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CHAPTER I 

INTRODUCTION 

Overall cancer fatalities have been leveling off for both men and women since the 

early 1990s, however the prevalence of cancer occurring over a lifetime is still 

remarkably high for men (45%) and women (38%)
1
.  While all of the recent advances in 

therapies and treatments for cancers have increased the average lifespan of patients, it has 

opened new doors to metastatic diseases that were not pathologically relevant in the past.  

One of the most prominent metastatic sites for the most common cancers, e.g. breast, 

prostate and lung
1
, is often the skeletal system

2
.  Skeletal metastasis increases mortality 

significantly
3
, and are associated with increased pain, hypercalcemia, and fractures.  The 

growing interest of research in this area is shown in Figure 1.1.   

As in many cases of metastatic disease, the phenotypic and genetic changes that 

occur when cancers metastasize to bone effectively render the cancer incurable
2a-c, 2e

.  

One of the many changes that occur upon establishment in the bone microenvironment is 

the upregulation and secretion of parathyroid related protein (PTHrP)
4
.  Parathyroid 

proteins are utilized by the body to regulate calcium ion concentration in the blood 

 
Figure 1.1.  Citations per year from Pubmed searches for “cancer metastasis to bone” (♦) 

and “cancer induced bone disease” (◊). 
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stream, particularly during pregnancy, by stimulating osteoclasts to breakdown bone 
5
. 

This protein has been shown to be an integral part of the vicious cycle of osteolytic 

cancers
2c

.  The vicious cycle is a unique phenomenon in osteolytic tumors where the 

cancer cells stimulate bone destruction and the bone destruction releases growth factors 

which further stimulate the tumors.    

There has been a large effort to study the mechanisms that drive the vicious cycle, 

with significant focus being placed on the effects of mechanotransduction.  

Mechanotransduction is the ability of a cell to react to the local physical environment.  

Many cells have been shown to sense their local environment by the expression and 

activation of integrins, a class of transmembrane proteins with specific binding affinity to 

various extracellular matrices
6
.  It has been found that upon exposure to various 

substrates of similar chemistry but different rigidities, many types of cells will alter their 

phenotypic and genetic profiles
7
.  Specifically, cancerous cells have higher contraction 

and spreading abilities on substrates with higher rigidity than the native tissue
8
.  This can 

lead to a number of pathological issues, such as increased invasiveness, motility and 

metastatic possibilities
8-9

.  The ability to analyze cellular responses in a physiologically 

relevant range of rigidity for bone could precipitate the underlying mechanisms of 

mechanotransduction in cancer induced bone disease and could potentially lead to 

therapeutic targets. 

The goal of this dissertation was to optimize and characterize a polyurethane 

based cell culture system that could be utilized to study the effects of 

mechanotransduction in cancer induced bone disease.  From these efforts therapeutic 

targets were identified and methodologies for delivering drug payloads to specific 
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pathological locations were analyzed.  Additionally, polyurethane based bone grafts 

developed in the Guelcher lab were analyzed for biocompatibility and optimized with 

novel chemistries, paving the way for further studies in the regeneration of bone 

destroyed by metastatic cancers. 

The two-dimensional polyurethane cell culture system, developed in the Guelcher 

lab and covered in Chapter III, has been previously utilized to determine that there is a 

correlation between the physiologically relevant rigidity in the bone microenvironment 

and the expression of osteolytic factors, such as PTHrP, in cancer cells that are known the 

metastasize to bone
10

.  The change in osteolytic gene expression in response to rigidity 

was associated with TGF-β signaling and Rho-associated kinase (ROCK), a downstream 

signaling cascade in the mechanotransduction response.  In Chapter III this work is 

expanded by probing the upstream signaling pathways associated with cancer cells that 

metastasize to bone.  In particular, the relationship between integrin and TGF-β signaling 

is examined by a novel Förster resonance energy transfer (FRET) experiment.  The FRET 

analysis showed that there is a distinct co-localization on the surface of cells cultured on 

rigid substrates and not on compliant substrates.  The ability to limit the expression of 

integrins, by therapeutics or small hairpin ribonucleic acids (shRNA), prevents this co-

localization and lowers osteolytic gene expression in vitro and tumor induced bone 

destruction in vivo.  From these studies downstream molecular targets are identified for 

the potential inhibition of osteolytic destruction in cancer induced bone disease. 

The downstream targets identified by the previous study can be affected by 

several classes of small molecule hydrophobic drugs; however, the most effective drugs 

are insoluble in aqueous environments and have posed significant challenges in both 
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systemic and local delivery to tumors.  Additionally, the drugs must be reliably delivered 

to the cytosol of the cancer cells to achieve the desired affects.  Both of these challenges 

can be overcome with the application of polycationic micellar nanoparticles
11

.  Chapter 

IV screens a library of twelve polycationic polymers that spontaneously form micellar 

nanoparticles for potential drug delivery vehicles.  Some of the twelve polymers in the 

library tested have been found to be highly effective at encapsulating and delivering 

small interfering ribonucleic acids (siRNA) in vitro and in vivo
12

.  Furthermore, the 

polymers have been loaded into injectable polyurethane scaffolds, developed by the 

Guelcher lab, and shown to be biologically active upon release from implanted scaffolds 

in vivo
13

.  However, none of the polymers have been studied for the capacity to 

encapsulate and deliver small molecule hydrophobic drugs.  The synthesis and 

characterization of the polymer library as well as the ability to encapsulate and delivery a 

model small molecule hydrophobic drug was completed in vitro.  Effects of pH and 

polymer composition on cytotoxicity, membrane disruption, and micellar stability were 

also analyzed revealing a novel polymer composition for further analysis. 

Chapter V describes the analysis of injectable, settable polyurethane 

biocomposites for use as a regenerative platform for bone defects.  Injectable and settable 

bone grafts offer significant advantages over pre-formed implants due to their ability to 

be administered using minimally invasive techniques and to conform to the shape of 

irregular and complex defects.  However, injectable biomaterials present biocompatibility 

challenges due to the potential toxicity and ultimate fate of reactive components that are 

not incorporated in the final cured product. In this study the effects of stoichiometry and 

triethylenediamine (TEDA) catalyst concentration on the reactivity, injectability, and 
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biocompatibility of two component lysine-derived polyurethane (PUR) biocomposites 

were investigated.  Rate constants were measured for the complex reactive mixture using 

an in situ attenuated total reflection Fourier transform infrared spectroscopy technique.  

Based on the measured rate constants, a kinetic model predicting the conversion of each 

component with time was developed.  The kinetic model successfully predicted the 

composition of leached material over time and proved that only non-cytotoxic materials 

could extravasate into the wound bed.  The PUR biocomposite supported cellular 

infiltration and remodeling in femoral condyle defects in rabbits at 8 weeks, and there 

was no evidence of an adverse inflammatory response induced by unreacted components 

from the biocomposite or degradation products from the cured polymer.  Taken together, 

these data underscore the utility of the kinetic model in predicting the biocompatibility of 

reactive biomaterials.  The polycationic nanoparticles discussed in Chapter IV and the 

injectable biocomposites described in Chapter V are prime candidates to be utilized 

together for patients with cancer induced bone disease.  The ability to release specific 

small molecule hydrophobic drugs from an injectable bone graft could result in reduced 

margins of resections, localized cancer destruction, and regeneration of tumor destroyed 

bone. 

The injectable, settable polyurethane biocomposites in Chapter V are designed 

with a polyester component that degrades primarily by hydrolysis of the ester bond
14

.  

The hydrolytic degradation has also been shown to be autocatalytic
15

, which is difficult to 

control and can create a mismatch between the degradation of the polymer scaffold and 

regeneration of new tissue in vivo
16

.  In order to overcome this hurdle, a novel polymer 

with covalent linkages that are highly susceptible to reactive oxygen species (ROS) called 
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polythioketals (PTKs) were developed and optimized
17

.  Since ROS is mainly secreted 

locally by cells in vivo, replacing the polyester component in polyurethane composites 

with a PTK polymer results in degradation rates that are related directly to the degree of 

cell infiltration.  Chapter VI describes the development of PTKs and Chapter VIII 

discusses work to add another level of specificity to the degradation mechanism of PTK 

polymers by incorporating enzymatically labile amino acid sequences.  The reaction to 

form PTKs results from the acid catalyzed step polymerization of a di-functional thiol 

component with a di-functional hydroxyl analog.  Nearly any di-functional thiol 

compound can be employed for this reaction, including thiolated amino acids.  Thiolated 

amino acid sequences were designed with sensitivity to Cathepsin K, an enzyme secreted 

by osteoclasts during bone remodeling
18

, and added to the PTK reaction.  Up to 10% of 

the amino acid could be integrated into the PTK while still remaining a viscous liquid.  

Chapter VI discusses the PTK-amino acid (PTK-AA) synthesis and characterization upon 

incorporated into polyurethanes.  The degradation rates and specificity were also 

analyzed and compared with two different isocyanates and polyester controls.  The PTK-

AA polymers were found to have both enzymatic and ROS degradable functionality in 

vitro.  

Chapter VII concludes the dissertation by summarizing the main results and 

Chapter VIII presents a cumulative discussion of future studies.  Overall this dissertation 

presents a path to develop polyurethanes to study and ultimately treat cancer induced 

bone disease.    
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CHAPTER II 

BACKGROUND 

Cancer Induced Bone Disease: Biology, Pathology, and Cellular Mechanisms 

The skeletal system is an important reserve for minerals, immune cells, proteins, 

and growth factors
1
.  The bone microenvironment is in a constant state of remodeling 

with the entire skeleton being replaced on average of 7-10 years.  Bone turnover, in 

healthy individuals, is a tightly controlled process with strain and biochemical signals 

influencing the rate of new bone formation
2
.  This process is generally controlled by three 

cell populations: osteoblasts, osteoclasts and osteocytes
1b, c, 2

.  Osteoblasts are the bone 

building cells.  They begin the bone forming process by excreting tropocollagen, which 

polymerizes extracellularly into collagen.  New mineralized bone is formed by 

reinforcing the collagen fibers with precipitated hydroxyapatite (HA).  Some osteoblasts 

envelop themselves in mineralized matrix and differentiate to osteocytes.  The osteocytes 

regulate bone turnover and aid in maintaining ion equilibrium in the plasma.  Osteocytes 

are stimulated to induce bone resorption by many factors, including constant strain, 

injury, electrochemical interactions and biochemical markers from the endocrine system
2
.  

The resorption process of bone is completed by the osteoclasts.  These cells are formed 

by a merger of bone progenitor cells and result in a large multinucleated single cell.  The 

osteoclasts form sealed resorption areas by integrin activated attachment to extracellular 

proteins like vitronectin (Vn) and fibronectin (Fn)
3
.  The resorption areas directly 

underneath the cells are then exposed to excreted proteases, reactive oxygen species 

(ROS), and high concentrations of acidic species.  This results in dissolution of both the 
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mineral structure of bone and the underlying collagen reinforcements.  This in turn 

releases ions and growth factors such as transforming growth factor β (TGF-β), bone 

morphogenetic proteins (BMP), insulin-like growth factors (IGF) and many more. 

There are several pathologies, such as osteoporosis, hyperthyroidism, arthritis, 

and metastatic cancers, that result in unbalanced bone formation and a majority of these 

diseases are caused in part by a disruption or hijacking of the endocrine system
4
.  The 

endocrine system is comprised of many glands that secrete regulatory hormones which 

act on nearly every system in the body.  In regards to bone remodeling, the parathyroid 

has been isolated as a primary driver of bone resorption.  During pregnancy the 

parathyroid releases a large dose of parathyroid related protein (PTHrP), which acts to 

increase levels of Ca
2+

 ions in the blood for fetal development and lactation
4d

.  PTHrP 

indirectly acts to enhance bone resorption by binding to receptors in osteoblasts which 

induces the production of receptor activator of nuclear factor κ-B ligand (RANKL) and 

prevents the formation of osteoprotogerin (OPG) which acts as an inhibitor to RANKL.  

RANKL binds to RANK receptors on osteoclasts and stimulates bone resorption.  While 

this process is tightly controlled in healthy individuals, many forms of cancer that are 

known to metastasize to bone show the ability to locally produce PTHrP and in turn this 

generates what is known as the “vicious cycle” of cancer induced bone disease
4c

.   

In some of the most common forms of cancer, e.g. breast, lung and prostate, late 

stage diagnosis often includes metastatic sites in bone.  Once these tumors establish in the 

bone microenvironment they begin to secrete PTHrP, which has been shown to be 

regulated through the transcription factor Gli2
5
.  PTHrP stimulates the resorption of bone 

through the RANKL mechanism and this causes the release of growth factors held within 
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the bone like TGF-β.  In normal cells, and even in tumors at the primary site in breast 

cancer, TGF-β results in apoptosis; however, the metastatic cancer cells that establish in 

bone have an alternative  signaling pathway and are stimulated in the presence of TGF-β 

to produce more PTHrP
6
.  The vicious cycle positive feedback loop results in osteolysis 

and tumor proliferation. 

The causes of metastasis to bone have been widely studied and are linked to many 

factors including chemokine receptors, protease expression, and integrin expression
7
.  

Integrins are a class of transmembrane proteins that have specific binding domains 

targeted to various extracellular matrix molecules.  They are vastly important to regular 

cell function as adhesion sites for motility and they initiate differentiation
8
.  In cancers, 

integrins have been found to be overexpressed in many tumors including those that 

preferentially metastasize to bone.  Specifically, overexpression of integrin αvβ3, an 

integrin with binding domains specific to Vn and Fn, is known to result in aggressively 

bone metastatic phenotypes
7b, 9

.  However, if metastatic tumor cells are artificially 

stimulated to express high levels of αvβ3 and directly transplanted into the bone, there is 

no difference in the osteolytic potential compared to cells that express normal levels of 

αvβ3
9b

. Inhibition of integrin αvβ3 by treatment with small molecule antagonists or 

antibodies results in lower prevalence of metastasis to bone
10

.  Systemic inhibition of 

αvβ3 is thought to act synergistically to reduce metastasis by decreasing tumor 

angiogenesis and preventing osteoclasts form forming resorption pits. However, since 

αvβ3 is prevalent in many normal cells systemic delivery of anti-integrin therapeutics may 

have adverse side effects
6a

. 
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While the basic mechanism of the vicious cycle and metastasis are well studied, 

the reason behind the distinctly different gene expression between primary tumors and 

metastatic bone lesions is more complex (Figure 2.1).  The expression of the osteolytic 

proteins such as PTHrP is nearly 100% prevalent in metastatic tumors that reside in bone, 

where other metastatic sites (even within the same patient) have significantly less 

expression of PTHrP
11

.  It has been shown that the TGF-β signaling pathway increases 

gene expression of Gli2, a transcription factor that can regulate PTHrP, however TGF-β 

is ubiquitously expressed, thus cannot alone explain the bone specific expression.  One 

factor that can aid analysis is studying the rigidity of the bone microenvironment and the 

utilization of organ specific in vitro models. 

 

 
Figure 2.1.  Current scheme of the possible factors involved with the vicious cycle. 
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Organ Specific In Vitro Models  

The cells ability to sense and respond to the mechanical cues of the surrounding 

microenvironment is known to play a large role in phenotype and gene expression of 

many cell populations.  In the case of cancers, studies looking at primary breast tumors 

have shown that there is a slight increase in the rigidity of the extracellular matrix 

surrounding a tumor
12

.  This increase in rigidity is commonly modeled in vitro with 

hydrogels.  The organ specific models were able to provide insight on tumor invasiveness 

and novel molecular pathways that resulted in target therapeutics
12b

.  However, a large 

majority of studies use hydrogels which are limited in modulus to <100kPa.  These 

materials are unable to provide a range of rigidity that is specific to bone.   

The bone microenvironment is divided into two types of mineralized matrix 

cancellous and cortical bone
2
.  Cortical bone is the hard outer casing of bones and it has 

high mineral density and limited vascularity.  Cancellous or trabecular bone occurs in the 

interstitial space of cortical bone, primarily near joints, and is comprised of a network of 

spindle shaped mineralized trabeculae.  The trabecular bone is filled with marrow and 

blood vessels.  Recent mechanical analysis of these two types of bone with 

nanoindentation has yielded a range of rigidity of 365 ± 223 MPa for trabecular bone and 

9.9 ± 1.7 GPa for cortical bone
13

.  Other methods of analysis have obtained similar 

values; however, nanoindentation probes the material on a similar scale to cellar 

interactions.        

In order to better model the rigidity of bone, a polyurethane  (PUR) cell culture 

system was developed.  The PUR films were made by melt casting a liquid reactive 

isocyanate and poly-hydroxyl.  The molecular weight of the precursor materials is 
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directly correlated to the modulus of the resulting film.  By adjusting the molecular 

weight, PUR films were generated with rigidity that spanned from 1 MPa - >1GPa 

(Figure 2.2).  Initial studies with the PUR films in vitro have shown that PTHrP and Gli2 

are stimulated in metastatic breast cancer cells simply by increasing the rigidity from 

basement membrane levels (~1 MPa) to cortical bone levels (~1 GPa)
14

.  It was also 

found that inhibition of the downstream mechanotransduction regulator Rho associated 

kinase (ROCK) limited the rigidity mediated stimulation.  These experiments showed that 

modeling the rigidity of the bone microenvironment in vitro has a direct correlation to 

clinically relevant gene expression in vivo.  Additionally, it is more likely that novel 

therapeutic targets can be better identified when biologically relevant models are 

employed.  Future studies with bone biomimetic models should aid in elucidation of the 

complex interplay of cancers that metastasize preferentially to bone. 

 

 
Figure 2.2.  Diagram of the range of modulus seen in cancers that metastasize to 

bone with physiological rigidities boxed in solid lines and model systems in 

dashed boxes.  



 

 

15 

 

Injectable Biomaterials for Tissue Engineering 

Biomaterials are generally defined as non-viable materials used in medical 

devices that are intended to interact with biological systems in order to replace any tissue, 

organ, or function of the body
15

.  While this classification is constantly evolving to 

encompass new areas of research
15e

, the definition of injectable biomaterials exhibits 

more variability depending on the specific application, reactivity of the material, and 

interaction with the tissue
15d, 16

.  For the purposes of this review, the term injectability 

will focus on materials that are viscous enough to be extruded through clinically relevant 

applicators with minimally invasive surgical techniques.  Injectable biomaterials offer 

advantages compared to prefabricated implants due to their ability to be utilized in non-

invasive surgical procedures, cure in situ, fill complex defects, and easily incorporate 

cells or therapeutics.  Prefabricated biomaterials require implantation through invasive 

surgical procedures, which increases the risk of complications and recovery time
17

.  With 

the interest in biomaterials for tissue engineering applications presumably rising for the 

foreseeable future, injectable biomaterials are anticipated to increase in clinical 

significance
18

.      

Injectable and settable biomaterials can be classified based on curing mechanisms 

(non-settable injectable materials are outside the scope of this review).  Physically 

settable biomaterials include environmentally responsive crosslinked (i.e. pH, 

temperature, micelle formation in water, etc.) and ionically crosslinked polymers
19

.  The 

lack of covalent linkages in physically settable biomaterials produces weak mechanical 

properties, which limits their use.  Chemically settable biomaterials, which form covalent 
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bonds in situ, cure by photopolymerization, thermally activated polymerization, catalyzed 

reactions, click-based reactions, or enzymatically catalyzed reactions
20

.   

Despite the advantages of settable biomaterials, there are distinct challenges 

associated with the development of clinically relevant therapies.  Strategies for clinical 

translation must address sterilization procedures, handling properties, biocompatibility, 

and regenerative capabilities
21

.  The toxicity of low molecular weight reactants, catalysts, 

or other additives released during in situ cure is of particular concern for settable 

biomaterials.  Settable biomaterials must be designed as to inject low molecular weight 

monomers (and optionally catalysts or other additives) that subsequently react in vivo 

without damaging host tissue.  The requirements of biocompatibility and biodegradability 

apply to both the low molecular weight precursors as well as the cured material.  The 

following critical engineering challenges must be addressed when designing settable 

biomaterials for clinical use. 

Sterilization and Infection 

Despite meticulous surgical care, the incidence of bacterial infection resulting 

from implanted biomaterials can be as high as 5%
17, 22

.  Infection rates are highly 

dependent on the type, application, and location of implantation
22a

.  Infection of 

temporary implants, such as catheters, wound dressings and mucosal inserts, can result in 

pain, discomfort, use of systemic antibiotics and additional re-applications
23

.  Orthopedic 

and cardiovascular implant infections are more serious, and as with many biomaterial 

infections the bacteria involved are also increasingly resistant to common antibiotics
17a

.  

Infections associated with these permanent implants can result in tissue damage, excess 

surgeries, implant failure, or mortality
17

.   
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Sterilization is the first line of defense against bacterial infections.  Settable 

systems are more sensitive to sterilization procedures due to potential polymerization or 

loss of reactivity of the monomeric components, which would adversely affect their 

performance.  Applications that utilize injectable systems to deliver bioactive molecules, 

drugs, or cells are particularly sensitive, and consequently sterilization and its effects on 

the efficacy of these biologics must be analyzed.  For most settable biomaterials, ethylene 

oxide (EtO) or gamma irradiation is the gold standard for sterilization of liquid organic 

components
24

.  Radiation doses below 25 kGy have been reported to have minimal 

effects on the functionality of most biomedical polymers
24c

.   

In cases where sterilization and proper surgical technique alone are insufficient 

for preventing infection, a growing amount of research has been applied to local delivery 

of antibiotics from an implanted material
25

.  Local delivery of antibiotics has the benefit 

of sustaining effective doses directly at the site of implantation.  Although systemic 

delivery can provide basal levels of protection from infection, its ability to provide 

bacteriocidal concentrations at the implant site is limited due to ischemic conditions and 

the inability of the drug to diffuse to the surface of the implant
26

.  Since bacterial 

colonization occurs on the surface of biomaterials, local delivery of antibiotics from the 

implant allows for a more controlled targeted therapeutic intervention.  Settable 

biomaterials can easily incorporate antibiotics by simple loading during mixing of the 

precursors
25b, c

.  The release of the antibiotics is typically diffusion-controlled, which can 

be tuned based on material parameters such as crosslink density and porosity
25b, c, 25f

.  

Alternative carriers, such as microbeads, conjugated pro-drugs, or even materials with 

known microbial resistance such as chitosan, can be added to further control the release 
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of antibiotics and invasion of microbial species
25a, 25d, e, 25g, 27

.  These techniques have 

proven to reduce infections in animal models of orthopedic trauma for up to 8 weeks
25b, 

25f, 25i, 28
.  While the incorporation of antibiotics for localized delivery holds much 

promise, concerns remain about overuse and the occurrence of resistant bacterial 

strains
17a, 26

.    

Handling properties 

Handling properties of settable biomaterials, such as storage, mixing, and 

delivery, must be optimized to facilitate ease of use in the clinic
16

.  Storage requirements 

are highly dependent on the composition of the material.  Water-soluble materials can be 

lyophilized to improve shelf life and require re-suspension or solubilization before use
29

.  

Stabilizers can be added to reactive organic liquids to enhance storage stability.  Storage 

at low temperatures and/or reduced pressures in containers purged with an inert gas can 

further enhance stability.  Regardless of the conditions under which the material is stored, 

care should be taken to ensure functionality is retained. Depending on the number of 

precursors required for a given system, the materials might need to be mixed directly 

prior to injection.  Rheological characterization can provide insight into the viscoelastic 

properties of materials in situ, which can directly translate into clinical performance of an 

injectable system. Suspensions of solid particles in low-viscosity monomeric precursors 

are typically shear-thinning fluids, which are characterized by a reduction in viscosity 

with increasing shear rate
30

.  Shear-thinning behavior can enhance the injectability of 

settable biomaterials, due to the consequent reduction in viscosity upon the application of 

force
31

.  When the applied force is removed, the viscosity increases, which can prevent 

extravasation of material away from the site of injection.  In order to determine shear 
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thinning behavior, a shear rate analysis must be performed using a plate-based rheometer.  

In this test, the viscosity is measured as a function of shear rate, from which the apparent 

yield stress (e.g., the force required to cause the material to flow) can be calculated.   

Many biphasic injectable systems, such as injectable composites or cements, 

exhibit yield stresses spanning a range from 1 – 1,000 Pa
31

.  The yield stress is directly 

correlated to the injectability of the system, with lower yield stresses resulting in easier 

injection.  There are additional factors required to fully define injectability, such as 

diameter of the injection device and molecular interactions
32

, but the yield stress and 

shear thinning behavior provide valuable insight on in situ viscoelastic properties of 

injectable systems that can be directly translated into clinical performance.   

The time between mixing and chemical gelation, also known as the working time, 

is a crucial parameter for characterizing settability. Working time can be calculated from 

the rheological cure profile measured under constant strain conditions
33

.  In this 

experiment, the viscosity, storage, and loss modulus are measured versus time.  As the 

material cures, the storage modulus (corresponding to energy stored elastically) increases, 

while the loss modulus (corresponding to energy dissipated by flow) decreases.  The 

working time is identified as the point at which the storage modulus equals the loss 

modulus (i.e., the crossover point).  Consequently, the working time is also known as the 

gel time, at which point the material has formed a network and can no longer flow. 

Working times of 5 – 15 min are preferred for clinical use
16

.  

Reaction conditions 

Settable biomaterials must undergo rapid setting, exhibit a mild exotherm, 

comprise non-toxic precursors, and present minimal risk of extravasation.  Rapid setting 
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reduces the delay before the surgeon can close the wound, which consequently reduces 

the risk of infection
34

.  Many of the available chemistries cure via an exothermic reaction.  

Since a rise in temperature of just 5° C for 300 s can cause necrosis
35

, controlling the 

exotherm is important to avoid damaging local native tissue. In extreme cases, such as the 

exothermic poly methylmethacrylate (PMMA) reaction, temperatures can reach 125° 

C
35b

.  The exotherm can be reduced for many reactions by lowering the concentration of 

catalyst or initiator, but lower catalyst concentrations can increase the working time.  The 

reaction should also undergo a high conversion of precursors in order to eliminate the 

possibility of unreacted material leaching from the implant.  While the reaction is 

proceeding, there is a corresponding increase in molecular weight and viscosity, which 

decreases extravasation of material away from the implantation site.  Thus, reaction rates, 

which can be measured using techniques such as Fourier transform infrared spectroscopy 

(FTIR), must be optimized to provide for sufficiently rapid cure without generating a 

harmful exotherm
33a

.  Even for reactions that rapidly achieve high conversions, leaching 

of harmful low molecular weight components is possible.  The adverse effects of leaching 

on healing depend on the toxicity and concentration of the components, as well as the 

native tissue at the injection site
36

.   Thus, biocompatibility testing of the individual 

components is essential to understand the potential risk of leaching toxic monomers or 

catalysts into the wound bed during cure.  Guidelines for toxicity testing can be found in 

the ISO-10993 standard
37

, which  provides established protocols for testing biomedical 

devices required for regulatory approval.  In particular, ISO-10993-5: Cytotoxicity 

specifies in vitro testing methods for assessing biomaterials at very early stages of 

development.  The cytotoxicity protocol assesses the viability of cells treated with 
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extracts obtained by incubating a biomedical device in saline or medium for 72 hours.  

For injectable systems with multiple reactive components, this analysis is also helpful for 

determining the toxicity of individual components.  Cytotoxicity tests are simple, rapid, 

inexpensive, and highly sensitive
38

.  Thus, they provide an early indication of 

biocompatibility.  In vivo testing is required to determine the safety of the device prior to 

use in patients. ISO 10993-11 Systemic Toxicity, which evaluates the potential adverse 

effects of the device on the body’s organs and tissues, and ISO 10993-6 Implantation 

Testing, which determines the local pathological effects of the device on surrounding 

tissue, are useful for assessing the safety of settable biomaterials at later stages of 

development.  

Degradation and tissue regeneration 

In regenerative applications, biomaterials must not only support infiltration of 

cells and ingrowth of new tissue, but also degrade into non-toxic breakdown products
39

.  

The mechanism and rate of degradation of a settable biomaterial after implantation 

affects the release of degradation products and the healing of the surrounding tissue.  

Upon implantation, degradation inevitably results in loss of mechanical strength. 

Therefore, it is imperative to tune the degradation rate to allow proper cellular infiltration 

and remodeling, which will return native function and eventually mechanical properties.   

Many types of biomaterials are designed to degrade by passive mechanisms (e.g., 

hydrolysis).  Hydrolysis rates are dependent on the type of crosslinking, chemical 

structure of the precursors, and the anatomic site
40

.  The rate of hydrolytic degradation 

can in many cases be adjusted to match that of remodeling.  However, in the case of 

polyesters, a commonly utilized polymer for injectable biomaterials, hydrolysis occurs 
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faster at low pH and the degradation products of hydrolysis are acids
41

.  This can lead to 

auto-catalytic degradation, which can subsequently increase degradation rates at later 

time points in vivo
42

.  Furthermore, the local reduction in pH can cause tissue damage 

which hinders healing
43

.   

In recent years, cell-degradable materials have been developed by incorporating 

proteolytically cleavable peptides in the backbone.  Proteolytic degradation can occur by 

many types of enzymes in vivo, with matrix metalloproteinases (MMPs) garnering much 

interest
44

.  Proteolytic degradation is generally achieved via incorporation of small 

sequences of amino acids that have been identified as highly sensitive to specific 

enzymatic cleavage, which enables cells to actively degrade the material.  

   

Polyurethane Based Bone Grafts 

Polyurethanes (PURs) are a class of biocompatible polymers, derived from the 

reaction of isocyanates (hard segment) with hydroxyls (soft segment), that have been 

utilized for biomedical applications for nearly 40 years
45

.  The individual segments have 

inherent physical attributes that make them advantageous when together, as the hard and 

soft segments provide physical strength and elasticity, respectively.  The duality of the 

final polymer allows for unique and tunable physical and chemical properties.  PURs can 

be further classified by the functionality of the precursors used for synthesis.  Precursors 

with a functionality of 2 generate linear elastomers, where functionality >2 produces 

crosslinked networks.  Both linear and crosslinked PUR materials have been widely 

utilized in the field of biomaterials.  Linear elastomers offer more traditional options in 

biomaterial design.  These polymers can be electrospun
46

, solvent cast
47

, or molded into 
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various shapes to fit different applications, such as coatings
48

, sutures
49

, catheters
50

, and 

artificial tissue matrices
20c

.  Crosslinked networks can be utilized for injectable 

formulations that cure in situ. 

Injectable PURs are a relatively novel attempt to harness the diverse library of 

biocompatible polymers.  Multi-component liquid reactive systems are required to form 

injectable PURs.  The components are liquid isocyanates, poly-hydroxyls, water, 

stabilizers, and catalysts.  Common catalysts used in injectable PUR systems are amine or 

metal based.  Amine based catalysts are non-toxic, but they have been found to selectivity 

catalyze the water reaction in aliphatic isocyanates, which can cause overfoaming
51

.  

However, the isocyanate-water reaction produces a urea bond, which improves strength 

of the network via increased hydrogen bonding
52

.  Furthermore, the water reaction 

produces carbon dioxide which acts as a blowing agent to form porous PUR foams in situ 

that are ideal for enabling cellular infiltration
52

.  Metallic catalysts are selectively 

catalyze the hydroxyl-isocyanate reaction, but are generally more toxic then their amine 

counterparts
51

.  Combinations of catalysts can be utilized to produce many types of 

PURs.     

There are numerous sources for liquid isocyanates, but their application is limited 

by possible toxicities.  Low molecular weight, aliphatic diisocyanates such as 1,4 butane 

diisocyante and 1,6 hexamethylene diisocyanate are known to have non-toxic degradation 

products and are widely utilized in biomedical PUR elastomers
43, 53

.  However, both these 

diisocyanates have high vapor pressures and are highly toxic as inhalants, limiting their 

use as injectable precursors
54

.  To combat toxicity issues related to some of these liquid 

isocyanate sources, prepolymers of isocyanates synthesized from low molecular weight 
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linkers can be used instead
55

.  Common aromatic isocyanates, such as toluene 

diisocyanate and methylene diphenyl diisocyanate, are known to be toxic as monomers
56

.  

Additionally, upon degradation, aromatic-based diisocyanates form aromatic amines, 

which are known carcinogens
56c, 57

.  Aliphatic isocyanates derived from lysine have a 

combination of low vapor pressure, low monomeric toxicity, non-toxic degradation 

products, and low melting point making them ideal for injectable PURs
55

.  Lysine methyl 

ester diisocyanate (LDI) and lysine triisocyanate (LTI) have been utilized for injectable 

PUR applications in soft and hard tissue regeneration
55, 58

.  For applications in soft tissue, 

lysine based biomaterials undergo significant oxidative degradation which results in 

implant lifespans of only 4 weeks
58a

.    

The cellular components of the wound healing and bone regeneration are well 

known and can be targeted for use in designing degradable biomaterials.   The initial 

response to injury or biomaterial implantation in bone begins by neutrophil and 

macrophage migration
22a, 59

.  This cell population utilizes oxidative species to remove 

cellular debris and dispose of bacterial threats.  Additionally, these cells secrete cytokines 

that recruit and aid in differentiation of stem cells.  If a material does not illicit a foreign 

body reaction, then the inflammatory cells disperse within days and secondary 

populations of cells proliferate and induce angiogenesis
22a, 59

.    In bone regeneration, 

osteoblasts progress into the wound, begin laying down cortex material, and ossifying 

structurally weak areas.  The ossified bone is remodeled into native bone by osteoclasts 

which secrete acids and enzymes, such as cathepsin k and MMPs, to aid matrix 

degradation
60

.  For biomaterials utilized in bone regeneration, osteoclasts are known to be 

the major cell population that induces degradation and remodeling
31b, 58b, 61

. 
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Degradable mechanisms for PURs in vivo can be deemed passive or active 

depending on cellular involvement.  Passive degradation mechanisms occur without 

cellular intervention (hydrolysis), while active degradation mechanisms respond to 

cellular cues (enzymatic)
62

.   Biodegradable PURs are traditionally formulated with 

polyester soft segments which hydrolytically degrade in vitro and in vivo to non-toxic 

alpha acids
63

.  This passive degradation can be adjusted by several factors including, 

polymer composition, molecular weight, hard segment content, and crystallization
20c

.  

However, there are issues with autocatalytic degradation with polyesters due to the 

release of acidic byproducts during degradation
40

.  This leads to quicker and less 

controllable degradation in vivo.  Active degradation mechanisms allow for the natural 

wound healing response to remodel the polymer matrix
62

.  An additional benefit of active 

degradation is that the polymer maintains structural integrity until the desired cellular 

response is achieved.  The incorporation of novel polymer chemistries, such as 

poly(thioketals) (PTKs), and amino acid substrates for specific cell released enzymes can 

induce active degradation in PURs. 

 

Localized Drug Delivery from Polyurethane Grafts 

For soft tissue applications, injectable formulations of lysine-based PUR foams 

have proven to produce a non-toxic reaction environment during injection, remain non-

toxic until complete degradation, exhibit clinically relevant handling properties, and form 

a simple method for incorporating therapeutics or cells
64

.  Recently injectable 

biodegradable foams composed of LTI and a polyester polyol were shown to promote 

cellular infiltration and ingrowth in a rat excisional wound model
64a

.  These porous 
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scaffolds maintained structural integrity during the 7-day study as they degraded at a 

similar rate as local tissue regeneration.  The regenerated tissue had reduced alignment of 

collagen, which is indicative of lower scar formation
64a

.  In another study, similar LTI-

based porous PUR scaffolds were loaded with pH-responsive nanoparticles which 

encapsulated small interfering ribonucleic acid (siRNA) in vitro
64c

.  The siRNA 

nanoparticles were uniformly loaded within the PUR precursors during mixing and 

remained stable while the PUR foaming reaction completed
64c

.  After the foam cured, the 

siRNA nanoparticles were released and silenced a luciferase reporter gene.  The activity 

was similar to free nanoparticles, indicating the PUR reaction did not interfere with the 

nanoparticles’ properties
64c

.  The diffusion-controlled release was hypothesized to be 

effective for in vivo gene silencing over the period of several weeks
64c

.  These examples 

highlight that LTI-based injectable PUR foams can be fabricated into a mechanically 

stable, porous matrix utilized for drug delivery in soft tissue applications. 

Injectable polyurethanes derived from lysine have been utilized in the 

development of biocomposites intended for tissue regeneration in hard tissue sites as 

well
31b, 58b, 61, 65

.  Injectable formulations for hard tissue applications generally include 

LDI- or LTI-based prepolymers, amorphous polyester polyol, water, catalyst, solid filler, 

and therapeutics. Mineralized matrices, such as calcium phosphates
66

 or allograft bone 

particles 
31b

, can be incorporated in the liquid reacting mixture to increase the mechanical 

properties of the PUR biocomposite.  Therapeutics, such as antibiotics
25f

 or growth 

factors
67

 can also be added as labile powders to aid the biological properties.  

Theoretically, the incorporation of nanoparticle based therapeutics (as discussed above) 

should also be possible in the PUR biocomposites.  
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CHAPTER III 

POLYURETHANES AS SUBSTRATES FOR ADVANCED ANALYSIS OF 

MECHANOTRANSDUCTION EFFECTS IN CANCER INDUCED BONE DISEASE 

Introduction 

The rigidity of the extracellular matrix is of increasing interest in the development 

of new, effective therapies to prevent cancer induced bone disease.  Rigidity has been 

shown to stimulate Rho-mediated cell contractility to influence a number of cellular 

outcomes, including motility, morphology and differentiation
1
.  When cells are cultured 

on gels approximating the rigidity of soft tissue, increasing rigidity of the substrate 

generates larger cellular traction forces that result in activation of integrins, formation of 

focal adhesions, and consequent activation of SFKs
2
.  Up-regulation of SFKs activates 

Rho/ROCK signaling and subsequent phosphorylation of myosin light chain (MLC), 

driving increased cell contractility.  In soft tissue, forces arising from ROCK-generated 

contractility can drive cytoskeletal remodeling, resulting in stiffening of the matrix 

surrounding the tumor
3
 that can lead to a 100-fold increase in matrix rigidity

4
.  In 

contrast, in the bone microenvironment, tumor cells interact with a rigid matrix that is at 

least 100,000,000-fold stiffer than the primary site. Consequently, the rigid mineralized 

bone matrix is anticipated to drive a feed-forward loop where integrin-dependent 

signaling is stimulated upon establishment of the tumor cells in the bone 

microenvironment.  Since many common tumors metastasize to bone, it is of the utmost 

importance to study all aspects of the bone microenvironment.   

 Decades of research has demonstrated that once these tumor cells establish in the 
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bone they secrete factors like parathyroid hormone related protein (PTHrP), interleukin 6 

and 8, or other factors that induce osteoblast expression of Receptor Activator of NF-κβ 

Ligand (RANKL) that stimulates the osteoclast to resorb bone
5
.  This resorption results in 

release of TGF- from the bone matrix that continues to drive the expression of PTHrP 

(or other factors) by the tumor cells
6
.  While the mechanisms of TGF-β regulation of 

PTHrP expression in tumor-induced bone disease have been studied extensively, it is still 

unclear how the bone microenvironment regulates gene expression in tumor cells or why 

tumors recur in the bone many years after the primary tumor has been removed. Despite 

these mechanistic studies, the major clinical treatments for bone metastases focus on 

inhibiting bone resorption.  While effective, these therapies do not directly inhibit tumor 

burden and do not significantly extend survival, suggesting a need for newer approaches
7
. 

 The physical rigidity of the microenvironment is one component that has been 

demonstrated to regulate tumor cell invasion in soft tissue.  However, until our paper in 

2010 it was thought that tumor cells could not respond to rigidities above that of the 

basement membrane
8
.  While we observed that they could respond to the rigidity of bone 

to alter gene expression, the molecular mechanisms remained unknown.  Since 

mechanotransduction signaling in soft tissue is regulated by integrin based focal 

adhesions
4, 9

 and their ability to regulate contractility and invasion
10

, we reasoned that 

integrins were involved in the response of tumors to high moduli.     

  While specific integrins, such as v3, has been demonstrated to promote 

metastasis to bone
11

, integrins in general have been shown to cross-talk with growth 

factor receptors in primary tumors, which mediates tumor malignancy and invasiveness
12

.  

For example, transforming growth factor-beta Receptor type II (TGF-β RII) interacts 
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physically with v3 integrin to enhance TGF--mediated stimulation of MAP-kinases 

(MAPKs) and Smad2/3-mediated gene transcription in mammary epithelial cells (MECs) 

during epithelial-mesenchymal transition (EMT)
13

. 

    In the present study, we hypothesized that integrin v3 mediated tumor response 

to the rigidity of bone and influence tumor-induced bone disease.  To test our hypothesis 

we utilized a 2D polyurethane (PUR) film monoculture system to mimic the viscoelastic 

properties of the basement membrane and mineralized bone in vitro.  These studies 

demonstrated that rigidity increased integrin 3 expression, which led to a co-localization 

with TGF-β RII and increased expression of PTHrP, thus stimulating bone destruction.    

Inhibition of tumor produced integrin 3 molecular and genetic interference decreased 

gene expression of PTHrP and Gli2 in vitro and reduced bone destruction in vivo. 

 

Experimental 

 Synthesis of 2D Substrates for Cell Culture Experiments   

2D films with varying rigidity were prepared for the cell culture experiments. The 

parameter typically used to quantify the rigidity of tissues and synthetic matrices is the 

elastic modulus, which is defined by the initial slope of the stress (σ) versus strain (ε) 

curve and has SI units of N/m
2
 or Pascal (Pa).  Unlike compliance or stiffness, the 

modulus is independent of the geometry of the material. Biocompatible poly(ester 

urethane) (PUR) substrates were synthesized and characterized as described previously
14

.  

Briefly, an appropriate amount of poly(-caprolactone-co-glycolide) triol (Mn = 300, 

600, 720 or 3000 Da) was mixed with an LDI prepolymer and COSCAT 83 catalyst 

(Vertellus) for 20s in a Hauschild SpeedMixerTM DAC 150 FVZ-K vortex mixer 
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(FlackTek, Inc, Landrum, SC).  The targeted index (ratio of NCO to OH equivalents 

times 100) was 105.  The resultant mixture was poured into the wells of a tissue culture 

plate and allowed to cure for 24h at 60° C.  To facilitate cell adhesion and ensure that the 

surface chemistry was constant for all substrates tested, fibronectin (Fn) was adsorbed to 

the surface of the substrates by incubation in a 4 g/mL solution of Fn in PBS at 4
o
C 

overnight.  

Fibronectin Characterization 

To measure the surface concentration of Fn, coated substrates were incubated in a 

solution of Fn antibody (1:1000) followed by incubation with a secondary HRP-

conjugated antibody.  The relative amount of adsorbed antibody was then quantified by 

reaction with 2'- azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and 

subsequent optical density reading at 405nm.  All PUR and PAA and were prepared at 

the same surface concentration of Fn (1.9 g cm-2).   

Mechanical Testing 

PUR films and scaffolds were analyzed with an Agilent G200 nanoindenter 

(Agilent Technologies, Chandler, AZ) to determine the elastic modulus at the cellular 

interface of the materials.  All the samples are probed by a diamond Berkovich indenter 

tip, which has been calibrated from indents made on fused silica. All the nanoindentation 

experiments were conducted at a constant strain rate of 0.05. The elastic modulus and 

hardness values were determined by the method proposed by Oliver and Pharr, shown in 

equations 1-3
15

.  The depth of contact is derived from an empirical equation relating the 

tip geometry, load, and stiffness of the material, shown in equation 1 and Figure 3.1.  The 

material stiffness, S, is defined as the slope of the unloading curve.  Once the depth of 
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contact is obtained, the elastic modulus can be derived from first determining the reduced 

modulus, equation 2, and then applying equation 3.   

          
 

 
  (1) 

Where hc is the depth of contact of the indenter into the sample, h is the full depth of 

penetration, P is the load, and S is the material stiffness. 
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Where Er is the reduced modulus and A is the contact area. 
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Where EIT is the indentation area, vi,s is the Poisson ratio for either the indenter or the 

sample, respectively. 

Cell Culture 

MDA-MB-231 cells were originally derived from ATCC (Manassas, VA) and 

selected for the ability to metastasize to bone
16

.  MDA-MB-231 cells stably expressing a 

dominant negative (MDA-KD4) form of ROCK were transfected and maintained as 

described previously
14

.  The human squamous cell lung carcinoma cell line RWGT2 was 

 
 

Figure 3.1.  Diagram of the interaction between the nanoindenter and the sample.   
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purchased from ATCC (Manassas, VA) and a bone specific clone was generated in our 

lab.  Cells were maintained and cultured at 37
o
C under 5% CO2 in 1x DMEM (MDA-

MB-231) or MEMα (RWGT2) plus 10% heat inactivated FBS and 1% 

penicillin/streptomycin.  

shRNA Transfections 

MDA-MB-231 cells were stably transfected with 1 µg of shRNA for either human 

integrin β3 subunit or control shRNA plasmid (SantaCruz) according to manufacturer’s 

instructions.  Transfected lines, β3 KD cells, were maintained in DMEM plus 10% heat 

inactivated FBS, 1% penicillin/streptomycin and 5µg/mL puromycin.   

Quantitative Real-Time PCR 

To measure changes in gene expression, mRNA reverse transcription was carried 

out using the Quantitect Reverse Transcription kit (Qiagen) per manufacturer’s 

instructions.  Briefly, cells were harvested with trypsin after 24 h in culture and total 

RNA was extracted using the RNeasy Mini Kit (Qiagen).  The Quantitect Reverse 

Transcription kit was used to synthesize cDNA using 1µg total RNA.  The expression of 

PTHrP, Gli2, integrin-3 and TGF-β RII  was measured in triplicate by quantitative RT-

PCR using validated TaqMan primers with the 7300 Real-Time PCR System (Applied 

Biosciences) using the following cycling conditions:  95C for 15 seconds and 60C for 1 

minute, preceded by an initial incubation period of 95C for 10 minutes.  Quantification 

was performed using the absolute quantitative for human cells method using 18S as an 

internal control.  The expression of osteopontin (OPN), interleukin-11 (IL11), CXCR4, 

connective tissue growth factor (CTGF), and matrix metalloproteinase-9 (MMP9) was 

determined using SYBR green primers as described previously
17

.   
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Western Blots  

Cells were harvested 48 h after seeding on substrates in a 

radioimmunoprecipitation buffer containing a cocktail of protease and phosphatase 

inhibitors (Roche, Basel, Switzerland).  Equal protein concentrations were prepared for 

loading with NuPAGE sample buffer (Invitrogen) and separated on a 12%  SDS-PAGE 

gel (Biorad).  Proteins were transferred to a PVDF membrane and blocked with 5% BSA 

in TBS containing 0.1% Tween-20 for 1h at room temperature, followed by incubation 

with either phospho-p38MAPK (1:1000, Cell Signalling), p38MAPK (1:1000, Cell 

Signalling), phospho-Smad2/3 (1:1000, Millipore) or Smad2/3 (1:1000, Millipore) 

antibodies overnight at 4°C.  After washing, membranes were blotted with anti-rabbit 

IgG (1:2000), and bands were detected by enhanced chemiluminescence.  Membranes 

were then stripped and reprobed using an antibody for -actin (1:5000, Invitrogen) as a 

loading control.   

Immunoprecipitation 

To investigate association of membrane proteins, cells were lysed using a 1% 

Nonidet-P40 buffer containing a cocktail of protease and phosphatase inhibitors. 400g 

total protein lysate per tube was incubated overnight at 4C under gentle end-over-end 

mixing with anti-TGF- RII (1 g, Santa Cruz).  Subsequently, the immune complex was 

captured with protein A/G agarose resin, thoroughly washed with lysis buffer and eluted 

with non-reducing sample buffer.  Proteins were then separated on an SDS-PAGE gel 

(7.5%, Biorad) and transferred to a PVDF membrane.  Following blocking with 5% milk, 

membranes were incubated with anti-integrin 3 (Santa Cruz, 1:1000) at 4C overnight.  
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After washing, membranes were blotted with anti-rabbit or anti-mouse IgG (1:5000), and 

bands were detected by enhanced chemiluminescence.   

Förster Resonance Energy Transfer (FRET) Microscopy 

To investigate the association of TGF-β and Integrin β3, we performed Förster 

Resonance Energy Transfer (FRET) and confocal microscopy.  Briefly, the donor 

antibody: anti-Integrin β3 (SantaCruz) was labelled with Alexa Fluor® 488 Carboxylic 

Acid, Succinimidyl Ester (Life Technologies) (ITG-β3-488) and the acceptor antibody: 

anti TGF-β receptor type 2 (SantaCruz) was labelled with Alexa Fluor® 546 Carboxylic 

Acid, Succinimidyl Ester (Life Technologies) (TGF-β RII-546) in a 2.25:1 molar ratio of 

antibody:dye overnight at 4˚.  Labelled antibody was purified with size exclusion 

chromatography using PD-10 Desalting Columns (GE Healthcare).  MDA-MB-231 and 

RWGT2 cells were grown on discs of rigid and compliant 2D PURs.  After 24 hours of 

culture, cells were fixed with 10% Formaldehyde in PBS and stained overnight at 4˚ with 

ITG-β3-488, TGF-β RII-546, ITG-β3-488 + TGF-β RII-546 or IgG control (1ug/1x10
6
 

cells).  Images were taken with a Zeiss LSM 510 inverted confocal microscope.  FRET 

experiments were performed on a BioTek Synergy 2 using excitation filter 485/20 and 

emission filter 590/35.  Data was normalized to fluorescence of IgG control.  

Drug Treatments 

Cells were pretreated with the Smad-3 inhibitor, SIS3 (EMD4Biosciences, 10 

M) or the p38 MAPK inhibitor SB202190 (Tocris, 10M), for one hour and harvested.  

To stimulate TGF- signalling, cells were treated with either 5 ng/mL TGF- or TGF- 

vehicle (5% BSA-HCL) in serum-free media for 24 h prior to harvesting.   
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Animal Experiments and Analysis 

Confluent MDA-MB-231 cells, KD∆4 or β3 KD human breast cancer cells were 

trypsinized, washed, and resuspended in PBS for injection into the right tibia of 

anesthetized 4-week-old female athymic nude mice (Harlan Sprague Dawley, Inc.) at 

2.5 × 10
5
 cells per mouse. Contralateral intratibial injections of PBS were used as an 

internal control for each mouse. Animals were euthanized four weeks after injection. 

Hind limb specimens (tibia and femora) were removed during autopsy and fixed in 10% 

neutral-buffered formalin (Fisher Scientific) for 48 hours at room temperature. Bone 

specimens were decalcified in 10% EDTA for 2 weeks and embedded in paraffin. Bone 

sections were stained with hematoxylin, eosin, orange G, and phloxine. 

Histomorphometry was used to analyze tumor burden in the tibia and femurs using 

Metamorph software (Molecular Devices, Inc.). Specifically, using the drawing tool in 

Metamorph, the region between the cortices directly below the growth plate was selected 

and calculated by the software as the total area in squared centimeters. The tumor, as 

determined by H&E staining, was selected using the same approach. Tumor burden was 

calculated as a percentage of tumor area over total tissue area. Multiple levels of bone 

sections were stained and imaged, and all statistical analyses were quantified at the same 

histomorphometric level.  

Radiographs of mice 

Animals were anesthetized deeply and laid down in a prone position on the 

platform of the Faxitron LX-60. Images were acquired at 35 kV(p) for 8 seconds. Lesion 

area and lesion number were determined using quantitative image analysis software 

(Metamorph; Molecular Devices). 
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Ex-vivo μCT analysis 

Tibias were analyzed using the Scanco μCT 40. Specifically, 100 slices from the 

proximal tibia were scanned at 12-μm resolution. Images were analyzed using the Scanco 

Medical Imaging software to determine the VOX–bone volume. 

Statistical analysis 

 All statistical analyses were performed using InStat version 3.03 software 

(GraphPad Software, Inc.). Values are presented as mean ± SEM, and P values 

determined using unpaired t test, where *, P < 0.05; **, P < 0.01; ***, P < 0.001 unless 

otherwise stated. 

 

Results  

 The PUR films were analyzed for rigidity by the slope of the unloading curve of a 

nanoindentation plot (Figure 3.2).  Nano-indentation is utilized to determine the 

mechanical properties of materials on a highly localized scale that is relevant for cellular 

traction forces
18

.  Table 3.1 displays the elastic modulus in kPa for each PUR film.  PUR-

3 and PUR-30 films are designated rigid and compliant films respectively.   
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 We previously reported that PTHrP and Gli2 expression is regulated by ROCK
14

, 

a known downstream effector of integrin signaling.  However it remained unknown what 

regulated the response to rigidity upstream.  Integrins are well-established regulators of 

rigidity mediated responses, specifically, the v3 integrin has been shown to regulate 

migration and early stage invasiveness in metastatic bone cancer cell lines
10

.  Since one 

of the primary binding ligands for v3 is fibronectin (Fn), Fn was deposited onto PUR 

 

Figure 3.2. Representative nanoindentation curves for rigid (A) and compliant (B) 

PUR films.   

Table 3.1.  Elastic modulus in (kPa) of PUR films as measured by nano-indentation. 

Sample Designation Elastic Modulus (kPa) 

PUR-3 3.8*10
6
 ± 1*10

5
 

PUR-6 8*10
4
 ± 7*10

3
 

PUR-30 2.5*10
5
 ± 5*10

3
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films and cell culture dishes to ensure v3 binding was isolated.  The effect of Fn 

concentration was found to be minimal above 0.5 μg/mL.  In vitro studies with PUR 

films coated with poly-l-lysine, a positively charged polymer that only would allow for 

electrostatic binding, or other binding proteins such as vitronectin or type I collagen 

produced non-significant or reveresed gene expression for PTHrP, Gli2 and integrin 3 

(Figure 3.3).  

 PUR films, coated with Fn, were utilized to analyze the gene expression of MDA-

MB-231 and RWGT2 cells as a function of rigidity.  Both cell lines are prone to 

metastatic invasion of bone which often results in osteolytic tumors. Interestingly, both 

cell lines expressed significantly increasing (p<0.001) amounts of PTHrP, Gli2 and the 

integrin 3 subunit as the rigidity is increased  from basement membrane levels to that of 

trabecular bone (Figure 3.3 A-C).  Up-regulation of integrins as a function of rigidity has 

been seen in cancers in the primary site
19

, however, the range of rigidity spanned is 

orders of magnitudes lower than the PUR films utilized in this study.  These results reveal 

that the mechanosensing of rigidity is highly specific to the associated pathological sites.  

Since it has been shown that integrin v3 is highly influential in bone metastatic cancer 

cells further analysis into the relationship between the expression of osteolytic factors and 

integrin 3 was conducted. 
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Figure 3.3.  PTHrP, Gli2 and integrin 3 gene expression of MDA-MB-231 cells 

cultured on rigid and compliant PUR films coated with poly-l-lysine (A-B), 

vitronectin (D-F) or type I collagen (G-I).   
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Figure 3.4.  Gene expression of osteolytic factors and integrin-β3 as a function of 

rigidity.  Gene expression of PTHrP (A), Gli2 (B) and integrin-β3 (C) for MDA-

MB-231 cells (black squares and black lines) and RWGT2 cells (red squares and red 

lines) seeded on polyurethane scaffolds of increasing rigidity.  The fit lines are 

derived from a sigmoidal fit of the data R
2
>0.92 for all curves.   
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 The effect of integrin 3 on PTHrP and Gli2 expression was investigated by 

utilizing MDA-MB-231 cells transfected with shRNA for the integrin β3 subunit (β3 KD 

cells, 90% KD, Figure 3.5) and MDA-MB-231 cells treated with an inhibitor of v3 

integrin (LM609).  Both treatments produced a significant decrease (p<0.01) in PTHrP 

mRNA (Figure 3.6 A&E) and Gli2 mRNA (Figure 3.5 B&F) compared to control groups.  

The effect of integrin concentration on osteolytic gene expression was tested on rigid and 

compliant substrates with MDA-MB-231 cells transfected to over express integrin 3.  

The overexpressed cells resulted in higher levels of osteolytic gene expression on 

compliant substrates (supplemental information).  The increased gene expression on 

compliant substrates could be due to the increased cell contractility that has been shown 

to occur in cells overexpressing integrin 3
10a

. Taken together these results are one of the 

first to designate the link between osteolytic gene expression and integrin activity.   

 

 
Figure 3.5.  Integrin β3 gene expression of β3 KD cells compared to mock transfected 

controls. 
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 It is widely understood that the TGF- signaling pathway is known to stimulate 

expression of osteolytic factors such as PTHrP and Gli2
6a

.  To test whether this 

stimulation was affected by integrin 3, the inhibited MDA-MB-231 cells were treated 

with exogenous TGF-.  In both cases, inhibition of the 3 integrin subunit reduced 

PTHrP and Gli2 mRNA expression significantly (p<0.01; Figure 3.6 C-D & G-H).  

Furthermore, exogenous TGF- treatment was not able to significantly increase the 

PTHrP or Gli2 expression in the inhibited cells (Figure 3.6 C-D & G-H). The exogenous 

TGF- treatment had no effect on the gene expression of integrin 3 in control or 3 KD 

cells, indicating the regulation of the integrin subunit is not directly related to the TGF- 

KD signaling (Figure 3.7). While targeting integrin v3 has been widely utilized as a 

potential anti-cancer therapeutic, with varying degrees of success
20

, there is still a debate 

about its mechanism of action.  Inhibition of v3 is thought to prevent angiogenesis and 

adhesion
11b, 20c, 21

, however, our data suggests that it affects the gene expression of 

osteolytic factors as well. 
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Figure 3.6. TGF-β stimulation is negated by genetic or molecular inhibition of 

integrin-β3 subunit. PTHrP and Gli2 levels are significantly reduced when integrin-β3 

subunit is knocked down with the integrin specific antibody, LM609 (A-D) or when 

a targeted shRNA (E-H) is utilized.  The addition of exogenous TGF-β is unable to 

increase the levels of PTHrP and Gli2 in either case (C-D & G-H).   



 

 

52 

 

 

 We have shown that integrin 3 is activated on a range of modulus that is relevant 

to the bone microenvironment and that inhibition is enough to limit the osteolytic gene 

expression of metastatic cancer cells, yet the underlying mechanism for this phenomenon 

was not explained.  It has been previously reported that integrins cluster with various 

receptors to greatly alter gene expression during EMT
13

. Specifically, it was shown that 

src phosphorylates TGF-β RII following clustering with 3 integrin subunit
13

.  This led to 

the analysis of clustering of membrane proteins by immunoprecipitation in response to 

substrate rigidity, where we found that TGF-β RII associated with the integrin 3 subunit 

in MDA-MB-231 cells cultured on rigid, bone-like substrates, but not on compliant 

substrates approximating basement membrane (Figure 3.8).   

 
Figure 3.7.  Integrin β3 gene expression of mock transfected MDA-MB-231 and β3 KD 

cells with or without exogenous TGF-β.  
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 To further analyze this interaction, Förster resonance energy transfer (FRET) 

analysis was conducted with MDA-MB-231 and RWGT2 cells cultured on rigid and 

compliant films.  Upon incubation with anti-bodies for integrin 3 and TGF-β RII that 

were labeled with a fluorescent FRET pair, both MDA-MB-231 and RWGT2 cells 

induced a FRET response when cultured on substrates approaching bone rigidity, while 

there was no FRET signal on compliant substrates (Figure 3.9).  The most noticeable 

difference in the single channel fluorescence is the expression of integrin 3, which 

increases significantly on rigid substrates. The fluorescent emission associated with TGF-

β RII is not affected by rigidity (Figure 3.9A&D) and this was correlated with gene 

expression (Figure 3.10).  To ensure that the Fn coating was not affecting the expression 

of either FRET target, a dose response analysis was conducted (Figure 3.9E).  It was 

found that even low levels of Fn coatings (0.5 and 2 μg/mL) produced a significant 

(p<0.05) FRET response and that response was not significantly altered with high levels 

of Fn coatings (12 and 50 μg/mL).  These results show that the increased activation of 

integrin 3 on rigidities that mimic the bone microenvironment are inducing crosstalk 

events with the already overexpressed TGF- signaling pathway and this interaction is 

resulting in osteolytic gene expression. Whether the interaction between the integrin and 

 

Figure 3.8.  Immunoprecipitation of the interaction of integrin 3 and TGF-β RII with 

MDA-MB-231 cells cultured on rigid and compliant films. 
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TGF-β RII is due to the increase in the number of integrins on the surface or a more 

complex interaction, MDA-MB-231 cells were transfected to overexpress integrin 3 and 

cultured on rigid and compliant PUR films.  The expression of PTHrP was increased on 

compliant substrates and there was no significant difference in gene expression on cells 

cultured on rigid and compliant PUR films (Figure 3.11).  This seems to point to the fact 

that there is an independent, diffusion limited threshold between the integrin 3 and TGF-

β RII interacting and bone like rigidity stimulates the tumor cells to express more 

integrins pushing over this threshold.  
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Figure 3.9.  Proximity of TGF-β RII and integrin-β3 subunit in MDA-MB-231 cells 

point to a potential crosstalk event.  Fluorescently labeled antibody staining for TGF-β 

RII (Alexa 546; A&D) and integrin-β3 subunit (Alexa 488; B&E) on rigid and 

compliant PUR surfaces show increases in integrin β3 subunit, while TGF-β RII 

remains relatively constant (A-F).  Förster energy resonance transfer (FRET) 

quantification of the fluorescent antibodies reveals a significant difference of FRET 

expression on rigid PUR surface indicating close proximity of TGF-β RII and 

integrin-β3 subunit on the cell membrane for both MDA-MB-231 (black) and RWGT2 

cells (white) (B).  High magnification fluorescent images of MDA-MB-231 cells 

cultured on rigid (G) and compliant (I) PUR films show the differences in integrin β3 

expression.  Panel J shows the effect of fibronectin concentration on the quantified 

FRET response with MDA-MB-231 cells.   
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Figure 3.10.  TGF-β RII gene expression is not affected by rigidity.  TGF-β RII gene 

expression of MCF-7 (white), RWGT2 (grey), and MDA-MB-231(black) cells 

cultured on rigid and compliant films. 

 
Figure 3.11.  PTHrP gene expression is increased when integrin β3 is overexpressed. 

PTHrP gene expression of β3 OE compared to mock treated MDA-MB-231 cells (A) 

and PTHrP gene expression of β3 OE cells cultured on rigid and compliant films (B). 
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 Since we TGF-β signaling was involved in the response of tumor cells to rigidity 

and TGF-β signaling in bone metastases can be mediated through Smad or p38 MAPK-

dependent downstream signaling
22

, we investigated whether one or both of these 

pathways was required for tumor cells to respond to bone rigidity.  Western blot analysis 

showed that the phosphorylation of  p38-MAPK  increased when in MDA-MB-231 cells 

were cultured on rigid substrates as compared to those grown on compliant substrates 

(Figure 3.12), suggesting an important role of p38 MAPK in tumor response to bone 

rigidity.  Additionally, SMAD2/3 was also shown to increase with rigidity.  Taken 

together this suggests that both play a role, but that p38MAPK may be the predominant 

signaling pathway for the response to bone rigidity. 

 

 Since inhibition of integrin β3 with shRNA reduced the expression of osteolytic 

factors in vitro, we reasoned that this would block tumor-induced bone disease.  

Therefore, we injected MDA-MB-231 cells stably expressing the β3 shRNA into the tibia 

of nude mice.  Ex vivo analyses using μCT (Figure 3.13A-C) and histomorphometry  

(Figure 3.13D-F) demonstrated an increase in the BV/TV of 3 KD cells compared to 

 
Figure 3.12.  Rigidity influences MAPK and SMAD expression and inhibition of 

these downstream molecules results in decreased osteolytic gene expression. 
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control cells, but did not have a significant effect on tumor growth.  Analysis of x-ray 

scans of the bone indicate a lower number of osteolytic lesions in 3 KD inoculated 

animals (Figure 3.13G-I).  There were no differences in growth or expression of common 

cancer genes by the 3 KD cells compared to the mock transfected controls (Figure 3.14).  

This indicates that the differences in osteolysis were a product of the inhibition of 

integrin 3.      
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Figure 3.13. Genetic inhibition of integrin-β3 subunit in MDA-MB-231 cells 

transplanted into the tibia of immunocompromised mice reduces the osteolytic effects.  

μCT renderings of control cells and β3 KD cells significantly decreased bone 

destruction (A-B), which is mirrored in the quantified bone volumes (C).  Histological 

analysis shows no reduction in tumor burden in the bone, but an odd migration of the 

tumor into the marrow space (D-F).  Additionally, x-ray scans (G-H) and the resulting 

quantification of lesion numbers show a reduced number of osteolytic lesions in β3 KD 

treated animals (I). 
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 Interestingly, when downstream ROCK signaling (a downstream mediator of 

mechanotransduction) was blocked using a dominant negative construct, KD∆4 cells, 

bone resorption was also inhibited as determined by increased BV/TV by µCT, but to a 

lesser extent than the 3 KD cells (Figure 3.15).  These data further indicated that integrin 

3 plays an important role for regulating the expression of PTHrP and bone destruction, 

 

Figure 3.14.  Comparison of growth and common markers of cancer cells between 3 

KD and control cells.  MTS assays of the 3 KD (filled squares-solid line) and control 

cells (empty squares-dashed line) showed no difference in growth patterns (A).  Fold 

change of gene expression of common cancer markers also show no change between 

3 KD cells and controls. 

 
Figure 3.15.  Inhibition of ROCK (KD∆4 cells), a downstream mechanotransduction 

regulator, does not produce the same effects of reduced osteolysis in vivo.  μCT 

quantification of bone volume (A) and histological analysis of tumor burden (B) show 

no significant differences between KD∆4 cells and mock transfected controls. 
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and that using 3 inhibitors may reduce tumor induced bone disease, while alternative 

mechanotransduction inhibitors may not result in the same affect in vivo.  

 

Discussion 

 In this study we show that PTHrP and Gli2 expression is mediated by two 

synergistic mechanisms (1) mechanotransduction induced integrin clustering on 

substrates mimicking the rigidity of bone and (2) an altered TGF-β signaling pathway 

driven by enhanced interaction with clustered integrins and downstream p38 MAPK 

phosphorylation.  We chose to focus our studies on the TGF-β crosstalk with integrin and 

TGF-β RII pathways, since clustering of v3 with TGF-β RII is known to activate 

MAPK signaling, a known driver of osteolytic gene expression
13

.  Interaction between 

TGF-β RII and v3 has also been associated with EMT
13

, a process influenced by tissue 

rigidity
4, 9b

.  However, these studies focused only on the effects of rigidity for gels 

approximating soft tissue (~1–100 kPa).  We find that both expression of 3 integrin 

subunit as well as its association with TGF-β RII increases on substrates with bone-like 

mechanical properties (~1,000,000 kPa).  Additionally, our study shows that inhibition of 

integrin v3 is sufficient to reduce the expression of PTHrP and the transcription factor 

Gli2 in MDA-MB-231 tumor cells.  Taken together, these data imply that breast cancer 

cells specifically change their expression of 3 integrin subunit, which pairs with the 

overexpressed TGF-β signaling present in bone metastatic cells, in response to bone-like 

mechanical properties.  Furthermore, the increased association of 3 integrin subunit with 

TGF-β RII and increased phosphorylation of p38-MAPK on rigid substrates suggest that 

bone-like mechanical properties activates MAPK signaling in MDA-MB-231 cells.   
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 Integrins are known to play a significant role in cancer tropism and metastasis
12

, 

and integrin v3 has been shown to directly facilitate metastasis to bone upon IV 

injection in mouse models
10a, b, 10d, 11b

.  Specifically, stably transfecting MDA-MB-231 

cells to overexpress v3 results in significantly increased osteolysis upon IV injection 

compared to non-transfected cells, but the difference is muted with intratibial 

injections
11b

.  The authors note that this is possibly due to the bone targeting effect of 

v3 in the IV injections and more cells make it to the bone microenvironment when v3 

is overexpressed.  Since, previous studies have shown that targeting v3 prevented 

tumor cells from early stage metastasis to bone we chose to isolate the effect of integrin 

expression on the establishment and osteolytic potential of the tumors by focusing on 

intratibial injections. The injection of 3 KD cells directly into the tibia showed that 

inhibition of v3 can reduce ostelysis in tumors that are established in the bone 

microenvironment.  High magnification images of the tumor locations actually point to 

the migration and establishment of the 3 KD cells into the marrow space, rather than 

centered in the injection site within the trabecular bone (Figure 3.16).  The control cells 

establish in the injection site in the trabecular bone and significant osteolysis occurs.  

This correlates well with the previous studies in which v3 aids cells in homing to and 

attaching within the bone microenvironment.  Inhibition of the 3 integrin may prevent 

the cells from attaching well in the trabecular bone.       
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Specific inhibitors to v3 have shown promise in preclinical studies, reducing 

both tumor burden and incidence in bone
11b, 23

.  Inhibition of v3 can reduce osteolysis 

by blocking the metastasis
10c, d

, preventing vascularization
20b

, or even affecting osteoclast 

differentiation and resorption
11b

.  Here we show that inhibition of integrin v3 

specifically reduced the expression of PTHrP and the transcription factor Gli2 in MDA-

 
Figure 3.16.  High magnification images of histological sections of tumor 

establishment.  Animals inoculated with control cells are highly osteolytic and are 

even resorbing cortical bone (A-C), while the animals inoculated with 3 KD cells 

appear to have large tumors in the marrow space with little osteolysis. 
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MB-231 tumor cells.  We also demonstrate that the rigidity of the bone 

microenvironment is a key driver in integrin v3 expression, which has a direct 

correlation to osteolytic behavior in vivo.  This points to the fact that alternative 

mehcanotransduction targets, that are known to affect integrin expression
24

, can be added 

to the potential therapies to treat cancer induced bone disease.   

 

Conclusion 

In this study, we have shown that rigid substrates with bone-like mechanical 

properties stimulate expression of osteolytic factors in vitro through 3 integrin and TGF-

β RII complexation, which is known to activate MAPK signaling through Src 

phosphorylation
13

.  This subsequently induces expression of the osteoclastogenic factor 

PTHrP and its transcription factor Gli2.  Specifically, v3 appear to be part of a 

mechano-sensing feed-forward loop that when paired with TGF-β RII drives signaling 

through MAPK to initiate expression of osteolytic factors (Figure 3.17). Taken together, 

these data suggest that the rigid mineralized bone matrix is involved in the establishment 

of osteolytic metastases by stimulating integrin-mediated contractility.  This is especially 

important in breast cancer, as bone metastases are associated with poor patient prognosis.  

Understanding the mechanisms involved in the establishment of these metastases could 

ultimately lead to new targeted therapies to improve clinical outcomes. 
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Figure 3.17.  Schematic diagram of the potential crosstalk of solid state (integrin) 

and soluble (TGF-β) signaling pathways that drive osteolytic behavior. 
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CHAPTER IV 

SYNTHESIS AND CHARACTERIZATION OF NANOPARTICLES FOR 

HYDROPHOBIC DRUG DELIVERY FOR THE ULTIMATE GOAL OF DRUG 

RELEASING POLYURETHANE BIOMATERIALS 

Introduction 

Self-assembled nanoparticles from amphipathic polymers provide a useful 

platform for improving pharmacokinetics, solubility, and target site bioavailability of 

small molecule drugs
1
, proteins

2
, and nucleic acids

3
.  Hydrophobic small molecule 

therapeutics can be encapsulated by preferential interaction with the hydrophobic core of 

the polymer micelle, and a “stealth” PEG shell is typically utilized to reduce opsonization 

and increase in vivo stability of the nanoparticles so that they can leverage the enhanced 

permeability and retention (EPR) effect to preferentially accumulate within tumors
4
.  This 

approach has recently been paired with receptor ligand targeting to the prostate-specific 

membrane antigen in order to produce a docetaxel nanomedicine with enhanced 

circulation time and potentially improved clinical efficacy in humans
5
. 

A variety of environmentally-responsive polymers have also been utilized in order 

to tailor micelle drug release mechanisms that are triggered by pathology-specific 

changes in pH
1a-c

, reactive oxygen species
1d, 3b

, enzymatic degradation
6
, and others.  

Leveraging pH for drug release is especially relevant because tumor tissues are 

characterized by a slightly acidic pH in the range of 5.8-6.5
7
. Thus, stable packaging of 

cargo at physiologic pH of 7.4 and accelerated release at acidic pH is a useful approach 

for triggering drug release intracellularly and within tumor microenvironments 

Furthermore, once internalized into endo-lysosomal pathways, nanocarriers are exposed 
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to a gradual decrease in pH as they are trafficked from early endosomes (pH ~ 6.8) to late 

endosomes and lysosomes (pH ~ 4-6). This acidification can be utilized as an 

environmental trigger to mediate endosomal disruption, releasing the therapeutic payload 

into the cytoplasm. Additionally, the ability to release drugs via the early stage 

endosomal pathway decreases the likelihood of multi-drug resistance from occurring due 

to the release of the therapeutic into the cytoplasm of the cells
8
.  

Development of nanoparticles based on basic, amine-containing polymers is a 

promising approach for achieving pH dependent drug release mechanisms
9
.  Lee et al. 

utilized poly(amino acids) derived from lysine or histidine as the ionic species and 

created mixed micelles with non-ionic hydrophobic block copolymers to titrate in the 

ideal amount of ionic charge for optimal drug delivery
9c

.  The proper tuning of polymer 

properties is key to achieving stable drug loading, optimally-tuned triggered drug release, 

and  biocompatibility of pH-responsive polymers
10

.  Copolymerization with 

biocompatible hydrophobic monomers
3a, 11

 and incorporation of degradable moieties 

represent two key approaches to reducing potential toxicity and tuning the nanoparticle 

stability and drug release profiles of pH-responsive micelles
12

.  For example, 

copolymerization of cationic monomers with the hydrophobic monomer butyl 

methacrylate (BMA) has been utilized to  increase in vivo blood circulation time and 

stability of siRNA nanocarriers while simultaneously tuning the effective pKa of the 

polymer side chains such that they becomes ionized and destabilize the nanoparticle core 

to trigger drug release and membrane disruption at endosomal pH
11

.  Degradable 

monomers with cationic branches attached via ester groups have the ability to trigger 
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drug release at endosomal pH while simultaneously becoming hydrolyzed in the process, 

thereby abrogating their potential cytotoxic effects
13

.  

The goal of this study was to synthesize and screen a library of polymers in order 

to study the potential synergy between pH- and degradation-dependent release 

mechanisms in order to identify optimal micelle formulations for pH-triggered 

intracellular delivery of hydrophobic small molecule drugs. The library of copolymers 

was synthesized via reverse addition-fragmentation chain transfer (RAFT) 

polymerization using a poly(ethylene glycol) (PEG) macro-chain transfer agent to enable 

“grafting from” the 5000 Da hydrophilic polymer block that forms the micelle corona.  

The resulting pH sensitive ester bond connecting the PEG corona to the core co-polymer 

is a secondary degradation mechanism that can result in micelle destabilization and a 

concomitant release of a therapeutic payload.  A total of 12 copolymers were RAFT 

synthesized using 4 different cationic monomers with varied hydrophobicity and 

degradability.  For each cationic monomer, 3 different polymers were synthesized 

containing approximately 40, 50 or 60 mole percent cationic monomer copolymerized 

with the neutral hydrophobic monomer BMA.  The time-dependent stability of micelles 

formed from these polymers was studied at a range of pH values mimicking 

physiological stages of the endosomal pathway and the decreased pH of the tumor 

microenvironment.  Additionally the ability to encapsulate and release a model 

hydrophobic small molecule was tested, and the effect of polymer composition on 

cytocompatibility and drug release kinetics was assessed. Degradable cationic monomers 

were utilized to tune the release of a therapeutic payload based on synergistically acting 

with pH changes that drive phase changes in the hydrophobic core block of the 
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ampipathic diblock copolymers, resulting in triggered  macromolecular disassembly and 

drug release from the micelle core. 

 

Experimental 

Materials 

All chemicals and reagents were purchased from Sigma-Aldrich and were of 

analytical grade unless otherwise stated.  Butyl methacrylate (BMA), 2-(dimethylamino 

ethyl methacrylate) (DMAEMA), 2-(dimethylamino ethyl acrylate) (DMAEA), 2-

(diethylamino ethyl acrylate) (DEAEA), and 2-(diethylamino ethyl methacrylate) 

(DEAMA) were filtered through a basic alumina column to remove inhibitors prior to 

use.  2,2’-azobis(2-methylpropionitrile) (AIBN) was recrystallized twice from methanol 

before use.  1,4-Dioxane was distilled prior to use. 

Synthesis of 4-cyano-4-(ethylsulfanylthiocarbonyl) sulfanylpentanoic acid (ECT) 

 The RAFT chain transfer agent ECT was synthesized following protocols 

previously described by Convertine et al.
3a

 and adapted from Moad et al.
14

. Briefly, 

ethanethiol (76 mmol, 4.72 g) was reacted with carbon disulfide (79 mmol, 6.0 g) in the 

presence of sodium hydride (79 mmol, 3.15 g) in diethyl ether for 1h. The resulting 

sodium S-ethyl trithiocarbonate was further reacted with iodine (25 mmol, 6.3 g) to 

obtain bis(ethylfulfanyl-thiocarbonyl) disulfide, which was further refluxed with 4,4’-

azobis(4-cyanopentanoic acid) in ethyl acetate for 18 h.  The crude ECT was purified by 

column chromatography using silica gel as the stationary phase and a gradient of ethyl 

acetate:hexane (40:60 to 70:30) as the mobile phase. 
1
H NMR (400MHz, CDCl3): δ 1.36 t 

(SCH2CH3); δ 1.88 s (CCNCH3); δ 2.3–2.65 m (CH2CH2); δ 3.35 q (SCH2CH3). 
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Synthesis of polyethylene glycol (PEG) macro-chain transfer agent (CTA) 

  Dicyclohexylcarbodimide (DCC, 8 mmol, 1.64 g) was added to the stirring 

solution of mono methoxy-poly(ethylene glycol) (Mn = 5000, 2 mmol, 10 g), ECT (4 

mmol, 1.045 g) and, DMAP (48 mg, 0.4 mmol) in  250 ml of anhydrous 

dichloromethane. The reaction mixture was stirred for 48h. The precipitated cyclohexyl 

urea was removed by filtration, and the dichloromethane layer was concentrated and 

precipitated into diethyl ether twice. The precipitated polymer was washed three times 

with diethyl ether and dried under vacuum. 
1
H NMR spectra of the product showed 84 % 

of the PEG was conjugation with ECT.   
1
H NMR(CDCl3) δ 1.36 t (SCH2CH3); δ 1.88 s 

(CCNCH3); δ 2.3–2.65 m (CH2CH2); δ 3.35 q (SCH2CH3), 3.64 s(CH2O). 

Synthesis and characterization of PEG-b-(X-co-BMA) copolymers where X is 

DMAEMA, DMAEA, DEAEMA, or DEAEA 

The PEG-ECT macro-CTA was utilized in the RAFT copolymerization of four 

different cationic monomers DMAEMA, DMAEA, DEAEMA, DEAEA with BMA, and 

3 different copolymers were made from cationic monomer with 40%, 50%, and 60% 

BMA.  All 12 polymerizations were carried out in distilled dioxane under a nitrogen 

atmosphere at 65°C for 18-24 hours using AIBN as the free radical initiator. The reaction 

mix was purged with nitrogen for 30 minutes prior to polymerization. The molar ratio of 

the PEG-ECT macro-CTA to AIBN was 10:1 and the monomer to macro-CTA molar 

ratio was set to achieve a molecular weight of approximately 20,00 g/mol (molar feed 

ratios and monomer to macro-CTA molar ratios were adjusted and optimized accordingly 

to achieve the desired composition and MW). The resulting polymers were precipitated in 

cold (-20°C) hexane, redissolved in acetone, and precipitated into cold (-20°C) pentane 
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twice, followed by drying overnight in vacuo.  Gel permeation chromatography (GPC, 

Agilent) was used to determine molecular weight and polydispersity (Mw/Mn, PDI) of the 

diblock copolymers using HPLC-grade DMF containing 0.1% LiBr at 60°C as mobile 

phase. Molecular weight calculations were calculated with ASTRA V software (Wyatt 

Technology) and were based on experimentally determined dn/dc values.  
1
H NMR 

analysis in CDCl3 was utilized to determine copolymer composition and verify the 

molecular weights determined by GPC. 

Potentiometic Titration 

 Milli-Q ultra-purified water was utilized to prepare aqueous solutions of each 

polymer and their corresponding monomers.  The solutions were acidified using 1 M 

HCl.  The polymer solutions were titrated with 0.1 M NaOH using a Metrohm 798 MPT 

Titrino automated titrator
15

.  The pKa values were obtained from where the degree of 

protonation (α) curves for each polymer composition are equal to 0.5.     

Formation and characterization of micelles 

Stock solutions were generated by dissolving polymers in ultrapure methanol at a 

concentration of 100 mg/mL.  Solutions were stored at -20
o
 C until further use.  Micelle 

formation was induced by the slow addition of 1 mL PBS (pH 7.4) by syringe pump at a 

flow rate of 8 mL/hr to 10 uL of polymer stock solution in methanol, producing 1 mg/mL 

micelle solutions.  Dynamic light scattering (DLS) analysis was utilized to determine 

hydrodynamic radius, polydispersity, ζ-potential, and critical micelle concentration 

(CMC) of the various micelle formulations. Transmission electron microscopy (TEM) 

imaging was used to verify micelle size and morphology. 
1
H NMR in D2O was utilized to 

verify micelle formation evinced by the shielding of resonant peaks associated with the 



 

 

75 

 

copolymer polymer block that forms the micelle core.  Additionally, micelles were 

loaded with Nile red (NR) and serially diluted with PBS (concentrations of 1, 0.5, 0.1, 

0.01, 0.001, 0.0001 mg/mL) to verify CMC values obtained by DLS.   

pH-dependent degradation of micelles 

Micelle solutions of PEG-b-(DMEAE-co-BMA) and PEG-b-(DEAEA-co-BMA) 

were formulated in pH adjusted PBS (pH 7.4 and 5.6), and micelle degradation and 

destabilization was analyzed by 
1
H NMR and GPC analyses.  The micelles were 

incubated at 37
o
 C for 0 h, 24 h, 2 d, 4 d and 8 days followed by lyophilization and 

analysis by 
1
H NMR in CDCl3 to assess degradation as determined by the chemical shift 

that results from the hydrolysis of the DMAEA and DEAEA polymer subunits into 

dimethylamino ethanol and diethylamino ethanol degradation products, respectively.  

GPC traces were also analyzed over time to assess both the loss of the PEG corona and 

degradable side chains. 

Red blood cell hemolysis assay 

 The ability to disrupt the lipid bilayer of cell membranes was tested for each 

polymer at physiological and endosomal pH levels.  Each polymer group was tested at 

concentrations of 5, 20 and 40 μg/mL and at pH 7.4 (physiologic), 6.8 (early 

endosome/tumor microenvironment), 6.2 (late endosome) and 5.6 (lysosome).  Red blood 

cells were incubated at 37
o
 C with the polymers for 1 hour.  The membrane disruption 

was evaluated by observing the release of hemoglobin (λ = 451) from the lysed red blood 

cells.    

Nile red encapsulation and pH-dependent release 
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NR was co-dissolved at 1 mg/mL in ultrapure methanol with polymers at a 

concentration of 100 mg/mL. 1 mL of PBS was added at a rate of 8 mL/h by syringe 

pump to 10 μL of the NR/polymer solution in methanol. Non-encapsulated NR was 

removed by centrifugation and subsequent filtration. Average fluorescent intensity of the 

loaded NR was utilized to compare drug loading of each polymer micelle.  In order to 

assess pH-dependent release kinetics, micellization was carried out in pH-adjusted PBS 

(pH 7.4, 6.5, and 5.6).  The samples were subsequently incubated in a sealed 96 well 

plate at 37
o
 C and fluorescence intensity was measured over time for 45 days on a 

TECAN Infinite M1000 Pro plate reader.   

Cell culture 

Murine derived fibroblasts (MC3T3-E1), primary rat derived bone marrow 

mesenchymal stem cells (MSCs), and metastatic breast cancer cells (MDA-MB-231), 

were cultured separately in Dulbecco’s Eagle medium (DMEM) supplemented with 10% 

fetal bovine serum, 1% L-glutamine, and 1% penicillin/streptomycin.  Cells were 

incubated at 37
o
 C with 5% CO2.  

Micelle cytotoxicity  

The CytoTox-ONE Homogenous Membrane Integrity assay (Promega) was used 

to assess the cytotoxicity of micelle treatments at a range of concentrations according to 

the manufacturer’s instructions.  Briefly, MC3T3 cells were plated on a 96 well plate at a 

cell density of 10,000 cells/well and allowed to attach overnight.  Cell culture media was 

replaced with media containing a range of micelle concentrations (10, 25, 50 and 100 

ug/mL) and incubated for 2 hours.   After 2 hours of incubation with treatments, cells 

were washed twice with PBS and cell culture media was replaced for 24 hours.  After 24 
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hours the cells were re-suspended in 100 µL lysis buffer. Each well was then 

supplemented with 100 µL lactate dehydrogenase (LDH) substrate and incubated at RT 

for 10 minutes prior to the addition of 50 µL stop solution. LDH-induced fluorescence 

(excitation 550 nm, emission 600 nm) was then quantified with a TECAN Infinite M1000 

Pro plate reader and used to determine relative cell viability compared to untreated 

control groups. 

Uptake and intracellular release of NR loaded micelles in MC3T3, MSCs, and 

MDA-231 cells 

MC3T3, MSCs, and MDA-231 cells were added to a 96-well plate at 10,000 cells 

per well and allowed to attach for 12 h.   Cellular uptake and intracellular release of Nile 

Red loaded micelles were analyzed by replacing the cell culture media with media 

containing Nile red-loaded micelles (100 ug/mg polymer), or with free Nile red 

equivalent to the amount loaded into the micelles (10 ug/ml).  After 2 h of incubation 

cells were washed with PBS twice and supplemented with fresh media and fluorescent 

images were taken with an Olympus DP71 camera attached to an Olympus CKX41 

microscope (Center Valley, PA).  All images were analyzed with ImageJ image 

processing software. 

Statistical analysis 

 Statistical analysis was performed with the PRISM Graphpad software package.  

Statistical significance was defined with p<0.05.  All graphs represent mean ±SEM. 

 

 



 

 

78 

 

Results and Discussion 

Polymer synthesis 

 The library of polymers was synthesized as described in Figure 4.1, and the final 

composition of the copolymers was calculated from 
1
H NMR (Figure 4.2). The 

composition of the synthesized polymers generally matched well with the feed ratio, as 

shown in Table 4.1.  The DEAEA (i.e. EA) series of polymers was the exception, 

requiring a higher feed ratio of the cationic monomer to attain the desired compositions.  

The reactivity ratios for each monomer were determined using the Fineman-Ross 

method
16

 as reported in the Figure 4.3A-D.  The values of r1 and r2 for DMAEMA/BMA, 

DMAEA/BMA, and DEAMA/BMA were all close to 1 which would result in a random 

copolymer.  However, the reactivity ratios for the DEAEA/BMA system were r1=0.33 

and r2=0.97 respectively.  This indicates the potential for compositional shifting, resulting 

in slightly longer segments of BMA
17

.  However, since the reactivity ratio of BMA is less 

than 1, the copolymer is still considered a random distribution of DEAEA and BMA.  

Molecular weights were tightly controlled for all of the methacrylate-based copolymers, 

but the ethyl acrylate copolymer formulations resulted in increased polydispersity, which 

is attributable to the difficulty in polymerizing bulky, diethylaminoethyl ester side 

chains
18

.  To our knowledge, this is the first time that DEAEA based polymers have been 

synthesized by RAFT polymerization or utilized to formulate degradable, pH-responsive 

micelles.    
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Figure 4.1.  Chemical structures and synthesis schemes for copolymers.  (A) Diagram 

of micelle structures; synthesis scheme for generating one of the copolymers (B). 
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Figure 4.2.  

1
H NMR spectra of PEG-b-DMAEA-co-BMA in CDCl3 before (A) and 

after degradation (B). 
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Figure 4.3.  Fineman-Ross and feed ratio plots for each copolymer system.  The 

slope (rBMA), intercept (rcationic monomer) and fit for (A) DMAEMA-co-BMA; (B) 

DMAEA-co-BMA; (C) DEAMA-co-BMA; and (D) DEAEA-co-BMA is shown.  

Feed ratio (f) plotted against molar concentration in the copolymer (F).  
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Micelle formation 

 The composition-dependent characteristics of the various micelle formulations 

were determined using ζ-potential, a NR fluorescent molecule assay, DLS, and TEM.  

The ζ-potential of micelle solutions was obtained at pH 7.4 directly after formulation.  

Figure 4.4A displays the critical micelle concentrations (CMC) of each polymer 

determined from plotting the fluorescence intensity of NR versus polymer 

concentration
1d

.  The fluorescent intensity of Nile red is dependent upon being 

encapsulated in the hydrophobic core of the micelles.  Nile red is released at 

concentrations of polymer below the CMC, and NR fluorescence is quenched when it is 

released into the polar aqueous phase due to micelle disassembly.  As expected, CMC 

values for all polymers were inversely proportional to hydrophobic content in the core-

forming block (i.e. %BMA).    

An important aspect of the current study was comparison of degradable and non-

degradable polycations.  To assess the effect of degradation on polymer CMC, each of 

the  polymers were treated with concentrated acid and elevated temperatures, and their 

CMC values were subsequently re-measured to assess the effect of PEG shedding and 

hydrolytic removal of the dimethylamino ethanol and diethylamino ethanol groups.  Both 

DMAEA and DEAEA monomers are hydrolyzed into the smaller, more hydrophilic 

monomer acrylic acid, and this resulted in an approximately 3-fold increase in the CMC 

for all of the degradable copolymers.  The CMC shift was not nearly as pronounced with 

the non-degradable polymers, and can be attributed to shedding of the PEG corona 

through hydrolysis of the ester linkage to the copolymer core block.  As expected, 
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following degradation, all micelles still showed the trend of decreasing CMC with 

increased hydrophobic BMA.  

DLS was utilized to obtain the average size and qualitatively assess stability as a 

function of concentration, Figure 4.4B.  The range of sizes for each copolymer was 20-45 

nm with no significant trends between groups.  DLS measurements resolved aggregation 

and micelle disassembly into unimers at polymer concentrations below the CMC ranges 

determined in the NR assay, further corroborating the results from the more quantitative 

NR method.  TEM images verified size and uniformity of the micelles, with a 

representative image shown in Figure 4.4D.  The surface charge of each micelle ranged 

from neutral to slightly negative upon formation (Figure 4.4C), which demonstrates the 

charge shielding effect of the hydrophilic PEG corona. The size, polydispersity, and 

surface charge of the nanoparticles indicates efficient self-assembly and ideal 

characteristics for administration via the circulatory system
19

, especially for tumor 

targeting via the EPR effect
20

.     
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Micelle stability and pH degradation 

 Micelle stability at pH 7.4 was tracked over time by DLS.  The degradable 

micelle compositions began to show signs of aggregation as early as 24 hours (Figure 

4.5A), while the non-degradable micelles showed excellent stability with very little 

aggregation even after 4 days in solution (Figure 4.5B). These data indicate that the 

increase in CMC due to monomer degradation can be utilized to enhance micelle 

destabilization, which may be useful for efficient, triggered drug release.  This result is in 

agreement with a recent study that incorporated small quantities of the degradable 

monomer DMAEA into a diblock copolymer of dimethylacrylamide (DMA), n-

isopropylacrylamide (NIPAM) and butyl acrylate (BA)
21

.  In this study, the DMA-b-

 
Figure 4.4.  Compositional effects on micelle stability, size and surface charge.  (A) 

Critical micelle concentration (CMC) for each polymer composition before and after 

an acid treatment effectively hydrolyzing both the PEG corona and the hydrolytic side 

chains. (B) Representative dynamic light scattering (DLS) plot as a function of 

concentration showing aggregation and unimers at low concentations of polymer.  (C) 

Zeta potential readings for each polymer composition.  (D) Representative 

transmission electron microscopy (TEM) images for the 60% cationic compositions.   
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(NIPAM-co-DMAEA-co-BA) micelles destabilized upon degradation of the DMAEA 

monomer.  The degradation of DMAEA has been deemed to be autocatalytic, occurring 

over the span of roughly 10 days, and independent of pH, concentration and polymer 

molecular weight
12-13, 22

. 

 

 
Figure 4.5.  Representative DLS plots of a degradable (A) and a non-degradable (B) 

formulation with 60% cationic monomer incorporation. 
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To further track hydrodynamic stability, micelles were formulated in pD 7.4 D2O 

and analyzed by 
1
H NMR.  The appearance of peaks associated with the exposure of the 

cationic core of the micelles was tracked with time, shown in Figure 4.6.  The rate of 

appearance of peaks related to the cationic core is inversely proportional to hydrophobic 

content.  None of the solutions show signs of cationic core exposure for at least 24 hours, 

but at 6 days the degradable micelles showed characteristic peaks of the hydrophobic 

core indicating micelle instability (Figure 4.6B Insert).   

  

 
Figure 4.6.  

1
H NMR spectra of a non-degradable (A) and degradable (B) polymer 

with 60% cationic monomer incorporation in buffered D2O.  Main spectral scans are at 

t=0, while the inserts are after 6 days in solution. 
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The degradation of the micelles with the highest percentage cationic monomers, 

which was hypothesized to show the largest difference of degradation effects (i.e. 60% 

DMAEA and 60% DEAEA) was studied at pH 7.4, 6.5 and 5.6.  The polymers were 

lyophilized and re-dissolved in CDCl3.  Interestingly, there is a large change in spectra, 

which occured faster at lower pH, in the region of 2-4 ppm corresponding to the protons 

of the cationic branch (Figure 4.7).  The downfield shifts in the NMR spectra occur by 6 

hours for both DMAEA and DEAEA at pH 5.6 and further shifts downfield occur over 

the 7 day study.  The early shifts can potentially be attributed to the lower pH inducing 

the cationic branches to protonate, while the slow change over time designates 

degradation. 
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  GPC traces showed that the PEG corona degrades only when the cationic content 

is increased above 40% (Figure 4.8).  pH seems to have little effect on the degradation of 

the micelle.  The appearance of a secondary elution peak with the EA 6 polymer matches 

the elution time of the PEG-ECT starting material.  Additional shifts in the primary 

elution peak could be indicative of backbone degradation.  Taken as a whole, the 

polymers with 60% cationic monomers are less stable micelles, which results in 

susceptibility to degradation.   

 
Figure 4.7.  

1
H NMR spectra of a EA 6 in CDCl3.  The polymer was incubated in PBS 

at a pH of 7.4, 6.5 and 5.6.  Downfield shifts could be caused by degradation.   
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Hemolysis  

 The hemolytic behavior of each polymer is shown in Figure 4.9.  There is a strong 

dependence on the relative amounts of cationic and hydrophobic monomers in the 

hemolytic activity at all concentrations and pH values.  Below the CMC, the MEA and 

MMA subsets show significant hemolysis even at physiological pH, while the degradable 

EA and MA subsets show no hemolysis at any concentration at physiological pH.  The 

hemolysis begins to occur with most polymers at pH 6.2-6.8, while all polymers show 

nearly complete hemolysis at pH 5.6.  The EA and MA polymer subsets show the most 

sensitivity in response to slight changes in pH as evinced by the sharp pH-dependent 

transitions in hemolytic activity in Figure 4.9. 

 
Figure 4.8.  Gel permeation chromatography scans of EA 4 (A&C) and EA 6 (B-D) at 

pH 7.4 (top row) and 5.6 (bottom row). 
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Nile red release 

 The relationship between pH and micelle destabilization was assessed in the 

context of release of the model hydrophobic drug NR. Each polymer was tested for 

encapsulation efficiency and composition dependent release of a model hydrophobic drug 

was tracked over 4 days at pH 5.6, 6.5 and 7.4, representative of physiological pH, the pH 

of the early endosomes, and of late endosomes/lysosomes, respectively.  At pH 7.4, there 

was little difference between the polymer groups, as shown in Figure 4.10A-D.  Overall 

there was a slight trend of increased release with increasing amount of cationic monomer 

incorporation.  The EA group showed the most differential release as a function of 

 
Figure 4.9.  Membrane disruptiveness as a function of composition and 

concentration.  Both the degradable (A-F) and the non-degradable (G-L) polymers 

showed pH responsive membrane disruption.  Higher concentration resulted in more 

hemolytic behavior in a lower range of pH values.  
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cationic monomer content with the EA 6 group showing a significant burst release over 

the first 24 hours.  This burst release is likely due to the electrostatic repulsion in the core 

upon protonation along with the decreased amount of hydrophobic monomer 

incorporation, which destabilizes the micelles and accelerates drug release. 

    

The pKa’s for each polymer, derived from potentiometric titration, displayed in 

Table 4.1 shows that EA 6 has the highest value which correlates well with the faster 

release.  The release of drug was modeled by the Weibull function
23

, and all polymers 

could be modeled as diffusion-controlled release (fitting parameters shown in Table 4.2).  

The lower pH values of 6.5 and 5.6 had minimal effect on the release kinetics of micelles 

made from the 40% and 50% cationic monomers; however, the 60% cationic monomer 

 
Figure 4.10.  Model hydrophobic drug, NR, release at pH 7.4 as a function of time.  

Nile Red release from non-degradable MMA and MA micelles (A & C, respectively) 

and degradable MEA and EA micelles (B & D, respectively) over time. Weibull fits are 

shown for the micelles with highest cationic content (R
2
 >= 0.95 for all curves). 
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groups showed increased burst release behavior (Figure 4.12A-D).  The kinetics of 

release over the first 24 hours showed that the release can be highly accelerated with the 

pH decreases seen in the early and late stage endosome with the EA 6 formulation 

demonstrating the fastest release at all pH levels.  Additionally, the EA subset of 

polymers had the most NR loading relative to any of the other groups (Figure 4.13).  The 

release of NR never surpassed 80-85% for all groups indicating that even after 

degradation there are still hydrophobic aggregates capable of sequestering the NR. 

     

Table 4.2.  Weibull fitting parameters for the release of a model hydrophobic drug 

from each polymer compositoin. 
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Figure 4.11.  Model hydrophobic drug release as a function of pH.  Nile Red release 

from non-degradable (A & C) and degradable (B & D) micelles over time.  Weibull 

fits are shown for the micelles in PBS pH 5.6 (R
2
 >= 0.90 for all curves).   

 

 

Figure 4.12.  Relative Nile Red loading for each polymer composition. 
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Cytotoxicity 

 MC3T3 cells were utilized to assess cytotoxicity of each of the polymer groups, 

shown in Figure 4.13A-B.  Not surprisingly, the toxicity increases with increasing 

cationic content for all of the polymers.  At 10 ug/mL concentrations, all micelles exhibit 

little cytotoxic behavior except for the MEA polymers.  The exhibited toxicity of the 

MEA polymers has been seen in literature for MEA homopolymers above 7 kDa and the 

toxicity was greatly increased when the polymers were protonated
12

.  The total Mw of the 

MEA segments in the polymer groups analyzed in this study range from 6.5-8.9 kDa.  

The EA groups exhibited marginal toxicity up to 100 μg/mL, further indicating their 

potential usefulness.  This data matches well with the membrane disruptiveness seen in 

the hemolysis assay, as the most membrane-disruptive polymers display increased 

cytotoxicity. 
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Cellular uptake 

 Cell uptake was visualized by encapsulation of Nile Red in micelles at a 

concentration of 0.1 mg/mL.  The Nile Red loaded micelles were added to cell culture 

 
Figure 4.13.  Effect of a 2 hour exposure of micelles, followed by 24 hours of 

incubation, on viability of MC3T3 cells.  Viability of MC3T3 cells exposed to 

varying concentrations of (A) non-degradable and (B) degradable micelles over 24 

hours.  
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media of MDA-231, MC3T3, and rat derived BMSCs.  Pure Nile Red solubilized in 

methanol (10 ug/mL) was added to control wells.  Fluorescent microscopy was used to 

visually observe the uptake of the Nile Red.  The resulting images shown (Figure 4.14) 

were taken after 2 hours of treatment.  The fluorescent signals were higher in all of the 

nanoparticle treated cells with respect to the pure drug control, regardless of the 

composition of the micelles or cell type.  Cellular uptake was normalized to fluorescent 

intensity per cell and the average fold increase of fluorescence over the control treatments 

was 33, 21, and 5 for the MDA, MSCs and MC3T3s, respectively.  The increase in 

uptake may be due to the accelerated rate of growth of the cancerous cell line.  There 

were no significant trends between polymer groups when the uptake was analyzed on a 

per cell basis for each cell line.  The release of Nile Red seems to be distributed 

throughout the cells cytoplasm suggesting escape from the endo-lysosmal trafficking 

pathway.  The ability to deliver small quantities of Nile Red (10 ug/mL) and produce 

robust intracellular distribution (compared to the same amount of pure drug) 

convincingly demonstrates the potential of these particles for tuned delivery of a 

hydrophobic payload. 
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Conclusions 

A PEG RAFT macro-CTA was utilized to copolymerize degradable or non-

degradable cationic monomers with the hydrophobic monomer BMA.  The resulting 

library of polymers produced narrowly dispersed micelles that were able to load and 

release a model hydrophobic drug upon exposure to pH ranges indicative of the endo-

lysosomal trafficking pathway.  Polymers containing a higher mole percent of the 

cationic monomers displayed the most pH-sensitive release kinetics, specifically, the 

polymers comprised of the degradable DEAEA monomer showed accelerated release 

relative to the analogous polymers. Finally, the efficient intracellular delivery of NR was 

shown in three different cell lines representing various targetable populations.  Of 

particular interest is that the cancerous cell lines had increased uptake based on the per 

cell fluorescent readings, and that cancer microenvironments are typically characterized 

 
Figure 4.14.  Cellular uptake of NR loaded micelles or treatment with NR dissolved in 

methanol.   
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by a slightly acidic pH which would trigger accelerated drug release from the degradable 

EA micelle formulations.  In conclusion, this work shows that micellar nanoparticles 

formulated from amphiphilic diblock copolymers consisting of cationic and hydrophobic 

monomers show promise for the controlled, pH-dependent delivery of hydrophobic 

therapeutics and allow for endosomal release of the payload into the cytoplasm.  These 

findings highlight the potential of multifunctional, environmentally responsive ‘smart’ 

drug delivery vehicles for a variety of therapeutic applications and support further study 

and optimization of this approach to the intracellular delivery of hydrophobic drugs. 
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CHAPTER V 

DESIGN AND CHARACTERIZATION OF INJECTABLE, SETTABLE 

POLYURETHANE BONE GRAFTS FOR POTENTIAL TREATMENT OF CANCER 

INDUCED BONE DISEASE 

Introduction 

Injectable biomaterials offer significant advantages over pre-formed implants or 

autologous grafts, in part due to their ability to be administered using minimally invasive 

techniques and conform to defects with a complex geometry.  In the treatment of bone 

defects, injectable biomaterials are of interest for a number of clinical indications, 

including filling of contained defects where the structural bone is intact, as well as 

defects in trabecular bone at non-weight-bearing sites
1
.  Injectable, settable grafts would 

be ideal for defects caused by cancer induced bone disease, where the majority of defects 

are untreatable due to the inability to surgically resect and replace damaged bone.  If a 

graft could be developed that would replace the resected bone tissue and result in 

reformation of new bone it would provide a treatment option to patients suffering from 

essentially an incurable disease.  To ensure any remaining cancer cells are destroyed, a 

therapeutic could be added to the graft for local delivery.    

Since their discovery in 1982
2
, calcium phosphate cements (CPCs) have been 

successfully introduced into the clinic due to their ease of use, osteoconductivity, and fast 

setting times
3
.  However, their poor shear and fatigue properties can lead to brittle 

fracture when CPCs are subject to physiologically relevant dynamic loads
4
.  

Hydroxyapatite (HA) cements have been combined with hydrogels (e.g., dextran
5
 or 

sodium hyaluronate
6
) to form osteoconductive injectable bone void fillers (BVFs).  Other 
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BVFs for metaphyseal bone defects include non-setting allograft pastes
7
, which are 

typically delivered using viscous carriers such as hyaluronic acid or glycerol
8
.  While 

injectable pastes promote bone healing, they do not set in situ, resulting in weak 

mechanical properties. 

Two-component lysine-derived reactive polyurethanes (PURs) have been 

investigated as injectable BVFs and cements, and have been shown to elicit a mild and 

transient inflammatory response
9
, support cellular infiltration and new bone formation, 

and degrade to non-cytotoxic breakdown products in metaphyseal bone defects in rats, 

rabbits, and sheep
10

.  In contrast to non-setting pastes, PURs incorporate a viscous 

isocyanate (NCO)-terminated prepolymer that reacts with viscous active hydrogen 

compounds (e.g., water, polyols, or polyamines) to form a polymeric network in situ with 

tough, elastomeric mechanical properties.  However, injectable PURs present additional 

challenges beyond the biocompatibility requirements for biomedical implants, such as the 

toxicity and ultimate fate of reactive components that are not incorporated in the final 

cured product
11

.  Additionally, the injected PUR may have adverse effects on surrounding 

host tissue due to the reaction exotherm or the reactivity of the NCO-terminated 

prepolymer
12

.  Diffusion of water from the wound bed into the reactive PUR can result in 

over-expansion of the scaffold, resulting in large voids
13

.  Therefore, it is necessary to 

fully understand the complex PUR reactions to better predict the biocompatibility of the 

material in vivo.   

In this study, we investigated the effects of stoichiometry and catalyst 

concentration on the reactivity, injectability, settability, and biocompatibility of PUR 

biocomposites. Bovine mineralized bone particles (B-MBP) were incorporated in the 



 

 

105 

 

biocomposites to increase their strength, control expansion of the material by absorbing 

excess moisture from the wound bed, and provide an osteoconductive matrix to enhance 

new bone formation.  The liquid components included a ter-polyester triol, a lysine 

triisocyanate (LTI)-poly(ethylene glycol) (PEG) prepolymer, a catalyst solution 

comprising triethylene diamine (TEDA) dissolved in dipropylene glycol (DPG), and 

water (both present in the reactive mixture and diffusing from the environment).  A 

kinetic model describing the reactivity of the injectable biocomposites using an in situ 

ATR-FTIR technique was developed, which was used to calculate the disappearance of 

isocyanate (NCO) equivalents at two stoichiometric conditions and catalyst 

concentrations.  To assess the biocompatibility of the reactive components released 

during cure, the biocomposites were incubated in saline or medium at two time points.  

The composition of the components leached from the biocomposite was determined by 

NMR, and the cytotoxicity was assessed by live/dead staining.  Finally, the ability of the 

biocomposites to remodel and support new bone formation was evaluated in a rabbit 

femoral condyle plug defect model. 

 

Experimental 

Materials   

A lysine triisocyanate-poly(ethylene glycol) (LTI-PEG) prepolymer (21.7% 

NCO) and a polyester triol (900 g/mol) were obtained from Ricerca Biosciences 

(Concord, OH).  The backbone of the polyester triol comprised 60% caprolactone, 30% 

glycolide, and 10% lactide.  Triethylene diamine (TEDA) and dipropylene glycol (DPG) 

were purchased from Aldrich (St. Louis, MO).  Bovine mineralized bone particles (B-
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MBP) were obtained from Medtronic, Inc (Minneapolis, MN).  All other reagents were 

purchased from Aldrich.  DPG was dried over 4 Å sieves before use.  TEDA, a well-

known tertiary amine polyurethane catalyst with low toxicity
14

, was dissolved in a 10% 

(w/v) solution with dry DPG.  Excess organic material (e.g. fat) was removed from B-

MBPs with a chloroform/acetone solution and the bone was lyophilized before use.  The 

B-MBPs were then sieved to include only 105-500 µm particles. 

  Characterization of reactive PUR components 

The hydroxyl (OH) number of the polyester triol was measured by titration 

according to ASTM D4274-99 Method C, and the molecular weight was determined by 

gel permeation chromatography (GPC, Waters Breeze).  Prior to use, the polyester triol 

was washed with hexane and dried under vacuum at 80
o
 C for 24 h.  The %NCO of the 

prepolymer was measured by titration according to ASTM D2572-97.  The prepolymer 

was maintained at 4
o
 C under argon prior to use.  Water content for all liquid components 

was determined by Karl Fischer (KF) titration with a 798 MPT Titrino with a 10 mL 

burette (Metrohm).  Briefly, 0.5-5.0 g of material was dissolved in dry methanol and 

Hydranal-Composite 2 (Sigma-Aldrich), a stock KF reagent, was used to titrate the 

samples. 

Synthesis of biocomposites   

Biocomposites (BCs) were prepared by adding the polyester triol, catalyst 

solution, and B-MBP (45 wt%) to a mixing cup, in which they were hand-mixed for 30 

seconds before adding the prepolymer and hand-mixing for an additional 45 seconds.  

The BC was then loaded into a syringe.  The study design is summarized in Table 1.  

Two catalyst weight percentages (0.50 and 0.25 wt%) and two index values (108 and 
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195) were utilized.  The index characterizes the stoichiometry and is the ratio of 

isocyanate (NCO) equivalents in the prepolymer to the sum of the hydroxyl (OH) 

equivalents in the polyester triol and water
15

: 

  (1) 

Considering that DPG contains less reactive secondary hydroxyl groups, it was 

anticipated to have a relatively low reactivity and therefore was not included in the index 

calculations.  Thus at an index of 108, the stoichiometry was expected to be well 

balanced (e.g., 8% excess NCO).  A higher index of 195 was also tested to account for 

the hydroxyl and amine equivalents from the B-MBP
10a

. 

 

ATR-FTIR analysis of the reactivity of individual components   

Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 

measurements were conducted with a Seagull Variable Angle Reflection Accessory 

Table 5.1. Biocomposite formulations.  

 I0-C0 I0-C1 I1-C0 I1-C1 

Index 108 108 195 195 

B-MBP (wt%) 45.0 45.0 45.0 45.0 

Catalyst (wt%) 0.25 0.50 0.25 0.50 

Water (wt%, measured) 0.06 0.06 0.05 0.05 

Water (wt%, fitted) 0.13 0.23 0.11 0.07 

LTI-PEG (wt%) 22.4 21.3 30.2 28.8 

T6C3G1L900 (wt%) 30.1 28.8 22.3 21.3 

DPG (wt%) 2.3 4.4 2.3 4.4 
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(Harrick Scientific) applied to a Tensor 27 FTIR instrument (Bruker)
16

.  A ZnSe 

hemispherical crystal (Harrick Scientific) was utilized to obtain time-resolved ATR 

spectra.  For each reaction characterized, spectra were taken every 20 to 60 seconds at a 

resolution of 4 cm
-1

 and 56 scans per spectra.  Briefly, to obtain the spectral profiles for 

the reactions of the biocomposites, a given composite was synthesized and placed on a 

sample holder in direct contact with the bottom of the ZnSe crystal.  To derive the 

spectral profiles for the individual component reactions of the biocomposites, the 

components were mixed with the prepolymer and catalyst only.  The isocyanate peak 

(2270 cm
-1

) was de-convoluted and integrated using a MATLAB program and a 

calibration curve was used to correlate integrated peak values with known concentrations 

of isocyanate.  The analysis was completed in triplicates (n=3) for each reaction 

analyzed.  In order to obtain meaningful results from ATR-FTIR analysis, excellent 

contact between the crystal and the sample must be maintained.  The evanescent wave 

generated by the FTIR source reflecting from the crystal surface penetrates 1-2 µm into 

the sample. While the ATR-FTIR technique is well suited for analysis of PUR reactivity 

due to the excellent contact maintained between the crystal and the liquid components 

(Figure 5.1A), its applicability is limited by the assumption that the small analysis 

volume near the surface of the crystal is well-mixed and representative of the bulk.  Also, 

additional processing of the raw data is required to remove the slight distortion of the 

isocyanate peak due to the presence of CO2 generated by the reaction of isocyanate and 

water (Figure 5.1B).  To prevent the distortion, a Gaussian fitting algorithm was utilized 

(Figure 5.1C), which is applicable for the isocyanate peak due to its symmetry
17

.  A 

separate algorithm was used to integrate the area of the fitted peak, from which the 
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concentration of isocyanate equivalents was calculated using a calibration curve (Figure 

5.1D). 

  

Porosity as a function of water concentration   

To determine porosity as a function of water content under dry conditions, 

biocomposites were prepared with 0 – 1.0 wt% added water and porosity was measured 

gravimetrically.  Briefly, each 0.5 g batch of biocomposites was injected via a straight-

bore syringe into cylindrical molds where they were allowed to react overnight at room 

temperature.  Triplicate (n=3) slices of the cylinders were cut from the fully reacted 

 
Figure 5.1.  Process of determining isocyanate concentration by ATR-FTIR.  (A) 

Typical ATR-FTIR spectra for a given component; (B) Plot of isocyanate peak 

decreasing with time and the potential influence of CO2 on the peak shape; (C) Plot 

of Gaussian fitting algorithm removing the distortion of the CO2 peaks; (D) 

Calibration curve to determine the isocyanate concentration in equivalents. 
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biocomposites and measured with calipers to determine the volume.  Scanning electron 

microscopy (SEM, Hitachi S-4200) micrographs were obtained and analyzed for pore 

size using MetaMorph 7.1 Image Analysis software (MDS Analytical Technologies).  

The mass of each slice was used to obtain the density, and the measured density was 

compared to the theoretical density to calculate the porosity
13

, defined as the volume 

fraction of pores: 

  (2) 

where ε is the porosity,  is the average measured biocomposite density, and ρc is the 

density of the biocomposite assuming there are no pores: 

  (3) 

In these equations, ρB = 2100 kg/m
3
 is the density of B-MBP (measured by pycnometry), 

ρP = 1270 kg/m
3
 is the density of PUR (measured gravimetrically), and xB is the weight 

fraction of B-MBP. 

In vitro porosity in a simulated wound environment   

To simulate the moist curing conditions of the in vivo wound environment, 

biocomposites were injected (immediately after mixing) into 2 mL deionized water and 

allowed to react overnight in an incubator at 37
o
 C.  Under these wet conditions, porosity 

measurements were completed for biocomposites with index values of 108 and 195, 

either 0.50 or 0.25 wt% catalyst, and no added water.  At least three cylindrical cores 

were taken from each sample and analyzed gravimetrically to obtain porosity as 

described above. 
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Characterization of components leached from the reactive biocomposites   

In order to determine whether cytotoxic reactive components leach from the BC 

during cure, in vitro leaching experiments were performed.  Briefly, 2.5 g of each BC 

were injected into an empty vial and 5 ml PBS was added to the vial 2 min after mixing 

was started.  For the second time point (45 min), 2.5 g of each biocomposite were 

injected into a sample cup and transferred to a vial filled with 5 mL of PBS after 45 min 

post-mixing.  For the cytotoxicity experiments, samples were incubated in α-minimum 

essential medium (α-MEM) with 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) 

penicillin/streptomycin using the procedure described above, and leachates were 

collected at 2 and 45 min.  Samples were maintained at 37
o
C for 72 hours, at which time 

the PBS (or -MEM) was removed.  -MEM leachates were used for cytotoxicity 

experiments.  The pH of the PBS leachates was measured and the samples subsequently 

lyophilized and weighed.  After reconstitution in PBS, the residue was diluted in 

deuterated DMSO and characterized by NMR.  The spectra were compared to those of 

the pure components in the biocomposites to determine the presence of individual 

components in the leachates. 

In vitro cytotoxicity of intermediates leached from the reactive biocomposites   

The cytotoxicity of the leachates from the biocomposites was measured using 

MC3T3-E1 embryonic mouse osteoblast precursor cells in vitro.  Cells were seeded in a 

96-well plate with a density of 510
3
 cells per well and cultured in α-MEM with 10% 

(v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin/streptomycin in a CO2 incubator 

with 5% CO2 at 37
o
 C.  The concentration of the leachates varied from 6.15% (16X 

dilution with serum medium) to 100% (1X)
18

.  Trypsin-EDTA was used for dissociation 
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of MC3T3-E1 cells. The cells were analyzed for viability using a Live/Dead Viability kit 

(Invitrogen).  The assay was completed as recommended by the manufacturer’s 

instructions.  Cells were analyzed after 24 hours exposure to the leachate solution.  

Triplicates (n=3) for each group were analyzed with control groups treated with blank 

PBS.  All experiments were conducted in accordance with ISO-10993-5. 

  In vivo biocompatibility and new bone formation in a rabbit femoral condyle 

plug defect model   

Animal experiments were conducted in compliance with the Animal Welfare Act, 

the implementing Animal Welfare Regulations, and the principles of the Guide for the 

Care and Use of Laboratory Animals.  All surgical and care procedures were carried out 

under aseptic conditions per the approved IACUC protocol.  New Zealand White (NZW) 

rabbits weighing between 4.0 and 5.4 kg were used in this study. The remodeling process 

of empty defects (untreated, n=9) was compared to that of defects filled with the I0-C1 

biocomposite (n=6) at 8 weeks. The components of the biocomposites were gamma-

irradiated using a dose of approximately 25 kGY.  Glycopyrrolate was administered at 

0.01 mg/kg IM followed by ketamine at 40 mg/kg IM.  Bilateral cylindrical defects of 

approximately 5 mm diameter by 11 mm in depth were drilled in the metaphysis of the 

distal femurs of each rabbit under copious sterile saline irrigation using a trephine in a 

MicroAire handpiece.  Materials from the I0-C1 group were subsequently injected into 

each defect using a syringe, made flush with the cortical surface and allowed to harden.  

Untreated defects were utilized as a control.  Closure was attained using a 3-layered 

approach comprising muscle, fascia, and subcuraneous 3-0 Vicryl sutures.  Skin glue was 

applied topically to maintain closure.  Treatment groups for each composite were 
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dispersed randomly among the rabbits.  The rabbits were euthanized at 8 weeks using 

Fatal-plus (1 mL/4.5 kg) intravenously. 

CT analysis 

Harvested femoral condyles (n=15) were fixed in 10% neutral buffered formalin 

at room temperature for one week. During the fixation period, the condyles were scanned 

with a CT40 (SCANCO Medical, Basserdorf, Switzerland) while in formalin. 

Calibration of the CT40 was completed using the manufacturer’s hydroxyapatite (HA) 

phantom. Scans were performed using an X-ray tube potential of 70 kV, a source current 

of 114 A, and a voxel size of 30 m. The axial images were reconstructed using the 

software provided by the manufacturer. Attenuation values were converted to Tissue 

Mineral Density (TMD, in mg HA/cm
3
)
 
based on calibration data. After reconstruction, 

the image stack was rotated such that the depth of the defect was parallel to the z-axis. 

The volume of interest was defined by centering a 5mm diameter circle on the cross 

sectional view of the cortical borders of the defect, and extending this cross section to the 

end of the defect. Segmentation was applied to the resulting cylindrical volume using a 

threshold of 505 mg HA/cm
3
. The threshold value was visually chosen and kept constant 

for all the samples.  Bone volume fraction (BV/TV), Tissue Mineral Density (TMD), 

connectivity density (Conn.D), and Trabecular number (Tb.N.), thickness (Tb.Th.), and 

spacing (Tb.Sp.) were quantified in the volume of interest.  

Histology  

 After one week of fixation time in formalin, the samples were decalcified in 

hydrochloric acid, dehydrated, and embedded in paraffin.  The samples were sectioned 

onto slides 5 m thick and some were stained using hematoxylin/eosin (H & E stain). 
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Osteocytes in the interior of new bone as well as the organized structure of the allograft 

particles were used as parameters to differentiate new bone from allograft bone particles. 

The remaining sections were stained for the osteoclast marker Tartrate Resistance Acid 

Phospahatase (TRAP) by treating with a Naphthol AS-BI phosphate substrate solution 

and a mixture of sodium nitrite and pararosaniline dye followed by a hematoxylin 

counterstain. Osteoclasts were identified as multinucleated light red cells. 

  Statistics 

 One-way ANOVA, performed in JMP 9.0, was used to determine if statistical 

differences exist between groups. Comparisons of individual sample groups were 

performed using unpaired Student’s t-test. For all experiments, p < 0.05 was considered 

statistically significant. 

 

Results 

Reactivity of PUR biocomposites   

The five chemical reactions that proceed in parallel during cure of the 

biocomposite are shown in Figure 5.2.  The individual components of the biocomposite 

(polyester triol, DPG, B-MBP, and water) were analyzed for their reactivity with the 

NCO-terminated prepolymer.  The conversion of NCO equivalents in the prepolymer was 

monitored in situ by ATR-FTIR, which was analyzed to obtain the second-order rate 

constants for each reaction at each catalyst level. 
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Figure 5.2.  Chemical reactions present in the injectable PUR biocomposite. 
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The same technique was applied for the overall reaction of the biocomposite at 

two different indices and catalyst levels.  The rate law for the assumed second order 

reaction is given in Eq (4)
19

: 

  (4) 

where ki, [OH] and [NCO] represent the rate constant for component i and the 

concentrations of hydroxyl and isocyanate equivalents, respectively.  The rate equation 

can be integrated, assuming equal initial concentration (C0) of [OH] and [NCO], to obtain 

the following equation: 

   (5)  

where the slope of the inverse concentration of [NCO] equivalents (C) measured by 

ATR-FTIR plotted versus time represents the second order rate constants for the reaction.  

 

rate = ki OH[ ] NCO[ ]

1

C
= kit +

1

C0
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Figure 5.3A-B displays plots of inverse concentration of NCO equivalents versus 

time for the overall biocomposite reaction at high (0.50 wt%) and low (0.25 wt%) 

catalyst concentrations, respectively.  Similarly, inverse NCO concentration plots 

measured for the reaction of the prepolymer with water, polyester triol, DPG, or B-MBPs 

are shown in Figure 5.3C-D at high and low catalyst concentrations.  The linearity of the 

inverse concentration plots verifies that each of the reactions follows a second-order 

 

Figure 5.3. Isocyanate (NCO) reactions follow second-order chemical reaction 

kinetics.  The specific reaction rate was calculated by fitting (represented by the 

straight line) the experimental data to equation 5.  Inverse NCO concentration plots 

for the overall biocomposite reaction at (A) high (0.50 wt%) and (B) low (0.25 wt%) 

catalyst concentrations.  Filled symbols correspond to low (108) index, while open 

symbols represent high (195) index formulations.  Inverse NCO concentration plots 

for the reaction of the prepolymer with each component shown in Scheme 1 at (C) 

high (0.50 wt%) and (D) low (0.25 wt%) catalyst concentrations.  Key to symbols:  

water (♦), polyester triol (◊), DPG (▲), and B-MBP (∆).  
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mechanism as anticipated
20

, and thus the slope of line is equivalent to the rate constant 

for each of the reactions (Eq. (5)).  The second-order rate constants calculated from the 

data in Figure 5.2 are listed in Table 5.2. Water has the highest reactivity compared to the 

other reactions, regardless of catalyst concentration. The polyester triol is approximately 

20 times less reactive than water for the higher catalyst level, while the DPG is 

approximately 3 times less reactive than the polyester triol.  The reactivity of the B-

MBPs is the lowest of all the components at both catalyst levels 

 

 Based on the rate constants measured for the individual components, a kinetic 

model was developed to predict the overall reactivity of the biocomposites.  First, the net 

rate of reaction ri is defined for each component i by the following series of equations: 

  (7) 

Table 5.2.  Second-order specific reaction rates for the reaction of each hardener 

component with the NCO-terminated prepolymer. 

 

  Rate constant (g eq
-1

 min
-1

) 

 Description C1 C0 

kw Prepolymer + water reaction 783  140 298  51 

kp Prepolymer + triol reaction 37.2  4.9 17.4  3.1 

kd Prepolymer + diol reaction 14.5  0.4 6.16  1.5 

kb Prepolymer + B-MBP reaction 1.23  0.6* 1.17  0.3* 

* There is a statistical significance (p<0.05) between all reaction rates except between kb C1 and kb C0. 
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where ki is the second-order rate constant measured for component i (g eq
-1

 min
-1

) and Ci 

is the concentration of component i (eq g
-1

).  The equivalent balance equations were then 

solved to calculate the concentration profiles of each component as a function of time:  

  (8) 

where M is the mass of the biocomposite in grams.  The equivalent weight for polyester 

triol, DPG and water were calculated from the mass of the sample, molecular weight and 

functionality (equation 9).  The equivalent weights for each of the components are shown 

in Table 5.3. 

 qi = mi/(Mni/f) (9) 

where qi is the equivalent weight (in units of g/eq.), mi is the mass of component i, Mni is 

the molecular weight of species i, and f is the functionality. 
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The equivalent weight for the B-MBPs cannot be determined directly by equation 

1, due to the unknown functionality.  We assumed that B-MBPs could be compared to the 

composition of human bone, which comprises ~23 wt% Type I collagen
21

 and the 

remainder unreactive mineral content.  Type I collagen has 210 reactive hydrogen 

equivalents per 1000 residues resulting from hydroxylysine, lysine, arginine, serine, 

threonine, glutamine, and cysteine residues in the backbone
22

.  Assuming the average 

molecular weight of an amino acid residue in collagen is 90,000 g/mol, the equivalent 

weight of the B-MBP was calculated to be 429 g/eq.   

From the equivalent weights, the number of equivalents for each component was 

calculated for a given batch size.  The batch size utilized in modeling each individual 

biocomposite reaction is 10 g, which is clinically relevant for craniofacial clinical 

applications
23

.  The equivalents for each component and each BC composition are 

tabulated in Table 5.4.  The measured value of water was determined by columbic Karl 

Table 5.3.  Kinetic model parameters. 

Component Eq wt (q) Initial number of equivalents, eq 

 g eq
-1

 I0-C0 I0-C1 I1-C0 I1-C1 

B-MBP 429 0.0021 0.0021 0.0021 0.0021 

Water (meas.) 9.01 0.0007 0.0006 0.0005 0.0005 

Water (fitted) 9.01 0.0014 0.0025 0.0012 0.00075 

LTI-PEG 194 0.0116 0.0110 0.0156 0.0149 

T6C3G1L900 300 0.0100 0.0096 0.0074 0.0071 

DPG 67 0.0034 0.0066 0.0034 0.0066 
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Fischer titration (ASTM E-1064).  However, considering that the measured water 

concentration did not yield a good fit due to absorption of moisture from the humid air 

into the hygroscopic catalyst solution and polyester triol, the water concentration was 

used as a fitting parameter.  The initial concentrations of each of the components (shown 

in Table 5.4) were used to solve the set of equations relating the change in concentration 

with time and the observed kinetic rate constants.  A non-linear R
2
 algorithm was chosen 

to determine goodness of fit with the experimental data and the initial concentration of 

water was iterated until the R
2
 was maximized (R

2
 ranged from 0.95-0.99).  The value of 

water that was determined to provide the best fit is displayed in Table 5.1 and 5.4.   

Using the fitted rate constants and the initial concentration of equivalents, the 

overall conversion of NCO equivalents in the biocomposite was plotted and compared to 

the experimental values in Figure 5.4A and B.  Due to difficulties associated with 

accurately measuring the concentration of water in the polyester triol, catalyst solution, 

and prepolymer, the initial water concentration was used as a fitting parameter.  As 

shown in Table 5.1, the water concentrations measured by titration varied from 26 to 71% 

of the fitted values.  Figure 5.4C and D show the conversion of OH (or NH2) equivalents 

after 24 hours for water, polyester triol, DPG, and B-MBPs calculated from the kinetic 

model.  While the water conversion approaches 100% after approximately 10 – 20 

minutes, the conversions of the other active hydrogen components are less than 100%, 

and decrease with decreasing index.  
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Rheology of curing biocomposites 

A representative plot of the rheological properties of the I0-C1 biocomposite are 

shown in Figure 5.5, in which the values of storage modulus G’, loss modulus G”, and 

 

 

Figure 5.4.  Validation of the kinetic model for characterizing the reactivity of the 

injectable biocomposites.  Comparison of experimental and predicted (from the 

kinetic model) conversions for the overall biocomposite at 0.50 wt% catalyst and (A) 

low (108) and (B) high (195) indices, showing good agreement between the 

experimental and predicted values (R
2
 > 0.99 and 0.97). Due to the difficulty of 

measuring water concentration at low concentrations (<0.4 wt%) by KF titration, 

water concentration was used as a fitting parameter.  The conversion of OH (or NH2) 

equivalents for water, polyester triol, DPG, and B-MBPs particles calculated from the 

kinetic model at 0.50 wt% catalyst are shown for (C) low (108) and (D) high (195) 

indices. 
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the viscosity  are plotted versus time; with the initial viscosities, η’i and working times 

(gel points), τw, highlighted. 

 

In clinical applications the rheological behavior of an injectable material is 

important, considering that a settable material must be tack-free within minutes after 

mixing and injection to avoid excessive times before the wound can be closed.  The 

rheological profiles during cure were measured for each biocomposite in situ with an AR 

2000ex rheometer with a Rheology Advantage AR Controller (TA Instruments). 

Continuous oscillation measurements were conducted at 1 Hz and 1% strain with 25 mm 

disposable parallel plates and a 1 mm gap.  Measurements for each configuration of 

biocomposites were taken with either dry conditions or submerged in water via a 

submersion assembly kit (TA Instruments).  Initial viscosities (η’i) and working times 

(gel points, τw) were tabulated.  Values of these rheological parameters are tabulated in 

 

Figure 5.5.  Rheological properties of PUR biocomposites.  Representative plots for 

G’, G”, and  as a function of time for I0-C1 BC under wet conditions. 

 



 

 

124 

 

Table 5.4 for both dry and wet conditions for each biocomposite composition and catalyst 

level.  

 

Working times varied from 7 – 29 min, defined by the G’-G” crossover point, and 

decreased with increasing catalyst concentration and index.  Similarly, initial viscosities 

ranged from 90 – 900 Pa*s, and increased with increasing catalyst concentration and 

index.  For all but the I1-C1 biocomposite, working times measured under wet conditions 

were significantly shorter than under dry conditions, although the differences were 

Table 5.4.  Rheological properties of injectable biocomposites, including w 

(working time), ’i (initial viscosity), and gp (isocyanate conversion at the gel 

point) for each formulation under dry and aqueous conditions. The isocyanate 

conversions for each formulation at 2 and 45 minutes (i.e., the time points at 

which leaching experiments were performed) are also listed. 

  I0-C0 I0-C1 I1-C0 I1-C1 

τw,dry (min.) 29.3 ± 0.8* 14.3 ± 0.2* 19.7 ± 0.2* 7.1 ± 1.0 

τw,wet (min.) 27.3 ± 0.8* 10.2 ± 0.9* 18.5 ± 0.8* 7.2 ± 0.1 

η'i,dry (Pa*s) 101.9 ± 30.6 510.9 ± 20.7 149.1 ± 12.7 972.9 ± 140.1 

η'i,wet (Pa*s) 90.8 ± 1.4 507.9 ± 2.1 178.1 ± 17.4 858 ± 96 

gp,dry 48.7% 61.3% 28.5% 27.7% 

gp,wet 47.5% 55.5% 28.4% 27.9% 

2 min 8.9% 24.7% 6.6% 14.2% 

45 min 55.0% 79.4% 36.0% 54.6% 

* Signifies significant differences (p<0.05).   

** For working time and initial viscosity (in both wet and dry), all index and catalysts groupings are 

statistically significant from each other. 
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modest.  Working time and initial viscosity measured under wet conditions were 

generally within 15% of values measured for dry conditions.   

Effect of water on biocomposite porosity 

Reaction of the NCO-terminated prepolymer with water yields carbon dioxide 

gas, which acts as a blowing agent resulting in the formation of pores 
24

.  The porosity of 

the biocomposites as a function of total water (Figure 5.6A) increases with water 

concentration up to a plateau value of 60 vol% independent of the catalyst level or index. 

 

  Representative SEM images (Figure 5.7A-C) of biocomposites at 0.2, 0.4, and 

1.0 total wt% water reveal that pore diameter, porosity, and interconnectivity increase 

 

Figure 5.6.  Effects of water concentration, index, and catalyst concentration on 

porosity of biocomposites. (A) Under dry conditions, porosity increases with total 

water concentration asymptotically up to ~60 vol% independent of index or catalyst 

concentration. (B) Under wet conditions, I1-C1, I1-C0, and I0-C0 biocomposites 

expanded to >50% porosity, despite the fact that no water was added the material.  In 

contrast, the I0-C1 biocomposite showed porosity under wet conditions comparable to 

the range of porosities measured under dry conditions for all biocomposites in the 

absence of added water (shown in Panel B by the dotted lines). Thus, diffusion of 

water into the reactive biocomposite can result in higher porosity at a high index. * 

p<0.05. 
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with water concentration.  While the pores are predominantly closed at the lower water 

concentrations, they appear to be more interconnected at 1.0 wt% water.  As shown in 

Figure 5.7D, pore diameter is independent of index and catalyst concentration and 

increases with total water concentration over the range of 50 – 100 m, but the 

differences are not significant.  

 

Under in vivo conditions, water from the wound bed can diffuse into the 

biocomposite, resulting in increased expansion and porosity 
25

.  The effects of water 

 
Figure 5.7.  SEM images of I0-C1 biocomposites with (A) 0.2, (B) 0.4, and (C) 1.0 

wt% total water. (D) Average pore diameter as a function of water concentration for 

I0-C1 biocomposites (error bars represent SEM).  There is no significant difference 

between pore diameter. 
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diffusion were simulated in an in vitro test where the biocomposites were cured in a fully 

submerged aqueous environment.  The in vitro porosity data measured under both dry 

(Panel A) and wet (Panel B) conditions for both catalyst concentrations are compared in 

Figure 5.6.  At the lower catalyst concentration, both indices yield biocomposites with 

porosities of 48 – 55%, and at the higher catalyst level the index 195 biocomposite results 

in 50% porosity under wet conditions with no added water.  Thus the porosities obtained 

under wet cure exceed those obtained from dry cure (Figure 5.6A) with no added water (9 

– 20%, note that in the absence of added water, it is still present at 0.1 – 0.2 wt% as 

measured by KF titration under dry conditions).  In contrast, the index I0-C1 

biocomposite has a porosity of 22% under wet conditions, which is comparable to the 

17% porosity measured for the I0-C1 biocomposite cured under dry conditions with no 

added water (Figure 5.6A). These observations suggest that diffusion of water from the 

wound bed can increase expansion, particularly at the low catalyst concentration and high 

index. 

Characterization and cytotoxicity of leachates in vitro 

 NMR spectra for the leachates from the I0-C1 biocomposite injected into PBS at 

2 and 45 minutes after mixing are shown in Figure 5.8D-E and compared to spectra for 

the individual components (Figure 5.8A-C) to determine which components were 

leaching from the reactive polymer at time points corresponding to the cream (2 min) and 

tack-free (45 min) stages of cure.  The other biocomposites had nearly identical spectral 

profiles to that of I0-C1 (data not shown).   
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The peak at 2.3 ppm associated with the proton adjacent to the carbonyl group in 

the polyester appears in the spectra of the leachates collected at 2 and 45 min, suggesting 

 
Figure 5.8.  Reactive PUR biocomposites do not release potentially cytotoxic NCO-

terminated prepolymer molecules during cure.  NMR spectra of (A) 10% TEDA in 

DPG, (B) tri-functional polyester, (C) NCO-terminated prepolymer, (D) leachates 

collected at the early (2 min) time point, and (E) leachates collected at the late (45 

min) time point for I0-C1 BC.  Insets show the area where peaks unique to the 

prepolymer would appear.  Key to symbols: a = methyl protons in DPG, b = DMSO-

d, c = water from DMSO, d = polyester triol proton closest to carbonyl, and e = 

prepolymer protons closest to urethane and NCO groups.  
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that unreacted polyester triol had leached into the medium. Similarly, the peak at 1.0 ppm 

associated with the protons on the methyl carbon group in DPG also appear in the 

leachates at both time points, indicating that unreacted DPG had diffused into the 

medium.  While the protons on the methylene carbon appear at 2.8 in the TEDA pure-

component spectrum, they shift to 2.6 ppm in the 10% TEDA in DPG spectrum (Panel 

A).  Thus, the peaks at 2.8 ppm in the leachate spectra (Panels D and E) are associated 

with TEDA.  In contrast, the prepolymer was uniquely distinguished by a series of peaks 

above 6 ppm, none of which appeared in the spectra for any of the leachates, suggesting 

that the prepolymer did not leach into the medium.  Gravimetric analysis of the leached 

biocomposites revealed a 0.1 – 1.2% mass loss due to diffusion of individual components 

from the biocomposites into the buffer (Figure 5.9C). The pH of the leachates recovered 

at 2 and 45 minutes varied from 6.6 to 6.8 compared to the initial value of 7.35. 

MC3T3-E1 murine osteoprogenitor cells were treated with leachates from the 

biocomposites collected at 2 and 45 min and diluted with serum medium such that the 

final concentration of leachates ranged from 6.25% (16X dilution) to 100% (1X dilution).  

Cells were cultured for 24 h.  Leachate dose-response curves measured for leachates 

collected at 2 (Figure 5.9A) and 45 (Figure 5.9B) min reveal the anticipated sigmoidal 

shape.  The cytotoxic response is quantified in Figure 5.9C.  Three of the eight treatment 

groups showed cytotoxicity, which is defined as <70% viability, when not diluted (1X 

dilution).  A statistically significant improvement in viability is seen for each of the 

cytotoxic groups after only a 2X dilution.  For the three treatment groups showing 

cytotoxicity, the dilution factors required to render the culture medium non-cytotoxic 

varied from 1.36 – 1.66X.  For a specific biocomposite composition and dilution factor, 
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the percentage of viable cells was generally higher for leachates collected at 45 min 

(except for the 1X dilution for I1-C1), which is consistent with the notion that the 

concentration of leachates was lower at 45 min due to the higher conversion.   

The morphology of live MC3T3 cells cultured in 8X diluted medium is shown in 

Figure 5.9D-F (since all treatment groups showed <1% cytotoxicity at this dilution, no 

dead cells are present in the field of view).  Representative images of cells cultured on 

tissue culture polystyrene stained with calcein reveal a well-spread phenotype when 

treated with leachates from biocomposite I0-C1 collected at 2 min (Figure 5.9D) and 45 

min (Figure 5.9E) and diluted 8X with serum medium.  No substantial differences in size 

or morphology of the cells were observed between the treated and untreated (control) 

groups. 
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Figure 5.9.  Viability of MC3T3-E1 osteoprogenitor cells treated with leachates from 

PUR biocomposites diluted 1X to 16X with serum medium.  (A) – (C) Percent cell 

viability as assessed by live/dead staining for cells treated with leachates collected at 

(A) 2 min and (B) 45 min. The cytotoxic response is quantified in Panel (C) for each 

set of conditions tested as well as the percent mass loss due to leached intermediates. 

(D) – (F) Images of cells cultured on tissue culture polystyrene stained with calcein 

when treated with leachates taken from biocomposite I0-C1 after 2 minutes of 

reaction; diluted (D) 1X with serum medium and (E) 2X with serum medium.  

Control cells treated with PBS are shown in Panel (F).  
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In vivo remodeling in a rabbit femoral plug model  

 In a previous study, we reported that biocomposites with porosity approaching 60 

vol% were friable and had weak mechanical properties
13

.  Considering that all 

formulations except I0-C1 expanded to >50% porosity in the simulated in vivo foaming 

test compared to dry in vitro conditions (Figure 5.5B), we evaluated the biocompatibility 

and remodeling of formulation I0-C1 in a rabbit femoral condyle plug defect model
13

. 

According to CT images, the location of the defects in the femur varied and the 

effective depth of the defects ranged between 6 and 10 mm. Representative CT images 

Table 5.5. Morphological parameters determined by CT for the I0-C1 biocomposite 

not implanted in the defects (non-implanted, n=3), the I0-C1 biocomposite (n=6) and 

control specimens (n=9) 8 weeks after injection. 

Parameter 

I0-C1 Empty Defect 

Non-implanted 8 weeks 8 weeks 

Bone Volume Fraction (BV/TV, %) 14 + 1 
(*)

 22 + 4 
(**)

 11 + 6 

Tissue Mineral Density (TMD, mg 

HA/cm
3
) 

991 + 9 
(*)

 802 + 39 777 + 38 
(***)

 

Trabecular number (Tb.N., 1/mm) 3.7 + 0.1 
(*)

 2.4 + 0.5 
(**)

 0.5 + 0.4 

Trabecular thickness (Tb.Th, mm) 0.104 + 0.005 
(*)

 0.153 + 0.007 
(**)

 0.207 + 0.035 

Trabecular separation (Tb.Sp, mm) 0.26 + 0.01 
(*)

 0.46 + 0.08 
(**)

 2.83 + 1.07 

Connectivity Density (Conn.D, 

1/mm
3
) 

0.036 + 0.013 
(*)

 24.0 + 6.8 
(**)

 7.3 + 6.5 

(*) 
Significantly different than I0-C1 8 

weeks  (p<0.05) 

      

(**) 
Significantly different than the 

control  (p<0.05) 

      

(***)
 Significantly lower than the surrounding density 

(p=0.0008) 
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are shown in Figure 5.10, and morphological parameters are reported in Table 5.5 for I0-

C1 biocomposites prepared in the laboratory (I0-C1 non-implanted) and at 8 weeks post-

injection. Compared to the non-implanted material, the biocomposite showed 

significantly higher BV/TV and Conn.D at 8 weeks post-injection in femoral defects, as 

well as lower TMD, Tb.N, and Tb.Th, suggesting that the biocomposite remodeled in 

vivo.  While the control (empty) defects showed formation of new cortex but minimal 

new trabecular bone, the biocomposite group showed significantly greater new bone 

formation throughout the volume of the defect.   

 

 

 

Figure 5.10. Representative CT images of mean empty (Control) and I0-C1 

biocomposite-treated (BC) defects at 8 weeks. (A,D) 3-dimensional images. (B,E) 

Rotated 2-dimensional images.  Red boxes indicate the location of the defect. (C,F) 3-

dimensional view of the defect volume. Scale bars represent 1 mm. 
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The bone in the biocomposite at 8 weeks also had higher Tb.N, and Conn.D, and 

lower Tb.Th, and Tb.Sp than the bone in the control defects.  There were no significant 

differences in TMD between the biocomposite and empty defect at 8 weeks. Considering 

that TMD distribution provides information about the mechanical properties of bone 

matrix 
26

, similar values of TMD between the control and the treated defects suggest that 

the ossified tissue has similar quality, although the volume fraction of bone differs 

between the two defects. Representative thin sections (5 m) stained with H&E at 8 

weeks are presented in Figure 5.11.  The defects in the control (empty defect) treatment 

group were identified by a central area of fat and hematopoietic elements surrounded by a 

variably vague circle of bone and trabeculae. There appeared to be no new bone and very 

little inflammation within the center of these defects.   
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Figure 5.11. Representative images of histological sections at 8 weeks stained for 

H&E. (A,B) Low and high magnification images of empty (control) defects. (C,D) 

Low and high magnification images of defects treated with the I0-C1 biocomposite. 

Labels: () Point to osteoblasts lining the surface of new bone. (>) New bone. (A) 

Allograft particles. (Ad) Adipose tissue.  
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Defects treated with the I0-C1 biocomposite exhibited mild to moderate 

inflammation with non-viable bone fragments (allograft) surrounded by osteoclasts 

generating resorption pits (Figure 5.12, white arrows), osteoblasts, new trabeculae, and 

marrow elements. The stained sections showed extensive cellular infiltration and 

remodeling throughout the volume of the defect, as well as new bone formation near the 

host bone interface, and some non-viable allograft bone particles remained in the interior 

of the defect. There was minimal to no evidence of residual polymer, suggesting that the 

polymer had undergone extensive degradation by 8 weeks. 

 

Discussion 

Injectable lysine-derived poly(ester urethane) networks have been shown to 

support tissue remodeling in preclinical models
25, 27

.  This class of biomaterials undergoes 

hydrolytic and oxidative degradation to lysine, -hydroxy acids, and soluble low-

 
Figure 5.12. Representative images of histological sections of the I0-C1 biocomposite 

at 8 weeks stained for TRAP. (a,b) Allograft bone particles (A) in representative 

samples surrounded by resorbing osteoclasts (multinucleated, light red cells). 

Arrowheads point to resorption pits on the surface of the allograft bone particles. 
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molecular weight urethane adducts
9b, 28

.  Furthermore, neither the cured polymers nor the 

degradation products induce a severe inflammatory response in vivo
9b, 15, 27a

.  However, 

the effects of reactive components in the PUR leaching into the surrounding tissue prior 

to cure, resulting in a potentially adverse tissue response 
11

, has not been investigated.  

Curing of the material in vivo may also differ from in vitro conditions, resulting in 

unpredictable in vivo performance
10a, 25, 29

.  In this study, we investigated the effects of 

stoichiometry and catalyst concentration on the reactivity, biocompatibility, and 

injectability of PUR biocomposites comprising a lysine-derived prepolymer, polyester 

triol, water, and a tertiary amine catalyst.   

The polyester triol, water, DPG, and B-MBPs had significantly different second-

order rate constants, resulting in differences in the conversion of each component (Figure 

2).  DPG was 3 times less reactive than the polyester triol at the higher catalyst levels, but 

not at the lower catalyst levels, which could be due to the isomeric structure (i.e., 

characterized by both primary and secondary hydroxyl groups) of DPG
14a

.  The reaction 

between the NCO-terminated prepolymer and the B-MBPs is more complex due to its 

particulate state.  B-MBPs are composed of ~30% organic compounds, of which >90% is 

collagen I that contains reactive amines (76% of total active hydrogen equivalents) and 

hydroxyls (24% of total active hydrogen equivalents)
22

.  While primary amines have a 

rate of reaction with isocyanates approximately 10 times higher than primary hydroxyl 

groups
30

, the reaction between B-MBPs and prepolymer is limited by the diffusion of the 

prepolymer to the surface of the particles.  Furthermore, most of the collagen is 

embedded in the interior of the bone particles and only a small fraction is available at the 
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surface to react with the prepolymer.  Thus, the solid-liquid reaction between the B-

MBPs and prepolymer showed the lowest conversion at both catalyst levels.   

For all formulations, water was the most reactive component.  When the initial 

water concentration was treated as a fitting parameter, the agreement between the 

experimental and calculated overall rates was good (R
2
 = 0.95 – 0.99, Fig. 5.4A and C).  

As shown in Table 5.1, the fitted initial water concentrations were on average 2.5 times 

greater than the measured values.  Measurement of trace water concentrations by KF 

titration is limited by factors such as oxidizing and reducing agents (e.g., residual 

catalysts) present in the test sample
31

.  In addition, allograft bone contains a small 

fraction (up to 2 – 3% as measured by TGA) of surface-bound water
32

 that cannot be 

detected by KF titration.  Polyurethanes can also react with moisture in the air under 

humid conditions
20

, and allograft bone can absorb up to 10 wt% water when exposed to 

humid air, which are not accounted for in the KF titration.   

Since the water reaction produces carbon dioxide gas
30b

, it can be exploited to 

generate >50 m pores (Fig. 5.7) that accelerate cellular infiltration
10b, 13, 29, 33

.  The 

porosity can be tuned to targeted values by controlling the water content under dry in 

vitro conditions (Figure 5.6A)
13

.  As water is increased from 0.15 to 0.7 wt%, the 

porosity increases from 10% to 50%, resulting in a decrease in compressive strength from 

9.5 MPa to 5 MPa as we have reported previously
27b

.  The maximum porosity that can be 

attained in the biocomposites is 60 – 65% (water concentrations exceeding 0.7 wt%), at 

which point the compressive strength drops to <0.3 MPa and the materials become 

friable
27b

.  Thus, to balance the requirements for both mechanical strength and cellular 

infiltration, expansion of the biocomposites must be controlled such that  < 60 vol%.  As 
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shown in Fig. 5.6B, the porosity of the I0-C0, I1-C0, and I1-C1 biocomposites with no 

added water increased from 8 – 20% under dry conditions to 50 – 55% under wet 

conditions.  Since the wet reaction conditions are more indicative of the in vivo wound 

environment, these observations suggest that formulations I0-C0, I1-C0, and I1-C1 would 

undergo unpredictable expansion in vivo
13, 25

.   

The instantaneous selectivity Sw/(p+d) of the water reaction relative to the polyester 

and DPG reactions provides insight into the sensitivity of the overall conversion to the 

concentrations of the individual components: 

  (10) 

The water selectivity initially exceeds unity (since kw >> kp, kd) and scales with Cw.  As 

the reaction progresses, Sw/(p+d) decreases due to the reaction of water, but diffusion of 

water into the reactive scaffold from an external source results in increased water 

concentration and selectivity.  Thus, curing in a moist environment is predicted to 

promote over-expansion, which is consistent with the porosity data in Figure 5.6.  To 

prevent potential release of low molecular weight NCO groups, it is desirable to control 

the value of CI such that the NCO conversion approaches 100% after final cure (typically 

~24 hours).  However, the high sensitivity to initial water concentration, as well as 

diffusion of environmental water into the wound bed, can result in reduced conversion of 

polyester triol conversion and weak mechanical properties.  In contrast, 

photopolymerizable polymers, including PEG acrylate derivatives 
34

 and poly(propylene 

fumarate) (PPF)
35

, cure in situ upon activation of the initiator using ultraviolet light.  

Thus, photopolymerization offers the advantages of curing rates on the order of seconds 

to minutes 
36

 that are independent of conditions in the wound bed.  We anticipate that the 

Sw/( p+d ) =
rw

rp + rd
=

kwCw

kpCp + kdCd
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adverse effects of environmental water on PUR reactions could be mitigated by using 

catalysts with low toxicity that selectively catalyze the gelling relative to the blowing 

reaction. Despite the previously reported strong gelling selectivity of TEDA
14b

, kw >> kp, 

kd for both catalyst levels in the present study.  The toxicity of heavy metal catalysts (e.g., 

tin and bismuth) likely precludes their use in injectable formulations
14b

, but a lower 

toxicity gelling catalyst with kw << kp, kd, such as ferric acetylacetonate
37

, is anticipated 

to reduce the sensitivity to environmental water.   

While formulation I0-C1 minimized the effects of external water on expansion, 

the lower index resulted in a lower conversion of polyester and DPG (Fig. 5.4C, D).  

Incomplete conversion is anticipated to reduce the crosslink density and introduce 

network defects that reduce the mechanical properties of the cured polymer
38

.  The time 

scale required for crosslinking can be estimated from the measured working times of the 

composites listed in Table 5.4.  The working time, which is determined experimentally as 

the time at which the storage modulus G’ equals the loss modulus G”, approximates the 

gel point, or the time at which the reactive polymer forms a non-flowable crosslinked 

network.  Prior to the gel point, the low yield stress (2.1 Pa) and initial viscosity (170 

Pa*s) render the biocomposites both injectable and flowable
39

.  At the gel point, the 

biocomposite transitions to a non-flowable gel that can no longer be injected.  The 

isocyanate conversions gp at the gel point (approximated by the working time) measured 

under dry and wet conditions were calculated from the kinetic model and are also listed 

in Table 5.4.  For the high index conditions, 27% < gp < 29%, while for the low index 

conditions, 48% < gp < 61%.   
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At the early stages of the curing process prior to the gel point, the NCO 

conversion is lower than the conversion at the gel point for each formulation (e.g., 6.6 – 

24.7% at 2 min, see Table 5.4), and thus leaching of reactive components may occur.  

However, prepolymer was not identified in the NMR spectra of the leachates at any 

conditions, and only a small amount of polyester and DPG (0.2 – 1.2%) leached from the 

biocomposites at 2 min.  At 45 min, the NCO conversion exceeds that at the gel point 

(36.0 – 79.4%, see Table 5.4).  Consequently, the fraction of leachable components 

decreased for all groups, ranging from 0.1 – 0.68% of the total mass, due to the increased 

crosslinking at 45 min.  As anticipated, the measured concentration of leachables 

decreased with the conversion of NCO groups calculated from the kinetic model (Figure 

5.13).   

 

 

 
Figure 5.13.  Plot of the measured concentration of leachable components versus 

isocyanate conversion calculated from the kinetic model.  
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The NMR spectra revealed that a significant amount of TEDA leached from the 

reactive biocomposite at both 2 and 45 min.  However, with an oral LD50 in rats of 1,700 

mg/kg (MSDS, sigmaaldrich.com), even rapid leaching of TEDA from the reactive 

biocomposite is not anticipated to adversely affect cells.  When diluted with fresh 

medium
40

, the leachates had no adverse effect on cell viability, which is consistent with 

previous studies investigating the cytotoxicity of the degradation products from PUR 

elastomers
41

 and networks
42

.  Previous studies have also reported that the reaction 

exotherm is <15
o
C

15
.  These observations suggest that reactive PUR networks do not 

release unreacted cytotoxic components or large amounts of thermal energy that are 

harmful to cells and host tissue, as has been reported for other reactive thermosetting 

polymers (e.g., cyanoacrylate glues
43

) or for some photopolymerizable systems
35a

. 

When injected into excisional wounds in rats, lysine-derived PUR scaffolds 

supported proliferation of Ki67+ cells and formation of procollagen I, and the extent of 

cell apoptosis (as assessed by TUNEL staining) was comparable to the empty defect 

control
9a

.  Macrophages infiltrated the defect and accelerated the degradation of the 

scaffold by oxidation of lysine residues in the polymer, as evidenced by positive staining 

for anti-PGP9.5 and myeloperoxidase 
9b

.  Thus, the inflammatory response was transient 

and localized to residual PUR remnants.  To more specifically assess the host tissue 

response in the bone environment, the extent of osseointegration and remodeling of the 

I0-C1 biocomposite were evaluated at 8 weeks in a rabbit femoral condyle plug defect 

model in the present study.  At 8 weeks, residual allograft bone particles were surrounded 

by functional osteoclasts and showed visual evidence of surface resorption (resorption 

pits) as well as a lower TMD.  Moreover, the biocomposites supported the recruitment 
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and differentiation of osteoblasts that deposited new bone as evidenced by the increase in 

BV/TV and Conn.D after 8 weeks implantation time.  Minimal evidence of residual 

polymer existed at this time point, suggesting that no adverse responses associated with 

the cured polymer, the unreacted components, or the breakdown products resulting from 

degradation of the polymer was evident.  These observations are consistent with the data 

in Figure 6 reporting low cytotoxicity of the unreacted leachates from the polymer prior 

to cure, as well as previous studies reporting that lysine-derived PURs release 

degradation products with low toxicity
9b, 15, 44

 and support new bone formation in bone 

defects in rats, rabbits, and sheep
27a-c, 45

.  

 

Conclusions 

In this study, we measured the chemical reaction rate constants of the active 

hydrogen components with the isocyanate-terminated prepolymer in an injectable lysine-

derived polyurethane biocomposite using an in situ ATR-FTIR technique.  The rate 

constants were used to build a kinetic model describing the reactivity of the injectable 

biocomposite.  The tertiary amine catalyst TEDA preferentially catalyzes the blowing 

reaction with water relative to the gelling reactions with polyester triol, DPG, and 

allograft bone particles, despite the fact that TEDA has been reported as one of the 

strongest amine gelling catalysts
14b

.  Thus, the conversions of polyisocyanate and water 

were nearly complete, while the conversions of polyester triol and DPG were incomplete 

(<70%).  These predictions of the kinetic model were in agreement with leaching 

experiments showing that polyester triol, DPG, and TEDA were released from the 

reactive PUR, which were shown to be non-cytotoxic in vitro.  When injected into plug 
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defects in the femoral condyles of NZW rabbits, the PUR biocomposite supported 

cellular infiltration and remodeling at 8 weeks with no evidence of an adverse 

inflammatory response induced by the polymer degradation products.  Thus, the kinetic 

model is a potentially useful approach for predicting the biocompatibility of reactive 

biomaterials.  
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CHAPTER VI 

NOVEL CHEMISTRIES FOR CELL SPECIFIC DEGRADATION OF 

POLYURETHANE BIOMATERIALS 

Introduction 

Biodegradable scaffolds made from synthetic polymers have been extensively 

investigated for use in tissue engineering and regenerative medicine.  Examples include 

poly(lactic-co-glycolic acid) (PLGA)
1
, poly(ε-caprolactone) (PCL)

2
, polyanhydrides 

(PAA)
3
, and polyurethanes

4
, all of which have a history of use in products approved by 

the FDA
5
. These materials are applicable for a diverse range of regenerative applications 

because they offer a high degree of tunability, generate a minimal host inflammatory 

response, and degrade into non-cytotoxic components
6
 that are resorbed and cleared from 

the body
7
.  

In situ curing, injectable scaffolds such as poly(ester urethanes) (PEURs) that 

support cellular infiltration and degrade into non-toxic breakdown products represent a 

particularly promising class of biomaterial
8
.  Porous PEUR scaffolds are formed by 

mixing hydroxyl-functionalized polyols (e.g., 900 g mol
-1

 triols comprised of 

caprolactone, glycolide, and D,L-lactide)
6a

 with isocyanate-functional precursors to form 

a  crosslinked network. Water can be added as a blowing agent to create an inter-

connected pore structure, and the mechanical, chemical, and degradation properties of the 

scaffold can be modified through the selection of the polyol and isocyanate precursors
9
. 

Unlike many other methods used for fabrication of porous scaffolds, this approach does 

not require a porogen leaching step.  This in situ foaming approach, combined with the 
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relatively short working time of the reactive liquid mixture
10

, renders PEURs useful as 

injectable and settable scaffolds suitable for minimally invasive procedures in the clinic. 

PEUR scaffolds are primarily degraded by acid-catalyzed hydrolysis of ester 

bonds in the amorphous soft segment, resulting in chain scission and formation of 

hydroxyl and carboxylic acid end groups. Residual carboxylic acids in the polymer 

reduce the local pH at later stages of degradation
11

, thereby catalyzing accelerated 

hydrolysis of the polymer
12

.  As the polymers degrade, low molecular weight and soluble 

α-hydroxy acids diffuse from the scaffold into the medium, resulting in mass loss. 

Although α-hydroxy acids are non-toxic and can be cleared from the body
6a, 13

, 

autocatalytic degradation of the PEUR network driven by residual carboxylic acid groups 

can result in a mismatch in the rates of scaffold degradation and tissue in-growth that 

leads to resorption gaps and compromised tissue regeneration
14

.  

Environmentally-responsive polymers have been heavily investigated for the 

development of smart materials that respond to specific biological stimuli
15

. In particular, 

biomaterials that degrade by cell-mediated mechanisms, such as materials with protease-

cleavable peptides, have been successfully utilized to synthesize environmentally-

sensitive nanoparticles
16

, hydrogels
17

, and polymeric scaffolds
18

. Development of 

degradable polymers that can be cheaply synthesized in large scales, similar to polyesters, 

but that target a ubiquitous cell-mediated signal for scaffold degradation may provide a 

more generalizable and better-performing biomaterial. Scaffolds degraded by cell-

generated reactive oxygen species (ROS) are a promising candidate because ROS serve 

as important biological mediators in many normal biological processes
19

, and elevated 

ROS, or “oxidative stress”, is a hallmark of inflammation and the pathogenesis of myriad 
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diseases, such as cancer and during wound healing
20

.  Polymeric biomaterial implants 

have also been shown to elicit a stable three-fold increase in ROS production at surgery 

sites over a four week timeframe
21

, highlighting the potential utility of this cell-generated 

signal for triggering material degradation.   Additionally, in the bone microenvironment, 

osteoclasts are known to secrete ROS during resorption
22

.  This has motivated the recent 

emergence of new classes of ROS-responsive polymer-based  nanoparticles
23

 and 

development of salt-leached, porous scaffolds composed of a combination of the 

polyester PCL and ROS-sensitive, proline-based peptides
24

.  

Here we sought to develop a generalizable, cell-degradable polyurethane scaffold 

formulated from polyols exhibiting ROS-dependent degradation. To do so, we 

synthesized a new class of polyols based on ROS-degradable poly(thioketals). 

Poly(thioketals) (PTKs) were recently applied for development of orally-delivered 

nanoparticles that remain stable in transit through the stomach and specifically release 

their cargo “on demand” at sites of ulcerative colitis
23b

. To date, however, this unique 

polymer chemistry has solely been utilized in targeted nanoparticle drug delivery 

applications
23b, 23f

. Herein, we report the development and testing of a new class of PTK 

macrodiols amenable to synthesis of injectable, porous poly(thioketal)-urethane (PTK-

UR) tissue engineering scaffolds that are selectively degraded by cell-generated ROS. 

These fully synthetic scaffolds have been developed to further explore utilization of an 

ROS-dependent degradation mechanism in order to yield scaffolds with better matched 

rates of cellular infiltration and degradation. 
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Experimental 

Materials 

All chemicals were purchased from Sigma-Aldrich (Milwaukee, WI, USA) except 

the following. 2-mercaptoethyl ether (MEE), glutaraldehyde, and cobalt chloride were 

purchased from Fisher Scientific (Pittsburgh, PA), and the tertiary amine catalyst 

(TEGOAMIN33) was obtained from Goldschmidt (Hopewell, VA).  Glycolide and D,L-

lactide were obtained from Polysciences (Warrington, PA). Coscat83, an organobismuth 

urethane catalyst, was supplied by ChasChem, Inc. (Rutherford, NJ). Hexamethylene 

diisocyanate trimer (HDIt, Desmodur N3300A) was received as a gift from Bayer 

Material Science (Pittsburgh, PA). Cell culture reagents, including Dulbecco’s Modified 

Eagle Medium (DMEM), fetal bovine serum (FBS), and penicillin/streptomycin were 

supplied by Gibco Cell Culture (Carlsbad, CA). All materials were used as received 

unless otherwise indicated. 

PTK dithiol synthesis 

The condensation polymerization protocol for PTK prepolymer synthesis was 

adapted from Wilson et al. 
23b

. Briefly, p-toluenesulphonic acid monohydrate (PTSA) was 

added to a tri-necked boiling flask equipped with an attached addition funnel. The vessels 

were placed under vacuum for 15 min before being purged with nitrogen. The boiling 

flask was charged with anhydrous acetonitrile and batch-specific amounts of MEE (x 

molar eq) and 1,4 butanedithiol (BDT) (1-x molar eq) where x = 1, 0.75, 0.5, 0.25, and 0 

for the different synthesized PTKs. The addition funnel was also charged with anhydrous 

acetonitrile and 2,2-dimethoxypropane (DMP) (0.83 molar eq). A molar excess of dithiol 
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monomers was utilized relative to DMP to ensure the formation of polymers with free 

terminal thiols. Both the addition funnel and boiling flask’s solutions were purged with 

flowing nitrogen for 30 min before submerging the boiling flask into an oil bath at 80°C. 

After 15 min of temperature equilibration, the addition funnel stopcock was set so that 

the acetonitrile-DMP solution was added drop-wise into the continuously stirring boiling 

flask over a period of 16 h. Post synthesis, the acetonitrile was removed by rotary 

evaporation and the resultant PTKs were isolated by precipitation into cold ethanol and 

dried under vacuum. To evaluate polymer compositions, samples of the respective PTKs 

were dissolved in deuterated chloroform (CDCl3) and analyzed with 
1
H nuclear magnetic 

resonance spectroscopy (NMR, Bruker 400 MHz Spectrometer). 
1
H NMR chemical shifts 

were reported as δ values in ppm relative to the deuterated CDCl3 (δ = 7.26). 

Multiplicities are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), and m 

(multiplet). The number of protons (n) for a given resonance is indicated as nH and is 

based on integration values. 
1
H NMR (400 MHz, CDCl3): δ = 3.67-3.61 (m, 4H), δ = 2.83 

(t, 4H), δ = 2.63 (t, 4H), δ = 1.72 (t, 4H), δ = 1.60 (s, 6H). 

Polyester polyol synthesis 

Trifunctional or bifunctional polyester polyols were synthesized as previously 

documented 
6a

.  To synthesize the trifunctional polyol, glycerol was vacuum dried for 48 

hours at 80
o
C and then added to a 100 mL three neck flask. By molar amount, 60% ε-

caprolactone, 30% glycolide, and 10% D,L-lactide were added to the glycerol starter 

along with a stannous octoate catalyst to yield a 900 g mol
-1

 triol, a 1000 g mol
-1

 diol, and 

a 1500 g mol
-1

 triol.  
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PTK hydroxyl functionalization 

The hydroxyl-functionalization of the PTK dithiols was completed 
25

 in order to 

generate polyols compatible with standard polyurethane synthesis. Briefly, PTK dithiol 

polymers were transferred to a boiling flask, placed under vacuum, and then exposed to a 

nitrogen atmosphere. The flask was charged with dichloromethane (DCM) before adding 

a 10x molar excess of β-mercaptoethanol to the solution. This solution was stirred 

continuously at room temperature to reduce any disulfide bonds and recover the reactive 

thiol end groups. After 3 h of stirring, the DCM was evaporated and the residue was 

washed three times in cold ethanol to remove residual β-mercaptoethanol. The reduced 

PTK polymers were dissolved in anhydrous tetrahydrofuran (THF) before adding a 10x 

molar excess of cesium carbonate (CsCO3) under nitrogen and stirring for 30 min at room 

temperature. A 5x molar excess of 2-bromoethanol was next added to the solution and 

stirred for 18 hours under nitrogen at room temperature. After stirring, the solution was 

added to a separation funnel with an excess of deionized water to effectively separate the 

PTK-solubilizing THF layer from the water-soluble CsCO3 catalyst. The hydroxyl-

functionalized PTKs were extracted in THF before removing the solvent by rotary 

evaporation, followed by precipitation three times in cold ethanol before vacuum drying 

for 24 h. Molecular weights and polydispersities of the five synthesized PTK diols were 

analyzed by gel permeation chromatography (GPC, Agilent Technologies, Santa Clara, 

CA) using a mobile phase of N,N-dimethylformamide (DMF) with 100mM LiBr. 

Polymer molecular weights were quantified using a calibration curve generated from 

poly(ethylene glycol) (PEG) standards (400 – 4000 g mol
-1

). Hydroxyl-functionalization 

was confirmed by 
1
H NMR (400 MHz, CDCl3): δ = 2.74 (t, 4H) and attenuated total 
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reflectance Fourier transform infrared spectroscopy (ATR-FTIR; Bruker Tensor 27 FTIR, 

Billerica, MA). For ATR-FTIR, thiol-terminated and hydroxyl-terminated PTK polymers 

were placed in contact with a ZnSe ATR crystal to quantify absorbance at 2550 cm
-1

 and 

3400 cm
-1

, which correspond to absorbance peaks of free thiol and free hydroxyl groups, 

respectively. The hydroxyl (OH) numbers of the different PTK diols were determined by 

titration (Metrohm 798  MPT Titrino) according to ASTM E1899 – 08 
26

. Equation 1 was 

used to relate the molecular weight to the hydroxyl number of each titrated PTK: 

     
      

         
 (1) 

where 56,100 represents the molecular weight of KOH in mg/mol, f  represents the 

hydroxyl functionality of the PTK (assumed to be 2 for the linear homobifunctional 

polymers in this study), and Mn represents the number-average molecular weight of the 

polymer.  The full synthesis scheme is displayed in Figure 6.1. 

 

 
Figure 6.1.  Synthesis scheme for the condensation polymerization of thiol-

terminated PTKs. The copolymers were derivatized with 2-bromoethanol to yield 

PTK diols. 
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PTK-UR and PEUR synthesis 

The PTK-UR and PEUR scaffolds were prepared using two-component reactive 

liquid molding of: (a) hexamethylene diisocyanate trimer (HDIt), and (b) a hardener 

component comprising the PTK diol, 0.5 – 1.5 parts per hundred parts polyol (pphp) 

water, 10.0 pphp TEGOAMIN33 catalyst, 0.5 – 3.0 pphp sulfated castor oil stabilizer, 

and 4.0 pphp calcium stearate pore opener 
6a

. The makeup of the hardener components 

for the different respective PTK diols was individually optimized to yield scaffolds with 

mechanical integrity and an intact porous structure. PEUR scaffolds were respectively 

designated by their polyester precursor as 900t-PEUR, 1000d-PEUR, and 1500t-PEUR 

and served as hydrolytically-degradable controls. The hardener component elements were 

first mixed for 30 s at 3300 rpm in a Hauschild DAC 150 FVZ-K SpeedMixer (FlackTek, 

Inc., Landrum, SC) before adding the HDIt and mixing for an additional 30 s. This 

reactive liquid mixture was allowed to rise freely for 10-20 min for complete setting and 

hardening. The targeted index (ratio of NCO to OH equivalents times 100) was 115, 

where the number of OH equivalents is calculated from the experimentally measured OH 

number for the relevant PTK diol. 

Characterization of scaffold physical properties  

The core densities of PTK-UR and PEUR scaffolds were determined by 

measuring the mass and volume of cylindrical porous scaffold core samples, with the 

core porosities being subsequently calculated from these density values 
6a

. The porous 

morphologies of the different PTK-UR scaffolds were qualitatively assessed by scanning 

electron microscopy (Hitachi S-4200 SEM, Finchampstead, UK). The amount of 

unreacted components (sol fraction) in the cross-linked network was measured from the 
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mass loss of dried scaffold cylinders (25 mm × 12 mm) previously incubated in DCM for 

24 h. To measure the molecular weight between crosslinks (Mc), scaffold samples (n = 3) 

were weighed dry and then incubated in DCM for 24 h. After incubation, samples were 

gently blotted to remove excess DCM and then the samples’ swollen mass was measured. 

These values, along with the solvent parameters, were used in the Flory-Rhener equation 

to determine Mc. For measuring scaffold hydrophilicity, PTK-UR films of 100%, 50%, 

and 0% MEE-PTK diols were synthesized using an index of 105 and the gelling catalyst 

Coscat83 at 1000 ppm. After mixing the catalyst and PTK diol for 30 s at 3300 rpm, 

HDIt was added and mixed for an additional 30 s. The mixtures were cast into Teflon 

compression molds and allowed to cure for 18 h at 60°C. The contact angle of water on 

these PTK-UR films was measured using a Rame-Hart (Mountain Lakes, NJ) Model A-

100 contact angle goniometer. A 4 μL water drop was added to the film surface, and after 

10 min, an equilibrium contact angle was measured to account for molecular surface 

reorganization which increased the hydrophilicity at the contact site
27

. 

Thermal and mechanical properties 

Thermal transitions were measured by a TA Instruments (New Castle, DE) Q200 

DSC and Q800 DMA.  For DSC analysis, samples ranging in mass from 10-15 mg were 

heated from -80
o 
C to 200

o
 C at a rate of 10

o
 C min

-1
, cooled to -80

o 
C at a rate of -20

o
 C 

min
-1

, and heated a second time to 200
o
 C at a rate of 10

o
 C min

-1
.  All transitions were 

obtained from the second heating run.  For dynamic mechanical analysis (DMA, Q800 

DMA, TA Instruments, New Castle, DE), cylindrical samples (6 × 6 mm) were analyzed 

from -80
o
 to 55

o
 C at a ramp rate of 1

o
 C min

-1
.  Scaffolds were compressed at a 
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frequency of 1 Hz with 1% strain during the thermal treatment.  Glass transitions were 

obtained at the peak of tan δ. 

The mechanical properties of the different PTK-UR and PEUR scaffold 

formulations were measured in compression at 37°C in a submersion compression clamp 

using the Q800 DMA. Cylindrical 6 × 6 mm scaffold samples were tested after 

incubation in phosphate buffered saline (PBS) for 7 days at 37°C. Using a preload force 

of 0.1 N, samples were compressed along the longitudinal axis at a strain rate of 10% per 

min until 60% compressive strain was achieved. The Young’s modulus for each sample 

was calculated from the slope of the initial linear region of each respective stress-strain 

curve after toe-in.  

In vitro degradation of PTK-UR and PEUR scaffolds 

Long-term hydrolytic stability of PTK-UR and PEUR scaffolds was determined 

by incubating 10 mg samples in PBS at 37°C on a shaker and measuring the mass loss at 

each time point (n = 3). Before beginning the experiment, scaffolds were soaked in an 

excess of DCM for 24 h to remove any unreacted components before vacuum drying for 

24 h. Scaffold samples were removed from the buffer at each time point, rinsed in 

deionized water, vacuum dried for 48 h, and weighed. The buffer medium was not 

changed between time points. Short term oxidative degradation rates of PTK-UR 

scaffolds were similarly assessed using an oxidative degradation medium that simulates 

in vivo oxidative degradation at an accelerated rate
28

. This oxidative medium comprised 

20 wt% hydrogen peroxide (H2O2) in 0.1 M cobalt chloride (CoCl2), with the H2O2 and 

cobalt ion reacting to stimulate oxidative radical formation
28a

.  As with the long-term 

study, triplicate samples were pre-soaked in DCM for 24 h before vacuum drying and 
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incubated at 37°C in the oxidative medium on a shaker. At specified time points over 10 

d, samples were removed, rinsed with deionized water, vacuum dried, and weighed. The 

oxidative medium was replaced every 3 days, and the morphology of both PBS-incubated 

and H2O2-incubated scaffolds was qualitatively assessed with SEM. 

The effect of radical concentration on PTK-UR scaffold degradation kinetics was 

also explored. The original 20% H2O2 in 0.1 M CoCl2 degradation medium was diluted 

ten and one hundred fold to yield a 2% H2O2 in 0.01 M CoCl2 solution and a 0.2% H2O2 

in 0.001 M CoCl2 solution. These three degradation media were used to incubate 100%, 

50%, and 0% MEE-PTK-UR scaffolds along with 900t-PEUR control samples, with 

material preparation steps and incubation conditions being the same as previously 

described.  

Mathematical modeling of PTK-UR oxidative degradation 

The degradation behavior of the PTK-UR scaffold formulations were fit to first-

order decay kinetics equation to create a mathematical model of scaffold degradation 

with respect to H2O2 concentration. The first-order degradation model is given in 

Equation 2. 

 
  

  
⁄       (2) 

In this equation, Mt is the scaffold mass remaining at time t, M0 is the initial 

scaffold mass, and k is the degradation rate constant. Non-linear regression was used to 

fit this first-order degradation model to the experimentally determined degradation data. 

This method was used to determine the degradation rate constant k for the different 

scaffolds in the different control and oxidative media. 

 



 

 

161 

 

In vitro culture of macrophages on PTK-UR scaffolds 

RAW 264.7 macrophages were cultured in DMEM supplemented with 10% FBS 

and 1% penicillin/streptomycin. 100% and 0% MEE-PTK-UR scaffolds were cut into 6.5 

× 1-mm discs, sterilized by UV-radiation for 1 h (30 min per side), placed into 96-well 

plates, and incubated with culture medium for 30 min. Macrophages were seeded onto 

the scaffolds at a density of 2.5 × 10
5
 cells/scaffold. The cells were allowed to adhere to 

the scaffolds for 3 h, at which point the old media were removed and the cells were 

treated with either fresh culture media or activation media containing 5 μg mL
-1

 

lipopolysaccharide (LPS) and 1000 U mL
-1

 interferon gamma (IFN-γ). Cells were 

incubated on the scaffolds for 3 d with fresh culture media being applied daily. After the 

3 d incubation, the scaffolds were fixed in 5% glutaraldehyde for 2 h followed by 2% 

osmium tetroxide for 1 h. These fixed scaffolds were dehydrated in ascending grades of 

ethanol before being vacuum dried, sputter-coated, and imaged with SEM to evaluate 

surface pitting. 

Cytotoxicity of PTK-UR and PEUR scaffolds 

NIH 3T3 mouse fibroblasts stably transfected with a firefly luciferase reporter 

gene were cultured in DMEM supplemented with 10% FBS and 1% 

penicillin/streptomycin. 100% MEE-PTK-UR, 0% MEE-PTK-UR, and 900t-PEUR 

scaffolds were cut into 6.5 × 1-mm discs, sterilized by UV-radiation for 1 h (30 min per 

side), placed into a black-walled 96-well plate, and incubated with culture medium for 30 

min. Fibroblasts were seeded at a density of 5.0 × 10
4
 cells/scaffold on n=3 scaffolds and 

allowed to grow for 0, 1, and 3 days in 200 μL of culture media per well (changed every 

two days). At the endpoint, the cell-seeded scaffolds were treated with culture media 
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containing a luciferin substrate. After 10 min, the scaffolds were imaged with an IVIS 

200 (Caliper Life Sciences, Hopkinton, MA) bioluminescence imaging system with an 

exposure time of 2 min to quantify the luciferase-based bioluminescence signal from each 

scaffold’s viable cell population.  All readings were normalized to day 0 bioluminescence 

values. 

In vivo degradation of PTK-UR scaffolds implanted subcutaneously in rats 

All surgical procedures were reviewed and approved by the Institutional Animal 

Care and Use Committee. 100% MEE-PTK-UR and 900t-PEUR scaffolds were cut into 

10 × 2.5 mm discs, sterilized with ethylene oxide prior, and implanted into ventral 

subcutaneous sites in adult male Sprague-Dawley rats. Scaffolds were excised at weeks 1, 

3, 5 and 7 to evaluate new tissue formation in the implants. The tissues were fixed in 

formalin for 48 h followed by incubation in 70% ethanol for 48 h, embedding in paraffin, 

sectioning, and staining with hematoxylin & eosin. Histological sections were evaluated 

with Metamorph Imaging Software (Molecular Devices Inc., Sunnyvale CA) to assess 

wound size, scaffold degradation, and new tissue growth.  

Statistical Analysis 

All data are reported as the mean and standard error of the mean. Statistical 

analysis was performed using single factor analysis of variance (ANOVA) and Tukey 

post-hoc comparison tests, with p-values less than 0.05 considered statistically 

significant. 
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Figure 6.2.  

1
H-NMR spectra of the synthesized PTK copolymer diols.  Peaks 

associated with MEE and BDT monomers correlated with molar composition used 

in the polymer feed. 

Table 6.1.  Characterization of PTK diols. 

Copolymer (PTK diol) 100% MEE 75% MEE 50% MEE 25% MEE 0% MEE 

GPC Mn 1027 1005 947 1053 807 

PDI 1.38 1.34 1.35 1.36 1.32 

Titration Mn 825 850 810 745 680 

Theoretical MEE% 100% 75% 50% 25% 0% 

Actual MEE% 100% 76% 52% 26% 0% 
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Results 

Thiol-terminated PTK polymers were successfully synthesized from the 

condensation polymerization of MEE, BDT, and DMP monomers using PTSA as a 

catalyst. Five copolymers were synthesized with varying percent molar composition of 

MEE and BDT, and each polymer is designated by its relative mol% MEE. 
1
H-NMR 

spectra confirmed that the composition of the synthesized polymers closely matched  the 

monomer ratios in the feed (Figure 6.2, Table 6.1), and gel permeation chromatography 

(GPC) analysis showed that the polymers had Mn of ~1000 g mol
-1

 with polydispersity 

index (PDI) values around 1.35. 

Efficient conversion of terminal thiols to hydroxyls was demonstrated by ATR-

FTIR. The thiol absorbance peak at 2550 cm
-1

 was apparent in the thiol-terminated, 

parent PTKs but did not appear with the hydroxyl-terminated polymers, which generated 

a characteristic ATR-FTIR hydroxyl peak at 3400 cm
-1

 (Figure 6.3). OH numbers 

experimentally measured with titration were utilized to calculate a titration Mn that was 

used to balance the hydroxyl-isocyanate reaction used to form PTK-URs. Consistent with 

previous findings, the experimental OH numbers trended higher than theoretical values
9a

. 
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PTK-UR scaffolds were successfully synthesized from the PTK diols and HDIt, 

yielding porous, mechanically robust 3D scaffolds (Figure 6.4, top row). PEUR control 

scaffolds were also successfully formed from HDIt and the three different polyester 

prepolymers (1000d, 1500t, and 900t). The resulting PTK-UR and PEUR scaffolds 

possessed similar sol fraction and porosity, as seen in Table 6.2.  The average molecular 

weight between crosslinks (Mc) for 1000d- and 1500t-PEUR was statistically equal to all 

of the PTK-UR scaffolds, while the 900t-PEURs had a significantly lower Mc (p < 0.05) 

relative to all other formulations except for the 100% and 0% MEE-PTK-UR scaffolds 

 
Figure 6.3.  ATR-FTIR spectra of thiol- and hydroxyl-terminated PTKs. The thiol 

absorbance peak is seen at 2550 cm
-1

 and the hydroxyl absorbance peak is seen at 

3400 cm
-1

. These spectra demonstrate efficient conversion of PTK terminal thiols into 

hydroxyls. 
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(Table 6.2). The relative surface hydrophilicity of the PTK-UR materials was assessed 

using contact angle measurements on films, with 100%, 50%, and 0% MEE-PTK-URs 

having contact angle values of 66°, 77°, and 80°, respectively.  

The glass-transition temperature (Tg) of PTK polyols was determined by 

differential scanning calorimetry (DSC), and the Tg of the PTK-UR scaffolds was 

measured by DSC and dynamic mechanical analysis (DMA) (Table 6.3). The wet 

compressive moduli of the PTK-UR scaffolds ranged from 100 - 250 kPa, and the PEUR 

moduli ranged from 20 – 100 kPa (Figure 6.5). All the PTK-UR formulations had 

significantly higher modulus values than the 1500t-PEUR and 1000d-PEUR materials, 

while the lower Mc 900t-PEUR scaffolds possessed stiffness values closer to the PTK-

UR samples. However, even this formulation was significantly less stiff than the 100% 

and 0% MEE-PTK-UR materials. 
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Figure 6.4.  SEM images of PTK-UR scaffolds. Day 0 samples (top row) show 

representative untreated scaffolds. The day 10 degradation samples (middle row) were 

incubated in 20% H2O2 in 0.1M CoCl2 for 10 days at 37°C to demonstrate oxidative 

degradation of the PTK-URs (note visible changes in structure of “macro-pores” and 

appearance of “micro-pores” in the struts of the scaffold). Day 14 control samples 

(bottom row) were incubated in PBS for two weeks at 37°C to demonstrate the 

resistance of the PTKs to hydrolytic breakdown. White scale bar represents 600 μm, 

and the inset images display higher magnification views (2.6x magnification of large 

image). 
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Table 6.2.  Physical properties of PTK-UR and PEUR scaffolds. 

Scaffold 
Sol Fraction 

(%) 

Core 

Porosity 

(vol. %) 

Mc  

(kg mol
-1

) 

100% MEE PTK-UR 6.9%±1.6% 90.9%±0.4% 7.6±4.2 

75% MEE PTK-UR 8.4%±1.4% 89.0%±1.2% 10.1±4.9 

50% MEE PTK-UR 9.7%±6.1% 86.9%±1.4% 13.8±6.5 

25% MEE PTK-UR 9.1%±2.7% 90.6%±1.5% 9.0±5.0 

0% MEE PTK-UR 8.3%±3.2% 88.8%±1.4% 9.0±5.8 

900t PEUR 4.1%±1.6% 89.8%±1.2% 2.5±1.6 

1500t PEUR 4.7%±0.1% 91.3%±0.2% 13.2±5.4 

1000d PEUR 7.7%±0.1% 92.7%±0.7% 7.7±2.8 

 

 
Figure 6.5.  Polyurethane scaffold mechanical properties. The compressive moduli of 

porous scaffolds were determined under wet conditions at 37°C. *p < 0.05 compared 

to 1500t- and 1000d-PEUR. 
#
p < 0.05 compared to 900t-PEUR. 
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The hypothesized oxidative degradation mechanism of PTK copolymers is seen in 

Figure 6.6. Qualitative PTK-UR degradation was demonstrated by SEM as scaffolds 

incubated for 10 d in oxidative media illustrated loss of porous architecture and surface 

pitting (Figure 6.4, middle row), while these morphological changes in scaffold 

architecture were not apparent following PTK-UR scaffold incubation in PBS for 14 days 

(Figure 6.4, bottom row). The PTK-UR scaffolds were stable over a long-term, 25-week 

study in PBS at 37°C, while the 900t-PEUR scaffolds underwent significant hydrolytic 

degradation over this time period (Figure 6.7B). Conversely, the PTK-URs rapidly 

degraded under accelerated oxidative conditions (20% H2O2 in 0.1 M CoCl2) as seen in 

Figure 6.7C. The degradation profiles of all PTK-UR formulations in the 20% H2O2 

media are seen in Figure 6.7G. 

Table 6.3.  Thermomechanical properties of PTK-UR and PEUR scaffolds and neat 

polymers. 

 Polymer  Scaffold 

 

DSC Tg 

(°C) 

 DSC Tg 

(°C) 

DMA Tg 

(°C) 

100%MEE-PTK -66.1  -25.2 20.7 

75%MEE-PTK -67.7  -36.0 14.9 

50%MEE-PTK -78.5  -11.1 13.9 

25%MEE-PTK -72.9  -27.9 20.3 

0%MEE-PTK -76.8  -19.3 23.1 

900 Triol -47.7  -1.7 34.4 

1500 Triol -56.9  -26.4 24.7 

1000 Diol -43.1  -30.1 18.2 
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Figure 6.6.  Proposed mechanism for hydroxyl radical degradation of PTK polymers. 

Hydroxyl radicals formed from the breakdown of H2O2 react with and break the TK 

bond, leading to PTK degradation into its original constitutive monomers (BDT and 

MEE) and acetone. 
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Figure 6.7.  In vitro degradation of PTK-UR scaffolds. Data are presented as mean ± 

standard error with n = 3. (A) Long-term stability of PTK-UR scaffolds incubated in 

PBS. (B) Percent degradation of PTK-UR scaffolds incubated in oxidative medium 

(20% H2O2 in 0.1M CoCl2). Dashed lines represent best-fit curves, *p < 0.05. Percent 

mass remaining of (C) 100% MEE-PTK-UR, (D) 50% MEE-PTK-UR, and (E) 0% 

MEE-PTK-UR scaffolds incubated in oxidative media containing 20%, 2%, and 0.2% 

H2O2.(F) Degradation constants used to generate the best-fit curves in (B-E), as 

determined by non-linear regression analysis. (G) The PTK-UR but not the PEUR 

scaffolds exhibited H2O2 dose-dependent degradation. 
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To further elucidate the relationship between ROS concentration and the 

degradation rates of the different PTK-UR scaffold formulations, degradation was 

measured in oxidative media comprising 20%, 2%, and 0.2% H2O2 and 0.1, 0.01, and 

0.001 M CoCl2, respectively.  The degradation rates of PTK-UR scaffolds were 

dependent on the concentration of H2O2 (Figure 6.7C-E). The mass loss profiles of the 

PTK-UR scaffolds were fit to first-order degradation kinetics (Equation 2) to 

mathematically model the process of scaffold degradation with respect to H2O2 

concentration. The model-generated degradation profiles are concurrently shown with the 

respective experimental data as dotted lines in Figure 6.6B-E, with the derived 

degradation rate constants being shown in Figure 6.6F. The 900t-PEUR samples 

incubated in these same oxidative media did not display significant degradation over the 

same time scale (Figure 6.7G).  

100% and 0% MEE-PTK-UR scaffolds were seeded with murine-derived RAW 

267.4 macrophages. Seeded cells were treated with either control culture media or 

macrophage-activating media containing LPS and IFN-γ.  SEM imaging of scaffolds after 

three days illustrated surface pitting by activated macrophages, but cell mediated scaffold 

degradation was not apparent for the control cells (Figure 6.8). 
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Figure 6.8.  Macrophage pitting of PTK-UR scaffolds. PTK-UR scaffolds seeded with  

RAW 267.4 macrophages and incubated for 3 d in either control or activation media 

(LPS and IFN-γ). The activated macrophages generated visible pitting on the scaffold 

surface (black arrows), indicating ROS-mediated scaffold degradation. Scale bar = 

20μm. 
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NIH 3T3 mouse fibroblasts stably transduced to express luciferase were seeded 

onto 100% MEE-PTK-UR, 0% MEE-PTK-UR, and 900t-PEUR scaffolds, and relative 

cell number was measured based on luciferase activity over 3 days of culture (Figure 

6.9A). Cell-generated bioluminescent signal was steadily maintained over the culture 

period, and there were no significant differences between the scaffold compositions 

tested.    

100% MEE-PTK-UR and 900t-PEUR scaffolds subcutaneously implanted into 

male Sprague-Dawley rats demonstrated robust cellular infiltration and granulation tissue 

formation by 3 weeks post implantation, while the 0% MEE-PTK-UR materials 

supported visibly less tissue in-growth (Figure 6.9B). Both the 100% MEE-PTK-UR and 

900t-PEUR materials displayed significant degradation over 7 weeks. However, the 

100% MEE-PTK-UR implants degraded gradually over 7 weeks to reach 40% 

degradation, whereas at their end point the 900t-PEUR scaffolds were 75% degraded 

compared to week 1 values  and experienced all their degradation between weeks 3 and 7. 

The 900t-PEUR scaffolds were also significantly more compressed than the PTK-UR 

materials, which stented the implant site significantly more than the PEUR scaffolds 

(Figure 6.9C). Wound lengths were relatively consistent between PTK-UR and PEUR 

implant sites over time, while wound area measurements followed trends similar to the 

scaffold thickness values. 
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Figure 6.9.  In vitro and in vivo biocompatibility of PTK-UR scaffolds. (A) In vitro 

biocompatibility of porous 3D PTK-UR scaffolds.  (B) In vivo cellular infiltration into 

PTK-UR and control PEUR scaffolds 21 d post-implantation in Sprague-Dawley rats. 

The PTK-UR polymer is stained orange while the PEUR is unstained and appears 

white. (C) Wound thickness of PTK-UR vs. PEUR scaffolds. The PTK-UR scaffolds 

better maintain their mechanical integrity and provide a stenting effect relative to the 

PEUR scaffolds. 
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Discussion 

Most currently utilized tissue engineering scaffolds feature hydrolytically 

degradable ester bonds which non-specifically break down in the presence of water. 

Cleavage of ester bonds produces free carboxylic acids which can acidify the local 

environment and cause autocatalytic degradation of the polyester-based material
12

, 

leading to reduced tissue regeneration
14

. Here, a novel PTK-based scaffold technology is 

presented that is specifically degraded by cell-generated ROS while remaining insensitive 

to hydrolysis
23b

. Because these PTK-UR materials selectively degrade by cell-mediated 

activity, they avoid autocatalytic degradation and are predicted to yield better matched 

rates of cellular infiltration and scaffold degradation. To this end, PTK copolymers were 

successfully synthesized with varying chain compositions but similar Mn and PDI values.  

The resulting dithiol-terminated MEE-PTK polymers were converted into diols to 

generate telechelic end groups compatible with standard polyurethane synthesis and to 

provide PTK polyols amenable to direct comparison with polyesters used in PEUR 

scaffold formation.   

The PTK-UR scaffolds were fabricated using HDIt and compared to PEUR 

scaffolds made from 900t, 1000d, and 1500t polyester-based PEUR scaffolds. While the 

900t-PEUR represented a biological control that has been successfully used for in vivo 

applications
9b, 29

, the 1000d-PEUR and 1500t-PEUR were synthesized for a more direct 

material comparison to the PTK-URs since they yield PEUR scaffolds with similar 

crosslink densities to the PTK-UR scaffolds. The PTK-UR scaffolds produced from the 

PTK macrodiols were approximately 90% porous and were morphologically similar to 

more conventional PEUR 3D porous scaffolds.  This level of porosity is optimal for 
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promoting cellular in-growth, nutrient exchange, and neo-vascularization in tissue 

engineering applications
30

. The PTK-URs also featured relatively low sol fraction values, 

indicating that the isocyanates and diols were well matched and efficiently reacted during 

scaffold formation. As expected, the scaffolds’ relative hydrophilicity was influenced by 

the composition of the PTK polyol, and the contact angle was inversely correlated with 

the mol% of the more hydrophilic MEE monomer in the PTK copolymer. These data 

suggest that the 100% MEE-PTK-UR and the 66° contact angle may be optimal for 

cellular adhesion and tissue formation in vivo because relatively hydrophobic surfaces 

with contact angles > 76° (such as the 50% and 0% MEE-PTK-UR formulations) 

preferentially adsorb hydrophobic serum proteins such as albumin over cellular adhesion 

proteins like fibronectin and vitronectin
31

. 

Thermal analysis of PTK-UR and PEUR scaffolds, along with their polymeric 

precursors, indicated that the scaffolds are phase-mixed materials since the 3D materials 

all possessed a Tg exceeding that of the polyol precursor soft segment
9a

. The scaffold Tg 

values determined by DMA also exceeded those measured by DSC by 30 – 50°C, as has 

been previously reported for similar 3D polyurethane materials
6a

. Wet compression 

testing of these materials indicated that although the 1500t-PEUR, 1000d-PEUR, and 

PTK-UR scaffolds had similar Mc values, all of the PTK-UR formulations had 

significantly higher modulus values than the 1500t-PEUR and 1000d-PEUR materials.  

However, there was no consistent trend between PTK-UR scaffold composition and 

modulus. Due to its higher crosslink density, the 900t-PEUR achieved stiffness values 

closer to the PTK-UR samples, though even this formulation was significantly less stiff 

than the 100% and 0% MEE-PTK-UR materials. Because of the more closely matched 
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mechanical properties and the established precedent for their use
6a, 9b

, the 900t-PEUR 

scaffolds were used as a control for comparison to PTK-UR scaffolds in subsequent in 

vitro and in vivo studies. 

The PTK-UR scaffolds were formulated with HDIt because it is stable relative to 

other isocyanates
8, 9b, 29a

, allowing more specific study of the degradation behavior of the 

polyol component. Degradation of PTK-UR and 900t-PEUR scaffolds was tested in an 

oxidative degradation medium comprising H2O2 and CoCl2 that produces hydroxyl 

radicals 
28a

. These radicals destabilize the thioketal bond, leading to chain scission and 

breakdown into the original constitutive monomers (MEE and BDT) and acetone. It is 

predicted that these small byproducts will be rapidly cleared in an in vivo environment. 

Furthermore, these thiolated monomers have been shown to cause limited in vitro 

cytotoxicity
32

 and a minimal host inflammatory response in vivo
33

 when incorporated into 

a similar polyurethane system.  

The long-term stability of PTK-UR scaffolds over 25 weeks in PBS is 

significantly different than these materials’ rapid degradation under accelerated oxidative 

conditions as seen in, highlighting the ROS-specific degradation mechanism of the PTK-

UR scaffolds. Furthermore, there was a relationship between the PTK composition and 

degradation rate, as the scaffolds with higher MEE content in the PTK polyol degraded 

faster. It has been previously reported that ethers are stable in aqueous media but that 

oxidative radicals can degrade them in vitro and in vivo
28a

. Thus, it is hypothesized that 

the faster ROS-dependent degradation seen in both the 100% and 50% MEE-PTK-UR 

materials may result from a  combination of oxidative degradation of both thioketals and 

ethers, while the 0% MEE-PTK-UR scaffolds are degraded solely by thioketal scission. 
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These results indicate that ROS-dependent scaffold degradation rates can be tuned by the 

composition of the PTK polyol.  

For all PTK-UR compositions tested, the degradation rate was dependent on ROS 

concentrations. This dose-dependent relationship between ROS levels and degradation 

rate coupled with the agreement between the model and experimental data confirm that 

the PTK-UR scaffolds degrade by first-order kinetics with respect to ROS concentration. 

The degradation rate constants derived from the non-linear regression fitting of the 

experimental data gathered in 20% H2O2 media also illustrate the relationship between 

degradation rate and the %MEE-PTK polyol used in PTK-UR scaffold fabrication, 

though this trend was decreased under lower H2O2 concentrations. In contrast, the 900t-

PEUR samples incubated in these same oxidative media did not display H2O2 dose-

dependent degradation, highlighting the unique degradation mechanism of the PTK-UR 

relative to PEUR scaffolds. These collective data confirm that PTK-based polyols are 

selectively cleaved by ROS and that their rate of degradation is first-order with respect to 

the concentration of radical species in the local environment.  

PTK-UR scaffolds were shown to display a high level of in vitro 

cytocompatibility with both RAW 267.4 macrophages and NIH 3T3 fibroblasts. Seeded 

macrophages were treated with either control culture media or media containing LPS and 

IFN-γ to activate the macrophages through the classical pathway
34

, which is known to 

lead to ROS production
9b, 24

. Scaffolds with activated macrophages displayed enhanced 

surface pitting while cell-mediated remodeling of the scaffold surface was less evident 

for the control cells, indicating that the PTK-UR scaffolds were degraded by 

physiologically-relevant concentrations of ROS. Further highlighting these materials’ 
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cytocompatibility, luciferase-expressing fibroblasts seeded on PTK-UR and PEUR 

scaffolds steadily maintained their bioluminescent signal over the culture period, similar 

to viability profiles seen in other biocompatible 3D scaffolds
35

. Similar cell lines stably 

transduced to express luciferase have been previously used to reliably measure in vitro 

cellular viability, as their constitutive luciferase activity directly correlates with cell 

number
16a

. Furthermore, none of the scaffold formulations displayed a significant 

difference in bioluminescence over time or relative to each other, indicating that PTK-UR 

scaffolds possessed biocompatibility levels analogous to PEUR scaffolds that are 

cytocompatible and have been successfully utilized in vivo
9b

 

This in vivo cytocompatibility was confirmed by histological analysis of 

subcutaneous implants, which showed that neither the 100% nor 0% MEE-PTK-UR 

formulations elicited an inflammatory response from the native tissue that was obviously 

different from the conventional PEUR scaffolds. However, the 0% MEE-PTK-UR 

scaffolds supported less robust tissue infiltration into the scaffold interior relative to the 

100% MEE-PTK-UR or 900t-PEUR scaffolds. On possible explanation for this result is 

that the relative hydrophobicity of the 0% MEE-PTK-UR scaffolds (80° contact angle) 

did not allow cells to properly adhere and migrate into the scaffold interior. As such, only 

the 100% MEE-PTK-UR and 900t-PEUR histology samples were quantitatively 

analyzed. Both these formulations supported new tissue growth into the scaffold interior 

3 weeks after implantation and displayed significant biodegradation over 7 weeks. The 

900t-PEURs experienced a steep increase in degradation after 3 weeks as expected from 

previous work with these materials
9b

, while the 100% MEE-PTK-UR scaffolds displayed 

gradual, first-order degradation over time. This confirms the initial hypothesis that PTK-
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UR scaffolds degrade in a more controlled, cell-mediated mechanism than more 

conventional PEUR materials which have been recently shown to undergo to 

autocatalytic degradation in vivo resulting in a reduced wound healing response
14

. 

Furthermore, the PTK-UR samples were more mechanically resilient and more 

effectively stented subcutaneous pockets. Though all scaffolds possessed 90% porosity 

and were cut to the same thickness pre-implantation, the PEUR materials were 

significantly more compressed than the PTK-UR scaffolds at all time points.  This in vivo 

compression of PEUR scaffolds can be potentially attributed to both the significantly 

higher modulus of the 100% MEE-PTK-UR samples relative to the 900t-PEUR 

formulation, and also to the 900t-PEUR Tg value (34.4 °C) which is close to body 

temperature. This relatively high Tg is predicted to make this PEUR scaffold less 

mechanically resilient at body temperature because it will be in its glassy transition 

viscoelastic region. The stenting effect seen in these PTK-UR scaffolds is advantageous 

because it ensures that the scaffold pores remain open, maximizing cell infiltration and 

new tissue formation and potentially decreasing scarring in clinical applications. 

 

Conclusion 

ROS are key mediators of cell function in both health and disease, especially at 

sites of inflammation and tissue healing. Utilizing these cell-generated species as triggers 

for selective polymer degradation represents a promising methodology for creating a 

tissue engineering scaffolds with well-matched rates of tissue in-growth and cell-

mediated scaffold degradation. Here, novel poly(thioketal) polymers featuring tunable 

reactive end-chemistries, chain compositions, and ROS-mediated degradation rates have 
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been developed towards this end. These PTK polymers were successfully incorporated 

into 3D porous tissue engineering scaffolds with more robust mechanical properties than 

similar constructs fabricated from standard polyesters. These PTK-UR scaffolds were 

selectively degraded by ROS but were stable under aqueous conditions, indicating that 

their biodegradation would be exclusively cell-mediated, as opposed to PEURs that 

hydrolytically degrade independent of cellular activity. Moreover, the oxidative 

degradation rates of the PTK-URs followed first-order degradation kinetics and displayed 

dose-dependent degradation with respect to ROS levels. PTK scaffolds exhibited 

cytocompatibility in vitro and were shown to be degraded by activated, ROS-secreting 

macrophages. The PTK-UR scaffolds also supported cell infiltration and granulation 

tissue formation in vivo, and their superior mechanical properties lead to significantly 

greater stenting of subcutaneous “wounds” compared to more standard PEUR scaffolds. 

Furthermore, the PTK-URs experienced controlled first-order in vivo biodegradation in 

contrast to the PEUR scaffolds which experienced dramatic increases in degradation at 

later time points. These collective data indicate that PTK-URs represent a useful new 

class of biomaterials that provide a robust, cell-degradable substrate for guiding new 

tissue formation.   

Additionally, the simple synthesis chemistry for PTKs allows for a large level of 

customization.  Nearly any low molecular weight thiol should be able to be utilized as a 

starting material, including low molecular weight, thiol functionalized peptides.  These 

peptides can be specifically designed to impart enzymatic functionality to the degradation 

of the resulting polymer.  More information regarding the potential uses of enzymatically 

degradable PTK materials can be found in Chapter VIII.  
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CHAPTER VII 

CONCLUSIONS 

The culmination of this dissertation is a roadmap for a three pronged approach to 

analyze and treat cancer induced bone disease.  The studies conducted in the previous 

chapters outline the foundational work to the generation of an ambitious combination of 

degradable polyurethane graft systems with anti-cancer releasing nano-particles for 

treatment of metastatic bone disease and regeneration of healthy tissue.   

Chapter III discusses the use of a polyurethane film with tunable rigidity for 

studying metastatic cancers in bone in vitro
36

. Specifically, the 2D polyurethane film 

culture system can accurately match the rigidity associated with soft and hard tissues in 

the body.  This allows for advanced investigation into the effects that rigidity has on the 

underlying molecular causes of cancers that metastasize to bone.  The primary analysis 

showed that osteolytic gene expression and integrin expression is upregulated on films 

that have bone like mechanical properties.  Previous studies utilizing the polyurethane 

cell culture system pointed to Rho associated kinase (ROCK), as a main target for 

potential therapeutic targets
37

, but when we inhibited ROCK in tumor cells and implanted  

the cells intratibially in mice, osteolysis was not reduced.  We looked to another cell 

mechanism known to be highly relevant in carcinogenesis, the epithelial to mesenchymal 

(EMT) pathway
38

, for inspiration into the possible underlying causes of rigidity induced 

changes in tumor cells.  It was found that associations between the TGF-β signaling 

pathway and integrin αvβ3 were stimulated on rigid materials by a novel FRET study.  

The associations caused upregulation of osteolytic factors that could be inhibited by 
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targeting the activation of integrins.  While integrins have long been associated with 

increased metastatic potential
39

, this is one of the first times that integrins have been 

associated with increased osteolysis after tumor establishment in the bone 

microenvironment.  Inhibition of integrins with a tumor cell line stably transfected 

against producing integrin β3 limited ostelysis upon intratibial implantation in vivo.  The 

elucidation of an underlying mechanism of solid state signaling (integrins) cross-talking 

with soluble receptor (TGF-β) signaling pathways allows for therapeutic targeting of the 

full range of both signaling cascades.    

With the potential molecular targets identified, compounds that are known to 

inhibit various sections of the signaling cascade were identified.  These drugs are 

commonly hydrophobic small molecules with limited solubility in aqueous environments.  

The known limitations of traditional drug delivery methods, poor solubility, 

pharmacokinetics and intracellular uptake, have resulted in the need for novel delivery 

systems that can be tailored for specific applications.   One of the methods to overcome 

these challenges is with cationic polymers that utilize pH responsive protonation to 

release therapeutics into the cytoplasm of cells.  However, many cationic polymers are 

also cytotoxic due to the membrane disruptive potential of the charged species.  Chapter 

IV describes the development of a library of self-assembling polymers micelles with pH 

responsive drug release and hydrolytic degradation for encapsulation and release of 

hydrophobic small molecule drugs
40

.  Twelve polymers were synthesized via reversible-

addition fragmentation chain-transfer (RAFT) polymerization with a poly(ethylene 

glycol) (PEG) corona and a cationic and hydrophobic core.  The cationic monomers were 

either non-degradable or degradable branches that would hydrolyze over time.  While 
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many of the polymers appeared to be non-cytotoxic and resulted in encapsulation and 

release of a model hydrophobic drug, the 60% diethylamino ethyl acrylate (DEAEA) 

polymer seemed to provide the most pH responsive release and was selected as the most 

promising candidate for future analysis.  Similar polymers have been combined with 

polyurethane materials developed in our lab to generate nanoparticle releasing 

combination grafts
41

.  The 60% DEAEA polymer is currently undergoing testing to 

release hydrophobic drugs from polyurethane grafts. 

Our lab has a long history of utilizing lysine derived isocyanates for the synthesis 

of non-toxic, degradable polyurethane materials for tissue engineering
10, 29a, 42

, however, 

there were no mechanistic studies into the reaction kinetics of the complex reactive 

mixtures.  Chapter V describes the detailed study of lysine based injectable, degradable 

polyurethane bone grafts
29b

.  A novel in situ technique to analyze the individual reaction 

kinetics of each component of the grafts was developed using attenuated-total reflectance 

infrared spectroscopy.  Interestingly, the amine catalyst utilized for a majority of the 

materials developed in our lab was found to preferentially catalyze the reaction of 

isocyanates and water.  This is contradictory to the industrial uses for amine based 

catalysts and most likely is due to the unique structure of the lysine based isocyanates.  

From the bulk kinetic data a model of the reacting material could be attained.  This model 

predicted conversion percentage of each component.  The predictions were matched with 

leached materials during various stages of curing.  The materials found via NMR analysis 

of the leachates correlated with the components that showed the lowest percentage of 

conversion.  These major components of the leached materials were the polyester polyol 

and dipropylene glycol (the carrier for the amine catalyst), both of which are non-
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cytotoxic.  The overall results of this study were the development of an in situ monitoring 

system for reactive polyurethane materials that allowed for a detailed understanding of a 

complex kinetic phenomenon. 

 The polyurethane biomaterials developed previously in our lab have primarily 

focused on the use of a polyester polyol hardener.  The polyesters are hydrolytically 

degradable and it has been shown that the degradation mechanism is autocatalytic
12, 43

.  

This autocatalytic degradation can result in a resorption gap between the regeneration of 

new tissue and residual graft material
42b

.  Chapter VI describes the synthesis and 

characterization of poly(thioketals) (PTKs) a novel cell degradable chemistry
44

.  PTKs 

were found to be highly sensitive to reactive oxygen species and resulted in near first 

order degradation kinetics.  The PTK based polyurethane materials outperformed similar 

polyesters based polyurethanes in terms of mechanical strength and thermal properties.  

The 100% mercapto ethyl ether (MEE) PTK was the most biocompatible, showing the 

least cytotoxicity in vitro and similar cell infiltration compared to the polyester 

polyurethanes in vivo.  PTKs represent a viable alternative to polyester based 

polyurethanes and shift the focus of future grafts to more cell responsive materials.  The 

simple chemistry also opens possibilities of highly specific degradation mechanisms by 

the addition of enzymatic sensitivity.     
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CHAPTER VIII 

SUGGESTIONS FOR FUTURE WORK 

This dissertation addresses the usefulness of polyurethanes to both study and 

potentially treat cancer induced bone disease (CIBD).  The main conclusions of this work 

have created many intriguing research questions.  The following section discusses 

suggestions for future studies that will lead to advanced analysis of CIBD and therapeutic 

interventions for tumor induced bone destruction.  

 

Three Dimensional (3D) Printed Bone-Mimetic Scaffolds for Bioreactor Studies 

While the 2D films covered in Chapter III are a significant advancement to 

studying bone specific cell populations, the limitations of 2D culture are well known
1
.  

Traditional 2D cell culture has provided an untold amount of insight into the world of cell 

and molecular biology, however 3D cell culture has significant advantages.  There is 

certainly no argument to the cost effectiveness and ease of use of 2D cell culture, but 

there are significant drawbacks that still have yet to be fully addressed.  There are two 

main issues, which are abundantly clear, with typical 2D culture: (1) Physiological 

conditions in vivo are not 2D and (2) Cellular microenvironments cannot be mimicked 

with rigid polystyrene or glass.  2D cell culture forces cells to adapt and survive on 

substrates that are not native.  The ultimate goal of in vitro culture systems should be to 

study cellular aspects in environments that can be closely translated to in vivo systems.   

Researchers have been interested in analyzing cells in environments that better 

mimic physiological conditions for nearly three decades, though the task is not without 

challenges.  The knowledge gained from 2D cultures seemed to overshadow the 
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importance of utilizing 3D systems.  However, research in the early 1980’s started the 

rise of 3D culture techniques.  Collagen gels and ECM components derived from mouse 

tumor cells (termed Matrigel) were utilized to study cells in a 3D environment
2
.  Even 

after the development of these techniques some researchers felt that 3D culture was too 

expensive, difficult and unnecessary
3
.  It was not widely accepted that 3D culture systems 

were able to discern very useful information until Weaver et al. showed the inherently 

different behavior of cancer cells in 3D cell culture
4
.  In their culture system, cancerous 

breast cells grown in 3D culture matching normal breast tissue became quiescent and 

returned to a native epithelial phenotype , a result never seen in 2D
4
.  Since this initial 

discovery, a large group of research has focused on developing materials that better 

match the native ECM environment.  However, with most of these 3D cell culture 

systems the range of mechanical properties is only relevant for soft tissue applications.  

To date, there has been little work on 3D cell culture systems that mimic the rigidity of 

hard tissue. 

Transitioning to 3D in vitro systems has generated a large number of significant 

findings that are more closely related to in vivo pathologies
5
.  The 2D polyurethane 

(PUR) film system is generated by casting a reactive liquid.  The polyurethane is simply 

cast into a well plate or mold.  This technique can be directly translated to a 3D system if 

the proper mold is created.  Preliminary studies on 3D-printed poly-l-lactic acid (PLA) 

molds were completed.  The molds were printed as layers of fibers with a known fiber 

diameter (FD) and fiber spacing (FS).  The liquid reactive PUR was then cast around the 

PLA molds and allowed to cure overnight at 60
o
 C.  After curing the excess PUR is 

removed and the PLA is leached with the following solvents 
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acetone:dichloromethane:acetone:ethanol over a period of three days.  The PUR swells 

significantly in the dichlormethane wash, so care must be taken to immediately place in 

the secondary acetone wash to prevent cracking or crumbling of the scaffold.  A diagram 

of the molding process and SEM images of a leached PUR mold are shown in Figure 7.1.  

The resulting PUR scaffold is 100% interconnected, due to the overlapping PLA fibers, 

and has a pore size that is equal to the FD.   

    

 The 3D-PUR scaffolds can be tuned to various rigidity just as the 2D PUR films.  

Cells can be directly seeding onto the scaffolds via capillary uptake of the cell 

suspension.  Additionally, the surface area is much larger than traditional 2D culture 

systems so much larger populations of cells can be analyzed at one time.  The mechanical 

 

Figure 7.1.  Schematic diagram of the generation of PUR 3D scaffolds. 
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properties of the 3D-PUR scaffolds were assessed by nanoindentation and compared to 

the 2D films (Table 7.1). 

   

 Preliminary studies with cell seeding were conducted with 3D PUR scaffolds with 

a pore size of 300 μm.  The scaffolds were coated overnight in a fibronectin solution to 

aid cell adhesion.  Green fluorescent protein (GFP) transfected MDA-MB-231 cells were 

seeded into the 3D scaffolds and imaged with fluorescent and electron microscopy 

(Figure 7.2A-C).  The cells attached readily and after 48 hours of static culture the cells 

were harvested with a modified TRIzol extraction method.  Expression of PTHrP was 

conducted and found to match 2D experiments (Figure 7.2D). 

Table 7.1.  Mechanical properties of 2D and 3D PUR materials obtained by nano-

indentation. 
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 A pilot in vivo experiment was conducted with MDA-MB-231 seeded 3D-PURS 

implanted subcutaneously in the backs of mice.  Tumors were observed after 21 days by 

in situ fluorescence imaging, however in many scaffolds the tumors had died, possibly 

due to lack of nutrients after implantation.  The 3D-PURS that expressed tumors were 

excised, imaged fluorescently, shown in Figure 7.3A, and RNA was harvested from the 

scaffold using TRIzol.  Quantitative PCR data showed a larger difference, Figure 7.3B, in 

PTHrP expression between soft and rigid scaffolds with 300 µm pores.  Furthermore, 

both soft and rigid scaffolds with 500 µm pores had significantly lower expression of 

 
Figure 7.2.  Attachment and gene expression of MDA-MB-231cells seeded within 3D 

PUR scaffolds.  (A) Fluorescent microscopy of GFP labeled MDA-MB-231 cells; 

(B&C) Electron microscopy of MDA-MB-231 cells showing adhesion and morphology; 

(D) Expression of PTHrP on rigid and compliant 3D scaffolds.  
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PTHrP than the rigid 300 µm scaffolds.  The changes in PTHrP expression with 

differences in rigidity and pore size point to an active response to environmental cues by 

osteolytic cancer cells. This model is ideal for studies of the microenvironmental effects 

on tumor cells. Specifically, this model will allow for molecular signaling studies and 

testing of potential inhibitors of the mechanotransduction pathway that can be clinically 

translated. 

 

 To further add to the utility of the 3D scaffolds, a commercially available 

perfusion flow bioreactor was purchased from 3D Biotek (Figure 7.4A).  This bioreactor 

allows for up to 4 simultaneous experiments at a designated flow rate.  The flow rates are 

adjustable and the range of circulating volume is 7 mL-500 mL.  The 3D PUR scaffolds 

are printed to the exact diameter of the sample tubes for the bioreactor and up to 10 (0.5”) 

scaffolds can fit per tube.  Pilot studies testing MDA-MB-231 cells seeded on rigid and 

compliant 3D PUR scaffolds were conducted at a flow rate of 2.1 rpm.  Gene expression 

 
Figure 7.3.  Ex vivo analysis of metastatic cancer cells in 3D polyurethane scaffolds. 

(A) Ex-vivo fluorescent images of MDA-MB-231 cells in 3D PUR scaffolds after 21 

days in vivo.  (B) PTHrP expression of MDA-231 cells culture on 3D PUR scaffolds 

after 21 days. 



 

 

199 

 

was analyzed after 48 hours of culture (Figure 7.4D-F).  For all genes analyzed the 

expression matched that of experiments performed in 2D films. 

         

 These preliminary studies show the potential utility of 3D printed molds, 3D PUR 

scaffolds and the perfusion bioreactor.  Complex analysis can be conducted in vitro and 

then directly applied in vivo to match outcomes.  Future studies should look to adding 

multiple cell populations to generate a bone-in-a-tube study (Figure 7.4C).  The 

combination of adding a cell degradable scaffold (discussed below) seeded with 

osteoclasts creates another primary outcome to test the interplay of tumor cells and the 

bone microenvironment.  Finally, the only limitation is the resolution of the 3D printer 

that generates the mold.  As the technology improves it is easy to conceive of printing a 

mold of human trabecular bone from a CT scan and directly making exact replicas of 

 
Figure 7.4.  Perfusion bioreactor preliminary analysis.  (A&B) Images of 3D Bioteks’ 

bioreactor and sample tube; (C) Potential study of multiple cell types on different 3D 

PUR scaffolds within the same tube (bone-in-a-tube study); (D-F) Gene expression 

for PTHrP, Gli2 and ITGβ3 for MDA-MB-231 cells cultured over 48 hours of 

perfusion flow.   
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bone.  This would be a truly biomimetic architecture that could be tuned to fully examine 

the mechanotransduction effects at play in the bone microenvironment.  

Targeted Nanoparticles for Bone Applications and Cell Specific Drug Release 

 The nanoparticles studied in Chapter IV are an interesting type of polymer system 

that has the benefits of cationic branches to ensure drug delivery within the cytosol of the 

cell; however, there are no current targeting ligands to direct nanoparticle delivery and 

the degradation mechanism is hydrolytic which is difficult to control in vivo.  The self-

assembly method of generating nanoparticles allows for the doping of a small percentage 

of functionalized polymers.  This would generate a mixed micelle, displayed in Figure 

7.5.  The functionalization can be customized post hoc with a targeting agent that 

matches the desired pathology.     
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 Efficient targeted drug delivery can be accomplished with a wide range of 

chemistries and would theoretically eliminate many of the pharmacokinetic challenges 

associated with systemic or local therapeutics
6
.  Specifically, directing therapeutics to the 

bone microenvironment has been achieved with a variety of targeting molecules.  The 

bone microenvironment is unique target due to the large amount of mineralized matrix.  

The mineralized hydroxyapatite can be easily bound to negatively charged species, such 

as bisphosphonates, acidic peptides, or acrylic acid based polymers
7
.  In order to address 

both the targeting and degradation limitations of the cationic polymers a new class of cell 

 
Figure 7.5.  Diagram of the potential functionalization of self-assembled 

nanoparticles through the incorporation of a small number of functionalized 

polymers. 
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degradable polymers was developed based on a ROS degradable poly(propylene sulfide) 

(PPS) chemistry.   

Non-functionalized PPS polymers were recently tested for loading and release of 

a small molecule hydrophobic drug in vitro
8
.  The PPS polymer were well tolerated by 

cells in vitro and were highly sensitive to ROS, showing an almost switch like 

degradation at physiologically relevant ROS levels.  Degradation occurs by ROS 

mediated oxidation of the sulfide to sulfones which adjusts the solubility parameter 

enough that it is no longer hydrophobic.  This shift in hydrophobicity drives micelle 

destabilization.  Additionally, the more hydrophilic polymers would then easily be 

cleared from the body in vivo due to the high aqueous solubility and small size.   

Two types of PPS polymers were functionalized with either a hydrophilic corona 

of PEG (PPS-b-PEG) or a bone targeting sequence of 8-10 acrylic acid monomers (PPS-

b-PAA) via RAFT polymerization (Figure 7.6).  A range of 0-100% PPS-b-PAA 

polymers were tested for hydrodynamic volume, surface charge and the ability to bind to 

hydroxyl apatite crystals in vitro (Figure 7.7).   
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 The mixed micelles showed a decreasing trend of surface charge with increasing 

amounts of PPS-b-PAA.  Surprisingly, the DLS profile showed little change upon 

incorporating more PPS-b-PAA into the micelle.  The size ranged from 87-166 nm at 0 

and 100% PPS-b-PAA incorporation, respectively.  The increase in size is likely due to 

the electrostatic repulsion caused by the close proximity of the PAA in the corona.  In 

vitro binding was obtained incubating the mixed micelles at a concentration of 1 mg/mL 

in 0.5 mL of PBS with 0.1 g of dispersed HA powder at 37
o
 C overnight on a shaking 

tray.  The suspension was centrifuged down at <1000 rpm to prevent any nanoparticle 

sedimentation and the supernatant was read on a plate reader.  The trithiocarbonate chain 

transfer agent (ECT) has an absorbance at 310 nm and could be used as a marker for the 

micelles.  A standard curve was obtained with concentrations ranging from 1-0.03 

mg/mL of the various mixed micelles.  The residual polymer was subtracted from the 

 
Figure 7.6.  Diagram of PPS polymer synthesis. 
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initial amount in the solution and a percentage of bound micelles were obtained.  It was 

found that the micelles with 100% PPS-b-PAA bound the highest to the HA powder, at 

nearly 50% binding efficiency.  There was some residual binding with the PPS-b-PEG 

control group at ~12% binding, but this could simply be an artifact of the centrifugation 

step.  These experiments show that the potential for generating a bone targeted, cell 

specific drug delivery platform is well within reach of the current technology.  In the 

future studies the mixed micelles should be analyzed for drug loading capacity and tested 

in vivo to ascertain any toxicities, although based on previous studies, none are expected.     

  

 
Figure 7.7.  Description and characterization of PPS mixed micelles.  (A) Diagram of 

the formation of PPS mixed micelles; (B) Degradation mechanism of ROS mediated 

sulfide to sulfone transition; (C) Zeta potential and (D) DLS of 0-100% PPS-b-PAA 

micelles; (E) Binding of mixed micelles to hydroxy apatite powder in an aqeuous 

environment in vitro.     
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Combination Product: PUR Bone Graft Releasing Localized Nanoparticle Therapeutics 

 As mentioned several times throughout this dissertation, metastatic tumors that 

establish in the bone are effectively incurable.  The damages associated with cancer 

induced bone disease are extremely devastating to patients’ quality of life (Figure 7.8).  

Often when the tumors become large enough, or when a tumor induced fracture occurs, 

the surgical intervention results in catastrophic loss of tissue and little hope for 

regeneration of new healthy bone.  Ideally, if there was a way to surgically resect the 

tumor infected bone and replace the lost tissue with a synthetic graft that would allow for 

regeneration of new tissue this would give the surgeons a tool to combat the tumor 

induced bone destruction.  In order to ensure the tumor does not simply colonize the 

implant, a therapeutic can be added to target any residual tumor cells at the margins of 

resection. 

 

 
Figure 7.8.  Clinical images of cancer induced bon disease and the limited surgical 

interventions that can be completed. 
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 The bone grafts developed in Chapter V and the nanoparticles discussed in 

Chapter IV (or in the above section) could be theoretically loaded with anti-cancer 

therapeutics and combined into an injectable bone regenerating graft that releases tumor 

killing agents locally.  The current limitations to this technology is the development of 

more stable nanoparticles that can be loaded into the liquid reactive polyurethane without 

destabilization.  Previous iterations of the cationic nanoparticles were loaded with siRNA 

which induced an electrostatic stability to the particles.  Without this electrostatic 

stability the nanoparticles are held together by simple hydrophobic interactions, which 

are easily destabilized upon introduction to the relatively hydrophobic liquid 

polyurethane. 

 

 There are several potential solutions to this issue that can and should be addressed 

in future studies.  The easiest solution is to simply utilize anti-cancer siRNA as the 

 
Figure 7.9.  Diagram of a potential combination graft that targets both regeneration 

of new bone and destruction of residual tumor cells. 
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therapeutic.  This could be immediately implemented in pilot studies.  An alternative 

solution, if hydrophobic small molecule drugs are the required therapeutic, is to utilize 

alginate beads as a filler for the polyurethane graft.  The alginate beads can are formed in 

an aqueous environment and can be prepared with drug loaded nanoparticles (Figure 

7.10).  The alginate can be processed to degrade quickly releasing a burst of nanoparticles 

to the local environment surrounding the graft.  This method would have some limitations 

due to the increased porosity and resulting lack of mechanical strength upon degradation 

of the alginate filler. 

  

 Another alternative method could be the development of dual charged 

“electrostatic zipper” polymers.  These can either be random block copolymers or a 

simple mixed micelle of positive and negatively monomers with a hydrophobic block to 

induce initial formation.  Upon formation at the correct pH, the electrostatic interactions 

should induce a zipper-like stability inside the core of the micelle.  This zipper can then 

be undone as the pH shifts out of the range of dual protonation/deprotonation or in the 

case of DEAEA polymers, when the cationic branch degrades.  The potential of this type 

 
Figure 7.10.  Fluorescent image of alginate beads prepared with Nile Red loaded 

nanoparticles. 
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of novel therapy for treating an uncurable disease would be hugely important to afflicted 

patients.  

 

Cell Specific Degradable PUR Products 

 Passive biodegradation, such as hydrolysis, is difficult to control in vivo.  Novel 

polymers and amino acid sequences have been synthesized with oxidative and enzymatic 

degradable sequences to produce a cell specific degradation mechanism.  Initial studies 

discussed in Chapter VI show that poly(thioketals) (PTKs) can be synthesized via an acid 

catalyzed step polymerization of 2,2-dimethoxypropane and dimercapto-precursors.  

PTKs are known to be acid, base and enzymatically resistant, but oxidatively degrade to 

the dimercapto-precursor and acetone
9
.  Oxidative degradation is physiologically relevant 

with the release of oxidative species during the natural wound healing response.  To 

further aid the cell specific degradation of PTKs, enzymatically cleavable amino acids, 

with dithiol functionality, have been synthesized and will be incorporated into the 

polymer backbone.  Specific amino acid substrates have been synthesized for enzymes 

relevant to bone regeneration, such as cathepsin K and matrix metalloprotease 9 (MMP-

9) which are secreted by osteoclasts during bone remodeling.  The dimercapto-PTK-

amino acid copolymers exhibit “click” reactivity with isocyanates resulting in facile 

incorporation into PURs
10

.   

Amino acid sequences with known sensitivity to cathepsin K are taken from 

literature as well as the MEROPS database for enzyme substrate specificity
11

.  Care was 

taken to ensure that amino acids with no reactive side groups (such as amines or 

hydroxyls) are used to limit protection chemistry and possible side reactions with 
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isocyanates.  The sequence that was chosen to test is a tetramer composed of Gly-Gly-

Pro-nLeu (Figure 7.11).  Solid phase peptide synthesis with Wang resins was utilized to 

generate the amino acid sequences.  Di-thiol functionalization was completed by utilizing 

a thiol coupled amino acid starting resin.  Individual acids were added with Fmoc 

protection/deprotection chemistry.  The addition of the final acid was followed by 

capping with mercapto-proponic acid.  Removal from the resin will be completed with 

acid cleavage.  NMR was utilized to assess structural purity.  

  

The dimercapto-amino acid sequence was incorporated into the PTK backbone 

along with dimercapto diethyl ether in the exact synthesis scheme described in Chapter 

VI.  The only additional step was a redissolution in dichloromethane after polymerization 

and a wash with brine to remove any unreacted monomers.  The addition of di-thiol 

amino acids was completed at ratios of 0, 2.5, and10%, with the 10% PTK-AA 

approaching a solid.  The molecular weight of the step polymerization can be adjusted 

based on stoichiometry and reaction times.  Target molecular weight was set for 1 kDa 

 
Figure 7.11.  Chemical diagram of PTK-AA synthesis. 
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(degree of polymerization ~3-10 depending on the percentage of amino acid 

incorporation).  Molecular weight and structural purity was analyzed with gel permeation 

chromatography (GPC) (Table 7.2).  The resulting polymers were utilized to derive 

polythiourethane foams (PUR-PTK-AA-X), where X is the percentage of amino acid 

incorporated into the PTK backbone. 

 

The PTK-AA-0, 2.5 and 10 were utilized to generate PUR foams, however, due to 

the thiol termination the polymers had roughly a 10 fold higher reactivity with the 

isocyanate.  Amine catalysts utilized in the normal hydroxyl foaming reaction are utilized 

in literature to catalyze the click reaction of thiols and isocyanates.  This resulted in a 

highly balance reaction with the water reactivity being closely matched to the thiol 

reactivity.  Therefore the polyurethane would not foam with the amine based catalyst.  

Attempts were made with the most powerful blowing catalyst in our lab (DMAEE), yet 

no foams were generated.  The only method that would allow even small amounts of 

foaming was to overindex (>200) and add a large excess of water to the formulation.  The 

foams were tested for degradation and compared to polyester controls in water, ROS 

media, and a solution of cathepsin K (Figure 7.12).  None of the materials showed 

significant degradation upon incubation in water, however, the PUR-PTK-AA materials 

displayed some mass loss initially.  This is likely due to the unbalanced reaction that 

results in ~10% mass loss of unreacted monomers.  The ROS treatment equally degraded 

Table 7.2.  Table of characterizations of PTK-AA polymers. 
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all of the PUR-PTK materials over 4 weeks with no discernable difference between the 

incorporation of AA.  The cathepsin K treatment only degraded the PUR-PTK-AA-2.5 

and 10, although there was no difference between the two materials.   

      

 These pilot studies point to the fact that enzymatically cleavable amino acids can 

be incorporated into the PTK backbone, which induces a further layer of specificity to the 

cell degradable mechanism.  Additionally, there seems to be little benefit to adding more 

than 2.5% of the amino acid which should result in reduced cost and difficulty during 

synthesis.  For future studies, the PTK-AA polymers should be end-functionalized to 

hydroxyls to reduce the foaming difficulties.  The polymers should be tested in vivo in 

bone to see if there is any benefit to the added specificity of degradation.  Alternatively, 

 
Figure 7.12.  Degradation profiles of PTK-AA polymers and polyester controls at 

physiological temperatures.  Mass loss as a function of time for foams incubated in (A) 

water, (B) ROS media, (C) cathepsin K.  
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the PTK-AA-2.5 could be utilized to generate an osteoclast degradable 3D PUR scaffold 

for bioreactor studies.  This cell degradable scaffold could be seeded with osteoclasts and 

then measured for resorption, by either observing the thiol degradation products in the 

media or in mass loss over time.  This would provide for an additional primary outcome 

of bone-in-a-tube experiments looking at the effects of multiple cell populations in a 

single tube of the bioreactor.    
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APPENDIX A 

EXPERIMENTAL PROTOCOLS 
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Polyurethane Precursor Synthesis and Solvent Film Casting 

Materials 

1. 10X PBS stock composed of 0.011 M KH2PO4 (EMD Millipore, catalog 

number PX1565), 1.54 M NaCl (Research Products International, catalog 

number S23020), and 0.056 Na2HPO4 (EMD Millipore, catalog number 

SX0720) in ultrapure water.  Dilute with ultrapure water to make a 1X PBS 

solution. 

2. Methyl 2,6-diisocyanatohexane (lysine methyl ester diisocyanate, LDI, 

Adamas Reagent Co.,Ltd., catalog number 13010). 

3. Hexamethylene diisocyanate trimer (HDIt, Bayer Material Science, Desmodur 

N3300 A). 

4. ε-caprolactone monomer (99%, Acros Organics, catalog number AC17344-

2500). 

5. dl-lactide (Polysciences, catalog number 17085). 

6. Glycolide (Polysciences, catalog number 16640). 

7. Stannous octoate (Nusil, catalog number 00002CAT0000AX). 

8. Glycerol (99.5%+, Sigma Aldrich, catalog number 191612-1L). 

9. Phthalic anhydride (99%+, Sigma Aldrich, catalog number 320064). 

10. Sodium hydroxide, pellets (98%, Sigma Aldrich, catalog number S5881). 

11. Potassium hydrogen phthalate (99.9%+, Sigma Aldrich, catalog number 

P1088). 

12. Pyridine, anhydrous (99.8%, Sigma Aldrich, catalog number 270970). 

13. Sodium hydroxide (1 N in water, Sigma Aldrich, catalog number 38215). 

14. Dipropylene glycol (Sigma Aldrich, catalog number D215554-500G). 

15. 1,4 Diazabicyclo[2.2.2] octane (triethylene diamine (TEDA), Sigma Aldrich, 

catalog number D27802-100G). 

16. Polycaprolactone triol (300 Mn, Sigma Aldrich, catalog number 200387-

250G). 

17. Magnesium sulfate, anhydrous (>99.5%, Sigma Aldrich, catalog number 

M7506-500G). 

18. Di-n-butylamine (>99.5%, Sigma Aldrich, catalog number 471232). 

19. Hydrochloric acid (37%, Sigma Aldrich, catalog number 320331). 

20. Potassium hydroxide in methanol (0.995-1.005N, Fisher, catalog number 

SP220-1). 

21. Methanol (99.9%, Fisher, catalog number A454-4). 

22. Hexanes (Fisher Scientific, catalog number H303-1). 

23. Coscat 83 (Vertellus, catalog number CAT83). 

24. 1,2 Dichloroethane, anhydrous (99.8%, Sigma Aldrich, 284505-1L).       
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25. Fibronectin (Life Technologies, catalog number 33016015).   

26. Ethanol (PHARMCO-AAPER, catalog number 111000190).  Prepare a 70% 

ethanol solution in ultrapure water. 

27. Sterile PBS (Cellgro, catalog number 21-040-CV). 

28. Paraformaldehyde (Fisher, catalog number 30525-89-4).  Prepare a 3.7% 

paraformaldehyde solution in 1X PBS.  NaOH can be used to aid in 

dissolution, but the solution must be pH’ed back to 7.4. 

29. Triton X-100 (Research Products International, catalog number 111036).  

Prepare a 0.1% Triton X-100 solution in 1X PBS. 

30. Bovine serum albumin (EMD Millipore, catalog number 2960). 

31. Aqua Poly/Mount (Polysciences, catalog number 18606). 

32. 22x22 coverslips (Fisher, catalog number 12-541-B). 

33. CellCrowns for 24 well-plate (Scaffdex, catalog number C00001N). 

34. 24 well plates (Corning, catalog number 3513). 

35. 12 well plates (Corning, catalog number 3524). 

36. Glass slides (Fisher, catalog number 12-545-C). 

37. Alexa Fluor 546 phalloidin (Life Technologies, catalog number A22283). 

38. Kimwipes, glass pipettes, pipette box lid, fine tip tweezers, surgical scissors, 

filter paper, Erlenmeyer flasks, funnels, magnetic stirrer, magnetic stir bars, 

overhead stirrer, 100 mL 3-neck flasks, heating sleeves for 3-neck flask, 

vacuum oven (with liquid nitrogen trap),  oil bath, assorted glassware and 

standard polymer characterization equipment  (gel permeation 

chromatography and automatic titrator). 

Polyurethane Precursor Preparation (See Note 1 for additional information) 

1. Dry 5 g glycerol at 80
o
 C under vacuum (750 torr) for 24 hours.  Store under 

desiccant until use. 

2. Dry 75 g ε-caprolactone monomer with 1-5 g anhydrous magnesium sulfate 

(see Note 2), then pour through filter paper into 100 mL beaker. 

3. Add 0.1 g stannous octoate to a clean, dry 100 mL 3-neck flask. 

4. Add 3.07 g of the dried glycerol to the 3-neck flask. 

5. Add 9.69 g of dl-lactide to the 3-neck flask. 

6. Add 19.39 g of glycolide to the 3-neck flask. 

7. Add 67.85 g of the dry, filtered ε-caprolactone monomer to the 3-neck flask. 

8. Place 3-neck flask in heating sleeve and stir with overhead stirring apparatus 

at medium speed.   

9. Flush reactor with constant stream of dry argon. 

10. Slowly bring temperature up to 140
o
 C and allow reaction to occur for 48 

hours. 
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11. After 48 hours of reaction time, the polymer should be a highly viscous, 

slightly milky white color liquid. 

12. Pour polymer into a 250 mL beaker and add 100 mL of hexane.  Stir with a 

magnetic stirrer and stir bar.  If the polymer is too viscous to stir, apply heat 

up to 100
o
 C. 

13. Carefully remove excess hexane and repeat the wash three times. 

14. After final wash, place beaker on hot plate at 100
o 

C for 8 hours to remove 

excess solvent. 

15. Dry remaining polymer at 80
o
 C under vacuum (750 torr) for 24 hours.  

Store under desiccant until use. 

Characterization of Polyester Triol (OH# See Note 3) 

1. Dissolve 148.12 g of phthalic anhydride in 500 mL of anhydrous pyridine 

and bring total volume to 1 L with excess anhydrous pyridine.  Stir 

overnight in dark bottle with closed cap.  Prepare fresh daily as required.   

2. Dissolve 40 g of sodium hydroxide pellets in 500 mL of water and bring 

total volume to 1 L with excess water. 

3. Weight 2-3 g of potassium hydrogen phthalate into a beaker and add 150 

mL of water with stirring until dissolved. 

4. Titrate until end point with sodium hydroxide solution to calculate the 

solutions normality. 

5. Accurately weigh 1-5 g of polyester triol in 125 mL Erlenmeyer flask and 

dissolve in 10 mL of phthalic anhydride/pyridine solution.  Attach 

condenser and reflux at 170
o
 C for 30 minutes. 

6. After cooling, rinse condenser with 15 mL of anhydrous pyridine and 15 mL 

water. 

7. Titrate to endpoint with 1 N sodium hydroxide solution. 

8. Complete steps 5-7 without the addition of polyester for blank runs. 

9. If the titrant volume required for the polyester samples is less than 75% of 

the volume required for the blank, the sample was too large and steps 5-7 

will need to be repeated with smaller samples of polyester. 

10. The final OH# can be calculated from the following equation: 

    
 (   )          

 
 

Where: 

B = Average mL of NaOH solution consumed by the blanks. 

A = NaOH solution consumbed by the sample in mL. 
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N = Normality of the NaOH solution. 

W = Grams of sample. 

 Isocyanate Prepolymer Preparation 

1. Add 0.025 g of Coscat 83 to a dry, clean 100 mL 3-neck flask. 

2. Add 44.07 g of lysine methyl ester diisocyanate (LDI) to the 3-neck flask. 

3. Heat oil bath to 90
o
 C over magnetic stir plate. 

4. Place 3-neck flask securely in oil bath and apply medium stirring.  Flush 

with a constant stream of dry argon. 

5. Allow up to 1 hour for temperature to equilibrate, then add 5.94 g of 

polycaprolactone triol (300 Mn) dropwise to the 3-neck flask. 

6. Allow the reaction to proceed for 3 hours. 

7. After the reaction is complete, the prepolymer should be a low viscosity, 

light yellow color liquid. 

8. Pour the prepolymer into a container for storage and keep under nitrogen at 

4
o 
C until use. 

Characterization of the Prepolymer (NCO# see Note 4 for more details) 

1. Prepare 1 mol/L solution of dibutylamine in toluene (example 170 mL 

dibutylamine diluted up to 1 L with toluene). 

2. Prepare a 1 mol/L solution of HCl in methanol (example 83.3 mL of 37% 

HCl diluted up to 1 L with methanol). 

3. Add 25 mL of 1N KOH in methanol into a 100 mL beaker diluted with 50 

mL water. 

4. Titrate to end point with HCl in methanol and calculate HCl solution 

normality from the following equation: 

     
         

    
 

Where: 

NKOH = Normality of KOH solution in methanol. 

VKOH = Volume of KOH in methanol (mL). 

VHCl = Titrant consumption (mL). 

5. For sample analysis weight out 0.5-1 g of isocyanate prepolymer into 125 

mL Erlenmeyer flask. 
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6. Add 30 mL of toluene and stir until dissolution. 

7. Add 20 mL of 1 mol/L dibutylamine solution and stir for 10 minutes. 

8. Add 30 mL methanol and titrate excess dibutylamine with 1 mol/L HCl in 

methanol. 

9. Repeat steps 5-8 without the addition of samples to obtain the blank values. 

10. Calculate the NCO# from the following equation: 

      
 (   )          

 
 

Where: 

B = Volume of HCl for titration of the blank (mL). 

V = Volume of HCl for titration of sample (mL). 

N = Normality of HCl. 

W = Weight of sample in grams.  

 Polyurethane Film Preparation (See Note 5) 

1. Add 1 mg (0.2 wt%) of Coscat 83 to a 5 mL glass vial (#1). 

2. Add 64 mg of LDI prepolymer to the glass vial (#1). 

3. Add 435 mg of 3000 g/mol polyester triol to a new glass vial (#2).  See Notes 

6 and 7 for description of polyurethane reaction and additional comments on 

use of different molecular weight triols or isocyanates with different NCO#’s. 

4. Add 1.75 mL of anhydrous dichloroethane to each of the vials (#1 & #2). 

5. Shake or vortex until dissolution of components. 

6. Carefully transfer the solution in vial #2 to vial #1.  The final concentration 

will be 10 wt% polymer.  

7. Shake or vortex for 30 seconds to homogenize solutions. 

8. Pipette 75 µl of solution to glass portion of treated MatTek dishes (see Note 

8). 

9. Carefully transfer dishes to an oven flushed with a steady stream of dry argon 

and cure overnight at room temperature. 

10. Increase temperature in the oven to 60
o
 C for an additional 24 hours to ensure 

complete cure.  MatTek dishes can be stored in a desiccator until use. 

11. Incubate polyurethane films with 300 l of 0.1 mg/ml poly-d-lysine in 

ultrapure water for 1 hour at 37C on a rack in a water bath such that the water 

makes contact with the bottom of the dishes. 
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12. Polyurethanes and polyesters have been known to autofluoresce causing some 

difficulty with sensitive fluorescent analysis.  See Note 9 for a discussion on 

reducing this phenomenon. 

Notes 

1. For the synthesis of a 900 g/mol polyester triol the following changes need to be 

made to steps 4-7 in section 3.3.1:  4.  Add 10.23 g of dry glycerol.  5.  Add 8.98 

g of dl-lactide.  6.  Add 17.95 g of glycolide.  7.  Add 62.84 g of dry, filtered ε-

caprolactone monomer.  The remaining steps are kept the same.  The final 

polyester triol is clear instead of milky white.  The polycaprolactone triol (Sigma 

Aldrich, catalog number 200387-250G) is utilized as the 300 g/mol precursor so 

no additional steps are required for synthesis.  

2. The drying of ε-caprolactone monomer with MgSO4 is convenient, but there is 

some loss upon filtration.  Therefore it is required to add 10-15 g of additional ε-

caprolactone monomer to ensure enough material for the reaction.  Alternative 

drying procedures, such as vacuum drying can be completed.   

3. Characterizations of OH# are required to obtain the exact amount of hydroxyls 

per mole of polyester triol.  The OH# instructions were specified for a 789 MPT 

Titrino (Metrohm) although the instructions can be applied with most automated 

titration equipment.  The procedure works by esterification of the hydroxyl with 

the phthalic anhydride.  The excess phthalic anhydride is hydrolyzed with water 

to form phthalic acid.  The acid is then titrated with the standard sodium 

hydroxide solution.  The OH# is calculated from the difference in titration of the 

blank and sample solutions.  For more information see ASTM D 4662-93.  

Additional characterization via GPC should show broad peaks (depending on 

extent of washing) centered on the target molecular weight.   

4. Characterization of the NCO# is required to accurately account for the isocyanate 

per mole of material.  The NCO# instructions were specified for a 789 MPT 

Titrino (Metrohm) although the instructions can be applied with most automated 

titration equipment.  The procedure works by the reaction of isocyanate with the 

dibutylamine.  The excess dibutylamine is titrated with standard hydrochloric 

acid.   For more information see ASTM D 4662-93.   

5. The 4 mL batch is the smallest batch with which to easily measure out the 

catalyst.  It should produce up to 50 films.   

6. The polyurethane reaction is balanced by the amount of isocyanate and hydroxyl 

equivalents.  The ratio of these equivalents multiplied by 100 is known as the 

index.  For the films utilized in this study an index of 105 is utilized.  In order to 

keep this index value constant the amount of triol and prepolymer is adjusted 

when a different molecular weight triol is utilized.  Since the mechanical 
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properties of the polyurethane film are directly related to the molecular weight of 

the polyester triol, it is essential to utilize the correct concentration of materials.  

More information can be found in the following publications 
1
.  Steps 2 and 3 in 

section 3.5 need to be changed accordingly.  For 900 g/mol polyester triol:  2.  

Add 164 mg of LDI prepolymer to vial #1.  3.  Add 331 mg of 900 g/mol 

polyester triol to vial #2.  For 300 g/mol polycaprolactone triol: 2.  Add 297 mg of 

LDI prepolymer to vial #1.  3.  Add 202 mg of 300 g/mol polycaprolactone triol 

to vial #2.  The remaining steps are the same.       

7. Similar to the OH# The NCO# is a measure of the isocyanate per mole of 

material.  This number varies for each isocyanate and new batch of the 

prepolymer.  When accounting for different NCO#, generally, the higher the value 

the less isocyanate is required to keep the index constant.  For instance, the NCO# 

for the LDI prepolymer is around 29.9 and HDI trimer has an NCO# of 21.8.  To 

incorporate HDI trimer instead of the LDI prepolymer in the polyurethane films 

steps 2 and 3 in section 3.5 need to be changed accordingly.  For a 3000 g/mol 

polyester triol: 2.  Add 84 mg of HDI trimer to vial #1.  3.  Add 415 mg of 3000 

g/mol polyester triol to vial #2.  For a 900 g/mol polyester triol:  2.  Add 201 mg 

HDI trimer to vial #2. 3.  Add 298 mg of 900 g/mol polyester triol to vial #2.  

Finally, for a 300 g/mol polycaprolactone triol:  2.  Add 334 mg of HDI trimer to 

vial #2 . 3.  Add 165 mg of polycaprolactone triol to vial #2.  The remaining steps 

are the same.  

8. Dichloroethane is a good solvent for polystyrene, therefore care should be taken 

when applying the polyurethane solution to the MatTek dishes. 

9. Autofluorescence is a common occurrence with many types of polymers.  This 

can occur from conjugated bonds, cyclic moieties and hydrogen bonding 
2
.  Due 

to the large amount of carbonyl moieties and hydrogen bonding that can be 

present in polyester based polyurethanes, it is not atypical to observe 

autofluorescence in red, green and blue channels.  In order to mitigate the effect, a 

method of quenching background autofluorescence in polyesters and 

polyurethanes using Sudan Black B (SB) was recently published 
2b

.  The authors 

were able to show that SB does not interfere with imunnofluorescent imaging of 

cells cultured on materials that autofluoresce.    
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Synthesis of Melt Cast Polyurethane Films 

Principle: 

Generate a melt cast 2D polyurethane film. 

 

Before starting:  

 Read and understand the MSDS of the reagents listed below 

 Personal Protective and Safety Equipment required:  

o Disposable nitrile gloves 

o Appropriate attire  according to the Chemical Hygiene Plan (shoes, 

labcoat, goggles, etc.) 

 

Reagents: 

 Polyester polyol (various Mw) 

 Hexamethylene diisocyanate trimer (HDIt; DN3300A) or alternative isocyanate 

 Iron(III) Acetylacetonate (5 weight percent solution in dry epsilon-caprolactone) 

 Ethanol 

 

Materials and Equipment: 

 Speed mixer 

 Balance 

 Well plates 

 Mixing cups 

 Mixing cup holder for speed mixer 

 Disposable syringes 

 Kim wipes 

 Glass vials 

 Fume hood 

 

Procedure: 

1. Add appropriate amounts of diisocyanate, polyol, and catalyst with disposable 

syringes into mixing cup 

2. Speed mix at full speed for 30 seconds 

3. Add enough of reactive liquid polyurethane mixture to cover bottom of well 

plates 

4. Allow to cure overnight, at 60
o
 C  

5. Sterilize films with ethanol before use  
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Film Coating with Adhesion Proteins 

Principle: 

Coating of PUR films with adhesion molecules for cell culture. 

 

Before starting:  

 Read and understand the MSDS of the reagents listed below 

 Personal Protective and Safety Equipment required:  

o Disposable nitrile gloves 

o Appropriate attire according to the Chemical Hygiene Plan (shoes, 

labcoat, goggles, etc.) 

 

Reagents: 

 PUR films 

 Adhesion molecule (Fn, Vn, Col, etc.) 

 Sterile PBS 

 Ethanol 

 

Materials and Equipment: 

 Kim wipes 

 Cell Culture hood 

 

Procedure: 

6. Sterilize PUR films before use with either ethanol or UV in a sterile cell culture 

hood 

7. Add 4 μg/mL of adhesion molecule solution to PUR wells with enough volume to 

cover the surface 

8. Allow to adsorb at 4
o
 C overnight 

9. Remove solution and directly plate cells 

Notes:  

1. If the goal is irreversible adhesion, the desired concentration of adhesion 

molecules should be calculated from the surface area of the well plate and the 

volume of the solution 

2. The volume of concentrated adhesion molecules should be added as noted in the 

procedure above, however the step 3 should be replaced with drying in the cell 

culture hood for 2-3 hours (or until evaporation is complete). 
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Synthesis of 3D PUR Scaffolds from 3D Printed Molds 

Principle: 

Generate a 3D scaffolds based around a 3D printed mold 

 

Before starting:  

 Train on proper use of 3D printer 

 Reserve balance on Google Calendar 

 Read and understand the MSDS of the reagents listed below 

 Personal Protective and Safety Equipment required:  

o Disposable nitrile gloves 

o Appropriate attire according to the Chemical Hygiene Plan (shoes, 

labcoat, goggles, etc.) 

 

Reagents: 

 Polyester polyol (various Mw) 

 Hexamethylene diisocyanate trimer (HDIt; DN3300A) 

 Iron(III) Acetylacetonate (in 5% solution in epsilon-caprolactone) 

 3D printed scaffolds 

 Acetone 

 Dichloromethane 

 Ethanol 

 

Materials and Equipment: 

 Speed mixer 

 Balance 

 Teflon mold/casting dish  

 Mixing cups 

 Mixing cup holder for speed mixer 

 Disposable syringes 

 Kim wipes 

 Glass vials 

 Razor blades 

 Wire cutters 

 No. 7 biopsy punch 

 Fume hood 

 

Procedure: 

10. Print out 3D scaffolds with the Makerbot printer 

a. Open Makerware software 

b. Add .stl file to build plate 

c. Press the Make it button 

d. Use either 300 micron or 500 micron print settings 
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e. After printing cut scaffold into appropriate size 

11. Add appropriate amounts of diisocyanate, polyol, and catalyst with disposable 

syringes into mixing cup 

12. Speed mix at full speed for 30 seconds 

13. Place 3D printed scaffolds in Teflon mold/casting dish 

14. Add enough drops of reactive liquid polyurethane mixture to cover the top of the 

scaffolds and apply slight pressure with Teflon plunger 

15. Allow to cure overnight hours at 60
o
 C then remove from mold (cure time can be 

cut down to 3-4 hours if slight excess of catalyst is used) 

16. Remove excess cured polyurethane from around 3D scaffold with razor blade or 

wire cutter 

17. Fill glass beaker with acetone in fume hood 

18. Place polyurethane coated scaffold in vial of acetone and allow scaffold to leach 

overnight 

19. Pour acetone out (keep scaffolds in the beaker) and replace with dichloromethane 

in fume hood and allow to leach for at least 3 hours (preferably overnight) 

20. Place polyurethane coated scaffold in vial of acetone and allow scaffold to leach 

for at least 3 hours 

21. Remove scaffolds from acetone and place directly in ethanol for at least 3 hours 

22. After the ethanol treatment, place scaffolds directly into media for cell culture 

Clean-up:  

1. Collect all glass waste (pipettes, vials, or broken glass) and dispose in the broken 

glass container (box) 

2. Collect all sharps and dispose in the sharps waste container (red box) 

3. Collect all solid waste and dispose in the solid waste container 

4. Collect all liquid waste and dispose in the appropriate  liquid waste container 

(acetone or halogenated) 
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Cell Harvesting from 3D Scaffolds 

Principle: 

Culturing cells in the 3D-PUR scaffolds discussed in Chapter VIII allows for novel 

analysis, but first the cells must be isolated from the scaffolds.  This protocol discusses 

methods for obtaining useful quantities of RNA from cells within the 3D-PUR scaffolds.   

 

Before starting:  

 Read and understand the MSDS of the reagents listed below 

 Personal Protective and Safety Equipment required:  

o Disposable nitrile gloves 

o Appropriate attire according to the Chemical Hygiene Plan (shoes, 

labcoat, goggles, etc.) 

 

Reagents: 

 3D-Scaffolds seeded with cells 

 Qiagen RNA extraction kit 

 RNAse free water 

 Ethanol 

 

Materials and Equipment: 

 Kim wipes 

 Cell Culture hood 

 Centrifuge 

 

Procedure: 

1. Wash the scaffolds gently with PBS at least 3 times 

2. Using a fresh razor blade (rinsed with ethanol and dried) cut the 3D-PUR 

scaffolds into small pieces and place them in a 15 mL conical tube 

3. Add Qiagen lysis buffer (with added mercapto-ethanol to stabilize the RNA) 

4. Pipette vigorously ensuring all the pieces of the scaffold are mixed well within the 

lysis buffer 

5. Add the lysis buffer and the scaffold pieces to the Qiagen filter tube and 

centrifuge 

6. Follow manufacturer protocol for the remainder of the process to extract RNA  

Notes:  

1. The MDA-MB-231 cells adhere very well to the hard scaffolds so ensure that the 

lysis buffer is very well mixed and fully covers the pieces of scaffold 

2. It may be necessary to use more than the 350 μL of lysis buffer recommended to 

fully cover the scaffolds.  If this is the case just run multiple filtration steps until 

all the lysis buffer has been used 



 

 

228 

 

Micelle Generation and Drug Loading 

Principle: 

Generate a stock solution of ROS degradable nanoparticles.  The nanoparticles are 

synthesized from a poly(propylene) sulphide (PPS) and branched polyethylene glycol 

(PEG).  The particles can be loaded with any hydrophobic compound.  The particles are 

soluble in hydrophobic organic solvents and spontaneously form nanostructured micelles 

upon introduction to aqueous media.    

 

Before starting:  

 Read and understand the MSDS of the reagents listed below 

 Personal Protective and Safety Equipment required:  

o Disposable nitrile gloves 

o Appropriate attire according to the Chemical Hygiene Plan (shoes, 

labcoat, goggles, etc.) 

 

Reagents: 

 PEG-PPS polymer 

 Organic solvent, miscible with water (THF, MeOH, EtOH) 

 Hydrophobic drug or compound (if loading nanoparticles) 

 DI Water or PBS -/- 

 

Materials and Equipment: 

 Balance 

 Syringe pump 

 Tubes 

 Disposable syringes 

 0.2 µm filters 

 Kim wipes 

 

Procedure: 

 

1. Dissolve PEG-PPS polymer in the organic solvent (10 µL/mg) in small tube 

2. Add  hydrophobic compound to solution of polymer at therapeutic dose 

3. Setup and place syringe pump to add water or PBS -/- 

4. Begin adding water at a rate of 8 mL/min 

5. Leave solution exposed to allow evaporation of the majority of the organic 

solvent  

6. Vortex and filter new solution before use 

 

Notes:  
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 If the polymer makes a cloudy solution upon adding the full amount of water try 

additional vortexing to dissolve the remaining polymer.  If this still does not work 

increase the initial amount of organic solvent to 20 µL/mg. 

 The exact concentration of the hydrophobic drug loaded into the nanoparticles is 

difficult to ascertain directly.  However you can assume nearly complete loading 

at small ratios of drug/polymer (>6 µg/mg).  Additionally, if the organic solvent is 

fully evaporated any un-encapsulated drug should form particles that would be 

filtered out before use. 

 This protocol can be completed with any of the self-assembly nanoparticle 

systems  

Clean-up:  

5. Collect all glass waste (pipettes, vials, or broken glass) and dispose in the broken 

glass container (box) 

6. Collect all sharps and dispose in the sharps waste container (red sharps box) 

7. Collect all solid waste and dispose in the solid waste container 

8. Collect all liquid waste and dispose in the appropriate  liquid waste container 

(acetone or halogenated) 
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Reactivity Analysis 

Principle: 

Obtain the reactivity of a given isocyanate and polyol or water at a specific catalysts 

concentration.  The FTIR spectra of a given isocyanate yields a unique and intense peak 

around ~2260.  This peak is concentration dependent with ATR-FTIR.  In traditional 

FTIR Beers-Lamberts Law would make this measurement difficult due to the thickness 

dependence, however, in ATR the penetration depth of the IR beam is a function of 

refractive index and the angle of incidence (which can be kept relatively constant if 

measuring similar materials).  In this way this SOP (and the related files) are designed to 

obtain the calibration curve for a given isocyanate and then measure the reactivity of the 

isocyanate with a polyol or water.  The main.m file is a customizable Matlab code 

designed to read in .csv files from excel and fit a Gaussian curve (generated by the 

function mygaussfit.m) to the isocyanate peak and then integrate this peak with a 

trapezoidal integration function.  The Gaussian fitting is used to eliminate any non-

isocyanate peaks such as CO2 from the integrated value.  The peak areas are then plugged 

into Calibration Curve.xls and the linear slope fit to the concentration of isocyanate is 

used in Samples.xls to obtain the rate constant from the reactive mixture. 

 

Before starting:  

 Read and understand the MSDS of the reagents listed below 

 Personal Protective and Safety Equipment required:  

o Disposable nitrile gloves 

o Appropriate attire according to the Chemical Hygiene Plan (shoes, 

labcoat, goggles, etc.) 

 

Reagents: 

 Polyester polyol (various Mw) 

 Isocyanate (LTI, LTI-PEG, HDIt, etc.) 

 Catalyst (iron(III) acetylacetonate (in 5% solution in epsilon-caprolactone), 

TEDA in solution, etc.) 

 DI Water 

 Inert non-volitile solvent, vacuum dried (dipropylene glycol, ε-caprolactone, 

propylene glycol, etc.) 

 ZnSe ATR crystal 

 Crystal/Sample holder kit 

 Methanol/acetone bottle (for rinsing crystal between runs) 

 Spatula 

 Mixing cups 

 

Materials and Equipment: 

 Balance 

 Crystal/Sample holder kit 

 Seagull ATR assembly 
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 Bruker FTIR (VINSE chemistry lab) 

 Methanol/acetone bottle (for rinsing crystal between runs) 

 Spatula 

 Mixing cups  

 Disposable syringes 

 Kim wipes 

 Timer 

 

Software/Documents: 

 OPUS 

 Matlab 

 Excel 

 Calibration Curve.xls 

 Sample.xls  

 Mygaussfit.m 

 Main.m 

 

Procedure: 

 

Equipment startup 

7. Turn on nitrogen gas (in sequential order: Tank, regulator valve, valve above tank 

and valve behind FTIR) 

8. Turn on FTIR (Tensor 27) unit 

9. Remove pellet sample holder and install Seagull kit 

a. Seagull kit is located directly below the Tensor 27 unit in a wooden box 

b. Make sure the angle is 45
o 
on the Seagull kit 

c. Locate small silver sample tray (usually in pockets and always should stay 

with the Seagull kit) 

10. Turn on computer and open OPUS software 

11. Login with user name (no password) 

 

Collecting background spectra 

1. Place ATR crystal in sample holder 

a. Check crystal for clean surface 

b. If dirty wash with water then methanol or acetone 

2. Place sample holder in Seagull kit 

3. Create a new folder before starting experiments (OPUS does not allow creation of 

folders) 

4. In OPUS software go to measurements tab and select either Advanced 

Measurements for one scan or repeated measurements for repeated scans 
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5.  The only tabs needed to be adjusted are the Basic and Advanced tab 

6. Under the Basic tab, make sure the Experiment is set to Tensor 27.XPM 

a. If not, click Load and the folder that opens should have Tensor 27.XPM 

7. Under the Advanced tab, ensure that you measure the file name you want, 

resolution of 4 and 56 sample scan time with 56 background scan time, the data 

should be saved from 4000 to 750 cm
-1

 

8. Under the Basic tab once the crystal is placed in the holder and in the Seagull box 

select Background Single Channel, this will begin the background collection 

9. The Active Task Bar at the bottom of the screen will count up to 100%, after it is 

finished you can begin collecting samples 

10. Leave the ATR crystal in the sample holder, but remove the sample pan (this will 

save time when adding the first sample)  

 

Preparing isocyanate concentration curve  

1. Prepare dilutions of your chosen isocyanate with your chosen unreactive, non-

volatile solvent (0.1 g batch sizes are sufficient) 

2. The dilutions should start with 0.1 g pure isocyanate then dilute down to 0.07, 

0.05, 0.02, 0.002 g isocyante with the remaining mass solvent 

3. Add each dilution to the sample pan is succession and in OPUS click Measure -> 

Advanced Measurement 

4. In the Advanced Measurement window the Basic tab allows you to change the 

sample name, file name and pathway to save 

5. In the Advanced tab, make sure you are measuring absorbance and the following 

data blocks are checked to be saved:  Absorbance, signal channel, and background 

6. Additionally ensure that the Resolution is set to 4, the sample scan is set to 56 

scans and the background scan is set to 56 scans; save data from 4000 to 750 

wavenumbers (cm
-1

) 

7. In the Basic tab select Sample Single Channel to obtain a spectra 

8. Be sure to clean the crystal and sample holder with methanol or acetone between 

each run 

9. Save your files and export the data via File -> Save File As 

10. The Save File As window has three tabs, in the Select File tab change the name 

and pathway; in the Mode tab select Data point table as the file extension 

11. Data point table files (.DPT) can be opened in excel 

12. Open the .DPT files in excel as tab delimited files and then save as .csv files 

(these can be read by Matlab) Do not make any changes to the files other than 

saving them as .csv 
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13. Open Mygaussfit.m and main.m in Matlab and move them to the active 

workspace along with all of the .csv files generated from the calibration curve 

data 

14. Edit the variable “t” in main.m to the names of the .csv files in the active 

workspace 

15. Run main.m and use column output in the variable “value” this is the peak area 

for the isocyanate vibration (~2260 cm
-1

) in the FTIR spectra  

16. Plug this column into G5:G9 in Calibration Curves.xls 

17. Ensure that the NCO# is correct for your isocyanate 

18. The resulting plot should be linear and the linear fit is utilized in the Samples.xls 

file to obtain the concentration of isocyanate and thusly the reactivity 

 

Taking reactivity measurements 

1. Prepare the crystal and equipment to begin taking measurements directly after 

mixing 

2. Click Measure -> Repeated Measurements to open a dialog window 

3. In this window the Basic tab will allow you to change the sample name, file name 

and pathway 

4. In the Advanced Tab set the resolution to 4, sample scans to 56 scans, background 

scans to 56 scans, and save the data from 4000 to 750 wavenumbers 

5. Back in the Basic tab select to repeat the measurement 20-60 times with a delay 

of 60 seconds between measurements 

6. Usually a 0.25-0.5 g batch is fully sufficient for measurements without making a 

quantity difficult to weigh out  

7. Add catalyst, then polyol (or water if measuring blowing reaction) and mix for 10 

seconds and move mixture to one side of the mixing cup 

8. Add isocyanate to the empty side of the mixing cup 

9. Once the addition is complete start the timer and begin mixing isocyanate and 

polyol/catalyst, continue mixing for 30 seconds 

10. Apply roughly 0.1-0.2 g onto the sample hold and make good contact with ATR 

crystal (when measuring the blowing reaction the mixture may begin to foam 

immediately) 

11. Begin taking repeated measurements by clicking Repeated Sample Single 

Channel in the Basic tab under Measure -> Repeated Measurements 

12. Depending on how many repeats you have the sample may take from 20 to 60 

minutes 

13. Be sure to write down the time upon the end of the first set of 56 scans as this will 

be your first timepoint (Generally if  everything is prepared to run immediately 

after 30 seconds of mixing you can obtain a 2 minute first timepoint) 
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14. Be sure to clean the crystal and sample holder with methanol or acetone between 

each run 

15. To save time and data space, every 5
th

 sample is saved as a .csv file starting with 

your first sample (It is best to save the time point of each run in the .csv file to 

keep track of the data e.g if you’re your first timepoint finished scanning at 2’24” 

after mixing started then the file name could look like this: LTI-

PEG_Polyol_2.4.csv) 

16. Save your files and export the data via File -> Save File As 

17. The Save File As window has three tabs, in the Select File tab change the name 

and pathway; in the Mode tab select Data point table as the file extension 

18. Data point table files (.DPT) can be opened in excel  

19. Open the .DPT files in excel as tab delimited files and then save as .csv files 

(these can be read by Matlab) Do not make any changes to the files other than 

saving them as .csv 

20. Open Mygaussfit.m and main.m in Matlab and move them to the active 

workspace along with all of the .csv files generated from the calibration curve 

data 

21. Edit the variable “t” in main.m to the names of the .csv files in the active 

workspace 

22. Run main.m and use column output in the variable “value” this is the peak area 

for the isocyanate vibration (~2260 cm
-1

) in the FTIR spectra  

23. As of now main.m is set up to run 5 samples with spacing for an additional 4 

samples after comments (%) are removed, if additional spaces are required copy 

and plate this section of code at the end:  

%% data 

t=dlmread('FileName.csv');% FileName needs to be exactly the same as the .csv 

file 

x=t(868:967,1); 

y=t(868:967,2); 

z=t(1:25,2); 

%z_avg=mean(z); 

%y_adj=y+abs(z_avg); 

subplot(521) 

plot(x,y,'^k'); 
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%% fitting 

[sigmaNew,muNew,Anew]=mygaussfit(x,y); 

ynew=Anew*exp(-(x-muNew).^2/(2*sigmaNew^2)); 

subplot(521) 

hold on; plot(x,ynew,'+k'); 

%% Integrating 

value(1,1)=abs(trapz(x,ynew)); 

24. The subplot function will need to be adjusted for all sections of the code if 10 or 

more samples samples are analyzed at once; see 

http://www.mathworks.com/help/matlab/ref/subplot.html for more information 

25. After main.m finished running, the variable “value” will output a column of peak 

areas for the isocyanate 

26. These can be plugged into columns B3:B15, E3:E15, or H3:H15 in Samples.xls 

27. The equations used in columns A3:A15, D3:D15, and G3:G15 in Samples.xls are 

derived from Calibration Curves.xls 

28. The time columns can be unique for each run of each sample 

29. The generated plot should be linear and the slope of the line is the rate constant 

for the given sample and run  

30. Generally, each mixture should be run in triplicate to ensure uniform data 

acquisition 

  

Notes:  

 If the spectra increases in intensity for the first few minutes of a run it could be 

caused by continued wetting of the crystal surface; begin your first timepoint after 

the spectra begins to decrease 

 If the peak does not look centered or is not fitting properly in the plot after 

running main.m you may need to adjust the range in this set of code for each 

sample: 

x=t(868:967,1);  % These are the row numbers for the FTIR spectra that usually 

corresponds to the 2260 wavenumber peak of isocyante, 

http://www.mathworks.com/help/matlab/ref/subplot.html
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however they may need to be adjusted manually to fit the peak 

correctly .  If you adjust x you need to equally adjust y  

y=t(868:967,2); 

Clean-up:  

9. Collect all glass waste (pipettes, vials, or broken glass) and dispose in the broken 

glass container (box) 

10. Collect all sharps and dispose in the sharps waste container (red sharps box) 

11. Collect all solid waste and dispose in the solid waste container 

12. Collect all liquid waste and dispose in the appropriate  liquid waste container 

(acetone or halogenated) 
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Rheology for Working Time and Viscosity 

Principle: 

The working time of a reactive, curing liquid is key to understanding the amount of time 

that physical manipulation will not begin to cause plastic deformation.  The viscosity is 

also important in terms of determining the injectability of the material during the working 

time.  The point where the storage modulus (G’) crosses the loss modulus (G”) is known 

as the crossover point.  This is significant in terms of network formation because beyond 

the crossover point the material is no longer a liquid, it is a cross-linked gel.  The storage 

modulus will continue to rise beyond the crossover point as the material hardens and will 

eventually plateau.  The time from mixing until the crossover point is the working time of 

the material.   

 

Before starting:  

 Read and understand the MSDS of the reagents listed below 

 Personal Protective and Safety Equipment required:  

o Disposable nitrile gloves 

o Appropriate attire according to the Chemical Hygiene Plan (shoes, 

labcoat, goggles, etc.) 

 

Reagents: 

 Polyester polyol (various Mw) 

 Isocyanate (LTI, LTI-PEG, HDIt, etc.) 

 Catalyst (iron(III) acetylacetonate (in 5% solution in epsilon-caprolactone), 

TEDA in solution, etc.) 

 DI Water 

 Methanol/acetone bottle (for rinsing crystal between runs) 

 Spatula 

 Mixing cups 

 

Materials and Equipment: 

 Balance 

 25 mm disposable plates geometry 

 40 mm non-disposable plate geometry 

 AR2000ex Rheomety 

 Methanol/acetone bottle (for rinsing crystal between runs) 

 Spatula 

 Mixing cups  

 Disposable syringes 

 Kim wipes 

 Timer 

 

Software/Documents: 

 TA Rheology Advantage 
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 TA Rheology Manual 

 TA Rheology Analysis  

 

Procedure: 

 

Working time measurement 

 Open the rheology software 

 Install the proper peltier plate (the staged disposable or the flat for non-disposable 

geometries) 

 Install the proper geometries 

 Perform calibrations (oscillation, inertia and zeroing gap) 

 Prepare run before mixing sample 

o Check the conditioning step and set the temperature for the experiment 

o Prepare the experiment for a time sweep of 1 hour with 1 Hz frequency 

and 1% strain 

o Check the post experiment step and set the temperature back to room 

temperature  

o Name your sample before you begin mixing to avoid wasting excess time 

before the test begins 

 Prepare sample (at least 1 g of material is usually enough for a 500-1000 μm gap) 

 Start timer directly upon mixing 

 Carefully place sample between peltier plate and upper geometry ensuring that 

enough material is used to fully cover the space between the two plates 

 Lower gap to a predetermine position (500-1000 μm gap) 

 Carefully clear away excess material 

 Begin the test and stop the timer 

 The crossover point is automatically calculated in the TA Rheology Analysis 

software 

o Open your file and click send to graph 

o Using the dropdown menu in the analysis panel select G’. G” crossover 

and set the limits before and after the crossover event 

o Add the time on during mixing and adding the sample to the rheometer to 

the calculated time from the software to obtain the working time 

Viscosity measurements 

 Open the rheology software 

 Install the proper peltier plate (the staged disposable or the flat for non-disposable 

geometries) 

 Install the proper geometries 

 Perform calibrations (oscillation, inertia and zeroing gap) 

 Check the conditioning step and set the temperature for the experiment 

 Prepare the experiment for a frequency sweep of 0.1 - 100 Hz frequency and 1% 

strain 

 Prepare the materials without catalyst to avoid curing 
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 Begin the test and upon completion the viscosity is automatically calculated with 

the TA Rheology Analysis software 

 

Notes: 

 Consistent gap distances is important when trying to compare multiple unique 

samples 

 The strain and frequency parameters can be adjusted, however, utilize literature 

values for comparison (1 Hz and 1% strain is widely used for most normal 

materials) 

 The larger diameter geometry can reduce noise in the data, however, it requires 

the use of more material   

Clean-up:  

1. Collect all glass waste (pipettes, vials, or broken glass) and dispose in the broken 

glass container (box) 

2. Collect all sharps and dispose in the sharps waste container (red sharps box) 

3. Collect all solid waste and dispose in the solid waste container 

4. Collect all liquid waste and dispose in the appropriate  liquid waste container 

(acetone or halogenated) 
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In vitro Wet Test for Porosity 

Principle: 

Injectable, settable polyurethane materials designed for implantation in vivo need to be 

assessed for the capacity of over foaming due to biological fluids interacting with the 

reactive polyurethane mixture.  This protocol allows for the in vitro test of a “worst case” 

exposure to a wound bed with high amounts of liquids.  

 

Before starting:  

 Read and understand the MSDS of the reagents listed below 

 Personal Protective and Safety Equipment required:  

o Disposable nitrile gloves 

o Appropriate attire  according to the Chemical Hygiene Plan (shoes, 

labcoat, goggles, etc.) 

 

Reagents: 

 Isocyanate 

 Polyester 

 Filler 

 Water 

 Catalyst Solution 

 

Materials and Equipment: 

 Speed mixer 

 Balance 

 Mixing cups 

 Mixing cup holder for speed mixer 

 Disposable syringes 

 Kim wipes 

 

Procedure: 

23. Determine sample size: 

Size can be varied based on applications, however, smaller samples (2.5 g or less) 

produce more uniform porosities through the whole composite 

24. Based on sample size fill appropriate mixing cup with 2-5 mL DI water and warm 

in incubator for ~1 hour, be sure to leave enough room for the potential expansion 

of the polyurethane, but ensure that the water completely envelopes the material 

during the curing process 

25. Prepare reactive polyurethane mixture by adding appropriate amounts of 

isocyanate, polyol, filler, and catalyst with disposable syringes into mixing cup 

26. Speed mix at full speed for 30 seconds 
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27. Inject directly into warmed water, ensuring that the water is covering the 

composite, try to avoid folding the composite onto itself.  This creates erroneous 

porosity when coring or cutting the sample to measure gravimetric porosity.  Try 

to keep the injected material as cylindrical as possible. 

28. Place sample in incubator for 24 hours 

29. After 24 hours in the incubator dry samples for an additional 24 hours 

30. Core or cut the sample into easily measured pieces and gravimetrically test the 

porosity   

31. Additional analysis can be conducted through SEM imaging and ImageJ or 

Metamorph pore size analysis 

 

Notes:  

 

Clean-up:  

5. Collect all glass waste (pipettes, vials, or broken glass) and dispose in the broken 

glass container (box) 

6. Collect all sharps and dispose in the sharps waste container (red box) 

7. Collect all solid waste and dispose in the solid waste container 

8. Collect all liquid waste and dispose in the appropriate  liquid waste container 

(acetone or halogenated) 
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Leached Material Cytotoxicity Testing 

Principle: 

Injectable, reactive materials have the potential to extravasate during implantation.  

Extravasation of reactive material could induce local toxicity.  This protocol aims to 

analyze and test the leached materials from injectable, reactive PURs.  PBS is used for 

NMR analysis, cell culture media is used for cytotoxicity analysis. 

 

Before starting:  

 Read and understand the MSDS of the reagents listed below 

 Personal Protective and Safety Equipment required:  

o Disposable nitrile gloves 

o Appropriate attire according to the Chemical Hygiene Plan (shoes, 

labcoat, goggles, etc.) 

 

Reagents: 

 Isocyanate 

 Polyester 

 Filler 

 Water 

 Catalyst Solution 

 PBS 

 Cell culture media 

 Appropriate cell line 

 

Materials and Equipment: 

 Speed mixer 

 Balance 

 Mixing cups 

 Mixing cup holder for speed mixer 

 Disposable syringes 

 Cell culture hood and incubator 

 Kim wipes 

 

Procedure: 

 

Preparing samples 

1. Prepare 4 2.5 g batches of a desired formulation 

2. After mixing and loading into a syringe wait 2 minutes before injecting one of the 

batches into PBS or cell culture media in a conical tube 

3. Allow to leach overnight at 37 C 
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4. For the remaining two batches mix and load into a syringe and inject into a 12 

mm tube 

5. Allow to react for 45 minutes and then cut out of tube and place into PBS or 

culture media 

6. Allow to leach overnight for 37 C 

7. Remove solid samples from media after 24 hours 

Chemical Analysis of leachates 

1. Lyophilize the PBS and weigh the residue 

2. Subtract the known value of salt in the PBS to obtain the amount of leached mass 

from the PUR 

3. Re-suspend in deuterated solvents to prepare NMR solution 

4. Use individual components as a reference to determine leached materials 

Cytotoxicity of leachates 

1. Measure pH of cell culture media to determine acidity of leachates 

2. Use pure leachates for a serial dilution up to 16X with sterile media (keep enough 

pure leachates to use as a 1X group) 

3. Plate NIH3T3 cells in a 96 well plate in triplicate for each of your dilutions and 

one set for positive (blank culture media) and negative controls (PBS) 

4. After 24 hours of culture remove media and add treatment groups 

5. Culture for an additional 24 hours and then test viability with either live/dead 

stain or similar assay 

6. Plot cell viability (cell viability less than 70% is considered cytotoxic 

7. In the case of a cytotoxic response use a fitting algorithm (PCHIP in matlab works 

well) to obtain the LC50 (the concentration of leachates that causes 50% toxicity) 

 

Notes:  

Clean-up:  

9. Collect all glass waste (pipettes, vials, or broken glass) and dispose in the broken 

glass container (box) 

10. Collect all sharps and dispose in the sharps waste container (red box) 

11. Collect all solid waste and dispose in the solid waste container 

12. Collect all liquid waste and dispose in the appropriate  liquid waste container 

(acetone or halogenated) 
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Metamorph Thresholding Image Analysis 

Principle: 

This protocol describes the steps to perform specific thresholding in Metamorph for 

histomorphometry analysis.  

 

Materials and Equipment: 

 Microscope 

 Histology slides (stained) 

 Metamorph 

 

Procedure: 

 Image the stained histology slides at an acceptable magnification 

 Open image in metamorph 

 Open the data log through the Log dropdown menu 

 Open the dynamic data exchange and an excel file will open automatically (this 

file will hold your sample data) 

 If you need accurate measurements of length, width, area etc. then open the 

calibrate distances box under the Measure dropdown menu and select the 

magnification of the image and press apply 

 Use the free draw tools to outline an area of interest and make the desired area 

measurements 

 To view the measurements open the Region Measurements in the Measurements 

drop down menu (this dialog box allows you to log the data to the open excel file; 

you must manually log the data for each analysis) 

 Open the Threshold Image and Set Color Threshold dialog boxes under the 

Measure drop down menu 

 In the Threshold Image dialog box select Add to Threshold and then click Clear 

Threshold (this prepares the software for the manual thresholding in the next step) 

 Select the Set by Example button  in the Set Color Threshold dialog box and 

begin clicking on the image 

 Every pixel you click in the image will be added to the color threshold 

 Log the data after you are comfortable with the threshold specificity and the area 

and %threshold value will be copied into the open excel file 

 

Notes:  

 This technique works extremely well when there is a difference between colors in 

the area of interest and the surrounding tissue (Example shown below) 

 The value for %Threshold is only given for the area of interest draw 
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Figure A1. Example of Metamorph thresholding for histomorpometric analysis. 
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