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CHAPTER 1

Introduction

I.1 Introduction

Supermassive black holes (SMBHs) are thought to be a key component of nearly every galaxy. These black
holes, with masses 10° to 10'° M, dwell in the galactic center where they may power jets (Genzel et al.,
2003; Falcke et al., 2004; Allen et al., 2006; Doeleman et al., 2012), regulate the energy in the interstellar
medium (Cattaneo et al., 2009), and even transform the shape of the host galaxy (Gerhard & Binney, 1985;
Norman, May, & van Albada, 1985; Merritt & Quinlan, 1998; Wachlin & Ferraz-Mello, 1998; Valluri &
Merritt, 1998; Holley-Bockelmann et al., 2002). Despite playing such an integral role in galaxy evolution,
how SMBHs form and evolve is a mystery. In general, most theoretical work on SMBH growth deals with
how they evolve in mass from seed black holes in protogalaxies to supermassive ones today (Volonteri,
Haardt, & Madau, 2003; Shapiro, 2005; King & Pringle, 2006; Lodato & Natarajan, 2006; Pelupessy et al.,
2007). From these calculations, it is learned that SMBHs may grow rapidly during galaxy mergers; this
process causes the black holes in each galaxy to sink to the center of the newly merged galaxy and coalesce.
The merger process is violent and drives copious amounts of gas to the new galactic center, which provides
new fuel to the black hole (Hernquist, 1989; Barnes & Hernquist, 1991; Mihos & Hernquist, 1994; Hernquist
& Mihos, 1995; Barnes & Hernquist, 1996; Mihos & Hernquist, 1996; Hopkins et al., 2005). Through a
combination of merger-driven gas accretion and direct coalescence it is possible that the remnants of the first
stars may grow into the SMBHs of the current epoch (Volonteri, Haardt, & Madau, 2003; Volonteri et al.,
2005; Volonteri & Rees, 2005).

However, how the black hole binary interacts with the host galaxy during a merger still needs to be
investigated, such as the binary hardening rate, the merger time of the binary in different shapes of galaxies
and the effect of the binary on the orbital structure of the host galaxy.

In Chapter 1, we present a brief overview on the background of how SMBHs form and why they are
important to their host galaxies. Section 1.2 gives the observational background of SMBHs. Section 1.3
covers the theoretical background, including dark matter halo density profiles, galaxy mergers, seed black
hole formation, gravitational recoil, Post-Newtonian dynamics, black hole growth, the final parsec problem
and orbits in galaxy potential. In Chapter 2, we analyze the stellar orbits in a middle flattened axisymmetric
galaxy with a SMBH embedded in to see if there are enough stars with very small pericenters that can

potentially interact with the black hole. In Chapter 3, we add another equal mass black hole to the same



axisymmetric galaxy studied in Chapter 2 and check the energy change of stars of particular interest to see if
they actually interact with the black hole binary. In Chapter 4 we present a project that transforms the CPU
version of self-consistent field (SCF) code that I have been using as a basis to run particles in Chapter 2 to a
GPU version and compare the efficiency of them. Appendix is the SCF code with up to 3.5 post-Newtonian

terms added in.

L2 Observational background
I1.2.1 Mass of the black hole
1.2.1.1 Measuring the mass of black hole
Since black holes are not able to be detected directly by their very nature, we can only detect them indirectly
through the gravitational interaction with the surrounding matter such as gas and dust or with other objects
passing by such as stars and other black holes. According to the “no hair” theorem there are only three
quantities to distinguish two black holes: mass, spin and electric charge. Mass is the only quantity that all
black holes have, so measuring the mass of the SMBH is one of our main goals in this field. In the following
paragraphs we show four methods to achieve this goal.

One way of measuring the mass of SMBH is applying stellar dynamics (see Kormendy & Richstone,
1995, and references therein). The mass closed within radius r can be calculated using the first velocity

moment of collisionless Boltzmann equation,

V2r 6.2r[ dlnv dlnoc? oy 0y>
M(r) = — e —(1- —(1- L1
=G | "  dinr < 0,2) ( 6,2” @1

where G is the gravitational constant, V is the rotation velocity, o, g, Oy are three component of velocity
dispersion o, Vv is the density of stars being measured. But usually in practice, the volume brightness is
measured to get the mass per volume, i.e., density v, assuming M /L is constant, independent of radius. All
quantities in the above equation are required to be unprojected. However, the quantities that can be measured
are only projected, so it is needed to transfer the projected data to unprojected data. In light of the local
brightness, V and ¢ are estimated in order to make a galaxy model, then the data can be “observed” from
the model. One can compare the model data with the real data, then adjust the model parameters to make
the model data closer to the real one, and iterate this operation until both match up. Once all unprojected
quantities are obtained, one can then use this equation to obtain the mass of the black hole.

A second way is to apply gas dynamics, which is relatively straightforward. One just need to measure the
velocity of the gas in the accretion disk around the black hole, then apply the Keplerian orbit formula to get

the mass of it.



Another way of measuring the mass of SMBHs is to use the maser radiation emitted by water molecules
in the accretion flow around the black hole, e.g. for NGC 4258 (Miyoshi et al., 1995; Herrnstein et al., 1999),
NGC 1194, NGC 2273, NGC 2960, NGC 4388, NGC 6264 and NGC 6323 (Kuo et al., 2011), etc. Masers
are like lasers but in radio band. The Very Long Baseline Array, operated by the National Radio Astronomy
Observatory, can be used to image masers with a resolution of 10 microarcseconds, which is 1000 times
better than that of the Hubble Space Telescope. The velocity of the gas can be obtained by tracing the gas
with masers. Therefore, the mass of the central black hole can be obtained by simply substituting the velocity
of the gas into the Keplerian formula when the gas is in a disk around the black hole. Since the distances of
the masers to the black hole, to a large extent, are less than 1 light-year, the mass measurement precision can
be better than 10%—much better than that of optical band measurement.

Finally, when Active Galactic Nuclei (AGN) and quasars are so bright that the light from the gas/stars
around them cannot be easily observed, another important method called reverberation mapping (Blandford
& McKee, 1982) works, which measures the structure of the broad line region (see Figure I.1) around a

supermassive black hole to calculate the mass of the black hole.

IEFDE_ld Line
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Accretion
Disk
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Figure I.1: The Active Galactic Nuclei unified model. Diagram from Figure 1 of Urry & Padovani (1995).

To understand how reverberation mapping works, let’s first review the structure of an AGN (see Figure
I.1). The black hole is surrounded by an accretion disk, outside of which is the broad line region, and even
further away is the narrow line region.The spectrum from AGN/quasar consists of a strong continuum and

broad lines. The continuum spectrum is emitted directly by the accretion disk around the black hole, while



the broad emission lines are due to the farther gas absorbing the energy of the continuum emission. Since the
farther gas is still near to the black hole, when moving around the black hole, it shows the Doppler effect as
well, which is why the lines are broad. As the continuum spectrum varies, the broad lines vary accordingly,

but with a time delay T = 2Rpr/C (see Figure 1.2). The mass of the black hole can be expressed as

Mgy ~ fRpir0*/G 1.2)

where o is line dispersion and f is a unity order factor depending on the inclination, geometry and kinematics
of the broad line region. The narrow line is caused by the emission of the heated gas cloud, since the cloud is
clumpy not continuous, the emission line is narrow. With this method the mass of black holes in more than

30 AGN/QSOs are measured (Peterson et al., 2004).

To observer

0.01r/c
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.-' /e
r/c 1.5r/c

Figure 1.2: Time delay of reverberation mapping. Figure adapted from Figure 2 of Peterson (2006).

1.2.1.2 M — o and M — L correlations

Given the small mass fraction of the SMBHs compared to their galaxy hosts, we naturally do not expect any
correlations between it and the quantities reflecting the characteristics of the host galaxy such as the velocity
dispersion o and luminosity of the bulge L. A series of studies shows that such correlations do exist (Giiltekin
et al., 2009), among which the M-o correlation (see Figure 1.3) has the smallest intrinsic scatter, smaller than
M — L correlation (see Figure 1.4). The two relations are also important, because we can achieve the black
hole mass through them. Giiltekin et al. (2009) adopt 49 black hole masses and 19 mass upper limits of

e (62+V2)1(r)d

elliptical galaxies and spiral galaxies with bulge, and use 6> = R 174 *, where V is the rotational
0 r)ar

component of the spheroid, or o, i.e., ¢ at the center of bulge as ¢ in the M — ¢ relation, and also apply



log(Ly/Le.) = 0.4 (4.83 — MO

vobul ge> to calculate L,. They found the M — o relation

BH

M Oc
log [ ~21 ) = (8.124£0.08) + (4.24 £0.41) x 1 (7) 13
Og(M@) ( )+ ) X108 | S50kms 1 (1.3)
with an intrinsic rms Gaussian scatter of & = 0.44 +0.06, and M — L relation
log ( Met =(8.95+0.11) 4 (1.11£0.18) x log [ ——— (14)
M® 1011L®’V

with & = 0.38 +0.09.
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Figure 1.3: M-c correlation for galaxies with dynamical measurements. The figure shows the mass of black
hole as a function of velocity dispersion of the bulge of the host galaxy. The measuring methods are stel-
lar dynamics (pentagrams), gas kinematics (circles) and masers (asterisks). The data excluded from fit are
marked by squares. The data are colored by galaxy types, elliptical (red), SO (green) and spiral (blue). The
solid line shows the best fit relation Mgy = 10812M, (o /200kms~")*?*. Figure adapted from Figure 1 of
Giiltekin et al. (2009).
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Figure 1.4: M — L correlation for galaxies with dynamical measurements. The figure shows the mass of black
hole as a function of V-band luminosity of the bulge of the host galaxy. The measuring methods are stellar
dynamics (pentagrams) and gas kinematics (circles). The data excluded from fit are marked by squares. The
data are colored by galaxy types, elliptical (red) and SO (green).The solid line shows the best fit relation
Mgy = 108%M, (Ly /10" L, )11, Figure adapted from Figure 4 of Giiltekin et al. (2009).

1.2.1.3 SMBH demographics
Once we have a census of accurate SMBH masses, it is useful to understand the demographics of this pop-
ulation—the SMBH mass function and how the mass function behaves in different galaxy hosts at different
redshifts. To address this SMBHs are divided into three categories: high redshift quasi-stellar objects (QSOs),
local AGNs and the ones in local quiescent galaxies according to their distance to us and their activity stage.
(see Figure 1.5 and Table I.1, both from Ferrarese (2002)).

As early as 1969, Donald Lynden-Bell made an assumption that QSOs are caused by accretion onto

SMBHs. Soltan (1982) gives a quantitative correlation between the QSO ’s luminosity and the accretion rate



of the black hole (see Equation 1.5), in which € is the efficiency factor which gives the fraction of accretion
mass transferring to light, M is the accretion rate of the black hole and c is the speed of light. Combining
this correlation with the observation of QSOs ’s number counts, luminosities and distances, he calculated the
black hole mass density as 10'* solar masses per cubic Gigaparsec. Then assuming each black hole ’s mass is
108 ~ 10” solar masses, he derived that there are 10° ~ 10° black holes per cubic Gigaparsec. This is called

the Soltan argument.

L=eMc (L.5)

For high redshift QSOs, the Soltan argument (Soltan, 1982) concludes that according to the number

density of QSOs, the black hole mass density can be calculated(Ferrarese, 2002).
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Figure 1.5: Comparison of the cumulative mass density of black holes in galaxies with different red-shift and
activity stage: local quiescent galaxies (black), QSOs (blue), and local AGNs (red). Figure adapted from
Figure 1 of Ferrarese (2002).

For local AGNs, reverberation mapping is adopted to achieve the mass of the black holes. For local

quiescent galaxies, M — o and M — L correlations are used to get the black hole masses (see Figure 1.6).



Table I.1: Summary of mass densities in supermassive black holes. Table adapted from Ferrarese (2002).

Method Pe(10°MoMpc™)
QSO optical counts, 0.3 <z<5.0 2-4
AGN X-ray counts, z > 0.3 0.6-9
Special fit to the X-ray background, z unknown 2-30
Local AGNs, z < 0.1 0.05-0.6
Local Quiescent Galaxies, z < 0.0003 4-5
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Figure 1.6: Cumulative mass density for local black holes.“M-L” indicates the mass of black hole is obtained
from M, — L relation, while “F-J” indicates the mass of black hole obtained from M, — ¢ combined with the
Faber-Jackson relation. Figure adapted from Figure 4 of Ferrarese (2002).

Natarajan & Treister (2009) argued that there is a black hole mass upper limit at roughly 10'°M, due to

the extension of the M — L relation at the high luminosity end.

1.2.2 Spin of black holes

As we stated before, spin, as one of three intrinsic parameters of a black hole, plays a significant role in the
interaction between a black hole and the surrounding gas or stars or other black holes. However, to date
there is no direct evidence showing the existence of black hole spin, so the models of rotating black holes

are compared with observations. In a recent review Gammie, Shapiro, & McKinney (2004) note that while



there are several observations that are consistent with theoretical predictions of SMBH spin, no observation
is ironclad. For example the fact that Fe K, broad lines have red wings to some SMBHs, eg., MCG -6-30-
15, Cyg X-1 and XTE J1650-500, requires the black hole models with spin to interpret it. Quasi-periodic
oscillations at a frequency up to 450 Hz in GRO J1655-40 (Strohmayer, 2001) implies j > 0.15, where

j= G];;/”Cz , where Lpy is the angular momentum of the black hole. Zhang, Cui, & Chen (1997) compared the
observational features of flux from X-ray binaries GRO J1655-40 and GRS 1915+105 with the theoretical
prediction of a thin disk around a spinning black hole, showing it is very possible that there is a spinning
black hole in these X-ray binaries. Generally speaking, it is predicted that a black hole will increase its spin

when the spin is aligned with the gas disk around it, and decrease its spin when misaligned. We will talk

about how the spin changes during black hole mergers in section 1.3.6.3.

L3 Theoretical background
1.3.1 Dark matter halo
Flat galaxy rotation curves (Rubin & Ford, 1970), such as in Figure 1.7 indicate that there is an additional

dark matter component to the galaxy.
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- ]\_(_ ~&——_ ___ Observed
£ 200 ff Vanis ~220 km/s —
< Difference:
= ~E Dark Matter halo
8 150 T
5 ven should be R
=z -160 km/s —
= fe -_—_"_-“—-_
= 100 Visible matter only |
&
50 | 4
0 L L 1 1 I )
0 5 10 15 20 25 30

Distance to Center (kpc)

Figure 1.7: Galaxy rotation curve for the Milky Way. Horizontal axis is distance from the galactic center.
Vertical axis is speed of rotation about the galactic center. The sun is marked with ®. The top curve is the
observed curve of speed of rotation. The bottom is the predicted curve based upon stellar mass and gas in the
Milky Way. The difference is due to existence of dark matter or perhaps a modification of the law of gravity.
Figure adapted from Figure 1.4 of Schneider (2006).
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Figure 1.8: Simulated dark matter halo from a cosmological N-body simulation. The figure is colored by the
projected density of the dark matter. The unit of length is kpc. There is a central halo and several satellite
subhalos, each with a galaxy inside.

Dark matter halos (see Figure 1.8) typically follow a Navarro-Frenk-White profile (Navarro, Frenk, &
White, 1996)

Pcrit 5(‘
r r 2
3H?

where p.i; is the critical density, equal to el (H is the Hubble constant), ry = rp00/C (r200 is the radius

p(r)= (L.7)

at which the average density of the halo reaches 200p.;, and C is called concentration), 8, and C are di-
mensionless parameters, both of which vary from halo to halo. Given this density profile, the mass profile
is

C

T5C 1.8)

o 3
M= / 4rrep(r)dr =4mpor; [In(14C) —
0

for the halo of Milky Way, where C may take from 10 to 15, for other halos, C may range from 4 to 40
depending on the size of the halo. The mass of the dark matter halo in the Milky Way is believed to be ~ 10'?
M® (Xue et al., 2008). It is believed that 23% of the universe is made of dark matter according to the height

ratios of different peaks in Cosmic Microwave Background (CMB) power spectrum (Spergel et al., 2003).
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Figure 1.9: The components of the universe

L1.3.2 Galaxy merger

When two galaxies interact with each other, either by fly-by or merger, the stars in them do not actually collide
with each other since stars are so far away from each other and so small. But the gas clouds sometimes in the
merger case will collide with each other and fall into the center of the remnant galaxy, which will end up with
a fast star formation at the center of the remnant galaxy. At the same time, the orbits of stars will be disturbed
and completely change. When two spiral galaxies merge, the remnant galaxy is an elliptical one. Since the
fast giving birth of stars during a merger consumes most gas, the remnant elliptical galaxy does not generate
stars easily. Also when two galaxies merge, the black holes at the center of each galaxy will also merge, the
falling gas will also be accreted by the remnant black hole, which often forms an AGN. Therefore, galaxy
interactions are considered to be responsible for many phenomena including star formation, AGN/quasars
and galactic morphology(Barnes & Hernquist, 1992)—merging spirals may give rise to ellipticals. Some
observational evidence of the signature of the interaction are bridges and tails (see Figure 1.10), polar rings,

shells, nuclear disks and kinematically decoupled cores.

Figure 1.10: The Mice Galaxies (NGC 4676 A & B) in the process of merging. The galaxies were pho-
tographed in 2002 by the Hubble Space Telescope

1.3.2.1 Final parsec problem
When two galaxies are merging, the black holes at the center of each galaxy will also coalesce. At the first

stage the black holes just get closer and closer simply due to the gravity force between them until they form
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a hard binary at the distance aj.y = G /462, where u = MM, /(M; + M,), M; and M, are the mass of
the two black holes respectively, ¢ is the central velocity dispersion of the new formed galaxy. If taking
My = M, =2 x 10’M_,, ajayy is roughly 1 pc. “Hard” means a star being scattered super-elastically when
passing by the binary makes the binary increase its binding energy shrinking its semi-axis. The stars which
can be used are in a phase space called the loss cone. The geometry of the loss cone is depending on the
morphology of the central part of the combined galaxy. By scattering more and more stars the binary finally

gets close as to

1.9)

{64 G3M M (M + M) F (e) }1/4
dgr =94 = 5 lor )
5 c

less than which the binary can eventually merge within #, by emitting gravitational waves. Here c is the
speed of light, F(e) is a factor depending on the eccentricity of the binary’s orbit, equal to unity in circular

case. The binary must shrink

1/4-2/a —1/4
Ahard 90.2/a [ Mi+M, 3/4 —3/2( _Ter
—— =~ 34 —_— 1 —_— 1.10
dgr e ( 105M, pr(+p) 10%yrs (.10)

dl()gMbh ~

in the scattering process, where p =M, /M; < 1 and a = dlogo

4 —5. tg could not be longer than Hubble
time, since indirect evidence shows that there are rare black hole binaries, so the binary must shrink by a fac-
tor of 100, which requires scattering the stellar mass of 10-204. For spherical galaxies, once deleted by the
binary, the loss cone cannot be replenished fast enough, which is called the final parsec problem (Milosavl-
jevi¢ & Merritt , 2003). Figure .11 adapted from Berczik et al. (2006) shows that for a triaxial galaxy, 1/a,
where a is the semi-major axis of the binary, goes up as time is increasing and is nearly independent on the
total number of stars in the system, which implies that the result is converging and the real underlying physics
is tracked. While for a spherical galaxy, the binary becomes further as the number of particles is increasing,
not convergent at all. For asymmetrical galaxies, the problem is still a debate. Khan et al. (2013) says there
are enough particles in the loss cone in a flattened galaxy with axes ratio ¢/a = 0.75 for the SMBH binary
to fully merge, while Vasiliev, Antonini, & Merritt (2014) says the loss cone filling highly depends on N,
the number of particles, when N is between 107 and 10°. Therefore we plan to classify stellar orbits in an
axisymmetric galaxy (the same one used in Khan et al. (2013)) with a SMBH embedded at the center to

determine what orbits can potentially interact with a SMBH binary and how full the loss cone is.
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Figure I.11: The evolution of semi-major axis of black hole binary in spherical galaxy model (upper panel)
and triaxial galaxy model (lower panel) with different particle number N. Figure adapted from Berczik et al.
(2006).

L.3.3 Orbit types

Stellar orbits can be defined by the frequency ratios obtained by Fourier transforming the trajectory in each
physical dimension (x(t), y(t), z(t)), which essentially tracks the star as it passes through each principle plane
of the galaxy, to frequency domain. If the frequency ratio is stable, i.e. does not change with time, then the
stellar orbit is called regular orbit. If the ratio is irreducible, the orbit is a resonant orbit (see Figure 1.12,
I.13, I.14, and 1.15, which are some orbit samples from the simulation described in Chapter II), otherwise is
a subfamily. For instance, 10:5 is a subfamily of 2:1 (see Figure 1.16). If the frequency ratio is not stable, i.e.

sensitive to initial conditions, then the orbit is chaotic (see Figure 1.17).
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Figure 1.13: 2-dimensional resonant orbit with a 2:1 frequency ratio
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Figure 1.15: 2-dimensional resonant orbit with a 4:3 frequency ratio
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Figure 1.16: The upper panel is a 2:1 resonant orbit, and the lower panel is a 10:5 resonant orbit. The contour
shows the area that an orbit can spread under a given energy of a particle. Figure adapted from Zotos (2014).
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Figure 1.17: Chaotic orbit

1.3.4 Gravitational recoil

As we stated in section 1.3.2.1, when binary black holes reach to the last stage of their merger, they will
release energy through gravitational waves to finally finish coalescence. During this process, both the total
energy and angular momentum of the system consisting of the binary black holes and the gravitational waves
are conserved, so that the angular momentum of the gravitational radiation is equal to that of the binary.
If the radiation is anisotropic, due to the fact that the coalescing black holes are not equal massive or have
misaligned spin with their orbit spin, the center of mass of the binary will be recoiled (see Volonteri, Giiltekin,
& Dotti, 2010, and references therein) (see Figure 1.19). The recoil speed can be Vecoir max = 200 km s7!
in non-spinning case and Vyecpif max = 4000 km s~! in spinning case. This recoil velocity is sufficient for the
binary to escape, since for most galaxies the escape velocity is less than 1000 km/s (see Figure 1.18). This
would probably explain the absence of massive black holes in dwarf galaxies and globular clusters. However,

for giant elliptical galaxies, the binary will fall back in roughly half-mass crossing time (Merritt et al., 2004).
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Figure 1.18: Estimated central escape velocities of black holes V,,, in unit of km/s for different type of
galaxies. The solid line is the mean estimated V., of black holes in different galaxies caused only by the
dark matter halo associated with the luminous matter accordingly. The dashed line is the estimated V),
for elliptical galaxies when taking into account both dark matter halo and luminous matter of the galaxies.
The rest symbles show the V., estimated only from luminous matter in galaxies. Elliptical galaxies with core
density profile are showed in open squares, elliptical galaxies with power law density profile in open triangles,
dwarf elliptical galaxies in solid circles, dwarf spherical galaxies in open circles, and globular clusters in solid
triangles. Figure adapted from Figure 2 of Merritt et al. (2004), see the references therein.

Figure 1.19: Diagram of gravitational recoil. Diagram adapted from http://www.astro.cornell.edu/ favata/re-
search.html
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L.3.5 Post-Newtonian dynamics

Einstein ’s general relativity equations describe the spacetime of the universe, which can explain many effects,
such as frame-dragging and Mercury perihelion precession. Frame-dragging means a massive spinning object
drags the space with it, making the particle orbiting it feel the distortion of the space. Perihelion precession is
a phenomenon that the major axis of an object’s orbit moves due to some perturbation, which can be caused
by the distortion of the space. Mercury perihelion precession cannot be explained well with Newtonian
dynamics, but is consistent with the prediction of general relativity, which proofs the general relativity theory.
However, Einstein ’s equations are nonlinear and do not have analytic solutions. To find an approximate
solution, the post-Newtonian expansion is developed, which is expanding the equation as an exponential
function of v/c, having the form of summation of Newtonian term and the deviations of it, where v is the
velocity of a particle moving in this field. According to the Post-Newtonian dynamical equation, we can
calculate the total energy of the system, E = Ey+ E| + E» + E» 5 + E3 + E3 5, where half order terms show
the energy emitted by gravitational waves.

I added Post-Newtonian terms of up to 3.5 order to the self consistent field (SCF) code (see Appendix).
Note that we did not publish this code , nor did we use it for the papers in Chapters II or III. The SCF code is
an N-body field code to evolve a gravitationally interacting system with or without a black hole at the center,
which does not calculate the force between two bodies directly, but first generates the global potential of
the whole system by applying ultra spherical harmonics expansion given the positions of all particles, then

calculates the force exerted on each particle under this global potential.

1.3.6 Black hole growth

1.3.6.1 Seed black hole formation

A black hole can increase its mass by accreting gas and/or merging with other black holes during its growth,
but it still needs an original object as a base to grow on, which is called the seed black hole. There are four
formalisms of seed black hole formation (see Johnson et al., 2012; Bellovary et al., 2011, and references
therein). The seed black hole with mass of 100 ~ 300 M® at redshift z ~ 20 can be formed through the
collapse of the first stars (Pop III stars), which are extremely metallicity poor. 10* to 10 M® black holes
can be formed at redshift z ~ 10 via direct collapse of very metal-poor, low-angular momentum gas. Another
way to form 10* to 10° M® black holes is the collapse of dense primeval star clusters. The primordial black

holes also can be formed through the collapse of the overdensity region right after the Big Bang.
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Figure 1.20: Number density of seed massive black holes for three different formation scenarios. From
left to right the three scenarios are direct gas collapse, runaway stellar mergers in high-redshift clusters and
Population III remnants, respectively. Figure adapted from Figure 5 of Volonteri (2010) (see Volonteri, 2010,
and references therein).

1.3.6.2 Accretion disk
One way for a black hole to grow in a gas rich environment is to accrete gas through an accretion disk around

it (see Figure 1.21). For a thin disk, the Navier-Stokes equations in cylindrical symmetry (Shu, 1992) are

9r 19
d oo 10 ) 10 Q.
E(ZR Q)—i—l—eﬁ(R-):R Q~VR)—I—e8—R(R-ZR-vRa—R) (L12)

which basically show the mass conservation and angular momentum conservation, where ¢ is the surface
density, Vg is the radial velocity, Q is the angular velocity and v is the kinetic viscosity. If consider the black

hole as a mass point, then Q = \/(GM/R?), thus combining the two equations yields

9X 39 [Lipd 1/2
9t ROR [R OR (VZR ) (L.13)
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By dimension the evolution time 7' ~ RT. If the accretion is steady, i.e., % = 0, then the two conservation

equations above become

M= —2ntR¥Vg = constant (1.14)

which means the flow is constant regardless of radius;

M[ RN\ ?
VE=—|1—-| —
3n (R)

where R, is the inner radius of the disk. A supermassive black hole with mass of 4 x 10°M_,, like the one

(L15)

in the Milky Way, is estimated to have an accretion disk with mass of several percent of it and with size of

0(0.01 pc) (Dotti et al., 2007).

Figure 1.21: An artist’s conception of Cygnus X-1, another stellar-mass black hole located 6070 ly away.
Image credits: NASA/CXC/M.Weiss

1.3.6.3 Black hole mergers
Black holes mainly increase their mass by accretion during both quiescent and active stages according to
Soltan argument, while merger with other black holes (see Figure 1.22) also contributes to the mass growth
in a modest extent (see Centrella et al., 2010, and references therein). The year 2005 was a memorable year
in the black hole simulation history, since in that year several groups realized the black hole binary merger
simulations, overcoming many difficulties including singularity, grid structure, initial condition and math
formulation(Pretorius, 2005a,b; Gundlach et al., 2005; Pretorius, 2006; Campanelli et al., 2006; Baker et al.,
20006).

The energy emitted by the gravitational waves at the final coalescence stage of the binary subtracts the
total mass of the system by several percent, which also can cause the sudden change of the gravitational poten-
tial, therefore influences the motion of the surrounding gas, altering the electric-magnetic field accordingly.

The ground-based gravitational wave detectors, LIGO and VIRGO, can measure the gravitational waves of

22



merging black holes with mass of 10 ~ 100M,, while the space-based gravitational wave detector LISA can
measure the waves from black holes with mass of 10* ~ 10°M,.
The final spin of the black hole remnant is highly dependent on the initial magnitude of the spins and

the spins’ orientation relative to the orbit angular momentum of the binary. In non-spinning case, the final

formed black hole has the spin as a function of mass ratio (37) finar ~ ﬁ, where (§7) fina ~ 0.48 for g = 4

and (37) finat = 0.26 for g = 10. In spinning case, the remnant can either spin up or down.

Figure 1.22: An artist’s conception of merging black holes. Figure adapted from
http://geeked.gsfc.nasa.gov/?p=435.

1.3.6.4 Bondi-Hoyle accretion
Bondi-Hoyle accretion is a spherical accretion when a compact object, such as a neutron or black hole, is

passing through interstellar medium (Bondi, 1952). The accretion rate has a form of

M = nR*pv (L.16)

where p is the density of the surrounding medium, V is the larger one of the object’s velocity and sound

speed Cs, and R is the effective radius obtained by equating the escape velocity of the object to the sound

speed % = Cy. If V is less than Cj, the accretion rate can be expressed as
. 4npG*M?
M= 2P . (1.17)
Cs

For the super massive black hole in our Milky Way this rate could be M = nR*pv = nRzmpnwv ~
1022gs~! with a capture radius R ~ 0.02pc, number density 7,, ~ 5.5 x 10>cm ™3, and v ~ 700kms~'. (Coker

& Melia, 1997).
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1.4 Summary

From previous sections we know that galaxy merger plays an important role to the galaxy morphology and
evolution, in which black hole merger has a strong effect on the formation of stars and AGN at the center
of the host galaxy. In Chapter 2 we investigate the type of stellar orbits that can potentially interact with the
black hole by classifying stellar orbits in an middle flattened axisymmetric galaxy with an SMBH embedded
in. To check if the stars with orbit of interest studied in Chapter 2 really interact with the black hole binary,
in Chapter 3 we have exact the same galaxy as in Chapter 2 but add another equal mass black hole into the

galaxy. Then we evolve the whole system and check the energy change of particles with orbit of interest.

24



CHAPTER IT

Classification of Stellar Orbits in Axisymmetric Galaxies

[A paper with content of this chapter was submitted to ApJ (Li, Holley-Bockelmann, & Khan, 2014).]

It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a
Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may
usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to
coalesce. We explore the orbital content within an N-body model of a mildly-flattened, non-rotating, SMBH-
embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the
black holes bypassed the binary stalling often seen within spherical galaxies and merged on Gyr timescales
(Khan et al., 2013).Using both frequency-mapping and angular momentum criteria, we identify a wealth of
resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical
spherical system and that can potentially interact with the binary. We quantified the set of orbits that could
be scattered by the SMBH binary, and found that the axisymmetric model contained nearly seven times the
number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened
model, the mass of these orbits is roughly 3 times of that of the SMBH, which is consistent with what the

SMBH binary needs to scatter to transition into the gravitational wave regime.

II.1 Introduction

In Nature, a perfectly smooth and spherical galaxy is extremely rare — and arguably may not exist at all.
Nearly every galaxy has some degree of non-sphericity, be it axisymmetry, triaxiality, warps, or flares, and it
is often the case that the galaxy shape varies with radius. The global shape of the galaxy potential, however,
governs the motions of the stars and dark matter throughout.

Galaxies can be grouped according to their shape as spherical, axisymmetric or triaxial. As the degree of
symmetry in a galaxy decreases, there is more freedom in the orbit because there are fewer formal isolating
integrals of motion. In a triaxial galaxy, for example, orbits do not have to conserve angular momentum,
which admits a rich variety of regular resonant orbits (Norman & Silk, 1983; Gerhard & Binney, 1985;
Magorrian & Tremaine, 1999; Merritt & Poon, 2004; Merritt & Vasiliev, 2011), such as bananas, pretzels
and boxes, that can veer close to the supermassive black hole (SMBH) at the galactic center. The growth of
SMBH can change the shape of a galaxy from triaxial to axisymmetric (Gerhard & Binney, 1985; Norman,

May, & van Albada, 1985; Merritt & Quinlan, 1998; Wachlin & Ferraz-Mello, 1998; Valluri & Merritt, 1998;
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Holley-Bockelmann et al., 2002). SMBH can keep the shape of axisymmetric galaxies by inducing chaos and
constraining the shape of regular orbits (Poon & Merritt, 2001).

The orbital content of a galaxy is important because it is the skeleton that defines its shape, structure, and
evolution with time. In fact, it is believed that a solution to how black holes merge together and grow may
lie with stellar orbits. Theory suggests that when galaxies merge, their two SMBHs sink to the center of the
remnant and form a binary, whose orbit slowly shrinks by scattering stars away, but early simulations of the
process show that the binary ’s orbit stalls before the black holes plunge toward merger. This is “the final par-
sec problem” (Milosavljevi¢ & Merritt , 2003), which has been solved recently by properly simulating SMBH
binary evolution in galaxy mergers(Khan, Just, & Merritt, 2011; Preto et al., 2011), triaxial models (Berczik
et al., 2006; Holley-Bockelmann & Sigurdsson, 2006), and most recently in an axisymmetric galaxy(Khan
et al., 2013). However, Vasiliev, Antonini, & Merritt (2014) argued that the rates of binary hardening within
their own axisymmetric model highly depend on N, the number of particles in the simulations, in the range
of 10° < N < 10°. While Khan et al. (2013) find binary hardening rates consistent with a full loss cone,
Vasiliev, Antonini, & Merritt (2014) argue that their own models are far from the full loss cone regime and
that the apparent binary evolution is dominated by collisional processes set by numerical relaxation. The ap-
parent disagreement between these axisymmetric results may indicate that interpreting the coalescence time
of SMBH binaries within N-body simulations of this sort must be done in conjunction with an analysis of the
underlying orbit structure of the model. In this paper, we analyzed the orbit content of an N-body generated
black hole embedded axisymmetric galaxy model (Khan et al., 2013) to understand which orbits could enable
the binary black holes to pass through the final parsec to the gravitational radiation regime.

We focused on a census of the stars with pericenters well within the radius of influence of the SMBH,
though we also take stock of the resonant orbits that populate the model in general as well. The paper is
organized as follows. Section II.2 describes our simulation method. Section II.3 presents our results. We

conclude with a discussion and conclusion in section I1.4.

I1.2 Method
We begin with a spherical galaxy model with a Hernquist density profile (Hernquist, 1990), populated with
10% equal-mass collisionless particles and a supermassive black hole of mass 0.005 fixed at the center. Then
we “adiabatically squeeze” (Holley-Bockelmann et al., 2001) this spherical galaxy to generate an axisym-
metric model with axis ratios g = 1,£ = 0.75. This model was used in Khan et al. (2013) as the background
galaxy to study black hole binary coalescence.

We construct our model with the galactic center in broadly in mind, so the mass of the SMBH in system

units, 0.005, maps to 4 x 10°M.,. To pin down the length scale, we find the radius in the model where the
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enclosed stellar mass is roughly twice of that of the SMBH; in system units this radius is 0.05, while in the
Milky Way, this radius is roughly 1 parsec (Genzel et al., 2000; Schodel, Eckart, & Alexander, 2007; Ghez et
al., 2008; Oh, Kim, & Figer, 2009). Given the mass and length scaling, the system unit velocities should be
scaled by ~ 450 km/s and the system time can by scaled by ~ 4 x 10* years. The highest velocity particle is
only 1 % the speed of light, so we do not apply post-Newtonian corrections in our simulation.

In general, the technique of orbital analysis involves following the particles within a fixed background
galaxy potential. Ideally, the galaxy potential should be as smooth as possible to mitigate numerically-
induced diffusion in the particle trajectories; this two-body relaxation will artificially induce chaotic orbit and
can scatter particles out of resonant orbits (Hernquist & Weinberg, 1992; Kandrup, 1995; Sellwood, 2003;
Holley-Bockelmann, Weinberg, & Katz, 2005; Weinberg & Katz, 2007a,b). To obtain a smoother potential
we *8-fold’ the model, reflecting each particle position about the principle axes (Holley-Bockelmann et al.,
2001). Further, we use a self consistent field (SCF) code(Hernquist & Ostriker, 1992) to evolve the orbits in
all six simulation series, which will be discussed in detail in the following. The SCF code is a particle-field
code, where the particles do not interact with each other directly, but are accelerated by the global potential
of the black hole-embedded galaxy. Here, the stellar potential and density are expressed as series expansion
of ultraspherical harmonic functions. Here we employ nmax=10, Imax=6, though the results are largely
unchanged for nmax=2-20, Imax=0-15.

We run each orbit for 100 dynamical times of an circular orbit with the same energy within the combined
fixed potential from the supermassive black hole and the axisymmetric stellar model(Carpintero & Aguilar,
1998). We adjust the time step of each particle to ensure that fractional energy loss from integration errors is
less than 10~ for each orbit. Typical fractional energy loss is less than 10! over a time span much larger
than Hubble time when the model is scaled to the Milky Way.

To analyze each orbit, we evenly sample the positions and Fourier transform the trajectory to obtain
the principle frequencies that characterize the motion of the particle with respect to the x, y, and z axes.
We can classify the orbit type according to the frequency ratio fx/fz and fy/fz (Laskar, 1993; Carpintero &
Aguilar, 1998). To distinguish a chaotic orbit from a stable one, we analyze the orbit in two time slices of 50
dynamical times; the frequency ratio of a chaotic orbit will vary between the two time slices. To record the
full information of the orbit, we also keep track of the pericenter distance, the minimum angular momentum
and the minimum of the z component of the angular momentum for each particle. The resonances are marked
by (u,v,w), which correspond to integers and are coefficients of the equation u- fx+v- fy+w- fz=0.

To fully map the orbital structure of this potential, we conduct 3 experiments, and each experiment is
comprised of the axisymmetric model and its spherical counterpart. The “Galaxy” series simply analyzes the

orbits of the particles directly within the original spherical N-body model and the final adiabatically-squeezed
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flat model. The advantage of the Galaxy set is that it directly probes the orbits that could eventually interact
with the binary black hole in the Khan et al. (2013) N-body simulation; since we use the axisymmetric model
that results in a successful binary black hole coalescence, it is important to take stock of the orbits within.
The disadvantage of this set is that it is merely one realization of the potential, and since a galaxy model is
constructed from stars over a continuum of energies, it is difficult to compare our results to orbit analyses in
the literature, where it is traditional to map out the orbital structure at a fixed energy. For this reason, we run
“3D” and “2D” models that sample the phase space much more finely within 8 fixed energy slices. The “2D”
series only maps orbits within the x-z plane, but this allows us a straightforward visualization of the resonant
orbits, and allows us to construct a meaningful surface of section as well. See table 1 for more detail on each
run.

For the 8 energy slices of the “3D” and “2D” models, the energy E=-2.5, -2, -1, -0.5, -0.4, -0.3, -0.2,
-0.1, respectively. The stellar mass of particles with energy less than each E in the axisymmetric galaxy is
respectively 1 x 1074, 6 x 1074, 10%, 40%, 45%, 55%, 70%, 80% of the total stellar mass. The corresponding
radius for a particle to run on a circular orbit with each E in the axisymmetric galaxy is respectively 0.0015,
0.0025, 0.025, 0.45, 0.7, 1, 2, 4. The units shown in all figures are model units unless otherwise indicated.

Since this model was constructed non-analytically by dragging particles in velocity using an N-body
simulation, it is not guaranteed to be a precisely homologous figure. We characterize the global shape by
the axes ratios at the half mass radius, b/a = 1 and ¢/a = 0.75, and as can be seen in Figure 1.4, the shape
is fairly stable throughout the bulk of the model. The one big exception is at large radius, where the orbital
time of the particles is so long that the squeezing technique is non-adiabatic and therefore the orbits of these
outermost particles are largely unaffected by the applied velocity drag; this affects about 20% of the particles
on the outer edge of the system. We should therefore expect that the orbital content of the outskirts of this
galaxy model should mimic the spherical model and that we are missing the axisymmetric orbit families that
would lie out there if the model were perfectly homologous.

We note one other seemingly small detail: at the innermost part of the model, within the central 0.5 parsec,
which is within the radius of influence of the SMBH, c/a is less flattened, around 0.85, and b/a trends below
1.0, around 0.96. Here, the model is actually triaxial with T=0.28. The mass fraction involved in the triaxial
portion is small — less than 0.25% — about half the SMBH mass. The finding of a technically triaxial shape
inside the radius of influence of the SMBH may seem counter to previous work (Valluri & Merritt, 1998;
Holley-Bockelmann et al., 2002), which finds that the presence of a SMBH will act to sphericalize a triaxial
shape. However, our finding is not inconsistent for several reasons. First, our model was embedded with a
SMBH in place at its full mass before we morphed the galaxy shape, while most previous work focused on

how galaxy models adjusts to a SMBH that starts at zero mass and grows. Second, earlier work may only
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Table II.1: Model detail

model name  particles’ initial condition potential model dimension number of particles
Galaxy axisymmetric galaxy axisymmetric 3D 1 million
3D random axisymmetric 3D 0.8 million
2D random in xz plane axisymmetric 2D 0.8 million
Galaxy-sp spherical galaxy spherical 3D 1 million
3D-sp random spherical 3D 0.8 million
2D-sp random in xz plane spherical 2D 0.8 million

have noted the trend toward a spherical figure (which we are in fact seeing — note the axis ratios are both
trending toward 0.9); they may have counted such minor triaxiality that we observe as essentially spherical.
Finally, previous work followed the evolution of triaxial models over hundreds of dynamical times, while it

is not clear how long the figure shape we observe will persist.

I1.3 Results
I1.3.1 Prominent orbit families
In theory, axisymmetric potentials are thought to harbor resonant, centrophilic orbits (Vasiliev, 2014) that
bear some broad similarity to those in triaxial systems (Sridhar & Touma, 1999; Sambhus & Sridhar, 2000);
the main difference is that since the degree of symmetry is higher in axisymmetric systems, they should admit
fewer chaotic orbits and, naturally, more 1:1 resonances within the symmetry plane (Poon & Merritt, 2001).
Of particular note in an axisymmetric model is the saucer orbit, predicted within an analytical potential
(Richstone, 1982; Lees & Schwarzschild, 1992). We identified saucer orbits within our N-body model of
an axisymmetric galaxy, even though the potential is neither a homologous figure nor an analytic potential.
Figure II.1 shows the projection on x-y plane, x-z plane and R-z plane of the saucer orbit within our 3D
run. This orbit traversed the inner 0.7 parsec of the model, with pericenter passes only 0.05 parsec from the
SMBH. These orbits are thought to be key in interacting with and being scattered by binary SMBHs.
Unexpectedly we also found pyramid orbits(Sridhar & Touma, 1997; Merritt & Valluri, 1999; Sridhar &
Touma, 1999; Poon & Merritt, 2001), which are thought to exit only in triaxial galaxies, as they originate
from breaking the symmetry axis of a saucer parent orbit (Merritt & Valluri, 1999). Figure I1.2 displays a
pyramid orbit from our simulation. From the x-y plane projection, it is clear that the pyramid passes through
the center of the galaxy, while the saucer does not. These are also ideal orbits to comprise the loss cone for
binary black hole coalescence. In our model, these pyramid orbits only exist in the part of the model that
exhibits slight triaxiality within 2 parsecs of the SMBH. With such a minor degree of triaxiality, it is perhaps
surprising that these orbits exist at all; indeed, it is not clear how small the deviation from non-axisymmetry

must be to admit these formally triaxial orbits.
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Figure II.1: A typical saucer orbit that emerged in the Galaxy and 3D simulations. The three panels from left
to right show the orbit projection in the x-y, x-z and r-z plane respectively, where r = 1/x2 +y2.
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Figure I1.2: A typical pyramid orbit emerged in the Galaxy and 3D simulations. The three panels from left to
right show the projection of the pyramid orbit in the x-y, x-z and r-z plane respectively, where r = /x2 + 2.
Note the hole in the x-y plane projection of the saucer orbit, which is not present in the pyramid orbit.
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We found these distinctive orbits in all our axisymmetric runs although note that in two-dimensions,
pyramids and saucers do not distinguish from each other (Merritt & Vasiliev, 2011). Through the observation
of hundreds of orbits, we defined the criteria to separate saucers from pyramids within our Galaxy run, where
the orbits are directly from the N-body model. Saucers satisfy —2.2 < E < —1.7, fx/fz <1, fy/fz< 1, and
1.74 x 107* < L,i, < 0.0035. In our particular potential, pyramids satisfy —2.2 < E < —1.7, fx/fz < 1,
Fy/fz<1,and Ly, <= 1.75 x 10~*. There are approximately 600 saucers and 150 pyramids in the Galaxy
run.

Since we are motivated to examine orbits to better understand how they promote rapid SMBH coales-
cence, we search for “orbits of interest” within our Galaxy model(Vasiliev, 2014). These orbits could poten-
tially lie within the binary SMBH loss cone, and are a composite of formally centrophilic orbit families such
as boxes or pyramids, as well as those orbits with pericenters roughly that of the separation between SMBHs
in Khan et al. (2013), including chaotic orbits. In our axisymmetric model, there are over 14000 such orbits,
with a total mass of 0.014 in system units, which is 3 times larger than the SMBH, while the spherical model
only hosts about 2000 of these orbits.

In our 3D simulation, where we can more finely-sample the orbit content based on the initial energy of
the orbit, saucers and pyramids are primarily evident in the deep energy slice at E=-2. In this region, they are
also separately distributed in frequency and angular momentum space. Figure I1.5 shows fy/fz versus fx/fz.
The red dots are pyramids, green ones are saucers, others are in blue. We can easily see from this figure that
the saucers mainly lie on the fx=fy diagonal line, while pyramids spread around the line fy/fz=0.5. Saucers
and pyramids are also easily separable in angular momentum at this fixed energy slice; saucer orbits comprise
15 percent of the total mass of this energy slice, while pyramids are 6 percent.

Figure I1.3 shows the surface of section of the E=-2 slice in the 2D simulation, the green dots are saucers,
the blue ones are others. Saucers are those with a minimum angular momentum less than 0.0035, while other
orbits have larger angular momenta, and recall that in 2D simulations, saucers and pyramids are the same

(Merritt & Vasiliev, 2011).

I1.3.2 Global orbital structure
Though we concentrated on the orbits that could encounter and interact with a binary SMBH in each model,
there are a rich variety of resonant orbits throughout the system, and we discuss the global orbital content
here.

Figure I1.6 shows the surface of section of two energy slices in the 2D run, colored by the fz/fx ratio to
denote different orbit families. It is readily apparent from the large area occupied by the 1:1 loop orbit that it

is the dominant family; in the spherical model it is the only regular, non-chaotic, orbit family. Fish, pretzels
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Figure I1.3: Surface of section of vx versus x of E=-2 slice in the 2D simulations. The saucers are in green
and others in blue. Saucers have the angular momentum L,,;, < 0.0035. It is seen that in the upper part of the
figure, the angular momentum of the particles are smaller.
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Figure I1.4: Axes ratio b/a (red) and c/a (blue) in the inner 10 parsecs of the axisymmetric model. Though not
plotted, the axis ratios are stable and the system is axisymmetric within 100 parsecs; at larger distances, the
system becomes more spherical because the timescale for the applied velocity drag is non-adiabatic compared
to typical orbital timescales there.
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Figure IL.5: fy/fz versus fx/fz for 0.1 million particles with E=-2 in the 3D simulation. Pyramids are denoted
by red dots, saucers by green dots and others by blue dots. Both saucers and pyramids have fy/fz < 1
and fx/fz < 1 and small angular momentum. The angular momentum of saucers are 1.75 x 107 < L,,;, <
0.0035, while that of the pyramids are L,,;,, <= 1.75 x 10~%. In this energy slice, the saucers are 15% and the
pyramids are 6%. Since these are resonant orbits, they will lie on a distinct line in this frequency map. We
mark notable resonance lines by (u,v,w), which correspond to integers and are coefficients of the equation
u-fx+v-fy+w- fz=_0. Pyramids mainly lie on lines (1, -3, 1) (1, -5, 2), (0, 2, -1), (1, 5, -3) and (1, 3, -2),
while saucers are present on (15, -1, 0), (1, -15, 0), (1, 1, -2) and (1,-1,0).

also feature significantly in these energy slices, and though the fraction of chaotic orbits are small, they are
present peppered throughout the region occupied by high-order resonances.

Figure IL.7 presents the percentage of different orbit types as a function of energy. It can be seen that 1:1
loop orbits are the dominant orbit family at nearly every energy; “other resonant” orbits begin to dominate
only at the slice that is most highly-bound to the SMBH. At the least-bound energy slice the percentage of
1:1 loops is higher than 85% and this may be partially due to the fact that this slice contains some orbits near
the physical outskirts of the system, where adiabatic squeezing is less effective at transforming the shape.
The fraction of low-order resonant orbits increases for more tightly-bound orbits. Aside from the loop orbit,
the 3:2 fish orbit family is the most prominent of the ones we tracked. The percentages of 4:3 pretzels, 2:1
bananas higher-order resonances and chaotic orbits are always below 10%.

The left and right panels of Figure II.8 show fy/fz vs fx/fz of the Galaxy-sp and Galaxy simulation
respectively. In the spherical galaxy model, 88% particles lie around the (1,1) point, which means they have
the fx:fy:fz=1:1:1, while in the axisymmetric model this percentage is 33%. However in the axisymmetric
model the percentage of particles lying on the line fx=fy is 98%; these are short-axis tubes. The resonance
orbits lying on line u- fx+v- fy+w- fz =0 in the axisymmetric model are also marked by the line coefficient
(u,v,w) as showed in the figure. It is seen that comparing with the Galaxy-sp model showed in the left panel,
the Galaxy model has a rich variety of orbits such as (1, 1, -2), (3, 3, -4), (0, 3, -2), (0, 2, -1) and (1,1,-1), etc..

The left panel of Figure I1.9 displays the mean pericenter distance of the particles in each bin as a function

of mass fraction for the Galaxy (red) and Galaxy-sp (blue) run. There are 100 bins in each simulation,
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Figure I1.6: Surface of section in the 2D simulations. The two panels from left to right show the surface of
section of E=-1,-0.4, slice respectively in the ax-2D-random simulations. The stellar mass of particles with
energy less than each E in the axisymmetric galaxy is respectively 10% and 45% of the total stellar mass.
The dots are colored by fz/fx, in which 1:1 loops are denoted by red dots, 4:3 pretzels by cyan dots, 3:2 fishes
by magenta dots, 2:1 bananas by green dots, chaos by grey dots and other resonances by black dots. The 1:1
loop is always dominant. Chaotic orbits always occupy the lower angular momentum part of the figure, as
they interact with the SMBH.

with 10000 particles per bin. It is clear that the mean pericentric distances are smaller in the axisymmetric
galaxy out to an enclosed mass of 70%, and at that point the model is more nearly spherical. Note that we

calculate the pericentric distance in ellipsoidal coordinates so that we are not biased by the more compact

vertical dimension in the flattened model; in other words, rim = \/(x/a)? + (y/b)2 + (z/c)?. To quantify
the difference between the pericentric distances more explicitly, the right panel is the difference between the
Galaxy and Galaxy-sp models, weighted by the axisymmetric model. Orbits delve 50% deeper into the center

at mass fraction of 2%. For the most part, the difference is over 10%.
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Figure II.7: The percentage of different type of orbits as a function of energy in 2D simulations. This plot
shows the percentage of each type of orbits presented in Figure I1.6 with the same legend. The trend is the
rate of 1:1 loop keeps increasing as the energy rises, while the rates of nearly all the other types decrease, of
which only the 3:2 fishes and “other resonances” are ever over 10%.

I1.4 Conclusion and Discussion

We identified several major orbits families in our axisymmetric galaxy model such as saucers, bananas, fishes,
and short-axis tubes. These orbits are present despite the relatively minor flattening (c/a=0.75) compared to
a spherical model. Due to a very slight deviation from an oblate spheroid at the center of the axisymmetric
model (T=0.28), pyramid orbits are also present, making up 6% of mass within the inner 0.5 parsec. It is not
clear how much a system needs to deviate from axisymmetry to generate pyramids.

Since we are primarily interested in whether the orbital content in the axisymmetric model is sufficient to
drive binary black holes to coalesce, we took a census of those particles that would reside in the loss cone of
a binary black hole. The total mass of particles with orbits that could interact with a hard binary black hole in
the axisymmetric galaxy simulation is roughly three times that of the SMBH, and about seven times of that
in the spherical galaxy simulation. According to three-body scattering experiments, the SMBH binary needs
to scatter 1.2 ~ 1.5 times its mass to transition to the gravitational wave regime (Quinlan & Hernquist, 1997;
Sesana, Haardt, & Madau, 2007), and this is consistent with the mass of stars on potential loss cone orbits
in our axisymmetric model. In a separate work, we will track which of these orbits are actually scattered by
the SMBH binary as the system evolves, but it appears that the orbital content in our axisymmetric model is
more than enough to drive the SMBHs to merge in less than a Hubble time.

There may be several reasons why the hardening rates in Vasiliev, Antonini, & Merritt (2014) and Khan
et al. (2013) differ. A suggestion has been made that numerical relaxation may have artificially enhanced
SMBH binary scattering in Khan et al. (2013), while another idea posed is that the system in Khan et al.

(2013) is more perturbed from virial equilibrium, and it is this time-dependent perturbation that refills the
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Figure I1.8: Left: fy/fz versus fx/fz for Galaxy-sp simulations. 88% particles are lying at the point (1,1), which
means they have fx=fy=fz and are 1:1:1 tubes, and nearly all the rest particles reside on lines fx=fy, fx=fz
and fy=fz; there are no complex orbit types in this model. Right: fy/fz versus fx/fz for Galaxy simulations.
In contrast to the Galaxy-sp model, the Galaxy model has a rich variety of orbits such as (1, 1, -2) and (3, 3,
-4), (0, 3,-2), (0, 2, -1) and (1,1,-1), etc. However 98% particles are still short-axis tubes.
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Figure I1.9: The left panel shows 7,,,;,,, the average pericentric distance in each mass bin, as a function of mass
fraction. The blue line is for Galaxy-sp model and the red line for Galaxy model. The right panel quantifies
the difference between the pericentric distance in each model: (rm,mp — Tminax ) /Tmin.ax» as a function of
mass fraction. Inside around 70% mass fraction, this difference is always over 10%, reaching nearly 50% at
mass fraction of 2%.

loss cone (R. Spurzem, private communication). The results of our work imply that the slight triaxiality in
our model inside the radius of influence of the black hole may be the key in explaining the apparent difference
between the two results. The triaxial center in our model increased the number of potential loss cone orbits
near the black hole, spawning formally centrophilic orbit families — like pyramids — to appear, and allowing
for a wide diffusion of orbits in angular momentum. If it is true that the central shape is a major factor in
the differing SMBH coalescence times in these two papers, we are left with several interesting and related
questions: what is the orbital content for more realistically-flattened models?; how small a deviation from
pure axisymmetry is required to gain enough centrophilic orbits to drive SMBH binaries to coalesce?; and

are any real galaxies perfectly axisymmetric enough to pose a final parsec problem?
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CHAPTER 111

Supermassive Black Hole Binary Mergers within Axisymmetric Galaxies

We analyze the time-dependent structure of an axisymmetric galaxy with an initially wide SMBH binary at
the center. As the SMBH binary coalesces, we investigate the orbits and origin of stars that are scattered by
the binary, and explore the effect of the binary merger on the orbital content of the host galaxy.

The initial conditions and particle ids of the axisymmetric galaxy here are exactly the same as in Chapter
II. The only difference is that we add another equal mass black hole at an position x=0.5 with a initial
velocity v=vy=0.45 (both are in system unit, see Chapter II for scaling to physical unit). Then we let the
whole system composed of two black holes and 1 million particles evolve under Newtonian gravity until the
distance between the black hole binary reaches around 0.01 pc. To see if the particles with orbit of interest
(see Chapter II for the definition) really interact with the black hole binary, we plot the histogram of energy
change for all particles and particles with orbit of interest in Figure III.1, in which the horizontal axis is
the energy change in percentage, (Ey — E;)/E;, where E; and E are the initial energy and final energy of a
particle respectively; the vertical axis is number of particles N in each bin over total N in log space, where
N,y for all particles is 1 million, N, for particles with orbit of interest is 14122. From this Figure, we can
notice that particles with orbit of interest nearly always have higher percentage of particles at the same energy

change rate than all particles have. This is a preliminary result.
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Figure III.1: Comparison of energy change of all particles and particles with orbit of interest. The particle
ids are the same with project in Chapter II.
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CHAPTER 1V

Expansion Techniques for Collisionless Stellar Dynamical Simulations

[A version of this chapter was published as Meiron, Li, Holley-Bockelmann, & Spurzem (2014).]

We present GPU implementations of two fast force calculation methods, based on series expansions of
the Poisson equation. One is the Self-Consistent Field (SCF) method, which is a Fourier-like expansion of
the density field in some basis set; the other is the Multipole Expansion (MEX) method, which is a Taylor-
like expansion of the Green’s function. MEX, which has been advocated in the past, has not gained as much
popularity as SCF. Both are particle-field method and optimized for collisionless galactic dynamics, but while
SCF is a “pure” expansion, MEX is an expansion in just the angular part; it is thus capable of capturing radial
structure easily, where SCF needs a large number of radial terms. We show that despite the expansion bias,
these methods are more accurate than direct techniques for the same number of particles. The performance
of our GPU code, which we call ETICS, is profiled and compared to a CPU implementation. On the tested
GPU hardware, a full force calculation for one million particles took ~ 0.1 seconds (depending on expansion

cutoff), making simulations with as many as 10% particles fast on a comparatively small number of nodes.

IV.1 Introduction

A galaxy is a self-gravitating system where stellar dynamics is governed by Newton’s law. It could be naively
described as a set of 3N, coupled, second-order, non-linear ordinary differential equations, where N is the
number of stars, which ranges between 10 and 10'? (Binney & Tremaine, 2008). Solving such an equation
set numerically is practically only possible at the very low end of the N,-range, and even so very challenging
with current computer hardware. Thus, various techniques are used to simplify the mathematical description
of the system; these are often designed to fit a particular problem in stellar dynamics and yields unphysical
results when applied to another problem.

Direct N-body simulation is one of the main techniques used to study gravitational systems in general and
galaxies in particular. In this technique, the distribution function is sampled at N < N, points in a Monte-
Carlo fashion. This N depends on the computational capabilities, and an astrophysical system with 10'!
stars might be represented numerically by a sample of just 10° “supermassive” particles. This seems to be
allowed because of the equivalence principle and the fact that gravitation is scale free, unlike, for example,
in molecular dynamics. However in gravity too this simplification can cause problems, as some dynamical

effects depend on number density rather than just mass density.
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The most well known N-dependent effect in stellar dynamics is two-body relaxation. The relaxation
time, the characteristic time for a particle’s velocity to change by order of itself due to encounters with other
particles, scales with the crossing time roughly as N/InN. Thus, the ratio between the relaxation times in a
real and a simulated system is of similar order of magnitude to the undersampling factor. This could be taken
into account when interpreting the result of an undersampled simulation, but a poorly sampled distribution
function might have other, unexpected, consequences.

Galaxies are often described as collisionless stellar systems, which means that the relaxation time is much
larger than the timescale of interest (except perhaps at the very center). This property could be very useful:
since a particle’s orbit is basically what it would be if it were moving in a smooth gravitational field, we
could evaluate the field instead of calculating all stellar interactions, this is cheaper computationally. Another
useful property is that galaxies are often spheroidal in shape. Even highly flattened galaxies will have a
spherical dark halo component. Thus, a spherical shape could be used as a zeroth order approximation for
the gravitational field, and higher order terms could be written using spherical harmonics.

The goal of this paper is to examine two techniques that utilize both these facts. These are the Multipole
Expansion (MEX) and the Self-Consistent Field (SCF) methods. They historically come from different ideas,
and as explained below in detail, they are mathematically distinct. In the context of numerical simulations,
however, they serve a similar function: to evaluate the gravitational force on all N particles generated by this
same collection of particles, in a way that discards spurious small scale structure (in other words, smooths
the field).

MEX was born of the need to ease the computational burden. The idea is that given spherical symmetry,
Gauss’s law says that the gravitational force on a particle at radius » from the center is simply GM(r)/r?,
towards the center, where M(r) is the enclosed (internal) mass. The gravitational constant, G, will be omitted
in the following text. This idea was used by Hénon (1964) who simulated clusters with up to 100 particles
to study phase mixing due to spherical collapse. This “spherical shells” methods is MEX of order zero and
was also used for the same purpose by Bouvier & Janin (1970). The extension of this this idea is that when
spherical symmetry breaks, corrections to the force can be expressed by summing higher multiples (dipole,
quadruple, etc.) of the other particles, both internal and external to r. Aarseth (1967) used such a code to
study a stellar cluster of a 1 000 stars embedded in a galactic potential, truncating the expansion at /iax = 4.

van Albada & van Gorkom (1977) used a variation of this method to study galaxy collision. These authors
employed a grid and conducted simulations of also up to N = 1000 and /,,x = 4. They additionally assumed
azimuthal symmetry which reduced the number of terms in the expansion. Fry & Peebles (1980), Villumsen
(1982), McGlynn (1984) and White (1983) all use variations of this method, with additional features which

are partly discussed in Secion IV.5.2. See also Sellwood (1987) for a review.
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The prehistory of SCF is rooted in the problem of estimating a disk galaxy’s mass distribution from its
rotation curve. Toomre (1963) proposed a mathematical method to generate a surface density profile and
a corresponding rotation curve (related to the potential) by means of a Hankel transform, and introduced a
family of such pairs. Clutton-Brock (1972) used Toomre’s idea, but in reverse: to calculate the gravitational
field from an arbitrary 2D density, he generated an orthogonal set of density profiles and their corresponding
potentials. This solved two problems (1) with his orthogonal set it was possible to represent any flat galaxy as
a finite linear combination of basis functions, and (2) unwanted collisional relaxation was curbed due to the
smooth nature of the reconstructed gravitational field. Cf. a related method by Schaefer et al. (1973). Clutton-
Brock (1973) introduced a 3D extension of his method, which was called SCF by Hernquist & Ostriker (1992,
hereafter HO92) by analogy to a similar technique used in stellar physics Ostriker & Mark (1968); further
historical developments are discussed in Section IV.2.5.

To exploit recent developments in the world of general purpose computing on GPUs, we implemented
both SCF and MEX routines in a code called ETICS (acronym for Expansion Techniques in Collisionless
Systems). In Section IV.2 we explain the mathematical formalism of both methods and highlight the differ-
ences between them. In Section 3 we explain the unique challenges in a GPU implementation and measure
the code’s performance. In Section 4 we discuss the accuracy of expansion and direct techniques. In Section

5 we present a general discussion and finally summarize in Section 6.

IV.1.1 Glossary

Here we clarify some terms used throughout this work:

Expansion methods a way to get potential and force by summing a series of terms; in this paper either MEX

or SCF.

MEX Multipole expansion method (sometimes known in the literature as the Spherical Harmonics method);

expansion of the angular part.

SCF Self-consistent field method; a “pure” expansion method since both angular and radial parts are ex-

panded.

ETICS Expansion Techniques in Collisionless Systems; the name of the code we wrote, which can calculate

the force using both MEX and SCF, using a GPU.

GPU Graphics Processing Unit; a chip with highly parallel computing capabilities, originally designed to
accelerate image rendering but is also used for general-purpose computing. It often lies on a video

card! that can be inserted into an expansion slot on a computer motherboard.

'Many GPUs lie on GPU accelerator cards which lack video output.
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IV.2 Formalism
IV.2.1 Series Expansions

Both MEX and SCF methods are ways to solve the Poisson equation:
V2®(r) = 4np(r), (IV.1)

the formal solution of which is given by the integral:

N 3./
() = — / p|(rr_)dr (IV.2)

r|

The expression |r —r/|~! is the Green’s function of the Laplace operator in three dimensions and in free
space (no boundary conditions), and the integral is over the whole domain of definition of p(r). In an N-body

simulation, the density field p(r) is sampled at N discrete points {r;}, such that
N
p(r)= Zm]ﬁ(r—rj), (Iv.3)
=1

where 0(r) is the 3D Dirac delta function. Direct N-body techniques evaluate integral (IV.2) directly:

N .
or)=-Y (IV.4)

and thus at each point r = r; where the potential is evaluated, require N calculations of inverse distance,
orN—1ifr; € {rj}, since there is no self-interaction. In practice, we are interested in evaluating the
potential at the same points in which the density field is sampled, and thus a “full” solution of the Poisson
equation requires N(N — 1)/2 = N? inverse distance calculations. In both MEX and SCF the integrand in
equation (IV.2) is expanded as a series of terms, each of which more easily numerically integrable; this is
done in two different ways, lending the two methods quite different properties. In both methods, the reduction
in numerical effort comes at the expense of accuracy compared to direct-summation, but this statement is
arguable since in practice direct N-body techniques use a very small number of particle to sample the phase
space.

To demonstrate the difference between the two approaches in the following Section, let us consider a 1D

version of integral (IV.2); let us further assume that the density exists in the interval 0 < x < 1:

1 AW X Vdx! Ndx'
) — p()dy p(x))c:/x _/X‘%_ (IV.5)

o =¥ Jo x—
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Note that this is not a solution for a 1D Poisson equation (hence the notation / instead of &), but just a
simplification we will use to illustrate the properties of each method. We will conveniently ignore the fact
that this integral is generally divergent in 1D, as it does not affect the following discussion. In brief, MEX is
a Taylor-like expansion of the Green’s function, while SCF is a Fourier-like expansion of the density. This
already hints at the most critical difference between the MEX and SCF: while the former, like a Taylor series,
is local in nature, the latter is global. Another way to look at it is that in both methods the integrand is written
as a series of functions (of x) with coefficients: in MEX one uses the given density to evaluate the functions,
while their coefficients are known in advance; in SCF one evaluates coefficients, while the functions are

known in advance.

Iv.2.2 MEX
Let us define z = x’ /x and expand the Green’s function equivalent in equation (IV.5) around z = 0, we get that

forz<lorx <ux:
1 1

Iv.6
|x—x’| |l—z| xlg‘z’ av.6)
while for z > 1 or ¥’ > x we can expand around z~! = 0:
1 1 1 l &
=— =— . v.7
|x—x’| X |Z71—1| X/E(’)Z ( )

The first and second terms of integral (IV.5) define the functions ¢;(x) and p;(x) (utilizing the commutativity

of the sum and integral operations):

T p(x)dx! . —(l+1)/x Yy = (I41)
= dx' = V.8
0 |x—x| g;)x o plx Zx Jqi(x (IV.8)
1 x/ dx/ = 1
plx) - = YA [ p) T dx me (IV.9)
o =X Far S
and thus
_ S —(I+1) !
Ix)=Y [qz (x)x + pi(x)x } . (IV.10)
=0

While seemingly we made things worse (instead of one integral to evaluate, we now have a series of integrals),

the fact that x has moved from the integrand to the integral’s limit greatly simplifies things. Let the density
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p(x) be sampled at N >> 1 discrete and ordered points {x; : x; < xj}; it is easy to show that

a(x) = Y mpd (IV.11)
j<i
o —(I41)
p(x) = ijxj (IV.12)
j>i

In other words, each of these functions is a cumulative sum of simple terms and can be evaluated at all {x;}

in just one pass, but a sorting operation is required.

Iv.2.3 SCF

Let us leave the Green’s function as it is, and instead expand the density as a generalized Fourier series:

p(x)

w = [ PP
0

where {p,(x)} is a complete set of real or complex functions (the basis functions); orthonormality of the

i anpPn(x) (IV.13)
n=0

basis functions is assumed above. The integral (IV.5) becomes:

Z / i i il (IV.14)

e— x’l

The function set {,(x) } is defined by the above integral. In essence, we replaced the integral over an arbitrary
density p(x) with an integral over some predefined ‘densities’ p,(x). The advantage is that we can calculate
the corresponding potentials, I,(x) in advance, and then the problem is reduced to numerically determining
the coefficients a,. The choice of the basis is not unique, and an efficient SCF scheme requires that the

following:
1. The functions p,(x) and I, (x) are easy to evaluate numerically.

2. The sum (IV.13) convergence quickly, or in other words, py(x) is already close to p(x).
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IV.2.4 Properties in Three Dimensions

The standard form of MEX in 3D is

[

o(r) = Z [sz(r)r’(’“”rpzm(r)r’ Yim(6,9) (IV.15)
=—1

Gin(r) = /M )Y, (6,9")d*F (IV.16)

le( ) _ /<r, l+1 )1/;,,(6’,¢’)d3r’. (IV.17)

All together there are %(lmax + 1)(Imax +2) complex function pairs (not counting negative m, which are
complex conjugates of the others) that need be calculated from the density. Since in practice the density field
is made of N discrete points, they must be sorted by r in order for the above integrals to be evaluated in one
pass.

The standard form for SCF is:

I
Z Z Z Anlm nl Ylm(e ¢) (IV18)
n=0[=0m=—1

All together there are %(nmax + 1)(Imax + 1) (Imax +2) complex coefficients (not counting negative m) that
need be calculated from the density. A typical choice is (Rmax, max) = (10,6), for which there would be 308
coefficients. The radial basis functions and coefficients for SCF are discussed in the next Section. Spherical
harmonics are used in both cases to expand the angular part, but alternatives exist, such as spherical wavelets
(e.g. Schroder & Sweldens 1995). MEX has two sums (one infinite) while SCF has three sums (two infinite).
In practice, the radial and angular infinite sums must be cut off at npyax and Inax, respectively. The finite sum
could in principle also be truncated to discard azimuthal information.

Simply equating the expressions gives the relation between the two methods:

4n -
Oim(r) = =577 [am (MY 4 pun ()| = ZAnzm i (Iv.19)

where Qy,,(r) is the (I,m)-pole. In case the system is azimuthally symmetric, Q;,, = 0 for all |m| > 0. Also,
the same azimuthal information is carried in positive and negative m terms, and they are related to each other
by complex conjugation.

If one decompose the density to a spherical average p(r) and the non-spherical deviation p(r,6,¢), then
it is easy to show that Qy(r) depends only on the spherical average, while all other term depend only on the
deviation. In a spherically symmetric system only Qg is nonzero, and setting /i,,x = 0 yields an accurate

result. While the choice of /,ox depends only on the deviation of the system from spherical symmetry, the
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choice of nmax in SCF depends on how well the system is described by the the zeroth radial basis function,
and is usually determined by trial and error (see Section IV.4.1).

It is interesting to note a nontrivial mathematical difference between the two methods. One can show that
the Laplacian of equation (IV.15) is zero when substituting the appropriate expressions for ¢, and p;,, from
the equations (IV.16) and (IV.17); the proof is mathematically cumbersome and will not be brought here. This
is surprising, since according to the Poisson equation the result should be proportional to the density. One
cannot appeal to series truncation to resolve this apparent contradiction; indeed each term in the formally non-
truncated infinite series yields a zero density, despite representing the multipoles as continuous functions. The
solution is that the potential at point r has contributions from all internal (i.e. at ¥ < r) particles (represented
by ¢1») and all external particles (represented by p;,,,), but no information about the density at r itself. This
is the case also when the potential is constructed by a direct-summation of all gravitational point sources, so
one may say MEX is similar to direct methods in this sense. In SCF, by construction, taking the Laplacian
of equation (IV.18) leads right back to the density field (equation IV.1). One can thus use the coefficients
Ay to represent a smoothened field. One can also use MEX for this purpose, if the derivatives of Qy,,,(r) are

calculated on a grid or with a spline.

IV.2.,5 Radial Basis

A key difference between MEX and SCF is the freedom of choice of radial basis. There are in fact two
function sets: the radial densities {p,;(r)} and the radial potentials {®,;(r)}; they are related via the Poisson
equation V2®,; = 47p,,; (in this case V2 only contains derivatives with respect to 7). The choice of basis is
not unique, and the basis functions themselves need not represent physical densities and potentials (i.e. P,y
could be negative). However it is convenient to take the zeroth term (n =/ = 0) to represent some physical
system, and to construct the rest of the set by some orthogonalization method, such as the Gram—Schmidt
process.

The idea of Clutton-Brock (1973) was to use a Plummer (1911) model as the zeroth term and construct
the next orders using the Gegenbauer (ultraspherical) polynomials and spherical harmonics (cf. Allen et al.
1990 who developed a virtually identical method for finite stellar systems using spherical Bessel functions
for the radial part). HO92 constructed a new radial basis (also using Gegenbauer polynomials) which zeroth
order was a Hernquist (1990) model; this is the basis set we adopt in ETICS. They argued that this basis was
more well suited to study galaxies.

More basis sets followed. Syer (1995) used the idea of Saha (1993), that the basis does not have to be
biorthogonal, to construct as set which zeroth order was oblate. Zhao (1996) gave a radial basis set for the

more general a.-model (of which both Plummer and Hernquist are special cases) and Earn (1996) introduced
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a basis for thick disks in cylindrical coordinates. Brown & Papaloizou (1998), Weinberg (1999) describe
numerical derivation of the radial basis set so that the lowest order matches any initial spherically-symmetric
model, so called “designer basis functions”. Rahmati & Jalali (2009) introduced an analytical set which

zeroth order is the perfect sphere of de Zeeuw (1985).

IV.3 Implementation

IV.3.1 Parallelism

There are several levels of task parallelism available when writing computer code. At one level, tasks are
performed in parallel on different computational units (such as CPUs) but only one copy of the data exists,
which is accessed by all tasks; this is called a shared memory scheme. The tasks are called “threads”, and they
are generally managed within one “process” of the program. A higher level of parallelism is called distributed
memory scheme, where tasks are performed on different units (often called “nodes’), but each unit has access
only to its own memory; thus data must be copied and passed. In this case the parallel tasks are different
processes, and cooperation between them is facilitated by a message passing interface (MPI). The parallel
programming model is different between shared and distributed memory; the former is considered easier
since threads can faster and more easily cooperate. A high-performance supercomputer will generally enable
parallelism on both levels: these machines are made of multiple nodes, each of which has its own memory
and multiple computational units.

Graphics processing units (GPUs) are powerful and cost-effective devices for high performance parallel
computing. They are used to accelerate many scientific calculations, especially in astrophysics, such as
dynamics of dense star clusters and galaxy centers (Hamada & litaka 2007; Portegies Zwart et al. 2007;
Schive et al. 2008; Just et al. 2011; see review by Spurzem et al. 2012). The GPU contains its own memory
and many computational units, thus it is a shared memory device?. SCF force calculation is particularly easy
to parallelize, since the contribution of each particle to the coefficients A,;,, is completely independent of all
other particles. Particle data can be split to smaller chunks (each could be on a different node), from each
chunk partial A,;,,-s are calculated. Then the partial coefficients summed up and the result communicated to
all the nodes. This was done by (Hernquist, Sigurdsson, & Bryan, 1995, hereafter H95), whose code used
the MPI call MPT_Allreduce to combine the partial coefficients. This parallelization scheme, however, is
not suitable for GPUs, as discussed in Section IV.3.3. MEX force calculation is harder to parallelize since the
contribution of each particle depends on its position in a sorted list (by radius). However, in a shared memory

scheme this too could be achieved relatively easily as explained in the following Section.

2A GPU behaves as a shared memory device since all threads have transparent access to the device’s global memory, which has a
single address space. However there is a hierarchy in the memory and thread structure, with some kinds of memory private at the thread
or block level. Thus, GPUs has also distributed memory characteristics.

48



[-loop

—
I=1+1

I coordinate trans.

Figure IV.1: Flowchart of the MEX routine. Boxes with double-struck vertical edges indicate a GPU-
accelerated operation. Blue color represents call to the represent Thrust library.

V3.2 MEX

The current implementation of the MEX method relies on Thrust (Bell & Hoberock, 2011), a C++ template
library of parallel algorithms which is part of the CUDA framework. It makes parallel programming on a
shared memory device (either a GPU or a multicore CPU) transparent, meaning that the task is performed in
parallel with a single subroutine call, and the device setup and even choice of algorithm is performed by the
library. Thrust provides a sorting routine that selects one of two algorithms depending on input type. In the
current version of MEX and using version 1.6 of Thrust, a general Merge Sort algorithm (Satish et al., 2009)
is used.

A flowchart of the entire MEX routine is shown in Fig. IV.1. The flow is controlled by the CPU, and
boxes with double-struck vertical edges indicate a GPU-accelerated operation. The blue double-struck boxes
represent Thrust calls, while the black ones are regular CUDA kernel calls. When a GPU operation is in
progress, the CPU flow is paused. Fig. IV.2 shows the four main memory structures of the program and how
the Thrust subroutines and kernels in the program operate on them. The particle array contains all particle
coordinates and also the distance square from the center, which needs to reside in this structure for the sorting
operation (in practice the particle array contains additional data such as ID and velocity, but this is not used by
the MEX routine); the cache structure contains functions of particle coordinates which are needed to calculate

the multipoles. Kernell, which is executed once, reads the coordinates, calculates those functions and fills
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Figure IV.2: The main memory structures in the MEX routine, and a scheme of the action of the Thrust
subroutines (blue) and kernels on them. The wider boxes for the exponent (in the cache structure) and the
multipoles represent complex numbers (require twice the memory). The layout of the multipole structure
(shown here for Ihax = 2) is actually rotated in memory by 90° with respect to the other structures, since it is
easier for the scan subroutines.

the cache structure.

Kernel2 calculates the spherical harmonics at the current /-level and from that the contribution of the
particle to gy, and p;,,,, which are saved in global memory. When this kernel returns, the Thrust subroutines
are dispatched to perform the cumulative sum. The “scan” (forward cumulative sum) and “r. scan” (reverse
scan) are both in fact calls to the exclusive_scan subroutine, but to perform the reverse scan, we wrap
Pim With a special Thrust structure called reverse_iterator. Not shown in the flowchart, the two scan
subroutines have to be called / times at each /-level since they work on one m value at a time.

Kernel3 has both cache and compute operations: it calculates the partial forces in spherical coordinates
(i.e. the [-order correction to the force) and/or potentials by evaluating all the spherical harmonics again

+1) to the next I-

(and their derivatives with respect to spherical coordinates). Later it advances r and r(
level (except at the last iteration). Finally, the last kernel operates on the force structure and transforms it to
Cartesian coordinates. Fig. IV.6 shows the relative time it takes to do the internal operation.

We note that the potential could be calculated at the same time as the force (in Kernel3) and stored at
another memory structure (not shown in Fig. IV.2) but is skipped if only forces are needed. Alternatively,

only the potential could be calculated (this is faster since the derivatives of the special functions are not

calculated). The choice between calculating force, potential or both is done with C++ templates.
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V3.3 SCF

We first briefly explain the serial algorithm used by HO92. The force (and potential) calculation had two parts:
(1) calculation of all the A,;,,,-s (the plural suffix ‘-s’ to emphasize that there are hundreds of coefficients in
this 3D structure) and (2) calculation of all the forces using the coefficients.

In both parts, the particle loop (the j-loop) was the external one, inside of which there are again two main
steps. In step (1a) all necessary special functions were calculated using recursion relations. Step (2a) was
identical but additionally, the derivatives of those functions were calculated. In step (1b) there was a nested
loop (n-I-m structure) in which a particle’s contribution to every A,;,,was calculated and added serially. In
step (2b) there was also such a loop, which used all the A,;,,,-s to calculate the force on each particle.

In the parallel algorithm used by H95, another part was added between the two parts mentioned above:
communicating all partial A,,,,-s from the various MPI processes, adding them up and distributing the results.
In practice it was achieved using just one command, MPI_Allreduce. There are two main reasons why
this algorithm could not be used effectively on a GPU, both are related to the difference between how the
GPU and CPU access and cache memory. The first difficulty is performing the sum. The partial sums from
the different parallel threads could in principle be stored on a part of the GPU memory called global memory,
and then summed in parallel. However a modern GPU can execute tens of thousands of threads per kernel
(note that the concept of a thread in CUDA is abstract, and the number of threads by far exceed the number
of thread processors on the GPU chip), and every partial A,;,, is 5 kilobyte in size (depending on np,x and
Imax). Thus, writing and summing the partial coefficients would require extensive access to global memory,
which is slow compared to the actual calculation part. The second difficulty is that if one thread uses too
much memory, for example to store all necessary Legendre and Gegenbauer polynomials as well as complex
exponent (as is done in the HO92 code), this may lead to an issue called register spilling, where instead of
using the very fast register memory, the thread will store the values on the slow global memory, which again
we wish to avoid on performance grounds.

To tackle those issues we utilized another type of GPU memory called shared memory®. This memory is
“on chip” (on the multiprocessor circuit rather than elsewhere on the video card) and has x 100 lower latency
than global memory. Threads in a CUDA program are grouped into blocks, threads in the same block share
this fast memory (hence the name). It is also much less abundant than global memory. The Nvidia Tesla K20
GPUs have just 64 kilobytes of shared memory per block, while they have 5 gigabytes of global memory.

In order to use shared memory to calculate the coefficients, each thread would serially add contributions
from particles to the partial A,;;,,-s on shared memory; then they would be summed up in parallel in each

block. However, there are usually hundreds of different A,;,-s, as well as tens or hundreds of threads per

3Not to be confused with the concept of a shared memory device.
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Figure IV.3: Same as Fig. IV.1 but for the SCF routine.

block (depending on hardware; which is required for efficient loading of the GPU); there is not enough
shared memory for that (by far). To solve this, we changed the order of the loops: the external loop is the
I-loop, then comes the n-loop. For each (n,1) pair, a CUDA kernel is executed where the j-loop is performed
in parallel on different threads, inside of which the m-loop is done. Now each threads has to deal with far
fewer Aj,-s (no more than /¢ + 1), for which there is usually enough shared memory.

A flowchart of the entire SCF routine is shown in Fig. IV.3. The flow is controlled by the CPU, and
boxes with double-struck vertical edges indicate a CUDA kernel call. When a GPU operation is in progress,
the CPU flow is paused. Fig. IV.4 shows the four main memory structures of the program and how the five
kernels in the program operate on them. The particle array contains all particle coordinates (in practice it
contains additional data such as ID and velocity, but this is not used by the SCF routine); the cache structure
contains functions of particle coordinates which are needed to calculate the basis functions. Kernell, which

is executed once, reads the coordinates, calculates those functions and fills the cache structure. Kernel2 only
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Figure IV.4: Same as Fig. IV.2 but for the SCF routine. The main memory structures in the SCF routine,
and a scheme of the action of the kernels on them. Every cell in the coefficient structure (shown here for
(Mmax; Imax) = (3,3)) is a complex number.

operates on the cache structure, it has just one function which is to advance ®; by one level; thus it needs to
be executed at the beginning of each iteration of the /-loop. As shown in the flowchart, it is skipped for / =0
because Kernell calculates and caches ®yy.

Kernel3 has both cache and compute operations: it calculates the current W,;; using recursion relations
from the cached W,,_1 ; and W,,_, ; and then updates the cache. Later it calculates the spherical harmonics and
from that the contribution of the particle to the all A,;,in the current (n,/)-level, which are saved in shared
memory. When all threads in the block have finished calculating contributions of the particles assigned
to them, they are synchronized and a parallel reduction is performed. Since threads from different blocks
cannot share memory, the data from each block must be transfered to the host machine’s memory and the
CPU finishes the summation process.

For the force calculation, just a reading the A,;,,,-s is required. The GPU has yet another type of memory
which is ideal for storing of coefficient or constant parameters. It is fittingly called “constant memory”, and
is as fast as shared memory when every thread in a warp accesses the same memory element. It is also very
limited (usually to 64 kilobytes per device), but the A,;;,,structure could still fit there nicely. Once calculation
of all the coefficients is complete, it is transferred back to the GPU constant memory to be used to calculate the
forces. Since only reading the coefficient is required, in Kernel4 which calculates the forces and/or potentials

by evaluating all the basis functions again (and their derivatives with respect to spherical coordinates), the
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Figure IV.5: Scaling of one full force calculation time. Hernquist’s SCF code (in green) is a CPU code and
was tested on Intel Xeon E5520 CPU (one core). ETICS is a GPU code with both MEX (red) and SCF (blue)
methods, and was tested with Nvidia Tesla K20 GPU; for the GPU codes, dotted lines show the performance
in single-precision mode. For the scaling with N we set [hox = 6, and for the SCF codes also ny,x = 10.
The scaling is theoretically linear with N for SCF and NlogN for MEX, but the theoretical behavior is only
seen asymptotically for the GPU codes, since the GPU is not fully loaded at low N. Both methods scale
quadratically with [n,« (the tests were performed with N = 10°, and nmax = 10 for SCF). SCF scales linearly
with np,x (the tests were performed with N = 10 and /;yax = 6). The CPU code shows some erratic behavior
due to compiler optimization. Note that the tests are performed on different hardware.

Jj-loop is the external one. To avoid register spilling we keep the internal loop structure as /-n-m, and thus we
only need to recalculate the complex exponents, which is relatively cheap. Finally, the last kernel operates on
the force structure and transforms it to Cartesian coordinates. Fig. IV.7 shows the relative time it takes to do
the internal operation.

We note that the potential could be calculated at the same time as the force (in Kernel4) and stored at
another memory structure (not shown in Fig. IV.4) but is skipped if only forces are needed. Alternatively,
only the potential could be calculated (this is faster since the derivatives of the special functions are not

calculated). The choice between calculating force, potential or both is done with C++ templates.

IV.3.4 Performance

We tested the performance of ETICS (both MEX and SCF) on a single Nvidia Tesla K20 GPUs on the Laohu
supercomputer at the NAOC in Beijing. For comparison, we also tested the Fortran CPU SCF code by Lars
Hernquist on the ACCRE cluster at Vanderbilt University in Nashville, Tennessee (we used a node with Intel
Xeon E5520 CPU). If the initial conditions are not sorted by r in advance, the first MEX force calculation is
more costly than all the following, since the sorting of an already nearly-sorted particle list is faster. Thus,
all measurements of the MEX code are done after the system is evolved one very short leapfrog time step.

Fig. IV.5 shows the time it takes to do one full force calculation as a function of N, Iax and nmax. Each point
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represents the mean time of 10 different calculations. The dispersion is generally very low, with the exception
of ETICS-MEX with [, 2 6; only for which we show error bars. Note that the timing only depends on the
number of particles (and expansion cutoffs) and not on their spatial distribution.

The CPU and GPU SCF codes are both theoretically O(I2  nmaN). At low N the GPU is not fully
loaded, and ETICS performance seems superlinear with N. ETICS-MEX is theoretically (12, NlogN), but
this again is an asymptotic behavior which is not observed. The lack of good GPU load for N < 10° is much
more evident than the NlogN nature of the algorithm. The GPU global memory was the limiting factor in
how many particles could be used with both methods. The dotted lines show the performance of ETICS using
single-precision instead of double. The speed increase is 61% for SCF and 65% for MEX, but there is a price
to pay in accuracy as noted in Section IV.4.2. The speedup factor could be very different for different GPUs.

All codes should scale quadratically with /i,,x, but as the middle panel of Fig. IV.5 shows, this behavior
is not so clear for ETICS-MEX. This is due to the extensive memory access this code requires, which rivals
the calculation time. Memory latency on GPUs is not easy to predict; due to caching and the way memory
is copied in blocks, and the latency depends not only on the amount of memory accessed but also on the
memory access pattern.

SCF codes theoretically scale linearly with npy.x. A strange behavior of the CPU code is noted: it seems
that the time increases with np,x in a “zigzag” fashion (the measurement error of the times is much smaller
than this effect, and it is reproducible). This is paradoxical: it takes a shorter time to calculate with ny.x = 9
than with ny,x = 8, even though more operations are required. It is not simple to understand why this is, but
it seems that the compiler performs some optimization on the first j-loop (coefficient computation) that only
help when n,x is 0odd but not when it is even.

The comparison between ETICS-GPU and Hernquist’s code is not exactly fair since they use different
types of hardware. Specifically for hardware we tested, ETICS-GPU outperforms Hernquist’s code by a
factor of about 20 (which depends little on all parameters). However, Hernquist’s code can utilize a multicore
CPU (using MPI). The Xeon CPU we used has 4 cores, and two such CPUs are mounted on a single ACCRE
node. We could use the Fortran code in MPI mode on all 8 effective cores with almost no overhead, and the
calculation is accelerated by a factor of 8. Also, Hernquist’s code calculate the jerk (force derivative), which
ETICS-GPU does not; this takes ~ 14 percent of the total time.

Figs. IV.6 and IV.7 show the fraction of time it takes to perform the internal operations for the force
calculation for ETICS-MEX and -SCEF, respectively, both use N = 10°, Iax = 6 and for SCF, nyax = 10. For
MEX, operations inside each iteration of the /-loop are shown in different shades (also denoted by letters
corresponding to stages 3a, 3b and 3c as explained in Section IV.3.2). The most costly operations are the

ones we entrust to Thrust, namely the sorting and cumulative sum. In Fig. IV.7 the internal structure of
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Figure IV.6: Pie chart showing the relative time of each operation required to perform one full MEX force
calculation with ETICS (double-precision, N = 10° and Imax = 6); the total time is 0.15 sec on Nvidia Tesla
K20 GPU. The results may differ significantly on different hardware and if single-precision is used instead.
The first operation is sort, followed counter-clockwise by initialization of the cache arrays, the [-loop where
each iteration is divided to (a) summand calculation, (b) cumulative sum and (c) partial force calculation. The
final operation is coordinate transformation from spherical to Cartesian
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Figure IV.7: Same as Fig. IV.6 for a full SCF force calculation with ETICS (N = 100 particles, Ipax = 6
and nmax = 10); the total time is 0.16 sec on Nvidia Tesla K20 GPU. The first operation is initialization,
followed counter-clockwise by the /-loop (in which the n-loop is nested). The partial force calculation is a
single CUDA kernel, inside of which all the loops are performed.



each [-iteration is not shown (since there are too many internal operations, including the n-loop). The force
calculation is executed as one operation (a single CUDA kernel call), and includes the /-loop nested inside it

(unlike MEX where only a partial force was calculated at every [-iteration, step 3c).

IV4 Expansion Accuracy

IV4.1 Infinite Particle Limit

Two separate questions come up when discussing the accuracy of expansion methods: how well the expansion
approximates the N-body force (i.e. direct-summation), and how well it approximates the smooth force
in the limit of infinite particles (which we will refer to as the “real” force in the following discussion).
Both questions depend on N, I« and (for SCF) np.x. A related question is how well the N-body force
approximates the real force, as a function of N. All these questions depend not only on the expansion cutoff
and N, but on the stellar distribution as well (e.g. global shape, central concentration, fractality, etc.); this
will not be fully explored in this work.

There are two types of error when considering the expansion methods versus the real force, analogous
to systematic and random errors. The first, systematic-like error, comes from the expansion cutoff, this is
called the bias. For example, a system which is highly flattened could not be described by keeping just the
quadrupole moment, so both MEX and SCF cut off at [;,,x = 2 would exhibit this type of error, regardless
of N (see Merritt 1996; Athanassoula et al. 2000 for discussion about bias due to softening). The second,
random-like error, comes from the finite number of particle and their coarse grainy distribution; it is the
equivalent of N-body noise (also referred to as particle noise or sampling noise).

HO92 attempted to estimate accuracy of SCF by showing convergence of the coefficient amplitudes with
increasing n for the density profiles of some well known stellar models. They showed that A,00 decayed
exponentially or like a power law with n, depending on the model. This analysis was not satisfactory because
it applied to the limit of infinite N, thus ignoring the random-like error. Furthermore, showing convergence
of the coefficients does not give information about the force error. The bias and the random error are not easy
to distinguish. The bias could be calculated, in principle, only if the true mass density p(r) is known, which
is not generally the case; however, it is still useful to look at some particular examples where it is known.

To test the accuracy of the expansions techniques, we used two simple models for the mass density. Both
our models are Ferrers ellipsoids (Ferrers, 1877) (often called Ferrers bars) with index* n = 1: model1l
is a mildly oblate spheroid with axis ratio of 10:10:9, mode12 is triaxial with axis ratio of 3:2:1. Ferrers

ellipsoids are often used in stellar dynamics, especially in the modeling of bars (e.g. Athanassoula 1992).

4The Ferrers index should not be confused with the SCF radial index, both denoted with n.
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They have a very simple mass density:

p(u?) = - (Iv.20)

where a, b and c are the axes, py is the central density, n > 0 is the index and u is the ellipsoidal radius,
defined by:

= ()4 (22)” avat)

The potential due to this family of models is simply a polynomial in (x,y,z) if n is an integer. The coeffi-
cients could be calculated numerically (also analytically for some cases) by solving a 1D integral (Binney
& Tremaine, 2008, Chapter 2.5). For both our models we used the mathematical software Sage to calculate
the coefficients to better than 10~ !3. The force vector components are trivially derived from the potential
polynomial; this is the “real” force.

We created many realization of these two models, ranging from just 100 particles to 10°. The goal is
to compare for each realization the force calculated using MEX, SCF and direct-summation (no softening),
with the real force. All calculations performed using double-precision, and the direct-summation force is not

softened. For each realization we get a distribution of N values of the relative force error,

L |Fi - Fi,real|

= (IV.22)
|Fi,real|

where i is the particle’s index. It is not practical to show to full distribution for all cases, so in Figs. IV.8 and
IV.9 we show the mean, and the full distribution for only selected cases.

The left panel of Fig. IV.8 shows the mean relative force error € in model1l for direct-summation and
MEX with even I ax between 0 and 10; odd terms are in principle zero if the expansion center coincides with
the center of mass, and in practice very small. For this model, € is decreasing with N for all cases but /p,x =0
(monopole only). The smallest error is for /n,x = 2 (monopole and quadrupole only). Unintuitively, adding
correction terms increases the error (for constant N), This is because the model’s deviation from sphericity
is so mild, that the quadruple describes it well enough; the following terms just capture some of the N-body
noise in the realization and make more harm than good. In the right panel we show the full log-distribution for
selected cases. The histograms for N = 103 are made by stacking of 10° realizations, so there are 10° values
of € in all histograms. In all cases the € distributions are close to log-normal; the logarithmic horizontal axis
hides the fact that the distributions on the right are much wider in terms of standard deviation due to a very

long and fat tail when viewed in linear space. Note that while the number of particles increased by 1 000, in
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all cases the error distribution shifted down by just a factor of ~ 10.

Fig. IV.9 is the same but for the triaxial mode 12. While in the N-body cases the € distributions are much
the same, MEX shows a different behavior. The most prominent feature is the bump on right side of the
N = 100, . = 6 error distribution, which demonstrates the issue of bias. Most of the particles which make
up this bump are located in the lobes of the ellipsoid, where many angular terms are required. When lpax is
increased to 10, this bump disappears. It also is not present in the N = 103, [yax = 6 case, probably because
it is overwhelmed by the random error. This bump causes the mean error to saturate with particle number, as
the left panel shows. Increasing N will shift the bulk of the bell curve to the left (zero), but will not quench
the bump. At much larger N, modell will show the same behavior as the random error becomes smaller
than the bias, and the high-/,,x cases would outperform /i = 2.

We repeat this exercise for SCF, which has an additional source of bias due to the radial expansion cutoff.
Fig. IV.10 illustrates that point by showing the relative force error distribution in mode 12 for SCF compared
to MEX with the same number of particles (N = 10°) and same angular cutoff (I,ox = 10). With increasing
nmax, the SCF error distribution approaches that of MEX, demonstrating the point made in Section IV.2.4 that
MEX is equivalent to SCF with ny,x — co. It must be noted that the basis set we programmed in ETICS is not
at all suitable for Ferrers models (which are finite and have a flat core), and the apparently slow convergence
should not disparage one from using SCF, even if it is not known in advance what basis to choose. The overlap
between the relative force error distributions of SCF at ny,x = 10 and MEX is 77%. A more intelligent choice
of basis function is discussed by Kalapotharakos et al. (2008), who used a similar methodology to choose the
best basis set for triaxial Dehnen (1993) y-models (Merritt & Fridman, 1996) with 0 < y < 1 from a family
of basis sets similar to the HO92.

The results presented in this section suggest that there is some optimal expansion cutoff, which is different
for different models and depends on the number of particles (Weinberg, 1996). This is analogous to optimal
softening in direct-summation force calculations (Merritt, 1996; Athanassoula et al., 1998). If not enough
terms are used, there is a large bias; if too many terms are used, the particle noise dominates. Vasiliev (2013)
addressed this issue by calculating the variance of each SCF coefficient among several realizations of the
same triaxial Dehnen model, found that for N = 10° particles, angular terms beyond / = 8 are dominated by
noise (and that only the first few n, m terms at that I-level are reliable).

The force error discussed above is not directly related to energy diffusion or relaxation, which are reduced
due to the smoothing, but not absent. The mechanism for energy (and angular momentum) diffusion in both
expansion methods is temporal fluctuation of the multipoles or coefficients (due to the particle noise). This
is somewhat analogous to two-body relaxation in that the potential felt by every particle fluctuates (although

in this case there is no spatial graininess). Vasiliev (2014, in prep.) examined energy diffusion in a Plummer
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Figure IV.8: For the mildly oblate modell, the left panel shows, as a function of N, the mean relative
force error € (defined in equation IV.22) in direct-summation (“N-body”; thick black line) as well as MEX
expansions with even [p,.x between 0 and 10 (odd terms have almost no effect). Each point represents a
full distribution of error values, obtain by stacking models with the same N. The right panel shows the full
log-distribution for some selected points on the left panel (shown as stars). Notice that since the horizontal
axis is logarithmic, the distributions on the right are much wider than those on the left (have larger standard
deviation).

sphere with N = 10° particles using SCF and direct N-body codes, and found that SCF demonstrated a
diffusion rate only several times lower, which was close to the rate in a direct technique using near-optimal
softening for this N. Further reduction was achieved by discarding of expansion terms which are nominally
zero in any triaxial system centered around the expansion center. Finally, Vasiliev used temporal softening
(HO92), where the coefficients (and thus the potential) are updated in longer intervals than the dynamical
time step; this procedure however introduces a global energy errors unless some measures are taken to amend

this.

IV4.2 Single Precision

Due to their original intended use, GPUs are not optimized for double-precision arithmetic (indeed early
GPUs completely lacked a double-precision floating-point type). In cards that do support double-precision,
arithmetic operations could still be significantly slower than for single. As noted before, in our test we
measured a 60—65% speed increase when using single-precision. The Nvidia Tesla K20 GPUs we used have
enhanced double-precision performance with respect to other GPUs, for which using double-precision may
be significantly slower. Those devices are somewhat specialized for scientific use and are thus more expensive
(albeit in many applications still superior to parallel CPU architectures in terms of price/performance ratio
due to the low energy consumption). CPUs usually take the same time to perform an arithmetic operation

in either single- or double-precision, but a program’s general performance could be faster in single-precision
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Figure IV.9: Same as Fig. IV.8 but for the triaxial mode12. For this model, the behavior of the mean error
seems different for the MEX (but nearly identical for the N-body): the low-multipoles outperform (have
smaller mean error than) the higher ones only at low-N, but get saturated (increasing N does not improve
accuracy). This could be understood from the right panel: while the error distributions are very similar to
the previous model, the /. = 6, N = 10° has a bump on the right. This bump is the bias that causes the
saturation, and will likely not disappear when N increases (however as seen it is diminished for [ ,x = 10).

due to smaller memory load. For the Hernquist-SCF CPU code, we measured a 6% improvement in speed.
Using single-precision however inevitably reduces the accuracy of the calculated force; here we examine how
bad this performance-accuracy trade-off is.

Fig. IV.11 show the relative force error distributions of single-precision calculations, compared to double.

The relative force error on particle i is now defined as:

éi = |Fi,single - Fi,double‘ (IV23)
|Fi,double‘

We testes an N = 10° realization of a Hernquist sphere with characteristic scale of one unit. The top
panel shows two SCF force calculations: the green histogram (on the left) is a low order expansion up to
(Pmax, Imax) = (5,2), retaining 36 coefficients; the red histogram is an expansion up to (Pmax, Imax) = (10,2),
retaining 308 coefficients. The bottom panel similarly shows two MEX expansions. In both cases, the higher
order expansion has relatively large errors. While it is still smaller than the error with respect to the “real”
force discussed in Section IV.4.1, its nature is numeric and it could hinder energy conservation.

The relatively large error is not remedied by usual methods to improve accuracy of floating point arith-
metic such as Kahan summation algorithm (Kahan, 1965), because the error does not come from accumula-
tion of round off errors. Instead, the accuracy bottle neck is the calculation of the spherical harmonics and/or
the Gegenbauer polynomials. Particles for which those special functions are calculated with large numeri-

cal error will have a large force error, but additionally they contribute erroneously to all the coefficient or
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Figure IV.10: The relative force error distribution for the triaxial mode 12 with N = 10°. The green histogram
is also shown in the right panel of Fig. IV.9 and represent a MEX expansion with /n,x = 10. The other
histograms represent SCF expansions with /5 = 10 and varying np,x values as shown. With increasing
nmax, the SCF error distribution approaches that of MEX with the same /.. In this case, the model differs
greatly from the zeroth order function of the basis set, showing relatively slow convergence.
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multipoles, thus causing some error in the force calculation of all other particles as well.

There are two groups of particles with large relative error in this implementation: particles that are very
far away from the center, and particles which happen to lie very close to the z-axis. The former group is
not so problematic since the absolute force is very small as well as their contribution to the coefficients or
multipoles. The latter group causes large error because the recursion relation used to calculate the associated

Legendre polynomials:

Pim(6) = =2(m—1)cotOF, ;1 (6)

= —(l4+m—1)(l—m+2)P_2(6) (IV.24)

is not upwardly stable because of the cot 0 factor, which diverges when the polar angle 0 is very small or
very close to 7 (although the polynomials themselves approach zero in these limits).

The distributions shown in Fig. IV.11 may vary significantly depending on the model. For example,
Ferrers ellipsoids are finite and flat at the center, thus they do not contain the problematic particles described
above and have much smaller error in single-precision. A Hernquist sphere is more representative of the
general case in galaxies, being infinite and relatively centrally concentrated.

One could conceivably improve the accuracy at single-precision in several ways. In the test described
above everything was calculated in single-precision, apart from some constant coefficients that were only
calculated once, in double-precision, and then cast to single. It may be possible to identify the most sensitive
parts of the force calculation and use double-precision just for those, or use pseudo-double-precision (as
in Nitadori 2009) for part of or the entire force calculation routine. Another possibility is to keep using

single-precision for everything but prescribe special treatment to those orbits close to the z-axis.

IV.5S Discussion
IV.5.1 The Methodology
Expansion techniques, on their own, are best geared to simulate systems with a dominant single center, where
it is important to minimize the effects of two-body relaxation, and where the system potential does not change
radically (quickly) with time. An ideal class would be long-term secular evolution in a near-equilibrium
galaxy.

Both methods presented in this work can be used to quickly calculate the gravitational potential and
force on each particle in a many-body system, while discarding small scale structure. MEX comes from a
Taylor-like expansion of the Green’s function in the formal solution of the Poisson equation, while SCF is a

Fourier-like expansion of the density. Both methods are important tools for collisionless dynamics and has
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Figure IV.11: Relative force error distributions of single-precision force expansions compared to double-
precision (defined in equation IV.23). The model used is a Hernquist sphere with N = 10°. The top and
bottom panels shows SCF and MEX force calculations, respectively. In both cases the left (green) histogram
is a lower-order expansion as indicated in the legend.
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been used extensively in astrophysics as discussed in the following Sections. They are comparable in terms

of both accuracy and performance. In both methods, there are free parameters to be set:
1. Center of the expansion
2. Angular cutoff /p,x

The center of the expansion could be the center of mass, but a better choice would be the bottom of the

potential well. SCF has additional choices:
3. Length unit
4. Radial basis set {®,;(r)}
5. Radial cutoff np,x

The choice of length unit (or model scaling) affects the accuracy of SCF expansion because the zeroth order
of the radial basis functions corresponds to a model of a particular scale. For example, the basis set offered
by ETICS corresponds to a Hernquist (1990) model with scale length a = 1.

The main difference for the end-user is that SCF smooths the radial direction as well. This could be an
advantage when N is very small, since SCF will still provide a rather smooth potential, although it might not
represent the real potential well at all due to random error. In MEX, particles are not completely unaware of
each other, and every time two particles cross each other’s shell, there is a discontinuity in the force, which
may lead to large energy error when N is small. This shell crossing occurs when two particles change places
in the r-sorted list, and the particles need not be close to each other at all.

Both methods have some problems close to the center. In SCF, the limitation comes from both radial and
angular expansions. The radial expansion cutoff induces a bias if the central density profile does not match
the zeroth basis function, and a very non-spherical model would cause force bias at the center as well as the
lobes. The latter is also a problem for MEX, which has two additional problems: the discrete nature and
inevitably small number of particles when one gets arbitrarily close to the center, as well as the numerical
error (and/or small step size required) due to having to calculate 1/r (the SCF basis function we use are

completely regular at the center).

IV.5.2 MEX
It is clear from the literature that SCF has been by far more popular. But despite the above, we do not think
that most authors intentionally avoided MEX, and that SCF was better publicized and became the standard.

MEX is rarely used in its full form, but more frequently in the spherically symmetric version, sometimes
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called the “spherical shells” method; in this case just the monopole term is kept (Imax = 0). For example, it is
used in the Poisson solvers of Hénon (1975) Monte Carlo method. This hints that it might be easy to extends
codes like MOCCA (Giersz et al., 2008) to non-spherical cases using our version of MEX>. This monopole
approximation has also been used to study dark and stellar halo growth (Lin & Tremaine, 1983; Nusser &
Sheth, 1999; Helmi & White, 1999).

The extension of the spherical case using spherical harmonics exists in several variations, divided roughly
to two classes: grid and gridless codes. The MEX version presented in this work is gridless and follows from
Villumsen (1982) and White (1983). These authors used Cartesian instead of spherical coordinates, and
softened the potential at the center. This softening, albeit similar mathematically, is not equivalent to particle-
particle softening in direct N-body simulations and was just used to prevent divergence at the center.

The first MEX code however is by Aarseth (1967), who divided the simulation volume into thick shells,
and the force on a particle was calculated by summing the multipoles of all shells except its own (own-shell
correction was added). Similarly, Fry & Peebles (1980) used a MEX code with [ ,x = 3 to explore galaxy
correlation functions; in their version each shell had six particles, and softened Newtonian interaction was
used within a shell. As noted in the introduction, van Albada & van Gorkom (1977) used a variation with
axial symmetry (up to Iax = 4 but with no azimuthal terms, namely my,x = 0), with a grid in both r and 6.
in a follow up work (van Albada, 1982; Bontekoe & van Albada, 1987; Bertin & Stiavelli, 1989; Merritt &
Stiavelli, 1990) the method was extended to 3D geometry. Finally, McGlynn (1984) used a grid in r only,
with logarithmic spacing. He argues that softening sacrifices the higher resolution near the center (which is
one of the primary advantages of the method) and that a radial grid smooths the potential and prevents shell
crossing. Recently, Vasiliev (2013) presented a similar potential solver with a spline instead of a grid.

We note that a virtually identical mathematical treatment to the MEX method has been applied to solve
the Fokker-Planck equation under the local approximation (neglecting diffusion in position). The collisional
terms of the Fokker-Planck equation can be written by means of the Rosenbluth potentials (Rosenbluth et al.,
1957), which are integrals in velocity space very similar in form to equation (IV.2). Spurzem & Takahashi
(1995) assumed azimuthal symmetry and wrote the Rosenbluth potentials using the Legendre polynomials
up to Imax = 4 in a way exactly analogous to our equation (IV.15). This treatment was expanded to /pax = 5

by Schneider et al. (2011).

IV.5.3 SCF
As noted in the previous section, SCF gained much more popularity than MEX. The SCF formalism has had

wide use on galaxy-scale problems. It has been used to model the effect of black hole growth or adiabatic

Recently, Vasiliev (2014, in prep.) introduced a new Monte Carlo code that uses SCF as a potential solver.
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contraction on the structure (density profile) of the dark matter halo (e.g. Sigurdsson et al., 1995). SCF is
also an appropriate tool to model the growth of the stellar and dark matter halos (e.g. Johnston et al., 1996;
Lowing et al., 2011) as well as the mass evolution of infalling satellite galaxies (e.g. Holley-Bockelmann
& Richstone, 1999, 2000). One of the clearest uses of the SCF technique is when the stability of the orbit
matters such as in the study of chaos in galactic potentials (e.g Holley-Bockelmann et al., 2001, 2002), and
in the exchange of energy and angular momentum by mean resonances (e.g Weinberg & Katz, 2002; Holley-
Bockelmann, Weinberg, & Katz, 2005). Earn & Sellwood (1995) compare a number of methods and show
that SCF is superior for stability work.

The initial motivation for this work was to follow up on Meiron & Laor (2012, 2013), who studied
supermassive black hole binaries using a restricted technique. In their method, the stellar potential was held
constant while the black holes were treated separately as collisional particles; it was thus not self-consistent in
terms of the potential. This class of problems, where there is a small subset of particles that need to be treated
collisionally, has already been attempted using an extension of the expansion technique which hybridizes
SCF and direct Aarseth-type gravitational force calculation; in these extensions, either the black holes are the
only collisional particle (e.g Quinlan & Hernquist, 1997; Chatterjee et al., 2003), or all centrophilic particles
are treated collisionally (Hemsendorf et al., 2002). MEX has not been applied to this particular problem to

our knowledge, although it is as well suited as SCF.

IV.5.4 Implementation
Our SCF implementation on GPU outperformed the serial Hernquist CPU version by a factor of ~ 35 (for
double-precision), but this number depends on the particular GPU and CPU hardware compared. The CPU
code is definitely competitive on multi-core CPUs. Intel recently introduced the Many Integrated Core ar-
chitecture (known as Intel MIC), which are shared memory boards with the equivalent of tens of CPUs. In
principle, the Fortran SCF code for CPUs could be adapted for this architecture with little modification, and
it will most likely outperform the GPU version. On the other hand, next generation GPUs (such as Nvidia’s
Maxwell architecture) would also deliver performance improving features, and it is not clear which one would
win. The goal of this project is to ultimately enable simulations of N > 108, and to perform them fast enough
so that many could be performed, exploring large parameter space rather than making a few such large-N
simulations. To do that, the code will be adapted to a multi-GPU and multi-node machines using MPI. As
noted in Section IV.3.1, this is easy for SCF but not so much for MEX.

Simultaneously we will attempt to improve the per-GPU performance. We spent a lot of time trying to
optimize this first version of ETICS, by no means we guarantee that out implementation is flawless. Some

improvement might come from tweaking of the implementation. For example, we decided not to cache
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Pyo(cos 0) but rather recalculate it in-kernel before every m-loop (as a starting point for the recursion relation).
Since the Legendre polynomials are “hard-coded” and computed very efficiently, it is not immediately clear
if caching is a more efficient approach (it is probably worth while at very high /i,,x). Likewise, we chose to
separate the caching operations that are performed once per routine or once per external loop, and execute
them as independent kernels, while in principle they could be executed as statements inside the inner kernels
(so called “kernel fusion”, which would save kernel execution overhead), with an if-statement making sure
that the cache operations are performed only if needed.

Some possible more fundamental changes include trying to get rid of the sorting operation in MEX;
while the most basic approach requires the particle list to be sorted and a cumulative sum performed over
the multiples, some alternatives exist such as logarithmic grid (as in McGlynn 1984) or spline (as in Vasiliev
2013). Also we might find a more sophisticated way to perform the cumulative sum, since we suspect that
the Thrust routines are not optimal for our uses. Another improvement might come from the integration
side rather than force-calculations, such as implementation of higher order integrator instead of the leapfrog.
Hernquist’s SCF code already contains a 4th order Hermite scheme (Makino, 1991), which is not hard to
implement for GPUs, but MEX has a fundamental problem with this scheme due to shell crossing, which

causes the force derivatives to be discontinuous.

IV.5.5 Final Remarks

ETICS is a powerful code, but as with any computer program, one should understand its limitation. The
code in its current form should not be used for highly flattened system, or where two-body interactions are
significant. The code is momentarily available upon request from the authors, but we plan to make it public,
including a module to integrate it with the AMUSE framework (Portegies Zwart et al., 2009; Pelupessy et al.,

2013).
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APPENDIX

Here we show the Self Consistent Field code with post-Newtonian terms added, called mpiscf.f. Then fol-
lowing that is the head file tmhscf.h, input mode file scfmod, input parameter file scfpar and the compile file

run.pl. To run the code, one still needs an initial condition file scfbi, which can be given by the users.

Cosrrtrkkkskwkxkkkkkkkkkkwkkkkkkkkkkkk ks kkokkokkkwkwkkkkkokkokwokwk ko k kb ksk kosk sk

C
C

PROGRAM tmhscf
C MPI —version
C

Crskrskkkkkskxkkkkkk kb kkkkkkkkokkokkskkkkkkkokkokkkkk Rk Rk kkokkokwok ko kk sk kkkok kk kk %

A code to evolve self—gravitating systems using a self —consistent
field approach. This version has been optimized for scalar workstations

and parallel computers. The code is written in standard FORTRAN.
The computational system of units is determined by the input data.
No explicit assumtions about the value of the gravitational

constant have been made; it is read in as a parameter.

Particles are not required to have identical masses.

Version 4: Decemberl, 1995

Steinn Sigurdsson: IoA, Cambridge

From original by Lars Hernquist, UCSC

Apr 15 1997: option te multistep the SCF algorithm upgraded

a o 0 o o 0 0 aa a0 0 o0 a0 0 0 a0 0 a0
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Chris Mihos, Johns Hopkins University

Jan 15, 1999 : various optimizations and conversion to MPI

Bob Leary, San Diego Supercomputer Center

Feb, 2012 : Post—Newtonian up to 3.5 order added

Baile Li, Vanderbilt University

This is the high—level evolution subroutine ascf. Its tasks are:

1) to input parameters and the initial system state;

2) to perform a diagnostic analysis of the system at
each time step (energy, angular momentum, etc.);

3) initialise a—dot on first call

4) to provide an array of accelerations and a—dots

for a master hermite integrator.

5) to advance the SCF particles

O o o 0 o aa a0 0 aa o 0 o0 a0 a0 o0 0000000000000

Basic global variables/parameters:

ax,ay,az : accelerations of bodies.

clm, dlm, : radial functions used to evaluate expansions.
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O o o 0 o0 o a0 o0 o o o0 o0 a0 a0 0000000000000 a0aqa0aq00n0aQ0

elm, flm
cputime
cputimeO
cputimel
dtime

fixacc

G
headline
inptcoef
Imax
mass
nbodies
nbodsmax
nmax
noutbod
noutlog
nsteps
one
onesixth
outpcoef
pi

pot
potext

selfgrav

tnow

tpos
tvel
twoopi
VX ,Vy,VZ

X,¥Y,2

cpu time (secs) used during the simulation.
cumulative cpu time at start of run.
cumulative cpu time at end of run.

the timestep.

option to force conservation of linear
momentum by setting acceleration of c.o.m.=0.
the gravitational constant.

identification string for the run.

option to read in expansion coefficients.
number of angular eigenfunctions.

masses of bodies.

total number of bodies.

maximum number of bodies.

number of radial eigenfunctions.

frequency of system record outputs.
frequency of outputs to log file.

number of time—steps to integrate the system.
the constant 1.

the constant 1/6.

option to write out expansion coefficients.
the constant pi.

potentials of bodies (self—gravity).
potentials of bodies (external field).
option to turn off (.FALSE.) system self—
gravity .

current system time.

current position time.

current velocity time.

the constant 2./pi.

velocities of bodies.

positions of bodies.
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zeroeven : option to zero out all even terms in the
basis function expansions.
zeroodd : option to zero out all odd terms in the

basis function expansions.

Definitions specific to input/output.

uterm , upars, ulog, ubodsin, : logical i/0o unit numbers.
ubodsout ,utermfil ,uoutcoef ,
uincoef ,ubodsel

parsfile , logfile , ibodfile , : character names of files.
obodfile ,termfile , outcfile ,

incfile , elfile

Definitions specific to timing MPI code

tOmpi, tlmpi,t2mpi,tmpi — real=8 timing variables

O o 0 0 o o 0 o0 o 0 0 a0 o0 a0 0000

include ’'mpif.h’

INCLUDE ’tmhscf.h’

Declaration of local variables.

INTEGER n
LOGICAL firstc
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DATA firstc /.TRUE./

real+8 tOmpi,tlmpi,t2mpi,tmpi

SAVE firstc ,n

C Initialize state of the system.

call initmpi

tOmpi=mpi_wtime ()

IF(firstc) THEN

firstc =.FALSE.
n=0
CALL initsys(n)
C -
ENDIF
tlmpi=mpi_-wtime ()
tmpi=tlmpi—tOmpi
if (me.eq.0)then

write (utermfil ,%) ’initsys.time.=.",tmpi,’ .on.proc.’ ,me

end if

Advance system state

a o O a

101 IF (fixedn) THEN
DO 100 n=1,nsteps
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if (me.eq.0)then
if (mod(n,100).eq.0) then
write (utermfil ,%) ’running._step’, n
endif
endif
CALL stepsys(n)

100 CONTINUE
ELSE IF (tnow.lt.tfinal) THEN
n=n+1
¢ write (*,+) tnow ,n’ ,tnow ,n

CALL stepsys(n)

GOTO 101

ENDIF

C Terminate the simulation.

t2mpi=mpi_-wtime ()

tmpi=t2mpi—tlmpi

call mpi_finalize (ier)
STOP
END
skoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk kok
C
C
SUBROUTINE accp_bh(n)

75



Cosrrtrkkkskwskxkkkkkkkkkkwkkkkkokkkkskkk ok kkkkokkkwkwk ok k ok kokkokwokwk ko kkkksk kosk sk

Subroutine to compute accelerations , .adot for a BH.

O O o 0O a 0

INCLUDE ’tmhscf.h’

include ’mpif.h’

C Declaration of local variables.

LOGICAL firstc

INTEGER n,p

REALx*8 del ,acci,del3 ,bhold,vrd,dtp,
&bholdsmall , bholdbig , daxbhf ,daybhf, dazbhf,r

DATA firstc /.TRUE./
SAVE firstc ,bholdsmall ,bholdbig
c initialized dabh by Baile

axbh=0.0

aybh=0.0

azbh=0.0

daxbh=0.0

daybh=0.0

dazbh=0.0
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IF (tnow.l1t.tstartbh) THEN
firstc =.TRUE.
RETURN
ENDIF
IF (tnow.ge.tstartbh) THEN
IF (firstc) THEN
bholdbig=bhmasst
bholdsmall=bhmasst
firstc =.FALSE.
ENDIF
ENDIF

IF ((tnow—tstartbh .GE.0.0) .AND. (tnow—tstartbh .LT.tgrowbh))
fac=bhmass «(3.*((tnow—tstartbh )/tgrowbh)*%2 —

2.%((tnow—tstartbh )/ tgrowbh)*3)

IF ((tnow—tstartbh .GT. tlivebh+tgrowbh) .AND.
(tnow—tstartbh .LE. tdiebh+tlivebh+tgrowbh))
fac=bhmass*(1. —3.%((tnow—tstartbh —tlivebh —tgrowbh )/ tdiebh )2+
2.%((tnow—tstartbh —tlivebh —tgrowbh )/ tdiebh )*x3)

IF (tnow—tstartbh .GT. tdiebh+tlivebh+tgrowbh) fac=0.0
IF (tgrowbh.LT.0) THEN

fac=bhmass

bholdbig=bhmass

bholdsmall=bhmass

ENDIF

fac=fac*G
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DO 100 p=1,nbodies

IF ((mstpflag .AND.(im(p).eq.rtag)).or. n .eq. 0) then
dtp=dtbin(rtag)

C bhold=bholdsmall#(1—im(p))+ bholdbigim(p)

c write (+ ,%) >bhold’ ,bhold

C dtp=dtime=(1—im(p))+ dtbig*im(p)

c write (*,%) dtp ,dtbin(rtag),rtag’,dtp,dtbin(rtag),rtag

c del=SQRT ((x(p)—xbh)**2+(y(p)—ybh)**2+(z(p)—zbh)*%2)+epsbh
888 del=sqrt (x(p)*+«2+y(p)**2+z(p)*+2+epsbhxx2)

c write (+,%) ’p,x,y,z",p,x(p),y(p),z(p)

del3 = 1./(delxdelxdel)

potext(p) = — fac/del

call rel (vx(p),vy(p),vz(p),vxbh,vybh,vzbh,

&vljx(p),vljy(p),vljz(p))
rlength (p)=r(xbh,ybh,zbh ,x(p),y(p).z(p))+epsbh

vliength (p)=sqrt(v1jx (p)**2+vljy(p)**2+vljz(p)**2)

EO(p)=(1./2.%vlength(p)*%2 —1./rlength (p))*mass(p)

C write (x ,%)1./2.%vlength(p)=*=2,1./rlength (p)
C write (s« ,+)EO0(p)
c here EO does not multiply miu, will do later

acci=fac=del3

c write (% ,%) 'p,del3’ ,p,del3

c write (% ,%) ax,ay,az’ ,ax(p),ay(p),az(p)
ax(p)=ax(p)—x(p)=acci
ay (p)=ay(p)—y(p)=*acci
az(p)=az(p)—z(p)=*acci

C write (% ,%) “accpbh ,p,ax,x*acci,acci’,p,ax(p),x(p)=*acci,acci
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antx (p)=ax(p)
anty (p)=ay(p)
antz (p)=az(p)

axbh=axbh+x(p)=*acci/fac*Gxmass(p)
aybh=aybh+y(p)=*acci/fac*Gxmass(p)
azbh=azbh+z(p)*acci/fac*Gxmass(p)

daxbhf = —vx(p)=*acci

daybhf = —vy(p)=*acci

dazbhf = —vz(p)=*acci

write (x,x) 'p,daxbhf ,vx,acci’,p,daxbhf,vx(p),acci

daxbhf = daxbhf — x(p)*xacci=(fac — bhold)/dtp

daybhf = daybhf — y(p)*xacci=*(fac — bhold)/dtp

dazbhf = dazbhf — z(p)xaccix(fac — bhold)/dtp

write (x,%) 'p,daxbhf,acci,fac,bhold,dtp’,
&p,daxbhf ,acci, fac,bhold, dtp

write (% ,%) 'p,daxbhf ,daybhf,dazbhf’ ,p,daxbhf,6daybhf,dazbhf

vrd = (vx(p)*x(p)+vy(p)*y(p)+vz(p)*z(p))/(del«del)

write (x,%)

daxbhf = daxbhf + 3.xx(p)*vrd=xacci

daybhf = daybhf + 3.xy(p)*vrd=xacci

dazbhf = dazbhf + 3.xz(p)*vrd=xacci

write (% ,%) 'p,dax ,day,daz’ ,p,dax(p),day(p).daz(p)

dax (p)=dax(p)+daxbhf

day (p)=day(p)+daybhf

daz (p)=daz(p)+dazbhf

write (% ,%) 'p,ax,ay,az,dax,day,daz’ ,p,ax(p),ay(p),az(p),

&dax (p),day(p),daz(p)
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daxbh=daxbh+daxbhf/fac+G+mass(p)
daybh=daybh+daybhf/fac+G+mass(p)
dazbh=dazbh+dazbhf/fac+G+mass(p)
end if
100 CONTINUE

if (firstpn) call pnl(n) !added by Baile
if (secondpn) call pn2(n)

if (secondhpn) call pn2h(n)

if (thirdpn) call pn3(n)

if (thirdhpn) call pn3h(n)

IF (.not.multistep .OR..NOT. mstpflag) THEN
bholdbig=fac

ELSE
bholdsmall=fac

ENDIF

C
C***********************************************************************
C
C

SUBROUTINE accp_LH (nstep)
C
C

Crsrtrkkkwkxkkkkkrkkkkkkkkkkkkkkkkk ok kkokkokkkwkkkkkkkok kb wk ko kk sk kokkok kosk sk
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Subroutine to compute accelerations , potential , and density.

O O o 0 a O

INCLUDE ’tmhscf.h’

INCLUDE ’mpif.h’

INTEGER k,1,m,n,lmin, Iskip , nstep

LOGICAL firstc

REAL+8 anltilde ,knl,sinth ,sinmphi,cosmphi, phinltil ,deltamO ,
gammln , arggam , sinsum , cossum , coeflm , factrl ,
dblfact , ttempS ,ar,ath,aphi,temp2,temp3,temp4,
temp5 ,temp6 ,plm,dplm, ultrasp ,ultraspl ,ultraspt ,clm,

dlm,elm, flm, xi, costh ,phi,r,twoalpha,cl,c2,c3,un,unml,

R R R PR

plmlm,plm2m, rhonltil ,alm,blm, cosmphil , sinmphil

real =8 Ilmm, Iplusm ,ratio

¢ note tmpsum must be large enough to hold sinsuml ,cossuml ,sinsum2 ,cossum?2
¢ each array is of the form sinsuml (0:nmax,0:Ilmax,0:lmax)

¢ with element sinsuml(n,l,m). But for a given 1, m ranges from O0:1.

ccompaq tmpsum replaced with tmpsum_snd and tmpsum_rcv so that distinct

ccompaq buffers are used im MPI_Allreduce. Change courtesy of Compaq

REAL+8 tmpsum_snd ((nmax+1)#(lmax+1)*(lmax+2)),
& tmpsum-_rcv ((nmax+1)*(Ilmax+1)*(Ilmax+2))

DIMENSION ultrasp (0:nmax,0:1max),

& ultraspt (0:nmax,0:1max), ultraspl (0:nmax,0:1lmax),
& anltilde (0:nmax,0:Imax),dblfact (Ilmax+1),
& coeflm (0:1max ,0:1max),sinsum (0:nmax,0:1lmax ,0:1max),
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cossum (0:nmax ,0:1max ,0:1max),

twoalpha (0:1max),cl (1:nmax,0:Ilmax),c2(l:nmax,0:1max),
c3(1:nmax),cosmphi(0:1lmax),sinmphi (0:Imax),

plm (0:Imax ,0:1max),dplm (0:lmax,0:1max),

knl (0O:nmax,0:Imax),twolpl (0:1max),twolml (0:Imax),

R R R R PR

Iplusm (0:1max ,0:Imax) ,Imm(0:1lmax ,0: Imax)

DATA firstc /.TRUE./

SAVE firstc ,dblfact ,anltilde ,coeflm ,lmin,

& Iskip ,twoalpha,cl,c2,c3,knl,twolpl ,twolml,
& Imm, Iplusm
Crss New declarations (RSS)

real=8 rxy2,rxyinv ,arxyinv(nbodsper)

real =8 rxyz2 ,rxyzinv ,arxyzinv(nbodsper)

IF(firstc) THEN

firstc =.FALSE.

dblfact(1)=1.

DO 5 1=2,Imax

dblfact(1)=dblfact (1 —1)#(2.%1 —1.)

5 CONTINUE

DO 20 n=0,nmax
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DO 10 1=0,lmax
knl(n,1)=0.5*n*(n+4.=1+3)+(1+1.)%(2.x1+1.)
anltilde (n,1)=—2.%%(8.%x14+6.)*FACTRL(n)#*(n+2.x1+1.5)
arggam=2.x1+1.5
anltilde (n,1)=anltilde (n,1)*(EXP(GAMMLN(arggam))):*2
anltilde (n,1)=anltilde (n,1)/(4.* pixknl(n,1)*FACTRL(n+4x1+2))
10 CONTINUE
20 CONTINUE

DO 25 1=0,lmax

twoalpha(1)=2.0%(2.%x1+1.5)
twolpl (1)=2.x1+1.
twolml (1)=2.%1-—1.

DO 23 m=0,1
deltam0=2.
IF(m.EQ.0) deltamO=1.
coeflm (1l ,m)=(2.%1+1.)*deltamO«FACTRL(1-m)/FACTRL( I+m)
Imm(1,m)=1-m
if (1. ne.m) Imm(l ,m)=1./Imm(1,m)

Iplusm (1 ,m)=1+m—1.

23 CONTINUE

25 CONTINUE

DO 30 n=1,nmax
c3(n)=1.0/(n+1.0)

DO 27 1=0,lmax
cl(n,1)=2.0«n+twoalpha(l)
c2(n,l)=n—1.0+twoalpha(l)

27 CONTINUE
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40
50
60

Crss

Crss

CONTINUE

ENDIF

Iskip=1

IF (zeroodd .OR. zeroeven) Iskip=2

Imin=0

IF (zeroeven) Imin=1

DO 60 1=0,lmax

DO 50 m=0,]1
DO 40 n=0

,nmax

sinsum(n,1,m)=0.0

cossum(n,l ,m)=0.0

sinsuml (n,1,m)=0.0

cossuml (n,1,m)=0.0

IF (.NOT.mstpflag) THEN

sinsum2 (n,1,m)=0.0

cossum2(n,1,m)=0.0

ENDIF
CONTINUE
CONTINUE

CONTINUE

DO 120 k=1,nbodies

IF ((mstpflag .AND.im(k).EQ.rtag) .or. nstep .eq. 0) THEN

write (*,%) "accp_.LH ,k,im(k) "’ ,k,im (k)

Following lines

r,

sin(theta),

added for more efficient calculation of

cos(theta),

sin(phi), and cos(phi)
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Crss Intermediate results saved in arrays arxyinv and arxyzinv

rxyz2 = x(k)=x(k) + y(k)xy(k) + z(k)*z(k)
rxy2 = x(k)xx(k) + y(k)xy(k)

arxyzinv (k)

1.0/sqrt(rxyz2)

arxyinv (k) 1.0/sqrt(rxy2)

rxyzinv = arxyzinv (k)
rxyinv = arxyinv (k)
r = rxyz2 % rxyzinv

costh=z(k)*rxyzinv
sinth=rxy2srxyinvsrxyzinv
cosmphi (1) = x(k)=rxyinv

sinmphi (1) = y(k)xrxyinv

Crss End new code

crss Following lines commented out and replaced by more efficient
Crss calculations above

Ccrss r=SQRT(x (k)#%2+y(k)**2+z(k)**2)

crss costh=z(k)/r

crss sinth=SQRT(1.—costh=xcosth)

crss phi=ATAN2(y (k) ,x(k))

crss cosmphi (1)=COS(phi)

crss sinmphi (1)=SIN(phi)

xi=(r—1.)/(r+1.)

cosmphi (0)=1.

sinmphi (0)=0.

DO 105 m=2,lmax
cosmphi (m)=cosmphi(1)*cosmphi(m—1)—sinmphi (1)*sinmphi(m—1)
sinmphi(m)=cosmphi(1)* sinmphi(m—1)+sinmphi(1)*cosmphi(m—1)

105 CONTINUE
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DO 113 1=0,lmax

ultrasp(0,1)=1.0

ultrasp (1,1)=twoalpha(l)=xi

un=ultrasp (1,1)

unml=1.0

DO 111 n=1,nmax—1
ultrasp (n+1,1)=(cl(n,l)*xxi*xun—c2(n,1)*xunml)*c3(n)
unml=un

un=ultrasp (n+1,1)

111 CONTINUE
Crss Calculation of ultraspt commented out. Multiplication by anltilde
crss now performed outside of loop over particles
Crss DO 112 n=0,nmax
Crss ultraspt(n,l)=ultrasp(n,l)*xanltilde (n,l1)
crss 112 CONTINUE
113 CONTINUE
ratio=1.
Crss Calculation of plm modified so as to avoid unnecessary logical
Crss tests for m.eq.0 inside loop over 1, special case m=0 split off
m= 0

plm (m,m)=1.0
plmlm=plm (m,m)
plm2m=0.0

DO 1=m+1,lmax
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plm (1l ,m)=(costh*twolml (1) plmlm—
% Iplusm (1 ,m)*plm2m)*Imm(1 ,m)
plm2m=plm1im
plmIm=plm (1 ,m)
enddo

DO m=1,Imax
plm (m,m)=1.0
ratio=—sinth=ratio
plm (m,m)=dblfact (m)*ratio
plmlm=plm (m,m)
plm2m=0.0
DO 1=m+1,lmax
plm (1 ,m)=(costh=xtwolm1 (1)*plmlm—
% Iplusm (1 ,m)=*plm2m)=Ilmm (1l ,m)
plm2m=plmIim
plmlm=plm (1 ,m)
enddo
enddo

Crss End modified loops for plm calculation

if (Imin.eq.0) then
tempS=mass(k)/(1l.+r)

else
tempS=mass(k)xr/(l.+r)=x*3
endif

ratio=r/(l.+r)*=x2

if (Iskip.eq.2) ratio=ratio=xratio

Crss Loops used in accumulation of sinsuml, sinsum?2,

Crss modified so that:
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Crss (1) multiplication by coeflm moved outside loop over particles

crss (ii) logical test on im(k) moved outside nested loops

crss (iii) ultraspt changed to ultrasp
if ((im(k).eq.rtag) .or. nstep .eq. 0) then
DO I=Imin,lmax, Iskip
DO m=0,1
ttempS=tempS=plm (1 ,m)
temp3=ttempS*sinmphi (m)
temp4=ttemp5 +cosmphi (m)
DO n=0,nmax
sinsuml (n,1 ,m)=sinsuml (n,1 ,m) +
& temp3xultrasp (n, 1)
cossuml (n,l ,m)=cossuml(n,Il ,m) +
& temp4=ultrasp (n, 1)
enddo
enddo
tempS=tempS=ratio
enddo
endif
Crss End modified loops for accumulating sinsuml, sinsum2, etc.
end if
120 CONTINUE
crss Following loops added to multiply sinsuml, sinsum2, etc.
Crss by loop invariants anltilde and coeflm. These operations
crss

were formerly done inside loop over particles

do 1=0,lmax
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do m=0,lmax
do n=0,nmax
sinsuml (n,1 ,m)=sinsuml(n,1 ,m)* anltilde (n,1)*coeflm (1 ,m)
sinsum2 (n,1 ,m)=sinsum2(n,1 ,m)* anltilde (n,1)*coeflm (1 ,m)
cossuml (n,l ,m)=cossuml(n,l ,m)* anltilde (n,1)*coeflm (1l ,m)

cossum2(n,l ,m)=cossum2(n,l ,m)* anltilde (n,1)*coeflm (1l ,m)

C write (¢ ,+) ’n,1 ,m,sinsuml (n,1 ,m),cossuml (n,l ,m),
Conn &anltilde (n,1),coeflm (1l ,m)’,n,l,m,sinsuml(n,l ,m),cossuml(n,]l,m),
C &anltilde (n,1),coeflm (1 ,m)
enddo
enddo

enddo
crss End modified loops

icount=0

DO 1181 I=Imin,lmax, Iskip
DO 1161 m=0,1
DO 1141 n=0,nmax

icount=icount+2

ccompaq tmpsum replaced with tmpsum_snd

tmpsum_snd (icount —1) = sinsuml (n,1,m)

tmpsum_snd (icount) = cossuml (n,]l,m)

¢ note in this version tmpsum(icount—1) = sinsum,

¢ and tmpsum(icount) = cossum are globally summed,

¢ rather than globally summing sinsuml. sinsum2, cossuml, and
¢ cossum2 and then computing sinsum=sinsuml+sinsum?2,

¢ cossum=cossuml+cossum2 as was previously done. This saves

¢ half the message length in the non—multistepping case.
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if (.NOT.mstpflag) then

ccompaq tmpsum replaced with tmpsum_snd
tmpsum_snd (icount —1) = tmpsum_snd(icount —1)
& + sinsum2(n,1 ,m)
tmpsum_snd (icount) = tmpsum_snd(icount)
& + cossum2(n,1 ,m)
endif
1141 CONTINUE
1161 CONTINUE

1181 CONTINUE

ccompaq tmpsum replaced with tmpsum_snd and tmpsum_rcv in MPI call

call MPI_Allreduce (tmpsum_snd,tmpsum_rcv, icount,
& mpi-double_precision ,
& mpi_sum, mpi_comm_world, ierr)
icount=0
DO 1182 l=Imin,lmax, Iskip
DO 1162 m=0,1
DO 1142 n=0,nmax

icount=icount+2
c see note in DO 1181 loop — we recover sinsum directly rather
¢ than sinsuml and sinsum2 individually; similarly
¢ for cossum.

ccompaq tmpsum replaced with tmpsum_rcv

sinsum (n,1l ,m) = tmpsum_rcv(icount —1)
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c
1142
1162
1182

Crss

Crss

Crss

cossum(n,l ,m) = tmpsum-_rcv(icount)
write (+,%)’k,n,1 ,m, sinsum(n,1,m),cossum(n,l,m)’,
&k ,n,1,m,sinsum(n,1 ,m),cossum(n,]1,m)
CONTINUE
CONTINUE
CONTINUE

IF MOD( nstep ,noutlog ).EQ.0.AND..NOT. mstpflag) THEN

IF (outpcoef) CALL iocoef(sinsum ,cossum)

ENDIF

IF (inptcoef) CALL iocoef(sinsum ,cossum)

DO 200 k=1,nbodies

IF (( mstpflag .AND.im(k).EQ.rtag ).or. nstep .eq. 0) THEN
write (*,%) “houbu ,k,im(k)’ ,k,im(k)
Following lines added for more efficient calculation of

r, sin(theta), cos(theta), sin(phi), and cos(phi)

rxyz2 = x(k)xx(k) + y(k)xy(k) + z(k)=z(k)
rxy2 = x(k)xx(k) + y(k)xy(k)

rxyzinv = arxyzinv (k)
rxyinv = arxyinv (k)
r = rxyz2 % rxyzinv

costh=z(k)*rxyzinv
sinth=rxy2#rxyinvsrxyzinv
cosmphil = x(k)*rxyinv

sinmphil = y(k)=rxyinv

End new code
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Crss Following lines commented out and replaced by more efficient

Crss calculations above

crss r=SQRT(x (k)#*+2+y(k)*+2+z(k)**2)
Ccrss costh=z(k)/r

crss sinth=SQRT(1.—costh=xcosth)

crss phi=ATAN2(y (k) ,x(k))

crss cosmphil=COS(phi)

crss sinmphil=SIN(phi)

xi=(r —1.)/(r+1.)

cosmphi (0)=1.0
sinmphi (0)=0.
cosmphi(1)=cosmphil

sinmphi(1)=sinmphil

DO 130 m=2,lmax
cosmphi (m)=cosmphil xcosmphi (m—1)—sinmphil *sinmphi (m—1)
sinmphi(m)=cosmphil xsinmphi (m—1)+sinmphil xcosmphi(m—1)

130 CONTINUE

adens (k)=0.0d0

pot(k)=0.0d0

ar=0.0d0

ath=0.0d0

aphi=0.0d0

DO 148 1=0,lmax

ultrasp(0,1)=1.0

ultrasp (1,1)=twoalpha(l)=xi

ultraspl (0,1)=0.0
ultraspl (1,1)=1.0
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un=ultrasp (1,1)

unml=1.0

DO 144 n=1,nmax—1
ultrasp(n+1,1)=(cl(n,1)*xi*xun—c2(n,1)*unml)=*c3(n)
unml=un
un=ultrasp (n+1,1)

ultraspl (n+1,1)=((twoalpha(1l)+n)*unml—(n+1)* xi=*

& ultrasp(n+1,1))/(twoalpha(l)*(1.—xi%xxi))
144 CONTINUE
148 CONTINUE
ratio=1.
Crss Calculation of plm modified so as to avoid unnecessary logical
crss tests for m.eq.0 inside loop over 1, special case m=0 split off
m=0
plm(m,m)=1.0

plmIm=plm (m,m)

plm2m=0.0

DO 1=m+1,lmax
plm (1l ,m)=(costh=*twolml (1) plmlm—

% Iplusm (1 ,m)*plm2m)*Imm(1 ,m)

plm2m=plmIlm
plmlm=plm (1 ,m)

enddo

DO m=1,Imax

plm (m,m)=1.0
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ratio=—sinth=ratio

plm(m,m)=dblfact (m)*ratio

plmIm=plm (m,m)

plm2m=0.0

DO 1=m+1,lmax
plm (1 ,m)=(costh=twolm1 (1)*plmlm—

% Iplusm (1 ,m)*plm2m)*Imm(1 ,m)

plm2m=plmim
plmlm=plm (1 ,m)

enddo

enddo

crss End modified loops for plm calculation

dplm (0,0)=0.0

Crss Calculation of dplm modified so as to avoid unnecessary logical
Crss tests for l.eq.m inside loop over m, special case l=m split off
DO 1=1,lmax
DO m=0,1-1
dplm (1 ,m)=(1l*costhsplm (1l ,m)—(l+m)*plm(1—1,m))/
& (costhxcosth —1.0)
enddo
dplm(1l,1)=1%costh*plm(l ,m)/(costhscosth —1.0)
enddo
Crss End modified loops for dplm calculation

if (Imin.eq.0) then
phinltil = 1./(1+71)
else

phinltil=r/(1.+1%%3)
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endif
ratio=r/(l.+r)*=x2
if (Iskip.eq.2) ratio=ratio=xratio

DO 190 1=lmin ,lmax, Iskip

temp2=0.0
temp3=0.0
temp4=0.0
temp5=0.0
temp6=0.0

DO 180 m=0,1

alm=0.0
blm=0.0
clm=0.0
dlm=0.0
elm=0.0
flm=0.0

DO 150 n=0,nmax
alm=alm+knl(n,1)*ultrasp (n,l)*cossum(n,l,m)
blm=blm+knl(n,1l)*ultrasp (n,1)*sinsum(n,l ,m)
clm=clm+ultrasp (n,l)*cossum(n,]1 ,m)
dlm=dlm+ultrasp (n,l)*sinsum(n,1,m)
elm=elm+ultraspl (n,1)*cossum(n,l ,m)
flm=flm+ultraspl (n,1)*sinsum(n,1 ,m)

write (*,+) ’k,im(k),n,1 ,m, sinsum(n,1,m),cossum(n,1,m)’,
&k ,im(k),n,1 ,m,sinsum(n,1 ,m),cossum(n,l,m)
150 CONTINUE
temp2=temp2+plm (1 ,m)*(alms*cosmphi (m)+blm=sinmphi(m))

temp3=temp3+plm (1l ,m)*(clm*cosmphi (m)+dlm=sinmphi(m))
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temp4=temp4—plm (1 ,m)*(elm=*cosmphi(m)+flm=sinmphi(m))
tempS=tempS5—dplm (1 ,m)*(clm=cosmphi(m)+dlm=sinmphi (m))

temp6=temp6—ms#plm (1 ,m)*(dlm*cosmphi (m)—clm=sinmphi(m))

c write (#,%) ’k,n,l ,m,alm,blm,clm,dlm, sinmphi (m),cosmphi(m)’,
c &k ,n,1 ,m,alm,blm,clm,dlm, sinmphi (m),cosmphi (m)
180 CONTINUE

rhonltil=phinltil /(r=(l.+r)*(l.+1r)*2.0d0*pi)

CcC
pot(k)=pot(k)+temp3xphinltil
c write (*,%) "k, temp2 ,temp3’ ,k,temp2 , temp3
CcC
CcC
adens (k)=adens (k)—temp2+rhonltil
¢ write (*,%) 'k, adens (k) ,temp2, rhonltil ’ ,k,adens (k) ,temp2, rhonltil
cC
ar=ar+phinltil «(—temp3«(1/r—twolpl (1)/

& (l.+r))+tempd*2.«twoalpha(l)/(1l.+r)*%2)
ath=ath+tempS*phinltil
aphi=aphi+temp6=xphinltil

phinltil = phinltil=*ratio
190 CONTINUE

ath= —sinth=ath/r

aphi=aphi/(r=+sinth)

ax (k)=G#(sinth=*cosmphil+ar+costhxcosmphil xath—
& sinmphilaphi)

ay (k)=G#(sinthssinmphil *ar+costhssinmphil+ath+
& cosmphil=xaphi)

az (k)=G#(costhxar—sinth=xath)

pot(k)=pot(k)*G
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C write (+,%) ’k,im(k),adens’ ,k,im(k),adens (k)

C

CcC

C NB no convective derivative/

CcC
dax (k)=—4.xpi*G=xadens (k)= vx (k)
day (k)=—4.xpi*Gxadens (k)= vy (k)
daz (k)=—4.xpi*Gxadens (k)= vz (k)

ccccececccececccee rescale ax dax pot
ax (k)=ax (k)*(2.2751e—T*%2)
ay(k)=ay(k)=(2.2751e—7*%2)
az(k)=az(k)*(2.2751e—T%x%2)
pot(k)=pot(k)*2.2751e—7
dax (k)=dax (k)=*(2.2751e—T7*%2)
day (k)=day(k)=(2.2751e—7x*%2)
daz(k)=daz(k)*(2.2751e—7%%2)

c write (= ,%) 'k,dax ,day,daz’ ,k,dax(k),day(k),daz(k)
C ke sk skeoske skosk sk skeoske sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk
END IF
200 CONTINUE

RETURN

END
C***********************************************************************
C
C

SUBROUTINE accpot(n)
C
C

Crsrrrkkkwkxkkkrkrkkkkkkkkkkkkkkkkk ok kkokkokkkwkkkkkk ok kokwkwk ko kkk kb kosk sk
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Subroutine to compute accelerations , potential , and density.

INCLUDE ’tmhscf.h’

include ’mpif.h’

INTEGER n, i

call rtidal

if (me.eq.0) then

open(278,file="number’ ,status="unknown’)
write (278 ,+%) ’nbodies ,n_pes,stat0’

write (278 ,+%) nbodies ,n_pes, star0

end if

close (278)

IF (selfgrav) THEN

do i=1,nbodies

if (starlive(i).eq.1) mass(i)=1.0/(nbodies*n_pes—star()

end do

do i=1,nbodies

x(i)=x(i)%2.2751e~7
y(i)=y(i)%2.2751e~7
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z(i)=z(i1)*2.2751e-7
end do

CALL accp_LH(n)
do i=1,nbodies
x(i)=x(i)/2.2751e-7
y(i)=y(i)/2.2751e-7
z(i)=z(1)/2.2751e-7

end do
¢ do i=1,nbodies
C if (starlive(i).eq.1) mass(i)=1.0/(nbodies*n_pes)
c end do
C
ENDIF
C
IF (bhgrav) CALL accp_bh(n)
C
C
C
C
RETURN
END

C***********************************************************************
C
C

SUBROUTINE checkinp
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Cosrrtkkkkskwskxkkkkkkkkkskwkkkkkkkkkskkk ko kkokkokkskwskkk ok k ok kokkoskwosk ks Rk sk k sk ok sk ks sk

C
C
C Subroutine to check consistency of input parameters and data,
C output warnings to the terminal and/or log file, and terminate
C the simulation if necessary.
C
C
C
INCLUDE ’tmhscf.h’
INCLUDE ’mpif.h’
C
IF (nsteps .LT.0.0R. nsteps .GT.10000000)
& CALL terror(’.input.error._for_parameter._nsteps.’)
C -
IF (noutbod .LT.0)
& CALL terror (’.input.error._.for_parameter._noutbod.’)
C
IF (noutlog .LT.0)
& CALL terror (’_input_error._for_parameter_noutlog.’)
C
IF (dtime .LE. —1.e20.0R. dtime .GT.1.¢e20)
& CALL terror (’.input.error._for_parameter_dtime.’)
C
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IF(G.LE.0.0.0OR.G.GT.1.¢e20)

& CALL terror (’_input_error._for_parameter_G.")

RETURN
END
C***********************************************************************
C
C
SUBROUTINE corracc

Corsrkrkkgkkkskxkkkkkkkokkkkkkkkkskkokkkkk ks kkokkokkkkkkkkkkkokkokkok ko ko kksk kok kok k%

C
C
C Subroutine to correct accelerations so that the center of
C mass remains fixed at the origin.
C
C
C
INCLUDE ’tmhscf.h’
INCLUDE ’mpif.h’
C Declaration of local variables.
C
INTEGER i
ccompaq tmpsum replaced with tmpsum_snd and tmpsum_rcv
REAL#8 axcm,aycm,azcm,mtot,tmpsum_snd(4), tmpsum_rcv (4)
C
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axcm=0.0
aycm=0.0
azcm=0.0

mtot=0.0

DO 10 i=1,nbodies
IF ((.NOT.multistep ).OR.( multistep .AND.im(i).EQ.rtag)) THEN
mtot=mtot+mass (1)
axcm=axcm+mass (i)*ax (i)
aycm=aycm+mass (i)*xay (i)

azcm=azcm+mass (i)xaz (i)

ENDIF
10 CONTINUE
ccompaq tmpsum replaced with tmpsum_snd

tmpsum_snd (1) = mtot
tmpsum_snd (2) = axcm
tmpsum_snd (3) = aycm
tmpsum_snd (4) = azcm
ccompaq tmpsum replaced with tmpsum_snd and tmpsum_rcv in MPI call

call MPI_Allreduce (tmpsum_snd,tmpsum.rcv, 4,

& mpi-double_precision ,
& mpi_sum, mpi_comm_world,ierr)
ccompaq tmpsum replaced with tmpsum-._rcv
mtot = tmpsum_rcv (1)
axcm = tmpsum_rcv (2)
aycm = tmpsum_rcv (3)
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azcm = tmpsum-_rcv (4)

axcm=axcm/ mtot
aycm=aycm/ mtot

azcm=azcm/ mtot

DO 20 i=1,nbodies

IF ((mstpflag . AND.im(i).EQ.rtag)) THEN
ax(i)=ax(i)—axcm
ay(i)=ay(i)—aycm
az(i)=az(i)—azcm
oax (i)=oax(i)—axcm
oay (i)=oay(i)—aycm
oaz(i)=o0az(i)—azcm

ENDIF

20 CONTINUE

C s sk ok s sk ok ok sk sk ok ok sk ok ok sk sk ok ok sk sk ok ok sk ok ok sk sk ok ok sk sk ok ok ok ok ok sk sk ok ok sk ok ok ok sk sk ok sk sk ok ok sk ok ok ok ok ok ok sk osk sk ok sk sk ok R ok sk ok sk ok

C
C
FUNCTION FACTRL(N)
C
C

Cosrrtrkkkskxskxkrkkkkkskkskwkkkkkskkskkskkk ks kokokkokkskwsk ko ok sk okkokkosk sk ks sk ok sk ok sk ks ks ok

A function to compute factorials. (From numerical recipes.)

O o a 0
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INTEGER 1, ntop , j

REAL+8 factrl ,a,gammln, arggam

DIMENSION A(33)

DATA NTOP,A(1)/0,1./

IF (N.LT.0) THEN
PAUSE ’negative._factorial’
ELSE IF (N.LE.NTOP) THEN
FACTRL=A(N+1)
ELSE IF (N.LE.32) THEN
DO 11 J=NTOP+1,N
A(J+1)=1=A(])
11 CONTINUE
NTOP=N
FACTRL=A(N+1)
ELSE
arggam=n+1.
FACTRL=EXP(GAMMIN( arggam ))
ENDIF

RETURN
END

Cosrrtrkkkskwskxkrkkkkkkkskwkkkkkkkkkskkk ks kkokkokkskwsk ko kk ok kokkoskwosk sk ks sk ok sk ok sk sk osk sk %

FUNCTION GAMMIN(XX)
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C
C
C A routine to compute the natural logarithm of the gamma
C function. (Taken from numerical recipes.)
C
C
C
INTEGER j
REAL+8 COF(6),STP,HALF,ONE, FPF ,X,TMP, SER, gammln , xx
DATA COF,STP/76.18009173D0, —86.50532033D0,24.01409822D0,
& —1.231739516D0,.120858003D—-2,—-.536382D—-5,2.50662827465D0/
DATA HALF,ONE, FPF/0.5D0,1.0D0,5.5D0/
X=XX-ONE
TMP=X+FPF
TMP=(X+HALF) *LOG(TMP) —TMP
SER=ONE
DO 11 J=1,6
X=X+ONE
SER=SER+COF(J)/X
11 CONTINUE

GAMMIN=TMPH.OG(STP=*SER )

RETURN

END

Crsrrrkkkwskxkkkkkrkkkkkkkkkkkkkkkkk ok kkokkokkkwkkkkkk ok kb wk ko kk sk kop kb kosk sk
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SUBROUTINE inbods

Crsrrrkkkkwskxkkkkkrkkkkkkkkkkokkkkkkk ok kkokkokkkwkkkkk ok kok kb wskwk ko kkkkok kosk sk

C
C
C Subroutine to read phase coordinates.
C
C
C
INCLUDE ’tmhscf.h’
include 'mpif.h’
INTEGER i, j, junk
IF (me .eq. 0) THEN
OPEN(ubodsin ,FILE=ibodfile ,STATUS="OLD’)
c READ(ubodsin ,*) nbodies ,tnow, bhmass
READ(ubodsin ,*) nbodies ,tnow
ENDIF
IF (nbodies .gt. nbodsmax) THEN
IF (me .eq. 0) CLOSE(ubodsin)
CALL terror (’_Number_of_bodies_exceeds._the_upper_bound..’)
ENDIF
call shareint (nbodies ,1)
call share (tnow,1)
C IF (MOD(nbodies, n_pes) .ne. 0) THEN
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IF (me .eq. 0) CLOSE(ubodsin)

CALL terror (’_.Bodies_cannot._be_distributed_to_.PEs_evenly..")

ENDIF

nbodies = nbodies/n_pes
new — for acceptance test only — put nbodies back to orignal file length
— ie. we will have nbodies/processor, where the file contains

nbodies and data is siply duplicated on all processors via broadcast

10

nbodies = nbodiessn_pes

IF

(nbodies .gt. nbodsper) THEN
IF (me .eq. 0) CLOSE(ubodsin)

CALL terror (’_.Number_of_bodies._per_proc.exceeds._bound..’)

ENDIF

IF

(me .eq. 0) THEN
DO 10 i=1,nbodies

READ(ubodsin ,*) mass(i),x(i),y(i),z(i),vx(i),vy(i),vz(i)
CONTINUE

ENDIF

wait here until initial read is completed by proc 0

call mpi_barrier (mpi_.comm_world,ier)

now broadcast so everyone has same data

&

call

call

call

call

call

mpi_bcast(mass,nbodies , mpi_double_precision ,
0,mpi_comm_world , ierr)

mpi_bcast(x,nbodies , mpi_-double_precision ,
0,mpi_comm_world , ierr)

mpi_bcast(y,nbodies , mpi_-double_precision ,
0,mpi_.comm_world , ierr)

mpi_bcast(z,nbodies , mpi_double_precision ,
0,mpi_comm_world ,ierr)

mpi_bcast(vx,nbodies , mpi_double_precision ,

107



20

30

40

& 0,mpi_comm_world , ierr)

call mpi_bcast(vy,nbodies ,mpi-double_precision ,

& 0,mpi_comm_world , ierr)

call mpi_bcast(vz,nbodies , mpi_double_precision ,

& 0,mpi_comm_world ,ierr)
DO 30 j = 1, n_pes—1
IF (me .eq. 0) THEN
DO 20 i=1,nbodies

READ(ubodsin ,*) tempOl(i),temp02(i),temp03(i),

& tempO07 (1)

CONTINUE
ENDIF

CALL mpiget(mass, tempOl, nbodies

CALL mpiget(x, temp02, nbodies
CALL mpiget(y, temp03, nbodies
CALL mpiget(z, temp04 , nbodies

CALL mpiget(vx, temp05, nbodies
CALL mpiget(vy, temp06 , nbodies
CALL mpiget(vz, temp07, nbodies
IF (me .eq. j) THEN
ENDIF
CONTINUE

IF (me .eq. 0) CLOSE(ubodsin)

DO 40 i=1,nbodies

rlength (i)=sqrt(x(i)*2+y(i)*x2+2z(i)**2)

CONTINUE
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RETURN
END
C***********************************************************************
C
C
SUBROUTINE initpars

Crsrtrrskkkkkkxkkkkkk kb kkkkkkkkokkokkskkkkkkkokkokkkkk Rk Rk kkokkokwk ko kk sk kkkok kok kk %

C
C
C Subroutine to initialize system parameters that depend on
C either the input data or defined PARAMETERS.
C
C
C
INCLUDE °’tmhscf.h’
include 'mpif.h’
C
C Initialize misc. useful numbers.
C

integer i
one=1.0

two=2.0
pi=4.0+ATAN(one)
twoopi=2./pi
onesixth=1./6.

tiny=1.e-30
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zero=0.0

tpos=tnow

tvel=tnow

dtime = 1l.e—6

dtsmall = 1.e—6
c dtbig = 1l.e—6

data dtbin/1.0,10,100,1000/
c data dtbin/1.0,2.0,4.0,8.0/

data numb/0,0,0,0/

data nbin/0,0,0,0/

data nbin0/0/

c call share (nbin , 4)
C call share (nbin0O,1)
c do i=1,3
c dtbin (i)=2#%(i—1)
c end do
c call share(dtbin ,b3)
rtag=1
C call share(rtag,1)
RETURN
END

Cosrrtrkkkskwskxkrkkkkkskkskwk ok kkskkskkskksk ok kkokkokkskwsk ko ok ok okkokkoskkosk ks ok sk sk ok sk ok sk ks ok %

SUBROUTINE initsys (n)
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C
C
C Subroutine to initialize the state of the system.
C
C
C
INCLUDE ’tmhscf.h’
include ’mpif.h’
INTEGER 1, p
real 8 tmpstarO_snd ,tmpstarO_rcv ,rtid
C Declaration of local variables.
C
C
C Begin timing.
C
totimeO=mpi-wtime ()
totimeO=mpi-wtime ()
totime=totime0
C
CALL startout
C
CALL inparams
C
CALL inbods
C

CALL checkinp
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¢ the following is to initial the bh position and velocity by Baile
xbh=0.0
ybh=0.0
zbh=0.0
vxbh=0.0
vybh=0.0
vzbh=0.0
kix=0.5
kiy=0.0
kiz=0.0
star0=0
sx=kix *Gxbhmass 2/C
sy=kiy*G«bhmass*=%2/C
sz=kiz*G+bhmass*%2/C
do n=1,nbodies
er(n)=0.0
et(n)=0.0
ephi(n)=0.0
maxratio(n)=0.0
rlength (n)=sqrt(x(n)**2+y(n)**2+z(n)**2)
C rtid=(0.844%%2+2.e6/0.42«bhmass)x=x(1./3.)%2.254e—8/2.2751e—7
end do

CALL initpars

if (multistep) CALL setim
c do n=1,nbodies
C if (im(n).eq.0) then
c bhmass=bhmass+mass(n)
C mass (n)=0.0
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starO=starO+1
end if
end do
tmpstarO_snd=star0
call MPI_Allreduce (tmpstarO_snd ,tmpstarO_rcv, 1,
& mpi_double_precision ,
& mpi_sum, mpi_.comm_world, ierr)

starO=tmpstarO_rcv

cputime0 = mpi_wtime ()
cputime = cputime0
call torb

CALL accpot(0)

IF(fixacc) CALL corracc

CALL outstate (0)
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SUBROUTINE initmpi
C
C

Crsrtrkkkwskxkkkkkbkkkkkkkkkkkkkkskkkkkkkokkokkkwkkkkkkkok kb wk ko kk sk kk kb kok sk

Subroutine to initialize the MPI variables.

O o o 0 a 0

INCLUDE ’mpif.h’

INCLUDE °’tmhscf.h’

CCCCCcCcccC  INITIALIZE MPI ENVIRONMENT (BELOW) CCCCCCccccccccecc

CALL MPI_INIT ( IERR )

C GET THE PROCESS NUMBER AND ASSIGN IT TO THE VARIABLE MYID

CALL MPLCOMM RANK( MPLCOMM_WORLD, MYID, IERR )

me=MYID

C DETERMINE HOW MANY PROCESSES THE PROGRAM WILL RUN ON AND

C ASSIGN THAT NUMBER TO NUMPROCS

CALL MPI_.COMM_SIZE( MPLCOMM_WORLD, NUMPROCS, IERR )

n_pes=numprocs

CCCCCCCCCC  INITIALIZE MPI ENVIRONMENT (ABOVE) CCCCCCCCCcCccceccc
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RETURN
END

Cosrrtrkkkkskxkkkkkrkokkskwkkkkkkkkkskkk ok kkkkokkkwkwkkkk ok kokwkwk ko kkkksk kosk sk

C
C

C
C

SUBROUTINE inparams

Crsrtrrskkkkkkxkkkkkk kb kkkkkkkkokkokkskkkkkkkokkokkkkk Rk Rk kkokkokwk ko kk sk kkkok kok kk %

C

headline
nsteps

noutbod

noutlog

dtime

selfgrav
inptcoef
outpcoef
zeroodd

zeroeven

fixacc

O o o 0 o o 0 0 o o a0 o0 a0 a0 o0 o000 a0

Input parameters:

Subroutine to read in parameters.

identification string for the run.

number of timesteps.

output system state once every nsteps/noutbod

steps .
output

steps .

logfile data once every nsteps/noutlog

the timestep.

value of gravitational constant, in appropriate

units .
option
option
option
option
option

option

to

to

to

to

to

to

turn off (.FALSE.) system self—gravity.
read—in expansion coefficients.
write—out expansion coefficients.

zero all odd terms in the expansion.
zero all even terms in the expansion.

force conservation of linear

momentum by subtracting acceleration of c.o.m.
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ecrit : energy below which we want particle to be n"2 integrated
rerit : radius below which we want particle to be multistepped

as multiple of radbh (typically 0.5—1)

QO O 0 a O

INCLUDE ’tmhscf.h’

include ’mpif.h’

CHARACTER :x1 pcomment

IF (me .eq. 0) THEN
OPEN(UNIT=upars ,FILE=parsfile ,STATUS="OLD’)

C Read parameters, close the file.

READ(upars,’(a)’) pcomment

READ(upars,’(a)’) headline
READ(upars ,*) nsteps

READ(upars ,*) noutbod
READ(upars ,*) noutlog
READ(upars ,*) dteps

READ(upars ,*) G

REAd(upars ,*) C !added by Baile
READ(upars ,+) firstpn /added by Baile
READ(upars ,*) secondpn
READ(upars ,*) secondhpn
READ(upars ,+) thirdpn
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READ(upars
READ(upars
READ(upars
READ(upars
READ(upars
READ(upars
READ(upars
READ(upars
READ(upars
READ(upars
READ(upars
READ(upars
READ(upars

READ(upars

thirdhpn
tfinal
multistep
fixedn
selfgrav
inptcoef
outpcoef
zeroodd
zeroeven
fixacc
rerit
ecrit
lilout

nlilout

CLOSE(UNIT=upars)

C sk sk ok s sk ok ok sk ok ok ok sk ok ok sk sk ok ok sk sk ok ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok sk ok ok ok sk ok ok ok sk ok ok sk ok ok ok sk ok ok ok sk ok ok sk ok ok ok sk ok ok ook sk ok ok

C

C inparams now reads in SCFMOD with other data
C Steinn Sigurdsson, Dec. 1993

C

C s sk ok s sk sk ok sk sk ok ok sk sk ok sk sk ok ok sk sk ok ok sk sk ok sk sk ok ok sk sk ok ok ok sk ok sk sk sk ok sk ok ok ok sk sk ok sk ok ok ok sk sk ok ok k sk ok sk sk sk ok sk Rk ok sk ok sk ok

C

C

C Subroutine to read in parameters.

C

C Input parameters:

C

C pcomment : first line

C iseed : initialises random number generator
C msys : mass of system to be generated
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rsys : radius of system

r0 : scale radius

bhmass : mass of black hole

epsbh : softening length for black hole
tstartbh : time to start bh growth
tgrowbh : time to grow bh

tlivebh : time bh lives for

tdiebh : time to shrink bh

xdrag : drag coeff for vx

ydrag : drag coeff for vy

zdrag : drag coeff for vz

tstartd : time drag starts

tgrowdrag : time drag lasts

tdiedrag : time drag dies down

mkmod : make internal model or read in
bhgrav : do we grow a black hole

bhgrav : do we grow a black hole

usedrag : is there drag

stellev : is there stellar evolution

data?

OPEN(UNIT=umods , FILE=modsfile ,STATUS="OLD" )

READ(umods, ’(a)

)

READ(umods ,*) iseed

READ(umods , *) bh
READ(umods , ) ep
READ(umods , ) ts

mass
sbh
tartbh

READ(umods , ) tgrowbh

READ(umods ,*) tlivebh

READ(umods ,*) tdiebh

READ(umods , %) xdrag
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READ(umods , %) ydrag

READ(umods , *) zdrag

READ(umods ,*) tstartdrag

READ(umods , ) tgrowdrag

READ(umods ,*) tlivedrag

READ(umods ,*) tdiedrag
READ(umods , ) bhgrav
READ(umods , ) usedrag
READ(umods ,*) stellev

CLOSE (UNIT=umods )

ENDIF

CALL
CALL
CALL
CALL
CALL
call
call
call
call
call
call
CALL
CALL
CALL
CALL
CALL
CALL
CALL

shareint (nsteps , 1)
shareint (noutbod , 1)
shareint (noutlog ,1)
share (dteps ,1)

share (G, 1)

share (C,1)

sharelog (firstpn ,1)
sharelog (secondpn,1)
sharelog (secondhpn, 1)
sharelog (thirdpn ,1)
sharelog (thirdhpn ,1)
share (tfinal ,1)
sharelog (multistep ,1)
sharelog (fixedn ,1)
sharelog (selfgrav ,1)
sharelog (inptcoef ,1)
sharelog (outpcoef ,1)

sharelog (zeroodd ,1)
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CALL sharelog(zeroeven ,h1)
CALL sharelog(fixacc ,1)
CALL share(rcrit ,1)

CALL share(ecrit ,1)

CALL sharelog(lilout ,1)
CALL shareint(nlilout ,1)

CALL shareint (iseed ,1)
CALL share (bhmass,1)
CALL share (epsbh,1)
CALL share(tstartbh ,1)
CALL share (tgrowbh ,1)
CALL share (tlivebh ,1)
CALL share (tdiebh ,1)
CALL share (xdrag,1)
CALL share(ydrag,1)
CALL share(zdrag,1)
CALL share(tstartdrag ,1)
CALL share (tgrowdrag ,1)
CALL share(tlivedrag ,1)
CALL share(tdiedrag ,1)
CALL sharelog(bhgrav,h1)
CALL sharelog(usedrag,1)
CALL sharelog(stellev ,1)

c dtime = dteps

nfrac =1

RETURN
END

Crsrtrkkkwskxkkkkkrkokkkkkkkkkkkkkskkk ok kkokkokkkwkkkkkkkokkokwk ko ko kkpkok kosk sk
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SUBROUTINE iocoef (sinsum ,cossum)

Crsrrrkkkkwskxkkkkkkkkkkwkkkkkkkkkkkk ok kkokkokkkwkkkkkkkok kb wkwk ko kkk kb kosk sk

C
C
C Subroutine to input and output expansion coefficients.
C
C
C
INCLUDE ’tmhscf.h’
INCLUDE ’mpif.h’
INTEGER n,1,m
LOGICAL firstc
REAL+8 sinsum ,cossum, tt
DIMENSION sinsum (0:nmax,0:Imax ,0:1max),
& cossum (0:nmax ,0:1max ,0: 1max)
DATA firstc /. TRUE./
SAVE firstc
C
tmptime = mpi_wtime ()

IF(firstc) THEN
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10
20
30

100

firstc =.FALSE.

IF (outpcoef .and. me.eq.0)
OPEN(uoutcoef ,FILE=outcfile ,STATUS="UNKNOWN’ )

IF (inptcoef .and. me.eq.0)
OPEN(uincoef ,FILE=incfile ,STATUS='OLD’)

ENDIF

IF (outpcoef .and. me.eq.0) THEN

WRITE(uoutcoef ,100) tnow

DO 30 n=0,nmax
DO 20 1=0,lmax
DO 10 m=0,1
WRITE(uoutcoef ,100) sinsum(n,l,m),cossum(n,]l ,m)
CONTINUE
CONTINUE
CONTINUE

FORMAT(1x,10(1pe22.13))
ENDIF
IF(inptcoef) THEN
if (me .eq. 0) then
READ(uincoef ,x) tt

tmpsumO01 = tt

endif
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call share(tt,1)

IF(tt .NE.tnow) CALL terror (’_.input._error._in.iocoef.’)

C
DO 130 n=0,nmax
DO 120 1=0,Imax
DO 110 m=0,1
if (me .eq. 0) then
READ(uoutcoef ,*) sinsum(n,l,m),cossum(n,l ,m)
end if
call share(sinsum(n,l ,m),1)
call share(cossum(n,l ,m),1)
110 CONTINUE
120 CONTINUE
130 CONTINUE

ENDIF

tmptime = mpi_-wtime()—tmptime
cputimeO0 = cputime0 + tmptime
cputime = cputime + tmptime
RETURN

END

C***********************************************************************
C
C
SUBROUTINE liloutb
C
C

Crsrtrrkkkskxkkkkkrkkkkwkkkkkokkkkkkk ks kkokkokkkwkkkkkkkokkokwk ko kk sk kpkok kosk sk
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QO O a0 0 a O

Subroutine to output phase coordinates.

INCLUDE ’tmhscf.h’
INCLUDE ’mpif.h’

CHARACTER#3 sstring

CHARACTER=*7 filename

CHARACTER=8 filepar

CHARACTER#10 nstring

INTEGER 1i,j,istring ,insnap

SAVE insnap ,nstring

DATA insnap/0/,nstring/’ 0123456789/

tmptime = mpi-wtime ()

insnap=insnap+1

sstring (1:1)=nstring (1+insnap/100:1+insnap/100)
istring=14MOD(insnap ,100)/10

sstring (2:2)=nstring (istring :istring)
istring=14MOD(insnap ,10)

sstring (3:3)=nstring (istring :istring)
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20

30

111

filepar=olilfile
filename=filepar (1:4)//sstring (1:3)

if (me .eq. 0)
OPEN(UNIT=ubodslil ,FILE=filename ,STATUS="UNKNOWN" )

if (me .eq. 0) then
WRITE(ubodslil ,20) nbodies*n_pes ,tnow
FORMAT(1x,1i8 ,2(1pel4.6))

endif

DO 30 i=1,nbodies
if (me .eq. 0) then
WRITE(ubodslil ,111) mass(i),x(i),y(i),z(i),vx(i),
vy(i),vz(i),pot(i)+potext(i),
adens (i),dti(i),im(i)
end if
CONTINUE

FORMAT(1x,10(1peld.6),1i2)

if (me .eq. 0) then
CLOSE(ubodslil)

end if

tmptime = mpi-wtime()—tmptime
cputime0 = cputime0 + tmptime
cputime = cputime + tmptime
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C***********************************************************************
C
C

SUBROUTINE outbods

Crsrtrskkkkkskxkkkkkkkokkkkkkkkkkkokksk Rk ks kkokkokkskkk Rk ko kkokkokwk ko kk sk k sk kok kok kk %

Subroutine to output phase coordinates.

QO O o O a 0

INCLUDE °’tmhscf.h’

include 'mpif.h’

CHARACTER#3 sstring

CHARACTER=*7 filename

CHARACTER=8 filepar

CHARACTER:+10 nstring

INTEGER 1i,j,istring ,nsnap,p.,k

SAVE nsnap,nstring

DATA nsnap/0/,nstring/’0123456789 "/
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20

tmptime = mpi-wtime ()

nsnap=nsnap+1

sstring (1:1)=nstring (1+nsnap/100:1+nsnap/100)
istring=14MOD(nsnap ,100)/10

sstring (2:2)=nstring (istring:istring)
istring=14MOD(nsnap ,10)

sstring (3:3)=nstring (istring:istring)
filepar=obodfile

filename=filepar (1:4)// sstring (1:3)

if (me .eq. 0)
& OPEN(UNIT=ubodsout ,FILE=filename ,STATUS="UNKNOWN" )

if (me .eq. 0) then
WRITE (ubodsout ,20) nbodies#n_pes ,tnow ,bhmass,xbh,ybh,
&zbh ,
&vxbh , vybh,vzbh, sx /(Gxbhmass *%2/C) ,
&sy /(Gxbhmass *%2/C), sz /(Gxbhmass %%2/C)

FORMAT(1x,1i10,1x,11(1pe20.10))
end if

DO 30 i=1,nbodies
write (% ,%) *outbods ,me,i ,E3(i),x(i)’ ,me,i,E3(i),x(i)

IF (me .eq. 0)
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& WRITE(ubodsout ,111) id(i),mass(i),x(i),y(i),z(i),

&vx(i),vy(i),vz(i),

&E(i)/ mass(i),

&EO(1i)/ mass(i),

&E1(i)/mass(i),E2(i)/ mass(i),E3(i)/mass(i),

&0.5%(vx (i)x#2+vy(i)**2+vz(i)**2)+potext(i),

&E(i)+mass(i)=pot(i)—0.5xmass(i)*(vxX(i)**2+vy(i)**x24+vz(i)*=%2),

&—1.xmass(i)/sqrt(x(i)*2+y(i)#*2+z(i)**2),mass(i)*pot(i),

&mass (i)*potext (i),

&Ix(i),Jy(i),Jz(i),

&er (i),

&et(i),ephi(i),

&adens(i),dti(i),im(i),ax(i),ay(i),az(i),

&maxratio(i),rlength (i), vlength(i),J2x(i1),J2y(i),J2z(i)!output a added by Baile
30 CONTINUE

DO 50 j=1, n_pes—I
do k=1,nbodies
write (% ,%) "b4_mpiget:me,j,k,E3(k),x(k)’ ,me,j ,k,E3(k),x(k)
end do

CALL mpiget(tempOl, mass, nbodies, 0,j,me)

CALL mpigetint(templ8, starlive , nbodies, 0, j,me)

CALL mpiget(temp02, x, nbodies, 0,j,me)
CALL mpiget(temp0O3, vy, nbodies ,0,j ,me)
CALL mpiget(temp04, z, nbodies ,0,j ,me)
CALL mpiget(temp05, vx, nbodies ,0,j ,me)
CALL mpiget(temp06, vy, nbodies ,0,j ,me)
CALL mpiget(temp07, vz, nbodies ,0,j ,me)
CALL mpiget(templ9, E, nbodies ,0,j ,me)
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CALL mpiget(temp20, Jx, nbodies ,0,j ,me)

CALL mpiget(temp2l, Jy, nbodies ,0,j ,me)
CALL mpiget(temp22, Jz, nbodies ,0,j ,me)
CALL mpiget(temp23, er, nbodies ,0,j ,me)
CALL mpiget(temp24, et, nbodies ,0,j ,me)
CALL mpiget(temp25, ephi, nbodies ,0,j ,me)
CALL mpiget(temp08, pot, nbodies ,0,j ,me)

CALL mpiget(temp09, potext, nbodies,0,j,me)
CALL mpiget(templO, adens, nbodies,0,j,me)

CALL mpiget(templl, dti, nbodies ,0,j ,me)
CALL mpiget(templ2, ax, nbodies ,0,j ,me)
CALL mpiget(templ3, ay, nbodies ,0,j ,me)
CALL mpiget(templd, az, nbodies ,0,j ,me)
CALL mpiget(templ5, maxratio, nbodies ,0,j ,me)

CALL mpiget(templ6, rlength, nbodies ,0,j,me)
CALL mpiget(templ7, vlength, nbodies ,0,j,me)
CALL mpigetint(itempOl, im, nbodies ,0,j ,me)
CALL mpigetint (itemp02, id, nbodies ,0,j ,me)
CALL mpiget(tempEO,EO, nbodies ,0,j ,me)
CALL mpiget(tempEl ,El,nbodies ,0,j ,me)
CALL mpiget(tempE2,E2,nbodies ,0,j ,me)
CALL mpiget(tempE3 ,E3, nbodies ,0,j ,me)
CALL mpiget(tempJ2x ,J2x ,nbodies ,0,j ,me)
CALL mpiget(tempJ2y,J2y ,nbodies ,0,j ,me)
CALL mpiget(tempJ2z,J2z ,nbodies ,0,j ,me)

do k=1,nbodies

write (*,%)  afmpi:me,j,k,E2(k),tempE2(k),x(k),temp02(k)’,

&me, j ,k,E2(k),tempE2(k),x(k),temp02 (k)
end do

IF (me .eq. 0) THEN
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40

50

111

DO 40 i=1,nbodies
WRITE(ubodsout ,111) itemp02(i),tempOl(i),temp02(i),
&tempO03 (i) ,temp04(i),temp05(i),temp06(i),
&tempO07 (i),
&templ9 (i)/tempO1 (i),
&tempEO (i )/tempO1 (i),
&tempEl (i)/temp0O1(i),tempE2(i)/tempOl(i),tempE3(i)/tempOl (i),
&0.5%(temp05 (1 )*+2+temp06 (i)*%x2+temp07 (i)**2)+temp09 (i),
&templ9 (i)+tempOl(i)xtempO08(i)—0.5«xtempO01 (i)*(tempO0S(1)**2+
&temp06 (1 )**2+temp07 (i)*%2),
&—tempO01 (i)/sqrt(temp02(i)**2+temp03 (i)*x+2+temp04(i)=*=+2),
&tempOl (i)*temp08(i),tempOl (i)*temp09(i),
&temp20 (i), temp21 (i),
&temp22 (i) ,temp23 (i),
&temp24 (i), temp25(i),
&templO(i),templl(i),itempOl(i),templ2(i),templ3(i),templd(i),
&templS(i),templ6(i),templ7(i),templ2x(i),tempJ2y(i),templ2z(i)
CONTINUE
ENDIF
CONTINUE

FORMAT(1x,1i7 ,1(1pe20.10),1x,24(1pe20.10),1i2,9(1pe20.10))

if (me.eq.0) CLOSE(ubodsout)

tmptime = mpi-wtime()—tmptime
cputime0 = cputime0 + tmptime
cputime = cputime + tmptime
RETURN

END

130

!format editec



C***********************************************************************
C
C
SUBROUTINE outlog
C
C

Crsrrrkkkkwskxkkkrkrkokkkwkkkkkkkkkkkk ks kkokkokkkwkkkkkkkok kb wk ko kk sk kk kb kosk sk

C
C
C Subroutine to output phase coordinates.
C
C
C
INCLUDE °’tmhscf.h’
INCLUDE ’mpif.h’
INTEGER i, j
LOGICAL firstc
REAL+8 Ixtot ,lytot ,lztot ,mtot,vxcm,vycm,vzcm, etot ,ektot ,eptot,
& m2tw, tl ,clausius ,m2claus , cpux ,xcm,ycm,zcm, epselfg
ccompaq tmpsum replaced with tmpsum_snd and tmpsum_rcv
REAL:8 tmpsum_snd(14), tmpsum_rcv(14)
real =8 cumcpu, cumtot
DATA firstc /.TRUE./
SAVE firstc
save cumcpu,cumtot
data cumcpu,cumtot/0.d0,0.d0/
C
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cpux=mpi-wtime ()

IF (me.eq.0) THEN
IF(firstc) THEN
OPEN(UNIT=ulog ,FILE=logfile ,STATUS="NEW’ )
write (ulog ,*) ’“numprocs=.’,n_pes, ’'nbodies/proc=.’,nbodies
firstc =.FALSE.
ELSE
OPEN(UNIT=ulog ,FILE=logfile ,STATUS="OLD’ ,POSITION="APPEND" )
OPEN(UNIT=ulog ,FILE=logfile ,STATUS="OLD’ ,ACCESS="APPEND’ )
ENDIF
ENDIF

mtot=0.0
xem=0.0
yem=0.0
zcm=0.0
vxem=0.0
vyem=0.0
vzem=0.0
Ixtot=0.0
lytot=0.0
lztot=0.0
etot=0.0
ektot=0.0
eptot=0.0
epselfg=0.0

clausius =0.0

DO 30 i=1,nbodies

mtot=mtot+mass (i)
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xem=xcm+mass (1 )*x (1)

yecm=ycm+mass (i )y (i)

zcm=zcm+mass (i)*z (i)
vxem=vxcm+mass (i)*vx (1)

vycm=vycm+mass (i)*vy (i)

vzem=vzcm+mass (i)xvz (1)
Ixtot=1xtot+mass(i)*(y(i)*vz(i)—z(i)*vy(i))
lytot=lytot+mass(i)*(z(i)*vx(i)—x(i)*vz(i))
Iztot=1ztot+mass(i)*(x(i)*vy(i)—y(i)=vx(i))
eptot=eptot+0.5+*mass(i)*pot(i)+mass(i)xpotext(i)
epselfg=epselfg+0.5«xmass(i)xpot(i)

ektot=ektot+0.5xmass(1)x(vx(i)*%24+vy(i)*x2+vz(i)**2)+

&E1(1)+E2(1)+E3(i)

30

ccompagq

ccompaq

clausius=clausius+mass(i)*(x(i)*xax(i)+y(i)+*ay(i)+z(i)*xaz(i))

CONTINUE

tmpsum replaced with tmpsum_snd

tmpsum_snd (1) = mtot
tmpsum_snd (2) = xcm
tmpsum_snd (3) = ycm
tmpsum_snd (4) = zcm
tmpsum_snd (5) = vxcm
tmpsum_snd (6) = vycm
tmpsum_snd (7) = vzcm

tmpsum_snd (8) = Ixtot

tmpsum_snd (9) = lytot

tmpsum_snd (10) = lztot
tmpsum_snd(11) = eptot
tmpsum_snd (12) = epselfg
tmpsum_snd (13) = ektot
tmpsum_snd (14) = clausius

tmpsum replaced with tmpsum_snd and tmpsum_rcv in MPI call
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call MPI_Allreduce (tmpsum_snd,tmpsum._rcv, 14,

& mpi-double_precision ,
& mpi_sum, mpi_comm_world,ierr)
ccompaq tmpsum replaced with tmpsum_rcv

mtot = tmpsum_rcv (1)

Xcm = tmpsum_rcv (2)

ycm = tmpsum_rcv (3)

zcm = tmpsum_rcv (4)

vxcm = tmpsum_rcv (5)

vycm = tmpsum_rcv (6)

vzcm = tmpsum_rcv (7)

Ixtot = tmpsum_rcv (8)

lytot = tmpsum_rcv (9)

lztot = tmpsum_rcv (10)

eptot = tmpsum_rcv (11)

epselfg = tmpsum_rcv(12)

ektot = tmpsum_rcv (13)

clausius = tmpsum_rcv(14)

xcm=xcm/ mtot
ycm=ycm/ mtot
zcm=zcm/ mtot
vxcm=vxcm/ mtot
vycm=vycm/ mtot

vzem=vzcm/ mtot
etot=ektot+eptot
m2tw= —2.xektot/eptot

m2claus= —2.xektot/clausius

IF (me .eq. 0) THEN
WRITE(ulog ,120) tnow
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120
130
140
150
151

WRITE (ulog ,120) mtot
WRITE(ulog ,120) xcm,ycm,zcm
WRITE(ulog ,120) vxcm,vycm, vzcm
WRITE(ulog ,120) lxtot ,lytot ,lztot
WRITE (ulog ,120) ektot ,eptot ,epselfg ,etot
WRITE(ulog ,151) nbin0

do j=1.4

write (ulog ,151)nbin (i)

end do

WRITE(ulog ,120) m2tw, clausius , m2claus

WRITE(ulog ,140) (cpux—cputime)

WRITE(ulog ,150) (cpux—totime)
cumcpu=cumcpu+cpux—cputime
cumtot=cumtot+cpux—totime
write (ulog ,+*) ’cumulative_step.time_without_I/O.=",cumcpu

write (ulog ,+*) ’cumulative_step._time._with_I/O_._.._.=",cumtot

WRITE (ulog ,130)

FORMAT(5(1pel8.10))
FORMAT (/)
FORMAT(10x,1pel8.10, *_(Step_time_without_.I/0).")
FORMAT(10x,1pel8.10, ’_(Step_time_with_1/0).")
format (5(1i7))

ENDIF

IF (me.eq.0) CLOSE(ulog)

totime=cpux

cputime=mpi_wtime ()

tmptime = cputime—cpux

cputime0 = cputime0 + tmptime
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RETURN
END
C***********************************************************************
C
C
SUBROUTINE outstate (n)

Crstrrkkkkkskxkkkkkk kb kkkkkkkkokkokkskkkkkkkokkokkkkkkkkkkkokkokwk ko kk sk kk kb kok wk %

C
C
C Subroutine to output information about the system state to
C the log and body data files.
C
C
C

INCLUDE °’tmhscf.h’

include 'mpif.h’

Declaration of local variables.

C

INTEGER n, j
C

if (mod(n,100).eq.0) then

CALL outterm (’_step.completed:.’,n)
C

end if
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IF (n.EQ.0) THEN

CALL outbods

C
CALL outlog
C
ELSE
IF ((MOD(n, noutlog ).EQ.0).OR. (MOD(n, noutbod ).EQ.0).
& OR.(MOD(n, nlilout ).EQ.0)) THEN
IF MOD(n, noutlog ).EQ.0) CALL outlog
C -
c if (mod(nbinl ,noutbodl ).eq.0) call outbods
IF (MOD(n, noutbod ).EQ.0) CALL outbods
C
IFMOD(n, nlilout ).EQ.0) CALL liloutb
C
ENDIF
C
ENDIF
RETURN
END

Csrrtrkkkkmwskxkkkkkbkkkkwkkkkkkkkkskkk ks kkokkokkkwkkkkkk ok kb wkwk ko kkokkok kosk sk

C
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SUBROUTINE outterm (message ,n)

Csrrtrkkkkwskxkkkkkrkkkkwkkkkkkkkkskkk ok kkokkokkkwkwkkkkkok kb wkwk ko kkokkok kosk sk

Subroutine to output a message to the terminal and to the

terminal emulation file.

O O 0 0 a0 a 0

include 'mpif.h’

INCLUDE °’tmhscf.h’

C Declaration of local variables.

CHARACTER (%) message
INTEGER n

tmptime = mpi-wtime ()

C Write the message.

IF (me .eq. 0) THEN
IF (n.GE.0) THEN
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c WRITE(uterm ,*) message ,n

WRITE(utermfil ,*) message ,n

ELSE
C WRITE (uterm ,40)
C WRITE (uterm ,50) message
C WRITE (uterm ,40)

WRITE( utermfil ,40)
WRITE(utermfil ,50) message
WRITE( utermfil ,40)

ENDIF

40 FORMAT(/ ,1x,72( %))

50 FORMAT(/ ,a)
ENDIF
tmptime = mpi_-wtime() —tmptime
cputime0 = cputimeO + tmptime
cputime = cputime + tmptime
RETURN
END

Cosrrtkkkkskskxkkkkkkkskkskwkkkkkskkskksk ok ok okokokkskksk sk ks ok sk ok kosk kosk sk sk sk osk sk okosk ok sk ks ok

SUBROUTINE setim
C

C

Crsrrkkkwskxkkkkkrkkkkkkkkkkkkkkkkk ks kkokkokkkwkkkkk ok kok kb wk ko kk sk kokkok kosk sk
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currently this subroutine is a bit insane. if ecrit = 0, then the
multistepping criteria is r < rcrit. if ecrit < O, then the

criteria is e < ecrit. and if ecrit > 0, then the criteria is M < ecrit ,

a o O a

really a critical *MASS%, not energy...

Csrrtrkkkkwskxkkkkkrkkkkwkkkkkokkkkskkk kb kkokkokkkwkwkkkokkokkokwok ko kk sk kokkok kosk sk

c include ’tmhscf.h’

c integer i

c real«8 rcrit2 ,r2,energy

c if (ecrit.eq.0) then

c rerit2=rcritsrcrit

¢ do i=1,nbodies

C if (starlive(i).eq.l) then

c r2=x(i)*xx(i)+y(i)*y(i)+z(i)*xz(i)
c if (r2.1t.rcrit2) then

c im(i)=0

c else

c im(i)=1

c endif

c end if

c end do

C elseif (ecrit.lt.0) then

c do i=1,nbodies

C if (starlive(i).eq.1) then

C energy=0.5%(vx(i)*vx(i)+vy(i)svy(i)+vz(i)*xvz(i)) +
C & pot(i)+potext (i)

c if (energy.lt.ecrit) then
C im(i)=0

c else

C im(i)=1

c endif

c end if
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C end do

C elseif (ecrit.gt.0) then

c do i=1,nbodies

C if (starlive(i).eq.1) then

C if (mass(i).lt.ecrit) im(i) = 0
c end if

c enddo

c endif

c RETURN

c END

C**********************************************************by baile
include ’tmhscf.h’

include 'mpif.h’

real«8 r0,rl,r2
integer i

integer tmpnbin_snd(5),tmpnbin_rcv (5)

nbin0=0
do i=1.,4
nbin (i)=0
end do
c data nbin/0,0,0,0/
c data nbin0/0/
C call shareint (nbin ,4)
C call shareint(nbin0,1)

r0=(0.844%+2%2.e6/0.42«bhmass)##(1./3.)%2.254e —8/2.2751e—7
r1=1.0e—4/2.2751e—7
r2=1.0e —3/2.2751e—7
r3=1.0e —2/2.2751e—7

C write (+,%)°r0,r1 ,r2’ ,r0,rl1 ,r2
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do i=1,nbodies

if (rlength(i).le.r0) then

im(i)=0
bhmass=bhmass+mass (1)
mass (i)=0.0

end if

if (rlength(i).gt.r0.and.rlength(i).lt.r1) im(i)=1

if(rlength(i).ge.rl.and.rlength(i).lt.r2) im(i)=2

if(rlength(i).ge.r2) im(i)=3

end do
do i=1,nbodies

id (i)=mexnbodies+i

if (rlength(i).ge.r3) then

im(i)=4
nbin (4)=nbin (4)+1

else if(rlength(i).ge.

im(i)=3
nbin(3)=nbin(3)+1

else if(rlength(i).ge.

im(i)=2
nbin(2)=nbin (2)+1

else if(rlength(i). gt.

im(i)=1

nbin(1)=nbin(1)+1

else if(rlength(i).le.

im(i)=0
bhmass=bhmass+mass (1)
mass(1)=0.0
nbin0O=nbin0+1

end if

r2.and.rlength(i).1t.r3) then

rl.and.rlength(i).1t.r2) then

rO0.and.rlength(i).lt.r1) then

r0) then
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end do
do i=1.,4
tmpnbin_snd (i)=nbin (i)
end do
tmpnbin_snd (2)=nbin (2)
tmpnbin_snd (3)=nbin (3)
tmpnbin_snd (4)=nbin (4)
tmpnbin_snd (5)=nbin0
call MPI_Allreduce (tmpnbin_snd ,tmpnbin_rcv, 5,
mpi_integer ,
mpi_sum, mpi_comm_world,ierr)
do i=1,4
nbin (i)=tmpnbin_rcv (i)
end do
nbin (2)=tmpnbin_rcv (2)
nbin (3)=tmpnbin_rcv (3)
nbin (4)=tmpnbin_rcv (4)
nbi0=tmpnbin_rcv (5)
write (% ,%) "nbin0’ ,nbin0
do i=1.,4
write (x,%) i ,nbin(i)’ ,i,nbin(i)

end do

return

end
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C**********************************************************by baile
C***********************************************************************
C
C

SUBROUTINE startout

Crsrtrkkkkkkxkkkkkrkokkkkkkkkkkkkkkkkkkkkokkokkkkkkkkkkkokkokwkwk ko kkpkok kosk k%

C
C
C Subroutine to open disk files for subsequent input/output.
C
C
C
INCLUDE ’tmhscf.h’
INCLUDE ’mpif.h’
C

Create terminal emulation file.

IF (me .eq. 0) THEN
OPEN(UNIT=utermfil ,FILE=termfile ,STATUS="UNKNOWN’ )
WRITE(utermfil ,%) ’_Start_of_output,_woohoo!.’

ENDIF

Csrrtrkkskwskxkkkkkkkkkkwkkkkkokkkkskkk ok kkokkokkkwkwkkkkkokkokwkwk ko kkk kb kosk sk
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SUBROUTINE steppos

Cosrrtrkkkkskxkkkkkkkkkkwkkkkkkkkkskkk ok kkkkokkkwkwkkkkkokkokwskwk ko kkkksk kosk sk

Subroutine to advance the positions of the bodies for a timestep.

O O o 0 a 0

INCLUDE ’tmhscf.h’

C Declaration of local variables.

INTEGER p
real «8 ax2,ay2,az2,ax3,ay3,az3,dtp, kiabs
real «8 axbh2,aybh2,azbh2 ,axbh3 ,aybh3,azbh3 ! Baile

C

C

C Loop over all spatial coordinates for all bodies.
C

C Advance correct SCF particles

C use a hermite integrator.

C

c IF (.NOT. multistep) dtbig=dtime

DO 10 p=1,nbodies

IF (mstpflag . AND.(im(p).eq.rtag)) then
dtp=dtbin(rtag)
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c write (% ,%) dtp_particle’

C write (x,x)dtp
¢ write (* ,%) ’steppos ,p,o0ax ,dax’ ,p,o0ax(p),dax(p)
777 ax2=(—6.x%(oax(p)—ax(p))—dtp*(4.xodax(p)+2.xdax(p)))/ dtp =2

ax3=( 12%(oax(p)—ax(p))+6.=dtp=*(odax(p)+dax(p)) )/ dtp=*3

ay2=(—6.x(oay(p)—ay(p))—dtp «(4.«oday(p)+2.xday(p)))/ dtp =2
ay3=( 12x(oay(p)—ay(p))+6.xdtp=(oday(p)+day(p)) )/dtp=*=3

az2=(—6.%(oaz(p)—az(p))—dtp=(4.xodaz(p)+2.xdaz(p)))/ dtp==2
az3=( 12x«(oaz(p)—az(p))+6.=dtp=(odaz(p)+daz(p)) )/dtp=x%3

x(p)=x(p)+(dtp*=+4)x(ax2/24. +dtp+ax3/120.)
y(p)=y(p)+(dtp==+4)x(ay2/24. +dtp=+ay3/120.)
z(p)=z(p)+(dtp+=4)x(az2/24. +dtp=+az3/120.)

c write (+ ,+) 'me,p,x(p),y(p),z(p) ,me,p,x(p),y(p),.z(p)

vx(p)=vx(p)+(dtp*=*3)x(ax2+onesixth +dtpxax3/24.)
vy(p)=vy(p)+(dtp**3)*(ay2xonesixth +dtp=xay3/24.)
vz(p)=vz(p)+(dtp*=*3)*(az2+onesixth +dtpxaz3/24.)

c write (% ,%)  steppos ,p,dtp ,x,ax,ax2,ax3’ ,p,dtp,x(p),ax(p),ax2,ax3
end if
10 CONTINUE
c should add ki term !'by Baile
C axbh2=(—6.%(oaxbh—axbh)—dtp % (4.%x odaxbh+2.xdaxbh ))/ dtp =2
C axbh3=( 12x(oaxbh—axbh)+6.xdtp«(odaxbh+daxbh) )/dtp =3
c aybh2=(—6.%(oaybh—aybh)—dtp %(4.+ odaybh+2.«daybh))/ dtp %2
c aybh3=( 12x(oaybh—aybh)+6.xdtp«(odaybh+daybh) )/dtp =3
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azbh2=(—6.%(oazbh—azbh)—dtp «(4.%xodazbh+2.xdazbh ))/ dtp«=2
azbh3=( 12x(oazbh—azbh)+6.xdtp«(odazbh+dazbh) )/dtp %3

xbh=xbh+(dtp ##4)=(axbh2/24. +dtpxaxbh3/120.)
ybh=ybh+(dtp ##4)=(aybh2/24. +dtpxaybh3/120.)
zbh=zbh+(dtp #+4)x(azbh2/24. +dtp+azbh3/120.)

vxbh=vxbh+(dtp **3)*(axbh2+xonesixth +dtpxaxbh3/24.)
vybh=vybh+(dtp #%3)x(aybh2xonesixth +dtpxaybh3/24.)
vzbh=vzbh+(dtp *%3)x(azbh2xonesixth +dtp=xazbh3/24.)
sx=sx+asx*dtp
sy=sy+asy=dtp

sz=sz+asz+dtp

akix2=(—6.%(oakix—akix)—dtp *(4.%odakix +2.xdakix ))/ dtp =2
akix3=( 12x(oakix—akix)+6.xdtp=*(odakix+dakix ))/ dtp =3

akiy2=(—6.x(oakiy—akiy)—dtp = (4.* odakiy+2.«dakiy ))/ dtp==2
akiy3=( 12=x(oakiy—akiy)+6.«dtp=(odakiy+dakiy))/ dtp =3

akix2=(—6.+(oakiz—akiz)—dtp #(4.* odakiz+2.+ dakiz ))/ dtp 2
akiz3=( 12#(oakiz—akiz)+6.#dtp+(odakiz+dakiz))/ dtp#3

kix=kix +(dtp **3)«(akix2+onesixth +dtpxakix3/24.)
kiy=kiy+(dtp**3)«(akiy2+onesixth +dtp=xakiy3/24.)
kiz=kiz+(dtp*=+3)*x(akiz2*onesixth +dtpxakiz3/24.)
write (*,%)  steppos.dtp’,dtp

lend adding

if (mstpflag.and.rtag.eq.4) then

tpos=tpos+dtp
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tnow=tpos

end if

RETURN

END
Crsrrtrkkkxskxkkkkkkkkkkwkkkkkokkkkskkk ks kkkkokkkwkwkkkkkokkokwkwk ko kkokksk kosk sk
C
C

SUBROUTINE steppred

Crsrkrskkkkkskxkkkkkrkokkkkkkkkkskkokkkkkkkkkokkokkskkkkkkkkkokkkwok kR sk kkksk kok kk %

INCLUDE ’tmhscf.h’

C Declaration of local variables.
INTEGER i
REALx%8 dtp , kiabs
C
C
C advance particles to x_p with old acceleration
C
DO 11 i=1,nbodies
IF (mstpflag . AND.(im(i).eq.rtag)) then
dtp=dtbin(rtag)
999 x(1)=((dtp==*3)xodax(i)*onesixth+0.5«dtpxdtp=xoax (i)

& +dtpsvx (i))+x(i)
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11

y(i)=((dtp=*=*3)*xoday(i)*xonesixth+0.5xdtp=xdtp=xoay(i)

& +dtpxvy(i))+y(i)

z(i)=((dtp=*3)*odaz(i)*onesixth+0.5xdtp=dtp=oaz(i)

& +dtpsvz (i))+z(i)

vx(1)=(0.5«dtp=dtpxodax (i) +dtp=oax(i))+vx(i)
vy(i)=(0.5«dtp=dtpxoday (i) +dtp=oay(i))+vy(i)
vz(i)=(0.5%dtp=dtp*xodaz(i) +dtp=xoaz(i))+vz(i)

write (x,%)  steppred’

write (*,+)vx(i),vy(i),vz(i)

end if

CONTINUE

¢ !added by Baile

C

C

xbh=((dtp*=*3)xodaxbhxonesixth+0.5%dtpxdtp=oaxbh
& +dtp=vxbh)+xbh
ybh=((dtp**3)xodaybhxonesixth+0.5%dtpxdtp=+oaybh
& +dtp*vybh)+ybh
zbh=((dtp*+*3)xodazbhxonesixth+0.5«dtpxdtp=*oazbh
& +dtp*vzbh)+zbh

vxbh=(0.5%dtpsxdtp*odaxbh +dtp=oaxbh)+vxbh
vybh=(0.5%dtp*dtp*odaybh +dtp=oaybh)+vybh
vzbh=(0.5%dtp*dtp*odazbh +dtp=*oazbh)+vzbh

write (% ,%)  steppred .oakix._y.z’

write (% ,%)oakix , oakiy , oakiz

sx=sx+oasx*dtp

sy=sy+oasy=dtp

sz=sz+oaszx*xdtp

kix=(0.5%dtp=dtpxodakix+dtpxoakix)+kix

kiy=(0.5«dtp=dtp*odakiy+dtp=oakiy)+Kkiy
kiz=(0.5xdtp=dtpxodakiz+dtp=xoakiz)+kiz
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c write (*,x) steppred._dtp’ ,dtp
RETURN
END
C***********************************************************************
C
C
SUBROUTINE stepsys (n)

Crsrkrkkkkkskxkkkkkrkokkkkkkkkkokkokkkkkkkkkokkokkkkkkkkkkkokkokkok ko ko kkkkok kok kk %

C
C
C Subroutine to advance the state of the system by one timestep.
C
C
C

INCLUDE ’tmhscf.h’

include 'mpif.h’

Declaration of local variables.

C

INTEGER i ,n,stepnum (3) ,k
REAL+8 tnext

IF (multistep) THEN
mstpflag =.TRUE.
do i=1,3

stepnum (1)=dtbin(i+1)/dtbin (i)

150



end do
do i=1.,4
write (+,%) i ,nbin(i)’ ,i,nbin(i)
end do
rtag=1
do while(rtag.gt.0.and.rtag.le.4)

if(rtag.eq.1) then

DO j=1,stepnum (1)

write (= ,%) rtag , first’ ,rtag

CALL accpot(n)
IF (fixacc) CALL corracc
DO 1020 i = 1,nbodies
IF (im(i).EQ.rtag) THEN
oax (i) = ax(1i)

oay (i) = ay(i)

oaz (i) az (1)

odax (i)

dax (1)
oday (i) = day(i)
odaz (i)

daz (i)
ENDIF
1020 CONTINUE
oasx=asx
oasy=asy
oasz=asz
CALL steppred
CALL accpot(n)
IF (fixacc) CALL corracc
CALL steppos
CALL timestep (n)
IF (usedrag) CALL veldrag
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if (multistep) CALL setim

numb(rtag)=numb(rtag)+1
end do
rtag=rtag+1

end if

write (= ,%) rtag ,numb(rtag —1),stepnum(rtag —1)’ ,rtag ,numb(rtag —1),
&stepnum (rtag —1)
if ((rtag.gt.1).and.(numb(rtag —1).gt.0).and.
&(mod (numb (rtag —1),stepnum (rtag —1)).eq.0)) then
write (= ,%) 'rtag ,secondpart’,rtag
CALL accpot(n)
IF (fixacc) CALL corracc
DO 1021 i = 1,nbodies
IF (im(i).EQ.rtag) THEN
oax (i) = ax(i)

oay (i) = ay(i)

oaz(i) = az(1)
odax (i) = dax (i)
oday (i) = day(i)

odaz (i) = daz(i)
ENDIF
1021 CONTINUE
oasx=asx
oasy=asy
oasz=asz
CALL steppred
CALL accpot(n)
IF (fixacc) CALL corracc
CALL steppos
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CALL timestep (n)
IF (usedrag) CALL veldrag
if (multistep) CALL setim

numb(rtag)=numb(rtag)+1
if (rtag.1t.4) then
rtag=rtag+1

else

goto 999

end if

else
rtag=1
end if
end do
ENDIF
999 CALL outstate (n)
RETURN

END

C s sk ok s sk sk ok sk sk ok ok sk sk ok sk sk ok ok sk sk ok ok sk ok ok sk sk ok ok sk sk ok ok ok sk ok sk sk ok ok sk ok ok ok sk sk ok ok sk ok ok sk sk ok ok ok ok ok sk ok sk o sk sk ok ok sk ok ok ok

SUBROUTINE stopout

Cosrrtrkkkskwskxkkkkkkkkkskwkkkkkkkkkskkk ok kkkkokkskwskwkkk ok kokkokwoskwk ko k ok skksk sk osk sk

Subroutine to end output.

a a 0
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INCLUDE ’tmhscf.h’

include ’'mpif.h’

INTEGER i
REAL«8 t1 ,cl
data t1,c1/0.0d0,0.0d0/

save tl,cl

IF (me .eq. 0) THEN
tl=tl+totimel —totimeO
cl=cl+cputimel —cputimeO
WRITE(ulog ,30) (cputimel —cputimeO)
WRITE(ulog ,40) (totimel —totime0)
30 FORMAT(’ .CPU_time .(without_I/O)_used.=",1pel8.10,  (secs)’)
40 FORMAT(’ .Total .time.(with_.I1/0O)..used.=",1pel8.10,  (secs)’)
write (ulog ,*) ’cumulative.times=",cl,tl
CLOSE(ulog)
ENDIF

RETURN
END

Cosrrtrkkkskskxkkkkkkkskkskwkkkkkkkkkskkk ks kkokkokkskwsk ko k ok okkokkoskkosk kR ok ok ok sk ok sk ks sk %

SUBROUTINE terror (message)
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Cosrrtrkkkskskxkkkkkkkskkskwkkkkkskkskkskksk ok okokokkokkskwsk ks ok sk ok kok skosk sk ok sk ok sk okosk ks ks sk

C
C
C Subroutine to terminate the program as the result of a fatal
C error , close the output files , and dump timing information.
C
C
C

INCLUDE ’tmhscf.h’

include ’mpif.h’
Declaration of local variables.

C

CHARACTER (%) message

INTEGER ierror
C

Write error message to the log file and to the terminal.

ierror=—1

CALL outterm (message ,ierror)
C
C
C Stop timing , output timing data, close files , terminate the
C simulation .
C
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cputimel=mpi_wtime ()

STOP

sk sk steosk skok sk sk sk sk st sk skok sk sk sk sk sk sk stk sk st sk skok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skok sk

SUBROUTINE timestep (n)

Csrrterskkkkkskxkkkkkkkkkkkkkkkkskkskkkkkkkkkokkokkkkkkkkkkkokkokkok ko Rk sk kok kb kok k%

Subroutine to calculate the minimum time step for each group.

QO o o O a 0

INCLUDE ’tmhscf.h’
INCLUDE ’mpif.h’

C Declaration of local variables.

INTEGER »p
integer n
REAL+8 dtsold , dtlilold
REAL%*8 as,das,dtsmin, dtlilmin
ccompagq tmpmin replaced with tmpmin_snd and tmpmin_rcv
REAL+8 tmpmin_snd(3), tmpmin_rcv(3)

integer i
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c dtsold=1d20

c dtlilold=1d20

cc dtsold=1.

cc dtlilold =1.

cc DO 10 p=1,nbodies

cc

cc if (mstpflag . AND.(im(p).eq.1)) go to 10

cc as = (ax(p)=ax(p)+ay(p)=xay(p)+az(p)*az(p))
cc das = (dax(p)xdax(p)+day(p)xday(p)+daz(p)+xdaz(p))
cc dts = SQRT(as/das)

cc dti(p) = dts

cc dtlil=MIN(dts ,dtlilold)

cc dts = dts + (1—im(p))

cc dts = MIN(dts ,dtsold)

cc dtsold = dts

cc dtlilold = dtlil

cc 10 CONTINUE

¢ now compute minimum of dts and dtlil over all processors

ccompagq tmpmin replaced with tmpmin_snd

cc tmpmin_snd (1)=dts

cc tmpmin_snd (2)=dtlil

ccompaq tmpmin replaced with tmpmin_snd and tmpmin_rcv in MPI call
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cc call MPI_Allreduce (tmpmin_snd,tmpmin_rcv, 2,

cc & mpi-double_precision ,

cc & mpi_min, mpi_.comm_world,ierr)
ccompaq tmpmin replaced with tmpmin_rcv

cc dts = tmpmin_rcv (1)

cc dtlil = tmpmin_rcv(2)

C Update position time, system time.

cc dtsmall = dteps=dtlil

cc if (.not.mstpflag) then
cc dtbig = dteps=dts

cc dtime = dtbig

cc tnextbig= tnow + dtbig
cc endif

C if (me.eq.0) write(*,*)dtime
C if (me.eq.0) then

C if (mod(n,2000).eq.0)then
C write (utermfil ,*) tnow, dtbig, dtsmall
C endif

C endif

data dtbin/1.0,10,100,1000/

c data dtbin/1.0,2.0,4.0,8.0/

c do i=1,3

c dtbin (i)=2#=(i—1)

c write (+,%) 1 ,dtbin’ ,i,dtbin (i)
C tnextbig (i)=tnow+dtbin (i)

c end do

c tmpmin_snd (1)=dtbin (1)

C tmpmin_snd (2)=dtbin (2)
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C tmpmin_snd (3)=dtbin (3)

c tmpmin replaced with tmpmin_snd and tmpmin_rcv in MPI call
c call MPI_Allreduce (tmpmin_snd,tmpmin_rcv, 3,

c & mpi_double_precision ,

c & mpi_min, mpi_.comm_world,ierr)

c tmpmin replaced with tmpmin_rcv

¢ dtbin (1) = tmpmin_rcv (1)

C dtbin (2) = tmpmin_rcv (2)

C dtbin (3) = tmpmin_rcv (3)

call share(dtbin ,4)

Gt e s o ok ok ok ook ook ook ok ook ok ok ok o ok o ok ok ok ok ok ok Kok oKk oKk ok ok ok R ok o ok ok ok
Gt e s o 5k ok ok ook ook ook ook ok o oK oK o ook ok ok ok ok ok ok ok ok Kk oKk oK oK R KR R R ok R ok ok ok ok ok ok %ok R
SUBROUTINE veldrag

C s sk ok s sk ok ok sk sk ok ok sk sk ok sk sk ok ok sk sk ok ok sk ok ok sk ok ok ok sk sk ok ok ok sk ok sk sk sk ok sk sk ok ok sk sk ok sk sk ok ok sk sk ok ok ok sk ok sk osk sk ok sk kR ok sk ok sk ok

C

C

C Subroutine to advance the velocities of the bodies for timestep.
C

C

C

INCLUDE ’tmhscf.h’
C Declaration of local variables.
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INTEGER p

REAL+8 tnowdrag ,facd ,temp4 ,temp5 ,temp6 , dtp

facd=0.0

tnowdrag=tnow—tstartdrag

IF (tnowdrag .GE.0.0.AND. tnowdrag .LT. tgrowdrag) facd=(3.x(

tnowdrag/tgrowdrag)**2 —2.«(tnowdrag/tgrowdrag)*=3)

IF (tnowdrag .GT. tgrowdrag .AND. tnowdrag .LE. tlivedrag+tgrowdrag)
facd = 1.

IF (tnowdrag .GT. tlivedrag+tgrowdrag .AND. tnowdrag .LE. tdiedrag+
tlivedrag+tgrowdrag) facd=(1.—-3.x((tnowdrag—tlivedrag —
tgrowdrag )/ tdiedrag )**2+2.%((tnowdrag—tlivedrag —tgrowdrag)

/tdiedrag)=%3)

IF (tnowdrag .GT. tdiedrag+tlivedrag+tgrowdrag) facd=0.0

temp4=facd=+xdrag

tempS5=facd=xydrag

temp6b=facd=xzdrag

IF (.NOT. multistep) dtbig=dtime

do 2030 p = 1,nbodies
IF (mstpflag . AND.(im(p).EQ.1)) GO TO 2030
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dtp=dtime*(1—im(p))+ dtbig=im(p)

vx(p)=(vx(p)*(1.0—0.5«dtp=temp4))/

& (1.0+0.5« dtp=temp4)
vy(p)=(vy(p)*(1.0 —0.5«dtp=tempS))/
& (1.0+0.5« dtp+temp5)

vz(p)=(vz(p)*(1.0—-0.5xdtp=temp6))/
& (1.0+0.5« dtp+temp6)

2030 continue

subroutine share(x,n)

include ’'mpif.h’

dimension x(n)

call MPI.BCAST(x,n,MPI.DOUBLE_PRECISION,O,
$ MPLCOMM_WORLD, ierr )

return

end

subroutine shareint(x,n)

include ’'mpif.h’

integer x(n)

call MPI.LBCAST(x,n,MPIINTEGER,O,
$ MPLCOMM WORLD, ierr )
return

end
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subroutine sharelog(x,n)

include ’'mpif.h’

logical x(n)

call MPI.BCAST(x,n,MPI.LOGICAL,O,

$ MPLCOMM WORLD, ierr )

return

end

subroutine mpiget(rbuf ,sbuf,n,idest ,isrc ,me)

include ’mpif.h’

integer status (MPI_.STATUS_SIZE)

dimension rbuf(n),sbuf(n)

itag=isrc

if (me.eq.isrc) then

call mpi_send (sbuf ,n, mpi_double_precision ,
& idest ,itag ,mpi_comm_world ,ierr)

endif

if (me.eq.idest) then

call mpi_recv(rbuf ,n, mpi_double_precision ,
& isrc ,itag ,mpi_comm_world, status ,ierr)

endif

return

end

subroutine mpigetint(rbuf,sbuf,n,idest ,isrc ,me)

include ’'mpif.h’

integer status (MPI_.STATUS_SIZE)

integer rbuf(n),sbuf(n)

itag=isrc

if (me.eq.isrc) then

call mpi_send(sbuf,n, mpi-integer ,
& idest ,itag ,mpi_comm_world ,ierr)
endif

if (me.eq.idest) then
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call mpi_recv(rbuf ,n, mpi_-integer ,

& isrc ,itag ,mpi_.comm_world , status ,ierr)
endif
return

end

¢ /the following is all added by Baile
subroutine pnl(n)
implicit none

¢ this is a first post newtonian code supposed to be added to mpiscf.f

INCLUDE ’tmhscf.h’
include ’mpif.h’
¢ Declaration of local variables
integer n
real «8 temptl ,tempt2 ,tempt3 ,temptd , temptS , tempt6 , tempt7 ,

&tempt8 , tempt9 , temptl10 ,temptll ,temptl2 ,temptl3 ,temptl4 ,temptlS,
&temptl6 ,temptl7 ,temptl8 ,temptl9 ,tempt20 ,tempt21 ,tempt22 ,
&tempt23 , tempt24 , tempt25 , tempt26 ,
&tempt27 ,tempt28 , tempt29 ,
&tempt30 ,tempt31 ,tempt32 ,tempt33 ,tempt34 ,tempt35 ,tempt36,
&tempt37 ,tempt38 ,tempt39 ,temptd0 ,temptd]l ,temptd2 ,temptd3 ,
&temptd4 ,temptd5 , temptd6 ,temptd7 ,temptd8 , tempt49 , tempt50

integer j,i
real«8 dtp,miu,m,eta ,delm,deltax ,deltay,

&deltaz ,coefl ,coef2 ,ratiol (nbodsper),col,co2,co3,co4,cojl

real=8 r

data asx,asy,asz/0.0d0,0.0d0,0.0d0/
c data dasx ,dasy,dasz/0.0d0,0.0d0,0.0d0/
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DO j=I1,nbodies

format (6(1pe20.10))

IF ((mstpflag .AND.im(j).EQ.rtag) .or. n.eq.0 ) THEN
dtp=dtbin(rtag)

call  nij(x(j),y(j),z(j),xbh,ybh,zbh, nljx(j),nljy(j).nljz(j))
call rel(vx(j),vy(j),vz(j),vxbh,vybh,vzbh,

&v1jx(j) . v1jy(j).vljz(j))

call cross(nljx(j),nljy(j),nljz(j),vljx(j),
&vljy(j),vljz(j),temptl ,tempt2 ,tempt3)

rlength (j)=r(xbh,ybh,zbh,x(j),y(j),z(j))+epsbh

vliength (j)=sqrt(v1jx (j)==2+v1jy (j)*=2+v1jz (j)==2)

call dot(nljx(j),nljy(j),nljz(j),vIjx(j),
&vljy(j),vljz(j),rdot(j))

rcvx(j)=rlength(j)*temptl !/ x component of r cross v
revy(j)=rlength (j)=tempt2

rcvz(j)=rlength (j)xtempt3

miu=mass (j)*bhmass/(mass(j)+bhmass)

m=mass (j)+bhmass

eta=miu/m

delm=bhmass—mass(j)

deltax=m#(—sx/bhmass)

deltay=m#(—sy/bhmass)

deltaz=m+(—sz/bhmass)

coefl=(1+3xeta)xvlength (j)++2—2x(2+eta)*m/rlength (j)—
&3./2.%xetaxrdot (j)*x2

coef2=2x%(2—ecta)xrdot(j)

call rel(coefl*nljx(j),coeflxnljy(j),coeflxnljz(j),

&coef2xv1ljx(j),coef2xvljy(j),coef2=xvljz(j),temptd , temptS ,tempt6)
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alpnx (j)=—m/rlength (j)*+2xtempt4
alpny (j)=—m/rlength (j)==*2=temptS
alpnz(j)=—m/rlength (j)**2xtempt6

c write (*,%)  alpnx ,alpny,alpnz’
c write (*,x)alpnx(j),alpny(j),alpnz(j)
C write (*,%) apnx ,apny,apnz’,j,apnx(j),apny(j),apnz(j)

call dot(temptl ,tempt2 ,tempt3 ,2*sx+delm/m=deltax ,
&2#sy+delm/mxdeltay ,2+sz+delm/m+deltaz ,tempt7)
call cross(vljx(j),vljy(j),vljz(j),7+sx+3+«delm/m«deltax ,
&Txsy+3+«delm/m«deltay ,7*«sz+3xdelm/m=deltaz ,tempt8 ,tempt9 , temptl0)
call cross(nljx(j),nljy(j),nljz(j),3*sx+delm/m«deltax ,
&3xsy+delm/msxdeltay ,3%sz+delm/m«deltaz ,temptll ,temptl2 ,temptl3)
asox (j)=1/rlength (j)**3x(6xtempt7+nljx (j)—tempt8+
&3xrdot (j)xtemptll)
asoy(j)=1/rlength (j)**3%(6xtempt7xnljy(j)—tempt9+
&3xrdot (j)xtemptl2)
asoz (j)=1/rlength (j)**3%(6xtempt7*nljz(j)—temptlO+
&3xrdot (j)xtemptl3)

C write (% ,%) >asox ,asoy ,asoz’,j,asox(]j),asoy(j),asoz(j)
C ax(j)=ax(j)+alpnx(j)+asox(j)
¢ ay (j)=ay(j)+alpny(j)+asoy(j)
C az(j)=az(j)+alpnz(j)+asoz(j)

ax(j)=ax(j)+alpnx(j)
ay(j)=ay(j)+alpny(j)
az(j)=az(j)+alpnz(j)

© s sk sk sk stk ok sk ok ok ok ok ok Rk koo ke k. below to calculate dalpnsseossossssss
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call dot(ax(j),ay(j).,az(j),vx(j)/vlength(j),vy(j)/vlength(j),
&vz (j)/ vlength(j),vdot(j))

call rel (vx(j),vy(j),vz(j),rdot(j)enljx(j),rdot(j)xnljy(j),
&rdot(j)*nljz(j),temptl7 ,temptl8 ,temptl9)

ndotx (j)=temptl7/rlength(j)

ndoty (j)=temptl8/rlength(j)

ndotz (j)=temptl9/rlength(j)

call dot(ax(j).ay(j).az(j),nljx(j).nljy(j).nljz(j),tempt20)
call dot(vx(j),vy(j),vz(j),ndotx(j),ndoty(j),ndotz(j),tempt21)
rddot(j)=tempt20+tempt21

col=2smxrdot(j)/rlength (j)*=3%((14+3=xeta)+*vlength(j)**2—2«(2+eta)
&=m/rlength (j)—3./2.«xetaxrdot(j)*=*2)—m/rlength (j)*=2+((1+3=xeta)
&+2xvlength (j)=vdot(j)+2=(2+eta)smsrdot(j)/rlength (j)*=2
&—3xetaxrdot(j)xrddot(j))

co2=2xm/rlength (j)**2x(2—eta)xrddot(j)—2+m/
&rlength (j)**3xrdot(j)**2%2%(2—eta)

co3=2xm/rlength (j)*+2%(2—eta)sxrdot(])

cod=—m/rlength (j)*=2+((1+3xeta)*vlength (j)==2—-2x(2+eta)=
&m/rlength(j)—3./2.xetaxrdot(j)==*2)

dalpnx(j)=col*nljx (j)+co2*vx(]j)+co3=ax(j)+codxndotx(j)

dalpny(j)=col*nljy(j)+co2*vy(j)+co3=ay(j)+cod=ndoty(j)

dalpnz(j)=col*nljz(j)+co2*vz(j)+co3xaz(j)+codxndotz(j)

dax (j)=dax(j)+dalpnx(j)

day (j)=day(j)+dalpny(j)

daz (j)=daz(j)+dalpnz(j)

write (% ,%) "dalpnx ,dalpny,dalpnz’

write (+ ,x)dalpnx(j),dalpny(j),dalpnz(j)

mor (j)=m/rlength (j)
E1(j)=1.D0/2.D0+mor(j)*+2.D0+3.D0/8.D0x(1.D0—-3.D0=eta)
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&=vlength (j)=+4.D0+

&1.D0/2.D0+(3.D0+eta)*vlength (j)*=*2.D0xmor(j)+

&1.D0/2.D0xetaxmor(j)*rdot(j)**2.D0
E1(j)=E1(j)*miu

c write (#,%) 'me,j,E1(j),x(j) ,me,j ,ELl(j),x(j)

cojl=(3.+eta)xmor(j)+1./2.%(1 —3.xeta)*vlength (j)*=2
JIx(j)=miuxcojl=xrcvx(j)
Jly (j)=miuxcojl*rcvy(j)

J1z(j)=miuxcojl=rcvz(j)

JOx (j)=miux1.0xrcvx(j)
JOy (j)=miux1.0xrcvy(j)
JOz (j)=miux1.0xrcvz(j)

c write (= ,x)"JOx(j),J0y(j),J0z(j)’
C write (+,%)JOx(j),J0y(j),J0z(j)

Cowstsestotokkskk gk pkksrksk eNd calculating  dal P s ko som ook o ok o sk sk ook ook ok koo

c write (% ,%) ’ax,ay,az’,j,ax(]j),ay(j),az(])
ratiol (j)=sqrt((alpnx(j)+asox(j))**2+(alpny(j)+asoy(j))==2+
&(alpnz(j)+asoz(j))=+2)/sqrt(ax(j)=*2+ay(j)**x2+az(]j)**2)
¢ ratiol (j)=(alpnx(j)+asox(j))/(ax(j)—alpnx(j)—asox(j))
if (abs(ratiol(j)).gt.abs(maxratio(j))) then

maxratio (j)=ratiol (j)

c rleng (j)=rlength
c vleng (j)=vlength
end if

call cross(temptl ,tempt2 ,tempt3 ,sx,sy,sz,temptl4 , temptl5 ,temptl6)
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write (+,%)’j,temptl23tob’,j,temptl ,tempt2 ,tempt3 , torbit(j)

if(torbit(j).gt.0.0) then

asx=asx+1/rlength (j)**2+miu*(2+3./2.%*mass(j )/ bhmass)=x
&temptl4=dtp/torbit(j)

asy=asy+1/rlength (j)#*2«miu=(2+3./2.«*mass(j)/bhmass)=
&temptlS=dtp/torbit(j)

asz=asz+1/rlength (j)#*2«miu=(2+3./2.«*mass(j)/bhmass)=
&temptl6xdtp/torbit(j)

asx=0.0

asy=0.0

asz=0.0

end if

write (= ,%) ’asx ,asy ,asz’,j,asX,asy, asz

end if

end do

write (#,%) dtp_in.pnl’

write (= ,x) dtp

write (% ,%) asx.asy.asz’

write (% ,%)asx ,asy,asz

write (% ,%) "tnow , kix _kiy_kiz_asx_asy.asz._.dasx._dasy.dasz’
write (% ,*)tnow , kix ,kiy ,kiz ,asx ,asy,asz ,dasx ,dasy,dasz
return

end

subroutine dot(xl,yl,zl,x2,y2,z2,ji)

include ’mpif.h’

real«8 x1,yl,zl,x2,y2,2z2,ji
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ji=x1%x2+ylxy2+z1%2z2
return

end

subroutine cross(xl,yl,zl,x2,y2,z2,xc,yc,zc)
include ’mpif.h’
real«8 x1,yl,zl,x2,y2,2z2,xc,yc,zc
xc=yl#z2—y2=xz1
ye=x2#z1—x1%2z2
zc=x1#y2—x2x*yl

return

end

function r(xl,yl,zl,x2,y2,2z2)
include 'mpif.h’
real«8 x1,yl,zl,x2,y2,z2,r
r=sqrt ((x1—x2)*+2+(yl—y2)*+x2+(z1—22)%x%2)
return

end

subroutine nij(xl,yl,zl,x2,y2,z2,x12,y12,z12)
include 'mpif.h’
real«8 x1,yl,zl ,x2,y2,z2,x12,y12,z12,r
x12=(x1—x2)/r(xl,yl,zl,x2,y2,22)
yl12=(yl—y2)/r(x1,yl,zl ,x2,y2,22)
z12=(z1-z2)/r(x1,yl,z1,x2,y2,22)

return

end

subroutine rel(x1,yl,zl,x2,y2,2z2,x12,y12,z12)

include ’'mpif.h’
real«8 x1,yl,zl,x2,y2,2z2,x12,y12,2z12
x12=x1-x2
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yl2=yl—y2
z12=z1-22
return

end

subroutine pn2h(n)
INCLUDE ’tmhscf.h’
include ’'mpif.h’
integer j,i,n
real «8 dtp ,miu,m,eta ,delm, deltax ,deltay , A2hdot, B2hdot,A2h,B2h,

&deltaz ,coefl ,coef2 ,col ,co2,co03,co4,temptl ,tempt2 ,tempt3 ,r

do j=1,nbodies
IF (( mstpflag . AND.im(j).EQ.rtag) .or. n.eq.0 ) THEN

miu=mass (j )« bhmass/(mass(j)+bhmass)
m=mass ( j )+bhmass

eta=miu/m

coefl =8./5.«etasm/rlength (j)*xrdot(j)*(17./3.x«m/rlength(j)
&+3xvlength (j)*=2)

coef2=8./5.%xetaxm/rlength (j)*(3+m/rlength (j)+vlength(j)==2)

call rel(nljx(j)/rlength(j)*=*2xcoefl ,nljy(j)/
&rlength (j)x+2xcoefl ,
&nljz(j)/rlength (j)==x2xcoefl ,vx(j)/rlength (j)*=*2xcoef2,
&vy(j)/rlength (j)*=*2xcoef2 ,vz(j)/rlength (j)**2xcoef2,
&temptl ,tempt2 , tempt3)

a2hpnx (j)=temptl*m

a2hpny (j)=tempt2+m

a2hpnz (j)=tempt3=m

ax (j)=ax(j)+a2hpnx(j)
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ay(j)=ay(j)+aZhpny(j)
az(j)=az(j)+a2hpnz(j)

A2h=coefl

B2h=—coef2

A2hdot=1.6xeta*(17./3.«*m/rlength (j)+3=xvlength (j)*%2)
&x(mxrddot(j)/ rlength (j)—m+rdot(j)==2/rlength (j)*=2)
&+1.6xetaxmsxrdot(j)/ rlength (j)«(—17+msrdot(j)/(3«rlength (j)=*2)
&+6xvlength (j)xvdot(j))

B2hdot=1.6+eta*m/rlength (j)=
&((3+m/rlength (j)+vlength (j)*=+2)xrdot(j)/ rlength(j)
&+3xmxrdot (j)/rlength (j)++2—2xvlength (j)=vdot(j))

col=A2hdot —2./rlength (j)*A2hxrdot (j)

co2=B2hdot —2./rlength (j)*B2hxrdot(j)

co3=A2h

co4=B2h

da2hpnx (j)=m/rlength (j)**2+(col*nljx (j)+co2xvx(j)+
&co3xndotx (j)+cod=ax(j))

da2hpny (j)=m/rlength (j)**2x(col=nljy(j)+co2xvy(j)+
&co3xndoty (j)+cod=xay(j))

da2hpnz (j)=m/rlength (j)*=+2x(col*nljz (j)+co2=vz(j)+
&co3xndotz (j)+cod=xaz(j))

dax (j)=dax(j)+da2hpnx(j)
day (j)=day(j)+daZhpny(j)
daz (j)=daz(j)+da2hpnz(j)

write (#,%) " a2hpnx , a2hpny ,a2hpnz ,da2hpnx ,da2hpny,da2hpnz’

write (# ,%)a2hpnx(j),a2hpny(j),a2hpnz(j),
&da2hpnx (j),da2hpny(j),da2hpnz(j)
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end if
end do
return

end

subroutine pn3(n)
INCLUDE ’tmhscf.h’
include ’'mpif.h’
integer j,i,n
real «8 dtp ,miu,m,eta ,delm, deltax ,deltay , A3dot,B3dot,A3,B3,

&deltaz ,coefl ,coef2 ,col ,co2,co03,co4,temptl ,tempt2 ,tempt3 ,r,coj3

do j=1,nbodies

IF (( mstpflag . AND.im(j).EQ.rtag) .or. n.eq.0) THEN
write (+,%) ’pn3 ,me,j,x(j)  ,me,j,x(j)

miu=mass (j )« bhmass/(mass(j)+bhmass)
m=mass ( j )+bhmass

eta=miu/m

coefl=—(16.D0+(1399./12. —41/16%pi*+2)xeta+71./2.xetaxx2)
&sxmx#3/rlength (j)==3
&—etax(20827./840.+123./64 .« pixs2—etax*2)xmx=2/
&rlength (j)#x2xvlength (j)*=2
&+(1+(22717./168.4615./64 .= pi==x2)*xeta+
&11./8.xetaxx2—Txeta+*x3)sm*=+2/rlength (j)*x+«2+xrdot (j)=*2+
&eta/4.%(11 —49xeta+52xeta=x+2)*xvliength (j)*x6—
&35/16.«etax(l—S5+eta+Sxetaxx2)xrdot(j)==6+
&eta/4d.%(75+32x«eta —40xetax+2)*m/rlength (j)*vlength (j)*=4+
&eta/2%(158 —69+eta —60xetax+2)«m/rlength (j)xrdot (j)==x4—

&etax(121 —16xeta —20xeta*x2)*m/ rlength (j)*vlength (j)**2xrdot (j)*=2—
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&3./8.xetax(20—79+xeta+60xetax=2)x vlength (j)x+xdxrdot (j)=*2+

&15./8. xetax(4—18xeta+17+xetax=2)xvlength (j)**2xrdot(j)*=4
coef2=rdot (j)*((4+(5849./840.+123./32. % pi**2)+xeta—

&25xetaxx2—8xeta*x*x3)xmxx2/rlength (j)*=2

&+eta/8x(65—152+eta —48xetax*2)xvlength (j)**x4+15./8.%etax

&(3—8xeta —2xetaxx2)krdot (j)*=x4

&+etax(15+27xeta+10xeta*+2)+m/rlength (j)*vlength (j)**2—eta/

&6+(329+177+xeta+108«xeta=x=+2)xm/rlength (j)xrdot(j)==*2

& —3./4.xetax(16—37«eta —16xetax+2)xvlength (j)**2xrdot(j)=*2)
call rel(—nljx(j)/rlength(j)**x2xcoefl ,

&-nljy(j)/rlength (j)*=2xcoefl,

&-nljz(j)/ rlength (j)**2xcoefl,—vx(j)/rlength(j)**2xcoef2,

&vy(j)/rlength(j)*=«2%coef2,—vz(j)/rlength(j)**2xcoef2 ,temptl,

&tempt2 ,tempt3)

a3pnx (j)=temptl sm
a3pny (j)=tempt2+m
a3pnz (j)=tempt3=m
ax(j)=ax(j)+a3pnx(j)
ay (j)=ay(j)+a3pny(j)
az(j)=az(j)+a3pnz(j)

A3=—coefl

B3=coef2

A3dot=
&3.xetaxrdot(j)*x5%xrddot(j)/8.%(35—175.%xeta+175.%xeta*x2)
&+etax(2xrdot(j)**3xrddot(j)xvlength (j)==x2+
&rdot (j)*+4xvlength(j)*xvdot(j))*(—15+135./2+xeta —255./4xeta+%2)

&+etax(rdot(j)xrddot(j)=vlength(j)==4
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&+2xrdot (j)=+2xvlength (j)*+2xvlength (j)xvdot(j))
&#+(15—-237./4xeta+45.xetaxx2)

&+6xvlength (j)*+4=vlength (j)xvdot(j)*xetax(—11/4+49./4+eta—
&l3xetax*2)

&+m/rlength (j)xeta=(4xrdot(j)*+*3xrddot(j)*(—79+69./2xeta+
&30.xeta x*2)

&+2x(rdot (j)xrddot(j)=vlength (j)**2+rdot(j)*=*2xvlength(j)=vdot(j))
&#(121 —16.xeta —20.xeta «*2)

&+4xvlength (j)==2xvlength (j)*vdot(j)*(—75./4—8.xeta+10.xeta*xx2))
&mxrdot(j)/rlength (j)*=x2xetax(rdot(j)**4x(—79+69./2xeta+
&30.xeta*x2)

&+rdot (j)=*2xvlength (j)*+2+(121 —16.xeta —20.%eta x=2)

&+vlength (j)*x4%(—75./4 —8.xeta+10.xetaxx2))

&2smxx2xrdot (j)/ rlength (j)*+3x(rdot (j)*=2x
&(—1—615.%pi*x2/64+xeta —22717./168xeta —11./8xetaxx2+7xetaxx3)
&+etaxvlength (j)«%2%(20827./840+123.xpi*x2/64—etaxx2))
&+m=x2/rlength (j)*+2(2+rdot(j)+*rddot(j)=
&(—1—615.%pi*x2/64+xeta —22717./168«xeta —11./8xetaxx2+7xetaxx3)
&+2xetaxvlength (j)xvdot(]j)*(20827./840+123 .« pi*x2/64—eta=x2))
&—3smx+3xrdot(j )/ rlength (j)s=4=

&(16+eta=(1399./12 —41.%pi*+2/16)+71./2xeta)

B3dot=75.xrdot(j)**4xrddot(j)xetax(3./8 —eta —1./4xetax2)
&+etax(3.xrdot(j)**2xrddot(j)=vlength (j)==2+
&2«rdot (j)=*3xvlength(j)*vdot(j))*(—12—111./4xeta+12.xetax*2)
&+etax(rddot(j)xvlength (j)==4
&+4xrdot(j)+vlength (j)**x2xvlength (j)=vdot(j))=
&(65./8—19.xeta —6keta xx2)
&mxrdot(j)/rlength (j)*=2
&#(rdot(j)*=*3xetax(—329./6 —59./2xeta —18xeta x=2)
&+rdot(j)=vlength(j)**2xetax(15+27.xeta+10.xeta*xx2))

&+im/rlength (j)xetax(3xrdot(j)**2xrddot(j)=*
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C

&(—329./6 —59./2xeta —18xeta xx2)+

&(rddot(j)=vlength (j)==2

&+2xrdot (j)+vlength(j)xvdot(j))=(15+27.xeta+10.xetax%x2))
&—2sm##2xrdot (j)xx2/rlength (j)==3=

&(4+123 . +pi*x2/32xeta+5849./840xeta —25.xeta**2 —8.xetax%3)
&m#x2xrddot(j )/ rlength (j)#*2x

&(4+123. % pi*%2/32+xeta+5849./840«eta —25.xetax+x2—8.xeta*x*3)

col=A3dot —2./rlength (j)*A3xrdot(j)

co2=B3dot —2./rlength (j)*B3xrdot(j)

co3=A3

co4=B3

da3pnx (j)=m/rlength (j)**2=x(col*nljx (j)+co2xvx(j)+
&co3«ndotx (j)+codxax(j))

da3pny(j)=m/rlength (j)**2=x(colxnljy(j)+co2=xvy(j)+
&co3«ndoty (j)+codsxay(j))

da3pnz(j)=m/rlength (j)*=*2x(colxnljz(j)+co2=vz(]j)+
&co3xndotz (j)+cod=xaz(j))

dax (j)=dax(j)+da3pnx(j)
day (j)=day(j)+da3pny(j)
daz (j)=daz(j)+da3pnz(j)
write (% ,%) "a3pnx ,a3pny,a3pnz,dadpnx,da3pny,da3pnz’
write (*,%)a3pnx(j),a3pny(j),a3pnz(j),da3pnx(j),
&da3pny (j),da3pnz(j)
E3(j)=(3.D0/8.D0+18469.D0/840.D0=eta )*mor(j):4.D0+
&(5.D0/4.D0—(6747.D0/280.D0
&—41.D0/64.D0«pi+x2.D0)= eta
&—21.D0/4.D0xeta #%2.D0+1.D0/2.D0xeta *«+3.D0)
&xmor (j)**3.D0xvlength (j)==2.D0+
&(3.D0/2.D0+(2321.D0/280.D0—123.D0/64.D0x*pi *%2.D0)
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&+eta+51.D0/4.D0xeta x%x2.D0+7.D0/2.D0xeta «x3.D0)

&smor (j)#+3.D0xrdot (j)==+2.D0+
&1.D0/128.D0%(35.D0—413.D0xeta+1666.D0=xeta #%2.D0—

&2261.D0xeta *%3.D0)* vliength (j )=*=*8.D0+
&1.D0/16.D0*(135.D0—194.D0+eta+406.D0xeta «+2.D0—108.DOxeta x=3.D0)
&smor (j)=+2.D0xvlength (j)=*4.D0

&+1.D0/16.D0(12.D0+248.D0+eta —815.D0=eta «+2.D0—324.D0=eta x=3.D0)
&smor (j)=+2.D0xvlength (j)==*2.D0

&srdot (j)*=2.D0

&—1.D0/48.D0xeta+(731.D0—492.D0xeta —288.D0xeta xx2.D0)*

&mor (j)#+2.D0xrdot (j)==+4.D0
&+1.D0/16.D0(55.D0—215.D0Oxeta+116.DOxeta *+2.D0+325.D0x
&eta=+3.D0)+mor(j)*vlength (j)*+6.D0

&+1.D0/16.D0xeta x(5.D0—25.D0xeta +25.D0xeta «2.D0)=*

&mor (j)srdot(j)**x6.D0

&—1.D0/16.D0xeta «(21.D0—75.D0xeta —375.D0xeta xx2.D0)x*
&mor(j)+vlength (j)**4.D0xrdot(j)**2.D0

&—1.D0/16.D0xeta (9.D0—84.D0xeta+165.D0xeta *%2.D0)

&+mor(j)+vlength (j)**2.D0«xrdot(j)**4.D0

E3(j)=miuxE3(j)
write (= ,%)"j,E3(j)’,j,E3(j)

write (% ,%) 'me,j,E3(j),x(j) ,me,j ,E3(j),x(j)

E(j)=EO0(j)+E1(j)+E2(j)+E3(j)+mass(j)*pot(])

E(j)=E0(j)

write (+,+)E(j).E0(j).E1(j).E2(j).E3(j)

c0j3=(5./2. —(5199./280. —41./32. % pi**2)*eta—
&T.xetaxx2+etax+x3)xmor(j)**3+
&1./16.%(5. —59.xeta+238.xeta**x2—323.xeta**x3)xvlength (j)*=6+
&1./12.%(135. -322.«xeta+315.xeta*x2—108.xeta*x3)

&smor (j)#x2xvlength (j)==2+
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&1./24.%(12. —287.xeta —951.xeta*x2 —324 . xeta**3)*mor(j)**2xrdot (j )2
&+1./8.%(33. —142.xeta+106.xeta*x%2+195.%xeta**3)*mor(j)*vlength (j)==4
&—1./4.xeta=(12. —T.xeta —T75.xetax*2)xmor(j)*vlength (j)*x2xrdot(j)*=*2
&+3./8.xetax(2. —2xeta—1lxeta=x*2)smor(j)xrdot(j)*=x4
J3x(j)=miuxcoj3xrcvx(j)
J3y(j)=miuxcoj3*rcvy(j)

J3z(j)=miuxcoj3*rcvz(])

Ix(j)=J0x (jH)+I1x(j)+I2x (j)+I3x(j)
Jy (3)=30x(j)+J1y (j)+J2y (j)+I3y (j)
1z (j)=J0x (j)+T1z(j)+122(j)+I3z(j)

write (x,=)tnow ,E(j),Ix(j),Jy(j),Jz(j)

h(j)=sqrt (Ix(j)=*=2+Jy (j)**2+Jz(j)**2)/(G+m)
write (x,+)°j . h(j),E(j)’,j,h(j),E(])
write (x,%) ’Ix(j),Jy(j),Jz(j)’

write (+,+)Jx(j),Jy(j).Jz(j)

er (j)=142«E(j)xh(j)*+2+(—2+E(j))/(4%Cxx2)%(24. —4.xeta+
&5#(—3.+eta)x(—2+E(j)*h(j)*%2))
&+(—2%E(]j))*#%2/(8%C#%4)x(60.+148.xeta+2.xetaxx2—(—2.%xE(]j)*etax*x2)=
&(80.—45.xeta+4.xeta*x+2)+32/(—2.«E(j)*h(j)**2)x(4. —T7.xeta))+
&(—2.%E(j))*+3/(6720.%C#%6)%(—3360.+181264.xeta+8610.%pixx2xeta—
&67200.xetax+x2+105.%(—2.%«E(j)*h(j)*+2)x(—1488.+1120.xeta—
&195.xetasx2+
&4.xetaxx3)—80./(—2.%«E(j)+*h(j)+%2)%x(1008.—-21130.xeta+
&861.xpixx2xeta+
&2268.xeta*x2)+16./(—2.%*E(j)*h(j)*=2)%+2x
&(53760.—176024.xeta+4305.«pi*x2xeta+15120.xetaxx2))

er(j)=sqrt(er(j))
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et(j)=1.42%E(j)*h(j)*+2+(—2+E(j))/(4%Cx=x2)x(—8.+8.xeta—
&(—2.#E(j)*h(j)==*2)=
&(—17.+7.%eta))
&+(—2.#E(j))#+2/(8.#Cx#4)x(12.472.xeta+20.xecta**x2 —24
&sqrt(—2.«E(j)xh(j)=*2)
&x(—5.42.xeta)—(—2.«E(j)*h(j)**2)*(112. —47.«xeta+16.%xeta**x2)—16./
&(—2+E(j)xh(j)==2)x(—4.+7.%xeta)+24./sqrt(—2.«E(j)*xh(j)=*2)x*
&(—5.42.xeta))
&+(—2.%E(j))*%3/(6720.%Cx%6)%(23520. —464800.xeta+179760.x eta **2+
&16800.xeta %3 —2520.xsqrt(—2.«E(j)+*h(j)**2)%(265. —193.=eta
&+46.xetaxx2)
&—525.%(—2.«E(j)*h(j)*=%2)%x(—528.+200.xeta —77.xeta*x2+24.xeta*x3)
&—6./(—=2.%E(j)*h(j)*%2)%(73920. -260272.xeta+4305.x pi**2xeta+
&61040.xetaxx2)
&+70./sqrt(—2.«E(j)*h(j)*%2)*(16380. —19964.xeta+123.xpixx2xeta
&+3240.xetaxx2)
&+8./(—2.%«E(j)*h(j)**x2)%%2%(53760. —-176024.xeta+4305.«pi**2xeta+
&15120.xetax+2) —T70./(—2.%«E(j)*h(j)*=2)*=(3./2.)%x(10080. —
&13952.xeta+123.xpixx2xeta+1440.xeta*x%2))

et(j)=sqrt(et(j))

ephi (j)=1+42.%E(j)*h(j)**2+(—=2.%E(j))/(4%Cxx2)x
&(24.+(—2.#E(j)*h(j)*#2)x(—15.+eta))+
&(—2.%E(j))#%2/(16.%Cxx4)%(—40.+34. % eta+18.%etaxs2—
&(—2.%E(j)*h(j)*2)=
&(160. —31.xeta+3.xeta#x2) —1./(—2.#E(j)*h(j)*+2)x(—416.+491.%eta+
&15.xeta##2))+(—2.%E(j))#%3/(13440.%Cx%6)%(—584640. —17482.+eta—
&4305.#pi**2xeta —7350.xeta #x2+8190.x etax*3 —420.%(—2.+E(j)*h(j)**2)*
&(744.—-248.xeta+31.xetaxx2+3.xeta**x3)—14./(—2.«E(j)*h(j)*=+2)=
&(36960. —
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&341012.%eta+4305.« pi==x2sreta —225.xeta*%2+150. % eta*+3)—
&1./(—=2.xE(j)*h(j)#*2)%%2%(—2956800.+5627206.xeta —81795.« pi*=2xeta+

&14490.xeta*%2+7350.xeta *%3))

ephi (j)=sqrt(ephi(j))

write (*,%) "h,er,et,ephi’

write (= ,%)h(j),er(j),et(j),ephi(j)

end if

end do

return

end

subroutine pn3h(n)

INCLUDE ’tmhscf.h’

include ’'mpif.h’

integer j,i,n

real «8 dtp ,miu,m,eta ,delm, deltax ,deltay , A3hdot,B3hdot,A3h,B3h,
&deltaz ,coefl ,coef2 ,col ,co2,co03,co4,temptl ,tempt2 ,tempt3 ,r

real «8 apnx,apny,apnz,dapnx,dapny,dapnz

do j=I1,nbodies

IF ((mstpflag .AND.im(j ).EQ.rtag) .or. n.eq.0) THEN

miu=mass (j)*bhmass/(mass(j)+bhmass)
m=mass (j )+bhmass

eta=miu/m

coefl =8./5.%xetaxm/rlength (j)xrdot(j)=(23./14.%
&(43+14+eta)sm==x2/rlength (j)*+2+3./28.
&#(61+70xeta)*vlength (j)**x4+70xrdot (j)=*=4
&+1./42.%(519 —1267+eta)+m/rlength (j)*vlength (j)=+2+
&1./4.%(147+188=«eta)sm/rlength (j)*xrdot (j)*2—
&15./4.%(19+2=«eta)*vlength (j)*+2s«rdot (j)*x*x2)

179



coef2=8./5.%xetaxm/rlength (j)*(1./42.%(1325+546+¢cta)
&smxx2/rlength (j)#x2
&1./28.%(313+42=xeta)*vlength (j)**x4+75xrdot (j)*=4
& —1./42.%(205+777«eta)+*m/ rlength (j)=vlength (j)*=2
&+1./12.%(205+424+eta)*m/rlength (j)+*rdot (j)==2

& —3./4.%(11342xeta)*vliength (j)**2xrdot (j)**x2)

call rel(—nljx(j)/rlength (j)**2xcoefl,—nljy(j)/
&rlength (j)x+2xcoefl
&-nljz(j)/rlength(j)*+2«coefl,—vx(j)/rlength (j)*=*2xcoef2,
&vy(j)/rlength (j)*=2xcoef2,—vz(j)/rlength (j)**2xcoef2,

&temptl ,tempt2 ,tempt3)

a3hpnx (j)=temptl+m
a3hpny (j)=tempt2=m
a3hpnz(j)=tempt3+m
ax (j)=ax(j)+a3hpnx(j)
ay (j)=ay(j)+a3hpny(j)
az(j)=az(j)+a3hpnz(j)

A3h=—coefl

B3h=coef2

A3hdot=m/rlength (j)*eta=x(4=vlength (j)**2«vlength(j)=vdot(j)
&#(—366./35—12.xeta)+2+(vlength (j)*vdot(j)xrdot(j)==2+
&2+«rdot(j)/ rlength(j)=(vlength(j)**2+(—692./35+724./15«eta)+
&rdot (j)#=2%(—294./5—-376./5«cta))—
&3.xmxrdot(j)/ rlength (j)=+2%(—3956./35—-184./5xeta)))
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B3hdot=m/rlength (j)*eta=
&(4xvlength (j)==2«vlength (j)*vdot(j)=(616./35+12./5«eta)+
&2+(vlength (j)*vdot(j)+*rdot(j)*+2+vlength(j)**2xrdot(j)*rddot(j))
&x(—678./5—12./5%eta)+480xrdot (j)**3«rddot(j)—rdot(j)/rlength ()=
&(vlength (j)#*4%(626./35+12./5«eta)+
&vlength (j)**2xrdot(j)**2%(—678./5—12./5xeta)+120.xrdot (j)==x4)+
&m/rlength (j)*(2xvlength (j)*vdot(j)*(—164./21 —148./5xeta)+
&2xrdot(j)xrddot(j)*(82./3+848./15«eta)—
&2«rdot(j)/ rlength (j)*=(vlength (j)*+2%(—164./21 —-148./5%eta)+
&rdot (j)##2%(82./3+848./15xeta))—
&3.#smxrdot(j)/ rlength (j)**2%(1060./21+104./5%x¢eta)))

col=A3hdot —2./rlength (j)*xA3hxrdot(j)

co2=B3hdot —2./rlength (j)*B3h=xrdot(j)

co3=A3h

co4=B3h

da3hpnx (j)=m/rlength (j)**2x(col=nljx (j)+co2*vx(j)+
&co3xndotx (j)+cod=xax(]j))

da3hpny (j)=m/rlength (j)**2%(col=nljy(j)+co2xvy(j)+
&co3xndoty (j)+cod=xay(j))

da3hpnz(j)=m/rlength (j)*=+2x(col*xnljz (j)+co2=vz(])+

&co3xndotz (j)+cod=xaz(j))

dax (j)=dax(j)+da3hpnx(j)
day (j)=day (j)+da3hpny(j)
daz (j)=daz(j)+da3hpnz(j)

apnx=alpnx (j)+a2pnx(j)+a2hpnx(j)+a3pnx(j)+a3hpnx(j)

apny=alpny (j)+a2pny (j)+a2hpny(j)+a3pny(j)+a3hpny(j)
apnz=alpnz(j)+a2pnz(j)+a2hpnz(j)+a3pnz(j)+adhpnz(j)
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dapnx=dalpnx (j)+da2pnx(j)+da2hpnx (j)+dadpnx(j)+dadhpnx(j)
dapny=dalpny (j)+da2pny(j)+da2hpny(j)+dadpny(j)+dadhpny(j)
dapnz=dalpnz(j)+da2pnz(j)+da2hpnz(j)+da3pnz(j)+dadhpnz(j)
write (#,%) "a3hpnx , a3hpny,a3hpnz,da3hpnx ,da3hpny,da3hpnz’
write (# ,%)a3hpnx(j),a3hpny(j),a3hpnz(j),
&da3hpnx (j),da3hpny(j),da3hpnz(j)

write (* ,%) apnx ,apny,apnz , dapnx ,dapny,dapnz’
write (# ,*)apnx ,apny,apnz ,dapnx ,dapny,dapnz
end if

end do

return

end

subroutine torb
INCLUDE ’tmhscf.h’
include ’'mpif.h’
real «8 miu,energy ,aaxis
integer i
do i=1,nbodies
if (starlive(i).eq.1) then
energy=1./2.%+mass(1)x(vX(1)*%2+Vvy(1)**x2+vZ(1)%%x2)—

&Gxbhmass+mass (i )/(sqrt(x(i)x+=2+y(i)**2+z(i)**2)+epsbh)

aaxis=—Gxbhmass*mass(i)/(2*energy)

torbit (i)=2«pixaaxis«*(3./2.)xsqrt (1/(G=(bhmass+mass(i))))
write (+,%) 1 ,E,a,t’,i,energy ,aaxis ,torbit(i)

end if

end do
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return

end

subroutine rtidal
INCLUDE ’tmhscf.h’

include ’'mpif.h’

integer i
real 8 rtispe ,tempstarO_snd ,tempstarO_rcv
do i=1,nbodies
if (starlive(i).eq.l) then
rlength (i)=sqrt(x(i)*=2+y(i)*%2+2z(i)**x2)
rtispe =(0.844%%2+2.e6/0.42«bhmass)*=(1/3)%2.254e—8/2.2751e—7
if (rlength(i).le.rtispe)then
write (x,%)”rtidal”
write (*,%) 1.434e3xbhmass=+=x(1./3.)
bhmass=bhmass+mass (1)
mass (i)=0.0
starO=star0+1
write (x,%) 1
end if
end if
end do
tempstarO_snd=star0
call MPI_Allreduce (tempstarO_snd ,tempstarO_rcv, 1,
mpi-double_precision ,
mpi_sum, mpi_comm_world,ierr)
starO=tempstarO_rcv
return
end
SUBROUTINE pn2(n)
INCLUDE ’tmhscf.h’
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INCLUDE ’mpif.h’

INTEGER j ,i,n

REAL+8 dtp ,miu,m, eta ,delm, deltax ,deltay , A2dot,B2dot,A2,B2,
&deltaz ,coefl ,coef2 ,col ,co02,c03,co4,temptl ,tempt2 ,tempt3 ,r,coj2

DO j=1,nbodies

IF ((mstpflag . AND.im(j ).EQ.rtag).or. n.eq.0) THEN

miu=mass (j )« bhmass/(mass(j)+bhmass)
m=mass ( j )+bhmass
eta=miu/m
write (*,*)’j,x,y,z,xyzbh,r,epsbh,rlength(j)’,
&j . x(j),y(j),z(j),xbh, ybh,
&zbh , r (xbh,ybh,zbh,x(j),y(j),z(j)),epsbh,rlength(j)
coefl=3./4.%(12+29*ecta)+*m*=2/rlength (j)*+x2+etax(3—4xeta)
&s=vlength (j)x=4+
&15./8. xetax(l—3xeta)xrdot(j)*+4 —3./2.xetax(3—4xeta)xvlength ()2
&srdot(j)=x2 —1./2.xetax(13—4xeta)=vlength(j)*=2+m/rlength (j)—
&(2+25xeta+2xetax*2)xrdot(j)*=2+m/rlength (j)

write (= ,%) "coefl ,eta ,rlength(j)’,j,coefl ,eta,rlength(j)

coef2=rdot(j)/2«(etax(15+4=xeta)xvliength (j)*+2—
&(4+41xeta+8xeta xx2)
&#m/rlength (j)—3xetax(3+2xeta)xrdot(j)*=2)

write (% ,%) "coef2 ,eta ,rlength(j)’,j,coef2  ,eta,rlength(j)

call rel(—nljx(j)/rlength (j)*=2xcoefl ,
&-nljy(j)/rlength (j)*+2*coefl ,
&-nljz(j)/rlength(j)**2+coefl,—vx(j)/rlength (j)**2xcoef2,
&vy(j)/rlength (j)*+2+coef2,—vz(j)/rlength (j)**2xcoef2,
&temptl ,tempt2 , tempt3)

a2pnx (j)=temptlm

a2pny (j)=tempt2sm
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a2pnz(j)=tempt3+m

ax(j)=ax(j)+a2pnx(j)
ay (j)=ay(j)+a2pny(]j)
az(j)=az(j)+a2pnz(j)

A2=—coefl

B2=coef2

A2dot=3.xm*=*2xrdot(j)/(2=rlength (j)*+3)*(12+29.xeta)
&—4xvlength (j)*=*2%vlength (j)*vdot(j)*etax(3.—-4.xeta)
& —15./2.xetaxrddot (j)=(1l.—-3xeta)
&mxrdot(j)/(2+«rlength (j)*=2)+xvlength(j)*+2xetax(13.—4.xeta)
&+m/ rlength (j)=vlength(j)*xvdot(j)*xetax(13.—4.xeta)
&—(2+25«eta+2xetaxx2)xm/ rlength (j)**x2xrdot(j)*=3
&+2x(2+25xeta+2xetaxx2)xm/ rlength (j)srdot(j)xrddot(j)
&+3xvlength (j)xvdot(j)*rdot(j)**2xetax(3.—4.xeta)
&+3xvlength (j)*+2xrdot(j)*xrddot(j)xetax(3—4.xeta)

B2dot=—1./2xrddot(j)*(—eta*x(15+4.%xeta)*xvlength (j)*=2+
&(4+41.xeta+8.xetaxx2)
&wm/rlength (j)+3+eta=(3+2.%xeta)srdot(j)*=*2)
&—1./2.xrdot (j)*(—(4+41.xeta+8.xeta=x+2)«msrdot(j)/rlength (j)*%2
&—2+«etaxvlength (j)xvdot(j)+(15+4.«eta)
&+6xetaxrdot(j)srddot(j)=(3+2.xeta))

col=A2dot —2./rlength (j)*A2«rdot(j)

co2=B2dot —2./rlength (j)*B2«rdot(j)

c03=A2

co4=B2

da2pnx (j)=m/rlength (j)**2*(col*nljx(j)+co2xvx(j)+
&co3xndotx (j)+cod=xax(]j))

da2pny(j)=m/rlength (j)**2*(col*nljy(j)+co2=xvy(j)+
&co3=ndoty (j)+cod=ay(j))

da2pnz(j)=m/rlength (j)**2%(col*nljz(j)+co2xvz(j)+
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&co3xndotz (j)+cod=xaz(j))

dax (j)=dax(j)+da2pnx(j)

day (j)=day (j)+da2pny (j)

daz(j)=daz(j)+da2pnz(j)

write (*,%) "a2pnx ,a2pny,a2pnz ,da2pnx ,da2pny,da2pnz’

write (*,%)a2pnx(j),a2pny(j),a2pnz(j),da2pnx(j),da2pny(j),da2pnz(j)

E2(j)=—1.D0/4.D0x*(2.D0+15.D0xeta )*mor(j)==3.D0
&+5.D0/16.D0x*(1.D0—7.D0xeta+
&13.D0xeta *%2.D0)* vlength (j)*6.D0
&+1.D0/8.D0+(14.D0—55.D0xeta+4.D0xeta xx2.D0)sxmor (] )**2.D0
&=vlength (j)==+2.D0+
&1.D0/8.D0x*(4.D0+69.D0xeta+12.DOxeta +2.D0)xmor(j)==+2.D0
&«rdot (j)==2.D0+
&1.D0/8.D0*(21.D0—23.D0xeta —27.D0xeta *x2.D0)sxmor(])
&=vlength (j)==+4.D0+
&1.D0/4.D0xeta «(1.D0—15.D0xeta )«mor ()=
&vlength (j)++2.D0xrdot(j)==+2.D0—
&3.D0/8.D0xeta «(1.D0—3.D0xeta)+«mor(j)srdot(j)==4.D0

E2(j)=E2(j)*miu

write (*,%) 'me,j ,E2(j),x(j) ,me,j ,E2(j),x(j)

coj2=1./4.%(14. —41.xeta+4.xetax=x2)xmor(j)*xx2+
&3./8.%(1.—7.xeta+13.xetax*x2)xvlength (j)x=4
&+1./2.%(7.—10.xeta —9.xeta**2)sxmor(j)*vlength (j)*=2
&—1./2.xeta*(2.+5.%xeta)smor(j)xrdot(j)x=2

J2x(j)=miuxcoj2*rcvx(])

J2y (j)=miuxcoj2*rcvy(])

J2z (j)=miuxcoj2*rcvz(])

write (*,%) 'me,j,J2x(j)  ,me,j,J2x(j)
end if
end do
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return

end
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Below is the head file tmhscf.h

INCLUDE FILE tmhscf.h

Parameter declarations, allocation of array storage , common

block definitions.

Definitions I added — Bohr He, June 1995

Further Modifications by Steinn Sigurdsson Sep 1995

R

ISR

integer n_pes, me, lognpes

real =8 tmpsumOl, tmpsumO02, tmpsumO3, tmpsumO4, tmpsumOS5,
tmpsumO06 , tmpsum07, tmpsumO8, tmpsumO09, tmpsumlO,
tmpsumll, tmpsuml2, tmpsuml3, tmpsuml4

real x8 tempOl, temp02, temp03, temp04, tempO05, temp06, tempO07,
temp08, temp09, templO,templl , templ2, templ3 , templ4,
templ5 ,templ6 ,templ7 ,templ9 ,temp20,temp2l ,temp22 ,temp23,
temp24 ,temp25 ,tempEOQ , tempE1,
tempE2 , tempE3 , tempJ2x , tempJ2y , tempJ2z

integer itempOl ,templ8

real =8 totimeO ,totimel ,totime ,tmptime,cycletime
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parameter(cycletime=6.6666666667E—-9)

INTEGER nbodsmax ,nbodsper ,nmax, lmax

PARAMETER( nbodsmax=2000000,nbodsper=25000,nmax=13,lmax=9)

CHARACTER:#50 headline
INTEGER nsteps ,noutbod ,nbodies ,noutlog ,nfrac ,nlilout ,iseed

INTEGER im, star0

LOGICAL selfgrav ,inptcoef ,outpcoef ,zeroodd, zeroeven,
&fixacc , firstpn ,secondpn ,secondhpn, thirdpn , thirdhpn
firstpn quadru added by Baile
LOGICAL bhgrav , multistep ,usedrag ,stellev ,fixedn , lilout
LOGICAL mstpflag

REAL*8 tnow,x,y,z,vx,vy,vz,mass,pot,dtime ,G,C,ax,ay,az,one,pi,
twoopi,onesixth ,tpos ,tvel ,cputimeO ,cputimel ,cputime ,
rcrit ,radbh,velObh , dteps,
potext ,two,zero ,tiny ,ecrit ,oax,oay,oaz,odax,oday,odaz,
dax ,day,daz,adens,dti ,aqx,aqy,aqz,nljx ,nljy,nljz,
vljx ,vljy,vljz ,odaxbh,odaybh,odazbh,alpnx,alpny,alpnz,
a2pnx ,a2pny,a2pnz,a3pnx,a3pny,a3pnz,
a2hpnx , a2hpny ,a2hpnz , a3hpnx,a3hpny,a3hpnz,

asox ,asoy ,asoz , maxratio ,rlength , vlength ,

R R R PR R P PR

h,er,et,ephi

REAL+8 bhmass,epsbh, tstartbh ,tgrowbh, tlivebh ,tdiebh ,
tstartdrag ,tgrowdrag,
xdrag ,ydrag ,zdrag ,tlivedrag ,tdiedrag ,bhmasst, tfinal ,

torbit ,vdot,rdot ,rddot ,ndotx ,ndoty ,

SRS S

ndotz ,dalpnx ,dalpny,dalpnz,da2pnx,da2pny,da2pnz,
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& da2hpnx ,da2hpny ,da2hpnz,

& da3pnx ,da3pny ,da3pnz,da3hpnx ,da3hpny,da3hpnz

REAL%8 sinsuml , sinsum?2 , cossuml , cossum?2

REAL+8 dts , dtlil

REAL+8 dtsmall ,dtbig , tnextbig ,dtbin

REAL+8 J1x,Jly,J1z,J2x,J2y,J2z,J3x,J3y,J3z,
&E1,E2,E3,rcvx ,rcvy ,rcvz ,mor,

&E,E0,J0x ,J0y ,JO0z ,Jx ,Jy,Jz

COMMON/ bodscom /x (nbodsper) ,y(nbodsper),z(nbodsper),
vx (nbodsper),vy(nbodsper),vz(nbodsper),
mass (nbodsper),
pot(nbodsper),ax(nbodsper),ay(nbodsper),
az(nbodsper),potext(nbodsper),adens(nbodsper),
dax (nbodsper),day(nbodsper),daz(nbodsper),
oax (nbodsper),oay(nbodsper),oaz(nbodsper),
odax (nbodsper),oday(nbodsper),odaz(nbodsper),
dti (nbodsper),aqx(nbodsper),aqy(nbodsper),
aqz (nbodsper),
nljx (nbodsper),nljy(nbodsper),nljz(nbodsper),
vljx (nbodsper),vljy(nbodsper),vljz(nbodsper),
torbit (nbodsper),alpnx(nbodsper),alpny(nbodsper),
alpnz(nbodsper),a2pnx(nbodsper),a2pny(nbodsper),
a2pnz(nbodsper),a3pnx(nbodsper),a3pny(nbodsper),
a3pnz(nbodsper),a2hpnx (nbodsper),
a2hpny (nbodsper),
a2hpnz (nbodsper),a3hpnx(nbodsper),
a3hpny (nbodsper),
a3hpnz (nbodsper),asox(nbodsper),asoy(nbodsper),

asoz (nbodsper ), maxratio(nbodsper),

R RRR R R R R R R R R PR R R RRPRR®E

rlength (nbodsper),
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& vlength (nbodsper),
&vdot(nbodsper),rdot(nbodsper),rddot(nbodsper),ndotx (nbodsper),
&ndoty (nbodsper),ndotz(nbodsper),dalpnx(nbodsper),

&dalpny (nbodsper),
&dalpnz(nbodsper),da2pnx(nbodsper),da2pny(nbodsper),

&da2pnz(nbodsper),
& da2hpnx (nbodsper),da2hpny (nbodsper),da2hpnz(nbodsper),
& da3pnx (nbodsper),da3pny(nbodsper),da3pnz(nbodsper),

&da3hpnx (nbodsper),da3hpny (nbodsper),da3hpnz(nbodsper),
&J1x(nbodsper),Jly(nbodsper),J1z(nbodsper),J2x(nbodsper),
&J2y (nbodsper),J2z(nbodsper),J3x(nbodsper),J3y(nbodsper),
&J3z (nbodsper),El(nbodsper),

&E2 (nbodsper) ,E3(nbodsper),rcvx(nbodsper),rcvy(nbodsper),
&rcvz (nbodsper) ,mor(nbodsper),

&h(nbodsper),er (nbodsper),et(nbodsper),ephi(nbodsper),
&E(nbodsper) ,EO0(nbodsper),JOx(nbodsper),JOy(nbodsper),
&J0z (nbodsper),Jx(nbodsper),Jy(nbodsper),Jz(nbodsper)

(OMMON/ parcomi/nbodies , nsteps , noutbod ,

&noutlog ,nlilout ,nfrac , star0
QOMMON/ parcomr / dtime ,G,C,one, pi ,twoopi,onesixth ,two, tiny , zero
(COMMON/ parcomc / headline

COMMON/ parcoml/selfgrav ,inptcoef ,outpcoef ,zeroodd , zeroeven ,

& lilout , fixacc ,bhgrav , multistep ,usedrag,
& stellev , fixedn , firstpn ,secondpn, secondhpn,
& thirdpn , thirdhpn

(OMMON/ timecom / tpos ,tnow , tvel ,ecrit , dteps

COMMVION/ timecom?2/ rcrit ,radbh , velObh , tfinal

COVMON/ tstepcom / dts , dtlil

GOVMMON/ cpucom / cputime0 , cputimel , cputime

(OMMON/ bhgcom / bhmass , epsbh , tstartbh ,tgrowbh , tlivebh , tdiebh
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COVMMON/ dracom / xdrag , ydrag , zdrag , tlivedrag , tdiedrag ,
tstartdrag ,tgrowdrag ,bhmasst

COVMMON/ coefcom /sinsum1 (0:nmax ,0:1max ,0:1max),
sinsum?2 (0:nmax ,0:1max ,0:1max),
cossuml (0:nmax,0:1lmax ,0:1lmax),
cossum?2 (0:nmax,0:Imax ,0:1max)

QOMMON/ mstpcomr/ dtsmall , dtbig , tnextbig (3),dtbin (4)

COVMMON/ mstpcomi/im(nbodsper)

COVMMON/ mstpcoml/ mstpflag

Definition I added — Bohr He, June 1995

R &

R R RRPR R R R R PR

common/t3d/n_pes, me, lognpes
common/tmpo /tmpsumO1, tmpsum02, tmpsumO03, tmpsumO4, tmpsumO5,
tmpsum06 , tmpsumO07, tmpsumO8, tmpsum09, tmpsumlO,
tmpsumll, tmpsuml2, tmpsuml3, tmpsuml4
common/tempo/tempOl (nbodsper),temp02(nbodsper),temp03 (nbodsper),
temp04 (nbodsper),temp05 (nbodsper),temp06 (nbodsper),
tempO7 (nbodsper),temp08 (nbodsper),temp09 (nbodsper),
templO(nbodsper),templl (nbodsper),templ2(nbodsper),
templ3(nbodsper),templ4 (nbodsper),templ5(nbodsper),
templ6(nbodsper),templ7 (nbodsper),templ8(nbodsper),
templ9 (nbodsper),temp20(nbodsper),temp21 (nbodsper),
temp22 (nbodsper),temp23 (nbodsper) ,temp24 (nbodsper),
temp25 (nbodsper ) ,tempEO(nbodsper) ,tempEl (nbodsper),
tempE2 (nbodsper ) ,tempE3 (nbodsper),
tempJ2x (nbodsper),
tempJ2y (nbodsper),tempJ2z(nbodsper)
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common/ itempo /itempOl (nbodsper)

common/cpucoml /totimeO , totimel , totime , tmptime

C

C Definitions specific to input/output.

INTEGER uterm , upars ,ulog ,ubodsin ,ubodsout ,utermfil ,uoutcoef,
& uincoef ,ubodsel ,umods, ubodslil ,uchkout

CHARACTER#8 parsfile ,logfile ,ibodfile ,obodfile ,termfile ,
& outcfile ,incfile ,elfile , modsfile , olilfile ,

& chkfile

PARAMETER(uterm=6,upars=10,ulog=11,ubodsin=12,ubodsout=13,

& umods=14,utermfil=15,uoutcoef=16,uincoef=17,

& ubodsel=18,ubodslil=19,uchkout=20)
PARAMETER( parsfile="scfpar’,logfile="scflog’,

& modsfile="scfmod’,olilfile="slilxxxx’,

& ibodfile="scfbi’,obodfile="snapxxxx’,

& termfile="scfout’,outcfile="scfocoef’,

& incfile="scficoef’,elfile="scfelxxx’,

& chkfile="scfchkpt’)

C

¢ Definitions specific to black holes added by Baile Li Aril 10 2011

C

real =8 xbh,ybh,zbh, vxbh,vybh, vzbh, axbh,aybh,b daxbh,h daybh,h dazbh,
&azbh , kix , kiy , kiz , dakix , dakiy , dakiz ,oaxbh,oaybh,oazbh, akix ,
&akiy , akiz ,oakix , oakiy , oakiz , odakix , odakiy , odakiz , kix1 , kiyl,

&kizl ,akix1 , akiyl , akizl ,sx,sy,sz,asx ,asy,asz,o0asX,0asy,0asz

real «8 fac
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common/ massfac/fac

common/ bhlinear /xbh,ybh,zbh,vxbh, vybh,vzbh,axbh,aybh,azbh,
& daxbh ,daybh ,dazbh , oaxbh, oaybh, oazbh, odaxbh,
& odaybh , odazbh

common/bhangular/kix , kiy , kiz , akix , akiy , akiz , dakix , dakiy , dakiz ,
&oakix ,oakiy ,oakiz , odakix , odakiy , odakiz , kix1 ,kiyl ,kizl ,akix1,

&akiyl ,akizl ,sx,sy,sz,asx ,asy,asz,o0asXx ,o0asy,0asz

integer rtag ,numb,nbin,nbin0
common/ particlestatus/rtag ,numb(4),nbin(4),nbin0
integer nbinl ,noutbodl

common/outbodsmulti/nbinl , noutbodl
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Below is the input mode file scfmod.

CrssxxskrsxxBasic INpuUt parameters sk sk *

37563 iseed

1.0 bhmass
0.00001 epsbh

0.0 tstartbh
—10.00 tgrowbh
1.0e12 tlivebh
10.0 tdiebh
0.0 xdrag
0.000 ydrag
0.045 zdrag
0.00 tstartdrag
10.0 tgrowdrag
30.0 tlivedrag
10.0 tdiedrag
.TRUE. bhgrav
.FALSE. usedrag
.FALSE. stellev

Cosrrkkksksskkkkkkkkkskkkkkkkkkk ks kkkkoskwoskw sk wkok %
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Below is the input parameter file scfpar.

CrssxxskrsxxBasic INpuUt parameters sk sk *

expansion test headline

10000000 nsteps

1 noutbod

1 noutlog

1.0 dteps

1.0 G

1.0 C
.FALSE. firstpn
.FALSE. secondpn
.FALSE. secondhpn
.FALSE. thirdpn
.FALSE. thirdhpn
1.0e12 tfinal
.TRUE. multistep
.FALSE. fixedn
.TRUE. selfgrav
.FALSE. inptcoef
.FALSE. outpcoef
.FALSE. zeroodd
.FALSE. zeroeven
.FALSE. fixacc
0.00010d0 rerit
0.0d—4 ecrit
.FALSE. outlil
10000000 noutlil

Cxrssekkwkrkkkrkkkkkkkkkkkkkkkkkkkkwkwkkkk %
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Below is the compile file run.pl.

#!/usr/local/bin/perl —w

system ("rm._—f_snap*”);
system ("rm._—f_scflog”);
system ("rm._—f_scfout”);
system ("rm._—f_out.test”);
system ("rm._—f_mpiscf”);
system ("rm._—f_sli*”);
system ("rm._—f_old*");
system ("rm._—f_fort*");

system ("rm._—f_corex");

system (' mpif77 .—O3_mpiscf.f_.—o_mpiscf’);

#system (7 ./ mpiscf”);

#system(” qsub squeeze.sript.nbod”);
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