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CHAPTER I

Introduction

I.1 Background

Acute kidney injury (AKI) is a serious condition that his been reported to affect about 2%,

or about 560,000, hospitalizations in the United States annually[7]. Several studies have

shown that the severity of AKI correlates with increase mortality rates and healthcare costs

incurred from prolonged length of stay and post-hospitalization care[3; 7; 10]. While there

are varying degrees for categorizing the severity of AKI[5], the disease is most commonly

characterized by a sudden decrease in kidney function; in effect, the patient’s kidneys lose

their ability to effectively filter out excess waste and fluid from the patient, thus requiring

some cases to use a dialysis machine to help “clean” the patient’s blood.

Furthermore, sepsis has been shown as a common development related with patients

diagnosed with AKI, and its presence correlates with increased mortality among AKI pa-

tients[11]. Fortunately, the prevention and treatment of sepsis is commonly achieved by

the administration of antibiotics, but the dosing of such antibiotics becomes problematic in

the presence of the dialysis procedure; on one hand, drug is being administered to combat

the bacteria involved with the infection; on the other hand, the same drug is being removed

indiscriminately along with the excess waste and fluid by the dialysis machine. Addition-

ally, correct antibiotic dosing is important – too low of a concentration may fail to provide

any benefits, while too high of a concentration may be toxic to the patient. Some an-

tibiotics address this delicate balancing act with certain recommendations that account for

patient variability and dialysis removal, but studies involving patients receiving continuous

renal replacement therapy (CRRT) found that such a broad approach might not produce the

most optimal results. For example, the clinical guidelines for prescribing piperacillin and

tazobactam were still found to be insufficient to account for the wide variability between
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patients, and most of the patients studied were unable to reach the correct antibiotic levels

needed for effective therapy[2]. Similarly, the guidelines for other related antibiotics were

also found to produce insufficient antibiotic concentrations in CRRT patients[12].

To address such difficulties, we first make an observation on how pharmacokinetic mod-

els are usually formed. An experiment is performed where a known amount of drug is ad-

ministered to the patient and the resulting drug concentration in the patient’s blood is then

monitored over time. These observations of the drug concentration are then fit to a curve

that serves as a model describing the underlying pharmacokinetics of the patient. By having

such a model, a physician can then tailor the dosing levels so that the drug concentration in

the patient will be in the therapeutic range.

On the other hand, the presence of dialysis will most likely cause such dosing levels to

be incorrect as both the dosing and the dialysis machine will act on the patient to affect his

drug levels. Note that in this formulation of the problem, the dialysis machine plays the

same role as a drug infusion; both act as external inputs on the patient to affect his drug

levels. Essentially, we are treating the underlying pharmacokinetic structure of the patient

as a constant; only the input to the model changes. Therefore, the “input signal” given by

the dialysis machine, though negative in nature, should have effects on the “output signal”

of the patient’s drug levels in keeping with the underlying pharmacokinetic model of the

patient.

When recast in the terms of an “input signal” acting on a “model” to create an “output

signal”, the dialysis procedure offers a novel opportunity to use the concepts of mathe-

matical systems modeling to asses patient pharmacokinetics. The goal of this thesis is to

explore the use of such concepts by specifically re-framing the dialysis procedure in the

context of linear systems theory; such an analysis will allow for the utilization of some of

the well studied properties offered in that domain. Additionally, the analysis will be able

to inform a procedure that address the problems of wide patient variability and antibiotic

dosing under renal replacement therapy; if the physician is able to quickly and easily create
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a personalized pharmacokinetic estimate of a particular patient, then the doctor can tailor

the antibiotic dosing specifically for that patient.

I.2 Related Work

Linear systems representations of pharmacokinetic models have been studied in the past,

although not in the context of the dialysis procedure. The work of Cutler [4] gives some

basic results in reframing pharmacokinetics in the language of linear systems theory, while

the work of Anderson [1] and McWilliams and Anderson [9] explore the mathematical

properties of general compartmental pharmacokinetic models in a linear systems context.

In terms of experimental verification, Madden et al. [8] shows good results of applying lin-

ear systems to simulated sets, while the work of [13] shows the applicability on real data.

The method of this thesis bears the most similarity to the CODE algorithm [6] which also

uses a constrained optimization using by using biologically plausible search values. These

aforementioned approaches have shown good results in a traditional pharmacokinetic set-

ting by using data that is collected over a period of four hours. With such results, we hope

to further leverage the utility offered by linear systems theory in the context of dialysis;

due its fast and very noticeable effect of patient drug levels, dialysis offers a novel oppor-

tunity for establishing individualized pharmacokinetics without the need for a dedicated

experiment.

I.3 Overview

This thesis is organized as follows: Chapter 2 serves as a background into basic phar-

macokinetics with the two-compartment model. Chapter 3 re-examines those basic ideas

from a linear systems perspective and focuses on a linear systems representation of the

two-compartment model. Chapter 4 describes a method for utilizing the linear systems

representation of the two compartment model to create pharmacokinetic models from dial-

ysis data. Chapters 5 gives some results on real clinical data while the conclusion is stated

in Chapter 6.
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CHAPTER II

Basic pharmacokinetics and the two-compartment model

One of the most basic mathematical constructs for modeling the pharmacokinetic behavior

of a particular drug is the two-compartment model. While other, more sophisticated models

exist, the two-compartment model is a commonly used, well known model that provides

good insight into the underlying behavior of most drugs. An overview of the model is

shown in Figure II.1.

Figure II.1: Structure of the two-compartment model

The model begins by assuming that the body is essentially two compartments: a central

compartment and a peripheral compartment. For our purposes, we consider that the central

compartment represents the patient’s bloodstream while the peripheral compartment repre-

sents the tissues and other body components not directly related with the patient’s blood.

Let N1(t) and N2(t) represent the amount of drug at time t in the central and peripheral

compartments respectively. If we assume that each compartment is well mixed and that the

volume of each compartment is constant and denoted by V1 and V2, then C1(t) =
N1(t)

V1
and

C2(t) =
N2(t)

V2
are the respective drug concentrations of the central and peripheral compart-

ments at time t.

In addition, assume that drug transport between compartments and with the outside

world is controlled by particular rate constants k12,k21,k10 respectively, and let G(t) repre-
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sent the amount of drug given to the patient at time t. As an added simplification, assume

that the rate of transport between both compartments is equal in both directions, that is,

k12 = k21. From basic diffusion laws involving semi-permeable membranes, we end up

with the following set of coupled differential equations.

N
′
1(t) =−k10c1(t)− k12c1(t)+ k12c2(t)+G(t) (II.1)

N
′
2(t) = k12c1(t)− k12c2(t) (II.2)

As a final simplification to the model, assume that N1(0) = N2(0) = 0, G(t) is admin-

istered as an impulse of magnitude D at time t = 0, and we observe the behavior of the

system only after the infusion ends. Furthermore, since we are more concerned with the

concentration of drug in the patient rather than the absolute amount of drug, we divide both

equations by their respective volumes. Equations II.1 and II.2 then simplify to:

dc1(t)
dt

=−k10 + k12

V1
c1(t)+

k12

V1
c2(t) (II.3)

dc2(t)
dt

=
k12

V2
c1(t)−

k12

V2
c2(t) (II.4)

Since the bolus drug infusion of magnitude D must either have been eliminated or still in

the tissues, we can write the following equation based on mass balance

D = c1(t)V1 + c2(t)V2 +
∫ t

0
k10c1(t)dt

Or, rearranging:

c2(t) =
D− c1(t)V1−

∫ t
0 k10c1(t)dt

V2
(II.5)

We then substitute equation II.5 into equation II.3 to get an expression for the rate of
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change of drug concentration in the patient’s blood

dc1(t)
dt

=−k10 + k12

V1
c1(t)+

k12

V1
(
D− c1(t)V1−

∫ t
0 k10c1(t)dt

V2
)

Removing the integral from the above expression involves taking the derivative with respect

to t:
d2c1(t)

dt2 =−k10 + k12

V1

dc1(t)
dt

+
k12

V1
(
−dc1(t)

dt V1− k10c1(t)
V2

) (II.6)

The above now represents a second order differential equation for c1(t). The solution to

that equation is of the form:

c1(t) = Ae−αt +Be−β t (II.7)

Where A, B, α , and β are constants. Furthermore, equation II.7 represents the concentration

of drug in the patient’s bloodstream at time t. Therefore, the traditional approach to creating

a pharmacokinetic model is to inject a bolus into a patient and then collect many samples

of the drug concentration in the patient’s blood. The collected data can then be used to

fit a sum of exponentials curve of the form given in equation II.7. Finally, the resulting

constants A, B, α , and β are then used to estimate the original parameters as follows:

k10 =
Dαβ

Aβ +Bα

k12 =
D(Aα +Bβ )

(A+B)2 − Dαβ

Aβ +Bα

V1 =
D

A+B

V2 =
(Aα +Bβ )

(A+B)(Aβ +Bα)
− αβ (A+B)

(Aβ +Bα)2

While the above analysis has been shown to be effective in producing pharmacokinetic

models for patients, there are two aspects of the model that we would like to revisit:

1. Curve fitting an exponential model to the collected data
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2. Assuming an idealized bolus infusion as the input

In effect, the above discussion relies on using least squares curve fitting approaches on col-

lected data; such techniques may require many samples in order to overcome such methods’

sensitivity to noise and outliers. The obvious flaw in this requirement is the fact that, in or-

der to minimize patient risk, only a limited amount of blood can be sampled in a given time

frame. Furthermore, the need to fit an exponential curve to the data was motivated by the

assumption that there was an idealized bolus infusion as the input to the two-compartment

model. Therefore, to perform the preceding analysis in a clinical setting, one has to set

up a dedicated experiment in which a bolus is injected and the patient is monitored for a

long period of time so that enough data can be collected to perform a least squares fit of a

pharmacokinetic model.

The dialysis procedure, on the other hand, offers a potential solution to both of the

above drawbacks. First, for the patients that we wish to create pharmacokinetic models

for, dialysis is a necessary procedure that must be performed anyway; there is no need to

create a separate lengthy experiment for assessing the patient’s pharmacokinetics. Further-

more, since the machine can be precisely controlled and the removed drug concentration

in the dialysate can be monitored, we needn’t constrain ourselves to assuming bolus drug

infusions; rather, we can observe the dialysis procedure as administering a “negative” drug

dose whose exact value over time can be precisely measured. That “negative input sig-

nal” along with the “output signal” measured from the patient’s blood suggests that we can

take a linear systems approach in creating an individualized pharmacokinetic model for a

particular patient.
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CHAPTER III

A linear systems approach to pharmacokinetics

III.1 A general linear model

We base our initial analysis of the dialysis procedure on the traditional difference equa-

tion for linear systems. Let y[0],y[1], . . . ,y[n− 1] be the n equally spaced samples of the

drug concentration in the patient’s blood. In addition, let x[0],x[1], . . . ,x[n−1] be the cor-

responding drug concentration samples in the dialysate. If we assume that the ith blood

sample has a concentration y[i] that is a linear combination of the current dialysate sample

x[i], the previous q dialysate samples x[i−1],x[i−2], . . . ,x[i−q], and the previous p blood

samples y[i−1],y[i−2], . . . ,y[i− p], then the difference equation can be written as:

y[i] =−a1y[i−1]−a2y[i−2]− . . .−apy[i− p]+b0x[i]+b1x[i−1]+ . . .+bqx[i−q] (III.1)

Where a1, . . . ,ap,b0, . . . ,bq are unknown filter coefficients. Taking the Z-transform of both

sides yields:

Y (z) =−Y (z)(a1z−1 +a2z−2 + . . .+apz−p)+X(z)(b0 +b1z−1 +b2z−2 + . . .+bqz−q)

Rearranging terms gives an expression for the transfer function of the linear system H(z)

H(z) =
Y (z)
X(z)

=
b0 +b1z−1 +b2z−2 + . . .+bqz−q

1+a1z−1 +a2z−2 + . . .+apz−p (III.2)

Such an expression means that, once the values of the unknown coefficients, a1, . . . ,ap,

b0, . . . ,bq, are determined, an output response can be predicted from any arbitrary input

signal. Note that the form in equation III.2 can be tailored by a user’s choice for the values

of p and q; one can make higher or lower order models as needed, given enough data exist
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to support the chosen model.

In order to determine the values for the unknown coefficients of equation (III.2), we

return to the original difference equation given by equation (III.1). We start by writing

a difference equation for each of the n−M output samples, where M = max(p,q). Let

~y = [ y[M] y[M+1] ... y[n−1] ]>. Furthermore, let ~a = [a1 a2 ... ap ]> and~b = [b0 b1 ... bq ]> be the

vectors of unknown coefficients for the model from equation III.1. The resulting matrix

equation can then be set up:

~y =
[

Y X
]~a

~b

 (III.3)

Where Y and X are the Toeplitz matricies consisting of the respective output and input

samples as follows:

Y =



y[M−1] y[M−2] . . . y[M− p]

y[M] y[M−1] . . . y[M+1− p]

y[M+1] y[M] . . . y[M+2− p]
...

...
...

...

y[n−2] y[n−3] . . . y[n− p−1]



X =



x[M] x[M−1] . . . x[M−q]

x[M+1] x[M] . . . x[M+1−q]

x[M+2] x[M+1] . . . x[M+2−q]
...

...
...

...

x[n−1] x[n−2] . . . x[n−q−1]


Equation (III.3) can then be solved by any variety of techniques, usually involving least-

squares. Again, we stress the generality of the aforementioned approach; the output re-

sponse of a patient can be predicted from any arbitrary input signal without any particular

assumption of the underlying pharmacokinetic model of the patient.
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Figure III.1 shows the validity of such an approach. A patient was simulated in MAT-

LAB by using the original coupled differential equations of the two-compartment model.

Simulated doses were given as square pulses until the patient reached steady state. A

simulated dialysis session was then applied to the patient for fifteen minutes. We took a

sample of the drug concentration of the blood and the dialysate at each minute during the

15 minute dialysis session and in the 285 minute period immediately after the dialysis ses-

sion had completed(For a total of 300 samples). Using p = q = 10 the values for the filter

coefficients were found with the least-squares approach stated above. We then used the re-

sulting estimated model to filter the original sequence of simulated doses to get the results

in Figures III.1d and III.1e. Note that we were able to create a close approximation of the

original model’s steady state behavior without any knowledge of the underlying system;

the choice of p = q = 10 was completely arbitrary and could be changed to any value that

would be supported by having 300 sample pairs.

While such a simulation shows that one has the potential to create arbitrarily good

approximations without any particular concern for the underlying pharmacokinetics, the

utility of the general least squares approach is still hindered by the need of many samples

in order to create higher order models and to overcome sensitivities to outliers and noise.

Such limitations necessarily arise from the very general nature of this approach to system

modeling, as we are essentially searching for the best model (in a least-squares sense)

among all possible models. This large of a search space is unnecessary; since we are

modelling patients instead of arbitrary black boxes, we can constrain the search space by

searching only for models that are plausible in a biological sense. In doing so, we can

minimize the number of samples required to still create models that can predict the output

response for any arbitrary input.
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(a) Simulated Data

(b) Drug concentration in dialysate (c) Drug concentration in blood

(d) Output of predicted model (e) Steady state behavior of the predicted model

Figure III.1: Simulated example illustrating the least-squares approach
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III.2 A linear systems analysis of the two-compartment model

To understand what transfer functions are acceptable in a biological sense, we return to the

two-compartment model and observe how the biological parameters V1,V2,k10,k12 behave

in a linear systems context.

Recall that the core of the two compartment model was the following set of coupled

differential equations.

c′1(t) =−
k10 + k12

V1
c1(t)+

k12

V1
c2(t)+

1
V1

G(t)

c′2(t) =
k12

V2
c1(t)−

k12

V2
c2(t)

Taking the Laplace transform of both equations yields:

C1(s) · s =−
k10 + k12

V1
C1(s)+

k12

V1
C2(s)+

1
V1

G(s)

C2(s) · s =
k12

V2
C1(s)−

k12

V1
C2(s)

Or, in matrix form:

C1(s)

C2(s)

s =

−k10+k12
V1

k12
V1

k12
V2

−k12
V1


C1(s)

C2(s)

+
 1

V1

0

G(s)

Rearranging, we get:

(sI−

−k10+k12
V1

k12
V1

k12
V2

−k12
V1

)
C1(s)

C2(s)

=

 1
V1

0

G(s)
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Where I is the identity matrix. The solution to this system is therefore:

C1(s)

C2(s)

= (sI−

−k10+k12
V1

k12
V1

k12
V2

−k12
V1

)−1

 1
V1

0

G(s)

Since the blood samples taken from the patient reflect our observations of C1, we are

most interested in the transfer function H(s) = C1(s)
G(s) as that succinctly characterizes the

relationship between a drug dose and the drug concentration in the blood. Multiplying both

sides by [1 0 ] and rearranging terms creates a transfer function of the form:

H(s) =
C1(s)
G(s)

=

1
V1

s+ 1
k10

BH

s2 +AHs+BH
(III.4)

Where:

AH =
k12

V2
+

k10 + k12

V1

BH =
k10k12

V1V2

Note that the form in equation (III.4) is the continuous s-domain transfer function rela-

tionship between the blood’s drug concentration and dosing input. In reality, since we are

observing the blood concentrations through discrete samples, the transfer function must be

converted to its discrete time z-domain representation. If the time between samples is T ,

we perform the conversion with the bilinear transform by evaluating H(s) at s = 2
T ·

1−z−1

1+z−1 .

The resulting expression gives a discrete time transfer function of the form:

H(z) = H(s)
∣∣∣∣ 2

T ·
1−z−1

1+z−1

=
b0 +b1z−1 +b2z−2

1−a1z−1−a2z−2 (III.5)

Where the coefficients of the transfer function are:

b0 =

2T
V1

+ 1
k10

T 2BH

4+2TAH +T 2BH
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b1 =

2
k10

T 2BH

4+2TAH +T 2BH

b2 =

1
k10

T 2BH− 2T
V1

4+2TAH +T 2BH

a1 =
2T 2BH−8

4+2TAH +T 2BH

a2 =
4−2TAH +T 2BH

4+2TAH +T 2BH

III.3 Properties of the two-compartment model with biological parameters

Notice that the preceding discussion shows that the original coupled differential equations

that describe the traditional two-compartment model can be transformed into transfer func-

tions in either the continuous or discrete domain. Furthermore, we notice that the co-

efficients of the filters are constants that are dependent on the constants of the original

two compartment parameters. Here we describe some interesting properties of the two-

compartment model when using biologically plausible values for V1,V2,k10,k12

Property 1. V2 ≥V1 is a sufficient condition for the poles of H(z) to be real

Proof. For this fact, we simply need to observe the value of the determinant of the denom-

inator of H(z). Simplifying that expression (in Mathematica) yields:

a2
1 +4a2 = 16

T 2(k2
10V 2

2 +2k10k12V2(V2−V1)+ k2
12(V1 +V2)

2)

(k12T (k10T +2V1)+2((k10 + k12)T +2V1)V2)2 (III.6)

Because the values for V1,V2,k10,k12 are greater than zero, a only the middle term in the

numerator (V2−V1) could lead to a negative value. Therefore, a sufficient condition for

real poles is that V2 ≥ V1. This condition V2 ≥ V1 is reasonable to expect, as V1 represents

the volume of the blood while V2 represents everything else.

Property 2. The two compartment model is stable when using biological values
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Proof. This is most easily seen by using the continuous representation of the transfer func-

tion H(s), restated here for convenience:

H(s) =
1

V1
s+ k12

V1V2

s2 +(k12
V2

+ k10+k12
V1

)s+ k10k12
V1V2

Since the denominator of H(s) is second order, we can use a special case of the Routh-

Hurwitz stability criterion which simply requires the coefficients of the denominator to

have the same sign. Indeed, this is the case as biologically plausible values of V1,V2,k10,k12

must necessarily be greater than zero and will thus cause the coefficients of the denominator

to all be positive.

Property 3. One of the zeros of H(z) is equal to −1

Proof. In the interest of clarity, we exclude the denominators of b0,b1, and b2 as they are

equivalent and will not affect our analysis in finding the zeros of the numerator of H(z).

First observe the value of the discriminant b2
1−4b0b2

b2
1−4b0b2 = (

2
k10

T 2BH)
2−4(

1
k10

T 2BH +
2T
V1

)(
1

k10
T 2BH−

2T
V1

)

=
4

k2
10

T 4B2
H−

4
k2

10
T 4B2

H +16
T 2

V 2
1

= 16
T 2

V 2
1

Since this result must necessarily be positive, an interesting side note is that the zeros of

H(z) will in fact be real. Now observe one of the roots of the numerator of H(z)

−b1−
√

b2
1−4b0b2

2b0
=

− 2
k10

T 2BH−
√

16T 2

V 2
1

2( 1
k10

T 2BH + 2T
V1
)

=
−1( 2

k10
T 2BH + 4T

V1
)

2
k10

T 2BH + 4T
V1

= −1
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Property 4. The numerator of H(z) can be rewritten as b0 +(b0 +b2)z−1 +b2z−2

Proof. Again, we ignore the denominators of b0,b1, and b2 as they are equivalent

b0 +b2 = (
1

k10
T 2BH +

2T
V1

)+(
1

k10
T 2BH−

2T
V1

)

=
2

k10
T 2BH

= b1

The above properties allow for some interesting observations on the behavior of the

two compartment model we will be searching for. From properties 1 and 2 we know that

the impulse response from an idealized bolus infusion will be expected to be stable and

behave as a sum of decaying exponentials. Furthermore, property 3 implies that the model

has an inherent low-pass characteristic. These behaviors are expected, as these properties

are identical to the behaviors observed from our original analysis of the two-compartment

model. However, with this analysis in creating transfer functions H(s) and H(z), we can

describe the response of the model to any input signal, rather than limiting ourselves to

considering just idealized bolus infusions.

Property 4 is particularly interesting as we can now rewrite the form of H(z) from

equation III.5 as follows:

H(z) =
b0 +(b0 +b2)z−1 +b2z−2

1−a1z−1−a2z−2 (III.7)

This form of a model from equation III.7 means that a vector of biologically feasible values

for V1,V2,k10,k12 will map to a vector of model coefficients a1,a2,b0,b2, thus implying a

search for 4 coefficients instead of the original 5. Along with the other properties stated,

we see that such a search using biologically reasonable parameters for a two-compartment
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model further constrains the search space of all possible linear models to a space of stable

linear models that have two real poles and two real zeros with one zero fixed at -1.
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CHAPTER IV

Methods

IV.1 Data Collection

In order to use the information found in the preceeding section about biologically plausible

two-compartment models, we first note the typical response of a two-compartment model

when dialysis is applied. Figure IV.1 shows the output response of a two-compartment

model in both simulations and in a preliminary pilot study. Figure IV.1a is the same graph

from the simulated two-compartment model used in the preceeding section. Meanwhile,

Figure IV.1b shows the drug level of a pharmacokinetic experiment involving a patient

under continuous renal replacement therapy (CRRT). For the simulated example, we see

(a) Simulated two-comparment patient (b) Real CRRT Patient

Figure IV.1: Response of patient drug levels from turning off the dialysis machine

the drug levels in the blood increase slightly when dialysis ends; this movement is rep-

resentative of the transfer of drug from the peripheral compartment back into the central

compartment. A similar effect can be seen in the real CRRT case as the green circles indi-

cate when the dialysis machine was turned off in order to perform a bag change. Note both

examples illustrate the presence of characteristic changes in drug concentration not only
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when the dialysis machine is on, but also when it is turned off. As these transient responses

are highly informative of the behavior of the underlying pharmacokinetic system, we will

use the following collection strategy:

1. Turn the dialysis machine on

2. Collect N
2 pairs of blood and dialysate by sampling every T minutes

3. Turn the dialysis machine off and place the patient under ultrafiltration.

4. Immediately begin the collection of the other N
2 samples of blood and dialysate pairs

by sampling every T minutes

This strategy will then give us N evenly spaced samples of the input x[0],x[1], . . . ,x[N
2 −

1],x[N
2 ],x[

N
2 +1], . . . ,x[N−1] and output y[0],y[1], . . . ,y[N

2 −1],y[N
2 ],y[

N
2 +1], . . . ,y[N−1]

signals of the dialysate and blood respectively.

IV.2 Model Estimation

We then set up the same matrix equation as equation III.3. Since we will be looking for

a two-compartment model with two poles and two zeros, we form equation III.3 with p =

q = 2. Let~y = [ y[2] y[3] ... y[N−1] ]> and ~θ = [a1 a2 b0 b1 b2 ]>. Equation III.3 now becomes:

~y = A~θ (IV.1)

Where A is the matrix:

A =



y[1] y[0] x[2] x[1] x[0]

y[2] y[1] x[3] x[2] x[1]

y[3] y[2] x[4] x[3] x[2]
...

...
...

...
...

y[N−2] y[N−3] x[N−1] x[N−2] x[N−3]


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This time, however, we will not be solving for the unknown coefficients in the vector

~θ directly. Since the number of samples N will most likely be too small for an accurate

estimation by a direct application of least-squares, we will use our knowledge of biological

parameters to set up a search space involving V1,V2,k10,k12 with the following constraints:

1. V1,V2,k10,k12 are all greater than V1Min,V2Min,k10Min,k12Min respectively.

2. V1,V2,k10,k12 are all less than V1Max ,V2Max ,k10Max ,k12Max respectively.

These max and min values can be chosen by the physician and needn’t be strict; these are

simply to limit the search space to models that have a plausible interpretation. Furthermore,

since we know that any choice of V1,V2,k10,k12 in this search space can be mapped to a

point in the space of filter coefficients a1,a2,b0,b2, a search in our constrained search

space corresponds to a search in the coefficient space. Therefore, we try to optimize the

parameters V1,V2,k10,k12 by minimizing the squared error in equation IV.1. More formally:

minimize
~x

(~y−A f (~x))2

subject to [V1Min V2Min k10Min k12Min ]
> ≤~x≤ [V1Max V2Max k10Max k12Max ]>

(IV.2)

Where ~x = [V1 V2 k10 k12 ] and f (~x) is the function that maps ~x to the vector of filter coeffi-

cients ~θ , using the formulas from the previous section. As the minimization objective in

equation IV.2 is difficult to evaluate in closed form, we adopt a random search procedure

to identify potential candidate models. A set of K candidate vectors of biological param-

eters ~xi within our constrained search space are randomly generated. The minimization of

equation IV.2 for each of the K candidates is then performed using the Nelder-Mead op-

timization algorithm. We note that in performing this optimization, the input and output

values x[n] and y[n] should be scaled so that the range of the input values should be roughly

on par with the range of the output values; we noticed that if the x[n] values are too large

with respect to the y[n] values, the Nelder-Mead optimization would tend to push candidate

models to the fringe of the biological search space rather than pushing each of the models
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toward a local minima. Furthermore, as Nelder-Mead is an iterative approximation method,

there is the potential that certain candidates may have gotten stuck in local minima that are

not very meaningful. Therefore, we choose the B best candidate models based on their final

squared error values.

However, recall that the behavior of a transfer function H(z) is dictated by the value

of its poles and zeros rather than the actual value of its coefficients; two transfer functions

may behave similarly from having similar poles and zeros but have completely different

values in terms of filter coefficients. To account for this fact, we take each of the transfer

functions represented by each of the B best candidate models and re-parametrize them by

their poles and zeros. Our final estimated model is simply the average of the B best models

in pole-zero space. If the ith model is represented by the vector ~mi = [p1i, p2i,z1i,−1]>

where p1i and p2i are the poles of the ith model and z1i is the zero that does not equal -1,

then our model estimate ~̂M is therefore:

~̂M =
1
B

B

∑
i=1

~mi (IV.3)

The poles and zeros represented by ~̂M can be used to estimate a filter Ĥ(z). However,

a filter constructed only from the poles and zeros will produce a filter with only unity gain.

Therefore, as a final step, we still need to find a gain value Ĝ to fully estimate the behavior

of our filter. To accomplish this goal, we use the patient’s medical history leading up to

dialysis as follows:

1. Simulate an input signal X(t) of the patient’s dosing history as a sequence of square

pulses

2. Filter X(t) with Ĥ(z) to produce Ŷ (t)

3. If the first blood sample at the start of dialysis was taken at t f irstsample, Ĝ should be

calculated as the value that scales Ŷ (t f irstsample) to the actual value measured at the
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start of dialysis.

In other words, we treat the first blood sample taken at the start of dialysis as the “correct”

drug concentration that resulted from the previous doses and calculate the gain of the es-

timated filter to reflect that fact. Now that an estimate of Ĝ and Ĥ(z) have been found,

a physician can easily predict the patient’s drug levels in response to any arbitrary dosing

scheme.
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CHAPTER V

Results and Discussion

V.1 Experimental Setup

Four data sets were collected on three patients receiving dialysis. More specific information

on the patients and data is described in the next subsection. Each dataset was broken

into two parts, dialysis day data and non-dialysis day data. The dialysis day data was

collected in the same manner described in the previous section; we collected six samples

at 5 minute intervals during the start of dialysis, and then collected six more samples at 5

minute intervals as soon as the dialysis machine was turned off. This data was then used

to search for a filter based on the two compartment model; V1Max and V2Max were set to the

patient’s weight, while k10Max , and k12Max were set to 1000. Also,V1Min and V2Min were set

at 1000, while k10Min, and k12Min were set to 1. The number of candidate models we used

in our search was 1000. We then simulate the patient’s dosing history leading up to the

times of the samples collected on his non-dialysis day. This simulated signal is then fed

through our estimated filter to get predictions for the patient’s drug concentration during

his off-dialysis day. These predictions are compared to the actual measured values to assess

method accuracy.

V.2 Individual Patient Results

Patient 1

This was a 97kg patient dosed with two antibiotics: piperacillin and tazobactam. This

combination allowed us to get two datasets, one each for the piperacillin concentrations

and the tazobactam concentrations. Both drugs were administered to the patient every

12 hours with infusions of 3.375g spread out over four hours. The non-dialysis data was

collected 3 days after the start of infusions and the dialysis day data was collected later

on the same day. Dialysis flow rate was 800ml/min while the ultrafiltration rate was set to
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14.5ml/min. From the final squared errors of the candidate models, we chose to average

the smallest 700 models.

Predicted 25.49 24.50 23.51 21.71 18.56
Measured 23.10 22.88 21.55 20.87 19.18
% Error 10.33 7.08 9.08 4.02 3.21

Table V.1: Comparison of predicted and measured values for non-dialysis day in the
tazobactam dataset for patient 1

Predicted 188.59 181.75 174.93 162.46 140.46
Measured 194.31 191.55 181.04 173.43 152.30
% Error 2.93 5.12 3.38 6.32 7.77

Table V.2: Comparison of predicted and measured values for non-dialysis day in the
piperacillin dataset for patient 1

Patient 2

This was a 100kg patient injected with meropenem. Drug was administered every 8 hours

with infusions of 1 gram spread out over three hours. The non-dialysis day data was col-

lected 5 days after the start of infusions while the dialysis day data was collected the follow-

ing day. Dialysis flow rate was set to 800ml/min while ultrafiltration was set to 4.16ml/min.

From the final squared errors of the candidate models, we chose to average the smallest 800

models.

In looking at the collected dialysis day data, the circled point in Figure V.3a appears to

be an erroneous measurement and its inclusion does lead to a poor model estimation.(Figure

V.3) However, when that data point is excluded, (along with the next two points since

they depend on the excluded point) the estimation method appears to produce reasonable

results.(Figure V.4)

Patient 3

This was a 102kg patient dosed with piperacillin. Drug was administered every 12 hours

with infusions of 3.375g spread out over four hours. Dialysis day data was collected the
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(a) Observed data from dialysis

(b) Final errors of candidate models (c) Simulated dosing history of patient

(d) Predicted drug levels (e) Comparison with ground truth

Figure V.1: Results on piperacillin dataset for patient 1
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(a) Observed data from dialysis

(b) Final errors of candidate models (c) Simulated dosing history of patient

(d) Predicted drug levels (e) Comparison with ground truth

Figure V.2: Results on tazobactam dataset for patient 1
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(a) Observed data from dialysis

(b) Final errors of candidate models (c) Simulated dosing history of patient

(d) Predicted drug levels (e) Comparison with ground truth

Figure V.3: Results on meropenem dataset for patient 2
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(a) Observed data from dialysis excluding the
outlier

(b) Final errors of candidate models

(c) Predicted drug levels (d) Comparison with ground truth

Figure V.4: Results on meropenem dataset for patient 2 when excluding the outlier
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Predicted 43.82 31.98 23.33 12.42 3.52
Measured 58.39 59.03 59.90 57.21 46.86
% Error 25.94 45.82 61.04 78.28 92.48

Table V.3: Comparison of predicted and measured values for non-dialysis day in the
meropenem dataset for patient 2 using all of the data

Predicted 64.58 60.45 56.58 49.57 38.05
Measured 58.39 59.03 59.90 57.21 46.86
% Error 10.60 2.39 5.54 13.35 18.80

Table V.4: Comparison of predicted and measured values for non-dialysis day in the
piperacillin dataset for patient 2 excluding the suspected outlier

day following the start of infusions. We note here that there was some ambiguity in the

medical record as to the nature of the last dose given to the patient before the dialysis data

was taken. According to the chart, the dose should have ended during the collection of the

dialysis data. However, according to the nurse, there was no observable amount of drug

left in the I.V. bag. This leads to an ambiguity as to exactly the rate and the amount of drug

was given to the patient during the last dose, and if the infusion of drug was interfering

with the drug removal from the dialysis machine. Nonetheless, we model the final dose

as if the infusion ended when it was scheduled (during dialysis) and then calculating the

overlapping values by subtracting the amount of drug present in the measured dialysate

samples. The dialysis flow rate was set to 800ml/min while the ultrafiltration rate was

set to 4.1667ml/min. From the final squared errors of the candidate models, we chose to

average the lowest 900 models.

After the data was collected for the dialysis day samples, the patient received a 4 hour

dialysis session. The patient then did not receive another dose for another 24 hours later.

From these two facts, we assume that the patient had reached a drug concentration of zero.

Therefore, we model the next set of doses leading up to the collection of the non-dialysis

day data to reflect this assumption. These doses were also modeled as 12 hour infusions

of 3.375g spread out over four hours. The non dialysis day data was collected the day

following the start of this new set of infusions.
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(a) Observed data from dialysis (b) Simulated dosing history leading to dialysis
day

(c) Final errors of candidate models (d) Simulated dosing history leading to off-day
data

(e) Predicted drug levels (f) Comparison with ground truth

Figure V.5: Results on piperacillin dataset for patient 3

30



Predicted 217.55 213.66 209.83 202.39 188.28
Measured 244.53 246.62 251.00 244.38 203.22
% Error 11.03 13.36 16.40 17.18 7.35

Table V.5: Comparison of predicted and measured values for non-dialysis day in the
piperacillin dataset for patient 3

V.3 Discussion

Our results on the real clinical data suggest that our method of pharmacokinetic modeling

has some potential. For patient 1, our method had its best performance by successfully

predicting both drugs to less than 10% average error. Our method had less success for the

other two patients, but still produced reasonable predictions of less than 20% average error.

We further note that our models created predictions for drug levels that occurred days after

the start of a dosing regimen; the predictions for patient 1 were three days in the future

while the future predictions of patients 2 and 3 were five days and two days respectively.

Additionally, we note an interesting observation of final squared errors of our candidate

models; for all of the datasets, a significant portion of the randomly generated models, when

optimized using Nelder-Mead, converged to the exact same set of biological parameters.

Such a result suggests that the error surface of biological parameters is not very “hilly”.

Furthermore, since so many of the points ended up in the same place, one could achieve

faster performance by reducing the number of candidates to optimize. Nonetheless, our

method was still reasonable in terms of computing resources; when searching with 1000

possible models, a MacBook Pro laptop was able to perform the computation in under five

minutes.

In terms of the limitations of our approach, we have already noted some of the problems

with the datasets of patients 2 and 3; patient 2 had a questionable data point while patient

3 had some ambiguity in the reporting of his dosing schedule. Thus, in the presence of

truly “strange” data, we cannot expect very good predictions on the order of patient 1.

However, it should also be noted that the off-day dialysis data for any of the datasets do
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not follow a smooth trend in keeping with the expected behavior of a two-compartment

model; measurement noise could be an obvious factor in this observation, but there also

exists the possibility that there are unmodeled factors in the biology of the patient that

cause deviations from a two-compartment pharmacokinetic behavior. Nevertheless, the

quality of our predictions suggest the robustness of our approach and the strength of the

two compartment model as an underlying assumption.

In moving forward, more datasets need to first be collected in order to better identify and

describe this method’s strengths and weaknesses. In particular, the question of the method’s

robustness across the wide variation in patients and drugs still need to be addressed. Fur-

thermore, when answering that question, traditional pharmacokinetic experiments should

be performed; due to the limited scope of our study, we were only able to collect samples

for validation during a small 4 hour window corresponding to the non-dialysis day; it is

difficult to know exactly what the patient’s actual drug levels looked like outside of that

window. Additionally, looking at drug and patient variability can lead to more informed

choices in setting up the constraints for the model search space. Finally, a more rigorous

understanding of the mapping between biological parameters and filter coefficients should

take place; while our estimates of Ĥ(z) and Ĝ can be mapped back to a set of biological

parameters, we are unsure if those are the correct set of biological parameters; the cor-

rect model that may be “close by” our estimate in the space of filter coefficients does not

necessarily imply that it is “close by” our biological parameter estimate and vice versa.
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CHAPTER VI

Conclusion

Correct antibiotic dosing is important in the prevention and treatment of sepsis for patients

with AKI. While dialysis is also necessary in the treatment of AKI, its presence compli-

cates effective dosing using strategies derived from lengthy “one-size-fits-all” phamacoki-

netic experiments. However, by interpreting the dialysis procedure as a “negative input

signal” to a linear system, the methods of linear systems theory can provide insight into an

individual’s pharmacokinetics. While collecting lots of data can provide arbitrarily good

approximations to this underlying model, we have shown that a few samples collected dur-

ing the first hour of dialysis can be used with a linear systems representation of the two

compartment model to potentially produce reasonable predictions of drug levels days in the

future. The presence of such a procedure can enable physicians to no longer view dialysis

as a hinderance to antibiotic dosing; rather, the data collected during dialysis can be seen as

a helpful tool in tailoring antibiotic dosing schemes that are specific to individual patients.
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