sA-ANT* is significantly

higher than that of sA-ANT*, because of the added information propagation overhead that is an integral part

of d-sA-ANT*. The information propagation facilitates the performance of the distributed variant, which is

demonstrated by the almost identical coalition utilities created by the centralized and distributed variants of

sA-ANT*.

The presented variants of the hybrid algorithms for the coalition formation problem can be classified in

accordance with Service and Adams’ taxonomy as greedy algorithms that compute coalitions in real-time

by requiring high communication bandwidth. The sA-ANT, sA-ANT*, and d-sA-ANT* algorithms bridge the

gap in multi-agent/robot systems by permitting real-time computations for very large teams of agents/robots,

without the use of conventional heuristics. However, being greedy, the algorithms do not guarantee any solu-

tion quality. Therefore, the next chapter introduces the i-CiFHaR coalition framework that makes intelligent

decisions to determine the most appropriate subset of algorithm(s) that can be applied to a multi-criteria

mission scenario.
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CHAPTER IV

i-CiFHaR: Design and Implementation

IV.1 Framework Design

This chapter describes the design and implementation of the intelligent Coalition Formation framework for

Humans and Robots (i-CiFHaR), a smart and versatile architecture that is designed to generate robust multi-

agent (robot/human) coalitions for a wide variety of real-world missions. i-CiFHaR incorporates a library

of diverse coalition formation algorithms and leverages probabilistic reasoning in order to select the most

optimized subset of algorithm(s) for generating task coalitions based on multiple mission criteria, robots’

capabilities, and environmental constraints (Sen and Adams, 2014, 2013b).

i-CiFHaR is a three-tiered framework (see Figure IV.1) that includes: (1) a User Interface, (2) the Middle

Level Logic Tier, and (3) a Library of coalition formation algorithms. The next sections explain the design

of each tier.
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Criteria

Agent
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Tasks, Agents
& Algorithm

LIBRARY OF COALITION FORMATION
ALGORITHMS

Ordered
Task

Status of Tasks and Agents
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Deployment Unit
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LEVEL
LOGIC
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Ranking
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algorithms
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algorithms
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descriptions of robot
and human assets

Figure IV.1: The i-CiFHaR architecture
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IV.1.1 User Interface

The Graphical User Interface (see User Interface in Figure IV.1) allows a human supervisor to provide task

descriptions, environment constraints, and multiple mission criteria. The interface will provide the human

user with crucial information, such as: (1) ongoing task progress (e.g., executing, waiting, finished), (2) robot

coalitions and task allocations, (3) individual robot status (e.g., engaged, idle, faulty), and (4) details of newly

discovered or preempted tasks.

IV.1.2 Middle Level Logic Tier

The Middle Level Logic Tier accepts the mission requirements and constraints from the User Interface and

the databases containing robotic and human assets’ descriptions for the mission. Moreover, this tier primarily

performs online probabilistic reasoning over i-CiFHaR’s library of diverse algorithms in order to select the

most appropriate coalition formation algorithm(s) to apply.

IV.1.2.1 Task Queue

The Task Queue contains all the mission tasks along with their descriptions, requirements, and constraints. A

task template (Figure IV.2) is leveraged in order to provide uniformity to task information, while storing each

task in the queue.

TASK TEMPLATE 

Task Type 

Task Name/ID 

Task Priority 

Task Preemption 

Task Requirements 

Task Utility 

Task Deadline &  

Duration 

Robot Type 

Preceding Tasks 

Task Location 

Figure IV.2: Task Template

The task template is a tuple and contains the following fields:

• Task Type - Category of a task (e.g., bomb diffuse, victim search, box pushing).
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• Task Name / ID - Name or the Identification number of the task. The system automatically generates

the task ID when a value is not provided.

• Task Priority - Denotes the priority or importance of the task.

• Task Preemption - A boolean flag to denote whether a task can be preempted or not in order to

accommodate a higher priority task during a mission.

• Task Requirements - A vector of resources required for completing the task. Resource-based models

require tasks to be described in terms of their resource requirements (e.g., camera, laser, sonar, GPS)

and service-based models describes tasks by their requirements of services (e.g., box-pushing, foraging,

patrolling).

• Task Utility - Quantifies the utility gain of a robot when a coalition completes the task.

• Task Deadline & Duration - Task deadline defines the latest time by which the task is to be completed

and task duration is an estimated time required to complete the task uninterrupted.

• Robot Type - Denotes the type(s) of robot(s) required for the task (unmanned heterogeneous vehicles).

i-CiFHaR determines the Robot Type based on the task requirements.

• Preceding Tasks - Denotes a list of tasks that need to be completed before this task can be started.

• Task Location - Represents either the spatial coordinates or a geographic region where a task needs

to be performed. For example, a bomb diffusing task needs the location (coordinates) of the bomb,

whereas a search task requires an area to be defined for the search.

Once all the tasks are entered in the Task Queue, the tasks require an ordering in order to satisfy the

temporal task constraints. Inter-task constraints arise when: (1) execution of a particular task depends on

the completion of a set of preceding task(s) (precedence constraints), and (2) tasks have temporal separations

(e.g., Task T1 can only start after 30 minutes from the the completion of a preceding task, T2). This step is

necessary because most of the coalition formation algorithms in i-CiFHaR’s library do not address temporal

constraint satisfaction by themselves.

i-CiFHaR’s temporal ordering algorithm (Algorithm 4) generates an online ordering of tasks that satisfies

the temporal constraints (precedence constraints). This ordered task set will be provided to the set of most

appropriate coalition formation algorithm(s) selected by i-CiFHaR’s decision making module, while com-

puting the task-robot coalitions. The temporal planner algorithm acts as an important pre-processing step to

abstract the temporal constraint satisfaction procedure from the coalition formation algorithms, because most
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Algorithm 4 Order Planner algorithm

Input: mxm adjacency matrix, AdjMat; Task Set, T of size m
Output: Sorted task queue, Tsort

1: inDegrees← 1 x m vector of vertices’ indegrees
2: taskStartTimes← Initialize a 1 x m vector of task start times with 0s
3: taskDuration← 1 x m vector of task duration times
4: Tsort ← an empty Queue
5: zeroInDegrees← Queue of all vertices with indegrees of 0
6: while zeroInDegrees.size() != 0 do
7: vi← zeroInDegrees.pop f ront()
8: Tsort .push back(vi, taskStartTimesvi)
9: for w j ∈ neighborVertices(vi) do

10: inDegreesw j ← inDegreesw j −1
11: if inDegreesw j == 0 then
12: zeroInDegrees.push back(w j)
13: maxValue← maxx∈predecessor(w j) (taskStartTimesx + taskDurationx +Ad jMatx,w j)
14: taskStartTimesw j ← maxValue
15: end if
16: end for
17: end while
18: Return Tsort

of the algorithms in i-CiFHaR’s library assume that the mission tasks do not have any precedence constraints,

an invalid assumption for real-world missions.

The temporal order planning algorithm (Algorithm 4) is based on topological sorting. This planner ad-

dresses the satisfaction of the temporal constraints (e.g., precedence ordering, temporal separations) of the

tasks. Algorithm 4 leverages a weighted, directed, and acyclic graph, G(V,E), in which each vertex vi ∈ V

represents a task in the task set, T and a directed edge ei j ∈ E represents the dependency of task, j on the

completion of a predecessor task, i. The weight, wi j associated with each edge, ei j represents the temporal

separation between the end time of task, i and the start time of task, j. An adjacency matrix, Ad jMat of size

m×m is created from graph, G(V,E) that captures the neighbors of the ith task in the ith row and the predeces-

sors of the jth task in the jth column (m in the number of tasks in task set, T ). Algorithm 4 takes as input the

adjacency matrix, Ad jMat and the task set, T of size m and requires an order of O(m+y) computational time,

where y is the number of task dependencies. The output of Algorithm 4 is the required ordering of tasks, Tsort

that satisfies the temporal task constraints. Upon discovery of a new task during a dynamic mission (when

tasks are not known a-priori), this new task is accommodated in G(V,E) and processed; thereby, modifying

the existing ordering in an incremental fashion.

76



IV.1.2.2 Agent Descriptor

The Agent Descriptor module contains the relevant information of all the system’s agents (robots/human as-

sets) that include: (1) robots’ capabilities, (2) current robot pose, and (3) robot task status (e.g., committed to

a particular coalition, uncommitted), and (4) robot state (e.g., working, faulty, standby). All the descriptions

are provided by databases in XML format.

IV.1.2.3 Decision Making Module

The primary component of the Middle Level Logic Tier is the Decision Making Module that chooses the most

appropriate coalition formation algorithm(s) to apply to a given situation. This module classifies the coali-

tion formation algorithms in i-CiFHaR’s library along multiple dimensions, or features based on an existing

taxonomy (Service and Adams, 2010). The Decision Making Module is comprised of the: (1) Taxonomy, (2)

Utility Calculation, (3) Feature Extraction, and (4) Influence Diagram. The taxonomy table stores the taxon-

omy features and the respective domain values that facilitate classification of the coalition algorithms. The

Utility Calculation determines the feature-value pair utility scores that are essential for creating the influence

diagram’s utility table (see Section IV.1.2.3.2). Feature Extraction determines the most important features

that discriminate the algorithms, thus reducing the problem dimensionality (see Section IV.1.2.3.3). The In-

fluence Diagram builds the system’s influence diagram/decision network dynamically at run-time based on

the extracted prominent features (see Section IV.1.2.3.4).

IV.1.2.3.1 Taxonomy Table

i-CiFHaR employs Service and Adams’ existing coalition formation algorithm taxonomy that defines mul-

tiple dimensions, or features for algorithm classification (Service and Adams, 2010). Service and Adams’

taxonomy encapsulates a broad set of features/dimensions for the multi-robot task allocation problem and

borrows many of the dimensions from the aforementioned taxonomies (see Section II.4). The taxonomy

dimensions are partitioned into four relation-based categories: (1) agent, (2) task, (3) domain, and (4) algo-

rithm. Service and Adams classified a number of coalition formation algorithms according to the taxonomy

dimensions. Table IV.1 categorizes the taxonomy features into the four categories and highlights the respec-

tive domain values.

Let F be a set that contains the N taxonomy features (N = 18), where each feature has its respective

non-empty domain set (see Table IV.1). Let Dom be a collective set containing all the respective domain sets

of N taxonomy features. All this information is captured by Equation IV.1, which is defined as:

∀Fi ∈ F,∃Di ∈ Dom | 1≤ i≤ N,Di 6= /0, (IV.1)
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Category Taxonomy Features (F) Feature Domain Values (Dom)
Agent Orientation (F1) {Group Rational, Self-Interested}

Agent Type (F2) {Homogeneous, Heterogeneous}
Agent Agent Capability Model (F3) {Resource, Service}

Agent Awareness (F4) {Aware, Partially, Unaware}

Agent Structure (F5)
{Social Network, Organization

Hierarchy, None}
Inter-Task Constraints (F6) {Yes, Prerequisite, No}

Task Preemption (F7) {Yes, No}
Task Task Requirement Model (F8) {Resource, Service}

Intra-Task Constraints (F9) {Yes, No}
Task Coupling (F10) {Tightly, Loosely, Intermediate}

Performance Criterion (F11)
{Maximize Utility, Minimize Cost,

Maximize Task}
Communication Overhead (F12) {High, Low}

Domain Task Allocation (F13) {Instantaneous, Time-Extended}
Spatial Constraints (F14) {Yes, No}

Overlapping Coalitions (F15) {Yes, No}

Algorithm Technique (F16)
{Greedy, Auction-based,

Approximation}
Algorithm Implementation (F17) {Centralized, De-Centralized}

Coalition Size Constraint (F18) {Single, None, Fixed Upper Limit}

Table IV.1: Taxonomy Features and respective domain values (Service and Adams, 2010).

where Di is the domain value set of feature Fi. A feature Fi ∈ F can be instantiated with any particular value

of its domain value set, Di.

IV.1.2.3.2 Utility Calculation

Influence diagrams contain chance nodes representing random variables, decision nodes, and a single utility

node. The utility node has a utility value table (degree of preference) for all possible parent node config-

urations. The parents of the utility node in i-CiFHaR’s influence diagram are: (1) a set of chance nodes

representing the subset of important taxonomy features and (2) a decision node with its domain containing all

the coalition formation algorithms. Since i-CiFHaR’s built-in mathematical model computes the utility table

entries, the utility scores of the feature-value pairs and the algorithms need to be determined.

The utility calculation is based on link analysis, which has previously been used to capture the connections

or associations in social networks among friends, computers in computer networks, webpages on the internet,

etc. The exploration of link analysis in world wide web led to the notable applications: HITS (Kleinberg,

1999) and PageRank (Page et al., 1999) that compute composite numerical scores for web pages with the

intent of measuring their relative importance. Query web pages (called hubs) are linked to multiple query

relevant web pages (called authorities) in a hyperlinked environment (Kleinberg, 1999).
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Algorithm 4 

Figure IV.3: Link graph connecting four coalition formation algorithms to three feature-value pairs of the
taxonomy feature, Agent Structure.

Each coalition formation algorithm can be linked to a subset of related feature-value pairs that govern the

algorithm’s applicability (Figure IV.3); therefore, the algorithms and the feature-value pairs can be visualized

as hubs and authorities, respectively. Let V be a set of size d containing all possible feature-value pairs

derived from the set, F of taxonomy features and their corresponding domain sets Dom, such that

V = {(Fx,di) | Fx ∈ F,di ∈ Dx,Dx ∈ Dom}. (IV.2)

The size of the feature-value pair set V is defined as d = ∑
N
x=1 |Dx|, where |Dx| represents the domain size

of Fx ∈ F . A feature-value pair, FV Pφ ∈ V when associated with a particular taxonomy feature, Fx ∈ F is

represented as FV Px
φ

. Based on the associations between i-CiFHaR’s coalition formation algorithms and

feature-value pairs, a link structure can be derived. For example, the taxonomy feature Agent Structure

(F5), with domain D5 = {organization hierarchy, social network, none}, and |D5|= 3 results in three possible

feature-value pairs: (1) {Agent Structure, organization hierarchy}, (2) {Agent Structure, social network}, and

(3) {Agent Structure, none} (see Figure IV.3). For instance, let i-CiFHaR incorporate four random algorithms

(Coalition Formation Algorithms 1 through 4 in Figure IV.3) and leverage only the single taxonomy feature

Agent Structure for algorithm classification. The algorithms are connected manually to the respective feature-

value pairs, thereby forming a link structure, as shown in Figure IV.3. Building on this idea, i-CiFHaR

generates a complete link graph between the coalition formation algorithms in the library and all possible

feature-value pairs in set, V in accordance with Service and Adams’ taxonomy.

Let C be the set containing p coalition formation algorithms in i-CiFHaR’s library. The complete link

graph is represented by a bipartite directed graph G(C,V,E), which is constructed using C and V as the two
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disjoint node sets of G. A directed edge elo ∈E from a coalition formation algorithm, Cl ∈C to a feature-value

pair, FV Po ∈V associates Cl with feature-value pair FV Po.

Algorithm 5 Utility Calculation algorithm

Input: pxd matrix, AMat; constant, const; Number of iterations, itr
Output: FV PBaseScore of size 1xd

1: algoVector← 1 x p vector of 1s
2: FV PVector← 1 x d vector of 1s
3: for i = 1 to itr do
4: FV PVector← algoVector×AMat // Vector-Matrix Multiplication
5: FV PVector← FV PVector

2−Norm(FV PVector)

6: algoVector← FV PVector×AMatT // Vector-Matrix Multiplication
7: algoVector← algoVector

2−Norm(algoVector)
8: end for
9: FV PBaseScore← const ×FV PVector

10: Return FV PBaseScore

Motivated by the HITS algorithm (Kleinberg, 1999), the Utility Calculation algorithm (Algorithm 5)

computes the base utility score of each feature-value pair. A p×d matrix, AMat = {ai j} is computed based

on the complete link structure. The rows of AMat represent the coalition formation algorithms, while the

columns represent all possible feature-value pairs. An element, ai j ∈ AMat (1≤ i≤ p, 1≤ j ≤ d) is defined

as,

ai j =

 1 if Ci ∈C is associated with FV Pj ∈V

0 otherwise.
(IV.3)

The link structure node weights are initialized to 1 and are updated iteratively until they converge to steady-

state utility values. The convergence is guaranteed because the feature-value pair utility scores constitute the

principal Eigen vector of AMatT×AMat (Kleinberg, 1999). During each iteration of Algorithm 5, the vectors,

algoVector and FV Pvector are normalized using an Euclidean norm (2-Norm), such that ∑
p
i=1 algoVector2

i =

1, and ∑
d
j=1 FV PVector2

j = 1. The constant, const scales the normalized utilities. The time complexity of

Algorithm 5 is O(itr× p×d) and the utilities converge to steady-state values very quickly, with itr≈ 20. The

generated feature-value pair base utility scores are purely a function of the link structure. Given the feature-

value pair set V containing all possible feature-value pairs (FVPs), the base utility scores (FV PBaseScore)

are calculated using the Utility Calculation algorithm (Algorithm 5) and

∀FV Pφ ∈V,∃FV PBaseScoreφ ∈ FV PBaseScore, |1≤ φ ≤ d, (IV.4)

where FV Pφ is the φ th feature-value pair. These base utility scores are weighted dynamically in accordance

with the mission requirements (see Section IV.1.2.3.4).
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IV.1.2.3.3 Feature Extraction

i-CiFHaR leverages eighteen features; however, many features do not contribute to classifying the algorithms.

For example, the feature Agent Orientation is assigned the same value (Group Rational) for all algorithms

currently in the library. Feature extraction removes redundant features and reduces the problem dimension-

ality. Principal Component Analysis has been demonstrated for feature selection (Jolliffe, 1972; Song et al.,

2010). i-CiFHaR extracts prominent features that discriminate between algorithms using a Feature Extrac-

tion algorithm similar to Song et al.’s approach for image processing (Song et al., 2010). i-CiFHaR’s feature

selection algorithm differs in that it rejects all taxonomy features that result in zero coefficient factors across

all major principal components. The procedure is formally proven in Lemma 2.

The selection algorithm leverages a p×N matrix U , where p is the number of algorithms in i-CiFHaR’s

library and N is the number of taxonomy features. An element, ui j ∈U is the base utility score (computed

by Algorithm 5) for the specific feature-value pair, with feature j associated with algorithm i. i-CiFHaR’s

feature selection algorithm requires O(p×N2) time to generate the covariance matrix, covC of U and uses the

Singular Value Decomposition technique to compute the Eigen vectors; therefore, the total time complexity

of i-CiFHaR’s feature selection algorithm is O((p×N2)+N3).

Each eigenvector accounts for some variance in the original data set and is expressed as a linear combi-

nation of the N taxonomy features. The κ th eigenvector, pcκ is defined by

pcκ = zκ1F1 + zκ2F2 + ...+ zκNFN =
N

∑
i=1

zκiFi = FZ , (IV.5)

where F is the row feature vector of size N with Fi ∈ F representing the ith taxonomy feature. Z is a matrix

of size N×N containing the weight coefficients of all the N eigenvectors. The κ th column of Z consists of

all the weight coefficients of the κ th eigenvector (κ ∈ [1,N]).

The primary statistics resulting from the κ th eigenvector constitute the associated variance (λκ ) and the

weight vector (zκ1,zκ2, ...,zκN). The relative sizes of the coefficients (zκi) in the weight vector indicate the

relative contributions of the corresponding feature, Fi ∈ F in the original feature data set to the variance (λκ )

of the eigenvector, pcκ (Dunteman, 1989).

Lemma 2. If a feature, Fi ∈ F produces zero coefficient factors consistently for all the major principal

components, then Fi contributes nothing towards the variance of the entire data set, σdata.

Proof. Let N be the total number of taxonomy features, then σdata = ∑
N
i=1 σ2

i , where σ2
i is the variance of

the ith feature, Fi. Let λκ represents the variance of the eigenvector, pcκ . The eigendecomposition generates

eigenvector pcκ , such that the variance of pcκ = ∑
N
i=1 zκiFi is maximized under the constraint, ∑

N
i=1 z2

κi = 1.
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The weight coefficient, zκi also represents the correlation coefficient between feature Fi and the principal

component pcκ ; therefore, zκi = 0 means the angle between pcκ and a unit vector along Fi is 90 degrees (∵

cosine(90◦) = 0); therefore, the vectors are orthogonal. zκi = 0 means no linear dependencies exist between

Fi and pcκ , and Fi does not contribute to the variance of pcκ , because λκ = ∑
N
i=1 ∑

N
j=1 zκizκ jσi j. Since,

∑
N
i=1 λκ = ∑

N
i=1 σ2

i = σdata; therefore, Fi does not contribute to the variance of the entire data set.

Six Principal Components/Eigen Vectors
EigVec1 EigVec2 EigVec3 EigVec4 EigVec5 EigVec6

Eigen Values 4.7 3.3 2.1 1.5 1.3 1

|W
ei

gh
tC

oe
ffi

ci
en

ts
|

z1 0 0 0 0 0 0
z2 0 0 0 0 0 0
z3 0.14 0.09 0.24 0.03 0.05 0.16
z4 0 0 0 0 0 0
z5 0.14 0.57 0.45 0.07 0.23 0.16
z6 0.21 0.16 0.16 0.14 0.03 0.19
z7 0.16 0.05 0.2 0.03 0.72 0.16
z8 0.14 0.09 0.24 0.03 0.05 0.16
z9 0.38 0.28 0 0.18 0.11 0.02
z10∗ 0 0 0 0 0 0
z11 0.42 0.07 0.03 0.33 0 0.52
z12 0.03 0.39 0.24 0.21 0.22 0.23
z13 0.47 0.02 0.3 0.19 0.01 0.43
z14 0.4 0.28 0.07 0.32 0.26 0.44
z15 0.17 0.04 0.33 0.73 0.18 0.37
z16 0.33 0.31 0.37 0.01 0.1 0.11
z17 0 0.47 0.41 0.03 0.51 0.09
z18 0.17 0.07 0.25 0.37 0 0.09

*Weight factors are very small (in order of 10−19), and thus rounded to 0

Table IV.2: Weight Coefficients of the first six principal components or Eigen Vectors (EigVecx).

Eighteen Eigen Vectors or principal components are computed by i-CiFHaR’s feature extraction algo-

rithm. Six components (the EigVecx in Table IV.2, where 1 ≤ x ≤ 6) account for approximately 94% of the

total variance in the original data set. These six principal components and their associated variances (Eigen

Values) are enumerated in Table IV.2. Each principal component comprises a weight vector containing eigh-

teen weight coefficients corresponding to the taxonomy features. The weight coefficients of the taxonomy

features F1, F2, F4, and F10 are zero for all of the major principal components and do not contribute signifi-

cantly to the classification (shaded gray in Table IV.2). The remaining features become chance nodes in the

influence diagram.
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IV.1.2.3.4 Influence Diagram Construction

Once the Feature Extraction algorithm identifies the most prominent features, the influence diagram is built

dynamically at run-time. An influence diagram augments a Bayesian network by introducing decision vari-

ables and a utility function that characterizes the decision maker’s (here i-CiFHaR) preferences. i-CiFHaR

solves the decision problem by determining the optimal strategy that maximizes the expected utility score for

the framework.

The prominent taxonomy features are the most influential and uncertain criteria that can be leveraged to

discriminate between the coalition formation algorithms. The influence diagram’s decision node contains the

decision alternatives that are mutually exclusive, finite, and exhaustive. Since i-CiFHaR seeks to select the

most optimal algorithm(s) to apply at a specific time, the decision node’s domain consists of all the coalition

formation algorithms in its library. The random chance nodes and the decision node become the parents of

the single utility node, which holds a utility table for all possible configurations of the parent nodes. During

a real-world mission scenario, the incomplete information regarding the situation is captured in terms of

probability values for each of the chance nodes. Given that all the chance nodes and the decision node are

parents of the the utility node; the utility function represents all the taxonomy features and the algorithm

scores. The utility table values are usually obtained by consulting domain experts or through intuition and

preferences of the system designer (Yu and Terzopoulos, 2007); however, i-CiFHaR calculates the utility

table entries automatically. The number of entries is exponential in size to the number of parents to the utility

node. The influence diagram’s utility table size (Usize) is given by:

Usize = p×
Nextr

∏
x=1
|Dx|,Dx ∈ Dom,Fx ∈ FProm, (IV.6)

where Nextr is the number of extracted taxonomy features; Dx is the domain set of feature Fx; and FProm is the

Prominent Feature Set containing all prominent taxonomy features, with |FProm|= Nextr.

The exponential utility table size prohibits calculating the entries based on designer preferences or in-

tuitions. Two approaches are implemented. First, the most prominent features are used to construct the

influence diagram, reducing the problem dimension. Second, a mathematical model automatically generates

the utility table entries by leveraging the base utility scores of the feature-value pairs, as computed by the

Utility Calculation module. However, a direct use of the base scores for the utility table entry calculation

has a major drawback. The link-analysis algorithm computes the feature-value pair utility scores based on

the link structure; thus, the more in-links to a feature-value pair, the higher its score. The feature-value pairs

with low endorsements, i.e., a feature-value pair not associated with many algorithms receives a very low

utility score. When feature-value pairs with low utility scores are required for a mission, the corresponding
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coalition algorithm is often not selected because i-CiFHaR seeks to maximize the system’s expected utility

score. Moreover, a persistent utility function makes the framework susceptible to inconsistencies in deci-

sion making. Addressing the stated drawbacks, i-CiFHaR’s presented implementation employs an adaptive

utility function. Under the neoclassical approach, only the probabilities of the chance nodes vary with new

information; however, no such provision exists for modifying the decision maker’s preferences. Therefore,

adaptive utility functions have been advocated (Cohen and Axelrod, 1984; Cyert and Degroot, 1979; Nielsen

and Jensen, 2004) and it has been shown that the expected utility hypothesis still holds (Grne-Yanoff and

Hansson, 2009).

An adaptive utility function through dynamic scoring of the feature-value pairs addresses the aforemen-

tioned drawbacks, where the base utility scores (computed by Equation IV.4) are dynamically weighted in

accordance with the mission requirements. This approach renders i-CiFHaR more responsive to real-world

mission scenarios. Each mission is described in terms of the feature-value pair assignments (FV P) for the

prominent features. The mission uncertainties are captured using probability values (Pr) for each feature-

value pair assignment. The mission dependent utility score (FV PMissionScorei
ς ) of the ς th feature-value pair

(FV Pς ∈V ) that corresponds to the feature Fi ∈ FProm is defined by:

∀FV Pς ∈V,FV PMissionScorei
ς = exp{α×

β
√
|Prς−avgi|}×FV PBaseScorei

ς , (IV.7)

where α = sgn(Prς − avgi) is the signum function, β = |Di| is the domain size of the feature Fi ∈ FProm,

and avgi = 1/β is the equal likelihood of Fi being assigned to any one of its domain values. The probability

assigned to the feature-value pair is denoted by Prς . The motivation for leveraging the aforementioned

scaling approach stems from the fact that the mutual exclusion property of each taxonomy feature’s domain

values permits the calculation of the deviation for a particular feature-value pair FV Pς ∈ V from avgi of

the corresponding feature, given the mission criteria. Based on the nth-root exponential function (Equation

IV.7), the weighting factor is greater than 1 when the deviation is positive and when the deviation is negative,

the base feature-value pair score is weighted by a factor < 1. Figure IV.4 illustrates the effectiveness of

i-CiFHaR’s nth-root exponential weighting function, when compared to a conventional exponential function

(exp{Prς−avgi}) and a base linear function. The figure demonstrates that for the two exemplary features with

domain sizes two and three, i-CiFHaR’s weighting function generates a larger variation in the weight factors

of the domain values, given their probabilities.

Consider a single taxonomy feature, Fi=Task Preemption with the domain set Di = {Yes,No}. The mean

assignment value (avgi), assuming equal probability for assigning Fi to one of its two domain values, is

avgi = 0.5. For example, let a mission require the feature-value pair {TaskPreemption,Yes}. Assume a high
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Figure IV.4: i-CiFHaR’s Dynamic Weighting Function. For illustration purposes, two pairs of curves are
highlighted: one for a feature with domain size = 2 (shown with circle markers), and the other for a feature
with domain size = 3 (shown with triangle markers). i-CiFHaR’s weighting function (in red) is compared
to an exponential function (in green) and a base line linear function (in blue) for each of the features. It is
noted that for the random features with domain sizes 2 and 3, the corresponding curves intersect at weight
value = 1 for probabilities 0.5 and 0.33, respectively. Under such circumstances, the base utility scores of
the feature-value pairs are not scaled, because each of the possible values in the features’ domains has equal
likelihood of being selected.

confidence in this assignment, then the assignment probability value, Prς = 0.8. The base utility score of

{TaskPreemption,Yes} is very low, as computed by the Utility Calculation algorithm (Algorithm 5), because

only two coalition formation algorithms permit task preemption. The low utility score increases the likelihood

of false positives; however, if the mission requirements are considered, the low utility score is weighted by the

factor exp{1×
2
√
|0.8−0.5|} = 1.73. Consider another mission scenario in which task preemption is not required.

Let the probability value Prς be 0.2. The mission dependent utility score is weighted by exp{−1× 2
√
|0.2−0.5|} =

0.57.

Once the mission dependent feature-value pair utility scores are generated, each coalition formation al-

gorithm is assigned a utility score. The intermediate utility score is derived using only the associated feature-

85



value pairs that belong to the prominent taxonomy features, as calculated by:

∀Cl ∈C,algoScorel = ∑
ς

alς ×FV PMissionScorei
ς

| 1≤ l ≤ p,Fi ∈ FProm,FV Pi
ς ∈V,

(IV.8)

where alς ∈ AMat and p is the number of coalition formation algorithms in i-CiFHaR’s library. Equation

IV.8 leverages the adjacency matrix, AMat that captures the associations between the algorithm and the

feature-value pairs (Equation IV.3). The intermediate utility scores depend on the complete link structure

used by Algorithm 5 to calculate the base utility scores. Once the algorithms’ intermediate utility scores are

calculated, the final mission dependent utility scores are obtained by normalizing the intermediate scores:

∀Cl ∈C,algoMissionScorel = const× algoScorel

2−Norm(algoScore)
| 1≤ l ≤ p, (IV.9)

where 2−Norm(algoScore) =
√

∑
p
i=1 algoScore2

i is the Euclidean norm leveraged for the normalization

(similar to that in Algorithm 5). The constant, const scales the normalized mission dependent utility scores

and is set to the same value as that in Algorithm 5. The dynamic utility scores are mission specific, which

result in i-CiFHaR being more adaptable to a wide-range of real-world missions.

Based on the mission dependent utility scores of the coalition algorithms and the feature-value pairs,

i-CiFHaR’s adaptive mathematical model generates the utility table entries automatically for the influence

diagram, as defined by:

∀Stυ ∈W,U(Stυ |Acti) = algoMissionScorei×
Nextr

∑
j=1

aiς ×FV PMissionScore j
ς , (IV.10)

where algoMissionScorei is the mission dependent utility score of the ith coalition formation algorithm (de-

fined by Equation IV.9) and FV PMissionScore j
ς is the ς th feature-value pair associated with the jth prominent

feature, Fj ∈ FProm (defined by Equation IV.7). Each state of the world, Stυ ∈W is defined in terms of feature-

value pairs of the prominent taxonomy features. The mathematical model (Equation IV.10) requires a p×d

adjacency matrix, AMat = aiς , where aiς ∈ AMat is defined by Equation IV.3. The number of prominent

taxonomy features extracted by i-CiFHaR’s Feature Extraction module is Nextr. i-CiFHaR’s utility function,

U(Stυ |Acti) maps from every state Stυ of the hypothetical world W to a value, when an action Acti is taken.

Acti indicates that the decision node chooses the ith coalition formation algorithm, Ci ∈C.

The i-CiFHaR framework behaves as a self-interested decision making agent and considers all the possi-

ble hypothetical states of the world as outcomes (χ) of a lottery. According to microeconomic utility theory,
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such a rational agent models its interest by quantifying each possible outcome using a utility/reward value

that captures the agent’s preference. A utility function, U : χ → R maps from the world states to real num-

bers. Given a particular coalition formation algorithm, i-CiFHaR has a preference for each of the possible

world states; therefore, ∀(Sti,St j) ∈W,∃Sti � St j, or St j � Sti or Sti ∼ St j, where � denotes strict preference,

while ∼ denotes indifference. This completeness of i-CiFHaR’s preferences over all possible world states

represents that i-CiFHaR either strictly prefers one state to the other, or is indifferent between the two, given a

particular coalition formation algorithm. Moreover, the preference is transitive, i.e., if Sti � St j and St j � Stk,

then Sti � Stk. Since all the possible world states represent outcomes of a lottery, there exists a probability

distribution over the states expressed as [p1 : St1, p2 : St2, ..., pk : Stk], where ∑k pk = 1. The von Neumann-

Morgenstern expected utility model (Neumann and Morgenstern, 1947) states that if an agent’s preference

relation satisfies completeness, monotonicity, and transitivity, then there exists a utility function that satisfies:

(1) U(St1)>U(St2), iff St1 � St2, and (2) EU([p1 : St1, p2 : St2, ..., pk : Stk]) = ∑k pk×U(Stk), where EU(•)

denotes the Expected Utility of a given lottery/gamble.

i-CiFHaR’s utility function (Equation IV.10) maps every possible world state to a preference utility score

∈ R+, given the algorithms. Seeking to solve the multicriteria decision problem at hand, each state Stυ ∈W

is expressed in terms of feature-value pairs of the taxonomy features; therefore, Stυ is a conjunction of Fi ∈

FProm. Additionally, the probabilities associated with each state, Stυ are translated into the joint probability

distribution over all the prominent taxonomy features.

Theorem 1. i-CiFHaR’s utility function represents its preferences over all possible choices.

Proof. Equation IV.10 defines U(Stυ |Acti), which calculates the utility value of every possible world state

Stυ ∈W , given an algorithm choice, Acti. The base utility score (FV PBaseScore j
ς as computed by Algorithm

5) of each feature-value pair is const (See Algorithm 5) times the weight coefficient of the corresponding

pair in the principal Eigenvector of AMatT ×AMat, where AMat is the adjacency matrix representing the

connections in the link graph. Each algorithm’s utility score is derived from Equations IV.8 and IV.9 and

is given by algoMissionScorei = k×∑ς aiς ×FV PMissionScore j
ς , where k = const

2−Norm(algoScore) is a constant,

and j corresponds to Fj ∈ FProm. FV PBaseScore j
ς is probabilistically scaled to achieve FV PMissionScore j

ς ;

therefore, the algorithm utility score, algoMissionScorei is constant (Ki) for a given mission instance. i-

CiFHaR’s utility function can be re-written as U(Stυ |Acti) = Ki×∑
Nextr
j=1 aiς ×FV PMissionScore j

ς , where

aiς is 1 if algorithm Acti is connected to ς th feature-value pair in the link graph, 0 otherwise. The world

states in W are expressed by every possible configuration of the prominent taxonomy features. A state, Stα

receives a higher utility than that of Stβ , only if the former contains the conjunction of feature-value pairs

that are connected to Acti in the link graph. A valid utility function depends on the ordinality, rather than
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cardinality of the states; therefore, i-CiFHaR’s preferences over possible world states are correctly modeled

by U(Stυ |Acti), which generates U(Stα)>U(Stβ ), if and only if Stα � Stβ for algorithm Acti.

Once the utility table entries are generated (Equation IV.10), i-CiFHaR leverages the influence diagram to

optimize the algorithm selection process by maximizing its expected utility score. The expected utility score

(EU(Acti)) for each algorithm decision (Acti) is:

EU(Acti) =
|states|

∑
υ=1

Pr(Stυ |Acti)×U(Stυ |Acti), (IV.11)

where states is the subset of all possible hypothetical world states in the hypothetical world W , where the

action Acti can be selected; U(Stυ |Acti) is the utility of the particular world state Stυ , which is derived from

the network’s utility table (Equation IV.10). i-CiFHaR selects the most appropriate algorithm (Act∗) to apply

to a given mission scenario that maximizes the expected utility score, i.e.,

Act∗ = argmax
Acti∈C

EU(Acti), (IV.12)

where C is the set containing p coalition formation algorithms.

The objective is to provide decision support to a human mission supervisor; therefore, i-CiFHaR may

select a subset of algorithm(s) most applicable to the mission scenario when a single algorithm does not meet

all mission requirements. This set of algorithm(s) includes Act∗ and all other algorithms with expected utility

scores greater or equal to the threshold (EU∗), defined by:

EU∗ = µ× max
Acti∈C

EU(Acti), (IV.13)

where µ is the desired fraction of the maximum expected utility score that is required by the mission supervi-

sor. A supervisor requiring 100% performance will obtain the best algorithm that has the maximum expected

utility score, while a 90% performance will select all algorithms that have their expected utility scores greater

than EU∗ = 0.9×maxActi∈C EU(Acti).

IV.1.2.3.5 Learning Structures among Algorithms

i-CiFHaR’s influence diagram considers all the algorithms in the library during the decision making process,

many of which may not be applicable to a given mission scenario. Therefore, the computational time for the

online reasoning is directly proportional to the exponential utility table size of the influence diagram, which
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affects adversely the scalability of i-CiFHaR with an increase in the number of algorithms and taxonomy fea-

tures. Therefore, i-CiFHaR mines patterns in its suite of algorithms by employing conceptual clustering, an

unsupervised machine learning approach in order to extract the most suitable cluster of algorithms for appli-

cation analysis during a specific mission; thereby, accomplishing better scalability and reduced computational

time.

i-CiFHaR leverages COBWEB, a conceptual clustering algorithm (Fisher, 1987) for identifying clusters

of similar algorithms in the library. This improved approach uses the probabilistic metric, category utility

(Gluck, 1985) to identify the most suitable cluster of algorithms. Based on the selected cluster, the influence

diagram optimizes the ranking of the algorithms in the chosen cluster by maximizing the expected utility

scores. The application of conventional clustering approaches (Dempster et al., 1977; MacQueen, 1967)

that employ distance-based objective functions in order to discern the partitioning of i-CiFHaR’s coalition

formation algorithms is inappropriate, because none of the taxonomy attributes that i-CiFHaR leverages have

numerical domain sets. Although the Generality-based Concept Formation (GCF) (Talavera and Béjar, 2001)

performed similarly to COBWEB, its user dependency for hierarchy levels and generality degree necessitates

a human in the loop, which is undesirable for real-world missions. Thus, the original COBWEB conceptual

clustering algorithm is incorporated into i-CiFHaR for mining patterns among the library’s algorithms that

are described by nominal attributes.

Each of i-CiFHaR’s algorithms, Cx representing a data point in the context of clustering, is characterized

by its respective vector, CVx = {(Fi,di j)} of attribute-value pairs. Although the algorithms are associated

with certain attribute-value pairs, a real-world mission scenario is highly dynamic with uncertain or missing

information. Such uncertain missions are represented using a general model for nominal or categorical data

with uncertainty. Under this uncertainty nominal model, each mission situation is represented by a vector of

uncertain categorical attributes (UCAs), each of which is assigned to one of the attribute’s nominal domain

values with some probability that signifies the event’s likelihood. Each UCA is represented by a probability

distribution over the attribute’s domain set. Let an attribute, Fi ∈F be assigned a particular value, di j from Fi’s

domain set, Di with some probability pi j. Assuming the cardinality of Fi’s domain set, Di = |Di|, the attribute’s

probability distribution over all the domain values is governed by ∑
|Di|
j=1 pi j = 1. Therefore, each mission

situation, MSy is represented by a vector, MVy of uncertain nominal attribute-value pairs, {(Fi,di j, pi j)}.

i-CiFHaR incorporating COBWEB’s conceptual clustering algorithm (Fisher, 1987) partitions the li-

brary’s coalition formation algorithms into clusters. COBWEB incrementally builds a hierarchical classi-

fication tree of concept nodes without a predefined number of clusters. COBWEB starts with an empty root

node and each algorithm, expressed as a vector of nominal attribute-value pairs is added to an incremental

classification tree, one at a time. COBWEB performs a hill-climbing search through the classification space,
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which is governed by the category utility heuristic (Fisher, 1987; Gluck, 1985). The category utility metric is

a tradeoff between intra-class similarity and inter-class dissimilarity. Given a cluster, Ck, the category utility

metric is defined as:

CU(Ck) = P(Ck)[∑
i

∑
j

P(Fi = di j|Ck)
2−∑

i
∑

j
P(Fi = di j)

2], (IV.14)

where P(•) defines the probability, Fi ∈ F denotes the taxonomy attribute, and Fi =Vi j represents an attribute-

value pair, when Fi is assigned to the jth domain value, di j ∈ Di. P(Fi = di j|Ck)
2 defines the intra-class

similarity and represents the expected number of attribute-value pairs correctly guessed, given a particular

class (Fisher, 1987). P(Fi = di j)
2 represents the expected number of attribute-value pairs guessed when no

classification is provided.

COBWEB (Fisher, 1987) creates a classification tree, where the root node represents the concept con-

taining all data observations (i-CiFHaR’s coalition formation algorithms), while the leaf nodes represent

singleton concepts, each containing an individual observation. Each node either contains singleton concepts,

or subsumes other sub-concepts. Additionally, each node holds the attribute-value counts of all the objects

that it contains; therefore, representing a probability concept label. COBWEB incrementally absorbs a new

object into the existing hierarchy, while employing four operators recursively in order to classify the object

into the best matching concept. Given a node, the addition operator adds the new object to one of the node’s

children and computes the CU score for each case, with the objective of identifying the best two concept

clusters that can house the new object. The create a new class operator generates a new singleton concept

containing only the new observation and adds this concept to the given node. COBWEB attempts to counter

the ill-effects of initially skewed data by introducing two operators. The merge operator combines the two

best hosts into a new combined concept, which is accepted as a better partition, if and only if the CU score is

higher than the previously generated clusters. The split operator decomposes the best concept into multiple

concept clusters.

The COBWEB’s search is heuristic; thus, the generated classification tree varies across multiple trials

of the algorithm depending on the ordering of the data set. i-CiFHaR mitigates the influence of an ini-

tially skewed data set by randomly selecting an initial algorithm seed, followed by an iterative selection of

a different algorithm data point that maximizes the Manhattan distance between it and the previous n seeds.

i-CiFHaR incrementally derives a classification tree for each of thirty trials, and on each instance, calculates

the partition utility score, PU = 1
m ∑

m−1
k=0 CU(Ck) of the partition structure containing m clusters at first level of

the tree (Level-0 denotes the root node). The tree with the maximum PU score is deemed the best partitioning

of the coalition algorithms, given the objective function. Once i-CiFHaR identifies the optimal classification
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tree with the maximum PU score, uncertain real-world missions, described in terms of a vector of uncertain

attribute-value pairs are classified according to this best hierarchical tree.

The original COBWEB conceptual clustering technique is used to pre-compute the optimal clustering

hierarchy of the coalition formation algorithms in i-CiFHaR’s library, because each of the algorithms is

described in terms of the taxonomy attributes containing nominal domain values with complete certainty. This

offline processing of the algorithms’ hierarchical partitioning is justified, because the system library will not

change during the real-world applications. However, during the online classification of the uncertain mission

scenarios, all the mission attribute-value pairs are assigned likelihood probabilities to simulate uncertainties

in the real-world. The original COBWEB is not designed to handle uncertain data sets; therefore, i-CiFHaR

adopts the modified CU(Ck) calculation methodology from the Extended-COBWEB (Xia and Xi, 2007) in

order to classify the uncertain mission scenarios according to the pre-computed optimal algorithm hierarchy

with the intent of identifying the best matching algorithm cluster.

For example, let F1 and F2 represent two attributes and a particular concept cluster, C1 in the identified

tree has three algorithm objects. Let the domain sets of the attributes, F1 and F2 be {d11,d12} and {d21,d22},

respectively. Let the objects in the cluster be described in terms of the attribute-value pairs: [A1 : {F1 =

d11,F2 = d21}], [A2 : {F1 = d11,F2 = d22}], and [A3 : {F1 = d11,F2 = d22}]. Therefore, the concept attribute-

value counts are: [{F1 = d11 : 3,F2 = d21 : 1,F2 = d22 : 2}]. Addressing mission uncertainty, the concept

counts include all possible attribute-value pair counts, even when some of the pairs are zero. For example,

the concept count is represented as: [{F1 = d11 : 3,F1 = d12 : 0,F2 = d21 : 1,F2 = d22 : 2}]. A sample mission,

described as a vector of UCAs is represented as: [{F1 = d11 : 0.8,F1 = d12 : 0.2,F2 = d21 : 0.7,F2 = d22 : 0.3}].

During the category utility computation with the mission added concept C1, the probability counts take the

format: [{F1 = d11 : 3.8,F1 = d12 : 0.2,F2 = d21 : 1.7,F2 = d22 : 2.3}]. Once the mission scenario is categorized

to a particular algorithm cluster, then the identified cluster contains the most appropriate subset of algorithms

for the mission. The cluster provides the action choices for i-CiFHaR’s influence diagram, which optimizes

and ranks only the algorithms within the identified cluster.

IV.1.2.4 Deployment Unit

The responsibility of the Deployment Unit is to evaluate the quality of task-coalition pairs. Given a task’s

robot coalition, this unit validates whether the coalition meets all the task constraints and requirements,

and evaluates the coalition quality. When the Decision Making Module selects a single coalition formation

algorithm to be the only suitable method, then the algorithm is broadcast to the system robots in order to

create robot coalitions. Otherwise, when the Decision Making Module selects a subset of the most appropriate

algorithms to apply, then the Deployment Unit evaluates each of the algorithms’ applicability by leveraging
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several metrics (e.g., traveling distance, coalition utility, expected utility scores); and upon enough confidence

selects the one that maximizes the likelihood of successfully completing a mission. When none of the selected

algorithms satisfy the mission criteria above a certain threshold, the Deployment Unit will request the human

supervisor to provide additional mission criteria in order to refine the selection of coalition algorithms. Thus,

the Deployment Unit acts as a wrapper to facilitate decision support to the human user amidst real-world

mission conditions.

Coalition Formation Algorithms
A1 A2 A3 A4 A5 A6 A7

Taxonomy Algorithm Category

Features Greedy Greedy Auction Greedy Greedy Greedy Greedy

F3 Res Res Ser Res Res Res Res
F5 None None None Org SNet SNet None
F6 PReq PReq PReq PReq No No PReq
F7 No No Yes No No No No
F8 Res Res Ser Res Res Res Res
F9 No No No No No No Yes
F11 MC MC MU MU MU MU MT
F12 H H H L L L L
F13 IA IA IA TE IA TE IA
F14 No No No No No No No
F15 Yes No No No No No No
F16 Gr Gr Auc Gr Gr Gr Gr
F17 DC DC DC DC DC DC DC
F18 k k None None k None Sngl

Coalition Formation Algorithms
A8 A9 A10 A11 A12 A13

Taxonomy Algorithm Category

Features Greedy Greedy Auction Greedy Approx Approx

F3 Res Res Res Ser Ser Ser
F5 None None None None None None
F6 No PReq PReq PReq No No
F7 No No No No No No
F8 Res Res Res Ser Ser Ser
F9 No No No No No No
F11 MT MU MU MU MU MU
F12 L H L H H H
F13 TE IA IA IA IA IA
F14 Yes No No No No No
F15 No No No No No No
F16 Gr Gr Auc Gr Approx Approx
F17 DC DC DC DC C C
F18 None k Sngl k None None

Table IV.3: Taxonomy Features vs Coalition Formation Algorithms (A1 - A13). See Table IV.1 for feature
domains.
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Coalition Formation Algorithms
A14 A15 A16 A17 A18 A19

Taxonomy Algorithm Category

Features Auction Greedy Greedy Greedy Auction Greedy

F3 Ser Ser Ser Ser Ser Res
F5 None SNet None None None None
F6 PReq PReq Yes Yes PReq PReq
F7 Yes No No No No No
F8 Ser Ser Ser Ser Ser Res
F9 No No Yes Yes No No
F11 MU MT MU MT MU MU
F12 H L H H L H
F13 TE TE TE TE IA IA
F14 No No Yes Yes No No
F15 No No No No Yes Yes
F16 Auc Gr Gr Gr Auc Gr
F17 DC DC C C DC DC
F18 None None None None None None

Feature Domain Key
Approx:Approximation k:Bounded Size Res:Resource-Model
Auc:Auction-based L:Low Communication Ser:Service-Model
C:Centralized MC:Minimize Cost SNet:Social Network
DC:Decentralized MT:Maximize Tasks Completed Sngl: Single Sized Coalitions
Gr:Greedy MU:Maximize Utility TE:Time-Extended
H:High Communication Org:Organization Hierarchy
IA:Instantaneous PReq:Prerequisite

Algorithm Key
A1:(Shehory and Kraus, 1998) A2:(Vig and Adams, 2006b)
A3: (Vig and Adams, 2006a) A4:(Abdallah and Lesser, 2004)
A5: (Tošić and Agha, 2005) A6:(Weerdt et al., 2007)
A7:(Campbell et al., 2008) A8:(Sujit et al., 2008)
A9:(Service and Adams, 2011a)-Resource Model A10:(Gerkey and Matarić, 2002)
A11:(Service and Adams, 2011a)-Service Model A12:(Service and Adams, 2011b)-Approximation
A13:(Service and Adams, 2011a)-Dynamic Programming A14:(Service et al., 2014)-Simultaneous Descending
A15:(Gaston and desJardins, 2005) A16:(Koes et al., 2005)
A17:(Ramchurn et al., 2010) A18:(Shiroma and Campos, 2009)
A19:(Zhang et al., 2010)

Taxonomy Feature Key
F3: Agent Capability Model F5: Agent Structure
F6: Inter-Task Constraints F7: Task Preemption
F8: Task Requirement Model F9: Intra-Task Constraints
F11: Performance Criterion F12: Communication Overhead
F13: Task Allocation F14: Spatial Constraints
F15: Overlapping Coalitions F16: Algorithm Technique
F17: Algorithm Implementation F18: Coalition Size Constraint

Table IV.4: Taxonomy Features vs Coalition Formation Algorithms (A14 - A19). See Table IV.1 for feature
domains.
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IV.1.3 Library of Algorithms

Nineteen coalition formation algorithms have been selected to be incorporated into i-CiFHaR’s library that are

associated with all possible feature-value pairs generated from the taxonomy features. This broad collection

of algorithms increases the likelihood of i-CiFHaR applying to a wide spectrum of missions based on the

taxonomy features. The algorithms have been classified into three major categories (greedy, approximation,

and auction-based) and are associated with their respective feature-value pairs corresponding to the fourteen

prominent features (see Tables IV.3 and IV.4).

IV.2 Experiments and Results

An experiment assessed the efficiency of selecting appropriate coalition formation algorithm(s) based on mul-

tiple mission criteria and constraints. The i-CiFHaR framework has been implemented on a Linux platform

(Ubuntu-12.04, 64-bit) with an Intel Core i5, 2.30GHz processor using C++ and Qt framework (version 4.8)

(Nokia, 2012). The purpose of this experiment is to evaluate the Decision Making Module’s ability to choose

appropriate coalition formation algorithms. The influence diagram implementation leverages the Netica-C

API (NORSYS, 2012), a Bayesian network development software tool that uses a junction tree algorithm

to evaluate influence diagrams. An open-source Python implementation of COBWEB (McLellan and Harp-

stead, 2014) was leveraged to generate the hierarchical cluster tree for the coalition formation algorithms.

Twenty-four missions were created and the hypothesis is that i-CiFHaR will select a set of most suitable

algorithm(s) to apply for each mission scenario by maximizing the system’s expected utility score.

IV.2.1 Experimental Design

The total number of possible mission scenarios is 124,416. Many of these mission scenarios include feature-

value pairs that are not realizable for real-world scenarios. The twenty-four mission scenarios delineated

in Tables IV.5 and IV.6 represent the subset of realistic situations that were used to evaluate i-CiFHaR’s

algorithm selection process.

Each mission scenario has a set of feature-value pair assignments for each prominent feature and a prob-

ability value. The twenty-four scenarios were simulated in two ways. First, the domain value assigned to

each prominent feature was altered, denoted by the Feature-Value pair assignments (FV P) in Tables IV.5 and

IV.6. Second, the uncertainty related to each mission was varied by varying the probability value associated

with each feature-value pair, denoted by Pr in Tables IV.5 and IV.6. System users can establish domain and

mission appropriate probabilities based on domain knowledge, prior mission deployments, intelligence, etc.

Feature domain values are mutually exclusive; therefore, the sum of the feature-value probability assignments

is 1. Additionally, the mission scenarios were partitioned into clusters (see Table IV.7), such that within each
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cluster, certain taxonomy feature(s) were instantiated to constant domain values, while the remaining features

were altered in order to distinguish between each of the grouped missions.

Let us consider two mission scenarios, MS1 and MS3 in order to illustrate the simulation of two different

real-world situations. Both missions are based on the resource model, where the robots’ capabilities and

tasks’ requirements are described in terms of resources (e.g., camera, sonar, laser). Therefore, the features

Agent Capability and Task Requirements were assigned to Resource with a high probability value, 0.8 for

both missions. However, the missions differ in many aspects. MS1’s objective is to maximize utility, thus

Performance is assigned Maximize Utility (MU) with a probability of 0.6. Conversely, MS3 seeks to minimize

cost, thus Performance is assigned to Minimize Cost (MC) with a high probability of 0.9. Additionally,

MS1 does not require overlapping coalitions, thus Overlapping is set to No with probability 0.8. MS3 seeks

to reduce resource losses; thus, requiring overlapping coalitions, so Overlapping is set to Yes with a high

likelihood of 0.8.

Each mission scenario differs in terms of mission criteria (defined by feature-value assignments and prob-

ability values). An exhaustive set of missions cannot be evaluated, thus the twenty-four missions represent a

good subset of potential real-world scenarios focused on the prominent taxonomy features and their respec-

tive domain sets. The impact of const was assessed by varying its value from 25 to 250, in increments of

25; however, this change in value resulted in no variance in the algorithm rankings (Table IV.9). Therefore,

the Utility Calculation algorithm (Algorithm 2) and Equation IV.9 const value was set to 100 as a designer

choice. The variable, µ in Equation IV.13 was set to 90%, based on designer selection.

IV.2.2 Experimental Results

i-CiFHaR selects a subset of the most appropriate algorithms for each mission scenario by optimizing the

expected utility score. Table IV.8 presents all the coalition formation algorithms and the missions for which

each algorithm was chosen. Table IV.9 ranks the most appropriate algorithms for each mission scenario,

where algorithms are ordered by decreasing expected utility scores and the algorithm with the highest score

is deemed the most appropriate. A high expected utility score indicates the corresponding algorithm’s ability

to satisfy the mission’s criteria. The subset of the most applicable algorithm(s) is determined by the cutoff

threshold, which is a 90% lower bound of the maximum expected utility score. For instance, i-CiFHaR

selects Service and Adams’ heuristic algorithm (A9) for MS1 with the maximum expected utility score of

9034.6 as the most suitable algorithm (see Table IV.9). Additionally, the framework selects two additional

algorithms with expected utility scores higher than the threshold, EU∗ = 0.9×9034.6 = 8131.2.
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Mission Scenarios
Taxonomy
Features

MS1 MS2 MS3 MS4 MS5 MS6

F3 Res,0.8 Res,0.8 Res,0.8 Res,0.8 Ser,0.6 Res,0.8

F5 None,0.8 None,0.8 None,0.8 None,0.8 None,0.8 SNet,0.6

F6 PReq,0.7 PReq,0.7 PReq,0.7 PReq,0.7 PReq,0.7 No,0.7

F7 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8

F8 Res,0.8 Res,0.8 Res,0.8 Res,0.8 Ser,0.6 Res,0.7

F9 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8

F11 MU,0.6 MC,0.9 MC,0.9 MU,0.7 MU,0.7 MU,0.7

F12 H,0.8 H,0.8 H,0.8 H,0.8 L,0.7 L,0.9

F13 IA,0.7 IA,0.7 IA,0.7 IA,0.7 IA,0.7 IA,0.6

F14 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8 No,0.8

F15 No,0.8 No,0.8 Yes,0.8 Yes,0.8 Yes,0.9 No,0.8

F16 Gr,0.7 Gr,0.7 Gr,0.7 Gr,0.7 Auc,0.6 Gr,0.7

F17 DC,0.8 DC,0.8 DC,0.8 DC,0.8 DC,0.8 DC,0.8

F18 k,0.6 k,0.6 k,0.6 None,0.7 None,0.7 k,0.5

Mission Scenarios
Taxonomy
Features

MS7 MS8 MS9 MS10 MS11 MS12

F3 Res, 0.8 Ser, 0.7 Res, 0.8 Ser, 0.7 Ser, 0.7 Ser, 0.7

F5 SNet, 0.6 SNet, 0.8 Org, 0.7 None, 0.7 None, 0.7 None, 0.7

F6 No, 0.7 No, 0.5 PReq, 0.6 PReq, 0.7 PReq, 0.7 No, 0.6

F7 No, 0.8 No, 0.8 No, 0.8 Yes, 0.9 Yes, 0.9 No, 0.8

F8 Res, 0.7 Ser, 0.7 Res, 0.7 Ser, 0.8 Ser, 0.8 Ser, 0.8

F9 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8

F11 MU, 0.7 MT, 0.6 MU, 0.8 MU, 0.8 MU, 0.8 MU, 0.8

F12 L, 0.9 L, 0.9 L, 0.8 H, 0.8 H, 0.8 H, 0.8

F13 TE, 0.7 TE, 0.7 TE, 0.7 IA, 0.6 TE, 0.8 IA, 0.7

F14 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8

F15 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8

F16 Gr, 0.7 Gr, 0.7 Gr, 0.7 Auc, 0.8 Auc, 0.8 Approx, 0.8

F17 DC, 0.8 DC, 0.8 DC, 0.8 DC, 0.8 DC, 0.8 C, 0.6

F18 None, 0.5 None, 0.6 None, 0.5 None, 0.8 None, 0.8 None, 0.8

Table IV.5: Mission Scenarios (MS1 - MS12) characterized by Feature-Value Pairs. Each mission is defined
in the format (Feature-value assignments (FV P), Assignment Probability (Pr)).
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Mission Scenarios
Taxonomy
Features

MS13 MS14 MS15 MS16 MS17 MS18

F3 Ser, 0.9 Res, 0.8 Ser, 0.7 Ser, 0.7 Res, 0.8 Ser, 0.9

F5 None, 0.7 None, 0.7 None, 0.7 None, 0.7 None, 0.7 None, 0.7

F6 PReq, 0.6 No, 0.5 Yes, 0.9 Yes, 0.9 PReq, 0.6 Yes, 0.7

F7 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8 Yes, 0.8

F8 Ser, 0.9 Res, 0.8 Ser, 0.7 Ser, 0.7 Res, 0.8 Ser, 0.9

F9 No, 0.8 No, 0.5 Yes, 0.8 Yes, 0.8 No, 0.7 Yes, 0.8

F11 MU, 0.8 MT, 0.9 MT, 0.5 MT, 0.8 MU, 0.6 MU, 0.7

F12 H, 0.8 L, 0.9 H, 0.6 H, 0.6 L, 0.8 H, 0.8

F13 IA, 0.7 TE, 0.6 TE, 0.8 TE, 0.8 IA, 0.7 TE, 0.6

F14 No, 0.8 Yes, 0.6 Yes, 0.8 Yes, 0.8 No, 0.8 Yes, 0.8

F15 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8 No, 0.8

F16 Approx, 0.8 Gr, 0.6 Gr, 0.8 Gr, 0.8 Auc, 0.6 Gr, 0.6

F17 C, 0.6 DC, 0.7 C, 0.6 C, 0.6 DC, 0.7 DC, 0.5

F18 k, 0.6 None, 0.5 None, 0.6 None, 0.6 Sngl, 0.8 None, 0.7

Mission Scenarios
Taxonomy
Features

MS19 MS20 MS21 MS22 MS23 MS24

F3 Ser, 0.9 Ser, 0.9 Ser, 0.9 Ser, 0.9 Res, 0.8 Res, 0.8

F5 None, 0.7 None, 0.7 SNet, 0.6 None, 0.7 None, 0.7 SNet, 0.6

F6 Yes, 0.6 PReq, 0.7 PReq, 0.7 No, 0.5 No, 0.5 No, 0.7

F7 Yes, 0.8 Yes, 0.8 Yes, 0.9 No, 0.7 No, 0.7 No, 0.8

F8 Ser, 0.9 Ser, 0.9 Ser, 0.9 Ser, 0.9 Res, 0.8 Res, 0.8

F9 Yes, 0.8 Yes, 0.8 No, 0.7 No, 0.7 No, 0.7 No, 0.8

F11 MT, 0.7 MU, 0.7 MT, 0.7 MU, 0.7 MT, 0.5 MT, 0.5

F12 H, 0.8 L, 0.6 L, 0.6 L, 0.7 L, 0.6 L, 0.9

F13 TE, 0.6 TE, 0.5 TE, 0.7 IA, 0.7 TE, 0.6 TE, 0.6

F14 Yes, 0.8 No, 0.7 No, 0.7 No, 0.7 Yes, 0.8 Yes, 0.8

F15 No, 0.8 Yes, 0.9 Yes, 0.8 Yes, 0.9 Yes, 0.8 No, 0.8

F16 Gr, 0.6 Auc, 0.7 Auc, 0.6 Approx, 0.6 Gr, 0.7 Gr, 0.8

F17 DC, 0.5 DC, 0.5 DC, 0.5 DC, 0.5 DC, 0.8 DC, 0.8

F18 None, 0.7 None, 0.5 None, 0.5 None, 0.5 None, 0.5 None, 0.6

Table IV.6: Mission Scenarios (MS13−MS24) characterized by Feature-Value Pairs. Each mission is defined
in the format (Feature-value assignments (FV P), Assignment Probability (Pr)).
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Clustering of Mission Scenarios

Constant Features
Impacted
Mission

Scenarios
Features Altered

F3, F5, F6, F7, F8, F9, F13,
F14, F15, F17

MS1
MS2 F11, F12, F16, F18
MS17

F5, F6, F7, F9, F13, F14, F15,
F17

MS3
MS4 F3, F8, F11, F12, F16, F18
MS5

F7, F9, F12, F14, F15, F16 F17

MS6
MS7 F3, F5, F6, F8, F11, F13, F18
MS8
MS9

F3, F5, F6, F7, F8, F9 , F11,
F12, F14, F15, F16, F17, F18

MS10 F13
MS11

F3, F5, F7, F8, F9 , F11, F12,
F13, F14, F15, F16, F17

MS12 F6, F18
MS13

F5, F7, F13, F14, F15, F16, F18
MS14
MS15 F3, F6, F8, F9 , F11, F12, F17
MS16

F3, F8, F17, F18

MS18
MS19
MS20 F5, F6, F7, F9, F11, F12, F13, F14, F15, F16
MS21
MS22

F3, F6, F7, F8, F9, F11, F12,
F13, F14, F16, F17, F18

MS23
MS24 F5, F15

Taxonomy Feature Key
F3: Agent Capability Model F5: Agent Structure
F6: Inter-Task Constraints F7: Task Preemption
F8: Task Requirement Model F9: Intra-Task Constraints
F11: Performance Criterion F12: Communication Overhead
F13: Task Allocation F14: Spatial Constraints
F15: Overlapping Coalitions F16: Algorithm Technique
F17: Algorithm Implementation F18: Coalition Size Constraint

Table IV.7: Clustering mission scenarios based on features

IV.2.3 Discussion of Results

The experimental results show that i-CiFHaR selects appropriate algorithms for each mission scenario. This

section discusses the mission scenario results and justifies the selection of the particular algorithms.

Mission scenario 1 (MS1 in Table IV.5) simulated a mission focused on maximizing total utility that

consisted of independent tasks requiring small sized coalitions. All the mission’s criteria were satisfied by

Service and Adams’ heuristic algorithm (A9) that generates bounded robot coalitions, while maximizing the
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Algorithms Mission Scenarios

A1 Shehory and Kraus (1998) MS1, MS2, MS3, MS23

A2 Vig and Adams (2006b) MS1, MS2, MS3, MS23

A3 Vig and Adams (2006a) MS10, MS11, MS18, MS19, MS20,
MS21

A4 Abdallah and Lesser (2004) MS6, MS7, MS9, MS24

A5 Tošić and Agha (2005) MS6, MS7, MS24

A6 Weerdt et al. (2007) MS6, MS7, MS9, MS24

A7 Campbell et al. (2008) MS14

A8 Sujit et al. (2008) MS14, MS23, MS24

A9 Service and Adams (2011a)-
Resource Model

MS1, MS2, MS3, MS17, MS23

A10 Gerkey and Matarić (2002) MS17

A11 Service and Adams (2011a)-
Service Model

MS13, MS18, MS19, MS21, MS22

A12 Service and Adams (2011b)-
Approximation

MS12 , MS13, MS22

A13 Service and Adams (2011a)-
Dynamic Programming Agent
Types

MS12 , MS13, MS22

A14 Service et al. (2014)-Simultaneous
Descending

MS10, MS11, MS18, MS19, MS20,
MS21

A15 Gaston and desJardins (2005) MS8, MS21

A16 Koes et al. (2005) MS15, MS16, MS18, MS19

A17 Ramchurn et al. (2010) MS15, MS16, MS19

A18 Shiroma and Campos (2009) MS5, MS20, MS21, MS22

A19 Zhang et al. (2010) MS3, MS4, MS5, MS23

Table IV.8: Coalition formation algorithm selections for mission scenarios.

utility. Shehory and Kraus’ heuristic algorithm (A1) and Vig and Adams’ algorithm (A2) were also appropriate

(Table IV.9). Both algorithms A2 and A9 extend A1, but A9 maximizes utility, while A2 minimizes system

cost. The expected utility scores of A1 and A2 were similar, because neither can satisfy the mission criterion

of maximizing utility.

Mission Scenario 2 (MS2) was the same as MS1, except that MS2 minimized system cost as the per-

formance objective. i-CiFHaR selected Shehory and Kraus’ heuristic algorithm (A1) as the best algorithm

and Vig and Adams’ algorithm (A2) as the second most suitable algorithm. Both algorithms satisfied all the

mission criteria and are associated with the the same feature-value pairs, except overlapping coalitions. A2

extends A1 for real-robot domains and both seek to minimize cost. Service and Adams’ algorithm (A9) ranked
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Rankings of Algorithms
Mission

Scenarios 1st 2nd 3rd 4th 5th

MS1 A9 (9034.6) A1 (8374.5) A2 (8328.7) - -
MS2 A1 (8716.7) A2 (8669.2) A9 (8585.1) - -
MS3 A1 (8035.1) A19 (7882.9) A2 (7784.6) A9 (7699.6) -
MS4 A19 (9047.2) - - - -
MS5 A18 (7458.3) A19 (7001.4) - - -
MS6 A5 (7414.6) A6 (7321.3) A4 (6983.2) - -
MS7 A6 (7686.7) A4 (7339.3) A5 (7046.6) - -
MS8 A15 (7047.3) - - - -
MS9 A4 (7906.7) A6 (7195.9) - - -
MS10 A3 (8213.5) A14 (7704.5) - - -
MS11 A14 (8175.3) A3 (7808.4) - - -
MS12 A12 (7658.6) A13 (7658.6) - - -
MS13 A11 (7737.2) A12 (7142.9) A13 (7142.9) - -
MS14 A8 (6075.0) A7 (5644.9) - - -
MS15 A16 (5531.8) A17 (5183.1) - - -
MS16 A17 (5441.5) A16 (5268.1) - - -
MS17 A10 (7476.8) A9 (7190.2) - - -
MS18 A16 (5336.9) A14 (5031.2) A3 (4960.9) A11 (4890.3) -
MS19 A17 (4679.5) A16 (4621.8) A14 (4620.9) A3 (4554.4) A11 (4480.6)
MS20 A18 (5287.2) A3 (4960.9) A14 (4791.4) - -
MS21 A15 (4491.5) A14 (4439.5) A18 (4390.1) A3 (4237.3) A11 (4143.8)
MS22 A18 (5908.2) A12 (5337.5) A13 (5337.5) A11 (5331.2) -
MS23 A8 (5444.8) A19 (5370.2) A1 (5241.5) A2 (5023.7) A9 (5002.2)
MS24 A6 (6734.9) A8 (6650.5) A4 (6367.6) A5 (6083.8) -

Table IV.9: Ranking of coalition formation algorithms by decreasing expected utility scores for each mis-
sion scenario. Each mission describes the most appropriate subset of algorithms in the format, Algorithm
(Expected Utility Score).
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third, because it satisfied all mission requirements, but the cost minimization requirement.

Mission Scenario 3 (MS3) required overlapping and bounded coalitions, while minimizing the overall

system cost. Four algorithms were selected with Shehory and Kraus’ algorithm (A1) ranked as the most

appropriate. A1 is the only algorithm that allows overlapping and bounded coalitions, while also minimizing

system cost. Despite generating overlapping coalitions, Zhang et al.’s algorithm (A19) was selected as the

second choice, because it maximizes total utility. Vig and Adams’ algorithm (A2) caters to almost all the

mission criteria, but does not permit overlapping coalitions, despite being an extension of A1. Service and

Adams’ algorithm (A9) ranked fourth, because it does not permit overlapping coalitions and maximizes the

total utility.

Mission Scenario 4 (MS4) required overlapping coalitions and the maximization of the system utility,

but did not restrict the coalition sizes. i-CiFHaR selected Zhang et al.’s algorithm (A19) as the only best fit

algorithm for the mission. The algorithm leverages particle swarm based optimization technique in order to

generate overlapping coalitions, while maximizing system utility without incorporating the bounded coalition

size heuristic.

The communication bandwidth availability was high for both MS3 and MS4; however, Mission Scenario 5

(MS5) required a low communication footprint due to constrained bandwidth. Moreover, MS5 required over-

lapping coalitions and services (e.g., box-pushing, foraging, sentry-duty) were used to represent the agents’

capabilities and the tasks’ requirements. Shiroma and Campos’ CoMuTaR (A18) is a service-based coalition

formation algorithm that permits overlapping coalitions and requires low communication bandwidth, as a re-

sult it was ranked as the most appropriate algorithm. Zhang et al.’s algorithm (A19) was selected as the second

most appropriate alternative, but it does not satisfy two mission criteria, namely the low communication and

the service model-based requirements.

Consider the first response example from Section 1, where coalitions of robots assess the situation. Such

real-world environments often require low communications. Mission Scenario 6 (MS6) depicts such a sit-

uation, where the communication bandwidth is restricted due to environmental constraints and small-sized

coalitions, bounded within a maximum limit of k are preferred. Moreover, the critical situation demanded

instantaneous task allocations with robots forming a social network topology based on the limited inter-robot

communication, resulting in a sparse network. Given the mission criteria, i-CiFHaR ranked Tošić and Agha’s

algorithm (A5) as the most appropriate, because it leverages a social network and requires low communica-

tion bandwidth, when the underlying topology graph is sparse. Weerdt et al.’s algorithm (A6) was ranked

second, because it too leverages a team of social networked robots to compute task coalitions under con-

strained communication requirements. Abdallah and Lesser’s heuristic algorithm (A4) satisfies almost all the

mission criteria and it was ranked third, because it considers robots to be part of an organization hierarchy,
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rather than a social network.

Mission Scenario 7 (MS7) was very similar to MS6, except that MS7 required time-extended allocations

that stem from the need for task scheduling. Additionally, there was no restrictions on the coalition sizes.

Given the new conditions, i-CiFHaR ranked Weerdt et al.’s algorithm (A6) as the most appropriate algorithm,

because it provides time-extended task allocations with a low communication overhead and leverages a social

network. Abdallah and Lesser’s algorithm (A4) ranked second, because it permits time-extended allocations

with limited communication bandwidth requirements and unbounded coalitions. Tošić and Agha’s algorithm

(A5) was ranked third, because it did not meet the time-extended mission requirement, while it computes only

bounded coalitions.

Mission Scenario 8 (MS8) differed from MS6 and MS7, but the robots’ communication structure remained

the same (Social network). This mission was different in that it required a service-based model and the

objective was to maximize the number of tasks to be completed within a stipulated time frame, unlike the

utility maximization objective of MS6 and MS7. Time-extended allocation was also a criterion. Gaston and

desJardins’ coalition formation algorithm (A15) was selected as the most appropriate algorithm that satisfied

all the mission requirements.

Mission Scenario 9 (MS9) was similar to MS6, but simulated a scenario where robots are connected in

an organizational hierarchy. Low communication was a mission constraint and there was no bound on the

coalition size. Time-extended allocations were necessary. i-CiFHaR selected Abdallah and Lesser’s algo-

rithm (A4) as the most appropriate algorithm, because this is the only algorithm that utilizes an organizational

hierarchy to compute time-extended coalitions with no size restrictions. Weerdt et al.’s algorithm (A6) ranked

second.

Mission scenario 10 (MS10) included a number of high priority tasks requiring frequent task preemp-

tion. MS10 required a service model and an auction-based coalition formation algorithm. Vig and Adams’

RACHNA (A3) ranked as the most appropriate algorithm, because it satisfied all mission requirements, in-

cluding task preemption. Service et al.’ simultaneous descending auction-based algorithm (A14), an extension

of RACHNA, was ranked second.

Mission Scenario 11 (MS11) required task preemption and a service-model similar to MS10; however,

MS11 required time-extended allocations. i-CiFHaR selected the simultaneous descending auction algorithm

(A14) as the most appropriate algorithm, since it generates both instantaneous and time-extended coalitions,

while permitting online task preemption. Vig and Adams’ RACHNA (A3) ranked second, because it allows

only instantaneous allocations.

Mission Scenario 12 (MS12) simulated critical tasks requiring high utility coalitions with guaranteed solu-

tion quality, thereby requiring approximation algorithms. Agent capabilities and task resource requirements
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were expressed in terms of services (e.g., patrolling, sentry-duty, foraging), while robot coalition sizes were

not constrained. i-CiFHaR selected the two approximation algorithms, A12 and A13 with equal expected

utility scores. The two algorithms are equally applicable to MS12, since they are associated with the same

feature-value pairs.

Mission Scenario 13 (MS13) differed from MS12 in that coalition sizes were restricted by an upper bound,

k and solution quality was not critical; therefore, there was an equal likelihood that either a greedy or an

approximation algorithm is applicable. The remaining mission requirements were identical to MS12. Service

and Adams’ service-model based heuristic algorithm (A11) was selected the most appropriate algorithm,

since it met all mission requirements. i-CiFHaR selected the two approximation algorithms, A12 and A13 as

the remaining alternatives.

Real robots must travel to the assigned task’s location; therefore, satisfying spatial constraints in real-

world conditions is essential. Mission Scenario 14 (MS14) required that robot coalitions met spatial con-

straints and had a low communication footprint. Time-extended task allocations were necessary and the

performance objective was to maximize the number of tasks completed in a given time. i-CiFHaR selected

Sujit et al.’s algorithm (A8) as the most suitable fit, because this algorithm satisfies spatial constraints using

Dubin’s curves to estimate the travel time to task locations. Moreover, A8 uses low inter-robot communication

bandwidth (O(n×m)) with n robots and m tasks, and maximizes the number of tasks completed. Campbell

et al.’s heuristic algorithm (A7) ranked second, since it creates single robot coalitions with no inter-agent

communication at all, and models the coalition formation problem as a multi-processor scheduling problem

to maximize the number of completed tasks.

Mission Scenario 15 (MS15) simulated tasks with hard task completion deadlines. Additionally, MS15

involved tasks with dependencies, invoking the need to satisfy inter-task precedence constraints. Consider

two mission tasks: the first is to triage a victim and the second is to clear debris covering an injured victim.

The second task must be performed first. The performance objective of MS15 was to maximize system utility,

while time-extended allocations were preferred. i-CiFHaR selected Koes et al.’s algorithm (A16) as the best,

because it met all mission requirements. Ramchurn et al.’s algorithm (A17) was second, because it maximizes

the number of completed tasks.

Mission Scenario 16 (MS16) differed from MS15 in that its performance objective was to maximize the

number of completed tasks, while the remaining mission requirements remained the same. i-CiFHaR selected

Ramchurn et al.’s algorithm (A17) as the most appropriate algorithm, as it satisfied all mission criteria. This

time Koes et al.’s algorithm (A16) was selected as the second most suitable alternative.

Mission scenario 17 (MS17) depicted a situation where single robot coalitions were necessary under low

communication requirements, and auction-based algorithms were preferred. Gerkey and Matarić’s MUR-
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DOCH (A10) ranked as the best fit, followed by Service and Adams’ resource-model based algorithm (A9).

The latter was ranked lower, because it requires high inter-agent communication messaging for computing

coalitions.

Mission situation MS18 was a conglomeration of several critical requirements, including task preemption

and addressing of inter- and intra-task constraints along with spatial constraints. Additionally, the mission re-

quired scheduling, thus time-extended allocation was crucial for the team of service-based robots. i-CiFHaR

considered all the critical criteria and selected Koes et al.’s centralized coalition formation algorithm (A16),

because this algorithm addresses both inter- and intra-task constraints, alongside spatial constraints. More-

over, Koes et al.’s algorithm permits time-extended allocations, but fails to allow task preemption. Service

et al.’s simultaneous descending auction approach (A14) was ranked second, on the grounds that this algo-

rithm allows task preemption and time-extended allocations; however, fails to address the task and spatial

constraints. RACHNA (A3) being a task preemptive approach was ranked third, followed by Service and

Adams’ service-model algorithm (A11) as the fourth alternative.

The mission requirements of the next scenario (MS19) were almost identical to that of MS18, except that

the former sought to maximize the number of completed tasks that were spatially distributed. i-CiFHaR re-

evaluated the requirements and recommended Ramchurn et al.’s coalition formation algorithm (A17), because

it satisfies most of the mission criteria, except task preemption. Koes et al.’s algorithm (A16) was ranked

second, because it aims to maximize the utility and does not permit preemption; however, it does satisfy

the remaining criteria. Service et al.’s approach (A14) was ranked higher than RACHNA (A3), because the

former allows time-extended allocations along with task preemption, whereas the latter permits instantaneous

allocations and task preemption. Service and Adams’ service-model algorithm (A11) was the fifth alternative.

Mission Scenario 20 (MS20) demanded two additional criteria. Aiming to reduce resource usage, the

mission preferred overlapping coalitions. Low communication bandwidth was required alongside the afore-

mentioned criteria of MS18 and MS19. CoMutaR (A18) was ranked first, owing to the fact that this service-

model based algorithm computes overlapping coalitions with low communication bandwidth requirements.

RACHNA (A3) and Service et al.’s algorithm (A14) were chosen as the next suitable alternatives, because

these algorithms allow task preemption and seek to maximize the utility.

The robots in mission scenario MS21 were connected in a communication social network and task preemp-

tion and time-extended allocations were necessary. The objective was to maximize the number of completed

tasks and reduce the communication footprint. i-CiFHaR selected Gaston and desJardins’ service-model

algorithm (A15) that employs a social network as a heuristic to perform the time-extended task allocations

with reduced communication overhead. The simultaneous descending auction algorithm (A14) allowing task

preemption and time-extended allocations ranked second. CoMutaR (A18) ranked third and falls short of max-
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imizing the completed tasks and task preemption objective criteria. RACHNA (A3) ranked fourth, given the

fact that despite permitting task preemption, A3 maximizes system utility and have instantaneous allocations.

Service and Adams’ service-model algorithm (A11) was the fifth alternative.

Mission scenario MS22 aimed for approximate overlapping coalitions along with low communication

overhead and the objective to maximize team utility. i-CiFHaR selected CoMutaR (A18), because this algo-

rithm allows overlapping coalitions with constraints on communication bandwidth and maximizes total team

utility. However, the approach is an auction-based technique and fails to provide guarantees on the solution

quality. i-CiFHaR recommended Service and Adams’ two approximation algorithms, A12 and A13 as the next

two highest ranked algorithms, because they provide solutions within a fixed bound from the optimal solu-

tions. However, the approximation algorithms fail to allow overlapping coalitions with a low communication

footprint. Service and Adams’ service-model algorithm (A11) was the fourth alternative.

Mission scenario MS23 was designed for robots that follow the Resource-Model. The mission require-

ments involved overlapping coalitions with time-extended allocations for spatially distributed tasks. i-CiFHaR

selected Sujit et al.’s coalition formation algorithm (A8) that uses Dubin’s curves to address spatially dis-

tributed tasks and computes time-extended allocations with low communication messages. However, this

algorithm does not permit overlapping coalitions. Zhang et al.’s particle-swarm based approach (A19) and

Shehory and Kraus’ algorithm (A1) were selected as the second and third choices respectively, since both

algorithms allow overlapping coalitions, but fail to provide time-extended allocations. Vig and Adams’ algo-

rithm (A2), which is an extension of A1 was ranked fourth, while Service and Adams’ algorithm (A9) was the

last alternative.

The last mission, MS24 was similar to MS23, except that the robots used a communication topology as a

social network. i-CiFHaR selected Weerdt et al.’s algorithm (A6) as the most appropriate algorithm, based on

the fact that this algorithm offers time-extended allocations with low communication footprints and leverages

a social network to compute coalitions. Sujit et al.’s approach (A8) was ranked second, because it seeks to

maximize the number of completed tasks and provides time-extended allocations with low communication

overhead, few of the mission criteria. A4 and A5 were the remaining alternatives.

The results show that for all the simulated mission scenarios, i-CiFHaR successfully selected the most

appropriate algorithms to apply based on multiple mission criteria. When a single best fit algorithm is not

found, i-CiFHaR determines a subset of algorithms that are most suitable. The highlighted missions repre-

sent a subset of all possible scenarios; however, the number of all possible missions is exorbitantly large.

The selected mission scenarios exploited all taxonomy features and provided a good subset of the possible

missions.
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IV.2.4 Experimental Results for i-CiFHaR with Clustering

The hierarchical classification tree with the maximum PU score, as identified by COBWEB, is shown in

Table IV.10. The hierarchy is represented by the levels with the root concept, C0 containing all the coalition

formation algorithms at Level-0. As one moves down the hierarchy, children C1 and C2 at Level-1 partition

the entire library into Service−model and Resource−model based algorithms. More concept clusters are

realized that group similar algorithms based on their attribute-value pairs lower in the hierarchy levels. The

colored leaf nodes represent the nineteen singleton concepts, each one corresponding to a single coalition

formation algorithm.

i-CiFHaR acts as a decision support system; therefore, it selects either a single coalition formation algo-

rithm, or a subset of algorithm(s) that satisfy all or most of a given mission’s criteria. i-CiFHaR analyzes

the most suitable cluster, as identified by COBWEB and optimizes the algorithm rankings by maximizing the

expected utility score. The coalition formation algorithm rankings for each of the twenty four missions are

provided in Table IV.11. The table also provides the pertinent cluster and the cluster size by mission.

Figure IV.5 presents i-CiFHaR’s computational time with and without the COBWEB clustering. It is

noted that i-CiFHaR’s computational time with clustering is lower than i-CiFHaR without clustering across

all the mission scenarios. The mean time of the latter is 16.1 seconds, with a standard deviation is 0.2 seconds.

Conversely, i-CiFHaR with clustering computed solutions in a mean time of 5.2 seconds, with a standard

deviation of 2.7 seconds, a 67% improvement. The computational time standard deviation differences stems

from the fact that i-CiFHaR without clustering always considered all nineteen algorithms, irrespective of

the mission scenario. The conceptual clustering based i-CiFHaR selects a single best cluster of algorithms

to apply to a given mission, but the cluster sizes differ, as shown in Table IV.11. The computational time

of certain missions (e.g., MS19, MS20) is much higher than that of other missions (e.g., MS1, MS3, MS11),

because the cluster sizes in the former scenarios are much larger than those of the latter.

106



C0

C1 C2

C3 C4

C7 C8

C5 C6

C9 C10

A3 A14 A1 A19 A7 A8 A10

A11 A15 A18

A12 A13 A16 A17 A2 A9 A4 A5 A6

Algorithm Key
A1:(Shehory and Kraus, 1998) A2:(Vig and Adams, 2006b)
A3: (Vig and Adams, 2006a) A4:(Abdallah and Lesser, 2004)
A5: (Tošić and Agha, 2005) A6:(Weerdt et al., 2007)
A7:(Campbell et al., 2008) A8:(Sujit et al., 2008)
A9:(Service and Adams, 2011a)-Resource Model A10:(Gerkey and Matarić, 2002)
A11:(Service and Adams, 2011a)-Service Model A12:(Service and Adams, 2011b)-Approximation
A13:(Service and Adams, 2011a)-Dynamic Program-
ming

A14:(Service et al., 2014)-Simultaneous Descending

A15:(Gaston and desJardins, 2005) A16:(Koes et al., 2005)
A17:(Ramchurn et al., 2010) A18:(Shiroma and Campos, 2009)
A19:(Zhang et al., 2010)

Table IV.10: The hierarchical cluster tree generated by conceptual clustering. The white circles constitute the
cluster concepts, while the colored circles or leaf nodes represent the singleton concepts containing a single
algorithm.

i-CiFHaR with clustering produced identical algorithm rankings as i-CiFHaR without clustering (see Tables IV.9 and

IV.11) for twenty-three mission scenarios. i-CiFHaR without clustering selected two algorithms, A18 and A19 for MS5;

however, i-CiFHaR with clustering chose only Service-model based algorithms, A18 from cluster C6 and excluded A19,

because A19 leverages a Resource-model and belongs to cluster C3.

i-CiFHaR’s computational time, by cluster size is provided in Table IV.12. i-CiFHaR’s computational time with

COBWEB increases linearly with the cluster size. However, as i-CiFHaR scales to include more algorithms in the
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Rankings of Algorithms
Cluster
# (Size)

Mission
Scenarios 1st 2nd 3rd 4th 5th

C3(4) MS1 A9 A1 A2 - -
C3(4) MS2 A1 A2 A9 - -
C3(4) MS3 A1 A19 A2 A9 -
C3(4) MS4 A19 - - - -
C6(7) MS5 A18 - - -
C8(3) MS6 A5 A6 A4 - -
C8(3) MS7 A6 A4 A5 - -
C6(7) MS8 A15 - - - -
C8(3) MS9 A4 A6 - - -
C5(2) MS10 A3 A14 - - -
C5(2) MS11 A14 A3 - - -
C9(2) MS12 A12 A13 - - -
C6(7) MS13 A11 A12 A13 - -
C4(6) MS14 A8 A7 - - -

C10(2) MS15 A16 A17 - - -
C10(2) MS16 A17 A16 - - -
C2(10) MS17 A10 A9 - - -
C1(9) MS18 A16 A14 A3 A11 -
C1(9) MS19 A17 A16 A14 A3 A11
C1(9) MS20 A18 A3 A14 - -
C1(9) MS21 A15 A14 A18 A3 A11
C6(7) MS22 A18 A12 A13 A11 -

C2(10) MS23 A8 A19 A1 A2 A9
C4(6) MS24 A6 A8 A4 A5 -

Table IV.11: Algorithm rankings of each mission scenario by decreasing expected utility scores. The cluster
sizes for each mission are also provided.

library, COBWEB can generate a different classification hierarchy tree comprised of clusters with different sizes. An

increased cluster size will result in increased computational time. The worst case leverages the root cluster containing all

algorithms in the library, as is utilized by i-CiFHaR without clustering; thereby, considering O(n) algorithms for decision

making. However, with the hierarchical clustering approach, i-CiFHaR potentially will leverage O(logb n) algorithms,

where n is the number of algorithms and b is the average branching factor of the hierarchical tree.

Cluster Size 2 3 4 6 7 9 10 19

Mean
Computation
Time (sec)

2 2.5 3.5 5.5 6.8 8.7 9.8 16.1

Table IV.12: Cluster Size vs Average Computation Time (sec).
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Figure IV.5: i-CiFHaR’s computational time in seconds with and without conceptual clustering.

IV.2.5 Human Interface Integration Results

The i-CiFHaR’s middle level logic tier leverages an influence diagram for performing optimized selection of the most

appropriate coalition formation algorithms to apply to given mission scenarios with multiple mission criteria. Aiming to

develop i-CiFHaR into a complete decision support system for mission supervisors, the middle level logic tier, along with

the library of algorithms are integrated into the existing Human Machine Teaming Laboratory’s SHRI (System of Human

Robot Interface) module. SHRI uses Google Maps to provide the user (mission specialist) with the ability to specify

missions. The user inputs a number of mission criteria, such as task type, task name, task duration, priority, required

types of unmanned vehicles, etc. All these criteria are parsed into an XML file and sent to i-CiFHaR, which reads the

file to extract relevant information for the decision making. i-CiFHaR performs the probabilistic reasoning and derives

the most suitable subset of coalition formation algorithms based on its library. This list of selected algorithms, along

with their ranks and expected utility scores are parsed into an XML file and sent to the SHRI, which in turn provides the

resulting coalition rankings to allow the user to choose the most appropriate coalition for the mission. Figures IV.6 and

IV.7 display two sets of most suitable algorithms for two separate missions, Victim Search and Search Area, respectively.

The two tasks required the same set of criteria similar to that of Mission Scenario 2 and Mission Scenario 10 from the

i-CiFHaR experiments (see Table IV.5). The algorithm rankings are displayed in the right panel of the interface. It is

noted that the integration of the interface is a proof of concept for providing decision support to the human operator.
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Figure IV.6: The SHRI GUI for a victim search task with algorithm ranking in the right panel.

Figure IV.7: The SHRI GUI for a search area task with algorithm ranking in the right panel.
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IV.3 Chapter Summary

An intelligent framework is presented that reasons online over a library of coalition formation algorithms to select the

most appropriate coalition formation algorithm(s) to apply to a given mission scenario, and result in a coalition to execute

the mission. i-CiFHaR reasons using a suite of algorithms, rather than a single heuristic based algorithm and leverages

an influence diagram to make decisions online under multiple, uncertain mission criteria. A link analysis based algo-

rithm calculates the utility values of the feature-value pairs. The framework uses a number of features to select the most

suitable coalition formation algorithm(s). The curse of dimensionality is addressed by extracting prominent features that

discriminate the coalition algorithms using principal component analysis. These prominent features are utilized to dy-

namically create the influence diagram at run-time. The experimental results show that i-CiFHaR selects the appropriate

algorithm(s), given multiple mission criteria. The framework additionally incorporates conceptual clustering in order

to cluster similar algorithms in its library. Based on the clusters, i-CiFHaR selects the most pertinent partition for a

given mission, and ranks the algorithm in this identified cluster. The computational time of i-CiFHaR is improved by

67% through the use of the clustering mechanism. When a single best fit algorithm is unavailable, i-CiFHaR selects a

subset of suitable algorithms that are applicable to form coalitions. i-CiFHaR is applicable to missions with frequent

contingency occurrences that introduce changing mission requirements (e.g., overlapping coalitions resulting from robot

failures, task preemption). The likelihood of handling diverse situations increases with the inclusion of a broad set of

algorithms in the system. i-CiFHaR provides a more robust approach to allocate task coalitions for dynamic, real-world

scenarios. An existing human-computer interface is integrated into i-CiFHaR in order to provide decision support to

human operators.
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CHAPTER V

Conclusions, Contributions, and Future Work

This chapter summarizes the dissertation and outlines the major contributions that stem from this research. A number of

potential directions for future work are also provided.

V.1 Dissertation Summary

This dissertation presented and validated i-CiFHaR, a novel coalition formation framework that leverages influence dia-

gram to perform probabilistic reasoning regarding the most appropriate coalition algorithm to apply to a given mission.

i-CiFHaR is a first of its kind system that incorporates a library of coalition formation algorithms instead of the contem-

porary use of a single algorithm. The framework incorporates conceptual clustering in order to partition the algorithms

in its library; thereby, selecting only the most suitable cluster of algorithms for application analysis. The ranking of the

algorithms in this identified cluster is accomplished by optimizing the expected utility score.

Twenty four mission scenarios were used to evaluate the effectiveness of i-CiFHaR’s decision making process both

with and without the integration of the clustering mechanism. i-CiFHaR selected the best fit algorithms for each of the

missions and the clustering approach further corroborated the results, since the algorithms selected by i-CiFHaR without

clustering matched those that were obtained through the use of clustering. The integration of the conceptual clustering

technique improved i-CiFHaR’s computation time by 67%.

Conventional coalition formation algorithms are classified into greedy, market-based, and approximation categories;

however, each of the algorithm classes has its own pros and cons during its application to multi-robot systems. Many

of the existing heuristic coalition formation approaches leverage the heuristic of constraining the coalition sizes upto a

maximum limit of k << n (n = number of agents/robots) in an attempt to compute good coalitions in real-time. This

detrimental heuristic considerably affects the coalition quality, because a small k value may result in poor coalitions due

to insufficient exploration of the search space. This dissertation attempts to bridge the gap by leveraging an ACO-based

coalition formation algorithm that can compute solutions in real-time for very large teams of robots, without the use of

any detrimental heuristics. However, existing ACO algorithms, popular for solving combinatorial optimization problems

suffer from search stagnation, which limits the extensiveness of the search process. Therefore, this dissertation addresses

this basic shortcoming of ACO algorithms by contributing two novel pheromone depositing policies by integrating sim-

ulated annealing technique; thereby, leading to the development of two centralized generic and improved ACO search

algorithms (sA-ANT and sA-ANT*) that are applicable to any NP-complete problems.

The centralized sA-ANT and sA-ANT* algorithms were applied to three optimization problems: Traveling Salesman

Problem, multi-agent coaltion formation problem, and the maximal clique generation problem. The experimental results

illustrate the effectiveness of the presented hybrid algorithms in addressing the search stagnation drawback by exhibiting

a significant improvement in their search exploration capabilities. This enhanced searching resulted in sA-ANT* and sA-

ANTs’ significantly improved solution qualities for the TSP and coalition formation problem when compared to existing
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state-of-the-art ACO-based approaches. sA-ANT* performed better than Ant-Clique algorithm for the Maximal Clique

problem, although the improvement was not statistically significant.

A true multi-robot coalition formation algorithm is required to be decentralized for robustness to dynamic real-world

situations and fault-tolerance. Therefore, distributed sA-ANT* (d-sA-ANT*) is presented, which permits a team of robots

to concurrently compute coalitions in real-time in a distributed fashion. d-sA-ANT* incorporates information sharing

across the robots by allowing each robot to publish world information using its immediate neighbors; thereby, resulting

in an information propagation through multicast message routing. Each robot employs its own set of ants, as multiple

agents to perform the search process. Experimental results demonstrate that d-sA-ANT* computes coalitions of almost

identical qualities as those generated by the centralized sA-ANT* algorithm; however, the computation time of the former

is significantly higher than that of the centralized variant, because of the information propagation overhead.

V.2 Contributions

This dissertation contributes to the multi-agent coalition formation and swarm intelligence communities. The presented

work improves upon the state-of-the-art in both fields as stated subsequently.

1. The primary contribution to the multi-agent systems community is the development of an intelligent coalition for-

mation framework, i-CiFHaR, which performs probabilistic reasoning to compute the most appropriate coalition

formation algorithm(s) to create robust coalitions for real-time missions. The framework is the first of its kind

that leverages a library of diverse algorithms, rather than a single algorithm. i-CiFHaR leverages an influence dia-

gram/decision network to optimize the algorithm selection process by maximizing the expected utility score. The

inclusion of a broad set of diverse coalition formation algorithms renders i-CiFHaR flexible and applicable to a

wide-range of real-world missions and increases the likelihood of mission success. i-CiFHaR can provide efficient

decision support to human mission supervisors amidst immense stresses associated with field deployments.

2. This dissertation is the first to use conceptual clustering to partition coalition formation algorithms by mining

crucial patterns and intricate relationships among the coalition formation algorithms. i-CiFHaR leverages the

unsupervised learning method to cluster the algorithms in its library; thereby, analyzing only the most pertinent

partition of algorithms for the application at hand. The use of clustering renders i-CiFHaR scalable, when new

algorithms are added to its library the computation expense is not detrimentally impacted.

3. The primary contributions to the swarm intelligence community are the novel hybrid biologically inspired ACO

algorithms that leverage the advantages of both the ant colony optimization and the simulated annealing techniques

in order to solve combinatorial optimization problems. sA-ANT and sA-ANT* employ two novel pheromone up-

date policies that are radically different from conventional ACO approaches by integrating the simulated annealing

technique. sA-ANT leverages a dynamically modulated number of ants to deposit pheromones, while sA-ANT*

maintains a dynamically modulated repository of solutions and uses the single best fit ant from the repository

for pheromone depositing. Equipped with a high initial annealing temperature and a gradual annealing schedule,

both algorithms provide enhanced search exploration during the initial phases, followed by improved exploitation
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during the later phases, without stagnating in a local optima. The hybrid ant colony optimization algorithms effec-

tively address the search stagnation shortcoming of contemporary ACO methods; thereby, generating significantly

better results when applied to three NP-complete problems.

4. A distributed version of sA-ANT* for the coalition formation problem is presented that contributes to the multi-

agent and multi-robot systems communities. The algorithm computes high quality coalitions based on an infor-

mation propagation mechanism, where every robot communicates with its immediate neighbors and publishes any

newly acquired knowledge about the world. Over time, the robots capture as much global information as possible,

given realistic real-world communication ranges. The decentralized d-sA-ANT* algorithm is the first ACO-based

coalition formation algorithm that has been simulated for the coalition problem in a real-world, multi-robot set-

tings.

V.3 Future Work

A number of future research work can emerge from this dissertation. Some of the potential directions are described below.

V.3.1 Potential Extensions to i-CiFHaR

The current i-CiFHaR framework can be extended in a number of ways: (1) compute hybrid coalitions comprised of both

humans and robots, (2) coalition formation algorithms can be added to its library, and (3) integration of planning.

V.3.1.1 Hybrid Coalition Formation

i-CiFHaR is the harbinger for future hybrid coalition formation for teams comprised of both humans and robots for critical

missions (e.g., planetary, military, disaster response). Both a human and robot can constitute an agent in a multi-agent

settings, where robots may have either non-consumable resources (e.g., camera, laser, sonar) or depletable resources

(e.g., battery, fuel, ammunition), while humans have capabilities (e.g., fatigue, environmental factors, training) that can

be modeled using human performance moderator functions (Silverman et al., 2006). i-CiFHaR can evolve to form

hybrid coalitions by incorporating models of human agents’ relevant performance factors. Some human performance

factors (e.g., rank, height, training, and skills) do not change rapidly, while other performance factors (e.g., workload,

fatigue, reaction time) can change quickly. Many human performance factors can be modeled and predicted (Harriott

et al., 2013). Currently, tasks are specified by their resource or service requirements that can be accomplished by robots;

however, future research can expand on the same idea with task descriptions including performance attributes, such as:

• Workload - Amount of physical work required by a task, given the duration of the task. Workload of a task can

be decomposed into seven workload channels: (1) Auditory, (2) Visual, (3) Speech, (4) Tactile, (5) Cognitive, (6)

Fine Motor, and (7) Gross Motor (Harriott et al., 2013).

• Expected Fatigue Requirement - Fatigue level, resulting from factors, such as sleeplessness, stress, etc. that will

be elicited during the task execution and the values are assumed to be available from existing research.

• Rank in the organization - The rank of the human in the organization who is eligible to perform the task.
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• Training skills - A set of training skills with respective levels that is required for task accomplishment.

• Reaction/Response time - Reaction time, which is the time required by an individual to respond to a particular

stimulus, while performing a task. Reaction time is affected by several factors (e.g., age, gender, fatigue) and other

human performance factors, such as brain injury, etc. (Harriott et al., 2013).

• Environment characteristics - Conditions characterizing the task environment in which the task will be con-

ducted, such as temperature, humidity, wind speeds, light (day/night), etc.

• Gear Requirement - Defines the type of gear a human needs to wear while performing the task (e.g., Mask and

Hood, Gloves, Overgarmet and Helmets).

Similar to the resource capabilities of robots, each human agent in the team will have attributes associated with each

human performance factor that may contain:

• Prior performance - The prior performance or experience gained by a human for a particular type of mission.

• Training - The level of training a human has acquired for a particular type of mission.

• Stress level - The stress levels of a human that can originate from fatigue, sleeplessness, etc.

• Rank within organization - The rank to which the human belongs in an organization.

• Visibility and Reaction time - Internal performance factors of the human.

• Workload capacity - The workload reserve of the human that dictates how long the human can perform a task.

• Gear level - The level of personal protective gear that a human wears.

Once the additional human attributes are determined and the humans are appropriately represented, i-CiFHaR will

consider both the human and robotic assets as abstracted agents for the coalition formation algorithms to compute the

hybrid task coalitions.

V.3.1.2 Expanding i-CiFHaR’s library

A number of newly developed coalition formation algorithms can be added to i-CiFHaR’s library of algorithms. The

developed sA-ANT, sA-ANT*, and d-sA-ANT* approaches tailored for the multi-agent coalition formation problem can

be added to the library by classifying the algorithms in accordance with Service and Adams’ taxonomy. Some other

coalition formation algorithms (Ramchurn et al., 2010; Shiroma and Campos, 2009; Xu and Li, 2008) also need to be

implemented for the framework. i-CiFHaR’s built-in conceptual clustering will accommodate these new algorithms into

suitable clusters; thereby, either retaining the current hierarchical cluster tree of algorithms or creating a completely new

hierarchical structure.

V.3.1.3 Integration of planning

Currently, i-CiFHaR is capable of selecting the most pertinent coalition formation algorithms to apply to a given mission,

including the generation of agent/robot coalitions for the tasks. However, completion of the allocation task requires

planning, and not just the coalition members. Planning needs to be effectively integrated into i-CiFHaR, such that

appropriate plans can be generated to allow each coalition member to accomplish the assigned task.
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V.3.2 Extensions to d-sA-ANT*

The d-sA-ANT* algorithm needs to be implemented on real robots in order to study the impact of real-world commu-

nications on the algorithm’s performance. Currently, the robots compute the coalitions based on their static positions.

During real-world applications, robots can continuously move when computing the coalitions; therefore, the communica-

tion topology will dynamically change over time as robots move in and out of each other’s communication ranges. First,

the presented evaluations need to be repeated in simulation to realize the effect of moving robots on the performance.

The algorithm can then be implemented on real robot hardware in order to realize d-sA-ANT*’s impact on multi-robot

systems. It is hypothesized that the number of communication messages will be quite high, due to the intense information

propagation mechanism of the algorithm.
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Gerkey, B. and Matarić, M. J. (2002). Sold!: Auction methods for multirobot coordination. IEEE Transactions on
Robotics and Automation, 18(5):758–768.
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Ilie, S. and Bădică, C. (2013). Multi-agent approach to distributed ant colony optimization. Science of Computer Pro-
gramming, 78(6):762–774.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31(3):264–323.

Jolliffe, I. (1972). Discarding variables in a principal component analysis. I: Artificial data. Journal of the Royal Statistics
Society. Series C (Applied Statistics), 21(2):160–173.

118



Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598):671–
680.

Kjærulff, U. B. and Madsen, A. L. (2008). Bayesian networks and influence diagrams: A Guide to construction and
analysis. Springer Publishing Company.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5):604–632.

Koes, M., Nourbakhsh, I., and Sycara, K. (2005). Heterogeneous multirobot coordination with spatial and temporal
constraints. In Proceedings of the 20th National Conference on Artificial Intelligence, pages 1292–1297.

Lagoudakis, M. G., Berhault, M., Koenig, S., Keskinocak, P., and Kleywegt, A. J. (2004). Simple auctions with per-
formance guarantees for multi-robot task allocation. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, volume 1, pages 698–705.

Lau, H. C. and Zhang, L. (2003). Task allocation via multi-agent coalition formation: Taxonomy, Algorithms and
Complexity. In Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, pages
346–350.

Lemaire, T., Alami, R., and Lacroix, S. (2004). A distributed task allocation scheme in multi-UAV context. In Proceedings
of the IEEE International Conference on Robotics and Automation, volume 4, pages 3622–3627.

Li, C. and Biswas, G. (2002). Unsupervised learning with mixed numeric and nominal data. IEEE Transactions on
Knowledge and Data Engineering, 14(4):673–690.

Liu, Y. and Nejat, G. (2013). Robotic urban search and rescue: A survey from the control perspective. Journal of
Intelligent and Robotic Systems, 72(2):147–165.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the
Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pages 281–297.

Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M., and Baesens, B. (2007). Classification with ant
colony optimization. IEEE Transactions on Evolutionary Computation, 11(5):651–665.

Mascia, F. (2014). Dimacs benchmark set. http://iridia.ulb.ac.be/∼fmascia/maximum clique/.

McLellan, C. and Harpstead, E. (2014). Concept formation. https://github.com/cmaclell/concept formation.git.

Merkle, D., Middendorf, M., and Schmeck, H. (2002). Ant colony optimization for resource-constrained project schedul-
ing. IEEE Transactions on Evolutionary Computation, 6(4):333–346.

Middendorf, M., Reischle, F., and Schmeck, H. (2000). Information exchange in multi colony ant algorithms. In Rolim,
J., editor, Parallel and Distributed Processing, volume 1800 of Lecture Notes in Computer Science, pages 645–652.
Springer Berlin Heidelberg.

Neumann, L. J. and Morgenstern, O. (1947). Theory of games and economic behavior, volume 60. Princeton University
Press Princeton, NJ.

Nielsen, T. D. and Jensen, F. V. (2004). Learning a decision maker’s utility function from (possibly) inconsistent behavior.
Artificial Intelligence, 160(1):53–78.

Nokia (2012). Qt. http://www.qt.io/.

NORSYS (2012). Netica application: A complete software package to solve problems using bayesian belief networks
and influence diagrams. http://www.norsys.com/netica.html.
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